Luna, Gian Marco; Corinaldesi, Cinzia; Rastelli, Eugenio; Danovaro, Roberto
2013-10-01
We investigated the patterns and drivers of bacterial α- and β-diversity, along with viral and prokaryotic abundance and the carbon production rates, in marine surface and subsurface sediments (down to 1 m depth) in two habitats: vegetated sediments (seagrass meadow) and non-vegetated sediments. Prokaryotic abundance and production decreased with depth in the sediment, but cell-specific production rates and the virus-to-prokaryote ratio increased, highlighting unexpectedly high activity in the subsurface. The highest diversity was observed in vegetated sediments. Bacterial β-diversity between sediment horizons was high, and only a minor number of taxa was shared between surface and subsurface layers. Viruses significantly contributed to explain α- and β-diversity patterns. Despite potential limitations due to the only use of fingerprinting techniques, this study indicates that the coastal subsurface host highly active and diversified bacterial assemblages, that subsurface cells are more active than expected and that viruses promote β-diversity and stimulate bacterial metabolism in subsurface layers. The limited number of taxa shared between habitats, and between surface and subsurface sediment horizons, suggests that future investigations of the shallow subsurface will provide insights into the census of bacterial diversity, and the comprehension of the patterns and drivers of prokaryotic diversity in marine ecosystems. © 2013 John Wiley & Sons Ltd and Society for Applied Microbiology.
Aromatic-degrading Sphingomonas isolates from the deep subsurface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fredrickson, J.K.; Romine, M.F.; Balkwill, D.L.
An obligately aerobic chemoheterotrophic bacterium (strain F199) previously isolated from Southeast Coastal Plain subsurface sediments and shown to degrade toluene, naphthalene, and other aromatic compounds was characterized by analysis of its 16S rRNA nucleotide base sequence and cellular lipid composition. Strain F199 contained 2-OH14:0 and 18:1{omega}7c as the predominant cellular fatty acids and sphingolipids that are characteristic of the genus Sphingomonas. Phylogenetic analysis of its 16SrRNA sequence indicated that F199 was most closely related to Sphingomonas capsulata among the bacteria currently in the Ribosomal Database. Five additional isolates from deep Southeast Coastal Plain sediments were determined by 16S rRNA sequencemore » analysis to be closely related to F199. These strains also contained characteristic sphingolipids. Four of these five strains could also grow on a broad range of aromatic compounds and could mineralize [{sup 14C}]toluene and [{sup 14C}]naphthalene. S. capsulata (ATCC 14666), Sphingomonas paucimobiolis (ATCC 29837), and one of the subsurface isolates were unable to grow on any of the aromatic compounds or mineralize toluene or naphthalene. These results indicate that bacteria within the genus Sphingomonas are present in Southeast Coastal Plain subsurface sediments and that the capacity for degrading a broad range of substituted aromatic compounds appears to be common among Sphingomonas species from this environment. 41 refs., 2 figs., 5 tabs.« less
Detailed sections from auger holes in the Elizabethtown 1:100,000-scale map sheet, North Carolina
Weems, Robert E.; Lewis, William C.; Murray, Joseph H.; Queen, David B.; Grey, Jeffrey B.; DeJong, Benjamin D.
2011-01-01
The Elizabethtown 1:100,000 quadrangle is in the west-central part of the Coastal Plain of southeastern North Carolina. The Coastal Plain, in this region, consists mostly of unlithified sediments that range in age from Late Cretaceous to Holocene. These sediments lie with profound unconformity on complexly deformed metamorphic and igneous rocks similar to rocks found immediately to the west in the Piedmont province. Coastal Plain sediments generally dip gently to the southeast or south and reach a maximum thickness of about 850 feet (ft) in the extreme southeast part of the map area. The gentle southerly and southeasterly dip is disrupted in several areas by faulting. The U.S. Geological Survey recovered one core and augered 196 research test holes in the Elizabethtown 1:100,000 quadrangle to supplement sparse outcrop data in the map area. The recovered sediments were studied and data from these sediments recorded to determine the lithologic characteristics, spatial distribution, and temporal framework of the represented Coastal Plain stratigraphic units. These test holes were critical for accurately determining the distribution of major geologic units and the position of unit boundaries. The detailed descriptions of the subsurface data can be used by geologists, hydrologists, engineers, and community planners to provide a detailed shallow-subsurface stratigraphic framework for the Elizabethtown map region.
Characterization of a Louisiana Bay Bottom
NASA Astrophysics Data System (ADS)
Freeman, A. M.; Roberts, H. H.
2016-02-01
This study correlates side-scan sonar and CHIRP water bottom-subbottom acoustic amplitudes with cone penetrometer data to expand the limited understanding of the geotechnical properties of sediments in coastal Louisiana's bays. Standardized analysis procedures were developed to characterize the bay bottom and shallow subsurface of the Sister Lake bay bottom. The CHIRP subbottom acoustic data provide relative amplitude information regarding reflection horizons of the bay bottom and shallow subsurface. An amplitude analysis technique was designed to identify different reflectance regions within the lake from the CHIRP subbottom profile data. This amplitude reflectivity analysis technique provides insight into the relative hardness of the bay bottom and shallow subsurface, useful in identifying areas of erosion versus deposition from storms, as well as areas suitable for cultch plants for state oyster seed grounds, or perhaps other restoration projects. Side-scan and CHIRP amplitude reflectivity results are compared to penetrometer data that quantifies geotechnical properties of surface and near-surface sediments. Initial results indicate distinct penetrometer signatures that characterize different substrate areas including soft bottom, storm-deposited silt-rich sediments, oyster cultch, and natural oyster reef areas. Although amplitude analysis of high resolution acoustic data does not directly quantify the geotechnical properties of bottom sediments, our analysis indicates a close relationship. The analysis procedures developed in this study can be applied in other dynamic coastal environments, "calibrating" the use of synoptic acoustic methods for large-scale water bottom characterization.
Detailed Sections from Auger Holes in the Roanoke Rapids 1:100,000 Map Sheet, North Carolina
Weems, Robert E.; Lewis, William C.
2007-01-01
Introduction The Roanoke Rapids 1:100,000 map sheet straddles the Coastal Plain / Piedmont boundary in northernmost North Carolina (Figure 1). Sediments of the Coastal Plain underlie the eastern three-fourths of this area, and patchy outliers of Coastal Plain units cap many of the higher hills in the western one-fourth of the area. Sediments dip gently to the east and reach a maximum known thickness in the extreme southeast part of the map area (Figure 2). The gentle eastward dip is disrupted in several areas due to faulting. The U.S. Geological Survey recovered one core and augered 97 research test holes within the Roanoke Rapids 1:100,000 map sheet to supplement sparse outcrop data available from the Coastal Plain portion of the map area. The recovered sediments were studied and data from them recorded to determine the lithologic characteristics, spatial distribution, and temporal framework of the represented Coastal Plain stratigraphic units. These test holes were critical for accurately determining the distribution of major geologic units and the position of unit boundaries that will be shown on the forthcoming Roanoke Rapids geologic map, but much of the detailed subsurface data cannot be shown readily through this map product. Therefore, detailed descriptions have been collected in this open-file report for geologists, hydrologists, engineers, and community planners to provide a detailed shallow-subsurface stratigraphic framework for much of the Roanoke Rapids map region.
Jochum, Lara M.; Chen, Xihan; Lever, Mark A.; Loy, Alexander; Jørgensen, Bo Barker; Schramm, Andreas
2017-01-01
ABSTRACT Most sulfate-reducing microorganisms (SRMs) present in subsurface marine sediments belong to uncultured groups only distantly related to known SRMs, and it remains unclear how changing geochemical zones and sediment depth influence their community structure. We mapped the community composition and abundance of SRMs by amplicon sequencing and quantifying the dsrB gene, which encodes dissimilatory sulfite reductase subunit beta, in sediment samples covering different vertical geochemical zones ranging from the surface sediment to the deep sulfate-depleted subsurface at four locations in Aarhus Bay, Denmark. SRMs were present in all geochemical zones, including sulfate-depleted methanogenic sediment. The biggest shift in SRM community composition and abundance occurred across the transition from bioturbated surface sediments to nonbioturbated sediments below, where redox fluctuations and the input of fresh organic matter due to macrofaunal activity are absent. SRM abundance correlated with sulfate reduction rates determined for the same sediments. Sulfate availability showed a weaker correlation with SRM abundances and no significant correlation with the composition of the SRM community. The overall SRM species diversity decreased with depth, yet we identified a subset of highly abundant community members that persists across all vertical geochemical zones of all stations. We conclude that subsurface SRM communities assemble by the persistence of members of the surface community and that the transition from the bioturbated surface sediment to the unmixed sediment below is a main site of assembly of the subsurface SRM community. IMPORTANCE Sulfate-reducing microorganisms (SRMs) are key players in the marine carbon and sulfur cycles, especially in coastal sediments, yet little is understood about the environmental factors controlling their depth distribution. Our results suggest that macrofaunal activity is a key driver of SRM abundance and community structure in marine sediments and that a small subset of SRM species of high relative abundance in the subsurface SRM community persists from the sulfate-rich surface sediment to sulfate-depleted methanogenic subsurface sediment. More generally, we conclude that SRM communities inhabiting the subsurface seabed assemble by the selective survival of members of the surface community. PMID:28939599
Plasmid incidence in bacteria from deep subsurface sediments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fredrickson, J.K.; Hicks, R.J.; Li, S.W.
Bacteria were isolated from deep terrestrial subsurface sediments underlying the coastal plain of South Carolina. A total of 163 isolates from deep sediments, surface soil, and return drill muds were examined for plasmid DNA content and resistance to the antibiotics penicillin, ampicillin, carbenicillin, streptomycin, kanamycin, and tetracycline. MICs of Cu{sup 2+}, Cr{sup 3+}, and Hg{sup 2+} for each isolate were also determined. The overall frequency of plasmid occurrence in the subsurface bacteria was 33%. Resistance was most frequent to penicillin (70% of all isolates), ampicillin (49%), and carbenicillin (32%) and was concluded to be related to the concentrations of themore » individual antibiotics in the disks used for assaying resistance and to the production of low levels of {beta}-lactamase. The frequencies of resistance to penicillin and ampicillin were significantly greater for isolates bearing plasmids than for plasmidless isolates; however, resistance was not transferable to penicillin-sensitive Escherichia coli. Hybridization of subsurface bacterial plasmids and chromosomal DNA with a whole-TOL-plasmid (pWWO) probe revealed some homology of subsurface bacterial plasmid and chromosomal DNAs, indicating a potential for those bacterial to harbor catabolic genes on plasmids or chromosomes. The incidences of antibiotic resistance and MICs of metals for subsurface bacteria were significantly different from those drill mud bacteria, ruling out the possibility that bacteria from sediments were derived from drill muds.« less
Reich, Christopher D.; Swarzenski, Peter W.; Greenwood, W. Jason; Wiese, Dana S.
2008-01-01
Geophysical (CHIRP, boomer, and continuous direct-current resistivity) and geochemical tracer studies (continuous and time-series 222Radon) were conducted along the Broward County coast from Port Everglades to Hillsboro Inlet, Florida. Simultaneous seismic, direct-current resistivity, and radon surveys in the coastal waters provided information to characterize the geologic framework and identify potential groundwater-discharge sites. Time-series radon at the Nova Southeastern University National Coral Reef Institute (NSU/NCRI) seawall indicated a very strong tidally modulated discharge of ground water with 222Rn activities ranging from 4 to 10 disintegrations per minute per liter depending on tidal stage. CHIRP seismic data provided very detailed bottom profiles (i.e., bathymetry); however, acoustic penetration was poor and resulted in no observed subsurface geologic structure. Boomer data, on the other hand, showed features that are indicative of karst, antecedent topography (buried reefs), and sand-filled troughs. Continuous resistivity profiling (CRP) data showed slight variability in the subsurface along the coast. Subtle changes in subsurface resistivity between nearshore (higher values) and offshore (lower values) profiles may indicate either a freshening of subsurface water nearshore or a change in sediment porosity or lithology. Further lithologic and hydrologic controls from sediment or rock cores or well data are needed to constrain the variability in CRP data.
Microbial transformations of arsenic: Mobilization from glauconitic sediments to water
Mumford, Adam C.; Barringer, Julia L.; Benzel, William M.; Reilly, Pamela A.; Young, L.Y.
2012-01-01
In the Inner Coastal Plain of New Jersey, arsenic (As) is released from glauconitic sediment to carbon- and nutrient-rich shallow groundwater. This As-rich groundwater discharges to a major area stream. We hypothesize that microbes play an active role in the mobilization of As from glauconitic subsurface sediments into groundwater in the Inner Coastal Plain of New Jersey. We have examined the potential impact of microbial activity on the mobilization of arsenic from subsurface sediments into the groundwater at a site on Crosswicks Creek in southern New Jersey. The As contents of sediments 33–90 cm below the streambed were found to range from 15 to 26.4 mg/kg, with siderite forming at depth. Groundwater beneath the streambed contains As at concentrations up to 89 μg/L. Microcosms developed from site sediments released 23 μg/L of As, and active microbial reduction of As(V) was observed in microcosms developed from site groundwater. DNA extracted from site sediments was amplified with primers for the 16S rRNA gene and the arsenate respiratory reductase gene, arrA, and indicated the presence of a diverse anaerobic microbial community, as well as the presence of potential arsenic-reducing bacteria. In addition, high iron (Fe) concentrations in groundwater and the presence of iron-reducing microbial genera suggests that Fe reduction in minerals may provide an additional mechanism for release of associated As, while arsenic-reducing microorganisms may serve to enhance the mobility of As in groundwater at this site.
Shen, Aihua; Lee, Sunggyu; Ra, Kongtae; Suk, Dongwoo; Moon, Hyo-Bang
2018-03-01
Information is scarce on historical trends of perfluoroalkyl substances (PFASs) in the coastal environment. In this study, four sediment cores were collected from semi-enclosed bays of Korea to investigate the pollution history, contamination profiles, and environmental burden of PFASs. The total PFAS concentrations in sediment cores ranged from 6.61 to 821 pg/g dry weight. The highest concentrations of PFASs were found in surface or sub-surface sediments, indicating on-going contamination by PFASs. Historical trends in PFASs showed a clear increase since the 1980s, which was consistent with the global PFAS consumption pattern. Concentrations of PFASs were dependent on the organic carbon content in sediment cores. PFOS and longer-chain PFASs were predominant in all of the sediment cores. In particular, a large proportion of longer-chain PFASs was observed in the upper layers of the sediment cores from industrialized coastal regions. Inventories and fluxes estimated for PFASs were similar to those for PCDD/Fs. Copyright © 2018 Elsevier Ltd. All rights reserved.
Laverock, Bonnie; Smith, Cindy J; Tait, Karen; Osborn, A Mark; Widdicombe, Steve; Gilbert, Jack A
2010-12-01
Bioturbation is a key process in coastal sediments, influencing microbially driven cycling of nutrients as well as the physical characteristics of the sediment. However, little is known about the distribution, diversity and function of the microbial communities that inhabit the burrows of infaunal macroorganisms. In this study, terminal-restriction fragment length polymorphism analysis was used to investigate variation in the structure of bacterial communities in sediment bioturbated by the burrowing shrimp Upogebia deltaura or Callianassa subterranea. Analyses of 229 sediment samples revealed significant differences between bacterial communities inhabiting shrimp burrows and those inhabiting ambient surface and subsurface sediments. Bacterial communities in burrows from both shrimp species were more similar to those in surface-ambient than subsurface-ambient sediment (R=0.258, P<0.001). The presence of shrimp was also associated with changes in bacterial community structure in surrounding surface sediment, when compared with sediments uninhabited by shrimp. Bacterial community structure varied with burrow depth, and also between individual burrows, suggesting that the shrimp's burrow construction, irrigation and maintenance behaviour affect the distribution of bacteria within shrimp burrows. Subsequent sequence analysis of bacterial 16S rRNA genes from surface sediments revealed differences in the relative abundance of bacterial taxa between shrimp-inhabited and uninhabited sediments; shrimp-inhabited sediment contained a higher proportion of proteobacterial sequences, including in particular a twofold increase in Gammaproteobacteria. Chao1 and ACE diversity estimates showed that taxon richness within surface bacterial communities in shrimp-inhabited sediment was at least threefold higher than that in uninhabited sediment. This study shows that bioturbation can result in significant structural and compositional changes in sediment bacterial communities, increasing bacterial diversity in surface sediments and resulting in distinct bacterial communities even at depth within the burrow. In an area of high macrofaunal abundance, this could lead to alterations in the microbial transformations of important nutrients at the sediment-water interface.
Ecology, physiology, and phylogeny of deep subsurface Sphingomonas sp.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fredrickson, Jim K.; Balkwill, David L.; Romine, Margaret F.
Several new species of the genus Sphingomonas including S. aromaticivorans, S. stygia, and S. subterranea that have the capacity for degrading a broad range of aromatic compounds including toluene, naphthalene, xylenes, p-cresol, fluorene, biphenyl, and dibenzothiophene, were isolated from deeply-buried (>200 m) sediments of the US Atlantic coastal plain (ACP). In S. aromaticivorans F199, many of the genes involved in the catabolism of these aromatic compounds are encoded on a 184-kb conjugative plasmid; some of the genes involved in aromatic catabolism are plasmid-encoded in the other strains as well. Members of the genus Sphingomonas were common among aerobic heterotrophic bacteriamore » cultured from ACP sediments and have been detected in deep subsurface environments elsewhere. The major source of organic carbon for heterotrophic metabolism in ACP deep aquifers is lignite that originated from plant material buried with the sediments. We speculate that the ability of the subsurface Sphingomonas strains to degrade a wide array of aromatic compounds represents an adaptation for utilization of sedimentary lignite. These and related subsurface Sphingomonas spp may play an important role in the transformation of sedimentary organic carbon in the aerobic and microaerobic regions of the deep aquifers of the ACP.« less
Ecology, physiology, and phylogeny of deep subsurface Sphingomonas sp.
Fredrickson, J K; Balkwill, D L; Romine, M F; Shi, T
1999-10-01
Several new species of the genus Sphingomonas including S. aromaticivorans, S. stygia, and S. subterranea that have the capacity for degrading a broad range of aromatic compounds including toluene, naphthalene, xylenes, p-cresol, fluorene, biphenyl, and dibenzothiophene, were isolated from deeply-buried (>200 m) sediments of the US Atlantic coastal plain (ACP). In S. aromaticivorans F199, many of the genes involved in the catabolism of these aromatic compounds are encoded on a 184-kb conjugative plasmid; some of the genes involved in aromatic catabolism are plasmid-encoded in the other strains as well. Members of the genus Sphingomonas were common among aerobic heterotrophic bacteria cultured from ACP sediments and have been detected in deep subsurface environments elsewhere. The major source of organic carbon for heterotrophic metabolism in ACP deep aquifers is lignite that originated from plant material buried with the sediments. We speculate that the ability of the subsurface Sphingomonas strains to degrade a wide array of aromatic compounds represents an adaptation for utilization of sedimentary lignite. These and related subsurface Sphingomonas spp may play an important role in the transformation of sedimentary organic carbon in the aerobic and microaerobic regions of the deep aquifers of the ACP.
NASA Astrophysics Data System (ADS)
Trefry, J. H.; Trocine, R. P.; Fox, A. L.; Fox, S. L.; Durell, G.; Kasper, J.
2016-02-01
The coastal Beaufort Sea is at a crossroads with respect to the impacts of human activities. Accurate discrimination of regional and global anthropogenic impacts, versus those due to natural physical and biogeochemical processes, is an important tool for managing environmental issues in the Arctic. We have investigated several natural and anthropogenic features in age-dated sediment cores from the coastal Beaufort Sea. For example, Hg enrichment (by 20 to >50% or +20 to 40 ng/g) was identified in some surface sediments using Hg/Al ratios in cores from nearshore, outer shelf and slope environments. Nearshore Hg anomalies, although quite limited in number, have been linked to drilling fluids deposited during oil and gas exploration in the 1980s. In contrast, similar offshore Hg anomalies are likely due to natural sediment diagenesis as previously noted by others in the deeper Arctic Ocean. We also found Ba enrichment in surface sediments that can be best explained by the deposition of natural, Ba-rich suspended particles from the Colville River; yet, Ba enrichment can sometimes be explained by the presence of drilling fluids in sediments near historic drilling sites. Human induced diagenetic changes are likely to follow current increases in river runoff and coastal erosion. Higher deposition rates for sediment and organic carbon in the coastal Beaufort Sea may create future anomalies for As, Cd and other metals. For example, metal anomalies can presently be found in older subsurface sediments where a layer of carbon-rich sediment was previously deposited. Correct identification of natural versus anthropogenic forcing factors that lead to distinct diagenetic features in the sedimentary record will help us to identify problem areas and make informed regulatory decisions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cox, D.L.
The Berea Sandstone is a widely recognized producer of oil and gas in the Appalachian basin. Subsurface mapping, core analysis, and production data from producing wells have been evaluated in west-central West Virginia, where the Berea Sandstone represents a wide range of nearshore and coastal environments. Fluvial system deposits are found in southern Jackson County as channel sands (Gay-Fink) and adjacent deltaic facies. Coastal sediments were deposited to the north as intertidal shoals, tidal flats, and coarse-grained tidal-creek point bars. Marine shelf sands are found to the west.
Regional biostratigraphy and paleoenvironmental history of Miocene of onshore and offshore Alabama
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, C.C.
1989-09-01
Subsurface Miocene sediments of coastal Alabama and the adjoining state and federal waters consist of a clastic wedge varying in thickness from less than 1,000 ft in southern Alabama to a maximum of about 6,000 ft in the northeastern portion of the Main Pass area. Relatively deep-water and open-marine transgressive basal Miocene clays and shales unconformably overlie a gently southwestward-dipping late Oligocene-earliest Miocene carbonate platform. Middle and late Miocene sediments consist of a regressive offlapping sequence of sand and shale deposited in varying neritic paleoenvironments. Analysis of planktonic and benthonic foraminifera has resulted in a refined biostratigraphic zonation of thesemore » sediments, permitting the recognition of several regional time-equivalent datum levels, or biohorizons. These biohorizons are shown on a series of subsurface cross sections that show the dramatic southwestward thickening of middle and late Miocene sediments as well as illustrate the relationships of the producing intervals within the Cibicides carstensi and Discorbis 12 interval zones. The paleoenvironmental history of the Miocene has been reconstructed on a series of paleobathymetric maps drawn for selected regional biohorizons. Among other features, these maps have proven the existence and outlined the margins of previously unrecognized shallow-meritic deltaic sediments in southeastern Mobile County and in the Chandeleur and Viosca Knoll (north) areas. Analysis of sedimentation rates, which range from less than 25 to 1,370 ft/m.y., further aids in understanding the coastal shelf, deltaic, and open-marine depositional history of the Miocene of Alabama and the adjoining state and federal waters.« less
,; Prowell, D.C.; Christopher, R.A.
2004-01-01
This paper formally defines two new Upper Cretaceous subsurface units in the southern Atlantic Coastal Plain of North Carolina, South Carolina and Georgia: the Collins Creek Formation and the Pleasant Creek Formation. These units are confined to the subsurface of the outer Coastal Plain, and their type sections are established in corehole CHN-820 from Charleston County, S.C. The Collins Creek Formation consists of greenish-gray lignitic sand and dark-greenish-gray sandy clay and is documented in cores from Allendale, Beaufort, Berkeley, Dorchester, Jasper and Marion Counties, South Carolina, and from Screven County, Georgia. Previously, Collins Creek strata had been incorrectly assigned to the Middendorf Formation. These sediments occupy a stratigraphic position between the Turonian/Coniacian Cape Fear Formation (?) below and the proposed upper Coniacian to middle Santonian Pleasant Creek Formation above. The Collins Creek Formation is middle and late Coniacian in age on the basis of calcareous nannofossil and palynomorph analyses. The Pleasant Creek Formation consists of olive-gray sand and dark-greenish-gray silty to sandy clay and is documented in cores from New Hanover County, North Carolina, and Berkeley, Charleston, Dorchester, Horry and Marion Counties, South Carolina. The strata of this unit previously were assigned incorrectly to the Middendorf Formation and (or) the Cape Fear Formation. These sediments occupy a stratigraphic position between the proposed Collins Creek Formation below and the Shepherd Grove Formation above. The Pleasant Creek Formation is late Coniacian and middle Santonian in age, on the basis of its calcareous nannofossil and palynomorph assemblages.
Geophysical and sampling data from the inner continental shelf: Duxbury to Hull, Massachusetts
Barnhardt, Walter A.; Ackerman, Seth D.; Andrews, Brian D.; Baldwin, Wayne E.
2010-01-01
The U.S. Geological Survey (USGS) and the Massachusetts Office of Coastal Zone Management (CZM) have cooperated to map approximately 200 km² of the Massachusetts inner continental shelf between Duxbury and Hull. This report contains geophysical and geological data collected by the USGS on three cruises between 2006 and 2007. These USGS data are supplemented with a National Oceanic and Atmospheric Administration (NOAA) hydrographic survey conducted in 2003 to update navigation charts. The geophysical data include (1) swath bathymetry from interferometric sonar and multibeam echosounders, (2) acoustic backscatter from sidescan sonar and multibeam echosounders, and (3) subsurface stratigraphy and structure from seismic-reflection profilers. The geological data include sediment samples, seafloor photographs, and bottom videos. These spatial data support research on the influence sea-level change and sediment supply have on coastal evolution, and on efforts to understand the type, distribution, and quality of subtidal marine habitats in the Massachusetts coastal ocean.
Nichols, F.H.; Cacchione, D.A.; Drake, D.E.; Thompson, J.K.
1989-01-01
Two sequences of bottom photographs taken every two or four hours for two months during the Coastal Ocean Dynamics Experiment (CODE) off the Russian River, California, reveal the dynamic nature of interations between the water column, the sediments, and benthic organisms in the mid-shelf silt deposit. Time-lapse photographs taken between late spring and early summer in 1981 and 1982 show that the subsurface-dwelling urchin Brisaster latifrons (one of the largest invertebrates found in shelf-depth fine sediment off the U.S. Pacific coast) occasionally emerged from the sediment, plowed the sediment surface during the course of a few hours to several days, then buried themselves again. Frame-by-frame study of the film sequences shows that the urchins typically emerged following relaxation of coastal upwelling, periods characterized by current direction reversals and increases in bottom water turbidity. Among the possible causes of the emergence of urchins and the consequent bioturbation of the upper few cm of sediment, a response to an enhanced food supply seems most plausible. Circumstantial evidence suggests the possibility that phytoplankton sedimentation during periods of upwelling relaxation could provide a new source of food at the sediment surface. ?? 1989.
Chen, Jing; Zhou, Zhichao; Gu, Ji-Dong
2015-02-01
In the present work, both 16S rRNA and pmoA gene-based PCR primers were employed successfully to study the diversity and distribution of n-damo bacteria in the surface and lower layer sediments at the coastal Mai Po wetland. The occurrence of n-damo bacteria in both the surface and subsurface sediments with high diversity was confirmed in this study. Unlike the two other known n-damo communities from coastal areas, the pmoA gene-amplified sequences in the present work clustered not only with some freshwater subclusters but also within three newly erected marine subclusters mostly, indicating the unique niche specificity of n-damo bacteria in this wetland. Results suggested vegetation affected the distribution and community structures of n-damo bacteria in the sediments and n-damo could coexist with sulfate-reducing methanotrophs in the coastal ecosystem. Community structures of the Mai Po n-damo bacteria based on 16S rRNA gene were different from those of either the freshwater or the marine. In contrast, structures of the Mai Po n-damo communities based on pmoA gene grouped with the marine ones and were clearly distinguished from the freshwater ones. The abundance of n-damo bacteria at this wetland was quantified using 16S rRNA gene PCR primers to be 2.65-6.71 × 10(5) copies/g dry sediment. Ammonium and nitrite strongly affected the community structures and distribution of n-damo bacteria in the coastal Mai Po wetland sediments.
Sediment chemoautotrophy in the coastal ocean
NASA Astrophysics Data System (ADS)
Vasquez-Cardenas, Diana; Meysman, Filip J. R.; van Breugel, Peter; Boschker, Henricus T. S.
2016-04-01
A key process in the biogeochemistry of coastal sediments is the reoxidation of reduced intermediates formed during anaerobic mineralization which in part is performed by chemoautotrophic micro-organisms. These microbes fix inorganic carbon using the energy derived from reoxidation reactions and in doing so can fix up to 32% of the CO2 released by mineralization. However the importance and distribution of chemoautotrophy has not been systematically investigated in these environments. To address these issues we surveyed nine coastal sediments by means of bacterial biomarker analysis (phospholipid derived fatty acids) combined with stable isotope probing (13C-bicarbonate) which resulted in an almost doubling of the number of observations on coastal sedimentary chemoautotrophy. Firstly, sediment chemoautotrophy rates from this study and rates compiled from literature (0.07 to 36 mmol C m-2 d-1) showed a power-law relation with benthic oxygen uptake (3.4 to 192 mmol O2 m-2 d-1). Benthic oxygen uptake was used as a proxy for carbon mineralization to calculate the ratio of the CO2 fixed by chemoautotrophy over the total CO2 released through mineralization. This CO2 efficiency was 3% in continental shelf, 9% in nearshore and 21% in salt marsh sediments. These results suggest that chemoautotrophy plays an important role in C-cycling in reactive intertidal sediments such as salt marshes rather than in the organic-poor, permeable continental shelf sediments. Globally in the coastal ocean our empirical results show that chemoautotrophy contributes ˜0.05 Pg C y-1 which is four times less than previous estimates. Secondly, five coastal sediment regimes were linked to the depth-distribution of chemoautotrophy: 1) permeable sediments dominated by advective porewater transport, 2) bioturbated sediments, and cohesive sediments dominated by diffusive porewater transport characterized by either 3) canonical sulfur oxidation, 4) nitrate-storing Beggiatoa, or 5) electrogenic sulfur oxidation. Sediments with an O2-H2S interface exhibited highest chemoautotrophy activity in the top centimeter via canonical sulfur oxidation, whereas in the presence of electrogenic sulfur oxidation a uniform distribution of chemoautotrophy throughout the top centimeters of the sediment was evidenced. Lowest dark carbon fixation was found in permeable advective-driven sediments with deep oxygen penetration resulting in higher subsurface than surface activity. Hence, the depth-distribution of chemoautotrophy in coastal sediments varies due to several biogeochemical characteristics such as grain size, organic carbon content, presence of filamentous sulfur oxidizing bacteria, and macrofaunal activity.
Weems, Robert E.; Schindler, J. Stephen; Lewis, William C.
2010-01-01
The Emporia 1:100,000-scale quadrangle straddles the Tidewater Fall Line in southern Virginia and includes a small part of northernmost North Carolina. Sediments of the coastal plain underlie the eastern three-fifths of this area. These sediments onlap crystalline basement rocks toward the west and dip gently to the east, reaching a maximum known thickness of 821 feet in the extreme southeastern part of the map area. The gentle eastward dip is disrupted in several areas due to faulting delineated during the course of mapping. In order to produce a new geologic map of the Emporia 1:100,000-scale quadrangle, the U.S. Geological Survey drilled one corehole to a depth of 223 feet and augered 192 shallow research test holes (maximum depth 135 feet) to supplement sparse outcrop data available from the coastal plain part of the map area. The recovered sediments were studied and data from them recorded to determine the lithologic characteristics, spatial distribution, and temporal framework of the represented coastal plain stratigraphic units. These test holes were critical for accurately determining the distribution of major geologic units and the position of unit boundaries that will be shown on the forthcoming Emporia geologic map, but much of the detailed subsurface data cannot be shown readily through this map product. Therefore, the locations and detailed descriptions of the auger test holes and one corehole are provided in this open-file report for geologists, hydrologists, engineers, and community planners in need of a detailed shallow-subsurface stratigraphic framework for much of the Emporia map region.
Robert R. Ziemer
1998-01-01
These proceedings report on 36 years of research at the Caspar Creek Experimental Watershed, Jackson Demonstration State Forest in northwestern California. The 16 papers include discussions of streamflow, sediment production and routing, stream channel condition, soil moisture and subsurface water, nutrient cycling, aquatic and riparian habitat, streamside buffers,...
Ubiquitous Gammaproteobacteria dominate dark carbon fixation in coastal sediments.
Dyksma, Stefan; Bischof, Kerstin; Fuchs, Bernhard M; Hoffmann, Katy; Meier, Dimitri; Meyerdierks, Anke; Pjevac, Petra; Probandt, David; Richter, Michael; Stepanauskas, Ramunas; Mußmann, Marc
2016-08-01
Marine sediments are the largest carbon sink on earth. Nearly half of dark carbon fixation in the oceans occurs in coastal sediments, but the microorganisms responsible are largely unknown. By integrating the 16S rRNA approach, single-cell genomics, metagenomics and transcriptomics with (14)C-carbon assimilation experiments, we show that uncultured Gammaproteobacteria account for 70-86% of dark carbon fixation in coastal sediments. First, we surveyed the bacterial 16S rRNA gene diversity of 13 tidal and sublittoral sediments across Europe and Australia to identify ubiquitous core groups of Gammaproteobacteria mainly affiliating with sulfur-oxidizing bacteria. These also accounted for a substantial fraction of the microbial community in anoxic, 490-cm-deep subsurface sediments. We then quantified dark carbon fixation by scintillography of specific microbial populations extracted and flow-sorted from sediments that were short-term incubated with (14)C-bicarbonate. We identified three distinct gammaproteobacterial clades covering diversity ranges on family to order level (the Acidiferrobacter, JTB255 and SSr clades) that made up >50% of dark carbon fixation in a tidal sediment. Consistent with these activity measurements, environmental transcripts of sulfur oxidation and carbon fixation genes mainly affiliated with those of sulfur-oxidizing Gammaproteobacteria. The co-localization of key genes of sulfur and hydrogen oxidation pathways and their expression in genomes of uncultured Gammaproteobacteria illustrates an unknown metabolic plasticity for sulfur oxidizers in marine sediments. Given their global distribution and high abundance, we propose that a stable assemblage of metabolically flexible Gammaproteobacteria drives important parts of marine carbon and sulfur cycles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, T; Fredrickson, Jim K.; Balkwill, David L.
Several strains of Sphingomonas isolated from deep Atlantic coastal plain aquifers at the US Department of Energy Savannah River Site (SRS) near Aiken, SC were shown to degrade a variety of aromatic hydrocarbons in a liquid culture medium. Sphingomonas aromaticivorans strain B0695 was the most versatile of the five strains examined. This strain was able to degrade acenaphthene, anthracene, phenanthrene, 2,3-benzofluorene, 2-methyl naphthalene, 2,3-dimethylnaphthalene, and fluoranthene in the presence of 400 mg l(-1) Tween 80. Studies involving microcosms composed of aquifer sediments showed that S. aromaticivorans B0695 could degrade phenanthrene effectively in sterile sediment and could enhance the rate atmore » which this compound was degraded in nonsterile sediment. These findings indicate that it may be feasible to carry out (or, at least, to enhance) in situ bioremediation of phenanthrene-contaminated soils and subsurface environments with S. aromaticivorans B0695. In contrast, stra in B0695 was unable to degrade fluoranthene in microcosms containing aquifer sediments, even though it readily degraded this polynuclear aromatic hydrocarbon (PAH) in a defined liquid growth medium.« less
Hydrocarbons in sediments from the edge of the Bermuda platform
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sleeter, T.D.; Butler, J.N.; Barbash, J.E.
1979-01-01
Surficial and subsurface (10-13 cm) sediment samples were taken at seven stations (17 cores) on the northern margin of the Bermuda seamount, remote from ship traffic, beaches, and atmospheric fallout from aircraft. Their aliphatic (pentane-extractable) hydrocarbon content was very low, comparable with samples from the North Atlantic Abyssal plain, and two orders of magnitude lower than for typical coastal samples. About half of the aliphatic hydrocarbons are clearly biogenic, and the remainder are characteristic of petroleum residues. Petroleum hydrocarbon concentrations are lower in subsurface (e.g., 0.11 jg/g dry weight) than surface samples (0.47 jg/g), and are lower outside the reefmore » (0.25 jg/g) than inside (0.47 jg/g). These results are qualitatively consistent with a diffusion model. Extremely rapid bioturbation or totally quiescent deposition on a stable sedimentary facies can pobably be eliminated as hypotheses for the deposition and transport mechanism within the sediment. Further studies are needed to determine whether degradation is important.« less
Rates of microbial metabolism in deep coastal plain aquifers
Chapelle, F.H.; Lovley, D.R.
1990-01-01
Rates of microbial metabolism in deep anaerobic aquifers of the Atlantic coastal plain of South Carolina were investigated by both microbiological and geochemical techniques. Rates of [2-14C]acetate and [U-14C]glucose oxidation as well as geochemical evidence indicated that metabolic rates were faster in the sandy sediments composing the aquifers than in the clayey sediments of the confining layers. In the sandy aquifer sediments, estimates of the rates of CO2 production (millimoles of CO2 per liter per year) based on the oxidation of [2-14C]acetate were 9.4 x 10-3 to 2.4 x 10-1 for the Black Creek aquifer, 1.1 x 10-2 for the Middendorf aquifer, and <7 x 10-5 for the Cape Fear aquifer. These estimates were at least 2 orders of magnitude lower than previously published estimates that were based on the accumulation of CO2 in laboratory incubations of similar deep subsurface sediments. In contrast, geochemical modeling of groundwater chemistry changes along aquifer flowpaths gave rate estimates that ranged from 10-4 to 10-6 mmol of CO2 per liter per year. The age of these sediments (ca. 80 million years) and their organic carbon content suggest that average rates of CO2 production could have been no more than 10-4 mmol per liter per year. Thus, laboratory incubations may greatly overestimate the in situ rates of microbial metabolism in deep subsurface environments. This has important implications for the use of laboratory incubations in attempts to estimate biorestoration capacities of deep aquifers. The rate estimates from geochemical modeling indicate that deep aquifers are among the most oligotrophic aquatic environments in which there is ongoing microbial metabolism.
The Influence of Coastal Wetland Zonation on Surface Sediment and Porewater Mercury Speciation
NASA Astrophysics Data System (ADS)
Marvin-DiPasquale, M. C.; Windham-Myers, L.; Wilson, A. M.; Buck, T.; Smith, E.
2014-12-01
An investigation of mercury (Hg) speciation in saltmarsh surface sediment (top 0-2 cm) and porewater (integrated 0-50 cm) was conducted along two monitoring well transects established within North Inlet Estuary (S. Carolina, USA) as part of the NOAA sponsored National Estuarine Research Reserve (NERR) network. Transects were perpendicular to the shoreline, from the forested uplands to the edge of the tidal channel, and traversed a range of vegetated zones from the high marsh (pickleweed, rush, and salt panne-dominated) to the low marsh (cordgrass dominated), as mediated by elevation and tidal inundation. Sediment grain size and organic content explained 95% of the variability in the distribution of total Hg (THg) in surface sediment. Tin-reducible 'reactive' mercury (HgR) concentration was 10X greater in the high marsh, compared to the low marsh, and increased sharply with decreasing sediment pH values below pH=6. The percentage of THg as HgR decreased as sediment redox conditions became more reducing. There were no significant differences in surface sediment methylmercury (MeHg) concentrations between high and low marsh zones. In contrast, porewater MeHg concentrations were 5X greater in the high marsh compared to the low marsh. As a percentage of THg, mean porewater %MeHg was 23% in the low marsh and 51% in the high marsh, reaching levels of 73-89% in a number of high marsh sites. Calculations of partitioning between porewater and the solid phase suggest stronger binding to particles in the low marsh and a shift towards the dissolved phase in the high marsh for both THg and MeHg. These results are consistent with a conceptual model for coastal wetlands where the less frequently inundated high marsh zone may be important in terms of MeHg production and enhanced subsurface mobilization, partially due to the subsurface mixing of saline estuarine water and freshwater draining in from the uplands area.
NASA Astrophysics Data System (ADS)
Vidal-Durà, Andrea; Burke, Ian T.; Stewart, Douglas I.; Mortimer, Robert J. G.
2018-07-01
Estuarine environments are considered to be nutrient buffer systems as they regulate the delivery of nutrients from rivers to the ocean. In the Humber Estuary (UK) seawater and freshwater mixing during tidal cycles leads to the mobilisation of oxic surface sediments (0-1 cm). However, less frequent seasonal events can also mobilise anoxic subsurface (5-10 cm) sediments, which may have further implications for the estuarine geochemistry. A series of batch experiments were carried out on surface and subsurface sediments taken from along the salinity gradient of the Humber Estuary. The aim was to investigate the geochemical processes driving major element (N, Fe, S, and Mn) redox cycling and trace metal behaviour during simulated resuspension events. The magnitude of major nutrient and metal release was significantly greater during the resuspension of outer estuarine sediments rather than from inner estuarine sediments. When comparing resuspension of surface versus subsurface sediment, only the outer estuary experiments showed significant differences in major nutrient behaviour with sediment depth. In general, any ammonium, manganese and trace metals (Cu and Zn) released during the resuspension experiments were rapidly removed from solution as new sorption sites (i.e. Fe/Mn oxyhydroxides) formed. Therefore Humber estuary sediments showed a scavenging capacity for these dissolved species and hence may act as an ultimate sink for these elements. Due to the larger aerial extent of the outer estuary intertidal mudflats in comparison with the inner estuary area, the mobilisation of the outer estuary sediments (more reducing and richer in sulphides and iron) may have a greater impact on the transport and cycling of nutrients and trace metals. Climate change-associated sea level rise combined with an increasing frequency of major storm events in temperate zones, which are more likely to mobilise deeper sediment regions, will impact the nutrient and metal inputs to the coastal waters, and therefore enhance the likelihood of eutrophication in this environment.
Spinelli, G.A.; Field, M.E.
2003-01-01
We identify two surfaces in the shallow subsurface on the Eel River margin offshore northern California, a lowstand erosion surface, likely formed during the last glacial maximum, and an overlying surface likely formed during the most recent transgression of the shoreline. The lowstand erosion surface, which extends from the inner shelf to near the shelfbreak and from the Eel River to Trinidad Head (???80 km), truncates underlying strata on the shelf. Above the surface, inferred transgressive coastal and estuarine sedimentary units separate it from the transgressive surface on the shelf. Early in the transgression, Eel River sediment was likely both transported down the Eel Canyon and dispersed on the slope, allowing transgressive coastal sediment from the smaller Mad River to accumulate in a recognizable deposit on the shelf. The location of coastal Mad River sediment accumulation was controlled by the location of the paleo-Mad River. Throughout the remainder of the transgression, dispersed sediment from the Eel River accumulated an average of 20 m of onlapping shelf deposits. The distribution and thickness of these transgressive marine units was strongly modified by northwest-southeast trending folds. Thick sediment packages accumulated over structural lows in the lowstand surface. The thinnest sediment accumulations (0-10 m) were deposited over structural highs along faults and uplifting anticlines. The Eel margin, an active margin with steep, high sediment-load streams, has developed a thick transgressive systems tract. On this margin sediment accumulates as rapidly as the processes of uplift and downwarp locally create and destroy accommodation space. Sequence stratigraphic models of tectonically active margins should account for variations in accommodation space along margins as well as across them. ?? 2003 Elsevier Science B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Floyd, I. E.; Downer, C. W.; Brown, G.; Pradhan, N. R.
2017-12-01
The Gridded Surface Subsurface Hydrologic Analysis (GSSHA) model is the US Army Corps of Engineers' (USACE)'s only fully coupled overland/in-stream sediment transport model. While the overland sediment transport formulation in GSSHA is considered state of the art, the existing in-stream sediment transport formulation is less robust. A major omission in the formulation of the existing GSSHA in-stream model is the lack of in-stream sources of fine materials. In this effort, we enhanced the in-stream sediment transport capacity of GSSHA by linking GSSHA to the SEDLIB sediment transport library. SEDLIB was developed at the Coastal and Hydraulics Laboratory (CHL) under the System Wide Water Resources Program (SWWRP) and Flood and Coastal (F&C) research program. It is designed to provide a library of sediment flux formulations for hydraulic and hydrologic models, such as GSSHA. This new version of GSSHA, with the updated in-stream sediment transport simulation capability afforded by the linkage to SEDLIB, was tested in against observations in an experimental watershed that had previously been used as a test bed for GSSHA. The results show a significant improvement in the ability to model in-stream sources of fine sediment. This improved capability will broaden the applicability of GSSHA to larger watersheds and watersheds with complex sediment dynamics, such as those subjected to fire hydrology.
Shallow geology, sea-floor texture, and physiographic zones of Buzzards Bay, Massachusetts
Foster, David S.; Baldwin, Wayne E.; Barnhardt, Walter A.; Schwab, William C.; Ackerman, Seth D.; Andrews, Brian D.; Pendleton, Elizabeth A.
2015-01-07
Geologic, sediment texture, and physiographic zone maps characterize the sea floor of Buzzards Bay, Massachusetts. These maps were derived from interpretations of seismic-reflection profiles, high-resolution bathymetry, acoustic-backscatter intensity, bottom photographs, and surficial sediment samples. The interpretation of the seismic stratigraphy and mapping of glacial and Holocene marine units provided a foundation on which the surficial maps were created. This mapping is a result of a collaborative effort between the U.S. Geological Survey and the Massachusetts Office of Coastal Zone Management to characterize the surface and subsurface geologic framework offshore of Massachusetts.
NASA Astrophysics Data System (ADS)
O'Shea, Francis; Spencer, Kate; Brasington, James
2014-05-01
Historically, waste was deposited on low value, easily accessible coastal land (e.g. marsh land). Within England and Wales alone, there are over 5000 historical landfills situated within coastal areas at risk of flooding at a 1 in 100 year return period (Environment Agency, 2012). Historical sites were constructed prior to relevant legislation, and have no basal or side wall engineering, and the waste constituents are mostly unknown. In theory, contaminant concentrations should be reduced through natural attenuation as the leachate plume migrates through surrounding fine-grained inter-tidal sediments before reaching receptor waters. However, erosion resulting from rising sea level and increased storm intensity may re-distribute these sediments and release associated contaminants into the estuarine and coastal environment. The diffuse discharge from these sites has not been quantified and this presents a problem for those landfill managers who are required to complete EIAs. An earlier detailed field campaign at Newlands landfill site, on the Thames Estuary, UK identified a sub-surface (~2m depth) contaminant plume extending c. 20 m from the landfill boundary into surrounding fine-grained saltmarsh sediments. These saltmarsh sediments are risk of being eroded releasing their contaminant load to the Thames Estuary. The aims of this work were to; 1) assess whether this plume is representative of other historical landfills with similar characteristics and 2) to develop a rapid screening methodology using field portable XRF that could be used to identify potential risk of other coastal landfill sites. GIS was used to select landfill sites of similar age, hydrological regime and sedimentary setting in the UK, for comparison. Collection of sediment samples and analysis by ICP OES is expensive and time-consuming, therefore cores were extracted and analysed with a Niton Goldd XRF in-situ. Contaminant data were available immediately and the sampling strategy could be adapted in the field to determine the presence, location and extent of the sub-surface contaminant plume. Although XRF analysis has gained acceptance in the study of in-situ metal contamination (Kalnicky and Singhvi 2001; Martin Peinado et al. 2010) field moisture content and sample heterogeneity can suppress X-ray signals. Therefore, sediment samples were also collected and returned to the laboratory and analysed by ICP OES for comparison. Both wet and dry certified reference materials were also analysed in the laboratory using XRF and ICP OES to observe the impact of moisture content and to produce a correction factor allowing quantitative data to be collected in the field. In-situ raw XRF data identified the location of contamination plumes in the field in agreement with ICP data, although the data were systematically suppressed compared to ICP data, under-estimating the levels of contamination. Applying a correction factor for moisture content provided accurate measurements of concentration. The use of field portable XRF with the application of a moisture content correction factor enables the rapid screening of sediment fronting coastal landfill sites, goes some way towards providing a national baseline dataset and can contribute to the development of risk assessments.
Stratigraphy of Atlantic coastal margin of United States north of Cape Hatteras; brief survey
Perry, W.J.; Minard, J.P.; Weed, E.G.A.; Robbins, E.I.; Rhodehamel, E.C.
1975-01-01
A synthesis of studies of sea-floor outcrops of the sedimentary wedge beneath the northeastern United States continental shelf and slope and a reassessment of coastal plain Mesozoic stratigraphy, particularly of the coastal margin, provide insight for estimating the oil and gas potential and provide geologic control for marine seismic investigations of the Atlantic continental margin. The oldest strata known to crop out on the continental slope are late Campanian in age. The Cretaceous-Tertiary contact along the slope ranges from a water depth of 0.6 to 1.5 km south of Georges Bank to 1.8 km in Hudson Canyon. Few samples are available from Tertiary and Late Cretaceous outcrops along the slope. Sediments of the Potomac Group, chiefly of Early Cretaceous age, constitute a major deltaic sequence in the emerged coastal plain. This thick sequence lies under coastal Virginia, Maryland, Delaware, southeastern New Jersey, and the adjacent continental shelf. Marine sands associated with this deltaic sequence may be present seaward under the outer continental shelf. South of the Norfolk arch, under coastal North Carolina, carbonate rocks interfinger with Lower Cretaceous clastic strata. From all available data, Mesozoic correlations in coastal wells between coastal Virginia and Long Island have been revised. The Upper-Lower Cretaceous boundary is placed at the transition between Albian and Cenomanian floras. Potential hydrocarbon source beds are present along the coast in the subsurface sediments of Cretaceous age. Potential reservoir sandstones are abundant in this sequence.
Geophysical Data Collected off the South Shore of Martha's Vineyard, Massachusetts
Denny, J.F.; Danforth, W.W.; Foster, D.S.; Sherwood, C.R.
2010-01-01
The U.S. Geological Survey Woods Hole Science Center conducted a nearshore geophysical survey offshore of the southern coast of Martha's Vineyard, in the vicinity of the Martha's Vineyard Coastal Observatory in 2007. This mapping program was part of a larger research effort supporting the Office of Naval Research Ripples Directed-Research Initiative studies at Martha's Vineyard Coastal Observatory designed to improve our understanding of coastal sediment-transport processes. The survey was conducted aboard the Megan T. Miller August 9-13, 2007. The study area covers 35 square kilometers from about 0.2 kilometers to 5 kilometers offshore of the south shore of Martha's Vineyard, and ranges in depth from ~6 to 24 meters. The geophysical mapping utilized the following suite of high-resolution instrumentation to map the surficial sediment distribution, bathymetry, and sub-surface geology: a dual-frequency 100/500 kilohertz sidescan-sonar system, 234 kilohertz interferometric sonar, and 500 hertz -12 kilohertz chirp subbottom profiler. These geophysical data will be used to provide initial conditions for wave and circulation modeling within the study area.
A Search for Freshwater in the Saline Aquifers of Coastal Bangladesh
NASA Astrophysics Data System (ADS)
Peters, C.; Hornberger, G. M.
2017-12-01
Can we locate pockets of freshwater amidst brackish groundwater in remote villages in Bangladesh? This study explores what we can infer about local groundwater-surface water (GW-SW) interactions in the polders of coastal Bangladesh. In this underdeveloped region, the shallow groundwater is primarily brackish with unpredictable apportioning of freshwater pockets. We use transects of piezometers, cores, electromagnetic induction, and water chemistry surveys to explore two sources of potential fresh groundwater: (1) tidal channel-aquifer exchange and (2) meteoric recharge. Freshwater is difficult to find due to disparate subsurface lithology, asymmetrical tidal dynamics, extreme seasonal fluctuations in rainfall, and limited field data. Observations suggest substantial lateral variability in shallow subsurface conductivity profiles as well as tidal pressure signals in piezometers. Nevertheless, active exchange of freshwater may be limited due to low permeability of banks and surface sediments limits. Small scale heterogeneity in delta formation likely caused much of the groundwater salinity variation. Without adequate ground truthing of groundwater quality, the ability to deduce the exact location of freshwater pockets may be restricted.
Nitrous Oxide Production and Fluxes from Coastal Sediments under Varying Environmental Conditions
NASA Astrophysics Data System (ADS)
Ziebis, W.; Wankel, S. D.; de Beer, D.; Dentinger, J.; Buchwald, C.; Charoenpong, C.
2014-12-01
Although coastal zones represent important contributors to the increasing levels of atmospheric nitrous oxide (N2O), it is still unclear which role benthic processes play and whether marine sediments represent sinks or sources for N2O, since interactions among closely associated microbial groups lead to a high degree of variability. In addition, coastal areas are extremely dynamic regions, often exposed to increased nutrient loading and conditions of depleted oxygen. We investigated benthic N2O fluxes and how environmental conditions affect N2O production in different sediments at 2 different geographical locations (German Wadden Sea, a California coastal lagoon). At each location, a total of 32 sediment cores were taken in areas that differed in sediment type, organic content and pore-water nutrient concentrations, as well as in bioturbation activity. Parallel cores were incubated under in-situ conditions, low oxygen and increased nitrate levels for 10 days. Zones of N2O production and consumption were identified in intact cores by N2O microprofiles at the beginning and end of the experiments. In a collaborative effort to determine the dominant sources of N2O, samples were taken throughout the course of the experiments for the determination of the isotopic composition of N2O (as well as nitrate, nitrite and ammonium). Our results indicate that both, nitrate addition and low oxygen conditions in the overlying water, caused an increase of subsurface N2O production in most sediments, with a high variability between different sediment types. N2O production in the sediments was accompanied by N2O consumption, reducing the fluxes to the water column. In general, organic rich sediments showed the strongest response to environmental changes with increased production and efflux of N2O into the overlying water. Bioturbation activity added to the complexity of N2O dynamics by an increase in nitrification-denitrification processes, as well as enhanced pore-water transport. The results will be used in a metabolic modeling approach that will allow numerical simulation and prediction of sedimentary N2O dynamics.
NASA Astrophysics Data System (ADS)
Witbaard, Rob; Bergman, Magda J. N.; van Weerlee, Evaline; Duineveld, Gerard C. A.
2017-09-01
This paper describes the distribution of the razor clam Ensis directus in the Dutch coastal zone with emphasis on its relation to sediment grainsize, in particular silt. The study includes a spatial survey along the coast of North Holland (Netherlands) and an in-situ experiment for the burial of silt. Densities of E. directus appeared highest close to the coast in the siltiest sediment, where also the highest body mass index values (BMI) were found suggesting the best conditions for growth. The largest specimens with the lowest BMI were found at the less silty, outermost off-shore stations. In the shallow (10 m) zone a "lander" frame was deployed at the seabed containing 100 pvc tubes filled with silt free sand that each hosted either a living E. directus, an empty shell, or bare sand. After three 3-weeks periods the silt content in the different tubes was determined and compared. The silt content around a living E. directus appeared 34% (spring) and 12% (autumn) higher than around an empty vertical shell, and 56% (spring) higher than in bare sand. We discuss the different pathways along which silt is brought into subsurface sediment layers and speculate about the potential role of E. directus in the coastal sediment and silt dynamics. It is estimated that E. directus facilitates the (temporal) burial of up to 6 Mton of fine particles in the coastal zone annually. This equals up to 27% of the annual SPM transport along the Dutch coast and is between 45 and 85% of the annual influx into the western Wadden Sea. The results show that the coastal E. directus population has a large impact on mass balance and behaviour of SPM, and on the ecological functioning of Dutch coastal and estuarine ecosystems.
NASA Astrophysics Data System (ADS)
Karam, H. N.; Mulligan, A. E.; Abarca, E.; Gardner, A.; Hemond, H.; Harvey, C. F.
2013-12-01
We present time series of vertical pressure gradients in the sea floor at Waquoit Bay, MA, collected along a transect of locations perpendicular to shore, with a 10-minute resolution over two years. The custom-made instruments used for data collection measure pressure differences with an accuracy of 0.5 mm freshwater head, and record pore water and surface water salinities, allowing a robust calculation of the direction and magnitude of flux across the sediment-water interface given an estimate of sediment permeability. Distinct processes of seawater circulation in the subsurface driven by different forcings, including storms, tides, variations in fresh groundwater head, and salinity gradients in coastal groundwater, are manifest as different frequency components in the time series. We characterize the relative contributions of these different forcings to seafloor fluxes at our site, as a function of the time of year and the distance from shore. We find that: 1) Sea level variations drive variations in seafloor flux at time scales of hours to weeks, around a mean flux that is produced by processes with longer time scales, including the seasonal cycle in fresh groundwater head and the density-driven circulation of seawater through the coastal aquifer. 2) Seafloor flux responds non-linearly to shifts in seawater level. Furthermore, this response is asymmetric, with very low tides producing an amplified response in submarine groundwater discharge relative to the recharge produced by equivalently high tides. 3) The amplitude of seafloor pressure gradients shows a three-fold increase during winters relative to summers. We present a model to explain this effect based on the increase in shallow pore water viscosity at colder temperatures. We generalize our findings to help guide the design of sampling studies of seafloor fluxes at other sites. Finally, we present the distribution of subsurface residence times for seawater in Waquoit Bay, derived from our pressure gradient data sets, and discuss the implications for surface water and sediment chemistry.
NASA Astrophysics Data System (ADS)
Horn, Diane P.
2002-11-01
An understanding of the interaction between surface and groundwater flows in the swash zone is necessary to understand beach profile evolution. Coastal researchers have recognized the importance of beach watertable and swash interaction to accretion and erosion above the still water level (SWL), but the exact nature of the relationship between swash flows, beach watertable flow and cross-shore sediment transport is not fully understood. This paper reviews research on beach groundwater dynamics and identifies research questions which will need to be answered before swash zone sediment transport can be successfully modelled. After defining the principal terms relating to beach groundwater, the behavior, measurement and modelling of beach groundwater dynamics is described. Research questions related to the mechanisms of surface-subsurface flow interaction are reviewed, particularly infiltration, exfiltration and fluidisation. The implications of these mechanisms for sediment transport are discussed.
Baldwin, Wayne E.; Foster, David S.; Pendleton, Elizabeth A.; Barnhardt, Walter A.; Schwab, William C.; Andrews, Brian D.; Ackerman, Seth D.
2016-09-02
Geologic, sediment texture, and physiographic zone maps characterize the sea floor of Vineyard and western Nantucket Sounds, Massachusetts. These maps were derived from interpretations of seismic-reflection profiles, high-resolution bathymetry, acoustic-backscatter intensity, bottom photographs/video, and surficial sediment samples collected within the 494-square-kilometer study area. Interpretations of seismic stratigraphy and mapping of glacial and Holocene marine units provided a foundation on which the surficial maps were created. This mapping is a result of a collaborative effort between the U.S. Geological Survey and the Massachusetts Office of Coastal Zone Management to characterize the surface and subsurface geologic framework offshore of Massachusetts.
NASA Astrophysics Data System (ADS)
Suess, E.; von Huene, R.
1988-10-01
On the shelf and upper slope off Peru the signal of coastal upwelling productivity and bottom-water oxygen is well preserved in alternately laminated and bioturbated diatomaceous Quaternary sediments. Global sea-level fluctuations are the ultimate cause for these cyclic facies changes. During late Miocene time, coastal upwelling was about 100 km west of the present centers, along the edge of an emergent structure that subsequently subsided to form the modern slope. The sediments are rich in organic carbon, and intense microbially mediated decomposition of organic matter is evident in sulfate reduction and methanogenesis. These processes are accompanied by the formation of diagenetic carbonates, mostly Ca-rich dolomites and Mg-calcites. The downhole isotopic signatures of these carbonate cements display distinct successions that reflect the vertical evolution of the pore fluid environment. From the association of methane gas hydrates, burial depth, and low-chloride interstitial fluids, we suggest an additional process that could contribute to the characteristic chloride depletion in pore fluids of active margins: release of interlayer water from clays without a mineral phase change. The shelf sediments also contain a subsurface brine that stretches for more than 500 km from north to south over the area drilled. The source of the brine remains uncertain, although the composition of the oxygen isotopes suggests dissolution of evaporites by seawater.
Seasonal electrical resistivity surveys of a coastal bluff, Barter Island, North Slope Alaska
Swarzenski, Peter W.; Johnson, Cordell; Lorenson, Thomas; Conaway, Christopher H.; Gibbs, Ann E.; Erikson, Li; Richmond, Bruce M.; Waldrop, Mark P.
2016-01-01
Select coastal regions of the North Slope of Alaska are experiencing high erosion rates that can be attributed in part to recent warming trends and associated increased storm intensity and frequency. The upper sediment column of the coastal North Slope of Alaska can be described as continuous permafrost underlying a thin (typically less than 1–2 m) active layer that responds variably to seasonal thaw cycles. Assessing the temporal and spatial variability of the active layer and underlying permafrost is essential to better constrain how heightened erosion may impact material fluxes to the atmosphere and the coastal ocean, and how enhanced thaw cycles may impact the stability of the coastal bluffs. In this study, multi-channel electrical resistivity tomography (ERT) was used to image shallow subsurface features of a coastal bluff west of Kaktovik, on Barter Island, northeast Alaska. A comparison of a suite of paired resistivity surveys conducted in early and late summer 2014 provided detailed information on how the active layer and permafrost are impacted during the short Arctic summer. Such results are useful in the development of coastal resilience models that tie together fluvial, terrestrial, climatic, geologic, and oceanographic forcings on shoreline stability.
NASA Astrophysics Data System (ADS)
Viezzoli, A.; Tosi, L.; Teatini, P.; Silvestri, S.
2010-01-01
A comprehensive investigation of the mixing between salt/fresh surficial water and groundwater in transitional environments is an issue of paramount importance considering the ecological, cultural, and socio-economic relevance of coastal zones. Acquiring information, which can improve the process understanding, is often logistically challenging, and generally expensive and slow in these areas. Here we investigate the capability of airborne electromagnetics (AEM) at the margin of the Venice Lagoon, Italy. The quasi-3D interpretation of the AEM outcome by the spatially constrained inversion (SCI) methodology allows us to accurately distinguish several hydrogeological features down to a depth of about 200 m. For example, the extent of the saltwater intrusion in coastal aquifers and the transition between the upper salt saturated and the underlying fresher sediments below the lagoon bottom are detected. The research highlights the AEM capability to improve the hydrogeological characterization of subsurface processes in worldwide lagoons, wetlands, deltas.
Aminostratigraphy of surface and subsurface Quaternary sediments, North Carolina coastal plain, USA
Wehmiller, John F.; Thieler, E. Robert; Miller, D.; Pellerito, V.; Bakeman, Keeney V.; Riggs, S.R.; Culver, S.; Mallinson, D.; Farrell, K.M.; York, L.L.; Pierson, J.; Parham, P.R.
2010-01-01
The Quaternary stratigraphy and geochronology of the Albemarle Embayment of the North Carolina (NC) Coastal Plain is examined using amino acid racemization (AAR) in marine mollusks, in combination with geophysical, lithologic, and biostratigraphic analysis of 28 rotasonic cores drilled between 2002 and 2006. The Albemarle Embayment is bounded by structural highs to the north and south, and Quaternary strata thin westward toward the Suffolk paleoshoreline, frequently referred to as the Suffolk Scarp. The Quaternary section is up to ∼90 m thick, consists of a variety of estuarine, shelf, back-barrier, and lagoonal deposits, and has been influenced by multiple sea-level cycles. The temporal resolution of the amino acid racemization method is tested statistically and with the stratigraphic control provided by this geologic framework, and it is then applied to the correlation and age estimation of subsurface units throughout the region. Over 500 specimens (primarily Mercenaria and Mulinia) from the subsurface section have been analyzed using either gas chromatographic (GC) or reverse-phase liquid chromatographic (RPLC) techniques. The subsurface stratigraphic data are compared with AAR results from numerous natural or excavated exposures from the surrounding region, as well as results from NC beach collections, to develop a comprehensive aminostratigraphic database for the entire Quaternary record within the NC coastal system. Age mixing, recognized in the beach collections, is also seen in subsurface sections, usually where major seismic reflections or core lithology indicate the presence of stratigraphic discontinuities. Kinetic models for racemization are tested within the regional stratigraphic framework, using either radiocarbon or U-series calibrations or comparison with regional biostratigraphy. Three major Pleistocene aminozones [AZ2, AZ3, and AZ4] are found throughout the region, all being found in superposition in several cores. Each can be subdivided, yielding a total of at least eight stratigraphically and statistically distinct aminozones. Kinetic modeling, supplemented with local calibration, indicates that these aminozones represent depositional events ranging from ∼80 ka to nearly 2 Ma. Three prominent seismic reflections are interpreted to represent the base of the early, middle, and late Pleistocene, respectively, roughly 2 Ma, 800 ka, and 130 ka. The large number of samples and the available stratigraphic control provide new insights into the capabilities and limitations of aminostratigraphic methods in assessing relative and numerical ages of Atlantic Coastal Plain Quaternary deposits.
NASA Astrophysics Data System (ADS)
Oliver, Thomas; Tamura, Toru; Short, Andrew; Woodroffe, Colin
2017-04-01
Prograded coastal barriers are accumulations of marine and aeolian sands configured into shore-parallel ridges. A variety of ridge morphologies described around the world reflect differences in origin as a consequence of differing prevailing coastal morphodynamics. The 'morphodynamic approach' described by Wright and Thom (1977) expounds the coastal environmental conditions, hydrodynamic and morphodynamic processes and inheritance of evolutionary sequences over varying temporal scales which interdependently operate to produce an assemblage of coastal landforms adjusted, or adjusting to, a dynamic equilibrium. At Pedro Beach on the southeastern coast of Australia a large sandy deposit of foredune ridges provides an opportunity to explore the morphodynamic paradigm as it applies to coastal barrier systems using optically stimulated luminescence (OSL) dating, ground penetrating radar (GPR) and airborne LiDAR topography. The prograded barrier at Pedro Beach has formed following the stabilisation of the sea level at its present height on the southeast Australian coastline. A series of dune-capped ridges, increasing in height seawards, formed from 6000 years ago to 4000 years ago. During this time the shoreline straightened as bedrock accommodation space for Holocene sediments diminished. Calculation of Holocene sediment volumes utilising airborne LiDAR topography shows a decline in sediment volume over this time period coupled with a decrease in shoreline progradation rate from 0.75 m/yr to 0.49 m/yr. The average ridge 'lifetime' during this period increases resulting in higher ridges as dune-forming processes have longer to operate. Greater exposure to wave and wind energy also appears to have resulted in higher ridges as the sheltering effect of marginal headlands has diminished. A high outer foredune has formed through vertical accretion in the past 700 years, evidenced by GPR subsurface structures and upward younging of OSL ages, with a sample from 1 m deep within the crest of this dune returning an age of 90 ± 10. An inherited disequilibrium shoreface profile will drive onshore accumulation of sandy sediments forming a prograded barrier; however, if there is no longer 'accommodation space' for sediment, this will be an overriding factor causing the cessation of progradation as occurred 4000 years ago at Pedro Beach. Following progradation cessation, excess sediment in the disequilibrium shoreface profile will be moved alongshore as barrier progradation (embayment filling) has diminished the potential of headlands to act as impediments to sediment bypassing in the nearshore. It is hypothesised that the chronology and geomorphology of the Pedro Beach barrier system typifies the changing 'strength of influence' in the interaction between geologically inherited accommodation space, sediment delivery and beach/dune/shoreface dynamics over the mid-late Holocene. Wright, L. D., & Thom, B. G. (1977). Coastal depositional landforms: a morphodynamic approach. Progress in Physical Geography, 1(3), 412-459.
Flocks, J.G.; Ferina, N.F.; Dreher, C.; Kindinger, J.L.; FitzGerald, D.M.; Kulp, M.A.
2006-01-01
The coastal zone of southeastern Louisiana is the product of numerous cycles of progradation, abandonment, and marine transgression of the Mississippi River delta. Currently, the shoreline in the Barataria Bight is undergoing significant erosion and retreat, and understanding its evolution is crucial in stabilization efforts. This study uses an extensive collection of geophysical and sediment core data from Barataria Bay and offshore to develop a geologic model of the shallow (< 10 m) subsurface. The purpose of the model is twofold: (1) establish the stratigraphic architecture of a subdelta lobe of the Bayou des Families delta, deposited by the Mississippi River approximately 4000 years before present; and (2) provide a high-resolution description of the geologic framework in a context that can be applied to coastal management issues in similar fluvially dominated coastal environments worldwide. The results of the study demonstrate how high-quality geologic data from the coastal environment can be used not only to further our understanding of shoreline evolution but also to provide pertinent information for coastal management needs.
Methane in Sediments From Three Tropical, Coastal Lagoons on the Yucatan Peninsula, Mexico
NASA Astrophysics Data System (ADS)
Young, B.; Paytan, A.; Miller, L.; Herrera-Silveira, J.
2002-12-01
Tropical wetlands are significant sources of methane (CH4) to the atmosphere, and the majority of research on methane flux and cycling in the tropics has been conducted in fresh-water wetlands and lakes. However, several previous studies have shown that tropical coastal ecosystems can produce significant methane flux to the atmosphere despite the presence of moderate to marine salinities. Information regarding methane cycling within the sediments is crucial to understanding how natural and anthropogenic changes may influence these systems. We measured methane concentrations in sediments from two tropical coastal lagoons during different seasons, as well as in a third, heavily polluted, lagoon (Terminos) during the rainy season. These three lagoons, Celestun, Chelem, and Terminos, have similar vegetation, seasonal temperature and rainfall patterns, and substrate geology, but very different levels of ground water discharge and pollution. Methane concentrations in Celestun and Terminos lagoon showed high spatial variability(> 0.001 to 5 mmol kg-1 wet sediment), while sediments in Chelem Lagoon, which has near marine salinities and little sewage discharge, showed much lower variability of methane concentrations. Methane concentrations in Celestun sediments displayed two predominant patterns: some profiles contained a peak in methane concentration (1 to 2 mmole methane kg-1 wet sediment) between 5 and 15 cm below the surface while the other sediment profiles instead displayed a steady or monotonic increase in methane concentration with depth to approximately 0.025-0.080 mmol kg-1 at 10-15cm below surface followed by stable methane concentrations to the bottom of the cores (20-45 cm below the surface). A subsurface peak in methane concentrations was also found in some locations in Chelem, however, the concentrations were much lower than those measured in Celestun. Previous studies have shown that sewage pollution may drastically increase methane production in tropical coastal ecosystems. Laboratory experiments using sediment from the upper 20 cm in Celestun lagoon resulted in high rates of biogenic production of methane from the addition of trimethylamine, hydrogen, and, while additions of formate and acetate stimulated methane production to a lesser extent. This indicates that methane production in these sediments may be highly responsive to natural or anthropogenic changes in substrate availability. By synthesizing laboratory data and extensive field measurements from the lagoons, we hope to shed light on the factors controlling methane cycling in these sediments, and to better estimate methane flux to the atmosphere from these ecosystems.
NASA Astrophysics Data System (ADS)
Dale, Jonathan; Burgess, Heidi; Cundy, Andrew
2017-04-01
Intertidal saltmarsh and mudflat habitats are of global importance due to the ecosystem, economic and cultural services they provide. These services include wildlife habitat provision and species diversity, immobilisation of pollutants and protection from coastal flooding. Saltmarsh and mudflat environments are, however, being lost and degraded due to erosion caused by rising sea levels and increased storminess. These losses are exacerbated by anthropogenic influences including land reclamation, increased coastal development and the construction of coastal flood defences which prevent the landwards migration of saltmarsh and mudflat environments, resulting in coastal squeeze. To compensate for saltmarsh and mudflat losses areas of the coastal hinterland are being inundated by breaching defences and constructing new defences inland, thus extending or constructing new estuarine environments; a processes known as de-embankment or managed realignment. Morphological engineering and landscaping within managed realignment sites prior to site inundation varies depending on the aims of the scheme. However, there is a shortage of data on the morphological evolution within these sites post site inundation impeding the ability of coastal engineers to effectively design and construct future sites. To date there has been a focus on the colonisation of marine macro fauna and flora within newly inundated managed realignment sites, which can be relatively rapid and easily quantified. Little is known of the morphological evolution in response to altered sedimentary processes, its driving mechanisms and therefore the success and ecological sustainability of these sites. This study evaluates the post-inundation morphological development of the largest open coast managed realignment site in Europe, at Medmerry on the south coast of the United Kingdom. Inundated in September 2013, the Medmerry Managed Realignment Site consists of a mosaic of former agricultural land and areas of lower elevation excavated during site construction, drained by a series of natural and engineered channels. Results indicate different rates and patterns of sedimentation and resulting morphology across the site. Near the breach continuous sedimentation of > 15cm over a 1 year period was measured, compared to rhythmic periods of accretion and erosion inland. These variations have been related to site design, former land-use and different sediment sources. The evolution of developing creek networks, formed by pluvial action and sediment "piping", are controlled by unconformities found in the sub-surface sediment related to Holocene site evolution. Analysis of the sedimentary processes and subsequent morphological development of these areas provides a new insight into coastal and estuarine evolution in an anthropogenically designed and constructed estuarine environment.
Spencer, Kate L; Carr, Simon J; Diggens, Lucy M; Tempest, James A; Morris, Michelle A; Harvey, Gemma L
2017-06-01
Saltmarshes are being lost or degraded as a result of human activity resulting in loss of critical ecosystem services including the provision of wild species diversity, water quality regulation and flood regulation. To compensate, saltmarshes are being restored or re-created, usually driven by legislative requirements for increased habitat diversity, flood regulation and sustainable coastal defense. Yet, there is increasing evidence that restoration may not deliver anticipated ecosystem services; this is frequently attributed to poor drainage and sediment anoxia. However, physical sediment characteristics, hydrology and the sediment geochemical environment are rarely examined in restoration schemes, despite such factors being critical for plant succession. This study presents the novel integration of 3D-computed X-ray microtomography to quantify sediment structure and porosity, with water level and geochemical data to understand the impact of pre-restoration land use and disturbance on the structure and functioning of restored saltmarshes. The study combines a broad-scale investigation of physical sediment characteristics in nine de-embanked saltmarshes across SE England, with an intensive study at one site examining water levels, sediment structure and the sediment geochemical environment. De-embankment does not restore the hydrological regime, or the physical/chemical framework in the saltmarshes and evidence of disturbance includes a reduction in microporosity, pore connectivity and water storage capacity, a lack of connectivity between the sub-surface environment and overlying floodwaters, and impeded sub-surface water flow and drainage. This has significant consequences for the sediment geochemical environment. This disturbance is evident for at least two decades following restoration and is likely to be irreversible. It has important implications for plant establishment in particular, ecosystem services including flood regulation, nutrient cycling and wild species diversity and for future restoration design. Copyright © 2016 Elsevier B.V. All rights reserved.
Golden, H.E.; Knightes, C.D.; Conrads, P.A.; Davis, G.M.; Feaster, T.D.; Journey, C.A.; Benedict, S.T.; Brigham, M.E.; Bradley, P.M.
2012-01-01
Mercury (Hg) is one of the leading water quality concerns in surface waters of the United States. Although watershed-scale Hg cycling research has increased in the past two decades, advances in modeling watershed Hg processes in diverse physiographic regions, spatial scales, and land cover types are needed. The goal of this study was to assess Hg cycling in a Coastal Plain system using concentrations and fluxes estimated by multiple watershed-scale models with distinct mathematical frameworks reflecting different system dynamics. We simulated total mercury (HgT, the sum of filtered and particulate forms) concentrations and fluxes from a Coastal Plain watershed (McTier Creek) using three watershed Hg models and an empirical load model. Model output was compared with observed in-stream HgT. We found that shallow subsurface flow is a potentially important transport mechanism of particulate HgT during periods when connectivity between the uplands and surface waters is maximized. Other processes (e.g., stream bank erosion, sediment re-suspension) may increase particulate HgT in the water column. Simulations and data suggest that variable source area (VSA) flow and lack of rainfall interactions with surface soil horizons result in increased dissolved HgT concentrations unrelated to DOC mobilization following precipitation events. Although flushing of DOC-HgT complexes from surface soils can also occur during this period, DOC-complexed HgT becomes more important during base flow conditions. TOPLOAD simulations highlight saturated subsurface flow as a primary driver of daily HgT loadings, but shallow subsurface flow is important for HgT loads during high-flow events. Results suggest limited seasonal trends in HgT dynamics.
Golden, H.E.; Knightes, C.D.; Conrads, P.A.; Davis, G.M.; Feaster, T.D.; Journey, C.A.; Benedict, S.T.; Brigham, M.E.; Bradley, P.M.
2012-01-01
Mercury (Hg) is one of the leading water quality concerns in surface waters of the United States. Although watershed-scale Hg cycling research has increased in the past two decades, advances in modeling watershed Hg processes in diverse physiographic regions, spatial scales, and land cover types are needed. The goal of this study was to assess Hg cycling in a Coastal Plain system using concentrations and fluxes estimated by multiple watershed-scale models with distinct mathematical frameworks reflecting different system dynamics. We simulated total mercury (Hg T, the sum of filtered and particulate forms) concentrations and fluxes from a Coastal Plain watershed (McTier Creek) using three watershed Hg models and an empirical load model. Model output was compared with observed in-stream Hg T. We found that shallow subsurface flow is a potentially important transport mechanism of particulate Hg T during periods when connectivity between the uplands and surface waters is maximized. Other processes (e.g., stream bank erosion, sediment re-suspension) may increase particulate Hg T in the water column. Simulations and data suggest that variable source area (VSA) flow and lack of rainfall interactions with surface soil horizons result in increased dissolved Hg T concentrations unrelated to DOC mobilization following precipitation events. Although flushing of DOC-Hg T complexes from surface soils can also occur during this period, DOC-complexed Hg T becomes more important during base flow conditions. TOPLOAD simulations highlight saturated subsurface flow as a primary driver of daily Hg T loadings, but shallow subsurface flow is important for Hg T loads during high-flow events. Results suggest limited seasonal trends in Hg T dynamics. Copyright 2012 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Cao, Y.; Xing, L.; Zhang, T.
2017-12-01
To reconstruct and compare the SST changes in different regions of the ECS over the last 100 years, in this study, we analyzed iGDGTs compounds and TEX86 index in two sediment cores (DH5-1 and DH6-2) from the inner shelf of the East China Sea (ECS). GDGT-0 and GDGT-5 in the two cores account for 80% of iGDGTs, significantly more abundant than the other iGDGTs compounds. It is also found that iGDGTs are mainly derived from marine Thaumarchaeota. TEXH86 temperatures varied from 17 °C to 22 °C (average 19.4 °C), showing a gradual increase in Core DH5-1 near the Changjiang River Estuary, corresponding to global warming and temperature rise in the ECS over the last 100 years. However, in Core DH6-2 further away from the Changjiang River Estuary, TEXH86 temperatures gradually decreased over the last 80 years with a range of 15.3 °C-18.3 °C, which is attributed to the strengthened near-shore Kuroshio Branch Current transporting more subsurface cold water to the ECS coastal area. In future, more sites should be investigated to confirm the range of the coastal area where the decrease in SST is caused by upwelling subsurface water.
NASA Astrophysics Data System (ADS)
Carpena, Emmanuel; Jiménez, Luis O.; Arzuaga, Emmanuel; Fonseca, Sujeily; Reyes, Ernesto; Figueroa, Juan
2017-05-01
Improved benthic habitat mapping is needed to monitor coral reefs around the world and to assist coastal zones management programs. A fundamental challenge to remotely sensed mapping of coastal shallow waters is due to the significant disparity in the optical properties of the water column caused by the interaction between the coast and the sea. The objects to be classified have weak signals that interact with turbid waters that include sediments. In real scenarios, the absorption and backscattering coefficients are unknown with different sources of variability (river discharges and coastal interactions). Under normal circumstances, another unknown variable is the depth of shallow waters. This paper presents the development of algorithms for retrieving information and its application to the classification and mapping of objects under coastal shallow waters with different unknown concentrations of sediments. A mathematical model that simplifies the radiative transfer equation was used to quantify the interaction between the object of interest, the medium and the sensor. The retrieval of information requires the development of mathematical models and processing tools in the area of inversion, image reconstruction and classification of hyperspectral data. The algorithms developed were applied to one set of real hyperspectral imagery taken in a tank filled with water and TiO2 that emulates turbid coastal shallow waters. Tikhonov method of regularization was used in the inversion process to estimate the bottom albedo of the water tank using a priori information in the form of stored spectral signatures, previously measured, of objects of interest.
Localized rapid warming of West Antarctic subsurface waters by remote winds
NASA Astrophysics Data System (ADS)
Spence, Paul; Holmes, Ryan M.; Hogg, Andrew Mcc.; Griffies, Stephen M.; Stewart, Kial D.; England, Matthew H.
2017-08-01
The highest rates of Antarctic glacial ice mass loss are occurring to the west of the Antarctica Peninsula in regions where warming of subsurface continental shelf waters is also largest. However, the physical mechanisms responsible for this warming remain unknown. Here we show how localized changes in coastal winds off East Antarctica can produce significant subsurface temperature anomalies (>2 °C) around much of the continent. We demonstrate how coastal-trapped barotropic Kelvin waves communicate the wind disturbance around the Antarctic coastline. The warming is focused on the western flank of the Antarctic Peninsula because the circulation induced by the coastal-trapped waves is intensified by the steep continental slope there, and because of the presence of pre-existing warm subsurface water offshore. The adjustment to the coastal-trapped waves shoals the subsurface isotherms and brings warm deep water upwards onto the continental shelf and closer to the coast. This result demonstrates the vulnerability of the West Antarctic region to a changing climate.
Unravelling metal mobility under complex contaminant signatures.
de Souza Machado, Anderson Abel; Spencer, Kate L; Zarfl, Christiane; O'Shea, Francis T
2018-05-01
Metals are concerning pollutants in estuaries, where contamination can undergo significant remobilisation driven by physico-chemical forcing. Environmental concentrations of metals in estuarine sediments are often higher than natural backgrounds, but show no contiguity to potential sources. Thus, better understanding the metal mobility in estuaries is essential to improve identification of pollution sources and their accountability for environmental effects. This study aims to identify the key biogeochemical drivers of metal mobilisation on contaminated estuarine sediments through (1) evaluation of the potential mobilisation under controlled conditions, and (2) investigation of the relevance of metal mobilisation for in situ pollution levels in an area with multiple contaminant sources. Sediments from a saltmarsh adjacent to a coastal landfill, a marina, and a shipyard on the Thames Estuary (Essex, UK) were exposed in the laboratory (24h, N=96, 20°C) to water under various salinity, pH, and redox potential. Major cations, Fe(II), and trace metal concentrations were analysed in the leachate and sediment. Salinity, pH and redox had a significant effect on metal mobilisation (p<0.001), e.g. under certain conditions Fe(II) leaching was increased ~1000-fold. Measurements in situ of surface and subsurface sediment cores revealed that landfill proximity poorly explained metal spatial distribution. However, physicochemical parameters explained up to 97% of geochemically normalized metal concentrations in sediments. Organic matter and pH were dominant factors for most of the metal concentrations at the sediment surface. At subsurface, major cations (Ca, Na, Mg and K) were determinant predictors of metal concentrations. Applying the empirical model obtained in the laboratory to geochemical conditions of the studied saltmarsh it was possible to demonstrate that Fe mobilisation regulates the fate of this (and other) metal in that area. Thus, present results highlight the importance of metal mobility to control sediment pollution and estuarine fate of metals. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Spencer, Kate; Harvey, Gemma; James, Tempest; Simon, Carr; Michelle, Morris
2014-05-01
Saltmarsh restoration undoubtedly provides environmental enhancement, with vegetation quickly re-establishing following the breach of sea walls and subsequent tidal inundation of previously defended areas. Yet evidence increasingly suggests that the restored saltmarshes do not have the same biological characteristics as their natural counterparts (Mossman et al. 2012) and this may be in part be due to physicochemical parameters at the site including anoxia and poor drainage. Hence, restored saltmarshes may not offer the range and quality of ecosystem services anticipated. These environments will have been 'disturbed' by previous land use and there is little understanding of the impacts of this disturbance on the wider hydrogeomorphic and biogeochemical functioning in restored saltmarshes and the implications for saltmarsh vegetation development. This study examines linkages between physical sediment characteristics, sediment structure (using X-ray microtomography), sub-surface hydrology (using pressure transducers and time series analysis), and sediment and porewater geochemistry (major and trace elements, major anions) in sediment cores collected from undisturbed saltmarshes and those restored by de-embankment. Sub-surface sediments in restored saltmarshes have lower organic matter content, lower moisture content and higher bulk density than undisturbed sites. Using X-ray tomography a clear horizon can be observed which separates relict agricultural soils at depth with less dense and structureless sediments deposited since de-embankment. Ratios of open to closed pore space suggest that while undisturbed saltmarshes have the highest porosity, restored saltmarshes have larger void spaces, but limited pore connectivity. Sub-surface hydrological response to tidal flooding was subdued in the restored compared to the undisturbed site, suggesting that porewater flow may be impeded. Time series analysis indicated that flow pathways differ in restored saltmarsh sediments with preferential horizontal flows. The undisturbed saltmarsh displayed typical vertical geochemical sediment profiles. However, in the restored sites total Fe and Mn are elevated at depth indicating an absence of diagenetic cycling, whilst porewater sulphate and nitrate increased at depth suggesting that vertical solute transport is impeded in restored sites. In surface sediments, though total Hg concentrations are similar, Hg methylation rates are significantly higher than in the undisturbed saltmarsh suggesting that surface anoxia and poor drainage may result in increased mobilization and bioavailability of Hg. These findings have implications for the wider biogeochemical ecosystem services offered by saltmarsh restoration and the water-logged, anoxic conditions produced are unsuitable for seedling germination and plant growth. This highlights the need for integrated understanding of physical and biogeochemical processes.
Sedimentological context of the continental sabkhas of Abu Dhabi
NASA Astrophysics Data System (ADS)
Lokier, Stephen; Paul, Andreas; Bixiao, Xin
2017-04-01
For more than half a century, the coastal sabkhas of Abu Dhabi have been the focus of intensive research focusing on deposition, early diagenesis and the role of microbial communities. Given all of this activity, it is somewhat surprising that their continental counterparts have been largely neglected with only a brief mention in larger-scale regional studies. This study redresses this imbalance by documenting the sedimentological, mineralogical and early diagenetic characteristics of continental sabkhas that are hosted in the Rub al Khali desert of the United Arab Emirates. During reconnaissance surveys it has been established that organic-rich microbial mats and evaporite minerals, both similar to those observed in the coastal sabkha, also occur in these continental sabkha settings. Satellite imagery was utilised to identify potential field locations for surface and shallow sub surface investigation; subsequent field reconnaissance established the validity of sites in terms of anthropogenic disruption and accessibility. At each site, surface features were described in detail, particularly with reference to any microbial communities or evaporite crusts; sample pits were dug in order to document sub-surface facies geometries and to recover both sediment and pore water samples for subsequent analysis. In each pit, a range of environmental parameters was measured over a prolonged period, including surface and sub-surface temperatures, ground water salinity and dissolved oxygen. Sediment samples were subjected to a range of analyses in order to establish and quantify primary sediment composition and any early diagenetic mineral phases. The results of this study are used to build an atlas of sedimentary structures and textures that are associated with continental sabkha settings. These observations allow us to establish the defining sedimentological and early diagenetic characteristics that can be employed to identify similar depositional environments in ancient successions. This will, ultimately, enable the development of better reservoir models, in terms of lateral and vertical depositional and petrophysical facies variability, and fluid flow.
Hanebuth, Till J J; King, Mary Lee; Mendes, Isabel; Lebreiro, Susana; Lobo, Francisco J; Oberle, Ferdinand K; Antón, Laura; Ferreira, Paulo Alves; Reguera, Maria Isabel
2018-05-10
Natural and human-induced seabed sediment disturbances affect wide areas of the global coastal ocean. These recurrent to chronic disturbances mobilize significant amounts of material, including substances that have the potential to significantly harm the environment once re-released. This very challenging issue is difficult to deal with if sub-surface contaminant concentrations are unknown. Based on the analysis of 11 new, up to 5-m long sediment cores taken offshore in the Gulf of Cadiz, the contamination history (using the trace elements lead and zinc) is well documented over major parts of the gulf. Ore mining and metal processing industries on the southwestern Iberian Peninsula started five thousand years ago and experienced a first peak during the Roman Period, which can be detected over the entire gulf. The Industrial Era added a massive, shelf-wide heavy metal excursion of unprecedented dimension. This metal contamination to the coastal ocean decreased in the 1990s and appears to be today limited to larger areas off the Tinto/Odiel and Guadiana River mouths. The unforeseen, significant finding of this study is that the gulf-wide, peak heavy metal concentration, stemming from the Industrial Era, is widely overlain by a modern sediment veneer just thick enough to cover the contaminant horizon, but thin enough to have this layer within the reach of natural or human-induced sediment mobilization events. Published by Elsevier B.V.
NASA Technical Reports Server (NTRS)
Schubel, J. R.
1980-01-01
Several important coastal sedimentation problems are identified. Application of existing or anticipated remote sensing techniques to examine these problems is considered. Specifically, coastal fine particle sediment systems, floods and hy hurricanes and sedimentation f of coastal systems, routes and rates of sediment transport on continental shelves, and dredging and dredged material disposal are discussed.
Lovley, D.R.; Goodwin, S.
1988-01-01
Factors controlling the concentration of dissolved hydrogen gas in anaerobic sedimentary environments were investigated. Results, presented here or previously, demonstrated that, in sediments, only microorganisms catalyze the oxidation of H2 coupled to the reduction of nitrate, Mn(IV), Fe(III), sulfate, or carbon dioxide. Theoretical considerations suggested that, at steady-state conditions, H2 concentrations are primarily dependent upon the physiological characteristics of the microorganism(s) consuming the H2 and that organisms catalyzing H2 oxidation, with the reduction of a more electrochemically positive electron acceptor, can maintain lower H2 concentrations than organisms using electron acceptors which yield less energy from H2 oxidation. The H2 concentrations associated with the specified predominant terminal electron-accepting reactions in bottom sediments of a variety of surface water environments were: methanogenesis, 7-10 nM; sulfate reduction, 1-1.5 nM; Fe(III) reduction, 0.2 nM; Mn(IV) or nitrate reduction, less than 0.05 nM. Sediments with the same terminal electron acceptor for organic matter oxidation had comparable H2 concentrations, despite variations in the rate of organic matter decomposition, pH, and salinity. Thus, each terminal electron-accepting reaction had a unique range of steady-state H2 concentrations associated with it. Preliminary studies in a coastal plain aquifer indicated that H2 concentrations also vary in response to changes in the predominant terminal electron-accepting process in deep subsurface environments. These studies suggest that H2 measurements may aid in determining which terminal electron-accepting reactions are taking place in surface and subsurface sedimentary environments. ?? 1988.
Hydrogeologic Framework of the New Jersey Coastal Plain
Zapecza, Otto S.
1989-01-01
This report presents the results of a water-resources, oriented subsurface mapping program within the Coastal Plain of New Jersey. The occurrence and configuration of 15 regional hydrogeologic units have been defined, primarily on the basis of an interpretation of borehole geophysical data. The nine aquifers and six confining beds are composed of unconsolidated clay, silt, sand, and gravel and range in age from Cretaceous to Quaternary. Electric and gamma-ray logs from more than 1,000 Coastal Plain wells were examined. Of these, interpretive data for 302 sites were selected, on the basis of logged depth, quality of data, and data distribution, to prepare structure contour and thickness maps for each aquifer and a thickness map for each confining bed. These maps, together with 14 hydrogeologic sections, show the geometry, lateral extent, and vertical and horizontal relationships among the 15 hydrogeologic units. The hydrogeologic maps and sections show that distinct lower, middle, and upper aquifers are present within the Potomac, Raritan-Magothy aquifer system near the Delaware River from Burlington County to Salem County. Although the lower aquifer is recognized only in this area, the middle aquifer extends into the northeastern Coastal Plain of New Jersey, where it is stratigraphically equivalent to the Farrington aquifer. The upper aquifer extends throughout most of the New Jersey Coastal Plain and is stratigraphically equivalent to the Old Bridge aquifer in the northeastern Coastal Plain. The overlying Merchantville-Woodbury confining bed is the most regionally extensive confining bed within the New Jersey Coastal Plain. Its thickness ranges from less than 100 feet near the outcrop to more than 450 feet along the coast. The Englishtown aquifer system acts as a single aquifer throughout most of its subsurface extent, but it contains two water-bearing sands in pars of Monmouth and Ocean Counties. The overlying Marshalltown-Wenonah confining bed is a thin, leaky unit ranging in thickness from approximately 20 to 80 feet. The Wenonah-Mount Laurel aquifer is identified in the subsurface throughout the New Jersey Coastal Plain southeast of its outcrop area. Sediments that overlie the Wenonah-Mount Lauren aquifer and that are subjacent to the major aquifers within the Kirkwood Formation and the Cohansey Sand are described hydrologically as a composite confining bed. These include the Navesink Formation, Red Bank Sand, Tinton Sand, Hornerstown Sand, Vincentown Formation, Manasquan Formation, Shark River Formation, and Piney Point Formation and the basal clay of the Kirkwood Formation.. The Vincentown Formation functions as n aquifer within 3 to 10 miles downdip of its outcrop area. In areas farther downdip the Vincentown Formation functions as a confining bed. The Piney Point aquifer is laterally persistent from the southern New Jersey Coastal Plain northward into parts of Burlington and Ocean Counties. The Atlantic City 800-foot sand of the Kirkwood Formation can be recognized in the subsurface along coastal areas of Cape May, Atlantic, and southern Ocean Counties, but inland only as far west as the extent of the overlying confining bed. In areas west of the extent of the overlying confining bed, the Kirkwood Formation is in hydraulic connection with the overlying Cohansey Sand and younger surficial deposits and functions as an unconfined aquifer.
Monitoring Sediment Size Distributions in a Regulated Gravel-Bed Coastal Stream
NASA Astrophysics Data System (ADS)
O'Connor, M. D.; Lewis, J.; Andrew, G.
2014-12-01
Lagunitas Creek drains 282 km2 in coastal Marin County, California. The watershed contains water supply reservoirs, urban areas, parks and habitat for threatened species (e.g. coho salmon). Water quality is impaired by excess fine sediment, and a plan to improve water quality (i.e. TMDL) was adopted by State authorities in 2014. The TMDL asserts changes in sediment delivery, transport, and storage contributed to the decline of coho. A sediment source analysis found a 2x increase in sediment supply. Concentrations of sand and fine gravel in the channel are elevated and, during high flows, more mobile. The Federal Coho Salmon Recovery Plan (2012) describes sediment conditions affecting coho habitat as "fair". Reservoir managers were directed by the State in 1995 to reduce sedimentation and improve riparian vegetation and woody debris to improve fish habitat. Prior sediment monitoring found variability related primarily to intense winter runoff without identifying clear trends. A new sediment monitoring program was implemented in 2012 for ongoing quantification of sediment conditions. The goal of monitoring is to determine with specified statistical certainty changes in sediment conditions over time and variation among reaches throughout the watershed. Conditions were compared in 3 reaches of Lagunitas Cr. and 2 tributaries. In each of the 5 channel reaches, 4 shorter reaches were sampled in a systematic grid comprised of 30 cross-channel transects spaced at intervals of 1/2 bankfull width and 10 sample points per transect; n=1200 in 5 channel reaches. Sediment diameter class (one clast), sediment facies (a patch descriptor), and habitat type were observed at each point. Fine sediment depth was measured by probing the thickness of the deposit, providing a means to estimate total volume of fine sediment and a measure of rearing habitat occupied by fine sediment (e.g. V*). Sub-surface sediment samples were collected and analyzed for size distribution at two scales: a larger sample of a spawning site in each sample reach and 20 smaller sub-samples of fine sediment facies. These data provide a robust description of streambed sediment conditions (e.g. % < 1 mm) expected to vary systematically across the watershed (e.g. fining downstream) and over time in response to management of watershed resources.
Estimating sedimentation rates and sources in a partially urbanized catchment using caesium-137
NASA Astrophysics Data System (ADS)
Ormerod, L. M.
1998-06-01
While there has been increased interest in determining sedimentation rates and sources in agricultural and forested catchments in recent years, there have been few studies dealing with urbanized catchments. A study of sedimentation rates and sources within channel and floodplain deposits of a partially urbanized catchment has been undertaken using the 137Cs technique. Results for sedimentation rates showed no particular downstream pattern. This may be partially explained by underestimation of sedimentation rates at some sites by failure to sample the full 137Cs profile, floodplain erosion and deliberate removal of sediment. Evidence of lateral increases in net sedimentation rates with distance from the channel may be explained by increased floodplain erosion at sites closer to the channel and floodplain formation by lateral deposition. Potential sediment sources for the catchment were considered to be forest topsoil, subsurface material and sediments derived from urban areas, which were found to be predominantly subsurface material. Tracing techniques showed an increase in subsurface material for downstream sites, confirming expectations that subsurface material would increase in the downstream direction in response to the direct and indirect effects of urbanization.
Coastal erosion vs riverline sediment discharge in the Arctic shelfx seas
Rachold, V.; Grigoriev, M.N.; Are, F.E.; Solomon, Sean C.; Reimnitz, E.; Kassens, H.; Antonow, M.
2000-01-01
This article presents a comparison of sediment input by rivers and by coastal erosion into both the Laptev Sea and the Canadian Beaufort Sea (CBS). New data on coastal erosion in the Laptev Sea, which are based on field measurements and remote sensing information and existing data on coastal erosion in the CBS as well as riverine sediment discharge into both the Laptev Sea and the CBS are included. Strong regional differences in the percentages of coastal ero- sion and riverine sediment supply are observed. The CBS is dominated by the riverine sediment discharge (64.45x106 t a-1) mainly of the Mackenzie River. which is the largest single source of sediments in the Arctic. Riverine sediment discharge into the Laptev Sea amounts to 24.10x106 t a-1, more than 70% of which are related to the Lena River. In comparison with the CBS. the Laptev Sea coast on average delivers approximately twice as much sediment mass per kilometer, a result of higher erosion rates due to higher cliffs and seasonal ice melting. In the Laptev Sea sediment input by coastal erosion (58.4x106 t a-1) is therefore more important than in the CBS and the ratio between riverine and coastal sediment input amounts to 0.4. Coastal erosion supplying 5.6x106 t a-1 is less significant for the sediment budget of the CBS where riverine sediment discharge exceeds coastal sediment input by a factor of ca. 10.
Transport of microplastics in coastal seas
NASA Astrophysics Data System (ADS)
Zhang, Hua
2017-12-01
Microplastic pollution of the marine environment has received increasing attention from scientists, the public, and policy makers over the last few years. Marine microplastics predominantly originate near the coast and can remain in the nearshore zone for some time. However, at present, there is little understanding of the fate and transport of microplastics in coastal regions. This paper provides a comprehensive overview of the physical processes involved in the movement of microplastics from estuaries to the continental shelf. The trajectory and speed of microplastics are controlled by their physical characteristics (density, size, and shape) and ocean dynamic conditions (wind, waves, tides, thermohaline gradients, and the influence of benthic sediments). Microplastic particles can be subjected to beaching, surface drifting, vertical mixing, and biofouling, as well as bed-load and suspended load transport processes, until reaching terminal deposition on beaches, in coastal marshes, in benthic sediments or until they are carried by ocean currents to subtropical convergence zones. The dynamic interaction of released microplastics with the shoreline is regulated by onshore/offshore transport, which is impacted by the source location as well as the geometry, vegetation, tidal regime, and wave direction. Wind and wave conditions dominate surface drifting of buoyant particles through Ekman drift, windage, and Stokes drift mechanisms. Neustic microplastic particles travel in the subsurface because of vertical mixing through wind-driven Langmuir circulation and heat cycling. Increasing accumulation of microplastics in benthic sediments needs to be quantitatively explored in terms of biofouling, deposition, entrainment, and transport dynamics. Further studies are required to understand the following: 1) the primary parameters (e.g., windage, terminal velocity, diffusivity, critical shear stress) that determine microplastic transport in different pathways; 2) dynamic distribution of microplastics in various coastal landscapes (e.g., wetlands, beaches, estuaries, lagoons, barrier islands, depocenters) regulated by hydrodynamic conditions; and 3) interactions between the physical transport processes and biochemical reactions (degradation, flocculation, biofouling, ingestions).
Mercury speciation in coastal sediments from the central east coast of India by modified BCR method.
Chakraborty, Parthasarathi; Raghunadh Babu, P V; Vudamala, Krushna; Ramteke, Darwin; Chennuri, Kartheek
2014-04-15
This is the first study to describe distribution and speciation of Hg in coastal sediments from the central east coast of India. The concentrations of Hg in the studied sediments were found to be much lower than the Hg concentration recommended in coastal sediments by the United State Environmental Protection Agency and the Canadian Council of Ministers of the Environment for the protection of aquatic life. This study suggests that the interactions between Hg and coastal sediments are influenced by particle size (sand, silt and clay) of the sediments and the total organic carbon (TOC) content in the sediments. It was found that the coastal sediments from the central east coast of India could act as a sink for Hg. The availability of strong uncomplexed-Hg binding sites in the coastal sediments was observed. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Riedinger, N.; Formolo, M.; Arnold, G. L.; Vossmeyer, A.; Henkel, S.; Sawicka, J.; Kasten, S.; Lyons, T. W.
2011-12-01
The continental margin off Uruguay and Argentina is characterized by highly dynamic depositional conditions. This variable depositional regime significantly impacts the biogeochemical cycles of iron and sulfur. Mass deposit related redeposition of reduced minerals can lead to the reoxidation of these phases and thus to an overprint of their geochemical primary signatures. Due to rapid burial these oxidized phases are still present in deeper subsurface sediments. To study the effects of sediment relocation on the sulfur and iron inventory we collected shallow and deep subsurface sediment samples via multicorer and gravity cores, respectively, in the western Argentine Basin during the RV Meteor Expedition M78/3 in May-July 2009. The samples were retrieved from shelf, slope and deep basin sites. The concentration and sulfur isotope composition of acid volatile sulfur (AVS), chromium reducible sulfur (CRS), elemental sulfur and total organic sulfur were determined. Furthermore, sequential iron extraction techniques were applied assess the distribution of iron oxide phases within the sediment. The investigated sediments are dominated by terrigenous inputs, with high amounts of reactive ferric iron minerals and only low concentrations of calcium carbonate. Total organic carbon concentrations show strong variation in the shallow subsurface sediments ranging between approximately 0.7 and 6.4 wt% for different sites. These concentrations do not correlate with water depths. Pore water accumulations of hydrogen sulfide are restricted to an interval at the sulfate-methane transition (SMT) zone a few meters below the sediment surface. In these deeper subsurface sediments pyrite is precipitated in this zone of hydrogen sulfide excess, whereas the accumulation of authigenic AVS and elemental sulfur (up to 2000 ppm) occurs at the upper and lower boundary of the sulfidic zone due the reaction of iron oxides with limited amounts of sulfide. Furthermore, our preliminary results indicate that there is a link between modern deposition in the shallow subsurface sediments and the long-term signals being buried and preserved in the deep subsurface layers. The data show that the burial of elemental sulfur into deep subsurface sediments can fuel the deep biosphere and has consequences for isotopic overprints tied, for example, to oxidation and disproportionation processes in the deeper sediments.
Relations between Vegetation and Geologic Framework in Barrier Island
NASA Astrophysics Data System (ADS)
Smart, N. H.; Ferguson, J. B.; Lehner, J. D.; Taylor, D.; Tuttle, L. F., II; Wernette, P. A.
2017-12-01
Barrier islands provide valuable ecosystems and protective services to coastal communities. The longevity of barrier islands is threatened by sea-level rise, human impacts, and extreme storms. The purpose of this research is to evaluate how vegetation dynamics interact with the subsurface and offshore framework geology to influence the beach and dune morphology. Beach and dune morphology can be viewed as free and/or forced behavior, where free systems are stochastic and the morphology is dependent on variations in the storm surge run-up, aeolian sediment supply and transport potential, and vegetation dynamics and persistence. Forced systems are those where patterns in the coastal morphology are determined by some other structural control, such as the underlying and offshore framework geology. Previous studies have documented the effects of geologic framework or vegetation dynamics on the beach and dunes, although none have examined possible control by vegetation dynamics in context of the geologic framework (i.e. combined free and forced behavior). Padre Island National Seashore (PAIS) was used to examine the interaction of free and forced morphology because the subsurface framework geology and surface beach and dune morphology are variable along the island. Vegetation dynamics were assessed by classifying geographically referenced historical aerial imagery into areas with vegetation and areas without vegetation, as well as LiDAR data to verify this imagery. The subsurface geologic structure was assessed using a combination of geophysical surveys (i.e. electromagnetic induction, ground-penetrating radar, and offshore seismic surveys). Comparison of the observed vegetation patterns and geologic framework leads to a series of questions surrounding how mechanistically these two drivers of coastal morphology are related. Upcoming coring and geophysical surveys will enable us to validate new and existing geophysical data. Results of this paper will help us better understand how barrier islands have responded to environmental change in the past should be integrated into current models of barrier island evolution in order to more accurately predict how the island will change over time in response to continued climatic variability.
NASA Astrophysics Data System (ADS)
Wilson, S. R.; Close, M. E.; Abraham, P.
2018-01-01
Diffuse nitrate losses from agricultural land pollute groundwater resources worldwide, but can be attenuated under reducing subsurface conditions. In New Zealand, the ability to predict where groundwater denitrification occurs is important for understanding the linkage between land use and discharges of nitrate-bearing groundwater to streams. This study assesses the application of linear discriminant analysis (LDA) for predicting groundwater redox status for Southland, a major dairy farming region in New Zealand. Data cases were developed by assigning a redox status to samples derived from a regional groundwater quality database. Pre-existing regional-scale geospatial databases were used as training variables for the discriminant functions. The predictive accuracy of the discriminant functions was slightly improved by optimising the thresholds between sample depth classes. The models predict 23% of the region as being reducing at shallow depths (<15 m), and 37% at medium depths (15-75 m). Predictions were made at a sub-regional level to determine whether improvements could be made with discriminant functions trained by local data. The results indicated that any gains in predictive success were offset by loss of confidence in the predictions due to the reduction in the number of samples used. The regional scale model predictions indicate that subsurface reducing conditions predominate at low elevations on the coastal plains where poorly drained soils are widespread. Additional indicators for subsurface denitrification are a high carbon content of the soil, a shallow water table, and low-permeability clastic sediments. The coastal plains are an area of widespread groundwater discharge, and the soil and hydrology characteristics require the land to be artificially drained to render the land suitable for farming. For the improvement of water quality in coastal areas, it is therefore important that land and water management efforts focus on understanding hydrological bypassing that may occur via artificial drainage systems.
High resolution near-bed observations in winter near Cape Hatteras, North Carolina
Martini, Marinna A.; Armstrong, Brandy N.; Warner, John C.
2010-01-01
The U.S. Geological Survey (USGS) Coastal and Marine Science Center in Woods Hole, Massachusetts, is leading an effort to understand the regional sediment dynamics along the coastline of North and South Carolina. As part of the Carolinas Coastal Change Processes Project, a geologic framework study in June of 2008 by the Woods Hole Coastal and Marine Science Center's Sea Floor Mapping Group focused on the seaward limit of Diamond Shoals and provided high resolution bathymetric data, surficial sediment characteristics, and subsurface geologic stratigraphy. These data also provided unprecedented guidance to identify deployment locations for tripods and moorings to investigate the processes that control sediment transport at Diamond Shoals. Equipment was deployed at three sites from early January, 2009 through early May, 2009: north and south of the shoals at 15 m depth, and at the tip at 24 m depth. Many strong storm systems were recorded during that time period. Mounted on the tripods were instruments to measure surface waves, pressure, current velocity, bottom turbulence, suspended-sediment profiles, and sea-floor sand-ripple bedforms. Many instruments were designed and programmed to sample in high resolution in time and space, as fast as 8 Hz hourly bursts and as small as 6 cm bin sizes in near bottom profiles. A second tripod at the north site also held a visual camera system and sonar imaging system which document seafloor bedforms. The region is known for its dynamics, and one of the tripods tipped over towards the end of the experiment. A preliminary look at the data suggests the region is characterized by high energy. Raw data from a burst recorded at the south site on Mar. 26th show instantaneous flow speed at 150 cm/s at 0.5 m above the seabed. This paper reports preliminary highlights of the observations, based on raw data, and lessons learned from a deployment of large tripod systems in such a dynamic location.
High resolution near-bed observations in winter near Cape Hatteras, North Carolina
Martini, M.; Armstrong, B.; Warner, J.C.
2009-01-01
The U.S. Geological Survey (USGS) Coastal and Marine Science Center in Woods Hole, Massachusetts, is leading an effort to understand the regional sediment dynamics along the coastline of North and South Carolina. As part of the Carolinas Coastal Change Processes Project, a geologic framework study in June of 2008 by the Woods Hole Coastal and Marine Science Center's Sea Floor Mapping Group focused on the seaward limit of Diamond Shoals and provided high resolution bathymetric data, surficial sediment characteristics, and subsurface geologic stratigraphy. These data also provided unprecedented guidance to identify deployment locations for tripods and moorings to investigate the processes that control sediment transport at Diamond Shoals. Equipment was deployed at three sites from early January, 2009 through early May, 2009: north and south of the shoals at 15 m depth, and at the tip at 24 m depth. Many strong storm systems were recorded during that time period. Mounted on the tripods were instruments to measure surface waves, pressure, current velocity, bottom turbulence, suspended-sediment profiles, and sea-floor sand-ripple bedforms. Many instruments were designed and programmed to sample in high resolution in time and space, as fast as 8 Hz hourly bursts and as small as 6 cm bin sizes in near bottom profiles. A second tripod at the north site also held a visual camera system and sonar imaging system which document seafloor bedforms. The region is known for its dynamics, and one of the tripods tipped over towards the end of the experiment. A preliminary look at the data suggests the region is characterized by high energy. Raw data from a burst recorded at the south site on Mar. 26th show instantaneous flow speed at 150 cm/s at 0.5 m above the seabed. This paper reports preliminary highlights of the observations, based on raw data, and lessons learned from a deployment of large tripod systems in such a dynamic location. ??2009 MTS.
Geophysical Mapping of the South Carolina Offshore for Wind Energy Development
NASA Astrophysics Data System (ADS)
Brantley, D.; Knapp, C. C.; Battista, B.; Stone, J.
2017-12-01
The Bureau of Ocean Energy Management (BOEM) has identified potential Wind Energy Areas (WEA's) on the continental shelf of South Carolina characterized by good wind resource potential and minimal environmental and societal use conflicts based on existing regional data sets. A multi-sensor geophysical survey has been initiated to provide a more thorough determination of the shallow geologic framework and bottom habitat and cultural resources potential to further refine future wind farm siting. The most recent phase of deposition (Pleistocene; <1.8 Mya) took place during repeated, large-scale (120 m) sea-level changes which resulted in extensive exposure and inundation of the shelf. The shallow subsurface of the near-shore environment under consideration for wind energy development requires thorough analysis of seabed bottom type, seafloor roughness and geomorphology, potential sites of cultural resources and features such as active and inactive faults, filled channels, and potential slope instabilities which would have a considerable potential impact on sitting installations for wind energy. The study is focused on the inner shelf from 18 to 26 km offshore of North Myrtle Beach, SC. The collaborative effort is generating multibeam, and side scan sonar, CHIRP sub-bottom and magnetometer data. Across the region a thin veneer of sediments overlies indurated Tertiary deposits. The Tertiary geologic section is locally scoured and influenced small channels and probable karstification and enduring fluid exchange across the sea floor which has been previously identified in the region. The sea floor exhibits large-scale (100s of meters) low relief shore-perpendicular bedforms similar to those found within the shoreface and innermost shelf though the SC Coastal Erosion Study. Post-processed bathymetry shows a radial distribution of coast-perpendicular features that transition between two coastal processes: 1) there is the sediment distribution caused by the longshore currents and wave energy, and 2) there are areas related to the coastal inlets that disrupt the primary sedimentation patterns and impose patterns of terrestrial sedimentation such as those from rivers, deltas and estuaries.
Fine-grained sediment dispersal along the California coast
Warrick, Jonathan A.; Storlazzi, Curt D.
2013-01-01
Fine-grained sediment (silt and clay) enters coastal waters from rivers, eroding coastal bluffs, resuspension of seabed sediment, and human activities such as dredging and beach nourishment. The amount of sediment in coastal waters is an important factor in ocean ecosystem health, but little information exists on both the natural and human-driven magnitudes of fine-grained sediment delivery to the coastal zone, its residence time there, and its transport out of the system—information upon which to base environmental assessments. To help fill these information gaps, the U.S. Geological Survey has partnered with Federal, State, and local agencies to monitor fine-grained sediment dispersal patterns and fate in the coastal regions of California. Results of these studies suggest that the waves and currents of many of the nearshore coastal settings of California are adequately energetic to transport fine-grained sediment quickly through coastal systems. These findings will help with the management and regulation of fine-grained sediment along the U.S. west coast.
Forde, Arnell S.; Smith, Christopher G.; Reynolds, Billy J.
2016-03-18
From April 13 to 20, 2013, scientists from the U.S. Geological Survey St. Petersburg Coastal and Marine Science Center (USGS-SPCMSC) conducted geophysical and sediment sampling surveys on Dauphin Island, Alabama, as part of Field Activity 13BIM01. The objectives of the study were to quantify inorganic and organic accretion rates in back-barrier and mainland marsh and estuarine environments. Various field and laboratory methods were used to achieve these objectives, including subsurface imaging using Ground Penetrating Radar (GPR), sediment sampling, lithologic and microfossil analyses, and geochronology techniques to produce barrier island stratigraphic cross sections to help interpret the recent (last 2000 years) geologic evolution of the island.This data series report is an archive of GPR and associated Global Positioning System (GPS) data collected in April 2013 from Dauphin Island and adjacent barrier-island environments. In addition to GPR data, marsh core and vibracore data were also collected collected but are not reported (or included) in the current report. Data products, including elevation-corrected subsurface profile images of the processed GPR data, unprocessed digital GPR trace data, post-processed GPS data, Geographic Information System (GIS) files and accompanying Federal Geographic Data Committee (FGDC) metadata, can be downloaded from the Data Downloads page.
Piper, D.Z.
1988-01-01
Pelagic sediment recovered at DOMES Site A in the equatorial North Pacific (151??W, 9?? 15???N) consists of a surface homogeneous layer, approximately 10 cm thick, overlying a strongly mottled layer that is lighter in color. The radiolarian composition of both units is Quaternary. In areas where this sediment was only a few centimeters thick, the underlying sediment was early Tertiary. Clay mineralogy and major oxide composition of the two Quaternary sediments are uniform. Their similarity to continental shale suggests that the sediment has a terrigenous source. Clay mineralogy and major oxide composition of the Tertiary sediment also are uniform, although they differ markedly from the Quarternary sediment. In contrast to the major oxides, concentrations of Mn, Co, Cu, and Ni soluble in hydroxylamine hydrochlorideacetic acid are strongly different in the surface and subsurface Quaternary sediment. Mn and Ni exhibit pronounced depletions in the subsurface sediment, Ni slightly more than Mn. Cu is also depleted in the subsurface sediment, but less than Mn. It is also depleted in the subsurface Tertiary sediment, whereas the Mn concentration remains high. Concentration of Co relative to Mn increases into the subsurface Quaternary sediment to a constant Co:Mn ratio of 3 ?? 10-2. The trivalent REE (the REE exclusive of Ce) and Fe exhibit little down-core variation. Distribution of elements in these sediments is closely related to their concentration in associated surface ferromanganese nodules. The nodules are of two distinct types: those from the area where the Quaternary sediment is relatively thick have ??-MnO2 as the dominant manganese mineral. The ratios of Ni:Mn, Cu:Mn, and Fe:Mn in these nodules approximate the corresponding ratios of the soluble fraction of surface sediment. Todorokite is the dominant mineral of nodules recovered from areas where the Quaternary sediment is thin. Relatively high Cu/Mn, Ni/Mn, and low Fe/Mn ratios of these nodules mirror differences between the soluble fraction of surface and subsurface Quaternary sediment. These compositional trends of sediment and nodules at DOMES Site A reflect a diagenetic origin for the todorokite nodules and a predominantly hydrogenous origin for the ??-MnO2 nodules. ?? 1988.
High virus-to-cell ratios indicate ongoing production of viruses in deep subsurface sediments.
Engelhardt, Tim; Kallmeyer, Jens; Cypionka, Heribert; Engelen, Bert
2014-07-01
Marine sediments cover two-thirds of our planet and harbor huge numbers of living prokaryotes. Long-term survival of indigenous microorganisms within the deep subsurface is still enigmatic, as sources of organic carbon are vanishingly small. To better understand controlling factors of microbial life, we have analyzed viral abundance within a comprehensive set of globally distributed subsurface sediments. Phages were detected by electron microscopy in deep (320 m below seafloor), ancient (∼14 Ma old) and the most oligotrophic subsurface sediments of the world's oceans (South Pacific Gyre (SPG)). The numbers of viruses (10(4)-10(9) cm(-3), counted by epifluorescence microscopy) generally decreased with sediment depth, but always exceeded the total cell counts. The enormous numbers of viruses indicate their impact as a controlling factor for prokaryotic mortality in the marine deep biosphere. The virus-to-cell ratios increased in deeper and more oligotrophic layers, exhibiting values of up to 225 in the deep subsurface of the SPG. High numbers of phages might be due to absorption onto the sediment matrix and a diminished degradation by exoenzymes. However, even in the oldest sediments, microbial communities are capable of maintaining viral populations, indicating an ongoing viral production and thus, viruses provide an independent indicator for microbial life in the marine deep biosphere.
Larsen, Laurel G.; Moseman, Serena; Santoro, Alyson; Hopfensperger, Kristine; Burgin, Amy
2010-01-01
To effectively manage coastal ecosystems, we need an improvedunderstanding of how tidal marsh ecosystem services will respond to sea-level rise and increased nitrogen (N) loading to coastal areas. Here we review existing literature to better understand how these interacting perturbations s will likely impact N removal by tidal marshes. We propose that the keyy factors controlling long-term changes in N removal are plant-community changes, soil accretion rates, surface-subsurface flow paths, marsh geomorphology microbial communities, and substrates for microbial reactions. Feedbacks affecting relative elevations and sediment accretion ratess will serve as dominant controls on future N removal throughout the marsh. Given marsh persistence, we hypothesize that the processes dominating N removal will vary laterally across the marsh and longitudinallyalong the estuarine gradient. In salt marsh interiors, where nitrate reduction rates are often limited by delivery of nitrate to bacterial communities, reductions in groundwater discharge due to sea level rise may trigger a net reduction in N removal. In freshwater marshes, we expect a decreasee in N removal efficiency due to increased sulfide concentrations. Sulfide encroachment will increase the relative importance of dissimilatory nitrate reduction to ammonium and lead to greater bacterial nitrogen immobilization, ultimately resulting in an ecosystem that retains more N and is less effective at permanent N removal from the watershed. In contrast, we predict that sealevel–driven expansion of the tidal creek network and the degree of surface-subsurface exchange flux through tidal creek banks will result in greater N-removal efficiency from these locations.
Baldwin, W.E.; Morton, R.A.; Putney, T.R.; Katuna, M.P.; Harris, M.S.; Gayes, P.T.; Driscoll, N.W.; Denny, J.F.; Schwab, W.C.
2006-01-01
Several generations of the ancestral Pee Dee River system have been mapped beneath the South Carolina Grand Strand coastline and adjacent Long Bay inner shelf. Deep boreholes onshore and high-resolution seismic-reflection data offshore allow for reconstruction of these paleochannels, which formed during glacial lowstands, when the Pee Dee River system incised subaerially exposed coastal-plain and continental-shelf strata. Paleochannel groups, representing different generations of the system, decrease in age to the southwest, where the modern Pee Dee River merges with several coastal-plain tributaries at Winyah Bay, the southern terminus of Long Bay. Positions of the successive generational groups record a regional, southwestward migration of the river system that may have initiated during the late Pliocene. The migration was primarily driven by barrier-island deposition, resulting from the interaction of fluvial and shoreline processes during eustatic highstands. Structurally driven, subsurface paleotopography associated with the Mid-Carolina Platform High has also indirectly assisted in forcing this migration. These results provide a better understanding of the evolution of the region and help explain the lack of mobile sediment on the Long Bay inner shelf. Migration of the river system caused a profound change in sediment supply during the late Pleistocene. The abundant fluvial source that once fed sand-rich barrier islands was cut off and replaced with a limited source, supplied by erosion and reworking of former coastal deposits exposed at the shore and on the inner shelf.
Laboratory studies of the diagenesis and mobility of 239,240pu and 137Cs in nearshore sediments
NASA Astrophysics Data System (ADS)
Sholkovitz, Edward R.; Cochran, J. Kirk; Carey, Anne E.
1983-08-01
Controlled laboratory experiments have been used to study the diagenetic chemistry of 239,240Pu 137Cs, and 55Fe. Experiments using Buzzards Bay sediments in small tanks show that sulfate reduction is accompanied by the production of large pore water concentration gradients of alkalinity, phosphate, ammonia and dissolved organic carbon and the formation of subsurface maxima in Fe and Mn. These pore water profiles demonstrate that bacterially-mediated processes of organic matter degradation and redox reactions can be simulated in the laboratory. A vertical profile of 55Fe in pore waters is reported for the first time: it follows the profile of stable Fe and as such has a large (200 dpm/100 kg) subsurface maximum between 2-4 cm depth. Comparison of 55Fe/Fe ratios in sediments and pore waters shows that there is preferential solubilization of 55Fe over stable Fe. The pore water activities of 239,240Pu show no gradients within the large uncertainties of the counting statistics, but are two to four times higher than Buzzards Bay seawater (0.05 dpm/100 kg). The activity of 137Cs in the pore water profile is constant (40 dpm/100 kg) within the large counting uncertainties and is twice that of Buzzards Bay seawater. Cs-137 does not appear to be involved in diagenetic chemistry but may increase in pore waters as a result of ion exchange reactions. Flux estimates based on the pore water data show that remobilization and transport of 239,240 Pu in coastal sediments are not significant processes while the transport of l37Cs may be.
Hwang, C.; Copeland, A.; Lucas, Susan; ...
2015-01-22
We report the genome sequence of Anaeromyxobacter sp. Fw109-5, isolated from nitrate- and uranium-contaminated subsurface sediment of the Oak Ridge Integrated Field-Scale Subsurface Research Challenge (IFC) site, Oak Ridge Reservation, TN. The bacterium’s genome sequence will elucidate its physiological potential in subsurface sediments undergoing in situ uranium bioremediation and natural attenuation.
Understanding the Effects of Sea-Level Rise on Coastal Wetlands: The Human Dimension
NASA Astrophysics Data System (ADS)
Reed, Denise
2010-05-01
In the 21st century coastal systems are subject to the pressures of centuries of population growth and resource exploitation. In 2003, in the US approximately 153 million people (53 percent of the population) lived in coastal counties, an increase of 33 million people since 1980 and this is expected to increase by approximately 7 million by the year 2008. Eight of the world's top ten largest cities are located at the coast, 44 % of the world's population (more people than inhabited the entire globe in 1950) live within 150 km of the coast and in 2001 over half the world's population lived within 200 km of a coastline. . Increased population density at the coasts often brings pollution and habitat degradation - decreasing the value of many of the resources that initially attract the coastal development - and it also means the effect of sea-level rise on coastal geomorphic systems must be seen in the context of additional human pressures. For global sea-level debate centers on the magnitude and rate of the rise around most of the world; the exception being those areas still experiencing falling sea-levels due to isostatic rebound. Many coastal island states are clearly vulnerable. While the ‘lurid and misleading maps' of the 1980's used by many to indicate areas to be flooded by rising seas in the future, have been replaced by more considered discussion of the response of coastal dynamics to rising seas there is still considerable debate about the amount of sea-level rise shorelines will experience in the 21st century. For coastal wetlands four main sets of physical factors - fine sediment regime; tidal conditions; coastal configuration; and relative sea-level change - define the geomorphic context for coastal marsh development and survival during the 21st century. Each of these factors is influenced by changes in climate and human alterations to coastal and inshore environments. In turn changes in sediment dynamics are mediated by both physical forcing and biotic factors, and plant growth is an additional factor influencing the survival of more organic marshes. Salt marsh surfaces are frequently considered to be in an equilibrium relationship with local mean sea level but the projection of salt marsh sustainability under future climate scenarios is a complex issue and depends on: the relative importance of organic matter to marsh vertical development; the complexities governing organic matter accumulation during rising sea level; the importance of subsurface processes in determining surface elevation change; and the role of storm events and hydrologic changes in controlling sediment deposition, soil conditions and plant growth. The effects of global change, both climate and human induced, on coastal wetlands will be manifest differently among various geomorphic settings but their vulnerability to global change in the 21st century should be taken seriously by coastal managers and policy-makers alike.
Mercury distribution in ancient and modern sediment of northeastern Bering Sea
Nelson, C.H.; Pierce, D.E.; Leong, K.W.; Wang, F.F.H.
1975-01-01
Reconnaissance sampling of surface and subsurface sediment to a maximum depth of 80 m below the sea floor shows that typical values of 0.03 p.p.m. and anomalies of 0.2-1.3 p.p.m. mercury have been present in northeastern Bering Sea since Early Pliocene time. Values are highest in modern beach (maximum 1.3 and mean 0.22 p.p.m. Hg) and nearshore subsurface gravels (maximum 0.6 and mean 0.06 p.p.m. Hg) along the highly mineralized Seward Peninsula and in clayey silt rich in organic matter (maximum 0.16 and mean 0.10 p.p.m. Hg) throughout the region. Although gold mining may be partly responsible for high mercury levels in the modern beach near Nome, Alaska (maximum 0.45 p.p.m.), equally high or greater concentrations of mercury occur in buried Pleistocene sediments immediately offshore (maximum 0.6 p.p.m.) and in modern unpolluted beach sediments at Bluff (maximum 1.3 p.p.m.); this suggests that the contamination effects of mining may be no greater than natural concentration processes in the Seward Peninsula region. The mercury content of offshore surface sediment, even adjacent to mercury-rich beaches, corresponds to that of unpolluted marine and fresh-water sediment elsewhere. The normal values that prevail offshore may be attributable to entrapment of mercury-bearing heavy minerals on beaches near sources and/or dilution effects of offshore sedimentation. The few minor anomalies offshore occur in glacial drift derived from mercury source regions of Chukotka (Siberia) and Seward Peninsula; Pleistocene shoreline processes have reworked the drift to concentrate the heavy metals. The distribution pattern of mercury indicates that particulate mercury-bearing minerals have not been widely dispersed from onland deposits in quantities sufficient to increase mercury levels above normal in offshore sediments of Bering Sea; however, it shows that natural sedimentary processes can concentrate this mercury in beaches of the coastal zone where there already is concern because of potential pollution from man's activities.
Jiang, Ming; Middleton, Beth A.
2011-01-01
Amendments of sediment from dredging activities have played an important role in raising the elevation of sinking coastal wetlands. This study compared the soil characteristics of sediment- amended coastal swamps in the Barataria Preserve unit of Jean Lafitte National Historical Park and Preserve with natural swamps along Bayou des Familles. The sandy sediment amendments used in the coastal forests had different soil texture and characteristics than the more organic soils of the natural swamps. Three years after the application of these sediments on the sediment-amended swamps, dewatering and compaction of the sediment had occurred but the sediment still had high salinity and bulk density, and low organic matter content. The two sediment-amended swamps differed from each other in that Site 1 had a higher elevation (mean = 25 cm higher) and drier soil than Site 2. The effects of sediment in coastal forested wetlands require separate consideration from studies of salt marshes, e.g., the weight of the sediment might damage tree roots, or the amendments might influence soil stability during storms in a different way. Generally, this study suggests that shallower depths of sediment are more likely to yield environments beneficial to these sinking baldcypress swamps in coastal Louisiana.
Workshop discusses community models for coastal sediment transport
NASA Astrophysics Data System (ADS)
Sherwood, Christopher R.; Signell, Richard P.; Harris, Courtney K.; Butman, Bradford
Numerical models of coastal sediment transport are increasingly used to address problems ranging from remediation of contaminated sediments, to siting of sewage outfalls and disposal sites, to evaluating impacts of coastal development. They are also used as a test bed for sediment-transport algorithms, to provide realistic settings for biological and geochemical models, and for a variety of other research, both fundamental and applied. However, there are few full-featured, publicly available coastal sediment-transport models, and fewer still that are well tested and have been widely applied.This was the motivation for a workshop in Woods Hole, Massachusetts, on June 22-23, 2000, that explored the establishment of community models for coastal sediment-transport processes.
NASA Astrophysics Data System (ADS)
Ahmed, S.; Chandra, S.; Auken, E.; Verma, S. K.
2015-12-01
Comprehensive knowledge of aquifer system is an important requisite for its effective management in India. Geological formations are complex and variable, punctual and scarce information are not adequate to understand, asses and manage them. Continuous data acquisition, their interpretation and integration with available geological/geophysical information is the solution. Heliborne dual moment transient electromagnetic (HeliTEM) and magnetic (HeliMAG) measurements have been carried out in divergent geological terrenes in India comprising Gangetic alluvium, Tertiary sediments underlying the Thar desert, Deccan basalts and Gondwana sediments, weathered and fractured granite gneisses and schists and the coastal alluvium with Tertiary sediments. The survey was carried out using state of the art equipment SkyTEM. The paper presents a synopsis of the results of the HeliTEM surveys that have helped in obtaining continuous information on the geoelectrical nature of sub-surface. HeliTEM data were supported by a number of ground geophysical surveys. The results provide the 3D subsurface structures controlling the groundwater conditions, the regional continuity of probable aquifers, the variations in lithological character and the quality of water in terms of salinity. Specialized features pertaining to hydrogeological characteristics obtained from this study are as follows: A clear delineation of clay beds and their spatial distribution providing the multi-layered aquifer setup in the Gangetic plains. Delineation of low resistivity zones in the quartzite below the over exploited aquifers indicating the possibility of new aquifers. Presence of freshwater zones underneath the saline water aquifers in the thick and dry sands in deserts. Clear demarcation of different lava flows, mapping the structural controls and highly porous zones in the contact of basalts and Gondwanas. A complete and continuous mapping of weathered zone in crystalline hard rock areas providing information on the recharge zones. The setting of multi-layered aquifer and different zones of salt water intrusion in the coastal sedimentary formations. The study has helped in establishing an appropriate cost-effective strategy for 3D mapping of aquifers on a regional scale providing valuable inputs to perform aquifer modeling.
Geophysical Mapping of the South Carolina Atlantic Offshore for Wind Energy Development
NASA Astrophysics Data System (ADS)
Knapp, C. C.; Brantley, D.; Battista, B.; Gayes, P. T.; Knapp, J. H.; White, S. M.
2016-12-01
The submerged continental margin of the southeastern United States records a geologic history of continental collision during Paleozoic time (500-300 Mya), and subsequent continental rifting and break-up with associated magmatism during early Mesozoic time (230-180 Mya). Subsequent development as a passive continental margin has resulted in accumulation of a thick sedimentary cover deposited through numerous cycles of sea level change on the margin. Themost recent phase of deposition (Pleistocene; <1.8 Ma) took place during repeated, large-scale (120 m) sea-level changes which resulted in extensive exposure and inundation of the shelf. The shallow subsurface of the near-shore environment under consideration for wind energy development requires thorough analysis of seabed bottom type, seafloor roughness and geomorphology, potential sites of cultural resources and features such as active and inactive faults, filled channels, and potential slope instabilities which would have a considerable potential impact on siting of installations for wind energy. To this end, a geophysical survey has been conducted to further refine future wind farm locations. The study is focused on the inner shelf from 18 to 26 km offshore of North Myrtle Beach, SC and a second smaller area offshore of Georgetown, SC. The collaborative effort is generating multibeam, side scan sonar, chirp sub-bottom and magnetometer data. Seafloor acoustic backscatter is derived from the same instrument acquiring the bathymetry. Bathymetry shows a radial distribution of coast-perpendicular features that transition between two coastal processes: 1) there is the sediment distribution caused by longshore currents and wave energy, and 2) there are areas related to the coastal inlets that disrupt the primary sedimentation patterns and impose patterns of terrestrial sedimentation such as those from rivers, deltas and estuaries. There are numerous systems tracts and channels acting on the seafloor over time in the region. All the data collected as part of this project will be interpreted and integrated in the same domain using Schlumberger's Petrel™ software package in order to create high resolution images including 1) seabed morphology and bathymetry, and 2) high resolution models of the subsurface structure and stratigraphy.
NASA Astrophysics Data System (ADS)
Shi, Benwei; Wang, Ya Ping; Wang, Li Hua; Li, Peng; Gao, Jianhua; Xing, Fei; Chen, Jing Dong
2018-06-01
Understanding of bottom sediment erodibility is necessary for the sustainable management and protection of coastlines, and is of great importance for numerical models of sediment dynamics and transport. To investigate the dependence of sediment erodibility on degree of consolidation, we measured turbidity, waves, tidal currents, intratidal bed-level changes, and sediment properties on an exposed macrotidal mudflat during a series of tidal cycles. We estimated the water content of surface sediments (in the uppermost 2 cm of sediment) and sub-surface sediments (at 2 cm below the sediment surface). Bed shear stress values due to currents (τc), waves (τw), and combined current-wave action (τcw) were calculated using a hydrodynamic model. In this study, we estimate the critical shear stress for erosion using two approaches and both of them give similar results. We found that the critical shear stress for erosion (τce) was 0.17-0.18 N/m2 in the uppermost 0-2 cm of sediment and 0.29 N/m2 in sub-surface sediment layers (depth, 2 cm), as determined by time series of τcw values and intratidal bed-level changes, and values of τce, obtained using the water content of bottom sediments, were 0.16 N/m2 in the uppermost 2 cm and 0.28 N/m2 in the sub-surface (depth, 2 cm) sediment. These results indicate that the value of τce for sub-surface sediments (depth, 2 cm) is much greater than that for the uppermost sediments (depth, 0-2 cm), and that the τce value is mainly related to the water content, which is determined by the extent of consolidation. Our results have implications for improving the predictive accuracy of models of sediment transport and morphological evolution, by introducing variable τce values for corresponding sediment layers, and can also provide a mechanistic understanding of bottom sediment erodibility at different sediment depths on intertidal mudflats, as related to differences in the consolidation time.
Protecting Coastal Areas from Flooding by Injecting Solids into the Subsurface
NASA Astrophysics Data System (ADS)
Germanovich, L. N.; Murdoch, L.
2008-12-01
Subsidence and sea level rise conspire to increase the risk of flooding in coastal cities throughout the world, and these processes were key contributors to the devastation of New Orleans by hurricane Katrina. Constructing levees and placing fill to raise ground elevations are currently the main options for reducing flooding risks in coastal areas, and both of these options have drawbacks. We suggest that hydromechanical injection of solid compounds suspended in liquid can be used to lift the ground surface and thereby expand the options for protecting such coastal cities as New Orleans, Venice, and Shanghai from flooding. These techniques are broadly related to hydraulic fracturing and compensation grouting, where solid compounds are injected as slurries and cause upward displacements at the ground surface. The equipment and logistics required for hydromechanical solid injection and ground lifting are readily available from current geotechnical and petroleum operations. Hydraulic fractures are routinely created in the upper tens of meters of sediments, where they are filled with a wide range of different proppants for environmental applications. At shallow depths, many of these fractures are sub-parallel to the ground surface and lift their overburden by a few mm to cm, although lifting is not the objective of these fractures. Much larger, vertical displacements, of the order of several meters, could be created in low-cohesion sediments over areas as large as square kilometers. This would be achieved as a result of multiple injections. Injecting solid particulates provides the benefits of a permanent displacement supported by the solids. We have demonstrated that hydraulic fractures will lift the ground surface at shallow depths in Texas near the Sabine River, where the geological setting is generally similar to that of New Orleans (and where, incidentally, hurricane Rita landed in 2005). In these regions, the soft surficial sediments are underlain by relatively stiff Pleistocene deposits, which create in-situ stress conditions favorable for sub-horizontal orientation of hydraulic fractures. Based on the poroelastic effect, these conditions can further be improved by subsurface manipulations of pore fluid. Also, there are many geological examples of natural, sub- horizontal hydraulic fractures. These include multiple igneous sills (e.g., Henry Mountains, Utah) and sand- filled sills intruded into sedimentary formations (e.g., Shetland-Faroe Islands). Techniques that are currently used, or planned, for protecting coastal cities from flood are typically based on the concept of a barrier to the seawater (e.g., levees or water gates). However, the failure of any barrier to flood waters can be catastrophic when the city it protects is below sea level. Hydromechanical injection of solid compounds could permanently lift elevations above a Category 5 hurricane surge, so the risk of a catastrophic failure and subsequent flooding becomes insignificant. We envision that the hydromechanical method can be used in combination with other strategies. For example, in some areas it may be efficient to let most of a city retreat and only lift localized regions of particularly high value, such as airports, port facilities, refineries, historical areas, military bases, etc. In other cases, the protecting equipment itself may begin subsiding (e.g., massive, metal water gates on a soft-sediment foundation). Then, hydromechanical injections could be used to lift the region supporting this equipment.
Water security and services in the ocean-aquifer system
NASA Astrophysics Data System (ADS)
Taniguchi, M.
2011-12-01
Coastal vulnerability and water security are both important research subjects on global environmental problems under the pressures of changing climate and societies. A six years research project by RIHN on the coastal subsurface environments in seven Asia cities revealed that subsurface environmental problems including saltwater intrusion, groundwater contamination and subsurface thermal anomalies occurred one after another depending on the development stage of the cities during the last 100 years. Exchanges of water between ocean and aquifer in the coastal cities depend on driving force from land of natural resources capacities such as groundwater recharge rate, and social changes such as excessive groundwater pumping due to industrialization. Risk assessments and managements for aquifers which are parts of water security have been made for seven Asian coastal cities. On the other hand, submarine groundwater discharge (SGD) into the ocean provides water services directly to the coastal ecosystem through nutrient transports from land to the ocean. Constant geophysical and geochemical conditions served by SGD provide sustainable services to the coastal environment. Flora and fauna which prefer brackish water in the coastal zone depend on not only river water discharge but also SGD. Ocean -aquifer interaction can be found in the coastal ecosystem including sea shell, sea grass and fishes in the coastal zone though SGD. In order to evaluate a coastal security and sustainable environment, not only risk assessments due to disasters but also water services are important, and the both are evaluated in Asian coastal zones.
NASA Astrophysics Data System (ADS)
Huan Chin, K.; Wei Ming, C.; Chung-Yen, K.; Tseng, K. H.; Shum, C. K.; Hwang, C.; Cheng, K. C.
2017-12-01
A coastal wetland is an area saturated with fresh to saline water, and has a distinct ecological system. Taiwan has abundant wetlands, and some of them contain altimeter measurements from the Enivsat and TOPEX/Poseidon series of satellites. Typically, such measurements are refined to provide additional sea level measurements over tide gauge data. Often, here the refinements have limitations because of the contaminations of altimeter waveforms and improper geophysical corrections. In this study, we classify Envisat and SARAL/Altika waveforms over coastal areas of Taiwan using the Linear Discriminant Analysis (LDA). Three types of waveforms are identified: coastal ocean, wetland and land-noise waveforms. We carry out a case study over Hsinchu's Hsiang-Shan wetland in northern Taiwan. The coastal ocean and wetland waveforms, are retracked by two different retrackers, with the main objective of improving the accuracy of sea surface height measurements. The result is then assessed by measurements from a nearby tide gauge and modeled geoidal heights from EGM2008. Some of the parameters in our retrackers are associated with the surface and sub-surface properties of the Hsiang-Shan wetland. The space-time evolutions of these parameters can reflect wetland changes due to factors such as changes in sedimentation and soil moisture. This presentation will show how coastal altimeter data can benefit wetland studies.
The influence of ice on southern Lake Michigan coastal erosion
Barnes, P.W.; Kempema, E.W.; Reimnitz, E.; McCormick, M.
1994-01-01
Coastal ice does not protect the coast but enhances erosion by displacing severe winter wave energy from the beach to the shoreface and by entraining and transporting sediment alongshore and offshore. Three aspects of winter ice in Lake Michigan were studied over a 3-year period and found to have an important influence on coastal sediment dynamics and the coastal sediment budget: (1) the influence of coastal ice on shoreface morphology, (2) the transport of littoral sediments by ice, and (3) the formation of anchor and underwater ice as a frequent and important event entraining and transporting sediment. The nearshore ice complex contains a sediment load (0.2 - 1.2 t/m of coast) that is roughly equivalent to the average amount of sand eroded from the coastal bluffs and to the amount of sand ice- rafted offshore to the deep lake basin each year. -from Authors
Barringer, Julia L.; Reilly, Pamela A.; Eberl, Dennis D.; Mumford, Adam C.; Benzel, William M.; Szabo, Zoltan; Shourds, Jennifer L.; Young, Lily Y.
2013-01-01
With a history of agriculture in the New Jersey Coastal Plain, anthropogenic inputs of As, such as residues from former pesticide applications in soils, can amplify any geogenic As in runoff. Such inputs contribute to an increased total As load to a stream at high stages of flow. As a result of yet another anthropogenic influence, microbes that reduce and mobilize As beneath the streambeds are stimulated by inputs of dissolved organic carbon (DOC). Although DOC is naturally occurring, anthropogenic contributions from wastewater inputs may deliver increased levels of DOC to subsurface soils and ultimately groundwater. Arsenic concentrations may increase with the increases in pH of groundwater and stream water in developed areas receiving wastewater inputs, as As mobilization caused by pH-controlled sorption and desorption reactions are likely to occur in waters of neutral or alkaline pH (for example, Nimick and others, 1998; Barringer and others, 2007b). Because of the difference in As content of the geologic materials in the two sub-provinces of the Coastal Plain, the amount of As that is mobile in groundwater and stream water is, potentially, substantially greater in the Inner Coastal Plain than in the Outer Coastal Plain. In turn, streams within the Inner and Outer Coastal Plain can receive substantially more As in groundwater discharge from developed areas than from environments where DOC appears to be of natural origin.
Moore, L.J.; Jol, H.M.; Kruse, S.; Vanderburgh, S.; Kaminsky, G.M.
2004-01-01
The southwest Washington coastline has experienced extremely high rates of progradation during the late Holocene. Subsurface stratigraphy, preserved because of progradation and interpreted using ground-penetrating radar (GPR), has previously been used successfully to document coastal response to prehistoric storm and earthquake events. New GPR data collected at Ocean Shores, Washington, suggest that the historic stratigraphy of the coastal barrier in this area represents a higher resolution record of coastal behavior than previously thought. GPR records for this location at 200 MHz reveal a series of gently sloping, seaward-dipping reflections with slopes similar to the modern beach and spacings on the order of 20-45 cm. Field evidence and model results suggest that thin (1-10 cm), possibly magnetite-rich, heavy-mineral lags or low-porosity layers left by winter storms and separated by thick (20-40 cm) summer progradational sequences are responsible for generating the GPR reflections. These results indicate that a record of annual progradation is preserved in the subsurface of the prograding barrier and can be quantified using GPR. Such records of annual coastal behavior, where available, will be invaluable in understanding past coastal response to climatic and tectonic forcing. ?? 2004.
Platforms for hyperspectral imaging, in-situ optical and acoustical imaging in urbanized regions
NASA Astrophysics Data System (ADS)
Bostater, Charles R.; Oney, Taylor
2016-10-01
Hyperspectral measurements of the water surface of urban coastal waters are presented. Oblique bidirectional reflectance factor imagery was acquired made in a turbid coastal sub estuary of the Indian River Lagoon, Florida and along coastal surf zone waters of the nearby Atlantic Ocean. Imagery was also collected using a pushbroom hyperspectral imager mounted on a fixed platform with a calibrated circular mechatronic rotation stage. Oblique imagery of the shoreline and subsurface features clearly shows subsurface bottom features and rip current features within the surf zone water column. In-situ hyperspectral optical signatures were acquired from a vessel as a function of depth to determine the attenuation spectrum in Palm Bay. A unique stationary platform methodology to acquire subsurface acoustic images showing the presence of moving bottom boundary nephelometric layers passing through the acoustic fan beam. The acoustic fan beam imagery indicated the presence of oscillatory subsurface waves in the urbanized coastal estuary. Hyperspectral imaging using the fixed platform techniques are being used to collect hyperspectral bidirectional reflectance factor (BRF) measurements from locations at buildings and bridges in order to provide new opportunities to advance our scientific understanding of aquatic environments in urbanized regions.
NASA Astrophysics Data System (ADS)
Perdikaki, Martha; Kallioras, Andreas; Christoforidis, Christophoros; Iossifidis, Dimitris; Zafeiropoulos, Anastasios; Dimitriadis, Klisthenis; Makropoulos, Christos; Raat, Klaasjan; van den Berg, Gerard
2016-04-01
Coastal wetlands in semi-arid regions, as in Circum-Mediterranean, are considered important ecosystems that provide valuable services to human population and the environment, such as: flood protection, erosion control, wildlife habitat, water quality, recreation and carbon sequestration. Un-managed surface and groundwater exploitation in these areas usually leads to deterioration of such sensitive ecosystems by means of water resources degradation and/or increased salinity. Groundwater usually plays a vital role for the sustainability of these hydrological systems, as the underlying aquifers operate as regulators for both quantity and quality of their waters. Multi-layer and multi-objective Managed Aquifer Recharge (MAR) systems can be proved effective groundwater engineered solutions for the restoration of deteriorated coastal wetlands in semi- and arid regions. The plain of Marathon is a typical Mediterranean environment that hosts a naturally occurring -and today degraded- coastal wetland with the characteristics of a distinct ecosystem linked to a typical coastal hydrogeological system of a semi-arid region; and therefore can serve as a model for similar systems world-wide. The geo-hydrological setting of the area involves a multi-layer aquifer system consisting of (i) an upper un-consolidated formation of depositional unit dominated mostly by fluvial sediments and (ii) the surrounding and underlying karstified marbles; both being linked to the investigated wetland and also subjected to seawater encroachment. A smart engineered MAR system via an optimised Pump & Treat system integrated with an Aquifer Storage and Recovery (ASR) scheme in this area would include the abstraction of brackish groundwater from the deeper karst aquifer at a location close to the shoreline and direct treatment with Reverse Osmosis (RO). for desalination. Two-fold re-use scheme of the purified effluent can then be engineered for (i) the restoration of the coastal wetland; and (ii) managed aquifer recharge of the upper un-consolidated formation to sustain irrigation at the upstream area for agriculture. This facility will demonstrate how MAR can be used to sustain groundwater dependent ecosystems (and/or prevent their further degradation), while at the same time safeguarding water supply. Acknowledgements: This research is part of SUBSOL-bringing coastal SUBsurface water SOLutions to the market. SUBSOL has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 642228
Carbon Cycling and Storage in Mangrove Forests
NASA Astrophysics Data System (ADS)
Alongi, Daniel M.
2014-01-01
Mangroves are ecologically and economically important forests of the tropics. They are highly productive ecosystems with rates of primary production equal to those of tropical humid evergreen forests and coral reefs. Although mangroves occupy only 0.5% of the global coastal area, they contribute 10-15% (24 Tg C y-1) to coastal sediment carbon storage and export 10-11% of the particulate terrestrial carbon to the ocean. Their disproportionate contribution to carbon sequestration is now perceived as a means for conservation and restoration and a way to help ameliorate greenhouse gas emissions. Of immediate concern are potential carbon losses to deforestation (90-970 Tg C y-1) that are greater than these ecosystems' rates of carbon storage. Large reservoirs of dissolved inorganic carbon in deep soils, pumped via subsurface pathways to adjacent waterways, are a large loss of carbon, at a potential rate up to 40% of annual primary production. Patterns of carbon allocation and rates of carbon flux in mangrove forests are nearly identical to those of other tropical forests.
Carbon cycling and storage in mangrove forests.
Alongi, Daniel M
2014-01-01
Mangroves are ecologically and economically important forests of the tropics. They are highly productive ecosystems with rates of primary production equal to those of tropical humid evergreen forests and coral reefs. Although mangroves occupy only 0.5% of the global coastal area, they contribute 10-15% (24 Tg C y(-1)) to coastal sediment carbon storage and export 10-11% of the particulate terrestrial carbon to the ocean. Their disproportionate contribution to carbon sequestration is now perceived as a means for conservation and restoration and a way to help ameliorate greenhouse gas emissions. Of immediate concern are potential carbon losses to deforestation (90-970 Tg C y(-1)) that are greater than these ecosystems' rates of carbon storage. Large reservoirs of dissolved inorganic carbon in deep soils, pumped via subsurface pathways to adjacent waterways, are a large loss of carbon, at a potential rate up to 40% of annual primary production. Patterns of carbon allocation and rates of carbon flux in mangrove forests are nearly identical to those of other tropical forests.
Mechanisms of Arsenic Mobilization and Attenuation in Subsurface Sediments
NASA Astrophysics Data System (ADS)
O'Day, P. A.; Illera, V.; Root, R.; Choi, S.; Vlassopoulos, D.
2007-12-01
This talk will review molecular mechanisms of As mobilization and attenuation in subsurface sediments using examples from recent field studies that represent a range in oxidation-redox (redox) potential. As a ubiquitous trace element in sediments, As speciation and fate is linked to the abundance and biogeochemical behavior of the generally more abundant redox-active elements Fe, S, and Mn. All four elements are subject to oxidation, reduction, and pH-dependent processes such as sorption, desorption, precipitation, and dissolution, and which may include both biotic and abiotic reaction steps. We have used spectroscopic interrogation and geochemical modeling to characterize As speciation in subsurface sediments in several contrasting environments, including high and low S and Fe settings. Aquifers most at risk for contamination by As include those that are rich in organic matter and nutrients, stimulating high rates of microbial reduction and creating anoxic conditions, but limited in labile or available S and/or Fe that remove As by precipitation or adsorption. In subsurface sediments with low labile S and Fe, laboratory experiments and spectroscopic studies suggest that sediment Mn minerals are important in the oxidation of sorbed As(III) to As(V), but that they have a limited oxidation capacity. Arsenic attenuation and mobilization in the subsurface are affected by seasonal variations when hydraulic conditions are influenced by surface infiltration, which may induce transitions from oxidized to reduced conditions (or vice versa) in porewater.
Rastelli, Eugenio; Corinaldesi, Cinzia; Dell'Anno, Antonio; Amaro, Teresa; Greco, Silvestro; Lo Martire, Marco; Carugati, Laura; Queirós, Ana M; Widdicombe, Stephen; Danovaro, Roberto
2016-12-01
Carbon dioxide capture and storage (CCS), involving the injection of CO 2 into the sub-seabed, is being promoted worldwide as a feasible option for reducing the anthropogenic CO 2 emissions into the atmosphere. However, the effects on the marine ecosystems of potential CO 2 leakages originating from these storage sites have only recently received scientific attention, and little information is available on the possible impacts of the resulting CO 2 -enriched seawater plumes on the surrounding benthic ecosystem. In the present study, we conducted a 20-weeks mesocosm experiment exposing coastal sediments to CO 2 -enriched seawater (at 5000 or 20,000 ppm), to test the effects on the microbial enzymatic activities responsible for the decomposition and turnover of the sedimentary organic matter in surface sediments down to 15 cm depth. Our results indicate that the exposure to high-CO 2 concentrations reduced significantly the enzymatic activities in the top 5 cm of sediments, but had no effects on subsurface sediment horizons (from 5 to 15 cm depth). In the surface sediments, both 5000 and 20,000 ppm CO 2 treatments determined a progressive decrease over time in the protein degradation (up to 80%). Conversely, the degradation rates of carbohydrates and organic phosphorous remained unaltered in the first 2 weeks, but decreased significantly (up to 50%) in the longer term when exposed at 20,000 ppm of CO 2 . Such effects were associated with a significant change in the composition of the biopolymeric carbon (due to the accumulation of proteins over time in sediments exposed to high-pCO 2 treatments), and a significant decrease (∼20-50% at 5000 and 20,000 ppm respectively) in nitrogen regeneration. We conclude that in areas immediately surrounding an active and long-lasting leak of CO 2 from CCS reservoirs, organic matter cycling would be significantly impacted in the surface sediment layers. The evidence of negligible impacts on the deeper sediments should be considered with caution and further investigated simulating the intrusion of CO 2 from a subsurface source, as occurring during real CO 2 leakages from CCS sites. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Hoarfrost, Adrienne; Snider, Rachel; Arnosti, Carol
2017-02-01
Extracellular enzymatic activities initiate microbially-driven heterotrophic carbon cycling in subsurface sediments. While measurement of hydrolytic activities in sediments is fundamental to our understanding of carbon cycling, these measurements are often technically difficult due to sorption of organic substrates to the sediment matrix. Most methods that measure hydrolysis of organic substrates in sediments rely on recovery of a fluorophore or fluorescently-labeled target substrate from a sediment incubation. The tendency for substrates to sorb to sediments results in lower recovery of an added substrate, and can result in data that are unusable or difficult to interpret. We developed a treatment using competitive desorption of a fluorescently-labeled, high molecular weight organic substrate that improves recovery of the labeled substrate from sediment subsamples. Competitive desorption treatment improved recovery of the fluorescent substrate by a median of 66%, expanded the range of sediments for which activity measurements could be made, and was effective in sediments from a broad range of geochemical contexts. More reliable measurements of hydrolytic activities in sediments will yield usable and more easily interpretable data from a wider range of sedimentary environments, enabling better understanding of microbially-catalyzed carbon cycling in subsurface environments.
Ryan, K E; Walsh, J P; Corbett, D R; Winter, A
2008-06-01
Increased sediment flux to the coastal ocean due to coastal development is considered a major threat to the viability of coral reefs. A change in the nature of sediment supply and storage has been identified in a variety of coastal settings, particularly in response to European colonization, but sedimentation around reefs has received less attention. This research examines the sedimentary record adjacent to a coastal village that has experienced considerable land-use change over the last few decades. Sediment cores were analyzed to characterize composition and sediment accumulation rates. Sedimentation rates decreased seaward across the shelf from 0.85 cm y(-1) in a nearshore bay to 0.19 cm y(-1) in a fore-reef setting. Data reflected a significant (up to 2x) increase over the last approximately 80 years in terrestrial sediment accumulating in the back-reef setting, suggesting greater terrestrial sediment flux to the area. Reef health has declined, and increased turbidity is believed to be an important impact, particularly when combined with additional stressors.
García, Gregorio; Muñoz-Vera, Ana
2015-11-15
Coastal lagoons are ecosystems that are relatively enclosed water bodies under the influence of both the terrestrial and the marine environment, being vulnerable to human impacts. Human activities, such as mining extraction, are significant anthropogenic coastal stressors that can negatively affect ecosystems and communities. In light of the above, the objective of this research is to examine the influence of metal mining activities on the composition of sediments of a Mediterranean coastal lagoon, named Mar Menor. This paper presents a comprehensive characterization for grain size, mineralogy, geochemistry and organic matter of sediments of this coastal lagoon, investigating their variation along space and time. Sedimentation dynamics are ruling clearly the grain size predominant in each area of the Mar Menor coastal lagoon, determining the existence of entrainment, transport and sedimentation areas. For minerals, elements and organic matter, sedimentation dynamics are also determining their distribution. Copyright © 2015 Elsevier Ltd. All rights reserved.
Microbial community composition along a 50 000-year lacustrine sediment sequence
Ariztegui, Daniel; Horn, Fabian; Kallmeyer, Jens; Orsi, William D
2018-01-01
Abstract For decades, microbial community composition in subseafloor sediments has been the focus of extensive studies. In deep lacustrine sediments, however, the taxonomic composition of microbial communities remains undercharacterized. Greater knowledge on microbial diversity in lacustrine sediments would improve our understanding of how environmental factors, and resulting selective pressures, shape subsurface biospheres in marine and freshwater sediments. Using high-throughput sequencing of 16S rRNA genes across high-resolution climate intervals covering the last 50 000 years in Laguna Potrok Aike, Argentina, we identified changes in microbial populations in response to both past environmental conditions and geochemical changes of the sediment during burial. Microbial communities in Holocene sediments were most diverse, reflecting a layering of taxa linked to electron acceptors availability. In deeper intervals, the data show that salinity, organic matter and the depositional conditions over the Last Glacial-interglacial cycle were all selective pressures in the deep lacustrine assemblage resulting in a genetically distinct biosphere from the surface dominated primarily by Bathyarchaeota and Atribacteria groups. However, similar to marine sediments, some dominant taxa in the shallow subsurface persisted into the subsurface as minor fraction of the community. The subsequent establishment of a deep subsurface community likely results from a combination of paleoenvironmental factors that have shaped the pool of available substrates, together with substrate depletion and/or reworking of organic matter with depth. PMID:29471361
NASA Astrophysics Data System (ADS)
Ma, Wei-Ming
1997-06-01
An analytical two-flow model is derived from the radiative transfer equation to simulate the distribution of irradiance in coastal waters with a wind-roughed surface and bottom reflectance. The model utilizes unique boundary conditions, including the surface slope of the downwelling and upwelling irradiance as well as the influence of wind and bottom reflectance on simulated surface reflectance. The developed model provides a simple mathematical concept for understanding the irradiant light flux and associated processes in coastal or fresh water as well as turbid estuarine waters. The model is applied to data from the Banana River and coastal Atlantic Ocean water off the east coast of central Florida, USA. The two-flow irradiance model is capable of simulating realistic above-surface reflectance signatures under wind-roughened air-water surface given realistic input parameters including a specular flux conversion coefficient, absorption coefficient, backscattering coefficient, atmospheric visibility, bottom reflectance, and water depth. The root-mean-squared error of the calculated above-surface reflectances is approximately 3% in the Banana River and is less than 15% in coastal Atlantic Ocean off the east of Florida. Result of the subsurface reflectance sensitivity analysis indicates that the specular conversion coefficient is the most sensitive parameter in the model, followed by the beam attenuation coefficient, absorption coefficient, water depth, backscattering coefficient, specular irradiance, diffuse irradiance, bottom reflectance, and wind speed. On the other hand, result of the above-surface reflectance sensitivity analysis indicates that the wind speed is the most important parameter, followed by bottom reflectance, attenuation coefficient, water depth, conversion coefficient, specular irradiance, downwelling irradiance, absorption coefficient, and backscattering coefficient. Model results depend on the accuracy of these parameters to a large degree and more important the water depth and value of the bottom reflectance. The results of this work indicates little change of subsurface or in-water reflectances, due to variations of wind speed and observation angle. Simulations of the wind effect on the total downwelling irradiance from the two- flow model indicates that the total downwelling irradiance just below a wind-roughened water surface increases to about 1% of the total downwelling irradiance on a calm water surface when the sun is near zenith and increases to about 3% when the sun is near the horizon. This analytically based model, solved or developed utilizing the unique boundary conditions, can be applied to remote sensing of oceanic upper mixed layer dynamics, plant canopies, primary production, and shallow water environments with different bottom type reflectances. Future applications may include determining effects of sediment resuspension of bottom sediments in the bottom boundary layer on remotely sensed data.
Process recognition in multi-element soil and stream-sediment geochemical data
Grunsky, E.C.; Drew, L.J.; Sutphin, D.M.
2009-01-01
Stream-sediment and soil geochemical data from the Upper and Lower Coastal Plains of South Carolina (USA) were studied to determine relationships between soils and stream sediments. From multi-element associations, characteristic compositions were determined for both media. Primary associations of elements reflect mineralogy, including heavy minerals, carbonates and clays, and the effects of groundwater. The effects of groundwater on element concentrations are more evident in soils than stream sediments. A "winnowing index" was created using ratios of Th to Al that revealed differing erosional and depositional environments. Both soils and stream sediments from the Upper and Lower Coastal Plains show derivation from similar materials and subsequent similar multi-element relationships, but have some distinct differences. In the Lower Coastal Plain, soils have high values of elements concentrated in heavy minerals (Ce, Y, Th) that grade into high values of elements concentrated into finer-grain-size, lower-density materials, primarily comprised of carbonates and feldspar minerals (Mg, Ca, Na, K, Al). These gradational trends in mineralogy and geochemistry are inferred to reflect reworking of materials during marine transgressions and regressions. Upper Coastal Plain stream-sediment geochemistry shows a higher winnowing index relative to soil geochemistry. A comparison of the 4 media (Upper Coastal Plain soils and stream sediments and Lower Coastal Plain soils and stream sediments) shows that Upper Coastal Plain stream sediments have a higher winnowing index and a higher concentration of elements contained within heavy minerals, whereas Lower Coastal Plain stream sediments show a strong correlation between elements typically contained within clays. It is not possible to calculate a functional relationship between stream sediment-soil compositions for all elements due to the complex history of weathering, deposition, reworking and re-deposition. However, depending on the spatial separation of the stream-sediment and soil samples, some elements are more highly correlated than others. Crown Copyright ?? 2009.
NASA Astrophysics Data System (ADS)
Rakhimbekova, S.; O'Carroll, D. M.; Robinson, C. E.
2017-12-01
Groundwater-coastal water interactions play an important role in controlling the behavior of inorganic chemicals in nearshore aquifers and the subsequent flux of these chemicals to receiving coastal waters. Previous studies have shown that dynamic groundwater flows and water exchange across the sediment-water interface can set up strong geochemical gradients and an important reaction zone in a nearshore aquifer that affect the fate of reactive chemicals. There is limited understanding of the impact of transient coastal forcing such as wave conditions on groundwater dynamics and geochemistry in a nearshore aquifer. The goal of this study was to assess the impact of intensified wave conditions on the behavior of arsenic in a nearshore aquifer and to determine the hydrological and geochemical factors controlling its fate and ultimate delivery to receiving coastal waters. Field investigations were conducted over the period of intensified wave conditions on a freshwater beach on Lake Erie, Canada. High spatial resolution aqueous and sediment sampling was conducted to characterize the subsurface distribution of inorganic species in the nearshore aquifer. Numerical groundwater flow and transport simulations were conducted to evaluate wave-induced perturbations in the flow dynamics including characterizing changes in the groundwater flow recirculations in the nearshore aquifer. The combination of field data and numerical simulations reveal that varying wave conditions alter groundwater flows and set up geochemical transition zones within the aquifer resulting in the release and sequestration of arsenic. Interactions between oxic surface water, mildly reducing shallow groundwater, and reducing sulfur- and iron-rich deep groundwater promote dynamic iron, sulfur and manganese cycling which control the mobility of arsenic in the aquifer. The findings of this study have potential implications for the fate and transport of other reactive chemicals (e.g. phosphorus, mercury) in nearshore marine and freshwater aquifers exposed to transient coastal forcing. Understanding the fate of chemicals and the dynamics of the reaction zone in nearshore aquifers is critical for evaluating the importance of groundwater as a pathway for delivering pollutants to coastal waters.
The nature and function of microbial enzymes in subsurface marine sediments
NASA Astrophysics Data System (ADS)
Steen, A. D.; Schmidt, J.
2016-02-01
Isotopic and genomic evidence indicates that marine sediments contain populations of active heterotrophic microorganisms which appear to metabolize old, detrital, apparently recalcitrant organic matter. In surface communities, heterotrophs use extracellular enzymes to access complex organic matter. In subsurface sediments, in which microbial doubling times can be on the order of hundreds or thousands of years, it is not clear whether extracellular enzymes could remain stable and active long enough to constitute a 'profitable' stragtegy for accessing complex organic carbon. Here we present evidence that a wide range of extracellular enzyme are active in subsurface sediments from two different environments: the White Oak River, NC, and deep (up to 80 m) sediments of the Baltic Sea Basin recovered from IODP Expedition 347. In the White Oak River, enzymes from deeper sediments appear to be better-adapted to highly-degraded organic matter than enzymes from surface sediments. In the Baltic Sea, preliminary data suggest that enzymes related to nitrogen acquisition are preferentially expressed. By characterizing the extracellular enzymes present in marine sediments, we hope to achieve a better understanding of the mechanisms that control sedimentary organic matter remineralization and preservation.
Kansa, E.J.; Wijesinghe, A.M.; Viani, B.E.
1997-01-14
The remediation of heterogeneous subsurfaces is extremely time consuming and expensive with current and developing technologies. Although such technologies can adequately remove contaminants in the high hydraulic conductivity, coarse-grained sediments, they cannot access the contaminated low hydraulic conductivity fine-grained sediments. The slow bleed of contaminants from the fine-grained sediments is the primary reason why subsurface remediation is so time-consuming and expensive. This invention addresses the problem of remediating contaminated fine-grained sediments. It is intended that, in the future, a heterogeneous site be treated by a hybrid process that first remediates the high hydraulic conductivity, coarse-grained sediments, to be followed by the process, described in this invention, to treat the contaminated low hydraulic conductivity fine-grained sediments. The invention uses cationic flocculants and organic solvents to collapse the swelling negative double layer surrounding water saturated clay particles, causing a flocculated, cracked clay structure. The modification of the clay fabric in fine-grained sediments dramatically increases the hydraulic conductivity of previously very tight clays many orders of magnitude. 8 figs.
Kansa, Edward J.; Wijesinghe, Ananda M.; Viani, Brian E.
1997-01-01
The remediation of heterogeneous subsurfaces is extremely time consuming and expensive with current and developing technologies. Although such technologies can adequately remove contaminants in the high hydraulic conductivity, coarse-grained sediments, they cannot access the contaminated low hydraulic conductivity fine-grained sediments. The slow bleed of contaminants from the fine-grained sediments is the primary reason why subsurface remediation is so time-consuming and expensive. This invention addresses the problem of remediating contaminated fine-grained sediments. It is intended that, in the future, a heterogeneous site be treated by a hybrid process that first remediates the high hydraulic conductivity, coarse-grained sediments, to be followed by the process, described in this invention, to treat the contaminated low hydraulic conductivity fine-grained sediments. The invention uses cationic flocculents and organic solvents to collapse the swelling negative double layer surrounding water saturated clay particles, causing a flocculated, cracked clay structure. The modification of the clay fabric in fine-grained sediments dramatically increases the hydraulic conductivity of previously very tight clays many orders of magnitude.
Impact of topography on groundwater salinization due to ocean surge inundation
NASA Astrophysics Data System (ADS)
Yu, Xuan; Yang, Jie; Graf, Thomas; Koneshloo, Mohammad; O'Neal, Michael A.; Michael, Holly A.
2016-08-01
Sea-level rise and increases in the frequency and intensity of ocean surges caused by climate change are likely to exacerbate adverse effects on low-lying coastal areas. The landward flow of water during ocean surges introduces salt to surficial coastal aquifers and threatens groundwater resources. Coastal topographic features (e.g., ponds, dunes, barrier islands, and channels) likely have a strong impact on overwash and salinization processes, but are generally highly simplified in modeling studies. To understand topographic impacts on groundwater salinization, we modeled a theoretical overwash event and variable-density groundwater flow and salt transport in 3-D using the fully coupled surface and subsurface numerical simulator, HydroGeoSphere. The model simulates the coastal aquifer as an integrated system considering overland flow, coupled surface and subsurface exchange, variably saturated flow, and variable-density groundwater flow. To represent various coastal landscape types, we simulated both synthetic fields and real-world coastal topography from Delaware, USA. The groundwater salinization assessment suggested that the topographic connectivity promoting overland flow controls the volume of aquifer that is salinized. In contrast, the amount of water that can be stored in surface depressions determines the amount of seawater that infiltrates the subsurface and the time for seawater to flush from the aquifer. Our study suggests that topography has a significant impact on groundwater salinization due to ocean surge overwash, with important implications for coastal land management and groundwater vulnerability assessment.
Dreher, C.A.; Flocks, J.G.; Kulp, M.A.; Ferina, N.F.
2010-01-01
In 2006 and 2007, the U.S. Geological Survey (USGS) and collaborators at the University of New Orleans (UNO) collected high-resolution seismic profiles and subsurface cores around the Chandeleur and Breton Islands, Louisiana (Study Area Map). To ground-truth the acoustic seismic surveys conducted in 2006, 124 vibracores were acquired during the 07SCC04 and 07SCC05 cruises in 2007. These cores were collected within the back-barrier, nearshore, and offshore environments. The surveys were conducted as part of a post-hurricane assessment and sediment resource inventory for the Barrier Island Coastal Monitoring (BICM) project. Vibracores were collected offshore using the USGS R/V G.K. Gilbert, while the terrestrial, back-barrier, and nearshore vibracores were collected from the UNO R/V Greenhead. This report serves as an archive of sediment data from two concurrent vibracore surveys (cruises 07SCC04 and 07SCC05) from around the Breton and Chandeleur Islands in 2007 and also documents sediment data from vibracores collected offshore of the Chandeleur Islands in 1987 (cruise 87039). The 1987 vibracores were collected through the collaborated efforts of the USGS, Louisiana Geological Survey (LGS), and Alpine Ocean Seismic. Each vibracore can be identified by cruise and core number.
NASA Astrophysics Data System (ADS)
Karnan, C.; Jyothibabu, R.; Arunpandi, N.; Jagadeesan, L.; Muraleedharan, K. R.; Pratihari, A. K.; Balachandran, K. K.; Naqvi, S. W. A.
2017-08-01
Coastal upwelling and mud banks are two oceanographic processes concurrently operating along certain stretches of the southwest (Kerala) coast of India during the Southwest Monsoon period (June-September), facilitating significant enhancement in plankton biomass. Mud banks have scientific and societal attention from time immemorial, predominantly due to the large fisheries associated with them. In this paper, for the first time, the specific biophysical roles of these oceanographic processes have been discriminated, based on a focused 18 weekly/fortnightly time-series study (April to September 2014) in a mud bank-upwelling area (off Alappuzha, southwest coast of India). In conjunction with standard hydrographical and satellite remote sensing data, we utilised a FlowCAM to track the biophysical linkage in terms of plankton composition abundance and size structure at three locations (M1, M2 and M3) in the study area. During the Pre-Southwest Monsoon (April-May), the entire study area was warmer with low nitrate concentration in the surface waters, which caused lower biomass of autotrophs compared to the Southwest Monsoon (June-September). By the onset of the Southwest Monsoon (June), drastic hydrographical transformations took place in the study domain due to the Coastal upwelling, reflected as the surfacing of significantly cool, high nutrient and hypoxic waters. Concurrently, mud bank formed at location M2 due to the presence of relatively high-suspended sediments in the region, creating a localised calm environment conducive for fishing activities. In response to the hydrographical transformations in the entire study area during the Southwest Monsoon, the autotrophic plankton biomass and size structure experienced significant change. The micro-autotrophs biomass that was low during the Pre-Southwest Monsoon (av. 0.33 ± 0.2 mgC L- 1 at surface and av. 0.07 ± 0.04 mgC L- 1 at subsurface) noticeably increased during the Southwest Monsoon (av. 1.6 ± 0.4 mgC L- 1 at surface and av. 1.3 ± 0.2 mgC L- 1 at subsurface). The seasonal mean bio-volume of micro-autotrophs followed the same pattern in all three locations with the dominance of smaller individuals during the Pre-Southwest Monsoon (av. 55 ± 4.4 × 103 μm3 individual- 1 at surface and av. 67.1 ± 38.4 × 103 μm3 individual- 1 at subsurface). Relatively large phytoplankton dominated during the Southwest Monsoon (av. 77.3 ± 5.5 × 103 μm3 individual- 1 at surface and av. 90.3 ± 4.9 × 103 μm3 individual- 1 at subsurface). Similar spatial change in the plankton composition, biomass and size structure in all three locations suggested the dominant role of coastal upwelling, and not the mud bank, in shaping the dominant autotrophic plankton in the study domain. The nutrient enrichment in the region associated with the coastal upwelling facilitated the predominance of a classical short food chain capable of supporting large fish stocks. In addition to relatively calm mud bank, the hypoxic, cool upwelled waters that existed in the subsurface induce the fish stock to concentrate in the surface waters, making the relatively calm mud bank and adjoining areas a rich fishing ground for the native fishers.
A NATIONAL COASTAL ASSESSMENT OF COASTAL SEDIMENT CONDITION
One element of the Environmental Monitoring and Assessment Program's National Coastal Assessment is to estimate the current status, extent, changes and trends in the condition of the Nation's coastal sediments on a national basis. Based on NCA monitoring activities from 1999-2001...
Microbial community assembly and evolution in subseafloor sediment.
Starnawski, Piotr; Bataillon, Thomas; Ettema, Thijs J G; Jochum, Lara M; Schreiber, Lars; Chen, Xihan; Lever, Mark A; Polz, Martin F; Jørgensen, Bo B; Schramm, Andreas; Kjeldsen, Kasper U
2017-03-14
Bacterial and archaeal communities inhabiting the subsurface seabed live under strong energy limitation and have growth rates that are orders of magnitude slower than laboratory-grown cultures. It is not understood how subsurface microbial communities are assembled and whether populations undergo adaptive evolution or accumulate mutations as a result of impaired DNA repair under such energy-limited conditions. Here we use amplicon sequencing to explore changes of microbial communities during burial and isolation from the surface to the >5,000-y-old subsurface of marine sediment and identify a small core set of mostly uncultured bacteria and archaea that is present throughout the sediment column. These persisting populations constitute a small fraction of the entire community at the surface but become predominant in the subsurface. We followed patterns of genome diversity with depth in four dominant lineages of the persisting populations by mapping metagenomic sequence reads onto single-cell genomes. Nucleotide sequence diversity was uniformly low and did not change with age and depth of the sediment. Likewise, there was no detectable change in mutation rates and efficacy of selection. Our results indicate that subsurface microbial communities predominantly assemble by selective survival of taxa able to persist under extreme energy limitation.
Li, Feng; Lin, Ze-Feng; Wen, Jia-Sheng; Wei, Yan-Sha; Gan, Hua-Yang; He, Hai-Jun; Lin, Jin-Qin; Xia, Zhen; Chen, Bi-Shuang; Guo, Wen-Jie; Tan, Cha-Sheng; Cai, Hua-Yang
2017-12-15
Hainan Island is the second largest island and one of the most famous tourist destinations in China, but sediment contamination by trace metals in coastal areas is a major issue. However, full-scale risk assessments of trace metal-polluted coastal sediments are lacking. In this study, coastal surface sediments from 474 geographical locations covering almost the entire island were collected to identify risk-related variables. Controlling factors and possible sources of trace metals were identified, and the toxicity effects were carefully evaluated. Our results suggest that trace-metal pollution in coastal sediments, which was mainly caused by Pb, Zn and Cu emissions, has primarily resulted from industrial sewage and shipping activities and has threatened the offshore ecosystem of Hainan Island and warrants extensive consideration. This is the first study that has systematically investigated trace metal-polluted coastal sediments throughout the entirety of Hainan Island and provides solid evidence for sustainable marine management in the region. Copyright © 2017 Elsevier Ltd. All rights reserved.
Brown, Philip M.; Brown, D.L.; Reid, M.S.; Lloyd, O.B.
1979-01-01
The report describes the subsurface distribution of rocks of Cretaceous to Late Jurassic( ) age in the Atlantic Coastal Plain , South Carolina, and Georgia, and examines their potential for deep-well waste storage into th part of the regional sediment mass which lies below the deepest zones containing usable ground waters. For the study, usable ground water is considered to be that which contains less than 10,000 mg/L dissolved solids. Using a group of geohydrologic parameters derived from or combining 21 categories of basic data, established from study and interpretation of well cuttings and geophysical logs, a series of 32 regional maps and 8 stratigraphic cross sections was constructed. For each of the eight geologic units delineated in the subsurface, the maps illustrate the distribution of waste-storage potential in terms of areal extent, depth below land surface, sand-shale geometry, and the approximate sodium chloride concentration of a unit 's nonusable ground water. In areas where the geologic units contain nonusable ground water, the depth below land surface and the thickness of potential waste-storage reservoir and reservoir-seal combinations are variable. The range in variability appears to be broad enough to meet the need for a wide choice among the geologic requirements that would normally be considered in selecting specific waste-storage sites for detailed examination. (Woodard-USGS)
Subsurface banding poultry litter impacts greenhouse gas emissions
USDA-ARS?s Scientific Manuscript database
The impact subsurface banding poultry litter (PL) has on greenhouse gas emissions is limited. Thus, a study was conducted in established bermudagrass pastures located in Coastal Plain and Piedmont regions to determine the effects subsurface applying PL has on soil flux using two different band spaci...
NASA Astrophysics Data System (ADS)
Carvalho, Lina; Monteiro, Rui; Figueira, Paula; Mieiro, Cláudia; Almeida, Joana; Pereira, Eduarda; Magalhães, Vítor; Pinheiro, Luís; Vale, Carlos
2018-01-01
Mud volcanoes are feature of the coastal margins where anaerobic oxidation of methane triggers geochemical signals. Elemental composition, percentage of fine particles and loss on ignition were determined in sediment layers of eleven gravity cores retrieved from four mud volcanoes (Sagres, Bonjardim, Soloviev and Porto) and three undefined structures located on the deep Portuguese margin of the Gulf of Cadiz. Calcium was positively correlated to Sr and inversely to Al as well as to most of the trace elements. Vertical profiles of Ba, Cd and As concentrations, and their ratios to Al, in Porto and Soloviev showed pronounced enhancements in the top 50-cm depth. Sub-surface enhancements were less pronounced in other mud volcanoes and were absent in sediments from the structures. These profiles were interpreted as diagenetic enrichments related to the anaerobic oxidation of methane originated from upward methane-rich fluxes. The observed barium fronts were most likely caused by the presence of barite which precipitated at the sulphate-methane transition zone. Cd and As enrichments have probably resulted from successive dissolution/precipitation of sulphides in response to vertical shifts of redox boundaries.
Localized Rapid Warming of West Antarctic Subsurface Waters by Remote Winds
NASA Astrophysics Data System (ADS)
Griffies, S. M.; Spence, P.; Holmes, R.; Hogg, A. M.; Stewart, K. D.; England, M. H.
2017-12-01
The largest rates of Antarctic glacial ice mass loss are occurring tothe west of the Antarctica Peninsula in regions where warming ofsubsurface continental shelf waters is also largest. However, thephysical mechanisms responsible for this warming remain unknown. Herewe show how localized changes in coastal winds off East Antarctica canproduce significant subsurface temperature anomalies (>2C) around theentire continent. We demonstrate how coastal-trapped Kelvin wavescommunicate the wind disturbance around the Antarctic coastline. Thewarming is focused on the western flank of the Antarctic Peninsulabecause the anomalous circulation induced by the coastal-trapped wavesis intensified by the steep continental slope there, and because ofthe presence of pre-existing warm subsurface water. Thecoastal-trapped waves leads to an adjustment of the flow that shoalsisotherms and brings warm deep water upwards onto the continentalshelf and closer to the coast. This result demonstrates the uniquevulnerability of the West Antarctic region to a changing climate.
Smith, Loren M.; Euliss, Ned H. "Chip"
2010-01-01
In the wetland science field, sediment deposition is often thought of as being beneficial especially when one thinks of coastal estuarine systems. For example, sediments deposited from streams and rivers are necessary to naturally build and maintain tidal marshes. These sediments come from eroded upland soils in the interior of the continent. When these sediments are diverted from natural coastal deposition areas, such as occurs from river channelization, we lose marshes through subsidence as is happening throughout coastal Louisiana. However, the value of eroded soils is all a matter of hydrogeomorphic perspective.
NASA Astrophysics Data System (ADS)
Bergamaschi, B. A.; Smith, R. A.; Shih, J. S.; Sohl, T. L.; Sleeter, B. M.; Zhu, Z.
2014-12-01
Land-use and land-cover distributions are primary determinants of terrestrial fluxes of sediments and nutrients to coastal oceans. Sediment and nutrient delivery to coastal waters have already been significantly altered by changes in population and land use, resulting in modified patterns of coastal production and carbon storage. Continued population growth and increasing agricultural areal extent and intensity are expected to accelerate these changes. The USGS LandCarbon project developed prospective future land use and land cover projections based on IPCC scenarios A1b, A2 and B1 to 2050 as the basis for a multitude of biogeochemical assessments. We assessed the impacts on delivery of nutrients and sediments to the coastal ocean, and concomitant carbon storage. Fluxes were estimated using the SPARROW model, calibrated on historical water quality measurements. Significantly greater fluxes of nutrients and sediments to coastal waters by 2050 are projected by the model. For example, for the Eastern United States, nitrate fluxes for 2050 are projected to be16 to 52 percent higher than the baseline year, depending on scenario. As a consequence, an associated increase in the frequency and duration of coastal and estuarine hypoxia events and harmful algal blooms could be expected. Model estimates indicate that these prospective future nutrient and sediment fluxes will increase carbon storage rates in coastal waters by 18 to 56 percent in some regions.
The Scientific and Societal Need for Accurate Global Remote Sensing of Marine Suspended Sediments
NASA Technical Reports Server (NTRS)
Acker, James G.
2006-01-01
Population pressure, commercial development, and climate change are expected to cause continuing alteration of the vital oceanic coastal zone environment. These pressures will influence both the geology and biology of the littoral, nearshore, and continental shelf regions. A pressing need for global observation of coastal change processes is an accurate remotely-sensed data product for marine suspended sediments. The concentration, delivery, transport, and deposition of sediments is strongly relevant to coastal primary production, inland and coastal hydrology, coastal erosion, and loss of fragile wetland and island habitats. Sediment transport and deposition is also related to anthropogenic activities including agriculture, fisheries, aquaculture, harbor and port commerce, and military operations. Because accurate estimation of marine suspended sediment concentrations requires advanced ocean optical analysis, a focused collaborative program of algorithm development and assessment is recommended, following the successful experience of data refinement for remotely-sensed global ocean chlorophyll concentrations.
Kumar, Manoj; Ramanathan, A L; Rahman, Mohammad Mahmudur; Naidu, Ravi
2016-12-15
Concentrations of inorganic forms [arsenite, As(III) and arsenate, As(V) of arsenic (As) present in groundwater, agricultural soils and subsurface sediments located in the middle Gangetic plain of Bihar, India were determined. Approximately 73% of the groundwater samples (n=19) show As(III) as the dominant species while 27% reveals As(V) was the dominant species. The concentration of As(III) in agricultural soil samples varies from not detectable to 40μg/kg and As(V) was observed as the major species (ranging from 1050 to 6835μg/kg) while the total As concentration varied from 3528 to 14,690μg/kg. Total extracted concentration of As was higher in the subsurface sediments (range 9119-20,056μg/kg in Methrapur and 4788-19,681μg/kg in Harail Chapar) than the agricultural soil, indicating the subsurface sediment as a source of As. Results of X-ray diffraction (XRD) and environmental scanning electron microscope (ESEM) revealed the presence of hematite and goethite throughout the vertical section below while magnetite was observed only in the upper oxidized layer at Methrapur and Harail Chapar. Alteration of Fe-oxides and presence of fibrous goethite indicating presence of diagenetic sediment. Siderite plays a crucial role as sinks to the As in subsurface sediments. The study also concluded that decomposition of organic matter present in dark and grey sections promote the redox conditions and trigger mobilization of As into groundwater. Copyright © 2016 Elsevier B.V. All rights reserved.
Oni, Oluwatobi E.; Schmidt, Frauke; Miyatake, Tetsuro; Kasten, Sabine; Witt, Matthias; Hinrichs, Kai-Uwe; Friedrich, Michael W.
2015-01-01
The role of microorganisms in the cycling of sedimentary organic carbon is a crucial one. To better understand relationships between molecular composition of a potentially bioavailable fraction of organic matter and microbial populations, bacterial and archaeal communities were characterized using pyrosequencing-based 16S rRNA gene analysis in surface (top 30 cm) and subsurface/deeper sediments (30–530 cm) of the Helgoland mud area, North Sea. Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR MS) was used to characterize a potentially bioavailable organic matter fraction (hot-water extractable organic matter, WE-OM). Algal polymer-associated microbial populations such as members of the Gammaproteobacteria, Bacteroidetes, and Verrucomicrobia were dominant in surface sediments while members of the Chloroflexi (Dehalococcoidales and candidate order GIF9) and Miscellaneous Crenarchaeota Groups (MCG), both of which are linked to degradation of more recalcitrant, aromatic compounds and detrital proteins, were dominant in subsurface sediments. Microbial populations dominant in subsurface sediments (Chloroflexi, members of MCG, and Thermoplasmata) showed strong correlations to total organic carbon (TOC) content. Changes of WE-OM with sediment depth reveal molecular transformations from oxygen-rich [high oxygen to carbon (O/C), low hydrogen to carbon (H/C) ratios] aromatic compounds and highly unsaturated compounds toward compounds with lower O/C and higher H/C ratios. The observed molecular changes were most pronounced in organic compounds containing only CHO atoms. Our data thus, highlights classes of sedimentary organic compounds that may serve as microbial energy sources in methanic marine subsurface environments. PMID:26635758
NASA Astrophysics Data System (ADS)
Sneddon, Christopher; Copplestone, David; Tyler, Andrew; Hunter, Peter; Smith, Nick
2014-05-01
The EPSRC-funded Adaptation and Resilience of Coastal Energy Supply (ARCoES) project encompasses four research strands, involving 14 institutions and six PhD studentships. ARCoES aims to determine the threats posed to future energy generation and the distribution network by flooding and erosion, changing patterns of coastal sedimentation, water temperature and the distribution of plants and animals in the coastal zone. Whilst this research has direct benefits for the operation of coastal power stations, ARCoES aims to have a wider stakeholder engagement through assessing how the resilience of coastal communities may be altered by five hundred years of coastal evolution. Coastal evolution will have substantial implications for the energy sector of the North West of England as former waste storage sites are eroded and remobilised within the intertidal environment. The current intertidal environmental stores of radioactivity will also experience reworking as ocean chemistry changes and saltmarsh chronologies are reworked in response to rising sea levels. There is a duel requirement to understand mass sediment movement along the North West coast of England as understanding the sediment transport dynamics is key to modelling long term coastal change and understanding how the environmental store of radioactivity will be reworked. The University of Stirling is researching the long-term environmental and health implications of remobilisation and transport of contaminated sediments around the UK coastline. Using a synergy of hyperspectral and topographic information the mobilisation of sediment bound contaminants within the coastal environment will be investigated. Potential hazards posed by contaminants are determined by a set of environmental impact test criteria which evaluate the bio-accessibility and ionising dose of contaminants. These test criteria will be used to comment on the likely environmental impact of modelled sediment transport and anticipated changes in ocean chemistry.
NASA Astrophysics Data System (ADS)
Auken, E.; Tulaczyk, S. M.; Foley, N.; Dugan, H.; Schamper, C.; Peter, D.; Virginia, R. A.; Sørensen, K.
2015-12-01
Here, we demonstrate how high powered airborne electromagnetic resistivity is efficiently used to map 3D domains of unfrozen water below glaciers and permafrost in the cold regions of the Earth. Exploration in these parts of the world has typically been conducted using radar methods, either ground-based or from an airborne platform. Radar is an excellent method if the penetrated material has a low electrical conductivity, but in materials with higher conductivity, such as sediments with liquid water, the energy is attenuated . Such cases are efficiently explored with electromagnetic methods, which attenuate less quickly in conductive media and can therefore 'see through' conductors and return valuable information about their electrical properties. In 2011, we used a helicopter-borne, time-domain electromagnetic sensor to map resistivity in the subsurface across the McMurdo Dry Valleys (MDV). The MDV are a polar desert in coastal Antarctica where glaciers, permafrost, ice-covered lakes, and ephemeral summer streams coexist. In polar environments, this airborne electromagnetic system excels at finding subsurface liquid water, as water which remains liquid under cold conditions must be sufficiently saline, and therefore electrically conductive. In Taylor Valley, in the MDV, our data show extensive subsurface low resistivity layers beneath higher resistivity layers, which we interpret as cryoconcentrated hypersaline brines lying beneath glaciers and frozen permafrost. These brines appear to be contiguous with surface lakes, subglacial regions, and the Ross Sea, which could indicate a regional hydrogeologic system wherein solutes may be transported between surface reservoirs by ionic diffusion and subsurface flow. The system as of 2011 had a maximum exploration depth of about 300 m. However, newer and more powerful airborne systems can explore to a depth of 500 - 600 m and new ground based instruments will get to 1000 m. This is sufficient to penetrate to the base of almost all coastal Antarctic glaciers. The MDV, where conductive brines exist beneath resistive glacial ice and frozen permafrost, are especially well suited to exploration by airborne electromagnetic, but similarly suitable systems are likely to exist elsewhere in the cryosphere.
NASA Technical Reports Server (NTRS)
Moeller, Christopher C.; Gunshor, M. M.; Menzel, W. P.; Huh, O. K.; Walker, N. D.; Rouse, L. J.
2001-01-01
The University nf Wisconsin and Louisiana State University have teamed to study the forcing of winter season cold frontal wind systems on sediment distribution patterns and geomorphology in the Louisiana coastal zone. Wind systems associated with cold fronts have been shown to model coastal circulation and resuspend sediments along the micro tidal Louisiana coast (Roberts et at. 1987, Moeller et al. 1993). Remote sensing data is being used to map and track sediment distribution patterns for various wind conditions. Suspended sediment is a building material for coastal progradation and wetlands renewal, but also restricts access to marine nursery environments and impacts oyster bed health. Transferring a suspended sediment concentration (SSC) algorithm to EOS MODerate resolution Imaging Spectroradiometer (MODIS; Barnes et al. 1998) observations may enable estimates of SSC globally.
NASA Astrophysics Data System (ADS)
Ghose-Hajra, M.; McCorquodale, A.; Mattson, G.; Jerolleman, D.; Filostrat, J.
2015-03-01
Sea-level rise, the increasing number and intensity of storms, oil and groundwater extraction, and coastal land subsidence are putting people and property at risk along Louisiana's coast, with major implications for human safety and economic health of coastal areas. A major goal towards re-establishing a healthy and sustainable coastal ecosystem has been to rebuild Louisiana's disappearing wetlands with fine grained sediments that are dredged or diverted from nearby rivers, channels and lakes to build land in open water areas. A thorough geo-hydrodynamic characterization of the deposited sediments is important in the correct design and a more realistic outcome assessment of the long-term performance measures for ongoing coastal restoration projects. This paper evaluates the effects of salinity and solid particle concentration on the re-suspension characteristics of fine-grained dredged sediments obtained from multiple geographic locations along the Gulf coast. The critical bed-shear-stress for erosion has been evaluated as a function of sedimentation time. The sediment hydrodynamic properties obtained from the laboratory testing were used in a numerical coastal sediment distribution model to aid in evaluating sediment diversions from the Mississippi River into Breton Sound and Barataria Bay.
Nearshore sediment thickness, Fire Island, New York
Locker, Stanley D.; Miselis, Jennifer L.; Buster, Noreen A.; Hapke, Cheryl J.; Wadman, Heidi M.; McNinch, Jesse E.; Forde, Arnell S.; Stalk, Chelsea A.
2017-04-03
Investigations of coastal change at Fire Island, New York (N.Y.), sought to characterize sediment budgets and determine geologic framework controls on coastal processes. Nearshore sediment thickness is critical for assessing coastal system sediment availability, but it is largely unquantified due to the difficulty of conducting geological or geophysical surveys across the nearshore. This study used an amphibious vessel to acquire chirp subbottom profiles. These profiles were used to characterize nearshore geology and provide an assessment of nearshore sediment volume. Two resulting sediment-thickness maps are provided: total Holocene sediment thickness and the thickness of the active shoreface. The Holocene sediment section represents deposition above the maximum flooding surface that is related to the most recent marine transgression. The active shoreface section is the uppermost Holocene sediment, which is interpreted to represent the portion of the shoreface thought to contribute to present and future coastal behavior. The sediment distribution patterns correspond to previously defined zones of erosion, accretion, and stability along the island, demonstrating the importance of sediment availability in the coastal response to storms and seasonal variability. The eastern zone has a thin nearshore sediment thickness, except for an ebb-tidal deposit at the wilderness breach caused by Hurricane Sandy. Thicker sediment is found along a central zone that includes shoreface-attached sand ridges, which is consistent with a stable or accretional coastline in this area. The thickest overall Holocene section is found in the western zone of the study, where a thicker lower section of Holocene sediment appears related to the westward migration of Fire Island Inlet over several hundred years.
NASA Astrophysics Data System (ADS)
Lee, Jin-Yong; Cho, Byung Wook
2008-10-01
SummaryThe occurrence of submarine groundwater discharge (SGD) as well as its supply of many nutrients and metals to coastal seawaters is now generally known. However, previous studies have focused on the chemical and radiological analysis of groundwater, surface seawater, shallow marine sediments and their pore waters, as well as the measurement of upward flow through the marine sediments, as end members of the discharge process. In this study, chemical and isotopic analysis results of marine subsurface waters are reported. These were obtained from deep boreholes of an undersea liquefied petroleum gas (LPG) storage cavern, located about 8 km off the western coast of Korea. The cavern is about 130-150 m below the sea bottom, which is covered by a 4.8-19.5 m silty clay stratum. An isotopic composition (δ 2H and δ 18O) of the marine subsurface waters falls on a mixing line between terrestrial groundwater and seawater. Vertical EC profiling at the cavern boreholes revealed the existence of a fresh water zone. An increase in the contents of ferrous iron and manganese and a decrease in levels of nitrate, bicarbonate and cavern seepage were recorded in August 2006, indicating a decreased submarine groundwater flux originating from land, mainly caused by an elevated cavern gas pressure. It is suggested in this study that the main source of fresh waters in the man-made undersea cavern is the submarine groundwater discharge mainly originating from the land.
NASA Astrophysics Data System (ADS)
Harrison, B. K.; Bailey, J. V.
2013-12-01
Sediment horizons represent a significant - but not permanent - barrier to microbial transport. Cells commonly attach to mineral surfaces in unconsolidated sediments. However, by taxis, growth, or passive migration under advecting fluids, some portion of the microbial community may transgress sedimentary boundaries. Few studies have attempted to constrain such transport of community signatures in the marine subsurface and its potential impact on biogeography. Integrated Ocean Drilling Program (IODP) Expedition 337 off the Shimokita Peninsula recovered sediments over a greater than 1km interval representing a gradual decrease of terrestrial influence, from tidal to continental shelf depositional settings. This sequence represents a key opportunity to link subsurface microbial communities to lithological variability and investigate the permanence of community signatures characteristic of distinct depositional regimes. The phylogenetic connectivity between marine and terrestrially-influenced deposits may demonstrate to what degree sediments offer a substantial barrier to cell transport in the subsurface. Previous work has demonstrated that the Actinobacterial phylum is broadly distributed in marine sediments (Maldonado et al., 2005), present and active in the deep subsurface (Orsi et al., 2013), and that marine and terrestrial lineages may potentially be distinguished by 16S rRNA gene sequencing (e.g. Prieto-Davó et al., 2013). We report on Actinobacteria-specific 16S rRNA gene diversity recovered between 1370 and 2642 mbsf with high-throughput sequencing using the Illumina MiSeq platform, as well as selective assembly and analysis of environmental clone libraries.
Forde, Arnell S.; Bernier, Julie C.; Miselis, Jennifer L.
2018-02-22
Researchers from the U.S. Geological Survey (USGS) conducted a long-term coastal morphologic-change study at Fire Island, New York, prior to and after Hurricane Sandy impacted the area in October 2012. The Fire Island Coastal Change project objectives include understanding the morphologic evolution of the barrier island system on a variety of time scales (months to centuries) and resolving storm-related impacts, post-storm beach response, and recovery. In April 2016, scientists from the USGS St. Petersburg Coastal and Marine Science Center conducted geophysical and sediment sampling surveys on Fire Island to characterize and quantify spatial variability in the subaerial geology with the goal of subsequently integrating onshore geology with other surf zone and nearshore datasets. This report, along with the associated USGS data release, serves as an archive of ground penetrating radar (GPR) and post-processed differential global positioning system (DGPS) data collected from beach and back-barrier environments on Fire Island, April 6–13, 2016 (USGS Field Activity Number 2016-322-FA). Data products, including unprocessed GPR trace data, processed DGPS data, elevation-corrected subsurface profile images, geographic information system files, and accompanying Federal Geographic Data Committee metadata are available for download.
NASA Astrophysics Data System (ADS)
Blake, Will; Walsh, Rory; Bidin, Kawi; Annammala, Kogila
2015-04-01
It is widely recognised that commercial logging and conversion of tropical rainforest to oil palm plantation leads to enhanced fluvial sediment flux to the coastal zone but the dynamics of delivery and mechanisms that act to retain sediment and nutrients within rainforest ecosystems, e.g. riparian zone and floodplain storage, are poorly understood and underexploited as a management tool. While accretion of lateral in-channel bench deposits in response to forest clearance has been demonstrated in temperate landscapes, their development and value as sedimentary archives of catchment response to human disturbance remains largely unexplored in tropical rainforest river systems. Working within the Segama River basin, Sabah, Malaysian Borneo, this study aimed to test the hypothesis that (1) lateral bench development in tropical rainforest rivers systems is enhanced by upstream catchment disturbance and that (2) the sedimentary record of these deposits can be used to infer changes in sediment provenance and intensification of sediment flux associated with logging activities. Sediment cores were taken from in-channel bench deposits with upstream catchment contributing areas of 721 km2 and 2800 km2 respectively. Accretion rates were determined using fallout 210Pb and 137Cs and the timing of peak accumulation was shown to correspond exactly with the known temporal pattern of logging and associated fluvial sediment response over the period 1980 to present following low pre-logging rates. Major and minor element geochemistry of deposits was used to assess the degree of weathering that deposited sediment had experienced. This was linked to surface (heavily weathered) and subsurface (less weathered) sediment sources relating to initial disturbance by logging and post-logging landsliding responses respectively. A shift in the dominant source of deposited material from surface (i.e. topsoil) to subsurface (i.e. relatively unweathered subsoil close to bedrock) origin was observed to coincide with the increase in accretion rates following logging of steep headwater slopes. Coherence of sedimentary, monitoring and observational evidence demonstrates that in-channel bench deposits offer a previously unexplored sedimentary archive of catchment response to logging in tropical rainforest systems and a tool for evaluating the erosional responses of ungauged basins. In-channel bench development due to catchment disturbance may augment ecosystem services provided by the riparian corridors of larger rivers and process knowledge gained from sedimentary archives can be used to underpin future riparian and catchment forest management strategies.
Tary, A.K.; Duncan, M. FitzGerald; Weddle, T.K.
2007-01-01
In eastern coastal Maine, many flat-topped landforms, often identified as glacial-marine deltas, are cultivated for blueberry production. These agriculturally valuable features are not exploited for aggregate resources, severely limiting stratigraphic exposure. Coring is often forbidden; where permissible, coarse-grained surficial sediments make coring and sediment retrieval difficult. Ground penetrating radar (GPR) has become an invaluable tool in an ongoing study of the otherwise inaccessible subsurface morphology in this region and provides a means of detailing the large-scale sedimentary structures comprising these features. GPR studies allow us to reassess previous depositional interpretations and to develop alternative developmental models. The work presented here focuses on Pineo Ridge, a large, flat-topped ice-marginal glacial-marine delta complex with a strong linear trend and two distinct landform zones, informally termed East Pineo and West Pineo. Previous workers have described each zone separately due to local morphological variation. Our GPR work further substantiates this geomorphic differentiation. East Pineo developed as a series of deltaic lobes prograding southward from an ice-contact margin during the local marine highstand. GPR data do not suggest postdepositional modification by ice-margin re-advance. We suggest that West Pineo has a more complex, two-stage depositional history. The southern section of the feature consists of southward-prograding deltaic lobes deposited during retreat of the Laurentide ice margin, with later erosional modification during marine regression. The northern section of West Pineo formed as a series of northward-prograd- ing deltaic lobes as sediment-laden meltwater may have been diverted by the existing deposits of the southern section of West Pineo. ?? 2007 The Geological Society of America. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baldwin, Brett R.; Peacock, Aaron D.; Gan, M.
2009-09-23
An in-situ incubation device (ISI) was developed in order to investigate the stability and dynamics of sediment associated microbial communities to prevailing subsurface oxidizing or reducing conditions. Here we describe the use of these devices at the Old Rifle Uranium Mill Tailings Remedial Action (UMTRA) site. During the 7 month deployment oxidized Rifle aquifer background sediments (RABS) were deployed in previously biostimulated wells under iron reducing conditions, cell densities of known iron reducing bacteria including Geobacteraceae increased significantly showing the microbial community response to local subsurface conditions. PLFA profiles of RABS following in situ deployment were strikingly similar to thosemore » of adjacent sediment cores suggesting ISI results could be extrapolated to the native material of the test plots. Results for ISI deployed reduced sediments showed only slight changes in community composition and pointed toward the ability of the ISIs to monitor microbial community stability and response to subsurface conditions.« less
Lead distribution in coastal and estuarine sediments around India.
Chakraborty, Sucharita; Chakraborty, Parthasarathi; Nath, B Nagender
2015-08-15
This study describes the geochemical distribution of lead (Pb) and identifies the critical factors that significantly control Pb distribution and speciation in coastal and estuarine sediments around India by using published data from the literature. Crustal sources influence the abundance of Pb in coastal sediment from the south-east and central-west coast of India. Parts of north-east, north-west, and south-west coast of India were polluted by Pb. Distribution of Pb in sediments, from the north-east and north-west coasts of India, were controlled by Fe-Mn oxyhydroxide mineral phases of the sediments. However, organic carbon (OC) seemed to be a dominant factor in controlling the distribution of Pb in sediments from the central-east and south-west coasts of India. The outcome of this study may help in decision-making to predict the levels of Pb from natural and anthropogenic sources and to control Pb pollution in coastal and estuarine sediments around India. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Filipponi, Federico; Zucca, Francesco; Taramelli, Andrea; Valentini, Emiliana
2015-12-01
Monitoring sediment fluxes patterns in coastal area, like dispersion, sedimentation and resuspension processes, is a relevant topic for scientists, decision makers and natural resources management. Time series analysis of Earth Observation (EO) data may contribute to the understanding and the monitoring of processes in sedimentary depositional marine environment, especially for shallow coastal areas. This research study show the ability of optical medium resolution imagery to interpret the evolution of sediment resuspension from seafloor in coastal areas during intense wind forcings. Intense bora wind events in northern Adriatic Sea basin during winter season provoke considerable wave-generated resuspension of sediments, which cause variation in water column turbidity. Total Suspended Matter (TSM) product has been selected as proxy for qualitative and quantitative analysis of resuspended sediments. In addition, maximum signal depth (Z90_max), has been used to evaluate the evolution of sediment concentration in the water column.
Electrical Resistivity Imaging of Seawater Intrusion into the Monterey Bay Aquifer System.
Pidlisecky, A; Moran, T; Hansen, B; Knight, R
2016-03-01
We use electrical resistivity tomography to obtain a 6.8-km electrical resistivity image to a depth of approximately 150 m.b.s.l. along the coast of Monterey Bay. The resulting image is used to determine the subsurface distribution of saltwater- and freshwater-saturated sediments and the geologic controls on fluid distributions in the region. Data acquisition took place over two field seasons in 2011 and 2012. To maximize our ability to image both vertical and horizontal variations in the subsurface, a combination of dipole-dipole, Wenner, Wenner-gamma, and gradient measurements were made, resulting in a large final dataset of approximately 139,000 data points. The resulting resistivity section extends to a depth of 150 m.b.s.l., and is used, in conjunction with the gamma logs from four coastal monitoring wells to identify four dominant lithologic units. From these data, we are able to infer the existence of a contiguous clay layer in the southern portion of our transect, which prevents downward migration of the saltwater observed in the upper 25 m of the subsurface to the underlying freshwater aquifer. The saltwater and brackish water in the northern portion of the transect introduce the potential for seawater intrusion into the hydraulically connected freshwater aquifer to the south, not just from the ocean, but also laterally from north to south. © 2015, National Ground Water Association.
Shoreline oiling conditions in Prince William Sound following the Exxon Valdez oil spill
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neff, J.M.; Owens, E.H.; Stoker, S.W.
1995-12-31
Following the Exxon Valdez oil spill of March 24, 1989, in Prince William Sound, Alaska, Exxon conducted comprehensive, systematic shoreline surveys in cooperation with federal and state authorities to obtain information on the distribution and magnitude of shoreline oiling and to identify natural and cultural resources requiring special protection. Similar joint surveys were performed during the springs of 1990, 1991, and 1992 on all Prince william Sound and Gulf of Alaska shorelines that were suspected of having remnants of weathered oil and that would benefit from further cleanup. In the springs of 1990, 1991, and 1992, isolated pockets of subsurfacemore » oil were found, chiefly in small scattered zones in coarse cobble/boulder sediments in the upper intertidal or supratidal zones. In 1991, about one-third of the subdivisions in Prince William Sound with surface oil also contained some subsurface oil. The areal extent of this subsurface oil declined by nearly 70% between 1991 and 1992, from about 37,000 m{sup 2} to about 12,000 m{sup 2}. Moreover, where subsurface oil remained in 1992, it was present in lesser amounts. Rates of oil removal were greatest on coastal sections treated early in the spring and summer of 1989. Where shoreline treatment was delayed, the subsequent rate of removal of oil from the shore by natural processes was slower. 27 refs., 10 figs., 3 tabs.« less
NASA Astrophysics Data System (ADS)
Fang, J.
2015-12-01
Marine sediments cover more than two-thirds of the Earth's surface and represent a major part of the deep biosphere. Microbial cells and microbial activity appear to be widespread in these sediments. Recently, we reported the isolation of gram-positive anaerobic spore-forming piezophilic bacteria and detection of bacterial endospores in marine subsurface sediment from the Shimokita coalbed, Japan. However, the modern molecular microbiological methods (e.g., DNA-based microbial detection techniques) cannot detect bacterial endospore, because endospores are impermeable and are not stained by fluorescence DNA dyes or by ribosomal RNA staining techniques such as catalysed reporter deposition fluorescence in situ hybridization. Thus, the total microbial cell abundance in the deep biosphere may has been globally underestimated. This emphasizes the need for a new cultivation independent approach for the quantification of bacterial endospores in the deep subsurface. Dipicolinic acid (DPA, pyridine-2,6-dicarboxylic acid) is a universal and specific component of bacterial endospores, representing 5-15wt% of the dry spore, and therefore is a useful indicator and quantifier of bacterial endospores and permits to estimate total spore numbers in the subsurface biosphere. We developed a sensitive analytical method to quantify DPA content in environmental samples using gas chromatography-mass spectrometry. The method is sensitive and more convenient in use than other traditional methods. We applied this method to analyzing sediment samples from the South China Sea (obtained from IODP Exp. 349) to determine the abundance of spore-forming bacteria in the deep marine subsurface sediment. Our results suggest that gram-positive, endospore-forming bacteria may be the "unseen majority" in the deep biosphere.
Vigneron, Adrien; Cruaud, Perrine; Roussel, Erwan G.; Pignet, Patricia; Caprais, Jean-Claude; Callac, Nolwenn; Ciobanu, Maria-Cristina; Godfroy, Anne; Cragg, Barry A.; Parkes, John R.; Van Nostrand, Joy D.; He, Zhili; Zhou, Jizhong; Toffin, Laurent
2014-01-01
Subsurface sediments of the Sonora Margin (Guaymas Basin), located in proximity of active cold seep sites were explored. The taxonomic and functional diversity of bacterial and archaeal communities were investigated from 1 to 10 meters below the seafloor. Microbial community structure and abundance and distribution of dominant populations were assessed using complementary molecular approaches (Ribosomal Intergenic Spacer Analysis, 16S rRNA libraries and quantitative PCR with an extensive primers set) and correlated to comprehensive geochemical data. Moreover the metabolic potentials and functional traits of the microbial community were also identified using the GeoChip functional gene microarray and metabolic rates. The active microbial community structure in the Sonora Margin sediments was related to deep subsurface ecosystems (Marine Benthic Groups B and D, Miscellaneous Crenarchaeotal Group, Chloroflexi and Candidate divisions) and remained relatively similar throughout the sediment section, despite defined biogeochemical gradients. However, relative abundances of bacterial and archaeal dominant lineages were significantly correlated with organic carbon quantity and origin. Consistently, metabolic pathways for the degradation and assimilation of this organic carbon as well as genetic potentials for the transformation of detrital organic matters, hydrocarbons and recalcitrant substrates were detected, suggesting that chemoorganotrophic microorganisms may dominate the microbial community of the Sonora Margin subsurface sediments. PMID:25099369
2015-11-04
Coastal Inlets Research Program Coastal Modeling System The work unit develops the Coastal Modeling System ( CMS ) and conducts basic research to...further understanding of sediment transport under mixed oceanic and atmospheric forcing. The CMS is a suite of coupled two-dimensional numerical...models for simulations of waves, hydrodynamics, salinity and sediment transport, and morphology change. The CMS was identified by the USACE Hydraulics
NASA Astrophysics Data System (ADS)
Lepage, Hugo; Laceby, J. Patrick; Evrard, Olivier; Onda, Yuichi; Caroline, Chartin; Lefèvre, Irène; Bonté, Philippe; Ayrault, Sophie
2015-04-01
Several coastal catchments located in the vicinity of the Fukushima Dai-Ichi Power Plant were impacted contaminated fallout in March 2011. Following the accident, typhoons and snowmelt runoff events transfer radiocesium contamination through the coastal floodplains and ultimately to the Pacific Ocean. Therefore it is important to understand the location and relative contribution of different erosion sources in order to manage radiocesium transfer within these coastal catchments and the cumulative export of radiocesium to the Pacific Ocean. Here we present a sediment fingerprinting approach to determine the relative contributions of sediment from different soil types to sediment transported throughout two coastal riverine systems. The sediment fingerprinting technique presented utilizes differences in the elemental geochemistry of the distinct soil types to determine their relative contributions to sediment sampled in riverine systems. This research is important as it furthers our understanding of dominant erosion sources in the region which will help with ongoing decontamination and monitoring efforts pertaining to the management of fallout radiocesium migration in the region.
Evrard, Olivier; Chartin, Caroline; Onda, Yuichi; Patin, Jeremy; Lepage, Hugo; Lefèvre, Irène; Ayrault, Sophie; Ottlé, Catherine; Bonté, Philippe
2013-01-01
Measurement of radioactive dose rates in fine sediment that has recently deposited on channel bed-sand provides a solution to address the lack of continuous river monitoring in Fukushima Prefecture after Fukushima Dai-ichi nuclear power plant (FDNPP) accident. We show that coastal rivers of Eastern Fukushima Prefecture were rapidly supplied with sediment contaminated by radionuclides originating from inland mountain ranges, and that this contaminated material was partly exported by typhoons to the coastal plains as soon as by November 2011. This export was amplified during snowmelt and typhoons in 2012. In 2013, contamination levels measured in sediment found in the upper parts of the catchments were almost systematically lower than the ones measured in nearby soils, whereas their contamination was higher in the coastal plains. We thereby suggest that storage of contaminated sediment in reservoirs and in coastal sections of the river channels now represents the most crucial issue. PMID:24165695
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-13
... preclude future actions under Superfund. This partial deletion pertains to the surface soil, unsaturated subsurface soil, surface water and sediments of Operable Unit (OU) 1, the Gateway Lake Ash Study Area, and.... Surface soil, unsaturated subsurface soil, surface water, and sediments at OU-2, OU-3, OU-4, OU-5, OU-6...
USDA-ARS?s Scientific Manuscript database
Open surface inlets that connect to subsurface tile drainage systems provide a direct pathway for sediment, nutrients, and agrochemicals to surface waters. This study was conducted to determine whether modifying open inlets by burying them in gravel capped with 30 cm of sandy clay loam soil or in ve...
NASA Astrophysics Data System (ADS)
Sauer, M.; Bergamaschi, B. A.; Smith, R. A.; Zhu, Z.; Shih, J.
2012-12-01
Flux of nutrients and sediments to the coastal zone varies in response to land-use modification, reservoir construction, management action and population change. It is anticipated that future changes in the flux of these components in response to climate and terrestrial processes will affect carbon (C) burial in the coastal ocean. Coastal oceans store appreciable amounts of C as a result of river inflows: coastal primary production is enhanced by inputs of terrestrially derived nutrients, and C burial is controlled by terrestrial sediment supply. Assessing the capacity and changes to coastal C preservation, therefore, requires estimation of (1) riverine nutrient and sediment delivery to the coastal ocean, and (2) the enhanced C production and sediment deposition in the coastal ocean. The United States Geological Survey (USGS) has embarked on a congressionally-mandated nationwide effort to assess the future effects of climate and land use and land cover change (LULC) on C storage. The USGS has developed alternative scenarios for changes in US LULC from 2006 to 2100 based on the Intergovernmental Panel on Climate Change (IPCC) climate, economic, and demographic scenarios (Sohl et al 2012). These spatially-detailed scenarios provide inputs to national-scale SPARROW watershed models of total nitrogen, total phosphorus, total organic C (TOC), and suspended sediment (Smith et al 1997; Schwarz et al, 2006). The watershed models, in turn, provide inputs of nutrients, TOC, and sediment to a coupled model of coastal transport, production, and sedimentation. This coastal modelling component includes particulate C sedimentation and burial estimated as functions of bathymetry and pycnocline depth (Armstrong, et al 2002; Dunne et al 2007). River borne fluxes of TOC to US Pacific coastal waters under baseline conditions (1992) were 1.59 TgC/yr. Projected future (2050) fluxes under a regionally-downscaled LULC scenario aligned with the IPCC A2 scenario were similar (1.61TgC/yr). C storage in coastal environments as influenced by terrestrial processes represents a significant sink for C in comparison to terrestrial biomass C sinks, and is significantly sensitive to changes in LULC and population. The estimated rate of storage in Pacific coastal waters was 2.0 TgC/yr under baseline conditions. Projection of land use and population changes through 2050 associated with the IPCC A2 scenario had a small effect on coastal C storage processes, reducing C storage by 4% over baseline conditions. Results of this modeling exercise indicate that the size of the C sink associated with terrestrial exports is substantial and sensitive to anthropogenic activity. Thus, future assessments of how terrestrial policy and management actions may alter C storage should include an evaluation of the effects prospective alterations in terrestrial processes have on coastal C storage.
Kunte, Pravin D; Alagarsamy, R; Hursthouse, A S
2013-06-01
The littoral drift regime along the northeastern coast of India was investigated by analyzing coastal drift indicators and shoreline changes based on multitemporal satellite images. The study of offshore turbidity patterns and quantitative estimation of suspended sediments was undertaken to understand the magnitude and direction of movement of sediment fluxes. The study revealed that: (1) the character of coastal landforms and sedimentation processes indicate that the sediment transport is bidirectional and monsoon dependent; (2) multidate, multitemporal analysis of satellite images helps to show the nature of sediment transport along the coast. The dominant net sediment transport is in a NE direction along the eastern coast of India. Finally, this assessment demonstrates the potential of remote sensing technology in understanding the coastal morphometric changes, long-term sediment transport, shoreline changes, and offshore turbidity distribution pattern and the implications for the transport of sediment-associated pollutants.
Exploring Microbial Life in Oxic Sediments Underlying Oligotrophic Ocean Gyres
NASA Astrophysics Data System (ADS)
Ziebis, W.; Orcutt, B.; Wankel, S. D.; D'Hondt, S.; Szubin, R.; Kim, J. N.; Zengler, K.
2015-12-01
Oxygen, carbon and nutrient availability are defining parameters for microbial life. In contrast to organic-rich sediments of the continental margins, where high respiration rates lead to a depletion of O2 within a thin layer at the sediment surface, it was discovered that O2 penetrates several tens of meters into organic-poor sediments underlying oligotrophic ocean gyres. In addition, nitrate, another important oxidant, which usually disappears rapidly with depth in anoxic sediments, tends to accumulate above seawater concentrations in the oxic subsurface, reflecting the importance of nitrogen cycling processes, including both nitrification and denitrification. Two IODP drilling expeditions were vital for exploring the nature of the deep subsurface beneath oligotrophic ocean gyres, expedition 329 to the South Pacific Gyre (SPG) and expedition 336 to North Pond, located on the western flank of the Mid-Atlantic ridge beneath the North Atlantic Gyre. Within the ultra-oligotrophic SPG O2 penetrates the entire sediment column from the sediment-water interface to the underlying basement to depths of > 75 m. At North Pond, a topographic depression filled with sediment and surrounded by steep basaltic outcrops, O2 penetrates deeply into the sediment (~ 30 m) until it eventually becomes depleted. O2 also diffuses upward into the sediment from seawater circulating within the young crust underlying the sediment, resulting in a deep oxic layer several meters above the basalt. Despite low organic carbon contents microbial cells persist throughout the entire sediment column within the SPG (> 75 m) and at North Pond, albeit at low abundances. We explored the nature of the subsurface microbial communities by extracting intact cells from large volumes of sediment obtained from drill cores of the two expeditions. By using CARD-FiSH, amplicon (16s rRNA) and metagenome sequencing we shed light on the phylogenetic and functional diversity of the elusive communities residing in the deep oxic sediments of these two different areas. Given the global extent of this oxic subsurface studies of the diversity and metabolic potential of its biome, together with the analyses of porewater geochemical and isotopic composition, are beginning to reveal its role in global biogeochemical cycles.
NASA Astrophysics Data System (ADS)
Kurnia, Domas; Nugroho, Denny
2018-02-01
Trimulyo is one of coastal village in Genuk Subdistrict, Semarang City which now facing serious coastal abrasion. Such a thing has been causing loss of ponds and settlements. One of solution which currently carried is hybrid structure which combining permeable structure to break up the waves and trap sediment. The hybrid structure is designed as agitation dredging, which increase suspended sediment in sea water. The goals of this research were to studying the effectiveness of hybrid structure in handling coastal abration and to counting the volume of sedimentation during 20 months as well as rate of sedimentation. To reach the goals, high resolution satellite imagery year 2015 and 2016, scaled stick and sediment trap were applied to the study. Image processing was conducted by using Arc GIS 10.3 software. The effectiveness of hybrid structured was determined by series of field survey of existing condition. Rate of sedimentation measured during before and after hybrid structure built (20 months). The results showed that hybrid structure was effective to reduce coastal abrasion, it proven by a large amount of sediment was trapped behind the structure and coastline was upward along 170 meter since it was built. The volume of sediment during 20 months is 81.500 m3. If it assumed that the rate of sedimentation constantly, monthly rate of sedimentation is 4.075 m3/month or daily rate is 135,8 m3/day. The sediment that has formed highly recommended to use as mangrove conservation area in Semarang City.
Middle to late Holocene coastal evolution along the south coast of Upolu Island, Samoa
Goodwin, I.D.; Grossman, E.E.
2003-01-01
Stratigraphic surveys and sedimentological analyses of coastal sediments and reef cores along the south coast of Upolu Island, Samoa, reveal that during the middle Holocene this coast was characterised by barrier spits, open lagoons, and estuaries. These estuarine systems matured during the late Holocene, with progressive sedimentation and inlet closure, leading to the dominance of mangrove swamps in the past 1000 years. Contemporaneous with the transition of open estuaries to mangrove swamps was the aggradation and progradation of coastal plains. The coastal progradation since 700-1000 years BP is best explained by increased sediment availability and reduced incident wave energy at the shore resulting from the shallowing and subsequent cessation of reef crest accretion following the mid-Holocene sea-level highstand ca. ???4500 yr BP. A small relative sea-level (RSL) lowering since 700-1000 years may have contributed to the positive sediment budget. This study highlights the need for island-wide coastal surveys to assess the relative roles of RSL, sediment budgets, and hydrodynamics on coastal evolution and stability. Differences in coastal evolution around Upolu Island may also be influenced by differential tectonic movements associated with late Holocene volcanism, coseismicity, and/ or submarine landslides. ?? 2003 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Shepard, A.; Reese, B. K.; Mills, H. J.; IODP Expedition 320 Shipboard Science Party
2011-12-01
The marine subsurface environment contains abundant and active microorganisms. These microbial populations are considered integral players in the marine subsurface biogeochemical system with significance in global geochemical cycles and reservoirs. However, variations in microbial community structure, activity and function associated with the wide-ranging sedimentary and geochemical environments found globally have not been fully resolved. Integrated Ocean Drilling Program Expedition 320 recovered sediments from site U1332. Two sampling depths were selected for analysis that spanned differing lithological units in the sediment core. Sediments were composed of mostly clay with zeolite minerals at 8 meters below sea floor (mbsf). At 27 mbsf, sediments were composed of alternating clayey radiolarian ooze and nannofossil ooze. The concentration of SO42- had little variability throughout the core and the concentration of Fe2+ remained close to, or below, detection limits (0.4 μM). Total organic carbon content ranged from a low of 0.03 wt% to a high of 0.07 wt% between 6 and 30 mbsf providing an opportunity to evaluate marine subsurface microbial communities under extreme electron donor limiting conditions. The metabolically active fraction of the bacterial population was isolated by the extraction and amplification of 16S ribosomal RNA. Pyrosequencing of 16S rRNA transcripts and subsequent bioinformatic analyses provided a robust data set (15,931 total classified sequences) to characterize the community at a high resolution. As observed in other subsurface environments, the overall diversity of active bacterial populations decreased with depth. The population shifted from a diverse but evenly distributed community at approximately 8 mbsf to a Firmicutes dominated population at 27 mbsf (80% of sequences). A total of 95% of the sequences at 27 mbsf were grouped into three genera: Lactobacillus (phylum Firmicutes) at 80% of the total sequences, Marinobacter (phylum Proteobacteria) at 8%, and Formosa (phylum Bacteroidetes) at 7%. These lineages support a paradigm suggesting the importance of fermentation in the subsurface. However, this study extends the predicted range for fermentation below the shallow subsurface and into organic carbon limited marine sediments. Other previously characterized subsurface active populations from environments with higher organic carbon concentrations do not show similar levels of reduced diversity or predominance of fermentative populations. This study further emphasizes the spatial variability of microbial populations in the deep subsurface and highlights the need for continued exploration.
Cahoon, D.R.; Reed, D.J.; Day, J.W.
1995-01-01
Simultaneous measurements of vertical accretion and change in surface elevation relative to a shallow (3-5 m) subsurface datum were made in selected coastal salt marshes of Louisiana, Florida, and North Carolina to quantitatively test Kaye and Barghoorn's contention that vertical accretion is not a good surrogate for surface elevation change because of autocompaction of the substrate. Rates of subsidence of the upper 3-5 m of marsh substrate were calculated for each marsh as the difference between vertical accretion and elevation change measured with feldspar marker horizons and a sedimentation-erosion table. Surface elevation change was significantly lower than vertical accretion at each site after 2 years, indicating a significant amount of shallow subsidence had occurred, ranging from 0.45 to 4.90 cm. The highest rate of shallow subsidence occurred in the Mississippi delta. Results confirm Kaye and Barghoorn's contention that vertical accretion is not generally a good surrogate for elevation change because of processes occurring in the upper few meters of the substrate, including not only compaction but also apparently shrink-swell from water storage and/or plant production--decomposition at some sites. Indeed, surface elevation change was completely decoupled from vertical accretion at the Florida site. The assumption of a 1:1 relationship between accretionary and substrate processes. Consequently, the potential for coastal marsh submergence should be expressed as an elevation deficit based on direct measures of surface elevation change rather than accretion deficits. These findings also indicate the need for greater understanding of the influence of subsurface and small-scale hydrologic processes on marsh surface elevation.
Gugliandolo, Concetta; Michaud, Luigi; Lo Giudice, Angelina; Lentini, Valeria; Rochera, Carlos; Camacho, Antonio; Maugeri, Teresa Luciana
2016-02-01
Byers Peninsula (Livingston Island, Antarctica), the largest seasonally ice-free region of the Maritime Antarctica, holds a large number of lakes, ponds, and streams. The prokaryotic structure and bacterial diversity in sediment samples collected during the 2008-2009 austral summer from five inland lakes, two coastal lakes, and an estuarine site were analyzed by Catalyzed Reporter Deposition Fluorescence In Situ Hybridization (CARD-FISH) and 16S rRNA 454 tag pyrosequencing techniques, respectively. Differently from inland lakes, which range around the oligotrophic status, coastal lakes are eutrophic environments, enriched by nutrient inputs from marine animals. Although the prokaryotic abundances (estimated as DAPI stained cells) in sediment samples were quite similar among inland and coastal lakes, Bacteria always far dominated over Archaea. Despite the phylogenetic analysis indicated that most of sequences were affiliated to a few taxonomic groups, mainly referred to Proteobacteria, Bacteroidetes, and Actinobacteria, their relative abundances greatly differed from each site. Differences in bacterial composition showed that lacustrine sediments were more phyla rich than the estuarine sediment. Proteobacterial classes in lacustrine samples were dominated by Betaproteobacteria (followed by Alphaproteobacteria, Deltaproteobacteria, and Gammaproteobacteria), while in the estuarine sample, they were mainly related to Gammaproteobacteria (followed by Deltaproteobacteria, Epsilonproteobacteria, Alphaproteobacteria, and Betaproteobacteria). Higher number of sequences of Alphaproteobacteria, Cyanobacteria, Verrucomicrobia, and Planctomycetes were observed in sediments of inland lakes compared to those of coastal lakes, whereas Chloroflexi were relatively more abundant in the sediments of coastal eutrophic lakes. As demonstrated by the great number of dominant bacterial genera, bacterial diversity was higher in the sediments of inland lakes than that in coastal lakes. Ilumatobacter (Actinobacteria), Gp16 (Acidobacteria), and Gemmatimonas (Gemmatimonadetes) were recovered as dominant genera in both inland and coastal lakes, but not in the estuarine sample, indicating that they may be useful markers of Antarctic lakes. The proximity to the sea, the different lake depths and the external or internal origin of the nutrient sources shape the bacterial communities composition in lacustrine sediments of Byers Peninsula.
Use of sediment amendments to rehabilitate sinking coastal swamp forests in Louisiana
Middleton, Beth A.; Jiang, Ming
2013-01-01
Coastal wetlands are losing elevation worldwide, so that techniques to increase elevation such as sediment amendment might benefit these wetlands. This study examined the potential of sediment amendment to raise elevation and support the production and regeneration of vegetation in coastal forests in Louisiana. Before sediment amendment, the vegetation did not differ in these Taxodium distichum–Nyssa aquatica forests with respect to herbaceous and tree seedling composition, and sapling and tree characteristics. After the application of sediment in January 2007, sediment-amended swamps had higher elevations and salinity levels than natural swamps. The layer of sediment applied to Treasure Island in Jean Lafitte National Historic Park and Preserve was relatively deep (sediment depth at Site One and Site Two: 0.89 and 0.69 m, respectively, six months after application), and may have exceeded an optimal threshold. Sediment-amended swamp with the highest elevation had some tree mortality and little tree growth of T. distichum. Also, sediment-amended swamp had higher root biomasses of ruderal species, and lower species richness and cover of herbaceous species. Nevertheless, during controlled water releases during an oil spill emergency in 2010, both sediment-amended and reference forest had higher production levels than in other years. While sediment amendment is a compelling management alternative for sinking coastal wetlands, optimal thresholds were not determined for these T. distichum–N. aquatica swamps.
California State Waters Map Series: offshore of Carpinteria, California
Johnson, Samuel Y.; Dartnell, Peter; Cochrane, Guy R.; Golden, Nadine E.; Phillips, Eleyne L.; Ritchie, Andrew C.; Kvitek, Rikk G.; Greene, H. Gary; Endris, Charles A.; Seitz, Gordon G.; Sliter, Ray W.; Erdey, Mercedes D.; Wong, Florence L.; Gutierrez, Carlos I.; Krigsman, Lisa M.; Draut, Amy E.; Hart, Patrick E.; Johnson, Samuel Y.; Cochran, Susan A.
2013-01-01
In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within the 3-nautical-mile limit of California’s State Waters. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data, acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. The Offshore of Carpinteria map area lies within the central Santa Barbara Channel region of the Southern California Bight. This geologically complex region forms a major biogeographic transition zone, separating the cold-temperate Oregonian province north of Point Conception from the warm-temperate California province to the south. The map area is in the southern part of the Western Transverse Ranges geologic province, which is north of the California Continental Borderland. Significant clockwise rotation—at least 90°—since the early Miocene has been proposed for the Western Transverse Ranges province, and the region is presently undergoing north-south shortening. The small city of Carpinteria is the most significant onshore cultural center in the map area; the smaller town of Summerland lies west of Carpinteria. These communities rest on a relatively flat coastal piedmont that is surrounded on the north, east, and west by hilly relief on the flanks of the Santa Ynez Mountains. El Estero, a salt marsh on the coast west of Carpinteria, is an ecologically important coastal estuary. Southeast of Carpinteria, the coastal zone is narrow strip containing highway and railway transportation corridors and a few small residential clusters. Rincon Point is a well-known world-class surf break, and Rincon Island, constructed for oil and gas production, lies offshore of Punta Gorda. The steep bluffs backing the coastal strip are geologically unstable, and coastal erosion problems are ongoing in the map area; most notably, landslides in 2005 struck the small coastal community of La Conchita, engulfing houses and killing ten people. The Offshore of Carpinteria map area lies in the central part of the Santa Barbara littoral cell, whose littoral drift is to the east-southeast. Drift rates have been estimated to be about 400,000 tons/yr at Santa Barbara Harbor (about 15 km west of Carpinteria). At the east end of the littoral cell, eastward-moving sediment is trapped by Hueneme and Mugu Canyons and then transported to the deep-water Santa Monica Basin. Sediment supply to the western and central part of the littoral cell is largely from relatively small transverse coastal watersheds, which have an estimated cumulative annual sediment flux of 640,000 tons/yr. The much larger Ventura and Santa Clara Rivers, the mouths of which are about 25 to 30 km southeast of Carpinteria, yield an estimated 3.4 million tons of sediment annually, the coarser sediment load generally moving southeast, down the coast, and the finer sediment load moving both upcoast and offshore. The offshore part of the map area consists of a relatively flat and shallow continental shelf, which dips so gently (about 0.4° to 0.5°) that water depths at the 3-nautical-mile limit of California’s State Waters are 40 to 45 m. This part of the Santa Barbara Channel is relatively well protected from large Pacific swells from the north and northwest by Point Conception and from the south and southwest by offshore islands and banks. Fair-weather wave base is typically shallower than 20-m water depth, but winter storms are capable of resuspending fine-grained sediments in 30 m of water, and so shelf sediments in the map area probably are remobilized on an annual basis. The shelf is underlain by variable amounts of upper Quaternary shelf, estuarine, and fluvial sediments that thicken to the south. Seafloor habitats in the broad Santa Barbara Channel region consist of significant amounts of soft sediment and isolated areas of rocky habitat that support kelp-forest communities nearshore and rocky-reef communities in deep water. The potential marine benthic habitat types mapped in the Offshore of Carpinteria map area are directly related to its Quaternary geologic history, geomorphology, and active sedimentary processes. These potential habitats lie within the Shelf (continental shelf) megahabitat, dominated by a flat seafloor and substrates formed from deposition of fluvial and marine sediment during sea-level rise. This fairly homogeneous seafloor provides promising habitat for groundfish, crabs, shrimp, and other marine benthic organisms. The only significant interruptions to this homogeneous habitat type are the exposures of hard, irregular, and hummocky sedimentary bedrock and coarse-grained sediment where potential habitats for rockfish and related species exist.
NASA Astrophysics Data System (ADS)
Pratt, T. L.
2017-12-01
Unconsolidated, near-surface sediments can influence the amplitudes and frequencies of ground shaking during earthquakes. Ideally these effects are accounted for when determining ground motion prediction equations and in hazard estimates summarized in seismic hazard maps. This study explores the use of teleseismic arrivals recorded on linear receiver arrays to estimate the seismic velocities, determine the frequencies of fundamental resonance peaks, and image the major reflectors in the Atlantic Coastal Plain (ACP) and Mississippi Embayment (ME) strata of the central and southeastern United States. These strata have thicknesses as great as 2 km near the coast in the study areas, but become thin and eventually pinch out landward. Spectral ratios relative to bedrock sites were computed from teleseismic arrivals recorded on linear arrays deployed across the sedimentary sequences. The large contrast in properties at the bedrock surface produces a strong fundamental resonance peak in the 0.2 to 4 Hz range. Contour maps of sediment thicknesses derived from drill hole data allow for the theoretical estimation of average velocities by matching the observed frequencies at which resonance peaks occur. The sloping bedrock surface allows for calculation of a depth-varying velocity profile, under the assumption that the velocities at each depth do not change laterally between stations. The spectral ratios can then be converted from frequency to depth, resulting in an image of the subsurface similar to that of a seismic reflection profile but with amplitudes being the spectral ratio caused by a reflector at that depth. The complete data set thus provides an average velocity function for the sedimentary sequence, the frequencies and amplitudes of the major resonance peaks, and a subsurface image of the major reflectors producing resonance peaks. The method is demonstrated using three major receiver arrays crossing the ACP and ME strata that originally were deployed for imaging the crust and mantle, confirming that teleseismic signals can be used to characterize sedimentary strata in the upper km.
NASA Astrophysics Data System (ADS)
Lo Iacono, Claudio; Mateo, Miguel Angel; Gràcia, Eulàlia; Guasch, Lluis; Carbonell, Ramon; Serrano, Laura; Serrano, Oscar; Dañobeitia, Juanjo
2008-09-01
Posidonia oceanica is a widespread coastal Mediterranean seagrass which accumulates in its subsurface large quantities of organic material derived from its roots, rhizomes and leaf sheaths embedded in sandy sediments. These organic deposits may be up to several meters thick as they accumulate over thousands of years forming the matte, whose high content in organic carbon plays a major role in the global ocean carbon cycle. In this study, very high-resolution seismo-acoustic methods were applied to image the subsurface features of a P. oceanica seagrass meadow at Portlligat (Cadaqués, Girona, Spain), in the NW-Mediterranean Sea. Our findings yield fresh insights into the settling of the P. oceanica meadow in the study area, and define with unprecedented detail the potential volume occupied by the matte. A strong reflector, located from 4.3 to 11.7 m depth, was recognized in several seismo-acoustic profiles as the substratum on which P. oceanica first settled in the study area. A 3D bathymetric model of this substratum allowed us to reconstruct the Portlligat palaeo-environment prior to the settling of P. oceanica, which corresponded to a shallow coastal setting protected from the open sea. A core drilled in the meadow at Portlligat revealed the presence of a 6 m thick dense matte composed of medium to coarse sandy sediments mixed with plant debris and bioclasts. Radiocarbon datings revealed a constant accretion rate of the matte of about 1.1 m/kyr. Gravelly bioclastic deposits observed at the base of the core correspond to the base of the matte and gave a date of 5616 +/- 46 Cal yr BP. For the first time, very high-resolution marine geophysical techniques allowed us to accurately define the volume occupied by P. oceanica matte, which in the study area reaches up to almost 220,000 +/- 17,400 m3. This result is an important step forward in our efforts to estimate the size of the carbon sink represented by P. oceanica meadows along the Mediterranean coasts significantly contributing to the biosphere carbon cycle.
Sediment Production From Small Undisturbed Forested Basins In The Upper Coastal Plain
Daniel A. Marion; Greg Malstaff; Howard G. Halverson
1996-01-01
Forest lands in the Upper Coastal Plain (UCP) of the American South are widely recognized as producing water with relatrvely low amounts of sediment. Previous research has established that sediment concentrations from forest basins lacking well-defined channel networks averages 5.3 to 6.2 kg of sediment per hectare per centimeter of runoff (kg/ha-cm) in this...
Influence of organic matter on trace metal flux in coastal sediments. [Sequim Bay
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmidt, R.L.; Gibson, C.I.
1978-05-15
These studies indicate that organic matter in coastal sediment constitutes a primary sink for trace metals, both at natural and amended levels. Organic substances are also involved in controlling the mobility and flux of trace metals from sediments. Further, organically-bound trace metals in sediments appear to be an important source to deposit-feeding organisms.
Excessive erosion, transport and deposition of sediment are major problems in streams and rivers throughout the United States. We examined evidence of anthropogenic sedimentation in Oregon and Washington coastal streams using relatively rapid measurements taken from surveys duri...
NASA Astrophysics Data System (ADS)
Giani, M.; Rampazzo, F.; Berto, D.
2010-12-01
The shallow northern Adriatic Sea receives large river runoff, predominantly from the Po River, which is the main allochthonous source of nutrients and organic matter. The origin and quality of organic matter deposited in the sediments can influence the degradation processes and oxygen consumption in the bottom waters as well as the fate of many pollutants. Therefore the humic acids (HA) were quantified in surface and sub-surface sediments collected in an area of the north-western Adriatic platform south of Po River. HA showed to have a relevant contribution to sedimentary organic matter. HA content in sediments were positively correlated with the organic carbon concentration and negatively with redox potential and pH, particularly in sub-surface reduced sediments, suggesting their important role in the diagenetic processes taking place in anoxic conditions. Elemental composition of HA extracted from surface and sub-surface sediments showed a wide range of variation of the C org/N ratios which could be due to a mixed (terrestrial and marine) origin and/or an elevated bacteria degradation of nitrogen during diagenesis processes in sediments. The spectroscopic ratios A 2/A 4 and A 4/A 6 of HA confirmed a mixed origin with a high degree of condensation of the HA extracted from sediments.
Sorption and oxic degradation of the explosive CL-20 during transport in subsurface sediments.
Szecsody, J E; Girvin, D C; Devary, B J; Campbell, J A
2004-08-01
The abiotic sorption and oxic degradation processes that control the fate of the explosive CL-20, Hexanitrohexaazaisowurtzitane, in the subsurface environment were investigated to determine the potential for vadose and groundwater contamination. Sorption of aqueous CL-20 is relatively small (K(d) = 0.02-3.83 cm3 g(-1) for 7 sediments and 12 minerals), which results in only slight retardation relative to water movement. Thus, CL-20 could move quickly through unsaturated and saturated sediments of comparable composition to groundwater, similar to the subsurface behavior of RDX. CL-20 sorption was mainly to mineral surfaces of the sediments, and the resulting isotherm was nonlinear. CL-20 abiotically degrades in oxic environments at slow rates (i.e., 10s to 100s of hours) with a wide variety of minerals, but at fast rates (i.e., minutes) in the presence of 2:1 phyllosilicate clays (hectorite, montmorillonite, nontronite), micas (biotite, illite), and specific oxides (MnO2 and the ferrous-ferric iron oxide magnetite). High concentrations of surface ferrous iron in a dithionite reduced sediment degraded CL-20 the fastest (half-life < 0.05 h), but 2:1 clays containing no structural or adsorbed ferrous iron (hectorite) could also quickly degrade CL-20 (half-life < 0.2 h). CL-20 degradation rates were slower in natural sediments (half-life 3-800 h) compared to minerals. Sediments with slow degradation rates and small sorption would exhibit the highest potential for deep subsurface migration. Products of CL-20 oxic degradation included three high molecular weight compounds and anions (nitrite and formate). The 2-3.5 moles of nitrite produced suggest CL-20 nitro-groups are degraded, and the amount of formate produced (0.2-1.2 moles) suggests the CL-20 cage structure is broken in some sediments. Identification of further degradation products and CL-20 mineralization rates is needed to fully assess the impact of these CL-20 transformation rates on the risk of CL-20 (and degradation product) subsurface movement.
NASA Astrophysics Data System (ADS)
Weschenfelder, Jair; Klein, Antonio H. F.; Green, Andrew N.; Aliotta, Salvador; de Mahiques, Michel M.; Ayres Neto, Arthur; Terra, Laurício C.; Corrêa, Iran C. S.; Calliari, Lauro J.; Montoya, Isabel; Ginsberg, Silvia S.; Griep, Gilberto H.
2016-04-01
Acoustic anomalies in seismic records have revealed that gas-charged sediments are very common features in the coastal environments around the world. The ubiquitous gassy sediments challenge the effective acoustic mapping of shallow stratigraphy by seismic means, as well as having an important influence on environmental issues related to the coastal zone occupation and management. This paper documents examples of gassy sediments from coastal lagoons, estuaries, rivers, bays and the inner shelf and nearshore environments of Brazil, Argentina and South Africa. Seismic echograms from selected areas show several gas-related anomalies, which present distinctive morphologies for sediment-trapped gas, leaking or free gas discharge into the water column. In several places the gas-charged sediments occur in areas of palaeo-topographic lows related to fluvial channels and valleys that developed in the coastal zone due to sea level oscillations during the Quaternary period. This forcing by palaeo-topographic features results in the occurrence of shallow gas being controlled in most coastal sites by the previous environmental scenario, the stratigraphic arrangement of the transgressive infilling elements, and the local hydrodynamic conditions.
Water-balance and groundwater-flow estimation for an arid environment: San Diego region, California
NASA Astrophysics Data System (ADS)
Flint, L. E.; Flint, A. L.; Stolp, B. J.; Danskin, W. R.
2012-03-01
The coastal-plain aquifer that underlies the San Diego City metropolitan area in southern California is a groundwater resource. The understanding of the region-wide water balance and the recharge of water from the high elevation mountains to the east needs to be improved to quantify the subsurface inflows to the coastal plain in order to develop the groundwater as a long term resource. This study is intended to enhance the conceptual understanding of the water balance and related recharge processes in this arid environment by developing a regional model of the San Diego region and all watersheds adjacent or draining to the coastal plain, including the Tijuana River basin. This model was used to quantify the various components of the water balance, including semi-quantitative estimates of subsurface groundwater flow to the coastal plain. Other approaches relying on independent data were used to test or constrain the scoping estimates of recharge and runoff, including a reconnaissance-level groundwater model of the San Diego River basin, one of three main rivers draining to the coastal plain. Estimates of subsurface flow delivered to the coastal plain from the river basins ranged from 12.3 to 28.8 million m3 yr-1 from the San Diego River basin for the calibration period (1982-2009) to 48.8 million m3 yr-1 from all major river basins for the entire coastal plain for the long-term period 1940-2009. This range of scoping estimates represents the impact of climatic variability and realistically bounds the likely groundwater availability, while falling well within the variable estimates of regional recharge. However, the scarcity of physical and hydrologic data in this region hinders the exercise to narrow the range and reduce the uncertainty.
SEDIMENT HAZARD ASSESSMENT FOR NEAR-COASTAL AREAS OF THE GULF OF MEXICO
Sediment contamination is a major problem in many coastal areas in the U.S. and has emerged as an important ecological issue for several geographic areas. Sediment chemical and biological quality is unknown in many areas of the Gulf of Mexico. To provide some information on this ...
TREATED WASTEWATER AS A SOURCE OF SEDIMENT CONTAMINATION IN GULF OF MEXICO NEAR-COASTAL AREAS
The primary objective of this baseline survey was to provide some needed perspective on the magnitude of sediment contamination associated with wastewater outfalls discharged to Gulf of Mexico near-coastal areas. The chemical quality and toxicities of whole sediments and pore wa...
SEDIMENT HABITAT ASSESSMENT FOR TARGETED NEAR-COASTAL AREAS OF THE GULF OF MEXICO: A SUMMARY
Lewis, Michael A. In press. Sediment Habitat Assessment for Targeted Near-Coastal Areas of the Gulf of Mexico: A Summary. In: Estuarine Indicators Workshop Proceedings. CRC Press, Boca Raton, FL. 25 p. (ERL,GB 1201).
Sediment chemical and biological quality is summarized ...
Kristin Bunte; Steven R. Abt
2001-01-01
This document provides guidance for sampling surface and subsurface sediment from wadable gravel-and cobble-bed streams. After a short introduction to streams types and classifications in gravel-bed rivers, the document explains the field and laboratory measurement of particle sizes and the statistical analysis of particle-size distributions. Analysis of particle...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jasrotia, Puja; Green, Stefan; Canion, Andy
2014-01-01
The objective of this study was to characterize fungal communities in a subsurface environment co-contaminated with uranium and nitrate at the watershed scale, and to determine the potential contribution of fungi to contaminant transformation (nitrate attenuation). The abundance, distribution and diversity of fungi in subsurface groundwater samples were determined using quantitative and semi-quantitative molecular techniques, including quantitative PCR of eukaryotic SSU rRNA genes and pyrosequencing of fungal internal transcribed spacer (ITS) regions. Potential bacterial and fungal denitrification was assessed in sediment-groundwater slurries amended with antimicrobial compounds and in fungal pure cultures isolated from subsurface. Our results demonstrate that subsurface fungalmore » communities are dominated by members of the phylum Ascomycota, and a pronounced shift in fungal community composition occurs across the groundwater pH gradient at the field site, with lower diversity observed under acidic (pH < 4.5) conditions. Fungal isolates recovered from subsurface sediments were shown to reduce nitrate to nitrous oxide, including cultures of the genus Coniochaeta that were detected in abundance in pyrosequence libraries of site groundwater samples. Denitrifying fungal isolates recovered from the site were classified, and found to be distributed broadly within the phylum Ascomycota, and within a single genus within the Basidiomycota. Potential denitrification rate assays with sediment-groundwater slurries showed the potential for subsurface fungi to reduce nitrate to nitrous oxide under in situ acidic pH conditions.« less
Jasrotia, Puja; Green, Stefan J.; Canion, Andy; Overholt, Will A.; Prakash, Om; Wafula, Denis; Hubbard, Daniela; Watson, David B.; Schadt, Christopher W.; Brooks, Scott C.
2014-01-01
The objective of this study was to characterize fungal communities in a subsurface environment cocontaminated with uranium and nitrate at the watershed scale and to determine the potential contribution of fungi to contaminant transformation (nitrate attenuation). The abundance, distribution, and diversity of fungi in subsurface groundwater samples were determined using quantitative and semiquantitative molecular techniques, including quantitative PCR of eukaryotic small-subunit rRNA genes and pyrosequencing of fungal internal transcribed spacer (ITS) regions. Potential bacterial and fungal denitrification was assessed in sediment-groundwater slurries amended with antimicrobial compounds and in fungal pure cultures isolated from the subsurface. Our results demonstrate that subsurface fungal communities are dominated by members of the phylum Ascomycota, and a pronounced shift in fungal community composition occurs across the groundwater pH gradient at the field site, with lower diversity observed under acidic (pH <4.5) conditions. Fungal isolates recovered from subsurface sediments, including cultures of the genus Coniochaeta, which were detected in abundance in pyrosequence libraries of site groundwater samples, were shown to reduce nitrate to nitrous oxide. Denitrifying fungal isolates recovered from the site were classified and found to be distributed broadly within the phylum Ascomycota and within a single genus of the Basidiomycota. Potential denitrification rate assays with sediment-groundwater slurries showed the potential for subsurface fungi to reduce nitrate to nitrous oxide under in situ acidic pH conditions. PMID:24389927
NASA Astrophysics Data System (ADS)
Smith, C. G.; Marot, M. E.; Osterman, L. E.; Adams, C. S.; Haller, C.; Jones, M.
2016-12-01
Tropical cyclones are a major driver of change in coastal and estuarine environments. Heightened waves and sea level associated with tropical cyclones act to erode sediment from one environment and redistribute it to adjacent environments. The fate and transport of this redistributed material is of great importance to the long-term sediment budget, which in turns affects the vulnerability of these coastal systems. The spatial variance in both storm impacts and sediment redistribution is large. At the regional-scale, difference in storm impacts can often be attributed to natural variability in geologic parameters (sediment availability/erodibility), coastal geomorphology (including fetch, shoreline tortuosity, back-barrier versus estuarine shoreline, etc.), storm characteristics (intensity, duration, track/approach), and ecology (vegetation type, gradient, density). To assess storm characteristics and coastal geomorphology on a regional-scale, cores were collected from seven Juncus marshes located in coastal regions of Alabama and Mississippi (i.e., Mobile Bay, Bon Secour Bay, Mississippi Sound, and Grand Bay) expected to have been impacted by Hurricane Frederic (1979). All cores were sectioned and processed for water content, organic matter (loss-on-ignition), and select cores analyzed for foraminiferal assemblages, stable isotopes and bulk metals to aid in the identification of storm events. Excess lead-210 and cesium-137 were used to develop chronologies for the cores and evaluate mass accumulation rates and sedimentation rates. Temporal variations in accumulation rates of inorganic and organic sediments were compared with shoreline and areal change rates derived from historic aerial imagery to evaluate potential changes in sediment exchange prior to, during, and following the storm. A combined geospatial and geologic approach will improve our understanding of coastal change in estuarine marsh environments, as well help refine the influence of storms on regional sediment budgets.
An Investigation of the Influence of Waves on Sediment Processes in Skagit Bay
2011-09-30
source term parameterizations common to most surface wave models, including wave generation by wind , energy dissipation from whitecapping, and...I. Total energy and peak frequency. Coastal Engineering (29), 47-78. Zijlema, M. Computation of wind -wave spectra in coastal waters with SWAN on unstructured grids Coastal Engineering, 2010, 57, 267-277 ...supply and wind on tidal flat sediment transport. It will be used to evaluate the capabilities of state-of-the-art open source sediment models and to
Contaminated Coastal Sediments in the Northeastern United States: Changing Sources Over Time
NASA Astrophysics Data System (ADS)
Buchholtz ten Brink, M. R.; Bothner, M. H.; Mecray, E. L.
2001-05-01
Regional studies of coastal sediments in the northeastern United States, conducted by the U.S. Geological Survey, show that trace metal contamination from land-based activities has occurred near all major urban centers. Concentrations of metals, such as Cu, Pb, Zn, Hg, and Ag, are 2-5 times background levels in sediments of Boston Harbor, Long Island Sound (LIS), offshore of Gulf of Maine coastal cities, and in the New York Bight (NYB). Contaminant accumulations are strongly influenced by sediment lithology and sediment transport properties in local areas, in addition to proximity to pollutant sources. Inventories are greatest in muddy depo-centers of the NYB, western LIS, and Boston Harbor. Based on sediment cores, the onset of metal contamination in the northeast occurs in the mid-1800s, with inputs increasing in the mid-1900s and decreasing (20-50%) from the 1970s to present. The increases correlate with local population growth and abundance of a bacterial sewage indicator, Clostridium perfringens. Increases of N and Corg in cores also reflect population growth and changing wastewater treatment practices. Corg values reach a high of 6% in buried sediments near the NYB disposal sites. Cores from western LIS have increasing values of C, N, and P in the most recently deposited sediments, in contrast to metal concentrations that have decreased in recent years. Cessation of sludge disposal and reduction of chemical discharges have been effective at reducing inputs; however, contaminated sediment deposits remain in rivers (e.g., the Charles), floodplains (e.g., the Housatonic), and coastal sediments. In the future, high concentrations of metal contaminants stored in buried sediments of marine and fluvial systems are likely to be a lingering and significant source of pollution to coastal environments. Until more effective source-reduction occurs, land-use and industrial practices associated with population growth in the northeast will remain dominant factors for nutrient loading. A multi-disciplinary approach, including predictive models that include changing sources and physical, chemical, and biological transport processes, is required to estimate the long-term fate and effect of pollutants currently in coastal sediments.
Chen, Meilian; Hur, Jin
2015-08-01
Dissolved organic matter (DOM) in sediments, termed here sediment DOM, plays a variety of important roles in global biogeochemical cycling of carbon and nutrients as well as in the fate and transport of xenobiotics. Here we reviewed sediment DOM, including pore waters and water extractable organic matter from inland and coastal sediments, based on recent literature (from 1996 to 2014). Sampling, pre-treatment, and characterization methods for sediment DOM were summarized. The characteristics of sediment DOM have been compared along an inland to coastal ecosystems gradient and also with the overlying DOM in water column to distinguish the unique nature of it. Dissolved organic carbon (DOC) from inland sediment DOM was generally higher than coastal areas, while no notable differences were found for their aromaticity and apparent molecular weight. Fluorescence index (FI) revealed that mixed sources are dominant for inland sediment DOM, but marine end-member prevails for coastal sediment DOM. Many reports showed that sediments operate as a net source of DOC and chromophoric DOM (CDOM) to the water column. Sediment DOM has shown more enrichment of nitrogen- and sulfur-containing compounds in the elemental signature than the overlying DOM. Fluorescent fingerprint investigated by excitation-emission matrix coupled with parallel factor analysis (EEM-PARAFAC) further demonstrated the characteristics of sediment DOM lacking in the photo-oxidized and the intermediate components, which are typically present in the overlying surface water. In addition, the biogeochemical changes in sediment DOM and the subsequent environmental implications were discussed with the focus on the binding and the complexation properties with pollutants. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Carr, Mary-Elena
1996-01-01
Coastal upwelling of subsurface nutrient-rich water occurs along the eastern boundary of the ocean basins and leads to high primary production and fish catches. In this study satellite observations are used to compare the seasonal cycle in wind forcing and in the oceanic and biological response of the major coastal upwelling regions associated with the Canary, Benguela, California, and Humboldt Currents.
Analysis of a PAH-degrading bacterial population in subsurface sediments on the Mid-Atlantic Ridge
NASA Astrophysics Data System (ADS)
Shao, Zongze; Cui, Zhisong; Dong, Chunming; Lai, Qiliang; Chen, Liang
2010-05-01
Little is known about the types and concentrations of polycyclic aromatic hydrocarbons (PAHs) existing in the deep-sea subsurface environment, which is believed to be cold, oligothrophic and of high static pressure. PAHs in the upper layers of the water column are unavoidably subjected to degradation while they are deposited to the sea floor and become embedded in the deep-sea sediment. In this report, a high concentration of PAHs was discovered in the sediment 2.7 m beneath the bottom surface at a water depth of 3962 m on the Mid-Atlantic Ridge (MAR). The total concentration of PAHs was 445 ng (g dry wt sediment) -1. Among the seven detected PAHs, the concentrations of phenanthrene (222 ng g -1) and fluorene (79 ng g -1) were relatively high. In addition, PAH-degrading bacteria were found within the sediments. As in a previously detected site on the MAR, in the PAH-enriched region of this site, a bacterium of the genus Cycloclasticus was found to be the predominant isolate detected by PCR-DGGE analysis. In addition, bacteria of the Halomonas, Marinobacter, Alcanivorax, Thalassospira and Maricaulis genera, were also included in the PAH-degrading community. In summary, a high concentration of PAHs was detected in the subsurface of the deep-sea sediment, and once again, the Cycloclasticus bacterium was confirmed to be a ubiquitous marine PAH degrader even in the subsurface marine environment. Considering the abundance of PAHs therein, biodegradation is thus thought to be inactive, probably because of the low temperature, limited oxygen and/or limited nutrients.
NASA Astrophysics Data System (ADS)
Geng, X.; Kreyns, P.; Koneshloo, M.; Michael, H. A.
2017-12-01
Groundwater flow and salt transport processes are important for protection of coastal water resources and ecosystems. Geological heterogeneity has been recognized as a key factor affecting rates and patterns of groundwater flow and the evolution of subsurface salinity distributions in coastal aquifers. The hydrogeologic system of the volcanic Hawaiian Islands is characterized by lava flows that can form continuous, connected geologic structures in subsurface. Understanding the role of geological heterogeneity in aquifer salinization and water exchange between aquifers and the ocean is essential for effective assessment and management of water resources in the Hawaii islands. In this study, surface-based geostatistical techniques were adopted to generate geologically-realistic, statistically equivalent model realizations of the hydrogeologic system on the Big Island of Hawaii. The density-dependent groundwater flow and solute transport code SEAWAT was used to perform 3D simulations to investigate subsurface flow and salt transport through these random realizations. Flux across the aquifer-ocean interface, aquifer salinization, and groundwater flow pathways and associated transit times were quantified. Numerical simulations of groundwater pumping at various positions in the aquifers were also conducted, and associated impacts on saltwater intrusion rates were evaluated. Results indicate the impacts of continuous geologic features on large-scale groundwater processes in coastal aquifers.
Sediment quality was determined in a multiyear study for 108 near-coastal sites located in Mississippi, Alabama and Florida. The primary objective of the study was to determine the relative impact of common stressor sources on sediment quality utilizing a weight-of-evidence appro...
Subsurface Tectonics and Pingos of Northern Alaska
NASA Astrophysics Data System (ADS)
Skirvin, S.; Casavant, R.; Burr, D.
2008-12-01
We describe preliminary results of a two-phase study that investigated links between subsurface structural and stratigraphic controls, and distribution of hydrostatic pingos on the central coastal plain of Arctic Alaska. Our 2300 km2 study area is underlain by a complete petroleum system that supports gas, oil and water production from 3 of the largest oil fields in North America. In addition, gas hydrate deposits exist in this area within and just below the permafrost interval at depths of 600 to 1800 feet below sea level. Phase 1 of the study compared locations of subsurface faults and pingos for evidence of linkages between faulting and pingo genesis and distribution. Several hundred discrete fault features were digitized from published data and georeferenced in a GIS database. Fault types were determined by geometry and sense of slip derived from well log and seismic maps. More than 200 pingos and surface sediment type associated with their locations were digitized from regional surficial geology maps within an area that included wire line and seismic data coverage. Beneath the pingos lies an assemblage of high-angle normal and transtensional faults that trend NNE and NW; subsidiary trends are EW and NNW. Quaternary fault reactivation is evidenced by faults that displaced strata at depths exceeding 3000 meters below sea level and intersect near-surface units. Unpublished seismic images and cross-section analysis support this interpretation. Kinematics and distribution of reactivated faults are linked to polyphase deformational history of the region that includes Mesozoic rift events, succeeded by crustal shortening and uplift of the Brooks Range to the south, and differential subsidence and segmentation of a related foreland basin margin beneath the study area. Upward fluid migration, a normal process in basin formation and fault reactivation, may play yet unrecognized roles in the genesis (e.g. fluid charging) of pingos and groundwater hydrology. Preliminary analysis shows that more than half the pingos occur within 150 m of the vertical projections of subsurface fault plane traces. In a previous, unpublished geostatistical study, comparison of pingo and random locations indicated a non-random NE-trending alignment of pingos. This trend in particular matches the dominant orientation of fault sets that are linked to the most recent tectonic deformation of the region. A concurrent Phase 2 of the study examines the potential role of near-surface stratigraphic units in regard to both pingos and faults. Both surface and subsurface coarse-grained deposits across the region are often controlled by fault structures; this study is the first to assess any relationship between reservoir rocks and pingo locations. Cross-sections were constructed from well log data to depths of 100 meters. Subsurface elements were compared with surface features. Although some studies have linked fine-grained surface sediments with pingo occurrence, our analysis hints that coarse-grained sediments underlie pingos and may be related to near-surface fluid transmissivity, as suggested by other researchers. We also investigated pingo occurrence in relationship to upthrown or downthrown fault blocks that vary in the degree of deformation and fluid transmission. Results will guide a proposed pingo drilling project to test linkages between pingos, subsurface geology, hydrology, and petroleum systems. Findings from this study could aid research and planning for field exploration of similar settings on Earth and Mars.
Diploptene: an indicator of terrigenous organic carbon in Washington coastal sediments
NASA Technical Reports Server (NTRS)
Prahl, F. G.; Hayes, J. M.
1992-01-01
The pentacyclic triterpene 17 beta(H),21 beta(H)-hop-22(29)-ene (diploptene) occurs in sediments throughout the Columbia River drainage basin and off the southern coast of Washington state in concentrations comparable to long-chain plantwax n-alkanes. The same relationship is evident for diploptene and long-chain n-alkanes in soils from the Willamette Valley. Microorganisms indigenous to soils and soil erosion are indicated as the biological source and physical process, respectively, for diploptene in coastal sediments. Similarity between the stable carbon isotopic composition (delta 13CPDB) of diploptene isolated from soil in the Willamette Valley (-31.2 +/- 0.3%) and from sediments deposited throughout the Washington coastal environment (-31.2 +/- 0.5%) supports this argument. Values of delta for diploptene in river sediments are variable and 8-17% lighter, indicating that an additional biological source such as methane-oxidizing bacteria makes a significant contribution to the diploptene record in river sediments. Selective biodegradation resulting from a difference in the physicochemical association within eroded particles can explain the absence of the more-13C-depleted form of diploptene in Washington coastal sediments, but this mechanism remains unproven.
Assessing coastal plain risk indices for subsurface phosphorus loss
USDA-ARS?s Scientific Manuscript database
Phosphorus (P) Indices are important tools for nutrient management planning in the U.S. whose evaluation often has been deemphasized in favor of research and development. Assessing P Indices in artificially drained agroecosystems is especially important, as subsurface flow is the predominant mode of...
Dispersal of fine sediment in nearshore coastal waters
Warrick, Jonathan A.
2013-01-01
Fine sediment (silt and clay) plays an important role in the physical, ecological, and environmental conditions of coastal systems, yet little is known about the dispersal and fate of fine sediment across coastal margin settings outside of river mouths. Here I provide simple physical scaling and detailed monitoring of a beach nourishment project near Imperial Beach, California, with a high portion of fines (40% silt and clay by weight). These results provide insights into the pathways and residence times of fine sediment transport across a wave-dominated coastal margin. Monitoring of the project used physical, optical, acoustic, and remote sensing techniques to track the fine portion of the nourishment sediment. The initial transport of fine sediment from the beach was influenced strongly by longshore currents of the surf zone that were established in response to the approach angles of the waves. The mean residence time of fine sediment in the surf zone—once it was suspended—was approximately 1 hour, and rapid decreases in surf zone fine sediment concentrations along the beach resulted from mixing and offshore transport in turbid rip heads. For example, during a day with oblique wave directions and surf zone longshore currents of approximately 25 cm/s, the offshore losses of fine sediment in rips resulted in a 95% reduction in alongshore surf zone fine sediment flux within 1 km of the nourishment site. However, because of the direct placement of nourishment sediment on the beach, fine suspended-sediment concentrations in the swash zone remained elevated for several days after nourishment, while fine sediment was winnowed from the beach. Once offshore of the surf zone, fine sediment settled downward in the water column and was observed to transport along and across the inner shelf. Vertically sheared currents influenced the directions and rates of fine sediment transport on the shelf. Sedimentation of fine sediment was greatest on the seafloor directly offshore of the nourishment site. However, a mass balance of sediment suggests that the majority of the fine sediment moved far away (over 2 km) from the nourishment site or to water depths greater than 10 m, where fine sediment represents a substantial portion of the bed material. Thus, the fate of fine sediment in nearshore waters was influenced strongly by wave conditions, surf zone and rip current transport, and the vertical density and flow conditions of coastal waters.
NASA Astrophysics Data System (ADS)
Pratt, C.; Lottermoser, B. G.
2007-04-01
This investigation revealed the presence of traffic-derived metals within road, stream and estuarine sediments collected from a coastal catchment, northern Australia. Studied road sediments displayed variable total metal concentrations (median Cd, Cu, Pb, Pd, Pt, Ni and Zn values: 0.19, 42.6, 67.5, 0.064, 0.104, 36.7 and 698 mg/kg, respectively). The distinctly elevated Zn values are due to abundant tyre rubber shreds (as verified by SEM-EDS and correlation analysis). By comparison to the road sediments, background stream sediments taken upstream from roads have relatively low median Pb, Pd, Pt and Zn concentrations (7.3 mg/kg Pb, 0.01 mg/kg Pd, 0.012 mg/kg Pt, 62 mg/kg Zn). Stream and estuarine sediment samples collected below roads have median values of 21.8 mg/kg Pb, 0.014 mg/kg Pd, 0.021 mg/kg Pt and 71 mg/kg Zn, and exhibit 207Pb/206Pb and 208Pb/206Pb ratios that appear on a mixing line between the isotopically distinct background stream sediments and the road sediments. Thus, mobilisation of dusts and sediments from road surfaces has resulted in relatively elevated Pb, Pd, Pt and Zn concentrations and non-radiogenic Pb isotope ratios in local coastal stream and estuarine sediments. The investigation demonstrates that traffic-derived metals enter coastal stream and estuary sediments at the fringe of the Great Barrier Reef lagoon.
Saher, Noor Us; Siddiqui, Asmat Saleem
2016-04-15
Heavy metals concentrations (Fe, Cu, Zn, Ni, Cr, Co, Pb, and Cd) were scrutinized during two monitoring years (2001 and 2011) in the coastal sediment of Pakistan. The status of metal contamination in coastal sediment was interpreted using sediment quality guidelines, and single and combined metal pollution indices. Ni, Cr, and Cd were recognized for their significant (p<0.05) intensification in the sediment during the last decade. Sediment quality guidelines recognized the frequent adverse biological effect of Ni and the occasional adverse biological effect of Cu, Cr, Pb and Cd. Single metal pollution indices (Igeo, EF, CF, and ER) revealed that sediment pollution is predominantly caused by Pb and Cd. Low to moderate contamination was appraised along the coast by multi-metal pollution indices (CD and PERI). Correlation study specifies that heavy metals were presented diverse affiliations and carriers for distribution in the sediment during the last decade. Copyright © 2016 Elsevier Ltd. All rights reserved.
2013-09-01
management practices resulting in the release of contaminants to soil , sediment, and groundwater in coastal environments. At contaminated sediment sites it...the release of contaminants to soil , sediment, and groundwater in coastal environments. Areas of potential concern at these sites are identified by...study will acquire additional soil and groundwater data necessary to satisfactorily evaluate remedial technologies and develop cleanup goals supporting
NASA Astrophysics Data System (ADS)
Seisuma, Z.; Kulikova, I.
2012-11-01
The comparison of spatial and temporal distribution of Hg, Cd, Pb, Cu, Ni, Zn, Mn and Fe concentrations in sediments from the Gulf of Riga and open Baltic Sea along the coastal zone is presented for the first time. There were considerable differences in Pb, Zn, Mn and Fe levels in sediment at various stations of the Gulf of Riga. A significant difference of Cd, Pb, Cu, Ni, Zn levels was found in sediments of various stations in the open Baltic coast. The amount of Cd, Pb, Cu, Ni, Zn and Fe levels also differed significantly in the sediments of the Gulf of Riga in different years. A considerable yearly difference in amount of Hg, Cd, Pb, Cu, Ni and Mn levels was found in sediments in the open Baltic coast. The essential highest values of Pb and Zn in coastal sediments of the open Baltic Sea are stated in comparison with the Gulf of Riga. The concentrations of other metals have only a tendency to be higher in coastal sediments of the open Baltic Sea in comparison with the Gulf of Riga. Natural and anthropogenic factors were proved to play an important role in determining resultant metals concentrations in the regions.
Bioturbation and the role of microniches for sulfate reduction in coastal marine sediments.
Bertics, Victoria J; Ziebis, Wiebke
2010-11-01
The effects of bioturbation in marine sediments are mainly associated with an increase in oxic and oxidized zones through an influx of oxygen-rich water deeper into the sediment and the rapid transport of particles between oxic and anoxic conditions. However, macrofaunal activity also can increase the occurrence of reduced microniches and anaerobic processes, such as sulfate reduction. Our goal was to determine the two-dimensional distribution of microniches associated with burrows of a ghost shrimp (Neotrypaea californiensis) and to determine microbial activities. In laboratory experiments, detailed measurements of sulfate reduction rates (SRR) were measured by injecting, in a 1 cm grid, radiolabelled sulfate directly into a narrow aquarium (40 cm × 30 cm × 3 cm) containing the complex burrow of an actively burrowing shrimp. Light-coloured oxidized burrow walls, along with black reduced microniches, were clearly visible through the aquarium walls. Direct injection of radiotracers allowed for whole-aquarium incubation to obtain two-dimensional documentation of sulfate reduction. Results indicated SRR were up to three orders of magnitude higher (140-790 nmol SO(4) (2-) cm(-3) day(-1) ) in reduced microniches associated with burrows when compared with the surrounding sediment. Additionally, some of the subsurface sulfate-reducing microniches associated with the burrow system appeared to be zones of dinitrogen fixation. Bioturbation may also lead to decreased sulfate reduction in other microniches and the sum of the activity in all microniches might not result in a total increase of sulfate reduction compared with non-bioturbated control sediments. © 2010 Society for Applied Microbiology and Blackwell Publishing Ltd.
Comparison of Radiocarbon Ages of Sediments, Plants, and Shells From Coastal Lakes in North Florida
NASA Astrophysics Data System (ADS)
Wang, Y.; Das, O.; Liu, J.; Xu, X.; Roy, R.; Donoghue, J. F.; Means, G. H.
2017-12-01
Coastal lakes sediments are valuable archives of paleo-hurricanes and environmental changes during the late Quaternary provided that they can be accurately dated. Here, we report new radiocarbon (14C) dates derived from various organic and inorganic substrates, including bulk sediment organic matter, plants, shells, particulate organic matter (POM) and dissolved organic matter (DOM), from three coastal lakes in Florida, and compare these ages to evaluate the "reservoir effect" on 14C dating of both organic and inorganic carbon in these lakes. Bulk sediment organic matter yielded consistently older 14C ages than contemporaneous plants and shell fragments, indicating significant radiocarbon deficiencies in sedimentary organic matter in these coastal lakes, caused by influx of old organic carbon from terrestrial sources (such as soils and ancient peat deposits) in the watershed. Several reversals are observed in the 14C ages of bulk sediment organic matter in sediment cores from these lakes, indicating that input of aged organic matter from terrestrial sources into these lakes can vary considerably over time. DOM and POM samples collected at different times also yielded variable 14C signatures, further confirming the temporal variability in the contribution of old organic carbon from terrestrial sources to the lakes. The 14C age discrepancy between bulk sediment organic matter and co-occurring plant fragments or shells varies from less than one hundred years to nearly three thousand years in sediment cores examined in this study. The results show that 14C ages obtained from bulk sediment organic matter in these coastal lakes are unreliable. Analyses of both modern and fossil shells from one of the lakes suggest that the 14C reservoir effect on inorganic carbon in the lake is small and thus freshwater shells (if preserved in the sediment cores) may serve as a good substrate for 14C dating in the absence of plant fragments. However, unidentifiable shell fragments, especially those associated with sand pockets (or sand layers), in coastal lake sediment cores are not suitable for 14C dating as they are likely of marine origin and affected by significant marine 14C reservoir effect.
Towards integrated assessment of the northern Adriatic Sea sediment budget using remote sensing
NASA Astrophysics Data System (ADS)
Taramelli, A.; Filipponi, F.; Valentini, E.; Zucca, F.; Gutierrez, O. Q.; Liberti, L.; Cordella, M.
2014-12-01
Understanding the factors influencing sediment fluxes is a key issue to interpret the evolution of coastal sedimentation under natural and human impact and relevant for the natural resources management. Despite river plumes represent one of the major gain in sedimentary budget of littoral cells, knowledge of factors influencing complex behavior of coastal plumes, like river discharge characteristics, wind stress and hydro-climatic variables, has not been yet fully investigated. Use of Earth Observation data allows the identification of spatial and temporal variations of suspended sediments related to river runoff, seafloor erosion, sediment transport and deposition processes. Objective of the study is to investigate sediment fluxes in northern Adriatic Sea by linking suspended sediment patterns of coastal plumes to hydrologic and climatic forcing regulating the sedimentary cell budget and geomorphological evolution in coastal systems and continental shelf waters. Analysis of Total Suspended Matter (TSM) product, derived from 2002-2012 MERIS time series, was done to map changes in spatial and temporal dimension of suspended sediments, focusing on turbid plume waters and intense wind stress conditions. From the generated multi temporal TSM maps, dispersal patterns of major freshwater runoff plumes in northern Adriatic Sea were evaluated through spatial variability of coastal plumes shape and extent. Additionally, sediment supply from river distributary mouths was estimated from TSM and correlated with river discharge rates, wind field and wave field through time. Spatial based methodology has been developed to identify events of wave-generated resuspension of sediments, which cause variation in water column turbidity, occurring during intense wind stress and extreme metocean conditions, especially in the winter period. The identified resuspension events were qualitatively described and compared with to hydro-climatic variables. The identification of spatial and temporal pattern variability highlighted the presence of seasonal sediment dynamics linked to the seasonal cycle in river discharge and wind stress. Results suggest that sediment fluxes generate geomorphological variations in northern Adriatic Sea, which are mainly controlled by river discharge rates and modulated by the winds.
NASA Astrophysics Data System (ADS)
Flury, Sabine; Røy, Hans; Dale, Andrew W.; Fossing, Henrik; Tóth, Zsuzsanna; Spiess, Volkhard; Jensen, Jørn Bo; Jørgensen, Bo Barker
2016-09-01
Shallow gas accumulates in coastal marine sediments when the burial rate of reactive organic matter beneath the sulfate zone is sufficiently high and the methanogenic zone is sufficiently deep. We investigated the controls on methane production and free methane gas accumulation along a 400 m seismo-acoustic transect across a sharp transition from gas-free into gas-bearing sediment in Aarhus Bay (Denmark). Twelve gravity cores were taken, in which the pore water was analyzed for inorganic solutes while rates of organic carbon mineralization were measured experimentally by 35SO42- radiotracer method. The thickness of organic-rich Holocene mud increased from 5 to 10 m along the transect concomitant with a shallowing of the depth of the sulfate-methane transition from >4 m to 2.5 m. In spite of drastic differences in the distribution of methane and sulfate in the sediment along the transect, there were only small differences in total mineralization, and methanogenesis was only equivalent to about 1% of sulfate reduction. Shallow gas appeared where the mud thickness exceeded 8-9 m. Rates of methanogenesis increased along the transect as did the upward diffusive flux of methane. Interestingly, the increase in the sedimentation rate and Holocene mud thickness had only a modest direct effect on methanogenesis rates in deep sediments. This increase in methane flux, however, triggered a shallowing of the sulfate-methane transition which resulted in a large increase in methanogenesis at the top of the methanogenic zone. Thus, our results demonstrate a positive feedback mechanism that causes a strong enhancement of methanogenesis and explains the apparently abrupt appearance of gas when a threshold thickness of organic-rich mud is exceeded.
Historical bathymetry and bathymetric change in the Mississippi-Alabama coastal region, 1847-2009
Buster, Noreen A.; Morton, Robert A.
2011-01-01
Land loss and seafloor change around the Mississippi and Alabama (MS-AL) barrier islands are of great concern to the public and to local, state, and federal agencies. The islands provide wildlife protected areas and recreational land, and they serve as a natural first line of defense for the mainland against storm activity (index map on poster). Principal physical conditions that drive morphological seafloor and coastal change in this area include decreased sediment supply, sea-level rise, storms, and human activities (Otvos, 1970; Byrnes and others, 1991; Morton and others, 2004; Morton, 2008). Seafloor responses to the same processes can also affect the entire coastal zone. Sediment eroded from the barrier islands is entrained in the littoral system, where it is redistributed by alongshore currents. Wave and current activity is partially controlled by the profile of the seafloor, and this interdependency along with natural and anthropogenic influences has significant effects on nearshore environments. When a coastal system is altered by human activity such as dredging, as is the case of the MS-AL coastal region, the natural state and processes are altered, and alongshore sediment transport can be disrupted. As a result of deeply dredged channels, adjacent island migration is blocked, nearshore environments downdrift in the littoral system become sediment starved, and sedimentation around the channels is modified. Sediment deposition and erosion are reflected through seafloor evolution. In a rapidly changing coastal environment, understanding historically where and why changes are occurring is essential. To better assess the comprehensive dynamics of the MS-AL coastal zone, a 160-year evaluation of the bathymetry and bathymetric change of the region was conducted.
NASA Astrophysics Data System (ADS)
Sharman, G.; Covault, J. A.; Stockli, D. F.; Sickmann, Z.; Malkowski, M. A.; Johnstone, S.
2017-12-01
Seacliff erosion poses a major threat to southern California coastal communities, including the propensity for episodic cliff failure and damage to residential and commercial property. Rising sea level is predicted to accelerate seacliff retreat, yet few constraints exist on how rapid sea level rise influenced coastal erosion rates in pre-modern timescales. Here we look to the geologic record in submarine fans to investigate changes in relative sediment supply from rivers and coastal erosion, the latter including seacliff retreat and bluffland erosion. To understand how sea level rise driven by past global warming impacted coastal erosion rates, we sampled modern rivers of the Peninsular Ranges and latest Pleistocene-Holocene submarine canyon-fan systems in southern California for detrital zircon U-Pb geochronology (1369 analyses from 10 samples). Modern river samples show a systematic north-south change in grain age populations broadly distributed across Cretaceous time (ca. 70-135 Ma) to a predominance of middle Cretaceous grain ages (ca. 95-115 Ma), reflecting variations in the geologic age of units within each river catchment. The Carlsbad and La Jolla submarine canyon-fan systems, deposited during sea level lowstand and highstand, respectively, exhibit detrital zircon age distributions consistent with derivation from upstream rivers, with mixing in the littoral zone. However, a sample from the Oceanside fan, deposited during rapid sea level rise at ca. 13 ka, is dominated by detrital ages that lack a local source in the northern Peninsular Ranges, including latest Cretaceous, late Jurassic, and Proterozoic ages. However, such grain ages are widespread in Paleogene sedimentary rocks that comprise the shelf and coastal area, suggesting increased sediment supply from coastal and shelf erosion. Assuming that the Oceanside sample is representative of sediment production during sea level rise, sediment mixing calculations suggest a one to two orders of magnitude increase in sediment from coastal erosion relative to river-supplied sediment. Our results thus suggest a significant increase in coastal erosion rates following the Last Glacial Maximum, highlighting the risk that future sea level rise poses to coastal communities.
Russell, Joseph A.; León-Zayas, Rosa; Wrighton, Kelly; Biddle, Jennifer F.
2016-01-01
Studies of subsurface microorganisms have yielded few environmentally relevant isolates for laboratory studies. In order to address this lack of cultivated microorganisms, we initiated several enrichments on sediment and underlying basalt samples from North Pond, a sediment basin ringed by basalt outcrops underlying an oligotrophic water-column west of the Mid-Atlantic Ridge at 22°N. In contrast to anoxic enrichments, growth was observed in aerobic, heterotrophic enrichments from sediment of IODP Hole U1382B at 4 and 68 m below seafloor (mbsf). These sediment depths, respectively, correspond to the fringes of oxygen penetration from overlying seawater in the top of the sediment column and upward migration of oxygen from oxic seawater from the basalt aquifer below the sediment. Here we report the enrichment, isolation, initial characterization and genomes of three isolated aerobic heterotrophs from North Pond sediments; an Arthrobacter species from 4 mbsf, and Paracoccus and Pseudomonas species from 68 mbsf. These cultivated bacteria are represented in the amplicon 16S rRNA gene libraries created from whole sediments, albeit at low (up to 2%) relative abundance. We provide genomic evidence from our isolates demonstrating that the Arthrobacter and Pseudomonas isolates have the potential to respire nitrate and oxygen, though dissimilatory nitrate reduction could not be confirmed in laboratory cultures. The cultures from this study represent members of abundant phyla, as determined by amplicon sequencing of environmental DNA extracts, and allow for further studies into geochemical factors impacting life in the deep subsurface. PMID:27242705
Russell, Joseph A; León-Zayas, Rosa; Wrighton, Kelly; Biddle, Jennifer F
2016-01-01
Studies of subsurface microorganisms have yielded few environmentally relevant isolates for laboratory studies. In order to address this lack of cultivated microorganisms, we initiated several enrichments on sediment and underlying basalt samples from North Pond, a sediment basin ringed by basalt outcrops underlying an oligotrophic water-column west of the Mid-Atlantic Ridge at 22°N. In contrast to anoxic enrichments, growth was observed in aerobic, heterotrophic enrichments from sediment of IODP Hole U1382B at 4 and 68 m below seafloor (mbsf). These sediment depths, respectively, correspond to the fringes of oxygen penetration from overlying seawater in the top of the sediment column and upward migration of oxygen from oxic seawater from the basalt aquifer below the sediment. Here we report the enrichment, isolation, initial characterization and genomes of three isolated aerobic heterotrophs from North Pond sediments; an Arthrobacter species from 4 mbsf, and Paracoccus and Pseudomonas species from 68 mbsf. These cultivated bacteria are represented in the amplicon 16S rRNA gene libraries created from whole sediments, albeit at low (up to 2%) relative abundance. We provide genomic evidence from our isolates demonstrating that the Arthrobacter and Pseudomonas isolates have the potential to respire nitrate and oxygen, though dissimilatory nitrate reduction could not be confirmed in laboratory cultures. The cultures from this study represent members of abundant phyla, as determined by amplicon sequencing of environmental DNA extracts, and allow for further studies into geochemical factors impacting life in the deep subsurface.
Woszczyk, Michał; Poręba, Grzegorz; Malinowski, Łukasz
2017-04-01
In this study we combined radioisotopes ( 210 Pb, 137 Cs and 7 Be) and hydrodynamic modeling to investigate sedimentary processes in three coastal lakes on the Polish Baltic coast. The research aimed at establishing the depth of sediment mixing and its effects on sediment geochemistry as well as showing the relationship between lake water salinity and radionuclide distribution in the sediment cores. We established that the intensity of mixing displayed appreciable variability throughout the lakes and the thickness of sediment mixing layer was between <2 and 22 cm. The mixing was primarily due to wind-induced waves. The vertical mixing was shown to shift sulfidation of the sediments towards deeper layers. We found that the distributions of radioisotopes, 137 Cs in particular, in the sediment cores from coastal lakes were strongly affected by the early diagenetic processes, which caused diffusive migration of radionuclides. The inventories of 210 Pb ex and 137 Cs in the lakes were positively related to salinity. The high inventories of both isotopes (3.2-10.9 kBq ·m -2 for 210 Pb ex and 3.0-6.0 kBq·m -2 for 137 Cs) in coastal lakes were explained by enhanced sedimentation within estuarine mixing zone and delivery of "additional" 210 Pb and 137 Cs to the lakes during saltwater ingressions. The results of this study have implications for the paleolimnology, sedimentology and biogeochemistry of coastal lakes. Copyright © 2017 Elsevier Ltd. All rights reserved.
Graw, Michael F.; D'Angelo, Grace; Borchers, Matthew; Thurber, Andrew R.; Johnson, Joel E.; Zhang, Chuanlun; Liu, Haodong; Colwell, Frederick S.
2018-01-01
The deep marine subsurface is a heterogeneous environment in which the assembly of microbial communities is thought to be controlled by a combination of organic matter deposition, electron acceptor availability, and sedimentology. However, the relative importance of these factors in structuring microbial communities in marine sediments remains unclear. The South China Sea (SCS) experiences significant variability in sedimentation across the basin and features discrete changes in sedimentology as a result of episodic deposition of turbidites and volcanic ashes within lithogenic clays and siliceous or calcareous ooze deposits throughout the basin's history. Deep subsurface microbial communities were recently sampled by the International Ocean Discovery Program (IODP) at three locations in the SCS with sedimentation rates of 5, 12, and 20 cm per thousand years. Here, we used Illumina sequencing of the 16S ribosomal RNA gene to characterize deep subsurface microbial communities from distinct sediment types at these sites. Communities across all sites were dominated by several poorly characterized taxa implicated in organic matter degradation, including Atribacteria, Dehalococcoidia, and Aerophobetes. Sulfate-reducing bacteria comprised only 4% of the community across sulfate-bearing sediments from multiple cores and did not change in abundance in sediments from the methanogenic zone at the site with the lowest sedimentation rate. Microbial communities were significantly structured by sediment age and the availability of sulfate as an electron acceptor in pore waters. However, microbial communities demonstrated no partitioning based on the sediment type they inhabited. These results indicate that microbial communities in the SCS are structured by the availability of electron donors and acceptors rather than sedimentological characteristics. PMID:29696012
Nitrogen fixation in denitrified marine waters.
Fernandez, Camila; Farías, Laura; Ulloa, Osvaldo
2011-01-01
Nitrogen fixation is an essential process that biologically transforms atmospheric dinitrogen gas to ammonia, therefore compensating for nitrogen losses occurring via denitrification and anammox. Currently, inputs and losses of nitrogen to the ocean resulting from these processes are thought to be spatially separated: nitrogen fixation takes place primarily in open ocean environments (mainly through diazotrophic cyanobacteria), whereas nitrogen losses occur in oxygen-depleted intermediate waters and sediments (mostly via denitrifying and anammox bacteria). Here we report on rates of nitrogen fixation obtained during two oceanographic cruises in 2005 and 2007 in the eastern tropical South Pacific (ETSP), a region characterized by the presence of coastal upwelling and a major permanent oxygen minimum zone (OMZ). Our results show significant rates of nitrogen fixation in the water column; however, integrated rates from the surface down to 120 m varied by ∼30 fold between cruises (7.5±4.6 versus 190±82.3 µmol m(-2) d(-1)). Moreover, rates were measured down to 400 m depth in 2007, indicating that the contribution to the integrated rates of the subsurface oxygen-deficient layer was ∼5 times higher (574±294 µmol m(-2) d(-1)) than the oxic euphotic layer (48±68 µmol m(-2) d(-1)). Concurrent molecular measurements detected the dinitrogenase reductase gene nifH in surface and subsurface waters. Phylogenetic analysis of the nifH sequences showed the presence of a diverse diazotrophic community at the time of the highest measured nitrogen fixation rates. Our results thus demonstrate the occurrence of nitrogen fixation in nutrient-rich coastal upwelling systems and, importantly, within the underlying OMZ. They also suggest that nitrogen fixation is a widespread process that can sporadically provide a supplementary source of fixed nitrogen in these regions.
Modeling transport and deposition of the Mekong River sediment
Xue, Zuo; He, Ruoying; Liu, J. Paul; Warner, John C.
2012-01-01
A Coupled Wave–Ocean–SedimentTransport Model was used to hindcast coastal circulation and fine sedimenttransport on the Mekong shelf in southeastern Asian in 2005. Comparisons with limited observations showed that the model simulation captured the regional patterns and temporal variability of surface wave, sea level, and suspended sediment concentration reasonably well. Significant seasonality in sedimenttransport was revealed. In summer, a large amount of fluvial sediments was delivered and deposited near the MekongRiver mouth. In the following winter, strong ocean mixing, and coastal current lead to resuspension and southwestward dispersal of a small fraction of previously deposited sediments. Model sensitivity experiments (with reduced physics) were performed to investigate the impact of tides, waves, and remotely forced ambient currents on the transport and dispersal of the fluvial sediment. Strong wave mixing and downwelling-favorable coastal current associated with the more energetic northeast monsoon in the winter season are the main factors controlling the southwestward along-shelf transport.
Landscape-Scale Analysis of Wetland Sediment Deposition from Four Tropical Cyclone Events
Tweel, Andrew W.; Turner, R. Eugene
2012-01-01
Hurricanes Katrina, Rita, Gustav, and Ike deposited large quantities of sediment on coastal wetlands after making landfall in the northern Gulf of Mexico. We sampled sediments deposited on the wetland surface throughout the entire Louisiana and Texas depositional surfaces of Hurricanes Katrina, Rita, Gustav, and the Louisiana portion of Hurricane Ike. We used spatial interpolation to model the total amount and spatial distribution of inorganic sediment deposition from each storm. The sediment deposition on coastal wetlands was an estimated 68, 48, and 21 million metric tons from Hurricanes Katrina, Rita, and Gustav, respectively. The spatial distribution decreased in a similar manner with distance from the coast for all hurricanes, but the relationship with distance from the storm track was more variable between events. The southeast-facing Breton Sound estuary had significant storm-derived sediment deposition west of the storm track, whereas sediment deposition along the south-facing coastline occurred primarily east of the storm track. Sediment organic content, bulk density, and grain size also decreased significantly with distance from the coast, but were also more variable with respect to distance from the track. On average, eighty percent of the mineral deposition occurred within 20 km from the coast, and 58% was within 50 km of the track. These results highlight an important link between tropical cyclone events and coastal wetland sedimentation, and are useful in identifying a more complete sediment budget for coastal wetland soils. PMID:23185635
Geologic framework, evolution, and sediment resources for restoration of the Louisiana Coastal Zone
Kulp, Mark; Penland, Shea; Williams, S. Jeffress; Jenkins, Chris; Flocks, Jim; Kindinger, Jack
2005-01-01
The Louisiana Coastal Zone along the north-central Gulf of Mexico represents one of America's most important coastal ecosystems in terms of natural resources, human infrastructure, and cultural heritage. This zone also has the highest rates of coastal erosion and wetland loss in the nation because of a complex combination of natural processes and anthropogenic activities during the past century. In response to the dramatic land loss, regional-scale restoration plans are being developed through a partnership of federal and state agencies. One objective is to maintain the barrier island and tidal inlet systems, thereby reducing the impact of storm surge and interior wetland loss. Proposed shore line restoration work relies primarily upon the use of large volumes of sand-rich sediment for shoreline stabilization and the implementation of the shoreline projects. Although sand-rich sediment is required for the Louisiana restoration projects, it is of limited availability within the generally clay to silt-rich, shallow strata of the Louisiana Coastal Zone. Locating volumetrically significant quantities of sand-rich sediment presents a challenge and requires detailed field investigations using direct sampling and geophysical sensing methods. Consequently, there is a fundamental need to thoroughly understand and map the distribution and textural character {e.g., sandiness) of sediment resources within the Coastal Zone for the most cost-effective design and completion of restoration projects.
Advances in the Study of Moving Sediments and Evolving Seabeds
NASA Astrophysics Data System (ADS)
Davies, Alan G.; Thorne, Peter D.
2008-01-01
Sands and mud are continually being transported around the world’s coastal seas due to the action of tides, wind and waves. The transport of these sediments modifies the boundary between the land and the sea, changing and reshaping its form. Sometimes the nearshore bathymetry evolves slowly over long time periods, at other times more rapidly due to natural episodic events or the introduction of manmade structures at the shoreline. For over half a century we have been trying to understand the physics of sediment transport processes and formulate predictive models. Although significant progress has been made, our capability to forecast the future behaviour of the coastal zone from basic principles is still relatively poor. However, innovative acoustic techniques for studying the fundamentals of sediment movement experimentally are now providing new insights, and it is expected that such observations, coupled with developing theoretical works, will allow us to take further steps towards the goal of predicting the evolution of coastlines and coastal bathymetry. This paper presents an overview of our existing predictive capabilities, primarily in the field of non-cohesive sediment transport, and highlights how new acoustic techniques are enabling our modelling efforts to achieve greater sophistication and accuracy. The paper is aimed at coastal scientists and managers seeking to understand how detailed physical studies can contribute to the improvement of coastal area models and, hence, inform coastal zone management strategies.
Coastal Modeling System: Mathematical Formulations and Numerical Methods
2014-03-01
sediment transport , and morphology change. The CMS was designed and developed for coastal inlets and navigation applications, including channel...numerical methods of hydrodynamic, salinity and sediment transport , and morphology change model CMS-Flow. The CMS- Flow uses the Finite Volume...and the influence of coastal structures. The implicit hydrodynamic model is coupled to a nonequilibrium transport model of multiple-sized total
NASA Technical Reports Server (NTRS)
Menzel, W. Paul; Huh, Oscar K.; Walker, Nan
2004-01-01
The purpose of this joint University of Wisconsin (UW) and Louisiana State University (LSU) project has been to relate short term climate variation to response in the coastal zone of Louisiana in an attempt to better understand how the coastal zone is shaped by climate variation. Climate variation in this case largely refers to variation in surface wind conditions that affect wave action and water currents in the coastal zone. The primary region of focus was the Atchafalaya Bay and surrounding bays in the central coastal region of Louisiana. Suspended solids in the water column show response to wind systems both in quantity (through resuspension) and in the pattern of dispersement or transport. Wind systems associated with cold fronts are influenced by short term climate variation. Wind energy was used as the primary signature of climate variation in this study because winds are a significant influence on sediment transport in the micro-tidal Gilf of Mexico coastal zone. Using case studies, the project has been able to investigate the influence of short term climate variation on sediment transport. Wind energy data, collected daily for National Weather Service (NWS) stations at Lake Charles and New Orleans, LA, were used as an indicator of short term climate variation influence on seasonal time scales. A goal was to relate wind energy to coastal impact through sediment transport. This goal was partially accomplished by combining remote sensing and wind energy data. Daily high resolution remote sensing observations are needed to monitor the complex coastal zone environment, where winds, tides, and water level all interact to influence sediment transport. The NASA Earth Observing System (EOS) era brings hope for documenting and revealing response of the complex coastal transport mosaic through regular high spatial resolution observations from the Moderate resolution Imaging Spectrometer (MODIS) instrument. MODIS observations were sampled in this project for information content and should continue to be viewed as a resource for coastal zone monitoring. The project initialized the effort to transfer a suspended sediment concentration (SSC) algorithm to the MODIS platform for case 2 waters. MODIS enables monitoring of turbid coastal zones around the globe. The MODIS SSC algorithm requires refinements in the atmospheric aerosol contribution, sun glint influence, and designation of the sediment inherent optical properties (IOPs); the framework for continued development is in place with a plan to release the algorithm to the MODIS direct broadcast community.
In situ expression of nifD in Geobacteraceae in subsurface sediments
Holmes, Dawn E.; Nevin, Kelly P.; Lovely, Derek R.
2004-01-01
In order to determine whether the metabolic state of Geobacteraceae involved in bioremediation of subsurface sediments might be inferred from levels of mRNA for key genes, in situ expression of nifD, a highly conserved gene involved in nitrogen fixation, was investigated. When Geobacter sulfurreducens was grown without a source of fixed nitrogen in chemostats with acetate provided as the limiting electron donor and Fe(III) as the electron acceptor, levels of nifD transcripts were 4 to 5 orders of magnitude higher than in chemostat cultures provided with ammonium. In contrast, the number of transcripts of recA and the 16S rRNA gene were slightly lower in the absence of ammonium. The addition of acetate to organic- and nitrogen-poor subsurface sediments stimulated the growth of Geobacteraceae and Fe(III) reduction, as well as the expression of nifD in Geobacteraceae. Levels of nifD transcripts in Geobacteraceae decreased more than 100-fold within 2 days after the addition of 100 μM ammonium, while levels of recA and total bacterial 16S rRNA in Geobacteraceae remained relatively constant. Ammonium amendments had no effect on rates of Fe(III) reduction in acetate-amended sediments or toluene degradation in petroleum-contaminated sediments, suggesting that other factors, such as the rate that Geobacteraceae could access Fe(III) oxides, limited Fe(III) reduction. These results demonstrate that it is possible to monitor one aspect of the in situ metabolic state of Geobacteraceae species in subsurface sediments via analysis of mRNA levels, which is the first step toward a more global analysis of in situ gene expression related to nutrient status and stress response during bioremediation by Geobacteraceae.
The Importance of Subsurface Production for Carbon Export - Evidence from Past Oceans
NASA Astrophysics Data System (ADS)
Kemp, A. E. S.
2016-02-01
The maxim of the geological concept of uniformitarianism is "the present is the key to the past", but in the context of our temporally and spatially minimal observational record of modern ocean biogeochemical processes, ancient ocean sediments may provide critical evidence of the key species involved in carbon flux. Specifically, laminated marine sediments that preserve the seasonal flux cycle represent "palaeo-sediment traps" that vastly expand our knowledge of the operations of the marine biological carbon pump. Several key subsurface-dwelling diatom taxa, hitherto thought to be biogeochemically insignificant, are dominant components of ancient marine sediments. For example, the sapropels and equivalent horizons that have accumulated in the Mediterranean over the past 5 million years, contain abundant rhizosolenid and hemiaulid diatoms. These deposits contain the highest concentrations of organic carbon and there is extensive evidence that this was produced by subsurface production in a deep chlorophyll maximum. The highly stratified conditions that led to this subsurface production and carbon flux are in contrast to prevailing views that have held upwelling systems as those with the highest potential for export in the global ocean. Similarly, studies of ancient "greenhouse" periods such as the Cretaceous, with highly stratified oceans and which are potential analogues for future climate change, show evidence for extensive subsurface production. Together with emerging evidence from stratified regions of the modern ocean, such as the subtropical gyres, insights from these ancient oceans suggest that a reappraisal is required of current views on key phytoplankton producers and their role the operation of the marine biological carbon pump.
A Sedimentary Carbon Inventory for a Scottish Sea Loch
NASA Astrophysics Data System (ADS)
Smeaton, Craig; Austin, William; Davies, Althea; Baltzer, Agnes
2015-04-01
Coastal oceans are sites of biogeochemical cycling, as terrestrial, atmospheric, and marine carbon cycles interact. Important processes that affect the carbon cycle in the coastal ocean include upwelling, river input, air-sea gas exchange, primary production, respiration, sediment burial, export, and sea-ice dynamics. The magnitude and variability of many carbon fluxes are accordingly much higher in coastal oceans than in open ocean environments. Having high-quality observations of carbon stocks and fluxes in the coastal environment is important both for understanding coastal ocean carbon balance and for reconciling continent-scale carbon budgets. Despite the ecological, biological, and economic importance of coastal oceans, the magnitude and variability of many of the coastal carbon stocks are poorly quantified in most regions in comparison to terrestrial and deep ocean carbon stocks. The first stage in understanding the carbon dynamics in coastal waters is to quantify the existing carbon stocks. The coastal sediment potentially holds a significant volume of carbon; yet there has been no comprehensive attempt to quantitatively determine the volume of carbon held in those coastal sediments as echoed by Bauer et al., (2013) "the diverse sources and sinks of carbon and their complex interactions in these waters remain poorly understood". We set out to create the first sedimentary carbon inventory for a sea loch (fjord); through a combination of geophysics and biogeochemistry. Two key questions must be answered to achieve this goal; how much sediment is held within the loch and what percentage of that sediment carbon? The restrictive geomorphology of sea lochs (fjords) provides the perfect area to develop this methodology and answer these fundamental questions. Loch Sunart the longest of the Scottish sea lochs is our initial test site due to existing geophysical data being available for analysis. Here we discuss the development of the joint geophysics and biogeochemical methodology and how it was applied to Loch Sunart. The methodology was applied to seismic geophysics data collected in 2009 (Baltzer et al. 2010,) and data compiled through biogeochemical analysis of sediment cores collected from Loch Sunart. Through the combination of these datasets we have undertaken calculations to quantify the total sediment mass and the percentage of carbon contained in that sediment. Through this work we have created the first holistic sedimentary carbon inventory for a sea loch; which is the first step to tackling the larger questions around coastal carbon. Baltzer, A, Bates, R, Mokeddem, Z, Clet-Pellerin, M, Walter-Simonnet, A-V, Bonnot-Courtois, C and Austin, WEN 2010, Using seismic facies and pollen analyses to evaluate climatically driven change in a Scottish sea loch (fjord) over the last 20 ka, Geological Society, London, Special Publications, 344, (1), pp. 355-369. Bauer, JE, Cai, W-J, Raymond, P a, Bianchi, TS, Hopkinson, CS and Regnier, P a G 2013, The changing carbon cycle of the coastal ocean., Nature, 504, (7478), pp. 61-70.
Estimating growth rates of uncultivated clades of archaea and bacteria in marine sediments
NASA Astrophysics Data System (ADS)
Lloyd, K. G.
2016-12-01
The vast majority of microbes present in marine sediments have never been cultivated in laboratory conditions. It is therefore difficult to estimate the growth rates of these organisms in situ. Quantitative PCR (qPCR) and 16S rRNA gene libraries from sediments below 10 cm show very little change in abundance of these organisms with depth or with redox conditions. Therefore, we hypothesized that uncultivated clades of bacteria and archaea that are ubiquitous in marine sediments, actually grow in the upper 10 cm of marine sediments. We collected sediment cores from the White Oak River estuary, sectioned them in 1 cm intervals, and examined the changes in abundance of uncultivated microbes with depth using 16S rRNA gene libraries and qPCR. We found that some of the key clades associated with the deep subsurface microbiome, such as Bathyarchaeota and MBG-D, increase in abundance with depth, demonstrating extremely slow growth in these shallow subsurface sediments.
Recent Advances in Studies of Coastal Marsh Sedimentation
NASA Astrophysics Data System (ADS)
Pasternack, G. B.; Leonard, L. A.
2001-05-01
Limited understanding of sedimentation processes in coastal marshes is a key constraint on the management of environmental impacts associated with sea level rise, degrading quality and quantity of aquatic habitats, and downstream impacts of watershed land use. The problem is exacerbated by complex interactions among physical, ecological, and chemical variables that impact sedimentation over a large range of spatio-temporal scales. These challenges are being met by increasingly sophisticated approaches which cross-fertilize from other disciplines or go even further to integrate multidisciplinary perspectives. One example of the former has been improved precision of fine scale measurements of fluid mechanics and sediment transport over marsh plains and application of those measurements in geomorphologic and coastal engineering models. This advancement has improved our understanding of marsh dynamics at a mechanistic level, which is key for improving the predictive capabilities of wetland models. An example of a multidisciplinary approach that has become very common is the combined usage of multiple monitoring, isotopic, and palynological methods for estimating sedimentation and erosion at a site over a range of time scales. By applying such combinations, it has been possible to piece apart the relative roles of natural processes such as sea level rise and storms from human impacts such as flow constrictions, channel dredging, and sediment supply changes. Beyond improving approaches used to study marshes, past work has led to new questions about marsh morphodynamics and how coastal marshes interact with upland watersheds. With the aid of chaos theory, some recent studies have asserted that coastal marsh channels are fractal and thus must follow universal laws in common with watershed drainages and other dendritic systems. Also, where marshes exist among a mosaic of habitats on a delta, research has revealed the relative roles of watershed versus coastal processes in controlling marsh morphology and ecology. Amazingly, some tidal freshwater deltas are only 50-100 years old due to rapid sedimentation caused by upland land use, but show the widest diversity of plants among all coastal marsh types. These systems often serve as seed banks that protect estuaries from loss of their important SAV beds. Given the central role of marsh sedimentation in the underlying dynamics of marsh evolution, research in this area will continue to play a vital role in management of an increasingly stressed coastal zone.
NASA Technical Reports Server (NTRS)
Miller, Richard L.; Georgiou, Ioannis; Glorioso, Mark V.; McCorquodale, J. Alex; Crowder, Keely
2006-01-01
Field measurements from small boats and sparse arrays of instrumented buoys often do not provide sufficient data to capture the dynamic nature of biogeophysical parameters in may coastal aquatic environments. Several investigators have shown the MODIS 250 m images can provide daily synoptic views of suspended sediment concentration in coastal waters to determine sediment transport and fate. However, the use of MODIS for coastal environments can be limited due to a lack of cloud-free images. Sediment transport models are not constrained by sky conditions but often suffer from a lack of in situ observations for model calibration or validation. We demonstrate here the utility of MODIS 250 m to calibrate (set model parameters), validate output, and set or reset initial conditions of a hydrodynamic and sediment transport model (ECOMSED) developed for Lake Pontchartrain, LA USA. We present our approach in the context of how to quickly assess of 'prototype' an application of NASA data to support environmental managers and decision makers. The combination of daily MODIS imagery and model simulations offer a more robust monitoring and prediction system of suspended sediments than available from either system alone.
NASA Astrophysics Data System (ADS)
Aiello, Antonello; Adamo, Maria; Canora, Filomena
2014-05-01
The transfer of sediments from hydrographic basins towards the coast is a significant pathway of material transfer on Earth. In sedimentary environment, the main portion of sediment that enters the coastal areas is derived originally from erosion in the coastal watersheds. Extensive anthropogenic pressures carried out within coastal basins have long shown negative impacts on littoral environments. In fluvial systems, sediments trapped behind dams and in-stream gravel mining cause the reduction in sediment supply to the coast. Along the Jonian littoral of the Basilicata Region (southern Italy), natural coastal processes have been severely disrupted since the second half of the 20th century as a result of riverbed sand and gravel mining and dam construction, when economic advantages were measured in terms of the development of infrastructure, water storage, and hydropower production for the agricultural, industrial and socio-economic development of the area. Particularly, the large numbers of dams and impoundments that have been built in the hydrographic basins have led a signi?cant reduction on river sediment loads. As a result, the Jonian littoral is experiencing a catalysed erosion phenomenon. In order to increase understanding of the morpho-dynamics of the Jonian littoral environment and more fully appreciate the amount of coastal erosion, an evaluation of the sediment budget change due to dam construction within the hydrographic basins of the Basilicata Region needs to be explored. Since quantitative data on decadal trends in river sediment supply before and after dam construction are lacking, as well as updated dam silting values, river basin assessment of the spatial patterns and estimated amount of sediment erosion and deposition are important in evaluating changes in the sediment budget. As coastal areas are being affected by an increasing number of population and socio-economic activities, the amount of sediment deficit at the littoral can permit to forecast coastline fluctuations caused by such anthropogenic interventions. These are valuable information for both the management of and development of future plans for coastal environments and for reducing exposure risk to coastal erosion. The purpose of this study was to compare and to evaluate the suitability of the RUSLE (Revised Universal Soil Loss Equation), RUSLE 3D and USPED (Unit Stream Power-based Erosion Deposition) models in assessing the sediment budget variation at watershed scale. In order to assess the rate of net soil erosion, the three models were applied to the Bradano river basin and to the sub-basin subtended by the San Giuliano Dam. To this end, digital terrain model, products derived from satellite remote sensing (multi-temporal Landsat imagery), soil texture maps and ancillary data were integrated and processed in a GIS. To test the models, the computed soil erosion rates were integrated over the San Giuliano sub-basin surface, and compared with the dam silting value provided by an interregional authority responsible for its management. The three models have proven to be effective in quantifying the soil erosion at watershed scale.
NASA Astrophysics Data System (ADS)
Bergamaschi, Brian A.; Walters, Jeffrey S.; Hedges, John I.
1999-02-01
Although recent research has indicated that bacteria may contribute an important fraction of biochemical residues in terrestrial and marine environments, it is difficult for geochemists to identify contributions from these ubiquitous and biochemically diverse organisms. Previous studies have suggested uronic acids and O-methyl sugars may be useful indicators of microbial abundance and activity, but have been limited primarily to analyses of a small number of isolated samples. We report here comparative distributions of O-methyl sugars, uronic acids, and aldoses in sediment trap material and sediments from Dabob Bay, WA and nearby Saanich Inlet, BC, where temporal and spatial trends may be used together with well-established patterns in other biochemicals to identify bacterial contributions against the background of other carbohydrate sources. O-methyl sugars and uronic acids were important contributors to the overall flux and burial of polysaccharide material in Dabob Bay and Saanich Inlet, composing ≤12 wt% of the total carbohydrate yields from sediment trap and sediment samples. O-methyl sugars accounted for an average of 5% of the carbohydrate yields from sediment trap materials and sediments, but were found rarely and only in low abundance in vascular plant tissues, phytoplankton, and kelp. In contrast, uronic acids were abundant products of sediment trap material and sediments, as well as vascular plant tissues, where in some cases they predominated among all carbohydrates. Uronic acid abundance in sediment trap material averaged 3% and ranged to >6% of total carbohydrate yields. The persistence of total minor sugar yields in water column collections from Dabob Bay throughout the seasonal cycle indicated they had a primary source that was not directly related to plankton bloom cycles nor pulsed inputs of vascular plant remains. Subsurface maxima in total minor sugar yields (and several individual components) within sediment cores from both sites indicate in situ sedimentary sources. Taken together, the observed environmental distributions strongly suggest that the minor sugar abundances in Dabob Bay and Saanich Inlet were controlled by in situ microbial production.
NASA Astrophysics Data System (ADS)
Xu, K.; Champagne, B. N.
2017-12-01
The transport of sediment in the coastal zone and continental shelf is highly impacted by fluvial and oceanographic dynamics. In Louisiana, the Mississippi River delivers a bulk of water, sediment, and nutrients to the coast. However, coastal land loss highlights the importance of the sediment deposited at the mouth of the river. Sediment is the foundation to build land and suspended sediment concentration (SSC) tracks the delivery, deposition, and erosion of sediment. On a more applicable scale, variables such as SSC can be used to calculate sediment transport flux, an important parameter for projects such as sediment diversions and barrier island restoration. In order to rely on suspended sediment concentration (SSC) as continuous data, lab experiments are needed to establish the relationship between turbidity and SSC. Factors such as sensor type (optical or acoustic) and grain size (coarse or fine) can greatly impact the estimated SSC. In this study, fine-grained sediment was collected from multiple sites in coastal Louisiana and used to calibrate both optical backscatter (OBS) and acoustic backscatter (ABS) sensors to establish the relationship between sensor type and accuracy of the SSC estimation. Multiple grain-size analyses using a Laser Diffraction Particle Size Analyzer helped determine the effects of sensor accuracy regarding grain size. The results of these experiments were combined in order to establish the calibration curves of SSC. Our results indicated that the OBS-3A sensor's turbidity data were more correlated with the SSC than the OBS-5+'s data. Possible explanations for this could be due to differences between the instruments' measuring ranges and their sensitivity to various grain sizes. This technology development has a broad impact to the studies of sediment delivery, transport, and deposition in multiple types of coastal protection and restoration projects.
NASA Astrophysics Data System (ADS)
Oliver, T. S. N.; Tamura, T.; Hudson, J. P.; Woodroffe, C. D.
2017-07-01
Prograded barriers are distinctive coastal landforms preserving the position of past shorelines as low relief, shore-parallel ridges composed of beach sediments and commonly adorned with variable amounts of dune sand. Prograded barriers have been valued as coastal archives which contain palaeoenvironmental information, however integrating the millennial timescale geological history of barriers with observed inter-decadal modern beach processes has proved difficult. Technologies such as airborne LiDAR, ground penetrating radar (GPR) and optically stimulated luminescence dating (OSL) were utilised at Boydtown and Wonboyn, in southeastern Australia, and combined with previously reported radiocarbon dates and offshore seismic and sedimentological data to reconstruct the morpho-sedimentary history of prograded barrier systems. These technologies enabled reconstruction of geological timescale processes integrated with an inter-decadal model of ridge formation explaining the GPR-imaged subsurface character of the barriers. Both the Boydtown and Wonboyn barriers began prograding 7500-8000 years ago when sea level attained at or near present height along this coastline and continued prograding until the present-day with an initially slower rate of shoreline advancement. Sources of sediment for progradation appear to be the inner shelf and shoreface with a large shelf sand body likely contributing to progradation at Wonboyn. The Towamba River seems to have delivered sediment to Twofold Bay during flood events after transitioning to a mature estuarine system sometime after 4000 cal. yr BP. Some of this material appears to have been reworked onto the Boydtown barrier, increasing the rate of progradation in the seaward 50% of the barrier deposited over the past 1500 years. The GPR imaged beachfaces are shown to have similar geometry to beach profiles following recent storm events and a model of ridge formation involving cut and fill of the beachface, and dune building in the backshore, explains the character of the preserved beachface record and the morphology of the ridges. This model is applicable to future management of individual beaches where such beaches are subject to ongoing cut and fill, dune building processes and inherited sediment budget conditions.
Ahmed, Bulbul; Cao, Bin; McLean, Jeffrey S; Ica, Tuba; Dohnalkova, Alice; Istanbullu, Ozlem; Paksoy, Akin; Fredrickson, Jim K; Beyenal, Haluk
2012-11-01
A facultative iron-reducing [Fe(III)-reducing] Paenibacillus sp. strain was isolated from Hanford 300A subsurface sediment biofilms that was capable of reducing soluble Fe(III) complexes [Fe(III)-nitrilotriacetic acid and Fe(III)-citrate] but unable to reduce poorly crystalline ferrihydrite (Fh). However, Paenibacillus sp. 300A was capable of reducing Fh in the presence of low concentrations (2 μM) of either of the electron transfer mediators (ETMs) flavin mononucleotide (FMN) or anthraquinone-2,6-disulfonate (AQDS). Maximum initial Fh reduction rates were observed at catalytic concentrations (<10 μM) of either FMN or AQDS. Higher FMN concentrations inhibited Fh reduction, while increased AQDS concentrations did not. We also found that Paenibacillus sp. 300A could reduce Fh in the presence of natural ETMs from Hanford 300A subsurface sediments. In the absence of ETMs, Paenibacillus sp. 300A was capable of immobilizing U(VI) through both reduction and adsorption. The relative contributions of adsorption and microbial reduction to U(VI) removal from the aqueous phase were ∼7:3 in PIPES [piperazine-N,N'-bis(2-ethanesulfonic acid)] and ∼1:4 in bicarbonate buffer. Our study demonstrated that Paenibacillus sp. 300A catalyzes Fe(III) reduction and U(VI) immobilization and that these reactions benefit from externally added or naturally existing ETMs in 300A subsurface sediments.
Ahmed, Bulbul; Cao, Bin; McLean, Jeffrey S.; Ica, Tuba; Dohnalkova, Alice; Istanbullu, Ozlem; Paksoy, Akin; Fredrickson, Jim K.
2012-01-01
A facultative iron-reducing [Fe(III)-reducing] Paenibacillus sp. strain was isolated from Hanford 300A subsurface sediment biofilms that was capable of reducing soluble Fe(III) complexes [Fe(III)-nitrilotriacetic acid and Fe(III)-citrate] but unable to reduce poorly crystalline ferrihydrite (Fh). However, Paenibacillus sp. 300A was capable of reducing Fh in the presence of low concentrations (2 μM) of either of the electron transfer mediators (ETMs) flavin mononucleotide (FMN) or anthraquinone-2,6-disulfonate (AQDS). Maximum initial Fh reduction rates were observed at catalytic concentrations (<10 μM) of either FMN or AQDS. Higher FMN concentrations inhibited Fh reduction, while increased AQDS concentrations did not. We also found that Paenibacillus sp. 300A could reduce Fh in the presence of natural ETMs from Hanford 300A subsurface sediments. In the absence of ETMs, Paenibacillus sp. 300A was capable of immobilizing U(VI) through both reduction and adsorption. The relative contributions of adsorption and microbial reduction to U(VI) removal from the aqueous phase were ∼7:3 in PIPES [piperazine-N,N′-bis(2-ethanesulfonic acid)] and ∼1:4 in bicarbonate buffer. Our study demonstrated that Paenibacillus sp. 300A catalyzes Fe(III) reduction and U(VI) immobilization and that these reactions benefit from externally added or naturally existing ETMs in 300A subsurface sediments. PMID:22961903
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahmed, B.; Cao, B.; McLean, Jeffrey S.
2012-11-07
A facultative iron-reducing (Fe(III)-reducing) Paenibacillus sp. strain was isolated from Hanford 300A subsurface sediment biofilms that was capable of reducing soluble Fe(III) complexes (Fe(III)-NTA and Fe(III)-citrate) but unable to reduce poorly crystalline ferrihydrite (Fh). However, Paenibacillus sp. 300A was capable of reducing Fh in the presence of low concentrations (2 µM) of either of electron transfer mediators (ETMs) flavin mononucleotide (FMN) or anthraquinone-2,6-disulfonate (AQDS). Maximum initial Fh reduction rates were observed at catalytic concentrations (<10 µM) of either FMN or AQDS. Higher FMN concentrations inhibited Fh reduction, while increased AQDS concentrations did not. We found that Paenibacillus sp. 300A alsomore » could reduce Fh in the presence of natural ETMs from Hanford 300A subsurface sediments. In the absence of ETMs, Paenibacillus sp. 300A was capable of immobilizing U(VI) through both reduction and adsorption. The relative contributions of adsorption and microbial reduction to U(VI) removal from the aqueous phase were ~7:3 in PIPES and ~1:4 in bicarbonate buffer. Our study demonstrated that Paenibacillus sp. 300A catalyzes Fe(III) reduction and U(VI) immobilization and that these reactions benefit from externally added or naturally existing ETMs in 300A subsurface sediments.« less
Phosphorus runoff losses from subsurface-applied poultry litter on coastal plain soils.
Kibet, Leonard C; Allen, Arthur L; Kleinman, Peter J A; Feyereisen, Gary W; Church, Clinton; Saporito, Lou S; Way, Thomas R
2011-01-01
The application of poultry litter to soils is a water quality concern on the Delmarva Peninsula, as runoff contributes P to the eutrophic Chesapeake Bay. This study compared a new subsurface applicator for poultry litter with conventional surface application and tillage incorporation of litter on a Coastal Plain soil under no-till management. Monolith lysimeters (61 cm by 61 cm by 61 cm) were collected immediately after litter application and subjected to rainfall simulation (61 mm h(-1) 1 h) 15 and 42 d later. In the first rainfall event, subsurface application of litter significantly lowered total P losses in runoff (1.90 kg ha(-1)) compared with surface application (4.78 kg ha(-1)). Losses of P with subsurface application were not significantly different from disked litter or an unamended control. By the second event, total P losses did not differ significantly between surface and subsurface litter treatments but were at least twofold greater than losses from the disked and control treatments. A rising water table in the second event likely mobilized dissolved forms of P in subsurface-applied litter to the soil surface, enriching runoff water with P. Across both events, subsurface application of litter did not significantly decrease cumulative losses of P relative to surface-applied litter, whereas disking the litter into the soil did. Results confirm the short-term reduction of runoff P losses with subsurface litter application observed elsewhere but highlight the modifying effect of soil hydrology on this technology's ability to minimize P loss in runoff.
Zhu, Zhaoyun; Wang, Tieyu; Wang, Pei; Lu, Yonglong; Giesy, John P
2014-08-30
This study investigated the concentrations and distribution of Perfluoroalkyl and polyfluoroalkyl substances (PFAS) in sediments of 12 rivers from South Bohai coastal watersheds. The highest concentrations of ΣPFAS (31.920 ng g(-1) dw) and PFOA (29.021 ng g(-1) dw) were found in sediments from the Xiaoqing River, which was indicative of local point sources in this region. As for other rivers, concentrations of ΣPFAS ranged from 0.218 to 1.583 ng g(-1) dw were found in the coastal sediments and from 0.167 to 1.953 ng g(-1) dw in the riverine sediments. Predominant PFAS from coastal and riverine areas were PFOA and PFBS, with percentages of 30% and 35%, respectively. Partitioning analysis showed the concentrations of PFNA, PFDA and PFHxS were significantly correlated with organic carbon. The results of a preliminary environmental hazard assessment showed that PFOS posed the highest hazard in the Mi River, while PFOA posed a relative higher hazard in the Xiaoqing River. Copyright © 2013 Elsevier Ltd. All rights reserved.
Sediment type and benthic fauna control the nutrient release in a coastal bay
NASA Astrophysics Data System (ADS)
Voss, Maren; Thoms, Franziska; Dippner, Joachim; Bartl, Ines; Janas, Urzula; Hellemann, Dana; Hietanen, Susanna; Kendzierska, Halina
2017-04-01
Eutrophication of coastal seas is still a major problem that may even increase in the near future according to recent model studies. The catchment of the Baltic Sea with nine highly industrialized riparian countries is intensively used and only few major rivers are responsible for more than half of the riverine nutrient input to the coastal zones. It is hypothesized that these nutrient are the main drivers for large anoxic bottom waters in the central Baltic Sea and an increasing hypoxia problem in coastal waters. The sequestration of nutrients was therefore intensively studied in the Baltic Sea, however either in the water column or in the sediments. The role of the benthic pelagic coupling for the nutrient turnover was much less investigated especially due to technical challenges. We therefore used a lander system to quantify the nutrient release from sediments in a river impacted coastal Bay of Gdansk in the framework of the BONUS-COCOA project. Lander deployments and sediment coring were done simultaneously to measure nutrient fluxes over time and to characterize grain size, permeability, organic matter content, and benthic fauna. The benthic communities were analyzed to identify potential linkages between nutrient release and the species composition. Our study revealed close linkages between types/grain-size of sediment and the nutrient release. The activity of the animals in the sediment seems responsible for significant release of nutrients which is more pronounced than the diffusive nutrient release back to the water column. Rates from nineteen stations were used to draw a conclusive picture of the overall nutrient release from sediments and were set into a framework of a nutrient budget for the Bay of Gdansk considering the role of fauna. Moreover, we are able to identify a depth of roughly 50m as a border that separates the dominance of benthic recycling from deeper stations where mainly deposition or organic material takes place. Changes in properties of sediments are discernible from 50 m downwards to deeper waters. A storm encountered during one cruise was used to evaluate effects of strong wave action on the release and leaching of nutrient from sediments. Overall, the importance of oxygenated coastal waters to allow benthic life is therefore crucial for nutrient turnover and nutrient removal in coastal zones.
Manjoro, Munyaradzi; Rowntree, Kate; Kakembo, Vincent; Foster, Ian; Collins, Adrian L
2017-06-01
Sediment source fingerprinting has been successfully deployed to provide information on the surface and subsurface sources of sediment in many catchments around the world. However, there is still scope to re-examine some of the major assumptions of the technique with reference to the number of fingerprint properties used in the model, the number of model iterations and the potential uncertainties of using more than one sediment core collected from the same floodplain sink. We investigated the role of subsurface erosion in the supply of fine sediment to two sediment cores collected from a floodplain in a small degraded catchment in the Eastern Cape, South Africa. The results showed that increasing the number of individual fingerprint properties in the composite signature did not improve the model goodness-of-fit. This is still a much debated issue in sediment source fingerprinting. To test the goodness-of-fit further, the number of model repeat iterations was increased from 5000 to 30,000. However, this did not reduce uncertainty ranges in modelled source proportions nor improve the model goodness-of-fit. The estimated sediment source contributions were not consistent with the available published data on erosion processes in the study catchment. The temporal pattern of sediment source contributions predicted for the two sediment cores was very different despite the cores being collected in close proximity from the same floodplain. This highlights some of the potential limitations associated with using floodplain cores to reconstruct catchment erosion processes and associated sediment source contributions. For the source tracing approach in general, the findings here suggest the need for further investigations into uncertainties related to the number of fingerprint properties included in un-mixing models. The findings support the current widespread use of ≤5000 model repeat iterations for estimating the key sources of sediment samples. Copyright © 2016 Elsevier Ltd. All rights reserved.
In situ time-series measurements of subseafloor sediment properties
Wheatcroft, R.A.; Stevens, A.W.; Johnson, R.V.
2007-01-01
The capabilities and diversity of subsurface sediment sensors lags significantly from what is available for the water column, thereby limiting progress in understanding time-dependent seabed exchange and high-frequency acoustics. To help redress this imbalance, a new instrument, the autonomous sediment profiler (ASP), is described herein. ASP consists of a four-electrode, Wenner-type resistivity probe and a thermistor that log data at 0.1-cm vertical intervals over a 58-cm vertical profile. To avoid resampling the same spot on the seafloor, the probes are moved horizontally within a 20 times 100-cm-2 area in one of three preselected patterns. Memory and power capacities permit sampling at hourly intervals for up to 3-mo duration. The system was tested in a laboratory tank and shown to be able to resolve high-frequency sediment consolidation, as well as changes in sediment roughness. In a field test off the southern coast of France, the system collected resistivity and temperature data at hourly intervals for 16 d. Coupled with environmental data collected on waves, currents, and suspended sediment, the ASP is shown to be useful for understanding temporal evolution of subsurface sediment porosity, although no large depositional or erosional events occurred during the deployment. Following a rapid decrease in bottom-water temperature, the evolution of the subsurface temperature field was consistent with the 1-D thermal diffusion equation coupled with advection in the upper 3-4 cm. Collectively, the laboratory and field tests yielded promising results on time-dependent seabed change.
Sources, dispersal, and fate of fine sediment supplied to coastal California
Farnsworth, Katherine L.; Warrick, Jonathan A.
2007-01-01
We have investigated the sources, dispersal, and fate of fine sediment supplied to California coastal waters in a partnership between the U.S. Geological Survey (USGS) and the California Sediment Management Workgroup (CSMW). The purpose of this study was to document the rates and characteristics of these processes so that the State can better manage its coastal resources, including sediment. In this study, we made the following observations: - Rivers dominate the supply of fine sediment to the California coastal waters, with an average annual flux of 34 megatonnes (Mt). - Cliff and bluff erosion in central and southern California is a source of fine sediment, with a delivery rate of approximately 10 percent of river loads. In the southern most part of the State, however, where river-sediment loads are low, cliff and bluff erosion represent approximately 40 percent of the total fine-sediment flux. - Temporal variation in the sources of fine sediment is high. River floods and bluff erosion are episodic and dominated by winter storms, which supply most sediment flux to the coast. The magnitude of winter storms is generally related to the El Niño-Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO) climate cycles. - The three rivers that dominate fine-sediment flux to the California coast are the Eel, Salinas, and Santa Clara Rivers. Because the sediment delivery from these and all other California coastal watersheds is episodic, individual rivers discharge most of their annual loads over the course of only a few days per year. - Spatial variation in river-sediment discharge is high and generally related to such watershed characteristics as geology, precipitation, and drainage area. For example, the Transverse Range of southern California represents only 9 percent of the watershed-drainage area but 18 percent of the fine-sediment flux, a function of the young sedimentary bedrock and active tectonics of this region. The urban rivers of southern California were observed to discharge sediment at rates consistent with those of the surrounding Transverse Range rivers, which share the same geologic setting. - Direct observations of fine-sediment dispersal have been limited to the river-mouth settings of the Eel and Santa Clara Rivers, where sediment has been observed to settle quickly from buoyant plumes and be transported along the seabed during periods of storm waves. - After heavy loading of fine sediment onto the continental shelf during river floods, there is increasing evidence that fluid-mud gravity flows occur within a layer 10 to 50 cm above the seabed and efficiently transport fine sediment offshore. - All along the California coast, the timing of river discharge and coastal winds and waves from storm events are strongly coherent; however, of large wave events with the potential for resuspending and transporting fine sediment occur during periods without significant rainfall and therefore no significant river discharge. - Although fine sediment dominates the midshelf mud belts offshore of California river mouths, these mud belts are not the dominant sink of fine sediment, much of which is deposited across the entire continental shelf, including the inner shelf, and offshelf into deeper water depths. - Accumulation rates of fine sediment, which can exceed several millimeters per year, are generally highest near river sources of sediment and along the inner shelf and midshelf. - Sediment-accumulation rates, as summarized from both long-term and recent investigations of continental-shelf geochronology, are generally consistent across California except in southern California, where recently the sediment-accumulation rate has been tenfold greater than the long-term rate, possibly as a result of increased river discharge, wastewater outfall inputs, or other anthropogenic sources. Thus, fine sediment is a natural and dynamic element of the California coastal system because of large, natural sediment sources and dynamic transport processes.
Globalizing Lessons Learned from Regional-scale Observatories
NASA Astrophysics Data System (ADS)
Glenn, S. M.
2016-02-01
The Mid Atlantic Regional Association Coastal Ocean Observing System (MARACOOS) has accumulated a decade of experience designing, building and operating a Regional Coastal Ocean Observing System for the U.S. Integrated Ocean Observing System (IOOS). MARACOOS serves societal goals and supports scientific discovery at the scale of a Large Marine Ecosystem (LME). Societal themes include maritime safety, ecosystem decision support, coastal inundation, water quality and offshore energy. Scientific results that feed back on societal goals with better products include improved understanding of seasonal transport pathways and their impact on phytoplankton blooms and hypoxia, seasonal evolution of the subsurface Mid Atlantic Cold Pool and its impact on fisheries, biogeochemical transformations in coastal plumes, coastal ocean evolution and impact on hurricane intensities, and storm sediment transport pathways. As the global ocean observing requirements grow to support additional societal needs for information on fisheries and aquaculture, ocean acidification and deoxygenation, water quality and offshore development, global observing will necessarily evolve to include more coastal observations and forecast models at the scale of the world's many LMEs. Here we describe our efforts to share lessons learned between the observatory operators at the regional-scale of the LMEs. Current collaborators are spread across Europe, and also include Korea, Indonesia, Australia, Brazil and South Africa. Specific examples include the development of a world standard QA/QC approach for HF Radar data that will foster the sharing of data between countries, basin-scale underwater glider missions between internationally-distributed glider ports to developed a shared understanding of operations and an ongoing evaluation of the global ocean models in which the regional models for the LME will be nested, and joint training programs to develop the distributed teams of scientists and technicians required to support the global network. Globalization includes the development of international networks to coordinate activities, such as the Global HF Radar network supported by GEO, the global Everyone's Glider Organization supported by WMO and IOC, and the need for professional training supported by MTS.
Pulley, Simon; Foster, Ian; Collins, Adrian L
2017-06-01
The objective classification of sediment source groups is at present an under-investigated aspect of source tracing studies, which has the potential to statistically improve discrimination between sediment sources and reduce uncertainty. This paper investigates this potential using three different source group classification schemes. The first classification scheme was simple surface and subsurface groupings (Scheme 1). The tracer signatures were then used in a two-step cluster analysis to identify the sediment source groupings naturally defined by the tracer signatures (Scheme 2). The cluster source groups were then modified by splitting each one into a surface and subsurface component to suit catchment management goals (Scheme 3). The schemes were tested using artificial mixtures of sediment source samples. Controlled corruptions were made to some of the mixtures to mimic the potential causes of tracer non-conservatism present when using tracers in natural fluvial environments. It was determined how accurately the known proportions of sediment sources in the mixtures were identified after unmixing modelling using the three classification schemes. The cluster analysis derived source groups (2) significantly increased tracer variability ratios (inter-/intra-source group variability) (up to 2122%, median 194%) compared to the surface and subsurface groupings (1). As a result, the composition of the artificial mixtures was identified an average of 9.8% more accurately on the 0-100% contribution scale. It was found that the cluster groups could be reclassified into a surface and subsurface component (3) with no significant increase in composite uncertainty (a 0.1% increase over Scheme 2). The far smaller effects of simulated tracer non-conservatism for the cluster analysis based schemes (2 and 3) was primarily attributed to the increased inter-group variability producing a far larger sediment source signal that the non-conservatism noise (1). Modified cluster analysis based classification methods have the potential to reduce composite uncertainty significantly in future source tracing studies. Copyright © 2016 Elsevier Ltd. All rights reserved.
Heavy metals in marine coastal sediments: assessing sources, fluxes, history and trends.
Frignani, Mauro; Bellucci, Luca Giorgio
2004-01-01
Examples are presented from the Adriatic Sea, the Ligurian Sea and the Venice Lagoon to illustrate different approaches to the study of anthropogenic metals in marine coastal sediments. These examples refer to studies of areal distribution and transport mechanisms, individuation of the sources, sediment dating, chronology of the fluxes, present and past trends. In particular, some of the findings achieved in studying the Venice Lagoon are discussed from the point of view of anthropogenic changes both in sediment composition and contaminant fluxes.
Coastal Modeling System: Dredging Module
2016-06-01
nonuniform sediments, spatially variable placement thicknesses or depths, and a user-friendly interface within the SMS. ERDC/CHL CHETN-I-90 June...and W. Wu. 2011. Nonuniform sediment transport modeling and Grays Harbor, WA. In Proceedings of the Coastal Sediments’11. Jacksonville, FL. Stark, J
Lusher, Amy L.; Tirelli, Valentina; O’Connor, Ian; Officer, Rick
2015-01-01
Plastic, as a form of marine litter, is found in varying quantities and sizes around the globe from surface waters to deep-sea sediments. Identifying patterns of microplastic distribution will benefit an understanding of the scale of their potential effect on the environment and organisms. As sea ice extent is reducing in the Arctic, heightened shipping and fishing activity may increase marine pollution in the area. Microplastics may enter the region following ocean transport and local input, although baseline contamination measurements are still required. Here we present the first study of microplastics in Arctic waters, south and southwest of Svalbard, Norway. Microplastics were found in surface (top 16 cm) and sub-surface (6 m depth) samples using two independent techniques. Origins and pathways bringing microplastic to the Arctic remain unclear. Particle composition (95% fibres) suggests they may either result from the breakdown of larger items (transported over large distances by prevailing currents, or derived from local vessel activity), or input in sewage and wastewater from coastal areas. Concurrent observations of high zooplankton abundance suggest a high probability for marine biota to encounter microplastics and a potential for trophic interactions. Further research is required to understand the effects of microplastic-biota interaction within this productive environment. PMID:26446348
NASA Astrophysics Data System (ADS)
Lusher, Amy L.; Tirelli, Valentina; O'Connor, Ian; Officer, Rick
2015-10-01
Plastic, as a form of marine litter, is found in varying quantities and sizes around the globe from surface waters to deep-sea sediments. Identifying patterns of microplastic distribution will benefit an understanding of the scale of their potential effect on the environment and organisms. As sea ice extent is reducing in the Arctic, heightened shipping and fishing activity may increase marine pollution in the area. Microplastics may enter the region following ocean transport and local input, although baseline contamination measurements are still required. Here we present the first study of microplastics in Arctic waters, south and southwest of Svalbard, Norway. Microplastics were found in surface (top 16 cm) and sub-surface (6 m depth) samples using two independent techniques. Origins and pathways bringing microplastic to the Arctic remain unclear. Particle composition (95% fibres) suggests they may either result from the breakdown of larger items (transported over large distances by prevailing currents, or derived from local vessel activity), or input in sewage and wastewater from coastal areas. Concurrent observations of high zooplankton abundance suggest a high probability for marine biota to encounter microplastics and a potential for trophic interactions. Further research is required to understand the effects of microplastic-biota interaction within this productive environment.
Lusher, Amy L; Tirelli, Valentina; O'Connor, Ian; Officer, Rick
2015-10-08
Plastic, as a form of marine litter, is found in varying quantities and sizes around the globe from surface waters to deep-sea sediments. Identifying patterns of microplastic distribution will benefit an understanding of the scale of their potential effect on the environment and organisms. As sea ice extent is reducing in the Arctic, heightened shipping and fishing activity may increase marine pollution in the area. Microplastics may enter the region following ocean transport and local input, although baseline contamination measurements are still required. Here we present the first study of microplastics in Arctic waters, south and southwest of Svalbard, Norway. Microplastics were found in surface (top 16 cm) and sub-surface (6 m depth) samples using two independent techniques. Origins and pathways bringing microplastic to the Arctic remain unclear. Particle composition (95% fibres) suggests they may either result from the breakdown of larger items (transported over large distances by prevailing currents, or derived from local vessel activity), or input in sewage and wastewater from coastal areas. Concurrent observations of high zooplankton abundance suggest a high probability for marine biota to encounter microplastics and a potential for trophic interactions. Further research is required to understand the effects of microplastic-biota interaction within this productive environment.
NASA Astrophysics Data System (ADS)
Saghinadze, Ivane; Pkhakadze, Manana
2016-04-01
(The article was published with support of the Sh. Rustaveli National Science Foundation) The serious environmental problems started in Poti after transfer of the main flow of the river Rioni to the north. As a result the flooding of the city stopped, but the reduction of water consumption in the city channel, caused a decrease of the sediments carried away by the river, what leads to coastal erosion. The coast changes are connected with the movement of the waves and currents in the coastal part of the sea. In the paper, the three-dimensional mathematical model of sediment transport and coastal zone lithodynamics is developed. The finite element formulations for the problems of wave modes, coastal currents, sediment transport and evolution of the coastal zone of the sea, are given. The numerical algorithms, implemented in the form of software. Programs are allowing to bring the solutions of the tasks to numerical results. The numerical modeling was developed in three stages. In the first stage the topography of the coast and the initial geometry of the structures are considered as an input parameters. Then, coastal wave field is calculated for the conditions prescribed in the initial wave. In the second stage, the calculated wave field is used to estimate the spatial distribution of the radiation stresses near-bottom orbital velocity. In the third stage the coastal wave fields and flow fields are used in the sub-models of sediment transport and changes in the topography of the coast. In the numerical solution of basic equations of motion of the waves, coastal currents and changes in sea bottom topography we use: finite element, finite difference methods and the method of upper relaxation, Crank-Nicolson scheme. As an example, we are giving the results of research of the wave regime in the coastal area of the city of Poti (700X600m) adjacent to the port of Poti. The bottom profile, in this area is rather complicated. During the calculations of the average rise of sea level, 0.1m was taken as the initial value, which corresponds to the actual conditions The calculations have found that in the excitement, the sediment transport rates at a depth of 10-15m are almost zero. The maximum value of the velocity of sediment transport change within 0.006-0.0065m2/s.In the case of the western waves it is essential for longshore sediment transport directions, which varies in the range 0.0015-0.0022m2/s. The rate of sediment transport perpendicular to the bank in this case is irrelevant, and their maximum values in the range 0.00001-0.000017m2/s. Changes in the water depth varies from -0.25 to 0.29m. The rate of coastal erosion south of the port of 8-10 m/year.
Durbin, Alan M.; Teske, Andreas
2012-01-01
Examining the patterns of archaeal diversity in little-explored organic-lean marine subsurface sediments presents an opportunity to study the association of phylogenetic affiliation and habitat preference in uncultured marine Archaea. Here we have compiled and re-analyzed published archaeal 16S rRNA clone library datasets across a spectrum of sediment trophic states characterized by a wide range of terminal electron-accepting processes. Our results show that organic-lean marine sediments in deep marine basins and oligotrophic open ocean locations are inhabited by distinct lineages of archaea that are not found in the more frequently studied, organic-rich continental margin sediments. We hypothesize that different combinations of electron donor and acceptor concentrations along the organic-rich/organic-lean spectrum result in distinct archaeal communities, and propose an integrated classification of habitat characteristics and archaeal community structure. PMID:22666218
Sommerfield, C.K.; Lee, H.J.; Normark, W.R.
2009-01-01
Sedimentary strata on the Southern California shelf and slope (Point Conception to Dana Point) display patterns and rates of sediment accumulation that convey information on sea-level inundation, sediment supply, and oceanic transport processes following the Last Glacial Maximum. In Santa Monica Bay and San Pedro Bay, postglacial transgression is recorded in shelf deposits by wave-ravinement surfaces dated at 13-11 ka and an upsection transition from coastal to shallow-marine sediment facies. Depositional conditions analogous to the modern environment were established in the bays by 8-9 ka. On the continental slope, transgression is evidenced in places by an increase in sediment grain size and accumulation rate ca. 15-10 ka, a consequence of coastal ravinement and downslope resedimentation, perhaps in conjunction with climatic increases in fluvial sediment delivery. Grain sizes and accumulation rates then decreased after 12-10 ka when the shelf flooded and backfilled under rising sea level. The Santa Barbara coastal cell contains the largest mass of postglacial sediment at 32-42 ?? 109 metric tons, most of which occurs between offshore Santa Barbara and Hueneme Canyon. The San Pedro cell contains the second largest quantity of sediment, 8-11 ?? 109 metric tons, much of which is present on the eastern Palos Verdes and outer San Pedro shelves. By comparison, the mass of sediment sequestered within the Santa Monica cell is smaller at ??6-8 ?? 109 metric tons. The postglacial sediment mass distribution among coastal cells reflects the size of local fluvial sediment sources, whereas intracell accumulation patterns reflect antecedent bathymetric features conducive for sediment bypass or trapping. ?? 2009 The Geological Society of America.
Significant contribution of Archaea to extant biomass in marine subsurface sediments.
Lipp, Julius S; Morono, Yuki; Inagaki, Fumio; Hinrichs, Kai-Uwe
2008-08-21
Deep drilling into the marine sea floor has uncovered a vast sedimentary ecosystem of microbial cells. Extrapolation of direct counts of stained microbial cells to the total volume of habitable marine subsurface sediments suggests that between 56 Pg (ref. 1) and 303 Pg (ref. 3) of cellular carbon could be stored in this largely unexplored habitat. From recent studies using various culture-independent techniques, no clear picture has yet emerged as to whether Archaea or Bacteria are more abundant in this extensive ecosystem. Here we show that in subsurface sediments buried deeper than 1 m in a wide range of oceanographic settings at least 87% of intact polar membrane lipids, biomarkers for the presence of live cells, are attributable to archaeal membranes, suggesting that Archaea constitute a major fraction of the biomass. Results obtained from modified quantitative polymerase chain reaction and slot-blot hybridization protocols support the lipid-based evidence and indicate that these techniques have previously underestimated archaeal biomass. The lipid concentrations are proportional to those of total organic carbon. On the basis of this relationship, we derived an independent estimate of amounts of cellular carbon in the global marine subsurface biosphere. Our estimate of 90 Pg of cellular carbon is consistent, within an order of magnitude, with previous estimates, and underscores the importance of marine subsurface habitats for global biomass budgets.
Futagami, Taiki; Morono, Yuki; Terada, Takeshi; Kaksonen, Anna H; Inagaki, Fumio
2009-11-01
Halogenated organic compounds serve as terminal electron acceptors for anaerobic respiration in a diverse range of microorganisms. Here, we report on the widespread distribution and diversity of reductive dehalogenase homologous (rdhA) genes in marine subsurface sediments. A total of 32 putative rdhA phylotypes were detected in sediments from the southeast Pacific off Peru, the eastern equatorial Pacific, the Juan de Fuca Ridge flank off Oregon, and the northwest Pacific off Japan, collected at a maximum depth of 358 m below the seafloor. In addition, significant dehalogenation activity involving 2,4,6-tribromophenol and trichloroethene was observed in sediment slurry from the Nankai Trough Forearc Basin. These results suggest that dehalorespiration is an important energy-yielding pathway in the subseafloor microbial ecosystem.
Trends in the suspended-sediment yields of coastal rivers of northern California, 1955–2010
Warrick, J.A.; Madej, Mary Ann; Goñi, M. A.; Wheatcroft, R.A.
2013-01-01
Time-dependencies of suspended-sediment discharge from six coastal watersheds of northern California – Smith River, Klamath River, Trinity River, Redwood Creek, Mad River, and Eel River – were evaluated using monitoring data from 1955 to 2010. Suspended-sediment concentrations revealed time-dependent hysteresis and multi-year trends. The multi-year trends had two primary patterns relative to river discharge: (i) increases in concentration resulting from both land clearing from logging and the flood of record during December 1964 (water year 1965), and (ii) continual decreases in concentration during the decades following this flood. Data from the Eel River revealed that changes in suspended-sediment concentrations occurred for all grain-size fractions, but were most pronounced for the sand fraction. Because of these changes, the use of bulk discharge-concentration relationships (i.e., “sediment rating curves”) without time-dependencies in these relationships resulted in substantial errors in sediment load estimates, including 2.5-fold over-prediction of Eel River sediment loads since 1979. We conclude that sediment discharge and sediment discharge relationships (such as sediment rating curves) from these coastal rivers have varied substantially with time in response to land use and climate. Thus, the use of historical river sediment data and sediment rating curves without considerations for time-dependent trends may result in significant errors in sediment yield estimates from the globally-important steep, small watersheds.
NASA Astrophysics Data System (ADS)
Silva, C. A.; Souza Filho, P. M.; Gouvea Luiz, J.
2007-05-01
The Marapanim estuary is situated in the Para Coastal Plain, North Brazil. It is characterized by an embayed coastline developed on Neogene and Quaternary sediments of the Barreiras and Pos-Barreiras Group. This system is strongly influenced by macrotidal regimes with semidiurnal tides and by humid tropical climate conditions. The interpretation of GPR-reflections presented in this paper is based on correlation of the GPR signal with stratigraphic data acquired on the coastal plain through five cores that were taken along GPR survey lines from the recent deposits and outcrops observed along to the coastal area. The profiles were obtained using a Geophysical Survey Systems Inc., Model YR-2 GPR, with monostatic 700 MHz antenna that permitted to get records of subsurface deposits at 20m depth. Were collected 54 radar sections completing a total of 4.360m. The field data were analyzed using a RADAN software and applying different filters. The interpretation of radar facies following the principles of seismic stratigraphy that permitted analyze the sedimentary facies and facies architecture in order to understand the lithology, depositional environments and stratigraphic evolution of this sedimentary succession as well as to leading to a more precise stratigraphic framework for the Neogene to Quaternary deposits at Marapanim coastal plain. Facies characteristics and sedimentologic analysis (i.e., texture, composition and structure aspects) were investigated from five cores collected through a Rammkernsonde system. The locations were determined using a Global Positioning System. Remote sensing images (Landsat-7 ETM+ and RADARSAT-1 Wide) and SRTM elevation data were used to identify and define the distribution of the different morphologic units. The Coastal Plain extends west-east of the mouth of the Marapanim River, where were identified six morphologic units: paleodune, strand plain, recent coastal dune, macrotidal sandy beach, mangrove and salt marsh. The integration of GPR profiles and stratigraphy data allowed for the recognition of paleochannel geometry, with width of 150m and depth of 20m, developed on Barreiras Group, two discontinuity surfaces and three facies associations organized into sedimentary facies: (i) Tidal channel with mottled sand, Conglomerate with clay pebble and Ophiomorpha/linear Skolithos, channel-fill and tabular cross-bedding sand and sand/mud interlayer facies. (ii) Dune/interdune with wavy bedding and cross-bedding sand and planar bedding and tabular cross-bedding sand facies. (iii) infilled tidal channel with mottled sand, planar/flaser bedding sand, lenticular bedding clay and sand/mud interlayer facies. The present study demonstrates that some facies associations occur restricts to tidal paleochannels and shows features well preserved that are very important to reconstruction of the relative sea-level history in the Marapanim Estuary.
Modeling sediment transport in Qatar: Application for coastal development planning.
Yousif, Ruqaiya; Warren, Christopher; Ben-Hamadou, Radhouan; Husrevoglu, Sinan
2018-03-01
Hydrodynamics and sediment transport are key physical processes contributing to habitat structure within the marine environment. Coastal development that results in the alteration of these processes (e.g., changing water flushing and/or sedimentation rates) can have detrimental impacts on sensitive systems. This is a current, relevant issue in Qatar as its coastal regions continue to be developed, not only around the capital of Doha, but in many areas around this Arabian Gulf peninsula. The northeastern Qatari coast is comprised of diverse and sensitive flora and fauna such as seagrass and macroalgae meadows, coral reefs and patches, turtles, and dugongs that tolerate harsh environmental conditions. In the near future, this area may see a rise in anthropogenic activity in the form of coastal development projects. These projects will add to existing natural stresses, such as high temperature, high salinity, and low rates of precipitation. Consequently, there is a need to characterize this area and assess the potential impacts that these anthropogenic activities may have on the region. In the present study, a novel sediment transport model is described and used to demonstrate the potential impact of altering hydrodynamics and subsequent sediment transport along the northeastern Qatar nearshore marine environment. The developed models will be tested using potential scenarios of future anthropogenic activities forecasted to take place in the area. The results will show the effects on water and sediment behavior and provide a scientific approach for key stakeholders to make decisions with respect to the management of the considered coastal zone. Furthermore, it provides a tool and framework that can be utilized in environmental impact assessment and associated hydrodynamic studies along other areas of the Qatari coastal zone. Integr Environ Assess Manag 2018;14:240-251. © 2017 SETAC. © 2017 SETAC.
Concepts on tracking the impact of tropical cyclones through the coastal zone
NASA Astrophysics Data System (ADS)
Syvitski, J. P.; Hannon, M. T.; Kettner, A. J.; Bachman, S.
2009-12-01
WAVEWATCH III™ (Tolman, 2009) models the evolution of wind wave spectra under influence of wind, breaking, nonlinear interactions, bottom interaction (including shoaling and refraction), currents, water level changes and ice concentrations. The NOAA/NCEP data system offers global estimates every 3 hr at 1° x 1.25° for wind speed and direction at 10m asl, wave direction, height, and period. These and other derived parameters are useful in characterizing wave conditions as tropical cyclones approach landfall. The Tropical Rainfall Measuring Mission or TRMM based precipitation estimates a global 0.25° x 0.25° grid between 50° N-S produced within ≈7 hours of observation time. Estimates are derived from the Passive Microwave Radiometer, Precipitation Radar, and Visible-Infrared Scanner), plus data from: i) SSM/I ii) low-orbit GOES IR and TIROS Operational Vertical Sounder, iii) AMSR-E, iv) AMSU-B, and v) rain gauge data run through algorithm 3B-43. Data are served by the Goddard Distributed Active Archive Center. Evapotranspiration estimates are from the MODIS ET (MOD16) algorithm developed by Mu et al. (2007), based on the Penman-Monteith equation, modified with satellite information that uses: (1) vapor pressure deficit and minimum air temperature constraints on stomatal conductance; (2) leaf area index as a scalar for estimating canopy conductance; (3) the Enhanced Vegetation Index; and (4) a calculation of soil evaporation. TopoFlow is a spatially distributed hydrologic model able to ingest the TRMM and EV data through a suite of hydrologic processes (e.g. snowmelt, precipitation, evapotranspiration, infiltration, channel and overland flow, shallow subsurface flow, and flow diversions) to evolve in time in response to climatic forcings. Modeled or gauged discharge can then be coupled to sediment flux models to provide factor of 2 estimates of sediment flux (Syvitski et al. 2007, Kettner et al. 2008, Syvitski and Milliman 2007). The MODIS satellite constellation can track storm fronts and tropical cyclones and sense sediment discharged, resuspension of shoreline sediment, and be used to observe the dimensions and dynamics of delta flooding and delta-plain aggradation (Syvitski et al. 2009). An integrated workflow involving these models and data system will be presented outlining their use in characterizing sediment flux within the coastal zone.
NASA Astrophysics Data System (ADS)
Zachara, John M.; Smith, Steven C.; Fredrickson, James K.
2000-04-01
Laboratory experiments were conducted with suspensions of goethite (α-FeOOH) and a subsurface sediment to assess the influence of bacterial iron reduction on the fate of Co(II)EDTA 2-, a representative metal-ligand complex of intermediate stability (log K Co(II)EDTA = 17.97). The goethite was synthetic (ca. 55 m 2/g) and the sediment was a Pleistocene age, Fe(III) oxide-containing material from the Atlantic coastal plain (Milford). Shewanella alga strain BrY, a dissimilatory iron reducing bacterium (DIRB), was used to promote Fe(III) oxide reduction. Sorption isotherms and pH adsorption edges were measured for Co 2+, Fe 2+, Co(II)EDTA 2-, and Fe(II)EDTA 2- on the two sorbents in 0.001 mol/L Ca(ClO 4) 2 to aid in experiment interpretation. Anoxic suspensions of the sorbents in PIPES buffer at pH 6.5-7.0 were spiked with Co(II)EDTA 2- (10 -5 mol/L, 60Co and 14EDTA labeled), inoculated with BrY (1-6 × 10 8 organisms/mL), and the headspace filled with a N 2/H 2 gas mix. The experiments were conducted under non-growth conditions. The medium did not contain PO 43- (with one exception), trace elements, or vitamins. The tubes were incubated under anoxic conditions at 25°C for time periods in excess of 100 d. Replicate tubes were sacrificed and analyzed at desired time periods for pH, Fe(II) TOT, Fe (aq)2+, 60Co, and 14EDTA. Abiotic analogue experiments were conducted where Fe (aq)2+ was added in increasing concentration to Co(II)EDTA 2-/mineral suspensions to simulate the influence of bacterial Fe(II) evolution. The DIRB generated Fe(II) from both goethite and the Milford sediment that was strongly sorbed by mineral surfaces. Aqueous Fe 2+ increased during the experiment as surfaces became saturated; Fe (aq)2+ induced the dissociation of Co(II)EDTA 2- into a mixture of Co 2+, Co(II)EDTA 2-, and Fe(II)EDTA 2- (log K Fe(II)EDTA = 15.98). The extent of dissociation of Co(II)EDTA 2- was greater in the subsurface sediment because it sorbed Fe(II) less strongly than did goethite. The post dissociation sorption behavior of Co 2+ was dependent on pH and the intrinsic sorptivity of the solid phases. Dissociation generally lead to an increase in the sorption (e.g., K d) of Co 2+ relative to EDTA 4- (form unspecified). Sorbed biogenic Fe(II) competed with free Co (aq)2+and reduced its sorption relative to unreduced material. It is concluded that cationic radionuclides such as 60Co or 239/240Pu, which may be mobilized from disposed wastes by complexation with EDTA 4-, may become immobilized in groundwater zones where dissimilatory bacterial iron reduction is operative.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marty, R.; Dunbar, R.; Martin, J.B.
1988-09-01
Previously undocumented late Eocene diatomaceous sediments are present near Fundo Desbarrancado (FD) in southern Peru. These sediments are similar to Miocene diatomite from the same area but, unlike the Miocene diatomite, the FD sediments contain cherty layers, are enriched in CaCO/sub 3/, have a diverse and abundant radiolarian fauna, and possess varved-massive and millimeter- and meter-scale biogenic-terrigenous alternations. The FD sediments are part of an Eocene sequence that includes the clastic sediments of the Paracas Formation, and they are correlative to the Chira Formation of northern Peru. The Paleogene biogenic sediments of western South America show that coastal upwelling developedmore » in the eastern Pacific before the latest Eocene, argue for the existence of a proto-Humboldt current at this time, and suggest that the terminal Eocene event was the culmination of gradual changes and not a catastrophic event at the Eocene/Oligocene boundary.« less
Acidification of subsurface coastal waters enhanced by eutrophication
Uptake of fossil-fuel carbon dioxide (CO2) from the atmosphere has acidified the surface ocean by ~0.1 pH units and driven down the carbonate saturation state. Ocean acidification is a threat to marine ecosystems and may alter key biogeochemical cycles. Coastal oceans have also b...
Geophysical Investigation of a Thermokarst Lake Talik in Continuous Permafrost
NASA Astrophysics Data System (ADS)
Creighton, A.; Parsekian, A.; Arp, C. D.; Jones, B. M.; Babcock, E.; Bondurant, A. C.
2016-12-01
On the Arctic Coastal Plain (ACP) of northern Alaska, shallow thermokarst lakes cover up to 25% of the landscape. These lakes occupy depressions created by the subsidence of thawed, ice-rich permafrost. Areas of unfrozen sediment, or taliks, can form under lakes that have a mean annual bottom temperature greater than 0°C. The geometry of these taliks, as well as the processes that create them, are important for understanding interactions between surface water, groundwater, and carbon cycling. Non-invasive geophysical methods are a useful means to study talik sediments as borehole studies yield few data points, and the contrast between unfrozen and frozen sediments is an ideal geophysical target. To study talik configuration associated with an actively expanding thermokarst lake, we conducted a geophysical transect across Peatball Lake. This lake has an estimated initiation age of 1400 calendar years BP. Over the past 60 years, lake surface area has increased through thermal and mechanical shoreline erosion. A talik of previously unknown thickness likely exists below Peatball Lake. We conducted a transect of transient electromagnetic soundings across the lake extending into the surrounding terrestrial environment. Since permafrost has relatively high resistivity compared to talik sediments, the interpreted electrical structure of the subsurface likely reflects talik geometry. We also conducted nuclear magnetic resonance soundings at representative locations along the transect. These measurements can provide data on sub-lake sediment properties including water content. Together, these measurements resolve the talik structure across the lake transect and showed evidence of varying talik thicknesses from the lake edge to center. These is no evidence of a talik at the terrestrial control sites. These results can help constrain talik development models and thus provide insight into Arctic and permafrost processes in the face of a changing climate.
SEDIMENT CHEMICAL CONTAMINATION AND TOXICITY ASSOCIATED WITH A COASTAL GOLF COURSE COMPLEX.
The increasing density of golf courses represents a potential source of sediment contamination to nearby coastal areas, the chemical and biological magnitude of which is almost unknown. The objective of this study was to determine the concentrations of contaminants and toxicities...
Planning for a National Community Sediment Transport Model
2002-01-01
modeling project. The workshop did not develop a NOPP proposal because NOPP had not yet announced funding opportunities for a coastal community modeling...2002, titled “NOPP / USGS Coastal Community Sediment-Transport Model”. Dr. Sherwood presented status reports at the NOPP Nearshore Annual meeting in
Elemental analysis is used to determine particulate carbon (PC) and particulate nitrogen (PN) in estuarine and coastal waters and sediment. The method measures the total carbon and nitrogen irrespective of source (inorganic or organic).
Li, Si; Shi, Wanzi; Li, Huimin; Xu, Nan; Zhang, Ruijie; Chen, Xuejiao; Sun, Weiling; Wen, Donghui; He, Shanliang; Pan, Jianguo; He, Zhidong; Fan, Yingying
2018-09-15
The occurrence, spatiotemporal distribution and ecological risks of 27 antibiotics in water and sediments from rivers and coastal area of Zhuhai, Pearl River estuary, south China were investigated. Higher concentrations of antibiotics were found in river water in dry season than those in wet season (p < 0.01), especially for quinolones (QNs) (6.36-463 ng/L) and aminoglycosides (AGs) (94.9-458 ng/L). In coastal water samples, the concentrations of antibiotics were up to 419 ng/L and 357 ng/L in dry season and wet season, respectively. Higher concentrations of antibiotics in coastal sediment samples were observed in wet season compared with those in dry season (p < 0.01). This may be ascribed to the greater discharge of antibiotics from mariculture and surface sediment flushing in wet season, leading to the accumulation of polluted sediments in the estuary. Redundancy analysis showed that the concentrations of antibiotics in water were correlated with biological/chemical oxygen demand, ammonia nitrogen, and/or total nitrogen (TN). In addition, sediment organic matter (SOC) and TN strongly affected the distribution of antibiotics in sediments. Ecological risk assessment based on risk quotients (RQs) indicated that most antibiotics in water samples posed insignificant risk to fish and green algae, and insignificant to medium risk to daphnid. Copyright © 2018 Elsevier B.V. All rights reserved.
Temporal variability in sediment PAHs accumulation in the northern Gulf of Mexico Shelf
NASA Astrophysics Data System (ADS)
Bam, W.; Maiti, K.; Adhikari, P. L.
2017-12-01
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous group of organic pollutants, some of which are known to be toxic, and/or carcinogenic to humans. The major source of these PAHs into the northern Gulf of Mexico (NGOM) are Mississippi River discharge, coastal erosion, atmospheric deposition, and numerous natural oil seeps and spills. In addition to these background source of PAHs, the Deepwater Horizon (DWH) oil spill in 2010 added 21,000 tons of PAHs into the NGOM water. In this study, we measured PAHs distribution and accumulation rates in coastal sediments near the Mississippi River mouth in 2011 and 2015 to understand the effect of DWH oil spill in PAHs accumulation in coastal sediments. Sediment cores were collected and sliced at 1 cm interval to measure PAHs concentration, and to estimate 210Pb-based sedimentation and the PAHs' accumulation rates. The results showed that the sediment deposition rates in this region varied between 0.5 to 0.9 cm/yr. The results also showed that the concentration of total PAHs (ΣPAH43) and their accumulation rates vary between 68 - 100 ng g-1 and 7 - 160 ng cm-2 yr-1, respectively. While the PAHs accumulation rate in coastal sediment varied over the years, there is no significant variation in PAHs accumulation rate before and after the DWH oil spill.
Subha, Bakthavachallam; Song, Young Chae; Woo, Jung Hui
2015-09-15
The present study aims to optimize the slow release biostimulant ball (BSB) for bioremediation of contaminated coastal sediment using response surface methodology (RSM). Different bacterial communities were evaluated using a pyrosequencing-based approach in contaminated coastal sediments. The effects of BSB size (1-5cm), distance (1-10cm) and time (1-4months) on changes in chemical oxygen demand (COD) and volatile solid (VS) reduction were determined. Maximum reductions of COD and VS, 89.7% and 78.8%, respectively, were observed at a 3cm ball size, 5.5cm distance and 4months; these values are the optimum conditions for effective treatment of contaminated coastal sediment. Most of the variance in COD and VS (0.9291 and 0.9369, respectively) was explained in our chosen models. BSB is a promising method for COD and VS reduction and enhancement of SRB diversity. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Adhi Suryono, Chrisna; Subagyo; Setyati, Wilis Ari; Sri Susilo, Endang; Rochaddi, Baskoro; Triaji Mahendrajaya, Robertus
2018-02-01
This paper presents the occurrence level of organochlorine contamination in marine sediments of Semarang coastal areas as a fishing ground of Bivalvia. Five compounds (Heptachlor, Aldrin, Endosulfan, Endrin and pp-DDT) of contaminant have been determined in the sediments surface of Semarang coastal waters. The samples were then analyzed by using gas chromatography and followed by using the method of Standard Method Examination. The result showed that the average concentration of organochlorine pesticides Heptachlor, Aldrin, Endosulfan, Endrin and pp-DDT were 25.5, bellow detected, 7.1, 37.2, 28.6 μ g/L, respectively. The high concentration of pesticide showed on Endrin (65,84 ppb), pp-DDT (29,53 μ g/L), and heptachlor (25,45 μ g/L). The low concentrations were detected on aldrin (bellow detected) and endosulfan (0,92 μ g/L). The concentration of organochlorine pesticides in these areas might contribute on four rivers which deposited the sediment in these coastal waters
Sediment transport and resulting deposition in spawning gravels, north coastal California
Thomas E. Lisle
1989-01-01
Incubating salmonid eggs in streambeds are often threatened by deposition of fine sediment within the gravel. To relate sedimentation of spawning gravel beds to sediment transport, infiltration of fine sediment (
Al-Mur, Bandar A; Quicksall, Andrew N; Kaste, James M
2017-09-15
The Red Sea is a unique ecosystem with high biodiversity in one of the warmest regions of the world. In the last five decades, Red Sea coastal development has rapidly increased. Sediments from continental margins are delivered to depths by advection and diffusion-like processes which are difficult to quantify yet provide invaluable data to researchers. Beryllium-7, lead-210 and ceseium-137 were analyzed from sediment cores from the near-coast Red Sea near Jeddah, Saudi Arabia. The results of this work are the first estimates of diffusion, mixing, and sedimentation rates of the Red Sea coastal sediments. Maximum chemical diffusion and particle mixing rates range from 69.1 to 380cm -2 y -1 and 2.54 to 6.80cm -2 y -1 , respectively. Sedimentation rate is constrained to approximately 0.6cm/yr via multiple methods. These data provide baselines for tracking changes in various environmental problems including erosion, marine benthic ecosystem silting, and particle-bound contaminant delivery to the seafloor. Copyright © 2017. Published by Elsevier Ltd.
Mali, Matilda; Dell'Anna, Maria Michela; Mastrorilli, Piero; Damiani, Leonardo; Ungaro, Nicola; Belviso, Claudia; Fiore, Saverio
2015-11-01
Sediment contamination by metals poses significant risks to coastal ecosystems and is considered to be problematic for dredging operations. The determination of the background values of metal and metalloid distribution based on site-specific variability is fundamental in assessing pollution levels in harbour sediments. The novelty of the present work consists of addressing the scope and limitation of analysing port sediments through the use of conventional statistical techniques (such as: linear regression analysis, construction of cumulative frequency curves and the iterative 2σ technique), that are commonly employed for assessing Regional Geochemical Background (RGB) values in coastal sediments. This study ascertained that although the tout court use of such techniques in determining the RGB values in harbour sediments seems appropriate (the chemical-physical parameters of port sediments fit well with statistical equations), it should nevertheless be avoided because it may be misleading and can mask key aspects of the study area that can only be revealed by further investigations, such as mineralogical and multivariate statistical analyses. Copyright © 2015 Elsevier Ltd. All rights reserved.
Wang, Zaosheng; Wang, Yushao; Zhao, Peihong; Chen, Liuqin; Yan, Changzhou; Yan, Yijun; Chi, Qiaoqiao
2015-12-30
To investigate the impacts and processes of CO2-induced acidification on metal mobilization, laboratory-scale experiments were performed, simulating the scenarios where carbon dioxide was injected into sediment-seawater layers inside non-pressurized chambers. Coastal sediments were sampled from two sites with different contamination levels and subjected to pre-determined pH conditions. Sediment samples and overlying water were collected for metal analysis after 10-days. The results indicated that CO2-induced ocean acidification would provoke increased metal mobilization causing adverse side-effects on water quality. The mobility of metals from sediment to the overlying seawater was correlated with the reduction in pH. Results of sequential extractions of sediments illustrated that exchangeable metal forms were the dominant source of mobile metals. Collectively, our data revealed that high metal concentrations in overlying seawater released from contaminated sediments under acidic conditions may strengthen the existing contamination gradients in Maluan Bay and represent a potential risk to ecosystem health in coastal environments. Copyright © 2015 Elsevier Ltd. All rights reserved.
Active fungi amidst a marine subsurface RNA paleome
NASA Astrophysics Data System (ADS)
Orsi, W.; Biddle, J.; Edgcomb, V.
2012-12-01
The deep marine subsurface is a vast habitat for microbial life where cells may live on geologic timescales. Since extracellular DNA in sediments may be preserved on long timescales, ribosomal RNA (rRNA) is suggested to be a proxy for the active fraction of a microbial community in the subsurface. During an investigation of eukaryotic 18S rRNA signatures by amplicon pyrosequencing, metazoan, plant, and diatom rRNA signatures were recovered from marine sediments up to 2.7 million years old, suggesting that rRNA may be much more stable than previously considered in the marine subsurface. This finding confirms the concept of a paleome, extending it to include rRNA. Within the same dataset, unique profiles of fungi were found across a range of marine subsurface provinces exhibiting statistically significant correlations with total organic carbon (TOC), sulfide, and dissolved inorganic carbon (DIC). Sequences from metazoans, plants and diatoms showed different correlation patterns, consistent with a depth-controlled paleome. The fungal correlations with geochemistry allow the inference that some fungi are active and adapted for survival in the marine subsurface. A metatranscriptomic analysis of fungal derived mRNA confirms that fungi are metabolically active and utilize a range of organic and inorganic substrates in the marine subsurface.
Towards the development of a combined Norovirus and sediment transport model for coastal waters
NASA Astrophysics Data System (ADS)
Barry, K.; O'Kane, J. P. J.
2009-04-01
Sewage effluent in coastal waters used for oyster culture poses a risk to human health. The primary pathogen in outbreaks of gastroenteritis following consumption of raw oysters is the Norovirus or "winter vomiting bug". The Norovirus is a highly infectious RNA virus of the Caliciviridae taxonomic family. It has a long survival time in coastal waters (T90 = 30 days in winter). Oysters selectively concentrate Norovirus in their digestive ducts. The virus cannot be removed by conventional depuration. The primary goal of the research is to quantify the risk of Norovirus infection in coastal waters through physically-based high-resolution numerical modelling. Cork Harbour and Clew Bay in Ireland provide case studies for the research. The models simulate a number of complex physical, chemical and biological processes which influence the transport and decay of the virus as well as its bioaccumulation in oyster tissue. The current phase of the research is concerned with the adsorption of the virus to suspended sediment in the water column. Adsorbed viruses may be taken out of the water column when sedimentation occurs and, subsequently, be added to it with resuspension of the bed sediment. Preliminary simulations of the Norovirus-sediment model indicate that suspended sediment can influence the transport of the virus in coastal waters when a high sediment-water partitioning coefficient is used and the model is run under calm environmental conditions. In this instance a certain fraction of the adsorbed viruses are taken out of the water column by sedimentation and end up locked in the bed sediment. Subsequently, under storm conditions, a large number of viruses in the bed are released into the water column by erosion of the bed and a risk of contamination occurs at a time different to when the viruses were initially released into the body of water.
Mallinson, D.; Mahan, S.; Moore, Christine
2008-01-01
Geophysical surveys, sedimentology, and optically-stimulated luminescence age analyses were used to assess the geologic development of a coastal system near Swansboro, NC. This area is a significant Woodland Period Native American habitation and is designated the "Broad Reach" archaeological site. 2-d and 3-d subsurface geophysical surveys were performed using a ground penetrating radar system to define the stratigraphic framework and depositional facies. Sediment samples were collected and analyzed for grain-size to determine depositional environments. Samples were acquired and analyzed using optically stimulated luminescence techniques to derive the depositional age of the various features. The data support a low eolian to shallow subtidal coastal depositional setting for this area. Li-DAR data reveal ridge and swale topography, most likely related to beach ridges, and eolian features including low-relief, low-angle transverse and parabolic dunes, blowouts, and a low-relief eolian sand sheet. Geophysical data reveal dominantly seaward dipping units, and low-angle mounded features. Sedimentological data reveal mostly moderately-well to well-sorted fine-grained symmetrical to coarse skewed sands, suggesting initial aqueous transport and deposition, followed by eolian reworking and bioturbation. OSL data indicate initial coastal deposition prior to ca. 45,000 yBP, followed by eolian reworking and low dune stabilization at ca. 13,000 to 11,500 yBP, and again at ca. 10,000 yBP (during, and slightly after the Younger Dryas chronozone).
The Humboldt Current System: Ecosystem components and processes, fisheries, and sediment studies
NASA Astrophysics Data System (ADS)
Montecino, Vivian; Lange, Carina B.
2009-12-01
In the Humboldt Current System (HCS), biological and non-biological components, ecosystem processes, and fisheries are known to be affected by multi-decadal, inter-annual, annual, and intra-seasonal scales. The interplay between atmospheric variability, the poleward undercurrent, the shallow oxygen minimum zone (OMZ), and the fertilizing effect of coastal upwelling and overall high primary production rates drive bio-physical interactions, the carbon biomass, and fluxes of gases and particulate and dissolved matter through the water column. Coastal upwelling (permanent and seasonally modulated off Peru and northern Chile, and markedly seasonal between 30°S and 40°S) is the key process responsible for the high biological productivity in the HCS. At present, the western coast of South America produces more fish per unit area than any other region in the world ocean (i.e. ∼7.5 × 10 6 t of anchoveta were landed in 2007). Climate changes on different temporal scales lead to alterations in the distribution ranges of anchoveta and sardine populations and shifts in their dominance throughout the HCS. The factors affecting the coastal marine ecosystem that reverberate in the fisheries are crucial from a social perspective, since the economic consequences of mismanagement can be severe. Fish remains are often well-preserved in sediment settings under the hypoxic conditions of the OMZ off Peru and Chile, and reveal multi-decadal variability and centennial-scale changes in fish populations. Sediment studies from the Chilean continental margin encompassing the last 20,000 years of deposition reveal changes in sub-surface conditions in the HCS during deglaciation, interpreted to include: a major reorganization of the OMZ; a deglacial increase in denitrification decoupled from local marine productivity; and higher deglacial and Holocene paleoproductivities compared to the Last Glacial Maximum in central-south Chile (35-37°S) while this scheme is reversed for north-central Chile. Multi-scale, interdisciplinary approaches and focused research groups are needed to understand air-sea interactions, plankton dynamics, biomass removal by fisheries, and the transformation and fluxes of matter across the different HCS components. In this paper, we present a multidisciplinary synthesis of the HCS that covers its physics, atmosphere, primary and secondary production, medium and high trophic levels, fisheries including management aspects, and relevant sedimentary studies.
NASA Astrophysics Data System (ADS)
Wang, Houjie; Wu, Xiao; Bi, Naishuang; Li, Song; Yuan, Ping; Wang, Aimei; Syvitski, James P. M.; Saito, Yoshiki; Yang, Zuosheng; Liu, Sumei; Nittrouer, Jeffrey
2017-10-01
The water-sediment regulation scheme (WSRS), beginning in 2002, is an unprecedented engineering effort to manage the Yellow River with the aims to mitigate the siltation both in the lower river channel and within the Xiaolangdi Reservoir utilizing the dam-regulated flood water. Ten years after its initial implementation, multi-disciplinary indicators allow us to offer a comprehensive review of this human intervention on a river-coastal system. The WSRS generally achieved its objective, including bed erosion in the lower reaches with increasing capacity for flood discharge and the mitigation of reservoir siltation. However, the WSRS presented unexpected disturbances on the delta and coastal system. Increasing grain size of suspended sediment and decreasing suspended sediment concentration at the river mouth resulted in a regime shift of sediment transport patterns that enhanced the disequilibrium of the delta. The WSRS induced an impulse delivery of nutrients and pollutants within a short period ( 20 days), which together with the altered hydrological cycle, impacted the estuarine and coastal ecosystem. We expect that the sediment yield from the loess region in the future will decrease due to soil-conservation practices, and the lower channel erosion will also decrease as the riverbed armors with coarser sediment. These, in combination with uncertain water discharge concomitant with climate change, increasing water demands and delta subsidence, will put the delta and coastal ocean at high environmental risks. In the context of global change, this work depicts a scenario of human impacts in the river basin that were transferred along the hydrological pathway to the coastal system and remotely transformed the different components of coastal environment. The synthesis review of the WSRS indicates that an integrated management of the river-coast continuum is crucially important for the sustainability of the entire river-delta system. The lessons learned from the WSRS in the Yellow River provide insights to the integrated management of large rivers worldwide.
NASA Technical Reports Server (NTRS)
Moeller, Christopher C.; Gunshor, Mathew M.; Menzel, W. Paul; Huh, Oscar K.; Walker, Nan D.; Rouse, Lawrence J.; Frey, Herbert V. (Technical Monitor)
2001-01-01
The University of Wisconsin and Louisiana State University have teamed to study the forcing of winter season cold frontal wind systems on sediment distribution patterns and geomorphology in the Louisiana coastal zone. Wind systems associated with cold fronts have been shown to modify coastal circulation and resuspend sediments along the microtidal Louisiana coast. The assessment includes quantifying the influence of cumulative winter season atmospheric forcing (through surface wind observations) from year to year in response to short term climate variability, such as El Nino events. A correlation between winter cyclone frequency and the strength of El Nino events has been suggested. The atmospheric forcing data are being correlated to geomorphic measurements along western Louisiana's prograding muddy coast. Remote sensing data is being used to map and track sediment distribution patterns for various wind conditions. Transferring a suspended sediment concentration (SSC) algorithm to EOS MODIS observations will enable estimates of SSC in case 2 waters over the global domain. Progress in Year 1 of this study has included data collection and analysis of wind observations for atmospheric forcing characterization, a field activity (TX-2001) to collect in situ water samples with co-incident remote sensing measurements from the NASA ER-2 based MODIS Airborne Simulator (MAS) and the EOS Terra based MODerate resolution Imaging Spectroradiometer (MODIS) instruments, aerial photography and of sediment burial pipe field measurements along the prograding muddy Chenier Plain coast of western Louisiana for documenting coastal change in that dynamic region, and routine collection of MODIS 250 in resolution data for monitoring coastal sediment patterns. The data sets are being used in a process to transfer an SSC estimation algorithm to the MODIS platform. Work is underway on assessing coastal transport for the winter 2000-01 season. Water level data for use in a Geomorphic Impact Index, which relates wind energy, water level conditions, and geomorphic change along the microtidal western Louisiana coastline is being assembled.
Thomas A. Abrahamsen
1999-01-01
Bed-sediment and tissue samples were collected and analyzed for the presence of trace elements from 25 sites in the Santee River Basin and coastal drainages study area during 1995-97 as part of the U.S. Geological Survey's National Water-Quality Assessment Program, Sediment trace-element priority-pollutant concentrations were compared among streams draining water-...
Field Investigation of Stream-Aquifer Interactions: A Case Study in Coastal California
NASA Astrophysics Data System (ADS)
Pritchard-Peterson, D.; Malama, B.
2017-12-01
We report here results of a detailed investigation of the dynamic interaction between a stream and an alluvial aquifer at Swanton Pacific Ranch in the Scotts Creek watershed, Santa Cruz County, California. The aquifer is an important source of groundwater for cropland irrigation and for aquatic ecosystem support. Low summer base flows in Scotts Creek are a source of serious concern for land managers, fisheries biologists, and regulatory agencies due to the presence of federally protected steelhead trout and coho salmon. An understanding of the interaction between the stream and pumped aquifer will allow for assessment of the impacts of groundwater extraction on stream flows and is essential to establishing minimum flow requirements. This will aid in the development of sustainable riparian groundwater pumping practices that meet agricultural and ecological needs. Results of extensive direct-push sampling of the subsurface, laboratory falling-head permeameter tests and particle size analysis of aquifer sediments, multi-day pumping tests, long-term passive monitoring of aquifer hydraulic heads and stream stage and discharge, and electrical resistivity interrogation of the subsurface are reported here. Findings indicate that the permeable subsurface formation tapped by irrigation wells is a leaky semi-confined aquifer, overlain by a thin low permeability layer of silt and clay above which lies Scotts Creek. These results are particularly useful to land managers responsible for groundwater abstraction from wells that tap into the aquifer. Additionally, an index of stream-aquifer connectivity is proposed that would allow land managers to conveniently modify groundwater abstraction practices, minimizing concerns of stream depletion.
NASA Astrophysics Data System (ADS)
Zhao, Yifei; Zou, Xinqing; Gao, Jianhua; Wang, Chenglong; Li, Yali; Yao, Yulong; Zhao, Wancang; Xu, Min
2018-02-01
We examined the source-to-sink sediment transport processes from the Changjiang River to the estuarine coastal shelf area by analyzing the clay mineral assemblages in suspended sediment samples from the Changjiang River catchment and surface samples from the estuarine coastal shelf area following the impoundment of the Three Gorges Dam (TGD) in 2003. The results indicate that the clay mineral compositions throughout the study area are dominated by illite, with less abundant kaolinite and chlorite and scarce smectite. The clay minerals display distinct differences in the tributaries and exhibit obvious changes in the trunk stream compared with the periods before 2003, and the source of sediment has largely shifted to the mid- to lower reaches of the river after 2003. Spatially, the clay mineral assemblages in the estuarine area define two compositionally distinct provinces. Province I covers the mud area of the Changjiang River estuary and the Zhe-Min coastal region, where sediment is primarily supplied by the Changjiang River. Province II includes part of the Changjiang River estuary and the southeastern portion of the study area, where the sediment is composed of terrestrial material from the Changjiang River and re-suspended material from the Huanghe River carried by the Jiangsu coastal current. Moreover, the other smaller rivers in China (including the Oujiang and Minjiang rivers of mainland China and the rivers of West Taiwan) also contribut sediments to the estuarine and inner shelf areas. In general, the clay mineral assemblages in the Changjiang River estuarine area are have mainly been controlled by sediment supplied from upstream of the Changjiang River tributaries. However, since the completion of the TGD in 2003, the mid- to downstream tributaries have become the main source of sediments from the Changjiang catchment into the East China Sea. These analyses further demonstrate that the coastal currents and the decrease in the sediment load of the river have the greatest impacts on the distribution and transport of clay minerals assemblages in the sediments.
California nearshore processes - ERTS 1. [coastal currents and sediments
NASA Technical Reports Server (NTRS)
Steller, D. D.; Pirie, D. M.
1974-01-01
The detectability of many nearshore processes from ERTS is made possible due to the suspended sediment present in the coastal waters. From viewing and analyzing the California coastal imagery collected during the last year and a half, the overall current patterns and their changes have become evident. It is now possible to map monthly and seasonal changes that occur throughout the year. The original objectives of detecting currents, sediment transport, estuaries and river discharge have now been expanded to include the use of ERTS information in operational problems of the U.S. Army Corps of Engineers. This incorporates the detected nearshore features into planning and organizing shore protection facilities.
Remote sensing of subsurface water temperature by Raman scattering.
Leonard, D A; Caputo, B; Hoge, F E
1979-06-01
The application of Raman scattering to remote sensing of subsurface water temperature and salinity is considered, and both theoretical and experimental aspects of the technique are discussed. Recent experimental field measurements obtained in coastal waters and on a trans-Atlantic/Mediterranean research cruise are correlated with theoretical expectations. It is concluded that the Raman technique for remote sensing of subsurface water temperature has been brought from theoretical and laboratory stages to the point where practical utilization can now be developed.
NASA Astrophysics Data System (ADS)
Herguera, J.; Paull, C. K.; Anderson, K.; Gwiazda, R.; Lundsten, E. M.; Kundz, L.; Edwards, B. D.; McGann, M. L.
2012-12-01
New observations and cores obtained with the ROV Doc Ricketts operated from the RV/Western Flyer provide a glimpse into a macrofauna barren sea-floor where laminated sediments are known to accumulate on the sea-floor of Alfonso Basin. This basin, located north of La Paz Bay, Baja California, is known to be an important repository of laminated sediments due to a combination of the relatively high input of terrigenous sediments brought in by summer rains, a moderate to high export productivity from its surface waters, and the very low oxygen concentrations at depth bathed by tropical subsurface waters. These laminated sediments are unique repositories of paleoceanographic and paleoclimatic information for its very high resolution records of past conditions comparable to ice core, tree ring, coral and cave records although spanning continuously much further back in time. However, the paleoceanographic community rarely has had the opportunity to visualize the seafloor surface where these sediments are accumulating and examine the biological abundance patterns in these extreme environments. Here we will show results from ROV Doc Ricketts quantitative video transects providing benthic faunal abundance patterns on the seafloor in these highly oxygen depleted bottom waters. These observations are further compared with the underlying stratigraphy. A coring system carried on the ROV allowed us to replicate cores and to collect a transect of 5 closely spaced cores to evaluate the horizontal extent of the observed variability down-core. We will also show some preliminary results from x-radiographs showing the nature of the laminations and its sediment composition based on elemental analysis on organic carbon, carbonate and biogenic opal analysis. New XRF results from a box core will be used to calibrate its terrigenous components with the historical rainfall record and evaluate its potential to reconstruct summer precipitation patterns in this region.
Coastal Processes Study of Santa Barbara and Ventura Counties, California
Barnard, Patrick L.; Revell, David L.; Hoover, Dan; Warrick, Jon; Brocatus, John; Draut, Amy E.; Dartnell, Pete; Elias, Edwin; Mustain, Neomi; Hart, Pat E.; Ryan, Holly F.
2009-01-01
The Santa Barbara littoral cell (SBLC) is a complex coastal system with significant management challenges. The coastline ranges broadly in exposure to wave energy, fluvial inputs, hard structures, and urbanization. Geologic influence (structural control) on coastline orientation exerts an important control on local beach behavior, with anthropogenic alterations and the episodic nature of sediment supply and transport also playing important roles. Short- and long-term temporal analyses of shoreline change, beach width, and volume change show no obvious trends in regional beach behavior. Extensive armoring along the SBLC has accreted the back beach, narrowing beach widths and in some cases increasing sediment transport. Unarmored beaches have exhibited mild erosion while maintaining similar widths. Harbor constructions have had notable impacts on downdrift beaches, but once the coastal system has equilibrated the signal becomes strongly dampened and littoral-drift gradients driven by natural shoreline orientation again become dominant. Sediment inputs from the Santa Clara River dominate sediment processes on beaches to the south. The SBLC is dominated by episodic flood and storm-wave events. Exceptionally large accretion signals along this stretch of coastline are closely tied to major flood events when large amounts of sediment are deposited in deltas. These deltas decay over time, supplying downdrift beaches with sediment. Storm-wave impacts and gradients in alongshore transport can lead to beach rotations and migrating erosion hotspots when geological controls are weak. Annual and seasonal rates of cross-shore and alongshore transport are at least 2-3 times higher for the more west- and southwest-facing beaches south of the Ventura River as compared to the more sheltered beaches to the west/north. Gross littoral transports are good approximations of net littoral transports for beaches west/north of Ventura as transport is almost purely unidirectional. However, significant transport reversals occur intermittently in the east/south, especially adjacent to the Ventura and Channel Islands Harbors. For this reason, and due to the episodic nature of flood and storm wave events, using dredging rates from the harbors at Ventura and Channel Islands as a proxy for drift rates may be invalid. An extensive grain-size investigation of the surface and shallow subsurface in the nearshore region of the SBLC identified only two sites for potential beach-nourishment material: offshore of Santa Barbara Harbor and Oil Piers. However, seismic-reflection lines offshore of Santa Barbara suggest shallow bedrock (< 1 m), so the volume of coarse material in this area may be limited. Sampling of the Santa Clara River delta was minimal, but this site could be promising. Numerical modeling shows that local beach behavior is primarily influenced by local littoral-drift gradients, which are in turn controlled by natural shoreline orientation. Given the high rates of net littoral drift and the relatively insignificant cross-shore transport in the SBLC, the SBLC should be considered a sediment-limited system (as opposed to a transport-limited system). Management actions, such as any future beach nourishment, would likely have a severely limited life span without employing additional measures that adequately address local littoral-drift gradients to retain added sand.
Multispectral satellite ocean color data from high-turbidity areas of the coastal ocean contain information about the surface concentrations and optical properties of suspended sediments and colored dissolved organic matter (CDOM). Empirical and semi-analytical inversion algorit...
Rapid Sediment Accumulation Results in High Methane Effluxes from Coastal Sediments
Lenstra, Wytze; Jong, Dirk; Meysman, Filip J. R.; Sapart, Célia J.; van der Veen, Carina; Röckmann, Thomas; Gonzalez, Santiago; Slomp, Caroline P.
2016-01-01
Globally, the methane (CH4) efflux from the ocean to the atmosphere is small, despite high rates of CH4 production in continental shelf and slope environments. This low efflux results from the biological removal of CH4 through anaerobic oxidation with sulfate in marine sediments. In some settings, however, pore water CH4 is found throughout the sulfate-bearing zone, indicating an apparently inefficient oxidation barrier for CH4. Here we demonstrate that rapid sediment accumulation can explain this limited capacity for CH4 removal in coastal sediments. In a saline coastal reservoir (Lake Grevelingen, The Netherlands), we observed high diffusive CH4 effluxes from the sediment into the overlying water column (0.2–0.8 mol m-2 yr-1) during multiple years. Linear pore water CH4 profiles and the absence of an isotopic enrichment commonly associated with CH4 oxidation in a zone with high rates of sulfate reduction (50–170 nmol cm-3 d-1) both suggest that CH4 is bypassing the zone of sulfate reduction. We propose that the rapid sediment accumulation at this site (~ 13 cm yr-1) reduces the residence time of the CH4 oxidizing microorganisms in the sulfate/methane transition zone (< 5 years), thus making it difficult for these slow growing methanotrophic communities to build-up sufficient biomass to efficiently remove pore water CH4. In addition, our results indicate that the high input of organic matter (~ 91 mol C m-2 yr-1) allows for the co-occurrence of different dissimilatory respiration processes, such as (acetotrophic) methanogenesis and sulfate reduction in the surface sediments by providing abundant substrate. We conclude that anthropogenic eutrophication and rapid sediment accumulation likely increase the release of CH4 from coastal sediments. PMID:27560511
Inundation, sedimentation, and subsidence creates goose habitat along the Arctic coast of Alaska
Tape, Ken D.; Flint, Paul L.; Meixell, Brandt W.; Gaglioti, Benjamin V.
2013-01-01
The Arctic Coastal Plain of Alaska is characterized by thermokarst lakes and drained lake basins, and the rate of coastal erosion has increased during the last half-century. Portions of the coast are <1 m above sea level for kilometers inland, and are underlain by ice-rich permafrost. Increased storm surges or terrestrial subsidence would therefore expand the area subject to marine inundation. Since 1976, the distribution of molting Black Brant (Branta bernicla nigricans) on the Arctic Coastal Plain has shifted from inland freshwater lakes to coastal marshes, such as those occupying the Smith River and Garry Creek estuaries. We hypothesized that the movement of geese from inland lakes was caused by an expansion of high quality goose forage in coastal areas. We examined the recent history of vegetation and geomorphological changes in coastal goose habitat by combining analysis of time series imagery between 1948 and 2010 with soil stratigraphy dated using bomb-curve radiocarbon. Time series of vertical imagery and in situ verification showed permafrost thaw and subsidence of polygonal tundra. Soil stratigraphy and dating within coastal estuaries showed that non-saline vegetation communities were buried by multiple sedimentation episodes between 1948 and 1995, accompanying a shift toward salt-tolerant vegetation. This sedimentation allowed high quality goose forage plants to expand, thus facilitating the shift in goose distribution. Declining sea ice and the increasing rate of terrestrial inundation, sedimentation, and subsidence in coastal estuaries of Alaska may portend a 'tipping point' whereby inland areas would be transformed into salt marshes.
Reactive silica fractions in coastal lagoon sediments from the northern Gulf of Mexico
NASA Astrophysics Data System (ADS)
Krause, Jeffrey W.; Darrow, Elizabeth S.; Pickering, Rebecca A.; Carmichael, Ruth H.; Larson, Ashley M.; Basaldua, Jose L.
2017-12-01
Continental-margin sediments account for 50% of the oceanic biogenic silica burial despite covering < 10% of its area. In Mississippi Sound, a coastal lagoon in the northern Gulf of Mexico (nGoM), we measured sediment biogenic silica at sites removed from major freshwater discharge sources using the traditional method and a method that has been modified for deltaic systems to quantify other reactive silica pools, specifically those involved in the process of reverse weathering. The magnitude of authigenically-altered biogenic silica during our study was significant and represented, on average, 33% of the total sediment biogenic silica among core depths and sites. Additionally, there was a significant relationship between the degree to which the biogenic silica pool was authigenically altered and the source of the sediment organic matter, with lower modification in sediments corresponding with higher terrestrial organic matter. We observed no positive correlation between the magnitude of authigenic modification and sediment clay content. Thus, our findings suggest that these processes may occur within a variety of sediment compositions and add to a growing body of evidence suggesting that reverse weathering of silica in coastal systems is a significant pathway in the global silica budget.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, A.J.; Simones, G.C.
Ichnology, the study of modern and ancient traces left by organisms, has provided supplemental information to geologic subdisciplines such as sedimentology and stratigraphy. The major objective of the authors paper is to emphasize the valuable information that can be conveyed by trace fossils in the investigation of hydrogeologic units. Bioturbation has a net effect of mixing different types and layers of sediments, such as introducing clays into sands and vice versa. This mixing can decrease porosity and permeability of sandy units, thus changing potential aquifers into confining units. For example, a sandy fluvial deposit will contain distinctive nonmarine trace fossils,more » thus defining channel sands that may serve as permeable conduits for ground-water flow. In contrast, a sandy shelf deposit will contain marine trace fossils in a sand body geometry that will be markedly different from aquifers produced in nonmarine environments. Bioturbation also causes geochemical and diagenetic changes in sediments, causing irrigation of previously anoxic sediments and precipitation of ion oxides. The Cretaceous Cape Fear Formation of the Atlantic Coastal Plain, in the subsurface of South Carolina, is presented as an example of a hydrogeologic unit that has been reinterpreted using ichnologic data. Extensive bioturbation caused mixing of clays and sands in Cape Fear sediments, which resulted in the Cape Fear becoming a regional confining system. Trace fossil assemblages indicate a brackish water environment, perhaps estuarine, for the Cape Fear, as opposed to previous interpretations of fluvial and deltaic environments. Bioturbated zones also have significantly more oxidized iron than unbioturbated zones, highlighting potential effects on ground-water quality.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, C.C.
1989-03-01
Miocene sedimentary rocks of the study area consist of a predominantly regressive sequence of clay and quartzose sand deposited on a carbonate platform which dips toward the southwest at 50-100 ft/mi. This clastic wedge ranges in thickness from 1000 ft in central Mobile and Baldwin Counties to a maximum of about 5800 ft in the northeastern portion of the Main Pass area. Analysis of planktonic and benthic foraminifera has resulted in a refined biostratigraphic zonation of these rocks, which indicates that basal Miocene transgressive shale assignable to the Amphistegina B interval zone immediately overlies the upper Oligocene regional carbonate platform.more » Thus, both lower and lower middle Miocene sedimentary rocks are absent throughout the area of investigation. Biostratigraphic analysis of the middle and upper Miocene rocks has resulted in a series of cross sections illustrating the dramatic thickening southwestward into the federal offshore continental shelf and showing the relationships of producing intervals in the Cibicides carstensi and Discorbis ''12'' interval zones. Paleoenvironmental interpretations are illustrated on a series of maps constructed for selected regional biostratigraphic zones. These maps have outlined previously unrecognized late middle and early late Miocene deltaic sedimentation in the southeastern Mobile County and Chandeleur-Viosca Knoll (north) areas. Study of sedimentation rates, which range from less than 25 up to 1370 ft/m.y., further aids in understanding the deltaic and coastal shelf sedimentation of the Miocene within Alabama and adjoining state and federal waters areas.« less
Powars, David S.; Catchings, Rufus D.; Goldman, Mark R.; Gohn, Gregory S.; Horton, J. Wright; Edwards, Lucy E.; Rymer, Michael J.; Gandhok, Gini
2009-01-01
The U.S. Geological Survey (USGS) acquired two 1.4-km-long, high-resolution (~5 m vertical resolution) seismic-reflection lines in 2006 that cross near the International Continental Scientific Drilling Program (ICDP)-USGS Eyreville deep drilling site located above the late Eocene Chesapeake Bay impact structure in Virginia, USA. Five-meter spacing of seismic sources and geophones produced high-resolution images of the subsurface adjacent to the 1766-m-depth Eyreville core holes. Analysis of these lines, in the context of the core hole stratigraphy, shows that moderate-amplitude, discontinuous, dipping reflections below ~527 m correlate with a variety of Chesapeake Bay impact structure sediment and rock breccias recovered in the cores. High-amplitude, continuous, subhorizontal reflections above ~527 m depth correlate with the uppermost part of the Chesapeake Bay impact structure crater-fill sediments and postimpact Eocene to Pleistocene sediments. Reflections with ~20-30 m of relief in the uppermost part of the crater-fill and lowermost part of the postimpact section suggest differential compaction of the crater-fill materials during early postimpact time. The top of the crater-fill section also shows ~20 m of relief that appears to represent an original synimpact surface. Truncation surfaces, locally dipping reflections, and depth variations in reflection amplitudes generally correlate with the lithostrati-graphic and sequence-stratigraphic units and contacts in the core. Seismic images show apparent postimpact paleochannels that include the first possible Miocene paleochannels in the Mid-Atlantic Coastal Plain. Broad downwarping in the postim-pact section unrelated to structures in the crater fill indicates postimpact sediment compaction.
Arsenic, vanadium, iron, and manganese biogeochemistry in a deltaic wetland, southern Louisiana, USA
Telfeyan, Katherine; Breaux, Alexander; Kim, Jihyuk; ...
2017-04-05
Geochemical cycling of the redox-sensitive trace elements arsenic (As) and vanadium (V) was examined in shallow pore waters from a marsh in an interdistributary embayment of the lower Mississippi River Delta. In particular, we explore how redox changes with depth and distance from the Mississippi River affect As and V cycling in the marsh pore waters. Previous geophysical surveys and radon mass balance calculations suggested that Myrtle Grove Canal and bordering marsh receive fresh groundwater, derived in large part from seepage of the Mississippi River, which subsequently mixes with brackish waters of Barataria Bay. In addition, the redox geochemistry ofmore » pore waters in the wetlands is affected by Fe and S cycling in the shallow subsurface (0-20 cm). Sediments with high organic matter content undergo SO 4 2- reduction, a process ubiquitous in the shallow subsurface but largely absent at greater depths (~3 m). Instead, at depth, in the absence of organic-rich sediments, Fe concentrations are elevated, suggesting that reduction of Fe(III) oxides/oxyhydroxides buffers redox conditions. Arsenic and V cycling in the shallow subsurface are decoupled from their behavior at depth, where both V and As appear to be removed from solution by either diffusion or adsorption onto, or co-precipitation with, authigenic minerals within the deeper aquifer sediments. Pore water As concentrations are greatest in the shallow subsurface (e.g., up to 315 nmol kg -1 in the top ~20 cm of the sediment) but decrease with depth, reaching values <30 nmol kg -1 at depths between 3 and 4 m. Vanadium concentrations appear to be tightly coupled to Fe cycling in the shallow subsurface, but at depth, V may be adsorbed to clay or sedimentary organic matter (SOM). Diffusive fluxes are calculated to examine the export of trace elements from the shallow marsh pore waters to the overlying canal water that floods the marsh. The computed fluxes suggest that the shallow sediment serves as a source of Fe, Mn, and As to the surface waters, whereas the sediments act as a sink for V. Iron and Mn fluxes are substantial, ranging from 50 to 30,000 and 770 to 4,300 nmol cm -2 day -1, respectively, whereas As fluxes are much less, ranging from 2.1 to 17 nmol cm -2 day -1. Vanadium fluxes range from 3.0 nmol cm -2 day -1 directed into the sediment to 1.7 nmol cm -2 day -1 directed out of the sediment« less
Arsenic, vanadium, iron, and manganese biogeochemistry in a deltaic wetland, southern Louisiana, USA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Telfeyan, Katherine; Breaux, Alexander; Kim, Jihyuk
Geochemical cycling of the redox-sensitive trace elements arsenic (As) and vanadium (V) was examined in shallow pore waters from a marsh in an interdistributary embayment of the lower Mississippi River Delta. In particular, we explore how redox changes with depth and distance from the Mississippi River affect As and V cycling in the marsh pore waters. Previous geophysical surveys and radon mass balance calculations suggested that Myrtle Grove Canal and bordering marsh receive fresh groundwater, derived in large part from seepage of the Mississippi River, which subsequently mixes with brackish waters of Barataria Bay. In addition, the redox geochemistry ofmore » pore waters in the wetlands is affected by Fe and S cycling in the shallow subsurface (0-20 cm). Sediments with high organic matter content undergo SO 4 2- reduction, a process ubiquitous in the shallow subsurface but largely absent at greater depths (~3 m). Instead, at depth, in the absence of organic-rich sediments, Fe concentrations are elevated, suggesting that reduction of Fe(III) oxides/oxyhydroxides buffers redox conditions. Arsenic and V cycling in the shallow subsurface are decoupled from their behavior at depth, where both V and As appear to be removed from solution by either diffusion or adsorption onto, or co-precipitation with, authigenic minerals within the deeper aquifer sediments. Pore water As concentrations are greatest in the shallow subsurface (e.g., up to 315 nmol kg -1 in the top ~20 cm of the sediment) but decrease with depth, reaching values <30 nmol kg -1 at depths between 3 and 4 m. Vanadium concentrations appear to be tightly coupled to Fe cycling in the shallow subsurface, but at depth, V may be adsorbed to clay or sedimentary organic matter (SOM). Diffusive fluxes are calculated to examine the export of trace elements from the shallow marsh pore waters to the overlying canal water that floods the marsh. The computed fluxes suggest that the shallow sediment serves as a source of Fe, Mn, and As to the surface waters, whereas the sediments act as a sink for V. Iron and Mn fluxes are substantial, ranging from 50 to 30,000 and 770 to 4,300 nmol cm -2 day -1, respectively, whereas As fluxes are much less, ranging from 2.1 to 17 nmol cm -2 day -1. Vanadium fluxes range from 3.0 nmol cm -2 day -1 directed into the sediment to 1.7 nmol cm -2 day -1 directed out of the sediment« less
Upper Cretaceous subsurface stratigraphy and structure of coastal Georgia and South Carolina
Valentine, Page C.
1982-01-01
Upper Cretaceous subsurface stratigraphy and structure of coastal Georgia and South Carolina is based on the study of 24 wells along two transects, one extending across the seaward-dipping sedimentary basin termed the 'Southeast Georgia Embayment' northeastward to the crest of the Cape Fear Arch, and the other alined east-west, parallel to the basin axis and including the COST GE-l well on the Outer Continental Shelf. A new biostratigraphic analysis, using calcareous nannofossils, of the Fripp Island, S.C., well and reinterpretations of the Clubhouse Crossroads corehole 1, South Carolina, and other wells in South Carolina, Georgia, and northernmost Florida have made possible the comparison and reevaluation of stratigraphic interpretations of the region made by G. S. Gohn and others in 1978 and 1980 and by P. M. Brown and others in 1979. The present study indicates that within the Upper Cretaceous section the stratigraphic units formerly assigned a Cenomanian (Eaglefordian and Woodbinian) age are Coniacian (Austinian) and Turonian (Eaglefordian) in age. A previously described hiatus encompassing Coniacian and Turonian time is not present. More likely, a hiatus is probably present in the upper Turonian, and major gaps in the record are present within the Cenomanian and between the Upper Cretaceous and the pre-Cretaceous basement. After an erosional episode in Cenomanian time that affected the section beneath eastern Georgia and South Carolina, Upper Cretaceous marine clastic and carbonate rocks were deposited on a regionally subsiding margin that extended to the present Blake Escarpment. In contrast, during Cenozoic time, especially in the Eocene, subsidence and sedimentation rates were uneven across the margin. A thick progradational sequence of carbonate rocks accumulated in the Southeast Georgia Embayment and also built the present Continental Shelf, whereas farther offshore a much thinner layer of sediments was deposited on the Blake Plateau. There is no general agreement on the exact placement of the Cenomanian-Turonian boundary in Europe or the United States Western Interior, and the widespread Sciponoceras gracile ammonite zone represents an interval of equivocal age between accepted Cenomanian and Turonian strata. The extinction of the foraminifer genus Rotalipora took place within the Sciporwceras gracile zone; it is used here to identify the Cenomanian-Turonian boundary. Pollen zone IV (Complexiopollis-Atlantopollis assemblage zone) is an important and widespread biostratigraphic unit characterized by a distinctive spore and pollen flora. It is consistently associated with lower Turonian calcareous nannofossils on the Atlantic continental margin; these nannofossil assemblages are also present in pollen zone IV, in strata that encompass the Sciponoceras gracile zone and the lower part of the Mytiloides labiatus zone in the Gulf Coastal Plain at Dallas, Tex.
Warrick, Jonathan A.; Stevens, Andrew W.; Miller, Ian M.; Gelfenbaum, Guy; Duda, Jeffrey J.; Warrick, Jonathan A.; Magirl, Christopher S.
2011-01-01
To understand the effects of increased sediment supply from dam removal on marine habitats around the Elwha River delta, a basic understanding of the region’s coastal processes is necessary. This chapter provides a summary of the physical setting of the coast near the Elwha River delta, for the purpose of synthesizing the processes that move and disperse sediment discharged by the river. One fundamental property of this coastal setting is the difference between currents in the surfzone with those in the coastal waters offshore of the surfzone. Surfzone currents are largely dictated by the direction and size of waves, and the waves that attack the Elwha River delta predominantly come from Pacific Ocean swell from the west. This establishes surfzone currents and littoral sediment transport that are eastward along much of the delta. Offshore of the surfzone the currents are largely influenced by tidal circulation and the physical constraint to flow provided by the delta’s headland. During both ebbing and flooding tides, the flow separates from the coast at the tip of the delta’s headland, and this produces eddies on the downstream side of the headland. Immediately offshore of the Elwha River mouth, this creates a situation in which the coastal currents are directed toward the east much more frequently than toward the west. This suggests that Elwha River sediment will be more likely to move toward the east in the coastal system.
Ali, Usman; Malik, Riffat Naseem; Syed, Jabir Hussain; Mehmood, Ch Tahir; Sánchez-García, Laura; Khalid, Azeem; Chaudhry, Muhammad Jamshed Iqbal
2015-03-01
Heavy-metal contamination in coastal areas poses a serious threat to aquatic life and public health due to their high toxicity and bio-accumulation potential. In the present study, levels of different heavy metals (Cu, Cd, Cr, Ni, Co, Pb, Zn, and Mn), their spatial distribution, geochemical status, and enrichment indices (Cu, Cd, Cr, Ni, Co, Pb, Zn) were investigated in the sediment samples from 18 coastal sites of Pakistan. The analyses of coastal sediments indicated the presence of heavy metals in order such as Cr > Zn > Cu > Pb > Ni > Mn > Co > Cd. Geo-accumulation index (I geo), enrichment factor (EF), and contamination factor (CF) showed diverse range in heavy-metal enrichment site by site. Pollution load index (PLI) has shown that average pollution load along the entire coastal belt was not significant. Based on the mean effect range medium quotient, coastal sediments of Pakistan had 21% probability of toxicity. The estimated sedimentary load of selected heavy metals was recorded in the range of 0.3-44.7 g/cm(2)/year, while the depositional flux was in the range of 0.07-43.5 t/year. Heavy-metal inventories of 9.8 × 10(2)-3.8 × 10(5) t were estimated in the coastal sediments of Pakistan. The enrichment and contamination factors (EF and CF) suggested significant influence of anthropogenic and industrial activities along the coastal belt of Pakistan.
Effects of sediment application on Nyssa aquatica and Taxodium distichum saplings
Grandy, Isabel; Messina, Linda; Anemaet, Evelyn R.; Middleton, Beth A.
2018-01-01
The decline of Taxodium distichum forests along the Gulf Coast of North America is partly due to elevation loss and subsequent flooding. In many coastal wetlands, a common approach for coastal restoration is to rebuild elevation through the application of dredge material, but this technique has not been used widely in coastal forests due to concerns of negatively impacting trees. This experiment explored growth responses of Nyssa aquatica and T. distichumsaplings to applications of low salinity dredge material (0.08 ± 0.001 ppt) in a greenhouse setting. Compared to controls, saplings of T. distichum grown in 7 and 15 cm sediment depths had greater final height, and increased stem and total biomass. In contrast, N. aquatica did not respond to sediment application. The absence of a negative response to sediment application in these two species indicates that dredge material application has the potential to improve the ecosystem health of sinking swamp forests by raising their elevation. We recommend that field trials applying sediment additions in coastal forests include careful monitoring of ecosystem responses, including seed bank expression, seedling regeneration, and root and canopy production.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Russell, Joseph A.; Leon-Zayas, Rosa; Wrighton, Kelly
Studies of subsurface microorganisms have yielded few environmentally relevant isolates for laboratory studies. In order to address this lack of cultivated microorganisms, we initiated several enrichments on sediment and underlying basalt samples from North Pond, a sediment basin ringed by basalt outcrops underlying an oligotrophic watercolumn west of the Mid-Atlantic Ridge at 22° N. In contrast to anoxic enrichments, growth was observed in aerobic, heterotrophic enrichments from sediment of IODP Hole U1382B at 4 and 68 m below seafloor (mbsf). These sediment depths, respectively, correspond to the fringes of oxygen penetration from overlying seawater in the top of the sedimentmore » column and upward migration of oxygen from oxic seawater from the basalt aquifer below the sediment. Here we report the enrichment, isolation, initial characterization and genomes of three isolated aerobic heterotrophs from North Pond sediments; an Arthrobacter species from 4 mbsf, and Paracoccus and Pseudomonas species from 68 mbsf. These cultivated bacteria are represented in the amplicon 16S rRNA gene libraries created from whole sediments, albeit at low (up to 2%) relative abundance. We provide genomic evidence from our isolates demonstrating that the Arthrobacter and Pseudomonas isolates have the potential to respire nitrate and oxygen, though dissimilatory nitrate reduction could not be confirmed in laboratory cultures. Furthermore, the cultures from this study represent members of abundant phyla, as determined by amplicon sequencing of environmental DNA extracts, and allow for further studies into geochemical factors impacting life in the deep subsurface.« less
Russell, Joseph A.; Leon-Zayas, Rosa; Wrighton, Kelly; ...
2016-05-10
Studies of subsurface microorganisms have yielded few environmentally relevant isolates for laboratory studies. In order to address this lack of cultivated microorganisms, we initiated several enrichments on sediment and underlying basalt samples from North Pond, a sediment basin ringed by basalt outcrops underlying an oligotrophic watercolumn west of the Mid-Atlantic Ridge at 22° N. In contrast to anoxic enrichments, growth was observed in aerobic, heterotrophic enrichments from sediment of IODP Hole U1382B at 4 and 68 m below seafloor (mbsf). These sediment depths, respectively, correspond to the fringes of oxygen penetration from overlying seawater in the top of the sedimentmore » column and upward migration of oxygen from oxic seawater from the basalt aquifer below the sediment. Here we report the enrichment, isolation, initial characterization and genomes of three isolated aerobic heterotrophs from North Pond sediments; an Arthrobacter species from 4 mbsf, and Paracoccus and Pseudomonas species from 68 mbsf. These cultivated bacteria are represented in the amplicon 16S rRNA gene libraries created from whole sediments, albeit at low (up to 2%) relative abundance. We provide genomic evidence from our isolates demonstrating that the Arthrobacter and Pseudomonas isolates have the potential to respire nitrate and oxygen, though dissimilatory nitrate reduction could not be confirmed in laboratory cultures. Furthermore, the cultures from this study represent members of abundant phyla, as determined by amplicon sequencing of environmental DNA extracts, and allow for further studies into geochemical factors impacting life in the deep subsurface.« less
NASA Astrophysics Data System (ADS)
Eicken, H.; Kapsch, M.; Johnson, M. A.; Weyapuk, W. U., Jr.
2009-12-01
Sea ice plays an important, complicated role in Arctic coastal sediment dynamics. It helps protect the shoreline from wave action and constrains coastal permafrost thaw; at the same time, sea ice is a highly effective sediment erosion and transport agent. For the coastline of (sub-)Arctic Alaska we have examined key processes that govern the role of sea ice as a geologic agent. Based on passive microwave satellite data for the time period 1979 to 2008 and augmented by field measurements and observations conducted by local sea-ice experts in coastal communities from 2006 onwards, we determined the onset of coastal ice spring break-up and fall freeze-up. These two events define the start and end of the open-water season during which the coast is rendered most vulnerable to thermal and dynamic processes promoting erosion. Satellite data show significant trends toward later fall freeze-up in many locations and moreover provide a picture of the statistical significance and variability of such trends in great spatio-temporal detail. Coastal ice observations suggest that important sea-ice processes (such as formation of ice berms) that precede freeze-up as detected by passive microwave data need to be taken into consideration in evaluating the vulnerability of the coastline and the specific threat of individual storms. Field observations, satellite data and local knowledge also highlight the substantial change in winter sea-ice regimes over the past two decades, with a much more mobile ice cover enhancing winter sediment transport. Ultimately, the shorter sea-ice season and the greater mobility and the lack of stability of winter coastal sea ice work in concert to increase the vulnerability of the coastline to erosion and flooding. At the same time, these changes provide a mechanism for effective redistribution and cross-shelf transport of sediments that prepares the stage for further erosive action in subsequent seasons.
Microbially catalyzed nitrate-dependent metal/radionuclide oxidation in shallow subsurface sediments
NASA Astrophysics Data System (ADS)
Weber, K.; Healy, O.; Spanbauer, T. L.; Snow, D. D.
2011-12-01
Anaerobic, microbially catalyzed nitrate-dependent metal/radionuclide oxidation has been demonstrated in a variety of sediments, soils, and groundwater. To date, studies evaluating U bio-oxidation and mobilization have primarily focused on anthropogenically U contaminated sites. In the Platte River Basin U originating from weathering of uranium-rich igneous rocks in the Rocky Mountains was deposited in shallow alluvial sediments as insoluble reduced uranium minerals. These reduced U minerals are subject to reoxidation by available oxidants, such nitrate, in situ. Soluble uranium (U) from natural sources is a recognized contaminant in public water supplies throughout the state of Nebraska and Colorado. Here we evaluate the potential of anaerobic, nitrate-dependent microbially catalyzed metal/radionuclide oxidation in subsurface sediments near Alda, NE. Subsurface sediments and groundwater (20-64ft.) were collected from a shallow aquifer containing nitrate (from fertilizer) and natural iron and uranium. The reduction potential revealed a reduced environment and was confirmed by the presence of Fe(II) and U(IV) in sediments. Although sediments were reduced, nitrate persisted in the groundwater. Nitrate concentrations decreased, 38 mg/L to 30 mg/L, with increasing concentrations of Fe(II) and U(IV). Dissolved U, primarily as U(VI), increased with depth, 30.3 μg/L to 302 μg/L. Analysis of sequentially extracted U(VI) and U(IV) revealed that virtually all U in sediments existed as U(IV). The presence of U(IV) is consistent with reduced Fe (Fe(II)) and low reduction potential. The increase in aqueous U concentrations with depth suggests active U cycling may occur at this site. Tetravalent U (U(IV)) phases are stable in reduced environments, however the input of an oxidant such as oxygen or nitrate into these systems would result in oxidation. Thus co-occurrence of nitrate suggests that nitrate could be used by bacteria as a U(IV) oxidant. Most probable number enumeration of nitrate-dependent U(IV) oxidizing microorganisms demonstrated an abundant community ranging from 1.61x104 to 2.74x104 cells g-1 sediment. Enrichments initiated verified microbial U reduction and U oxidation coupled to nitrate reduction. Sediment slurries were serially diluted and incubated over a period of eight weeks and compared to uninoculated controls. Oxidation (0-4,554 μg/L) and reduction (0-55 μg/L) of U exceeded uninoculated controls further providing evidence of a U biogeochemical cycling in these subsurface sediments. The oxidation of U(IV) could contribute to U mobilization in the groundwater and result in decreased water quality. Not only could nitrate serve as an oxidant, but Fe(III) could also contribute to U mobilization. Nitrate-dependent Fe(II) oxidation is an environmentally ubiquitous process facilitated by a diversity of microorganisms. Additional research is necessary in order to establish a role of biogenic Fe(III) oxides in U geochemical cycling at this site. These microbially mediated processes could also have a confounding effect on uranium mobility in subsurface environments.
NASA Astrophysics Data System (ADS)
Ghose Hajra, M.
2016-02-01
Coastal property development, sea level rise, geologic subsidence, loss of barrier islands, increasing number and intensity of coastal storms and other factors have resulted in water quality degradation, wetlands loss, reduced storm and surge protection, ground settlement, and other challenges in coastal areas throughout the world. One of the goals towards reestablishing a healthy coastal ecosystem is to rebuild wetlands with river diversion or sediment conveyance projects that optimally manage and allocate sediments, minimally impact native flora and fauna, and positively affect the water quality. Engineering properties and material characteristics of the dredged material and foundation soils are input parameters in several mathematical models used to predict the long term behavior of the dredged material and foundation soil. Therefore, proper characterization of the dredged material and foundation soils is of utmost importance in the correct design of a coastal restoration and land reclamation project. The sedimentation and consolidation characteristics of the dredged material as well as their effects on the time rate of settlement of the suspended solid particles and underlying foundation soil depend, among other factors, on the (a) grain size distribution of the dredged material, (b) salinity (fresh, brackish, or saltwater environment) of the composite slurry, and (c) concentration of the solid particles in the slurry. This paper will present the results from column settling tests and self-weight consolidation tests performed on dredged samples obtained from actual restoration projects in Louisiana. The effects of salinity, grain size distribution, and initial particle concentration on the sedimentation and consolidation parameters of the dredged material will also be discussed.
NASA Astrophysics Data System (ADS)
Santoni, S.; Huneau, F.; Garel, E.; Celle-Jeanton, H.
2018-04-01
Climate change is nowadays widely considered to have major effects on groundwater resources. Climatic projections suggest a global increase in evaporation and higher frequency of strong rainfall events especially in Mediterranean context. Since evaporation is synonym of low recharge conditions whereas strong rainfall events are more favourable to recharge in heterogeneous subsurface contexts, a lack of knowledge remains then on the real ongoing and future drinking groundwater supply availability at aquifers scale. Due to low recharge potential and high inter-annual climate variability, this issue is strategic for the Mediterranean hydrosystems. This is especially the case for coastal aquifers because they are exposed to seawater intrusion, sea-level rise and overpumping risks. In this context, recharge processes and rates were investigated in a Mediterranean coastal aquifer with subsurface heterogeneity located in Southern Corsica (France). Aquifer recharge rates from combining ten physical and chemical methods were computed. In addition, hydrochemical and isotopic investigations were carried out through a monthly two years monitoring combining major ions and stable isotopes of water in rain, runoff and groundwater. Diffuse, focused, lateral mountain system and irrigation recharge processes were identified and characterized. A predominant focused recharge conditioned by subsurface heterogeneity is evidenced in agreement with variable but highly favourable recharge rates. The fast water transfer from the surface to the aquifer implied by this recharge process suggests less evaporation, which means higher groundwater renewal and availability in such Mediterranean coastal aquifers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kostka, Joel E.; Prakash, Om; Green, Stefan J.
2012-05-01
Our objectives were to: 1) isolate and characterize novel anaerobic prokaryotes from subsurface environments exposed to high levels of mixed contaminants (U(VI), nitrate, sulfate), 2) elucidate the diversity and distribution of metabolically active metal- and nitrate-reducing prokaryotes in subsurface sediments, and 3) determine the biotic and abiotic mechanisms linking electron transport processes (nitrate, Fe(III), and sulfate reduction) to radionuclide reduction and immobilization. Mechanisms of electron transport and U(VI) transformation were examined under near in situ conditions in sediment microcosms and in field investigations. Field sampling was conducted at the Oak Ridge Field Research Center (ORFRC), in Oak Ridge, Tennessee. Themore » ORFRC subsurface is exposed to mixed contamination predominated by uranium and nitrate. In short, we effectively addressed all 3 stated objectives of the project. In particular, we isolated and characterized a large number of novel anaerobes with a high bioremediation potential that can be used as model organisms, and we are now able to quantify the function of subsurface sedimentary microbial communities in situ using state-of-the-art gene expression methods (molecular proxies).« less
Sediment Quality in Near Coastal Waters of the Gulf of Mexico: Influence of Hurricane Katrina
The results from this study represent a synoptic analysis of sediment quality in coastal waters of Lake Pontchartrain and Mississippi Sound two months after the landfall of Hurricane Katrina. Post-hurricane conditions were compared to pre-hurricane (2000-2004) conditions, for se...
The EPA Office of Water’s National Coastal Condition Assessment (NCCA) helps satisfy the assessment and antidegradation provisions of the Clean Water Actby estimating water, sediment, and benthic quality conditions in the Great Lakes nearshore on a five-year cycle starting ...
PERIPHYTON AND SEDIMENT BIOASSESSMENT AS INDICATORS OF THE EFFECT OF A COASTAL PULP MILL WASTEWATER
A two year study was conducted near Port St. Joe, Florida, in a coastal transportation canal and bay receiving combined municipal and pulp mill wastewater. The objective of the study was to determine the effectiveness of periphyton analysis techniques and sediment toxicity as ind...
Effects of Stormwater Pipe Size and Rainfall on Sediment and Nutrients Delivered to a Coastal Bayou
Pollutants discharged from stormwater pipes can cause water quality and ecosystem problems in coastal bayous. A study was conducted to characterize sediment and nutrients discharged by small and large (, 20 cm and .20 cm in internal diameters, respectively) pipes under different ...
USDA-ARS?s Scientific Manuscript database
Coastal bermudagrass (Cynodon dactylon L.) may be a potentially important source of bio-based energy in the southern United States due to its vast acreage. It is often produced as part of a waste management plan with varying nutrient composition and energy characteristics on fields irrigated with li...
Zhang, Li-Mei; Duff, Aoife M; Smith, Cindy J
2018-04-24
Terrestrial-marine boundaries are significant sites of biogeochemical activity with delineated gradients from land to sea. While niche differentiation of ammonia-oxidizing archaea (AOA) and bacteria (AOB) driven by pH and nitrogen is well known, the patterns and environmental drivers of AOA and AOB community structure and activity across soil-sediment boundaries have not yet been determined. In this study, nitrification potential rate, community composition and transcriptional activity of AOA and AOB in soil, soil/sediment interface and sediments of two coastal Bays were characterized using a combination of field investigations and microcosm incubations. At DNA level, amoA gene abundances of AOA were significantly greater than AOB in soil, while in sediments AOB were significantly more abundant than AOA, but at the soil/sediment interface there were equal numbers of AOA and AOB amoA genes. Microcosm incubations provided further evidence, through qPCR and DGGE-sequencing analysis of amoA transcripts, that AOA were active in soil, AOB in sediment and both AOA and AOB were active at the soil/sediment interface. The AOA and AOB community composition shifted across the coastal soil-interface-sediment gradient with salinity and pH identified as major environmental drivers. © 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szecsody, James E.; Riley, Robert G.; Devary, Brooks J.
2005-06-01
This SERDP-funded project was initiated to investigate the fate of CL-20 in the subsurface environment, with a focus on identification and quantification of geochemical and microbial reactions of CL-20. CL-20 can be released to the surface and subsurface terrestrial environment by: a) manufacturing processes, b) munition storage, and c) use with low order detonation or unexploded ordnance. The risk of far-field subsurface migration was assessed through labora-tory experiments with a variety of sediments and subsurface materials to quantify processes that control CL-20 sorption-limited migration and degradation. Results of this study show that CL-20 will exhibit differing behavior in the subsurfacemore » terrestrial environment: 1. CL-20 on the sediment surface will photodegrade and interact with plants/animals (described in other SERDP projects CU 1254, 1256). CL-20 will exhibit greater sorption in humid sediments to organic matter. Transport will be solubility limited (i.e., low CL-20 aqueous solubility). 2. CL-20 infiltration into soils (<2 m) from spills will be subject to sorption to soil organic matter (if present), and low to high biodegradation rates (weeks to years) depending on the microbial population (greater in humid environment). 3. CL-20 in the vadose zone (>2 m) will be, in most cases, subject to low sorption and low degradation rates, so would persist in the subsurface environment and be at risk for deep migration. Low water content in arid regions will result in a decrease in both sorption and the degradation rate. Measured degradation rates in unsaturated sediments of years would result in significant subsurface migration distances. 4. CL-20 in groundwater will be subject to some sorption but likely very slow degradation rates. CL-20 sorption will be greater than RDX. Most CL-20 degradation will be abiotic (ferrous iron and other transition metals), because most deep subsurface systems have extremely low natural microbial populations. Degradation rates will range from weeks (iron reducing systems) to years. Although CL-20 will move rapidly through most sediments in the terrestrial environment, subsurface remediation can be utilized for cleanup. Transformation of CL-20 to intermediates can be rapidly accomplished under: a) reducing conditions (CL-20 4.1 min. half-life, RDX 18 min. half-life), b) alkaline (pH >10) conditions, and c) bioremediation with added nutrients. CL-20 degradation to intermediates may be insufficient to mitigate environmental impact, as the toxicity of many of these compounds is unknown. Biostimulation in oxic to reducing systems by carbon and nutrient addition can mineralize CL-20, with the most rapid rates occurring under reducing conditions.« less
NASA Astrophysics Data System (ADS)
Gontz, A. M.; McCallum, A. B.; Moss, P. T.; Shulmeister, J.
2015-12-01
During 2015 and 2014, nearly 60 km of high-resolution ground penetrating radar data were acquired on the Cooloola Sand Mass (CSM) in southeastern coastal Queensland. The CSM is part of the world's largest downdrift sand system. It contains three of the world's largest sand islands, several National Parks, a UNESCO World Heritage Site and covers 500 km of the eastern Australian coastline in northern New South Wales and southern Queensland. The large (>200 m) composite dunes of the CSM exhibit multiple activation phases, coastally eroding bluffs and dune development is not obvious from surficial exposures. This provides an ideal environment for ground penetrating radar. The dune sequences have been provisionally dated to the mid Quaternary through present and represent the potential for a large palaeo-environmental proxy dataset. GPR imagery was collected using a MALA GeoSciences Ground Explorer (GX) system with 160 and 450 MHz antennae from the numerous physiographic and ecological provinces as well as mapped surficial soil units at the CSM. These data were used to determine the subsurface architecture, identify radar facies and develop environmental interpretations. In the clean, aeolian quartz-rich sands, radar wave penetration exceeded 30 m (radar velocity = 0.07 m/ns) with the 160 MHz antenna. From the interpreted environmental units including palaeosol, dune slip face, dune stoss face, sand blow, beach, estuarine and fluvial, we are developing maps to relate the units and focus a detailed sampling regime that includes OSL, sediment geochemistry and sedimentology, The interpreted units, stratigraphic correlation and spatial distribution of the facies is the first step in a broader project to unravel the Quaternary environmental and climate records that are archived within the sediments of the CSM.
Who’s on top? SST proxy comparison from the Peru Margin Upwelling System
NASA Astrophysics Data System (ADS)
Chazen, C.; Herbert, T.; Altabet, M. A.
2009-12-01
The Peru Margin upwelling region is situated at the interface between the poleward Peru Undercurrent and the equatorward Peru Coastal current. Strong coastal winds force cold, nutrient-rich thermocline waters to the surface. Sea surface temperatures in this region fluctuate sub-annually with changes in the position of the Intertropical convergence zone (ITCZ) and sub-decadally with modifications in the strength of Walker Circulation. In contrast, the temperature of the Peru Margin thermocline is stable, isolated from surface winds and slow to respond to major perturbations in surface temperature. Using high resolution sampling (6-7 year) across an annually laminated sediment core from the heart of the Peru Margin upwelling system (15°S) we explore how Uk’37 temperatures compare with TEX86 temperatures across a 200-year interval in the Mid-late Holocene. Mean late Holocene Uk’37 temperatures, extracted from a high sedimentation rate core from the Peru Margin are similar to modern mean annual sea surface temperatures at 15°S. Multi-decadal-scale (50-100 year) Uk’37 temperature fluctuations oscillate about the mean by 1.5°C. These rapid temperature changes are coherent with fluctuations in surface productivity (C37total and Biogenic Silica) in addition to sub-surface denitrification (δ15N). In contrast, TEX86 temperatures derived from identical samples exhibit colder temperatures than modern mean annual conditions and virtually no temperature fluctuation. We posit that TEX86 values are recording temperatures below the photic zone near the mix-layer-thermocline boundary and may, on longer timescales provide invaluable information about thermocline temperature. With this interpretation in mind, we present a TEX86-based long-term thermocline reconstruction over the Holocene.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joel E. Kostka; Lee Kerkhof; Kuk-Jeong Chin
2011-06-15
The objectives of this project were to: (1) isolate and characterize novel anaerobic prokaryotes from subsurface environments exposed to high levels of mixed contaminants (U(VI), nitrate, sulfate), (2) elucidate the diversity and distribution of metabolically active metal- and nitrate-reducing prokaryotes in subsurface sediments, and (3) determine the biotic and abiotic mechanisms linking electron transport processes (nitrate, Fe(III), and sulfate reduction) to radionuclide reduction and immobilization. Mechanisms of electron transport and U(VI) transformation were examined under near in situ conditions in sediment microcosms and in field investigations at the Oak Ridge Field Research Center (ORFRC), in Oak Ridge, Tennessee, where themore » subsurface is exposed to mixed contamination predominated by uranium and nitrate. A total of 20 publications (16 published or 'in press' and 4 in review), 10 invited talks, and 43 contributed seminars/ meeting presentations were completed during the past four years of the project. PI Kostka served on one proposal review panel each year for the U.S. DOE Office of Science during the four year project period. The PI leveraged funds from the state of Florida to purchase new instrumentation that aided the project. Support was also leveraged by the PI from the Joint Genome Institute in the form of two successful proposals for genome sequencing. Draft genomes are now available for two novel species isolated during our studies and 5 more genomes are in the pipeline. We effectively addressed each of the three project objectives and research highlights are provided. Task I - Isolation and characterization of novel anaerobes: (1) A wide range of pure cultures of metal-reducing bacteria, sulfate-reducing bacteria, and denitrifying bacteria (32 strains) were isolated from subsurface sediments of the Oak Ridge Field Research Center (ORFRC), where the subsurface is exposed to mixed contamination of uranium and nitrate. These isolates which are new to science all show high sequence identity to sequences retrieved from ORFRC subsurface. (2) Based on physiological and phylogenetic characterization, two new species of subsurface bacteria were described: the metal-reducer Geobacter daltonii, and the denitrifier Rhodanobacter denitrificans. (3) Strains isolated from the ORFRC show that Rhodanobacter species are well adapted to the contaminated subsurface. Strains 2APBS1 and 116-2 grow at high salt (3% NaCl), low pH (3.5) and tolerate high concentrations of nitrate (400mM) and nitrite (100mM). Strain 2APBS1 was demonstrated to grow at in situ acidic pHs down to 2.5. (4) R. denitrificans strain 2APBS1 is the first described Rhodanobacter species shown to denitrify. Nitrate is almost entirely converted to N2O, which may account for the large accumulation of N2O in the ORFRC subsurface. (5) G. daltonii, isolated from uranium- and hydrocarbon-contaminated subsurface sediments of the ORFRC, is the first organism from the subsurface clade of the genus Geobacter that is capable of growth on aromatic hydrocarbons. (6) High quality draft genome sequences and a complete eco-physiological description are completed for R. denitrificans strain 2APBS1 and G. daltonii strain FRC-32. (7) Given their demonstrated relevance to DOE remediation efforts and the availability of detailed genotypic/phenotypic characterization, Rhodanobacter denitrificans strain 2APBS1 and Geobacter daltonii strain FRC-32 represent ideal model organisms to provide a predictive understanding of subsurface microbial activity through metabolic modeling. Tasks II and III-Diversity and distribution of active anaerobes and Mechanisms linking electron transport and the fate of radionuclides: (1) Our study showed that members of genus Rhodanobacter and Geobacter are abundant and active in the uranium and nitrate contaminated subsurface. In the contaminant source zone of the Oak Ridge site, Rhodanobacter spp. are the predominant, active organisms detected (comprising 50% to 100% of rRNA detected). (2) We demonstrated for the first time that the function of microbial communities can be quantified in subsurface sediments using messenger RNA assays (molecular proxies) under in situ conditions. (3) Active Geobacteraceae were identified and phylogenetically characterized from the cDNA of messenger RNA extracted from ORFRC subsurface sediment cores. Multiple clone sequences were retrieved from G. uraniireducens, G. daltonii, and G. metallireducens. (4) Results show that Geobacter strain FRC-32 is capable of growth on benzoate, toluene and benzene as the electron donor, thereby providing evidence that this strain is physiologically distinct from other described members of the subsurface Geobacter clade. (5) Fe(III)-reducing bacteria transform structural Fe in clay minerals from their layer edges rather than from their basal surfaces.« less
NASA Astrophysics Data System (ADS)
French, J.; Burningham, H.; Whitehouse, R.
2010-12-01
The concept of the coastal sediment cell has proved invaluable as a basis for estimating sediment budgets and as a framework for coastal management. However, whilst coastal sediment cells are readily identified on compartmentalised coastlines dominated by beach-grade material, the cell concept is less suited to handling broader linkages between estuarine, coastal and offshore systems, and for incorporating longer-range suspended sediment transport. We present a new approach to the conceptualisation of large-scale coastal geomorphic systems based on a hierarchical classification of component landforms and management interventions and mapping of the interactions between them. Coastal system mapping is founded on a classification that identifies high-level landform features, low-level landform elements and engineering interventions. Geomorphic features define the large-scale organisation of a system and include landforms that define gross coastal configuration (e.g. headland, bay) as well as fluvial, estuarine and offshore sub-systems that exchange sediment with and influence the open coast. Detailed system structure is mapped out with reference to a larger set of geomorphic elements (e.g. cliff, dune, beach ridge). Element-element interactions define cross-shore linkages (conceptualised as hinterland, backshore and foreshore zones) and alongshore system structure. Both structural and non-structural engineering interventions are also represented at this level. Element-level mapping is rationalised to represent alongshore variation using as few elements as possible. System linkages include both sediment transfer pathways and influences not associated with direct mass transfer (e.g. effect of a jetty at an inlet). A formal procedure for capturing and graphically representing coastal system structure has been developed around free concept mapping software, CmapTools (http://cmap.ihmc.us). Appended meta-data allow geographic coordinates, data, images and literature pertaining to specific locations to be embedded in system maps. Exported maps can be analysed separately to quantify abundance of system components and their scales of interaction. Our approach is demonstrated for different scales and geomorphic contexts in the UK, including Alnmouth Bay (NE England; 15km), Lowestoft to Felixstowe (E England; 73km) and Cardigan Bay (Wales; 267km). Aerial imagery provides the primary basis for identifying features and elements and likely modes of interaction. This interpretation is then checked against relevant research literature and site data. Coastal system mapping is a kind of knowledge formalisation that generalises disparate sources of information (‘plain data’) into usable knowledge. Consensus-derived system maps are highly effective as a catalyst for structured discussion of geomorphic system behaviour and its implications for coastal management. They also function as a repository for results from quantitative analyses and modelling.
Historical Sediment Budget (1860s to Present) for the United States Shoreline of Lake Erie
2016-08-01
B. Monroe, and D. E. Guy, Jr. 1986. Lake Erie shore erosion: The effect of beach width and shore protection structures. Journal of Coastal Research...2005. Concepts in sediment budgets. Journal of Coastal Research 21(2):307–322. Stewart, C. J. 1999. A revised geomorphic, shore protection , and...Engineer District, Buffalo 1776 Niagara Street Buffalo, NY 14207 Andrew Morang and Ashley E. Frey Coastal and Hydraulics Laboratory U.S. Army
Amine, Helmieh; Gomez, Elena; Halwani, Jalal; Casellas, Claude; Fenet, Hélène
2012-11-01
UVF may occur in the aquatic environment through two principal sources: direct inputs from recreational activities and indirect wastewater- and river-borne inputs. The aim of this study was to obtain a first overview of levels of three UVF (EHMC, OC and OD-PABA) in coastal areas subjected to river inputs, untreated wastewater discharges and dumpsite leachates. We selected three eastern Mediterranean rivers that have been impacted for decades by untreated wastewater release and collected sediment in the coastal zone during the hot and humid seasons. Western Mediterranean sites receiving treated wastewaters were analyzed for comparison. The results gave an overview of sediment contamination under these two contrasted situations representative of Mediterranean coastal areas without bathing activities. The analysis of the three UVF revealed the ubiquity and high point source contamination by EHMC and OC in transition and coastal zones, with levels as high as 128 ng g(-1)d.w. OD-PABA was also frequently detected, but at lower concentrations (
Submarine groundwater discharge is an important source of REEs to the coastal ocean
NASA Astrophysics Data System (ADS)
Johannesson, K. H.; Chevis, D. A.; Palmore, C. D.; Telfeyan, K.; Burdige, D.; Cable, J. E.; Hemming, S. R.; Rasbury, T.; Moran, S. B.; Prouty, N.; Swarzenski, P. W.
2014-12-01
Rare earth element (REE) concentrations of submarine groundwater discharge (SGD) were measured in three subterranean estuaries (i.e., Indian River Lagoon, Florida; Pettaquamscutt estuary, Rhode Island; Kona Coast, Hawaii). Using site-specific SGD estimates previously obtained by a variety of techniques (e.g., seepage meters, Ra, and Rn), we estimated SGD-derived fluxes of REEs to the coastal ocean using simple, one-dimensional modeling techniques. Our results indicate that the SGD fluxes of REEs are either of the same magnitude as riverine REE fluxes (Indian River Lagoon; Pettaquamscutt estuary), or far exceed surface runoff sources of REEs to the coastal ocean (Kona Coast). At each site important biogeochemical reactions occurring in the subterranean estuary, such as redox reactions, sediment bioirrigation, mineral dissolution and re-precipitation, and salt-induced mobilization from "nano-colloids", appear to facilitate release of REEs into solution, which are then advected to the coastal ocean via SGD. Neodymium isotope analysis of SGD and aquifer sediment are consistent with sediment diagenesis and redox transformations of Fe(III) oxides/oxyhydroxides, as well as preferential weathering of REE-bearing minerals like apatite, as being important sources of REEs to coastal seawater. Our investigations demonstrate that geochemical reactions occurring in the studied subterranean estuaries represent a net source of light and middle REEs to coastal seawater, whereas the heavy REEs appear to be sequestered in the subterranean estuary sediment.
Rosenfeld, Jordan; Hogan, Daniel; Palm, Daniel; Lundquist, Hans; Nilsson, Christer; Beechie, Timothy J
2011-01-01
Sediment size and supply exert a dominant control on channel structure. We review the role of sediment supply in channel structure, and how regional differences in sediment supply and land use affect stream restoration priorities. We show how stream restoration goals are best understood within a common fluvial geomorphology framework defined by sediment supply, storage, and transport. Land-use impacts in geologically young landscapes with high sediment yields (e.g., coastal British Columbia) typically result in loss of in-stream wood and accelerated sediment inputs from bank erosion, logging roads, hillslopes and gullies. In contrast, northern Sweden and Finland are landscapes with naturally low sediment yields caused by low relief, resistant bedrock, and abundant mainstem lakes that act as sediment traps. Land-use impacts involved extensive channel narrowing, removal of obstructions, and bank armouring with boulders to facilitate timber floating, thereby reducing sediment supply from bank erosion while increasing export through higher channel velocities. These contrasting land-use impacts have pushed stream channels in opposite directions (aggradation versus degradation) within a phase-space defined by sediment transport and supply. Restoration in coastal British Columbia has focused on reducing sediment supply (through bank and hillslope stabilization) and restoring wood inputs. In contrast, restoration in northern Fennoscandia (Sweden and Finland) has focused on channel widening and removal of bank-armouring boulders to increase sediment supply and retention. These contrasting restoration priorities illustrate the consequences of divergent regional land-use impacts on sediment supply, and the utility of planning restoration activities within a mechanistic sediment supply-transport framework.
Foster, Gregory D; Cui, Vickie
2008-10-01
PAHs and PCBs were measured in river sediments along a 226 km longitudinal transect that spanned rural to urban land use settings through Valley and Ridge, Piedmont Plateau and Coastal Plain physiographic provinces in the Potomac River basin (mid-Atlantic USA). A gradient in PAH concentrations was found in river bed sediments along the upstream transect in the Potomac and Shenandoah Rivers that correlated with population densities in the nearby sub-basins. Sediment PAH concentrations halved per each approximately 40 km of transect distance upstream (i.e., the half-concentration distance) from the urban center (Washington, DC) of the Potomac River basin in direct proportion to population density. The PAH molecular composition was consistent across all geologic provinces, revealing a dominant pyrogenic source. Fluoranthene to perylene ratios served as useful markers for urban inputs, with a ratio > 2.4 observed in sediments near urban structures such as roadways, bridges and sewer outfalls. PCBs in sediments were not well correlated with population densities along the river basin transect, but the highest concentrations were found in the urban Coastal Plain region near Washington, DC and in the Shenandoah River near a known industrial Superfund site. PAHs were moderately correlated with sediment total organic carbon (TOC) in the Shenandoah River and Coastal Plain Potomac River regions, but TOC was poorly correlated with PCB concentrations throughout the entire basin. Although both PAHs and PCBs are widely recognized as urban-derived contaminants, their concentration profiles and geochemistry in river sediments were uniquely different throughout the upper Potomac River basin.
Jiang, Min; Tuan, Le Huy; Mei, Wei-Ping; Ruan, Hui-Hui; Wu, Hao
2014-07-01
The spatial and temporal distribution of 16 polycyclic aromatic hydrocarbons (PAHs) has been investigated in water and sediments of Zhoushan coastal area every two months in 2012. The concentrations of total PAHs ranged from 382.3 to 816.9 ng x L(-1), with the mean value of 552.5 ng x L(-1) in water; whereas it ranged from 1017.9 to 3047.1 ng x g(-1), with the mean value of 2 022.4 ng x g(-1) in sediment. Spatial distribution showed that Yangshan and Yanwoshan offshore area had the maximum and minimum of total PAHs contents in water, while the maximum and minimum occurred at Yangshan and Zhujiajian Nansha offshore area in sediment. Temporal distribution revealed that total PAHs contents in water reached the maximum and minimum values in October and June, however in sediments these values were found in August and June, respectively. The PAHs pollution was affected by oil emission, charcoal and coal combustion. Using the biological threshold and exceeded coefficient method to assess the ecological risk of PAHs in Zhoushan coastal area, the result showed that sigma PAHs had a lower probability of potential risk, while there was a higher probability of potential risk for acenaphthylene monomer, and there might be ecological risk for acenaphthene and fluorene. Distribution of PAHs between sediment and water showed that Zhoushan coastal sediment enriched a lot of PAHs, meanwhile the enrichment coefficient (K(d) value) of sediment in Daishan island was larger than that in Zhoushan main island.
Water and sediment dynamics in the Red River mouth and adjacent coastal zone
NASA Astrophysics Data System (ADS)
van Maren, D. S.
2007-02-01
The coastline of the Red River Delta is characterized by alternating patterns of rapid accretion and severe erosion. The main branch of the Red River, the Ba Lat, is presently expanding seaward with a main depositional area several km downstream and offshore the Ba Lat River mouth. Sediment deposition rates are approximately 6 m in the past 50 years. Field measurements were done to determine the processes that regulate marine dispersal and deposition of sediment supplied by the Ba Lat. These measurements reveal that the waters surrounding the Ba Lat delta are strongly stratified with a pronounced southward-flowing surface layer. This southward-flowing surface layer is a coastal current which is generated by river plumes that flow into the coastal zone north of the Ba Lat. However, outflow of turbid river water is not continuous and most sediment enters the coastal zone when the alongshore surface velocities are low. As a consequence, most sediment settles from suspension close to the river mouth. In addition to the southward surface flow, the southward near-bottom currents are also stronger than northward currents. Contrasting with the residual flow near-surface, this southward flow component near-bottom is caused by tidal asymmetry. Because most sediment is supplied by the Ba Lat when wave heights are low, sediment is able to consolidate and therefore the long-term deposition is southward of, but still close to, the Ba Lat mouth.
Cockell, Charles S.; Gronstal, Aaron L.; Voytek, Mary A.; Kirshtein, Julie D.; Finster, Kai; Sanford, Ward E.; Glamoclija, Mihaela; Gohn, Gregroy S.; Powars, David S.; Horton, J. Wright
2009-01-01
Asteroid and comet impact events are known to cause profound disruption to surface ecosystems. The aseptic collection of samples throughout a 1.76-km-deep set of cores recovered from the deep subsurface of the Chesapeake Bay impact structure has allowed the study of the subsurface biosphere in a region disrupted by an impactor. Microbiological enumerations suggest the presence of three major microbiological zones. The upper zone (127–867 m) is characterized by a logarithmic decline in microbial abundance from the surface through the postimpact section of Miocene to Upper Eocene marine sediments and across the transition into the upper layers of the impact tsunami resurge sediments and sediment megablocks. In the middle zone (867–1397 m) microbial abundances are below detection. This zone is predominantly quartz sand, primarily composed of boulders and blocks, and it may have been mostly sterilized by the thermal pulse delivered during impact. No samples were collected from the large granite block (1096–1371 m). The lowest zone (below 1397 m) of increasing microbial abundance coincides with a region of heavily impact-fractured, hydraulically conductive suevite and fractured schist. These zones correspond to lithologies influenced by impact processes. Our results yield insights into the influence of impacts on the deep subsurface biosphere.
2016-01-01
Sediments within the Okinawa back-arc basin overlay a subsurface hydrothermal network, creating intense temperature gradients with sediment depth and potential limits for microbial diversity. We investigated taxonomic changes across 45 m of recovered core with a temperature gradient of 3°C/m from the dynamic Iheya North Hydrothermal System. The interval transitions sharply from low-temperature marine mud to hydrothermally altered clay at 10 meters below seafloor (mbsf). Here, we present taxonomic results from an analysis of the 16S rRNA gene that support a conceptual model in which common marine subsurface taxa persist into the subsurface, while high temperature adapted archaeal taxa show localized peaks in abundances in the hydrothermal clay horizons. Specifically, the bacterial phylum Chloroflexi accounts for a major proportion of the total microbial community within the upper 10 mbsf, whereas high temperature archaea (Terrestrial Hot Spring Crenarchaeotic Group and methanotrophic archaea) appear in varying local abundances in deeper, hydrothermal clay horizons with higher in situ temperatures (up to 55°C, 15 mbsf). In addition, geochemical evidence suggests that methanotrophy may be occurring in various horizons. There is also relict DNA (i.e., DNA preserved after cell death) that persists in horizons where the conditions suitable for microbial communities have ceased. PMID:28096736
NASA Astrophysics Data System (ADS)
Tõnisson, Hannes; Vilumaa, Kadri; Kont, Are; Sugita, Shinya; Rosentau, Alar; Muru, Merle; Anderson, Agnes
2016-04-01
Over the past 50 years, storminess has increased in northern Europe because of the changes in cyclonic activity. The cyclone season in the Baltic Sea area has shifted from autumn to winter; this has led to intensification of shore processes (erosion, sediment transport and accumulation) and has increased pressure to the economy (land use, coastal protection measures) of the coastal regions in the Baltic states. Therefore, studing the effects of such changes on shore processes in the past is critical for prediction of the future changes along the Baltic coasts. Beach ridge plains are found worldwide, where cyclones and storm surges affect accumulation forms. These sandy shores are highly susceptible to erosion. Due to the isostatic uplift on the NE coast of the Baltic Sea, the signs of major past events are well-preserved in the internal architecture of old coastal formations (dune ridge-swale complexes). Wave-eroded scarps in beach deposits are visible in subsurface ground-penetrating radar (GPR) records, indicating the past high-energy events. Several study areas and transects were selected on the NW coast of Estonia, using high-resolution topographic maps (LiDAR). Shore-normal subsurface surveys have been conducted with a digital GSSI SIR-3000 georadar with a 270 MHz antenna at each transect. Interpretation of GPR facies was based on hand auger and window sampler coring, which provided accurate depths of key stratigraphic boundaries and bounding surfaces. Several samples for luminescence and 14C dating were collected to determine the approximate chronology of the coastal formations along the Estonian coast. We have found that changes in storminess, including the periods of high and low intensity of storms in late Holocene, are clearly reflected in the internal patterns of ancient coastal formations. The sections with small ridges with short seaward-dipped layers (interface between wave-built and aeolian deposits) in deeper horizons are probably formed during relatively calm periods. Such short seaward-dipped layers refer to low sea levels during their formation. More extensive layers reflect stronger storm events with higher water levels. Large amounts of sand in nearshore zone contribute to the formation of larger ridges. We have found at least three periods with high cyclonic activity and two relatively calm periods punctuated by few intense storms along the Estonian coast. In addition, a comparative study of the erosional palaeo-surfaces and recent storm monitoring data is currently underway for a better understanding, and thus a reliable reconstruction of the past storm parameters. Further studies are required for a better chronology of coastal events to clarify the periodicity of storminess in this part of the Baltic Sea region. The findings of the current study will contribute to the forecast of future scenarios in regional storm risk assessment of the coastal areas. ACKNOWLEDGMENTS: This work has been funded by the Estonian Ministry of Education and Research and by the Estonian Science Foundation grants No. 7564, 8549, 9191, 9011, IUT18-9, PUT456, the BONUS project BaltCoast and Doctoral School of Earth Sciences and Ecology (EU Structural Support).
Siedlewicz, Grzegorz; Białk-Bielińska, Anna; Borecka, Marta; Winogradow, Aleksandra; Stepnowski, Piotr; Pazdro, Ksenia
2018-04-01
Concentrations of selected antibiotic compounds from different groups were measured in sediment samples (14 analytes) and in near-bottom water samples (12 analytes) collected in 2011-2013 from the southern Baltic Sea (Polish coastal zone). Antibiotics were determined at concentration levels of a few to hundreds of ng g -1 d.w. in sediments and ng L -1 in near-bottom waters. The most frequently detected compounds were sulfamethoxazole, trimethoprim, oxytetracycline in sediments and sulfamethoxazole and trimethoprim in near-bottom waters. The occurrence of the identified antibiotics was characterized by spatial and temporal variability. A statistically important correlation was observed between sediment organic matter content and the concentrations of sulfachloropyridazine and oxytetracycline. Risk assessment analyses revealed a potential high risk of sulfamethoxazole contamination in near-bottom waters and of contamination by sulfamethoxazole, trimethoprim and tetracyclines in sediments. Both chemical and risk assessment analyses show that the coastal area of the southern Baltic Sea is highly exposed to antibiotic residues. Copyright © 2017 Elsevier Ltd. All rights reserved.
Trace element fluxes during the last 100 years in sediment near a nuclear power plant
NASA Astrophysics Data System (ADS)
Bojórquez-Sánchez, S.; Marmolejo-Rodríguez, A. J.; Ruiz-Fernández, A. C.; Sánchez-González, A.; Sánchez-Cabeza, J. A.; Bojórquez-Leyva, H.; Pérez-Bernal, L. H.
2017-11-01
The Salada coastal lagoon is located in Veracruz (Mexico) near the Laguna Verde Nuclear Power Plant (LVNPP). Currently, the lagoon receives the cooling waters used in the LVNPP. To evaluate the fluxes and mobilization of trace elements due to human activities in the area, two sediment cores from the coastal flood plains of Salada Lagoon were analysed. Cores were collected using PVC tubes. Sediments cores were analysed every centimetre for dating (210Pb by alpha detector) and trace metal analysis using ICP-Mass Spectrometry. The dating of both sediment cores covers the period from 1900 to 2013, which includes the construction of the LVNPP (1970's). The Normalized Enrichment Factor shows enrichment of Ag, As and Cr in both sediment cores. These enrichments correspond to the extent of mining activity (which reached a maximum in the 1900's) and to the geological setting of the coastal zone. The profiles of the element fluxes in both sediment cores reflected the construction and operation of the LVNPP; however, the elements content did not show evidence of pollution coming from the LVNPP.
Harikrishnan, N; Chandrasekaran, A; Ravisankar, R; Alagarsamy, R
2018-05-01
A rapid urbanization and industrialization enhances the significant heavy metal pollution in the sediments of coastal area and introduced a serious threat to the human health. In the present study, concentration of heavy metals such as Al, Ti, Fe, V, Cr, Mn, Co, Zn, La, Pb, Mg, Ca, Ni, Cd and Ba are determined in sediments along Periyakalapet to Parangaipettai coastal area, Tamilnadu using energy dispersive X-ray fluorescence spectrometer (EDXRF).These metals have more affinity to establish metallic bond with ferrous material leading to enhancement of sediment magnetic susceptibility. Hence, a magnetic susceptibility (χLF, χHF, χFD) measurement was carried for sediments by using MS2B dual frequency susceptibility meter. Multivariate statistical analysis (Pearson correlation, factor and cluster analysis) was carried out between heavy metals and magnetic susceptibility to assess the anthropogenic impact in the sediments. The study revealed that a magnetic susceptibility measurement is an inexpensive, fast, non-destructive and suitable method to identify the heavy metal pollution sources. Copyright © 2018 Elsevier Ltd. All rights reserved.
Microbial acetogenesis as a source of organic acids in ancient Atlantic Coastal Plain sediments
Chapelle, F.H.; Bradley, P.M.
1996-01-01
Field and laboratory evidence shows that deeply buried (90-888 m) fine-grained sediments of the Atlantic Coastal Plain contain viable acetogenic microorganisms, and that these microorganisms actively produce organic acids. Concentrations of formate, acetate, and propionate in pore waters extracted from fine-grained sediments ranged from 50 ??M to 5 mM and were much higher than in adjacent pore waters associated with sandy sediments (<2 ??M). Laboratory studies showed that asceptically cored fine-grained sediments incubated under a H2 atmosphere produced formate and acetate, and that H14CO-3 was converted to 14C-acetate and 14C-formate over time. An enrichment culture of these acetogenic microorganisms was recovered from one long-term incubation that showed the presence of several morphologically distinct gram-positive, rod-shaped bacteria. These microorganisms were capable of growth under autotrophic (H2 + CO2), heterotrophic (syringate), and mixotrophic (H2 + CO2 + syringate) conditions. These results suggest that microbial acetogenesis, rather than abiotic processes, is the most important organic acid-producing mechanism during low-temperature (???30 ??C) diagenesis of Atlantic Coastal Plain sediments.
Frouin, H; Jackman, P; Dangerfield, N D; Ross, P S
2017-08-01
Shellfish and sediment invertebrates have been widely used to assess pollution trends over space and time in coastal environments around the world. However, few studies have compared the bioaccumulation potential of different test species over a range of sediment-contaminant concentrations and profiles. The bioavailability of sediment-related contaminants was evaluated using sediments collected from sites (n = 12) throughout the Salish Sea, British Columbia, Canada. Two benthic marine invertebrates-the Baltic clam Macoma balthica and the polychaete worm Neanthes arenaceodentata-were exposed for 28 days in a controlled environment to these field-collected coastal sediments. The congener-specific uptake of legacy polychlorinated biphenyls (PCBs) and emergent polybrominated diphenyl ethers (PBDEs) was determined using high-resolution gas chromatography/mass spectrometry in sediments and in invertebrates after the experimental exposure. The polychaete Neanthes accumulated lower concentrations of PCBs but higher concentrations of PBDEs. The present study indicates that differences in bioaccumulation between these two invertebrates shape the accumulation of PCB and PBDE congeners, reflect differences in feeding strategies, and reveal the physicochemical properties of the contaminants and sediment properties. Because biota-sediment accumulation factor values are often calculated for environmental monitoring or site-specific impact assessments, our results provide insight into potentially confounding factors and the need for caution when selecting indicator species for coastal marine pollution.
Wong, Florence L.; Woodrow, Donald L.; McGann, Mary
2013-01-01
Heavy or high-specific gravity minerals make up a small but diagnostic component of sediment that is well suited for determining the provenance and distribution of sediment transported through estuarine and coastal systems worldwide. By this means, we see that surficial sand-sized sediment in the San Francisco Bay Coastal System comes primarily from the Sierra Nevada and associated terranes by way of the Sacramento and San Joaquin Rivers and is transported with little dilution through the San Francisco Bay and out the Golden Gate. Heavy minerals document a slight change from the strictly Sierran-Sacramento mineralogy at the confluence of the two rivers to a composition that includes minor amounts of chert and other Franciscan Complex components west of Carquinez Strait. Between Carquinez Strait and the San Francisco Bar, Sierran sediment is intermingled with Franciscan-modified Sierran sediment. The latter continues out the Gate and turns southward towards beaches of the San Francisco Peninsula. The Sierran sediment also fans out from the San Francisco Bar to merge with a Sierran province on the shelf in the Gulf of the Farallones. Beach-sand sized sediment from the Russian River is transported southward to Point Reyes where it spreads out to define a Franciscan sediment province on the shelf, but does not continue southward to contribute to the sediment in the Golden Gate area.
Spatial variability of coastal wetland resilience to sea-level rise using Bayesian inference
NASA Astrophysics Data System (ADS)
Hardy, T.; Wu, W.
2017-12-01
The coastal wetlands in the Northern Gulf of Mexico (NGOM) account for 40% of coastal wetland area in the United States and provide various ecosystem services to the region and broader areas. Increasing rates of relative sea-level rise (RSLR), and reduced sediment input have increased coastal wetland loss in the NGOM, accounting for 80% of coastal wetland loss in the nation. Traditional models for predicting the impact of RSLR on coastal wetlands in the NGOM have focused on coastal erosion driven by geophysical variables only, and/or at small spatial extents. Here we developed a model in Bayesian inference to make probabilistic prediction of wetland loss in the entire NGOM as a function of vegetation productivity and geophysical attributes. We also studied how restoration efforts help maintain the area of coastal wetlands. Vegetation productivity contributes organic matter to wetland sedimentation and was approximated using the remotely sensed normalized difference moisture index (NDMI). The geophysical variables include RSLR, tidal range, river discharge, coastal slope, and wave height. We found a significantly positive relation between wetland loss and RSLR, which varied significantly at different river discharge regimes. There also existed a significantly negative relation between wetland loss and NDMI, indicating that in-situ vegetation productivity contributed to wetland resilience to RSLR. This relation did not vary significantly between river discharge regimes. The spatial relation revealed three areas of high RSLR but relatively low wetland loss; these areas were associated with wetland restoration projects in coastal Louisiana. Two projects were breakwater projects, where hard materials were placed off-shore to reduce wave action and promote sedimentation. And one project was a vegetation planting project used to promote sedimentation and wetland stabilization. We further developed an interactive web tool that allows stakeholders to develop similar wetland restoration and management plans tailored specifically to the biologic and geophysical conditions at their target sites.
NASA Astrophysics Data System (ADS)
Ortiz-Zayas, J.; Melendez, J.; Barreto, M.; Santiago, L.; Torres-Perez, J. L.; Ramos-Scharron, C. E.; Figueroa, Y.; Setegn, S. G.; Guild, L. S.; Armstrong, R.
2017-12-01
Coastal ecosystems are an asset to many tropical island economies. In Puerto Rico, however, many invaluable coastal ecosystems are at risk due to multiple social and natural environmental stressors. To quantify the role of anthropogenic versus natural stressors, an integrated multidisciplinary approach was applied in two contrasting watersheds in Puerto Rico. The Rio Loco (RL) watershed in Southeastern Puerto Rico is hydrologically modified with interbasin water transfers, hydroelectric generation, and with water extraction for irrigation and water supply. Intensive agricultural production dominates both the lower and upper portions of the basin. In contrast, the Rio Grande de Manatí (RGM) shows a natural flow regime with minor flow regulation and limited agriculture. The Surface Water Assessment Tool (SWAT) was applied to each watershed to assess the effects of land use changes on water and sediment fluxes to coastal areas. From 1977 to 2016, forest areas increased in both watersheds due to the abandonment of farms in the mountains. However, in upper and lower RL, agricultural lands have remained active. Coffee plantations in the upper watershed contribute with high sediment loads, particularly in unpaved service roads. We hypothesize that water fluxes will be higher in the larger RGM than in RL. However, suspended sediment fluxes will be higher in the agriculturally active RL basin. A willingness-to-pay approach was applied to assess how residents from each watershed value water and coastal ecosystems revealing a general higher natural resources valuation in the RGM than in RL. Coastal ecosystems at each site revealed structural differences in benthic coral communities due to local currents influenced largely by coastal morphology. The optical properties of coastal waters are also being determined and linked to fluvial sediment fluxes. Stakeholder meetings are being held in each watershed to promote transfer of scientific insights into a sustainable coastal and watershed management policy.
A Review of distribution and quantity of lingering subsurface oil from the Exxon Valdez Oil Spill
NASA Astrophysics Data System (ADS)
Nixon, Zachary; Michel, Jacqueline
2018-01-01
Remaining lingering subsurface oil residues from the Exxon Valdez oil spill (EVOS) are, at present, patchily distributed across the geologically complex and spatially extensive shorelines of Prince William Sound and the Gulf of Alaska. We review and synthesize previous literature describing the causal geomorphic and physical mechanisms for persistence of oil in the intertidal subsurface sediments of these areas. We also summarize previous sampling and modeling efforts, and refine previously presented models with additional data to characterize the present-day linear and areal spatial extent, and quantity of lingering subsurface oil. In the weeks after the spill in March of 1989, approximately 17,750 t of oil were stranded along impacted shorelines, and by October of 1992, only 2% of the mass of spilled oil was estimated to remain in intertidal areas. We estimate that lingering subsurface residues, generally between 5 and 20 cm thick and sequestered below 10-20 cm of clean sediment, are present over 30 ha of intertidal area, along 11.4 km of shoreline, and represent approximately 227 t or 0.6% of the total mass of spilled oil. These residues are typically located in finer-grained sand and gravel sediments, often under an armor of cobble- or boulder-sized clasts, in areas with limited groundwater flow and porosity. Persistence of these residues is correlated with heavy initial oil loading together with localized sheltering from physical disturbance such as wave energy within the beach face. While no longer generally bioavailable and increasingly chemically weathered, present removal rates for these remaining subsurface oil residues have slowed to nearly zero. The only remaining plausible removal mechanisms will operate over time scales of decades.
Li, Xiaoyu; Liu, Lijuan; Wang, Yugang; Luo, Geping; Chen, Xi; Yang, Xiaoliang; Gao, Bin; He, Xingyuan
2012-01-01
The purpose of this study is to investigate the current status of metal pollution of the sediments from urban-stream, estuary and Jinzhou Bay of the coastal industrial city, NE China. Forty surface sediment samples from river, estuary and bay and one sediment core from Jinzhou bay were collected and analyzed for heavy metal concentrations of Cu, Zn, Pb, Cd, Ni and Mn. The data reveals that there was a remarkable change in the contents of heavy metals among the sampling sediments, and all the mean values of heavy metal concentration were higher than the national guideline values of marine sediment quality of China (GB 18668-2002). This is one of the most polluted of the world’s impacted coastal systems. Both the correlation analyses and geostatistical analyses showed that Cu, Zn, Pb and Cd have a very similar spatial pattern and come from the industrial activities, and the concentration of Mn mainly caused by natural factors. The estuary is the most polluted area with extremely high potential ecological risk; however the contamination decreased with distance seaward of the river estuary. This study clearly highlights the urgent need to make great efforts to control the industrial emission and the exceptionally severe heavy metal pollution in the coastal area, and the immediate measures should be carried out to minimize the rate of contamination, and extent of future pollution problems. PMID:22768107
Li, Xiaoyu; Liu, Lijuan; Wang, Yugang; Luo, Geping; Chen, Xi; Yang, Xiaoliang; Gao, Bin; He, Xingyuan
2012-01-01
The purpose of this study is to investigate the current status of metal pollution of the sediments from urban-stream, estuary and Jinzhou Bay of the coastal industrial city, NE China. Forty surface sediment samples from river, estuary and bay and one sediment core from Jinzhou bay were collected and analyzed for heavy metal concentrations of Cu, Zn, Pb, Cd, Ni and Mn. The data reveals that there was a remarkable change in the contents of heavy metals among the sampling sediments, and all the mean values of heavy metal concentration were higher than the national guideline values of marine sediment quality of China (GB 18668-2002). This is one of the most polluted of the world's impacted coastal systems. Both the correlation analyses and geostatistical analyses showed that Cu, Zn, Pb and Cd have a very similar spatial pattern and come from the industrial activities, and the concentration of Mn mainly caused by natural factors. The estuary is the most polluted area with extremely high potential ecological risk; however the contamination decreased with distance seaward of the river estuary. This study clearly highlights the urgent need to make great efforts to control the industrial emission and the exceptionally severe heavy metal pollution in the coastal area, and the immediate measures should be carried out to minimize the rate of contamination, and extent of future pollution problems.
Ng, Kara; Szabo, Zoltan; Reilly, Pamela A.; Barringer, Julia; Smalling, Kelly L.
2016-01-01
Mercury (Hg) is considered a contaminant of global concern for coastal environments due to its toxicity, widespread occurrence in sediment, and bioaccumulation in tissue. Coastal New Jersey, USA, is characterized by shallow bays and wetlands that provide critical habitat for wildlife but share space with expanding urban landscapes. This study was designed as an assessment of the magnitude and distribution of Hg in coastal New Jersey sediments and critical species using publicly available data to highlight potential data gaps. Mercury concentrations in estuary sediments can exceed 2 μg/g and correlate with concentrations of other metals. Based on existing data, the concentrations of Hg in mussels in southern New Jersey are comparable to those observed in other urbanized Atlantic Coast estuaries. Lack of methylmercury data for sediments, other media, and tissues are data gaps needing to be filled for a clearer understanding of the impacts of Hg inputs to the ecosystem.
In-situ Geotechnical Investigation of Arctic Nearshore Zone Sediments, Herschel Island, Yukon
NASA Astrophysics Data System (ADS)
Stark, N.; Quinn, B.; Radosavljevic, B.; Lantuit, H.
2016-02-01
The Arctic is currently undergoing rapid changes with regard to ice coverage, permafrost retreat and coastal erosion. In addition to hydrodynamic processes, the sediments in the Arctic nearshore zone are affected by potential variations in freeze-thaw cycles, as well as an increase of abundant suspended sediment introduced by active retrogressive thaw slumps and increased river discharge. During the YUKON14 expedition to Herschel Island, Yukon, in-situ geotechnical testing of nearshore zone sediments was conducted using a portable free fall penetrometer. The research goals were mapping of sediment types, identification of surficial sediment stratification related to recent sediment remobilization or deposition processes, and the investigation of the soil mechanical characteristics of the uppermost seabed surface in the nearshore zone. Approximately 200 sites were tested using the portable free fall penetrometer, and five different geotechnical signatures identified and grouped. Most locations were characterized by a soft sediment top layer that exhibited a noticeably lower sediment strength than the underlying sediment. The results were correlated to existing sediment grain size records and a sediment type interpretation based on side scan sonar backscatter information. Strong spatial variations in sediment type and stiffness were observed, as well as in abundance and thickness of a top layer of very soft and loose sediment. It was attempted to relate the geotechnical signature to site-specific hydrodynamic energy, morphology, and vicinity to thaw slumps. The results will contribute to a detailed investigation of Arctic coastal erosion in the region, and the investigation of the role of geotechnical parameters for Arctic coastal erosion.
This poster will present a modeling and mapping assessment of landscape sensitivity to non-point source pollution as applied to a hierarchy of catchment drainages in the Coastal Plain of the state of North Carolina. Analysis of the subsurface residence time of water in shallow a...
Preliminary observations on coastal sediment loss through ice rafting in Lake Michigan
Reimnitz, E.; Hayden, E.; McCormick, M.; Barnes, P.W.
1991-01-01
Shows that ice rafting of sand is an important mechanism influencing processes of coastal erosion and basin-deposition. Ice rafting may be partly responsible for net sediment progradation at this southeastern, lee shore during the last few thousand years, and adds coarse grains to basin muds. -from Authors
USDA-ARS?s Scientific Manuscript database
Blackwater streams of the Georgia Coastal Plain are often listed as impaired due to chronically low DO levels. Previous research has shown that high sediment oxygen demand (SOD) values, a hypothesized cause of lowered DO within these waters, are significantly positively correlated with TOC within th...
USDA-ARS?s Scientific Manuscript database
The impact of erosion on soil and carbon loss and redistribution within landscapes is an important component for developing estimates of carbon sequestration potential, management plans to maintain soil quality, and transport of sediment bound agrochemicals. Soils of the Southeastern U.S. Coastal Pl...
Anthropogenic inputs of excess nitrogen (N) to aquatic systems are detrimental, but aquatic plants and sediments have the potential to mitigate N-loading. Sediment processes are driven by microbially mediated N-cycling. Coastal embayments purportedly play a significant role in N-...
Wenzhouxiangella sediminis sp. nov. isolated from coastal sediment
USDA-ARS?s Scientific Manuscript database
A novel Gram-stain-negative, non-spore-forming, no flagellum, facultatively anaerobic, oxidase-negative, catalase- positive, rod-shaped strain, designated XDB06**T, was isolated from coastal sediment of Xiaoshi Island, Weihai, China. Optimal growth occurred at 37 °C, pH 7.5 and with 4.0% (w/v) NaCl....
Zhang, Ling; Shi, Zhen; Zhang, Jingping; Jiang, Zhijian; Wang, Fei; Huang, Xiaoping
2016-05-01
Heavy metal concentrations and distribution were studied in sediments, seawater, and molluscs, and the possible heavy metal sources in the coastal waters of Guangdong Province, South China were discussed. The results showed that the concentrations of Cu, Pb, Zn, and Cr in sediments in eastern coastal waters were generally higher than those in the western coastal waters. However, concentrations of most metals in seawater and molluscs in western waters were higher than in the eastern waters, which was tightly related to the local economics and urbanization development, especially, the different industrial structure in two regions. The main heavy metal sources were attributed to the industrial and agricultural effluent, domestic sewage, and even waste gas. Furthermore, heavy metal contamination assessment indicated that high contamination levels of Cd, Zn, and Pb occurred in sediments in local areas, especially in the bays and harbors. The metal accumulation levels by molluscs ranked following the order of Cd > Cu > As > Zn > Pb > Cr, and the ecological risks introduced by heavy metals in different areas were in the order of Zhanjiang > Yangmao > Shantou > Shanhui.
Tsang, Vic Wing-Hang; Lei, Ngai-Yu; Lam, Michael Hon-Wah
2009-10-01
A mild, low-temperature analytical approach based on sonication assisted extraction coupled with HPLC electrospray ionization triple quadrupole tandem mass spectrometry has been developed for the simultaneous qualitative and quantitative determination of the four Irgarol-related s-triazine species, namely Irgarol-1051, M1, M2 and M3, in coastal sediments and Green-lipped mussel samples. Mild extraction conditions were necessary for the preservation of the thermally unstable M2. The Multiple Reaction Monitoring (MRM) mode of detection by ESI-MS/MS enabled reliable qualitative identification and sensitive quantitative determination of those s-triazines. This determination method was applied to evaluate the degree of Irgarol-1051 contamination in the sediments and biota of the coastal environment of Hong Kong--one of the busiest maritime ports in the world. All the four s-triazine species were observed in all of the samples. This is the first time that the newly identified M2 and M3 are detected in coastal sediments and biota tissues.
NASA Astrophysics Data System (ADS)
Kantardgi, Igor; Zheleznyak, Mark; Demchenko, Raisa; Dykyi, Pavlo; Kivva, Sergei; Kolomiets, Pavlo; Sorokin, Maxim
2014-05-01
The nearshore hydrodynamic fields are produced by the nonlinear interactions of the shoaling waves of different time scales and currents. To simulate the wind wave and swells propagated to the coasts, wave generated near shore currents, nonlinear-dispersive wave transformation and wave diffraction in interaction with coastal and port structure, sediment transport and coastal erosion the chains of the models should be used. The objective of this presentation is to provide an overview of the results of the application of the model chains for the assessment of the wave impacts on new construction designed at the Black Sea coasts and the impacts of these constructions on the coastal erosion/ accretion processes to demonstrate needs for further development of the nonlinear models for the coastal engineering applications. The open source models Wave Watch III and SWAN has been used to simulate wave statistics of the dedicated areas of the Black Sea in high resolution to calculated the statistical parameters of the extreme wave approaching coastal zone construction in accordance with coastal engineering standards. As the main tool for the costal hydrodynamic simulations the modeling system COASTOX-MORPHO has been used, that includes the following models. HWAVE -code based on hyperbolic version of mild slope equations., HWAVE-S - spectral version of HWAVE., BOUSS-FNL - fully nonlinear system of Boussinesq equations for simulation wave nonlinear -dispersive wave transformation in coastal areas. COASTOX-CUR - the code provided the numerical solution of the Nonlinear Shallow Water Equations (NLSWE) by finite-volume methods on the unstructured grid describing the long wave transformation in the coastal zone with the efficient drying -wetting algorithms to simulate the inundation of the coastal areas including tsunami wave runup. Coastox -Cur equations with the radiation stress term calculated via near shore wave fields simulate the wave generated nearhore currents. COASTOX-SED - the module of the simulation of the sediment transport in which the suspended sediments are simulated on the basis of the solution of 2-D advection -diffusion equation and the bottom sediment transport calculations are provided the basis of a library of the most popular semi-empirical formulas. MORPH - the module of the simulation of the morphological transformation of coastal zone based on the mass balance equation, on the basis of the sediment fluxes, calculated in the SED module. MORPH management submodel is responsible for the execution of the model chain "waves- current- sediments - morphodynamics- waves". The open source model SWASH has been used to simulate nonlinear resonance phenomena in coastal waters. The model chain was applied to simulate the potential impact of the designed shore protection structures at the Sochi Olympic Park on coastal morphodynamics, the wave parameters and nonlinear oscillations in the new ports designed in Gelenddjik and Taman at North-East coast of the Black Sea. The modeling results are compared with the results of the physical modeling in the hydraulic flumes of Moscow University of Civil Engineering.
2012-07-01
hurricanes (tropical) with a 50-year and a 100-year return period, and one winter storm ( extratropical ) occurred in October 1982. There are a total of 15...under the 0-m and 2-m SLR scenarios, respectively. • Tropical and extratropical storms induce extensive coastal inundation around the military...1 NUMERICAL MODELING OF COASTAL INUNDATION AND SEDIMENTATION BY STORM SURGE, TIDES, AND WAVES AT NORFOLK, VIRGINIA, USA Honghai Li 1 , Lihwa Lin 1
Marine Subsurface Microbial Communities Across a Hydrothermal Gradient in Okinawa Trough Sediments
NASA Astrophysics Data System (ADS)
Brandt, L. D.; Hser Wah Saw, J.; Ettema, T.; House, C. H.
2015-12-01
IODP Expedition 331 to the Okinawa backarc basin provided an opportunity to study the microbial stratigraphy within the sediments surrounding a hydrothermal vent. The Okinawa backarc basin is a sedimented region of the seafloor located on a continental margin, and also hosts a hydrothermal network within the subsurface. Site C0014 within the Iheya North hydrothermal field is located 450 m east of the active vent and has a surface temperature of 5°C with no evidence of hydrothermal alteration within the top 10 meters below sea floor (mbsf). Temperature increases with depth at an estimated rate of 3°C/m and transitions from non-hydrothermal margin sediments to a hydrothermally altered regime below 10 mbsf. In this study, we utilized deep 16S rRNA sequencing of DNA from IODP Expedition 331 Site C0014 sediment horizons in order to assess diversity throughout the sediment column as well as determine the potential limits of the biosphere. Analysis of the amplicon data shows a shift over 15 mbsf from a heterogeneous community of cosmopolitan marine subsurface taxa toward an archaeal-dominated community in the deepest horizons of the predicted biosphere. Notably, the phylum Chloroflexi represents a substantial taxon through most horizons, where it appears to be replaced below 10 mbsf by punctuations of thermophilic and methanotrophic Archaea and Miscellaneous Crenarchaeotic Group abundances. DNA from the aforementioned transition horizons was further analyzed using metagenomic sequencing. Preliminary taxonomic analysis of the metagenomic data agrees well with amplicon data in capturing the shift in relative abundance of Archaea increasing with depth. Additionally, reverse gyrase, a gene found exclusively in hyperthermophilic microorganisms, was recovered only in the metagenome of the deepest horizon. A BLAST search of this protein sequence against the GenBank non-redudnant protein database produced top hits with reverse gyrase from Thermococcus and Pyrococcus, which are known thermophiles. Up until now, thermophiles and hyperthermophiles have been studied in cultured hydrothermal vent fluid samples, or have been identified from 16S rRNA taxonomic analyses. These recovered genes provide direct evidence for a pervasive subsurface hyperthermophilic biosphere in off-axis hydrothermal sediments.
Multipolarization P-, L-, and C-band radar for coastal zone mapping - The Louisiana example
NASA Technical Reports Server (NTRS)
Wu, Shih-Tseng
1989-01-01
Multipolarization P-, L-, and C-band airborne SAR data sets were acquired over a coastal zone and a forested wetland of southern Louisiana. The data sets were used with field-collected surface-parameter data in order to determine the value of SAR systems in assessing and mapping coastal-zone surface features. The coastal-zone surface features in this study are sediments, sediment distribution, and the formation of new isles and banks. Results of the data analysis indicate that the P-band radar with 68-cm wavelength is capable of detecting the submerged sediment if the area is very shallow (i.e., a water depth of less than one meter). The penetration capability of P-band radar is also demonstrated in the forested wetland area. The composition and condition of the ground surface can be detected, as well as the standing water beneath dense tree leaves.
NASA Technical Reports Server (NTRS)
Menzel, W. Paul; Moeller, Christopher, C; Huh, Oscar K.; Roberts, Harry H.
1998-01-01
The influence that cold front passages have on Louisiana coastal environments, including land loss and land building processes, has been the primary topic of this multidisciplinary research. This research has combined meteorological, remote sensing, and coastal expertise from the University of Wisconsin (UW) and Louisiana State University (LSU). Analyzed data sets include remotely sensed radiometric data (AVHRR on NOAA-12,13,14, Multispectral Atmospheric Mapping Sensor (MAMS) and MODIS Airborne Simulator (MAS) on NASA ER-2), U.S. Army Corps of Engineers (USACE) water level data, water quality data from the Coastal Studies Institute (CSI) at LSU, USACE river discharge data, National Weather Service (NWS) and CSI wind in sitzi measurements, geomorphic measurements from aerial photography (NASA ER-2 and Learjet), and CSI ground based sediment burial pipes (for monitoring topographic change along the Louisiana coast) and sediment cores. The work reported here-in is a continuation of an initial investigation into coastal Louisiana landform modification by cold front systems. That initial effort demonstrated the importance of cold front winds in the Atchafalaya Bay sediment plume distribution (Moeller et al.), documented the sediment transport and deposition process of the western Louisiana coast (Huh et al.) and developed tools (e.g. water types identification, suspended solids estimation) from multispectral radiometric data for application to the current study. This study has extended that work, developing a Geomorphic Impact Index (GI(sup 2)) for relating atmospheric forcing to coastal response and new tools to measure water motion and sediment transport.
Tillage impact on herbicide loss by surface runoff and lateral subsurface flow
USDA-ARS?s Scientific Manuscript database
There is worldwide interest in conservation tillage practices because they can reduce surface runoff, agrichemical, and sediment loss from farm fields. Since these practices typically increase infiltration, their use may increase subsurface transport of water-soluble contaminants. Thus, to assess lo...
Kraemer, Thomas F.; Wood, Warren W.; Sanford, Ward E.
2014-01-01
Sabkhat (Salt flats) are common geographic features of low-lying marine coastal areas that develop under hyper-arid climatic conditions. They are characterized by the presence of highly concentrated saline solutions and evaporitic minerals, and have been cited in the geologic literature as present-day representations of hyper-arid regional paleohydrogeology, paleoclimatology, coastal processes, and sedimentation in the geologic record. It is therefore important that a correct understanding of the origin and development of these features be achieved. Knowledge of the source of solutes is an important first step in understanding these features. Historically, two theories have been advanced as to the main source of solutes in sabkha brines: an early concept entailing seawater as the obvious source, and a more recent and dynamic theory involving ascending geologic brine forced upward into the base of the sabkha by a regional hydraulic gradient in the underlying formations. Ra-226 could uniquely distinguish between these sources under certain circumstances, as it is typically present at elevated activity of hundreds to thousands of Bq/m3 (Becquerels per cubic meter) in subsurface formation brines; at exceedingly low activities in open ocean and coastal water; and not significantly supplied to water from recently formed marine sedimentary framework material. The coastal marine sabkha of the Emirate of Abu Dhabi was used to test this hypothesis. The distribution of Ra-226 in 70 samples of sabkha brine (mean: 700 Bq/m3), 7 samples of underlying deeper formation brine (mean: 3416 Bq/m3), the estimated value of seawater (< 16 Bq/m3) and an estimate of supply from sabkha sedimentary framework grains (<~6 Bq/m3) provide the first direct evidence that ascending geologic brine contributes significantly to the solutes of this sabkha system.
Ahn, J H; Grant, S B
2007-01-01
In-site measurements of particle size spectra were obtained from three offshore cruises to evaluate the physical consequences of increased sediment transport and deposition offshore which was caused by episodic storm runoff water from the Santa Ana River watershed, a highly urbanised coastal watershed in southern California. Of the total annual runoff discharge to the coastal ocean, 89.2% occurred in the 2003/2004 winter season, and 0.22 Mt of sediment mass was transported during the storm events. The runoff plume at surface taken offshore by cross-shore currents progressed rapid aggregation and sedimentation, while the initially high concentration of suspended sediment discharged from the river outlet was dominated by small particles. Vertical profiles of particle size spectra revealed two separated plumes near the river outlet and turbidity plume along the bottom consisted of an abundance of very fine and dense particles. It would appear to support the theory that even if the storm runoff does not carry a high concentration of sediment being capable of generating negative buoyancy, sediment deposition on the shelf might mobilise in dense, fluid mud transported offshore by gravity. In a coastal pollution context, sediment particle size spectra information may offer potentially useful means of characterising particle-associated pollutants for purposes of source tracking and environmental interpretation.
Photolytic Release of Dissolved Vanadium and Copper from Resuspended Coastal Marine Sediments
NASA Astrophysics Data System (ADS)
Skrabal, S. A.; Hammaker, S. N.; McBurney, A. W.; Avery, G. B., Jr.; Kieber, R. J.; Mead, R. N.
2016-02-01
Sunlight photolysis engenders release of dissolved vanadium (V), copper (Cu), and dissolved organic carbon (DOC) from a wide variety of resuspendable coastal marine sediments. Net photoreleases after 6 h of simulated sunlight were as high as 12 nM for Cu and as high as 15 nM for V. Release of Cu significantly correlated with sediment Cu. Photoreleased Cu (but not V) correlated with sediment Fe content, suggesting that photoreduction of Fe oxide carrier phases may be an important photoproduction mechanism for Cu. Longer term experiments showed continued release of metals that were not immediately readsorbed back onto sediments after 24 h of irradiation suggesting that photoproduced metals persist in the dissolved phase and are not immediately scavenged onto particles. Experiments utilizing differing total suspended sediment (TSS) levels show that, although higher TSS causes more photoproduction of Cu and V, the amount produced per mass of sediment is greatest at the lowest TSS. Vanadium photoproduction increased in Macondo oil-amended sediments compared to controls after a one-month incubation period suggesting that the oil may be a source of this metal to the water column. These results imply that photoproduction is an unrecognized source of the micronutrient metals Cu and V to coastal waters.
NASA Astrophysics Data System (ADS)
Borges, Alberto V.; Speeckaert, Gaëlle; Champenois, Willy; Scranton, Mary I.; Gypens, Nathalie
2017-04-01
The open ocean is a modest source of CH4 to the atmosphere compared to other natural and anthropogenic CH4 emissions. Coastal regions are more intense sources of CH4 to the atmosphere than open oceanic waters, in particular estuarine zones. The CH4 emission to the atmosphere from coastal areas is sustained by riverine inputs and methanogenesis in the sediments due to high organic matter (OM) deposition. Additionally, natural gas seeps are sources of CH4 to bottom waters leading to high dissolved CH4 concentrations in bottom waters (from tenths of nmol L-1 up to several µmol L-1). We report a data set of dissolved CH4 concentrations obtained at nine fixed stations in the Belgian coastal zone (Southern North Sea), during one yearly cycle, with a bi-monthly frequency in spring, and a monthly frequency during the rest of the year. This is a coastal area with multiple possible sources of CH4 such as from rivers and gassy sediments, and where intense phytoplankton blooms are dominated by the high dimethylsulfoniopropionate (DMSP) producing micro-algae Phaeocystis globosa, leading to DMSP and dimethylsulfide (DMS) concentrations. Furthermore, the BCZ is a site of important OM sedimentation and accumulation unlike the rest of the North Sea. Spatial variations of dissolved CH4 concentrations were very marked with a minimum yearly average of 9 nmol L-1 in one of the most off-shore stations and maximum yearly average of 139 nmol L-1 at one of the most near-shore stations. The spatial variations of dissolved CH4 concentrations were related to the organic matter (OM) content of sediments, although the highest concentrations seemed to also be related to inputs of CH4 from gassy sediments associated to submerged peat. In the near-shore stations with fine sand or muddy sediments with a high OM content, the seasonal cycle of dissolved CH4 concentration closely followed the seasonal cycle of water temperature, suggesting the control of methanogenesis by temperature in these OM replete sediments. In the off-shore stations with permeable sediments with a low OM content, the seasonal cycle of dissolved CH4 concentration showed a yearly peak following the chlorophyll-a spring peak. This suggests that in these OM poor sediments, methanogenesis depended on the delivery to the sediments of freshly produced OM. In both types of sediments, the seasonal cycle of dissolved CH4 concentrations was unrelated the seasonal cycles of DMS, and DMSP, despite the fact that these quantities were very high during the spring Phaeocystis globosa bloom. This suggests that in this shallow coastal environment CH4 production is overwhelmingly related to benthic processes and unrelated to DMS(P) transformations in the water column as recently suggested in several open ocean regions. The annual average CH4 emission was 41 mmol m-2 yr-1 in the most near-shore stations ( 4 km from the coast) and 10 mmol m-2 yr-1 in the most off-shore stations ( 23 km from the coast), 410-100 times higher than the average value in the open ocean (0.1 mmol m-2 yr-1). The strong control of CH4 concentrations by sediment OM content and by temperature suggests that marine coastal CH4 emissions, in particular shallow coastal areas, should respond in future to eutrophication and warming of climate. This is confirmed by the comparison of CH4 concentrations at five stations obtained in March in years 1990 and 2016, showing a decreasing trend consistent with alleviation of eutrophication in the area.
Microbial Biogeography on the Legacies of Historical Events in the Arctic Subsurface Sediments
NASA Astrophysics Data System (ADS)
Han, Dukki; Nam, Seung-Il; Hur, Hor-Gil
2017-04-01
The Arctic marine environment consists of various microbial habitats. The niche preference of microbial assemblages in the Arctic Ocean has been surveyed with the modern environmental change by oceanographic traits such as sea-ice dynamics, current circulation, and sedimentation. The North Pacific inflow from the shallow and narrow Bering Strait is highly susceptible to sea-level fluctuations, and thus the water mass exchange mediated by the history of sea-ice between the North Pacific and the Chukchi Sea in the Arctic Ocean. Over geological timescale, the climate change may provide putative evidences for ecological niche for the Arctic microbial assemblages as well as geological records in response to the paleoclimate change. In the present study, the multidisciplinary approach, based on microbiology, geology, and geochemistry, was applied to survey the microbial assemblages in the Arctic subsurface sediments and help further integrate the microbial biogeography and biogeochemical patterns in the Arctic subsurface biosphere. Our results describe microbial assemblages with high-resolution paleoceanographic records in the Chukchi Sea sediment core (ARA02B/01A-GC; 5.4 mbsf) to show the processes that drive microbial biogeographic patterns in the Arctic subsurface sediments. We found microbial habitat preferences closely linked to Holocene paleoclimate records as well as geological, geochemical, and microbiological evidence for the inference of the sulphate-methane transition zone (SMTZ) in the Chukchi Sea. Especially, the vertically distributed predominant populations of Gammaproteobacteria and Marine Group II Euryarchaeota in the ARA02B/01A-GC consistent with the patterns of the known global SMTZs and Holocene sedimentary records, suggesting that in-depth microbiological profiles integrated with geological records may be indirectly useful for reconstructing Arctic paleoclimate changes. In the earliest phase of Mid Holocene in the ARA02B/01A-GC with concentrated crenarchaeol (a unique biomarker for Marine Group I Thaumarchaea), the most abundant archaeal population was Marine Group II Euryarchaeota rather than Marine Group I Thaumarchaea, suggesting that the interpretation of archaeal tetraether lipids in subsurface sediments needs careful consideration for paleoceanography. In conclusion, our findings have important implications for the availability of microbial biogeography in the sedimentary record. The present study offers a deeper understanding of the legacies of historical events during the Holocene and implies that the survey of microbial biogeography may be an appropriate tool to monitor potential effects from the climate change in the Arctic Ocean.
Introduction of surfactant mixtures to the subsurface for the purpose of
surfactant-enhanced aquifer remediation requires consideration of the effects of
surfactant sorption to sediment and nonaqueous phase liquids. These effects
include alteration of the solubiliz...
Devendra M. Amatya; Carl C. Trettin
2010-01-01
Information about streamflow characteristics e.g. runoff-rainfall (R/O) ratio, rate and timing of flow, surface and subsurface drainage (SSD), and response time to rainfall events is necessary to accurately simulate fluxes and for designing best management practices (BMPs). Unfortunately, those data are scarce in the southeastern Atlantic coastal plain, a highly...
Subsurface pipeflow dynamics of north-coastal California swale systems
Robert R. Ziemer; Jeffrey S. Albright
1987-01-01
Abstract - Pipeflow dynamics are being studied at Caspar Creek Experimental Watershed in north-coastal California near Ft. Bragg. Pipes have been observed at depths to 2 m within trenched swales and at the heads of gullied channels in small (0.8 to 2 ha) headwater drainages. Digital data loggers connected to pressure transducers monitor discharge using calibrated...
Coastal Studies in a Comprehensive Summer Field Geology Course.
ERIC Educational Resources Information Center
Cameron, Barry; Jones, Richard J.
1979-01-01
Describes a college geology course that incorporates a coastal segment. Field studies are done on Plum Island and include examining beaches, dune fields, and an adjacent marsh and spit. Topics include sedimentation, coastal geomorphology, botanical effects, and coastal studies methodology. (MA)
Trace Element Inputs to the Upper West Pacific from Nd Isotopes and Rare Earth Elements
NASA Astrophysics Data System (ADS)
Behrens, M. K.; Pahnke, K.; Schnetger, B.; Brumsack, H. J.
2015-12-01
Neodymium isotopes (143Nd/144Nd, expressed as ɛNd) and rare earth element (REE) concentrations in the ocean trace water mass transport and margin-seawater exchange processes. The distinct ɛNd and REE signatures of the lithogenic components of margin sediments of the West Pacific allow characterization of trace element inputs to the Pacific Ocean. We present dissolved ɛNdand REE concentrations from twelve vertical profiles of a transect from South Korea to Fiji. Near South Korea, surface waters are marked by unradiogenic ɛNd (as low as -7.3), high REE concentrations (e.g., Nd = 15.3 pmol/kg) and low salinity. Towards the open ocean, these parameters gradually change towards typical Pacific open ocean values (ɛNd = -3.3, [Nd] = 5.55 pmol/kg). Subsurface waters show REE depletions, followed by the typical REE increase with increasing water depth. These distributions indicate trace element input near South Korea and enhanced subsurface scavenging, as indicated by strong heavy REE to light REE fractionation. In the tropical West Pacific (10°N-15°S), high surface and subsurface water ɛNd values (+0.7) and positive Eu anomalies trace the influence of volcanic islands. Yet, absolute REE concentrations are extremely low at these depths (e.g., Nd = 2.77 pmol/kg). Using shale-normalized Nd/Er and Ho/Dy ratios, that show a much stronger surface to subsurface decrease in coastal waters compared to the open ocean, we suggest enhanced scavenging in this area. Eastward flowing intermediate waters (NPIW, AAIW) have ɛNd values up to +1.9 (NPIW) and +3.7 (AAIW) higher than those entering the tropical West Pacific from north and south, respectively. Modified ɛNd at intermediate depths and no change in REE patterns suggest that boundary exchange along volcanic island margins modifies the seawater ɛNd without changing the REE budget.
Electrokinetic Transduction of Acoustic Waves In Ocean Sediments
2002-09-30
acoustic —motion in ocean sediments. The Biot theory of poroelastic media captures much of the sediment physics left out by other models [2]. It fits...in subsurface acoustical imaging, Mine Counter- Measures, and Anti-Submarine Warfare. To obtain essential experimental data to support the modeling ...Electrokinetic Transduction of Acoustic Waves In Ocean Sediments Gareth I. Block Applied Research Laboratories, U.T. Austin P.O. Box 8029
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahmed, B.; Cao, Bin; Mishra, Bhoopesh
2012-09-23
Regions within the U.S. Department of Energy Hanford 300 Area (300 A) site experience periodic hydrologic influences from the nearby Columbia River as a result of changing river stage, which causes changes in groundwater elevation, flow direction and water chemistry. An important question is the extent to which the mixing of Columbia River water and groundwater impacts the speciation and mobility of uranium (U). In this study, we designed experiments to mimic interactions among U, oxic groundwater or Columbia River water, and 300 A sediments in the subsurface environment of Hanford 300 A. The goals were to investigate mechanisms of:more » 1) U immobilization in 300 A sediments under bulk oxic conditions and 2) U remobilization from U-immobilized 300 A sediments exposed to oxic Columbia River water. Initially, 300 A sediments in column reactors were fed with U(VI)-containing oxic 1) synthetic groundwater (SGW), 2) organic-amended SGW (OA-SGW), and 3) de-ionized (DI) water to investigate U immobilization processes. After that, the sediments were exposed to oxic Columbia River water for U remobilization studies. The results reveal that U was immobilized by 300 A sediments predominantly through reduction (80-85%) when the column reactor was fed with oxic OA-SGW. However, U was immobilized by 300 A sediments through adsorption (100%) when the column reactors were fed with oxic SGW or DI water. The reduced U in the 300 A sediments fed with OA-SGW was relatively resistant to remobilization by oxic Columbia River water. Oxic Columbia River water resulted in U remobilization (~7%) through desorption, and most of the U that remained in the 300 A sediments fed with OA-SGW (~93%) was in the form of uraninite nanoparticles. These results reveal that: 1) the reductive immobilization of U through OA-SGW stimulation of indigenous 300 A sediment microorganisms may be viable in the relatively oxic Hanford 300 A subsurface environments and 2) with the intrusion of Columbia River water, desorption may be the primary process resulting in U remobilization from OA-SGW-stimulated 300 A sediments at the subsurface of the Hanford 300 A site.« less
Sediment quality in the north coastal basin of Massachusetts, 2003
Breault, Robert F.; Ashman, Mary S.; Heath, Douglas
2004-01-01
The U.S. Geological Survey, in cooperation with the Massachusetts Department of Environmental Protection, completed a reconnaissance-level study of bottom-sediment quality in selected lakes, rivers, and estuaries in the North Coastal Basin of Massachusetts. Bottom-sediment grab samples were collected from 20 sites in the North River, Lake Quannapowitt, Saugus River, Mill River, Shute Brook, Sea Plane Basin, Pines River, and Bear Creek. The samples were tested for various types of potentially harmful contaminants? including 33 elements, 17 polyaromatic hydrocarbons (PAHs), 22 organochlorine pesticides, and 7 polychlorinated biphenyl (PCB) mixtures (Aroclors)?to benthic organisms (bottom-dwelling) and humans. The results were compared among sampling sites, to background concentrations, and to concen-trations measured in other urban rivers, and sediment-quality guidelines were used to predict toxicity at the sampling sites to benthic organisms and humans. Because there are no standards for human toxicity for aquatic sediment, standards for contaminated upland soil were used. Contaminant concentrations measured in sediment collected from the North Coastal Basin generally were equal to or greater than concentrations in sediment from uncontaminated rivers throughout New England. Contaminants in North Coastal Basin sediment with elevated concentrations (above back-ground levels) included arsenic, chromium, copper, lead, nickel, and zinc, some of the PAHs, dichlorodiphenyltrichloro-ethane (DDT) and its metabolites, and dieldrin. No PCBs were measured above the detection limits. Measured concentrations of arsenic, chromium, and lead were also generally greater than those measured in other urban rivers throughout the conter-minous United States. With one exception (arsenic), local con-centrations measured in sediment samples collected from the North Coastal Basin were lower than concentrations measured in sediment collected from two of three urban rivers draining to Boston Harbor. The probable toxicity to benthic organisms ranged from about 33 to 91 percent across the study area. Of the elements analyzed, antimony, arsenic, beryllium, and lead exceeded the soil standards for risk to human health. Of the PAHs analyzed, four also exceeded soil standards. Organochlorine pesticide concentrations, however, were not high enough relative to the soil standards to pose a risk to human health. Some trace element and some organic compound concentrations in bottom sediment may be toxic to aquatic organisms and may pose a risk to human health.
Immobilization of cobalt by sulfate-reducing bacteria in subsurface sediments
Krumholz, Lee R.; Elias, Dwayne A.; Suflita, Joseph M.
2003-01-01
We investigated the impact of sulfate-reduction on immobilization of metals in subsurface aquifers. Co 2+ was used as a model for heavy metals. Factors limiting sulfate-reduction dependent Co 2+ immobilization were tested on pure cultures of sulfate-reducing bacteria, and in sediment columns from a landfill leachate contaminated aquifer. In the presence of 1 mM Co 2+ , the growth of pure cultures of sulfate-reducing bacteria was not impacted. Cultures of Desulfovibrio desulfuricans, Desulfotomaculum gibsoniae , and Desulfomicrobium hypogeia removed greater than 99.99% of the soluble Co 2+ when CoCl 2 was used with no chelators. The above cultures and Desulfoarcula baarsi removed 98-99.94% of the soluble Co(II) when the metal was complexed with the model ligand nitrilotriacetate (Co-NTA). Factors controlling the rate of sulfate-reduction based Co 2+ precipitation were investigated in sediment-cobalt mixtures. Several electron donors were tested and all but toluene accelerated soluble Co 2+ loss. Ethanol and formate showed the greatest stimulation. All complex nitrogen sources tested slowed and decreased the extent of Co 2+ removal from solution relative to formate-amended sediment incubations. A range of pH values were tested (6.35-7.81), with the more alkaline incubations exhibiting the largest precipitation of Co 2+ . The immobilization of Co 2+ in sediments was also investigated with cores to monitor the flow of Co 2+ through undisturbed sediments. An increase in the amount of Co 2+ immobilized as CoS was observed as sulfate reduction activity was stimulated in flow through columns. Both pure culture and sediment incubation data indicate that stimulation of sulfate reduction is a viable strategy in the immobilization of contaminating metals in subsurface systems.
Budakoglu, Murat; Karaman, Muhittin; Kumral, Mustafa; Zeytuncu, Bihter; Doner, Zeynep; Yildirim, Demet Kiran; Taşdelen, Suat; Bülbül, Ali; Gumus, Lokman
2018-02-23
The major and trace element component of 48 recent sediment samples in three distinct intervals (0-10, 10-20, and 20-30 cm) from Lake Acıgöl is described to present the current contamination levels and grift structure of detrital and evaporate mineral patterns of these sediments in this extreme saline environment. The spatial and vertical concentrations of major oxides were not uniform in the each subsurface interval. However, similar spatial distribution patterns were observed for some major element couples, due mainly to the detrital and evaporate origin of these elements. A sequential extraction procedure including five distinct steps was also performed to determine the different bonds of trace elements in the < 60-μ particulate size of recent sediments. Eleven trace elements (Ni, Fe, Cd, Pb, Cu, Zn, As, Co, Cr, Al and Mn) in nine surface and subsurface sediment samples were analyzed with chemical partitioning procedures to determine the trace element percentage loads in these different sequential extraction phases. The obtained accuracy values via comparison of the bulk trace metal loads with the total loads of five extraction steps were satisfying for the Ni, Fe, Cd, Zn, and Co. While, bulk analysis results of the Cu, Ni, and V elements have good correlation with total organic matter, organic fraction of sequential extraction characterized by Cu, As, Cd, and Pb. Shallow Lake Acıgöl sediment is characteristic with two different redox layer a) oxic upper level sediments, where trace metals are mobilized, b) reduced subsurface level, where the trace metals are precipitated.
NASA Astrophysics Data System (ADS)
Evrard, Olivier; Laceby, J. Patrick; Onda, Yuichi; Wakiyama, Yoshifumi; Jaegler, Hugo; Lefèvre, Irène
2016-10-01
Fallout from the Fukushima Dai-ichi nuclear power plant accident resulted in a 3000-km2 radioactive contamination plume. Here, we model the progressive dilution of the radiocesium contamination in 327 sediment samples from two neighboring catchments with different timing of soil decontamination. Overall, we demonstrate that there has been a ~90% decrease of the contribution of upstream contaminated soils to sediment transiting the coastal plains between 2012 (median - M - contribution of 73%, mean absolute deviation - MAD - of 27%) and 2015 (M 9%, MAD 6%). The occurrence of typhoons and the progress of decontamination in different tributaries of the Niida River resulted in temporary increases in local contamination. However, the much lower contribution of upstream contaminated soils to coastal plain sediment in November 2015 demonstrates that the source of the easily erodible, contaminated material has potentially been removed by decontamination, diluted by subsoils, or eroded and transported to the Pacific Ocean.
Lin, Tian; Hu, Zhaohui; Zhang, Gan; Li, Xiangdong; Xu, Weihai; Tang, Jianhui; Li, Jun
2009-11-01
DDT remains an important type of persistent organic pollutant (POP) in the environment of China. One of the current applications of DDT in China has been through antifouling paint for fishing ships as an active component. It has been estimated that approximately 5000 t of DDT was released into the Chinese coastal environment during the last two decades. Therefore, sediments in coastal fishing harbors of China may be the important sinks of DDT. In this study, DDT and its metabolites in 58 sediment samples from nine typical fishing harbors along the coastal line of China were characterized to assess their accumulation levels, sediment burdens, and potential ecological risks. The concentrations of DDTs ranged from 9 to 7350 ng/g dry weight, which were generally 1-2 orders of magnitude higher than those of the adjacent estuarine/marine sediments. The high concentrations of DDT coupled with the lower concentrations of HCH and TOC clearly indicated a strong local DDT input, i.e., DDT-containing antifouling paint, within the fishing harbors. A significant correlation between the total DDT concentrations and p,p'-DDT concentrations further confirmed the existence of fresh DDT input. The overall burden of DDTs within the upper 10 cm sediment layer in the fishing harbors of the Pearl River Delta, southern China, was estimated to be 1.0-5.7 t, which was several times higher than the DDT accumulation in the surface sediment of the Pearl River estuary. The concentrations of DDTs in the fishing harbor sediments significantly exceeded the sediment quality guidelines on the basis of adverse biological effects. The absence or low concentrations of p,p'-DDD in aquatic organisms and human may imply that either p,p'-DDD may be less bioaccumulated by fish and human, or is biotransformed to other metabolites. A national ban of DDT as an additive to antifouling paint was implemented in 2009 in China; however, the legacy high DDT burden in the coastal fishing harbors needs further monitoring and proper management.
Mercury pollution in Doha (Qatar) coastal environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Al-Madfa, H.; Dahab, O.A.; Holail, H.
Surface water and sediment samples were collected from the Doha coastal area and analyzed for content of physico-chemical forms of mercury. Dissolved reactive Hg represented 81.0% of the total dissolved Hg. Organic Hg contributed only 5.0% of total Hg. Mercury showed a strong tendency to be associated with suspended matter in Doha coastal waters, as it represented about 73.0% of the total. Total Hg in bulk Doha surface sediments fluctuated between 0.14 and 1.75 [mu]g g[sup [minus]1] dry weight, with an average of 0.54 [+-] 0.46 [mu]g g[sup [minus]1] dry weight. The sediment fraction past 63 [mu]m contained 0.73 [+-]more » 0.60 [mu]g g[sup [minus]1] dry weight total Hg. Leachable and methyl Hg averaged 0.10 [+-] 0.11 and 0.02 [+-] 0.03 [mu]g g[sup [minus]1] dry weight, respectively, in the < 63-[mu]m sediment fraction. There is a general trend for all Hg species determined in water and sediments to decrease seaward. The significantly elevated Hg levels at certain locations indicated that the main Hg sources to Doha coastal environment are leachate from the solid waste disposal site, the two harbors, and surface-water discharge.« less
Cahoon, D.R.; Marin, P.E.; Black, B.K.; Lynch, J.C.
2000-01-01
High-resolution measures of vertical accretion, elevation, and compaction of shallow-water sediments are fundamental to understanding the processes that control elevation change and the mechanisms of progradation (e.g., development of mudflats and intertidal wetlands) in coastal systems. Yet, measurements of elevation by traditional survey methods often are of low accuracy because of the compressible nature of the substrates. Nor do they provide measures of vertical accretion or sediment compaction. This paper evaluates the use in shallow-water systems of an approach designed to measure these variables in vegetated wetlands. The approach employs simultaneous measures of elevation from temporary benchmarks using a sedimentation-erosion table (SET) and vertical accretion from marker horizons with sediment cores collected with a cryogenic coring apparatus. The measures are made with a level of resolution sufficient to distinguish between the influence of surface and subsurface processes on elevation, thus providing quantitative estimates of shallow subsidence. The SET-marker horizon approach was evaluated on a developing splay created by an artificial crevasse of a distributary in the Mississippi River delta. The approach provided high-resolution measures of vertical accretion (48.3 ' 2.0 cm.) and elevation (36.7 ' 1.6 cm) over a 4-year period, with the difference between the two indicating the amount of shallow subsidence. In addition, by laying new marker horizons in later years, the approach provided rates not only of shallow subsidence (3.9 ' 0.5 cm y-1) but also compaction of newly deposited seiments (2.1 ' 0.6 cm y-1) and compaction of underlying sediments (1.8 ' 2.0 cm y-1 ) over a two-year period. Hence, the SET-marker horizon approach has widespread applicability in both emergent wetland and shallow water environments for providing high resolution measures of the processes controlling elevation change.
NASA Astrophysics Data System (ADS)
Katz, Oded; Mushkin, Amit; Crouvi, Onn; Alter, Samuel; Shemesh, Ran
2017-04-01
In 2013 the government of Israel initiated a national mitigation program aimed to prevent further collapse and retreat of the country's coastal cliffs, which occur along the northern termination of the Niles's littoral cell (NLC) in the eastern Mediterranean. The goals of this large-scale program are to protect infrastructure and property proximal to the cliff and to conduct long-term maintenance and monitoring of this highly dynamic and sensitive land-sea interface that spans 40 km of Israel's coast line. Here, we examine the possible impact of proposed cliff retreat mitigation efforts on long-shore sediment transport (LST) and coastal dynamics in the region. We used airborne LiDAR spanning a 9-year period between 2006 and 2015 to quantify the annual contribution of sediment eroded from a 20-km-long segment of Israel's coastal cliffs into the NLC. Our measurements reveal 282±85*103 m3 of sediment eroded from the cliff and delivered into the NLC during the studied period. Considering our study area comprises 50% of Israel's sea cliffs we infer an average contribution rate of 30,000-60,000 m^3/yr of cliff-derived sediment into the NLC prior to the planned broad-scale implementation of cliff-retreat mitigation measures. Previous studies report an average net LST flux of 80,000 - 90,000 m3 that reaches the northern termination of the NLC at Haifa Bay annually. Thus, our results suggest that Israel's actively eroding coastal cliffs are primary contributors (40-80%) to the LST budget along the northern termination of the NLC. It therefore appears that successful implementation of the coastal-cliff protection program along Israel's coastline will result in a significant sand deficit, which may drive LST in this part of the NLC out of its 'background' state. In the likely case that the energy/currents driving LST do not change, a possible outcome of this sediment deficit could be increased beach erosion along Israel's coast line to make up for the lost volumes of cliff-eroded sediments.
NASA Astrophysics Data System (ADS)
Katz, O.; Mushkin, A.; Crouvi, O.; Alter, S.; Shemesh, R.
2016-12-01
In 2013 the government of Israel initiated a national mitigation program aimed to prevent further collapse and retreat of the country's coastal cliffs, which occur along the northern termination of the Niles's littoral cell (NLC) in the eastern Mediterranean. The goals of this large-scale program are to protect infrastructure and property proximal to the cliff and to conduct long-term maintenance and monitoring of this highly dynamic and sensitive land-sea interface that spans 40 km of Israel's coast line. Here, we examine the possible impact of proposed cliff retreat mitigation efforts on long-shore sediment transport (LST) and coastal dynamics in the region. We used airborne LiDAR spanning a 9-year period between 2006 and 2015 to quantify the annual contribution of sediment eroded from a 20-km-long segment of Israel's coastal cliffs into the NLC. Our measurements reveal 282±85*103 m3 of sediment eroded from the cliff and delivered into the NLC during the studied period. Considering our study area comprises 50% of Israel's sea cliffs we infer an average contribution rate of 30,000-60,000 m3/yr of cliff-derived sediment into the NLC prior to the planned broad-scale implementation of cliff-retreat mitigation measures. Previous studies report an average net LST flux of 80,000 - 90,000 m3 that reaches the northern termination of the NLC at Haifa Bay annually. Thus, our results suggest that Israel's actively eroding coastal cliffs are primary contributors (40-80%) to the LST budget along the northern termination of the NLC. It therefore appears that successful implementation of the coastal-cliff protection program along Israel's coastline will result in a significant sand deficit, which may drive LST in this part of the NLC out of its `background' state. In the likely case that the energy/currents driving LST do not change, a possible outcome of this sediment deficit could be increased beach erosion along Israel's coast line to make up for the lost volumes of cliff-eroded sediments.
National Coastal Condition Report IV Factsheet
Overall condition of the Nation’s coastal waters is fair. This rating is based on five indices of ecologicalcondition: water quality index, sediment quality index, benthic index, coastal habitat index, and fish tissue contaminants index.
NASA Astrophysics Data System (ADS)
Van-Wierts, S.; Bernatchez, P.
2012-04-01
Coastal erosion is an important issue within the St-Lawrence estuary and gulf, especially in zones of unconsolidated material. Wide beaches are important coastal environments; they act as a buffer against breaking waves by absorbing and dissipating their energy, thus reducing the rate of coastal erosion. They also offer protection to humans and nearby ecosystems, providing habitat for plants, animals and lifeforms such as algae and microfauna. Conventional methods, such as aerial photograph analysis, fail to adequately quantify the morphosedimentary behavior of beaches at the scale of a hydrosedimentary cells. The lack of reliable and quantitative data leads to considerable errors of overestimation and underestimation of sediment budgets. To address these gaps and to minimize acquisition costs posed by airborne LiDAR survey, a mobile terrestrial LiDAR has been set up to acquire topographic data of the coastal zone. The acquisition system includes a LiDAR sensor, a high precision navigation system (GPS-INS) and a video camera. Comparison of LiDAR data with 1050 DGPS control points shows a vertical mean absolute error of 0.1 m in beach areas. The extracted data is used to calculate sediment volumes, widths, slopes, and a sediment budget index. A high accuracy coastal characterization is achieved through the integration of laser data and video. The main objective of this first project using this system is to quantify the impact of rigid coastal protective structures on sediment budget and beach morphology. Results show that the average sediment volume of beaches located before a rock armour barrier (12 m3/m) were three times narrower than for natural beaches (35,5 m3/m). Natural beaches were also found to have twice the width (25.4 m) of the beaches bordering inhabited areas (12.7 m). The development of sediment budget index for beach areas is an excellent proxy to quickly identify deficit areas and therefore the coastal segments most at risk of erosion. The obtained LiDAR coverage also revealed that beach profiles made at an interval of more than 200 m on diversified coasts lead to results significantly different from reality. However, profile intervals have little impact on long uniform beaches.
Bukin, Sergei V.; Pavlova, Olga N.; Manakov, Andrei Y.; Kostyreva, Elena A.; Chernitsyna, Svetlana M.; Mamaeva, Elena V.; Pogodaeva, Tatyana V.; Zemskaya, Tamara I.
2016-01-01
The ability to compare the composition and metabolic potential of microbial communities inhabiting the subsurface sediment in geographically distinct locations is one of the keys to understanding the evolution and function of the subsurface biosphere. Prospective areas for study of the subsurface biosphere are the sites of hydrocarbon discharges on the bottom of the Lake Baikal rift, where ascending fluxes of gas-saturated fluids and oil from deep layers of bottom sediments seep into near-surface sediment. The samples of surface sediments collected in the area of the Posolskaya Bank methane seep were cultured for 17 months under thermobaric conditions (80°C, 5 MPa) with the addition of complementary organic substrate, and a different composition for the gas phase. After incubation, the presence of intact cells of microorganisms, organic matter transformation and the formation of oil biomarkers was confirmed in the samples, with the addition of Baikal diatom alga Synedra acus detritus, and gas mixture CH4:H2:CO2. Taxonomic assignment of the 16S rRNA sequence data indicates that the predominant sequences in the enrichment were Sphingomonas (55.3%), Solirubrobacter (27.5%) and Arthrobacter (16.6%). At the same time, in heat-killed sediment and in sediment without any additional substrates, which were cultivated in a CH4 atmosphere, no geochemical changes were detected, nor the presence of intact cells and 16S rRNA sequences of Bacteria and Archaea. This data may suggest that the decomposition of organic matter under culturing conditions could be performed by microorganisms from low-temperature sediment layers. One possible explanation of this phenomenon is migration of the representatives of the deep thermophilic community through fault zones in the near surface sediment layers, together with gas-bearing fluids. PMID:27242716
Bukin, Sergei V; Pavlova, Olga N; Manakov, Andrei Y; Kostyreva, Elena A; Chernitsyna, Svetlana M; Mamaeva, Elena V; Pogodaeva, Tatyana V; Zemskaya, Tamara I
2016-01-01
The ability to compare the composition and metabolic potential of microbial communities inhabiting the subsurface sediment in geographically distinct locations is one of the keys to understanding the evolution and function of the subsurface biosphere. Prospective areas for study of the subsurface biosphere are the sites of hydrocarbon discharges on the bottom of the Lake Baikal rift, where ascending fluxes of gas-saturated fluids and oil from deep layers of bottom sediments seep into near-surface sediment. The samples of surface sediments collected in the area of the Posolskaya Bank methane seep were cultured for 17 months under thermobaric conditions (80°C, 5 MPa) with the addition of complementary organic substrate, and a different composition for the gas phase. After incubation, the presence of intact cells of microorganisms, organic matter transformation and the formation of oil biomarkers was confirmed in the samples, with the addition of Baikal diatom alga Synedra acus detritus, and gas mixture CH4:H2:CO2. Taxonomic assignment of the 16S rRNA sequence data indicates that the predominant sequences in the enrichment were Sphingomonas (55.3%), Solirubrobacter (27.5%) and Arthrobacter (16.6%). At the same time, in heat-killed sediment and in sediment without any additional substrates, which were cultivated in a CH4 atmosphere, no geochemical changes were detected, nor the presence of intact cells and 16S rRNA sequences of Bacteria and Archaea. This data may suggest that the decomposition of organic matter under culturing conditions could be performed by microorganisms from low-temperature sediment layers. One possible explanation of this phenomenon is migration of the representatives of the deep thermophilic community through fault zones in the near surface sediment layers, together with gas-bearing fluids.
NASA Astrophysics Data System (ADS)
Cardarelli, E.; Bargar, J.; Williams, K. H.; Dam, W. L.; Francis, C.
2015-12-01
Throughout the Colorado River Basin (CRB), uranium (U) persists as a relic contaminant of former ore processing activities. Elevated solid-phase U levels exist in fine-grained, naturally-reduced zone (NRZ) sediments intermittently found within the subsurface floodplain alluvium of the following Department of Energy-Legacy Management sites: Rifle, CO; Naturita, CO; and Grand Junction, CO. Coupled with groundwater fluctuations that alter the subsurface redox conditions, previous evidence from Rifle, CO suggests this resupply of U may be controlled by microbially-produced nitrite and nitrate. Nitrification, the two-step process of archaeal and bacterial ammonia-oxidation followed by bacterial nitrite oxidation, generates nitrate under oxic conditions. Our hypothesis is that when elevated groundwater levels recede and the subsurface system becomes anoxic, the nitrate diffuses into the reduced interiors of the NRZ and stimulates denitrification, the stepwise anaerobic reduction of nitrate/nitrite to dinitrogen gas. Denitrification may then be coupled to the oxidation of sediment-bound U(IV) forming mobile U(VI), allowing it to resupply U into local groundwater supplies. A key step in substantiating this hypothesis is to demonstrate the presence of nitrogen-cycling organisms in U-contaminated, NRZ sediments from the upper CRB. Here we investigate how the diversity and abundances of nitrifying and denitrifying microbial populations change throughout the NRZs of the subsurface by using functional gene markers for ammonia-oxidation (amoA, encoding the α-subunit of ammonia monooxygenase) and denitrification (nirK, nirS, encoding nitrite reductase). Microbial diversity has been assessed via clone libraries, while abundances have been determined through quantitative polymerase chain reaction (qPCR), elucidating how relative numbers of nitrifiers (amoA) and denitrifiers (nirK, nirS) vary with depth, vary with location, and relate to uranium release within NRZs in sediment cores spanning the upper CRB. Early findings from Rifle, CO indicate elevated abundances of ammonia-oxidizers seem to correlate with elevated uranium concentrations emphasizing the critical need to understand how nitrogen-cycling organisms influence subsurface U redox chemistry and mobility.
Sediment measurement in estuarine and coastal areas
NASA Technical Reports Server (NTRS)
Shelley, P. E.
1976-01-01
A survey of uses of estuarine and coastal areas is given. Problems associated with these uses are discussed, and data needs for intelligent management of these valuable areas are outlined. Suspended sediment measurements are seen to be one of the greatest needs. To help understand the complexity of the problem, a brief discussion of sediment mechanics is given, including sediment sources, characteristics, and transport. The impact of sediment mechanics on its direct measurement (sampling and analysis) is indicated, along with recommendations for directly obtaining representative data. Indirect measurement of suspended sediment by remote sensors is discussed both theoretically and in the light of some recent experiences. The need for an integrated, multidisciplinary program to solve the problem of quantitatively measuring suspended sediment with remote sensors is stressed, and several important considerations of such a program and benefits to be derived therefrom are briefly addressed.
Morphodynamics and Sediment Transport on the Huanghe (Yellow River) Delta: Work in Progress
NASA Astrophysics Data System (ADS)
Kineke, G. C.; Calson, B.; Chadwick, A. J.; Chen, L.; Hobbs, B. F.; Kumpf, L. L.; Lamb, M. P.; Ma, H.; Moodie, A. J.; Mullane, M.; Naito, K.; Nittrouer, J. A.; Parker, G.
2017-12-01
Deltas are perhaps the most dynamic of coastal landforms with competing processes that deliver and disperse sediment. As part of the NSF Coastal SEES program, an interdisciplinary team of scientists from the US and China are investigating processes that link river and coastal sediment transport responsible for morphodynamic change of the Huanghe delta- an excellent study site due to its high sediment load and long history of natural and engineered avulsions, that is, abrupt shifts in the river course. A fundamental component of the study is a better understanding of sediment transport physics in a river system that transports mostly silt. Through theory and data analysis, we find that fine-grained rivers fail to develop full scale dunes, which results in faster water flow and substantially larger sediment fluxes as compared to sandy rivers (e.g. the Mississippi River). We also have developed new models for sediment-size dependent entrainment that are needed to make longer term predictions of river sedimentation patterns. On the delta front, we are monitoring the high sediment flux to the coast, which results in steep foresets and ideal conditions for off-shore sediment delivery via gravity flows. These constraints on sediment transport are being used to develop new theory for where and when rivers avulse - including the effects of variable flood discharge, sediment supply, and sea level rise -and how deltas ultimately grow through repeated cycles of lobe development. Flume experiments and field observations are being used to test these models, both in the main channel of the Huanghe and in channels abandoned after historic avulsions. Abandoned channels and floodplains are now dominated by coastal sediment transport through a combination of wave resuspension and tidal transport, settling lag and reverse estuarine circulation. Finally, the field and laboratory tested numerical models are being used as inputs to define a cost curve for efficient avulsion management of the Huanghe delta by minimizing expected flood-damage cost. Taken together, these studies can inform management policies and promote consideration of the natural evolution of deltas to achieve sustainability.
Distribution of trace elements in the coastal sea sediments of Maslinica Bay, Croatia
NASA Astrophysics Data System (ADS)
Mikulic, Nenad; Orescanin, Visnja; Elez, Loris; Pavicic, Ljiljana; Pezelj, Durdica; Lovrencic, Ivanka; Lulic, Stipe
2008-02-01
Spatial distributions of trace elements in the coastal sea sediments and water of Maslinica Bay (Southern Adriatic), Croatia and possible changes in marine flora and foraminifera communities due to pollution were investigated. Macro, micro and trace elements’ distributions in five granulometric fractions were determined for each sediment sample. Bulk sediment samples were also subjected to leaching tests. Elemental concentrations in sediments, sediment extracts and seawater were measured by source excited energy dispersive X-ray fluorescence (EDXRF). Concentrations of the elements Cr, Cu, Zn, and Pb in bulk sediment samples taken in the Maslinica Bay were from 2.1 to over six times enriched when compared with the background level determined for coarse grained carbonate sediments. A low degree of trace elements leaching determined for bulk sediments pointed to strong bonding of trace elements to sediment mineral phases. The analyses of marine flora pointed to higher eutrophication, which disturbs the balance between communities and natural habitats.
NASA Astrophysics Data System (ADS)
Feehan, S.; Ruggiero, P.; Hempel, L. A.; Anderson, D. L.; Cohn, N.
2016-12-01
Characterizing Feedbacks Between Environmental Forcing and Sediment Characteristics in Fluvial and Coastal Systems American Geophysical Union, 2016 Fall Meeting: San Francisco, CA Authors: Scott Feehan, Peter Ruggiero, Laura Hempel, and Dylan Anderson Linking transport processes and sediment characteristics within different environments along the source to sink continuum provides critical insight into the dominant feedbacks between grain size distributions and morphological evolution. This research is focused on evaluating differences in sediment size distributions across both fluvial and coastal environments in the U.S. Pacific Northwest. The Cascades' high relief is characterized by diverse flow regimes with high peak/flashy flows and sub-threshold flows occurring in relative proximity and one of the most energetic wave climates in the world. Combining analyses of both fluvial and coastal environments provides a broader understanding of the dominant forces driving differences between each system's grain size distributions, sediment transport processes, and resultant evolution. We consider sediment samples taken during a large-scale flume experiment that simulated floods representative of both high/flashy peak flows analogous to runoff dominated rivers and sub-threshold flows, analogous to spring-fed rivers. High discharge flows resulted in narrower grain size distributions while low flows where less skewed. Relative sediment size showed clear dependence on distance from source and the environments' dominant fluid motion. Grain size distributions and sediment transport rates were also quantified in both wave dominated nearshore and aeolian dominated backshore portions of Long Beach Peninsula, Washington during SEDEX2, the Sandbar-aEolian-Dune EXchange Experiment of summer 2016. The distributions showed spatial patterns in mean grain size, skewness, and kurtosis dependent on the dominant sediment transport process. The feedback between these grain size distributions and the predominant driver of sediment transport controls the potential for geomorphic change on societally relevant time scales in multiple settings.
Horowitz, Arthur J.; Stephens, Verlin C.; Elrick, Kent A.; Smith, James J.
2012-01-01
Coastal rivers represent a significant pathway for the delivery of natural and anthropogenic sediment-associated chemical constituents to the Atlantic, Pacific and Gulf of Mexico coasts of the conterminous USA. This study entails an accounting segment using published average annual suspended sediment fluxes with published sediment-associated chemical constituent concentrations for (1) baseline, (2) land-use distributions, (3) population density, and (4) worldwide means to estimate concentrations/annual fluxes for trace/major elements and total phosphorus, total organic and inorganic carbon, total nitrogen, and sulphur, for 131 coastal river basins. In addition, it entails a sampling and subsequent chemical analysis segment that provides a level of ‘ground truth’ for the calculated values, as well as generating baselines for sediment-associated concentrations/fluxes against which future changes can be evaluated. Currently, between 260 and 270 Mt of suspended sediment are discharged annually from the conterminous USA; about 69% is discharged from Gulf rivers (n = 36), about 24% from Pacific rivers (n = 42), and about 7% from Atlantic rivers (n = 54). Elevated sediment-associated chemical concentrations relative to baseline levels occur in the reverse order of sediment discharges:Atlantic rivers (49%)>Pacific rivers (40%)>Gulf rivers (23%). Elevated trace element concentrations (e.g. Cu, Hg, Pb, Zn) frequently occur in association with present/former industrial areas and/or urban centres, particularly along the northeast Atlantic coast. Elevated carbon and nutrient concentrations occur along both the Atlantic and Gulf coasts but are dominated by rivers in the urban northeast and by southeastern and Gulf coast (Florida) ‘blackwater’ streams. Elevated Ca, Mg, K, and Na distributions tend to reflect local petrology, whereas elevated Ti, S, Fe, and Al concentrations are ubiquitous, possibly because they have substantial natural as well as anthropogenic sources. Almost all the elevated sediment-associated chemical concentrations found in conterminous US coastal rivers are lower than worldwide averages.
Holocene coastal development on the Florida peninsula
Davis, Richard; Hine, Albert C.; Shinn, Eugene A.
1992-01-01
The Florida peninsula contains five distinct coastal sections, each resulting from its own spectrum of coastal processes and sediment availability during a slowly rising, late Holocene sea level. The east coast barrier system is wave-dominated and has a large cuspate foreland (Cape Canaveral) near its middle. The Florida Keys and reef tract represent the only coastal carbonate system in the continental United States. An open-marine mangrove coast characterizes the low-energy, tide-dominated southwest part of the State. The central Gulf barrier system displays a mixed-energy morphology in a microtidal, low-energy setting. The open-coast marsh system of the Big Bend area that is north of the barrier system is also tide dominated, and is developed on a sediment-starved carbonate platform.The oldest preserved coastal Holocene section is the Florida Keys area where, at about 6 to 8 ka, sequences accumulated during the Holocene. Most of the remainder of the peninsular coast is characterized by terrigenous sequences less than 3 ka. The younger sequences accumulated almost exclusively from reworking of older strata without benefit of additional sediment supply from land.
Characterization of Coastal Hydraulics: Simple Tools and Sweat Equity
NASA Astrophysics Data System (ADS)
McInnis, D.; Fertenbaugh, C.; Orou-Pete, S.; Mullen, A.; Smith, C.; Silliman, S. E.; Yalo, N.; Boukari, M.
2009-12-01
Field efforts are targeted at providing characterization of surface / subsurface interaction along coastal Benin as part of an overall research effort examining coastal hydrology and salt-water intrusion near the large urban center of Cotonou, Benin. Specifically, efforts at adapting an existing numerical model indicate substantial sensitivity of the model results to assumed conditions in a vast region of interconnected fresh-water / salt-water lagoons which are home to a distributed human population. Limits on funding for this project resulted in choice of a series of field techniques that focused predominantly on manual labor (truly sweat equity of undergraduate and graduate students from Benin and the United States) in order to characterize the shallow (less than 10 meters) hydrology and geochemistry of this coastal region. An integrated picture is therefore being developed through application of shallow geochemical analysis to depths less than 10 meters (collection of samples using a manual direct-push drilling method based on a Geoprobe® apparatus and chemical analyses of Cl, Na, Br, Fl, and conductivity performed using specific-ion electrodes), monitoring of the rate of advance of the direct-push to determine vertical distribution of sediment resistance, a home-made falling-head field permeameter to measure shallow (less than 2 meters) permeabilities, manually installed, multi-level piezometers at several points within Lake Nokoue (a large, shallow-water lake bordering Cotonou and the southern coast), and electrical resistivity imaging (using an entry-level resistivity assembly). All tests are performed by students and faculty from the U.S. and Benin, with plans in place for the Benin students to return multiple times per year to monitor changes at the field stations. Results to date have provided significant insight into spatial structure within the surface/subsurface that was not apparent in either satellite imagery or ground-level inspection of the region. Further, continuing measurements using the “home-made” piezometers and permeameter are providing opportunities for temporal data sets that would not otherwise be possible within the project budget, including access (via boats) to data in regions that are flooded during select times of the year. Finally, initial analysis of the data collected to date show interesting relationships among the various parameters measured, with significant potential in these relationships to both guide the calibration of the numerical model and provide valuable insight into the temporal variability of this coastal system. Implications from this work are that relatively simple tools (developed using classic hydrologic techniques combined with innovative use of local supplies) and sweat equity can provide valuable, if not entirely perfect, field methods for characterization of complex hydrologic systems in the absence of high-budget research programs.
Groundwater-quality data and regional trends in the Virginia Coastal Plain, 1906-2007
McFarland, Randolph E.
2010-01-01
A newly developed regional perspective of the hydrogeology of the Virginia Coastal Plain incorporates updated information on groundwater quality in the area. Local-scale groundwater-quality information is provided by a comprehensive dataset compiled from multiple Federal and State agency databases. Groundwater-sample chemical-constituent values and related data are presented in tables, summaries, location maps, and discussions of data quality and limitations. Spatial trends in groundwater quality and related processes at the regional scale are determined from interpretive analyses of the sample data. Major ions that dominate the chemical composition of groundwater in the deep Piney Point, Aquia, and Potomac aquifers evolve eastward and with depth from (1) 'hard' water, dominated by calcium and magnesium cations and bicarbonate and carbonate anions, to (2) 'soft' water, dominated by sodium and potassium cations and bicarbonate and carbonate anions, and lastly to (3) 'salty' water, dominated by sodium and potassium cations and chloride anions. Chemical weathering of subsurface sediments is followed by ion exchange by clay and glauconite, and subsequently by mixing with seawater along the saltwater-transition zone. The chemical composition of groundwater in the shallower surficial and Yorktown-Eastover aquifers, and in basement bedrock along the Fall Zone, is more variable as a result of short flow paths between closely located recharge and discharge areas and possibly some solutes originating from human sources. The saltwater-transition zone is generally broad and landward-dipping, based on groundwater chloride concentrations that increase eastward and with depth. The configuration is convoluted across the Chesapeake Bay impact crater, however, where it is warped and mounded along zones having vertically inverted chloride concentrations that decrease with depth. Fresh groundwater has flushed seawater from subsurface sediments preferentially around the impact crater as a result of broad contrasts between sediment permeabilities. Paths of differential flushing are also focused along the inverted zones, which follow stratigraphic and structural trends southeastward into North Carolina and northeastward beneath the chloride mound across the outer impact crater. Brine within the inner impact crater has probably remained unflushed. Regional movement of the saltwater-transition zone takes place over geologic time scales. Localized movement has been induced by groundwater withdrawal, mostly along shallow parts of the saltwater-transition zone. Short-term episodic withdrawals result in repeated cycles of upconing and downconing of saltwater, which are superimposed on longer-term lateral saltwater intrusion. Effective monitoring for saltwater intrusion needs to address multiple and complexly distributed areas of potential intrusion that vary over time. A broad belt of large groundwater fluoride concentrations underlies the city of Suffolk, and thins and tapers northward. Fluoride in groundwater probably originates by desorbtion from phosphatic sedimentary material. The high fluoride belt possibly was formed by initial adsorbtion of fluoride onto sediment oxyhydroxides, followed by desorbtion along the leading edge of the advancing saltwater-transition zone. Large groundwater iron and manganese concentrations are most common to the west along the Fall Zone, across part of the saltwater-transition zone and eastward, and within shallow groundwater far to the east. Iron and manganese initially produced by mineral dissolution along the Fall Zone are adsorbed eastward and with depth by clay and glauconite, and subsequently desorbed along the leading edge of the advancing saltwater-transition zone. Iron and manganese in shallow groundwater far to the east are produced by reaction of sediment organic matter with oxyhydroxides. Large groundwater nitrate and ammonium concentrations are mostly limited to shallow depths. Most nitrate a
Martinez, Robert J.; Wu, Cindy H.; Beazley, Melanie J.; Andersen, Gary L.; Conrad, Mark E.; Hazen, Terry C.; Taillefert, Martial; Sobecky, Patricia A.
2014-01-01
Background Radionuclide- and heavy metal-contaminated subsurface sediments remain a legacy of Cold War nuclear weapons research and recent nuclear power plant failures. Within such contaminated sediments, remediation activities are necessary to mitigate groundwater contamination. A promising approach makes use of extant microbial communities capable of hydrolyzing organophosphate substrates to promote mineralization of soluble contaminants within deep subsurface environments. Methodology/Principal Findings Uranium-contaminated sediments from the U.S. Department of Energy Oak Ridge Field Research Center (ORFRC) Area 2 site were used in slurry experiments to identify microbial communities involved in hydrolysis of 10 mM organophosphate amendments [i.e., glycerol-2-phosphate (G2P) or glycerol-3-phosphate (G3P)] in synthetic groundwater at pH 5.5 and pH 6.8. Following 36 day (G2P) and 20 day (G3P) amended treatments, maximum phosphate (PO4 3−) concentrations of 4.8 mM and 8.9 mM were measured, respectively. Use of the PhyloChip 16S rRNA microarray identified 2,120 archaeal and bacterial taxa representing 46 phyla, 66 classes, 110 orders, and 186 families among all treatments. Measures of archaeal and bacterial richness were lowest under G2P (pH 5.5) treatments and greatest with G3P (pH 6.8) treatments. Members of the phyla Crenarchaeota, Euryarchaeota, Bacteroidetes, and Proteobacteria demonstrated the greatest enrichment in response to organophosphate amendments and the OTUs that increased in relative abundance by 2-fold or greater accounted for 9%–50% and 3%–17% of total detected Archaea and Bacteria, respectively. Conclusions/Significance This work provided a characterization of the distinct ORFRC subsurface microbial communities that contributed to increased concentrations of extracellular phosphate via hydrolysis of organophosphate substrate amendments. Within subsurface environments that are not ideal for reductive precipitation of uranium, strategies that harness microbial phosphate metabolism to promote uranium phosphate precipitation could offer an alternative approach for in situ sequestration. PMID:24950228
Bargar, Timothy A.; Alvarez, David; Garrison, Virginia H.
2015-01-01
Contamination of surface waters by synthetic ultraviolet light (UV) filtering chemicals is a concern for the Virgin Islands National Park (VINP). Discrete water samples were collected from VINP bays to determine UV filter chemical presence in the coastal waters. Spatial distribution and the potential for partitioning between subsurface waters and the sea surface microlayer (SML) were also examined. The UV filter chemicals 4-methylbenzylidene camphor, benzophenone-3, octinoxate, homosalate, and octocrylene were detected at concentrations up to 6073 ng/L (benzophenone-3). Concentrations for benzophenone-3 and homosalate declined exponentially (r2 = 0.86 to 0.98) with distance from the beach. Limited data indicate that some UV filter chemicals may partition to the SML relative to the subsurface waters. Contamination of VINP coastal waters by UV filter chemicals may be a significant issue, but an improved understanding of the temporal and spatial variability of their concentrations would be necessary to better understand the risk they present.
Hosman, R.L.
1991-01-01
Although Cenozoic deposits are not uniformly differentiated, interstate correlations of major Paleocene and Eocene units are generally established throughout the area. Younger deposits are not as well differentiated. Some stratigraphic designations made at surface exposures cannot be extended into the sub-surface, and the scarcity of distinct geologic horizons has hampered differentiation on a regional scale. The complexities of facies development in Oligocene and younger coastal deposits preclude the development of extensive recognizable horizons needed for stratigraphic applications. Coastal deposits are a heterogeneous assemblage of deltaic, lagoonal, lacustrine, palustrine, eolian, and fluvial clastic facies and local calcareous reef facies. Even major time boundaries, as between geologic series, are not fully resolved. Surficial Quaternary deposits overlie the truncated subcrops of Tertiary strata and generally are distinguishable, although some contacts between Pleistocene and underlying Pliocene deposits have been a ?lstoncal source of controversy. Glacially related terraces are characteristic of the Pleistocene Epoch, and alluvium of aggrading streams typifies the Holocene.
NASA Astrophysics Data System (ADS)
Eckes, S. W.; Shepherd, S. L.
2017-12-01
Accurately characterizing subsurface structure and function of remediated floodplains is indispensable in understanding the success of stream restoration projects. Although many of these projects are designed to address increased storm water runoff due to urbanization, long term monitoring and assessment are often limited in scope and methodology. Common monitoring practices include geomorphic surveys, stream discharge, and suspended sediment loads. These data are comprehensive for stream monitoring but they do not address floodplain function in terms of infiltration and through flow. Developing noninvasive methods for monitoring floodplain moisture transfer and distribution will aid in current and future stream restoration endeavors. Ground penetrating radar (GPR) has been successfully used in other physiographic regions for noninvasive and continuous monitoring of (1) natural geomorphic environments including subsurface structure and landform change and (2) soil and turf management to monitor subsurface moisture content. We are testing the viability of these existing methods to expand upon the broad capabilities of GPR. Determining suitability will be done in three parts using GPR to (1) find known buried objects of typical materials used in remediation at measured depths, (2) understand GPR functionality in varying soil moisture content thresholds on turf plots, and (3) model reference, remediated, and impacted floodplains in a case study in the D'Olive Creek watershed located in Baldwin County, Alabama. We hypothesize that these methods will allow us to characterize moisture transfer from precipitation and runoff to the floodplain which is a direct function of floodplain health. The need for a methodology to monitor floodplains is widespread and with increased resolution and mobility, expanding GPR applications may help streamline remediation and monitoring practices.
Tracking the deposition of sediments from the Great Mississippi Flood of 2011
NASA Astrophysics Data System (ADS)
Khan, N. S.; McKee, K. L.; Horton, B. P.; Varvaeke, W.; Dura, T.; Jerolmack, D. J.
2011-12-01
The marshes of coastal Louisiana are disappearing at a rapid rate due to both natural and anthropogenic processes. Maintenance of soil elevations relative to water levels is key to marsh sustainability, but leveeing of the Mississippi River prevents overbank flooding and direct delivery of sediment to counterbalance rapid rates of subsidence in the deltaic plain. Episodic sediment deposition may occur during storms and hurricanes or extreme flood events, contributing to marsh accretion, but their relative importance to marsh maintenance is unclear. A better understanding of routing and deposition of sediments and their role in the marsh-building dynamics of coastal Louisiana would help clarify these issues and aid restoration planning. The Great Mississippi River Flood of 2011 caused sustained high discharge, producing a narrow jet that penetrated far into the Gulf of Mexico, and prompted the opening of the Morganza spillway, which generated a wide, diffuse plume that inundated vast areas of land and was trapped within coastal currents. These events provided a unique opportunity to test a new theoretical model of coastal sediment dynamics that predicts greater sedimentation over a broader area from the smaller Atchafalaya channel in comparison to the focused plume emanating from the larger Mississippi River channel. Here, we report how the flood contributed to marsh sedimentation, which is part of a larger effort to connect offshore sediment dynamics to sediment delivery and soil accretion within wetlands. A helicopter survey of 45 sites was conducted across the Mississippi (Bird's Foot) Delta, Barataria, Terrebonne, and Atchafalaya basins (350 km of coastline) to measure sediment accumulation and determine its provenance. At each site, new flood sediment deposits were distinguished from pre-flood sediment and sampled separately for organic matter content, bulk density, grain-size and diatom analysis. Comparison of grain-size distribution and diatom assemblages of new marsh sediment accumulations to grab samples taken from within and offshore of the Mississippi River elucidates their provenance. Of the 45 sites sampled, 31 have pre-existing data on marsh accretion or hurricane deposition, providing context for the flood-induced sediment deposition. Our preliminary findings show that sediment accumulation was greatest in the Atchafalaya (1.61 ± 0.96 g cm-2), intermediate in the Bird's Foot (1.14 ± 0.78 g cm-2) and least in the Terrebonne (0.42 ± 0.18 g cm-2) and Barataria (0.34 ± 0.22 g cm-2) basins. These pilot results provide support for the theoretical model of coastal mixing and sedimentation patterns and imply that while small diversions and branches off the main channel supplied sediment locally to marshes in the Bird's Foot Delta, the Mississippi River plume contributed little to declining wetlands in the Barataria and Terrebonne basins during this flood event. The significant sediment deposits found in Atchafalaya marshes indicate greater contributions to soil accretion and improved potential for wetland maintenance.
Powars, D.S.; Catchings, R.D.; Goldman, M.R.; Gohn, G.S.; Horton, J. Wright; Edwards, L.E.; Rymer, M.J.; Gandhok, G.
2009-01-01
The U.S. Geological Survey (USGS) acquired two 1.4-km-long, high-resolution (??5 m vertical resolution) seismic-reflection lines in 2006 that cross near the International Continental Scientifi c Drilling Program (ICDP)-USGS Eyreville deep drilling site located above the late Eocene Chesapeake Bay impact structure in Virginia, USA. Five-meter spacing of seismic sources and geophones produced high-resolution images of the subsurface adjacent to the 1766-m-depth Eyreville core holes. Analysis of these lines, in the context of the core hole stratigraphy, shows that moderateamplitude, discontinuous, dipping reflections below ??527 m correlate with a variety of Chesapeake Bay impact structure sediment and rock breccias recovered in the cores. High-amplitude, continuous, subhorizontal reflections above ??527 m depth correlate with the uppermost part of the Chesapeake Bay impact structure crater-fi ll sediments and postimpact Eocene to Pleistocene sediments. Refl ections with ??20-30 m of relief in the uppermost part of the crater-fi ll and lowermost part of the postimpact section suggest differential compaction of the crater-fi ll materials during early postimpact time. The top of the crater-fi ll section also shows ??20 m of relief that appears to represent an original synimpact surface. Truncation surfaces, locally dipping reflections, and depth variations in reflection amplitudes generally correlate with the lithostratigraphic and sequence-stratigraphic units and contacts in the core. Seismic images show apparent postimpact paleochannels that include the fi rst possible Miocene paleochannels in the Mid-Atlantic Coastal Plain. Broad downwarping in the postimpact section unrelated to structures in the crater fi ll indicates postimpact sediment compaction. ?? 2009 The Geological Society of America.
NASA Astrophysics Data System (ADS)
Abdullah, Anisa; Hamzah, Zaini; Saat, Ahmad; Wood, Ab. Khalik
2016-01-01
Distribution of radionuclides from anthropogenic activities has been widely studied in marine coastal area. Due to rapid population growth and socio-economic development in Manjung area such as coal fired power plant, iron foundries, port development, waste discharged from factories and agriculture runoff may contribute to increase in pollution rate. The radioactive materials from anthropogenic activities could deteriorate the quality of the marine ecosystem and thus lead to possible radiological health risk to the population. Radionuclides (232Th, 238U and 40K) content in surface and profile sediment from Manjung coastal area was determined in this study. Radionuclides in sediment from seven locations were collected using sediment core sampling and measurements were carried out using Energy Dispersive X-ray Fluorescence (EDXRF) spectroscopy. The results show that the concentration of radionuclides in surface sediment and distribution trend of depth vertical profile sediment generally varies depending on locations. Enrichment factors (EF), geo-accumulation index (Igeo) and pollution index (PI) were applied to determine level of pollution of this study area. The radiological risks related to human exposure were evaluated based on external hazard index (Hex).
Long-distance electron transport occurs globally in marine sediments
NASA Astrophysics Data System (ADS)
Burdorf, Laurine D. W.; Tramper, Anton; Seitaj, Dorina; Meire, Lorenz; Hidalgo-Martinez, Silvia; Zetsche, Eva-Maria; Boschker, Henricus T. S.; Meysman, Filip J. R.
2017-02-01
Recently, long filamentous bacteria have been reported conducting electrons over centimetre distances in marine sediments. These so-called cable bacteria perform an electrogenic form of sulfur oxidation, whereby long-distance electron transport links sulfide oxidation in deeper sediment horizons to oxygen reduction in the upper millimetres of the sediment. Electrogenic sulfur oxidation exerts a strong impact on the local sediment biogeochemistry, but it is currently unknown how prevalent the process is within the seafloor. Here we provide a state-of-the-art assessment of its global distribution by combining new field observations with previous reports from the literature. This synthesis demonstrates that electrogenic sulfur oxidation, and hence microbial long-distance electron transport, is a widespread phenomenon in the present-day seafloor. The process is found in coastal sediments within different climate zones (off the Netherlands, Greenland, the USA, Australia) and thrives on a range of different coastal habitats (estuaries, salt marshes, mangroves, coastal hypoxic basins, intertidal flats). The combination of a widespread occurrence and a strong local geochemical imprint suggests that electrogenic sulfur oxidation could be an important, and hitherto overlooked, component of the marine cycle of carbon, sulfur and other elements.
NASA Astrophysics Data System (ADS)
Voulgaris, G.; Warner, J. C.; Work, P. A.; Hanes, D. M.; Haas, K. A.
2004-12-01
The South Carolina Coastal Erosion Study (SCCES) is a cooperative research program funded by the U.S. Geological Survey Coastal and Marine Geology Program and managed by the South Carolina Sea Grant Consortium. The main objective of the study is to understand the factors and processes that control coastal sediment movement along the northern part of the South Carolina coast while at the same time advance our basic understanding of circulation, wave propagation and sediment transport processes. Earlier geological framework studies carried out by the same program provided detailed data on bathymetry, bottom sediment thickness and grain size distribution. They identified an extensive (10km long, 2km wide) sand body deposit located in the inner shelf that has potential use for beach nourishment. The main objectives are to: (1) identify the role of wind-driven circulation in controlling regional sediment distribution on the SC shelf; (2) examine the hypothesis that the shoal is of the "fair-weather type" with bedload being the dominant sediment transport mode and the tidally-averaged flow being at different directions at the two flanks of the shoal; (3) investigate the possibility that the sediment source for the shoal is derived from the nearshore as the result of the convergence of the longshore sediment transport; and finally, (4) quantify the control that the shoal exerts on the nearshore conditions through changes on the wave energy propagation characteristics. Field measurements and numerical modeling techniques are utilized in this project. Two deployments of oceanographic and sediment transport systems took place for a period of 6 months (October 2003 to April 2004) measuring wind forcing, vertical distribution of currents, stratification, and wave spectral characteristics. Further, bed-flow interactions were measured at two locations, with instrumented tripods equipped with pairs of ADVs for measuring turbulence, PC-ADPs for measuring vertical current profiles in the near bed and OBS and ABS for measuring suspended sediment concentrations. The numerical modeling effort utilizes ROMS for 3-D coastal circulation, SWAN for wave propagation on the inner shelf, and SHORECIRC for circulation in the nearshore. As part of the nearshore component of this project a focused short-term surf zone experiment was also carried out.
Fisher, Shawn C.; Reilly, Timothy J.; Jones, Daniel K.; Benzel, William M.; Griffin, Dale W.; Loftin, Keith A.; Iwanowicz, Luke R.; Cohl, Jonathan A.
2015-12-17
An understanding of the effects on human and ecological health brought by major coastal storms or flooding events is typically limited because of a lack of regionally consistent baseline and trends data in locations proximal to potential contaminant sources and mitigation activities, sensitive ecosystems, and recreational facilities where exposures are probable. In an attempt to close this gap, the U.S. Geological Survey (USGS) has implemented the Sediment-bound Contaminant Resiliency and Response (SCoRR) strategy pilot study to collect regional sediment-quality data prior to and in response to future coastal storms. The standard operating procedure (SOP) detailed in this document serves as the sample-collection protocol for the SCoRR strategy by providing step-by-step instructions for site preparation, sample collection and processing, and shipping of soil and surficial sediment (for example, bed sediment, marsh sediment, or beach material). The objectives of the SCoRR strategy pilot study are (1) to create a baseline of soil-, sand-, marsh sediment-, and bed-sediment-quality data from sites located in the coastal counties from Maine to Virginia based on their potential risk of being contaminated in the event of a major coastal storm or flooding (defined as Resiliency mode); and (2) respond to major coastal storms and flooding by reoccupying select baseline sites and sampling within days of the event (defined as Response mode). For both modes, samples are collected in a consistent manner to minimize bias and maximize quality control by ensuring that all sampling personnel across the region collect, document, and process soil and sediment samples following the procedures outlined in this SOP. Samples are analyzed using four USGS-developed screening methods—inorganic geochemistry, organic geochemistry, pathogens, and biological assays—which are also outlined in this SOP. Because the SCoRR strategy employs a multi-metric approach for sample analyses, this protocol expands upon and reconciles differences in the sample collection protocols outlined in the USGS “National Field Manual for the Collection of Water-Quality Data,” which should be used in conjunction with this SOP. A new data entry and sample tracking system also is presented to ensure all relevant data and metadata are gathered at the sample locations and in the laboratories.
Futagami, Taiki; Morono, Yuki; Terada, Takeshi; Kaksonen, Anna H.; Inagaki, Fumio
2009-01-01
Halogenated organic compounds serve as terminal electron acceptors for anaerobic respiration in a diverse range of microorganisms. Here, we report on the widespread distribution and diversity of reductive dehalogenase homologous (rdhA) genes in marine subsurface sediments. A total of 32 putative rdhA phylotypes were detected in sediments from the southeast Pacific off Peru, the eastern equatorial Pacific, the Juan de Fuca Ridge flank off Oregon, and the northwest Pacific off Japan, collected at a maximum depth of 358 m below the seafloor. In addition, significant dehalogenation activity involving 2,4,6-tribromophenol and trichloroethene was observed in sediment slurry from the Nankai Trough Forearc Basin. These results suggest that dehalorespiration is an important energy-yielding pathway in the subseafloor microbial ecosystem. PMID:19749069
California coastal processes study, LANDSAT 2
NASA Technical Reports Server (NTRS)
Pirie, D. M.; Steller, D. D. (Principal Investigator)
1977-01-01
The authors have identified the following significant results. By using suspended sediments as tracers, objectives were met by qualitative definition of the nearshore circulation along the entire coast of California with special study sites at Humboldt Bay, the mouth of the Russian River, San Francisco Bay, Monterey Bay, and the Santa Barbara Channel. Although LANDSAT primarily imaged fines and silts in the surface waters, the distribution of sediments allowed an examination of upwelling, convergences and coastal erosion and deposition. In Monterey Bay and Humboldt Bay, these coastal phenomena were used to trace seasonal trends in surface currents.
Coastal applications of the ERTS-1 satellite imagery
NASA Technical Reports Server (NTRS)
Magoon, O. T. (Principal Investigator)
1972-01-01
There are no author-identified significant results in this report. Samples are given of the possible applications of ERTS-1 imagery to coastal and nearshore studies. Briefly discussed are: (1) obtaining regional views of extended coastal areas; (2) distribution of sediments; (3) coastal configurations and changes; (4) barrier islands; (5) underwater penetration, and (6) coastal waves.
Iron-mediated anaerobic oxidation of methane in brackish coastal sediments.
Egger, Matthias; Rasigraf, Olivia; Sapart, Célia J; Jilbert, Tom; Jetten, Mike S M; Röckmann, Thomas; van der Veen, Carina; Bândă, Narcisa; Kartal, Boran; Ettwig, Katharina F; Slomp, Caroline P
2015-01-06
Methane is a powerful greenhouse gas and its biological conversion in marine sediments, largely controlled by anaerobic oxidation of methane (AOM), is a crucial part of the global carbon cycle. However, little is known about the role of iron oxides as an oxidant for AOM. Here we provide the first field evidence for iron-dependent AOM in brackish coastal surface sediments and show that methane produced in Bothnian Sea sediments is oxidized in distinct zones of iron- and sulfate-dependent AOM. At our study site, anthropogenic eutrophication over recent decades has led to an upward migration of the sulfate/methane transition zone in the sediment. Abundant iron oxides and high dissolved ferrous iron indicate iron reduction in the methanogenic sediments below the newly established sulfate/methane transition. Laboratory incubation studies of these sediments strongly suggest that the in situ microbial community is capable of linking methane oxidation to iron oxide reduction. Eutrophication of coastal environments may therefore create geochemical conditions favorable for iron-mediated AOM and thus increase the relevance of iron-dependent methane oxidation in the future. Besides its role in mitigating methane emissions, iron-dependent AOM strongly impacts sedimentary iron cycling and related biogeochemical processes through the reduction of large quantities of iron oxides.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matos, Marina N.; Lozada, Mariana; Anselmino, Luciano E.
Alginates are abundant polysaccharides in brown algae that constitute an important energy source for marine heterotrophic bacteria. Despite the key role of alginate assimilation processes in the marine carbon cycle, little information is available on the bacterial populations involved in these processes. The goal of this work was to gain insight into the structure and functional traits of the alginolytic communities from sediments of cold coastal environments. Sediment metagenomes from high-latitude regions of both Hemispheres were interrogated for alginate lyase gene homolog sequences and their genomic context. Sediments contained highly abundant and diverse bacterial assemblages with alginolytic potential, including membersmore » of Bacteroidetes and Proteobacteria, as well as several poorly characterized taxa. Temperature and salinity were correlated to the variation in community structure. The microbial communities in Arctic and Antarctic sediments exhibited the most similar alginolytic profiles, whereas brackish sediments had a higher proportion of novel members. Examination of the gene context of the alginate lyase homologs revealed distinct patterns according to the phylogenetic origin of the scaffolds, with evidence of evolutionary relationships among lineages. This information is relevant for understanding carbon fluxes in cold coastal environments and provides valuable information for the development of biotechnological applications from brown algae biomass.« less
Babbin, Andrew R; Jayakumar, Amal; Ward, Bess B
2016-04-01
Coastal marine sediments, as locations of substantial fixed nitrogen loss, are very important to the nitrogen budget and to the primary productivity of the oceans. Coastal sediment systems are also highly dynamic and subject to periodic natural and anthropogenic organic substrate additions. The response to organic matter by the microbial community involved in nitrogen loss processes was evaluated using mesocosms of Chesapeake Bay sediments. Over the course of a 50-day incubation, rates of anammox and denitrification were measured weekly using (15)N tracer incubations, and samples were collected for genetic analysis. Rates of both nitrogen loss processes and gene abundances associated with them corresponded loosely, probably because heterogeneities in sediments obscured a clear relationship. The rates of denitrification were stimulated more, and the fraction of nitrogen loss attributed to anammox slightly reduced, by the higher organic matter addition. Furthermore, the large organic matter pulse drove a significant and rapid shift in the denitrifier community composition as determined using a nirS microarray, indicating that the diversity of these organisms plays an essential role in responding to anthropogenic inputs. We also suggest that the proportion of nitrogen loss due to anammox in these coastal estuarine sediments may be underestimated due to temporal dynamics as well as from methodological artifacts related to conventional sediment slurry incubation approaches.
Deep subsurface microbial processes
Lovley, D.R.; Chapelle, F.H.
1995-01-01
Information on the microbiology of the deep subsurface is necessary in order to understand the factors controlling the rate and extent of the microbially catalyzed redox reactions that influence the geophysical properties of these environments. Furthermore, there is an increasing threat that deep aquifers, an important drinking water resource, may be contaminated by man's activities, and there is a need to predict the extent to which microbial activity may remediate such contamination. Metabolically active microorganisms can be recovered from a diversity of deep subsurface environments. The available evidence suggests that these microorganisms are responsible for catalyzing the oxidation of organic matter coupled to a variety of electron acceptors just as microorganisms do in surface sediments, but at much slower rates. The technical difficulties in aseptically sampling deep subsurface sediments and the fact that microbial processes in laboratory incubations of deep subsurface material often do not mimic in situ processes frequently necessitate that microbial activity in the deep subsurface be inferred through nonmicrobiological analyses of ground water. These approaches include measurements of dissolved H2, which can predict the predominant microbially catalyzed redox reactions in aquifers, as well as geochemical and groundwater flow modeling, which can be used to estimate the rates of microbial processes. Microorganisms recovered from the deep subsurface have the potential to affect the fate of toxic organics and inorganic contaminants in groundwater. Microbial activity also greatly influences 1 the chemistry of many pristine groundwaters and contributes to such phenomena as porosity development in carbonate aquifers, accumulation of undesirably high concentrations of dissolved iron, and production of methane and hydrogen sulfide. Although the last decade has seen a dramatic increase in interest in deep subsurface microbiology, in comparison with the study of other habitats, the study of deep subsurface microbiology is still in its infancy.
Ford, M.A.; Cahoon, D.R.; Lynch, J.C.
1999-01-01
Thin-layer deposition of dredged material on coastal marsh by means of high-pressure spray dredging (Jet-Spray??2) technology has been proposed as a mechanism to minimize wetland impacts associated with traditional bucket dredging technologies and to restore soil elevations in deteriorated marshes of the Mississippi River delta. The impact of spray dredging on vegetated marsh and adjacent shallow-water habitat (formerly vegetated marsh that deteriorated to open water) was evaluated in a 0.5-ha Spartina alterniflora-dominated salt marsh in coastal Louisiana. The thickness of dredged sediment deposits was determined from artificial soil marker horizons and soil elevation change was determined from sedimentation-erosion tables (SET) established prior to spraying in both sprayed and reference marshes. The vertical accretion and elevation change measurements were made simultaneously to allow for calculation of shallow (~5 m depth) subsidence (accretion minus elevation change). Measurements made immediately following spraying in July 1996 revealed that stems of S. alterniflora were knocked down by the force of the spray and covered with 23 mm of dredged material. Stems of S. alterniflora soon recovered, and by July 1997 the percent cover of S. alterniflora had increased three-fold over pre-project conditions. Thus, the layer of dredged material was thin enough to allow for survival of the S. alterniflora plants, with no subsequent colonization by plant species typical of higher marsh zones. By February 1998, 62 mm of vertical accretion accumulated at this site, and little indication of disturbance was noted. Although not statistically significant, soil elevation change was greater than accretion on average at both the spray and reference marshes, suggesting that subsurface expansion caused by increased root biomass production and/or pore water storage influence elevation in this marsh region. In the adjacent shallow water pond, 129 mm of sediment was deposited in July 1996 as a result of spraying, and despite initial shallow subsidence and continual erosion through February 1998, water bottom elevation was raised sufficiently to allow S. alterniflora to invade via rhizome growth from the adjacent marsh. Hence, thin-layer deposition of dredged material at this site was effective at restoring and maintaining marsh elevation after 1.5 years. However, if the open water sediment deposits are not soon completely stabilized via further vegetative colonization, erosion may eventually lower elevations to the level where emergent vegetation cannot persist.
Draut, Amy E.; Conaway, Christopher H.; Echols, Kathy R.; Storlazzi, Curt D.; Ritchie, Andrew
2011-01-01
This report presents analyses of suspended sediment and organic contaminants measured during a two-year study of the San Lorenzo River, central California, which discharges into the Pacific Ocean within the Monterey Bay National Marine Sanctuary. Most suspended-sediment transport occurred during flooding caused by winter storms; 55 percent of the sediment load was transported by the river during a three-day flood in January 2010. Concentrations of polyaromatic hydrocarbons can exceed regulatory criteria during high-flow events in the San Lorenzo River. These results highlight the importance of episodic sediment and contaminant transport in steep, mountainous, coastal watersheds and emphasize the importance of understanding physical processes and quantifying chemical constituents in discharge from coastal watersheds on event-scale terms.
Coastal Lake Record of Holocene Paleo-Storms from Northwest Florida
NASA Astrophysics Data System (ADS)
Donoghue, J. F.; Coor, J. L.; Wang, Y.; Das, O.; Kish, S.; Elsner, J.; Hu, X. B.; Niedoroda, A. W.; Ye, M.
2009-12-01
The northwest Florida coast of the Gulf of Mexico has an unusually active storm history. Climate records for a study area in the mid-region of the Florida panhandle coast show that 29 hurricanes have made landfall within a 100-km radius during historic time. These events included 9 major storms (category 3 or higher). A longer-term geologic record of major storm impacts is essential for better understanding storm climatology and refining morphodynamic models. The Florida panhandle region contains a series of unique coastal lakes which are long-lived and whose bottom sediments hold a long-term record of coastal storm occurrence. The lakes are normally isolated from the open Gulf, protected behind a near-continuous dune barrier. Lake water is normally fresh to brackish. Lake bottom sediments consist of organic-rich muds. During major storms the dunes are breached and the lakes are temporarily open to marine water and the possibility of sandy overwash. Both a sedimentologic and geochemical signature is imparted to the lake sediments by storm events. Bottom sediment cores have been collected from the lakes. The cores have been subsampled and subjected to sedimentologic, stable isotopic and geochronologic analyses. The result is a sediment history of the lakes, and a record of storm occurrence during the past few millennia. The outcome is a better understanding of the long-term risk of major storms. The findings are being incorporated into a larger model designed to make reliable predictions of the effects of near-future climate change on natural coastal systems and on coastal infrastructure, and to enable cost-effective mitigation and adaptation strategies.
Barr, G.L.
1993-01-01
Ground-penetrating radar (GPR) is useful as a surface geophysical method for exploring geology and subsurface features in karst settings. Interpretation of GPR data was used to infer lithology and hydrogeologic conditions in west-central Florida. This study demonstrates how GPR methods can be used to investigate the hydrogeology of an area. GPR transmits radio- frequency electromagnetic waves into the ground and receives reflected energy waves from subsurface interfaces. Subsurface profiles showing sediment thickness, depth to water table and clay beds, karst development, buried objects, and lake-bottom structure were produced from GPR traverses obtained during December 1987 and March 1990 in Pinellas, Hillsborough, and Hardee Counties in west-central Florida. Performance of the GPR method is site specific, and data collected are principally affected by the sediment and pore fluids, conductances and dielectric constants. Effective exploration depths of the GPR surveys through predominately unsaturated and saturated sand and clay sediments at five study sites ranged from a few feet to greater than 50 feet below land surface. Exploration depths were limited when high conductivity clay was encountered, whereas greater exploration depths were possible in material composed of sand. Application of GPR is useful in profiling subsurface conditions, but proper interpretation depends upon the user's knowledge of the equipment and the local hydrogeological setting, as well as the ability to interpret the graphic profile.
Effects of Emergent Vegetation on Sediment Dynamics within a Retreating Coastal Marshland
NASA Astrophysics Data System (ADS)
Stellern, C.; Grossman, E.; Fuller, R.; Wallin, D.; Linneman, S. R.
2015-12-01
Coastal emergent vegetation in estuaries physically interrupts flow within the water column, reduces wave energy and increases sediment deposition. Previous workers conclude that wave attenuation rates decrease exponentially with distance from the marsh edge and are dependent on site and species-specific plant characteristics (Yang et al., 2011). Sediment deposition may exhibit similar patterns; however, sediment, geomorphic and habitat models seldom integrate site-specific biophysical plant parameters into change analyses. We paired vegetation and sediment dynamic studies to: (1) characterize vegetation structure, (2) estimate sediment available for deposition, (3) estimate rate, distribution and composition of sediment deposits, (4) determine sediment accumulation on vegetation, (5) compare sediment deposition within dense tidal wetland relative to non-vegetated tidal flat. These studies integrate a variety of monitoring methods, including the use of sediment traps, turbidity sensors, side-on photographs of vegetation and remote sensing image analysis. We compared sedimentation data with vegetation characteristics and spatial distribution data to examine the relative role of vegetation morphologic traits (species, stem density, biomass, distribution, tidal channels, etc.) on sediment dynamics. Our study is focused on Port Susan Bay of Washington State; a protected delta that has experienced up to 1 kilometer of marsh retreat (loss) over the past fifty years. Preliminary results show that the highest winter deposition occurred in the high marsh/mid-marsh boundary, up to 300m inland of the marsh edge, where bulrush species are most dense. These results will inform restoration efforts aimed at reestablishing sediment supply to the retreating marshland. This research is necessary to understand the vulnerability and adaptability of coastal marshlands to climate change related stressors such as, increased water levels (sea-level rise) and wave energy.
Tropical Cyclones as a Driver of Global Sediment Flux
NASA Astrophysics Data System (ADS)
Leyland, J.; Darby, S. E.; Cohen, S.
2017-12-01
The world's rivers deliver 19 billion tonnes of sediment to the coastal zone annually. The sediment supplied to the coastal zone is of significant importance for a variety of reasons, for example in acting as a vector for nutrients as well as in supplying sediment to coastal landforms such as deltas and beaches that can buffer those landforms from erosion and flooding. A greater understanding of the factors governing sediment flux to the oceans is therefore a key research gap. The non-linear relationship between river discharge and sediment flux implies that the global sediment flux may be disproportionately driven by large floods. Indeed, in our recent empirical research we have demonstrated that changes in the track locations, frequency and intensity of tropical storms in recent decades exert a significant control on the sediment flux emanating from the Mekong River. Since other large rivers potentially affected by tropical storms are known to make a significant contribution to the global sediment flux, this raises the question of the extent to which such storms play a significant role in controlling sediment loads at the global scale. In this paper we address that question by employing a global hydrological model (WBMsed) in order to predict runoff and sediment load forced by recent historical climate scenarios `with' and `without' tropical cyclones. We compare the two scenarios to (i) make the first estimate of the global contribution of sediment load forced by tropical storms; (ii) evaluate how that contribution has varied in recent decades and to (iii) explore variations in tropical-storm driven sediment loads in selected major river basins that are significantly affected by such storms.
Donatelli, Carmine; Ganju, Neil Kamal; Fagherazzi, Sergio; Leonardi, Nicoletta
2018-01-01
surroundings and are therefore frequently referred to as ecological engineers. The effect of seagrasses on coastal bay resilience and sediment transport dynamics is understudied. Here we use six historical maps of seagrass distribution in Barnegat Bay, USA, to investigate the role of these vegetated surfaces on the sediment storage capacity of shallow bays. Analyses are carried out by means of the Coupled-Ocean-Atmosphere-Wave-Sediment Transport (COAWST) numerical modeling framework. Results show that a decline in the extent of seagrass meadows reduces the sediment mass potentially stored within bay systems. The presence of seagrass reduces shear stress values across the entire bay, including unvegetated areas, and promotes sediment deposition on tidal flats. On the other hand, the presence of seagrasses decreases suspended sediment concentrations, which in turn reduces the delivery of sediment to marsh platforms. Results highlight the relevance of seagrasses for the long-term survival of coastal ecosystems, and the complex dynamics regulating the interaction between subtidal and intertidal landscapes.
Coastal change from a massive sediment input: Dam removal, Elwha River, Washington, USA
Warrick, Jonathan A.; Gelfenbaum, Guy R.; Stevens, Andrew; Miller, Ian M.; Kaminsky, George M.; Foley, Melissa M.
2015-01-01
The removal of two large dams on the Elwha River, Washington, provides an ideal opportunity to study coastal morphodynamics during increased sediment supply. The dam removal project exposed ~21 million cubic meters (~30 million tonnes) of sediment in the former reservoirs, and this sediment was allowed to erode by natural river processes. Elevated rates of sand and gravel sediment transport in the river occurred during dam removal. Most of the sediment was transported to the coast, and this renewed sediment supply resulted in hundreds of meters of seaward expansion of the river delta since 2011. Our most recent survey in January 2015 revealed that a cumulative ~3.5 million m3 of sediment deposition occurred at the delta since the beginning of the dam removal project, and that aggradation had exceeded 8 m near the river mouth. Some of the newly deposited sediment has been shaped by waves and currents into a series of subaerial berms that appear to move shoreward with time.
NASA Astrophysics Data System (ADS)
Bellas, Juan; Nieto, Óscar; Beiras, Ricardo
2011-04-01
Elutriate embryo-larval bioassays with sea-urchins ( Paracentrotus lividus) were conducted concurrently with chemical analyses of sediments and biota as part of an integrative assessment of pollution in highly productive coastal regions. High metal contents and organic compounds in sediments and mussels were found in localised areas from the inner part of the estuaries indicating a clear anthropogenic influence. In particular, average maximum concentrations of 2803 mg Cu/kg dw, 776 mg Pb/kg dw, 2.5 mg Hg/kg dw and 5803 μg ∑ 7PAHs/kg dw were measured in sediments from the most polluted sites. Significant correlations were observed between sediment chemistry and toxicity bioassays. Moreover, the Mantel test revealed a significant correlation ( rM=0.80; p<0.01) between sediment pollutant concentrations and toxicity data profiles. In addition, sediment quality criteria were used to help in the ecological interpretation of sediment chemistry data and to identify pollutants of concern. The toxicity bioassays identified polluted sites and quantified the level of toxicity, providing a cost-effective tool to complement the routine chemical monitoring currently conducted in European coastal waters with ecologically relevant information. This is in line with the recent European legislation that advocates the use of biological tools with the ultimate aim of protecting marine resources from anthropogenic substances that will affect their sensitive early life stages.
McGann, Mary; Erikson, Li H.; Wan, Elmira; Powell, Charles; Maddocks, Rosalie F.; Barnard, P.L.; Jaffee, B.E.; Schoellhamer, D.H.
2013-01-01
Although conventional sediment parameters (mean grain size, sorting, and skewness) and provenance have typically been used to infer sediment transport pathways, most freshwater, brackish, and marine environments are also characterized by abundant sediment constituents of biological, and possibly anthropogenic and volcanic, origin that can provide additional insight into local sedimentary processes. The biota will be spatially distributed according to its response to environmental parameters such as water temperature, salinity, dissolved oxygen, organic carbon content, grain size, and intensity of currents and tidal flow, whereas the presence of anthropogenic and volcanic constituents will reflect proximity to source areas and whether they are fluvially- or aerially-transported. Because each of these constituents have a unique environmental signature, they are a more precise proxy for that source area than the conventional sedimentary process indicators. This San Francisco Bay Coastal System study demonstrates that by applying a multi-proxy approach, the primary sites of sediment transport can be identified. Many of these sites are far from where the constituents originated, showing that sediment transport is widespread in the region. Although not often used, identifying and interpreting the distribution of naturally-occurring and allochthonous biologic, anthropogenic, and volcanic sediment constituents is a powerful tool to aid in the investigation of sediment transport pathways in other coastal systems.
Ferina, N.F.; Flocks, J.G.; Kingdinger, Jack L.; Miner, M.D.; Motti, J. P.; Chadwick, Paul C.; Johnston, James B.
2005-01-01
Historically, the Mississippi River has replenished sediment across the lower deltaic plain, abating land loss. However, flood-control structures along the river now restrict this natural process and divert sediment from the modern delta offshore to the shelf break, thereby removing it from the coastal system. Localized crevasse splays, however, can deposit significant amounts of sediment in a short span of time.Satellite imagery and field investigations, including eight sediment vibracores, have identified a recent crevasse splay originating from Brant Bayou within the Delta National Wildlife Refuge on the lower Mississippi River delta. The splay deposits are estimated to be as much as 3 m thick and are located stratigraphically above shallow interdistributary-bay deposits. In addition, the deposits exhibit physical characteristics similar to those of large scale prograded deltas. The Bayou Brant crevasse splay began forming in 1978 and has built approximately 3.7 km2 of land. Coastal planners hope to utilize on this natural process of sediment dispersion to create new land within the deltaic plain.
Coates-Marnane, J; Olley, J; Burton, J; Grinham, A
2016-11-01
Drought-breaking floods pose a risk to coastal water quality as sediments, nutrients, and pollutants stored within catchments during periods of low flow are mobilized and delivered to coastal waters within a short period of time. Here we use subtidal surface sediment surveys and sediment cores to explore the effects of the 2011 Brisbane River flood on trace metals zinc (Zn), lead (Pb), copper (Cu), nickel (Ni), chromium (Cr), manganese (Mn), and phosphorus (P) deposition in Moreton Bay, a shallow subtropical bay in eastern Australia. Concentrations of Zn, Cu, and Pb in sediments in central Moreton Bay derived from the 2011 flood were the highest yet observed in the Bay. We suggest flushing of metal rich sediments which had accumulated on the Brisbane River floodplain and in its estuary during the preceding 10 to 40years of low flows to be the primary source of this increase. This highlights the importance of intermittent high magnitude floods in tidally influenced rivers in controlling metal transport to coastal waters in subtropical regions. Copyright © 2016. Published by Elsevier B.V.
Assessing the Impact of Topography on Groundwater Salinization Due to Storm Surge Inundation
NASA Astrophysics Data System (ADS)
Yu, X.; Yang, J.; Graf, T.; Koneshloo, M.; O'Neal, M. A.; Michael, H. A.
2015-12-01
The sea-level rise and increase in the frequency and intensity of coastal storms due to climate change are likely to exacerbate adverse effects of storm surges on low-lying coastal areas. The landward flow of water during storm surges introduces salt to surficial coastal aquifers and threatens groundwater resources. Coastal topography (e.g. ponds, dunes, canals) likely has a strong impact on overwash and salinization processes, but is generally highly simplified in modeling studies. To understand the topographic impacts on groundwater salinization, we modeled overwash and variable-density groundwater flow and salt transport in 3D using the fully coupled surface and subsurface numerical simulator, HydroGeoSphere. The model simulates the coastal aquifer as an integrated system considering processes such as overland flow, coupled surface and subsurface exchange, variably saturated flow, and variable-density flow. To represent various coastal landscape types, we started with realistic coastal topography from Delaware, USA, and then generated synthetic fields with differing shore-perpendicular connectivity and surface depressions. The groundwater salinization analysis suggested that the topographic connectivity promoting overland flow controls the volume of aquifer that is salinized. In contrast, depression storage of surface water mainly controls the time for infiltrated salt to flush from the aquifer. The results indicate that for a range of synthetic conditions, topography increases the flushing time of salt by 20-300% relative to an equivalent "simple slope" in which topographic variation is absent. Our study suggests that topography have a significant impact on overwash salinization, with important implications for land management at local scales and groundwater vulnerability assessment at regional to global scales.
Biomass and decay rates of roots and detritus in sediments of intermittent coastal plain streams
Ken M. Fritz; Jack W. Feminella; Chris Colson; B. Graeme Lockaby; Robin Governo; Robert B. Rummer
2006-01-01
Biomass and breakdown of tree roots within streambed sediments were compared with leaf and wood detritus in three Coastal Plain headwater intermittent streams. Three separate riparian forest treatments were applied: thinned, clearcut, and reference. Biomass of roots (live and dead) and leaf/wood was significantly higher in stream banks than in the channel and declined...
Mary Ann Madej; Greg Bundros; Randy Klein
2012-01-01
Revisions to the California Forest Practice Rules since 1974 were intended to increase protection of water quality in streams draining timber harvest areas. The effects of improved timber harvesting methods and road designs on sediment loading are assessed for the Panther Creek basin, a 15.4 km2 watershed in Humboldt County, north coastal...
Review of Innovative Sediment Delivery Systems
2013-04-01
Alternative conveyor belt systems appear to be available from the growing hydraulic fracturing ( fracking , shale gas recovery) industry, which use...ERDC/CHL CHETN-XIV-28 April 2013 Review of Innovative Sediment Delivery Systems by Thomas D. Smith PURPOSE. This Coastal and Hydraulic ...ADDRESS(ES) US Army Engineer Research and Development Center,Coastal and Hydraulics Laboratory,3909 Halls Ferry Road,Vicksburg,MS,39180 8. PERFORMING
Draut, Amy E.; Hart, Patrick E.; Lorenson, T.D.; Ryan, Holly F.; Wong, Florence L.; Sliter, Ray W.; Conrad, James E.
2009-01-01
Small, steep, uplifting coastal watersheds are prolific sediment producers that contribute significantly to the global marine sediment budget. This study illustrates how sedimentation evolves in one such system where the continental shelf is largely sediment-starved, with most terrestrial sediment bypassing the shelf in favor of deposition in deeper basins. The Santa Barbara-Ventura coast of southern California, USA, is considered a classic area for the study of active tectonics and of Tertiary and Quaternary climatic evolution, interpretations of which depend upon an understanding of sedimentation patterns. High-resolution seismic-reflection data over >570 km2 of this shelf show that sediment production is concentrated in a few drainage basins, with the Ventura and Santa Clara River deltas containing most of the upper Pleistocene to Holocene sediment on the shelf. Away from those deltas, the major factor controlling shelf sedimentation is the interaction of wave energy with coastline geometry. Depocenters containing sediment 5-20 m thick exist opposite broad coastal embayments, whereas relict material (bedrock below a regional unconformity) is exposed at the sea floor in areas of the shelf opposite coastal headlands. Locally, natural hydrocarbon seeps interact with sediment deposition either to produce elevated tar-and-sediment mounds or as gas plumes that hinder sediment settling. As much as 80% of fluvial sediment delivered by the Ventura and Santa Clara Rivers is transported off the shelf (some into the Santa Barbara Basin and some into the Santa Monica Basin via Hueneme Canyon), leaving a shelf with relatively little recent sediment accumulation. Understanding factors that control large-scale sediment dispersal along a rapidly uplifting coast that produces substantial quantities of sediment has implications for interpreting the ancient stratigraphic record of active and transform continental margins, and for inferring the distribution of hydrocarbon resources in relict shelf deposits.
Jeanbille, Mathilde; Gury, Jérôme; Duran, Robert; Tronczynski, Jacek; Ghiglione, Jean-François; Agogué, Hélène; Saïd, Olfa Ben; Taïb, Najwa; Debroas, Didier; Garnier, Cédric; Auguet, Jean-Christophe
2016-01-01
Benthic microorganisms are key players in the recycling of organic matter and recalcitrant compounds such as polyaromatic hydrocarbons (PAHs) in coastal sediments. Despite their ecological importance, the response of microbial communities to chronic PAH pollution, one of the major threats to coastal ecosystems, has received very little attention. In one of the largest surveys performed so far on coastal sediments, the diversity and composition of microbial communities inhabiting both chronically contaminated and non-contaminated coastal sediments were investigated using high-throughput sequencing on the 18S and 16S rRNA genes. Prokaryotic alpha-diversity showed significant association with salinity, temperature, and organic carbon content. The effect of particle size distribution was strong on eukaryotic diversity. Similarly to alpha-diversity, beta-diversity patterns were strongly influenced by the environmental filter, while PAHs had no influence on the prokaryotic community structure and a weak impact on the eukaryotic community structure at the continental scale. However, at the regional scale, PAHs became the main driver shaping the structure of bacterial and eukaryotic communities. These patterns were not found for PICRUSt predicted prokaryotic functions, thus indicating some degree of functional redundancy. Eukaryotes presented a greater potential for their use as PAH contamination biomarkers, owing to their stronger response at both regional and continental scales. PMID:27594854
Annual variability and regulation of methane and sulfate fluxes in Baltic Sea estuarine sediments
NASA Astrophysics Data System (ADS)
Sawicka, Joanna E.; Brüchert, Volker
2017-01-01
Marine methane emissions originate largely from near-shore coastal systems, but emission estimates are often not based on temporally well-resolved data or sufficient understanding of the variability of methane consumption and production processes in the underlying sediment. The objectives of our investigation were to explore the effects of seasonal temperature, changes in benthic oxygen concentration, and historical eutrophication on sediment methane concentrations and benthic fluxes at two type localities for open-water coastal versus eutrophic, estuarine sediment in the Baltic Sea. Benthic fluxes of methane and oxygen and sediment pore-water concentrations of dissolved sulfate, methane, and 35S-sulfate reduction rates were obtained over a 12-month period from April 2012 to April 2013. Benthic methane fluxes varied by factors of 5 and 12 at the offshore coastal site and the eutrophic estuarine station, respectively, ranging from 0.1 mmol m-2 d-1 in winter at an open coastal site to 2.6 mmol m-2 d-1 in late summer in the inner eutrophic estuary. Total oxygen uptake (TOU) and 35S-sulfate reduction rates (SRRs) correlated with methane fluxes showing low rates in the winter and high rates in the summer. The highest pore-water methane concentrations also varied by factors of 6 and 10 over the sampling period with the lowest values in the winter and highest values in late summer-early autumn. The highest pore-water methane concentrations were 5.7 mM a few centimeters below the sediment surface, but they never exceeded the in situ saturation concentration. Of the total sulfate reduction, 21-24 % was coupled to anaerobic methane oxidation, lowering methane concentrations below the sediment surface far below the saturation concentration. The data imply that bubble emission likely plays no or only a minor role in methane emissions in these sediments. The changes in pore-water methane concentrations over the observation period were too large to be explained by temporal changes in methane formation and methane oxidation rates due to temperature alone. Additional factors such as regional and local hydrostatic pressure changes and coastal submarine groundwater flow may also affect the vertical and lateral transport of methane.
NASA Astrophysics Data System (ADS)
Weinberger, G.; Rosenthal, E.
1994-03-01
On the basis of a broadly expanding data base, the hydrogeological properties of the Judea Group sequence in the northern Negev and southern Coastal Plain of Israel have been reassessed. The updated subsurface model is based on data derived from water- and oil-wells and on recent large-scale geophysical investigations. A new regional pattern of the reassessed geological through the subsurface of the study area has been revealed. In view of the reassessed geological and hydrological subsurface setting, it appears that the Judea Group aquifer should not be regarded as one continuous and undisturbed hydrological unit; owing to the occurrence of regional faults, its subaquifers are locally interconnected. These subaquifers, which contain mainly high-quality water, are juxtaposed, as a result of faulting, against Kurnub Group sandstones containing brackish paleowater. The latter Group is faulted against late Jurassic formations containing highly saline groundwater. In the Beer Sheva area, the Judea Group aquifer is vertically displaced against the Senonian and Eocene Mt. Scopus and Avdat Groups, which also contain brackish and saline water. In the southern Coastal Plain, major faults locally dissect also the Pleistocene Kurkar Group, facilitating inflow of Mg-rich groundwater deriving from Judea Group dolomites. The new geological evidence and its hydrogeological implications provide new solutions for previously unexplained salinization phenomena.
NASA Astrophysics Data System (ADS)
Goebel, M.; Knight, R. J.; Pidlisecky, A.
2016-12-01
Coastal regions represent a complex dynamic interface where saltwater intrusion moves seawater landward and groundwater discharge moves freshwater seaward. These processes can have a dramatic impact on water quality, affecting both humans and coastal ecosystems. The ability to map the subsurface distribution of fresh and salt water is a critical step in predicting and managing water quality in coastal regions. This is commonly accomplished using wells, which are expensive and provide point information, which may fail to capture the spatial complexity in subsurface conditions. We present an alternate method for acquiring data, long-offset Electrical Resistivity Tomography (ERT), which is non-invasive, cost effective, and can address the problem of poor spatial sampling. This geophysical method can produce continuous profiles of subsurface electrical resistivity to a depth of 300 m, with spatial resolution on the order of tens of meters. Our research focuses on the Monterey Bay region, where sustained groundwater extraction over the past century has led to significant saltwater intrusion. ERT was acquired along 40 kilometers of the coast using the roll along method, allowing for continuous overlap in data acquisition. Electrodes were spaced every 22.2 m, with a total of 81 electrodes along the 1.8 km active cable length. The data show a complex distribution of fresh and salt water, influenced by geology, groundwater pumping, recharge, and land-use. While the inverted ERT resistivity profiles correspond well with existing data sets and geologic interpretations in the region, the spatial complexity revealed through the ERT data goes beyond what is known from traditional data sources alone. This leads us to conclude that this form of data can be extremely useful in informing and calibrating groundwater flow models, making targeted management decisions, and monitoring changes in subsurface salinities over time.
California State Waters Map Series — Offshore of Point Conception, California
Johnson, Samuel Y.; Dartnell, Peter; Cochrane, Guy R.; Hartwell, Stephen R.; Golden, Nadine E.; Kvitek, Rikk G.; Davenport, Clifton W.; Johnson, Samuel Y.; Cochran, Susan A.
2018-04-20
IntroductionIn 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within the 3-nautical-mile limit of California’s State Waters. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data, acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow subsurface geology.The Offshore of Point Conception map area is in the westernmost part of the Western Transverse Ranges geologic province, which is north of the California Continental Borderland. Significant clockwise rotation—at least 90°—since the early Miocene has been proposed for the Western Transverse Ranges province, and this region is presently undergoing north-south shortening. The offshore part of the map area lies south of the steep south and west flanks of the Santa Ynez Mountains. The crest of the range, which has a maximum elevation of about 340 m in the map area, lies about 5 km north and east of the arcuate shoreline.The onland part of the coastal zone is remote and sparsely populated. The road to Jalama Beach County Park provides the only public coastal access in the entire map area. North of this county park, the coastal zone is part of Vandenberg Air Force Base. South of Jalama Beach County Park, most of the coastal zone is part of the Cojo-Jalama Ranch, purchased by the Nature Conservancy in December 2017. A relatively small part of the coastal zone in the eastern part of the map area lies within the privately owned Hollister Ranch. The nearest significant commercial centers are Lompoc (population, about 42,000), about 10 km north of the map area, and Goleta (population, about 30,000), about 50 km east of the map area. The Union Pacific railroad tracks run west and northwest along the coast through the entire map area, within a few hundred meters of the shoreline. The map area has a long history of petroleum exploration, and the seafloor notably includes large asphalt mounds and pockmarks that result from petroleum seepage. Several offshore gas and oil fields were discovered, and some were developed, in and on the margin of California’s State Waters.Much of the shoreline in the Offshore of Point Conception map area is characterized by narrow beaches that have thin sediment cover above bedrock platforms, backed by low (10- to 20-m-high) cliffs that are capped by a coastal terrace. Beaches are subject to wave erosion during winter storms, followed by gradual sediment recovery or accretion in the late spring, summer, and fall months during the gentler wave climate. The map area lies in the west-central part of the Santa Barbara littoral cell, which is characterized by west-to-east transport of sediment from Point Arguello on the northwest to Hueneme and Mugu Canyons on the southeast. Sediment supply to the map area is mainly from relatively small coastal watersheds, including the Jalama Creek–Espada Creek drainage basin (about 63 km2), as well as Cañada del Jolloru, Black Canyon, Wood Canyon, Cañada del Cojo, and Barranca Honda. Coastal-watershed discharge and sediment load are highly variable, characterized by brief large events during major winter storms and long periods of low (or no) flow and minimal sediment load between storms. In recent (recorded) history, the majority of high-discharge, high-sediment-flux events have been associated with El Niño phases of the El Niño–Southern Oscillation climatic pattern.Following the coastline, the shelf bends to the north and northwest around Point Conception, and the trend of the shelf break changes from about 298° to 241° azimuth. Shelf width ranges from about 5 km south of Point Conception to about 11 km northwest of it; the slope ranges from about 1.0° to 1.2° to about 0.7° south and northwest of Point Conception, respectively. Southwest of Point Conception, the shelf break and upper slope are incised by a 600-m-wide, 20- to 30-m-deep, south-facing trough, one of five heads of the informally named Arguello submarine canyon.The map area is located at a major biogeographic transition zone between the east-west-trending Santa Barbara Channel region of the Southern California Bight and the northwest-trending central California coast. North of Point Conception, the coast is subjected to high wave exposure from the north, west, and south, as well as consistently strong upwelling that brings cold, nutrient-rich waters to the surface. Southeast of Point Conception, the Santa Barbara Channel is largely protected from strong north swells by Point Conception and from south swells by the Channel Islands; surface waters are warmer, and upwelling is weak and seasonal.Seafloor habitats in the broad Santa Barbara Channel region consist of significant amounts of soft, unconsolidated sediment interspersed with isolated areas of rocky habitat that support kelp-forest communities in the nearshore and rocky-reef communities in deeper water. The potential marine benthic habitat types mapped in the Offshore of Point Conception map area are directly related to its Quaternary geologic history, geomorphology, and active sedimentary processes. These potential habitats lie primarily within the Shelf (continental shelf) but also partly within the Flank (basin flank or continental slope) megahabitats. The fairly homogeneous seafloor of sediment and low-relief bedrock provides characteristic habitat for rockfish, groundfish, crabs, shrimp, and other marine benthic organisms. Several areas of smooth sediment form nearshore terraces that have relatively steep, smooth fronts, which are attractive to groundfish. Below the steep shelf break, soft, unconsolidated sediment is interrupted by the heads of several submarine canyons, gullies, and rills, also good potential habitat for rockfish. The map area includes the large (58.3 km2) Point Conception State Marine Reserve.
Warrick, Jonathan A.; Bountry, Jennifer A.; East, Amy E.; Magirl, Christopher S.; Randle, Timothy J.; Gelfenbaum, Guy R.; Ritchie, Andrew C.; Pess, George R.; Leung, Vivian; Duda, Jeff J.
2015-01-01
Understanding landscape responses to sediment supply changes constitutes a fundamental part of many problems in geomorphology, but opportunities to study such processes at field scales are rare. The phased removal of two large dams on the Elwha River, Washington, exposed 21 ± 3 million m3, or ~ 30 million tonnes (t), of sediment that had been deposited in the two former reservoirs, allowing a comprehensive investigation of watershed and coastal responses to a substantial increase in sediment supply. Here we provide a source-to-sink sediment budget of this sediment release during the first two years of the project (September 2011–September 2013) and synthesize the geomorphic changes that occurred to downstream fluvial and coastal landforms. Owing to the phased removal of each dam, the release of sediment to the river was a function of the amount of dam structure removed, the progradation of reservoir delta sediments, exposure of more cohesive lakebed sediment, and the hydrologic conditions of the river. The greatest downstream geomorphic effects were observed after water bodies of both reservoirs were fully drained and fine (silt and clay) and coarse (sand and gravel) sediments were spilling past the former dam sites. After both dams were spilling fine and coarse sediments, river suspended-sediment concentrations were commonly several thousand mg/L with ~ 50% sand during moderate and high river flow. At the same time, a sand and gravel sediment wave dispersed down the river channel, filling channel pools and floodplain channels, aggrading much of the river channel by ~ 1 m, reducing river channel sediment grain sizes by ~ 16-fold, and depositing ~ 2.2 million m3 of sand and gravel on the seafloor offshore of the river mouth. The total sediment budget during the first two years revealed that the vast majority (~ 90%) of the sediment released from the former reservoirs to the river passed through the fluvial system and was discharged to the coastal waters, where slightly less than half of the sediment was deposited in the river-mouth delta. Although most of the measured fluvial and coastal deposition was sand-sized and coarser (> 0.063 mm), significant mud deposition was observed in and around the mainstem river channel and on the seafloor. Woody debris, ranging from millimeter-size particles to old-growth trees and stumps, was also introduced to fluvial and coastal landforms during the dam removals. At the end of our two-year study, Elwha Dam was completely removed, Glines Canyon Dam had been 75% removed (full removal was completed 2014), and ~ 65% of the combined reservoir sediment masses—including ~ 8 Mt of fine-grained and ~ 12 Mt of coarse-grained sediment—remained within the former reservoirs. Reservoir sediment will continue to be released to the Elwha River following our two-year study owing to a ~ 16 m base level drop during the final removal of Glines Canyon Dam and to erosion from floods with larger magnitudes than occurred during our study. Comparisons with a geomorphic synthesis of small dam removals suggest that the rate of sediment erosion as a percent of storage was greater in the Elwha River during the first two years of the project than in the other systems. Comparisons with other Pacific Northwest dam removals suggest that these steep, high-energy rivers have enough stream power to export volumes of sediment deposited over several decades in only months to a few years. These results should assist with predicting and characterizing landscape responses to future dam removals and other perturbations to fluvial and coastal sediment budgets.
NASA Astrophysics Data System (ADS)
Strzelecki, M. C.; Long, A. J.; Zagorski, P.
2017-12-01
The rapid retreat of glaciers observed since the end of the Little Ice Age (LIA) led to a dramatic transformation of High Arctic landscape. This change is apparent in slope, valley and glacier foreland systems, where glacigenic landforms are being denudated by fluvial, aeolian or mass-wasting processes that are being accelerated by permafrost degradation. However, the impact of these changes on the coastal zone is uncertain because of few studies of pre- and post-LIA coastal change. This paper addresses this deficiency by detailing the patterns and processes of post-LIA coastal zone changes in Svalbard - key area for observation of recent paraglacial landscape change in the High Arctic. By application of a mosaic of geomorphological, sedimentological and remote sensing techniques we proved that studied coastal systems (i.e. Billefjorden, Bellsund, Hornsund) abruptly responded to post-LIA deglaciation, permafrost thaw, extreme slope processes and shifts in glaciated catchments. Most of studied coastal systems were characterised by more rapid morphodynamic adjustments than previously thought. Under intervals characterized by a warming climate, retreating local ice masses and shortened sea-ice seasons most of studied coastal systems rapidly responded to an excess of freshly released sediments and experienced significant geomorphological changes (Figure 1). The increased supply of sediments led to the accumulation of new coastal landforms such as extensive gravel-dominated barriers, spits and tidal flats, which are highly sensitive recorders of recent environmental change. We also proved that the development of the post-LIA Svalbard coast is closely linked to the rate of sediment excavation from relict sediment storage systems, such as alluvial fans and outwash plains, that developed across a wide coast plains between the glacier valleys and the fjord during the Holocene. The results are synthesised to propose a new conceptual model of High Arctic paraglacial coastal system, with the aim of contributing towards a unifying concept of cold region landscape evolution and providing direction for future research regarding the state of High Arctic coastal evolution.This paper is a contribution to the NCN projects UMO2013/11/B/ST10/00283 and UMO2013/08/S/ST10/00585.
Bouchet, S; Rodriguez-Gonzalez, P; Bridou, R; Monperrus, M; Tessier, E; Anschutz, P; Guyoneaud, R; Amouroux, D
2013-03-01
Stable isotopic tracer methodologies now allow the evaluation of the reactivity of the endogenous (ambient) and exogenous (added) Hg to further predict the potential effect of Hg inputs in ecosystems. The differential reactivity of endogenous and exogenous Hg was compared in superficial sediments collected in a coastal lagoon (Arcachon Bay) and in an estuary (Adour River) from the Bay of Biscay (SW France). All Hg species (gaseous, aqueous, and solid fraction) and ancillary data were measured during time course slurry experiments under variable redox conditions. The average endogenous methylation yield was higher in the estuarine (1.2 %) than in the lagoonal sediment (0.5 %), although both methylation and demethylation rates were higher in the lagoonal sediment in relation with a higher sulfate-reducing activity. Demethylation was overall more consistent than methylation in both sediments. The endogenous and exogenous Hg behaviors were always correlated but the exogenous inorganic Hg (IHg) partitioning into water was 2.0-4.3 times higher than the endogenous one. Its methylation was just slightly higher (1.4) in the estuarine sediment while the difference in the lagoonal sediment was much larger (3.6). The relative endogenous and exogenous methylation yields were not correlated to IHg partitioning, demonstrating that the bioavailable species distributions were different for the two IHg pools. In both sediments, the exogenous IHg partitioning equaled the endogenous one within a week, while its higher methylation lasted for months. Such results provide an original assessment approach to compare coastal sediment response to Hg inputs.
NASA Astrophysics Data System (ADS)
Karstens, Svenja; Buczko, Uwe; Glatzel, Stephan
2016-04-01
Coastal Phragmites wetlands are at the interface between terrestrial and aquatic ecosystems and are of paramount importance for nutrient regulation. They can act both as sinks and sources for phosphorus, depending on environmental conditions, sediment properties as well as on antecedent nutrient loading and sorption capacity of the sediments. The Darss-Zingst Bodden Chain is a shallow lagoon system at the German Baltic Sea coast with a long eutrophication history. It is lined almost at its entire length by reed wetlands. In order to elucidate under which conditions these wetlands act as sources or sinks for phosphorus, in-situ data of chemo-physical characteristics of water and sediment samples were combined with hydrodynamic measurements and laboratory experiments. Small-scale basin structures within the wetland serve as sinks for fine-grained particles rich in phosphorus, iron, manganese and organic matter. Without turbulent mixing the bottom water and the sediment surface lack replenishment of oxygen. During stagnant periods with low water level, low turbulence and thus low-oxygen conditions phosphorus from the sediments is released. But the sediments are capable of becoming sinks again once oxygen is resupplied. A thin oxic sediment surface layer rich in iron and manganese adsorbs phosphorus quickly. We demonstrate that sediments in coastal Phragmites wetlands can serve both as sources and sinks of soluble reactive phosphorus on a very short time-scale, depending on local-scale hydrodynamics and the state of the oxic-anoxic sediment interface.
Estimating Surface/Subsurface Sediment Mixing in Karst Settings Using 7Be Isotopes
NASA Astrophysics Data System (ADS)
Wicks, C. M.; Paylor, R. L.; Bentley, S. J.
2018-03-01
This study shows that the cosmogenic radionuclide beryllium-7 can be used to track sediment movement through caves. The activities of beryllium-7 and cesium-137 were measured in two different karst settings at both surface and subsurface sites before and after storm runoff events. At one site, 7Be-enriched sediment was detected up to 1.5 km along a stream conduit after a moderate storm event; however, the activity of 137Cs was too variable to show a meaningful pattern. The percentages of surface sediment that was found ranged from 0 to 52% along the entire 3 km cave stream and from 33 to 52% along the upper 1.5 km. At the other site, as much as 96% of the sediment initially discharged at the spring during a storm event was fresh surface material that had traveled into and through the cave stream. Moreover, during the 4 day runoff event, approximately 23% of the total suspended sediment flux was estimated to originate from surface erosion with 78% being reworked sediment from within the cave. The data in this study show that cosmogenic radionuclides with multiyear half-lives are too long-lived to track sediment origins in the caves; whereas, 7Be with a 53.2 day half-life, can be used to track movement of sediment along cave streams.
Reilly, Timothy J.; Jones, Daniel K.; Focazio, Michael J.; Aquino, Kimberly C.; Carbo, Chelsea L.; Kaufhold, Erika E.; Zinecker, Elizabeth K.; Benzel, William M.; Fisher, Shawn C.; Griffin, Dale W.; Iwanowicz, Luke R.; Loftin, Keith A.; Schill, William B.
2015-10-26
Coastal communities are uniquely vulnerable to sea-level rise (SLR) and severe storms such as hurricanes. These events enhance the dispersion and concentration of natural and anthropogenic chemicals and pathogenic microorganisms that could adversely affect the health and resilience of coastal communities and ecosystems in coming years. The U.S. Geological Survey has developed a strategy to define baseline and post-event sediment-bound environmental health (EH) stressors (hereafter referred to as the Sediment-Bound Contaminant Resiliency and Response [SCoRR] strategy). A tiered, multimetric approach will be used to (1) identify and map contaminant sources and potential exposure pathways for human and ecological receptors, (2) define the baseline mixtures of EH stressors present in sediments and correlations of relevance, (3) document post-event changes in EH stressors present in sediments, and (4) establish and apply metrics to quantify changes in coastal resilience associated with sediment-bound contaminants. Integration of this information provides a means to improve assessment of the baseline status of a complex system and the significance of changes in contaminant hazards due to storm-induced (episodic) and SLR (incremental) disturbances. This report describes the purpose and design of the SCoRR strategy and the methods used to construct a decision support tool to identify candidate sampling stations vulnerable to contaminants that may be mobilized by coastal storms.
Meng, Long; Bao, Mutai; Sun, Peiyan
2017-09-15
This study, adsorption behaviors of dispersed oil in seawaters by granular materials were explored in simulation environment. We quantitatively demonstrated the dispersed oil adsorbed by granular materials were both dissolved petroleum hydrocarbons (DPHs) and oil droplets. Furthermore, DPHs were accounted for 42.5%, 63.4%, and 85.2% (35.5% was emulsion adsorption) in the adsorption of dispersed oil by coastal rocks, sediments, and bacterial strain particles respectively. Effects of controlling parameters, such as temperature, particle size and concentration on adsorption of petroleum hydrocarbons were described in detail. Most strikingly, adsorption concentration was followed a decreasing order of bacterial strain (0.5-2μm)>sediments (0.005-0.625mm)>coastal rocks (0.2-1cm). With particle concentration or temperature increased, adsorption concentration increased for coastal rocks particle but decreased for sediments particle. Besides, particle adsorption rate of petroleum hydrocarbons (n-alkanes and PAHs) was different among granular materials during 60 days. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Mattheus, Christopher R.; Rodriguez, Antonio B.; McKee, Brent A.
2009-10-01
Low-relief fluvial systems that originate in the lower coastal plain and discharge into estuaries are common along passive margins. These watersheds are thought to be disconnected from their termini by floodplains, which buffer the sediment-routing system by sequestration. Here, we present a detailed study of the Newport River, a typical lower coastal-plain system, which reveals high connectivity between watershed and delta. Connectivity is measured as the time lag between initiation of a silviculture operation, which increased landscape erosion, and when the sediment appeared at the bay-head delta. The time lag, measured from aerial photographs and sedimentation rates calculated from 210Pb- and 137Cs-activities in cores from the watershed and delta, is <3 years. Most lower coastal-plain rivers are steeper and have less floodplain accommodation available for storage than their larger counterparts that originate landward of the fall line, which promotes higher connectivity between upstream and downstream.
NASA Astrophysics Data System (ADS)
Bryant, Gerald
2015-04-01
Large-scale soft-sediment deformation features in the Navajo Sandstone have been a topic of interest for nearly 40 years, ever since they were first explored as a criterion for discriminating between marine and continental processes in the depositional environment. For much of this time, evidence for large-scale sediment displacements was commonly attributed to processes of mass wasting. That is, gravity-driven movements of surficial sand. These slope failures were attributed to the inherent susceptibility of dune sand responding to environmental triggers such as earthquakes, floods, impacts, and the differential loading associated with dune topography. During the last decade, a new wave of research is focusing on the event significance of deformation features in more detail, revealing a broad diversity of large-scale deformation morphologies. This research has led to a better appreciation of subsurface dynamics in the early Jurassic deformation events recorded in the Navajo Sandstone, including the important role of intrastratal sediment flow. This report documents two illustrative examples of large-scale sediment displacements represented in extensive outcrops of the Navajo Sandstone along the Utah/Arizona border. Architectural relationships in these outcrops provide definitive constraints that enable the recognition of a large-scale sediment outflow, at one location, and an equally large-scale subsurface flow at the other. At both sites, evidence for associated processes of liquefaction appear at depths of at least 40 m below the original depositional surface, which is nearly an order of magnitude greater than has commonly been reported from modern settings. The surficial, mass flow feature displays attributes that are consistent with much smaller-scale sediment eruptions (sand volcanoes) that are often documented from modern earthquake zones, including the development of hydraulic pressure from localized, subsurface liquefaction and the subsequent escape of fluidized sand toward the unconfined conditions of the surface. The origin of the forces that produced the lateral, subsurface movement of a large body of sand at the other site is not readily apparent. The various constraints on modeling the generation of the lateral force required to produce the observed displacement are considered here, along with photodocumentation of key outcrop relationships.
Hackley, Keith C.; Liu, Chao-Li; Trainor, D.
1999-01-01
The major source of methane (CH4) in subsurface sediments on the property of a former hazardous waste treatment facility was determined using isotopic analyses measured on CH4 and associated groundwater. The site, located on an earthen pier built into a shallow wetland lake, has had a history of waste disposal practices and is surrounded by landfills and other waste management facilities. Concentrations of CH4 up to 70% were found in the headspace gases of several piezometers screened at 3 different depths (ranging from 8 to 17 m) in lacustrine and glacial till deposits. Possible sources of the CH4 included a nearby landfill, organic wastes from previous impoundments and microbial gas derived from natural organic matter in the sediments. Isotopic analyses included ??13C, ??D, 14C, and 3H on select CH4 samples and ??D and ??18O on groundwater samples. Methane from the deepest glacial till and intermediate lacustrine deposits had ??13C values from -79 to -82???, typical of natural 'drift gas' generated by microbial CO2-reduction. The CH4 from the shallow lacustrine deposits had ??13C values from -63 to -76???, interpreted as a mixture between CH4 generated by microbial fermentation and the CO2-reduction processes within the subsurface sediments. The ??D values of all the CH4 samples were quite negative ranging from -272 to -299???. Groundwater sampled from the deeper zones also showed quite negative ??D values that explained the light ??D observed for the CH4. Radiocarbon analyses of the CH4 showed decreasing 14C activity with depth, from a high of 58 pMC in the shallow sediments to 2 pMC in the deeper glacial till. The isotopic data indicated the majority of CH4 detected in the fill deposits of this site was microbial CH4 generated from naturally buried organic matter within the subsurface sediments. However, the isotopic data of CH4 from the shallow piezometers was more variable and the possibility of some mixing with oxidized landfill CH4 could not be completely ruled out.
Sulfur and iron cycling in deep-subsurface, coal bed-containing sediments off Shimokita (Japan)
NASA Astrophysics Data System (ADS)
Riedinger, N.; Smirnoff, M. N.; Gilhooly, W.; Phillips, S. C.; Lyons, T. W.; 337 Scientific Party, I.
2013-12-01
The main goal of IODP Expedition 337 was the identification and characterization of the deep coal bed biosphere and hydrocarbon system off the Shimokita Peninsula (Japan) in the northwestern Pacific using the D/V Chikyu. To accomplish this scientific objective, it was also necessary to investigate the inorganic biogeochemistry in order to identify possible electron acceptors and bio-essential nutrients. These biogeochemical parameters greatly influence both, the composition and abundance of microbial communities as well as the organic carbon cycle. In turn, the microbially mediated carbon cycle influences the diagenetic reactions in the subsurface, thus, altering geochemical and physical characteristics of the material. Here we present results from metal and sulfur geochemical analyses from the deep-subsurface sediments (about 1250 to 2466 mbsf) at Site C0020 off Shimokita. The measured concentrations of acid volatile sulfur (AVS) as well as chromium reducible sulfur (CRS) reflect the alteration of iron oxides to iron sulfides and indicate that the main sulfur-bearing phase in the investigated sediments is pyrite. Concentrations of intermediate sulfur species are minor and occur mainly in the coal-bearing interval. Our data show that the uppermost sediments contain higher amounts of pyrite (up to 1.2 wt.%) with an average of 0.5 wt.% compared to the deeper deposits (below about 1800 mbsf), which show an average of 0.16 wt.%. In contrast, iron oxide concentrations are highest in the deeper sediment sections (up to 0.4%), where pyrite concentrations are low. The alteration of iron oxides to sulfides in theses lower section was probably governed by the amount of available sulfide in the pore water. The occurrence of (bio-)reactive iron phases in these deeply buried sediments has implications for the deep biosphere as those minerals have the potential to serve as electron acceptors during burial, including reactions involving deep sourced electron donors, such as hydrogen and methane - related to the coal bed as the potential source. Thus, the deep subsurface coal beds off Shimokita provide an ideal environment to investigate microbial and metal interactions under extreme conditions.
California State Waters Map Series—Offshore of Santa Cruz, California
Cochrane, Guy R.; Dartnell, Peter; Johnson, Samuel Y.; Erdey, Mercedes D.; Golden, Nadine E.; Greene, H. Gary; Dieter, Bryan E.; Hartwell, Stephen R.; Ritchie, Andrew C.; Finlayson, David P.; Endris, Charles A.; Watt, Janet T.; Davenport, Clifton W.; Sliter, Ray W.; Maier, Katherine L.; Krigsman, Lisa M.; Cochrane, Guy R.; Cochran, Susan A.
2016-03-24
IntroductionIn 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within the limit of California’s State Waters. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data, acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow subsurface geology.The Offshore of Santa Cruz map area is located in central California, on the Pacific Coast about 98 km south of San Francisco. The city of Santa Cruz (population, about 63,000), the largest incorporated city in the map area and the county seat of Santa Cruz County, lies on uplifted marine terraces between the shoreline and the northwest-trending Santa Cruz Mountains, part of California’s Coast Ranges. All of California’s State Waters in the map area is part of the Monterey Bay National Marine Sanctuary.The map area is cut by an offshore section of the San Gregorio Fault Zone, and it lies about 20 kilometers southwest of the San Andreas Fault Zone. Regional folding and uplift along the coast has been attributed to a westward bend in the San Andreas Fault Zone and to right-lateral movement along the San Gregorio Fault Zone. Most of the coastal zone is characterized by low, rocky cliffs and sparse, small pocket beaches backed by low, terraced hills. Point Santa Cruz, which forms the north edge of Monterey Bay, provides protection for the beaches in the easternmost part of the map area by sheltering them from the predominantly northwesterly waves.The shelf in the map area is underlain by variable amounts (0 to 25 m) of upper Quaternary shelf, estuarine, and fluvial sediments deposited as sea level fluctuated in the late Pleistocene. The inner shelf is characterized by bedrock outcrops that have local thin sediment cover, the result of regional uplift, high wave energy, and limited sediment supply. The midshelf occupies part of an extensive, shore-parallel mud belt. The thickest sediment deposits, inferred to consist mainly of lowstand nearshore deposits, are found in the southeastern and northwestern parts of the map area.Coastal sediment transport in the map area is characterized by northwest-to-southeast littoral transport of sediment that is derived mainly from ephemeral streams in the Santa Cruz Mountains and also from local coastal-bluff erosion. During the last approximately 300 years, as much as 18 million cubic yards (14 million cubic meters) of sand-sized sediment has been eroded from the area between Año Nuevo Island and Point Año Nuevo and transported south; this mass of eroded sand is now enriching beaches in the map area. Sediment transport is within the Santa Cruz littoral cell, which terminates in the submarine Monterey Canyon.Benthic species observed in the Offshore of Santa Cruz map area are natives of the cold-temperate biogeographic zone that is called either the “Oregonian province” or the “northern California ecoregion.” This biogeographic province is maintained by the long-term stability of the southward-flowing California Current, the eastern limb of the North Pacific subtropical gyre that flows from southern British Columbia to Baja California. At its midpoint off central California, the California Current transports subarctic surface (0–500 m deep) waters southward, about 150 to 1,300 km from shore. Seasonal northwesterly winds that are, in part, responsible for the California Current, generate coastal upwelling. The south end of the Oregonian province is at Point Conception (about 300 km south of the map area), although its associated phylogeographic group of marine fauna may extend beyond to the area offshore of Los Angeles in southern California. The ocean off of central California has experienced a warming over the last 50 years that is driving an ecosystem shift away from the productive subarctic regime towards a depopulated subtropical environment.Biological productivity resulting from coastal upwelling supports populations of Sooty Shearwater, Western Gull, Common Murre, Cassin’s Auklet, and many other less populous bird species. In addition, an observable recovery of Humpback and Blue Whales has occurred in the area; both species are dependent on coastal upwelling to provide nutrients. The large extent of exposed inner shelf bedrock supports large forests of “bull kelp,” which is well adapted for high-wave-energy environments. The kelp beds are the northernmost known habitat for the population of southern sea otters. Common fish species found in the kelp beds and rocky reefs include lingcod and various species of rockfish and greenling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, D.; Roberts, K.; Kaplan, D.
Naturally occurring mobile colloids are ubiquitous and are involved in many important processes in the subsurface zone. For example, colloid generation and subsequent mobilization represent a possible mechanism for the transport of contaminants including radionuclides in the subsurface environments. For colloid-facilitated transport to be significant, three criteria must be met: (1) colloids must be generated; (2) contaminants must associate with the colloids preferentially to the immobile solid phase (aquifer); and (3) colloids must be transported through the groundwater or in subsurface environments - once these colloids start moving they become 'mobile colloids'. Although some experimental investigations of particle release inmore » natural porous media have been conducted, the detailed mechanisms of release and re-deposition of colloidal particles within natural porous media are poorly understood. Even though this vector of transport is known, the extent of its importance is not known yet. Colloid-facilitated transport of trace radionuclides has been observed in the field, thus demonstrating a possible radiological risk associated with the colloids. The objective of this study was to determine if cementitious leachate would promote the in situ mobilization of natural colloidal particles from a SRS sandy sediment. The intent was to determine whether cementitious surface or subsurface structure would create plumes that could produce conditions conducive to sediment dispersion and mobile colloid generation. Column studies were conducted and the cation chemistries of influents and effluents were analyzed by ICP-OES, while the mobilized colloids were characterized using XRD, SEM, EDX, PSD and Zeta potential. The mobilization mechanisms of colloids in a SRS sandy sediment by cement leachates were studied.« less
NASA Astrophysics Data System (ADS)
Anthony, Edward J.; Julian, Maurice
1999-12-01
Steep coastal margins are potentially subject to mass wasting processes involving notable landslide activity and sediment evacuation downstream by steep-gradient streams. Sediment transfer from short source-to-sink segments, coupled with mountain hydrological regimes, regulate patterns of river channel aggradation and coastal sediment supply in such geomorphic settings. On the steep French Riviera margin, sediment transfers from existing landslides or from various minor mass wasting processes to stream channels may result following bursts of heavy, concentrated rainfall. High-magnitude flooding and massive sediment transport downstream are generally related to unpredictable extreme rainfalls. Both mass movements and channel sediment storage pose serious hazards to downvalley settlements and infrastructure. A consideration of channel sediment storage patterns in the Var River catchment, the most important catchment in this area, highlights two important shortcomings relative to environmental engineering and hazard mitigation practices. In the first place, the appreciation of geomorphic processes is rather poor. This is illustrated by the undersized nature of engineering works constructed to mitigate hazards in the upstream bedload-dominated channels, and by the unforeseen effects that ten rock dams, constructed in the early 1970s, have had on downstream and coastal sediment storage and on sediment dispersal patterns and, consequently, valley flooding. Secondly, planners and environmental engineers have lacked foresight in valley and coastal management issues on this steep setting, notably as regards the reclaimed areas of the lower Var channel and delta liable to flooding. Urbanization and transport and environmental engineering works have progressively affected patterns of storage and transport of fine-grained sediments in the lower Var channel and delta. Meanwhile the problems raised by these changes have not been adequately addressed in terms of scientific research. A necessary future step in bettering the engineering solutions implemented to contain natural hazards or to harness water and sediment resources is that of fine-scale analysis of source-to-sink sediment transfer processes, of sediment budgets, of time-scales of storage in stream channels, and, finally, of high-magnitude hydrometeorological forcing events in this area. The way all these aspects have been modulated by engineering practices and socioeconomic development should also be an important part of such an analysis.
Sediment yields from small, steep coastal watersheds of California
Warrick, Jonathan A.; Melack, John M.; Goodridge, Blair M.
2015-01-01
Global inventories of sediment discharge to the ocean highlight the importance of small, steep watersheds (i.e., those having drainage areas less than 100,000 km2 and over 1000 m of relief) that collectively provide a dominant flux of sediment. The smallest of these coastal watersheds (e.g., those that have drainage areas less than 1000 km2) can represent a large portion of the drainage areas of active margin coasts, such as California’s coast, but remain almost universally unmonitored. Here we report on the suspended-sediment discharge of several small coastal watersheds (10-56 km2) of the Santa Ynez Mountains, California, that were found to have ephemeral discharge and suspended-sediment concentrations ranging between 1 and over 200,000 mgL-1. Sediment concentrations were weakly correlated with discharge (r2 = 0.10–0.25), and all types of hysteresis patterns were observed during high flows (clockwise, counterclockwise, no hysteresis, and complex). Sediment discharge varied strongly with time and was measurably elevated in one watershed following a wildfire. Although sediment yields varied by over 100-fold across the watersheds (e.g., 15 – 2100 tkm-2 yr -1during the relatively wet 2005 water year), the majority of sediment discharge (65-80%) occurred during only 1% of the time for all watersheds. Furthermore, sampling of dozens of high flow events provides evidence that sediment yields were generally related to peak discharge yields, although these relationships were not consistent across the watersheds. These results suggest that small watersheds of active margins can provide large fluxes of sediment to the coast, but that the rates and timing of this sediment discharge is more irregular in time – and thus more difficult to characterize – than the better monitored and studied watersheds that are 1000-100,000 km2.
NASA Astrophysics Data System (ADS)
Wahyudi, S. I.; Adi, H. P.
2018-04-01
Many areas of the northern coastal in Central Java, Indonesia, have been suffering from damage. One of the areas is Jepara, which has been experiencing this kind of damage for 7.6 kilometres from total 72 kilometres long beach. All damages are mostly caused by coastal erosion, sedimentation, environment and tidal flooding. Several efforts have been done, such as replanting mangroves, building revetment and groins, but it still could not mitigated the coastal damage. The purposes of this study are to map the coastal damages, to analyze handling priority and to determine coastal protection model. The method used are by identifying and plotting the coastal damage on the map, assessing score of each variable, and determining the handling priority and suitable coastal protection model. There are five levels of coastal damage used in this study, namely as light damage, medium, heavy, very heavy, and extremely heavy. Based on the priority assessment of coastal damage, it needs to be followed up by designing in detail and implementing through soft structure for example mangrove, sand nourishes and hard structure, such as breakwater, groins and revetment.
California State Waters Map Series: offshore of Santa Barbara, California
Johnson, Samuel Y.; Dartnell, Peter; Cochrane, Guy R.; Golden, Nadine E.; Phillips, Eleyne L.; Ritchie, Andrew C.; Greene, H. Gary; Krigsman, Lisa M.; Kvitek, Rikk G.; Dieter, Bryan E.; Endris, Charles A.; Seitz, Gordon G.; Sliter, Ray W.; Erdey, Mercedes D.; Gutierrez, Carlos I.; Wong, Florence L.; Yoklavich, Mary M.; Draut, Amy E.; Hart, Patrick E.; Conrad, James E.; Cochran, Susan A.; Johnson, Samuel Y.; Cochran, Susan A.
2013-01-01
In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within the 3-nautical-mile limit of California’s State Waters. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data, acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. The Offshore of Santa Barbara map area lies within the central Santa Barbara Channel region of the Southern California Bight. This geologically complex region forms a major biogeographic transition zone, separating the cold-temperate Oregonian province north of Point Conception from the warm-temperate California province to the south. The map area is in the southern part of the Western Transverse Ranges geologic province, which is north of the California Continental Borderland. Significant clockwise rotation—at least 90°—since the early Miocene has been proposed for the Western Transverse Ranges province, and geodetic studies indicate that the region is presently undergoing north-south shortening. Uplift rates (as much as 2.2 mm/yr) that are based on studies of onland marine terraces provide further evidence of significant shortening. The city of Santa Barbara, the main coastal population center in the map area, is part of a contiguous urban area that extends from Carpinteria to Goleta. This urban area was developed on the coalescing alluvial surfaces, uplifted marine terraces, and low hills that lie south of the east-west-trending Santa Ynez Mountains. Several beaches line the actively utilized Santa Barbara coastal zone, including Arroyo Burro Beach Park, Leadbetter Beach, East Beach, and “Butterfly Beach.” There are ongoing coastal erosion problems associated with both development and natural processes; between 1933–1934 and 1998, cliff erosion in the map area occurred at rates of about 0.1 to 1 m/yr, the largest amount (63 m) occurring at Arroyo Burro in the western part of the map area. In addition, development of the Santa Barbara Harbor, which began in 1928, lead to shoaling west of the harbor as the initial breakwater trapped sand, as well as to coastal erosion east of the harbor. Since 1959, annual harbor dredging has mitigated at least some of the downcoast erosion problems. The Offshore of Santa Barbara map area lies in the central part of the Santa Barbara littoral cell, which is characterized by littoral drift to the east-southeast. Drift rates have been estimated to be about 400,000 tons/yr at Santa Barbara Harbor. Sediment supply to the western and central parts of the littoral cell, including the map area, is largely from relatively small transverse coastal watersheds. Within the map area, these coastal watersheds include (from east to west) San Ysidro Creek, Oak Creek, Montecito Creek, Sycamore Creek, Mission Creek, Arroyo Burro, and Atascadero Creek. The Ventura and Santa Clara Rivers, the mouths of which are about 40 to 50 km southeast of Santa Barbara, are much larger sediment sources. Still farther east, eastward-moving sediment in the littoral cell is trapped by Hueneme and Mugu Canyons and then transported to the deep-water Santa Monica Basin. The offshore part of the map area consists of a relatively flat and shallow continental shelf, which dips gently seaward (about 0.4° to 0.8°) so that water depths at the 3-nautical-mile limit of California’s State Waters are about 45 m in the east and about 75 m in the west. This part of the Santa Barbara Channel is relatively well protected from large Pacific swells from the north and northwest by Point Conception and from the south and southwest by offshore islands and banks. The shelf is underlain by variable amounts of upper Quaternary shelf, estuarine, and fluvial sediments deposited as sea level fluctuated in the late Pleistocene. Seafloor habitats in the broad Santa Barbara Channel region consist of significant amounts of soft sediment and isolated areas of rocky habitat that support kelp-forest communities nearshore and rocky-reef communities in deep water. The potential marine benthic habitat types mapped in the Offshore of Santa Barbara map area are directly related to its Quaternary geologic history, geomorphology, and active sedimentary processes. These potential habitats, which lie within the Shelf (continental shelf) megahabitat, range from soft, unconsolidated sediment to hard sedimentary bedrock. This heterogeneous seafloor provides promising habitat for rockfish, groundfish, crabs, shrimp, and other marine benthic organisms.
PROTOZOA IN SUBSURFACE SEDIMENTS FROM SITE CONTAMI- NATED WITH AVIATION GASOLINE OR JET FUEL
Numbers of protozoa in the subsurface of aviation gasoline and jet fuel spill areas at a Coast Guard base at Traverse City, Mich., were determined. Boreholes were drilled in an uncontaminated location, in contaminated but untreated parts of the fuel plumes, and in the aviation ga...
Influence Of pH On The Transport Of Nanoscale Zinc Oxide In Saturated Porous Media
Widespread use of nanoscale zinc oxide (nZnO) in various fields causes subsurface environment contamination. Even though the transport of dissolved zinc ions in subsurface environments such as soils and sediments has been widely studied, the transport mechanism of nZnO in such e...
Collapsing permafrost coasts in the Arctic
NASA Astrophysics Data System (ADS)
Fritz, Michael; Lantuit, Hugues
2017-04-01
Arctic warming is exposing permafrost coastlines, which account for 34% of the Earth's coasts, to rapid thaw and erosion. Coastal erosion rates as high as 25 m yr-1 together with the large amount of organic matter frozen in permafrost are resulting in an annual release of 14.0 Tg (1012 gram) particulate organic carbon into the nearshore zone. The nearshore zone is the primary recipient of higher fluxes of carbon and nutrients from thawing permafrost. We highlight the crucial role the nearshore zone plays in Arctic biogeochemical cycling, as here the fate of the released material is determined to: (1) degrade into greenhouse gases, (2) fuel marine primary production, (3) be buried in nearshore sediments or (4) be transported offshore. With Arctic warming, coastal erosion fluxes have the potential to increase by an order of magnitude until 2100. Such increases would result in drastic impacts on global carbon fluxes and their climate feedbacks, on nearshore food webs and on local communities, whose survival still relies on marine biological resources. Quantifying the potential impacts of increasing erosion on coastal ecosystems is crucial for food security of northern residents living in Arctic coastal communities. We need to know how the traditional hunting and fishing grounds might be impacted by high loads of sediment and nutrients released from eroding coasts, and to what extent coastal retreat will lead to a loss of natural habitat. Quantifying fluxes of organic carbon and nutrients is required, both in nearshore deposits and in the water column by sediment coring and systematic oceanographic monitoring. Ultimately, this will allow us to assess the transport and degradation pathways of sediment and organic matter derived from erosion. We need to follow the complete pathway, which is multi-directional including atmospheric release, lateral transport, transitional retention in the food web, and ultimate burial in seafloor sediments. We present numbers of multi-year dissolved organic matter (DOM) fluxes from coastal erosion into the nearshore zone of the southern Canadian Beaufort Sea. We further explore removal and degradation patterns of DOM based on oceanographic monitoring of coastal waters. Ultimately, we present accumulation rates and biogeochemical properties of marine sediment sequences drilled off the Yukon coast to track the pathways of the eroded material.
Recent Advances in Understanding the Sources of Methylmercury to Coastal Waters
NASA Astrophysics Data System (ADS)
Mason, R. P.; Balcom, P.; Chen, C.; Gosnell, K. J.; Jonsson, S.; Mazrui, N.; Ortiz, V.; Seelen, E.; Schartup, A. T.; Sunderland, E. M.
2015-12-01
Understanding the sources of methylmercury (MeHg) to the food chain in coastal waters is important given the related health concerns from consumption of seafood containing elevated MeHg. While water column dissolved or particulate MeHg is the best predictor of bioaccumulation into pelagic organisms in coastal waters, there is debate concerning the dominant sources of MeHg to the water column, and how the relative importance of these sources vary with ecosystem characteristics. Potential sources include both external inputs from the watershed and offshore waters and internal sources (net methylation in sediments and the associated flux of MeHg to the water column and/or net MeHg production in the water column). We will report the results from our various studies in estuarine and coastal waters which have examined the distribution and partitioning of sediment and water column MeHg, and its formation and degradation, across a geographic range from Labrador, Canada to the Chesapeake Bay, USA. The ecosystems studied vary from shallow estuarine bays to deeper systems, and from salt wedge to tidally-dynamic systems. Additionally, both pristine and contaminated environments were examined. The studies examined the factors controlling the net production of MeHg in sediments, and in our more recent work, the potential formation of MeHg in the oxic water column of coastal waters. Sediment measurements (core and grab samples) included both solid phase and porewater MeHg and total mercury (HgT) and important ancillary parameters. Water column parameters included dissolved and particulate MeHg and HgT, TSS, nutrients, and DOC. Stable Hg isotope tracer incubations were used to assess the degree of methylation and demethylation in sediments and surface waters. Average suspended particle MeHg ranged from <5 to 120 pmol/g, and was 1-8% of HgT across sites. Mass balance estimates provide insights into the importance of external MeHg sources to coastal waters. We will use the information to evaluate the following questions: 1) what conditions favor external sources of MeHg over internal production? 2) what conditions enhance net in situ water column formation of MeHg? and 3) what conditions enhance the exchange of MeHg at the sediment/water interface in coastal waters?
Sources of sediment to the coastal waters of the Southern California Bight
Warrick, J.A.; Farnsworth, K.L.
2009-01-01
The sources of sediment to the Southern California Bight were investigated with new calculations and published records of sediment fluxes, both natural and anthropogenic. We find that rivers are by far the largest source of sediment, producing over 10 ?? 106 t/yr on average, or over 80% of the sediment input to the Bight. This river flux is variable, however, over both space and time. The rivers draining the Transverse Ranges produce sediment at rates approximately an order of magnitude greater than the Peninsular Ranges (600-1500 t/km2/yr versus <90 t/km2/yr, respectively). Although the Transverse Range rivers represent only 23% of the total Southern California watershed drainage area, they are responsible for over 75% of the total sediment flux. River sediment flux is ephemeral and highly pulsed due to the semiarid climate and the influence of infrequent large storms. For more than 90% of the time, negligible amounts of sediment are discharged from the region's rivers, and over half of the post-1900 sediment load has been discharged during events with recurrence intervals greater than 10 yr. These rare, yet important, events are related to the El Ni??o-Southern Oscillation (ENSO), and the majority of sediment flux occurs during ENSO periods. Temporal trends in sediment discharge due to land-use changes and river damming are also observed. We estimate that there has been a 45% reduction in suspended-sediment flux due to the construction of dams. However, pre-dam sediment loads were likely artificially high due to the massive land-use changes of coastal California to rangeland during the nineteenth century. This increase in sediment production is observed in estuarine deposits throughout coastal California, which reveal that sedimentation rates were two to ten times higher during the nineteenth and twentieth centuries than during pre-European colonization. ?? 2009 The Geological Society of America.
NASA Astrophysics Data System (ADS)
Sha, X.; Xu, K.; Bentley, S. J.; Robichaux, P.
2016-02-01
Although many studies of sediment diversions have been conducted on the Mississippi Delta, relatively less attention has been paid to understanding sediment retention and basic cohesive sedimentation processes in receiving basins. Our research evaluates long-term (up to six months) sedimentation processes through various laboratory experiments, especially cohesive sediment settling, consolidation and resuspension and their impacts on sediment retention. Bulk sediment samples were collected from West Bay, near Head of Passes of the Mississippi Delta, and the Big Mar basin that receive water and sediment from the Caernarvon Diversion in the upper Breton Sound region of Louisiana, USA. A-230-cm tall settling column with nine sampling ports at 15 cm intervals was used to measure the consolidation for four initial sediment concentrations (10-120 kg m-3) with two salinities (1 ppt & 5 ppt). Samples of sediment slurry were taken from every port at different time intervals up to 15 days or longer (higher concentration needs longer time to consolidate) to record concentrations gravimetrically. A 200 cm long tube was connected to a 50 cm long core chamber to accumulate at least a 10 cm thick sediment column for erosion tests. A dual-core Gust Erosion Microcosm System was employed to measure time-series (0.5, 1, 2, 3, 4, 5, 6 months) erodibility at seven shear stress regimes (0.01-0.60 Pa). Our preliminary results show a significant decrease of erodibility with time and high concentration (120g/L). Salinity impacted on sediment behavior in consolidation experiments. Our study reveals that more enclosed receiving basins, intermittent openings of diversions, or reduced shear stress due to man-made structure all can potentially reduce cohesive sediment erosion in coastal Louisiana. Further results will be analyzed to determine the model constants. Consolidating rates and corresponding erosional changes will be determined to optimize sediment retention in coastal protection.
Evrard, Olivier; Laceby, J. Patrick; Onda, Yuichi; Wakiyama, Yoshifumi; Jaegler, Hugo; Lefèvre, Irène
2016-01-01
Fallout from the Fukushima Dai-ichi nuclear power plant accident resulted in a 3000-km2 radioactive contamination plume. Here, we model the progressive dilution of the radiocesium contamination in 327 sediment samples from two neighboring catchments with different timing of soil decontamination. Overall, we demonstrate that there has been a ~90% decrease of the contribution of upstream contaminated soils to sediment transiting the coastal plains between 2012 (median – M – contribution of 73%, mean absolute deviation – MAD – of 27%) and 2015 (M 9%, MAD 6%). The occurrence of typhoons and the progress of decontamination in different tributaries of the Niida River resulted in temporary increases in local contamination. However, the much lower contribution of upstream contaminated soils to coastal plain sediment in November 2015 demonstrates that the source of the easily erodible, contaminated material has potentially been removed by decontamination, diluted by subsoils, or eroded and transported to the Pacific Ocean. PMID:27694832
Neff, Hector; Bigney, Scott J; Sakai, Sachiko; Burger, Paul R; Garfin, Timothy; George, Richard G; Culleton, Brendan J; Kennett, Douglas J
2016-01-01
Archaeological sediments from mounds within the mangrove zone of far-southern Pacific coastal Chiapas, Mexico, are characterized in order to test the hypothesis that specialized pyro-technological activities of the region's prehistoric inhabitants (salt and ceramic production) created the accumulations visible today. Fourier transform infrared spectroscopy (FT-IR) is used to characterize sediment mineralogy, while portable X-ray fluorescence (pXRF) is used to determine elemental concentrations. Elemental characterization of natural sediments by both instrumental neutron activation analysis (INAA) and pXRF also contribute to understanding of processes that created the archaeological deposits. Radiocarbon dates combined with typological analysis of ceramics indicate that pyro-industrial activity in the mangrove zone peaked during the Late Formative and Terminal Formative periods, when population and monumental activity on the coastal plain and piedmont were also at their peaks. © The Author(s) 2015.
O'Shea, Francis T; Cundy, Andrew B; Spencer, Kate L
2018-03-01
Prior to modern environmental regulation landfills in low-lying coastal environments were frequently constructed without leachate control, relying on natural attenuation within inter-tidal sediments to dilute and disperse contaminants reducing environmental impact. With sea level rise and coastal erosion these sites may now pose a pollution risk, yet have received little investigation. This work examines the extent of metal contamination in saltmarsh sediments surrounding a historic landfill in the UK. Patterns of sediment metal data suggest typical anthropogenic pollution chronologies for saltmarsh sediments in industrialised nations. However, many metals were also enriched at depth in close proximity to the landfill boundary and are indicative of a historical leachate plume. Though this total metal load is low, e.g., c. 1200 and 1650kg Pb and Zn respectively, with >1000 historic landfills on flood risk or eroding coastlines in the UK this could represent a significant, yet under-investigated, source of diffuse pollution. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
NASA Astrophysics Data System (ADS)
El-Sorogy, Abdelbaset S.; Youssef, Mohamed; Al-Kahtany, Khaled; Al-Otaiby, Naif
2016-01-01
In order to assess arsenic on the Tarut coast, Saudi Arabian Gulf, 38 sediment samples, 26 seawater samples and 40 gastropod and bivalve specimens were collected for analyses by Inductively Coupled Plasma-Mass Spectrometer. The Enrichment Factor (EF), the Geoaccumulation Index (Igeo) and the Contamination Factor (CF) indicated that coastal sediments of Tarut Island are severely enriched, strongly polluted and very highly contaminated with arsenic as a result of anthropogenic inputs. Comparison with arsenic in coastal sediments, seawaters and molluscs in the Red Sea, the Arabian Gulf and abroad coasts suggested that the studied samples have higher concentrations of As. The suggested natural sources of arsenic in the study area are the weathering and decomposition of neighboring deserts. The anthropogenic sources include the land reclamation, petrochemical industries, boat exhaust emissions, oil leakage, desalination plants and sewage effluents. These anthropogenic sources are the dominant sources of As in the study area and mostly came from Al Jubail industrial city to the north.
Methane flux from coastal salt marshes
NASA Technical Reports Server (NTRS)
Bartlett, K. B.; Harriss, R. C.; Sebacher, D. I.
1985-01-01
It is thought that biological methanogenesis in natural and agricultural wetlands and enteric fermentation in animals are the dominant sources of global tropospheric methane. It is pointed out that the anaerobic soils and sediments, where methanogenesis occurs, predominate in coastal marine wetlands. Coastal marine wetlands are generally believed to be approximately equal in area to freshwater wetlands. For this reason, coastal marine wetlands may be a globally significant source of atmospheric methane. The present investigation is concerned with the results of a study of direct measurements of methane fluxes to the atmosphere from salt marsh soils and of indirect determinations of fluxes from tidal creek waters. In addition, measurements of methane distributions in coastal marine wetland sediments and water are presented. The results of the investigation suggest that marine wetlands provide only a minor contribution to atmospheric methane on a global scale.
Open inlet conversion: Water quality benefits of two designs
USDA-ARS?s Scientific Manuscript database
Open surface inlets that connect to subsurface tile drainage systems provide a direct pathway for movement of sediment, nutrients, and agrochemicals to surface waters. This study was conducted to determine the reduction in drainage effluent total suspended sediment (TSS) and phosphorus (P) concentr...
Recruitment from an egg bank into the plankton in Baisha Bay, a mariculture base in Southern China
NASA Astrophysics Data System (ADS)
Wang, Qing; Luan, Lei-Lei; Chen, Liang-Dong; Yuan, Dan-Ni; Liu, Sheng; Hwang, Jiang-Shiou; Yang, Yu-Feng
2016-11-01
The potential recruitment of resting eggs of calanoid copepods and rotifers to planktonic populations was investigated in the surface and sub-surface sediments of three mariculture zones: an integrated seaweed Gracilaria lemaneiformis and shellfish cultivation area (G), a fish cultivation area (F), and a shellfish cultivation area (S), as well as the sediments of a nearby control sea area (C) in a mariculture base in Southern China. The potential recruitment of copepod and rotifer eggs in the sediments of C and G was significantly higher than in F and S. Potential recruitment in the sub-surface sediments of F and S was not observed, suggesting that fish and shellfish mariculture may be responsible for this decrease. The hatching success of resting eggs of copepods and rotifers was affected by mariculture type, and that large-scale seaweed cultivation may offset the adverse effect of fish and shellfish cultivation on the resting eggs if integrated cultivation is adopted.
Extraordinary phylogenetic diversity and metabolic versatility in aquifer sediment
Castelle, Cindy J.; Hug, Laura A.; Wrighton, Kelly C.; ...
2013-08-27
Microorganisms in the subsurface represent a substantial but poorly understood component of the Earth’s biosphere. Subsurface environments are complex and difficult to characterize; thus, their microbiota have remained as a ‘dark matter’ of the carbon and other biogeochemical cycles. Here we deeply sequence two sediment-hosted microbial communities from an aquifer adjacent to the Colorado River, CO, USA. No single organism represents more than ~1% of either community. Remarkably, many bacteria and archaea in these communities are novel at the phylum level or belong to phyla lacking a sequenced representative. The dominant organism in deeper sediment, RBG-1, is a member ofmore » a new phylum. On the basis of its reconstructed complete genome, RBG-1 is metabolically versatile. Its wide respiration-based repertoire may enable it to respond to the fluctuating redox environment close to the water table. We document extraordinary microbial novelty and the importance of previously unknown lineages in sediment biogeochemical transformations.« less
NASA Astrophysics Data System (ADS)
Segarra, Katherine E. A.; Comerford, Christopher; Slaughter, Julia; Joye, Samantha B.
2013-08-01
Methane, a powerful greenhouse gas, is both produced and consumed in anoxic coastal sediments via microbial processes. Although the anaerobic oxidation of methane (AOM) is almost certainly an important process in coastal freshwater and salt marsh sediments, the factors that control the rates and pathways of AOM in these habitats are poorly understood. Here, we present the first direct measurements of AOM activity in freshwater (0 PSU) and brackish (25 PSU) wetland sediments. Despite disparate sulfate concentrations, both environments supported substantial rates of AOM. Higher sulfate reduction (SR) rates were measured in the freshwater site and SR at both sites was of sufficient magnitude to support the observed AOM activity. Laboratory incubations of freshwater and brackish tidal, wetland sediments amended with either nothing [control], sulfate, nitrate, manganese oxide (birnessite) or iron oxide (ferrihydrite) and supplied with a methane headspace were used to evaluate the impact(s) of electron acceptor availability on potential AOM rates. Maximum AOM rates in brackish slurries occurred in the sulfate amendments. In contrast, addition of sulfate and several possible electron acceptors to the freshwater slurries decreased AOM rates relative to the control. High ratios of AOM activity relative to SR activity in the nitrate, birnessite, and ferrihydrite treatments of both the brackish and freshwater slurries provided evidence of AOM decoupled from SR. This study demonstrates that both freshwater and brackish coastal wetland sediments support considerable rates of anaerobic methanotrophy and provides evidence for sulfate-independent AOM that may be coupled to nitrate, iron, or manganese reduction in both environments.
Zhang, Yan; Chen, Lujun; Sun, Renhua; Dai, Tianjiao; Tian, Jinping; Wen, Donghui
2015-05-01
Under the increasing pressure of human activities, Hangzhou Bay has become one of the most seriously polluted waters along China's coast. Considering the excessive inorganic nitrogen detected in the bay, in this study, the impact of an effluent from a coastal industrial park on ammonia-oxidizing microorganisms (AOMs) of the receiving area was interpreted for the first time by molecular technologies. Revealed by real-time PCR, the ratio of archaeal amoA/bacterial amoA ranged from 5.68 × 10(-6) to 4.79 × 10(-5) in the activated sludge from two wastewater treatment plants (WWTPs) and 0.54-3.44 in the sediments from the effluent receiving coastal area. Analyzed by clone and pyrosequencing libraries, genus Nitrosomonas was the predominant ammonia-oxidizing bacteria (AOB), but no ammonia-oxidizing archaea (AOA) was abundant enough for sequencing in the activated sludge from the WWTPs; genus Nitrosomonas and Nitrosopumilus were the dominant AOB and AOA, respectively, in the coastal sediments. The different abundance of AOA but similar structure of AOB between the WWTPs and nearby coastal area probably indicated an anthropogenic impact on the microbial ecology in Hangzhou Bay.
Immobilization and Natural Attenuation of Arsenic in Surface and Subsurface Sediments
NASA Astrophysics Data System (ADS)
O'Day, P. A.; Illera, V.; Choi, S.; Vlassopoulos, D.
2008-12-01
Understanding of molecular-scale biogeochemical processes that control the mobilization and distribution of As and other oxyanions can be used to develop remediation strategies that take advantage of natural geochemical and hydrologic gradients. Arsenic and other toxic oxyanions can be mobilized at low bulk sediment concentrations (ppm range) and thus, treatment technologies are challenged by low contaminant concentrations, widespread sources, variable pH and Eh conditions, and inaccessibility of subsurface environments. In situ chemical amendments to soils and sediments can be used to decrease the mobility and bioaccessibility of As and oxyanions through sorption to, or precipitation with, stabilizing phases. At a site near San Francisco Bay (CA, USA), treatment of As-contaminated soils with sulfate-cement amendments has effectively immobilized As. Laboratory experiments with field soils and spectroscopic characterizations showed that in high pH cement-type treatments, As is precipitated in ettringite-type phases (Ca-Al sulfates), whereas in low pH ferrous sulfate treatments, As is associated with an iron-arsenate phase (angellelite). The presence of As-associated ettringite-type phases in field sediments amended more than a decade ago indicates long-term stability of these neophases, as long as environmental conditions are relatively constant. At sites of subsurface contamination, monitored natural attenuation (MNA) as a remediation approach for As is gaining interest and acceptance. Successful implementation of MNA requires a mechanistic understanding of As sequestration processes and of the subsurface conditions that may enhance or reduce long-term effectiveness. At a former military site (MA, USA), naturally occurring As was mobilized from sediments as a result of reducing conditions from addition of organic carbon as a biodegradation treatment of chlorinated solvents. Elevated As concentrations were not detected further than about 30 m downgradient of the injection, indicating that As sequestration was also occurring by natural processes in the aquifer. Laboratory experiments with aquifer sediments and spectroscopic characterization of reaction products were used to quantify the extent of As(III) sorption and abiotic oxidation to As(V), probably by Mn(III,IV) present in sediment minerals. Interrogation by XANES spectroscopy and analysis of uptake data indicated that sediments have a limited abiotic oxidation capacity for As(III), which did not exceed 30% of the total amount of As sorbed and was estimated at 0.025 to 0.4 mmol/kg sediment. Results indicate that pH-controlled sorption is the primary mechanism for As uptake and sediment capacity for oxidative sorption is limited. As such, MNA may be temporarily effective at this site, depending on the size of the contaminant plume and the rate of groundwater flow.
Sebkhet Karkura: an example of a semi-arid Mediterranean wetland rich in biotic sediments
NASA Astrophysics Data System (ADS)
Abdulsamad, Esam O.; Elbabour, Mansour M.
2014-05-01
Habitat wetlands in Libya may be grouped into several distinct varieties, according to climate, water supply, soils, and biotic diversity. They include coastal Sebkhas (salt marshes), karst lakes, Wadi estuaries, below sea-level desert lakes, and balat flats (playas) where the soil is saturated part of some rainy seasons forming a kind of ephemeral, shallow lakes in pre-desert areas. The most prominent, however, are the extensive coastal salt marshes. These have either organic or inorganic soils, or both, depending on their location and climate conditions. Soils common to most coastal wetlands are composed largely of inorganic material in the form of sand, silt, or clay; in addition to organic material formed by decayed plants and various biotic sediments. For the purpose of the present poster, however, Sebkhet Karkura, an extensive stretch of about 50 km square (20 km long by an average width of 2.5 km) of Sebkha/wetland formation, located about 80 km southwest of Benghazi, will serve as an example of coastal Sebkhas. Here, the sediments are consisting mostly of dark earth brown sandy silt with salt and gypsum. Pure-salt deposits are normally extracted for salt processing in the area. Loams, silt, gravel, and calcareous sand are also present. At the surface of the wetland, calcarenites are fairly common but sand-beach and sand-dunes are representing the major sediments along the coastal wetland area. The recent biotal components of these sediments are described and a number of recent small-sized benthic seashells, belonging to phylum mollusca, have been investigated along the seaside of Sabkhet Karkura and several species have been identified. It is worth noting that Sebkhet Karkura, as well as other similar coastal wetlands, currently face serious threats due to human action, especially over exploitation of their resources, urban encroachments, dredging, and solid waste dumping. Increased awareness on the part of the general public of wetland ecological values and functions is essential as a preventive measure against such threats.
Ecosystem engineering and biodiversity in coastal sediments: posing hypotheses
NASA Astrophysics Data System (ADS)
Bouma, Tjeerd J.; Olenin, Sergej; Reise, Karsten; Ysebaert, Tom
2009-03-01
Coastal sediments in sheltered temperate locations are strongly modified by ecosystem engineering species such as marsh plants, seagrass, and algae as well as by epibenthic and endobenthic invertebrates. These ecosystem engineers are shaping the coastal sea and landscape, control particulate and dissolved material fluxes between the land and sea, and between the benthos and the passing water or air. Above all, habitat engineering exerts facilitating and inhibiting effects on biodiversity. Despite a strongly growing interest in the functional role of ecosystem engineering over the recent years, compared to food web analyses, the conceptual understanding of engineering-mediated species interactions is still in its infancy. In the present paper, we provide a concise overview on current insights and propose two hypotheses on the general mechanisms by which ecosystem engineering may affect biodiversity in coastal sediments. We hypothesise that autogenic and allogenic ecosystem engineers have inverse effects on epibenthic and endobenthic biodiversity in coastal sediments. The primarily autogenic structures of the epibenthos achieve high diversity at the expense of endobenthos, whilst allogenic sediment reworking by infauna may facilitate other infauna and inhibits epibenthos. On a larger scale, these antagonistic processes generate patchiness and habitat diversity. Due to such interaction, anthropogenic influences can strongly modify the engineering community by removing autogenic ecosystem engineers through coastal engineering or bottom trawling. Another source of anthropogenic influences comes from introducing invasive engineers, from which the impact is often hard to predict. We hypothesise that the local biodiversity effects of invasive ecosystem engineers will depend on the engineering strength of the invasive species, with engineering strength defined as the number of habitats it can invade and the extent of modification. At a larger scale of an entire shore, biodiversity need not be decreased by invasive engineers and may even increase. On a global scale, invasive engineers may cause shore biota to converge, especially visually due to the presence of epibenthic structures.
NASA Astrophysics Data System (ADS)
Sauvage, J.; Graham, D.; Spivack, A. J.; Dunlea, A. G.; Murray, R. W.; D'Hondt, S.
2014-12-01
Naturally occurring production of molecular hydrogen (H2) by water radiolysis may be a fundamentally important source of electron donors (energy) for life in subsurface environments where organic matter is scarce. Previous studies with very high gamma radiation rates and wet mineral phases have reported high H2 production relative to production from water radiolysis in the absence of solid phases. Numerical calculations by other previous studies have predicted enhanced H2 production from seawater radiolysis relative to pure water radiolysis, due to the interaction of anions with hydroxyl radicals. Given these reports, the potential catalytic influences of solid and dissolved chemical phases on radiolytic H2 production need to be carefully quantified in order to fully evaluate the role of radiolytic H2 as a microbial energy source. For such quantification, we undertook gamma-irradiation experiments with pure water, deep ocean water and mixtures (slurries, φ = 0.85) of seawater with: North Pacific abyssal clay and calcareous oozes, coastal sediment, zirconium dioxide, and zeolite. We carried out our experiments at the Rhode Island Nuclear Science Center using a 37Cesium source at low dose rates (up to 0.1 Gy/hr). Our results to date include the following. First, the per-dose radiolytic H2 yield of pure water at low dose rates is directly comparable to the per-dose yield at much higher dose rates (ca. 1 kGy/hr); this result indicates that H2 production rate is linearly related to radiation dose rate across four orders of magnitude. Second, there is no statistically significant difference (90% confidence limit) between the radiolytic H2 yield from pure water and that from seawater; this result rules out influence of abundant seawater salts on H2 yield from water radiolysis. Third, H2 production from a mixture of abyssal clay and seawater is 25% higher than the yield from pure water. This enhanced yield is consistent with catalysis of radiolytic H2 production by zeolite.
Ahmed, Bulbul; Cao, Bin; Mishra, Bhoopesh; Boyanov, Maxim I; Kemner, Kenneth M; Fredrickson, Jim K; Beyenal, Haluk
2012-09-01
Regions within the U.S. Department of Energy Hanford 300 Area (300 A) site experience periodic hydrologic influences from the nearby Columbia River as a result of changing river stage, which causes changes in groundwater elevation, flow direction and water chemistry. An important question is the extent to which the mixing of Columbia River water and groundwater impacts the speciation and mobility of uranium (U). In this study, we designed experiments to mimic interactions among U, oxic groundwater or Columbia River water, and 300 A sediments in the subsurface environment of Hanford 300 A. The goals were to investigate mechanisms of: 1) U immobilization in 300 A sediments under bulk oxic conditions and 2) U remobilization from U-immobilized 300 A sediments exposed to oxic Columbia River water. Initially, 300 A sediments in column reactors were fed with U(VI)-containing oxic 1) synthetic groundwater (SGW), 2) organic-amended SGW (OA-SGW), and 3) de-ionized (DI) water to investigate U immobilization processes. After that, the sediments were exposed to oxic Columbia River water for U remobilization studies. The results reveal that U was immobilized by 300 A sediments predominantly through reduction (80-85%) when the column reactor was fed with oxic OA-SGW. However, U was immobilized by 300 A sediments through adsorption (100%) when the column reactors were fed with oxic SGW or DI water. The reduced U in the 300 A sediments fed with OA-SGW was relatively resistant to remobilization by oxic Columbia River water. Oxic Columbia River water resulted in U remobilization (∼7%) through desorption, and most of the U that remained in the 300 A sediments fed with OA-SGW (∼93%) was in the form of uraninite nanoparticles. These results reveal that: 1) the reductive immobilization of U through OA-SGW stimulation of indigenous 300 A sediment microorganisms may be viable in the relatively oxic Hanford 300 A subsurface environments and 2) with the intrusion of Columbia River water, desorption may be the primary process resulting in U remobilization from OA-SGW-stimulated 300 A sediments at the subsurface of the Hanford 300 A site. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Sarti, G.; Rossi, V.; Amorosi, A.; Ciampalini, A.; Molli, G.; Moretti, S.; Solari, L.
2016-12-01
Through the integration of sedimentological, radar interferometry and structural studies, a complex mid-late Quaternary coastal evolution related to Milankovitch-scale glacio-eustatic oscillations and local tectonics was reconstructed for the southern margin of the Arno coastal plain (APC, Tuscany, Italy). A set of 14C and ESR ages combined with SAR data, paleontological and archaeological proxy support the chronological framework. At a regional scale, the ACP straddles at the SW termination of a regional-scale fault, a crustal expression of lithospheric-scale tear segmenting the deep structure of the northern Apennines. GPS data, historical and present-day seismicity testify the activity of the fault zone. The thickness (up to 3000 m) and the age (Upper Miocene-Holocene) of the APC fill deposits reflect the accommodation space through time north of the Livorno-Sillaro line (LSL), in contrast to the recent uplifting documented south of the it. The uppermost 100 m of subsurface in the APC shows a Pleistocene incised-valley system (IVS), ca. 4 km wide and 45 m deep. The IVS fill is composed of floodplain clays passing upwards to estuarine deposits, dated to MIS 7. Above, a succession of amalgamated fluvial-channel sands record both depositional and erosional events of post-MIS 7 age. Upwards, a Holocene alluvial-deltaic succession overlies an indurated horizon related to a younger IVS system that formed at MIS 3/MIS 2 transition. The Holocene succession becomes thin in proximity of an isolated relief, Upper Pleistocene in age, rising up to 15 m above the present-day plain, ca. 6 km south of the Arno River. ERS and Envisat SAR data were acquired between the 1992 and the 2010 and processed by using the PSInSAR technique. The subsidence rates along the southern boundary of the ACP, reach 28 mm/y even if this data may be partially enhanced by water exploitation. Our results document that the transition between the subsiding and uplifting areas does not coincide with the traditionally defined surface trace of LSL, but is located ca. 20 km northward, close to the present day Arno river course. The complex interplay between sediment accumulation and erosional processes documented in the subsurface of ACP reflect changes in the eustatic rate, connected to the Milankovitch cyclicity, and local activity of the surface splay of LSL.
Schwab, William C.; Denny, Jane F.; Baldwin, Wayne E.
2014-01-01
The U.S. Geological Survey mapped approximately 336 square kilometers of the lower shoreface and inner continental shelf offshore of Fire Island, New York, in 2011 by using interferometric sonar and high-resolution chirp seismic-reflection systems. This report presents maps of bathymetry, acoustic backscatter, the coastal plain unconformity, the Holocene marine transgressive surface, and modern sediment thickness. These spatial data support research on the Quaternary evolution of the Fire Island coastal system and provide baseline information for research on coastal processes along southern Long Island.
Watts, D B; Way, T R; Torbert, H A
2011-01-01
Environmental pressure to reduce nutrient losses from agricultural fields has increased in recent years. To abate this nutrient loss to the environment, better management practices and new technologies need to be developed. Thus, research was conducted to evaluate if subsurface banding poultry litter (PL) would reduce nitrogen (N) and phosphorus (P) loss in surface water runoff using a four-row prototype implement. Rainfall simulations were conducted to create a 40-min runoff event in an established bermudagrass (Cynodon dactylon L.) pasture on soil types common to the Coastal Plain and Piedmont regions. The Coastal Plain soil type was a Marvyn loamy sand (fine-loamy, kaolinitic, thermic Typic Kanhapludults) and the Piedmont soil type was a Hard Labor loamy sand (fine, kaolinitic, thermic Oxyaquic Kanhapludults). Treatments consisted of surface- and subsurface-applied PL at a rate of 9 Mg ha(-1), surface broadcast-applied commercial fertilizer (CF; urea and triple superphosphate blend) at the equivalent N (330 kg N ha(-1)) and P (315 kg N ha(-1)) content of PL, and a nonfertilized control. The greatest loss for inorganic N, total N, dissolved reactive P (DRP), and total P occurred with the surface broadcast treatments, with CF contributing to the greatest loss. Nutrient losses from the subsurface banded treatment reduced N and P in surface water runoff to levels of the control. Subsurface banding of PL reduced concentrations of inorganic N 91%, total N 90%, DRP 86%, and total P 86% in runoff water compared with surface broadcasted PL. These results show that subsurface band-applied PL can greatly reduce the impact of N and P loss to the environment compared with conventional surface-applied PL and CF practices.
Chang, Yongkai; Fan, Jingfeng; Su, Jie; Ming, Hongxia; Zhao, Wen; Shi, Yan; Ji, Fengyun; Guo, Limei; Zan, Shuaijun; Li, Bochao; Guo, Hao; Guan, Daoming
2017-05-01
Ammonia-oxidizing bacteria (AOB) play an important role in nitrification in estuaries. The aim of this study was to examine the spatial abundance, diversity, and activity of AOB in coastal sediments of the Liaohe Estuary using quantitative PCR, high-throughput sequencing of the amoA gene coding the ammonia monooxygenase enzyme active subunit, and sediment slurry incubation experiments. AOB abundance ranged from 8.54 × 10 4 to 5.85 × 10 6 copies g -1 of wet sediment weight and exhibited an increasing trend from the Liaohe Estuary to the open coastal zone. Potential nitrification rates (PNRs) ranged from 0.1 to 336.8 nmol N g -1 day -1 along the estuary to the coastal zone. Log AOB abundance and PNRs were significantly positively correlated. AOB richness decreased from the estuary to the coastal zone. High-throughput sequencing analysis indicated that the majority of amoA gene sequences fell within the Nitrosomonas and Nitrosomonas-like clade, and only a few sequences were clustered within the Nitrosospira clade. This finding indicates that the Nitrosomonas-related lineage may be more adaptable to the specific conditions in this estuary than the Nitrosospira lineage. Sites with high nitrification rates were located in the southern open region and were dominated by the Nitrosomonas-like lineage, whereas the Nitrosospira lineage was found primarily in the northern estuary mouth sites with low nitrification rates. Thus, nitrification potentials in Liaohe estuarine sediments in the southern open region were greater than those in the northern estuary mouth, and the Nitrosomonas-related lineage might play a more important role than the Nitrosospira lineage in nitrification in this estuary.
Barraclough, Jack T.; Robertson, J.B.; Janzer, V.J.; Saindon, L.G.
1976-01-01
A study was made (1970-1974) to evaluate the geohydrologic and geochemical controls on subsurface migration of radionuclides from pits and trenches in the Idaho National Engineering Laboratory (INEL) solid waste burial ground and to determine the existence and extent of radionuclide migration from the burial ground. A total of about 1,700 sediment, rock, and water samples were collected from 10 observation wells drilled in and near the burial ground of Idaho National Engineering Laboratory, formerly the National Reactor Testing Station (NRTS). Within the burial ground area, the subsurface rocks are composed principally of basalt. Wind- and water-deposited sediments occur at the surface and in beds between the thicker basalt zones. Two principal sediment beds occur at about 110 feet and 240 feet below the land surface. The average thickness of the surficial sedimentary layer is about 15 feet while that of the two principal subsurface layers is 13 and 14 feet, respectively. The water table in the aquifer beneath the burial ground is at a depth of about 580 feet. Fission, activation, and transuranic elements were detected in some of the samples from the 110- and 240-foot sedimentary layers. (Woodard-USGS)
Flow and Suspended Sediment Events in the Near-Coastal Zone off Corpus Christi, Texas
2003-09-30
redistribution of preexisting shelf sediments during storms and (2) transportation of suspended sediment from the adjacent bay- lagoon system. Snedden et al...and K.E. Schmedes. (1983). Submerged lands of Texas, Corpus Christi area: sediments, geochemistry, benthic macroinvertebrates and associated
Polychlorinated biphenyls in coastal tropical ecosystems: Distribution, fate and risk assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dodoo, D.K.; Essumang, D.K., E-mail: kofiessumang@yahoo.com; Jonathan, J.W.A.
2012-10-15
Polychlorinated biphenyls (PCBs) though banned still find use in most developing countries including Ghana. PCB congener residues in sediments in the coastal regions of Ghana were determined. Sediment samples (n=80) were collected between June 2008 and March 2009, extracted by the continuous soxhlet extraction using (1:1) hexane-acetone mixture for 24 h and analyzed with a CP 3800 gas chromatogram equipped with {sup 65}Ni electron capture detector (GC-ECD) and a mixed PCBs standard of the ICES 7 as marker, after clean-up. Validation of the efficiency and precision of the extraction and analytical methods were done by extracting samples spiked with 2more » ppm ICES PCB standard and a certified reference material 1941b for marine sediments from NIST, USA, and analyzed alongside the samples. Total PCBs detected in sediments during the dry and wet seasons were, respectively, 127 and 112 {mu}g/kg dry weight (dw), with a mean concentration of 120 {mu}g/kg (dw). The composition of PCB homologues in the sediments were dominated by tri-, penta- and tetra-PCBs. There was no correlation between organic carbon (OC) of the sediments and total PCBs content. Risk assessments conducted on the levels indicated that PCB levels in sediments along the coastal region of Ghana poses no significant health risk to humans.« less
Sun, Runxia; Sun, Yue; Li, Qing X; Zheng, Xiaobo; Luo, Xiaojun; Mai, Bixian
2018-05-30
Intensive human activities aggravate environmental pollution, particularly in the coastal environment. Sixteen priority polycyclic aromatic hydrocarbons (PAHs) were determined in the sediments and marine species from Zhanjiang Harbor, a large harbor in China. The total PAH concentrations ranged from 151 to 453 ng/g dry weight (dw) in sediments and from 86.7 to 256 ng/g wet weight (ww) in organism tissues. High levels of PAHs occurred in the sample sites next to the estuary. A decrease in PAH levels was observed in comparison to the previous survey prior to 2012. Fish exhibited lower lipid weight normalized PAH concentrations than the other species, which may be related to their efficient metabolic transformation. Three ring PAHs dominated both in marine sediments and species, but low molecular weight PAHs exhibited higher proportions in biota than in sediments (p < 0.05). Petrogenic and pyrolytic sources both contributed to the occurrence of PAHs, and the latter became increasingly important in the study area. The ecological risk from PAHs in the sediments was relatively low (9% incidence of adverse biological effect) according to the effects-based sediment quality guideline values. Exposure to PAHs via consuming seafoods might pose a health risk to local residents. Overall, these results revealed anthropogenic activities in the coastal area have an impact on the local ecosystem. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Premasiri, Ranjith; Styles, Peter; Shrira, Victor; Cassidy, Nigel; Schwenninger, Jean-Luc
2015-12-01
To evaluate and mitigate tsunami hazard, as long as possible records of inundations and dates of past events are needed. Coastal sediments deposited by tsunamis (tsunamites) can potentially provide this information. However, of the three key elements needed for reconstruction of palaeotsunamis (identification of sediments, dating and finding the inundation distance) the latter remains the most difficult. The existing methods for estimating the extent of a palaeotsunami inundation rely on extensive excavation, which is not always possible. Here, by analysing tsunamites from Sri Lanka identified using sedimentological and paleontological characteristics, we show that their internal dielectric properties differ significantly from surrounding sediments. The significant difference in the value of dielectric constant of the otherwise almost indistinguishable sediments is due to higher water content of tsunamites. The contrasts were found to be sharp and not to erode over thousands of years; they cause sizeable electromagnetic wave reflections from tsunamite sediments, which permit the use of ground-penetrating radar (GPR) to trace their extent and morphology. In this study of the 2004 Boxing Day Indian Ocean tsunami, we use GPR in two locations in Sri Lanka to trace four identified major palaeotsunami deposits for at least 400 m inland (investigation inland was constrained by inaccessible security zones). The subsurface extent of tsunamites (not available without extensive excavation) provides a good proxy for inundation. The deposits were dated using the established method of optically stimulated luminescence (OSL). This dating, partly corroborated by available historical records and independent studies, contributes to the global picture of tsunami hazard in the Indian Ocean. The proposed method of combined GPR/OSL-based reconstruction of palaeotsunami deposits enables estimates of inundation, recurrence and, therefore, tsunami hazard for any sandy coast with identifiable tsunamite deposits. The method could be also used for anchoring and synchronizing chronologies of ancient civilisations adjacent to the ocean shores.
NASA Astrophysics Data System (ADS)
Ausín, Blanca; Zúñiga, Diana; Flores, Jose A.; Cavaleiro, Catarina; Froján, María; Villacieros-Robineau, Nicolás; Alonso-Pérez, Fernando; Arbones, Belén; Santos, Celia; de la Granda, Francisco; Castro, Carmen G.; Abrantes, Fátima; Eglinton, Timothy I.; Salgueiro, Emilia
2018-01-01
A systematic investigation of the spatial and temporal variability in coccolithophore abundance and distribution through the water column of the NW Iberian coastal upwelling system was performed. From July 2011 to June 2012, monthly sampling at various water depths was conducted at two parallel stations located at 42° N. Total coccosphere abundance was higher at the outer-shelf station, where warmer, nutrient-depleted waters favoured coccolithophore rather than phytoplanktonic diatom blooms, which are known to dominate the inner-shelf location. In seasonal terms, higher coccosphere and coccolith abundances were registered at both stations during upwelling seasons, coinciding with high irradiance levels. This was typically in conjunction with stratified, nutrient-poor conditions (i.e. relaxing upwelling conditions). However, it also occurred during some upwelling events of colder, nutrient-rich subsurface waters onto the continental shelf. Minimum abundances were generally found during downwelling periods, with unexpectedly high coccolith abundance registered in subsurface waters at the inner-shelf station. This finding can only be explained if strong storms during these downwelling periods favoured resuspension processes, thus remobilizing deposited coccoliths from surface sediments, and hence hampering the identification of autochthonous coccolithophore community structure. At both locations, the major coccolithophore assemblages were dominated by Emiliania huxleyi, small Gephyrocapsa group, Gephyrocapsa oceanica, Florisphaera profunda, Syracosphaera spp., Coronosphaera mediterranea, and Calcidiscus leptoporus. Ecological preferences of the different taxa were assessed by exploring the relationships between environmental conditions and temporal and vertical variability in coccosphere abundance. These findings provide relevant information for the use of fossil coccolith assemblages in marine sediment records, in order to infer past environmental conditions, of particular importance for Paleoceanography. Both E. huxleyi and the small Gephyrocapsa group are proposed as proxies for the upwelling regime with a distinct affinity for different stages of the upwelling event: E. huxleyi was associated with warmer, nutrient-poor and more stable water column (i.e. upwelling relaxation stage) while the small Gephyrocapsa group was linked to colder waters and higher nutrient availability (i.e. early stages of the upwelling event), similarly to G. oceanica. Conversely, F. profunda is suggested as a proxy for the downwelling regime and low-productivity conditions. The assemblage composed by Syracosphaera pulchra, Coronosphaera mediterranea, and Rhabdosphaera clavigera may be a useful indicator of the presence of subtropical waters conveyed northward by the Iberian Poleward Current. Finally, C. leptoporus is proposed as an indicator of warmer, saltier, and oligotrophic waters during the downwelling/winter regime.
Diatoms dominate the eukaryotic metatranscriptome during spring in coastal 'dead zone' sediments.
Broman, Elias; Sachpazidou, Varvara; Dopson, Mark; Hylander, Samuel
2017-10-11
An important characteristic of marine sediments is the oxygen concentration that affects many central metabolic processes. There has been a widespread increase in hypoxia in coastal systems (referred to as 'dead zones') mainly caused by eutrophication. Hence, it is central to understand the metabolism and ecology of eukaryotic life in sediments during changing oxygen conditions. Therefore, we sampled coastal 'dead zone' Baltic Sea sediment during autumn and spring, and analysed the eukaryotic metatranscriptome from field samples and after incubation in the dark under oxic or anoxic conditions. Bacillariophyta (diatoms) dominated the eukaryotic metatranscriptome in spring and were also abundant during autumn. A large fraction of the diatom RNA reads was associated with the photosystems suggesting a constitutive expression in darkness. Microscope observation showed intact diatom cells and these would, if hatched, represent a significant part of the pelagic phytoplankton biomass. Oxygenation did not significantly change the relative proportion of diatoms nor resulted in any major shifts in metabolic 'signatures'. By contrast, diatoms rapidly responded when exposed to light suggesting that light is limiting diatom development in hypoxic sediments. Hence, it is suggested that diatoms in hypoxic sediments are on 'standby' to exploit the environment if they reach suitable habitats. © 2017 The Author(s).
Akram, M; Qureshi, Riffat M; Ahmad, Nasir; Solaija, Tariq Jamal
2007-01-01
Natural radionuclide contents of 226Ra, 228Ra and (40)K were studied for inter-tidal sediments collected from selected locations off the745 km long Balochistan Coast using HPGe detector based gamma-spectrometry system. The sampling zone extends from the beaches of Sonmiani (near Karachi metropolis) through Jiwani (close to the border of Iran). The natural radioactivity levels detected in various sediment samples range from 14.4 +/- 2.5 to 36.6 +/- 3.8 Bq kg(-1) for 226Ra, 9.8 +/- 1.2 to 35.2 +/- 2.0 Bq kg(-1) for (228)Ra and 144.6 +/- 9.4 to 610.5 +/- 23.9 Bq kg(-1) for (40)K. No artificial radionuclide was detected in any of the marine coastal sediment samples. 137Cs, (60)Co, 106Ru and 144Ce contents in sediment samples were below the limit of detection. The measured radioactivity levels are compared with those reported in the literature for coastal sediments in other parts of the world. The information presented in this paper will serve as the first ever local radioactivity database for the Balochistan/Makran Coastal belt of Pakistan. The presented data will also contribute to the IAEA's, Asia-Pacific Marine Radioactivity Database (ASPAMARD) and the Global Marine Radioactivity Database (GLOMARD).
Heterotrophic potential of Atribacteria from deep marine Antarctic sediment
NASA Astrophysics Data System (ADS)
Carr, S. A.; Orcutt, B.; Mandernack, K. W.; Spear, J. R.
2015-12-01
Bacteria belonging to the newly classified candidate phylum "Atribacteria" (formerly referred to as "OP9" and "JS1") are common in anoxic methane-rich sediments. However, the metabolic functions and biogeochemical role of these microorganisms in the subsurface remains unrealized due to the lack of pure culture representatives. This study observed a steady increase of Atribacteria-related sequences with increasing sediment depth throughout the methane-rich zone of the Adélie Basin, Antarctica (according to a 16S rRNA gene survey). To explore the functional potential of Atribacteria in this basin, samples from various depths (14, 25 and 97 meters below seafloor), were subjected to metagenomic sequencing. Additionally, individual cells were separated from frozen, unpreserved sediment for whole genome amplification. The successful isolation and sequencing of a single-amplified Atribacteria genome from these unpreserved sediments demonstrates a future use of single cell techniques with previously collected and frozen sediments. Our resulting single-cell amplified genome, combined with metagenomic interpretations, provides our first insights to the functional potential of Atribacteria in deep subsurface settings. As observed for non-marine Atribacteria, genomic analyses suggest a heterotrophic metabolism, with Atribacteria potentially producing fermentation products such as acetate, ethanol and CO2. These products may in turn support methanogens within the sediment microbial community and explain the frequent occurrence of Atribacteria in anoxic methane-rich sediments.
Smith, Christopher G.; Osterman, Lisa E.
2014-01-01
The estuarine environment can serve as either a source or sink of carbon relative to the coastal ocean carbon budget. A variety of time-dependent processes such as sedimentation, carbon supply, and productivity dictate how estuarine systems operate, and Mobile Bay is a system that has experienced both natural and anthropogenic perturbations that influenced depositional processes and carbon cycling. Sediments from eight box cores provide a record of change in bulk sediment accumulation and carbon burial over the past 110 years. Accumulation rates in the central part of the basin (0.09 g cm−2) were 60–80 % less than those observed at the head (0.361 g cm−2) and mouth (0.564 g cm−2) of the bay. Sediment accumulation in the central bay decreased during the past 90 years in response to both anthropogenic (causeway construction) and natural (tropical cyclones) perturbations. Sediment accumulation inevitably increased the residence time of organic carbon in the oxic zone, as observed in modeled remineralization rates, and reduced the overall carbon burial. Such observations highlight the critical balance among sediment accumulation, carbon remineralization, and carbon burial in dynamic coastal environments. Time-series analysis based solely on short-term observation would not capture the long-term effects of changes in sedimentation on carbon cycling. Identifying these relationships over longer timescales (multi-annual to decadal) will provide a far better evaluation of coastal ocean carbon budgets.
NASA Astrophysics Data System (ADS)
Price, D.; French, J.; Burningham, H.
2013-12-01
Tidal saltmarshes in the UK, and especially in the estuaries of southeast England, have been subject to degradation and erosion over the last few decades, primarily caused by sea-level rise and coastal squeeze due to fixed coastal defences. This is of great concern to a range of coastal stakeholders due to the corresponding loss of functions and services associated with these systems. The coastal defence role that saltmarshes play is well established, and the importance of saltmarsh ecosystems as habitats for birds, fish, and other species is evidenced in the fact that a large proportion of saltmarsh in the southeast England is designated for its scientific and conservation significance. Sediment accumulation is critical for the maintenance of marsh elevation within the tidal frame and for delivery of the aforementioned functions and services. Although many studies have examined accumulation processes, key questions have yet to be fully tested through intensive field observations. One such question relates to the role of vegetation in mediating the retention of newly introduced sediment, as recent research has called into doubt the traditional view of halophytes significantly enhancing rates of sedimentation through wave dissipation. This study presents early results from a project designed to advance our understanding of the processes controlling sediment accumulation. The research focuses on the UK's first large-scale experimental managed flood defence realignment at Tollesbury, Blackwater estuary, Essex. The seawall protecting 21ha of reclaimed agricultural land was artificially breached in 1995 and saltmarsh has progressively developed as tidal exchange has introduced fine sediment into the site. Results from a 12 month monitoring campaign involving hierarchical two-week sediment trap deployments indicates that the role of vegetation in marsh development is less clear cut that previously thought. Gross sedimentation rates were generally higher in non-vegetated areas, even when other influences, such as elevation were removed. However, sediment retention at the vegetated sites was higher, at times double that in the bare areas. This implies that vegetation acts primarily to inhibit sediment resuspension by waves rather than by favouring deposition from tidal flows.
Harrison, Jesse P; Schratzberger, Michaela; Sapp, Melanie; Osborn, A Mark
2014-09-23
Synthetic microplastics (≤5-mm fragments) are emerging environmental contaminants that have been found to accumulate within coastal marine sediments worldwide. The ecological impacts and fate of microplastic debris are only beginning to be revealed, with previous research into these topics having primarily focused on higher organisms and/or pelagic environments. Despite recent research into plastic-associated microorganisms in seawater, the microbial colonization of microplastics in benthic habitats has not been studied. Therefore, we employed a 14-day microcosm experiment to investigate bacterial colonization of low-density polyethylene (LDPE) microplastics within three types of coastal marine sediment from Spurn Point, Humber Estuary, U.K. Bacterial attachment onto LDPE within sediments was demonstrated by scanning electron microscopy and catalyzed reporter deposition fluorescence in situ hybridisation (CARD-FISH). Log-fold increases in the abundance of 16S rRNA genes from LDPE-associated bacteria occurred within 7 days with 16S rRNA gene numbers on LDPE surfaces differing significantly across sediment types, as shown by quantitative PCR. Terminal-restriction fragment length polymorphism (T-RFLP) analysis demonstrated rapid selection of LDPE-associated bacterial assemblages whose structure and composition differed significantly from those in surrounding sediments. Additionally, T-RFLP analysis revealed successional convergence of the LDPE-associated communities from the different sediments over the 14-day experiment. Sequencing of cloned 16S rRNA genes demonstrated that these communities were dominated after 14 days by the genera Arcobacter and Colwellia (totalling 84-93% of sequences). Attachment by Colwellia spp. onto LDPE within sediments was confirmed by CARD-FISH. These results demonstrate that bacteria within coastal marine sediments can rapidly colonize LDPE microplastics, with evidence for the successional formation of plastisphere-specific bacterial assemblages. Although the taxonomic compositions of these assemblages are likely to differ between marine sediments and the water column, both Arcobacter and Colwellia spp. have previously been affiliated with the degradation of hydrocarbon contaminants within low-temperature marine environments. Since hydrocarbon-degrading bacteria have also been discovered on plastic fragments in seawater, our data suggest that recruitment of hydrocarbonoclastic bacteria on microplastics is likely to represent a shared feature between both benthic and pelagic marine habitats.
NASA Astrophysics Data System (ADS)
Boehman, B.; Lyons, S. L.; Geng, Z.; White, H. K.
2016-02-01
In an attempt to mitigate the impact of the oil released from the Deepwater Horizon (DWH) oil spill, chemical dispersants (Corexit 9527 and Corexit 9500A, from Nalco Co.) were applied to the surface and subsurface waters of the Gulf of Mexico. Over the past five years studies have investigated the fate of oil from the spill and the applied dispersants, although significantly less is known about the latter. To determine the presence of dispersant in environmental samples, dioctyl sodium sulfosuccinate (DOSS), a component of both Corexit mixtures, has previously been examined in samples taken from the water column, coastal beaches and deep-sea sediments. This study expands upon this work by developing a method to extract dipropylene glycol n-butyl ether (DPnB), an additional compound present in Corexit, from sand and sediment samples contaminated with oil from the DWH spill. Controls spiked with a known quantity of DPnB were extracted with a range of organic solvents of different polarities to optimize the extraction of DPnB. Total organic extracts were then subjected to silica gel chromatography to isolate DPnB from any oil that was co-extracted. All samples were concentrated prior to analysis via gas chromatography mass spectrometry (GC/MS) using selected ion monitoring (SIM). The analysis and quantification of DPnB, which has different chemical properties than DOSS, will provide additional insight into the mechanisms that control the fate of oil and dispersant mixtures in the marine environment.
Water Chemistry of Ephemeral Streams
J.L. Michael; W.P. Fowler; H.L. Gibbs; J.B. Fischer
1994-01-01
Four individual, but related, studies are currently being conducted to determine the effects of clearcut and seed tree reproduction cutting methods on stream chemistry, sedimentation, and bedload movement by monitoring herbicide and nutrient movement in stemflow, overland flow, streamflow, and zonal subsurface flow. Sediment movement is being quantified for...
Are styrene oligomers in coastal sediments of an industrial area aryl hydrocarbon-receptor agonists?
Hong, Seongjin; Lee, Junghyun; Lee, Changkeun; Yoon, Seo Joon; Jeon, Seungyeon; Kwon, Bong-Oh; Lee, Jong-Hyeon; Giesy, John P; Khim, Jong Seong
2016-06-01
Effect-directed analysis (EDA) was performed to identify the major aryl hydrocarbon receptor (AhR) agonists in sediments collected from a highly industrialized area (Lake Shihwa, Korea). Great AhR-mediated potencies were found in fractions containing aromatic compounds with log Kow values of 5-8, and relatively great concentrations of styrene oligomers (SOs) and polycyclic aromatic hydrocarbons (PAHs) were detected in those fractions. Until now, there was little information on occurrences and toxic relative potencies (RePs) of SOs in coastal environments. In the present study; i) distributions and compositions, ii) AhR binding affinities, and iii) contributions of SOs to total AhR-mediated potencies were determined in coastal sediments. Elevated concentrations of 10 SOs were detected in sediments of inland creeks ranging from 61 to 740 ng g(-1) dry mass (dm), while lesser concentrations were found in inner (mean = 33 ng g(-1) dm) and outer regions (mean = 25 ng g(-1) dm) of the lake. Concentrations of PAHs in sediments were comparable to those of SOs. 2,4-diphenyl-1-butene (SD3) was the predominant SO analogue in sediments. SOs and PAHs were accumulated in sediments near sources, and could not be transported to remote regions due to their hydrophobicity. RePs of 3 SOs could be derived, which were 1000- to 10,000-fold less than that of one representative potent AhR active PAH, benzo[a]pyrene. Although concentrations of SOs in sediments were comparable to those of PAHs, the collective contribution of SOs to total AhR-mediated potencies were rather small (<1%), primarily due to their smaller RePs. Overall, the present study provides information on distributions and AhR binding affinities for SOs as baseline data for degradation products of polystyrene plastic in the coastal environment. Copyright © 2016 Elsevier Ltd. All rights reserved.
Stolper, D.; List, J.H.; Thieler, E.R.
2005-01-01
A new morphological-behaviour model is used to simulate evolution of coastal morphology associated with cross-shore translations of the shoreface, barrier, and estuary. The model encapsulates qualitative principles drawn from established geological concepts that are parameterized to provide quantitative predictions of morphological change on geological time scales (order 10 3 years), as well as shorter time scales applicable for long-term coastal management (order 101 to 102 years). Changes in sea level, and sediment volume within the shoreface, barrier, and estuary, drive the model behaviour. Further parameters, defining substrate erodibility, sediment composition, and time-dependent shoreface response, constrain the evolution of the shoreface towards an equilibrium profile. Results from numerical experiments are presented for the low-gradient autochthonous setting of North Carolina and the steep allochthonous setting of the Washington shelf. Simulations in the Currituck region of North Carolina examined the influence of sediment supply, substrate composition, and substrate erodibility on barrier transgression. Results demonstrate that the presence of a lithified substrate reduces the rate of barrier transgression compared to scenarios where an erodible, sand-rich substrate exists. Simulations of the Washington coast, 20 km north of the Columbia River, confirmed that the model can reproduce complex stratigraphy involving regressive and transgressive phases of coastal evolution. Results suggest that the first major addition of sediment to the shelf occurred around 12 900 years ago and resulted from the rapid addition of sediment volume from the Columbia River attributed to the Missoula floods. This was followed by a period where little or no sediment was added (12 400-9100 BP) and a third period when most sediment was added to the shelf (9100 BP to present) from the Columbia River. Comparing results from each setting demonstrates an indirect control that substrate slope has on shoreface transgression rates. Shoreface transgression is shown to be sensitive to the rate of estuarine sedimentation, with the sensitivity increasing as substrate slope decreases.
NASA Astrophysics Data System (ADS)
Xue, Z.; Wilson, C.; Bentley, S. J.; Xu, K.; Liu, H.; Li, C.; Miner, M. D.
2017-12-01
Barrier islands provide protection to interior wetlands and maintain estuarine gradients. Mississippi River delta plain barrier islands are undergoing rapid disintegration due to high rates of subsidence and a deficit in the coastal sand supply. To mitigate for barrier island land loss, Louisiana has implemented a restoration program that intends to supplement coastal sand deficits by introducing sand from outside of the active coastal system. Inner-shelf shoals offshore Louisiana are one of the only sand resource options containing large volumes of restoration quality sand. Ship Shoal is one of these inner-shelf shoals that was produced by marine reworking of former Mississippi River Delta barrier island sediments during late Holocene time. Though indirect effects to protected areas or infrastructure adjacent to excavations have been considered, there is a paucity of observational data on their evolution. Caminada borrow area, dredged in 2013-2016 for the Caminada Headland Restoration Project, provides a valuable opportunity to validate and improve predictive models for how borrow areas evolve. In July 2017, a subbottom and bathymetric geophysical survey was conducted and sediment cores were collected to test the hypothesis that sedimentation within the excavation is affected by lateral bedload transport after initial rapid infill as slopes equilibrate. Preliminary results show the sediment within the excavation is predominantly very fine sand with isolated mud drapes. These sediments overlay older delta complex muddy strata. This contrasts strongly with other dredge pits outside of shoal areas and closer to shore, which have been infilled largely by advection of fine suspended sediments of fluvial origin. Laboratory work on cores will include laser grain size, x-ray analyses of sedimentary structures, and radiochemistry analyses for rates and age of deposition. With the knowledge of stratigraphy and sediment dynamics surrounding the dredge pit, we can quantify and better understand the timeline of these depositional processes to provide vital knowledge to coastal managers for future borrow area design and management.
A geochemical approach to determine sources and movement of saline groundwater in a coastal aquifer
Anders, Robert; Mendez, Gregory O.; Futa, Kiyoto; Danskin, Wesley R.
2014-01-01
Geochemical evaluation of the sources and movement of saline groundwater in coastal aquifers can aid in the initial mapping of the subsurface when geological information is unavailable. Chloride concentrations of groundwater in a coastal aquifer near San Diego, California, range from about 57 to 39,400 mg/L. On the basis of relative proportions of major-ions, the chemical composition is classified as Na-Ca-Cl-SO4, Na-Cl, or Na-Ca-Cl type water. δ2H and δ18O values range from −47.7‰ to −12.8‰ and from −7.0‰ to −1.2‰, respectively. The isotopically depleted groundwater occurs in the deeper part of the coastal aquifer, and the isotopically enriched groundwater occurs in zones of sea water intrusion. 87Sr/86Sr ratios range from about 0.7050 to 0.7090, and differ between shallower and deeper flow paths in the coastal aquifer. 3H and 14C analyses indicate that most of the groundwater was recharged many thousands of years ago. The analysis of multiple chemical and isotopic tracers indicates that the sources and movement of saline groundwater in the San Diego coastal aquifer are dominated by: (1) recharge of local precipitation in relatively shallow parts of the flow system; (2) regional flow of recharge of higher-elevation precipitation along deep flow paths that freshen a previously saline aquifer; and (3) intrusion of sea water that entered the aquifer primarily during premodern times. Two northwest-to-southeast trending sections show the spatial distribution of the different geochemical groups and suggest the subsurface in the coastal aquifer can be separated into two predominant hydrostratigraphic layers.
A geochemical approach to determine sources and movement of saline groundwater in a coastal aquifer.
Anders, Robert; Mendez, Gregory O; Futa, Kiyoto; Danskin, Wesley R
2014-01-01
Geochemical evaluation of the sources and movement of saline groundwater in coastal aquifers can aid in the initial mapping of the subsurface when geological information is unavailable. Chloride concentrations of groundwater in a coastal aquifer near San Diego, California, range from about 57 to 39,400 mg/L. On the basis of relative proportions of major-ions, the chemical composition is classified as Na-Ca-Cl-SO4, Na-Cl, or Na-Ca-Cl type water. δ(2)H and δ(18)O values range from -47.7‰ to -12.8‰ and from -7.0‰ to -1.2‰, respectively. The isotopically depleted groundwater occurs in the deeper part of the coastal aquifer, and the isotopically enriched groundwater occurs in zones of sea water intrusion. (87)Sr/(86)Sr ratios range from about 0.7050 to 0.7090, and differ between shallower and deeper flow paths in the coastal aquifer. (3)H and (14)C analyses indicate that most of the groundwater was recharged many thousands of years ago. The analysis of multiple chemical and isotopic tracers indicates that the sources and movement of saline groundwater in the San Diego coastal aquifer are dominated by: (1) recharge of local precipitation in relatively shallow parts of the flow system; (2) regional flow of recharge of higher-elevation precipitation along deep flow paths that freshen a previously saline aquifer; and (3) intrusion of sea water that entered the aquifer primarily during premodern times. Two northwest-to-southeast trending sections show the spatial distribution of the different geochemical groups and suggest the subsurface in the coastal aquifer can be separated into two predominant hydrostratigraphic layers. © 2013, National Ground Water Association.
Geologic framework of the long bay inner shelf: implications for coastal evolution in South Carolina
Barnhardt, W.; Denny, J.; Baldwin, W.; Schwab, W.; Morton, R.; Gayes, P.; Driscoll, N.
2007-01-01
The inner continental shelf off northern South Carolina is a sediment-limited environment characterized by extensive hardground areas, where coastal plain strata and ancient channel-fill deposits are exposed at the sea floor. Holocene sand is concentrated in large shoals associated with active tidal inlets, an isolated shore-detached sand body, and a widespread series of low-relief sand ridges. The regional geologic framework is a strong control on the production, movement and deposition of sediment. High-resolution geologic mapping of the sea floor supports conceptual models indicative of net southwestward sediment transport along the coast.
Correlation of coastal water turbidity and current circulation with ERTS-1 and Skylab imagery
NASA Technical Reports Server (NTRS)
Klemas, V.; Otley, M.; Philpot, W.; Wethe, C.; Rogers, R.; Shah, N.
1974-01-01
The article reviews investigations of current circulation patterns, suspended sediment concentration, coastal frontal systems, and waste disposal plumes based on visual interpretation and digital analysis of ERTS-1 and Skylab/EREP imagery. Data on conditions in the Delaware Bay area were obtained from 10 ERTS-1 passes and one Skylab pass, with simultaneous surface and airborne sensing. The current patterns and sediments observed by ERTS-1 correlated well with ground-based observations. Methods are suggested which would make it possible to identify certain pollutants and sediment types from multispectral scanner data.
Barringer, J.L.; Reilly, P.A.; Eberl, D.D.; Blum, A.E.; Bonin, J.L.; Rosman, R.; Hirst, B.; Alebus, M.; Cenno, K.; Gorska, M.
2011-01-01
Glauconite-bearing deposits are found worldwide, but As levels have been determined for relatively few. The As content of glauconites in sediments of the Inner Coastal Plain of New Jersey can exceed 100mg/kg, and total As concentrations (up to 5.95??g/L) found historically and recently in streamwaters exceed the State standard. In a major watershed of the Inner Coastal Plain, chemical " fingerprints" were developed for streambed sediments and groundwater to identify contributions of As to the watershed from geologic and anthropogenic sources. The fingerprint for streambed sediments, which included Be, Cr, Fe and V, indicated that As was predominantly of geologic origin. High concentrations of dissolved organic C, nutrients (and Cl-) in shallow groundwater indicated anthropogenic inputs that provided an environment where microbial activity released As from minerals to groundwater discharging to the stream. Particulates in streamwater during high flow constituted most of the As load; the chemical patterns for these particulates resembled the geologic fingerprint of the streambed sediments. The As/Cr ratio of these suspended particles likely indicates they derived not only from runoff, but from groundwater inputs, because As contributed by groundwater is sequestered on streambed sediments. Agricultural inputs of As were not clearly identified, although chemical characteristics of some sediments indicated vehicle-related inputs of metals. Sediment sampling during dry and wet years showed that, under differing hydrologic conditions, local anthropogenic fingerprints could be obscured but the geologic fingerprint, indicating glauconitic sediments as an As source, was robust. ?? 2011.
Mu, Dashuai; Zhao, Jinxin; Wang, Zongjie; Chen, Guanjun
2016-01-01
Algoriphagus sp. NH1 is a multidrug-resistant bacterium isolated from coastal sediments of the northern Yellow Sea in China. Here, we report the draft genome sequence of NH1, with a size of 6,131,579 bp, average G+C content of 42.68%, and 5,746 predicted protein-coding sequences. PMID:26769940
NASA Astrophysics Data System (ADS)
Donatelli, Carmine; Ganju, Neil Kamal; Fagherazzi, Sergio; Leonardi, Nicoletta
2018-05-01
Seagrasses are marine flowering plants that strongly impact their physical and biological surroundings and are therefore frequently referred to as ecological engineers. The effect of seagrasses on coastal bay resilience and sediment transport dynamics is understudied. Here we use six historical maps of seagrass distribution in Barnegat Bay, USA, to investigate the role of these vegetated surfaces on the sediment storage capacity of shallow bays. Analyses are carried out by means of the Coupled-Ocean-Atmosphere-Wave-Sediment Transport (COAWST) numerical modeling framework. Results show that a decline in the extent of seagrass meadows reduces the sediment mass potentially stored within bay systems. The presence of seagrass reduces shear stress values across the entire bay, including unvegetated areas, and promotes sediment deposition on tidal flats. On the other hand, the presence of seagrasses decreases suspended sediment concentrations, which in turn reduces the delivery of sediment to marsh platforms. Results highlight the relevance of seagrasses for the long-term survival of coastal ecosystems, and the complex dynamics regulating the interaction between subtidal and intertidal landscapes.
Groundwater quality in the Coastal Los Angeles Basin, California
Fram, Miranda S.; Belitz, Kenneth
2012-01-01
The Coastal Los Angeles Basin study unit is approximately 860 square miles and consists of the Santa Monica, Hollywood, West Coast, Central, and Orange County Coastal Plain groundwater basins (California Department of Water Resources, 2003). The basins are bounded in part by faults, including the Newport-Inglewood fault zone, and are filled with Holocene-, Pleistocene-, and Pliocene-age marine and alluvial sediments. The Central Basin and Orange County Coastal Plain are divided into a forebay zone on the northeast and a pressure zone in the center and southwest. The forebays consist of unconsolidated coarser sediment, and the pressure zones are characterized by lenses of coarser sediment divided into confined to semi-confined aquifers by lenses of finer sediments. The primary aquifer system in the study unit is defined as those parts of the aquifer system corresponding to the perforated intervals of wells listed in the California Department of Public Health (CDPH) database of public-supply wells. The majority of public-supply wells are drilled to depths of 510 to 1,145 feet, consist of solid casing from the land surface to a depth of about 300 to 510 feet, and are perforated below the solid casing. Water quality in the primary aquifer system may differ from that in the shallower and deeper parts of the aquifer systems.
Spatio-temporal scaling effects on longshore sediment transport pattern along the nearshore zone
NASA Astrophysics Data System (ADS)
Khorram, Saeed; Ergil, Mustafa
2018-03-01
A measure of uncertainties, entropy has been employed in such different applications as coastal engineering probability inferences. Entropy sediment transport integration theories present novel visions in coastal analyses/modeling the application and development of which are still far-reaching. Effort has been made in the present paper to propose a method that needs an entropy-power index for spatio-temporal patterns analyses. Results have shown that the index is suitable for marine/hydrological ecosystem components analyses based on a beach area case study. The method makes use of six Makran Coastal monthly data (1970-2015) and studies variables such as spatio-temporal patterns, LSTR (long-shore sediment transport rate), wind speed, and wave height all of which are time-dependent and play considerable roles in terrestrial coastal investigations; the mentioned variables show meaningful spatio-temporal variability most of the time, but explanation of their combined performance is not easy. Accordingly, the use of an entropy-power index can show considerable signals that facilitate the evaluation of water resources and will provide an insight regarding hydrological parameters' interactions at scales as large as beach areas. Results have revealed that an STDDPI (entropy based spatio-temporal disorder dynamics power index) can simulate wave, long-shore sediment transport rate, and wind when granulometry, concentration, and flow conditions vary.
Wang, Kai; Ye, Xiansen; Zhang, Huajun; Chen, Heping; Zhang, Demin; Liu, Lian
2016-01-01
Knowledge about the drivers of benthic prokaryotic diversity and metabolic potential in interconnected coastal sediments at regional scales is limited. We collected surface sediments across six zones covering ~200 km in coastal northern Zhejiang, East China Sea and combined 16 S rRNA gene sequencing, community-level metabolic prediction, and sediment physicochemical measurements to investigate variations in prokaryotic diversity and metabolic gene composition with geographic distance and under local environmental conditions. Geographic distance was the most influential factor in prokaryotic β-diversity compared with major environmental drivers, including temperature, sediment texture, acid-volatile sulfide, and water depth, but a large unexplained variation in community composition suggested the potential effects of unmeasured abiotic/biotic factors and stochastic processes. Moreover, prokaryotic assemblages showed a biogeographic provincialism across the zones. The predicted metabolic gene composition similarly shifted as taxonomic composition did. Acid-volatile sulfide was strongly correlated with variation in metabolic gene composition. The enrichments in the relative abundance of sulfate-reducing bacteria and genes relevant with dissimilatory sulfate reduction were observed and predicted, respectively, in the Yushan area. These results provide insights into the relative importance of geographic distance and environmental condition in driving benthic prokaryotic diversity in coastal areas and predict specific biogeochemically-relevant genes for future studies. PMID:27917954
Deep subsurface life in Bengal Fan sediments (IODP Exp. 354)
NASA Astrophysics Data System (ADS)
Adhikari, R. R.; Heuer, V. B.; Elvert, M.; Kallmeyer, J.; Kitte, J. A.; Wörmer, L.; Hinrichs, K. U.
2017-12-01
We collected Bengal Fan sediment samples along a 8°N transect during International Ocean Discovery Program Expedition 354 (February - March 2015, Singapore - Colombo, Sri Lanka) to study subseafloor life in this, as yet unstudied, area. Among other biogeochemical parameters, we quantified microbial biomass by analyzing prokaryotic cells using epifluorescence microscopy after detaching cells from the sediment, and bacterial endospores by analyzing the diagnostic biomarker dipicolinic acid (DPA) by detection of fluorescence of the terbium-DPA complex. To gain understanding of total microbial activity, we quantified hydrogen utilization potential of hydrogenase enzymes, which are ubiquitous in subsurface microorganisms, by using a tritium assay. We measured highest cell concentrations of ca. 108 cells g-1 in shallow sediments close to the seafloor. These concentrations are one to two orders of magnitude lower than in most marine continental margin settings [1]. Similar to the global trend [1], cell concentrations decreased with depth according to a power-law function. Endospore concentrations scattered between ca. 105 and 107 cells g-1 sediment at all sites and depths. We could not observe a clear relationship of endospore concentration and sediment depth; instead, it appears to be linked to lithology and total organic carbon content. Bulk Hydrogenase enzyme activity ranged from nmolar to μmolar range of H2 g-1d-1. Similar to previous observations [2], per-cell hydrogen utilization depends on vertical biogeochemical zones, which could be due to the differences in hydrogen utilization requirements/efficiency of the respective metabolic processes such as sulfate reduction, methanogenesis, fermentation etc. Bengal fan is highly dynamic due to channel and levee systems and the sediments are dominated by turbidites, thick sand layers and hemipelagic deposits, which may control biogeochemical zonation. Based on our microbial biomass and activity data, we suggest that the nature, quality and origin of sedimentary material influence the deep subsurface life. [1] Kallmeyer et al., (2012) PNAS 109(40), 16213-16216 [2] Adhikari et al., (2016) Frontiers in Microbiology 7:8
Total organic carbon (TOC) content of sediments has been used as an indicator of benthic community condition during multiple cycles of the EPA National Coastal Assessment (NCA). Because percent TOC is generally positively correlated with sediment percent fines, previous analyses...
Surface-soil and subsurface microfloras at the site of a shallow aquifer in Oklahoma were examined and compared with respect to (1) total and viable cell numbers, (2) colony and cell types that grew on various plating media, (3) cell morphologies seen in flotation films stripped ...
Sediment Production in Forests of the Coastal Plain, Piedmont, and Interior Highlands
Daniel A. Marion; S.J. Ursic
1993-01-01
A primary environmental concern related to forestry in the South is the effects of forests and forestry practices on sediment production. Sediment is the most significant pollutant of southern waters. A liability in itself, sediment also accounts for most nutrients removed by water. This paper discusses sediment production from small catchments of undisturbed forests...
NASA Astrophysics Data System (ADS)
Nalin, Ronald; Massari, Francesco
2018-03-01
Analysis of patterns of coastal circulation and sediment dispersal is an essential step for the study of controlling factors influencing the long-term dynamics of coastal systems. Modern settings offer the possibility to monitor relevant parameters over relatively short time spans. However, geological examples complement this perspective by providing a time-averaged record where longer trends and stratigraphically significant processes can be evaluated. This study investigates the shallow marine deposits of Le Castella terrace (Upper Pleistocene, southern Italy) to document how patterns of circulation influenced by coastline configuration can affect the preserved millennial-scale depositional record of a progradational shoreline system. The regressive portion of the Le Castella terrace deposits, developed during a relative sea-level highstand and falling stage, consists of a progradational wedge mainly composed of redistributed skeletal particles of a coeval shallow water carbonate factory. Preservation of the morphology of the paleocoastline and abundant current-related sedimentary structures allow reconstruction of the predominant sediment dispersal dynamics responsible for the formation of this sedimentary wedge. Facies and paleocurrent analysis indicate offshore and alongshore sediment transport modes, consistent with coastal circulation driven by storms normally incident to the shoreline and a sharp change in coastline orientation. This coastal inflection influenced circulation patterns causing flow separation and eddy formation in the lee of the curved coastline. Syndepositional tectonic deformation also affected the architecture of the preserved deposits, controlling the nucleation and development of a clinostratified body and determining localized lateral stratigraphic variability. This study illustrates how transient but recurrent circulation patterns associated with changes in coastal orientation and related to high-energy storm events can leave a predominant signature in the stratigraphic record of microtidal shallow-marine successions.
Li, Hongjun; Gao, Xuelu; Gu, Yanbin; Wang, Ruirui; Xie, Pengfei; Liang, Miao; Ming, Hongxia; Su, Jie
2018-04-01
The Bohai Sea is characterized as a semi-closed sea with limited water exchange ability, which has been regarded as one of the most contaminated regions in China and has attracted public attention over the past decades. In recent years, the rapid industrialization and urbanization around the coastal region has resulted in a severe pollution pressure in the Bohai Sea. Although efforts from official government and scientific experts have been made to protect and restore the marine ecosystem, satisfactory achievements were not gained. Moreover, partial coastal areas in the Bohai Sea seemingly remain heavily polluted. In this study, we focused on five coastal regions around the Bohai Sea to study the spatial distribution pattern of trace elements in the sediments and their ecological risk. A total of 108 sediment samples were analyzed to determine the contamination degree of trace elements (Cu, Cd, As, Pb, Zn, Cr, and Hg). Contamination factor (CF), pollution load index (PLI), geoaccumulation index (I geo ), and potential ecological risk index (PERI) were utilized to assess the pollution extent of these metals. Spatial distribution patterns revealed that the sedimentary environments of coastal Bohai were in good condition, except Jinzhou Bay, according to the Marine Sediment Quality of China. The concentrations of Hg and Cd were considerably higher than the average upper crust value and presented high potential ecological risk and considerable potential ecological risk, respectively. The overall environment quality of the coastal Bohai Sea does not seem to pose an extremely serious threat in terms of metal pollution. Thus, the government should continue implementing pollution control programs in the Bohai Sea. Copyright © 2018 Elsevier Ltd. All rights reserved.
Seagrasses and the Coastal Marine Environment
ERIC Educational Resources Information Center
Phillips, Ronald C.
1978-01-01
Coastal ecosystems are the most highly productive in the world. This article discusses seagrasses, major coastal producers, and provides information on their ecology, productivity, position in food chains, and role in sediment stabilization. Recent attempts to restore seagrasses in areas of massive kills are described. (MA)
NASA Astrophysics Data System (ADS)
Cooper, J. A. G.
2002-06-01
Contrasting modes of sedimentation and facies arrangement in tide- and river-dominated microtidal estuaries arise from the degree to which river or tidal discharge and sediment supply influences an estuary. A distinct facies gradation exists in tide-dominated systems from sandy, barrier/tidal delta-associated environments at the coast through deep mud-dominated middle reaches to fluvial sediment in the upper reaches. In river-dominated systems, fluvial sediment extends to the barrier and flood-tidal deltas are poorly developed or absent from the estuary. A number of independent observations during extreme floods on the South African coast indicate that these types of estuary respond differently to extreme river floods and that the mode of response corresponds to estuary type. Tide-dominated systems exhibit preferential erosion of noncohesive barrier and tidal delta sediments during river floods while the middle reaches remain little modified. River-dominated systems experience consistent erosion throughout their channel length during extreme floods. The increased cohesion of riverine sediments and stabilisation of bars by vegetation in river-dominated channels means that higher magnitude floods are necessary to effect significant morphological change. Barrier erosion, including the tidal delta, results in deposition of an ephemeral delta composed almost entirely of sands from these deposits in tide-dominated estuaries. In river-dominated systems, eroded channel sediments and material from the river catchment may augment barrier sediments in the ephemeral delta deposit. Post-flood, wave-reworking of ephemeral delta sediments acts to restore barriers to pre-flood morphology within a few years; however, in river-dominated systems, the additional sediment volume may produce significant coastal progradation that requires several years or decades to redistribute. These different modes of flood response mediated by the nature of the estuary have implications for coastal behaviour at the time scale of months to several decades. Estuary-coastal behaviour at river-dominated estuaries may be influenced for several decades by post-flood morphological adjustment. Tide-dominated estuaries, however, respond more rapidly in reworking flood-eroded sediment and are typically fully adjusted to modal wave and tidal conditions within a few months to a few years. In addition, the facies arrangement within the two estuary types renders tide-dominated estuaries more responsive to minor floods, while river-dominated estuaries, by virtue of more cohesive channel sediments, require greater discharges to effect significant morphological change.
Polidoro, Beth A; Comeros-Raynal, Mia T; Cahill, Thomas; Clement, Cassandra
2017-03-15
The island nations and territories of the South Pacific are facing a number of pressing environmental concerns, including solid waste management and coastal pollution. Here we provide baseline information on the presence and concentration of heavy metals and selected organic contaminants (pesticides, PAHs, phthalates) in 7 coastal streams and in surface waters adjacent to the Futiga landfill in American Samoa. All sampled stream sediments contained high concentrations of lead, and some of mercury. Several coastal stream waters showed relatively high concentrations of diethyl phthalate and of organophosphate pesticides, above chronic toxicity values for fish and other aquatic organisms. Parathion, which has been banned by the US Environmental Protection Agency since 2006, was detected in several stream sites. Increased monitoring and initiatives to limit non-point source land-based pollution will greatly improve the state of freshwater and coastal resources, as well as reduce risks to human health in American Samoa. Copyright © 2016 Elsevier Ltd. All rights reserved.
California State Waters Map Series-Offshore of Point Reyes, California
Watt, Janet T.; Dartnell, Peter; Golden, Nadine E.; Greene, H. Gary; Erdey, Mercedes D.; Cochrane, Guy R.; Johnson, Samuel Y.; Hartwell, Stephen R.; Kvitek, Rikk G.; Manson, Michael W.; Endris, Charles A.; Dieter, Bryan E.; Sliter, Ray W.; Krigsman, Lisa M.; Lowe, Erik; Chinn, John L.; Watt, Janet T.; Cochran, Susan A.
2015-01-01
This publication about the Offshore of Point Reyes map area includes ten map sheets that contain explanatory text, in addition to this descriptive pamphlet and a data catalog of geographic information system (GIS) files. Sheets 1, 2, and 3 combine data from four different sonar surveys to generate comprehensive high-resolution bathymetry and acoustic-backscatter coverage of the map area. These data reveal a range of physiographic features (highlighted in the perspective views on sheet 4) such as the flat, sediment-covered seafloor in Drakes Bay, as well as abundant “scour depressions” on the Bodega Head–Tomales Point shelf (see sheet 9) and local, tectonically controlled bedrock uplifts. To validate geological and biological interpretations of the sonar data shown in sheets 1, 2, and 3, the U.S. Geological Survey towed a camera sled over specific offshore locations, collecting both video and photographic imagery; these “ground-truth” surveying data are summarized on sheet 6. Sheet 5 is a “seafloor character” map, which classifies the seafloor on the basis of depth, slope, rugosity (ruggedness), and backscatter intensity and which is further informed by the ground-truth-survey imagery. Sheet 7 is a map of “potential habitats,” which are delineated on the basis of substrate type, geomorphology, seafloor process, or other attributes that may provide a habitat for a specific species or assemblage of organisms. Sheet 8 compiles representative seismic-reflection profiles from the map area, providing information on the subsurface stratigraphy and structure of the map area. Sheet 9 shows the distribution and thickness of young sediment (deposited over the last about 21,000 years, during the most recent sea-level rise) in both the map area and the larger Salt Point to Drakes Bay region, interpreted on the basis of the seismic-reflection data, and it identifies the Offshore of Point Reyes map area as lying within the Bodega Head–Tomales Point shelf, Point Reyes bar, and Bolinas shelf domains. Sheet 10 is a geologic map that merges onshore geologic mapping (compiled from existing maps by the California Geological Survey) and new offshore geologic mapping that is based on integration of high-resolution bathymetry and backscatter imagery (sheets 1, 2, 3), seafloor-sediment and rock samples (Reid and others, 2006), digital camera and video imagery (sheet 6), and high-resolution seismic-reflection profiles (sheet 8), as well as aerial-photographic interpretation of nearshore areas. The information provided by the map sheets, pamphlet, and data catalog have a broad range of applications. High-resolution bathymetry, acoustic backscatter, ground-truth-surveying imagery, and habitat mapping all contribute to habitat characterization and ecosystem-based management by providing essential data for delineation of marine protected areas and ecosystem restoration. Many of the maps provide high-resolution baselines that will be critical for monitoring environmental change associated with climate change, coastal development, or other forcings. High-resolution bathymetry is a critical component for modeling coastal flooding caused by storms and tsunamis, as well as inundation associated with longer term sea-level rise. Seismic-reflection and bathymetric data help characterize earthquake and tsunami sources, critical for natural-hazard assessments of coastal zones. Information on sediment distribution and thickness is essential to the understanding of local and regional sediment transport, as well as the development of regional sediment-management plans. In addition, siting of any new offshore infrastructure (for example, pipelines, cables, or renewable-energy facilities) will depend on high-resolution mapping. Finally, this mapping will both stimulate and enable new scientific research and also raise public awareness of, and education about, coastal environments and issues.
Intrathermocline eddies in the coastal transition zone off central Chile (31-41°S)
NASA Astrophysics Data System (ADS)
Hormazabal, Samuel; Combes, Vincent; Morales, Carmen E.; Correa-Ramirez, Marco A.; Di Lorenzo, Emmanuel; Nuñez, Sergio
2013-10-01
The three-dimensional structure and the origin of mesoscale anticyclonic intrathermocline eddies (ITEs) in the coastal transition zone (CTZ) off central Chile (31-41°S) were analyzed through the combination of data from oceanographic cruises and satellite altimetry, and the application of an eddy-resolving primitive equation ocean model coupled with a numerical experiment using a passive tracer. In this region, ITEs are represented by subsurface lenses (˜100 km diameter; 500 m thickness or vertical extension) of nearly homogeneous salinity (>34.5) and oxygen-deficient (<1.0 mL L-1) waters, properties which are linked to the equatorial subsurface water mass (ESSW) transported poleward by the Peru-Chile undercurrent (PCUC) in the coastal band. At least five to seven ITEs were observed simultaneously in the area between 31° and 38°S during winter cruises in 1997 and 2009. Satellite data indicated that the ITEs identified from in situ data moved westward, each at a mean speed of ˜2 km d-1 and transported a total volume of ˜1 × 106 m3 s-1 (=1 Sv); the lifespan of each ITE ranged from a few months to 1 year. Model results indicate that ITEs become detached from the PCUC under summer upwelling conditions in the coastal zone.
NASA Astrophysics Data System (ADS)
Lamers, L. P.; Christianen, M. J.; Govers, L. L.; Kiswara, W.; Bouma, T.; Roelofs, J. G.; Van Katwijk, M. M.
2011-12-01
Land use changes in tropical regions such as deforestation, mining activities, and shrimp farming, not only affect freshwater and terrestrial ecosystems, but also have a strong impact on coastal marine ecosystems. The increased influx of sediments and nutrients affects these ecosystems in multiple ways. Seagrass meadows that line coastal marine ecosystems provide important ecosystem services, e.g. sediment trapping, coastal protection and fisheries. Based on studies in East Kalimantan (Indonesia) we have shown that seagrass meadow parameters may provide more reliable indicators of land use change than the sampling of either marine sediments or water quality chemical parameters. Observations of changes in ecosystem functioning are particularly valuable for those areas where flux values are lacking and rapid surveys are needed. Time series of estuarine seagrass transects can show not only the intensity, but also the radius of action of land use change on coastal marine systems. Marine mega-herbivores pose a strong top-down control in seagrass ecosystems. We will provide a conceptual model, based on experimental evidence, to show that the global decline of marine mega-herbivore populations (as a result of large-scale poaching) may decrease the resilience of seagrass systems to increased anthropogenic forcing including land use changes. These outcomes not only urge the need for better regulation of land use change, but also for the establishment of marine protected areas (MPA's) in tropical coastal regions.
Sources of fatty acids in Lake Michigan surface microlayers and subsurface waters
NASA Astrophysics Data System (ADS)
Meyers, Philip A.; Owen, Robert M.
1980-11-01
Fatty acid and organic carbon contents have been measured in the particulate and dissolved phases of surface microlayer and subsurface water samples collected from Lake Michigan. Concentrations are highest close to fluvial sources and lowest in offshore areas, yet surface/subsurface fractionation is lowest near river mouths and highest in open lake locations. These gradients plus accompanying fatty acid compositional changes indicate that river-borne organic materials are important constituents of coastal Lake Michigan microlayers and that sinking and turbulent resuspension of particulates affect surface film characteristics. Lake neuston and plankton contribute organic components which partially replace potamic materials removed by sinking.
Gonsalves, Maria-Judith; Fernandes, Christabelle E G; Fernandes, Sheryl Oliveira; Kirchman, David L; Bharathi, P A Loka
2011-11-01
Coastal regions are potential zones for production of methane which could be governed by ecological/environmental differences or even sediment properties of a niche. In order to test the hypothesis that methanogenesis in most marine sediments could be driven more by proteins than by carbohydrates and lipid content of labile organic matter (LOM), incubation experiments were carried out with sediments from different environmental niches to measure methane production. The methane production rates were examined in relationship to the sediment biochemistry, i.e., carbohydrates, proteins, and lipids. The gas production measured by head space method ranged from 216 ng g( -1) day( -1) in the mangrove sediments to 3.1 μg g( -1) day( -1) in the shallow Arabian Sea. LOM ranged from 1.56 to 2.85 mg g( -1) in the shallow Arabian Sea, from 3.35 to 5.43 mg g( -1) in the mangrove estuary, and from 0.66 to 0.70 mg g( -1) in the sandy sediments with proteins contributing maximum to the LOM pool. Proteins influenced methane production in the clayey sediments of shallow depths of the Arabian Sea (r = 0.933, p < 0.001) and mangrove estuary (r = 0.981, p < 0.001) but in the sandy beach sediments, carbohydrates (r = 0.924, p < 0.001) governed the net methane production. The gas production was more pronounced in shallow and surface sediments and it decreased with depth apparently governed by the decrease in lability index. Thus, the lability index and protein content are important factors that determine methane production rates in these coastal ecosystems.
,
1990-01-01
More than 50 percent of the U.S. population currently live within 50 miles of an ocean, Great Lake, or major estuary. According to forecasts, the concentration of people along our coastlines will continue to increase into the 21st century. In addition to residential and commercial buildings and facilities worth tens of billions of dollars, the coasts and associated wetlands are natural resources of tremendous value, with estimates in excess of $13 billion per year for commercial and recreational fisheries alone. Human activities and natural processes are stressing the coastal environment. * Each of the coastal states and island territories is suffering problems related to coastal erosion. * Deterioration of wetlands is widespread and of great public concern. * Pollutants carried by rivers or runoff are discharged directly into coastal waters and accumulate in the sediments on the sea floor, in some areas causing damage to living resources and presenting a threat to public health. * Onshore sources for hard-mineral resources, such as sand and gravel used for construction purposes, are becoming increasingly difficult to find. New sources are being sought in coastal waters. Coastal issues will become even more important into the next century if sea level is significantly influenced by climate change and other factors.
Johnson, Samuel Y.; Cochrane, Guy R.; Golden, Nadine; Dartnell, Peter; Hartwell, Stephen; Cochran, Susan; Watt, Janet
2017-01-01
The California Seafloor and Coastal Mapping Program (CSCMP) is a collaborative effort to develop comprehensive bathymetric, geologic, and habitat maps and data for California's State Waters. CSCMP began in 2007 when the California Ocean Protection Council (OPC) and the National Oceanic and Atmospheric Administration (NOAA) allocated funding for high-resolution bathymetric mapping, largely to support the California Marine Life Protection Act and to update nautical charts. Collaboration and support from the U.S. Geological Survey and other partners has led to development and dissemination of one of the world's largest seafloor-mapping datasets. CSCMP provides essential science and data for ocean and coastal management, stimulates and enables research, and raises public education and awareness of coastal and ocean issues. Specific applications include:•Delineation and designation of marine protected areas•Characterization and modeling of benthic habitats and ecosystems•Updating nautical charts•Earthquake hazard assessments•Tsunami hazard assessments•Planning offshore infrastructure•Providing baselines for monitoring change•Input to models of sediment transport, coastal erosion, and coastal flooding•Regional sediment management•Understanding coastal aquifers•Providing geospatial data for emergency response
NASA Astrophysics Data System (ADS)
Destouni, G.
2008-12-01
Excess nutrient and pollutant releases from various point and diffuse sources at and below the land surface, associated with land use, industry and households, pose serious eutrophication and pollution risks to inland and coastal water ecosystems worldwide. These risks must be assessed, for instance according to the EU Water Framework Directive (WFD). The WFD demands economically efficient, basin-scale water management for achieving and maintaining good physico-chemical and ecological status in all the inland and coastal waters of EU member states. This paper synthesizes a series of hydro-biogeochemical and linked economic efficiency studies of basin-scale waterborne nutrient and pollutant flows, the development over the last decades up to the current levels of these flows, the main monitoring and modelling uncertainties associated with their quantification, and the effectiveness and economic efficiency of different possible abatement strategies for abating them in order to meet WFD requirements and other environmental goals on local, national and international levels under climate and other regional change. The studies include different Swedish and Baltic Sea drainage basins. Main findings include quantification of near-coastal monitoring gaps and long-term nutrient and pollutant memory in the subsurface (soil-groundwater-sediment) water systems of drainage basins. The former may significantly mask nutrient and pollutant loads to the sea while the latter may continue to uphold large loads to inland and coastal waters long time after source mitigation. A methodology is presented for finding a rational trade-off between the two resource-demanding options to reduce, or accept and explicitly account for the uncertainties implied by these monitoring gaps and long-term nutrient-pollution memories and time lags, and other knowledge, data and model uncertainties that limit the effectiveness and efficiency of water pollution and eutrophication management.
Inland Waters and the North American Carbon Cycle
NASA Astrophysics Data System (ADS)
Butman, D. E.; Striegl, R. G.; Stackpoole, S. M.; del Giorgio, P.; Prairie, Y.; Pilcher, D.; Raymond, P. A.; Alcocer, J.; Paz, F.
2016-12-01
Inland aquatic ecosystems process, store, and release carbon to the atmosphere and coastal margins. The form of this carbon is a function of terrestrial and aquatic primary and secondary production, the weathering of materials in soils and subsurface environments, the hydrologic controls on the movement of carbon from land to inland waters, and the connectivity between streams, rivers, lakes, reservoirs and groundwater. The 2007 1st State of the Carbon Cycle reported fluxes for the continental United States (CONUS) only. Streams and rivers exported 30-40 Tg C yr-1 to coastal environments, and 17-25 Tg C yr-1 were buried in lake and reservoir sediments. Remarkably, the 2007 report did not quantify gas emissions, which represent over half of the total carbon fluxes through inland water in the US. Current research has shown that 71-149 Tg C yr-1 exits freshwater systems either through atmospheric emissions of carbon dioxide or as inorganic and organic carbon fluxes to the coast from the CONUS. These estimates did not include the Laurentian Great Lakes. Variation in the magnitude of these fluxes across regions of the CONUS has been linked to differences in precipitation and terrestrial net ecosystem production. Similar comprehensive assessments have not been done for Canada or Mexico. Here we provide, as part of the 2nd State of the Carbon Cycle report, estimates for the river coastal export and vertical emissions of carbon from inland waters of North America, and report major data gaps, and weaknesses in methodologies. These findings stress that strong international partnerships are needed to improve assessment, monitoring, and modeling of human impacts on the magnitude and timing of aquatic fluxes in the future.
Tsunami-Induced Nearshore Hydrodynamic Modeling using a 3D VOF Method: A Gulf of Mexico Case Study
NASA Astrophysics Data System (ADS)
Kian, R.; Horrillo, J. J.; Fang, N. Z.
2017-12-01
Long-term morphology changes can be interrupted by extreme events such as hurricanes and tsunamis. In particular, the impact of tsunamis on coastal erosion and accretion patterns is presently not well understood. In order to understand the sediment movement during coastal tsunami impact a numerical sediment transport model is added to a 3D VOF model. This model allows for spatially varying bottom sediment characteristics and entails functions for entrainment, bedload, and suspended load transport. As a case study, a Gulf of Mexico (GOM) coastal study site is selected to investigate the effect of a landslide-tsunami on the coastal morphology. The GOM is recognized as a vast and productive body of water with great ecologic and economic value. The morphodynamic response of the nearshore environment to the tsunami hydrodynamic forcing is influenced by many factors including bathymetry, topography, tsunami wave and current magnitude, and the characteristics of the local bottom substrate. The 3D model addition can account for all these factors. Finally, necessary strategies for reduction of the potential tsunami impact and management of the morphological changes are discussed.
Effects of elevated temperatures and rising sea level on Arctic Coast
Barnes, Peter W.
1990-01-01
Ice is a major agent on the inner shelf, gouging the bottom, increasing hydraulic scour, transporting sediment, and influencing river flood patterns. Rapid coastal retreat is common and low barrier islands and beaches are constantly changing due to the influence of permafrost, ice-push, waves, and currents. Coastal processes are presently a balance between the influence of ice and the action of waves and currents. Quantitative values for processes are poorly known, however our qualitative understanding is nearly complete. Climatic warming and rising sea levels would decrease the temporal and aerial extent of coastal ice thereby expanding the role of waves and currents. As a result, shoreline retreat rates would increase, producing a transgressive erosional surface on the low coastal plain. With increased wave activity, beaches and barrier islands presently nourished by ice push processes would decay and disappear. Increased sediment supply from a deeply thawed, active layer would release more sediments to rivers and coasts. Additional research should be focused on permafrost and sea ice processes active during freeze up and breakup; the two seasons of most vigorous activity and change.
Transport processes near coastal ocean outfalls
Noble, M.A.; Sherwood, C.R.; Lee, Hooi-Ling; Xu, Jie; Dartnell, P.; Robertson, G.; Martini, M.
2001-01-01
The central Southern California Bight is an urbanized coastal ocean where complex topography and largescale atmospheric and oceanographic forcing has led to numerous sediment-distribution patterns. Two large embayments, Santa Monica and San Pedro Bays, are connected by the short, very narrow shelf off the Palos Verdes peninsula. Ocean-sewage outfalls are located in the middle of Santa Monica Bay, on the Palos Verdes shelf and at the southeastern edge of San Pedro Bay. In 1992, the US Geological Survey, together with allied agencies, began a series of programs to determine the dominant processes that transport sediment and associated pollutants near the three ocean outfalls. As part of these programs, arrays of instrumented moorings that monitor currents, waves, water clarity, water density and collect resuspended materials were deployed on the continental shelf and slope information was also collected on the sediment and contaminant distributions in the region. The data and models developed for the Palos Verdes shelf suggest that the large reservoir of DDT/DDE in the coastal ocean sediments will continue to be exhumed and transported along the shelf for a long time. On the Santa Monica shelf, very large internal waves, or bores, are generated at the shelf break. The near-bottom currents associated with these waves sweep sediments and the associated contaminants from the shelf onto the continental slope. A new program underway on the San Pedro shelf will determine if water and contaminants from a nearby ocean outfall are transported to the local beaches by coastal ocean processes. The large variety of processes found that transport sediments and contaminants in this small region of the continental margin suggest that in regions with complex topography, local processes change markedly over small spatial scales. One cannot necessarily infer that the dominant transport processes will be similar even in adjacent regions.
NASA Astrophysics Data System (ADS)
Yusoff, Tengku Ahmad Imran Ku; Shaufi Sokiman, Mohamad
2017-10-01
This research is conducted to understand the sedimentology and morphological change before and during the northeast monsoon at the east coast of peninsular Malaysia. The increase in wind speed, wave energy and rainfall during the northeast monsoon are believed to causes the coastal erosion to increase during the season. Rapid development along the east coast area might disrupt the sediments distribution which can increase the coastal erosion rate every year. The understanding on the sediments distribution, erosion and deposition as well as the morphological change can help to figure out if the coastal erosion can affect the infrastructure in the future. The result of the study can show the necessity to perform mitigation or any required action toward the problem that might happen