Sample records for coat protein coding

  1. Expanding the genetic code for site-specific labelling of tobacco mosaic virus coat protein and building biotin-functionalized virus-like particles.

    PubMed

    Wu, F C; Zhang, H; Zhou, Q; Wu, M; Ballard, Z; Tian, Y; Wang, J Y; Niu, Z W; Huang, Y

    2014-04-18

    A method for site-specific and high yield modification of tobacco mosaic virus coat protein (TMVCP) utilizing a genetic code expanding technology and copper free cycloaddition reaction has been established, and biotin-functionalized virus-like particles were built by the self-assembly of the protein monomers.

  2. Complete nucleotide sequences of the coat protein messenger RNAs of brome mosaic virus and cowpea chlorotic mottle virus.

    PubMed Central

    Dasgupta, R; Kaesberg, P

    1982-01-01

    The nucleotide sequences of the subgenomic coat protein messengers (RNA4's) of two related bromoviruses, brome mosaic virus (BMV) and cowpea chlorotic mottle virus (CCMV), have been determined by direct RNA and CDNA sequencing without cloning. BMV RNA4 is 876 b long including a 5' noncoding region of nine nucleotides and a 3' noncoding region of 300 nucleotides. CCMV RNA 4 is 824 b long, including a 5' noncoding region of 10 nucleotides and a 3' noncoding region of 244 nucleotides. The encoded coat proteins are similar in length (188 amino acids for BMV and 189 amino acids for CCMV) and display about 70% homology in their amino acid sequences. Length difference between the two RNAs is due mostly to a single deletion, in CCMV with respect to BMV, of about 57 b immediately following the coding region. Allowing for this deletion the RNAs are indicate that mutations leading to divergence were constrained in the coding region primarily by the requirement of maintaining a favorable coat protein structure and in the 3' noncoding region primarily by the requirement of maintaining a favorable RNA spatial configuration. PMID:6895941

  3. Nucleotide sequence of the 3' terminal region of lettuce mosaic potyvirus RNA shows a Gln/Val dipeptide at the cleavage site between the polymerase and the coat protein.

    PubMed

    Dinant, S; Lot, H; Albouy, J; Kuziak, C; Meyer, M; Astier-Manifacier, S

    1991-01-01

    DNA complementary to the 3' terminal 1651 nucleotides of the genome of the common strain of lettuce mosaic virus (LMV-O) has been cloned and sequenced. Microsequencing of the N-terminus enabled localization of the coat protein gene in this sequence. It showed also that the LMV coat protein coding region is at the 3' end of the genome, and that the coat protein is processed from a larger protein by cleavage at an unusual Q/V dipeptide between the polymerase and the coat protein. This is the first report of such a site for cleavage of a potyvirus polyprotein, where only Q/A, Q/S, and Q/G cleavage sites have been reported. The LMV coat protein gene encodes a 278 amino acid polypeptide with a calculated Mr of 31,171 and is flanked by a region which has a high degree of homology with the putative polymerase and a 3' untranslated region of 211 nucleotides in length. Percentage of homology with the coat protein of other potyviruses confirms that LMV is a distinct member of this group. Moreover, amino acid homologies noticed with the coat protein of potexvirus, bymovirus, and carlavirus elongated plant viruses suggest a functional significance for the conserved domains.

  4. Characterization of petunia flower mottle virus (PetFMV), a new potyvirus infecting Petunia x hybrida.

    PubMed

    Feldhoff, A; Wetzel, T; Peters, D; Kellner, R; Krczal, G

    1998-01-01

    With the introduction of cutting-grown Petunia x hybrida plants on the European market, a new potyvirus which showed no serological reaction with antisera against any other potyviruses infecting petunias was discovered. Infected leaves contained flexuous rod-shaped virus particles of 750-800 nm in length and inclusion bodies (pinwheel structures) typical for potyviruses in ultrathin leaf sections. The purified coat protein with a Mr of approximately 36 kDa could be detected in Western immunoblots with a specific antibody to the coat protein of the petunia-infecting virus. The 3' end of the viral genome encompassing the 3' non-coding region, the coat protein gene, and part of the NIb gene was amplified from infected leaf material by IC/PCR using degenerate and specific primers. Sequences of PCR-generated cDNA clones were compared to other known sequences of potyviruses. Maximum homology of 56% was found in the 3' non-coding region between the petunia isolate and other potyviruses. A maximum homology of 69% was found between the amino acid sequence of the coat protein of the petunia isolate and corresponding sequences of other potyviruses. These data indicate that the petunia-infecting virus is a previously undescribed potyvirus and the name petunia flower mottle virus (PetFMV) is suggested.

  5. Analysis of differential selective forces acting on the coat protein (P3) of the plant virus family Luteoviridae.

    PubMed

    Torres, Marina W; Corrêa, Régis L; Schrago, Carlos G

    2005-12-30

    The coat protein (CP) of the family Luteoviridae is directly associated with the success of infection. It participates in various steps of the virus life cycle, such as virion assembly, stability, systemic infection, and transmission. Despite its importance, extensive studies on the molecular evolution of this protein are lacking. In the present study, we investigate the action of differential selective forces on the CP coding region using maximum likelihood methods. We found that the protein is subjected to heterogeneous selective pressures and some sites may be evolving near neutrality. Based on the proposed 3-D model of the CP S-domain, we showed that nearly neutral sites are predominantly located in the region of the protein that faces the interior of the capsid, in close contact with the viral RNA, while highly conserved sites are mainly part of beta-strands, in the protein's major framework.

  6. [Preparation and activity validation of PP7 bacteriophage-like particles displaying PAP114-128 peptide].

    PubMed

    Sun, Yanli; Sun, Yanhua

    2016-10-01

    Objective To obtain the PP7 bacteriophage-like particles carrying the peptide of prostatic acid phosphatase PAP 114-128 , and prove that they retain the original biological activity. Methods First, the plasmid pETDuet-2PP7 was constructed as follows: the gene of PP7 coat protein dimer was amplified by gene mutation combined with overlapping PCR technology, and inserted into the vector pETDuet-1. Following that, the plasmid pETDuet-2PP7-PAP 114-128 was constructed as follows: the PP7 coat protein gene carrying the coding gene of PAP 114-128 peptide was amplified using PCR, and then inserted into the vector pETDuet-2PP7. Both pETDuet-2PP7 and pETDuet-2PP7-PAP 114-128 were transformed into E.coli and expressed. The expression product was verified by SDS-PAGE, double immunodiffusion assay and ELISA. Results The gene fragment of PP7 coat protein dimer was obtained by overlapping PCR using Ex Taq DNA polymerase, and the antigenicity of its expression product was the same as that of the coat protein of wild-type PP7 bacteriophage. Moreover, the PAP 114-128 peptide epitope that was displayed on the surface of PP7 bacteriophage was identical with the corresponding epitope of natural human PAP, and it was able to induce high levels of antibodies. Conclusion The gene of PP7 coat protein dimer with repeated sequences can be prepared by gene mutation combined with overlapping PCR. Based on this, PP7 bacteriophage-like particles carrying PAP peptide can be prepared, which not only solves the problem of the instability of the peptides, but also lays a foundation for the study on their delivery and function.

  7. Desmoglein 4 diversity and correlation analysis with coat color in goat.

    PubMed

    E, G X; Zhao, Y J; Ma, Y H; Cao, G L; He, J N; Na, R S; Zhao, Z Q; Jiang, C D; Zhang, J H; Arlvd, S; Chen, L P; Qiu, X Y; Hu, W; Huang, Y F

    2016-03-04

    Desmoglein 4 (DSG4) has an important role in the development of wool traits in domestic animals. The full-length DSG4 gene, which contains 3918 bp, a complete open-reading-frame, and encodes a 1040-amino acid protein, was amplified from Liaoning cashmere goat. The sequence was compared with that of DSG4 from other animals and the results show that the DSG4 coding region is consistent with interspecies conservation. Thirteen single-nucleotide polymorphisms (SNPs) were identified in a highly variable region of DSG4, and one SNP (M-1, G>T) was significantly correlated with white and black coat color in goat. Haplotype distribution of the highly variable region of DSG4 was assessed in 179 individuals from seven goat breeds to investigate its association with coat color and its differentiation among populations. However, the lack of a signature result indicates DGS4 haplotypes related with the color of goat coat.

  8. Analytical modeling of intumescent coating thermal protection system in a JP-5 fuel fire environment

    NASA Technical Reports Server (NTRS)

    Clark, K. J.; Shimizu, A. B.; Suchsland, K. E.; Moyer, C. B.

    1974-01-01

    The thermochemical response of Coating 313 when exposed to a fuel fire environment was studied to provide a tool for predicting the reaction time. The existing Aerotherm Charring Material Thermal Response and Ablation (CMA) computer program was modified to treat swelling materials. The modified code is now designated Aerotherm Transient Response of Intumescing Materials (TRIM) code. In addition, thermophysical property data for Coating 313 were analyzed and reduced for use in the TRIM code. An input data sensitivity study was performed, and performance tests of Coating 313/steel substrate models were carried out. The end product is a reliable computational model, the TRIM code, which was thoroughly validated for Coating 313. The tasks reported include: generation of input data, development of swell model and implementation in TRIM code, sensitivity study, acquisition of experimental data, comparisons of predictions with data, and predictions with intermediate insulation.

  9. Prunus necrotic ringspot ilarvirus: nucleotide sequence of RNA3 and the relationship to other ilarviruses based on coat protein comparison.

    PubMed

    Guo, D; Maiss, E; Adam, G; Casper, R

    1995-05-01

    The RNA3 of prunus necrotic ringspot ilarvirus (PNRSV) has been cloned and its entire sequence determined. The RNA3 consists of 1943 nucleotides (nt) and possesses two large open reading frames (ORFs) separated by an intergenic region of 74 nt. The 5' proximal ORF is 855 nt in length and codes for a protein of molecular mass 31.4 kDa which has homologies with the putative movement protein of other members of the Bromoviridae. The 3' proximal ORF of 675 nt is the cistron for the coat protein (CP) and has a predicted molecular mass of 24.9 kDa. The sequence of the 3' non-coding region (NCR) of PNRSV RNA3 showed a high degree of similarity with those of tobacco streak virus (TSV), prune dwarf virus (PDV), apple mosaic virus (ApMV) and also alfalfa mosaic virus (AIMV). In addition it contained potential stem-loop structures with interspersed AUGC motifs characteristic for ilar- and alfamoviruses. This conserved primary and secondary structure in all 3' NCRs may be responsible for the interaction with homologous and heterologous CPs and subsequent activation of genome replication. The CP gene of an ApMV isolate (ApMV-G) of 657 nt has also been cloned and sequenced. Although ApMV and PNRSV have a distant serological relationship, the deduced amino acid sequences of their CPs have an identity of only 51.8%. The N termini of PNRSV and ApMV CPs have in common a zinc-finger motif and the potential to form an amphipathic helix.

  10. Efficiency of VIGS and gene expression in a novel bipartite potexvirus vector delivery system as a function of strength of TGB1 silencing suppression.

    PubMed

    Lim, Hyoun-Sub; Vaira, Anna Maria; Domier, Leslie L; Lee, Sung Chul; Kim, Hong Gi; Hammond, John

    2010-06-20

    We have developed plant virus-based vectors for virus-induced gene silencing (VIGS) and protein expression, based on Alternanthera mosaic virus (AltMV), for infection of a wide range of host plants including Nicotiana benthamiana and Arabidopsis thaliana by either mechanical inoculation of in vitro transcripts or via agroinfiltration. In vivo transcripts produced by co-agroinfiltration of bacteriophage T7 RNA polymerase resulted in T7-driven AltMV infection from a binary vector in the absence of the Cauliflower mosaic virus 35S promoter. An artificial bipartite viral vector delivery system was created by separating the AltMV RNA-dependent RNA polymerase and Triple Gene Block (TGB)123-Coat protein (CP) coding regions into two constructs each bearing the AltMV 5' and 3' non-coding regions, which recombined in planta to generate a full-length AltMV genome. Substitution of TGB1 L(88)P, and equivalent changes in other potexvirus TGB1 proteins, affected RNA silencing suppression efficacy and suitability of the vectors from protein expression to VIGS. Published by Elsevier Inc.

  11. Acinetobacter phage genome is similar to Sphinx 2.36, the circular DNA copurified with TSE infected particles.

    PubMed

    Longkumer, Toshisangba; Kamireddy, Swetha; Muthyala, Venkateswar Reddy; Akbarpasha, Shaikh; Pitchika, Gopi Krishna; Kodetham, Gopinath; Ayaluru, Murali; Siddavattam, Dayananda

    2013-01-01

    While analyzing plasmids of Acinetobacter sp. DS002 we have detected a circular DNA molecule pTS236, which upon further investigation is identified as the genome of a phage. The phage genome has shown sequence similarity to the recently discovered Sphinx 2.36 DNA sequence co-purified with the Transmissible Spongiform Encephalopathy (TSE) particles isolated from infected brain samples collected from diverse geographical regions. As in Sphinx 2.36, the phage genome also codes for three proteins. One of them codes for RepA and is shown to be involved in replication of pTS236 through rolling circle (RC) mode. The other two translationally coupled ORFs, orf106 and orf96, code for coat proteins of the phage. Although an orf96 homologue was not previously reported in Sphinx 2.36, a closer examination of DNA sequence of Sphinx 2.36 revealed its presence downstream of orf106 homologue. TEM images and infection assays revealed existence of phage AbDs1 in Acinetobacter sp. DS002.

  12. Acinetobacter phage genome is similar to Sphinx 2.36, the circular DNA copurified with TSE infected particles

    PubMed Central

    Longkumer, Toshisangba; Kamireddy, Swetha; Muthyala, Venkateswar Reddy; Akbarpasha, Shaikh; Pitchika, Gopi Krishna; Kodetham, Gopinath; Ayaluru, Murali; Siddavattam, Dayananda

    2013-01-01

    While analyzing plasmids of Acinetobacter sp. DS002 we have detected a circular DNA molecule pTS236, which upon further investigation is identified as the genome of a phage. The phage genome has shown sequence similarity to the recently discovered Sphinx 2.36 DNA sequence co-purified with the Transmissible Spongiform Encephalopathy (TSE) particles isolated from infected brain samples collected from diverse geographical regions. As in Sphinx 2.36, the phage genome also codes for three proteins. One of them codes for RepA and is shown to be involved in replication of pTS236 through rolling circle (RC) mode. The other two translationally coupled ORFs, orf106 and orf96, code for coat proteins of the phage. Although an orf96 homologue was not previously reported in Sphinx 2.36, a closer examination of DNA sequence of Sphinx 2.36 revealed its presence downstream of orf106 homologue. TEM images and infection assays revealed existence of phage AbDs1 in Acinetobacter sp. DS002. PMID:23867905

  13. Exploring the interaction network of the Bacillus subtilis outer coat and crust proteins.

    PubMed

    Krajčíková, Daniela; Forgáč, Vladimír; Szabo, Adam; Barák, Imrich

    2017-11-01

    Bacillus subtilis spores, representatives of an exceptionally resistant dormant cell type, are encircled by a thick proteinaceous layer called the spore coat. More than 80 proteins assemble into four distinct coat layers: a basement layer, an inner coat, an outer coat and a crust. As the spore develops inside the mother cell, spore coat proteins synthesized in the cytoplasm are gradually deposited onto the prespore surface. A small set of morphogenetic proteins necessary for spore coat morphogenesis are thought to form a scaffold to which the rest of the coat proteins are attached. Extensive localization and proteomic studies using wild type and mutant spores have revealed the arrangement of individual proteins within the spore coat layers. In this study we examined the interactions between the proteins localized to the outer coat and crust using a bacterial two hybrid system. These two layers are composed of at least 25 components. Self-interactions were observed for most proteins and numerous novel interactions were identified. The most interesting contacts are those made with the morphogenetic proteins CotE, CotY and CotZ; these could serve as a basis for understanding the specific roles of particular proteins in spore coat morphogenesis. Copyright © 2017 Elsevier GmbH. All rights reserved.

  14. Expression of a foot-and-mouth disease virus immunodominant epitope by a filamentous bacteriophage vector.

    PubMed

    Kim, Y J; Lebreton, F; Kaiser, C; Crucière, C; Rémond, M

    2004-02-01

    We described the construction of a recombinant filamentous phage displaying on its surface the immunodominant site of VP1 protein of foot-and-mouth disease virus (FMDV). The coding sequence was inserted at the amino-terminus of the major coat protein pVIII via a spacer. The hybrid phage proved to be antigenic as it was recognized by polyclonal and monoclonal anti FMDV sera. In two experiments involving immunisation of guinea-pigs with the recombinant phage, a low antibody response was generated. This suggests a possible role for phage displayed peptides in inducing anti FMDV immunity and the possibility of further development is discussed.

  15. Resistance to Cucumber mosaic virus in Gladiolus plants transformed with either a defective replicase of coat protein subgroup II gene from Cucumber mosaic virus

    USDA-ARS?s Scientific Manuscript database

    Transgenic Gladiolus plants that contain either Cucumber mosaic virus (CMV) subgroup I coat protein, CMV subgroup II coat protein, CMV replicase, a combination of the CMV subgroups I and II coat proteins, or a combination of the CMV subgroup II coat protein and replicase genes were developed. These...

  16. Spore coat protein of Bacillus subtilis. Structure and precursor synthesis.

    PubMed

    Munoz, L; Sadaie, Y; Doi, R H

    1978-10-10

    The coat protein of Bacillus subtilis spores comprises about 10% of the total dry weight of spores and 25% of the total spore protein. One protein with a molecular weight of 13,000 to 15,000 comprises a major portion of the spore coat. This mature spore coat protein has histidine at its NH2 terminus and is relatively rich in hydrophobic amino acids. Netropsin, and antibiotic which binds to A-T-rich regions of DNA and inhibits sporulation, but not growth, decreased the synthesis of this spore coat protein by 75%. A precursor spore coat protein with a molecular weight of 25,000 is made initially at t1 of sporulation and is converted to the mature spore coat protein with a molecular weight of 13,500 at t2 - t3. These data indicate that the spore coat protein gene is expressed very early in sporulation prior to the modifications of RNA polymerase which have been noted.

  17. Genomic position affects the expression of tobacco mosaic virus movement and coat protein genes.

    PubMed Central

    Culver, J N; Lehto, K; Close, S M; Hilf, M E; Dawson, W O

    1993-01-01

    Alterations in the genomic position of the tobacco mosaic virus (TMV) genes encoding the 30-kDa cell-to-cell movement protein or the coat protein greatly affected their expression. Higher production of 30-kDa protein was correlated with increased proximity of the gene to the viral 3' terminus. A mutant placing the 30-kDa open reading frame 207 nucleotides nearer the 3' terminus produced at least 4 times the wild-type TMV 30-kDa protein level, while a mutant placing the 30-kDa open reading frame 470 nucleotides closer to the 3' terminus produced at least 8 times the wild-type TMV 30-kDa protein level. Increases in 30-kDa protein production were not correlated with the subgenomic mRNA promoter (SGP) controlling the 30-kDa gene, since mutants with either the native 30-kDa SGP or the coat protein SGP in front of the 30-kDa gene produced similar levels of 30-kDa protein. Lack of coat protein did not affect 30-kDa protein expression, since a mutant with the coat protein start codon removed did not produce increased amounts of 30-kDa protein. Effects of gene positioning on coat protein expression were examined by using a mutant containing two different tandemly positioned tobamovirus (TMV and Odontoglossum ringspot virus) coat protein genes. Only coat protein expressed from the gene positioned nearest the 3' viral terminus was detected. Analysis of 30-kDa and coat protein subgenomic mRNAs revealed no proportional increase in the levels of mRNA relative to the observed levels of 30-kDa and coat proteins. This suggests that a translational mechanism is primarily responsible for the observed effect of genomic position on expression of 30-kDa movement and coat protein genes. Images Fig. 2 Fig. 3 Fig. 4 PMID:8446627

  18. The CUG-initiated larger form coat protein of Chinese wheat mosaic virus binds to the cysteine-rich RNA silencing suppressor.

    PubMed

    Sun, Liying; Andika, Ida Bagus; Shen, Jiangfeng; Yang, Di; Ratti, Claudio; Chen, Jianping

    2013-10-01

    Some viruses use alternative translation initiation at non-AUG codons as a strategy to produce multiple proteins during gene expression. Here we show that, using this strategy, Chinese wheat mosaic virus (CWMV; Furovirus) expresses a larger form of coat protein (N-ext/CP) in infected plants. Site-directed mutagenesis and transient expression analysis confirmed that CWMV N-ext/CP is initiated at an upstream in-frame CUG codon at nucleotide position 207-209 of RNA 2, which adds a 39 amino acid (aa) N-terminal extension to the major CP. Interestingly, in planta and in vitro analyses indicated that CWMV N-ext/CP but not CP interacts with the CWMV cysteine-rich protein (CRP), an RNA silencing suppressor. We further determined that the N-terminal 39 aa extension, particularly the 10 aa region immediately upstream of the major CP coding region is responsible for the interaction of N-ext/CP with CRP. In an Agrobacterium co-infiltration assay, co-expression with N-ext/CP did not affect CRP silencing suppression activity. Thus the alternative translation initiation at a CUG codon provides the CWMV N-ext/CP with the ability to bind to the viral silencing suppressor. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Polyglycerol coatings of glass vials for protein resistance.

    PubMed

    Höger, Kerstin; Becherer, Tobias; Qiang, Wei; Haag, Rainer; Friess, Wolfgang; Küchler, Sarah

    2013-11-01

    Proteins are surface active molecules which undergo non-specific adsorption when getting in contact with surfaces such as the primary packaging material. This process is critical as it may cause a loss of protein content or protein aggregation. To prevent unspecific adsorption, protein repellent coatings are of high interest. We describe the coating of industrial relevant borosilicate glass vials with linear methoxylated polyglycerol, hyperbranched polyglycerol, and hyperbranched methoxylated polyglycerol. All coatings provide excellent protein repellent effects. The hyperbranched, non-methoxylated coating performed best. The protein repellent properties were maintained also after applying industrial relevant sterilization methods (≥200 °C). Marginal differences in antibody stability between formulations stored in bare glass vials and coated vials were detected after 3 months storage; the protein repellent effect remained largely stable. Here, we describe a new material suitable for the coating of primary packaging material of proteins which significantly reduces the protein adsorption and thus could present an interesting new possibility for biomedical applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Genome activation by raspberry bushy dwarf virus coat protein.

    PubMed

    Macfarlane, Stuart A; McGavin, Wendy J

    2009-03-01

    Two sets of infectious cDNA clones of raspberry bushy dwarf virus (RBDV) have been constructed, enabling either the synthesis of infectious RNA transcripts or the delivery of infectious binary plasmid DNA by infiltration of Agrobacterium tumefaciens. In whole plants and in protoplasts, inoculation of RBDV RNA1 and RNA2 transcripts led to a low level of infection, which was greatly increased by the addition of RNA3, a subgenomic RNA coding for the RBDV coat protein (CP). Agroinfiltration of RNA1 and RNA2 constructs did not produce a detectable infection but, again, inclusion of a construct encoding the CP led to high levels of infection. Thus, RBDV replication is greatly stimulated by the presence of the CP, a mechanism that also operates with ilarviruses and alfalfa mosaic virus, where it is referred to as genome activation. Mutation to remove amino acids from the N terminus of the CP showed that the first 15 RBDV CP residues are not required for genome activation. Other experiments, in which overlapping regions at the CP N terminus were fused to the monomeric red fluorescent protein, showed that sequences downstream of the first 48 aa are not absolutely required for genome activation.

  1. The coat morphogenetic protein SpoVID is necessary for spore encasement in Bacillus subtilis.

    PubMed

    Wang, Katherine H; Isidro, Anabela L; Domingues, Lia; Eskandarian, Haig A; McKenney, Peter T; Drew, Kevin; Grabowski, Paul; Chua, Ming-Hsiu; Barry, Samantha N; Guan, Michelle; Bonneau, Richard; Henriques, Adriano O; Eichenberger, Patrick

    2009-11-01

    Endospores formed by Bacillus subtilis are encased in a tough protein shell known as the coat, which consists of at least 70 different proteins. We investigated the process of spore coat morphogenesis using a library of 40 coat proteins fused to green fluorescent protein and demonstrate that two successive steps can be distinguished in coat assembly. The first step, initial localization of proteins to the spore surface, is dependent on the coat morphogenetic proteins SpoIVA and SpoVM. The second step, spore encasement, requires a third protein, SpoVID. We show that in spoVID mutant cells, most coat proteins assembled into a cap at one side of the developing spore but failed to migrate around and encase it. We also found that SpoIVA directly interacts with SpoVID. A domain analysis revealed that the N-terminus of SpoVID is required for encasement and is a structural homologue of a virion protein, whereas the C-terminus is necessary for the interaction with SpoIVA. Thus, SpoVM, SpoIVA and SpoVID are recruited to the spore surface in a concerted manner and form a tripartite machine that drives coat formation and spore encasement.

  2. Double-chimera proteins to enhance recruitment of endothelial cells and their progenitor cells.

    PubMed

    Behjati, M; Kazemi, M; Hashemi, M; Zarkesh-Esfahanai, S H; Bahrami, E; Hashemi-Beni, B; Ahmadi, R

    2013-08-20

    Enhanced attraction of selective vascular reparative cells is of great importance in order to increase vascular patency after endovascular treatments. We aimed to evaluate efficient attachment of endothelial cells and their progenitors on surfaces coated with mixture of specific antibodies, L-selectin and VE-cadherin, with prohibited platelet attachment. The most efficient conditions for coating of L-selectin-Fc chimera and VE-cadherin-Fc chimera proteins were first determined by protein coating on ELISA plates. The whole processes were repeated on titanium substrates, which are commonly used to coat stents. Endothelial progenitor cells (EPCs) and human umbilical vein endothelial cells (HUVECs) were isolated and characterized by flow cytometry. Cell attachment, growth, proliferation, viability and surface cytotoxicity were evaluated using nuclear staining and MTT assay. Platelet and cell attachment were evaluated using scanning electron microscopy. Optimal concentration of each protein for surface coating was 50 ng/ml. The efficacy of protein coating was both heat and pH independent. Calcium ions had significant impact on simultaneous dual-protein coating (P<0.05). Coating stability data revealed more than one year stability for these coated proteins at 4°C. L-selectin and VE-cadherin (ratio of 50:50) coated surface showed highest EPC and HUVEC attachment, viability and proliferation compared to single protein coated and non-coated titanium surfaces (P<0.05). This double coated surface did not show any cytotoxic effect. Surfaces coated with L-selectin and VE-cadherin are friendly surface for EPC and endothelial cell attachment with less platelet attachment. These desirable factors make the L-selectin and VE-cadherin coated surfaces perfect candidate endovascular device. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  3. Proteomics Analysis Reveals Distinct Corona Composition on Magnetic Nanoparticles with Different Surface Coatings: Implications for Interactions with Primary Human Macrophages

    PubMed Central

    Vogt, Carmen; Pernemalm, Maria; Kohonen, Pekka; Laurent, Sophie; Hultenby, Kjell; Vahter, Marie; Lehtiö, Janne; Toprak, Muhammet S.; Fadeel, Bengt

    2015-01-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) have emerged as promising contrast agents for magnetic resonance imaging. The influence of different surface coatings on the biocompatibility of SPIONs has been addressed, but the potential impact of the so-called corona of adsorbed proteins on the surface of SPIONs on their biological behavior is less well studied. Here, we determined the composition of the plasma protein corona on silica-coated versus dextran-coated SPIONs using mass spectrometry-based proteomics approaches. Notably, gene ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed distinct protein corona compositions for the two different SPIONs. Relaxivity of silica-coated SPIONs was modulated by the presence of a protein corona. Moreover, the viability of primary human monocyte-derived macrophages was influenced by the protein corona on silica-coated, but not dextran-coated SPIONs, and the protein corona promoted cellular uptake of silica-coated SPIONs, but did not affect internalization of dextran-coated SPIONs. PMID:26444829

  4. Proteomics Analysis Reveals Distinct Corona Composition on Magnetic Nanoparticles with Different Surface Coatings: Implications for Interactions with Primary Human Macrophages.

    PubMed

    Vogt, Carmen; Pernemalm, Maria; Kohonen, Pekka; Laurent, Sophie; Hultenby, Kjell; Vahter, Marie; Lehtiö, Janne; Toprak, Muhammet S; Fadeel, Bengt

    2015-01-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) have emerged as promising contrast agents for magnetic resonance imaging. The influence of different surface coatings on the biocompatibility of SPIONs has been addressed, but the potential impact of the so-called corona of adsorbed proteins on the surface of SPIONs on their biological behavior is less well studied. Here, we determined the composition of the plasma protein corona on silica-coated versus dextran-coated SPIONs using mass spectrometry-based proteomics approaches. Notably, gene ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed distinct protein corona compositions for the two different SPIONs. Relaxivity of silica-coated SPIONs was modulated by the presence of a protein corona. Moreover, the viability of primary human monocyte-derived macrophages was influenced by the protein corona on silica-coated, but not dextran-coated SPIONs, and the protein corona promoted cellular uptake of silica-coated SPIONs, but did not affect internalization of dextran-coated SPIONs.

  5. Microbeads display of proteins using emulsion PCR and cell-free protein synthesis.

    PubMed

    Gan, Rui; Yamanaka, Yumiko; Kojima, Takaaki; Nakano, Hideo

    2008-01-01

    We developed a method for coupling protein to its coding DNA on magnetic microbeads using emulsion PCR and cell-free protein synthesis in emulsion. A PCR mixture containing streptavidin-coated microbeads was compartmentalized by water-in-oil (w/o) emulsion with estimated 0.5 template molecules per droplet. The template molecules were amplified and immobilized on beads via bead-linked reverse primers and biotinylated forward primers. After amplification, the templates were sequentially labeled with streptavidin and biotinylated anti-glutathione S-transferase (GST) antibody. The pool of beads was then subjected to cell-free protein synthesis compartmentalized in another w/o emulsion, in which templates were coupled to their coding proteins. We mixed two types of DNA templates of Histidine6 tag (His6)-fused and FLAG tag-fused GST in a ratio of 1:1,000 (His6: FLAG) for use as a model DNA library. After incubation with fluorescein isothiocyanate (FITC)-labeled anti-His6 (C-term) antibody, the beads with the His6 gene were enriched 917-fold in a single-round screening by using flow cytometry. A library with a theoretical diversity of 10(6) was constructed by randomizing the middle four residues of the His6 tag. After a two-round screening, the randomized sequences were substantially converged to peptide-encoding sequences recognized by the anti-His6 antibody.

  6. The complete nucleotide sequence of RNA beta from the type strain of barley stripe mosaic virus.

    PubMed Central

    Gustafson, G; Armour, S L

    1986-01-01

    The complete nucleotide sequence of RNA beta from the type strain of barley stripe mosaic virus (BSMV) has been determined. The sequence is 3289 nucleotides in length and contains four open reading frames (ORFs) which code for proteins of Mr 22,147 (ORF1), Mr 58,098 (ORF2), Mr 17,378 (ORF3), and Mr 14,119 (ORF4). The predicted N-terminal amino acid sequence of the polypeptide encoded by the ORF nearest the 5'-end of the RNA (ORF1) is identical (after the initiator methionine) to the published N-terminal amino acid sequence of BSMV coat protein for 29 of the first 30 amino acids. ORF2 occupies the central portion of the coding region of RNA beta and ORF3 is located at the 3'-end. The ORF4 sequence overlaps the 3'-region of ORF2 and the 5'-region of ORF3 and differs in codon usage from the other three RNA beta ORFs. The coding region of RNA beta is followed by a poly(A) tract and a 238 nucleotide tRNA-like structure which are common to all three BSMV genomic RNAs. Images PMID:3754962

  7. Spatially controlled coating of continuous liquid Interface production microneedles for transdermal protein delivery.

    PubMed

    Caudill, Cassie L; Perry, Jillian L; Tian, Shaomin; Luft, J Christopher; DeSimone, Joseph M

    2018-06-09

    Microneedle patches, arrays of micron-scale projections that penetrate skin in a minimally invasive manner, are a promising tool for transdermally delivering therapeutic proteins. However, current microneedle fabrication techniques are limited in their ability to fabricate microneedles rapidly and with a high degree of control over microneedle design parameters. We have previously demonstrated the ability to fabricate microneedle patches with a range of compositions and geometries using the novel additive manufacturing technique Continuous Liquid Interface Production (CLIP). Here, we establish a method for dip coating CLIP microneedles with protein cargo in a spatially controlled manner. Microneedle coating mask devices were fabricated with CLIP and utilized to coat polyethylene glycol-based CLIP microneedles with model proteins bovine serum albumin, ovalbumin, and lysozyme. The design of the coating mask device was used to control spatial deposition and loading of coated protein cargo on the microneedles. CLIP microneedles rapidly released coated protein cargo both in solution and upon insertion into porcine skin. The model enzyme lysozyme was shown to retain its activity throughout the CLIP microneedle coating process, and permeation of bovine serum albumin across full thickness porcine skin was observed after application with coated CLIP microneedles. Protein-coated CLIP microneedles were applied to live mice and showed sustained retention of protein cargo in the skin over 72 h. These results demonstrate the utility of a versatile coating platform for preparation of precisely coated microneedles for transdermal therapeutic delivery. Copyright © 2018. Published by Elsevier B.V.

  8. Highly specific salt bridges govern bacteriophage P22 icosahedral capsid assembly: identification of the site in coat protein responsible for interaction with scaffolding protein.

    PubMed

    Cortines, Juliana R; Motwani, Tina; Vyas, Aashay A; Teschke, Carolyn M

    2014-05-01

    Icosahedral virus assembly requires a series of concerted and highly specific protein-protein interactions to produce a proper capsid. In bacteriophage P22, only coat protein (gp5) and scaffolding protein (gp8) are needed to assemble a procapsid-like particle, both in vivo and in vitro. In scaffolding protein's coat binding domain, residue R293 is required for procapsid assembly, while residue K296 is important but not essential. Here, we investigate the interaction of scaffolding protein with acidic residues in the N-arm of coat protein, since this interaction has been shown to be electrostatic. Through site-directed mutagenesis of genes 5 and 8, we show that changing coat protein N-arm residue 14 from aspartic acid to alanine causes a lethal phenotype. Coat protein residue D14 is shown by cross-linking to interact with scaffolding protein residue R293 and, thus, is intimately involved in proper procapsid assembly. To a lesser extent, coat protein N-arm residue E18 is also implicated in the interaction with scaffolding protein and is involved in capsid size determination, since a cysteine mutation at this site generated petite capsids. The final acidic residue in the N-arm that was tested, E15, is shown to only weakly interact with scaffolding protein's coat binding domain. This work supports growing evidence that surface charge density may be the driving force of virus capsid protein interactions. Bacteriophage P22 infects Salmonella enterica serovar Typhimurium and is a model for icosahedral viral capsid assembly. In this system, coat protein interacts with an internal scaffolding protein, triggering the assembly of an intermediate called a procapsid. Previously, we determined that there is a single amino acid in scaffolding protein required for P22 procapsid assembly, although others modulate affinity. Here, we identify partners in coat protein. We show experimentally that relatively weak interactions between coat and scaffolding proteins are capable of driving correctly shaped and sized procapsids and that the lack of these proper protein-protein interfaces leads to aberrant structures. The present work represents an important contribution supporting the hypothesis that virus capsid assembly is governed by seemingly simple interactions. The highly specific nature of the subunit interfaces suggests that these could be good targets for antivirals.

  9. The coat morphogenetic protein SpoVID is necessary for spore encasement in Bacillus subtilis

    PubMed Central

    Wang, Katherine H.; Isidro, Anabela L.; Domingues, Lia; Eskandarian, Haig A.; McKenney, Peter T.; Drew, Kevin; Grabowski, Paul; Chua, Ming-Hsiu; Barry, Samantha N.; Guan, Michelle; Bonneau, Richard; Henriques, Adriano O.; Eichenberger, Patrick

    2009-01-01

    SUMMARY Endospores formed by Bacillus subtilis are encased in a tough protein shell known as the coat, which consists of at least 70 different proteins. We investigated the process of spore coat morphogenesis using a library of 40 coat proteins fused to GFP and demonstrate that two successive steps can be distinguished in coat assembly. The first step, initial localization of proteins to the spore surface, is dependent on the coat morphogenetic proteins SpoIVA and SpoVM. The second step, spore encasement, requires a third protein, SpoVID. We show that in spoVID mutant cells, most coat proteins assembled into a cap at one side of the developing spore but failed to migrate around and encase it. We also found that SpoIVA directly interacts with SpoVID. A domain analysis revealed that the N-terminus of SpoVID is required for encasement and is a structural homolog of a virion protein, whereas the C-terminus is necessary for the interaction with SpoIVA. Thus, SpoVM, SpoIVA and SpoVID are recruited to the spore surface in a concerted manner and form a tripartite machine that drives coat formation and spore encasement. PMID:19775244

  10. The "trapped fraction" and interfacial jumps of concentration in fission products release from coated fuel particles

    NASA Astrophysics Data System (ADS)

    Ivanov, A. S.; Rusinkevich, A. A.; Taran, M. D.

    2018-01-01

    The FP Kinetics computer code [1] designed for calculation of fission products release from HTGR coated fuel particles was modified to allow consideration of chemical bonding, effects of limited solubility and component concentration jumps at interfaces between coating layers. Curves of Cs release from coated particles calculated with the FP Kinetics and PARFUME [2] codes were compared. It has been found that the consideration of concentration jumps at silicon carbide layer interfaces allows giving an explanation of some experimental data on Cs release obtained from post-irradiation heating tests. The need to perform experiments for measurement of solubility limits in coating materials was noted.

  11. 40 CFR 174.515 - Coat Protein of Papaya Ringspot Virus; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Coat Protein of Papaya Ringspot Virus...-INCORPORATED PROTECTANTS Tolerances and Tolerance Exemptions § 174.515 Coat Protein of Papaya Ringspot Virus; exemption from the requirement of a tolerance. Residues of Coat Protein of Papaya Ringspot Virus are exempt...

  12. 40 CFR 174.516 - Coat protein of cucumber mosaic virus; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Coat protein of cucumber mosaic virus...-INCORPORATED PROTECTANTS Tolerances and Tolerance Exemptions § 174.516 Coat protein of cucumber mosaic virus; exemption from the requirement of a tolerance. Residues of Coat Protein of Cucumber Mosaic Virus are exempt...

  13. 40 CFR 174.515 - Coat Protein of Papaya Ringspot Virus; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Coat Protein of Papaya Ringspot Virus...-INCORPORATED PROTECTANTS Tolerances and Tolerance Exemptions § 174.515 Coat Protein of Papaya Ringspot Virus; exemption from the requirement of a tolerance. Residues of Coat Protein of Papaya Ringspot Virus are exempt...

  14. 40 CFR 174.516 - Coat protein of cucumber mosaic virus; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Coat protein of cucumber mosaic virus...-INCORPORATED PROTECTANTS Tolerances and Tolerance Exemptions § 174.516 Coat protein of cucumber mosaic virus; exemption from the requirement of a tolerance. Residues of Coat Protein of Cucumber Mosaic Virus are exempt...

  15. 40 CFR 174.515 - Coat Protein of Papaya Ringspot Virus; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Coat Protein of Papaya Ringspot Virus...-INCORPORATED PROTECTANTS Tolerances and Tolerance Exemptions § 174.515 Coat Protein of Papaya Ringspot Virus; exemption from the requirement of a tolerance. Residues of Coat Protein of Papaya Ringspot Virus are exempt...

  16. 40 CFR 174.516 - Coat protein of cucumber mosaic virus; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Coat protein of cucumber mosaic virus...-INCORPORATED PROTECTANTS Tolerances and Tolerance Exemptions § 174.516 Coat protein of cucumber mosaic virus; exemption from the requirement of a tolerance. Residues of Coat Protein of Cucumber Mosaic Virus are exempt...

  17. 40 CFR 174.516 - Coat protein of cucumber mosaic virus; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Coat protein of cucumber mosaic virus...-INCORPORATED PROTECTANTS Tolerances and Tolerance Exemptions § 174.516 Coat protein of cucumber mosaic virus; exemption from the requirement of a tolerance. Residues of Coat Protein of Cucumber Mosaic Virus are exempt...

  18. 40 CFR 174.515 - Coat Protein of Papaya Ringspot Virus; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Coat Protein of Papaya Ringspot Virus...-INCORPORATED PROTECTANTS Tolerances and Tolerance Exemptions § 174.515 Coat Protein of Papaya Ringspot Virus; exemption from the requirement of a tolerance. Residues of Coat Protein of Papaya Ringspot Virus are exempt...

  19. 40 CFR 174.515 - Coat Protein of Papaya Ringspot Virus; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Coat Protein of Papaya Ringspot Virus...-INCORPORATED PROTECTANTS Tolerances and Tolerance Exemptions § 174.515 Coat Protein of Papaya Ringspot Virus; exemption from the requirement of a tolerance. Residues of Coat Protein of Papaya Ringspot Virus are exempt...

  20. 40 CFR 174.516 - Coat protein of cucumber mosaic virus; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Coat protein of cucumber mosaic virus...-INCORPORATED PROTECTANTS Tolerances and Tolerance Exemptions § 174.516 Coat protein of cucumber mosaic virus; exemption from the requirement of a tolerance. Residues of Coat Protein of Cucumber Mosaic Virus are exempt...

  1. Spore coat protein synthesis in cell-free systems from sporulating cells of Bacillus subtilis.

    PubMed

    Nakayama, T; Munoz, L E; Sadaie, Y; Doi, R H

    1978-09-01

    Cell-free systems for protein synthesis were prepared from Bacillus subtilis 168 cells at several stages of sporulation. Immunological methods were used to determine whether spore coat protein could be synthesized in the cell-free systems prepared from sporulating cells. Spore coat protein synthesis first occurred in extracts from stage t2 cells. The proportion of spore coat protein to total proteins synthesized in the cell-free systems was 2.4 and 3.9% at stages t2 and t4, respectively. The sodium dodecyl sulfate-urea-polyacrylamide gel electrophoresis patterns of immunoprecipitates from the cell-free systems showed the complete synthesis of an apparent spore coat protein precursor (molecular weight, 25,000). A polypeptide of this weight was previously identified in studies in vivo (L.E. Munoz, Y. Sadaie, and R.H. Doi, J. Biol. Chem., in press). The synthesis in vitro of polysome-associated nascent spore coat polypeptides with varying molecular weights up to 23,000 was also detected. These results indicate that the spore coat protein may be synthesized as a precursor protein. The removal of proteases in the crude extracts by treatment with hemoglobin-Sepharose affinity techniques may be preventing the conversion of the large 25,000-dalton precursor to the 12,500-dalton mature spore coat protein.

  2. Genome analysis of the platypus reveals unique signatures of evolution.

    PubMed

    Warren, Wesley C; Hillier, LaDeana W; Marshall Graves, Jennifer A; Birney, Ewan; Ponting, Chris P; Grützner, Frank; Belov, Katherine; Miller, Webb; Clarke, Laura; Chinwalla, Asif T; Yang, Shiaw-Pyng; Heger, Andreas; Locke, Devin P; Miethke, Pat; Waters, Paul D; Veyrunes, Frédéric; Fulton, Lucinda; Fulton, Bob; Graves, Tina; Wallis, John; Puente, Xose S; López-Otín, Carlos; Ordóñez, Gonzalo R; Eichler, Evan E; Chen, Lin; Cheng, Ze; Deakin, Janine E; Alsop, Amber; Thompson, Katherine; Kirby, Patrick; Papenfuss, Anthony T; Wakefield, Matthew J; Olender, Tsviya; Lancet, Doron; Huttley, Gavin A; Smit, Arian F A; Pask, Andrew; Temple-Smith, Peter; Batzer, Mark A; Walker, Jerilyn A; Konkel, Miriam K; Harris, Robert S; Whittington, Camilla M; Wong, Emily S W; Gemmell, Neil J; Buschiazzo, Emmanuel; Vargas Jentzsch, Iris M; Merkel, Angelika; Schmitz, Juergen; Zemann, Anja; Churakov, Gennady; Kriegs, Jan Ole; Brosius, Juergen; Murchison, Elizabeth P; Sachidanandam, Ravi; Smith, Carly; Hannon, Gregory J; Tsend-Ayush, Enkhjargal; McMillan, Daniel; Attenborough, Rosalind; Rens, Willem; Ferguson-Smith, Malcolm; Lefèvre, Christophe M; Sharp, Julie A; Nicholas, Kevin R; Ray, David A; Kube, Michael; Reinhardt, Richard; Pringle, Thomas H; Taylor, James; Jones, Russell C; Nixon, Brett; Dacheux, Jean-Louis; Niwa, Hitoshi; Sekita, Yoko; Huang, Xiaoqiu; Stark, Alexander; Kheradpour, Pouya; Kellis, Manolis; Flicek, Paul; Chen, Yuan; Webber, Caleb; Hardison, Ross; Nelson, Joanne; Hallsworth-Pepin, Kym; Delehaunty, Kim; Markovic, Chris; Minx, Pat; Feng, Yucheng; Kremitzki, Colin; Mitreva, Makedonka; Glasscock, Jarret; Wylie, Todd; Wohldmann, Patricia; Thiru, Prathapan; Nhan, Michael N; Pohl, Craig S; Smith, Scott M; Hou, Shunfeng; Nefedov, Mikhail; de Jong, Pieter J; Renfree, Marilyn B; Mardis, Elaine R; Wilson, Richard K

    2008-05-08

    We present a draft genome sequence of the platypus, Ornithorhynchus anatinus. This monotreme exhibits a fascinating combination of reptilian and mammalian characters. For example, platypuses have a coat of fur adapted to an aquatic lifestyle; platypus females lactate, yet lay eggs; and males are equipped with venom similar to that of reptiles. Analysis of the first monotreme genome aligned these features with genetic innovations. We find that reptile and platypus venom proteins have been co-opted independently from the same gene families; milk protein genes are conserved despite platypuses laying eggs; and immune gene family expansions are directly related to platypus biology. Expansions of protein, non-protein-coding RNA and microRNA families, as well as repeat elements, are identified. Sequencing of this genome now provides a valuable resource for deep mammalian comparative analyses, as well as for monotreme biology and conservation.

  3. Genome analysis of the platypus reveals unique signatures of evolution

    PubMed Central

    Warren, Wesley C.; Hillier, LaDeana W.; Marshall Graves, Jennifer A.; Birney, Ewan; Ponting, Chris P.; Grützner, Frank; Belov, Katherine; Miller, Webb; Clarke, Laura; Chinwalla, Asif T.; Yang, Shiaw-Pyng; Heger, Andreas; Locke, Devin P.; Miethke, Pat; Waters, Paul D.; Veyrunes, Frédéric; Fulton, Lucinda; Fulton, Bob; Graves, Tina; Wallis, John; Puente, Xose S.; López-Otín, Carlos; Ordóñez, Gonzalo R.; Eichler, Evan E.; Chen, Lin; Cheng, Ze; Deakin, Janine E.; Alsop, Amber; Thompson, Katherine; Kirby, Patrick; Papenfuss, Anthony T.; Wakefield, Matthew J.; Olender, Tsviya; Lancet, Doron; Huttley, Gavin A.; Smit, Arian F. A.; Pask, Andrew; Temple-Smith, Peter; Batzer, Mark A.; Walker, Jerilyn A.; Konkel, Miriam K.; Harris, Robert S.; Whittington, Camilla M.; Wong, Emily S. W.; Gemmell, Neil J.; Buschiazzo, Emmanuel; Vargas Jentzsch, Iris M.; Merkel, Angelika; Schmitz, Juergen; Zemann, Anja; Churakov, Gennady; Kriegs, Jan Ole; Brosius, Juergen; Murchison, Elizabeth P.; Sachidanandam, Ravi; Smith, Carly; Hannon, Gregory J.; Tsend-Ayush, Enkhjargal; McMillan, Daniel; Attenborough, Rosalind; Rens, Willem; Ferguson-Smith, Malcolm; Lefèvre, Christophe M.; Sharp, Julie A.; Nicholas, Kevin R.; Ray, David A.; Kube, Michael; Reinhardt, Richard; Pringle, Thomas H.; Taylor, James; Jones, Russell C.; Nixon, Brett; Dacheux, Jean-Louis; Niwa, Hitoshi; Sekita, Yoko; Huang, Xiaoqiu; Stark, Alexander; Kheradpour, Pouya; Kellis, Manolis; Flicek, Paul; Chen, Yuan; Webber, Caleb; Hardison, Ross; Nelson, Joanne; Hallsworth-Pepin, Kym; Delehaunty, Kim; Markovic, Chris; Minx, Pat; Feng, Yucheng; Kremitzki, Colin; Mitreva, Makedonka; Glasscock, Jarret; Wylie, Todd; Wohldmann, Patricia; Thiru, Prathapan; Nhan, Michael N.; Pohl, Craig S.; Smith, Scott M.; Hou, Shunfeng; Renfree, Marilyn B.; Mardis, Elaine R.; Wilson, Richard K.

    2009-01-01

    We present a draft genome sequence of the platypus, Ornithorhynchus anatinus. This monotreme exhibits a fascinating combination of reptilian and mammalian characters. For example, platypuses have a coat of fur adapted to an aquatic lifestyle; platypus females lactate, yet lay eggs; and males are equipped with venom similar to that of reptiles. Analysis of the first monotreme genome aligned these features with genetic innovations. We find that reptile and platypus venom proteins have been co-opted independently from the same gene families; milk protein genes are conserved despite platypuses laying eggs; and immune gene family expansions are directly related to platypus biology. Expansions of protein, non-protein-coding RNA and microRNA families, as well as repeat elements, are identified. Sequencing of this genome now provides a valuable resource for deep mammalian comparative analyses, as well as for monotreme biology and conservation. PMID:18464734

  4. 40 CFR 174.531 - Coat protein of plum pox virus; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Coat protein of plum pox virus...-INCORPORATED PROTECTANTS Tolerances and Tolerance Exemptions § 174.531 Coat protein of plum pox virus; exemption from the requirement of a tolerance. Residues of the coat protein of plum pox virus in or on the...

  5. 40 CFR 174.514 - Coat Protein of Watermelon Mosaic Virus-2 and Zucchini Yellow Mosaic Virus; exemption from the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Coat Protein of Watermelon Mosaic... Coat Protein of Watermelon Mosaic Virus-2 and Zucchini Yellow Mosaic Virus; exemption from the requirement for a tolerance. Residues of Coat Protein of Watermelon Mosaic Virus-2 and Zucchini Yellow Mosaic...

  6. 40 CFR 174.512 - Coat Protein of Potato Virus Y; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Coat Protein of Potato Virus Y...-INCORPORATED PROTECTANTS Tolerances and Tolerance Exemptions § 174.512 Coat Protein of Potato Virus Y; exemption from the requirement of a tolerance. Residues of Coat Protein of Potato Virus Y are exempt from...

  7. 40 CFR 174.512 - Coat Protein of Potato Virus Y; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Coat Protein of Potato Virus Y...-INCORPORATED PROTECTANTS Tolerances and Tolerance Exemptions § 174.512 Coat Protein of Potato Virus Y; exemption from the requirement of a tolerance. Residues of Coat Protein of Potato Virus Y are exempt from...

  8. 40 CFR 174.531 - Coat protein of plum pox virus; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Coat protein of plum pox virus...-INCORPORATED PROTECTANTS Tolerances and Tolerance Exemptions § 174.531 Coat protein of plum pox virus; exemption from the requirement of a tolerance. Residues of the coat protein of plum pox virus in or on the...

  9. 40 CFR 174.531 - Coat protein of plum pox virus; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Coat protein of plum pox virus...-INCORPORATED PROTECTANTS Tolerances and Tolerance Exemptions § 174.531 Coat protein of plum pox virus; exemption from the requirement of a tolerance. Residues of the coat protein of plum pox virus in or on the...

  10. 40 CFR 174.512 - Coat Protein of Potato Virus Y; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Coat Protein of Potato Virus Y...-INCORPORATED PROTECTANTS Tolerances and Tolerance Exemptions § 174.512 Coat Protein of Potato Virus Y; exemption from the requirement of a tolerance. Residues of Coat Protein of Potato Virus Y are exempt from...

  11. 40 CFR 174.512 - Coat Protein of Potato Virus Y; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Coat Protein of Potato Virus Y...-INCORPORATED PROTECTANTS Tolerances and Tolerance Exemptions § 174.512 Coat Protein of Potato Virus Y; exemption from the requirement of a tolerance. Residues of Coat Protein of Potato Virus Y are exempt from...

  12. 40 CFR 174.512 - Coat Protein of Potato Virus Y; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Coat Protein of Potato Virus Y...-INCORPORATED PROTECTANTS Tolerances and Tolerance Exemptions § 174.512 Coat Protein of Potato Virus Y; exemption from the requirement of a tolerance. Residues of Coat Protein of Potato Virus Y are exempt from...

  13. 40 CFR 174.531 - Coat protein of plum pox virus; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Coat protein of plum pox virus...-INCORPORATED PROTECTANTS Tolerances and Tolerance Exemptions § 174.531 Coat protein of plum pox virus; exemption from the requirement of a tolerance. Residues of the coat protein of plum pox virus in or on the...

  14. 40 CFR 174.531 - Coat protein of plum pox virus; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Coat protein of plum pox virus...-INCORPORATED PROTECTANTS Tolerances and Tolerance Exemptions § 174.531 Coat protein of plum pox virus; exemption from the requirement of a tolerance. Residues of the coat protein of plum pox virus in or on the...

  15. Multidimensional Multiphysics Simulation of TRISO Particle Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. D. Hales; R. L. Williamson; S. R. Novascone

    2013-11-01

    Multidimensional multiphysics analysis of TRISO-coated particle fuel using the BISON finite-element based nuclear fuels code is described. The governing equations and material models applicable to particle fuel and implemented in BISON are outlined. Code verification based on a recent IAEA benchmarking exercise is described, and excellant comparisons are reported. Multiple TRISO-coated particles of increasing geometric complexity are considered. It is shown that the code's ability to perform large-scale parallel computations permits application to complex 3D phenomena while very efficient solutions for either 1D spherically symmetric or 2D axisymmetric geometries are straightforward. Additionally, the flexibility to easily include new physical andmore » material models and uncomplicated ability to couple to lower length scale simulations makes BISON a powerful tool for simulation of coated-particle fuel. Future code development activities and potential applications are identified.« less

  16. Multiplex Immunoassay Platforms Based on Shape-Coded Poly(ethylene glycol) Hydrogel Microparticles Incorporating Acrylic Acid

    PubMed Central

    Park, Saemi; Lee, Hyun Jong; Koh, Won-Gun

    2012-01-01

    A suspension protein microarray was developed using shape-coded poly(ethylene glycol) (PEG) hydrogel microparticles for potential applications in multiplex and high-throughput immunoassays. A simple photopatterning process produced various shapes of hydrogel micropatterns that were weakly bound to poly(dimethylsiloxane) (PDMS)-coated substrates. These micropatterns were easily detached from substrates during the washing process and were collected as non-spherical microparticles. Acrylic acids were incorporated into hydrogels, which could covalently immobilize proteins onto their surfaces due to the presence of carboxyl groups. The amount of immobilized protein increased with the amount of acrylic acid due to more available carboxyl groups. Saturation was reached at 25% v/v of acrylic acid. Immunoassays with IgG and IgM immobilized onto hydrogel microparticles were successfully performed with a linear concentration range from 0 to 500 ng/mL of anti-IgG and anti-IgM, respectively. Finally, a mixture of two different shapes of hydrogel microparticles immobilizing IgG (circle) and IgM (square) was prepared and it was demonstrated that simultaneous detection of two different target proteins was possible without cross-talk using same fluorescence indicator because each immunoassay was easily identified by the shapes of hydrogel microparticles. PMID:22969408

  17. Coating extracellular matrix proteins on a (3-aminopropyl)triethoxysilane-treated glass substrate for improved cell culture.

    PubMed

    Masuda, Hiro-taka; Ishihara, Seiichiro; Harada, Ichiro; Mizutani, Takeomi; Ishikawa, Masayori; Kawabata, Kazushige; Haga, Hisashi

    2014-01-01

    We demonstrate that a (3-aminopropyl)triethoxysilane-treated glass surface is superior to an untreated glass surface for coating with extracellular matrix (ECM) proteins when used as a cell culture substrate to observe cell physiology and behavior. We found that MDCK cells cultured on untreated glass coated with ECM removed the coated ECM protein and secreted different ECM proteins. In contrast, the cells did not remove the coated ECM protein when seeded on (3-aminopropyl)triethoxysilane-treated (i.e., silanized) glass coated with ECM. Furthermore, the morphology and motility of cells grown on silanized glass differed from those grown on non-treated glass, even when both types of glass were initially coated with laminin. We also found that cells on silanized glass coated with laminin had higher motility than those on silanized glass coated with fibronectin. Based on our results, we suggest that silanized glass is a more suitable cell culture substrate than conventional non-treated glass when coated by ECM for observations of ECM effects on cell physiology.

  18. 78 FR 23495 - Approval and Promulgation of Air Quality Implementation Plans; Illinois; Small Container...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-19

    ...) which specify that Illinois' surface coating VOC emission limitations shall not apply to touch-up and... Administrative Code (Ill. Adm. Code) by adding a ``small container exemption'' for pleasure craft surface coating... technology (RACT) policy. DATES: This final rule is effective on May 20, 2013. ADDRESSES: EPA has established...

  19. Identification of single nucleotide polymorphisms in the agouti signaling protein (ASIP) gene in some goat breeds in tropical and temperate climates.

    PubMed

    Adefenwa, Mufliat A; Peters, Sunday O; Agaviezor, Brilliant O; Wheto, Matthew; Adekoya, Khalid O; Okpeku, Moses; Oboh, Bola; Williams, Gabriel O; Adebambo, Olufunmilayo A; Singh, Mahipal; Thomas, Bolaji; De Donato, Marcos; Imumorin, Ikhide G

    2013-07-01

    The agouti-signaling protein (ASIP) plays a major role in mammalian pigmentation as an antagonist to melanocortin-1 receptor gene to stimulate pheomelanin synthesis, a major pigment conferring mammalian coat color. We sequenced a 352 bp fragment of ASIP gene spanning part of exon 2 and part of intron 2 in 215 animals representing six goat breeds from Nigeria and the United States: West African Dwarf, predominantly black; Red Sokoto, mostly red; and Sahel, mostly white from Nigeria; black and white Alpine, brown and white Spanish and white Saanen from the US. Twenty haplotypes from nine mutations representing three intronic, one silent and five missense (p.S19R, p.N35K, p.L36V, p.M42L and p.L45W) mutations were identified in Nigerian goats. Approximately 89 % of Nigerian goats carry haplotype 1 (TGCCATCCG) which seems to be the wild type configuration of mutations in this region of the gene. Although we found no association between these polymorphisms in the ASIP gene and coat color in Nigerian goats, in-silico functional analysis predicts putative deleterious functional impact of the p.L45W mutation on the basic amino-terminal domain of ASIP. In the American goats, two intronic mutations, g.293G>A and g.327C>A, were identified in the Alpine breed, although the g.293G>A mutation is common to American and Nigerian goat populations. All Sannen and Sahel goats in this study belong to haplotypes 1 of both populations which seem to be the wild-type composite ASIP haplotype. Overall, there was no clear association of this portion of the ASIP gene interrogated in this study with coat color variation. Therefore, additional genomic analyses of promoter sequence, the entire coding and non-coding regions of the ASIP gene will be required to obtain a definite conclusion.

  20. Protein Corona Composition of Superparamagnetic Iron Oxide Nanoparticles with Various Physico-Chemical Properties and Coatings

    NASA Astrophysics Data System (ADS)

    Sakulkhu, Usawadee; Mahmoudi, Morteza; Maurizi, Lionel; Salaklang, Jatuporn; Hofmann, Heinrich

    2014-05-01

    Because of their biocompatibility and unique magnetic properties, superparamagnetic iron oxide nanoparticles NPs (SPIONs) are recognized as some of the most prominent agents for theranostic applications. Thus, understanding the interaction of SPIONs with biological systems is important for their safe design and efficient applications. In this study, SPIONs were coated with 2 different polymers: polyvinyl alcohol polymer (PVA) and dextran. The obtained NPs with different surface charges (positive, neutral, and negative) were used as a model study of the effect of surface charges and surface polymer materials on protein adsorption using a magnetic separator. We found that the PVA-coated SPIONs with negative and neutral surface charge adsorbed more serum proteins than the dextran-coated SPIONs, which resulted in higher blood circulation time for PVA-coated NPs than the dextran-coated ones. Highly abundant proteins such as serum albumin, serotransferrin, prothrombin, alpha-fetoprotein, and kininogen-1 were commonly found on both PVA- and dextran-coated SPIONs. By increasing the ionic strength, soft- and hard-corona proteins were observed on 3 types of PVA-SPIONs. However, the tightly bound proteins were observed only on negatively charged PVA-coated SPIONs after the strong protein elution.

  1. Dual Function of Novel Pollen Coat (Surface) Proteins: IgE-binding Capacity and Proteolytic Activity Disrupting the Airway Epithelial Barrier

    PubMed Central

    Bashir, Mohamed Elfatih H.; Ward, Jason M.; Cummings, Matthew; Karrar, Eltayeb E.; Root, Michael; Mohamed, Abu Bekr A.; Naclerio, Robert M.; Preuss, Daphne

    2013-01-01

    Background The pollen coat is the first structure of the pollen to encounter the mucosal immune system upon inhalation. Prior characterizations of pollen allergens have focused on water-soluble, cytoplasmic proteins, but have overlooked much of the extracellular pollen coat. Due to washing with organic solvents when prepared, these pollen coat proteins are typically absent from commercial standardized allergenic extracts (i.e., “de-fatted”), and, as a result, their involvement in allergy has not been explored. Methodology/Principal Findings Using a unique approach to search for pollen allergenic proteins residing in the pollen coat, we employed transmission electron microscopy (TEM) to assess the impact of organic solvents on the structural integrity of the pollen coat. TEM results indicated that de-fatting of Cynodon dactylon (Bermuda grass) pollen (BGP) by use of organic solvents altered the structural integrity of the pollen coat. The novel IgE-binding proteins of the BGP coat include a cysteine protease (CP) and endoxylanase (EXY). The full-length cDNA that encodes the novel IgE-reactive CP was cloned from floral RNA. The EXY and CP were purified to homogeneity and tested for IgE reactivity. The CP from the BGP coat increased the permeability of human airway epithelial cells, caused a clear concentration-dependent detachment of cells, and damaged their barrier integrity. Conclusions/Significance Using an immunoproteomics approach, novel allergenic proteins of the BGP coat were identified. These proteins represent a class of novel dual-function proteins residing on the coat of the pollen grain that have IgE-binding capacity and proteolytic activity, which disrupts the integrity of the airway epithelial barrier. The identification of pollen coat allergens might explain the IgE-negative response to available skin-prick-testing proteins in patients who have positive symptoms. Further study of the role of these pollen coat proteins in allergic responses is warranted and could potentially lead to the development of improved diagnostic and therapeutic tools. PMID:23308195

  2. Rapidly evolving zona pellucida domain proteins are a major component of the vitelline envelope of abalone eggs

    PubMed Central

    Aagaard, Jan E.; Yi, Xianhua; MacCoss, Michael J.; Swanson, Willie J.

    2006-01-01

    Proteins harboring a zona pellucida (ZP) domain are prominent components of vertebrate egg coats. Although less well characterized, the egg coat of the non-vertebrate marine gastropod abalone (Haliotis spp.) is also known to contain a ZP domain protein, raising the possibility of a common molecular basis of metazoan egg coat structures. Egg coat proteins from vertebrate as well as non-vertebrate taxa have been shown to evolve under positive selection. Studied most extensively in the abalone system, coevolution between adaptively diverging egg coat and sperm proteins may contribute to the rapid development of reproductive isolation. Thus, identifying the pattern of evolution among egg coat proteins is important in understanding the role these genes may play in the speciation process. The purpose of the present study is to characterize the constituent proteins of the egg coat [vitelline envelope (VE)] of abalone eggs and to provide preliminary evidence regarding how selection has acted on VE proteins during abalone evolution. A proteomic approach is used to match tandem mass spectra of peptides from purified VE proteins with abalone ovary EST sequences, identifying 9 of 10 ZP domain proteins as components of the VE. Maximum likelihood models of codon evolution suggest positive selection has acted among a subset of amino acids for 6 of these genes. This work provides further evidence of the prominence of ZP proteins as constituents of the egg coat, as well as the prominent role of positive selection in diversification of these reproductive proteins. PMID:17085584

  3. [Prokaryotic expression of the major antigenic domain of equine arteritis virus GL protein and the establishment of putative indirect ELISA assay].

    PubMed

    Liang, Cheng-Zhu; Cao, Rui-Bing; Wei, Jian-Chao; Zhu, Lai-Hua; Chen, Pu-Yan

    2006-06-01

    According to the antigenic analysis of equine arteritis virus (EAV) GL protein, one pair of primers were designed, with which the gene fragment coding the high antigenic domain of EAV GL protein was amplified from the EAV genome. The cloned gene was digested with BamH I and Xho I and then inserted into pET-32a and resulted pET-GL1. The pET-GL1 was transformed into the host cell BL21(DE3) and the expression was optimized including cultivation temperature and concentration of IPTG. The aim protein was highly expressed and the obtained recombinant protein manifested well reactiongenicity as was confirmed by Western blot. The recombinant GL1 protein was purified by the means of His * Bind resin protein purification procedure. Then an indirect ELISA was established to detect antibody against EAV with the purified GL1 protein as the coating antigen. The result showed that the optimal concentration of coated antigen was 9.65 microg/mL and the optimal dilution of serum was 1:80. The positive criterion of this ELISA assay is OD (the tested serum) > 0.4 and OD (the tested serum) /OD (the negative serum) > 2.0. The iGL-ELISA was evaluated versus micro-virus neutralization test. The ELISA was performed on 900 sera from which were preserved by this lab during horse entry/exit inspection, the agreement (94.1%) of these test were considered suitable for individual serological detection. In another test which 180 sera samples were detected by iGL-ELISA and INGEZIM ELISA kit respectively. The agreement ratio between the two methods is 95.6%.

  4. A two-stage mechanism of viral RNA compaction revealed by single molecule fluorescence

    PubMed Central

    Borodavka, Alexander; Tuma, Roman; Stockley, Peter G.

    2013-01-01

    Long RNAs often exist as multiple conformers in equilibrium. For the genomes of single-stranded RNA viruses, one of these conformers must include a compacted state allowing the RNA to be confined within the virion. We have used single molecule fluorescence correlation spectroscopy to monitor the conformations of viral genomes and sub-fragments in the absence and presence of coat proteins. Cognate RNA-coat protein interactions in two model viruses cause a rapid collapse in the hydrodynamic radii of their respective RNAs. This is caused by protein binding at multiple sites on the RNA that facilitate additional protein-protein contacts. The collapsed species recruit further coat proteins to complete capsid assembly with great efficiency and fidelity. The specificity in RNA-coat protein interactions seen at single-molecule concentrations reflects the packaging selectivity seen for such viruses in vivo. This contrasts with many in vitro reassembly measurements performed at much higher concentrations. RNA compaction by coat protein or polycation binding are distinct processes, implying that defined RNA-coat protein contacts are required for assembly. PMID:23422316

  5. ϕX174 Procapsid Assembly: Effects of an Inhibitory External Scaffolding Protein and Resistant Coat Proteins In Vitro.

    PubMed

    Cherwa, James E; Tyson, Joshua; Bedwell, Gregory J; Brooke, Dewey; Edwards, Ashton G; Dokland, Terje; Prevelige, Peter E; Fane, Bentley A

    2017-01-01

    During ϕX174 morphogenesis, 240 copies of the external scaffolding protein D organize 12 pentameric assembly intermediates into procapsids, a reaction reconstituted in vitro In previous studies, ϕX174 strains resistant to exogenously expressed dominant lethal D genes were experimentally evolved. Resistance was achieved by the stepwise acquisition of coat protein mutations. Once resistance was established, a stimulatory D protein mutation that greatly increased strain fitness arose. In this study, in vitro biophysical and biochemical methods were utilized to elucidate the mechanistic details and evolutionary trade-offs created by the resistance mutations. The kinetics of procapsid formation was analyzed in vitro using wild-type, inhibitory, and experimentally evolved coat and scaffolding proteins. Our data suggest that viral fitness is correlated with in vitro assembly kinetics and demonstrate that in vivo experimental evolution can be analyzed within an in vitro biophysical context. Experimental evolution is an extremely valuable tool. Comparisons between ancestral and evolved genotypes suggest hypotheses regarding adaptive mechanisms. However, it is not always possible to rigorously test these hypotheses in vivo We applied in vitro biophysical and biochemical methods to elucidate the mechanistic details that allowed an experimentally evolved virus to become resistant to an antiviral protein and then evolve a productive use for that protein. Moreover, our results indicate that the respective roles of scaffolding and coat proteins may have been redistributed during the evolution of a two-scaffolding-protein system. In one-scaffolding-protein virus assembly systems, coat proteins promiscuously interact to form heterogeneous aberrant structures in the absence of scaffolding proteins. Thus, the scaffolding protein controls fidelity. During ϕX174 assembly, the external scaffolding protein acts like a coat protein, self-associating into large aberrant spherical structures in the absence of coat protein, whereas the coat protein appears to control fidelity. Copyright © 2016 American Society for Microbiology.

  6. Enhanced protein adsorption and patterning on nanostructured latex-coated paper.

    PubMed

    Juvonen, Helka; Määttänen, Anni; Ihalainen, Petri; Viitala, Tapani; Sarfraz, Jawad; Peltonen, Jouko

    2014-06-01

    Specific interactions of extracellular matrix proteins with cells and their adhesion to the substrate are important for cell growth. A nanopatterned latex-coated paper substrate previously shown to be an excellent substrate for cell adhesion and 2D growth was studied for directed immobilization of proteins. The nanostructured latex surface was formed by short-wavelength IR irradiation of a two-component latex coating consisting of a hydrophilic film-forming styrene butadiene acrylonitrile copolymer and hydrophobic polystyrene particles. The hydrophobic regions of the IR-treated latex coating showed strong adhesion of bovine serum albumin (cell repelling protein), fibronectin (cell adhesive protein) and streptavidin. Opposite to the IR-treated surface, fibronectin and streptavidin had a poor affinity toward the untreated pristine latex coating. Detailed characterization of the physicochemical surface properties of the latex-coated substrates revealed that the observed differences in protein affinity were mainly due to the presence or absence of the protein repelling polar and charged surface groups. The protein adsorption was assisted by hydrophobic (dehydration) interactions. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Use of hydrophilic polymer coatings for control of electroosmosis and protein adsorption

    NASA Technical Reports Server (NTRS)

    Harris, J. Milton

    1987-01-01

    The purpose of this project was to examine the utility of polyethylene glycol (PEG) and dextran coatings for control of electroosmosis and protein adsorption; electroosmosis is an important, deleterious process affecting electrophoretic separations, and protein adsorption is a factor which needs to be controlled during protein crystal growth to avoid multiple nucleation sites. Performance of the project required use of X-ray photoelectron spectroscopy to refine previously developed synthetic methods. The results of this spectroscopic examination are reported. Measurements of electroosmotic mobility of charged particles in appropriately coated capillaries reveals that a new, one-step route to coating capillaries gives a surface in which electroosmosis is dramatically reduced. Similarly, both PEG and dextran coatings were shown by protein adsorption measurements to be highly effective at reducing protein adsorption on solid surfaces. These results should have impact on future low-g electrophoretic and protein crystal growth experiments.

  8. Functional diversification upon leader protease domain duplication in the Citrus tristeza virus genome: Role of RNA sequences and the encoded proteins.

    PubMed

    Kang, Sung-Hwan; Atallah, Osama O; Sun, Yong-Duo; Folimonova, Svetlana Y

    2018-01-15

    Viruses from the family Closteroviridae show an example of intra-genome duplications of more than one gene. In addition to the hallmark coat protein gene duplication, several members possess a tandem duplication of papain-like leader proteases. In this study, we demonstrate that domains encoding the L1 and L2 proteases in the Citrus tristeza virus genome underwent a significant functional divergence at the RNA and protein levels. We show that the L1 protease is crucial for viral accumulation and establishment of initial infection, whereas its coding region is vital for virus transport. On the other hand, the second protease is indispensable for virus infection of its natural citrus host, suggesting that L2 has evolved an important adaptive function that mediates virus interaction with the woody host. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Delimitation of essential genes of cassava latent virus DNA 2.

    PubMed Central

    Etessami, P; Callis, R; Ellwood, S; Stanley, J

    1988-01-01

    Insertion and deletion mutagenesis of both extended open reading frames (ORFs) of cassava latent virus DNA 2 destroys infectivity. Infectivity is restored by coinoculating constructs that contain single mutations within different ORFs. Although frequent intermolecular recombination produces dominant parental-type virus, mutants can be retained within the virus population indicating that they are competent for replication and suggesting that rescue can occur by complementation of trans acting gene products. By cloning specific fragments into DNA 1 coat protein deletion vectors we have delimited the DNA 2 coding regions and provide substantive evidence that both are essential for virus infection. Although a DNA 2 component is unique to whitefly-transmitted geminiviruses, the results demonstrate that neither coding region is involved solely in insect transmission. The requirement for a bipartite genome for whitefly-transmitted geminiviruses is discussed. Images PMID:3387209

  10. Albizia lebbeck Seed Coat Proteins Bind to Chitin and Act as a Defense against Cowpea Weevil Callosobruchus maculatus.

    PubMed

    Silva, Nadia C M; De Sá, Leonardo F R; Oliveira, Eduardo A G; Costa, Monique N; Ferreira, Andre T S; Perales, Jonas; Fernandes, Kátia V S; Xavier-Filho, Jose; Oliveira, Antonia E A

    2016-05-11

    The seed coat is an external tissue that participates in defense against insects. In some nonhost seeds, including Albizia lebbeck, the insect Callosobruchus maculatus dies during seed coat penetration. We investigated the toxicity of A. lebbeck seed coat proteins to C. maculatus. A chitin-binding protein fraction was isolated from seed coat, and mass spectrometry showed similarity to a C1 cysteine protease. By ELM program an N-glycosylation interaction motif was identified in this protein, and by molecular docking the potential to interact with N-acetylglucosamine (NAG) was shown. The chitin-binding protein fraction was toxic to C. maculatus and was present in larval midgut and feces but not able to hydrolyze larval gut proteins. It did not interfere, though, with the intestinal cell permeability. These results indicate that the toxicity mechanism of this seed coat fraction may be related to its binding to chitin, present in the larvae gut, disturbing nutrient absorption.

  11. Crystal structure of the coat protein from the GA bacteriophage: model of the unassembled dimer.

    PubMed Central

    Ni, C. Z.; White, C. A.; Mitchell, R. S.; Wickersham, J.; Kodandapani, R.; Peabody, D. S.; Ely, K. R.

    1996-01-01

    There are four groups of RNA bacteriophages with distinct antigenic and physicochemical properties due to differences in surface residues of the viral coat proteins. Coat proteins also play a role as translational repressor during the viral life cycle, binding an RNA hairpin within the genome. In this study, the first crystal structure of the coat protein from a Group II phage GA is reported and compared to the Group I MS2 coat protein. The structure of the GA dimer was determined at 2.8 A resolution (R-factor = 0.20). The overall folding pattern of the coat protein is similar to the Group I MS2 coat protein in the intact virus (Golmohammadi R, Valegård K, Fridborg K, Liljas L. 1993, J Mol Biol 234:620-639) or as an unassembled dimer (Ni Cz, Syed R, Kodandapani R. Wickersham J, Peabody DS, Ely KR, 1995, Structure 3:255-263). The structures differ in the FG loops and in the first turn of the alpha A helix. GA and MS2 coat proteins differ in sequence at 49 of 129 amino acid residues. Sequence differences that contribute to distinct immunological and physical properties of the proteins are found at the surface of the intact virus in the AB and FG loops. There are six differences in potential RNA contact residues within the RNA-binding site located in an antiparallel beta-sheet across the dimer interface. Three differences involve residues in the center of this concave site: Lys/Arg 83, Ser/Asn 87, and Asp/Glu 89. Residue 87 was shown by molecular genetics to define RNA-binding specificity by GA or MS2 coat protein (Lim F. Spingola M, Peabody DS, 1994, J Biol Chem 269:9006-9010). This sequence difference reflects recognition of the nucleotide at position -5 in the unpaired loop of the translational operators bound by these coat proteins. In GA, the nucleotide at this position is a purine whereas in MS2, it is a pyrimidine. PMID:8976557

  12. Crystal structure of the coat protein from the GA bacteriophage: model of the unassembled dimer.

    PubMed

    Ni, C Z; White, C A; Mitchell, R S; Wickersham, J; Kodandapani, R; Peabody, D S; Ely, K R

    1996-12-01

    There are four groups of RNA bacteriophages with distinct antigenic and physicochemical properties due to differences in surface residues of the viral coat proteins. Coat proteins also play a role as translational repressor during the viral life cycle, binding an RNA hairpin within the genome. In this study, the first crystal structure of the coat protein from a Group II phage GA is reported and compared to the Group I MS2 coat protein. The structure of the GA dimer was determined at 2.8 A resolution (R-factor = 0.20). The overall folding pattern of the coat protein is similar to the Group I MS2 coat protein in the intact virus (Golmohammadi R, Valegård K, Fridborg K, Liljas L. 1993, J Mol Biol 234:620-639) or as an unassembled dimer (Ni Cz, Syed R, Kodandapani R. Wickersham J, Peabody DS, Ely KR, 1995, Structure 3:255-263). The structures differ in the FG loops and in the first turn of the alpha A helix. GA and MS2 coat proteins differ in sequence at 49 of 129 amino acid residues. Sequence differences that contribute to distinct immunological and physical properties of the proteins are found at the surface of the intact virus in the AB and FG loops. There are six differences in potential RNA contact residues within the RNA-binding site located in an antiparallel beta-sheet across the dimer interface. Three differences involve residues in the center of this concave site: Lys/Arg 83, Ser/Asn 87, and Asp/Glu 89. Residue 87 was shown by molecular genetics to define RNA-binding specificity by GA or MS2 coat protein (Lim F. Spingola M, Peabody DS, 1994, J Biol Chem 269:9006-9010). This sequence difference reflects recognition of the nucleotide at position -5 in the unpaired loop of the translational operators bound by these coat proteins. In GA, the nucleotide at this position is a purine whereas in MS2, it is a pyrimidine.

  13. Promising MS2 mediated virus-like particle vaccine against foot-and-mouth disease.

    PubMed

    Dong, Yan-mei; Zhang, Guo-guang; Huang, Xiao-jun; Chen, Liang; Chen, Hao-tai

    2015-05-01

    Foot-and-mouth disease (FMD) has caused severe economic losses to millions of farmers worldwide. In this work, the coding genes of 141-160 epitope peptide (EP141-160) of VP1 were inserted into the coat protein (CP) genes of MS2 in prokaryotic expression vector, and the recombinant protein self-assembled into virus-like particles (VLP). Results showed that the CP-EP141-160 VLP had a strong immunoreaction with the FMD virus (FMDV) antigen in vitro, and also had an effective immune response in mice. Further virus challenge tests were carried out on guinea pigs and swine, high-titer neutralizing antibodies were produced and the CP-EP141-160 VLP vaccine could protect most of the animals against FMDV. Copyright © 2015. Published by Elsevier B.V.

  14. Partial characterization of the lettuce infectious yellows virus genomic RNAs, identification of the coat protein gene and comparison of its amino acid sequence with those of other filamentous RNA plant viruses.

    PubMed

    Klaassen, V A; Boeshore, M; Dolja, V V; Falk, B W

    1994-07-01

    Purified virions of lettuce infectious yellows virus (LIYV), a tentative member of the closterovirus group, contained two RNAs of approximately 8500 and 7300 nucleotides (RNAs 1 and 2 respectively) and a single coat protein species with M(r) of approximately 28,000. LIYV-infected plants contained multiple dsRNAs. The two largest were the correct size for the replicative forms of LIYV virion RNAs 1 and 2. To assess the relationships between LIYV RNAs 1 and 2, cDNAs corresponding to the virion RNAs were cloned. Northern blot hybridization analysis showed no detectable sequence homology between these RNAs. A partial amino acid sequence obtained from purified LIYV coat protein was found to align in the most upstream of four complete open reading frames (ORFs) identified in a LIYV RNA 2 cDNA clone. The identity of this ORF was confirmed as the LIYV coat protein gene by immunological analysis of the gene product expressed in vitro and in Escherichia coli. Computer analysis of the LIYV coat protein amino acid sequence indicated that it belongs to a large family of proteins forming filamentous capsids of RNA plant viruses. The LIYV coat protein appears to be most closely related to the coat proteins of two closteroviruses, beet yellows virus and citrus tristeza virus.

  15. Surface Coating of Plastic Parts for Business Machines (Industrial Surface Coating): New Source Performance Standards (NSPS)

    EPA Pesticide Factsheets

    Learn more about the new source performance standards (NSPS) for surface coating of plastic parts for business machines by reading the rule summary and history and finding the code of federal regulations as well as related rules.

  16. Copy number variation and missense mutations of the agouti signaling protein (ASIP) gene in goat breeds with different coat colors.

    PubMed

    Fontanesi, L; Beretti, F; Riggio, V; Gómez González, E; Dall'Olio, S; Davoli, R; Russo, V; Portolano, B

    2009-01-01

    In goats, classical genetic studies reported a large number of alleles at the Agouti locus with effects on coat color and pattern distribution. From these early studies, the dominant A(Wt) (white/tan) allele was suggested to cause the white color of the Saanen breed. Here, we sequenced the coding region of the goat ASIP gene in 6 goat breeds (Girgentana, Maltese, Derivata di Siria, Murciano-Granadina, Camosciata delle Alpi, and Saanen), with different coat colors and patterns. Five single nucleotide polymorphisms (SNPs) were identified, 3 of which caused missense mutations in conserved positions of the cysteine-rich carboxy-terminal domain of the protein (p.Ala96Gly, p.Cys126Gly, and p.Val128Gly). Allele and genotype frequencies suggested that these mutations are not associated or not completely associated with coat color in the investigated goat breeds. Moreover, genotyping and sequencing results, deviation from Hardy-Weinberg equilibrium, as well as allele copy number evaluation from semiquantitative fluorescent multiplex PCR, indicated the presence of copy number variation (CNV) in all investigated breeds. To confirm the presence of CNV and evaluate its extension, we applied a bovine-goat cross-species array comparative genome hybridization (aCGH) experiment using a custom tiling array based on bovine chromosome 13. aCGH results obtained for 8 goat DNA samples confirmed the presence of CNV affecting a region of less that 100 kb including the ASIP and AHCY genes. In Girgentana and Saanen breeds, this CNV might cause the A(Wt) allele, as already suggested for a similar structural mutation in sheep affecting the ASIP and AHCY genes, providing evidence for a recurrent interspecies CNV. However, other mechanisms may also be involved in determining coat color in these 2 breeds. Copyright 2009 S. Karger AG, Basel.

  17. A cDNA Immunization Strategy to Generate Nanobodies against Membrane Proteins in Native Conformation

    PubMed Central

    Eden, Thomas; Menzel, Stephan; Wesolowski, Janusz; Bergmann, Philine; Nissen, Marion; Dubberke, Gudrun; Seyfried, Fabienne; Albrecht, Birte; Haag, Friedrich; Koch-Nolte, Friedrich

    2018-01-01

    Nanobodies (Nbs) are soluble, versatile, single-domain binding modules derived from the VHH variable domain of heavy-chain antibodies naturally occurring in camelids. Nbs hold huge promise as novel therapeutic biologics. Membrane proteins are among the most interesting targets for therapeutic Nbs because they are accessible to systemically injected biologics. In order to be effective, therapeutic Nbs must recognize their target membrane protein in native conformation. However, raising Nbs against membrane proteins in native conformation can pose a formidable challenge since membrane proteins typically contain one or more hydrophobic transmembrane regions and, therefore, are difficult to purify in native conformation. Here, we describe a highly efficient genetic immunization strategy that circumvents these difficulties by driving expression of the target membrane protein in native conformation by cells of the immunized camelid. The strategy encompasses ballistic transfection of skin cells with cDNA expression plasmids encoding one or more orthologs of the membrane protein of interest and, optionally, other costimulatory proteins. The plasmid is coated onto 1 µm gold particles that are then injected into the shaved and depilated skin of the camelid. A gene gun delivers a helium pulse that accelerates the DNA-coated particles to a velocity sufficient to penetrate through multiple layers of cells in the skin. This results in the exposure of the extracellular domains of the membrane protein on the cell surface of transfected cells. Repeated immunization drives somatic hypermutation and affinity maturation of target-specific heavy-chain antibodies. The VHH/Nb coding region is PCR-amplified from B cells obtained from peripheral blood or a lymph node biopsy. Specific Nbs are selected by phage display or by screening of Nb-based heavy-chain antibodies expressed as secretory proteins in transfected HEK cells. Using this strategy, we have successfully generated agonistic and antagonistic Nbs against several cell surface ecto-enzymes and ligand-gated ion channels. PMID:29410663

  18. Temperature-responsive peptide-mimetic coating based on poly(N-methacryloyl-l-leucine): properties, protein adsorption and cell growth.

    PubMed

    Raczkowska, Joanna; Ohar, Mariya; Stetsyshyn, Yurij; Zemła, Joanna; Awsiuk, Kamil; Rysz, Jakub; Fornal, Katarzyna; Bernasik, Andrzej; Ohar, Halyna; Fedorova, Svitlana; Shtapenko, Oksana; Polovkovych, Svyatoslav; Novikov, Volodymyr; Budkowski, Andrzej

    2014-06-01

    Poly(N-methacryloyl-l-leucine) (PNML) coatings were successfully fabricated via polymerization from peroxide initiator grafted to premodified glass substrate. Chemical composition and thickness of PNML coatings were determined using time of flight-secondary ion mass spectrometry (TOF- SIMS) and ellipsometry, respectively. PNML coatings exhibit thermal response of the wettability, between 4 and 28°C, which indicates a transition between hydrated loose coils and hydrophobic collapsed chains. Morphology of the PNML coating was observed with the AFM, transforming with increasing temperature from initially relatively smooth surface to rough and more structured surface. Protein adsorption observed by fluorescence microscopy for model proteins (bovine serum albumin and lentil lectin labeled with fluorescein isothiocyanate) at transition from 5 to 25°C, showed high affinity of PNML coating to proteins at all investigated temperatures and pH. Thus, PNML coating have significant potential for medical and biotechnological applications as protein capture agents or functional replacements of antibodies ("plastic antibodies"). The high proliferation growth of the human embryonic kidney cell (HEK 293) onto PNML coating was demonstrated, indicating its excellent cytocompatibility. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Modeling Thermal Noise From Crystalline Coatings For Gravitational-Wave Detectors

    NASA Astrophysics Data System (ADS)

    Demos, Nicholas; Lovelace, Geoffrey; LSC Collaboration

    2017-01-01

    In 2015, Advanced LIGO made the first direct detection of gravitational waves. The sensitivity of current and future ground-based gravitational-wave detectors is limited by thermal noise in each detector's test mass substrate and coating. This noise can be modeled using the fluctuation-dissipation theorem, which relates thermal noise to an auxiliary elastic problem. I will present results from a new code that numerically models thermal noise for different crystalline mirror coatings. The thermal noise in crystalline mirror coatings could be significantly lower but is challenging to model analytically. The code uses a finite element method with adaptive mesh refinement to model the auxiliary elastic problem which is then related to thermal noise. Specifically, I will show results for a crystal coating on an amorphous substrate of varying sizes and elastic properties. This and future work will help develop the next generation of ground-based gravitational-wave detectors.

  20. 40 CFR Table 1 to Subpart E of... - Product-Weighted Reactivity Limits by Coating Category

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 6 2012-07-01 2012-07-01 false Product-Weighted Reactivity Limits by... Pt. 59, Subpt. E, Table 1 Table 1 to Subpart E of Part 59—Product-Weighted Reactivity Limits by Coating Category Coating category Category code a Reactivity limit(g O3/g product) Clear Coatings CCP 1.50...

  1. 40 CFR Table 1 to Subpart E of... - Product-Weighted Reactivity Limits by Coating Category

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 6 2013-07-01 2013-07-01 false Product-Weighted Reactivity Limits by... Pt. 59, Subpt. E, Table 1 Table 1 to Subpart E of Part 59—Product-Weighted Reactivity Limits by Coating Category Coating category Category code a Reactivity limit(g O3/g product) Clear Coatings CCP 1.50...

  2. Engineering M13 for phage display.

    PubMed

    Sidhu, S S

    2001-09-01

    Phage display is achieved by fusing polypeptide libraries to phage coat proteins. The resulting phage particles display the polypeptides on their surfaces and they also contain the encoding DNA. Library members with particular functions can be isolated with simple selections and polypeptide sequences can be decoded from the encapsulated DNA. The technology's success depends on the efficiency with which polypeptides can be displayed on the phage surface, and significant progress has been made in engineering M13 bacteriophage coat proteins as improved phage display platforms. Functional display has been achieved with all five M13 coat proteins, with both N- and C-terminal fusions. Also, coat protein mutants have been designed and selected to improve the efficiency of heterologous protein display, and in the extreme case, completely artificial coat proteins have been evolved specifically as display platforms. These studies demonstrate that the M13 phage coat is extremely malleable, and this property can be used to engineer the phage particle specifically for phage display. These improvements expand the utility of phage display as a powerful tool in modern biotechnology.

  3. Multiple functional roles of the accessory I-domain of bacteriophage P22 coat protein revealed by NMR structure and cryoEM modeling

    PubMed Central

    Rizzo, Alessandro A.; Suhanovsky, Margaret M.; Baker, Matthew L.; Fraser, LaTasha C.R.; Jones, Lisa M.; Rempel, Don L.; Gross, Michael L.; Chiu, Wah; Alexandrescu, Andrei T.; Teschke, Carolyn M.

    2014-01-01

    SUMMARY Some capsid proteins built on the ubiquitous HK97-fold have accessory domains that impart specific functions. Bacteriophage P22 coat protein has a unique inserted I-domain. Two prior I-domain models from sub-nanometer cryoEM reconstructions differed substantially. Therefore, the NMR structure of the I-domain was determined, which also was used to improve cryoEM models of coat protein. The I-domain has an anti-parallel 6-stranded β-barrel fold, previously not observed in HK97-fold accessory domains. The D-loop, which is dynamic both in the isolated I-domain and intact monomeric coat protein, forms stabilizing salt bridges between adjacent capsomers in procapsids. A newly described S-loop is important for capsid size determination, likely through intra-subunit interactions. Ten of eighteen coat protein temperature-sensitive-folding substitutions are in the I-domain, indicating its importance in folding and stability. Several are found on a positively charged face of the β-barrel that anchors the I-domain to a negatively charged surface of the coat protein HK97-core. PMID:24836025

  4. Multiple functional roles of the accessory I-domain of bacteriophage P22 coat protein revealed by NMR structure and CryoEM modeling.

    PubMed

    Rizzo, Alessandro A; Suhanovsky, Margaret M; Baker, Matthew L; Fraser, LaTasha C R; Jones, Lisa M; Rempel, Don L; Gross, Michael L; Chiu, Wah; Alexandrescu, Andrei T; Teschke, Carolyn M

    2014-06-10

    Some capsid proteins built on the ubiquitous HK97-fold have accessory domains imparting specific functions. Bacteriophage P22 coat protein has a unique insertion domain (I-domain). Two prior I-domain models from subnanometer cryoelectron microscopy (cryoEM) reconstructions differed substantially. Therefore, the I-domain's nuclear magnetic resonance structure was determined and also used to improve cryoEM models of coat protein. The I-domain has an antiparallel six-stranded β-barrel fold, not previously observed in HK97-fold accessory domains. The D-loop, which is dynamic in the isolated I-domain and intact monomeric coat protein, forms stabilizing salt bridges between adjacent capsomers in procapsids. The S-loop is important for capsid size determination, likely through intrasubunit interactions. Ten of 18 coat protein temperature-sensitive-folding substitutions are in the I-domain, indicating its importance in folding and stability. Several are found on a positively charged face of the β-barrel that anchors the I-domain to a negatively charged surface of the coat protein HK97-core. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Protein-Coated Microcrystals, Combi-Protein-Coated Microcrystals, and Cross-Linked Protein-Coated Microcrystals of Enzymes for Use in Low-Water Media.

    PubMed

    Mukherjee, Joyeeta; Gupta, Munishwar N

    2017-01-01

    Protein-coated microcrystals (PCMC) are a high-activity preparation of enzymes for use in low-water media. The protocols for the preparation of PCMCs of Subtilisin Carlsberg and Candida antarctica lipase B (CAL B) are described. The combi-PCMC concept is useful both for cascade and non-cascade reactions. It can also be beneficial to combine two different specificities of a lipase when the substrate requires it. Combi-PCMC of CALB and Palatase used for the conversion of coffee oil present in spent coffee grounds to biodiesel is described. Cross-linked protein-coated microcrystals (CL-PCMC) in some cases can give better results than PCMC. Protocols for the CLPCMC of Subtilisin Carlsberg and Candida antarctica lipase B (CAL B) are described. A discussion of their applications is also provided.

  6. High efficiency protein separation with organosilane assembled silica coated magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Chang, Jeong Ho; Kang, Ki Ho; Choi, Jinsub; Jeong, Young Keun

    2008-10-01

    This work describes the development of high efficiency protein separation with functionalized organosilanes on the surface of silica coated magnetic nanoparticles. The magnetic nanoparticles were synthesized with average particle size of 9 nm and silica coated magnetic nanoparticles were obtained by controlling the coating thicknesses on magnetic nanoparticles. The silica coating thickness could be uniformly sized with a diameter of 10-40 nm by a sol-gel approach. The surface modification was performed with four kinds of functionalized organosilanes such as carboxyl, aldehyde, amine, and thiol groups. The protein separation work with organosilane assembled silica coated magnetic nanoparticles was achieved for model proteins such as bovine serum albumin (BSA) and lysozyme (LSZ) at different pH conditions. Among the various functionalities, the thiol group showed good separation efficiency due to the change of electrostatic interactions and protein conformational structure. The adsorption efficiency of BSA and LSZ was up to 74% and 90% corresponding pH 4.65 and pH 11.

  7. Heterologous Minor Coat Proteins of Citrus Tristeza Virus Strains Affect Encapsidation, but the Coexpression of HSP70h and p61 Restores Encapsidation to Wild-Type Levels

    USDA-ARS?s Scientific Manuscript database

    The long flexuous bipolar virions of Citrus tristeza virus (CTV), a Closterovirus, are encapsidated with two capsid proteins at opposite ends: the minor coat protein (CPm) encapsidates the 5’ 630 nts of the genomic RNA and the major coat protein encapsidates the remainder of the genome. In this stud...

  8. Mutations in the gene encoding the Sigma 2 subunit of the adaptor protein 1 complex, AP1S2, cause X-linked mental retardation.

    PubMed

    Tarpey, Patrick S; Stevens, Claire; Teague, Jon; Edkins, Sarah; O'Meara, Sarah; Avis, Tim; Barthorpe, Syd; Buck, Gemma; Butler, Adam; Cole, Jennifer; Dicks, Ed; Gray, Kristian; Halliday, Kelly; Harrison, Rachel; Hills, Katy; Hinton, Jonathon; Jones, David; Menzies, Andrew; Mironenko, Tatiana; Perry, Janet; Raine, Keiran; Richardson, David; Shepherd, Rebecca; Small, Alexandra; Tofts, Calli; Varian, Jennifer; West, Sofie; Widaa, Sara; Yates, Andy; Catford, Rachael; Butler, Julia; Mallya, Uma; Moon, Jenny; Luo, Ying; Dorkins, Huw; Thompson, Deborah; Easton, Douglas F; Wooster, Richard; Bobrow, Martin; Carpenter, Nancy; Simensen, Richard J; Schwartz, Charles E; Stevenson, Roger E; Turner, Gillian; Partington, Michael; Gecz, Jozef; Stratton, Michael R; Futreal, P Andrew; Raymond, F Lucy

    2006-12-01

    In a systematic sequencing screen of the coding exons of the X chromosome in 250 families with X-linked mental retardation (XLMR), we identified two nonsense mutations and one consensus splice-site mutation in the AP1S2 gene on Xp22 in three families. Affected individuals in these families showed mild-to-profound mental retardation. Other features included hypotonia early in life and delay in walking. AP1S2 encodes an adaptin protein that constitutes part of the adaptor protein complex found at the cytoplasmic face of coated vesicles located at the Golgi complex. The complex mediates the recruitment of clathrin to the vesicle membrane. Aberrant endocytic processing through disruption of adaptor protein complexes is likely to result from the AP1S2 mutations identified in the three XLMR-affected families, and such defects may plausibly cause abnormal synaptic development and function. AP1S2 is the first reported XLMR gene that encodes a protein directly involved in the assembly of endocytic vesicles.

  9. Transfer of Fas (CD95) protein from the cell surface to the surface of polystyrene beads coated with anti-Fas antibody clone CH-11

    PubMed Central

    Sawai, H.; Domae, N.

    2010-01-01

    Mouse monoclonal anti-Fas (CD95) antibody clone CH-11 has been widely used in research on apoptosis. CH-11 has the ability to bind to Fas protein on cell surface and induce apoptosis. Here, we used polystyrene beads coated with CH-11 to investigate the role of lipid rafts in Fas-mediated apoptosis in SKW6.4 cells. Unexpectedly, by treatment of the cells with CH-11-coated beads Fas protein was detached from cell surface and transferred to the surface of CH-11-coated beads. Western blot analysis showed that Fas protein containing both extracellular and intracellular domains was attached to the beads. Fas protein was not transferred from the cells to the surface of the beads coated with other anti-Fas antibodies or Fas ligand. Similar phenomenon was observed in Jurkat T cells. Furthermore, CH-11-induced apoptosis was suppressed by pretreatment with CH-11-coated beads in Jurkat cells. These results suggest that CH-11 might possess distinct properties on Fas protein compared with other anti-Fas antibodies or Fas ligand, and also suggest that caution should be needed to use polystyrene beads coated with antibodies such as CH-11. PMID:20353915

  10. Nanostructured Mineral Coatings Stabilize Proteins for Therapeutic Delivery.

    PubMed

    Yu, Xiaohua; Biedrzycki, Adam H; Khalil, Andrew S; Hess, Dalton; Umhoefer, Jennifer M; Markel, Mark D; Murphy, William L

    2017-09-01

    Proteins tend to lose their biological activity due to their fragile structural conformation during formulation, storage, and delivery. Thus, the inability to stabilize proteins in controlled-release systems represents a major obstacle in drug delivery. Here, a bone mineral inspired protein stabilization strategy is presented, which uses nanostructured mineral coatings on medical devices. Proteins bound within the nanostructured coatings demonstrate enhanced stability against extreme external stressors, including organic solvents, proteases, and ethylene oxide gas sterilization. The protein stabilization effect is attributed to the maintenance of protein conformational structure, which is closely related to the nanoscale feature sizes of the mineral coatings. Basic fibroblast growth factor (bFGF) released from a nanostructured mineral coating maintains its biological activity for weeks during release, while it maintains activity for less than 7 d during release from commonly used polymeric microspheres. Delivery of the growth factors bFGF and vascular endothelial growth factor using a mineral coated surgical suture significantly improves functional Achilles tendon healing in a rabbit model, resulting in increased vascularization, more mature collagen fiber organization, and a two fold improvement in mechanical properties. The findings of this study demonstrate that biomimetic interactions between proteins and nanostructured minerals provide a new, broadly applicable mechanism to stabilize proteins in the context of drug delivery and regenerative medicine. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. 40 CFR 174.514 - Coat Protein of Watermelon Mosaic Virus-2 and Zucchini Yellow Mosaic Virus; exemption from the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Virus-2 and Zucchini Yellow Mosaic Virus; exemption from the requirement for a tolerance. 174.514... Coat Protein of Watermelon Mosaic Virus-2 and Zucchini Yellow Mosaic Virus; exemption from the requirement for a tolerance. Residues of Coat Protein of Watermelon Mosaic Virus-2 and Zucchini Yellow Mosaic...

  12. 40 CFR 174.514 - Coat Protein of Watermelon Mosaic Virus-2 and Zucchini Yellow Mosaic Virus; exemption from the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Virus-2 and Zucchini Yellow Mosaic Virus; exemption from the requirement for a tolerance. 174.514... Coat Protein of Watermelon Mosaic Virus-2 and Zucchini Yellow Mosaic Virus; exemption from the requirement for a tolerance. Residues of Coat Protein of Watermelon Mosaic Virus-2 and Zucchini Yellow Mosaic...

  13. 40 CFR 174.514 - Coat Protein of Watermelon Mosaic Virus-2 and Zucchini Yellow Mosaic Virus; exemption from the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Virus-2 and Zucchini Yellow Mosaic Virus; exemption from the requirement for a tolerance. 174.514... Coat Protein of Watermelon Mosaic Virus-2 and Zucchini Yellow Mosaic Virus; exemption from the requirement for a tolerance. Residues of Coat Protein of Watermelon Mosaic Virus-2 and Zucchini Yellow Mosaic...

  14. 40 CFR 174.514 - Coat Protein of Watermelon Mosaic Virus-2 and Zucchini Yellow Mosaic Virus; exemption from the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Virus-2 and Zucchini Yellow Mosaic Virus; exemption from the requirement for a tolerance. 174.514... Coat Protein of Watermelon Mosaic Virus-2 and Zucchini Yellow Mosaic Virus; exemption from the requirement for a tolerance. Residues of Coat Protein of Watermelon Mosaic Virus-2 and Zucchini Yellow Mosaic...

  15. Nucleic and Amino Acid Sequences Support Structure-Based Viral Classification.

    PubMed

    Sinclair, Robert M; Ravantti, Janne J; Bamford, Dennis H

    2017-04-15

    Viral capsids ensure viral genome integrity by protecting the enclosed nucleic acids. Interactions between the genome and capsid and between individual capsid proteins (i.e., capsid architecture) are intimate and are expected to be characterized by strong evolutionary conservation. For this reason, a capsid structure-based viral classification has been proposed as a way to bring order to the viral universe. The seeming lack of sufficient sequence similarity to reproduce this classification has made it difficult to reject structural convergence as the basis for the classification. We reinvestigate whether the structure-based classification for viral coat proteins making icosahedral virus capsids is in fact supported by previously undetected sequence similarity. Since codon choices can influence nascent protein folding cotranslationally, we searched for both amino acid and nucleotide sequence similarity. To demonstrate the sensitivity of the approach, we identify a candidate gene for the pandoravirus capsid protein. We show that the structure-based classification is strongly supported by amino acid and also nucleotide sequence similarities, suggesting that the similarities are due to common descent. The correspondence between structure-based and sequence-based analyses of the same proteins shown here allow them to be used in future analyses of the relationship between linear sequence information and macromolecular function, as well as between linear sequence and protein folds. IMPORTANCE Viral capsids protect nucleic acid genomes, which in turn encode capsid proteins. This tight coupling of protein shell and nucleic acids, together with strong functional constraints on capsid protein folding and architecture, leads to the hypothesis that capsid protein-coding nucleotide sequences may retain signatures of ancient viral evolution. We have been able to show that this is indeed the case, using the major capsid proteins of viruses forming icosahedral capsids. Importantly, we detected similarity at the nucleotide level between capsid protein-coding regions from viruses infecting cells belonging to all three domains of life, reproducing a previously established structure-based classification of icosahedral viral capsids. Copyright © 2017 Sinclair et al.

  16. Nucleic and Amino Acid Sequences Support Structure-Based Viral Classification

    PubMed Central

    Sinclair, Robert M.; Ravantti, Janne J.

    2017-01-01

    ABSTRACT Viral capsids ensure viral genome integrity by protecting the enclosed nucleic acids. Interactions between the genome and capsid and between individual capsid proteins (i.e., capsid architecture) are intimate and are expected to be characterized by strong evolutionary conservation. For this reason, a capsid structure-based viral classification has been proposed as a way to bring order to the viral universe. The seeming lack of sufficient sequence similarity to reproduce this classification has made it difficult to reject structural convergence as the basis for the classification. We reinvestigate whether the structure-based classification for viral coat proteins making icosahedral virus capsids is in fact supported by previously undetected sequence similarity. Since codon choices can influence nascent protein folding cotranslationally, we searched for both amino acid and nucleotide sequence similarity. To demonstrate the sensitivity of the approach, we identify a candidate gene for the pandoravirus capsid protein. We show that the structure-based classification is strongly supported by amino acid and also nucleotide sequence similarities, suggesting that the similarities are due to common descent. The correspondence between structure-based and sequence-based analyses of the same proteins shown here allow them to be used in future analyses of the relationship between linear sequence information and macromolecular function, as well as between linear sequence and protein folds. IMPORTANCE Viral capsids protect nucleic acid genomes, which in turn encode capsid proteins. This tight coupling of protein shell and nucleic acids, together with strong functional constraints on capsid protein folding and architecture, leads to the hypothesis that capsid protein-coding nucleotide sequences may retain signatures of ancient viral evolution. We have been able to show that this is indeed the case, using the major capsid proteins of viruses forming icosahedral capsids. Importantly, we detected similarity at the nucleotide level between capsid protein-coding regions from viruses infecting cells belonging to all three domains of life, reproducing a previously established structure-based classification of icosahedral viral capsids. PMID:28122979

  17. Coded excitation speeds up the detection of the fundamental flexural guided wave in coated tubes

    NASA Astrophysics Data System (ADS)

    Song, Xiaojun; Moilanen, Petro; Zhao, Zuomin; Ta, Dean; Pirhonen, Jalmari; Salmi, Ari; Hæeggström, Edward; Myllylä, Risto; Timonen, Jussi; Wang, Weiqi

    2016-09-01

    The fundamental flexural guided wave (FFGW) permits ultrasonic assessment of the wall thickness of solid waveguides, such as tubes or, e.g., long cortical bones. Recently, an optical non-contact method was proposed for ultrasound excitation and detection with the aim of facilitating the FFGW reception by suppressing the interfering modes from the soft coating. This technique suffers from low SNR and requires iterative physical scanning across the source-receiver distance for 2D-FFT analysis. This means that SNR improvement achieved by temporal averaging becomes time-consuming (several minutes) which reduces the applicability of the technique, especially in time-critical applications such as clinical quantitative ultrasound. To achieve sufficient SNR faster, an ultrasonic excitation by a base-sequence-modulated Golay code (BSGC, 64-bit code pair) on coated tube samples (1-5 mm wall thickness and 5 mm soft coating layer) was used. This approach improved SNR by 21 dB and speeded up the measurement by a factor of 100 compared to using a classical pulse excitation with temporal averaging. The measurement now took seconds instead of minutes, while the ability to determine the wall thickness of the phantoms was maintained. The technique thus allows rapid noncontacting assessment of the wall thickness in coated solid tubes, such as the human bone.

  18. Formation of the outer layer of the Dictyostelium spore coat depends on the inner-layer protein SP85/PsB.

    PubMed

    Metcalf, Talibah; Kelley, Karen; Erdos, Gregory W; Kaplan, Lee; West, Christopher M

    2003-02-01

    The Dictyostelium spore is surrounded by a 220 microm thick trilaminar coat that consists of inner and outer electron-dense layers surrounding a central region of cellulose microfibrils. In previous studies, a mutant strain (TL56) lacking three proteins associated with the outer layer exhibited increased permeability to macromolecular tracers, suggesting that this layer contributes to the coat permeability barrier. Electron microscopy now shows that the outer layer is incomplete in the coats of this mutant and consists of a residual regular array of punctate electron densities. The outer layer is also incomplete in a mutant lacking a cellulose-binding protein associated with the inner layer, and these coats are deficient in an outer-layer protein and another coat protein. To examine the mechanism by which this inner-layer protein, SP85, contributes to outer-layer formation, various domain fragments were overexpressed in forming spores. Most of these exert dominant negative effects similar to the deletion of outer-layer proteins, but one construct, consisting of a fusion of the N-terminal and Cys-rich C1 domain, induces a dense mat of novel filaments at the surface of the outer layer. Biochemical studies show that the C1 domain binds cellulose, and a combination of site-directed mutations that inhibits its cellulose-binding activity suppresses outer-layer filament induction. The results suggest that, in addition to a previously described early role in regulating cellulose synthesis, SP85 subsequently contributes a cross-bridging function between cellulose and other coat proteins to organize previously unrecognized structural elements in the outer layer of the coat.

  19. Physical Regulation of the Self-Assembly of Tobacco Mosaic Virus Coat Protein

    PubMed Central

    Kegel, Willem K.; van der Schoot, Paul

    2006-01-01

    We present a statistical mechanical model based on the principle of mass action that explains the main features of the in vitro aggregation behavior of the coat protein of tobacco mosaic virus (TMV). By comparing our model to experimentally obtained stability diagrams, titration experiments, and calorimetric data, we pin down three competing factors that regulate the transitions between the different kinds of aggregated state of the coat protein. These are hydrophobic interactions, electrostatic interactions, and the formation of so-called “Caspar” carboxylate pairs. We suggest that these factors could be universal and relevant to a large class of virus coat proteins. PMID:16731551

  20. A novel surface modification approach for protein and cell microarrays

    NASA Astrophysics Data System (ADS)

    Kurkuri, Mahaveer D.; Driever, Chantelle; Thissen, Helmut W.; Voelcker, Nicholas H.

    2007-01-01

    Tissue engineering and stem cell technologies have led to a rapidly increasing interest in the control of the behavior of mammalian cells growing on tissue culture substrates. Multifunctional polymer coatings can assist research in this area in many ways, for example, by providing low non-specific protein adsorption properties and reactive functional groups at the surface. The latter can be used for immobilization of specific biological factors that influence cell behavior. In this study, glass slides were coated with copolymers of glycidyl methacrylate (GMA) and poly(ethylene glycol) methacrylate (PEGMA). The coatings were prepared by three different methods based on dip and spin coating as well as polymer grafting procedures. Coatings were characterized by X-ray photoelectron spectroscopy, surface sensitive infrared spectroscopy, ellipsometry and contact angle measurements. A fluorescently labelled protein was deposited onto reactive coatings using a contact microarrayer. Printing of a model protein (fluorescein labeled bovine serum albumin) was performed at different protein concentrations, pH, temperature, humidity and using different micropins. The arraying of proteins was studied with a microarray scanner. Arrays printed at a protein concentration above 50 μg/mL prepared in pH 5 phosphate buffer at 10°C and 65% relative humidity gave the most favourable results in terms of the homogeneity of the printed spots and the fluorescence intensity.

  1. Architectural Coatings: National Volatile Organic Compounds Emission Standards

    EPA Pesticide Factsheets

    Read about the section 183(e) rule for volatile organic compounds for architectural coatings. Read the rule summary and history, find the code of federal regulations test, and additional documents, including compliance information.

  2. Conformational states of mutant M13 coat proteins are regulated by transmembrane residues.

    PubMed

    Li, Z; Glibowicka, M; Joensson, C; Deber, C M

    1993-03-05

    Mutational and structural analysis of the 28 viable bacteriophage M13 mutants obtained by randomized mutagenesis of the effective transmembrane (TM) segment of the 50-residue major coat (gene VIII) protein (residues 21-39) demonstrated that M13 coat protein functionality, as reflected by phage viability, is incompatible with an increase in Gly + beta-branched residue content in its TM core. SDS-polyacrylamide gel electrophoresis and circular dichroism spectroscopy performed in membrane environments on purified mutant coat proteins revealed that these proteins exist in a range of state(s), identified as helical monomers and dimers and polymeric (alpha-helical and/or beta-sheet) species, of which relative populations, and thermally induced conformational transitions, were dependent uniquely upon mutation type and locus. Mutations to relatively polar residues (e.g. G23D, Y24D, Y24H, A27E, I32T, and T36S) stabilized principally monomeric species, while mutants with decreased beta-branched content in the protein TM hydrophobic core (e.g. V29A, V30A, V31A, V31L, and V33A) displayed mainly dimeric species. Mutation of Ile37-->Thr within a "Sternberg-Gullick" consensus sequence of the coat protein TM segment led to a highly oligomerized/polymerized protein. The overall results suggest that TM residues in M13 coat protein are not universal components of a hydrophobic anchor segment per se, but are further selected (i) to impart conformational flexibility to the TM segment through helix destabilization and (ii) to retain the capacity to regulate protein-protein association and packing motifs within membranes.

  3. Characterization of a Novel Polerovirus Infecting Maize in China

    PubMed Central

    Chen, Sha; Jiang, Guangzhuang; Wu, Jianxiang; Liu, Yong; Qian, Yajuan; Zhou, Xueping

    2016-01-01

    A novel virus, tentatively named Maize Yellow Mosaic Virus (MaYMV), was identified from the field-grown maize plants showing yellow mosaic symptoms on the leaves collected from the Yunnan Province of China by the deep sequencing of small RNAs. The complete 5642 nucleotide (nt)-long genome of the MaYMV shared the highest nucleotide sequence identity (73%) to Maize Yellow Dwarf Virus-RMV. Sequence comparisons and phylogenetic analyses suggested that MaYMV represents a new member of the genus Polerovirus in the family Luteoviridae. Furthermore, the P0 protein encoded by MaYMV was demonstrated to inhibit both local and systemic RNA silencing by co-infiltration assays using transgenic Nicotiana benthamiana line 16c carrying the GFP reporter gene, which further supported the identification of a new polerovirus. The biologically-active cDNA clone of MaYMV was generated by inserting the full-length cDNA of MaYMV into the binary vector pCB301. RT-PCR and Northern blot analyses showed that this clone was systemically infectious upon agro-inoculation into N. benthamiana. Subsequently, 13 different isolates of MaYMV from field-grown maize plants in different geographical locations of Yunnan and Guizhou provinces of China were sequenced. Analyses of their molecular variation indicate that the 3′ half of P3–P5 read-through protein coding region was the most variable, whereas the coat protein- (CP-) and movement protein- (MP-)coding regions were the most conserved. PMID:27136578

  4. Characterization of a Novel Polerovirus Infecting Maize in China.

    PubMed

    Chen, Sha; Jiang, Guangzhuang; Wu, Jianxiang; Liu, Yong; Qian, Yajuan; Zhou, Xueping

    2016-04-28

    A novel virus, tentatively named Maize Yellow Mosaic Virus (MaYMV), was identified from the field-grown maize plants showing yellow mosaic symptoms on the leaves collected from the Yunnan Province of China by the deep sequencing of small RNAs. The complete 5642 nucleotide (nt)-long genome of the MaYMV shared the highest nucleotide sequence identity (73%) to Maize Yellow Dwarf Virus-RMV. Sequence comparisons and phylogenetic analyses suggested that MaYMV represents a new member of the genus Polerovirus in the family Luteoviridae. Furthermore, the P0 protein encoded by MaYMV was demonstrated to inhibit both local and systemic RNA silencing by co-infiltration assays using transgenic Nicotiana benthamiana line 16c carrying the GFP reporter gene, which further supported the identification of a new polerovirus. The biologically-active cDNA clone of MaYMV was generated by inserting the full-length cDNA of MaYMV into the binary vector pCB301. RT-PCR and Northern blot analyses showed that this clone was systemically infectious upon agro-inoculation into N. benthamiana. Subsequently, 13 different isolates of MaYMV from field-grown maize plants in different geographical locations of Yunnan and Guizhou provinces of China were sequenced. Analyses of their molecular variation indicate that the 3' half of P3-P5 read-through protein coding region was the most variable, whereas the coat protein- (CP-) and movement protein- (MP-)coding regions were the most conserved.

  5. Comprehensive protein profiling by multiplexed capillary zone electrophoresis using cross-linked polyacrylamide coated capillaries.

    PubMed

    Liu, Shaorong; Gao, Lin; Pu, Qiaosheng; Lu, Joann J; Wang, Xingjia

    2006-02-01

    We have recently developed a new process to create cross-linked polyacrylamide (CPA) coatings on capillary walls to suppress protein-wall interactions. Here, we demonstrate CPA-coated capillaries for high-efficiency (>2 x 10(6) plates per meter) protein separations by capillary zone electrophoresis (CZE). Because CPA virtually eliminates electroosmotic flow, positive and negative proteins cannot be analyzed in a single run. A "one-sample-two-separation" approach is developed to achieve a comprehensive protein analysis. High throughput is achieved through a multiplexed CZE system.

  6. Multivariate proteomic profiling identifies novel accessory proteins of coated vesicles

    PubMed Central

    Antrobus, Robin; Hirst, Jennifer; Bhumbra, Gary S.; Kozik, Patrycja; Jackson, Lauren P.; Sahlender, Daniela A.

    2012-01-01

    Despite recent advances in mass spectrometry, proteomic characterization of transport vesicles remains challenging. Here, we describe a multivariate proteomics approach to analyzing clathrin-coated vesicles (CCVs) from HeLa cells. siRNA knockdown of coat components and different fractionation protocols were used to obtain modified coated vesicle-enriched fractions, which were compared by stable isotope labeling of amino acids in cell culture (SILAC)-based quantitative mass spectrometry. 10 datasets were combined through principal component analysis into a “profiling” cluster analysis. Overall, 136 CCV-associated proteins were predicted, including 36 new proteins. The method identified >93% of established CCV coat proteins and assigned >91% correctly to intracellular or endocytic CCVs. Furthermore, the profiling analysis extends to less well characterized types of coated vesicles, and we identify and characterize the first AP-4 accessory protein, which we have named tepsin. Finally, our data explain how sequestration of TACC3 in cytosolic clathrin cages causes the severe mitotic defects observed in auxilin-depleted cells. The profiling approach can be adapted to address related cell and systems biological questions. PMID:22472443

  7. Two missense mutations in melanocortin 1 receptor (MC1R) are strongly associated with dark ventral coat color in reindeer (Rangifer tarandus).

    PubMed

    Våge, D I; Nieminen, M; Anderson, D G; Røed, K H

    2014-10-01

    The protein-coding region of melanocortin 1 receptor (MC1R) was sequenced to identify potential variation affecting coat color in reindeer (Rangifer tarandus). A T→C sequence variation at nucleotide position 218 (c.218T>C) causing an amino acid (aa) change from methionine to threonine at aa position 73 (p.Met73Thr) was identified. In addition, a T→G sequence variation was found at nucleotide position 839 (c.839T>G), causing phenylalanine to be exchanged by cysteine at aa position 280 (p.Phe280Cys). The two sequence variants (c.218C and c.839G) were found to be closely associated with a darker belly coat compared with animals not having any of these two variants. The aa acid change p.Met73Thr affects the same position as p.Met73Lys previously reported to give constitutive activation of MC1R in black sheep (Ovis aries), whereas p.Phe280Cys is identical to one of two variants previously reported to be associated with dark coat color in Arctic fox (Alopex lagopus), supporting that the two variants found in reindeer are functional. The complete absence of Thr73 and Cys280 among the 51 wild reindeer analyzed provides some evidence that these variants are more common in the domestic herds. © 2014 Stichting International Foundation for Animal Genetics.

  8. Characterization of regulatory elements within the coat protein (CP) coding region of Tobacco mosaic virus affecting subgenomic transcription and green fluorescent protein expression from the CP subgenomic RNA promoter.

    PubMed

    Man, Michal; Epel, Bernard L

    2004-06-01

    A replicon based on Tobacco mosaic virus that was engineered to express the open reading frame (ORF) of the green fluorescent protein (GFP) gene in place of the native coat protein (CP) gene from a minimal CP subgenomic (sg) RNA promoter was found to accumulate very low levels of GFP. Regulatory regions within the CP ORF were identified that, when presented as untranslated regions flanking the GFP ORF, enhanced or inhibited sg transcription and GFP expression. Full GFP expression from the CP sgRNA promoter required more than the first 20 nt of the CP ORF but not beyond the first 56 nt. Further analysis indicated the presence of an enhancer element between nt +25 and +55 with respect to the CP translation start site. The inclusion of this enhancer sequence upstream of the GFP ORF led to elevated sg transcription and to a 50-fold increase in GFP accumulation in comparison with a minimal CP promoter in which the entire CP ORF was displaced by the GFP ORF. Inclusion of the 3'-terminal 22 nt had a minor positive effect on GFP accumulation, but the addition of extended untranslated sequences from the 3' terminus of the CP ORF downstream of the GFP ORF was basically found to inhibit sg transcription. Secondary structure analysis programs predicted the CP sgRNA promoter to reside within two stable stem-loop structures, which are followed by an enhancer region.

  9. Upconversion Nanoparticles-Encoded Hydrogel Microbeads-Based Multiplexed Protein Detection

    NASA Astrophysics Data System (ADS)

    Shikha, Swati; Zheng, Xiang; Zhang, Yong

    2018-06-01

    Fluorescently encoded microbeads are in demand for multiplexed applications in different fields. Compared to organic dye-based commercially available Luminex's xMAP technology, upconversion nanoparticles (UCNPs) are better alternatives due to their large anti-Stokes shift, photostability, nil background, and single wavelength excitation. Here, we developed a new multiplexed detection system using UCNPs for encoding poly(ethylene glycol) diacrylate (PEGDA) microbeads as well as for labeling reporter antibody. However, to prepare UCNPs-encoded microbeads, currently used swelling-based encapsulation leads to non-uniformity, which is undesirable for fluorescence-based multiplexing. Hence, we utilized droplet microfluidics to obtain encoded microbeads of uniform size, shape, and UCNPs distribution inside. Additionally, PEGDA microbeads lack functionality for probe antibodies conjugation on their surface. Methods to functionalize the surface of PEGDA microbeads (acrylic acid incorporation, polydopamine coating) reported thus far quench the fluorescence of UCNPs. Here, PEGDA microbeads surface was coated with silica followed by carboxyl modification without compromising the fluorescence intensity of UCNPs. In this study, droplet microfluidics-assisted UCNPs-encoded microbeads of uniform shape, size, and fluorescence were prepared. Multiple color codes were generated by mixing UCNPs emitting red and green colors at different ratios prior to encapsulation. UCNPs emitting blue color were used to label the reporter antibody. Probe antibodies were covalently immobilized on red UCNPs-encoded microbeads for specific capture of human serum albumin (HSA) as a model protein. The system was also demonstrated for multiplexed detection of both human C-reactive protein (hCRP) and HSA protein by immobilizing anti-hCRP antibodies on green UCNPs.

  10. Modeling Thermal Noise from Crystaline Coatings for Gravitational-Wave Detectors

    NASA Astrophysics Data System (ADS)

    Demos, Nicholas; Lovelace, Geoffrey; LSC Collaboration

    2016-03-01

    The sensitivity of current and future ground-based gravitational-wave detectors are, in part, limited in sensitivity by Brownian and thermoelastic noise in each detector's mirror substrate and coating. Crystalline mirror coatings could potentially reduce thermal noise, but thermal noise is challenging to model analytically in the case of crystalline materials. Thermal noise can be modeled using the fluctuation-dissipation theorem, which relates thermal noise to an auxiliary elastic problem. In this poster, I will present results from a new code that numerically models thermal noise by numerically solving the auxiliary elastic problem for various types of crystalline mirror coatings. The code uses a finite element method with adaptive mesh refinement to model the auxiliary elastic problem which is then related to thermal noise. I will present preliminary results for a crystal coating on a fused silica substrate of varying sizes and elastic properties. This and future work will help develop the next generation of ground-based gravitational-wave detectors.

  11. Preparation of non-aggregated fluorescent nanodiamonds (FNDs) by non-covalent coating with a block copolymer and proteins for enhancement of intracellular uptake.

    PubMed

    Lee, Jong Woo; Lee, Seonju; Jang, Sangmok; Han, Kyu Young; Kim, Younggyu; Hyun, Jaekyung; Kim, Seong Keun; Lee, Yan

    2013-05-01

    Fluorescent nanodiamonds (FNDs) are very promising fluorophores for use in biosystems due to their high biocompatibility and photostability. To overcome their tendency to aggregate in physiological solutions, which severely limits the biological applications of FNDs, we developed a new non-covalent coating method using a block copolymer, PEG-b-P(DMAEMA-co-BMA), or proteins such as BSA and HSA. By simple mixing of the block copolymer with FNDs, the cationic DMAEMA and hydrophobic BMA moieties can strongly interact with the anionic and hydrophobic moieties on the FND surface, while the PEG block can form a shell to prevent the direct contact between FNDs. The polymer-coated FNDs, along with BSA- and HSA-coated FNDs, showed non-aggregation characteristics and maintained their size at the physiological salt concentration. The well-dispersed, polymer- or protein-coated FNDs in physiological solutions showed enhanced intracellular uptake, which was confirmed by CLSM. In addition, the biocompatibility of the coated FNDs was expressly supported by a cytotoxicity assay. Our simple non-covalent coating with the block copolymer, which can be easily modified by various chemical methods, projects a very promising outlook for future biomedical applications, especially in comparison with covalent coating or protein-based coating.

  12. Synthesis of recombinant human parainfluenza virus 1 and 3 nucleocapsid proteins in yeast Saccharomyces cerevisiae.

    PubMed

    Juozapaitis, Mindaugas; Zvirbliene, Aurelija; Kucinskaite, Indre; Sezaite, Indre; Slibinskas, Rimantas; Coiras, Mayte; de Ory Manchon, Fernando; López-Huertas, María Rosa; Pérez-Breña, Pilar; Staniulis, Juozas; Narkeviciute, Irena; Sasnauskas, Kestutis

    2008-05-01

    Human parainfluenza virus types 1 and 3 (HPIV1 and HPIV3, respectively), members of the virus family Paramyxoviridae, are common causes of lower respiratory tract infections in infants, young children, the immunocompromised, the chronically ill, and the elderly. In order to synthesize recombinant HPIV1 and HPIV3 nucleocapsid proteins, the coding sequences were cloned into the yeast Saccharomyces cerevisiae expression vector pFGG3 under control of GAL7 promoter. A high level of recombinant virus nucleocapsid proteins expression (20-24 mg l(-1) of yeast culture) was obtained. Electron microscopy demonstrated the assembly of typical herring-bone structures of purified recombinant nucleocapsid proteins, characteristic for other paramyxoviruses. These structures contained host RNA, which was resistant to RNase treatment. The nucleocapsid proteins were stable in yeast and were easily purified by caesium chloride gradient ultracentrifugation. Therefore, this system proved to be simple, efficient and cost-effective, suitable for high-level production of parainfluenza virus nucleocapsids as nucleocapsid-like particles. When used as coating antigens in an indirect ELISA, the recombinant N proteins reacted with sera of patients infected with HPIV1 or 3. Serological assays to detect HPIV-specific antibodies could be designed on this basis.

  13. Alterations in nanoparticle protein corona by biological surfactants: impact of bile salts on β-lactoglobulin-coated gold nanoparticles.

    PubMed

    Winuprasith, Thunnalin; Chantarak, Sirinya; Suphantharika, Manop; He, Lili; McClements, David Julian

    2014-07-15

    The impact of biological surfactants (bile salts) on the protein (β-lactoglobulin) corona surrounding gold nanoparticles (200 nm) was studied using a variety of analytical techniques at pH 7: dynamic light scattering (DLS); particle electrophoresis (ζ-potential); UV-visible (UV) spectroscopy; transmission electron microscopy (TEM); and surface-enhanced Raman scattering (SERS). The bile salts adsorbed to the protein-coated nanoparticle surfaces and altered their interfacial composition, charge, and structure. SERS spectra of protein-coated nanoparticles after bile salt addition contained bands from both protein and bile salts, indicating that the protein was not fully displaced by the bile salts. UV, DLS and TEM techniques also indicated that the protein coating was not fully displaced from the nanoparticle surfaces. The impact of bile salts could be described by an orogenic mechanism: mixed interfaces were formed that consisted of islands of aggregated proteins surrounded by a sea of bile salts. This knowledge is useful for understanding the interactions of bile salts with protein-coated colloidal particles, which may be important for controlling the fate of colloidal delivery systems in the human gastrointestinal tract, or the gastrointestinal fate of ingested inorganic nanoparticles. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. The PsB glycoprotein complex is secreted as a preassembled precursor of the spore coat in Dictyostelium discoideum.

    PubMed

    Watson, N; McGuire, V; Alexander, S

    1994-09-01

    The PsB glycoprotein in Dictyostelium discoideum is one of a diverse group of developmentally regulated, prespore-cell-specific proteins, that contain a common O-linked oligosaccharide. This post-translational modification is dependent on the wild-type modB allele. The PsB protein exists as part of a multiprotein complex of six different proteins, which have different post-translational modifications and are held together by both covalent and non-covalent interactions (Watson et al. (1993). J. Biol. Chem. 268, 22634-22641). In this study we have used microscopic and biochemical analyses to examine the cellular localization and function of the PsB complex during development. We found that the PsB complex first accumulates in prespore vesicles in slug cells and is secreted later during culmination and becomes localized to both the extracellular matrix of the apical spore mass of mature fruiting bodies and to the inner layer of the spore coat. The PsB associated with the spore coat is covalently bound by disulfide bridges. The PsB protein always exists in a multiprotein complex, but the composition of the PsB complex changes during secretion and spore maturation. Some of the PsB complex proteins have been identified as spore coat proteins. These data demonstrate that some of the proteins that form the spore coat exist as a preassembled precursor complex. The PsB complex is secreted in a developmentally regulated manner during the process of spore differentiation, at which time proteins of the complex, as well as additional spore coat proteins, become covalently associated in at least two forms of extracellular matrix: the interspore matrix and the spore coat. These and other studies show that proteins with modB dependent O-linked oligosaccharides are involved in a wide variety of processes underlying morphogenesis in this organism. These developmental processes are the direct result of cellular mechanisms regulating protein targeting, assembly and secretion, and the assembly of specific extracellular matrices.

  15. Identification of a novel microRNA important for melanogenesis in alpaca (Vicugna pacos).

    PubMed

    Yang, S; Fan, R; Shi, Z; Ji, K; Zhang, J; Wang, H; Herrid, M; Zhang, Q; Yao, J; Smith, G W; Dong, C

    2015-04-01

    The molecular mechanisms underlying the formation of coat colors in animals are poorly understood. Recent studies have demonstrated that microRNA play important roles in the control of melanogenesis and coat color in mammals. In a previous study, we characterized the miRNA expression profiles in alpaca skin with brown and white coat color and identified a novel miRNA (named lpa-miR-nov-66) that is expressed significantly higher in white skin compared to brown skin. The present study was conducted to determine the functional roles of this novel miRNA in the regulation of melanogenesis in alpaca melanocytes. lpa-miR-nov-66 is predicted to target the soluble guanylate cyclase (sGC) gene based on presence of a binding site in the sGC coding sequence (CDS). Overexpression of lpa-miR-nov-66 in alpaca melanocyes upregulated the expression of sGC both at the mRNA and protein level. Overexpression of lpa-miR-nov-66 in melanocyes also resulted in decreased expression of key melanogenic genes including tyrosinase (TYR), tyrosinase related protein 1 (TYRP1), and microphthalmia transcription factor (MITF). Our ELISA assays showed increased cyclic guanosine monophosphate (cGMP) but decreased cyclic adenosine monophosphate (cAMP) production in melanocytes overexpressing lpa-miR-nov-66. In addition, overexpression of lpa-miR-nov-66 also reduced melanin production in cultured melanocytes. Results support a role of lpa-miR-nov-66 in melanocytes by directly or indirectly targeting , which regulates melanogenesis via the cAMP pathway.

  16. Diverse amino acid changes at specific positions in the N-terminal region of the coat protein allow Plum pox virus to adapt to new hosts.

    PubMed

    Carbonell, Alberto; Maliogka, Varvara I; Pérez, José de Jesús; Salvador, Beatriz; León, David San; García, Juan Antonio; Simón-Mateo, Carmen

    2013-10-01

    Plum pox virus (PPV)-D and PPV-R are two isolates from strain D of PPV that differ in host specificity. Previous analyses of chimeras originating from PPV-R and PPV-D suggested that the N terminus of the coat protein (CP) includes host-specific pathogenicity determinants. Here, these determinants were mapped precisely by analyzing the infectivity in herbaceous and woody species of chimeras containing a fragment of the 3' region of PPV-D (including the region coding for the CP) in a PPV-R backbone. These chimeras were not infectious in Prunus persica, but systemically infected Nicotiana clevelandii and N. benthamiana when specific amino acids were modified or deleted in a short 30-amino-acid region of the N terminus of the CP. Most of these mutations did not reduce PPV fitness in Prunus spp. although others impaired systemic infection in this host. We propose a model in which the N terminus of the CP, highly relevant for virus systemic movement, is targeted by a host defense mechanism in Nicotiana spp. Mutations in this short region allow PPV to overcome the defense response in this host but can compromise the efficiency of PPV systemic movement in other hosts such as Prunus spp.

  17. Effect of chitosan coatings enriched with cinnamon oil on proximate composition of rainbow trout fillets

    NASA Astrophysics Data System (ADS)

    Yıldız, Pınar Oǧuzhan

    2017-04-01

    The effects of chitosan coating enriched with cinnamon oil on proximate composition of rainbow trout (Oncorhynchus mykiss) during storage at 4°C was investigated. The treatments included the following: C1 (control samples), C2 (chitosan coating) and C3 (chitosan + 1 % [v/w] cinnamon EO added). The control and the coated fish samples were analysed for chemical (moisture, protein, lipid and ash) composition. The mean of moisture, protein, lipid and ash in the control samples (C1) were 70.3%, 20.1%, 2.6% and 1.2%, in coated samples (C2) 69.70%, 24.21%, 2.4% and 2.2% and coated+cinnamon oil samples (C3) 69.70%, 25.05%, 2.5% and 2.2%, respectively. Moisture and lipid contents in control groups were higher than other groups, but protein and ash contents were lower. Significant increases (p<0.05) in protein content were observed between samples, which subsequently decreased the moisture content of these samples.

  18. Nanohardness, corrosion and protein adsorption properties of CuAlO2 films deposited on 316L stainless steel for biomedical applications

    NASA Astrophysics Data System (ADS)

    Chang, Shih-Hang; Chen, Jian-Zhang; Hsiao, Sou-Hui; Lin, Guan-Wei

    2014-01-01

    This study preliminarily assesses the biomedical applications of CuAlO2 coatings according to nanoindentation, electrochemical, and protein adsorption tests. Nanoindentation results revealed that the surface hardness of 316L stainless steel increased markedly after coating with CuAlO2 films. Electrochemical tests of corrosion potential, breakdown potential, and corrosion current density showed that the corrosion resistance properties of 316L stainless steel are considerably improved by CuAlO2 coatings. Bicinchoninic acid (BCA) protein assay results revealed that the protein adsorption behavior of 316L stainless steel did not exhibit notable differences with or without CuAlO2 coatings. A CuAlO2 coating of 100 nm thickness improved the surface nanohardness and corrosion resistance ability of 316L stainless steel. CuAlO2 is a potential candidate for biomaterial coating applications, particularly for surface modification of fine, delicate implants.

  19. A protein coated piezoelectric crystal detector

    NASA Astrophysics Data System (ADS)

    Suleiman, Ahmad; Pender, Marie; Ngeh-Ngwainbi, Jerome; Lubrano, Glenn; Guilbault, George

    1990-05-01

    The purpose of this project was to develop a protein coated, portable piezoelectric crystal detector for organophosphorus compounds. The performance of acetylcholinesterase, GD-1 anti-soman, anti-DMMP antibody, and bovine serum albumin (BSA) coatings was evaluated. Different immobilization methods were also tested. The responses obtained with the protein coatings immobilized via cross-linking with glutaraldehyde were acceptable, provided that the reference crystal was coated with dextran. The proposed coatings showed good stability and reasonable lifetimes that ranged from approximately three weeks in the case of the antibody coatings to several months in the case of BSA. Although moisture, gasoline, and sulfur are potential interferents, their effects on the sensor were eliminated by using a sodium sulfate scrubber which did not affect the performance of the detector towards organophosphates. A small, battery operated portable instrument capable of real time measurements with alarm function was produced. The instrument can be used in a wide range of applications, depending on the coatings applied to the crystals.

  20. Distinctive glial and neuronal interfacing on nanocrystalline diamond.

    PubMed

    Bendali, Amel; Agnès, Charles; Meffert, Simone; Forster, Valérie; Bongrain, Alexandre; Arnault, Jean-Charles; Sahel, José-Alain; Offenhäusser, Andreas; Bergonzo, Philippe; Picaud, Serge

    2014-01-01

    Direct electrode/neuron interfacing is a key challenge to achieve high resolution of neuronal stimulation required for visual prostheses. Neuronal interfacing on biomaterials commonly requires the presence of glial cells and/or protein coating. Nanocrystalline diamond is a highly mechanically stable biomaterial with a remarkably large potential window for the electrical stimulation of tissues. Using adult retinal cell cultures from rats, we found that glial cells and retinal neurons grew equally well on glass and nanocrystalline diamond. The use of a protein coating increased cell survival, particularly for glial cells. However, bipolar neurons appeared to grow even in direct contact with bare diamond. We investigated whether the presence of glial cells contributed to this direct neuron/diamond interface, by using purified adult retinal ganglion cells to seed diamond and glass surfaces with and without protein coatings. Surprisingly, these fully differentiated spiking neurons survived better on nanocrystalline diamond without any protein coating. This greater survival was indicated by larger cell numbers and the presence of longer neurites. When a protein pattern was drawn on diamond, neurons did not grow preferentially on the coated area, by contrast to their behavior on a patterned glass. This study highlights the interesting biocompatibility properties of nanocrystalline diamond, allowing direct neuronal interfacing, whereas a protein coating was required for glial cell growth.

  1. Distinctive Glial and Neuronal Interfacing on Nanocrystalline Diamond

    PubMed Central

    Bendali, Amel; Agnès, Charles; Meffert, Simone; Forster, Valérie; Bongrain, Alexandre; Arnault, Jean-Charles; Sahel, José-Alain; Offenhäusser, Andreas; Bergonzo, Philippe; Picaud, Serge

    2014-01-01

    Direct electrode/neuron interfacing is a key challenge to achieve high resolution of neuronal stimulation required for visual prostheses. Neuronal interfacing on biomaterials commonly requires the presence of glial cells and/or protein coating. Nanocrystalline diamond is a highly mechanically stable biomaterial with a remarkably large potential window for the electrical stimulation of tissues. Using adult retinal cell cultures from rats, we found that glial cells and retinal neurons grew equally well on glass and nanocrystalline diamond. The use of a protein coating increased cell survival, particularly for glial cells. However, bipolar neurons appeared to grow even in direct contact with bare diamond. We investigated whether the presence of glial cells contributed to this direct neuron/diamond interface, by using purified adult retinal ganglion cells to seed diamond and glass surfaces with and without protein coatings. Surprisingly, these fully differentiated spiking neurons survived better on nanocrystalline diamond without any protein coating. This greater survival was indicated by larger cell numbers and the presence of longer neurites. When a protein pattern was drawn on diamond, neurons did not grow preferentially on the coated area, by contrast to their behavior on a patterned glass. This study highlights the interesting biocompatibility properties of nanocrystalline diamond, allowing direct neuronal interfacing, whereas a protein coating was required for glial cell growth. PMID:24664111

  2. Flexible Vinyl and Urethane Coating and Printing: New Source Performance Standards (NSPS)

    EPA Pesticide Factsheets

    Learn about the New Source Performance Standards (NSPS) for flexible vinyl and urethane coating and printing by reading the rule summary, the rule history, the code of federal regulations subpart and related rules

  3. Pseudo-polyprotein translated from the full-length ORF1 of capillovirus is important for pathogenicity, but a truncated ORF1 protein without variable and CP regions is sufficient for replication.

    PubMed

    Hirata, Hisae; Yamaji, Yasuyuki; Komatsu, Ken; Kagiwada, Satoshi; Oshima, Kenro; Okano, Yukari; Takahashi, Shuichiro; Ugaki, Masashi; Namba, Shigetou

    2010-09-01

    The first open-reading frame (ORF) of the genus Capillovirus encodes an apparently chimeric polyprotein containing conserved regions for replicase (Rep) and coat protein (CP), while other viruses in the family Flexiviridae have separate ORFs encoding these proteins. To investigate the role of the full-length ORF1 polyprotein of capillovirus, we generated truncation mutants of ORF1 of apple stem grooving virus by inserting a termination codon into the variable region located between the putative Rep- and CP-coding regions. These mutants were capable of systemic infection, although their pathogenicity was attenuated. In vitro translation of ORF1 produced both the full-length polyprotein and the smaller Rep protein. The results of in vivo reporter assays suggested that the mechanism of this early termination is a ribosomal -1 frame-shift occurring downstream from the conserved Rep domains. The mechanism of capillovirus gene expression and the very close evolutionary relationship between the genera Capillovirus and Trichovirus are discussed. Copyright (c) 2010. Published by Elsevier B.V.

  4. Surface-independent antibacterial coating using silver nanoparticle-generating engineered mussel glue.

    PubMed

    Jo, Yun Kee; Seo, Jeong Hyun; Choi, Bong-Hyuk; Kim, Bum Jin; Shin, Hwa Hui; Hwang, Byeong Hee; Cha, Hyung Joon

    2014-11-26

    During implant surgeries, antibacterial agents are needed to prevent bacterial infections, which can cause the formation of biofilms between implanted materials and tissue. Mussel adhesive proteins (MAPs) derived from marine mussels are bioadhesives that show strong adhesion and coating ability on various surfaces even in wet environment. Here, we proposed a novel surface-independent antibacterial coating strategy based on the fusion of MAP to a silver-binding peptide, which can synthesize silver nanoparticles having broad antibacterial activity. This sticky recombinant fusion protein enabled the efficient coating on target surface and the easy generation of silver nanoparticles on the coated-surface under mild condition. The biosynthesized silver nanoparticles showed excellent antibacterial efficacy against both Gram-positive and Gram-negative bacteria and also revealed good cytocompatibility with mammalian cells. In this coating strategy, MAP-silver binding peptide fusion proteins provide hybrid environment incorporating inorganic silver nanoparticle and simultaneously mediate the interaction of silver nanoparticle with surroundings. Moreover, the silver nanoparticles were fully synthesized on various surfaces including metal, plastic, and glass by a simple, surface-independent coating manner, and they were also successfully synthesized on a nanofiber surface fabricated by electrospinning of the fusion protein. Thus, this facile surface-independent silver nanoparticle-generating antibacterial coating has great potential to be used for the prevention of bacterial infection in diverse biomedical fields.

  5. Adapter-directed display: a modular design for shuttling display on phage surfaces.

    PubMed

    Wang, Kevin Caili; Wang, Xinwei; Zhong, Pingyu; Luo, Peter Peizhi

    2010-02-05

    A novel adapter-directed phage display system was developed with modular features. In this system, the target protein is expressed as a fusion protein consisting of adapter GR1 from the phagemid vector, while the recombinant phage coat protein is expressed as a fusion protein consisting of adapter GR2 in the helper phage vector. Surface display of the target protein is accomplished through specific heterodimerization of GR1 and GR2 adapters, followed by incorporation of the heterodimers into phage particles. A series of engineered helper phages were constructed to facilitate both display valency and formats, based on various phage coat proteins. As the target protein is independent of a specific phage coat protein, this modular system allows the target protein to be displayed on any given phage coat protein and allows various display formats from the same vector without the need for reengineering. Here, we demonstrate the shuttling display of a single-chain Fv antibody on phage surfaces between multivalent and monovalent formats, as well as the shuttling display of an antigen-binding fragment molecule on phage coat proteins pIII, pVII, and pVIII using the same phagemid vectors combined with different helper phage vectors. This adapter-directed display concept has been applied to eukaryotic yeast surface display and to a novel cross-species display that can shuttle between prokaryotic phage and eukaryotic yeast systems. Copyright 2009 Elsevier Ltd. All rights reserved.

  6. Pressure Sensitive Tape and Label Surface Coating Industry: New Source Performance Standards (NSPS)

    EPA Pesticide Factsheets

    Learn about the New Source Performance Standards (NSPS) for pressure sensitive tape and label surface coating. Read the rule summary and history, and find the code of federal regulations and federal register citations.

  7. Polymeric Coating of Supporting Substrates Facilities: New Source Performance Standards (NSPS)

    EPA Pesticide Factsheets

    Learn more about the New Source Performance Standards (NSPS) rule for polymeric coating by reading the rule summary, rule history and the code of federal regulations subpart. Information on related rules is also on this page.

  8. Identification and Characterization of Arabidopsis Seed Coat Mucilage Proteins.

    PubMed

    Tsai, Allen Yi-Lun; Kunieda, Tadashi; Rogalski, Jason; Foster, Leonard J; Ellis, Brian E; Haughn, George W

    2017-02-01

    Plant cell wall proteins are important regulators of cell wall architecture and function. However, because cell wall proteins are difficult to extract and analyze, they are generally poorly understood. Here, we describe the identification and characterization of proteins integral to the Arabidopsis (Arabidopsis thaliana) seed coat mucilage, a specialized layer of the extracellular matrix composed of plant cell wall carbohydrates that is used as a model for cell wall research. The proteins identified in mucilage include those previously identified by genetic analysis, and several mucilage proteins are reduced in mucilage-deficient mutant seeds, suggesting that these proteins are genuinely associated with the mucilage. Arabidopsis mucilage has both nonadherent and adherent layers. Both layers have similar protein profiles except for proteins involved in lipid metabolism, which are present exclusively in the adherent mucilage. The most abundant mucilage proteins include a family of proteins named TESTA ABUNDANT1 (TBA1) to TBA3; a less abundant fourth homolog was named TBA-LIKE (TBAL). TBA and TBAL transcripts and promoter activities were detected in developing seed coats, and their expression requires seed coat differentiation regulators. TBA proteins are secreted to the mucilage pocket during differentiation. Although reverse genetics failed to identify a function for TBAs/TBAL, the TBA promoters are highly expressed and cell type specific and so should be very useful tools for targeting proteins to the seed coat epidermis. Altogether, these results highlight the mucilage proteome as a model for cell walls in general, as it shares similarities with other cell wall proteomes while also containing mucilage-specific features. © 2017 American Society of Plant Biologists. All Rights Reserved.

  9. Identification and Characterization of Arabidopsis Seed Coat Mucilage Proteins1[OPEN

    PubMed Central

    Tsai, Allen Yi-Lun; Kunieda, Tadashi; Rogalski, Jason; Foster, Leonard J.; Ellis, Brian E.

    2017-01-01

    Plant cell wall proteins are important regulators of cell wall architecture and function. However, because cell wall proteins are difficult to extract and analyze, they are generally poorly understood. Here, we describe the identification and characterization of proteins integral to the Arabidopsis (Arabidopsis thaliana) seed coat mucilage, a specialized layer of the extracellular matrix composed of plant cell wall carbohydrates that is used as a model for cell wall research. The proteins identified in mucilage include those previously identified by genetic analysis, and several mucilage proteins are reduced in mucilage-deficient mutant seeds, suggesting that these proteins are genuinely associated with the mucilage. Arabidopsis mucilage has both nonadherent and adherent layers. Both layers have similar protein profiles except for proteins involved in lipid metabolism, which are present exclusively in the adherent mucilage. The most abundant mucilage proteins include a family of proteins named TESTA ABUNDANT1 (TBA1) to TBA3; a less abundant fourth homolog was named TBA-LIKE (TBAL). TBA and TBAL transcripts and promoter activities were detected in developing seed coats, and their expression requires seed coat differentiation regulators. TBA proteins are secreted to the mucilage pocket during differentiation. Although reverse genetics failed to identify a function for TBAs/TBAL, the TBA promoters are highly expressed and cell type specific and so should be very useful tools for targeting proteins to the seed coat epidermis. Altogether, these results highlight the mucilage proteome as a model for cell walls in general, as it shares similarities with other cell wall proteomes while also containing mucilage-specific features. PMID:28003327

  10. Chemistry and stability of thiol based polyethylene glycol surface coatings on colloidal gold and their relationship to protein adsorption and clearance in vivo

    NASA Astrophysics Data System (ADS)

    Carpinone, Paul

    Nanomaterials have presented a wide range of novel biomedical applications, with particular emphasis placed on advances in imaging and treatment delivery. Of the many particulate nanomaterials researched for biomedical applications, gold is one of the most widely used. Colloidal gold has been of great interest due to its chemical inertness and its ability to perform multiple functions, such as drug delivery, localized heating of tissues (hyperthermia), and imaging (as a contrast agent). It is also readily functionalized through the use of thiols, which spontaneously form sulfur to gold bonds with the surface. Polyethylene glycol (PEG) is the most widely used coating material for these particles as it provides both steric stability to the suspension and protein resistance. These properties extend the circulation time of the particles in blood, and consequently the efficacy of the treatment. Despite widespread use of PEG coated gold particles, the coating chemistry and stability of these particles are largely unknown. The goal of this work was to identify the mechanisms leading to degradation and stability of thiol based polyethylene glycol coatings on gold particles and to relate this behavior to protein adsorption and clearance in vivo. The results indicate that the protective PEG coating is susceptible to sources of oxidation (including dissolved oxygen) and competing adsorbates, among other factors. The quality of commercially available thiolated PEG reagents was also found to play a key role in the quality and protein resistance of the final PEG coating. Analysis of the stability of these coatings indicated that they rapidly degrade under physiological conditions, leading to the onset of protein adsorption when exposed to plasma or blood. Paralleling the protein adsorption behavior and onset of coating degradation observed in vitro, blood clearance of parenterally administered PEG coated particles in mice began after approximately 2h of circulation time. Taken together, the data presented in this work indicates that the stability of the PEG coating and the many factors affecting it represent a fundamental limitation to the use of these particles.

  11. Development of bioactive coatings based on γ-irradiated proteins to preserve strawberries

    NASA Astrophysics Data System (ADS)

    Vu, K. D.; Hollingsworth, R. G.; Salmieri, S.; Takala, P. N.; Lacroix, M.

    2012-08-01

    Gamma irradiation was applied for creating cross-linked proteins to enhance the physicochemical properties of edible films made of calcium caseinate, whey protein isolate and glycerol. The characteristics of γ irradiated cross-linked proteins were analyzed by Fourier Transform Infrared spectroscopy. A second derivative spectra exhibited changes in band intensities that were correlated to an increase of β-sheet structure and a decrease of α-helix and unordered fractions of γ irradiated-cross-linked proteins as compared to the control without irradiation. Furthermore, on addition of methylcellulose to the irradiated protein matrix it was found that it has potential in enhancing the puncture strength and has no detrimental effect on water vapor permeability of protein based films. Finally, these film formulations were used as bioactive edible coatings containing natural antimicrobial agents (limonene and peppermint) to preserve the shelf life of fresh strawberries during storage. The bioactive coatings containing peppermint was found to be more efficient as preserving coatings than the formulations containing limonene. Irradiated proteins/methylcellulose/peppermint formulation had only 40% of decay at day 8 while it was 65% for the control.

  12. M13 bacteriophage coat proteins engineered for improved phage display.

    PubMed

    Sidhu, Sachdev S; Feld, Birte K; Weiss, Gregory A

    2007-01-01

    This chapter describes a method for increasing levels of protein fusions displayed on the surfaces of M13 bacteriophage particles. By introducing mutations into the anchoring M13 coat protein, protein display levels can be increased by up to two orders of magnitude. Experimental methods are presented for the design, construction, and screening of phage-displayed libraries for improved protein display.

  13. Brome mosaic virus, good for an RNA virologist's basic needs.

    PubMed

    Kao, C C; Sivakumaran, K

    2000-03-01

    Abstract Taxonomic relationship: Type member of the Bromovirus genus, family Bromoviridae. A member of the alphavirus-like supergroup of positive-sense single-stranded RNA viruses. Physical properties: Virions are nonenveloped icosahedrals made up of 180 coat protein subunits (Fig. 1). The particles are 26 nm in diameter and contain 22% nucleic acid and 78% protein. The BMV genome is composed of three positive-sense, capped RNAs: RNA1 (3.2 kb), RNA2 (2.9 kb), RNA3 (2.1 kb) (Fig. 2). Viral proteins: RNA1 encodes protein 1a, containing capping and putative RNA helicase activities. RNA2 encodes protein 2a, a putative RNA-dependent RNA polymerase. RNA3 codes for two proteins: 3a, which is required for cell-to-cell movement, and the capsid protein. The capsid is translated from a subgenomic RNA, RNA4 (1.2 kb). Hosts: Monocots in the Poacea family, including Bromus inermis, Zea mays and Hordeum vulgare, in which BMV causes brown streaks. BMV can also infect the dicots Nicotiana benthamiana and several Chenopodium species. In N. benthamiana, the infection is asymptomatic while infection of Chenopodium can cause either necrotic or chlorotic lesions. Useful website:http://www4.ncbi.nlm.nih.gov/ICTVdb/ICTVdB/10030001.htm.

  14. Lipid-coated mannitol core microparticles for sustained release of protein.

    PubMed

    Wang, Bifeng; Friess, Wolfgang

    2018-07-01

    Parenteral sustained release systems for proteins which provide therapeutic levels over a longer period avoiding frequent administration, which preserve protein stability during manufacturing, storage and application and which are biodegradable and highly biocompatible in the body are intensively sought after. The aim of this study was to generate and study mannitol core microparticles loaded with a monoclonal antibody IgG1 and coated with lipid either hard fat or glyceryl stearate at different coating levels. The protein was stabilized with 22.5 mg/mL sucrose, 0.1% PS 80, 10 mM methionine in 10 mM His buffer pH 7.2 during the spray loading process. 30 g protein-loaded mannitol carrier microparticles were coated with 5 g, 10 g, 20 g and 30 g of lipid, respectively. Placing more lipid onto the protein-loaded microparticles reduced both burst and release rate, and the particles maintained their geometric form during the release test. The IgG1 release from microparticles covered with a hard fat layer extended up to 6 weeks. The IgG1 was released in its monomeric form and maintained its secondary structure as shown by FTIR. Incomplete release of IgG1 from glyceryl stearate-coated microparticles was observed, which may be due to the small pore sizes of the glyceryl stearate layer or a detrimental surfactant character of glyceryl stearate to protein. Hence, these hard fat-coated mannitol core microparticles have high potential for protein delivery. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Performance modeling of Deep Burn TRISO fuel using ZrC as a load-bearing layer and an oxygen getter

    NASA Astrophysics Data System (ADS)

    Wongsawaeng, Doonyapong

    2010-01-01

    The effects of design choices for the TRISO particle fuel were explored in order to determine their contribution to attaining high-burnup in Deep Burn modular helium reactor fuels containing transuranics from light water reactor spent fuel. The new design features were: (1) ZrC coating substituted for the SiC, allowing the fuel to survive higher accident temperatures; (2) pyrocarbon/SiC "alloy" substituted for the inner pyrocarbon coating to reduce layer failure and (3) pyrocarbon seal coat and thin ZrC oxygen getter coating on the kernel to eliminate CO. Fuel performance was evaluated using General Atomics Company's PISA code. The only acceptable design has a 200-μm kernel diameter coupled with at least 150-μm thick, 50% porosity buffer, a 15-μm ZrC getter over a 10-μm pyrocarbon seal coat on the kernel, an alloy inner pyrocarbon, and ZrC substituted for SiC. The code predicted that during a 1600 °C postulated accident at 70% FIMA, the ZrC failure probability is <10-4.

  16. Formulating food protein-stabilized indomethacin nanosuspensions into pellets by fluid-bed coating technology: physical characterization, redispersibility, and dissolution.

    PubMed

    He, Wei; Lu, Yi; Qi, Jianping; Chen, Lingyun; Yin, Lifang; Wu, Wei

    2013-01-01

    Drug nanosuspensions are very promising for enhancing the dissolution and bioavailability of drugs that are poorly soluble in water. However, the poor stability of nanosuspensions, reflected in particle growth, aggregation/agglomeration, and change in crystallinity state greatly limits their applications. Solidification of nanosuspensions is an ideal strategy for addressing this problem. Hence, the present work aimed to convert drug nanosuspensions into pellets using fluid-bed coating technology. Indomethacin nanosuspensions were prepared by the precipitation-ultrasonication method using food proteins (soybean protein isolate, whey protein isolate, β-lactoglobulin) as stabilizers. Dried nanosuspensions were prepared by coating the nanosuspensions onto pellets. The redispersibility, drug dissolution, solid-state forms, and morphology of the dried nanosuspensions were evaluated. The mean particle size for the nanosuspensions stabilized using soybean protein isolate, whey protein isolate, and β-lactoglobulin was 588 nm, 320 nm, and 243 nm, respectively. The nanosuspensions could be successfully layered onto pellets with high coating efficiency. Both the dried nanosuspensions and nanosuspensions in their original amorphous state and not influenced by the fluid-bed coating drying process could be redispersed in water, maintaining their original particle size and size distribution. Both the dried nanosuspensions and the original drug nanosuspensions showed similar dissolution profiles, which were both much faster than that of the raw crystals. Fluid-bed coating technology has potential for use in the solidification of drug nanosuspensions.

  17. Screening of Potential Inhibitor against Coat Protein of Apple Chlorotic Leaf Spot Virus.

    PubMed

    Purohit, Rituraj; Kumar, Sachin; Hallan, Vipin

    2018-06-01

    In this study, we analyzed Coat protein (CP) of Apple chlorotic leaf spot virus (ACLSV), an important latent virus on Apple. Incidence of the virus is upto 60% in various apple cultivars, affecting yield losses of the order of 10-40% (depending upon the cultivar). CP plays an important role as the sole building block of the viral capsid. Homology approach was used to model 193 amino acid sequence of the coat protein. We used various servers such as ConSurf, TargetS, OSML, COACH, COFACTOR for the prediction of active site residues in coat protein. Virtual screening strategy was employed to search potential inhibitors for CP. Top twenty screened molecules considered for drugability, and toxicity analysis and one potential molecule was further analyzed by docking analysis. Here, we reported a potent molecule which could inhibit the formation of viron assembly by targeting the CP protein of virus.

  18. Bacterial adhesion to protein-coated surfaces: An AFM and QCM-D study

    NASA Astrophysics Data System (ADS)

    Strauss, Joshua; Liu, Yatao; Camesano, Terri A.

    2009-09-01

    Bacterial adhesion to biomaterials, mineral surfaces, or other industrial surfaces is strongly controlled by the way bacteria interact with protein layers or organic matter and other biomolecules that coat the materials. Despite this knowledge, many studies of bacterial adhesion are performed under clean conditions, instead of in the presence of proteins or organic molecules. We chose fetal bovine serum (FBS) as a model protein, and prepared FBS films on quartz crystals. The thickness of the FBS layer was characterized using atomic force microscopy (AFM) imaging under liquid and quartz crystal microbalance with dissipation (QCM-D). Next, we characterized how the model biomaterial surface would interact with the nocosomial pathogen Staphylococcus epidermidis. An AFM probe was coated with S. epidermidis cells and used to probe a gold slide that had been coated with FBS or another protein, fibronectin (FN). These experiments show that AFM and QCM-D can be used in complementary ways to study the complex interactions between bacteria, proteins, and surfaces.

  19. Kinetic regulation of coated vesicle secretion

    PubMed Central

    Foret, Lionel; Sens, Pierre

    2008-01-01

    The secretion of vesicles for intracellular transport often relies on the aggregation of specialized membrane-bound proteins into a coat able to curve cell membranes. The nucleation and growth of a protein coat is a kinetic process that competes with the energy-consuming turnover of coat components between the membrane and the cytosol. We propose a generic kinetic description of coat assembly and the formation of coated vesicles and discuss its implication to the dynamics of COP vesicles that traffic within the Golgi and with the endoplasmic reticulum. We show that stationary coats of fixed area emerge from the competition between coat growth and the recycling of coat components, in a fashion resembling the treadmilling of cytoskeletal filaments. We further show that the turnover of coat components allows for a highly sensitive switching mechanism between a quiescent and a vesicle producing membrane, upon a slowing down of the exchange kinetics. We claim that the existence of this switching behavior, also triggered by factors, such as the presence of cargo and variation of the membrane mechanical tension, allows for efficient regulation of vesicle secretion. We propose a model, supported by different experimental observations, in which vesiculation of secretory membranes is impaired by the energy-consuming desorption of coat proteins, until the presence of cargo or other factors triggers a dynamical switch into a vesicle producing state. PMID:18824695

  20. The dead seed coat functions as a long-term storage for active hydrolytic enzymes

    PubMed Central

    Raviv, Buzi; Aghajanyan, Lusine; Granot, Gila; Makover, Vardit; Frenkel, Omer; Gutterman, Yitzchak

    2017-01-01

    Seed development culminates in programmed cell death (PCD) and hardening of organs enclosing the embryo (e.g., pericarp, seed coat) providing essentially a physical shield for protection during storage in the soil. We examined the proposal that dead organs enclosing embryos are unique entities that store and release upon hydration active proteins that might increase seed persistence in soil, germination and seedling establishment. Proteome analyses of dead seed coats of Brassicaceae species revealed hundreds of proteins being stored in the seed coat and released upon hydration, many are stress-associated proteins such as nucleases, proteases and chitinases. Functional analysis revealed that dead seed coats function as long-term storage for multiple active hydrolytic enzymes (e.g., nucleases) that can persist in active forms for decades. Substances released from the dead seed coat of the annual desert plant Anastatica hierochuntica displayed strong antimicrobial activity. Our data highlighted a previously unrecognized feature of dead organs enclosing embryos (e.g., seed coat) functioning not only as a physical shield for embryo protection but also as a long-term storage for active proteins and other substances that are released upon hydration to the “seedsphere” and could contribute to seed persistence in the soil, germination and seedling establishment. PMID:28700755

  1. The dead seed coat functions as a long-term storage for active hydrolytic enzymes.

    PubMed

    Raviv, Buzi; Aghajanyan, Lusine; Granot, Gila; Makover, Vardit; Frenkel, Omer; Gutterman, Yitzchak; Grafi, Gideon

    2017-01-01

    Seed development culminates in programmed cell death (PCD) and hardening of organs enclosing the embryo (e.g., pericarp, seed coat) providing essentially a physical shield for protection during storage in the soil. We examined the proposal that dead organs enclosing embryos are unique entities that store and release upon hydration active proteins that might increase seed persistence in soil, germination and seedling establishment. Proteome analyses of dead seed coats of Brassicaceae species revealed hundreds of proteins being stored in the seed coat and released upon hydration, many are stress-associated proteins such as nucleases, proteases and chitinases. Functional analysis revealed that dead seed coats function as long-term storage for multiple active hydrolytic enzymes (e.g., nucleases) that can persist in active forms for decades. Substances released from the dead seed coat of the annual desert plant Anastatica hierochuntica displayed strong antimicrobial activity. Our data highlighted a previously unrecognized feature of dead organs enclosing embryos (e.g., seed coat) functioning not only as a physical shield for embryo protection but also as a long-term storage for active proteins and other substances that are released upon hydration to the "seedsphere" and could contribute to seed persistence in the soil, germination and seedling establishment.

  2. Promotion of pro-osteogenic responses by a bioactive ceramic coating.

    PubMed

    Aniket; Young, Amy; Marriott, Ian; El-Ghannam, Ahmed

    2012-12-01

    The objective of this study was to analyze the responses of bone-forming osteoblasts to Ti-6Al-4V implant material coated with silica-calcium phosphate nanocomposite (SCPC50). Osteoblast differentiation at the interface with SCPC50-coated Ti-6Al-4V was correlated to the adsorption of high amount of serum proteins, high surface affinity to fibronectin, Ca uptake from and P and Si release into the medium. SCPC50-coated Ti-6Al-4V adsorbed significantly more serum protein (p < 0.05) than control uncoated substrates. Moreover, Western blot analysis showed that the SCPC50 coating had a high affinity for serum fibronectin. Protein conformation analyses by FTIR showed that the ratio of the area under the peak for amide I/amide II bands was significantly higher (p < 0.05) on the surface of SCPC50-coated substrates than that on the surface of the control uncoated substrates. Moreover, ICP - OES analyses indicated that SCPC50-coated substrates withdrew Ca ions from, and released P and Si ions into, the tissue culture medium, respectively. In conjunction with the favorable protein adsorption and modifications in medium composition, MC3T3-E1 osteoblast-like cells attached to SCPC50-coated substrates expressed 10-fold higher level of mRNA encoding osteocalcin and had significantly higher production of osteopontin and osteocalcin proteins than cells attached to the uncoated Ti-6A1-4V substrates. In addition, osteoblast-like cells attached to the SCPC50-coated substrates produced significantly lower levels of the inflammatory and osteoclastogenic cytokines, IL-6, IL-12p40, and RANKL than those attached to uncoated Ti-6Al-4V substrates. These results suggest that SCPC50 coating could enhance bone integration with orthopedic and maxillofacial implants while minimizing the induction of inflammatory bone cell responses. Copyright © 2012 Wiley Periodicals, Inc.

  3. Design principles for robust vesiculation in clathrin-mediated endocytosis

    PubMed Central

    Hassinger, Julian E.; Oster, George; Drubin, David G.; Rangamani, Padmini

    2017-01-01

    A critical step in cellular-trafficking pathways is the budding of membranes by protein coats, which recent experiments have demonstrated can be inhibited by elevated membrane tension. The robustness of processes like clathrin-mediated endocytosis (CME) across a diverse range of organisms and mechanical environments suggests that the protein machinery in this process has evolved to take advantage of some set of physical design principles to ensure robust vesiculation against opposing forces like membrane tension. Using a theoretical model for membrane mechanics and membrane protein interaction, we have systematically investigated the influence of membrane rigidity, curvature induced by the protein coat, area covered by the protein coat, membrane tension, and force from actin polymerization on bud formation. Under low tension, the membrane smoothly evolves from a flat to budded morphology as the coat area or spontaneous curvature increases, whereas the membrane remains essentially flat at high tensions. At intermediate, physiologically relevant, tensions, the membrane undergoes a “snap-through instability” in which small changes in the coat area, spontaneous curvature or membrane tension cause the membrane to “snap” from an open, U-shape to a closed bud. This instability can be smoothed out by increasing the bending rigidity of the coat, allowing for successful budding at higher membrane tensions. Additionally, applied force from actin polymerization can bypass the instability by inducing a smooth transition from an open to a closed bud. Finally, a combination of increased coat rigidity and force from actin polymerization enables robust vesiculation even at high membrane tensions. PMID:28126722

  4. 75 FR 34964 - Approval and Promulgation of Air Quality Implementation Plans; Pennsylvania; Amendment to...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-21

    ... Architectural and Industrial Maintenance Coatings Regulations AGENCY: Environmental Protection Agency (EPA... and Architectural and Industrial Maintenance Coatings Regulations. The revision amends 25 Pa. Code Chapter 130, Subchapters B and C (relating to consumer products and architectural and industrial...

  5. Carbohydrate-protein interactions investigated on plastic chips statically coated with hydrophobically modified hydroxyethylcellulose.

    PubMed

    Dang, Fuquan; Maeda, Eiki; Osafune, Tomo; Nakajima, Kazuki; Kakehi, Kazuaki; Ishikawa, Mitsuru; Baba, Yoshinobu

    2009-12-15

    We developed a novel method for rapid screening of carbohydrate-protein interactions using poly(methyl methacrylate) (PMMA) channels statically coated with hydrophobically modified hydroxyethylcellulose (HM-HEC). We found that a self-assembled monolayer (SAM) of HM-HEC on a PMMA surface intact by water allows rapid and reproducible separations of glycan samples using a 20 mM phosphate without HM-HEC. The underlying mechanism for dynamic and static coatings on the PMMA surface is discussed. Simultaneous analysis of the molecular interaction between a complex mixture of carbohydrates from alpha1-acid glycoprotein and proteins has been successfully achieved in PMMA channels statically coated with a SAM of HM-HEC.

  6. Determination of the Gene Sequence of Poliovirus with Pactamycin

    PubMed Central

    Summers, D. F.; Maizel, J. V.

    1971-01-01

    By examination of the virus-specific polypeptides formed after the addition of pactamycin, an inhibitor of protein chain initiation, to infected cells, it has been possible to tentatively locate the virus coat proteins at the amino terminus of the large, virus-specific protein precursor, and, therefore, to assign the coat protein cistron to the 5′ end of the RNA. PMID:4330946

  7. Formulating food protein-stabilized indomethacin nanosuspensions into pellets by fluid-bed coating technology: physical characterization, redispersibility, and dissolution

    PubMed Central

    He, Wei; Lu, Yi; Qi, Jianping; Chen, Lingyun; Yin, Lifang; Wu, Wei

    2013-01-01

    Background Drug nanosuspensions are very promising for enhancing the dissolution and bioavailability of drugs that are poorly soluble in water. However, the poor stability of nanosuspensions, reflected in particle growth, aggregation/agglomeration, and change in crystallinity state greatly limits their applications. Solidification of nanosuspensions is an ideal strategy for addressing this problem. Hence, the present work aimed to convert drug nanosuspensions into pellets using fluid-bed coating technology. Methods Indomethacin nanosuspensions were prepared by the precipitation-ultrasonication method using food proteins (soybean protein isolate, whey protein isolate, β-lactoglobulin) as stabilizers. Dried nanosuspensions were prepared by coating the nanosuspensions onto pellets. The redispersibility, drug dissolution, solid-state forms, and morphology of the dried nanosuspensions were evaluated. Results The mean particle size for the nanosuspensions stabilized using soybean protein isolate, whey protein isolate, and β-lactoglobulin was 588 nm, 320 nm, and 243 nm, respectively. The nanosuspensions could be successfully layered onto pellets with high coating efficiency. Both the dried nanosuspensions and nanosuspensions in their original amorphous state and not influenced by the fluid-bed coating drying process could be redispersed in water, maintaining their original particle size and size distribution. Both the dried nanosuspensions and the original drug nanosuspensions showed similar dissolution profiles, which were both much faster than that of the raw crystals. Conclusion Fluid-bed coating technology has potential for use in the solidification of drug nanosuspensions. PMID:23983465

  8. Whey protein solution coating for fat-uptake reduction in deep-fried chicken breast strips.

    PubMed

    Dragich, Ann M; Krochta, John M

    2010-01-01

    This study investigated the use of whey protein, as an additional coating, in combination with basic, well-described predust, batter, and breading ingredients, for fat-uptake reduction in fried chicken. Chicken breasts were cut into strips (1 x 5 x 10 cm) and coated with wheat flour (WF) as a predust, dipped in batter, coated with WF as a breading, then dipped in 10% denatured whey protein isolate (DWPI) aqueous solution (wet basis). A WF-batter-WF treatment with no DWPI solution dip was included as a control. Coated chicken strips were deep-fried at 160 degrees C for 5 min. A Soxhlet-type extraction was performed to determine the fat content of the meat fraction of fried samples, the coating fraction of fried samples, raw chicken, and raw coating ingredients. The WF-batter-WF-10% DWPI solution had significantly lower fat uptake than the WF-batter-WF control, by 30.67% (dry basis). This article describes applied research involving fat reduction in coated deep-fried chicken. The methods used in this article were intended to achieve maximized fat reduction while maintaining a simple procedure applicable to actual food processing lines.

  9. A clathrin coat assembly role for the muniscin protein central linker revealed by TALEN-mediated gene editing

    PubMed Central

    Umasankar, Perunthottathu K; Ma, Li; Thieman, James R; Jha, Anupma; Doray, Balraj; Watkins, Simon C; Traub, Linton M

    2014-01-01

    Clathrin-mediated endocytosis is an evolutionarily ancient membrane transport system regulating cellular receptivity and responsiveness. Plasmalemma clathrin-coated structures range from unitary domed assemblies to expansive planar constructions with internal or flanking invaginated buds. Precisely how these morphologically-distinct coats are formed, and whether all are functionally equivalent for selective cargo internalization is still disputed. We have disrupted the genes encoding a set of early arriving clathrin-coat constituents, FCHO1 and FCHO2, in HeLa cells. Endocytic coats do not disappear in this genetic background; rather clustered planar lattices predominate and endocytosis slows, but does not cease. The central linker of FCHO proteins acts as an allosteric regulator of the prime endocytic adaptor, AP-2. By loading AP-2 onto the plasma membrane, FCHO proteins provide a parallel pathway for AP-2 activation and clathrin-coat fabrication. Further, the steady-state morphology of clathrin-coated structures appears to be a manifestation of the availability of the muniscin linker during lattice polymerization. DOI: http://dx.doi.org/10.7554/eLife.04137.001 PMID:25303365

  10. Protein-resistant polymer coatings obtained by matrix assisted pulsed laser evaporation

    NASA Astrophysics Data System (ADS)

    Rusen, L.; Mustaciosu, C.; Mitu, B.; Filipescu, M.; Dinescu, M.; Dinca, V.

    2013-08-01

    Adsorption of proteins and polysaccharides is known to facilitate microbial attachment and subsequent formation of biofilm on surfaces that ultimately results in its biofouling. Therefore, protein repellent modified surfaces are necessary to block the irreversible attachment of microorganisms. Within this context, the feasibility of using the Poly(ethylene glycol)-block-poly(ɛ-caprolactone) methyl ether (PEG-block-PCL Me) copolymer as potential protein-resistant coating was explored in this work. The films were deposited using Matrix Assisted Pulsed Laser Evaporation (MAPLE), a technique that allows good control of composition, thickness and homogeneity. The chemical and morphological characteristics of the films were examined using Fourier Transform Infrared Spectroscopy (FTIR), contact angle measurements and Atomic Force Microscopy (AFM). The FTIR data demonstrates that the functional groups in the MAPLE-deposited films remain intact, especially for fluences below 0.5 J cm-2. Optical Microscopy and AFM images show that the homogeneity and the roughness of the coatings are related to both laser parameters (fluence, number of pulses) and target composition. Protein adsorption tests were performed on the PEG-block-PCL Me copolymer coated glass and on bare glass surface as a control. The results show that the presence of copolymer as coating significantly reduces the adsorption of proteins.

  11. Role of the AP2 β-Appendage Hub in Recruiting Partners for Clathrin-Coated Vesicle Assembly

    PubMed Central

    Burtey, Anne; Praefcke, Gerrit J. K; Peak-Chew, Sew-Yeu; Mills, Ian G; Benmerah, Alexandre; McMahon, Harvey T

    2006-01-01

    Adaptor protein complex 2 α and β-appendage domains act as hubs for the assembly of accessory protein networks involved in clathrin-coated vesicle formation. We identify a large repertoire of β-appendage interactors by mass spectrometry. These interact with two distinct ligand interaction sites on the β-appendage (the “top” and “side” sites) that bind motifs distinct from those previously identified on the α-appendage. We solved the structure of the β-appendage with a peptide from the accessory protein Eps15 bound to the side site and with a peptide from the accessory cargo adaptor β-arrestin bound to the top site. We show that accessory proteins can bind simultaneously to multiple appendages, allowing these to cooperate in enhancing ligand avidities that appear to be irreversible in vitro. We now propose that clathrin, which interacts with the β-appendage, achieves ligand displacement in vivo by self-polymerisation as the coated pit matures. This changes the interaction environment from liquid-phase, affinity-driven interactions, to interactions driven by solid-phase stability (“matricity”). Accessory proteins that interact solely with the appendages are thereby displaced to areas of the coated pit where clathrin has not yet polymerised. However, proteins such as β-arrestin (non-visual arrestin) and autosomal recessive hypercholesterolemia protein, which have direct clathrin interactions, will remain in the coated pits with their interacting receptors. PMID:16903783

  12. Protein corona composition of gold nanoparticles/nanorods affects amyloid beta fibrillation process

    NASA Astrophysics Data System (ADS)

    Mirsadeghi, Somayeh; Dinarvand, Rassoul; Ghahremani, Mohammad Hossein; Hormozi-Nezhad, Mohammad Reza; Mahmoudi, Zohreh; Hajipour, Mohammad Javad; Atyabi, Fatemeh; Ghavami, Mahdi; Mahmoudi, Morteza

    2015-03-01

    Protein fibrillation process (e.g., from amyloid beta (Aβ) and α-synuclein) is the main cause of several catastrophic neurodegenerative diseases such as Alzheimer's and Parkinson diseases. During the past few decades, nanoparticles (NPs) were recognized as one of the most promising tools for inhibiting the progress of the disease by controlling the fibrillation kinetic process; for instance, gold NPs have a strong capability to inhibit Aβ fibrillations. It is now well understood that a layer of biomolecules would cover the surface of NPs (so called ``protein corona'') upon the interaction of NPs with protein sources. Due to the fact that the biological species (e.g., cells and amyloidal proteins) ``see'' the protein corona coated NPs rather than the pristine coated particles, one should monitor the fibrillation process of amyloidal proteins in the presence of corona coated NPs (and not pristine coated ones). Therefore, the previously obtained data on NPs effects on the fibrillation process should be modified to achieve a more reliable and predictable in vivo results. Herein, we probed the effects of various gold NPs (with different sizes and shapes) on the fibrillation process of Aβ in the presence and absence of protein sources (i.e., serum and plasma). We found that the protein corona formed a shell at the surface of gold NPs, regardless of their size and shape, reducing the access of Aβ to the gold inhibitory surface and, therefore, affecting the rate of Aβ fibril formation. More specifically, the anti-fibrillation potencies of various corona coated gold NPs were strongly dependent on the protein source and their concentrations (10% serum/plasma (simulation of an in vitro milieu) and 100% serum/plasma (simulation of an in vivo milieu)).Protein fibrillation process (e.g., from amyloid beta (Aβ) and α-synuclein) is the main cause of several catastrophic neurodegenerative diseases such as Alzheimer's and Parkinson diseases. During the past few decades, nanoparticles (NPs) were recognized as one of the most promising tools for inhibiting the progress of the disease by controlling the fibrillation kinetic process; for instance, gold NPs have a strong capability to inhibit Aβ fibrillations. It is now well understood that a layer of biomolecules would cover the surface of NPs (so called ``protein corona'') upon the interaction of NPs with protein sources. Due to the fact that the biological species (e.g., cells and amyloidal proteins) ``see'' the protein corona coated NPs rather than the pristine coated particles, one should monitor the fibrillation process of amyloidal proteins in the presence of corona coated NPs (and not pristine coated ones). Therefore, the previously obtained data on NPs effects on the fibrillation process should be modified to achieve a more reliable and predictable in vivo results. Herein, we probed the effects of various gold NPs (with different sizes and shapes) on the fibrillation process of Aβ in the presence and absence of protein sources (i.e., serum and plasma). We found that the protein corona formed a shell at the surface of gold NPs, regardless of their size and shape, reducing the access of Aβ to the gold inhibitory surface and, therefore, affecting the rate of Aβ fibril formation. More specifically, the anti-fibrillation potencies of various corona coated gold NPs were strongly dependent on the protein source and their concentrations (10% serum/plasma (simulation of an in vitro milieu) and 100% serum/plasma (simulation of an in vivo milieu)). Electronic supplementary information (ESI) available: Full characterization results of the nanoparticles, protein corona, and fibrillation process. See DOI: 10.1039/c4nr06009a

  13. Occurrence of Cucumber mosaic virus on vanilla (Vanilla planifolia Andrews) in India.

    PubMed

    Madhubala, R; Bhadramurthy, V; Bhat, A I; Hareesh, P S; Retheesh, S T; Bhai, R S

    2005-06-01

    Cucumber mosaic virus (CMV) causing mosaic, leaf distortion and stunting of vanilla (Vanilla planifolia Andrews) in India was characterized on the basis of biological and coat protein (CP) nucleotide sequence properties. In mechanical inoculation tests, the virus was found to infect members of Chenopodiaceae, Cucurbitaceae, Fabaceae and Solanaceae. Nicotiana benthamiana was found to be a suitable host for the propagation of CMV. The virus was purified from inoculated N. benthamiana plants and negatively stained purified preparations contained isometric particles of about 28 nm in diameter. The molecular weight of the viral coat protein subunits was found to be 25.0 kDa. Polyclonal antiserum was produced in New Zealand white rabbit, immunoglobulin G (IgG) was purified and conjugated with alkaline phosphatase enzyme. Double antibody sandwich-enzyme linked immunosorbent assay (DAS-ELISA) method was standardized for the detection of CMV infection in vanilla plants. CP gene of the virus was amplified using reverse transcriptase-polymerase chain reaction (RT-PCR), cloned and sequenced. Sequenced region contained a single open reading frame of 657 nucleotides potentially coding for 218 amino acids. Sequence analyses with other CMV isolates revealed the greatest identity with black pepper isolate of CMV (99%) and the phylogram clearly showed that CMV infecting vanilla belongs to subgroup IB. This is the first report of occurrence of CMV on V. planifolia from India.

  14. The cellulose-binding activity of the PsB multiprotein complex is required for proper assembly of the spore coat and spore viability in Dictyostelium discoideum.

    PubMed

    Srinivasan, S; Griffiths, K R; McGuire, V; Champion, A; Williams, K L; Alexander, S

    2000-08-01

    The terminal event of spore differentiation in the cellular slime mould Dictyostelium discoideum is the assembly of the spore coat, which surrounds the dormant amoeba and allows the organism to survive during extended periods of environmental stress. The spore coat is a polarized extracellular matrix composed of glycoproteins and cellulose. The process of spore coat formation begins by the regulated secretion of spore coat proteins from the prespore vesicles (PSVs). Four of the major spore coat proteins (SP96, PsB/SP85, SP70 and SP60) exist as a preassembled multiprotein complex within the PSVs. This complete complex has an endogenous cellulose-binding activity. Mutant strains lacking either the SP96 or SP70 proteins produce partial complexes that do not have cellulose-binding activity, while mutants lacking SP60 produce a partial complex that retains this activity. Using a combination of immunofluorescence microscopy and biochemical methods we now show that the lack of cellulose-binding activity in the SP96 and SP70 mutants results in abnormally assembled spore coats and spores with greatly reduced viability. In contrast, the SP60 mutant, in which the PsB complex retains its cellulose-binding activity, produces spores with apparently unaltered structure and viability. Thus, it is the loss of the cellulose-binding activity of the PsB complex, rather than the mere loss of individual spore coat proteins, that results in compromised spore coat structure. These results support the idea that the cellulose-binding activity associated with the complete PsB complex plays an active role in the assembly of the spore coat.

  15. Reverse transcription of phage RNA and its fragment directed by synthetic heteropolymeric primers

    PubMed Central

    Frolova, L. Yu.; Metelyev, V. G.; Ratmanova, K. I.; Smirnov, V. D.; Shabarova, Z. A.; Prokofyev, M. A.; Berzin, V. M.; Jansone, I. V.; Gren, E. J.; Kisselev, L. L.

    1977-01-01

    DNA synthesis catalysed by RNA-directed DNA-polymerase (reverse transcriptase) was found to proceed on the RNA template of an MS2 phage in the presence of heteropolymeric synthetic octa- and nonadeoxyribonucleotide primers complementary to the intercistronic region (coat protein binding site) and the region of the coat protein cistron, respectively. The product of synthesis consists of discrete DNA fractions of different length, including transcripts longer than 1,000 nucleotides. The coat protein inhibits DNA synthesis if it is initiated at its binding site, but has no effect on DNA synthesis initiated at the coat protein cistron. It has been suggested that, in this system, the initiation of DNA synthesis by synthetic primers is topographically specific. The MS2 coat protein binding site (an RNA fragment of 59 nucleotides) serves as a template for polydeoxyribonucleotide synthesis in the presence of octanucleotide primer and reverse transcriptase. The product of synthesis is homogenous and its length corresponds to the length of the template. The effective and complete copying of the fragment having a distinct secondary structure proves that the secondary structure does not interfere, in principle, with RNA being a template in the system of reverse transcription. PMID:71713

  16. Proteins encoded by the gerP operon are localised to the inner coat in Bacilluscereus spores and are dependent on GerPA and SafA for assembly.

    PubMed

    Ghosh, Abhinaba; Manton, James D; Mustafa, Amin R; Gupta, Mudit; Ayuso-Garcia, Alejandro; Rees, Eric J; Christie, Graham

    2018-05-04

    Germination of Bacillus spores is triggered by certain amino acids and sugar molecules, which permeate through the outermost layers of the spore to interact with receptor complexes that reside in the inner membrane. Previous studies have shown that mutations in the hexacistronic gerP locus reduce the rate of spore germination, with experimental evidence indicating that the defect stems from reduced permeability of the spore coat to germinant molecules. Here we use the ellipsoid localisation microscopy technique to reveal that all six Bacillus cereus GerP proteins share proximity with cortex lytic enzymes within the inner coat. We reveal also that the GerPA protein alone can localise in the absence of all other GerP proteins, and that it has an essential role for the localisation of all other GerP proteins within the spore. The latter is also demonstrated to be SafA - but not CotE - dependent for localisation, which is consistent with an inner coat location. GerP null spores are shown also to have reduced permeability to fluorescently labelled dextran molecules compared to wild type spores. Overall, the results support the hypothesis that the GerP proteins have a structural role within the spore associated with coat permeability. Importance The bacterial spore coat comprises a multi-layered proteinaceous structure that influences the distribution, survival and germination properties of spores in the environment. Results from the current study are significant since they increase our understanding of coat assembly and architecture while adding detail to existing models of germination. We demonstrate also that the ELM image analysis technique can be used as a novel tool to provide direct quantitative measurements of spore coat permeability. Progress in all of these areas should ultimately facilitate improved methods of spore control in a range of industrial, healthcare and environmental sectors. Copyright © 2018 American Society for Microbiology.

  17. An assessment of lactobiopolymer-montmorillonite composites for dip coating applications on fresh strawberries.

    PubMed

    Junqueira-Gonçalves, Maria Paula; Salinas, Gonzalo E; Bruna, Julio E; Niranjan, Keshavan

    2017-04-01

    The use of biopolymer coatings appears as a good alternative to preserve highly perishable fruits, as well as the environment. Proteins generally produce films with good mechanical properties, although their highly hydrophilic nature limits the use in many applications. Nanoparticles, such as nanoclays, can play a critical role in improving barrier properties. The present study evaluated the effect of the addition of montmorillonite (MMT)-nanoparticles to a lacto-biopolymer coating, focusing on: (i) the morphological, thermal and barrier properties of the material and (ii) the shelf life of coated fresh strawberries. The addition of MMT improved the water vapor barrier property. Morphological and thermal analysis indicated a good interaction between the milk protein and the nanoclay, which was intercalated within the milk protein base (MPB) matrix, offering a more tortuous path to diffusing migrants. The MMT-MPB coating helped to significantly (P ≤ 0.05) reduce the weight loss, as well as oxygen uptake and the release of carbon dioxide, and improved the fruit firmness and reduced mould and yeast load compared to the uncoated fruits. The addition of MMT gave statistical difference (P ≤ 0.05) in terms of weight loss, subjective global appearance and purchase intention of coated fresh strawberries. The addition of nanofillers, such as MMT, into protein-based coating could improve its water vapour barrier and could affect, positively, some parameters of the shelf life of coated strawberries. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  18. Differential proteomics analysis of the surface heterogeneity of dextran iron oxide nanoparticles and the implications for their in vivo clearance

    PubMed Central

    Simberg, Dmitri; Park, Ji-Ho; Karmali, Priya P.; Zhang, Wan-Ming; Merkulov, Sergei; McCrae, Keith; Bhatia, Sangeeta; Sailor, Michael; Ruoslahti, Erkki

    2009-01-01

    In order to understand the role of plasma proteins in the rapid liver clearance of dextran-coated superparamagnetic iron oxide (SPIO) in vivo, we analyzed the full repertoire of SPIO-binding blood proteins using novel two-dimensional differential mass spectrometry approach. The identified proteins showed specificity for surface domains of the nanoparticles: mannan-binding lectins bound to the dextran coating, histidine-rich glycoprotein and kininogen bound to the iron oxide part, and the complement lectin and contact clotting factors were secondary binders. Nanoparticle clearance studies in knockout mice suggested that these proteins, as well as several previously identified opsonins, do not play a significant role in the SPIO clearance. However, both the dextran coat and the iron oxide core remained accessible to specific probes after incubation of SPIO in plasma, suggesting that the nanoparticle surface could be available for recognition by macrophages, regardless of protein coating. These data provide guidance to rational design of bioinert, long-circulating nanoparticles. PMID:19394687

  19. Differential proteomics analysis of the surface heterogeneity of dextran iron oxide nanoparticles and the implications for their in vivo clearance.

    PubMed

    Simberg, Dmitri; Park, Ji-Ho; Karmali, Priya P; Zhang, Wan-Ming; Merkulov, Sergei; McCrae, Keith; Bhatia, Sangeeta N; Sailor, Michael; Ruoslahti, Erkki

    2009-08-01

    In order to understand the role of plasma proteins in the rapid liver clearance of dextran-coated superparamagnetic iron oxide (SPIO) in vivo, we analyzed the full repertoire of SPIO-binding blood proteins using novel two-dimensional differential mass spectrometry approach. The identified proteins showed specificity for surface domains of the nanoparticles: mannan-binding lectins bound to the dextran coating, histidine-rich glycoprotein and kininogen bound to the iron oxide part, and the complement lectin and contact clotting factors were secondary binders. Nanoparticle clearance studies in knockout mice suggested that these proteins, as well as several previously identified opsonins, do not play a significant role in the SPIO clearance. However, both the dextran coat and the iron oxide core remained accessible to specific probes after incubation of SPIO in plasma, suggesting that the nanoparticle surface could be available for recognition by macrophages, regardless of protein coating. These data provide guidance to rational design of bioinert, long-circulating nanoparticles.

  20. Effect of Protein-Based Edible Coating from Red Snapper (Lutjanus sp.) Surimi on Cooked Shrimp

    NASA Astrophysics Data System (ADS)

    Rostini, I.; Ibrahim, B.; Trilaksani, W.

    2018-02-01

    Surimi can be used as a raw material for making protein based edible coating to protect cooked shrimp color. The purpose of this study was to determine consumers preference level on cooked shrimp which coated by surimi edible coating from red snapper and to know the microscopic visualization of edible coating layer on cooked shrimp. The treatments for surimi edible coating were without and added by sappan wood (Caesalpinia sappan Linn) extract. Application of surimi edible coating on cooked shrimp was comprised methods (1) boiled then coated and (2) coated then boiled. Edible coating made from surimi with various concentrations which were 2, 6, 10 and 14% of distillated water. The analysis were done using hedonic test and microscopic observation with microscope photographs. Effect of surimi edible coating on cooked shrimp based on the hedonic and colour test results showed that the 14% surimi concentration, added by sappan wood (Caesalpinia sappan Linn) extract on edible coating was the most preferable by panellist and giving the highest shrimp colour. The edible coating surimi application on cooked shrimp which gave the best result was processed by boiling followed by coating.

  1. Architecture and assembly of the Bacillus subtilis spore coat.

    PubMed

    Plomp, Marco; Carroll, Alicia Monroe; Setlow, Peter; Malkin, Alexander J

    2014-01-01

    Bacillus spores are encased in a multilayer, proteinaceous self-assembled coat structure that assists in protecting the bacterial genome from stresses and consists of at least 70 proteins. The elucidation of Bacillus spore coat assembly, architecture, and function is critical to determining mechanisms of spore pathogenesis, environmental resistance, immune response, and physicochemical properties. Recently, genetic, biochemical and microscopy methods have provided new insight into spore coat architecture, assembly, structure and function. However, detailed spore coat architecture and assembly, comprehensive understanding of the proteomic composition of coat layers, and specific roles of coat proteins in coat assembly and their precise localization within the coat remain in question. In this study, atomic force microscopy was used to probe the coat structure of Bacillus subtilis wild type and cotA, cotB, safA, cotH, cotO, cotE, gerE, and cotE gerE spores. This approach provided high-resolution visualization of the various spore coat structures, new insight into the function of specific coat proteins, and enabled the development of a detailed model of spore coat architecture. This model is consistent with a recently reported four-layer coat assembly and further adds several coat layers not reported previously. The coat is organized starting from the outside into an outermost amorphous (crust) layer, a rodlet layer, a honeycomb layer, a fibrous layer, a layer of "nanodot" particles, a multilayer assembly, and finally the undercoat/basement layer. We propose that the assembly of the previously unreported fibrous layer, which we link to the darkly stained outer coat seen by electron microscopy, and the nanodot layer are cotH- and cotE- dependent and cotE-specific respectively. We further propose that the inner coat multilayer structure is crystalline with its apparent two-dimensional (2D) nuclei being the first example of a non-mineral 2D nucleation crystallization pattern in a biological organism.

  2. Architecture and Assembly of the Bacillus subtilis Spore Coat

    PubMed Central

    Plomp, Marco; Carroll, Alicia Monroe; Setlow, Peter; Malkin, Alexander J.

    2014-01-01

    Bacillus spores are encased in a multilayer, proteinaceous self-assembled coat structure that assists in protecting the bacterial genome from stresses and consists of at least 70 proteins. The elucidation of Bacillus spore coat assembly, architecture, and function is critical to determining mechanisms of spore pathogenesis, environmental resistance, immune response, and physicochemical properties. Recently, genetic, biochemical and microscopy methods have provided new insight into spore coat architecture, assembly, structure and function. However, detailed spore coat architecture and assembly, comprehensive understanding of the proteomic composition of coat layers, and specific roles of coat proteins in coat assembly and their precise localization within the coat remain in question. In this study, atomic force microscopy was used to probe the coat structure of Bacillus subtilis wild type and cotA, cotB, safA, cotH, cotO, cotE, gerE, and cotE gerE spores. This approach provided high-resolution visualization of the various spore coat structures, new insight into the function of specific coat proteins, and enabled the development of a detailed model of spore coat architecture. This model is consistent with a recently reported four-layer coat assembly and further adds several coat layers not reported previously. The coat is organized starting from the outside into an outermost amorphous (crust) layer, a rodlet layer, a honeycomb layer, a fibrous layer, a layer of “nanodot” particles, a multilayer assembly, and finally the undercoat/basement layer. We propose that the assembly of the previously unreported fibrous layer, which we link to the darkly stained outer coat seen by electron microscopy, and the nanodot layer are cotH- and cotE- dependent and cotE-specific respectively. We further propose that the inner coat multilayer structure is crystalline with its apparent two-dimensional (2D) nuclei being the first example of a non-mineral 2D nucleation crystallization pattern in a biological organism. PMID:25259857

  3. Seed Nutrition and Quality, Seed Coat Boron and Lignin Are Influenced by Delayed Harvest in Exotically-Derived Soybean Breeding Lines under High Heat.

    PubMed

    Bellaloui, Nacer; Smith, James R; Mengistu, Alemu

    2017-01-01

    The timing of harvest is a major factor affecting seed quality in soybean, particularly in Midsouthern USA, when rain during harvest period is not uncommon. The objective of this research was to evaluate the effects of time of harvest on soybean seed quality (seed composition, germination, seed coat boron, and lignin) in high germinability (HG) breeding lines (50% exotic) developed under high heat. The hypothesis was that seeds of HG lines possess physiological and genetic traits for a better seed quality at harvest maturity and delayed harvest. A 2-year field experiment was conducted under irrigated conditions. Results showed that, at harvest maturity, the exotic HG lines had higher seed protein, oleic acid, sugars, seed coat boron, and seed coat lignin, but lower seed oil compared with the non-exotic checks (Control), confirming our hypothesis. At 28 days after harvest maturity (delayed harvest), the content of seed protein, oleic acid, sugars, seed coat boron, and seed coat lignin were higher in some of the HG lines compared with the checks, indicating a possible involvement of these seed constituents, especially seed coat boron and seed coat lignin, in maintaining seed coat integrity and protecting seed coat against physical damage. Highly significant positive correlations were found between germination and seed protein, oleic acid, sugars, and seed coat boron and seed coat lignin. Highly significant negative correlation was found between germination and oil, linoleic acid, seed coat wrinkling, shattering, and hard seed. Yields of some HG lines were competitive with checks. This research demonstrated that time of harvesting is an important factor influencing seed protein and oil production. Also, since high oleic acid is desirable for oxidative stability, shelf-life and biodiesel properties, using HG lines could positively influence these important traits. This result should suggest to breeders of some of the advantages of selecting for high seed coat boron and lignin, and inform growers of the importance of timely harvest for maintaining high seed quality.

  4. Protozoal Digestion of Coat-Defective Bacillus subtilis Spores Produces “Rinds” Composed of Insoluble Coat Protein▿

    PubMed Central

    Carroll, Alicia Monroe; Plomp, Marco; Malkin, Alexander J.; Setlow, Peter

    2008-01-01

    The Bacillus subtilis spore coat is a multilayer, proteinaceous structure that consists of more than 50 proteins. Located on the surface of the spore, the coat provides resistance to potentially toxic molecules as well as to predation by the protozoan Tetrahymena thermophila. When coat-defective spores are fed to Tetrahymena, the spores are readily digested. However, a residue termed a “rind” that looks like coat material remains. As observed with a phase-contrast microscope, the rinds are spherical or hemispherical structures that appear to be devoid of internal contents. Atomic force microscopy and chemical analyses showed that (i) the rinds are composed of insoluble protein largely derived from both outer and inner spore coat layers, (ii) the amorphous layer of the outer coat is largely responsible for providing spore resistance to protozoal digestion, and (iii) the rinds and intact spores do not contain significant levels of silicon. PMID:18689521

  5. Variability and transmission by Aphis glycines of North American and Asian Soybean mosaic virus isolates.

    PubMed

    Domier, L L; Latorre, I J; Steinlage, T A; McCoppin, N; Hartman, G L

    2003-10-01

    The variability of North American and Asian strains and isolates of Soybean mosaic virus was investigated. First, polymerase chain reaction (PCR) products representing the coat protein (CP)-coding regions of 38 SMVs were analyzed for restriction fragment length polymorphisms (RFLP). Second, the nucleotide and predicted amino acid sequence variability of the P1-coding region of 18 SMVs and the helper component/protease (HC/Pro) and CP-coding regions of 25 SMVs were assessed. The CP nucleotide and predicted amino acid sequences were the most similar and predicted phylogenetic relationships similar to those obtained from RFLP analysis. Neither RFLP nor sequence analyses of the CP-coding regions grouped the SMVs by geographical origin. The P1 and HC/Pro sequences were more variable and separated the North American and Asian SMV isolates into two groups similar to previously reported differences in pathogenic diversity of the two sets of SMV isolates. The P1 region was the most informative of the three regions analyzed. To assess the biological relevance of the sequence differences in the HC/Pro and CP coding regions, the transmissibility of 14 SMV isolates by Aphis glycines was tested. All field isolates of SMV were transmitted efficiently by A. glycines, but the laboratory isolates analyzed were transmitted poorly. The amino acid sequences from most, but not all, of the poorly transmitted isolates contained mutations in the aphid transmission-associated DAG and/or KLSC amino acid sequence motifs of CP and HC/Pro, respectively.

  6. Sensing of heavy metal ions by intrinsic TMV coat protein fluorescence

    NASA Astrophysics Data System (ADS)

    Bayram, Serene S.; Green, Philippe; Blum, Amy Szuchmacher

    2018-04-01

    We propose the use of a cysteine mutant of TMV coat protein as a signal transducer for the selective sensing and quantification of the heavy metal ions, Cd2+, Pb2+, Zn2+ and Ni2+ based on intrinsic tryptophan quenching. TMV coat protein is inexpensive, can be mass-produced since it is expressed and extracted from E-coli. It also displays several different functional groups, enabling a wide repertoire of bioconjugation chemistries; thus it can be easily integrated into functional devices. In addition, TMV-ion interactions have been widely reported and utilized for metallization to generate organic-inorganic hybrid composite novel materials. Building on these previous observations, we herein determine, for the first time, the TMV-ion binding constants assuming the static fluorescence quenching model. We also show that by comparing TMV-ion interactions between native and denatured coat protein, we can distinguish between chemically similar heavy metal ions such as cadmium and zinc ions.

  7. Clathrin-independent pathways do not contribute significantly to endocytic flux.

    PubMed

    Bitsikas, Vassilis; Corrêa, Ivan R; Nichols, Benjamin J

    2014-09-17

    Several different endocytic pathways have been proposed to function in mammalian cells. Clathrin-coated pits are well defined, but the identity, mechanism and function of alternative pathways have been controversial. Here we apply universal chemical labelling of plasma membrane proteins to define all primary endocytic vesicles, and labelling of specific proteins with a reducible SNAP-tag substrate. These approaches provide high temporal resolution and stringent discrimination between surface-connected and intracellular membranes. We find that at least 95% of the earliest detectable endocytic vesicles arise from clathrin-coated pits. GPI-anchored proteins, candidate cargoes for alternate pathways, are also found to enter the cell predominantly via coated pits. Experiments employing a mutated clathrin adaptor reveal distinct mechanisms for sorting into coated pits, and thereby explain differential effects on the uptake of transferrin and GPI-anchored proteins. These data call for a revision of models for the activity and diversity of endocytic pathways in mammalian cells.

  8. Preventing Protein Adsorption and Macrophage Uptake of Gold Nanoparticles via a Hydrophobic Shield

    PubMed Central

    Larson, Timothy A.; Joshi, Pratixa P.; Sokolov, Konstantin

    2012-01-01

    Polyethylene glycol (PEG) surface coatings are widely used to render stealth properties to nanoparticles in biological applications. There is abundant literature on benefits of PEG coatings and their ability to reduce protein adsorption, to diminish non-specific interactions with cells, and to improve pharmacokinetics, but very little discussion of the limitations of PEG coatings. Here, we show that physiological concentrations of cysteine and cystine can displace methoxy-PEG-thiol molecules from the gold nanoparticle (GNP) surface that leads to protein adsorption and cell uptake in macrophages within 24 hours. Furthermore, we address this problem by incorporating an alkyl linker between the PEG and the thiol moieties that provides a hydrophobic shield layer between the gold surface and the hydrophilic outer PEG layer. The mPEG-alkyl-thiol coating greatly reduces protein adsorption on GNPs and their macrophage uptake. This has important implications for the design of GNP for biological systems. PMID:23009596

  9. Exosome purification based on PEG-coated Fe3O4 nanoparticles.

    PubMed

    Chang, Ming; Chang, Yaw-Jen; Chao, Pei Yu; Yu, Qing

    2018-01-01

    Cancer cells secrete many exosomes, which facilitate metastasis and the later growth of cancer. For early cancer diagnosis, the detection of exosomes is a crucial step. Exosomes exist in biological fluid, such as blood, which contains various proteins. It is necessary to remove the proteins in the biological fluid to avoid test interference. This paper presented a novel method for exosome isolation using Fe3O4 magnetic nanoparticles (MNPs), which were synthesized using the chemical co-precipitation method and then coated with polyethylene glycol (PEG). The experimental results showed that the diameter of the PEG-coated Fe3O4 nanoparticles was about 20 nm, while an agglomerate of MNPs reached hundreds of nanometers in size. In the protein removal experiments, fetal bovine serum (FBS) was adopted as the analyte for bioassays of exosome purification. PEG-coated Fe3O4 MNPs reduced the protein concentration in FBS to 39.89% of the original solution. By observing a particle size distribution of 30~200 nm (the size range of various exosomes), the exosome concentrations were kept the same before and after purification. In the gel electrophoresis experiments, the bands of CD63 (~53 kDa) and CD9 (~22 kDa) revealed that exosomes existed in FBS as well as in the purified solution. However, the bands of the serum albumins (~66 kDa) and the various immunoglobulins (around 160 ~ 188 kDa) in the purified solution's lane explained that most proteins in FBS were removed by PEG-coated Fe3O4 MNPs. When purifying exosomes from serum, protein removal is critical for further exosome investigation. The proposed technique provides a simple and effective method to remove proteins in the serum using the PEG-coated Fe3O4 MNPs.

  10. Identification of trapped and boundary lipid binding sites in M13 coat protein/lipid complexes by deuterium NMR spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Gorkom, L.C.; Horvath, L.I.; Hemminga, M.A.

    The major coat protein of M13 bacteriophage has been incorporated into bilayers of 1,2-dimyristoyl-sn-glycero-3-phosphocholine, deuterated in the trimethyl segments of the choline headgroup (DMPC-d9). Two-component deuterium and phosphorus-31 NMR spectra have been observed from bilayer complexes containing the coat protein, indicating slow exchange (on the deuterium quadrupole anisotropy and phosphorus-31 chemical shift averaging time scales) of lipid molecules of less than 10(3) Hz between two motionally distinct environments in the complexes. The fraction of the isotropic spectral component increases with increasing M13 protein concentration, and this component is attributed to lipid headgroups, which are disordered relative to their order inmore » protein-free bilayers. The activation energy of the fast local motions of the trimethyl groups of the choline residue in the headgroup decreases from 23 kJ mol-1 in the pure lipid bilayers to 20 kJ mol-1 for the protein-associated lipid headgroups. The chemical exchange rate of lipid molecules between the two motionally distinct environments has been estimated to be 20-50 Hz by steady-state line-shape simulations of the deuterium spectra of DMPC-d9/M13 coat protein complexes using exchange-coupled modified Bloch equations. The off-rate was, as expected from one-to-one exchange, independent of the L/P ratio; tau off -1 = 0.23 kHz. It is suggested that the protein-associated lipid may be trapped between closely packed parallel aggregates of M13 coat protein and that the high local concentration of protein in a one-dimensional arrangement in lipid bilayers may be required for the fast reassembly of phage particles before release from an infected cell.« less

  11. Physical, Chemical and Biochemical Modifications of Protein-Based Films and Coatings: An Extensive Review

    PubMed Central

    Zink, Joël; Wyrobnik, Tom; Prinz, Tobias; Schmid, Markus

    2016-01-01

    Protein-based films and coatings are an interesting alternative to traditional petroleum-based materials. However, their mechanical and barrier properties need to be enhanced in order to match those of the latter. Physical, chemical, and biochemical methods can be used for this purpose. The aim of this article is to provide an overview of the effects of various treatments on whey, soy, and wheat gluten protein-based films and coatings. These three protein sources have been chosen since they are among the most abundantly used and are well described in the literature. Similar behavior might be expected for other protein sources. Most of the modifications are still not fully understood at a fundamental level, but all the methods discussed change the properties of the proteins and resulting products. Mastering these modifications is an important step towards the industrial implementation of protein-based films. PMID:27563881

  12. Synthetic Spores Give Insight into the Real Thing and Reveal Functional Applications | Center for Cancer Research

    Cancer.gov

    Spores from bacteria, such as Bacillus subtilis, are produced to allow the bacterium’s genetic material to survive harsh environments. When the bacterium senses nutrient depletion, it divides asymmetrically into a forespore and a mother cell. The mother cell engulfs the forespore, and coat proteins synthesized by the mother cell localize to the surface of the forespore. The mother cell eventually ruptures, releasing the mature spore, which is surrounded by a thick shell of approximately 70 different proteins. This protein coat is one of the most durable static biological structures, but, because of its complexity, detailed studies of how the coat forms have been lacking. Kumaran Ramamurthi, Ph.D., of CCR’s Laboratory of Molecular Biology, and his colleagues including postdoctoral fellow and lead author of the study I-Lin Wu, Ph.D., decided to investigate the assembly of the basement layer of the spore coat by decorating spherical membranes supported by silica beads with SpoIVA and SpoVM, proteins which are known to be required for coat assembly.

  13. Binding of mouse immunoglobulin G to polylysine-coated glass substrate for immunodiagnosis

    NASA Astrophysics Data System (ADS)

    Vashist, Sandeep Kumar; Tewari, Rupinder; Bajpai, Ram Prakash; Bharadwaj, Lalit Mohan; Raiteri, Roberto

    2006-12-01

    We report a method for immobilizing mouse immunoglobulin G (IgG) on polylysine-coated glass substrate for immunodiagnostic applications. Mouse IgG molecules were immobilized on polylysine-coated glass substrate employing 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) and protein A. The amino groups of the polylysine-coated glass slide were cross linked to the carboxyl groups of protein A employing EDC crosslinker. Protein A was employed as it binds to the constant Fc region of antibodies keeping their antigen binding sites on the variable F ab region free to bind to antigens. The qualitative analysis of surface immobilized mouse IgG was done by fluorescent microscopy employing fluorescein isothiocyanate (FITC) labeled mouse IgG molecules. The immobilization densities of protein A and mouse IgG were determined by 3, 3', 4, 4'-tetramethyl benzidine (TMB) substrate assay employing horse radish peroxidise labelled molecules and were found to be 130 +/- 17 ng/cm2 and 596 +/- 31 ng/cm2 respectively. The biomolecular coatings analyzed by atomic force microscopy (AFM) were found to be uniform.

  14. Embryonal Control of Yellow Seed Coat Locus ECY1 Is Related to Alanine and Phenylalanine Metabolism in the Seed Embryo of Brassica napus

    PubMed Central

    Wang, Fulin; He, Jiewang; Shi, Jianghua; Zheng, Tao; Xu, Fei; Wu, Guanting; Liu, Renhu; Liu, Shengyi

    2016-01-01

    Seed coat color is determined by the type of pigment deposited in the seed coat cells. It is related to important agronomic traits of seeds such as seed dormancy, longevity, oil content, protein content and fiber content. In Brassica napus, inheritance of seed coat color is related to maternal effects and pollen effects (xenia effects). In this research we isolated a mutation of yellow seeded B. napus controlled by a single Mendelian locus, which is named Embryonal Control of Yellow seed coat 1 (Ecy1). Microscopy of transverse sections of the mature seed show that pigment is deposited only in the outer layer of the seed coat. Using Illumina Hisequation 2000 sequencing technology, a total of 12 GB clean data, 116× coverage of coding sequences of B. napus, was achieved from seeds 26 d after pollination (DAP). It was assembled into 172,238 independent transcripts, and 55,637 unigenes. A total of 139 orthologous genes of Arabidopsis transparent testa (TT) genes were mapped in silico to 19 chromosomes of B. napus. Only 49 of the TT orthologous genes are transcribed in seeds. However transcription of all orthologs was independent of embryonal control of seed coat color. Only 55 genes were found to be differentially expressed between brown seeds and the yellow mutant. Of these 55, 50 were upregulated and five were downregulated in yellow seeds as compared to their brown counterparts. By KEGG classification, 14 metabolic pathways were significantly enriched. Of these, five pathways: phenylpropanoid biosynthesis, cyanoamino acid metabolism, plant hormone signal transduction, metabolic pathways, and biosynthesis of secondary metabolites, were related with seed coat pigmentation. Free amino acid quantification showed that Ala and Phe were present at higher levels in the embryos of yellow seeds as compared to those of brown seeds. This increase was not observed in the seed coat. Moreover, the excess amount of free Ala was exactly twice that of Phe in the embryo. The pigment substrate chalcone is synthesized from two molecules of Ala and one molecule of Phe. The correlation between accumulation of Ala and Phe, and disappearance of pigment in the yellow seeded mutant, suggests that embryonal control of seed coat color is related with Phe and Ala metabolism in the embryo of B. napus. PMID:26896439

  15. The Coat Protein and NIa Protease of Two Potyviridae Family Members Independently Confer Superinfection Exclusion

    PubMed Central

    French, Roy

    2016-01-01

    ABSTRACT Superinfection exclusion (SIE) is an antagonistic virus-virus interaction whereby initial infection by one virus prevents subsequent infection by closely related viruses. Although SIE has been described in diverse viruses infecting plants, humans, and animals, its mechanisms, including involvement of specific viral determinants, are just beginning to be elucidated. In this study, SIE determinants encoded by two economically important wheat viruses, Wheat streak mosaic virus (WSMV; genus Tritimovirus, family Potyviridae) and Triticum mosaic virus (TriMV; genus Poacevirus, family Potyviridae), were identified in gain-of-function experiments that used heterologous viruses to express individual virus-encoded proteins in wheat. Wheat plants infected with TriMV expressing WSMV P1, HC-Pro, P3, 6K1, CI, 6K2, NIa-VPg, or NIb cistrons permitted efficient superinfection by WSMV expressing green fluorescent protein (WSMV-GFP). In contrast, wheat infected with TriMV expressing WSMV NIa-Pro or coat protein (CP) substantially excluded superinfection by WSMV-GFP, suggesting that both of these cistrons are SIE effectors encoded by WSMV. Importantly, SIE is due to functional WSMV NIa-Pro or CP rather than their encoding RNAs, as altering the coded protein products by minimally changing RNA sequences led to abolishment of SIE. Deletion mutagenesis further revealed that elicitation of SIE by NIa-Pro requires the entire protein while CP requires only a 200-amino-acid (aa) middle fragment (aa 101 to 300) of the 349 aa. Strikingly, reciprocal experiments with WSMV-mediated expression of TriMV proteins showed that TriMV CP, and TriMV NIa-Pro to a lesser extent, likewise excluded superinfection by TriMV-GFP. Collectively, these data demonstrate that WSMV- and TriMV-encoded CP and NIa-Pro proteins are effectors of SIE and that these two proteins trigger SIE independently of each other. IMPORTANCE Superinfection exclusion (SIE) is an antagonistic virus-virus interaction that prevents secondary invasions by identical or closely related viruses in the same host cells. Although known to occur in diverse viruses, SIE remains an enigma in terms of key molecular determinants and action mechanisms. In this study, we found that Wheat streak mosaic virus (WSMV) and Triticum mosaic virus (TriMV) encode two independently functioning cistrons that serve as effectors of SIE at the protein but not the RNA level. The coat protein and NIa-Pro encoded by these two viruses, when expressed from a heterologous virus, exerted SIE to the cognate viruses. The identification of virus-encoded effectors of SIE and their transgenic expression could potentially facilitate the development of virus-resistant crop plants. Additionally, functional conservation of SIE in diverse virus groups suggests that a better understanding of the underlying mechanisms of SIE could facilitate the development of novel antiviral therapies against viral diseases. PMID:27681136

  16. Detection of Intermediates And Kinetic Control During Assembly of Bacteriophage P22 Procapsid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tuma, R.; Tsuruta, H.; French, K.H.

    2009-05-26

    Bacteriophage P22 serves as a model for the assembly and maturation of other icosahedral double-stranded DNA viruses. P22 coat and scaffolding proteins assemble in vitro into an icosahedral procapsid, which then expands during DNA packaging (maturation). Efficient in vitro assembly makes this system suitable for design and production of monodisperse spherical nanoparticles (diameter {approx} 50 nm). In this work, we explore the possibility of controlling the outcome of assembly by scaffolding protein engineering. The scaffolding protein exists in monomer-dimer-tetramer equilibrium. We address the role of monomers and dimers in assembly by using three different scaffolding proteins with altered monomer-dimer equilibriummore » (weak dimer, covalent dimer, monomer). The progress and outcome of assembly was monitored by time-resolved X-ray scattering, which allowed us to distinguish between closed shells and incomplete assembly intermediates. Binding of scaffolding monomer activates the coat protein for assembly. Excess dimeric scaffolding protein resulted in rapid nucleation and kinetic trapping yielding incomplete shells. Addition of monomeric wild-type scaffold with excess coat protein completed these metastable shells. Thus, the monomeric scaffolding protein plays an essential role in the elongation phase by activating the coat and effectively lowering its critical concentration for assembly.« less

  17. Photoreactive elastin-like proteins for use as versatile bioactive materials and surface coatings

    PubMed Central

    Raphel, Jordan; Parisi-Amon, Andreina; Heilshorn, Sarah

    2012-01-01

    Photocrosslinkable, protein-engineered biomaterials combine a rapid, controllable, cytocompatible crosslinking method with a modular design strategy to create a new family of bioactive materials. These materials have a wide range of biomedical applications, including the development of bioactive implant coatings, drug delivery vehicles, and tissue engineering scaffolds. We present the successful functionalization of a bioactive elastin-like protein with photoreactive diazirine moieties. Scalable synthesis is achieved using a standard recombinant protein expression host followed by site-specific modification of lysine residues with a heterobifunctional N-hydroxysuccinimide ester-diazirine crosslinker. The resulting biomaterial is demonstrated to be processable by spin coating, drop casting, soft lithographic patterning, and mold casting to fabricate a variety of two- and three-dimensional photocrosslinked biomaterials with length scales spanning the nanometer to millimeter range. Protein thin films proved to be highly stable over a three-week period. Cell-adhesive functional domains incorporated into the engineered protein materials were shown to remain active post-photo-processing. Human adipose-derived stem cells achieved faster rates of cell adhesion and larger spread areas on thin films of the engineered protein compared to control substrates. The ease and scalability of material production, processing versatility, and modular bioactive functionality make this recombinantly engineered protein an ideal candidate for the development of novel biomaterial coatings, films, and scaffolds. PMID:23015764

  18. Photoreactive elastin-like proteins for use as versatile bioactive materials and surface coatings.

    PubMed

    Raphel, Jordan; Parisi-Amon, Andreina; Heilshorn, Sarah

    2012-10-07

    Photocrosslinkable, protein-engineered biomaterials combine a rapid, controllable, cytocompatible crosslinking method with a modular design strategy to create a new family of bioactive materials. These materials have a wide range of biomedical applications, including the development of bioactive implant coatings, drug delivery vehicles, and tissue engineering scaffolds. We present the successful functionalization of a bioactive elastin-like protein with photoreactive diazirine moieties. Scalable synthesis is achieved using a standard recombinant protein expression host followed by site-specific modification of lysine residues with a heterobifunctional N-hydroxysuccinimide ester-diazirine crosslinker. The resulting biomaterial is demonstrated to be processable by spin coating, drop casting, soft lithographic patterning, and mold casting to fabricate a variety of two- and three-dimensional photocrosslinked biomaterials with length scales spanning the nanometer to millimeter range. Protein thin films proved to be highly stable over a three-week period. Cell-adhesive functional domains incorporated into the engineered protein materials were shown to remain active post-photo-processing. Human adipose-derived stem cells achieved faster rates of cell adhesion and larger spread areas on thin films of the engineered protein compared to control substrates. The ease and scalability of material production, processing versatility, and modular bioactive functionality make this recombinantly engineered protein an ideal candidate for the development of novel biomaterial coatings, films, and scaffolds.

  19. Improving biocompatibility by surface modification techniques on implantable bioelectronics.

    PubMed

    Lin, Peter; Lin, Chii-Wann; Mansour, Raafat; Gu, Frank

    2013-09-15

    For implantable bioelectronic devices, the interface between the device and the biological environment requires significant attention as it dictates the device performance in vivo. Non-specific protein adsorption onto the device surface is the initial stage of many degradation mechanisms that will ultimately compromise the functionality of the device. In order to preserve the functionality of any implanted bioelectronics overtime, protein adsorption must be controlled. This review paper outlines two major approaches to minimize protein adsorption onto the surface of implantable electronics. The first approach is surface coating, which minimizes close proximity interactions between proteins and device surfaces by immobilizing electrically neutral hydrophilic polymers as surface coating. These coatings reduce protein fouling by steric repulsion and formation of a hydration layer which acts as both a physical and energetic barrier that minimize protein adsorption onto the device. Relevant performances of various conventional hydrophilic coatings are discussed. The second approach is surface patterning using arrays of hydrophobic nanostructures through photolithography techniques. By establishing a large slip length via super hydrophobic surfaces, the amount of proteins adsorbed to the surface of the device can be reduced. The last section discusses emerging surface coating techniques utilizing zwitterionic polymers where ultralow-biofouling surfaces have been demonstrated. These surface modification techniques may significantly improve the long-term functionality of implantable bioelectronics, thus allowing researchers to overcome challenges to diagnose and treat chronic neurological and cardiovascular diseases. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. The Conserved Spore Coat Protein SpoVM Is Largely Dispensable in Clostridium difficile Spore Formation.

    PubMed

    Ribis, John W; Ravichandran, Priyanka; Putnam, Emily E; Pishdadian, Keyan; Shen, Aimee

    2017-01-01

    The spore-forming bacterial pathogen Clostridium difficile is a leading cause of health care-associated infections in the United States. In order for this obligate anaerobe to transmit infection, it must form metabolically dormant spores prior to exiting the host. A key step during this process is the assembly of a protective, multilayered proteinaceous coat around the spore. Coat assembly depends on coat morphogenetic proteins recruiting distinct subsets of coat proteins to the developing spore. While 10 coat morphogenetic proteins have been identified in Bacillus subtilis , only two of these morphogenetic proteins have homologs in the Clostridia : SpoIVA and SpoVM. C. difficile SpoIVA is critical for proper coat assembly and functional spore formation, but the requirement for SpoVM during this process was unknown. Here, we show that SpoVM is largely dispensable for C. difficile spore formation, in contrast with B. subtilis . Loss of C. difficile SpoVM resulted in modest decreases (~3-fold) in heat- and chloroform-resistant spore formation, while morphological defects such as coat detachment from the forespore and abnormal cortex thickness were observed in ~30% of spoVM mutant cells. Biochemical analyses revealed that C. difficile SpoIVA and SpoVM directly interact, similarly to their B. subtilis counterparts. However, in contrast with B. subtilis , C. difficile SpoVM was not essential for SpoIVA to encase the forespore. Since C. difficile coat morphogenesis requires SpoIVA-interacting protein L (SipL), which is conserved exclusively in the Clostridia , but not the more broadly conserved SpoVM, our results reveal another key difference between C. difficile and B. subtilis spore assembly pathways. IMPORTANCE The spore-forming obligate anaerobe Clostridium difficile is the leading cause of antibiotic-associated diarrheal disease in the United States. When C. difficile spores are ingested by susceptible individuals, they germinate within the gut and transform into vegetative, toxin-secreting cells. During infection, C. difficile must also induce spore formation to survive exit from the host. Since spore formation is essential for transmission, understanding the basic mechanisms underlying sporulation in C. difficile could inform the development of therapeutic strategies targeting spores. In this study, we determine the requirement of the C. difficile homolog of SpoVM, a protein that is essential for spore formation in Bacillus subtilis due to its regulation of coat and cortex formation. We observed that SpoVM plays a minor role in C. difficile spore formation, in contrast with B. subtilis , indicating that this protein would not be a good target for inhibiting spore formation.

  1. The Conserved Spore Coat Protein SpoVM Is Largely Dispensable in Clostridium difficile Spore Formation

    PubMed Central

    Ribis, John W.; Ravichandran, Priyanka; Putnam, Emily E.; Pishdadian, Keyan

    2017-01-01

    ABSTRACT The spore-forming bacterial pathogen Clostridium difficile is a leading cause of health care-associated infections in the United States. In order for this obligate anaerobe to transmit infection, it must form metabolically dormant spores prior to exiting the host. A key step during this process is the assembly of a protective, multilayered proteinaceous coat around the spore. Coat assembly depends on coat morphogenetic proteins recruiting distinct subsets of coat proteins to the developing spore. While 10 coat morphogenetic proteins have been identified in Bacillus subtilis, only two of these morphogenetic proteins have homologs in the Clostridia: SpoIVA and SpoVM. C. difficile SpoIVA is critical for proper coat assembly and functional spore formation, but the requirement for SpoVM during this process was unknown. Here, we show that SpoVM is largely dispensable for C. difficile spore formation, in contrast with B. subtilis. Loss of C. difficile SpoVM resulted in modest decreases (~3-fold) in heat- and chloroform-resistant spore formation, while morphological defects such as coat detachment from the forespore and abnormal cortex thickness were observed in ~30% of spoVM mutant cells. Biochemical analyses revealed that C. difficile SpoIVA and SpoVM directly interact, similarly to their B. subtilis counterparts. However, in contrast with B. subtilis, C. difficile SpoVM was not essential for SpoIVA to encase the forespore. Since C. difficile coat morphogenesis requires SpoIVA-interacting protein L (SipL), which is conserved exclusively in the Clostridia, but not the more broadly conserved SpoVM, our results reveal another key difference between C. difficile and B. subtilis spore assembly pathways. IMPORTANCE The spore-forming obligate anaerobe Clostridium difficile is the leading cause of antibiotic-associated diarrheal disease in the United States. When C. difficile spores are ingested by susceptible individuals, they germinate within the gut and transform into vegetative, toxin-secreting cells. During infection, C. difficile must also induce spore formation to survive exit from the host. Since spore formation is essential for transmission, understanding the basic mechanisms underlying sporulation in C. difficile could inform the development of therapeutic strategies targeting spores. In this study, we determine the requirement of the C. difficile homolog of SpoVM, a protein that is essential for spore formation in Bacillus subtilis due to its regulation of coat and cortex formation. We observed that SpoVM plays a minor role in C. difficile spore formation, in contrast with B. subtilis, indicating that this protein would not be a good target for inhibiting spore formation. PMID:28959733

  2. Surfactant-free Colloidal Particles with Specific Binding Affinity

    PubMed Central

    2017-01-01

    Colloidal particles with specific binding affinity are essential for in vivo and in vitro biosensing, targeted drug delivery, and micrometer-scale self-assembly. Key to these techniques are surface functionalizations that provide high affinities to specific target molecules. For stabilization in physiological environments, current particle coating methods rely on adsorbed surfactants. However, spontaneous desorption of these surfactants typically has an undesirable influence on lipid membranes. To address this issue and create particles for targeting molecules in lipid membranes, we present here a surfactant-free coating method that combines high binding affinity with stability at physiological conditions. After activating charge-stabilized polystyrene microparticles with EDC/Sulfo-NHS, we first coat the particles with a specific protein and subsequently covalently attach a dense layer of poly(ethyelene) glycol. This polymer layer provides colloidal stability at physiological conditions as well as antiadhesive properties, while the protein coating provides the specific affinity to the targeted molecule. We show that NeutrAvidin-functionalized particles bind specifically to biotinylated membranes and that Concanavalin A-functionalized particles bind specifically to the glycocortex of Dictyostelium discoideum cells. The affinity of the particles changes with protein density, which can be tuned during the coating procedure. The generic and surfactant-free coating method reported here transfers the high affinity and specificity of a protein onto colloidal polystyrene microparticles. PMID:28847149

  3. Protein adsorption and cell adhesion on nanoscale bioactive coatings formed from poly(ethylene glycol) and albumin microgels

    PubMed Central

    Scott, Evan A.; Nichols, Michael D.; Cordova, Lee H.; George, Brandon J.; Jun, Young-Shin; Elbert, Donald L.

    2008-01-01

    Late-term thrombosis on drug-eluting stents is an emerging problem that might be addressed using extremely thin, biologically-active hydrogel coatings. We report a dip-coating strategy to covalently link poly(ethylene glycol) (PEG) to substrates, producing coatings with <≈100 nm thickness. Gelation of PEG-octavinylsulfone with amines in either bovine serum albumin (BSA) or PEG-octaamine was monitored by dynamic light scattering (DLS), revealing the presence of microgels before macrogelation. NMR also revealed extremely high end group conversions prior to macrogelation, consistent with the formation of highly crosslinked microgels and deviation from Flory-Stockmayer theory. Before macrogelation, the reacting solutions were diluted and incubated with nucleophile-functionalized surfaces. Using optical waveguide lightmode spectroscopy (OWLS) and quartz crystal microbalance with dissipation (QCM-D), we identified a highly hydrated, protein-resistant layer with a thickness of approximately 75 nm. Atomic force microscopy in buffered water revealed the presence of coalesced spheres of various sizes but with diameters less than about 100 nm. Microgel-coated glass or poly(ethylene terephthalate) exhibited reduced protein adsorption and cell adhesion. Cellular interactions with the surface could be controlled by using different proteins to cap unreacted vinylsulfone groups within the coating. PMID:18771802

  4. Advanced stent coating for drug delivery and in vivo biocompatibility

    NASA Astrophysics Data System (ADS)

    Liu, Yi; Wang, Wuchen; Acharya, Gayathri; Shim, Yoon-Bo; Choe, Eun Sang; Lee, Chi H.

    2013-10-01

    As an effort to alleviate stent-induced cardiovascular injury including restenosis and thrombosis, advanced drug-eluting stent (ADES) with a bilayer construct composed of a top-coat made of collagen and a base-coat incorporated with N-nitrosomelatonin (NOMela)-loaded PLGA nanoparticles has been developed. NOMela is a hydrophobic prodrug of nitric oxide (NO) that is an endogenous anti-platelet compound. ADES was coated with PLGA nanoparticles via either electrophoretic deposition (EPD) technique or dip-coating technique, and their coating characteristics and efficacies were compared. The drug-loading efficacy and in vitro drug-release profiles from ADES were expressed with various variables including the additives to the collagen layer, the number of layers of the collagen top-coat, the hydrophobicity/hydrophilicity of the loaded drug, the coating technique of nanoparticles, and the concentration of coating emulsions in the EPD method. The morphological status of cross-section and surface of ADES was evaluated by laser scanning confocal microscope and scanning electronic microscope. The real-time release profiles of NO were assessed using the NO-microbiosensor. The anti-platelet activity of ADES was evaluated on the rabbit whole blood using an aggregometer. The intima formation and protein expression in aorta were examined using an in vivo rat model. Both collagen and PLGA used in ADES are biodegradable polymers that fully degrade and consequently produce less inflammation responses. NO released from ADES significantly reduced platelet aggregation in the rabbit blood as compared with those exposed to the control stents. ADES coated with a double layer consisted of collagen and PLGA and containing NOMela was less antigenic at the implanted sites and alleviating intima formation and thrombosis. An external exposure of aorta to NO elicits distinct and specific effects on mitogen-activated protein kinase (MAPK) and Ca2+/calmodulin-dependent protein kinase II (CaMKII) activities which evoke the endoplasmic reticulum (ER) stress response. These findings elucidated that coordinate and reciprocal alterations in the protein kinases followed by the ER stress protein expression are an integral feature of the in-stent-mediated cardiovascular injury.

  5. Historical overview of research on the tobacco mosaic virus genome: genome organization, infectivity and gene manipulation.

    PubMed Central

    Okada, Y

    1999-01-01

    Early in the development of molecular biology, TMV RNA was widely used as a mRNA [corrected] that could be purified easily, and it contributed much to research on protein synthesis. Also, in the early stages of elucidation of the genetic code, artificially produced TMV mutants were widely used and provided the first proof that the genetic code was non-overlapping. In 1982, Goelet et al. determined the complete TMV RNA base sequence of 6395 nucleotides. The four genes (130K, 180K, 30K and coat protein) could then be mapped at precise locations in the TMV genome. Furthermore it had become clear, a little earlier, that genes located internally in the genome were expressed via subgenomic mRNAs. The initiation site for assembly of TMV particles was also determined. However, although TMV contributed so much at the beginning of the development of molecular biology, its influence was replaced by that of Escherichia coli and its phages in the next phase. As recombinant DNA technology developed in the 1980s, RNA virus research became more detached from the frontier of molecular biology. To recover from this setback, a gene-manipulation system was needed for RNA viruses. In 1986, two such systems were developed for TMV, using full-length cDNA clones, by Dawson's group and by Okada's group. Thus, reverse genetics could be used to elucidate the basic functions of all proteins encoded by the TMV genome. Identification of the function of the 30K protein was especially important because it was the first evidence that a plant virus possesses a cell-to-cell movement function. Many other plant viruses have since been found to encode comparable 'movement proteins'. TMV thus became the first plant virus for which structures and functions were known for all its genes. At the birth of molecular plant pathology, TMV became a leader again. TMV has also played pioneering roles in many other fields. TMV was the first virus for which the amino acid sequence of the coat protein was determined and first virus for which cotranslational disassembly was demonstrated both in vivo and in vitro. It was the first virus for which activation of a resistance gene in a host plant was related to the molecular specificity of a product of a viral gene. Also, in the field of plant biotechnology, TMV vectors are among the most promising. Thus, for the 100 years since Beijerinck's work, TMV research has consistently played a leading role in opening up new areas of study, not only in plant pathology, but also in virology, biochemistry, molecular biology, RNA genetics and biotechnology. PMID:10212936

  6. Bufo arenarum egg jelly coat: purification and characterization of two highly glycosylated proteins.

    PubMed Central

    Arranz, S E; Albertali, I E; Cabada, M O

    1997-01-01

    Egg jelly coats from Bufo arenarum are formed by components secreted along the oviduct. These secretion products overlay the oocytes as they transit along the different oviductal portions. In this study, we have isolated two highly glycosylated proteins of the jelly coat, which are secreted almost all the way along the oviduct. Both glycoproteins [designated as highly glycosylated protein (HGP) and low-molecular-mass highly glycosylated protein (L-HGP)] were purified to homogeneity, from the secretion of the caudal oviduct portion, by CsCl density gradient ultracentrifugation. HGP is a high-molecular-mass protein with mucin-like characteristics: high viscosity, a high content of serine and threonine, about 70% carbohydrate by weight, and a protease-resistant domain. Cleavage of disulphide bridges with reducing agents resulted in the release of a single subunit (300000 Da). L-HGP is also a disulphide-cross-linked protein with lower apparent monomeric molecular mass, in the range 100-120 kDa and containing 50% carbohydrate by weight. HGP contains galactose, fucose, N-acetylgalactosamine and sialic acid, but no mannose, suggesting the presence of O-linked oligosaccharides exclusively. The secretion ratio of HGP increases from cephalic (16% of total protein in pars preconvoluta) to caudal (40% of total protein in pars convoluta) oviductal portions. It appears to be the major structural component of the jelly coat. Our purification data suggest that HGP is non-covalently linked to the other egg jelly proteins. Polyclonal antiserum to each purified glycoprotein from secretion was raised in rabbits and used to localize both glycoproteins in the different oviductal portions, total egg jelly and the aqueous medium where oocyte strings were incubated. HGP forms a stable fibre matrix around the oocyte. L-HGP is present in the jelly coat and is released into the incubation medium. PMID:9173897

  7. 9Å structure of the COPI coat reveals that the Arf1 GTPase occupies two contrasting molecular environments

    PubMed Central

    Dodonova, Svetlana O; Aderhold, Patrick; Kopp, Juergen; Ganeva, Iva; Röhling, Simone; Hagen, Wim J H; Sinning, Irmgard; Wieland, Felix; Briggs, John A G

    2017-01-01

    COPI coated vesicles mediate trafficking within the Golgi apparatus and between the Golgi and the endoplasmic reticulum. Assembly of a COPI coated vesicle is initiated by the small GTPase Arf1 that recruits the coatomer complex to the membrane, triggering polymerization and budding. The vesicle uncoats before fusion with a target membrane. Coat components are structurally conserved between COPI and clathrin/adaptor proteins. Using cryo-electron tomography and subtomogram averaging, we determined the structure of the COPI coat assembled on membranes in vitro at 9 Å resolution. We also obtained a 2.57 Å resolution crystal structure of βδ-COP. By combining these structures we built a molecular model of the coat. We additionally determined the coat structure in the presence of ArfGAP proteins that regulate coat dissociation. We found that Arf1 occupies contrasting molecular environments within the coat, leading us to hypothesize that some Arf1 molecules may regulate vesicle assembly while others regulate coat disassembly. DOI: http://dx.doi.org/10.7554/eLife.26691.001 PMID:28621666

  8. A subset of conserved mammalian long non-coding RNAs are fossils of ancestral protein-coding genes.

    PubMed

    Hezroni, Hadas; Ben-Tov Perry, Rotem; Meir, Zohar; Housman, Gali; Lubelsky, Yoav; Ulitsky, Igor

    2017-08-30

    Only a small portion of human long non-coding RNAs (lncRNAs) appear to be conserved outside of mammals, but the events underlying the birth of new lncRNAs in mammals remain largely unknown. One potential source is remnants of protein-coding genes that transitioned into lncRNAs. We systematically compare lncRNA and protein-coding loci across vertebrates, and estimate that up to 5% of conserved mammalian lncRNAs are derived from lost protein-coding genes. These lncRNAs have specific characteristics, such as broader expression domains, that set them apart from other lncRNAs. Fourteen lncRNAs have sequence similarity with the loci of the contemporary homologs of the lost protein-coding genes. We propose that selection acting on enhancer sequences is mostly responsible for retention of these regions. As an example of an RNA element from a protein-coding ancestor that was retained in the lncRNA, we describe in detail a short translated ORF in the JPX lncRNA that was derived from an upstream ORF in a protein-coding gene and retains some of its functionality. We estimate that ~ 55 annotated conserved human lncRNAs are derived from parts of ancestral protein-coding genes, and loss of coding potential is thus a non-negligible source of new lncRNAs. Some lncRNAs inherited regulatory elements influencing transcription and translation from their protein-coding ancestors and those elements can influence the expression breadth and functionality of these lncRNAs.

  9. Antimicrobial edible films and coatings for fresh and minimally processed fruits and vegetables: a review.

    PubMed

    Valencia-Chamorro, Silvia A; Palou, Lluís; Del Río, Miguel A; Pérez-Gago, María B

    2011-01-01

    The use of edible films and coatings is an environmentally friendly technology that offers substantial advantages for shelf-life increase of many food products including fruits and vegetables. The development of new natural edible films and coatings with the addition of antimicrobial compounds to preserve fresh and minimally processed fruits and vegetables is a technological challenge for the industry and a very active research field worldwide. Antimicrobial agents have been successfully added to edible composite films and coatings based on polysaccharides or proteins such as starch, cellulose derivatives, chitosan, alginate, fruit puree, whey protein isolated, soy protein, egg albumen, wheat gluten, or sodium caseinate. This paper reviews the development of edible films and coatings with antimicrobial activity, typically through the incorporation of antimicrobial food additives as ingredients, the effect of these edible films on the control of target microorganisms, the influence of antimicrobial agents on mechanical and barrier properties of stand-alone edible films, and the effect of the application of antimicrobial edible coatings on the quality of fresh and fresh-cut fruits and vegetables.

  10. The characterization of edible coating from tilapia surimi as a biodegradable packaging

    NASA Astrophysics Data System (ADS)

    Saputra, E.; Alamsjah, A.; Abdillah, A. A.

    2018-04-01

    One of the problems that often arise in the fisheries sector is maintaining the quality. In the room temperature, the fish more quickly enter the phase of rigor mortis and lasted shorter. The retention of fresh fish can be extended by adding antibacterial compounds in the form of synthetic chemicals or natural ingredients. One of the safe natural ingredients used to extend the freshness of the fish is the edible coating. Edible coatings may be composed of hydrocolloid, lipids and composites. In the food industry surimi can be used as an ingredient to make edible packaging or better known in the form of edible film and protein-based edible coating. Edible film and potential coatings are used as packaging materials as they may affect food quality, food safety, and shelf life. Protein-based edible film have superior inhibitory and mechanical properties compared to polysaccharide-based ones. This is because protein contains 20 different amino acids and has most special characteristics that produce functional characteristics when compared with polysaccharides used as an ingredient in edible film and coating making most homopolymers.

  11. Polyurethane/poly(vinyl alcohol) hydrogel coating improves the cytocompatibility of neural electrodes

    PubMed Central

    Li, Mei; Zhou, Hai-han; Li, Tao; Li, Cheng-yan; Xia, Zhong-yuan; Duan, Yanwen Y.

    2015-01-01

    Neural electrodes, the core component of neural prostheses, are usually encapsulated in polydimethylsiloxane (PDMS). However, PDMS can generate a tissue response after implantation. Based on the physicochemical properties and excellent biocompatibility of polyurethane (PU) and poly(vinyl alcohol) (PVA) when used as coating materials, we synthesized PU/PVA hydrogel coatings and coated the surface of PDMS using plasma treatment, and the cytocompatibility to rat pheochromocytoma (PC12) cells was assessed. Protein adsorption tests indicated that the amount of protein adsorption onto the PDMS substrate was reduced by 92% after coating with the hydrogel. Moreover, the PC12 cells on the PU/PVA-coated PDMS showed higher cell density and longer and more numerous neurites than those on the uncoated PDMS. These results indicate that the PU/PVA hydrogel is cytocompatible and a promising coating material for neural electrodes to improve their biocompatibility. PMID:26889197

  12. Molecular interactions of mussel protective coating protein, mcfp-1, from Mytilus californianus.

    PubMed

    Lu, Qingye; Hwang, Dong Soo; Liu, Yang; Zeng, Hongbo

    2012-02-01

    Protective coating of the byssus of mussels (Mytilus sp.) has been suggested as a new paradigm of medical coating due to its high extensibility and hardness co-existence without their mutual detriment. The only known biomacromolecule in the extensible and tough coating on the byssus is mussel foot protein-1 (mfp-1), which is made up with positively charged residues (~20 mol%) and lack of negatively charged residues. Here, adhesion and molecular interaction mechanisms of Mytilus californianus foot protein-1 (mcfp-1) from California blue mussel were investigated using a surface forces apparatus (SFA) in buffer solutions of different ionic concentrations (0.2-0.7 M) and pHs (3.0-5.5). Strong and reversible cohesion between opposed positively charged mcfp-1 films was measured in 0.1 M sodium acetate buffer with 0.1 M KNO(3). Cohesion of mcfp-1 was gradually reduced with increasing the ionic strength, but was not changed with pH variations. Oxidation of 3,4-dihydroxyphenylalanine (DOPA) residues of mcfp-1, a key residue for adhesive and coating proteins of mussel, didn't change the cohesion strength of mcfp-1 films, but the addition of chemicals with aromatic groups (i.e., aspirin and 4-methylcatechol) increased the cohesion. These results suggest that the cohesion of mcfp-1 films is mainly mediated by cation-π interactions between the positively charged residues and benzene rings of DOPA and other aromatic amino acids (~20 mol% of total amino acids of mcfp-1), and π-π interactions between the phenyl groups in mcfp-1. The adhesion mechanism obtained for the mcfp-1 proteins provides important insight into the design and development of functional biomaterials and coatings mimicking the extensible and robust mussel cuticle coating. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Protein-adsorption and Ca-phosphate formation on chitosan-bioactive glass composite coatings

    NASA Astrophysics Data System (ADS)

    Wagener, V.; Boccaccini, A. R.; Virtanen, S.

    2017-09-01

    In the last years, chitosan-bioactive glass (BG) composites have been developed and investigated as bioactive coatings for orthopedic applications. The increase of bioactivity occurs due to the stimulation of calcium-phosphate/hydroxyapatite formation on the surface while the coating is degrading. In the present work, protein adsorption and its influence on calcium-phosphate precipitation was studied for the first time on such composite coatings. The experiments involved coating of 316L stainless steel substrates with chitosan (Ch) and chitosan-bioactive glass (Ch-BG) and immersion of the coated samples in two different bovine serum albumin (BSA) containing solutions, namely DI H2O (with pH adjusted to about 7.2 with diluted NaOH) and simulated body fluid (SBF). In order to investigate the influence of protein adsorption on calcium-phosphate precipitation, samples were also immersed in DI H2O and in SBF without BSA. Samples were analyzed by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). Surface analysis revealed that adsorption of BSA takes place on all studied samples and that protein adsorption is influenced by the presence of Ca2+ and PO43- ions. Bioactivity in the form of hydroxyapatite pre-stage formation is significantly increased on Ch-BG composite coating as compared with bare stainless steel surface. However, calcium-phosphate precipitation in SBF is reduced by the presence of BSA.

  14. Light-scattering efficiency of starch acetate pigments as a function of size and packing density.

    PubMed

    Penttilä, Antti; Lumme, Kari; Kuutti, Lauri

    2006-05-20

    We study theoretically the light-scattering efficiency of paper coatings made of starch acetate pigments. For the light-scattering code we use a discrete dipole approximation method. The coating layer is assumed to consists of roughly equal-sized spherical pigments packed either at a packing density of 50% (large cylindrical slabs) or at 37% or 57% (large spheres). Because the scanning electron microscope images of starch acetate samples show either a particulate or a porous structure, we model the coatings in two complementary ways. The material can be either inside the constituent spheres (particulate case) or outside of those (cheeselike, porous medium). For the packing of our spheres we use either a simulated annealing or a dropping code. We can estimate, among other things, that the ideal sphere diameter is in the range 0.25-0.4 microm.

  15. Light-scattering efficiency of starch acetate pigments as a function of size and packing density

    NASA Astrophysics Data System (ADS)

    Penttilä, Antti; Lumme, Kari; Kuutti, Lauri

    2006-05-01

    We study theoretically the light-scattering efficiency of paper coatings made of starch acetate pigments. For the light-scattering code we use a discrete dipole approximation method. The coating layer is assumed to consists of roughly equal-sized spherical pigments packed either at a packing density of 50% (large cylindrical slabs) or at 37% or 57% (large spheres). Because the scanning electron microscope images of starch acetate samples show either a particulate or a porous structure, we model the coatings in two complementary ways. The material can be either inside the constituent spheres (particulate case) or outside of those (cheeselike, porous medium). For the packing of our spheres we use either a simulated annealing or a dropping code. We can estimate, among other things, that the ideal sphere diameter is in the range 0.25-0.4 μm.

  16. cncRNAs: Bi-functional RNAs with protein coding and non-coding functions

    PubMed Central

    Kumari, Pooja; Sampath, Karuna

    2015-01-01

    For many decades, the major function of mRNA was thought to be to provide protein-coding information embedded in the genome. The advent of high-throughput sequencing has led to the discovery of pervasive transcription of eukaryotic genomes and opened the world of RNA-mediated gene regulation. Many regulatory RNAs have been found to be incapable of protein coding and are hence termed as non-coding RNAs (ncRNAs). However, studies in recent years have shown that several previously annotated non-coding RNAs have the potential to encode proteins, and conversely, some coding RNAs have regulatory functions independent of the protein they encode. Such bi-functional RNAs, with both protein coding and non-coding functions, which we term as ‘cncRNAs’, have emerged as new players in cellular systems. Here, we describe the functions of some cncRNAs identified from bacteria to humans. Because the functions of many RNAs across genomes remains unclear, we propose that RNAs be classified as coding, non-coding or both only after careful analysis of their functions. PMID:26498036

  17. Fabrication and characterization of gold nano-wires templated on virus-like arrays of tobacco mosaic virus coat proteins

    NASA Astrophysics Data System (ADS)

    Wnęk, M.; Górzny, M. Ł.; Ward, M. B.; Wälti, C.; Davies, A. G.; Brydson, R.; Evans, S. D.; Stockley, P. G.

    2013-01-01

    The rod-shaped plant virus tobacco mosaic virus (TMV) is widely used as a nano-fabrication template, and chimeric peptide expression on its major coat protein has extended its potential applications. Here we describe a simple bacterial expression system for production and rapid purification of recombinant chimeric TMV coat protein carrying C-terminal peptide tags. These proteins do not bind TMV RNA or form disks at pH 7. However, they retain the ability to self-assemble into virus-like arrays at acidic pH. C-terminal peptide tags in such arrays are exposed on the protein surface, allowing interaction with target species. We have utilized a C-terminal His-tag to create virus coat protein-templated nano-rods able to bind gold nanoparticles uniformly. These can be transformed into gold nano-wires by deposition of additional gold atoms from solution, followed by thermal annealing. The resistivity of a typical annealed wire created by this approach is significantly less than values reported for other nano-wires made using different bio-templates. This expression construct is therefore a useful additional tool for the creation of chimeric TMV-like nano-rods for bio-templating.

  18. Evidence from lateral mobility studies for dynamic interactions of a mutant influenza hemagglutinin with coated pits.

    PubMed

    Fire, E; Zwart, D E; Roth, M G; Henis, Y I

    1991-12-01

    Replacement of cysteine at position 543 by tyrosine in the influenza virus hemagglutinin (HA) protein enables the endocytosis of the mutant protein (Tyr 543) through coated pits (Lazarovits, J., and M. G. Roth. 1988. Cell. 53:743-752). To investigate the interactions between Tyr 543 and the clathrin coats in the plasma membrane of live cells, we performed fluorescence photobleaching recovery measurements comparing the lateral mobilities of Tyr 543 (which enters coated pits) and wild-type HA (HA wt, which is excluded from coated pits), following their expression in CV-1 cells by SV-40 vectors. While both proteins exhibited the same high mobile fractions, the lateral diffusion rate of Tyr 543 was significantly slower than that of HA wt. Incubation of the cells in a sucrose-containing hypertonic medium, a treatment that disperses the membrane-associated coated pits, resulted in similar lateral mobilities for Tyr 543 and HA wt. These findings indicate that the lateral motion of Tyr 543 (but not of HA wt) is inhibited by transient interactions with coated pits (which are essentially immobile on the time scale of the lateral mobility measurements). Acidification of the cytoplasm by prepulsing the cells with NH4Cl (a treatment that arrests the pinching-off of coated vesicles from the plasma membrane and alters the clathrin lattice morphology) led to immobilization of a significant part of the Tyr 543 molecules, presumably due to their entrapment in coated pits for the entire duration of the lateral mobility measurement. Furthermore, in both untreated and cytosol-acidified cells, the restrictions on Tyr 543 mobility were less pronounced in the cold, suggesting that the mobility-restricting interactions are temperature dependent and become weaker at low temperatures. From these studies we conclude the following. (a) Lateral mobility measurements are capable of detecting interactions of transmembrane proteins with coated pits in intact cells. (b) The interactions of Tyr 543 with coated pits are dynamic, involving multiple entries of Tyr 543 molecules into and out of coated pits. (c) Alterations in the clathrin lattice structure can modulate the above interactions.

  19. Modeling of Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Ferguson, B. L.; Petrus, G. J.; Krauss, T. M.

    1992-01-01

    The project examined the effectiveness of studying the creep behavior of thermal barrier coating system through the use of a general purpose, large strain finite element program, NIKE2D. Constitutive models implemented in this code were applied to simulate thermal-elastic and creep behavior. Four separate ceramic-bond coat interface geometries were examined in combination with a variety of constitutive models and material properties. The reason for focusing attention on the ceramic-bond coat interface is that prior studies have shown that cracking occurs in the ceramic near interface features which act as stress concentration points. The model conditions examined include: (1) two bond coat coefficient of thermal expansion curves; (2) the creep coefficient and creep exponent of the bond coat for steady state creep; (3) the interface geometry; and (4) the material model employed to represent the bond coat, ceramic, and superalloy base.

  20. Polyglycerol based coatings to reduce non-specific protein adsorption in sample vials and on SPR sensors.

    PubMed

    Becherer, Tobias; Grunewald, Christian; Engelschalt, Vivienne; Multhaup, Gerhard; Risse, Thomas; Haag, Rainer

    2015-03-31

    Coatings based on dendritic polyglycerol (dPG) were investigated for their use to control nonspecific protein adsorption in an assay targeted to analyze concentrations of a specific protein. We demonstrate that coating of the sample vial with dPG can significantly increase the recovery of an antibody after incubation. First, we determine the concentration dependent loss of an antibody due to nonspecific adsorption to glass via quartz crystal microbalance (QCM). Complementary to the QCM measurements, we applied the same antibody as analyte in an surface plasmon resonance (SPR) assay to determine the loss of analyte due to nonspecific adsorption to the sample vial. For this purpose, we used two different coatings based on dPG. For the first coating, which served as a matrix for the SPR sensor, carboxyl groups were incorporated into dPG as well as a dithiolane moiety enabling covalent immobilization to the gold sensor surface. This SPR-matrix exhibited excellent protein resistant properties and allowed the immobilization of amyloid peptides via amide bond formation. The second coating which was intended to prevent nonspecific adsorption to glass vials comprised a silyl moiety that allowed covalent grafting to glass. For demonstrating the impact of the vial coating on the accuracy of an SPR assay, we immobilized amyloid beta (Aβ) 1-40 and used an anti-Aβ 1-40 antibody as analyte. Alternate injection of analyte into the flow cell of the SPR device from uncoated and coated vials, respectively gave us the relative signal loss (1-RUuncoated/RUcoated) caused by the nonspecific adsorption. We found that the relative signal loss increases with decreasing analyte concentration. The SPR data correlate well with concentration dependent non-specific adsorption experiments of the analyte to glass surfaces performed with QCM. Our measurements show that rendering both the sample vial and the sensor surface is crucial for accurate results in protein assays. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Backbone dynamics of a model membrane protein: assignment of the carbonyl carbon /sup 13/C NMR resonances in detergent-solubilized M13 coat protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henry, G.D.; Weiner, J.H.; Sykes, B.D.

    The major coat protein of the filamentous bacteriophage M13 is a 50-residue amphiphilic polypeptide which is inserted, as an integral membrane-spanning protein, in the inner membrane of the Escherichia coli host during infection. /sup 13/C was incorporated biosynthetically into a total of 23 of the peptide carbonyls using labeled amino acids (alanine, glycine, lysine, phenylalanine, and proline). The structure and dynamics of carbonyl-labeled M13 coat protein were monitored by /sup 13/C nuclear magnetic resonance (NMR) spectroscopy. Assignment of many resonances was achieved by using protease digestion, pH titration, or labeling of the peptide bond with both /sup 13/C and /supmore » 15/N. The carbonyl region of the natural-abundance /sup 13/C NMR spectrum of M13 coat protein in sodium dodecyl sulfate solution shows approximately eight backbone carbonyl resonances with line widths much narrower than the rest. Three of these more mobile residues correspond to assigned peaks (glycine-3, lysine-48, and alanine-49) in the individual amino acid spectra, and another almost certainly arises from glutamic acid-2. A ninth residue, alanine-1, also gives rise to a very narrow carbonyl resonance if the pH is well above or below the pK/sub a/ of the terminal amino group. These data suggest that only about four residues at either end of the protein experience large-amplitude spatial fluctuations; the rest of the molecule is essentially rigid on the time scale of the overall rotational tumbling of the protein-detergent complex. The relative exposure of different regions of detergent-bound protein was monitored by limited digestion with proteinase K. Comparable spectra and digestion patterns were obtained when the protein was solubilized in sodium deoxycholate, suggesting that the coat protein binds both amphiphiles in a similar fashion.« less

  2. Silica-gelatin hybrid sol-gel coatings: a proteomic study with biocompatibility implications.

    PubMed

    Araújo-Gomes, N; Romero-Gavilán, F; Lara-Sáez, I; Elortza, F; Azkargorta, M; Iloro, I; Martínez-Ibañez, M; Martín de Llano, J J; Gurruchaga, M; Goñi, I; Suay, J; Sánchez-Pérez, A M

    2018-05-21

    Osseointegration, including the foreign body reaction to biomaterials, is an immune-modulated, multifactorial, and complex healing process in which various cells and mediators are involved. The buildup of the osseointegration process is immunological and inflammation-driven, often triggered by the adsorption of proteins on the surfaces of the biomaterials and complement activation. New strategies for improving osseointegration use coatings as vehicles for osteogenic biomolecules delivery from implants. Natural polymers, such as gelatin, can mimic collagen I and enhance the biocompatibility of a material. In this experimental study, two different base sol-gel formulations and their combination with gelatin, were applied as coatings on sandblasted, acid-etched titanium (SAE-Ti) substrates and their biological potential as osteogenic biomaterials was tested. We examined the proteins adsorbed onto each surface and their in vitro and in vivo effects. In vitro results showed an improvement in cell proliferation and mineralization in gelatin-containing samples. In vivo testing showed the presence of a looser connective tissue layer in those coatings with substantially more complement activation proteins adsorbed, especially those containing gelatin. Vitronectin and FETUA, proteins associated with mineralization process, were significantly more adsorbed in gelatin coatings. This article is protected by copyright. All rights reserved.

  3. Trypsin coatings on electrospun and alcohol-dispersed polymer nanofibers for trypsin digestion column

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jun, Seung-Hyun; Chang, Mun Seock; Kim, Byoung Chan

    2010-09-15

    The construction of a trypsin reactor in a chromatography column for rapid and efficient protein digestion in proteomics is described. Electrospun and alcohol-dispersed polymer nanofibers were used for the fabrication of highly stable trypsin coating, which was prepared by a two-step process of covalent attachment and enzyme crosslinking. In a comparative study with the trypsin coatings on asspun and non-dispersed nanofibers, it has been observed that a simple step of alcohol dispersion improved not only the enzyme loading but also the performance of protein digestion. In-column digestion of enolase was successfully performed in less than twenty minutes. By applying themore » alcohol dispersion of polymer nanofibers, the bypass of samples was reduced by filling up the column with well-dispersed nanofibers, and subsequently, interactions between the protein and the enzymes were improved yielding more complete and reproducible digestions. Regardless of alcohol-dispersion or not, trypsin coating showed better digestion performance and improved performance stability under recycled uses than covalently-attached trypsin. The combination of highly stable trypsin coating and alcoholdispersion of polymer nanofibers has opened up a new potential to develop a trypsin column for on-line and automated protein digestion.« less

  4. Indigenous and introduced potyviruses of legumes and Passiflora spp. from Australia: biological properties and comparison of coat protein sequences

    USDA-ARS?s Scientific Manuscript database

    Coat protein sequences of 33 Potyvirus isolates from legume and Passiflora spp. were sequenced to determine the identity of infecting viruses. Phylogenetic analysis of the sequences revealed the presence of seven distinct virus species....

  5. Poly(oligoethylene glycol methacrylate) dip-coating: turning cellulose paper into a protein-repellent platform for biosensors.

    PubMed

    Deng, Xudong; Smeets, Niels M B; Sicard, Clémence; Wang, Jingyun; Brennan, John D; Filipe, Carlos D M; Hoare, Todd

    2014-09-17

    The passivation of nonspecific protein adsorption to paper is a major barrier to the use of paper as a platform for microfluidic bioassays. Herein we describe a simple, scalable protocol based on adsorption and cross-linking of poly(oligoethylene glycol methacrylate) (POEGMA) derivatives that reduces nonspecific adsorption of a range of proteins to filter paper by at least 1 order of magnitude without significantly changing the fiber morphology or paper macroporosity. A lateral-flow test strip coated with POEGMA facilitates effective protein transport while also confining the colorimetric reporting signal for easier detection, giving improved performance relative to bovine serum albumin (BSA)-blocked paper. Enzyme-linked immunosorbent assays based on POEGMA-coated paper also achieve lower blank values, higher sensitivities, and lower detection limits relative to ones based on paper blocked with BSA or skim milk. We anticipate that POEGMA-coated paper can function as a platform for the design of portable, disposable, and low-cost paper-based biosensors.

  6. Sensing of heavy metal ions by intrinsic TMV coat protein fluorescence.

    PubMed

    Bayram, Serene S; Green, Philippe; Blum, Amy Szuchmacher

    2018-04-15

    We propose the use of a cysteine mutant of TMV coat protein as a signal transducer for the selective sensing and quantification of the heavy metal ions, Cd 2+ , Pb 2+ , Zn 2+ and Ni 2+ based on intrinsic tryptophan quenching. TMV coat protein is inexpensive, can be mass-produced since it is expressed and extracted from E-coli. It also displays several different functional groups, enabling a wide repertoire of bioconjugation chemistries; thus it can be easily integrated into functional devices. In addition, TMV-ion interactions have been widely reported and utilized for metallization to generate organic-inorganic hybrid composite novel materials. Building on these previous observations, we herein determine, for the first time, the TMV-ion binding constants assuming the static fluorescence quenching model. We also show that by comparing TMV-ion interactions between native and denatured coat protein, we can distinguish between chemically similar heavy metal ions such as cadmium and zinc ions. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Clathrin-independent pathways do not contribute significantly to endocytic flux

    PubMed Central

    Bitsikas, Vassilis; Corrêa, Ivan R; Nichols, Benjamin J

    2014-01-01

    Several different endocytic pathways have been proposed to function in mammalian cells. Clathrin-coated pits are well defined, but the identity, mechanism and function of alternative pathways have been controversial. Here we apply universal chemical labelling of plasma membrane proteins to define all primary endocytic vesicles, and labelling of specific proteins with a reducible SNAP-tag substrate. These approaches provide high temporal resolution and stringent discrimination between surface-connected and intracellular membranes. We find that at least 95% of the earliest detectable endocytic vesicles arise from clathrin-coated pits. GPI-anchored proteins, candidate cargoes for alternate pathways, are also found to enter the cell predominantly via coated pits. Experiments employing a mutated clathrin adaptor reveal distinct mechanisms for sorting into coated pits, and thereby explain differential effects on the uptake of transferrin and GPI-anchored proteins. These data call for a revision of models for the activity and diversity of endocytic pathways in mammalian cells. DOI: http://dx.doi.org/10.7554/eLife.03970.001 PMID:25232658

  8. The use of phage display in neurobiology.

    PubMed

    Bradbury, Andrew R M

    2010-04-01

    Phage display has been extensively used to study protein-protein interactions, receptor- and antibody-binding sites, and immune responses, to modify protein properties, and to select antibodies against a wide range of different antigens. In the format most often used, a polypeptide is displayed on the surface of a filamentous phage by genetic fusion to one of the coat proteins, creating a chimeric coat protein, and coupling phenotype (the protein) to genotype (the gene within). As the gene encoding the chimeric coat protein is packaged within the phage, selection of the phage on the basis of the binding properties of the polypeptide displayed on the surface simultaneously results in the isolation of the gene encoding the polypeptide. This unit describes the background to the technique, and illustrates how it has been applied to a number of different problems, each of which has its neurobiological counterparts. Although this overview concentrates on the use of filamentous phage, which is the most popular platform, other systems are also described. (c) 2010 by John Wiley & Sons, Inc.

  9. Potato leafroll virus structural proteins manipulate overlapping, yet distinct protein interaction networks during infection.

    PubMed

    DeBlasio, Stacy L; Johnson, Richard; Sweeney, Michelle M; Karasev, Alexander; Gray, Stewart M; MacCoss, Michael J; Cilia, Michelle

    2015-06-01

    Potato leafroll virus (PLRV) produces a readthrough protein (RTP) via translational readthrough of the coat protein amber stop codon. The RTP functions as a structural component of the virion and as a nonincorporated protein in concert with numerous insect and plant proteins to regulate virus movement/transmission and tissue tropism. Affinity purification coupled to quantitative MS was used to generate protein interaction networks for a PLRV mutant that is unable to produce the read through domain (RTD) and compared to the known wild-type PLRV protein interaction network. By quantifying differences in the protein interaction networks, we identified four distinct classes of PLRV-plant interactions: those plant and nonstructural viral proteins interacting with assembled coat protein (category I); plant proteins in complex with both coat protein and RTD (category II); plant proteins in complex with the RTD (category III); and plant proteins that had higher affinity for virions lacking the RTD (category IV). Proteins identified as interacting with the RTD are potential candidates for regulating viral processes that are mediated by the RTP such as phloem retention and systemic movement and can potentially be useful targets for the development of strategies to prevent infection and/or viral transmission of Luteoviridae species that infect important crop species. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Genomic determinants of sporulation in Bacilli and Clostridia: towards the minimal set of sporulation-specific genes

    PubMed Central

    Galperin, Michael Y; Mekhedov, Sergei L; Puigbo, Pere; Smirnov, Sergey; Wolf, Yuri I; Rigden, Daniel J

    2012-01-01

    Three classes of low-G+C Gram-positive bacteria (Firmicutes), Bacilli, Clostridia and Negativicutes, include numerous members that are capable of producing heat-resistant endospores. Spore-forming firmicutes include many environmentally important organisms, such as insect pathogens and cellulose-degrading industrial strains, as well as human pathogens responsible for such diseases as anthrax, botulism, gas gangrene and tetanus. In the best-studied model organism Bacillus subtilis, sporulation involves over 500 genes, many of which are conserved among other bacilli and clostridia. This work aimed to define the genomic requirements for sporulation through an analysis of the presence of sporulation genes in various firmicutes, including those with smaller genomes than B. subtilis. Cultivable spore-formers were found to have genomes larger than 2300 kb and encompass over 2150 protein-coding genes of which 60 are orthologues of genes that are apparently essential for sporulation in B. subtilis. Clostridial spore-formers lack, among others, spoIIB, sda, spoVID and safA genes and have non-orthologous displacements of spoIIQ and spoIVFA, suggesting substantial differences between bacilli and clostridia in the engulfment and spore coat formation steps. Many B. subtilis sporulation genes, particularly those encoding small acid-soluble spore proteins and spore coat proteins, were found only in the family Bacillaceae, or even in a subset of Bacillus spp. Phylogenetic profiles of sporulation genes, compiled in this work, confirm the presence of a common sporulation gene core, but also illuminate the diversity of the sporulation processes within various lineages. These profiles should help further experimental studies of uncharacterized widespread sporulation genes, which would ultimately allow delineation of the minimal set(s) of sporulation-specific genes in Bacilli and Clostridia. PMID:22882546

  11. Poly-2-methoxyethylacrylate-coated cardiopulmonary bypass circuit can reduce transfusion of platelet products compared to heparin-coated circuit during aortic arch surgery.

    PubMed

    Hosoyama, Katsuhiro; Ito, Koki; Kawamoto, Shunsuke; Kumagai, Kiichiro; Akiyama, Masatoshi; Adachi, Osamu; Kawatsu, Satoshi; Sasaki, Konosuke; Suzuki, Marina; Sugawara, Yumi; Shimizu, Yuya; Saiki, Yoshikatsu

    2016-09-01

    Several coating techniques for extracorporeal circulation have been developed to reduce the systemic inflammatory response during cardiopulmonary bypass (CPB). We compared the clinical effectiveness and biocompatibility of poly-2-methoxyethylacrylate (PMEA)- and heparin-coated CPB circuits in total aortic arch replacement (TAR) with the prolonged use of the bypass technique. Twenty patients who underwent elective TAR were divided randomly into two equal groups: group P (n = 10) to use PMEA-coated circuits and group H (n = 10) to use heparin-coated circuits. Clinical outcomes, hematological variables, and acute phase inflammatory response were analyzed perioperatively. Demographic, CPB, and clinical outcome data were similar for both groups. Hemoglobin and platelet count showed similar time-course curves. However, the amount of platelet products transfused intraoperatively was significantly larger in group H (group P 26.0 ± 7.0 units; group H 33.0 ± 6.7 units, p = 0.04). Total protein, and albumin levels were significantly higher in group P during and after the operation (total protein, p = 0.04; albumin, p = 0.02). The use of PMEA-coated circuit is associated with retainment of perioperative plasma proteins levels and may help to reduce transfusion of platelet products in TAR in comparison with the heparin-coated circuit.

  12. Unfolding and inactivation of proteins by counterions in protein-nanoparticles interaction.

    PubMed

    Ghosh, Goutam; Gaikwad, Pallavi S; Panicker, Lata; Nath, Bimalendu B; Mukhopadhyaya, Rita

    2016-09-01

    In this work, the structure and activity of proteins; such as, hen egg lysozyme (HEWL) and calf intestine alkaline phosphatase (CIAP); have been investigated after incubation with surface coated iron oxide nanoparticles (IONPs) in water. IONPs were coated with counterions bound charge-ligands and were named as the charge-ligand counterions iron oxide nanoparticles (CLC-IONPs). The coating was done with tri-lithium citrate (TLC) and tri-potassium citrate (TKC) to have negative surface charge of CLC-IONPs and Li(+) and K(+), respectively, as counterions. To have positive surface charge, IONPs were coated with cetylpyridinium chloride (CPC) and cetylpyridinium iodide (CPI) having Cl(-) and I(-), respectively, as counterions. The secondary structure of proteins was measured using far ultraviolet circular dichroism (CD) spectroscopy which showed that both proteins were irreversibly unfolded after incubation with CLC-IONPs. The unfolded proteins were seen to be functionally inactive, as confirmed through their activity assays, i.e., HEWL with Escherichia coli (E. coli) and CIAP with para-nitrophenyl phosphate (pNPP). Additionally, we have observed that monomeric hemoglobin (Hb) from radio-resistant insect Chironomus ramosus (ChHb) was also partially unfolded upon interaction with CLC-IONPs. This work clearly shows the role of counterions in protein inactivation via protein-nanoparticles interaction and, therefore, CLC-IONPs could be used for therapeutic purpose. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Interaction of S-layer proteins of Lactobacillus kefir with model membranes and cells.

    PubMed

    Hollmann, Axel; Delfederico, Lucrecia; Santos, Nuno C; Disalvo, E Anibal; Semorile, Liliana

    2018-06-01

    In previous works, it was shown that S-layer proteins from Lactobacillus kefir were able to recrystallize and stabilize liposomes, this feature reveling a great potential for developing liposomal-based carriers. Despite previous studies on this subject are important milestones, a number of questions remain unanswered. In this context, the feasibility of S-layer proteins as a biomaterial for drug delivery was evaluated in this work. First, S-layer proteins were fully characterized by electron microscopy, 2D-electrophoresis, and anionic exchange chromatography coupled with pulsed amperometric detection (HPAEC-PAD). Afterward, interactions of S-layer proteins with model lipid membranes were evaluated, showing that proteins adsorb to the lipid surface following a non-fickean or anomalous diffusion, when positively charged lipid were employed, suggesting that electrostatic interaction is a key factor in the recrystallization process on these proteins. Finally, the interaction of S-layer coated liposomes with Caco-2 cell line was assessed: First, cytotoxicity of formulations was tested showing no cytotoxic effects in S-layer coated vesicles. Second, by flow cytometry, it was observed an increased ability to transfer cargo molecules into Caco-2 cells from S-layer coated liposomes in comparison to control ones. All data put together, supports the idea that a combination of adhesive properties of S-layer proteins concomitant with higher stability of S-layer coated liposomes represents an exciting starting point in the development of new drug carriers.

  14. Polymer brush coatings for DNA: fundamental polymer physics and nanofabrication applications

    NASA Astrophysics Data System (ADS)

    de Vries, Renko

    Recombinant DNA technology allows for the production of precisely defined self-assembling protein-based polymers. So far, the major applications for such protein-based polymers have been self-assembling hydrogels and micellar structures with biomedical application. Inspired by minimal models for the self-ssembly of rod-shaped viruses such as the tobacco mosaic virus, I have developed protein-polymers that co-assemble with DNA into rod-shaped virus-like particles, and protein-polymers that provide brush coatings around single DNA molecules. In this presentation I will focus on the latter, showing that on the one hand brush coated DNA is a rich model system for exploring the physics of bottle-brush polymers, while on the other hand brush coatings of DNA can also play an important practical role in nanofabrication. A key problem in the physics of bottle-brush polymers that I will address is the scale-dependence of bottle-brush elasticity. For long-wavelength thermal deformations probed by AFM imaging I will demonstrate that there is significant stiffening due to the brush coating, while for short wavelength thermal deformations probed by force spectroscopy, we find that stiffening due to the brush coating disappears completely. DNA brush coatings can also play an important practical role in nanofabrication by acting as a compatibilizer between chemically different building blocks. I will explore the example of DNA origami in combination with gold nanoparticles: while Mg2+ ions and high concentrations of monovalent salts are crucial for the stability of DNA origami, such solution conditions are typically incompatible with the colloidal stability of gold nanoparticles.I will show how DNA brush coatings can dramatically enhance the yield of formation of isolated DNA-gold nanoparticle composite nanostructures.

  15. Mutant CCL2 Protein Coating Mitigates Wear Particle-Induced Bone Loss in a Murine Continuous Polyethylene Infusion Model

    PubMed Central

    Nabeshima, Akira; Pajarinen, Jukka; Lin, Tzu-hua; Jiang, Xinyi; Gibon, Emmanuel; Córdova, Luis A.; Loi, Florence; Lu, Laura; Jämsen, Eemeli; Egashira, Kensuke; Yang, Fan; Yao, Zhenyu; Goodman, Stuart B

    2016-01-01

    Wear particle-induced osteolysis limits the long-term survivorship of total joint replacement (TJR). Monocyte/macrophages are the key cells of this adverse reaction. Monocyte Chemoattractant Protein-1 (MCP-1/CCL2) is the most important chemokine regulating trafficking of monocyte/macrophages in particle-induced inflammation. 7ND recombinant protein is a mutant of CCL2 that inhibits CCL2 signaling. We have recently developed a layer-by-layer (LBL) coating platform on implant surfaces that can release biologically active 7ND. In this study, we investigated the effect of 7ND on wear particle-induced bone loss using the murine continuous polyethylene (PE) particle infusion model with 7ND coating of a titanium rod as a local drug delivery device. PE particles were infused into hollow titanium rods with or without 7ND coating implanted in the distal femur for 4 weeks. Specific groups were also injected with RAW 264.7 as the reporter macrophages. Wear particle-induced bone loss and the effects of 7ND were evaluated by microCT, immunohistochemical staining, and bioluminescence imaging. Local delivery of 7ND using the LBL coating decreased systemic macrophage recruitment, the number of osteoclasts and wear particle-induced bone loss. The development of a novel orthopaedic implant coating with anti-CCL2 protein may be a promising strategy to mitigate peri-prosthetic osteolysis. PMID:27918885

  16. Glial cell adhesion and protein adsorption on SAM coated semiconductor and glass surfaces of a microfluidic structure

    NASA Astrophysics Data System (ADS)

    Sasaki, Darryl Y.; Cox, Jimmy D.; Follstaedt, Susan C.; Curry, Mark S.; Skirboll, Steven K.; Gourley, Paul L.

    2001-05-01

    The development of microsystems that merge biological materials with microfabricated structures is highly dependent on the successful interfacial interactions between these innately incompatible materials. Surface passivation of semiconductor and glass surfaces with thin organic films can attenuate the adhesion of proteins and cells that lead to biofilm formation and biofouling of fluidic structures. We have examined the adhesion of glial cells and serum albumin proteins to microfabricated glass and semiconductor surfaces coated with self-assembled monolayers of octadecyltrimethoxysilane and N-(triethoxysilylpropyl)-O- polyethylene oxide urethane, to evaluate the biocompatibility and surface passivation those coatings provide.

  17. A protocol for the production of gliadin-cyanoacrylate nanoparticles for hydrophilic coating

    USDA-ARS?s Scientific Manuscript database

    This article presents a protocol for the production of protein-based nanoparticles that change the hydrophobic surface to hydrophilic by a simple spray coating. These nanoparticles are produced by the polymerization reaction of alkyl cyanoacrylate on the surface of cereal protein (gliadin) molecules...

  18. 78 FR 52429 - Indirect Food Additives: Adhesives and Components of Coatings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-23

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration 21 CFR Part 175 Indirect Food Additives: Adhesives and Components of Coatings CFR Correction In Title 21 of the Code of Federal Regulations, Parts 170 to 199, revised as of April 1, 2013, on page 196, in Sec. 175.320, in paragraph (c), in...

  19. PCP-B class pollen coat proteins are key regulators of the hydration checkpoint in Arabidopsis thaliana pollen-stigma interactions.

    PubMed

    Wang, Ludi; Clarke, Lisa A; Eason, Russell J; Parker, Christopher C; Qi, Baoxiu; Scott, Rod J; Doughty, James

    2017-01-01

    The establishment of pollen-pistil compatibility is strictly regulated by factors derived from both male and female reproductive structures. Highly diverse small cysteine-rich proteins (CRPs) have been found to play multiple roles in plant reproduction, including the earliest stages of the pollen-stigma interaction. Secreted CRPs found in the pollen coat of members of the Brassicaceae, the pollen coat proteins (PCPs), are emerging as important signalling molecules that regulate the pollen-stigma interaction. Using a combination of protein characterization, expression and phylogenetic analyses we identified a novel class of Arabidopsis thaliana pollen-borne CRPs, the PCP-Bs (for pollen coat protein B-class) that are related to embryo surrounding factor (ESF1) developmental regulators. Single and multiple PCP-B mutant lines were utilized in bioassays to assess effects on pollen hydration, adhesion and pollen tube growth. Our results revealed that pollen hydration is severely impaired when multiple PCP-Bs are lost from the pollen coat. The hydration defect also resulted in reduced pollen adhesion and delayed pollen tube growth in all mutants studied. These results demonstrate that AtPCP-Bs are key regulators of the hydration 'checkpoint' in establishment of pollen-stigma compatibility. In addition, we propose that interspecies diversity of PCP-Bs may contribute to reproductive barriers in the Brassicaceae. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  20. Highly Specific Binding on Antifouling Zwitterionic Polymer-Coated Microbeads as Measured by Flow Cytometry.

    PubMed

    van Andel, Esther; de Bus, Ian; Tijhaar, Edwin J; Smulders, Maarten M J; Savelkoul, Huub F J; Zuilhof, Han

    2017-11-08

    Micron- and nano-sized particles are extensively used in various biomedical applications. However, their performance is often drastically hampered by the nonspecific adsorption of biomolecules, a process called biofouling, which can cause false-positive and false-negative outcomes in diagnostic tests. Although antifouling coatings have been extensively studied on flat surfaces, their use on micro- and nanoparticles remains largely unexplored, despite the widespread experimental (specifically, clinical) uncertainties that arise because of biofouling. Here, we describe the preparation of magnetic micron-sized beads coated with zwitterionic sulfobetaine polymer brushes that display strong antifouling characteristics. These coated beads can then be equipped with recognition elements of choice, to enable the specific binding of target molecules. First, we present a proof of principle with biotin-functionalized beads that are able to specifically bind fluorescently labeled streptavidin from a complex mixture of serum proteins. Moreover, we show the versatility of the method by demonstrating that it is also possible to functionalize the beads with mannose moieties to specifically bind the carbohydrate-binding protein concanavalin A. Flow cytometry was used to show that thus-modified beads only bind specifically targeted proteins, with minimal/near-zero nonspecific protein adsorption from other proteins that are present. These antifouling zwitterionic polymer-coated beads, therefore, provide a significant advancement for the many bead-based diagnostic and other biosensing applications that require stringent antifouling conditions.

  1. Highly Specific Binding on Antifouling Zwitterionic Polymer-Coated Microbeads as Measured by Flow Cytometry

    PubMed Central

    2017-01-01

    Micron- and nano-sized particles are extensively used in various biomedical applications. However, their performance is often drastically hampered by the nonspecific adsorption of biomolecules, a process called biofouling, which can cause false-positive and false-negative outcomes in diagnostic tests. Although antifouling coatings have been extensively studied on flat surfaces, their use on micro- and nanoparticles remains largely unexplored, despite the widespread experimental (specifically, clinical) uncertainties that arise because of biofouling. Here, we describe the preparation of magnetic micron-sized beads coated with zwitterionic sulfobetaine polymer brushes that display strong antifouling characteristics. These coated beads can then be equipped with recognition elements of choice, to enable the specific binding of target molecules. First, we present a proof of principle with biotin-functionalized beads that are able to specifically bind fluorescently labeled streptavidin from a complex mixture of serum proteins. Moreover, we show the versatility of the method by demonstrating that it is also possible to functionalize the beads with mannose moieties to specifically bind the carbohydrate-binding protein concanavalin A. Flow cytometry was used to show that thus-modified beads only bind specifically targeted proteins, with minimal/near-zero nonspecific protein adsorption from other proteins that are present. These antifouling zwitterionic polymer-coated beads, therefore, provide a significant advancement for the many bead-based diagnostic and other biosensing applications that require stringent antifouling conditions. PMID:29064669

  2. Analysis of the complete genome of peach chlorotic mottle virus: identification of non-AUG start codons, in vitro coat protein expression, and elucidation of serological cross-reactions.

    PubMed

    James, D; Varga, A; Croft, H

    2007-01-01

    The entire genome of peach chlorotic mottle virus (PCMV), originally identified as Prunus persica cv. Agua virus (4N6), was sequenced and analysed. PCMV cross-reacts with antisera to diverse viruses, such as plum pox virus (PPV), genus Potyvirus, family Potyviridae; and apple stem pitting virus (ASPV), genus Foveavirus, family Flexiviridae. The PCMV genome consists of 9005 nucleotides (nts), excluding a poly(A) tail at the 3' end of the genome. Five open reading frames (ORFs) were identified with four untranslated regions (UTR) including a 5', a 3', and two intergenic UTRs. The genome organisation of PCMV is similar to that of ASPV and the two genomes share a nucleotide (nt) sequence identity of 58%. PCMV ORF1 encodes the replication-associated protein complex (Mr 241,503), ORF2-ORF4 code for the triple gene block proteins (TGBp; Mr 24,802, 12,370, and 7320, respectively), and ORF5 encodes the coat protein (CP) (Mr 42,505). Two non-AUG start codons participate in the initiation of translation: 35AUC and 7676AUA initiate translation of ORF1 and ORF5. In vitro expression with subsequent Western blot analysis confirmed ORF5 as the CP-encoding gene and confirmed that the codon AUA is able to initiate translation of the CP. Expression of a truncated CP fragment (Mr 39, 689) was demonstrated, and both proteins are expressed in vivo, since both were observed in Western blot analysis of PCMV-infected peach and Nicotiana occidentalis. The expressed proteins cross-reacted with an antiserum against ASPV. The amino acid sequences of the CPs of PCMV and ASPV CP share only 37% identity, but there are 11 shared peptides 4-8 aa residues long. These may constitute linear epitopes responsible for ASPV antiserum cross reactions. No significant common linear epitopes were associated with PPV. Extensive phylogenetic analysis indicates that PCMV is closely related to ASPV and is a new and distinct member of the genus Foveavirus.

  3. Evaluation of antimicrobial edible coatings from a whey protein isolate base to improve the shelf life of cheese.

    PubMed

    Ramos, Ó L; Pereira, J O; Silva, S I; Fernandes, J C; Franco, M I; Lopes-da-Silva, J A; Pintado, M E; Malcata, F X

    2012-11-01

    The objective of this work was to evaluate the effectiveness of antimicrobial edible coatings to wrap cheeses, throughout 60 d of storage, as an alternative to commercial nonedible coatings. Coatings were prepared using whey protein isolate, glycerol, guar gum, sunflower oil, and Tween 20 as a base matrix, together with several combinations of antimicrobial compounds-natamycin and lactic acid, natamycin and chitooligosaccharides (COS), and natamycin, lactic acid, and COS. Application of coating on cheese decreased water loss (~10%, wt/wt), hardness, and color change; however, salt and fat contents were not significantly affected. Moreover, the antimicrobial edible coatings did not permit growth of pathogenic or contaminant microorganisms, while allowing regular growth of lactic acid bacteria throughout storage. Commercial nonedible coatings inhibited only yeasts and molds. The antimicrobial edible coating containing natamycin and lactic acid was the best in sensory terms. Because these antimicrobial coatings are manufactured from food-grade materials, they can be consumed as an integral part of cheese, which represents a competitive advantage over nonedible coatings. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  4. Antimicrobial paper based on a soy protein isolate or modified starch coating including carvacrol and cinnamaldehyde.

    PubMed

    Arfa, Afef Ben; Preziosi-Belloy, Laurence; Chalier, Pascale; Gontard, Nathalie

    2007-03-21

    Soy protein isolates (SPI) and octenyl-succinate (OSA) modified starch were used as paper coating and inclusion matrices of two antimicrobial compounds: cinnamaldehyde and carvacrol. Antimicrobial compound losses from the coated papers were evaluated after the coating and drying process, and the two matrices demonstrated retention ability that depended on the compound nature and concentration. Whereas carvacrol losses ranged between 12 and 45%, cinnamaldehyde losses varied from 43 to 76%. The losses were always higher from OSA-starch-coated papers than from SPI-coated papers. During storage in accelerated conditions, at 30 degrees C and 60% relative humidity, carvacrol retention from coated papers was found to be similar whatever the coating matrices and the carvacrol rate. In contrast, the retention from SPI-coated papers was particularly high for the cinnamaldehyde concentration of 30% (w/w) compared to the lowest (10% w/w) or highest concentration (60% w/w). Compared to carvacrol, faster release was observed, particurlarly when OSA-starch was used. The antimicrobial properties of the coated papers were shown against Escherichia coli and Botrytis cinerea and explained by favorable conditions of total release of the antimicrobial agents.

  5. beta'-COP, a novel subunit of coatomer.

    PubMed Central

    Stenbeck, G; Harter, C; Brecht, A; Herrmann, D; Lottspeich, F; Orci, L; Wieland, F T

    1993-01-01

    Several lines of evidence favour the hypothesis that intracellular biosynthetic protein transport in eukaryotes is mediated by non-clathrin-coated vesicles (for a review see Rothman and Orci, 1992). The vesicles have been isolated and a set of their surface proteins has been characterized as coat proteins (COPs). These COPs exist in the cytosol as a preformed complex, the coatomer, which was prior to this study known to contain six subunits: four (alpha-, beta-, gamma- and delta-COP) with molecular weights between 160 and 58 kDa, and two additional proteins of approximately 36 and 20 kDa, epsilon- and xi-COP. Here we describe a novel subunit of the coatomer complex, beta'-COP. This subunit occurs in amounts stoichiometric to the established COPs both in the coatomer and in nonclathrin-coated vesicles and shows homology to the beta-subunits of trimeric G proteins. Images PMID:8334999

  6. Humidity control and hydrophilic glue coating applied to mounted protein crystals improves X-ray diffraction experiments

    PubMed Central

    Baba, Seiki; Hoshino, Takeshi; Ito, Len; Kumasaka, Takashi

    2013-01-01

    Protein crystals are fragile, and it is sometimes difficult to find conditions suitable for handling and cryocooling the crystals before conducting X-ray diffraction experiments. To overcome this issue, a protein crystal-mounting method has been developed that involves a water-soluble polymer and controlled humid air that can adjust the moisture content of a mounted crystal. By coating crystals with polymer glue and exposing them to controlled humid air, the crystals were stable at room temperature and were cryocooled under optimized humidity. Moreover, the glue-coated crystals reproducibly showed gradual transformations of their lattice constants in response to a change in humidity; thus, using this method, a series of isomorphous crystals can be prepared. This technique is valuable when working on fragile protein crystals, including membrane proteins, and will also be useful for multi-crystal data collection. PMID:23999307

  7. Fish gelatin combined with chitosan coating inhibits myofibril degradation of golden pomfret (Trachinotus blochii) fillet during cold storage.

    PubMed

    Feng, Xiao; Bansal, Nidhi; Yang, Hongshun

    2016-06-01

    Coating of gelatin and chitosan can improve fish fillet's quality, but the mechanism is not clear. Chitosan/gelatin coatings significantly prevented deterioration of golden pomfret fillet at 4 °C. Chitosan with 7.2% gelatin group showed the best effect on preserving the length of myofibril, which remained greater than 15 μm at day 17 of storage, while for control, chitosan and chitosan combined with 3.6% gelatin group, it was 5.03, 10.04 and 9.02 μm, respectively. The MALDI-TOF MS result revealed that the coatings slowed down the protein deterioration of fillet. On days 13 and 17, the myosin light chain and myoglobin in control group degraded, while the two proteins still existed in chitosan/gelatin coated groups. Overall, the chitosan with 7.2% gelatin coating had the best effect on preserving fillet's quality during storage. The coating may exert its protective effect via inhibiting myofibril degradation within fillet. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Val-->Ala mutations selectively alter helix-helix packing in the transmembrane segment of phage M13 coat protein.

    PubMed Central

    Deber, C M; Khan, A R; Li, Z; Joensson, C; Glibowicka, M; Wang, J

    1993-01-01

    Val-->Ala mutations within the effective transmembrane segment of a model single-spanning membrane protein, the 50-residue major coat (gene VIII) protein of bacteriophage M13, are shown to have sequence-dependent impacts on stabilization of membrane-embedded helical dimeric structures. Randomized mutagenesis performed on the coat protein hydrophobic segment 21-39 (YIGYAWAMV-VVIVGATIGI) produced a library of viable mutants which included those in which each of the four valine residues was replaced by an alanine residue. Significant variations found among these Val-->Ala mutants in the relative populations and thermal stabilities of monomeric and dimeric helical species observed on SDS/PAGE, and in the range of their alpha-helix-->beta-sheet transition temperatures confirmed that intramembranous valine residues are not simply universal contributors to membrane anchoring. Additional analyses of (i) nonmutatable sites in the mutant protein library, (ii) the properties of the double mutant V29A-V31A obtained by recycling mutant V31A DNA through mutagenesis procedures, and (iii) energy-minimized helical dimer structures of wild-type and mutant V31A transmembrane regions indicated that the transmembrane hydrophobic core helix of the M13 coat protein can be partitioned into alternating pairs of potential protein-interactive residues (V30, V31; G34, A35; G38, I39) and membrane-interactive residues (M28, V29; I32, V33; T36, I37). The overall results consitute an experimental approach to categorizing the distinctive contributions to structure of the residues comprising a protein-protein packing interface vs. those facing lipid and confirm the sequence-dependent capacity of specific residues within the transmembrane domain to modulate protein-protein interactions which underlie regulatory events in membrane proteins. Images Fig. 2 Fig. 4 PMID:8265602

  9. Val-->Ala mutations selectively alter helix-helix packing in the transmembrane segment of phage M13 coat protein.

    PubMed

    Deber, C M; Khan, A R; Li, Z; Joensson, C; Glibowicka, M; Wang, J

    1993-12-15

    Val-->Ala mutations within the effective transmembrane segment of a model single-spanning membrane protein, the 50-residue major coat (gene VIII) protein of bacteriophage M13, are shown to have sequence-dependent impacts on stabilization of membrane-embedded helical dimeric structures. Randomized mutagenesis performed on the coat protein hydrophobic segment 21-39 (YIGYAWAMV-VVIVGATIGI) produced a library of viable mutants which included those in which each of the four valine residues was replaced by an alanine residue. Significant variations found among these Val-->Ala mutants in the relative populations and thermal stabilities of monomeric and dimeric helical species observed on SDS/PAGE, and in the range of their alpha-helix-->beta-sheet transition temperatures confirmed that intramembranous valine residues are not simply universal contributors to membrane anchoring. Additional analyses of (i) nonmutatable sites in the mutant protein library, (ii) the properties of the double mutant V29A-V31A obtained by recycling mutant V31A DNA through mutagenesis procedures, and (iii) energy-minimized helical dimer structures of wild-type and mutant V31A transmembrane regions indicated that the transmembrane hydrophobic core helix of the M13 coat protein can be partitioned into alternating pairs of potential protein-interactive residues (V30, V31; G34, A35; G38, I39) and membrane-interactive residues (M28, V29; I32, V33; T36, I37). The overall results consitute an experimental approach to categorizing the distinctive contributions to structure of the residues comprising a protein-protein packing interface vs. those facing lipid and confirm the sequence-dependent capacity of specific residues within the transmembrane domain to modulate protein-protein interactions which underlie regulatory events in membrane proteins.

  10. Gene expression profiling via LongSAGE in a non-model plant species: a case study in seeds of Brassica napus

    PubMed Central

    Obermeier, Christian; Hosseini, Bashir; Friedt, Wolfgang; Snowdon, Rod

    2009-01-01

    Background Serial analysis of gene expression (LongSAGE) was applied for gene expression profiling in seeds of oilseed rape (Brassica napus ssp. napus). The usefulness of this technique for detailed expression profiling in a non-model organism was demonstrated for the highly complex, neither fully sequenced nor annotated genome of B. napus by applying a tag-to-gene matching strategy based on Brassica ESTs and the annotated proteome of the closely related model crucifer A. thaliana. Results Transcripts from 3,094 genes were detected at two time-points of seed development, 23 days and 35 days after pollination (DAP). Differential expression showed a shift from gene expression involved in diverse developmental processes including cell proliferation and seed coat formation at 23 DAP to more focussed metabolic processes including storage protein accumulation and lipid deposition at 35 DAP. The most abundant transcripts at 23 DAP were coding for diverse protease inhibitor proteins and proteases, including cysteine proteases involved in seed coat formation and a number of lipid transfer proteins involved in embryo pattern formation. At 35 DAP, transcripts encoding napin, cruciferin and oleosin storage proteins were most abundant. Over both time-points, 18.6% of the detected genes were matched by Brassica ESTs identified by LongSAGE tags in antisense orientation. This suggests a strong involvement of antisense transcript expression in regulatory processes during B. napus seed development. Conclusion This study underlines the potential of transcript tagging approaches for gene expression profiling in Brassica crop species via EST matching to annotated A. thaliana genes. Limits of tag detection for low-abundance transcripts can today be overcome by ultra-high throughput sequencing approaches, so that tag-based gene expression profiling may soon become the method of choice for global expression profiling in non-model species. PMID:19575793

  11. Intelligent Computation for Optimal Fabrication Condition of a Protein Chip with Ni-Co Alloy-Coated Surface.

    PubMed

    Chang, Yaw-Jen; Chang, Cheng-Hao

    2016-06-01

    Based on the principle of immobilized metal affinity chromatography (IMAC), it has been found that a Ni-Co alloy-coated protein chip is able to immobilize functional proteins with a His-tag attached. In this study, an intelligent computational approach was developed to promote the performance and repeatability of a Ni-Co alloy-coated protein chip. This approach was launched out of L18 experiments. Based on the experimental data, the fabrication process model of a Ni-Co protein chip was established by using an artificial neural network, and then an optimal fabrication condition was obtained using the Taguchi genetic algorithm. The result was validated experimentally and compared with a nitrocellulose chip. Consequentially, experimental outcomes revealed that the Ni-Co alloy-coated chip, fabricated using the proposed approach, had the best performance and repeatability compared with the Ni-Co chips of an L18 orthogonal array design and the nitrocellulose chip. Moreover, the low fluorescent background of the chip surface gives a more precise fluorescent detection. Based on a small quantity of experiments, this proposed intelligent computation approach can significantly reduce the experimental cost and improve the product's quality. © 2015 Society for Laboratory Automation and Screening.

  12. Coating nanoparticles with tunable surfactants facilitates control over the protein corona.

    PubMed

    Müller, J; Bauer, K N; Prozeller, D; Simon, J; Mailänder, V; Wurm, F R; Winzen, S; Landfester, K

    2017-01-01

    Nanoparticles with long blood circulation time are a prerequisite for targeted drug delivery. To make the nanoparticles invisible for phagocytizing cells, functional moieties on the particle surface are believed to be necessary to attract specific so-called 'stealth' proteins forming a protein 'corona'. Currently, covalent attachment of those moieties represents the only way to achieve that attraction. However, that approach requires a high synthetic effort and is difficult to control. Therefore, we present the coating of model nanoparticles with biodegradable polymeric surfactants as an alternative method. The thermodynamic parameters of the coating process can be tuned by adjusting the surfactants' block lengths and hydrophilicity. Consequently, the unspecific protein adsorption and aggregation tendency of the particles can be controlled, and stealth proteins inhibiting cell uptake are enriched on their surface. This non-covalent approach could be applied to any particle type and thus facilitates tuning the protein corona and its biological impact. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Impact of whey protein coating incorporated with Bifidobacterium and Lactobacillus on sliced ham properties.

    PubMed

    Odila Pereira, Joana; Soares, José; J P Monteiro, Maria; Gomes, Ana; Pintado, Manuela

    2018-05-01

    Edible coatings/films with functional ingredients may be a solution to consumers' demands for high-quality food products and an extended shelf-life. The aim of this work was to evaluate the antimicrobial efficiency of edible coatings incorporated with probiotics on sliced ham preservation. Coatings was developed based on whey protein isolates with incorporation of Bifidobacterium animalis Bb-12® or Lactobacillus casei-01. The physicochemical analyses showed that coating decreased water and weight loss on the ham. Furthermore, color analysis showed that coated sliced ham, exhibited no color change, comparatively to uncoated slices. The edible coatings incorporating the probiotic strains inhibited detectable growth of Staphylococcus spp., Pseudomonas spp., Enterobacteriaceae and yeasts/molds, at least, for 45days of storage at 4°C. The sensory evaluation demonstrated that there was a preference for the sliced coated ham. Probiotic bacteria viable cell numbers were maintained at ca. 10 8 CFU/g throughout storage time, enabling the slice of ham to act as a suitable carrier for the beneficial bacteria. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Design and characterization of calcium alginate microparticles coated with polycations as protein delivery system.

    PubMed

    Zarate, J; Virdis, L; Orive, G; Igartua, M; Hernández, R M; Pedraz, J L

    2011-01-01

    Bovine serum albumin (BSA) loaded calcium alginate microparticles (MPs) produced in this study by a w/o emulsification and external gelation method exhibited spherical and fairly smooth and porous morphology with 1.052 ± 0.057 µm modal particle size. The high permeability of the calcium alginate hydrogel lead to a potent burst effect and too fast protein release. To overcome these problems, MPs were coated with polycations, such as chitosan, poly-L-lysine and DEAE-dextran. Our results demonstrated that coated MPs showed slower release and were able to significantly reduce the release of BSA in the first hour. Therefore, this method can be applied to prepare coated alginate MPs which could be an optimal system for the controlled release of biotherapeutic molecules. Nevertheless, further studies are needed to optimize delivery properties which could provide a sustained release of proteins.

  15. The rational design of a 'type 88' genetically stable peptide display vector in the filamentous bacteriophage fd.

    PubMed

    Enshell-Seijffers, D; Smelyanski, L; Gershoni, J M

    2001-05-15

    Filamentous bacteriophages are particularly efficient for the expression and display of combinatorial random peptides. Two phage proteins are often employed for peptide display: the infectivity protein, PIII, and the major coat protein, PVIII. The use of PVIII typically requires the expression of two pVIII genes: the wild-type and the recombinant pVIII gene, to generate mosaic phages. 'Type 88' vectors contain two pVIII genes in one phage genome. In this study a novel 'type 88' expression vector has been rationally designed and constructed. Two factors were taken into account: the insertion site and the genetic stability of the second pVIII gene. It was found that selective deletion of recombinant genes was encountered when inserts were cloned into either of the two non-coding regions of the phage genome. The deletions were independent of recA yet required a functional F-episome. Transcription was also found to be a positive factor for deletion. Taking the above into account led to the generation of a novel vector, designated fth1, which can be used to express recombinant peptides as pVIII chimeric proteins in mosaic bacteriophages. The fth1 vector is not only genetically stable but also of high copy number and produces high titers of recombinant phages.

  16. The improvement of fibroblast growth on hydrophobic biopolyesters by coating with polyhydroxyalkanoate granule binding protein PhaP fused with cell adhesion motif RGD.

    PubMed

    Dong, Ying; Li, Ping; Chen, Chong-bo; Wang, Zhi-hui; Ma, Ping; Chen, Guo-Qiang

    2010-12-01

    Polyhydroxyalkanoates (PHA), a family of biopolyesters, have been studied as tissue engineering biomaterials due to their adjustable mechanical properties, biodegradability and tissue compatibility. Amphiphilic PHA granule binding protein PhaP has been shown to be able to bind to hydrophobic surfaces of polymers, especially PHA, via strong hydrophobic interaction. Genes of PhaP and RGD peptides, which are a cell adhesion motif recognized by many cell surface receptors, were successfully expressed and obtained as a pure fusion protein PhaP-RGD in Escherichia coli DH5α. When films of poly(3-hydroxybutyrate-co-3-hydroxy- hexanoate) (PHBHHx), poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and polylactic acid (PLA) were coated with PhaP-RGD, their surface hydrophilicities were all increased compared with their corresponding naked (non-coated) films, respectively. Among the three biopolyesters, PHBHHx demonstrated the strongest affinity to PhaP. In vitro study showed that mouse fibroblasts L929 and mouse embryonic fibroblasts NIH/3T3 attached better and grew faster on all three PhaP-RGD coated films compared with their related behaviors on PhaP coated and non-coated films, respectively. Both fibroblasts attached and grew very well on PhaP-RGD coated PHBHHx, PHBV and PLA, even in their serum-free medium, while the non-coated and PhaP coated biopolyesters poorly supported the cell growth if the two fibroblasts were incubated in their serum free medium. These results indicated that PhaP-RGD could be used as a coating material to improve cell growth on hydrophobic biopolyesters for implant tissue engineering purposes. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. Real-Time Protein and Cell Binding Measurements on Hydroxyapatite Coatings

    PubMed Central

    Vilardell, A. M.; Cinca, N.; Jokinen, A.; Garcia-Giralt, N.; Dosta, S.; Cano, I. G.; Guilemany, J. M.

    2016-01-01

    Although a lot of in vitro and in vivo assays have been performed during the last few decades years for hydroxyapatite bioactive coatings, there is a lack of exploitation of real-time in vitro interaction measurements. In the present work, real-time interactions for a plasma sprayed hydroxyapatite coating were measured by a Multi-Parametric Surface Plasmon Resonance (MP-SPR), and the results were compared with standard traditional cell viability in vitro assays. MP-SPR is proven to be suitable not only for measurement of molecule–molecule interactions but also molecule–material interaction measurements and cell interaction. Although SPR is extensively utilized in interaction studies, recent research of protein or cell adsorption on hydroxyapatite coatings for prostheses applications was not found. The as-sprayed hydroxyapatite coating resulted in 62.4% of crystalline phase and an average thickness of 24 ± 6 μm. The MP-SPR was used to measure lysozyme protein and human mesenchymal stem cells interaction to the hydroxyapatite coating. A comparison between the standard gold sensor and Hydroxyapatite (HA)-plasma coated sensor denoted a clearly favourable cell attachment on HA coated sensor as a significantly higher signal of cell binding was detected. Moreover, traditional cell viability and proliferation tests showed increased activity with culture time indicating that cells were proliferating on HA coating. Cells show homogeneous distribution and proliferation along the HA surface between one and seven days with no significant mortality. Cells were flattened and spread on rough surfaces from the first day, with increasing cytoplasmatic extensions during the culture time. PMID:27618911

  18. Hydrogen exchange kinetics in a membrane protein determined by sup 15 N NMR spectroscopy: Use of the INEPT (insensitive nucleus enhancement by polarization transfer) experiment to follow individual amides in detergent-solubilized M13 coat protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henry, G.D.; Sykes, B.D.

    The coat protein of the filamentous coliphage M13 is a 50-residue polypeptide which spans the inner membrane of the Escherichia coli host upon infection. Amide hydrogen exchange kinetics have been used to probe the structure and dynamics of M13 coat protein which has been solubilized in sodium dodecyl sulfate (SDS) micelles. In a previous {sup 1}H nuclear magnetic resonance (NMR) study, multiple exponential analysis of the unresolved amide proton envelope revealed the existence of two slow kinetic sets containing a total of about 30 protons. The slower set (15-20 amides) originates from the hydrophobic membrane-spanning region and exchanges at leastmore » 10{sup 5}-fold slower than the unstructured, non-H-bonded model polypeptide poly(DL-alanine). Herein the authors use {sup 15}N NMR spectroscopy of biosynthetically labeled coat protein to follow individual, assigned, slowly exchanging amides in or near the hydrophobic segment. The INEPT (insensitive nucleus enhancement by polarization transfer) experiments can be used to transfer magnetization to the {sup 15}N nucleus from a coupled proton; when {sup 15}N-labeled protonated protein is dissolved in {sup 2}H{sub 2}O, the INEPT signal disappears with time as the amide protons are replaced by solvent deuterons. Amide hydrogen exchange is catalyzed by both H{sup +} and OH{sup {minus}} ions. The time-dependent exchange-out experiment is suitable for slow exchange rates (k{sub ex}). The INEPT experiment was also adapted to measure some of the more rapidly exchanging amides in the coat protein using either saturation transfer from water or exchange effects on the polarization transfer step itself. The results of all of these experiments are consistent with previous models of the coat protein in which a stable segment extends from the hydrophobic membrane-spanning region through to the C-terminus, whereas the N-terminal region is undergoing more extensive dynamic fluctuations.« less

  19. Recent progress in making protein microarray through BioLP

    NASA Astrophysics Data System (ADS)

    Yang, Rusong; Wei, Lian; Feng, Ying; Li, Xiujian; Zhou, Quan

    2017-02-01

    Biological laser printing (BioLP) is a promising biomaterial printing technique. It has the advantage of high resolution, high bioactivity, high printing frequency and small transported liquid amount. In this paper, a set of BioLP device is design and made, and protein microarrays are printed by this device. It's found that both laser intensity and fluid layer thickness have an influence on the microarrays acquired. Besides, two kinds of the fluid layer coating methods are compared, and the results show that blade coating method is better than well-coating method in BioLP. A microarray of 0.76pL protein microarray and a "NUDT" patterned microarray are printed to testify the printing ability of BioLP.

  20. Who's behind that mask and cape? The Asian leopard cat's Agouti (ASIP) allele likely affects coat colour phenotype in the Bengal cat breed.

    PubMed

    Gershony, L C; Penedo, M C T; Davis, B W; Murphy, W J; Helps, C R; Lyons, L A

    2014-12-01

    Coat colours and patterns are highly variable in cats and are determined mainly by several genes with Mendelian inheritance. A 2-bp deletion in agouti signalling protein (ASIP) is associated with melanism in domestic cats. Bengal cats are hybrids between domestic cats and Asian leopard cats (Prionailurus bengalensis), and the charcoal coat colouration/pattern in Bengals presents as a possible incomplete melanism. The complete coding region of ASIP was directly sequenced in Asian leopard, domestic and Bengal cats. Twenty-seven variants were identified between domestic and leopard cats and were investigated in Bengals and Savannahs, a hybrid with servals (Leptailurus serval). The leopard cat ASIP haplotype was distinguished from domestic cat by four synonymous and four non-synonymous exonic SNPs, as well as 19 intronic variants, including a 42-bp deletion in intron 4. Fifty-six of 64 reported charcoal cats were compound heterozygotes at ASIP, with leopard cat agouti (A(P) (be) ) and domestic cat non-agouti (a) haplotypes. Twenty-four Bengals had an additional unique haplotype (A2) for exon 2 that was not identified in leopard cats, servals or jungle cats (Felis chaus). The compound heterozygote state suggests the leopard cat allele, in combination with the recessive non-agouti allele, influences Bengal markings, producing a darker, yet not completely melanistic coat. This is the first validation of a leopard cat allele segregating in the Bengal breed and likely affecting their overall pelage phenotype. Genetic testing services need to be aware of the possible segregation of wild felid alleles in all assays performed on hybrid cats. © 2014 The Authors. Animal Genetics published by John Wiley & Sons Ltd on behalf of Stichting International Foundation for Animal Genetics.

  1. Nucleotide sequence analysis of the 3' terminal region of a wasabi strain of crucifer tobamovirus genomic RNA: subgrouping of crucifer tobamoviruses.

    PubMed

    Shimamoto, I; Sonoda, S; Vazquez, P; Minaka, N; Nishiguchi, M

    1998-01-01

    The 3' terminal 2378 nucleotides of a wasabi strain of crucifer tobamovirus (CTMV-W) infectious to crucifer plants was determined. This includes the 3' non-coding region of 235 nucleotides, coat protein (CP) gene (468 nucleotides), movement protein (MP) gene (798 nucleotides) and C-terminal partial readthrough portion of 180 K protein gene (940 nucleotides). Comparison of the sequence with homologous regions of thirteen other tobamovirus genomes showed that it had much higher identity to those of four other crucifer tobamoviruses, 85.2% to cr-TMV and turnip vein-clearing virus (TVCV), 87.4% to oilseed rape mosaic virus (ORMV) and 87.1% to TMV-Cg, than to those of other tobamoviruses. Thus CTMV-W was most similar to ORMV and TMV-Cg in sequence, but only marginally so, whereas the location and size of its MP gene was the same as cr-TMV amd TVCV. These results, together with other analyses, show that CTMV-W is a new crucifer tobamovirus, that the five crucifer tobamoviruses can be classified into two subgroups based on MP gene organization, and that the rate of sequence change is not the same in all lineages.

  2. Surface modification of zinc oxide nanoparticles with amorphous silica alters their fate in the circulation.

    PubMed

    Konduru, Nagarjun V; Murdaugh, Kimberly M; Swami, Archana; Jimenez, Renato J; Donaghey, Thomas C; Demokritou, Philip; Brain, Joseph D; Molina, Ramon M

    2016-08-01

    Nanoparticle (NP) pharmacokinetics and biological effects are influenced by many factors, especially surface physicochemical properties. We assessed the effects of an amorphous silica coating on the fate of zinc after intravenous (IV) injection of neutron activated uncoated (65)ZnO or silica-coated (65)ZnO NPs in male Wistar Han rats. Groups of IV-injected rats were sequentially euthanized, and 18 tissues were collected and analyzed for (65)Zn radioactivity. The protein coronas on each ZnO NP after incubation in rat plasma were analyzed by SDS-PAGE gel electrophoresis and mass spectrometry of selected gel bands. Plasma clearance for both NPs was biphasic with rapid initial and slower terminal clearance rates. Half-lives of plasma clearance of silica-coated (65)ZnO were shorter (initial - <1 min; terminal - 2.5 min) than uncoated (65)ZnO (initial - 1.9 min; terminal - 38 min). Interestingly, the silica-coated (65)ZnO group had higher (65)Zn associated with red blood cells and higher initial uptake in the liver. The (65)Zn concentrations in all the other tissues were significantly lower in the silica-coated than uncoated groups. We also found that the protein corona formed on silica-coated ZnO NPs had higher amounts of plasma proteins, particularly albumin, transferrin, A1 inhibitor 3, α-2-hs-glycoprotein, apoprotein E and α-1 antitrypsin. Surface modification with amorphous silica alters the protein corona, agglomerate size, and zeta potential of ZnO NPs, which in turn influences ZnO biokinetic behavior in the circulation. This emphasizes the critical role of the protein corona in the biokinetics, toxicology and nanomedical applications of NPs.

  3. Nanotube-assisted protein deactivation

    NASA Astrophysics Data System (ADS)

    Joshi, Amit; Punyani, Supriya; Bale, Shyam Sundhar; Yang, Hoichang; Borca-Tasciuc, Theodorian; Kane, Ravi S.

    2008-01-01

    Conjugating proteins onto carbon nanotubes has numerous applications in biosensing, imaging and cellular delivery. However, remotely controlling the activity of proteins in these conjugates has never been demonstrated. Here we show that upon near-infrared irradiation, carbon nanotubes mediate the selective deactivation of proteins in situ by photochemical effects. We designed nanotube-peptide conjugates to selectively destroy the anthrax toxin, and also optically transparent coatings that can self-clean following either visible or near-infrared irradiation. Nanotube-assisted protein deactivation may be broadly applicable to the selective destruction of pathogens and cells, and will have applications ranging from antifouling coatings to functional proteomics.

  4. Wheat streak mosaic virus coat protein is a determinant for vector transmission by the wheat curl mite

    USDA-ARS?s Scientific Manuscript database

    Wheat streak mosaic virus (WSMV; genus Tritimovirus; family Potyviridae), is transmitted by the wheat curl mite (Aceria tosichella Keifer). The requirement of coat protein (CP) for WSMV transmission by the wheat curl mite was examined using a series of viable deletion and point mutations. Mite trans...

  5. Evidence for lysine acetylation in the coat protein of a Polerovirus

    USDA-ARS?s Scientific Manuscript database

    Virions of the RPV strain of Cereal yellow dwarf virus (CYDV-RPV) were purified from infected oat tissue and analyzed by mass spectrometry. Two conserved residues, K147 and K181, residing in the virus coat protein, were confidently identified to contain epsilon-N-acetyl groups. While no functional ...

  6. Generation of PVY coat protein siRNAs in transgenic potatoes resistant to PVY.

    USDA-ARS?s Scientific Manuscript database

    Transgenic potatoes expressing the potato virus Y coat protein (PVY-CP) inverted hairpin RNA (ihRNA) construct driven by the Solanum bulbocastanum ubiquitin 409s promoter exhibited resistance to PVY in glass house studies using PVYNTN and PVYO as inocula and in field studies using naturally occurrin...

  7. MAS1 Receptor Trafficking Involves ERK1/2 Activation Through a β-Arrestin2-Dependent Pathway.

    PubMed

    Cerniello, Flavia M; Carretero, Oscar A; Longo Carbajosa, Nadia A; Cerrato, Bruno D; Santos, Robson A; Grecco, Hernán E; Gironacci, Mariela M

    2017-11-01

    The MAS1 receptor (R) exerts protective effects in the brain, heart, vessels, and kidney. R trafficking plays a critical function in signal termination and propagation and in R resensitization. We examined MAS1R internalization and trafficking on agonist stimulation and the role of β-arrestin2 in the activation of ERK1/2 (extracellular signal-regulated kinase 1/2) and Akt after MAS1R stimulation. Human embryonic kidney 293T cells were transfected with the coding sequence for MAS1R-YFP (MAS1R fused to yellow fluorescent protein). MAS1R internalization was evaluated by measuring the MAS1R present in the plasma membrane after agonist stimulation using a ligand-binding assay. MAS1R trafficking was evaluated by its colocalization with trafficking markers. MAS1R internalization was blocked in the presence of shRNAcaveolin-1 and with dominant negatives for Eps15 (a protein involved in endocytosed Rs by clathrin-coated pits) and for dynamin. After stimulation, MAS1R colocalized with Rab11-a slow recycling vesicle marker-and not with Rab4-a fast recycling vesicle marker-or LysoTracker-a lysosome marker. Cells transfected with MAS1R showed an increase in Akt and ERK1/2 activation on angiotensin-(1-7) stimulation, which was blocked when the clathrin-coated pits pathway was blocked. Suppression of β-arrestin2 by shRNA reduced the angiotensin-(1-7)-induced ERK1/2 activation, whereas Akt activation was not modified. We conclude that on agonist stimulation, MAS1R is internalized through clathrin-coated pits and caveolae in a dynamin-dependent manner and is then slowly recycled back to the plasma membrane. MAS1R induced Akt and ERK1/2 activation from early endosomes, and the activation of ERK1/2 was mediated by β-arrestin2. Thus, MAS1R activity and density may be tightly controlled by the cell. © 2017 American Heart Association, Inc.

  8. Microstructure of Desmanthus illinoensis

    NASA Astrophysics Data System (ADS)

    Wood, Delilah F.; Orts, William J.; Glenn, Gregory M.

    2010-06-01

    Structure and histochemistry of mature seeds of Desmanthus illinoensis (Illinois bundle flower) show that the seed has typical legume structure. The seed can be separated into two major fractions including the seed coat/endosperm and the embryo. The seed coat consists of a cuticle, palisade sclereids, hour glass cells and mesophyll. Endosperm is attached to the inner portion of the seed coat and is thicker beneath the pleurogram in the center of the seed. The embryo consists mostly of two large cotyledons, the major storage structures of the seed. The cotyledons are high in protein which occurs in protein bodies. Protein bodies in the cotyledons include those without inclusions, those with phytin inclusions and those with calcium-rich crystals. The phytin inclusions are spherical and have high phosphorus and magnesium contents. The calcium-rich crystals are also included inside protein bodies and are druse-type crystals.

  9. Prediction of plant lncRNA by ensemble machine learning classifiers.

    PubMed

    Simopoulos, Caitlin M A; Weretilnyk, Elizabeth A; Golding, G Brian

    2018-05-02

    In plants, long non-protein coding RNAs are believed to have essential roles in development and stress responses. However, relative to advances on discerning biological roles for long non-protein coding RNAs in animal systems, this RNA class in plants is largely understudied. With comparatively few validated plant long non-coding RNAs, research on this potentially critical class of RNA is hindered by a lack of appropriate prediction tools and databases. Supervised learning models trained on data sets of mostly non-validated, non-coding transcripts have been previously used to identify this enigmatic RNA class with applications largely focused on animal systems. Our approach uses a training set comprised only of empirically validated long non-protein coding RNAs from plant, animal, and viral sources to predict and rank candidate long non-protein coding gene products for future functional validation. Individual stochastic gradient boosting and random forest classifiers trained on only empirically validated long non-protein coding RNAs were constructed. In order to use the strengths of multiple classifiers, we combined multiple models into a single stacking meta-learner. This ensemble approach benefits from the diversity of several learners to effectively identify putative plant long non-coding RNAs from transcript sequence features. When the predicted genes identified by the ensemble classifier were compared to those listed in GreeNC, an established plant long non-coding RNA database, overlap for predicted genes from Arabidopsis thaliana, Oryza sativa and Eutrema salsugineum ranged from 51 to 83% with the highest agreement in Eutrema salsugineum. Most of the highest ranking predictions from Arabidopsis thaliana were annotated as potential natural antisense genes, pseudogenes, transposable elements, or simply computationally predicted hypothetical protein. Due to the nature of this tool, the model can be updated as new long non-protein coding transcripts are identified and functionally verified. This ensemble classifier is an accurate tool that can be used to rank long non-protein coding RNA predictions for use in conjunction with gene expression studies. Selection of plant transcripts with a high potential for regulatory roles as long non-protein coding RNAs will advance research in the elucidation of long non-protein coding RNA function.

  10. Bioactive potential of silica coatings and its effect on the adhesion of proteins to titanium implants.

    PubMed

    Romero-Gavilan, F; Araújo-Gomes, N; Sánchez-Pérez, A M; García-Arnáez, I; Elortza, F; Azkargorta, M; de Llano, J J Martín; Carda, C; Gurruchaga, M; Suay, J; Goñi, I

    2018-02-01

    There is an ever-increasing need to develop dental implants with ideal characteristics to achieve specific and desired biological response in the scope of improve the healing process post-implantation. Following that premise, enhancing and optimizing titanium implants through superficial treatments, like silica sol-gel hybrid coatings, are regarded as a route of future research in this area. These coatings change the physicochemical properties of the implant, ultimately affecting its biological characteristics. Sandblasted acid-etched titanium (SAE-Ti) and a silica hybrid sol-gel coating (35M35G30T) applied onto the Ti substrate were examined. The results of in vitro and in vivo tests and the analysis of the protein layer adsorbed to each surface were compared and discussed. In vitro analysis with MC3T3-E1 osteoblastic cells, showed that the sol-gel coating raised the osteogenic activity potential of the implants (the expression of osteogenic markers, the alkaline phosphatase (ALP) and IL-6 mRNAs, increased). In the in vivo experiments using as model rabbit tibiae, both types of surfaces promoted osseointegration. However, the coated implants demonstrated a clear increase in the inflammatory activity in comparison with SAE-Ti. Mass spectrometry (LC-MS/MS) analysis showed differences in the composition of protein layers formed on the two tested surfaces. Large quantities of apolipoproteins were found attached predominantly to SAE-Ti. The 35M35G30T coating adsorbed a significant quantity of complement proteins, which might be related to the material intrinsic bioactivity, following an associated, natural and controlled immune response. The correlation between the proteomic data and the in vitro and in vivo outcomes is discussed on this experimental work. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Influence of multilayer rhBMP-2 DNA coating on the proliferation and differentiation of MC3T3-E1 cells seeded on roughed titanium surface.

    PubMed

    Jiang, Qiao-Hong; Liu, Li; Shen, Jian-Wei; Peel, Sean; Yang, Guo-Li; Zhao, Shi-Fang; He, Fu-Ming

    2012-10-01

    For bone morphogenetic protein (BMP) gene therapy to be a viable approach for enhancing implant osseointegration clinically, requires the development of efficient nonviral delivery vectors that can coat the implant. This study evaluated a multilayer cationic liposome-DNA complex (LDc) coating as a delivery vehicle for recombinant human BMP-2 (rhBMP-2). Multilayered coatings, comprising hyaluronic acid (HA) and LDc, were fabricated onto titanium using a layer-by-layer (LBL) assembly technique. Preosteoblastic MC3T3-E1 cells were cultured on the roughened titanium surfaces coated with multilayers of HA/LDc, or on uncoated or HA/liposome only surfaces as controls. The amount of rhBMP-2 secreted by the MC3T3-E1 cells and the effect of the various surfaces on cell viability, proliferation, alkaline phosphatase (ALP) activity, osteocalcin (OC) secretion, and calcium deposition were evaluated. Messenger RNA levels of OC, ALP, Runx2, and Osx were also investigated. The results demonstrated that rhBMP-2 protein secreted into culture medium at 3 days was significantly higher than control groups. MC3T3-E1 cells cultured on the HA/LDc coating displayed significantly higher ALP activity and OC secretion at 7 days and 14 days culture, respectively. MC3T3-E1 cells cultured on HA/LDc upregulated expression of the osteoblast differentiation markers, especially on days 12 for OC and on days 6 and 12 for ALP and Osx. In conclusion, MC3T3-E1 cell cultured on the multilayer HA/LDc coating surface can secret rhBMP-2 protein and the protein levels were effective in inducing early osteogenic differentiation. Copyright © 2012 Wiley Periodicals, Inc.

  12. Improvement of food packaging related properties in whey protein isolate‑based nanocomposite films and coatings by addition of montmorillonite nanoplatelets

    NASA Astrophysics Data System (ADS)

    Schmid, Markus; Merzbacher, Sarah; Brzoska, Nicola; Müller, Kerstin; Jesdinszki, Marius

    2017-11-01

    In the present study the effects of the addition of montmorillonite (MMT) nanoplatelets on whey protein isolate (WPI)-based nanocomposite films and coatings were investigated. The main objective was the development of WPI-based MMT-nanocomposites with enhanced barrier and mechanical properties. WPI-based nanocomposite cast-films and coatings were prepared by dispersing 0 % (reference sample), 3 %, 6 %, 9 % (w/w protein) MMT, or, depending on the protein concentration, also 12 % and 15 % (w/w protein) MMT into native WPI-based dispersions, followed by subsequent denaturation during the drying and curing process. The natural MMT nanofillers could be randomly dispersed into film-forming WPI-based nanodispersions, displaying good compatibility with the hydrophilic biopolymer matrix. As a result, by addition of 15 % (w/w protein) MMT into 10 % (w/w dispersion) WPI-based cast-films or coatings, the oxygen permeability (OP) was reduced by 91 % for glycerol-plasticized and 84 % for sorbitol-plasticized coatings, water vapor transmission rate (WVTR) was reduced by 58 % for sorbitol-plasticized cast-films. Due to the addition of MMT- nanofillers the Young’s modulus and tensile strength improved by 315 % and 129 %, respectively, whereas elongation at break declined by 77 % for glycerol-plasticized cast-films. In addition, comparison of plasticizer type revealed that sorbitol-plasticized cast-films were generally stiffer and stronger, but less flexible compared glycerol-plasticized cast-films. Viscosity measurements demonstrated good processability and suitability for up-scaled industrial processes of native WPI-based nanocomposite dispersions, even at high nanofiller-loadings. These results suggest that the addition of natural MMT- nanofillers into native WPI-based matrices to form nanocomposite films and coatings holds great potential to replace well-established, fossil-based packaging materials for at least certain applications such as oxygen barriers as part of multilayer flexible packaging films.

  13. Chitosan-coated polystyrene microplate for covalent immobilization of enzyme.

    PubMed

    Zhang, Yaodong; Li, Li; Yu, Caihong; Hei, Tingting

    2011-10-01

    Microplates made of polystyrene have been widely used for immunoassays. Protein molecules that have been immobilized on a hydrophobic polystyrene microplate by passive adsorption lose their activity and suffer considerable denaturation. A new chitosan-coated microplate suitable for the covalent immobilization of enzymes has been developed. The primary amino groups of chitosan were exploited for this covalent coupling of proteins. The optical transmittance of the chitosan-coated microplate, at wavelengths of 400-800 nm, was estimated to be suitable for its application in chromogenic reaction-based bioassays. The immobilization efficiency of the chitosan-coated microplate was demonstrated to be far superior to that of a conventional microplate when tested using acetylcholinesterase (AChE) and β-glucosidase as model biomolecules, and the chitosan-coated microplate may thus have potential applications in biosensing and bioreactor systems. © Springer-Verlag 2011

  14. Backbone dynamics of a model membrane protein: measurement of individual amide hydrogen-exchange rates in detergent-solubilized M13 coat protein using /sup 13/C NMR hydrogen/deuterium isotope shifts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henry, G.D.; Weiner, J.H.; Sykes, B.D.

    Hydrogen-exchange rates have been measured for individual assigned amide protons in M13 coat protein, a 50-residue integral membrane protein, using a /sup 13/C nuclear magnetic resonance (NMR) equilibrium isotope shift technique. The locations of the more rapidly exchanging amides have been determined. In D/sub 2/O solutions, a peptide carbonyl resonance undergoes a small upfield isotope shift (0.08-0.09 ppm) from its position in H/sub 2/O solutions; in 1:1 H/sub 2/O/D/sub 2/O mixtures, the carbonyl line shape is determined by the exchange rate at the adjacent nitrogen atom. M13 coat protein was labeled biosynthetically with /sup 13/C at the peptide carbonyls ofmore » alanine, glycine, phenylalanine, proline, and lysine, and the exchange rates of 12 assigned amide protons in the hydrophilic regions were measured as a function of pH by using the isotope shift method. This equilibrium technique is sensitive to the more rapidly exchanging protons which are difficult to measure by classical exchange-out experiments. In proteins, structural factors, notably H bonding, can decrease the exchange rate of an amide proton by many orders of magnitude from that observed in the freely exposed amides of model peptides such as poly(DL-alanine). With corrections for sequence-related inductive effects, the retardation of amide exchange in sodium dodecyl sulfate solubilized coat protein has been calculated with respect to poly(DL-alanine). The most rapidly exchanging protons, which are retarded very little or not at all, are shown to occur at the N- and C-termini of the molecule. A model of the detergent-solubilized coat protein is constructed from these H-exchange data which is consistent with circular dichroism and other NMR results.« less

  15. The Evolution and Expression Pattern of Human Overlapping lncRNA and Protein-coding Gene Pairs.

    PubMed

    Ning, Qianqian; Li, Yixue; Wang, Zhen; Zhou, Songwen; Sun, Hong; Yu, Guangjun

    2017-03-27

    Long non-coding RNA overlapping with protein-coding gene (lncRNA-coding pair) is a special type of overlapping genes. Protein-coding overlapping genes have been well studied and increasing attention has been paid to lncRNAs. By studying lncRNA-coding pairs in human genome, we showed that lncRNA-coding pairs were more likely to be generated by overprinting and retaining genes in lncRNA-coding pairs were given higher priority than non-overlapping genes. Besides, the preference of overlapping configurations preserved during evolution was based on the origin of lncRNA-coding pairs. Further investigations showed that lncRNAs promoting the splicing of their embedded protein-coding partners was a unilateral interaction, but the existence of overlapping partners improving the gene expression was bidirectional and the effect was decreased with the increased evolutionary age of genes. Additionally, the expression of lncRNA-coding pairs showed an overall positive correlation and the expression correlation was associated with their overlapping configurations, local genomic environment and evolutionary age of genes. Comparison of the expression correlation of lncRNA-coding pairs between normal and cancer samples found that the lineage-specific pairs including old protein-coding genes may play an important role in tumorigenesis. This work presents a systematically comprehensive understanding of the evolution and the expression pattern of human lncRNA-coding pairs.

  16. Finite element thermal analysis of multispectral coatings for the ABL

    NASA Astrophysics Data System (ADS)

    Shah, Rashmi S.; Bettis, Jerry R.; Stewart, Alan F.; Bonsall, Lynn; Copland, James; Hughes, William; Echeverry, Juan C.

    1999-04-01

    The thermal response of a coated optical surface is an important consideration in the design of any high average power system. Finite element temperature distribution were calculated for both coating witness samples and calorimetry wafers and were compared to actual measured data under tightly controlled conditions. Coatings for ABL were deposited on various substrates including fused silica, ULE, Zerodur, and silicon. The witness samples were irradiate data high power levels at 1.315micrometers to evaluate laser damage thresholds and study absorption levels. Excellent agreement was obtained between temperature predictions and measured thermal response curves. When measured absorption values were not available, the code was used to predict coating absorption based on the measured temperature rise on the back surface. Using the finite element model, the damaging temperature rise can be predicted for a coating with known absorption based on run time, flux, and substrate material.

  17. Silica coating influences the corona and biokinetics of cerium oxide nanoparticles.

    PubMed

    Konduru, Nagarjun V; Jimenez, Renato J; Swami, Archana; Friend, Sherri; Castranova, Vincent; Demokritou, Philip; Brain, Joseph D; Molina, Ramon M

    2015-10-12

    The physicochemical properties of nanoparticles (NPs) influence their biological outcomes. We assessed the effects of an amorphous silica coating on the pharmacokinetics and pulmonary effects of CeO2 NPs following intratracheal (IT) instillation, gavage and intravenous injection in rats. Uncoated and silica-coated CeO2 NPs were generated by flame spray pyrolysis and later neutron-activated. These radioactive NPs were IT-instilled, gavaged, or intravenously (IV) injected in rats. Animals were analyzed over 28 days post-IT, 7 days post-gavage and 2 days post-injection. Our data indicate that silica coating caused more but transient lung inflammation compared to uncoated CeO2. The transient inflammation of silica-coated CeO2 was accompanied by its enhanced clearance. Then, from 7 to 28 days, clearance was similar although significantly more (141)Ce from silica-coated (35%) was cleared than from uncoated (19%) (141)CeO2 in 28 days. The protein coronas of the two NPs were significantly different when they were incubated with alveolar lining fluid. Despite more rapid clearance from the lungs, the extrapulmonary (141)Ce from silica-coated (141)CeO2 was still minimal (<1%) although lower than from uncoated (141)CeO2 NPs. Post-gavage, nearly 100% of both NPs were excreted in the feces consistent with very low gut absorption. Both IV-injected (141)CeO2 NP types were primarily retained in the liver and spleen. The silica coating significantly altered the plasma protein corona composition and enhanced retention of (141)Ce in other organs except the liver. We conclude that silica coating of nanoceria alters the biodistribution of cerium likely due to modifications in protein corona formation after IT and IV administration.

  18. Size-Dependent Protein-Nanoparticle Interactions in Citrate-Stabilized Gold Nanoparticles: The Emergence of the Protein Corona.

    PubMed

    Piella, Jordi; Bastús, Neus G; Puntes, Víctor

    2017-01-18

    Surface modifications of highly monodisperse citrate-stabilized gold nanoparticles (AuNPs) with sizes ranging from 3.5 to 150 nm after their exposure to cell culture media supplemented with fetal bovine serum were studied and characterized by the combined use of UV-vis spectroscopy, dynamic light scattering, and zeta potential measurements. In all the tested AuNPs, a dynamic process of protein adsorption was observed, evolving toward the formation of an irreversible hard protein coating known as Protein Corona. Interestingly, the thickness and density of this protein coating were strongly dependent on the particle size, making it possible to identify different transition regimes as the size of the particles increased: (i) NP-protein complexes (or incomplete corona), (ii) the formation of a near-single dense protein corona layer, and (iii) the formation of a multilayer corona. In addition, the different temporal patterns in the evolution of the protein coating came about more quickly for small particles than for the larger ones, further revealing the significant role that size plays in the kinetics of this process. Since the biological identity of the NPs is ultimately determined by the protein corona and different NP-biological interactions take place at different time scales, these results are relevant to biological and toxicological studies.

  19. Expression and the antigenicity of recombinant coat proteins of tungro viruses expressed in Escherichia coli.

    PubMed

    Yee, Siew Fung; Chu, Chia Huay; Poili, Evenni; Sum, Magdline Sia Henry

    2017-02-01

    Rice tungro disease (RTD) is a recurring disease affecting rice farming especially in the South and Southeast Asia. The disease is commonly diagnosed by visual observation of the symptoms on diseased plants in paddy fields and by polymerase chain reaction (PCR). However, visual observation is unreliable and PCR can be costly. High-throughput as well as relatively cheap detection methods are important for RTD management for screening large number of samples. Due to this, detection by serological assays such as immunoblotting assays and enzyme-linked immunosorbent assay are preferred. However, these serological assays are limited by lack of continuous supply of antibodies as reagents due to the difficulty in preparing sufficient purified virions as antigens. This study aimed to generate and evaluate the reactivity of the recombinant coat proteins of Rice tungro bacilliform virus (RTBV) and Rice tungro spherical virus (RTSV) as alternative antigens to generate antibodies. The genes encoding the coat proteins of both viruses, RTBV (CP), and RTSV (CP1, CP2 and CP3) were cloned and expressed as recombinant fusion proteins in Escherichia coli. All of the recombinant fusion proteins, with the exception of the recombinant fusion protein of the CP2 of RTSV, were reactive against our in-house anti-tungro rabbit serum. In conclusion, our study showed the potential use of the recombinant fusion coat proteins of the tungro viruses as alternative antigens for production of antibodies for diagnostic purposes. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. A versatile SERS-based immunoassay for immunoglobulin detection using antigen-coated gold nanoparticles and malachite green-conjugated protein A/G

    USDA-ARS?s Scientific Manuscript database

    A surface enhanced Raman scattering (SERS) immunoassay for antibody detection in serum is described in the present work. The developed assay is conducted in solution and utilizes Au nanoparticles coated with the envelope (E) protein of West Nile Virus (WNV) as the SERS-active substrate and malachite...

  1. Coat protein deletion mutants elicit more severe symptoms than wild-type virus in multiple cereal hosts

    USDA-ARS?s Scientific Manuscript database

    The coat protein (CP) of Wheat streak mosaic virus (WSMV; genus Tritimovirus, family Potyviridae) tolerates deletion of amino acids 36 to 84 for efficient systemic infection of wheat. This study demonstrates that deletion of CP amino acids 58 to 84, but not 36 to 57, from WSMV genome induced severe ...

  2. Transfer in SDS of biotinylated proteins from acrylamide gels to an avidin-coated membrane filter.

    PubMed

    Karlin, Arthur; Wang, Chaojian; Li, Jing; Xu, Qiang

    2004-06-01

    Avidin was covalently linked to aldehyde-derivatized polyethersulfone membrane filters. These filters were used in Western blot analysis of proteins reacted with biotinylation reagents and electrophoresed in sodium dodecyl sulfate (SDS) on polyacrylamide gels. Electrophoretic transfer from the gels to these filters was in 0.1% SDS, in which the covalently bound avidin retained its biotin-binding capacity. We compared Western blots on avidin-coated membrane filters of biotinylated and nonbiotinylated forms of mouse immunoglobulin G (IgG), mouse IgG heavy chain, muscle-type acetylcholine receptor alpha subunit, and fused alpha and beta subunits of receptor. Biotinylated proteins were captured with high specificity compared to their nonbiotinylated counterparts and sensitively detected on the avidin-coated membranes.

  3. Evidence for lysine acetylation in the coat protein of a polerovirus.

    PubMed

    Cilia, Michelle; Johnson, Richard; Sweeney, Michelle; DeBlasio, Stacy L; Bruce, James E; MacCoss, Michael J; Gray, Stewart M

    2014-10-01

    Virions of the RPV strain of Cereal yellow dwarf virus-RPV were purified from infected oat tissue and analysed by MS. Two conserved residues, K147 and K181, in the virus coat protein, were confidently identified to contain epsilon-N-acetyl groups. While no functional data are available for K147, K181 lies within an interfacial region critical for virion assembly and stability. The signature immonium ion at m/z 126.0919 demonstrated the presence of N-acetyllysine, and the sequence fragment ions enabled an unambiguous assignment of the epsilon-N-acetyl modification on K181. We hypothesize that selection favours acetylation of K181 in a fraction of coat protein monomers to stabilize the capsid by promoting intermonomer salt bridge formation.

  4. Fabrication of robust hydrogel coatings on polydimethylsiloxane substrates using micropillar anchor structures with chemical surface modification.

    PubMed

    Zhang, Hongbin; Bian, Chao; Jackson, John K; Khademolhosseini, Farzad; Burt, Helen M; Chiao, Mu

    2014-06-25

    A durable hydrophilic and protein-resistant surface of polydimethylsiloxane (PDMS) based devices is desirable in many biomedical applications such as implantable and microfluidic devices. This paper describes a stable antifouling hydrogel coating on PDMS surfaces. The coating method combines chemical modification and surface microstructure fabrication of PDMS substrates. Three-(trimethoxysilyl)propyl methacrylates containing C═C groups were used to modify PDMS surfaces with micropillar array structures fabricated by a replica molding method. The micropillar structures increase the surface area of PDMS surfaces, which facilitates secure bonding with a hydrogel coating compared to flat PMDS surfaces. The adhesion properties of the hydrogel coating on PDMS substrates were characterized using bending, stretching and water immersion tests. Long-term hydrophilic stability (maintaining a contact angle of 55° for a month) and a low protein adsorption property (35 ng/cm(2) of adsorbed BSA-FITC) of the hydrogel coated PDMS were demonstrated. This coating method is suitable for PDMS modification with most crosslinkable polymers containing C═C groups, which can be useful for improving the anti-biofouling performance of PDMS-based biomedical microdevices.

  5. Reactive polymer coatings: A robust platform towards sophisticated surface engineering for biotechnology

    NASA Astrophysics Data System (ADS)

    Chen, Hsien-Yeh

    Functionalized poly(p-xylylenes) or so-called reactive polymers can be synthesized via chemical vapor deposition (CVD) polymerization. The resulting ultra-thin coatings are pinhole-free and can be conformally deposited to a wide range of substrates and materials. More importantly, the equipped functional groups can served as anchoring sites for tailoring the surface properties, making these reactive coatings a robust platform that can deal with sophisticated challenges faced in biointerfaces. In this work presented herein, surface coatings presenting various functional groups were prepared by CVD process. Such surfaces include aldehyde-functionalized coating to precisely immobilize saccharide molecules onto well-defined areas and alkyne-functionalized coating to click azide-modified molecules via Huisgen 1,3-dipolar cycloaddition reaction. Moreover, CVD copolymerization has been conducted to prepare multifunctional coatings and their specific functions were demonstrated by the immobilization of biotin and NHS-ester molecules. By using a photodefinable coating, polyethylene oxides were immobilized onto a wide range of substrates through photo-immobilization. Spatially controlled protein resistant properties were characterized by selective adsorption of fibrinogen and bovine serum albumin as model systems. Alternatively, surface initiator coatings were used for polymer graftings of polyethylene glycol) methyl ether methacrylate, and the resultant protein- and cell- resistant properties were characterized by adsorption of kinesin motor proteins, fibrinogen, and murine fibroblasts (NIH3T3). Accessibility of reactive coatings within confined microgeometries was systematically studied, and the preparation of homogeneous polymer thin films within the inner surface of microchannels was demonstrated. Moreover, these advanced coatings were applied to develop a dry adhesion process for microfluidic devices. This process provides (i) excellent bonding strength, (ii) extended storage time prior to bonding, and (iii) well-defined surface functionalities for subsequent surface modifications. Finally, we have also prepared surface microstructures and surface patterns using reactive coatings via photopatterning, projection lithography, supramolecular nanostamping (SuNS), and vapor-assisted micropatterning in replica structures (VAMPIR). These patterning techniques can be complimentarily used and provide access to precisely confined microenvironments on flat and curved geometries. Reactive coatings provide a technology platform that creates active, long-term control and may lead to improved mimicry of biological systems for effective bio-functional modifications.

  6. The complete nucleotide sequence of RNA 3 of a peach isolate of Prunus necrotic ringspot virus.

    PubMed

    Hammond, R W; Crosslin, J M

    1995-04-01

    The complete nucleotide sequence of RNA 3 of the PE-5 peach isolate of Prunus necrotic ringspot ilarvirus (PNRSV) was obtained from cloned cDNA. The RNA sequence is 1941 nucleotides and contains two open reading frames (ORFs). ORF 1 consisted of 284 amino acids with a calculated molecular weight of 31,729 Da and ORF 2 contained 224 amino acids with a calculated molecular weight of 25,018 Da. ORF 2 corresponds to the coat protein gene. Expression of ORF 2 engineered into a pTrcHis vector in Escherichia coli results in a fusion polypeptide of approximately 28 kDa which cross-reacts with PNRSV polyclonal antiserum. Analysis of the coat protein amino acid sequence reveals a putative "zinc-finger" domain at the amino-terminal portion of the protein. Two tetranucleotide AUGC motifs occur in the 3'-UTR of the RNA and may function in coat protein binding and genome activation. ORF 1 homologies to other ilarviruses and alfalfa mosaic virus are confined to limited regions of conserved amino acids. The translated amino acid sequence of the coat protein gene shows 92% similarity to one isolate of apple mosaic virus, a closely related member of the ilarvirus group of plant viruses, but only 66% similarity to the amino acid sequence of the coat protein gene of a second isolate. These relationships are also reflected at the nucleotide sequence level. These results in one instance confirm the close similarities observed at the biophysical and serological levels between these two viruses, but on the other hand call into question the nomenclature used to describe these viruses.

  7. The genome organisation and taxonomy of Sugarcane striate mosaic associated virus.

    PubMed

    Thompson, N; Randles, J W

    2001-08-01

    Sugarcane striate mosaic associated virus (SCSMaV) has slightly flexuous 950 nm x 15 nm filamentous particles and is associated with sugarcane striate mosaic disease in central Queensland, Australia. We report the full sequence of its RNA genome, which comprises 5 open reading frames representing the polymerase, movement function proteins encoded in a triple gene block and coat protein. Phylogenetic analyses based on either the full nucleotide sequence, the polymerase protein, or the coat protein all placed SCSMaV in an intermediate position between the genera Foveavirus and Carlavirus, but outside both genera. In addition, the absence of a sixth open reading frame excludes it from the genus Carlavirus, and the coat protein is approximately half the size of the type member for the genus Foveavirus. Although SCSMaV was most closely allied to Cherry green ring mottle virus by genome analysis, the two viruses are morphologically and biologically dissimilar. SCSMaV may therefore represent a new plant virus taxon.

  8. Kinetic Effects on Self-Assembly and Function of Protein-Polymer Bioconjugates in Thin Films Prepared by Flow Coating.

    PubMed

    Chang, Dongsook; Huang, Aaron; Olsen, Bradley D

    2017-01-01

    The self-assembly of nanostructured globular protein arrays in thin films is demonstrated using protein-polymer block copolymers based on a model protein mCherry and the polymer poly(oligoethylene glycol acrylate) (POEGA). Conjugates are flow coated into thin films on a poly(ethylene oxide) grafted Si surface, forming self-assembled cylindrical nanostructures with POEGA domains selectively segregating to the air-film interface. Long-range order and preferential arrangement of parallel cylinders templated by selective surfaces are demonstrated by controlling relative humidity. Long-range order increases with coating speed when the film thicknesses are kept constant, due to reduced nucleation per unit area of drying film. Fluorescence emission spectra of mCherry in films prepared at <25% relative humidity shows a small shift suggesting that proteins are more perturbed at low humidity than high humidity or the solution state. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Membrane Fission: Model for Intermediate Structures

    PubMed Central

    Kozlovsky, Yonathan; Kozlov, Michael M.

    2003-01-01

    Membrane budding-fission is a fundamental process generating intracellular carriers of proteins. Earlier works were focused only on formation of coated buds connected to the initial membrane by narrow membrane necks. We present the theoretical analysis of the whole pathway of budding-fission, including the crucial stage where the membrane neck undergoes fission and the carrier separates from the donor membrane. We consider two successive intermediates of the reaction: 1), a constricted membrane neck coming out of aperture of the assembling protein coat, and 2), hemifission intermediate resulting from self-fusion of the inner monolayer of the neck, while its outer monolayer remains continuous. Transformation of the constricted neck into the hemifission intermediate is driven by the membrane stress produced in the neck by the protein coat. Although apparently similar to hemifusion, the fission is predicted to have an opposite dependence on the monolayer spontaneous curvature. Analysis of the further stages of the process demonstrates that in all practically important cases the hemifission intermediate decays spontaneously into two separate membranes, thereby completing the fission process. We formulate the “job description” for fission proteins by calculating the energy they have to deliver and the radii of the protein coat aperture which have to be reached to drive the fission process. PMID:12829467

  10. Coats' disease of the retina (unilateral retinal telangiectasis) caused by somatic mutation in the NDP gene: a role for norrin in retinal angiogenesis.

    PubMed

    Black, G C; Perveen, R; Bonshek, R; Cahill, M; Clayton-Smith, J; Lloyd, I C; McLeod, D

    1999-10-01

    Coats' disease is characterized by abnormal retinal vascular development (so-called 'retinal telangiectasis') which results in massive intraretinal and subretinal lipid accumulation (exudative retinal detachment). The classical form of Coats' disease is almost invariably isolated, unilateral and seen in males. A female with a unilateral variant of Coats' disease gave birth to a son affected by Norrie disease. Both carried a missense mutation within the NDP gene on chromosome Xp11.2. Subsequently analysis of the retinas of nine enucleated eyes from males with Coats' disease demonstrated in one a somatic mutation in the NDP gene which was not present within non-retinal tissue. We suggest that Coats' telangiectasis is secondary to somatic mutation in the NDP gene which results in a deficiency of norrin (the protein product of the NDP gene) within the developing retina. This supports recent observations that the protein is critical for normal retinal vasculogenesis.

  11. Phosphorylation of spore coat proteins by a family of atypical protein kinases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Kim B.; Sreelatha, Anju; Durrant, Eric S.

    The modification of proteins by phosphorylation occurs in all life forms and is catalyzed by a large superfamily of enzymes known as protein kinases. We recently discovered a family of secretory pathway kinases that phosphorylate extracellular proteins. One member, family with sequence similarity 20C (Fam20C), is the physiological Golgi casein kinase. While examining distantly related protein sequences, we observed low levels of identity between the spore coat protein H (CotH), and the Fam20C-related secretory pathway kinases. CotH is a component of the spore in many bacterial and eukaryotic species, and is required for efficient germination of spores in Bacillus subtilis;more » however, the mechanism by which CotH affects germination is unclear. In this paper, we show that CotH is a protein kinase. The crystal structure of CotH reveals an atypical protein kinase-like fold with a unique mode of ATP binding. Examination of the genes neighboring cotH in B. subtilis led us to identify two spore coat proteins, CotB and CotG, as CotH substrates. Furthermore, we show that CotH-dependent phosphorylation of CotB and CotG is required for the efficient germination of B. subtilis spores. Finally and collectively, our results define a family of atypical protein kinases and reveal an unexpected role for protein phosphorylation in spore biology.« less

  12. Phosphorylation of spore coat proteins by a family of atypical protein kinases

    DOE PAGES

    Nguyen, Kim B.; Sreelatha, Anju; Durrant, Eric S.; ...

    2016-05-16

    The modification of proteins by phosphorylation occurs in all life forms and is catalyzed by a large superfamily of enzymes known as protein kinases. We recently discovered a family of secretory pathway kinases that phosphorylate extracellular proteins. One member, family with sequence similarity 20C (Fam20C), is the physiological Golgi casein kinase. While examining distantly related protein sequences, we observed low levels of identity between the spore coat protein H (CotH), and the Fam20C-related secretory pathway kinases. CotH is a component of the spore in many bacterial and eukaryotic species, and is required for efficient germination of spores in Bacillus subtilis;more » however, the mechanism by which CotH affects germination is unclear. In this paper, we show that CotH is a protein kinase. The crystal structure of CotH reveals an atypical protein kinase-like fold with a unique mode of ATP binding. Examination of the genes neighboring cotH in B. subtilis led us to identify two spore coat proteins, CotB and CotG, as CotH substrates. Furthermore, we show that CotH-dependent phosphorylation of CotB and CotG is required for the efficient germination of B. subtilis spores. Finally and collectively, our results define a family of atypical protein kinases and reveal an unexpected role for protein phosphorylation in spore biology.« less

  13. Biofunctionalization of silica-coated magnetic particles mediated by a peptide

    NASA Astrophysics Data System (ADS)

    Care, Andrew; Chi, Fei; Bergquist, Peter L.; Sunna, Anwar

    2014-08-01

    A linker peptide sequence with affinity to silica-containing materials was fused to Streptococcus protein G', an antibody-binding protein. This recombinant fusion protein, linker-protein G (LPG) was produced in E. coli and exhibited strong affinity to silica-coated magnetic particles and was able to bind to them at different pHs, indicating a true pH-independent binding. LPG was used as an anchorage point for the oriented immobilization of antibodies onto the surface of the particles. These particle-bound "LPG-Antibody complexes" mediated the binding and recovery of different cell types (e.g., human stem cells, Legionella, Cryptosporidium and Giardia), enabling their rapid and simple visualization and identification. This strategy was used also for the efficient capture of Cryptosporidium oocysts from water samples. These results demonstrate that LPG can mediate the direct biofunctionalization of silica-coated magnetic particles without the need for complex surface chemical modification.

  14. Natural supramolecular building blocks: from virus coat proteins to viral nanoparticles.

    PubMed

    Liu, Zhi; Qiao, Jing; Niu, Zhongwei; Wang, Qian

    2012-09-21

    Viruses belong to a fascinating class of natural supramolecular structures, composed of multiple copies of coat proteins (CPs) that assemble into different shapes with a variety of sizes from tens to hundreds of nanometres. Because of their advantages including simple/economic production, well-defined structural features, unique shapes and sizes, genetic programmability and robust chemistries, recently viruses and virus-like nanoparticles (VLPs) have been used widely in biomedical applications and materials synthesis. In this critical review, we highlight recent advances in the use of virus coat proteins (VCPs) and viral nanoparticles (VNPs) as building blocks in self-assembly studies and materials development. We first discuss the self-assembly of VCPs into VLPs, which can efficiently incorporate a variety of different materials as cores inside the viral protein shells. Then, the self-assembly of VNPs at surfaces or interfaces is summarized. Finally, we discuss the co-assembly of VNPs with different functional materials (178 references).

  15. Phosphatidic acid phospholipase A1 mediates ER–Golgi transit of a family of G protein–coupled receptors

    PubMed Central

    Kunduri, Govind; Yuan, Changqing; Parthibane, Velayoudame; Nyswaner, Katherine M.; Kanwar, Ritu; Nagashima, Kunio; Britt, Steven G.; Mehta, Nickita; Kotu, Varshika; Porterfield, Mindy; Tiemeyer, Michael; Dolph, Patrick J.; Acharya, Usha

    2014-01-01

    The coat protein II (COPII)–coated vesicular system transports newly synthesized secretory and membrane proteins from the endoplasmic reticulum (ER) to the Golgi complex. Recruitment of cargo into COPII vesicles requires an interaction of COPII proteins either with the cargo molecules directly or with cargo receptors for anterograde trafficking. We show that cytosolic phosphatidic acid phospholipase A1 (PAPLA1) interacts with COPII protein family members and is required for the transport of Rh1 (rhodopsin 1), an N-glycosylated G protein–coupled receptor (GPCR), from the ER to the Golgi complex. In papla1 mutants, in the absence of transport to the Golgi, Rh1 is aberrantly glycosylated and is mislocalized. These defects lead to decreased levels of the protein and decreased sensitivity of the photoreceptors to light. Several GPCRs, including other rhodopsins and Bride of sevenless, are similarly affected. Our findings show that a cytosolic protein is necessary for transit of selective transmembrane receptor cargo by the COPII coat for anterograde trafficking. PMID:25002678

  16. Characterization and tribology of PEG-like coatings on UHMWPE for total hip replacements.

    PubMed

    Kane, Sheryl R; Ashby, Paul D; Pruitt, Lisa A

    2010-03-15

    A crosslinked hydrogel coating similar to poly(ethylene glycol) (PEG) was covalently bonded to the surface of ultrahigh molecular weight polyethylene (UHMWPE) to improve the lubricity and wear resistance of the UHWMPE for use in total joint replacements. The chemistry, hydrophilicity, and protein adsorption resistance of the coatings were determined, and the wear behavior of the PEG-like coating was examined by two methods: pin-on-disk tribometry to evaluate macroscale behavior, and atomic force microscopy (AFM) to simulate asperity wear. As expected, the coating was found to be highly PEG-like, with approximately 83% ether content by x-ray photoelectron spectroscopy and more hydrophilic and resistant to protein adsorption than uncoated UHMWPE. Pin-on-disk testing showed that the PEG-like coating could survive 3 MPa of contact pressure, comparable to that experienced by total hip replacements. AFM nanoscratching experiments uncovered three damage mechanisms for the coatings: adhesion/microfracture, pure adhesion, and delamination. The latter two mechanisms appear to correlate well with wear patterns induced by pin-on-disk testing and evaluated by attenuated total reflection Fourier transform infrared spectroscopy mapping. Understanding the mechanisms by which the PEG-like coatings wear is critical for improving the behavior of subsequent generations of wear-resistant hydrogel coatings. (c) 2009 Wiley Periodicals, Inc.

  17. Mathematical modeling of the in-mold coating process for injection-molded thermoplastic parts

    NASA Astrophysics Data System (ADS)

    Chen, Xu

    In-Mold Coating (IMC) has been successfully used for many years for exterior body panels made from compression molded Sheet Molding Compound (SMC). The coating material is a single component reactive fluid, designed to improve the surface quality of SMC moldings in terms of functional and cosmetic properties. When injected onto a cured SMC part, IMC cures and bonds to provide a pain-like surface. Because of its distinct advantages, IMC is being considered for application to injection molded thermoplastic parts. For a successful in mold coating operation, there are two key issues related to the flow of the coating. First, the injection nozzle should be located such that the thermoplastic substrate is totally covered and the potential for air trapping is minimized. The selected location should be cosmetically acceptable since it most likely will leave a mark on the coated surface. The nozzle location also needs to be accessible for easy of maintenance. Secondly, the hydraulic force generated by the coating injection pressure should not exceed the available clamping tonnage. If the clamping force is exceeded, coating leakage will occur. In this study, mathematical models for IMC flow on the compressible thermoplastic substrate have been developed. Finite Difference Method (FDM) is first used to solve the 1 dimensional (1D) IMC flow problem. In order to investigate the application of Control Volume based Finite Element Method (CV/FEM) to more complicated two dimensional IMC flow, that method is first evaluated by solving the 1D IMC flow problem. An analytical solution, which can be obtained when a linear relationship between the coating thickness and coating injection pressure is assumed, is used to verify the numerical results. The mathematical models for the 2 dimensional (2D) IMC flow are based on the generalized Hele-Shaw approximation. It has been found experimentally that the power law viscosity model adequately predicts the rheological behavior of the coating. The compressibility of the substrate is modeled by the 2-domain Tait PVT equation. CV/FEM is used to solve the discretized governing equations. A computer code has been developed to predict the fill pattern of the coating and the injection pressure. A number of experiments have been conducted to verify the numerical predictions of the computer code. It has been found both numerically and experimentally that the substrate thickness plays a significant role on the IMC fill pattern.

  18. Long Non-Coding RNAs Differentially Expressed between Normal versus Primary Breast Tumor Tissues Disclose Converse Changes to Breast Cancer-Related Protein-Coding Genes

    PubMed Central

    Reiche, Kristin; Kasack, Katharina; Schreiber, Stephan; Lüders, Torben; Due, Eldri U.; Naume, Bjørn; Riis, Margit; Kristensen, Vessela N.; Horn, Friedemann; Børresen-Dale, Anne-Lise; Hackermüller, Jörg; Baumbusch, Lars O.

    2014-01-01

    Breast cancer, the second leading cause of cancer death in women, is a highly heterogeneous disease, characterized by distinct genomic and transcriptomic profiles. Transcriptome analyses prevalently assessed protein-coding genes; however, the majority of the mammalian genome is expressed in numerous non-coding transcripts. Emerging evidence supports that many of these non-coding RNAs are specifically expressed during development, tumorigenesis, and metastasis. The focus of this study was to investigate the expression features and molecular characteristics of long non-coding RNAs (lncRNAs) in breast cancer. We investigated 26 breast tumor and 5 normal tissue samples utilizing a custom expression microarray enclosing probes for mRNAs as well as novel and previously identified lncRNAs. We identified more than 19,000 unique regions significantly differentially expressed between normal versus breast tumor tissue, half of these regions were non-coding without any evidence for functional open reading frames or sequence similarity to known proteins. The identified non-coding regions were primarily located in introns (53%) or in the intergenic space (33%), frequently orientated in antisense-direction of protein-coding genes (14%), and commonly distributed at promoter-, transcription factor binding-, or enhancer-sites. Analyzing the most diverse mRNA breast cancer subtypes Basal-like versus Luminal A and B resulted in 3,025 significantly differentially expressed unique loci, including 682 (23%) for non-coding transcripts. A notable number of differentially expressed protein-coding genes displayed non-synonymous expression changes compared to their nearest differentially expressed lncRNA, including an antisense lncRNA strongly anticorrelated to the mRNA coding for histone deacetylase 3 (HDAC3), which was investigated in more detail. Previously identified chromatin-associated lncRNAs (CARs) were predominantly downregulated in breast tumor samples, including CARs located in the protein-coding genes for CALD1, FTX, and HNRNPH1. In conclusion, a number of differentially expressed lncRNAs have been identified with relation to cancer-related protein-coding genes. PMID:25264628

  19. Long non-coding RNAs differentially expressed between normal versus primary breast tumor tissues disclose converse changes to breast cancer-related protein-coding genes.

    PubMed

    Reiche, Kristin; Kasack, Katharina; Schreiber, Stephan; Lüders, Torben; Due, Eldri U; Naume, Bjørn; Riis, Margit; Kristensen, Vessela N; Horn, Friedemann; Børresen-Dale, Anne-Lise; Hackermüller, Jörg; Baumbusch, Lars O

    2014-01-01

    Breast cancer, the second leading cause of cancer death in women, is a highly heterogeneous disease, characterized by distinct genomic and transcriptomic profiles. Transcriptome analyses prevalently assessed protein-coding genes; however, the majority of the mammalian genome is expressed in numerous non-coding transcripts. Emerging evidence supports that many of these non-coding RNAs are specifically expressed during development, tumorigenesis, and metastasis. The focus of this study was to investigate the expression features and molecular characteristics of long non-coding RNAs (lncRNAs) in breast cancer. We investigated 26 breast tumor and 5 normal tissue samples utilizing a custom expression microarray enclosing probes for mRNAs as well as novel and previously identified lncRNAs. We identified more than 19,000 unique regions significantly differentially expressed between normal versus breast tumor tissue, half of these regions were non-coding without any evidence for functional open reading frames or sequence similarity to known proteins. The identified non-coding regions were primarily located in introns (53%) or in the intergenic space (33%), frequently orientated in antisense-direction of protein-coding genes (14%), and commonly distributed at promoter-, transcription factor binding-, or enhancer-sites. Analyzing the most diverse mRNA breast cancer subtypes Basal-like versus Luminal A and B resulted in 3,025 significantly differentially expressed unique loci, including 682 (23%) for non-coding transcripts. A notable number of differentially expressed protein-coding genes displayed non-synonymous expression changes compared to their nearest differentially expressed lncRNA, including an antisense lncRNA strongly anticorrelated to the mRNA coding for histone deacetylase 3 (HDAC3), which was investigated in more detail. Previously identified chromatin-associated lncRNAs (CARs) were predominantly downregulated in breast tumor samples, including CARs located in the protein-coding genes for CALD1, FTX, and HNRNPH1. In conclusion, a number of differentially expressed lncRNAs have been identified with relation to cancer-related protein-coding genes.

  20. Thymol nanoemulsions incorporated in quinoa protein/chitosan edible films; antifungal effect in cherry tomatoes.

    PubMed

    Robledo, Nancy; Vera, Paola; López, Luis; Yazdani-Pedram, Mehrdad; Tapia, Cristian; Abugoch, Lilian

    2018-04-25

    Thymol nanoemulsions were produced by spontaneous emulsification, ultrasound, and a combination of both methods. The best result in terms of size and polydispersion was spontaneous emulsification where thymol was efficiently encapsulated, the nanoemulsions inhibited Botrytis cinerea at 110 ppm of thymol. A 10% dilution of this nanoemulsion in water was used to prepare quinoa-chitosan films. The film microstructure was porous and heterogeneous. The tensile strength of the film was significantly lower but its mean elongation at break was similar to that of the control film. The water vapour permeability was similar to that of the control film. The effect of nanoemulsion-thymol-quinoa protein/chitosan coating on mould growth in inoculated cherry tomatoes was evaluated. Compared with control samples (tomatoes without coating and those coated with quinoa protein/chitosan), tomatoes with this coating and inoculated with B. cinerea showed a significant decrease in fungal growth after 7 days at 5 °C. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Antenna pattern control using impedance surfaces

    NASA Technical Reports Server (NTRS)

    Balanis, Constantine A.; Liu, Kefeng

    1992-01-01

    During this research period, we have effectively transferred existing computer codes from CRAY supercomputer to work station based systems. The work station based version of our code preserved the accuracy of the numerical computations while giving a much better turn-around time than the CRAY supercomputer. Such a task relieved us of the heavy dependence of the supercomputer account budget and made codes developed in this research project more feasible for applications. The analysis of pyramidal horns with impedance surfaces was our major focus during this research period. Three different modeling algorithms in analyzing lossy impedance surfaces were investigated and compared with measured data. Through this investigation, we discovered that a hybrid Fourier transform technique, which uses the eigen mode in the stepped waveguide section and the Fourier transformed field distributions across the stepped discontinuities for lossy impedances coating, gives a better accuracy in analyzing lossy coatings. After a further refinement of the present technique, we will perform an accurate radiation pattern synthesis in the coming reporting period.

  2. Coating of peanuts with edible whey protein film containing alpha-tocopherol and ascorbyl palmitate.

    PubMed

    Han, J H; Hwang, H-M; Min, S; Krochta, J M

    2008-10-01

    Physical properties of whey protein isolate (WPI) coating solution incorporating ascorbic palmitate (AP) and alpha-tocopherol (tocopherol) were characterized, and the antioxidant activity of dried WPI coatings against lipid oxidation in roasted peanuts were investigated. The AP and tocopherol were mixed into a 10% (w/w) WPI solution containing 6.7% glycerol. Process 1 (P1) blended an AP and tocopherol mixture directly into the WPI solution using a high-speed homogenizer. Process 2 (P2) used ethanol as a solvent for dissolving AP and tocopherol into the WPI solution. The viscosity and turbidity of the WPI coating solution showed the Newtonian fluid behavior, and 0.25% of critical concentration of AP in WPI solution rheology. After peanuts were coated with WPI solutions, color changes of peanuts were measured during 16 wk of storage at 25 degrees C, and the oxidation of peanuts was determined by hexanal analysis using solid-phase micro-extraction samplers and GC-MS. Regardless of the presence of antioxidants in the coating layer, the formation of hexanal from the oxidation of peanut lipids was reduced by WPI coatings, which indicates WPI coatings protected the peanuts from oxygen permeation and oxidation. However, the incorporation of antioxidants in the WPI coating layer did not show a significant difference in hexanal production from that of WPI coating treatment without incorporation of antioxidants.

  3. Effects of thermally induced denaturation on technological-functional properties of whey protein isolate-based films.

    PubMed

    Schmid, M; Krimmel, B; Grupa, U; Noller, K

    2014-09-01

    This study examined how and to what extent the degree of denaturation affected the technological-functional properties of whey protein isolate (WPI)-based coatings. It was observed that denaturation affected the material properties of WPI-coated films significantly. Surface energy decreased by approximately 20% compared with native coatings. Because the surface energy of a coating should be lower than that of the substrate, this might result in enhanced wettability characteristics between WPI-based solution and substrate surface. Water vapor barrier properties increased by about 35% and oxygen barrier properties increased by approximately 33%. However, significant differences were mainly observed between coatings made of fully native WPI and ones with a degree of denaturation of 25%. Higher degrees of denaturation did not lead to further improvement of material properties. This observation offers cost-saving potential: a major share of denatured whey proteins may be replaced by fully native ones that are not exposed to energy-intensive heat treatment. Furthermore, native WPI solutions can be produced with higher dry matter content without gelatinizing. Hence, less moisture has to be removed through drying, resulting in reduced energy consumption. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  4. Plasma-deposited tetraglyme surfaces greatly reduce total blood protein adsorption, contact activation, platelet adhesion, platelet procoagulant activity, and in vitro thrombus deposition.

    PubMed

    Cao, Lan; Chang, Mark; Lee, Chi-Ying; Castner, David G; Sukavaneshvar, Sivaprasad; Ratner, Buddy D; Horbett, Thomas A

    2007-06-15

    The ability of tetraethylene glycol dimethyl ether (tetraglyme) plasma deposited coatings exhibiting ultralow fibrinogen adsorption to reduce blood activation was studied with six in vitro methods, namely fibrinogen and von Willebrand's factor adsorption, total protein adsorption, clotting time in recalcified plasma, platelet adhesion and procoagulant activity, and whole blood thrombosis in a disturbed flow catheter model. Surface plasmon resonance results showed that tetraglyme surfaces strongly resisted the adsorption of all proteins from human plasma. The clotting time in the presence of tetraglyme surfaces was lengthened compared with controls, indicating a lower activation of the intrinsic coagulation cascade. Platelet adhesion and thrombin generation by adherent platelets were greatly reduced on tetraglyme-coated materials, compared with uncoated and Biospan-coated glass slides. In the in vitro disturbed blood flow model, tetraglyme plasma coated catheters had 50% less thrombus than did the uncoated catheters. Tetraglyme-coated materials thus had greatly reduced blood interactions as measured with all six methods. The improved blood compatibility of plasma-deposited tetraglyme is thus not only due to their reduced platelet adhesion and activation, but also to a generalized reduction in blood interactions. (c) 2007 Wiley Periodicals, Inc.

  5. Glycopolymer functionalization of engineered spider silk protein-based materials for improved cell adhesion.

    PubMed

    Hardy, John G; Pfaff, André; Leal-Egaña, Aldo; Müller, Axel H E; Scheibel, Thomas R

    2014-07-01

    Silk protein-based materials are promising biomaterials for application as tissue scaffolds, due to their processability, biocompatibility, and biodegradability. The preparation of films composed of an engineered spider silk protein (eADF4(C16)) and their functionalization with glycopolymers are described. The glycopolymers bind proteins found in the extracellular matrix, providing a biomimetic coating on the films that improves cell adhesion to the surfaces of engineered spider silk films. Such silk-based materials have potential as coatings for degradable implantable devices. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Coating gigaporous polystyrene microspheres with cross-linked poly(vinyl alcohol) hydrogel as a rapid protein chromatography matrix.

    PubMed

    Qu, Jian-Bo; Huan, Guan-Sheng; Chen, Yan-Li; Zhou, Wei-Qing; Liu, Jian-Guo; Huang, Fang

    2014-08-13

    Gigaporous polystyrene (PS) microspheres were hydrophilized by in situ polymerization to give a stable cross-linked poly(vinyl alcohol) (PVA) hydrogel coating, which can shield proteins from the hydrophobic PS surface underneath. The amination of microspheres (PS-NH2) was first carried out through acetylization, oximation and reduction, and then 4,4'-azobis (4-cyanovaleric acid) (ACV), a polymerization initiator, was covalently immobilized on PS-NH2 through amide bond formation, and the cross-linked poly(vinyl acetate) (PVAc) was prepared by radical polymerization at the surfaces of ACV-immobilized PS microspheres (PS-ACV). Finally, the cross-linked PVA hydrogel coated gigaporous PS microspheres (PS-PVA) was easily achieved through alcoholysis of PVAc. Results suggested that the PS microspheres were effectively coated with cross-linked PVA hydrogel, where the gigaporrous structure remained under optimal conditions. After hydrophilic modification (PS-PVA), the protein-resistant ability of microspheres was greatly improved. The hydroxyl-rich PS-PVA surface can be easily derivatized by classical chemical methods. Performance advantages of the PS-PVA column in flow experiment include good permeability, low backpressure, and mechanical stability. These results indicated that PS-PVA should be promising in rapid protein chromatography.

  7. Studies on improved integrated membrane-based chromatographic process for bioseparation

    NASA Astrophysics Data System (ADS)

    Xu, Yanke

    To improve protein separation and purification directly from a fermentation broth, a novel membrane filtration-cum-chromatography device configuration having a relatively impermeable coated zone near the hollow fiber module outlet has been developed. The integrated membrane filtration-cum-chromatography unit packed with chromatographic beads on the shell side of the hollow fiber unit enjoys the advantages of both membrane filtration and chromatography; it allows one to load the chromatographic media directly from the fermentation broth or lysate and separate the adsorbed proteins through the subsequent elution step in a cyclic process. Interfacial polymerization was carried out to coat the bottom section of the hollow fiber membrane while leaving the rest of the hollow fiber membrane unaffected. Myoglobin (Mb), bovine serum albumin (BSA) and a-lactalbumin (a-LA) were used as model proteins in binary mixtures. Separation behaviors of binary protein mixtures were studied in devices using either an ultrafiltration (UF) membrane or a microfiltration (MF) membrane. Experimental results show that the breakthrough time and the protein loading capacities were dramatically improved after coating in both UF and MF modules. For a synthetic yeast fermentation broth feed, the Mb and a-LA elution profiles for the four consecutive cyclic runs were almost superimposable. Due to the lower transmembrane flux in this device plus the periodical washing-elution during the chromatographic separation, fouling was not a problem as it is in conventional microfiltration. A mathematical model describing the hydrodynamic and protein loading behaviors of the integrated device using UF membrane with a coated zone was developed. The simulation results for the breakthrough agree well with the experimental breakthrough curves. The optimal length of the coated zone was obtained from the simulation. A theoretical analysis of the protein mass transfer was performed using a diffusion-convection model considering the feed-side concentration polarization and the permeate-side concentration gradient formed by the adsorption. The permeate-side adsorption can enhance the observed protein transmission through the membrane considerably at low permeate flux. But the enhancement effect can be neglected at higher permeate flux when convection dominates the total mass transfer process or the proteins are very highly rejected by the membrane.

  8. Self-assembling triblock proteins for biofunctional surface modification

    NASA Astrophysics Data System (ADS)

    Fischer, Stephen E.

    Despite the tremendous promise of cell/tissue engineering, significant challenges remain in engineering functional scaffolds to precisely regulate the complex processes of tissue growth and development. As the point of contact between the cells and the scaffold, the scaffold surface plays a major role in mediating cellular behaviors. In this dissertation, the development and utility of self-assembling, artificial protein hydrogels as biofunctional surface modifiers is described. The design of these recombinant proteins is based on a telechelic triblock motif, in which a disordered polyelectrolyte central domain containing embedded bioactive ligands is flanked by two leucine zipper domains. Under moderate conditions of temperature and pH, the leucine zipper end domains form amphiphilic alpha-helices that reversibly associate into homo-trimeric aggregates, driving hydrogel formation. Moreover, the amphiphilic nature of these helical domains enables surface adsorption to a variety of scaffold materials to form biofunctional protein coatings. The nature and stability of these coatings in various solution conditions, and their interaction with mammalian cells is the primary focus of this dissertation. In particular, triblock protein coatings functionalized with cell recognition sequences are shown to produce well-defined surfaces with precise control over ligand density. The impact of this is demonstrated in multiple cell types through ligand density-dependent cell-substrate interactions. To improve the stability of these physically self-assembled coatings, two covalent crosslinking strategies are described---one in which a zero-length chemical crosslinker (EDC) is utilized and a second in which disulfide bonds are engineered into the recombinant proteins. These targeted crosslinking approaches are shown to increase the stability of surface adsorbed protein layers with minimal effect on the presentation of many bioactive ligands. Finally, to demonstrate the versatility of the triblock protein hydrogels, and the ease of introducing multiple functionalities to a substrate surface, a surface coating is tailored for neural stem cell culture in order to improve proliferation on the scaffold, while maintaining the stem cell phenotype. These studies demonstrate the unique advantages of genetic engineering over traditional techniques for surface modification. In addition to their unmatched sequence fidelity, recombinant proteins can easily be modified with bioactive ligands and their organization into coherent, supramolecular structures mimics natural self-assembly processes.

  9. The effect of collagen coating on titanium with nanotopography on in vitro osteogenesis.

    PubMed

    Costa, Daniel G; Ferraz, Emanuela P; Abuna, Rodrigo P F; de Oliveira, Paulo T; Morra, Marco; Beloti, Marcio M; Rosa, Adalberto L

    2017-10-01

    Several studies have shown the positive effects of Ti either with nanotopography or coated with collagen on osteoblast differentiation. Thus, we hypothesized that the association of nanotopography with collagen may increase the in vitro osteogenesis on Ti surface. Ti discs with nanotopography with or without collagen coating were characterized by scanning electron microscopy and atomic force microscopy. Rat calvaria-derived osteoblastic cells were cultured on both Ti surfaces for up to 14 days and the following parameters were evaluated: cell proliferation, alkaline phosphatase (ALP) activity, extracellular matrix mineralization, protein expression of bone sialoprotein (BSP) and osteopontin (OPN), and gene expression of collagen type 1a (Coll1a), runt-related transcription factor 2 (Runx2), osterix (OSX), osteocalcin (OC), Ki67, Survivin, and Bcl2-associated X protein (BAX). Surface characterization evidenced that collagen coating did not alter the nanotopography. Collagen coating increased cell proliferation, ALP activity, extracellular matrix mineralization, and Coll1a, OSX, OC, and BAX gene expression. Also, OPN and BSP proteins were strongly detected in cultures grown on both Ti surfaces. In conclusion, our results showed that the combination of nanotopography with collagen coating stimulates the early, intermediate, and final events of the in vitro osteogenesis and may be considered a potential approach to promote osseointegration of Ti implants. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2783-2788, 2017. © 2017 Wiley Periodicals, Inc.

  10. Optimization of implant/bone attachment: The effects of implant surface porosity, bioactive ceramic coatings, and delivery of adsorbed growth factors

    NASA Astrophysics Data System (ADS)

    Melican, Mora Carolynne

    Various surface treatments and coating materials have been tested for use on metal alloy orthopaedic implants. Their purpose has been to enhance the bioactivity of the implant surfaces, and thus to increase the rate and degree of bony attachment in vivo in an attempt to hasten recovery time, increase implant service lifetime, and lessen pain associated with loosened orthopaedic implants. A series of in vivo and in vitro studies were performed to determine the influence of different implant surfaces including porous metal surfaces with varied porosity with depth, resorbable and non-resorbable plasma-sprayed hydroxyapatite (HA) coatings, and finally HA coatings with an adsorbed layer of human recombinant bone morphogenetic protein (rhBMP-2), an osteoinductive protein. Textured as-cast metal surfaces produced by investment casting in three dimensionally printed ceramic molds have exhibited superior bony ingrowth and attachment. Plasma-sprayed HA coatings have been shown to be appropriate substrates for osteoblast proliferation (particularly on highly crystalline HA) and stem cell proliferation (particularly on less crystalline HA). Less crystalline HA coatings have shown promise as delivery systems for different levels of rhBMP-2. The osteoinductive protein has been shown to remain active after delivery to the system, and was most effective when delivered in concentrations ranging from 30 to 50 ng/ml. Combinations of these surface treatments for metal implant surfaces warrant further investigation.

  11. Protective Coatings

    NASA Technical Reports Server (NTRS)

    1980-01-01

    General Magnaplate Corporation's pharmaceutical machine is used in the industry for high speed pressing of pills and capsules. Machine is automatic system for molding glycerine suppositories. These machines are typical of many types of drug production and packaging equipment whose metal parts are treated with space spinoff coatings that promote general machine efficiency and contribute to compliance with stringent federal sanitation codes for pharmaceutical manufacture. Collectively known as "synergistic" coatings, these dry lubricants are bonded to a variety of metals to form an extremely hard slippery surface with long lasting self lubrication. The coatings offer multiple advantages; they cannot chip, peel or be rubbed off. They protect machine parts from corrosion and wear longer, lowering maintenance cost and reduce undesired heat caused by power-robbing friction.

  12. Extracellular matrix mediators of metastatic cell colonization characterized using scaffold mimics of the pre-metastatic niche.

    PubMed

    Aguado, Brian A; Caffe, Jordan R; Nanavati, Dhaval; Rao, Shreyas S; Bushnell, Grace G; Azarin, Samira M; Shea, Lonnie D

    2016-03-01

    Metastatic tumor cells colonize the pre-metastatic niche, which is a complex microenvironment consisting partially of extracellular matrix (ECM) proteins. We sought to identify and validate novel contributors to tumor cell colonization using ECM-coated poly(ε-caprolactone) (PCL) scaffolds as mimics of the pre-metastatic niche. Utilizing orthotopic breast cancer mouse models, fibronectin and collagen IV-coated scaffolds implanted in the subcutaneous space captured colonizing tumor cells, showing a greater than 2-fold increase in tumor cell accumulation at the implant site compared to uncoated scaffolds. As a strategy to identify additional ECM colonization contributors, decellularized matrix (DCM) from lungs and livers containing metastatic tumors were characterized. In vitro, metastatic cell adhesion was increased on DCM coatings from diseased organs relative to healthy DCM. Furthermore, in vivo implantations of diseased DCM-coated scaffolds had increased tumor cell colonization relative to healthy DCM coatings. Mass-spectrometry proteomics was performed on healthy and diseased DCM to identify candidates associated with colonization. Myeloperoxidase was identified as abundantly present in diseased organs and validated as a contributor to colonization using myeloperoxidase-coated scaffold implants. This work identified novel ECM proteins associated with colonization using decellularization and proteomics techniques and validated candidates using a scaffold to mimic the pre-metastatic niche. The pre-metastatic niche consists partially of ECM proteins that promote metastatic cell colonization to a target organ. We present a biomaterials-based approach to mimic this niche and identify ECM mediators of colonization. Using murine breast cancer models, we implanted microporous PCL scaffolds to recruit colonizing tumor cells in vivo. As a strategy to modulate colonization, we coated scaffolds with various ECM proteins, including decellularized lung and liver matrix from tumor-bearing mice. After characterizing the organ matrices using proteomics, myeloperoxidase was identified as an ECM protein contributing to colonization and validated using our scaffold. Our scaffold provides a platform to identify novel contributors to colonization and allows for the capture of colonizing tumor cells for a variety of downstream clinical applications. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  13. Controlled release of NELL-1 protein from chitosan/hydroxyapatite-modified TCP particles.

    PubMed

    Zhang, Yulong; Dong, Rui; Park, Yujin; Bohner, Marc; Zhang, Xinli; Ting, Kang; Soo, Chia; Wu, Benjamin M

    2016-09-10

    NEL-like molecule-1 (NELL-1) is a novel osteogenic protein that showing high specificity to osteochondral cells. It was widely used in bone regeneration research by loading onto carriers such as tricalcium phosphate (TCP) particles. However, there has been little research on protein controlled release from this material and its potential application. In this study, TCP was first modified with a hydroxyapatite coating followed by a chitosan coating to prepare chitosan/hydroxyapatite-coated TCP particles (Chi/HA-TCP). The preparation was characterized by SEM, EDX, FTIR, XRD, FM and Zeta potential measurements. The NELL-1 loaded Chi/HA-TCP particles and the release kinetics were investigated in vitro. It was observed that the Chi/HA-TCP particles prepared with the 0.3% (wt/wt) chitosan solution were able to successfully control the release of NELL-1 and maintain a slow, steady release for up to 28 days. Furthermore, more than 78% of the loaded protein's bioactivity was preserved in Chi/HA-TCP particles over the period of the investigation, which was significantly higher than that of the protein released from hydroxyapatite coated TCP (HA-TCP) particles. Collectively, this study suggests that the osteogenic protein NELL-1 showed a sustained release pattern after being encapsulated into the modified Chi/HA-TCP particles, and the NELL-1 integrated composite of Chi/HA-TCP showed a potential to function as a protein delivery carrier and as an improved bone matrix for use in bone regeneration research. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Huntingtin interacting protein 1 Is a clathrin coat binding protein required for differentiation of late spermatogenic progenitors.

    PubMed

    Rao, D S; Chang, J C; Kumar, P D; Mizukami, I; Smithson, G M; Bradley, S V; Parlow, A F; Ross, T S

    2001-11-01

    Huntingtin-interacting protein 1 (HIP1) interacts with huntingtin, the protein whose gene is mutated in Huntington's disease. In addition, a fusion between HIP1 and platelet-derived growth factor beta receptor causes chronic myelomonocytic leukemia. The HIP1 proteins, including HIP1 and HIP1-related (HIP1r), have an N-terminal polyphosphoinositide-interacting epsin N-terminal homology, domain, which is found in proteins involved in clathrin-mediated endocytosis. HIP1 and HIP1r also share a central leucine zipper and an actin binding TALIN homology domain. Here we show that HIP1, like HIP1r, colocalizes with clathrin coat components. We also show that HIP1 physically associates with clathrin and AP-2, the major components of the clathrin coat. To further understand the putative biological role(s) of HIP1, we have generated a targeted deletion of murine HIP1. HIP1(-/-) mice developed into adulthood, did not develop overt neurologic symptoms in the first year of life, and had normal peripheral blood counts. However, HIP1-deficient mice exhibited testicular degeneration with increased apoptosis of postmeiotic spermatids. Postmeiotic spermatids are the only cells of the seminiferous tubules that express HIP1. These findings indicate that HIP1 is required for differentiation, proliferation, and/or survival of spermatogenic progenitors. The association of HIP1 with clathrin coats and the requirement of HIP1 for progenitor survival suggest a role for HIP1 in the regulation of endocytosis.

  15. Involvement of Superoxide Dismutase in Spore Coat Assembly in Bacillus subtilis

    PubMed Central

    Henriques, Adriano O.; Melsen, Lawrence R.; Moran, Charles P.

    1998-01-01

    Endospores of Bacillus subtilis are enclosed in a proteinaceous coat which can be differentiated into a thick, striated outer layer and a thinner, lamellar inner layer. We found that the N-terminal sequence of a 25-kDa protein present in a preparation of spore coat proteins matched that of the Mn-dependent superoxide dismutase (SOD) encoded by the sodA locus. sodA is transcribed throughout the growth and sporulation of a wild-type strain and is responsible for the SOD activity detected in total cell extracts prepared from B. subtilis. Disruption of the sodA locus produced a mutant that lacked any detectable SOD activity during vegetative growth and sporulation. The sodA mutant was not impaired in the ability to form heat- or lysozyme-resistant spores. However, examination of the coat layers of sodA mutant spores revealed increased extractability of the tyrosine-rich outer coat protein CotG. We showed that this condition was not accompanied by augmented transcription of the cotG gene in sporulating cells of the sodA mutant. We conclude that SodA is required for the assembly of CotG into the insoluble matrix of the spore and suggest that CotG is covalently cross-linked into the insoluble matrix by an oxidative reaction dependent on SodA. Ultrastructural analysis revealed that the inner coat formed by a sodA mutant was incomplete. Moreover, the outer coat lacked the characteristic striated appearance of wild-type spores, a pattern that was accentuated in a cotG mutant. These observations suggest that the SodA-dependent formation of the insoluble matrix containing CotG is largely responsible for the striated appearance of this coat layer. PMID:9573176

  16. Super magnetic nanoparticles NiFe2O4, coated with aluminum-nickel oxide sol-gel lattices to safe, sensitive and selective purification of his-tagged proteins.

    PubMed

    Mirahmadi-Zare, Seyede Zohreh; Allafchian, Alireza; Aboutalebi, Fatemeh; Shojaei, Pendar; Khazaie, Yahya; Dormiani, Kianoush; Lachinani, Liana; Nasr-Esfahani, Mohammad-Hossein

    2016-05-01

    Super magnetic nanoparticle NiFe2O4 with high magnetization, physical and chemical stability was introduced as a core particle which exhibits high thermal stability (>97%) during the harsh coating process. Instead of multi-stage process for coating, the magnetic nanoparticles was mineralized via one step coating by a cheap, safe, stable and recyclable alumina sol-gel lattice (from bohemite source) saturated by nickel ions. The TEM, SEM, VSM and XRD imaging and BET analysis confirmed the structural potential of NiFe2O4@NiAl2O4 core-shell magnetic nanoparticles for selective and sensitive purification of His-tagged protein, in one step. The functionality and validity of the nickel magnetic nanoparticles were attested by purification of three different bioactive His-tagged recombinant fusion proteins including hIGF-1, GM-CSF and bFGF. The bonding capacity of the nickel magnetics nanoparticles was studied by Bradford assay and was equal to 250 ± 84 μg Protein/mg MNP base on protein size. Since the metal ion leakage is the most toxicity source for purification by nickel magnetic nanoparticles, therefor the nickel leakage in purified final protein was determined by atomic absorption spectroscopy and biological activity of final purified protein was confirmed in comparison with reference. Also, in vitro cytotoxicity of nickel magnetic nanoparticles and trace metal ions were investigated by MTS assay analysis. The results confirmed that the synthesized nickel magnetic nanoparticles did not show metal ion toxicity and not affected on protein folding. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Effects of protein-coated nanofibers on conformation of gingival fibroblast spheroids: potential utility for connective tissue regeneration.

    PubMed

    Kaufman, Gili; Whitescarver, Ryan A; Nunes, Laiz; Palmer, Xavier-Lewis; Skrtic, Drago; Tutak, Wojtek

    2018-01-24

    Deep wounds in the gingiva caused by trauma or surgery require a rapid and robust healing of connective tissues. We propose utilizing gas-brushed nanofibers coated with collagen and fibrin for that purpose. Our hypotheses are that protein-coated nanofibers will: (i) attract and mobilize cells in various spatial orientations, and (ii) regulate the expression levels of specific extracellular matrix (ECM)-associated proteins, determining the initial conformational nature of dense and soft connective tissues. Gingival fibroblast monolayers and 3D spheroids were cultured on ECM substrate and covered with gas-blown poly-(DL-lactide-co-glycolide) (PLGA) nanofibers (uncoated/coated with collagen and fibrin). Cell attraction and rearrangement was followed by F-actin staining and confocal microscopy. Thicknesses of the cell layers, developed within the nanofibers, were quantified by ImageJ software. The expression of collagen1α1 chain (Col1α1), fibronectin, and metalloproteinase 2 (MMP2) encoding genes was determined by quantitative reverse transcription analysis. Collagen- and fibrin- coated nanofibers induced cell migration toward fibers and supported cellular growth within the scaffolds. Both proteins affected the spatial rearrangement of fibroblasts by favoring packed cell clusters or intermittent cell spreading. These cell arrangements resembled the structural characteristic of dense and soft connective tissues, respectively. Within three days of incubation, fibroblast spheroids interacted with the fibers, and grew robustly by increasing their thickness compared to monolayers. While the ECM key components, such as fibronectin and MMP2 encoding genes, were expressed in both protein groups, Col1α1 was predominantly expressed in bundled fibroblasts grown on collagen fibers. This enhanced expression of collagen1 is typical for dense connective tissue. Based on results of this study, our gas-blown, collagen- and fibrin-coated PLGA nanofibers are viable candidates for engineering soft and dense connective tissues with the required structural characteristics and functions needed for wound healing applications. Rapid regeneration of these layers should enhance healing of open wounds in a harsh oral environment.

  18. Capture of unstable protein complex on the streptavidin-coated single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Liu, Zunfeng; Voskamp, Patrick; Zhang, Yue; Chu, Fuqiang; Abrahams, Jan Pieter

    2013-04-01

    Purification of unstable protein complexes is a bottleneck for investigation of their 3D structure and in protein-protein interaction studies. In this paper, we demonstrate that streptavidin-coated single-walled carbon nanotubes (Strep•SWNT) can be used to capture the biotinylated DNA- EcoRI complexes on a 2D surface and in solution using atomic force microscopy and electrophoresis analysis, respectively. The restriction enzyme EcoRI forms unstable complexes with DNA in the absence of Mg2+. Capturing the EcoRI-DNA complexes on the Strep•SWNT succeeded in the absence of Mg2+, demonstrating that the Strep•SWNT can be used for purifying unstable protein complexes.

  19. A review of protein adsorption on bioceramics

    PubMed Central

    Wang, Kefeng; Zhou, Changchun; Hong, Youliang; Zhang, Xingdong

    2012-01-01

    Bioceramics, because of its excellent biocompatible and mechanical properties, has always been considered as the most promising materials for hard tissue repair. It is well know that an appropriate cellular response to bioceramics surfaces is essential for tissue regeneration and integration. As the in vivo implants, the implanted bioceramics are immediately coated with proteins from blood and body fluids, and it is through this coated layer that cells sense and respond to foreign implants. Hence, the adsorption of proteins is critical within the sequence of biological activities. However, the biological mechanisms of the interactions of bioceramics and proteins are still not well understood. In this review, we will recapitulate the recent studies on the bioceramic–protein interactions. PMID:23741605

  20. QCM-D on mica for parallel QCM-D-AFM studies.

    PubMed

    Richter, Ralf P; Brisson, Alain

    2004-05-25

    Quartz crystal microbalance with dissipation monitoring (QCM-D) has developed into a recognized method to study adsorption processes in liquid, such as the formation of supported lipid bilayers and protein adsorption. However, the large intrinsic roughness of currently used gold-coated or silica-coated QCM-D sensors limits parallel structural characterization by atomic force microscopy (AFM). We present a method for coating QCM-D sensors with thin mica sheets operating in liquid with high stability and sensitivity. We define criteria to objectively assess the reliability of the QCM-D measurements and demonstrate that the mica-coated sensors can be used to follow the formation of supported lipid membranes and subsequent protein adsorption. This method allows combining QCM-D and AFM investigations on identical supports, providing detailed physicochemical and structural characterization of model membranes.

  1. High pH instability of quaternary ammonium surfactant coatings in capillary electrophoresis.

    PubMed

    Shulman, Lisa; Pei, Lei; Bahnasy, Mahmoud F; Lucy, Charles A

    2017-06-12

    The two-tailed cationic surfactant dioctadecyldimethyl ammonium bromide (DODAB) produces semi-permanent coatings that yield strongly reversed electroosmotic flow (EOF), for example -0.31 ± 0.01 cm 2 kV -1 s -1 at pH 3.5. Moreover, these coatings are easy to prepare, regenerable, cost effective, and yield high efficiency (520 000-900 000 plates per m) separations of cationic proteins over many runs under acidic (pH 3.5) conditions. Given the quaternary amine functionality of DODAB, we were surprised to observe that DODAB coatings become unstable at pH > 7. At pH 7.2, the EOF of a DODAB coated capillary drifted from reversed to cathodic over only 5 runs, and protein separations became severely compromised. By pH 12, no EOF reversal was observed. Electrophoretic and mass spectrometric studies demonstrate that the coating decomposition involves a surface conversion of the quaternary amine in DODAB to a variety of products, although the exact mechanism remains elusive. Regardless, the results herein demonstrate that semi-permanent coatings based on cationic two-tailed surfactants such as DODAB are limited to separations using acidic buffers.

  2. Bioactive ceramic coating on orthopedic implants for enhanced bone tissue integration

    NASA Astrophysics Data System (ADS)

    Aniket

    Tissue integration between bone and orthopedic implant is essential for implant fixation and longevity. An immunological response leads to fibrous encapsulation of metallic implants leading to implant instability and failure. Bioactive ceramics have the ability to directly bond to bone; however, they have limited mechanical strength for load bearing applications. Coating bioactive ceramics on metallic implant offers the exciting opportunity to enhance bone formation without compromising the mechanical strength of the implant. In the present study, we have developed a novel bioactive silica-calcium phosphate nanocomposite (SCPC) coating on medical grade Ti-6Al-4V orthopedic implant using electrophoretic deposition (EPD) and evaluated bone tissue response to the coated implant at the cellular level. The effect of SCPC composition and suspending medium pH on the zeta potential of three different SCPC formulations; SCPC25, SCPC50 and SCPC75 were analyzed. The average zeta potential of SCPC50 in pure ethanol was more negative than that of SCPC25 or SCPC75; however the difference was not statistically significant. Ti-6Al-4V discs were passivated, coated with SCPC50 (200 nm - 10 mum) and thermally treated at 600 - 800 ºC to produce a coating thickness in the range of 43.1 +/- 5.7 to 30.1 +/- 4.6 μm. After treatment at 600, 700 and 800 ºC, the adhesion strength at the SCPC50/Ti-6Al-4V interface was 42.6 +/- 3.6, 44.7 +/- 8.7 and 47.2 +/- 4.3 MPa, respectively. XRD analyses of SCPC50 before and after EPD coating indicated no change in the crystallinity of the material. Fracture surface analyses showed that failure occurred within the ceramic layer or at the ceramic/polymer interface; however, the ceramic/metal interface was intact in all samples. The adhesion strength of SCPC50-coated substrates after immersion in PBS for 2 days (11.7 +/- 3.9 MPa) was higher than that measured on commercially available hydroxyapatite (HA) coated substrates (5.5 +/- 2.7 MPa), although the difference was not statistically significant. SEM - EDX analyses of SCPC50-coated Ti-6Al-4V pre-immersed in PBS for 7 days showed the formation of a Ca-deficient HA surface layer. Bone cells attached to the SCPC50-coated implants expressed significantly higher (p < 0.05) alkaline phosphatase activity (82.4 +/- 25.6 nmoles p-NP/mg protein/min) than that expressed by cells attached to HA-coated or uncoated implants. Protein adsorption analyses showed that SCPC50-coated substrates adsorbed significantly more (p < 0.05) serum protein (14.9 +/- 1.2 mug) than control uncoated substrates (8.9 +/- 0.7 mug). Moreover, Western blot analysis showed that the SCPC50 coating has a high affinity for serum fibronectin. Protein conformation analyses by FTIR showed that the ratio of the area under the peak for amide I/amide II bands was significantly higher (p < 0.05) on the surface of SCPC50-coated substrate (5.0 +/- 0.6) than that on the surface of the control uncoated substrates (2.2 +/- 0.3). Moreover, ICP-OES analyses indicated that SCPC50-coated substrates withdrew Ca ions from, and released P and Si ions into, the tissue culture medium, respectively. In conjunction with the favorable protein adsorption and modifications in medium composition, MC3T3-E1 osteoblast-like cells attached to SCPC50-coated substrates expressed 10-fold higher level of mRNA encoding osteocalcin and had significantly higher production of osteopontin and osteocalcin proteins than cells attached to the uncoated Ti-6Al-4V substrate. In addition, osteoblast-like cells attached to the SCPC50-coated substrates produced significantly lower levels of the inflammatory and osteoclastogenic cytokines, IL-6, IL-12p40 and RANKL than those attached to uncoated Ti-6Al-4V. Surface topography analyses using AFM suggested that the SCPC50 particles deposit onto the metal surface in a manner that preferentially fills the grooves on the substrate created during substrate preparation. An increase in the surface roughness of the SCPC50-coated substrate from 217.8 +/- 54.6 nm to 284.3 +/- 37.3 nm was accompanied by enhanced material dissolution, reduced cell proliferation and poor actin cytoskeleton organization, which are characteristics typical of differentiating bone cells on bioactive ceramic surfaces. Results of the study demonstrate that bioactive SCPC50 can efficiently be coated on Ti-6Al-4V using EPD. Moreover, the in vitro bone cell response suggests that SCPC50-coating has the potential to enhance bone integration with orthopedic and maxillofacial implants while minimizing the induction of inflammatory bone cell responses.

  3. A Sequence-Independent, Unstructured Internal Ribosome Entry Site Is Responsible for Internal Expression of the Coat Protein of Turnip Crinkle Virus

    PubMed Central

    May, Jared; Johnson, Philip; Saleem, Huma

    2017-01-01

    ABSTRACT To maximize the coding potential of viral genomes, internal ribosome entry sites (IRES) can be used to bypass the traditional requirement of a 5′ cap and some/all of the associated translation initiation factors. Although viral IRES typically contain higher-order RNA structure, an unstructured sequence of about 84 nucleotides (nt) immediately upstream of the Turnip crinkle virus (TCV) coat protein (CP) open reading frame (ORF) has been found to promote internal expression of the CP from the genomic RNA (gRNA) both in vitro and in vivo. An absence of extensive RNA structure was predicted using RNA folding algorithms and confirmed by selective 2′-hydroxyl acylation analyzed by primer extension (SHAPE) RNA structure probing. Analysis of the IRES region in vitro by use of both the TCV gRNA and reporter constructs did not reveal any sequence-specific elements but rather suggested that an overall lack of structure was an important feature for IRES activity. The CP IRES is A-rich, independent of orientation, and strongly conserved among viruses in the same genus. The IRES was dependent on eIF4G, but not eIF4E, for activity. Low levels of CP accumulated in vivo in the absence of detectable TCV subgenomic RNAs, strongly suggesting that the IRES was active in the gRNA in vivo. Since the TCV CP also serves as the viral silencing suppressor, early translation of the CP from the viral gRNA is likely important for countering host defenses. Cellular mRNA IRES also lack extensive RNA structures or sequence conservation, suggesting that this viral IRES and cellular IRES may have similar strategies for internal translation initiation. IMPORTANCE Cap-independent translation is a common strategy among positive-sense, single-stranded RNA viruses for bypassing the host cell requirement of a 5′ cap structure. Viral IRES, in general, contain extensive secondary structure that is critical for activity. In contrast, we demonstrate that a region of viral RNA devoid of extensive secondary structure has IRES activity and produces low levels of viral coat protein in vitro and in vivo. Our findings may be applicable to cellular mRNA IRES that also have little or no sequences/structures in common. PMID:28179526

  4. Kinetics of silver release from microfuel with taking into account the limited-solubility effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivanov, A. S., E-mail: asi.kiae@gmail.com; Rusinkevich, A. A., E-mail: rusinkevich_andr@mail.ru

    2014-12-15

    The effect of a limited solubility of silver in silicon carbide on silver release from a microfuel with a TRISO coating is studied. It is shown that a limited solubility affects substantially both concentration profiles and silver release from a microfuel over a broad range of temperatures. A procedure is developed for obtaining fission-product concentration profiles in a microfuel and graphs representing the flow and integrated release of fission products on the basis of data from neutron-physics calculations and results obtained by calculating thermodynamics with the aid of the Ivtanthermo code and kinetics with the aid of the FP-Kinetics code.more » This procedure takes into account a limited solubility of fission products in protective coatings of microfuel.« less

  5. A Spore Coat Protein, CotS, of Bacillus subtilis Is Synthesized under the Regulation of ςK and GerE during Development and Is Located in the Inner Coat Layer of Spores

    PubMed Central

    Takamatsu, Hiromu; Chikahiro, Yukari; Kodama, Takeko; Koide, Hidekatsu; Kozuka, Satoshi; Tochikubo, Kunio; Watabe, Kazuhito

    1998-01-01

    The spore coat of Bacillus subtilis has a unique morphology and consists of polypeptides of different sizes, whose synthesis and assembly are precisely regulated by a cascade of transcription factors and regulatory proteins. We examined the factors that regulate cotS gene expression and CotS assembly into the coat layer of B. subtilis by Northern blot and Western blot analysis. Transcription of cotS mRNA was not detected in sporulating cells of ςK and gerE mutants by Northern blot analysis. By Western blot analysis using anti-CotS antibody, CotS was first detected in protein samples solubilized from wild-type cells at 5 h after the start of sporulation. CotS was not detected in the vegetative cells and spores of a gerE mutant or in the spores of mutants deficient in ςE, ςF, ςG, or ςK. CotS was detected in the sporangium but not in the spores of a cotE mutant. The sequence of the promoter region of cotS was similar to the consensus sequences for binding of ςK and GerE. These results demonstrate that ςK and GerE are required for cotS expression and that CotE is essential for the assembly of CotS in the coat. Immunoelectron microscopic observation using anti-CotS antibody revealed that CotS is located within the spore coat, in particular in the inner coats of dormant spores. PMID:9603889

  6. Ultralow protein adsorbing coatings from clickable PEG nanogel solutions: Benefits of attachment under salt-induced phase separation conditions and comparison with PEG/albumin nanogel coatings

    PubMed Central

    Donahoe, Casey D.; Cohen, Thomas L.; Li, Wenlu; Nguyen, Peter K.; Fortner, John D.; Mitra, Robi D.; Elbert, Donald L.

    2013-01-01

    Clickable nanogel solutions were synthesized by using the copper catalyzed azide/alkyne cycloaddition (CuAAC) to partially polymerize solutions of azide and alkyne functionalized poly(ethylene glycol) (PEG) monomers. Coatings were fabricated using a second click reaction: a UV thiol-yne attachment of the nanogel solutions to mercaptosilanated glass. Because the CuAAC reaction was effectively halted by the addition of a copper-chelator, we were able to prevent bulk gelation and limit the coating thickness to a single monolayer of nanogels in the absence of the solution reaction. This enabled the inclusion of kosmotropic salts, which caused the PEG to phase-separate and nearly double the nanogel packing density, as confirmed by Quartz Crystal Microbalance with Dissipation (QCM-D). Protein adsorption was analyzed by single molecule counting with total internal reflection fluorescence (TIRF) microscopy and cell adhesion assays. Coatings formed from the phase-separated clickable nanogel solutions attached with salt adsorbed significantly less fibrinogen than other 100% PEG coatings tested, as well as poly-L-lysine-g-PEG (PLL-g-PEG) coatings. However, PEG/albumin nanogel coatings still outperformed the best 100% PEG clickable nanogel coatings. Additional surface crosslinking of the clickable nanogel coating in the presence of copper further reduced levels of fibrinogen adsorption closer to those of PEG/albumin nanogel coatings. However, this step negatively impacted long-term resistance to cell adhesion and dramatically altered the morphology of the coating by atomic force microscopy (AFM). The main benefit of the click strategy is that the partially polymerized solutions are stable almost indefinitely, allowing attachment in the phase-separated state without danger of bulk gelation, and thus, producing the best performing 100% PEG coating that we have studied to date. PMID:23441808

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baba, Seiki; Hoshino, Takeshi; Ito, Len

    A new crystal-mounting method has been developed that involves a combination of controlled humid air and polymer glue for crystal coating. This method is particularly useful when applied to fragile protein crystals that are known to be sensitive to subtle changes in their physicochemical environment. Protein crystals are fragile, and it is sometimes difficult to find conditions suitable for handling and cryocooling the crystals before conducting X-ray diffraction experiments. To overcome this issue, a protein crystal-mounting method has been developed that involves a water-soluble polymer and controlled humid air that can adjust the moisture content of a mounted crystal. Bymore » coating crystals with polymer glue and exposing them to controlled humid air, the crystals were stable at room temperature and were cryocooled under optimized humidity. Moreover, the glue-coated crystals reproducibly showed gradual transformations of their lattice constants in response to a change in humidity; thus, using this method, a series of isomorphous crystals can be prepared. This technique is valuable when working on fragile protein crystals, including membrane proteins, and will also be useful for multi-crystal data collection.« less

  8. Efficacy of various protein-based coating on enhancing the shelf life of fresh eggs during storage.

    PubMed

    Caner, Cengiz; Yüceer, Muhammed

    2015-07-01

    The effectiveness of various coatings (whey protein isolate [WPI], whey protein concentrate [WPC], zein, and shellac) on functional properties, interior quality, and eggshell breaking strength of fresh eggs were evaluated during storage at 24 °: C for 6 weeks. Coatings and storage time had significant effects on Haugh unit, yolk index, albumen pH, dry matter (DMA), relative whipping capacity (RWC), and albumen viscosity. Uncoated eggs had higher albumen pH (9.56) and weight loss, and lower albumen viscosity (5.73), Haugh unit (HU), and yolk index (YI) during storage. Among the coated eggs, the shellac and zein coated eggs had the highest value of albumen viscosity (27.26 to 26.90), HU (74.10 to 73.61), and YI (44.84 to 44.63) after storage. Shellac (1.44%) was more effective in preventing weight loss than WPC (4.59%), WPI (4.60%), and zein (2.13%) coatings. Uncoated eggs had the higest value (6.71%) of weight lost. All coatings increased shell strength (5.18 to 5.73 for top and 3.58 to 4.71 for bottom) significantly (P < 0.05) compared to the uncoated eggs (4.70 for top and 3.15 for bottom). The functional properties such as albumen DMA (14.50 to 16.66 and 18.97 for uncoated) and albumen RWC (841 to 891 and 475 for uncoated) of fresh eggs can be preserved during storage when they are coated. The shellac and zein coatings were more effective for maintaining the internal quality of fresh eggs during storage. Fourier transform near infrared (FT-NIR) in the 800 to 2500 nm reflection spectra were used to quantify the contents of the fresh eggs at the end of storage. Eggs coated with shellac or zein displayed a higher absorbance at 970 and 1,197 nm respectively (OH vibration of water) compared with those coated with WPI or WPC and the uncoated group at the end of storage. The coatings improved functional properties and also shell strength and could be a viable alternative technology for maintaining the internal quality of eggs during long-term storage. This study highlights the promising use of various coatings to both enhance the functional properties and to reduce the breakage of eggs. © 2015 Poultry Science Association Inc.

  9. [Virus resistance in transgenic watermelon plants containing a WMV-2 coat protein gene].

    PubMed

    Wang, Hui-Zhong; Zhao, Pei-Jie; Xu, Ji-Chen; Zhao, Huai; Zhang, Hong-Sheng

    2003-01-01

    Virus disease is a major cause that affects the quality and output of watermelon which is an important fruit in summer. So it is really urgent to develop disease resistance plants. But it takes a long time to breed such plants in conventional ways, and it is very difficult to get ideal result. With the development of plant genetic engineering, new ways have been found to breed plants with disease resistance. By using plant transgenic technique, much progress was been made in plant improvement. There are many successful cases of transgenic plants against corresponding virus disease through transferring coat protein gene. This paper reports the results of inheritance, segregation, expression of WMV-2 coat protein gene in inbred transgenic watermelon and its resistance to virus. Through PCR analysis of inbred plants, we found WMV-2 coat protein gene in the genome of progeny R1 separated with 3:1. After successive selection and identification of 4 generations, 8 transgenic pure lines with almost the same agronomic traits were obtained from 3 independent transformants of T7, T11 and T32. The result of Western blotting shows all 3 different transgenic lines of R4T7-1, R4T11-3 and R4T32-7 can produce coat protein. Disease resistance experiment on transgenic plants with WMV-2 shows that, compared with the control groups, transgenic plants can delay the disease infection and reduce the incidence and the symptoms of virus disease. And the transgenic line R4T32-7 expressed high resistance to infection by WMV-2, which lays a foundation for breeding of disease resistant varieties through plant transgenic technique.

  10. Architectural Insight into Inovirus-Associated Vectors (IAVs) and Development of IAV-Based Vaccines Inducing Humoral and Cellular Responses: Implications in HIV-1 Vaccines

    PubMed Central

    Hassapis, Kyriakos A.; Stylianou, Dora C.; Kostrikis, Leondios G.

    2014-01-01

    Inovirus-associated vectors (IAVs) are engineered, non-lytic, filamentous bacteriophages that are assembled primarily from thousands of copies of the major coat protein gp8 and just five copies of each of the four minor coat proteins gp3, gp6, gp7 and gp9. Inovirus display studies have shown that the architecture of inoviruses makes all coat proteins of the inoviral particle accessible to the outside. This particular feature of IAVs allows foreign antigenic peptides to be displayed on the outer surface of the virion fused to its coat proteins and for more than two decades has been exploited in many applications including antibody or peptide display libraries, drug design, and vaccine development against infectious and non-infectious diseases. As vaccine carriers, IAVs have been shown to elicit both a cellular and humoral response against various pathogens through the display of antibody epitopes on their coat proteins. Despite their high immunogenicity, the goal of developing an effective vaccine against HIV-1 has not yet materialized. One possible limitation of previous efforts was the use of broadly neutralizing antibodies, which exhibited autoreactivity properties. In the past five years, however, new, more potent broadly neutralizing antibodies that do not exhibit autoreactivity properties have been isolated from HIV-1 infected individuals, suggesting that vaccination strategies aimed at producing such broadly neutralizing antibodies may confer protection against infection. The utilization of these new, broadly neutralizing antibodies in combination with the architectural traits of IAVs have driven the current developments in the design of an inovirus-based vaccine against HIV-1. This article reviews the applications of IAVs in vaccine development, with particular emphasis on the design of inoviral-based vaccines against HIV-1. PMID:25525909

  11. Architectural insight into inovirus-associated vectors (IAVs) and development of IAV-based vaccines inducing humoral and cellular responses: implications in HIV-1 vaccines.

    PubMed

    Hassapis, Kyriakos A; Stylianou, Dora C; Kostrikis, Leondios G

    2014-12-17

    Inovirus-associated vectors (IAVs) are engineered, non-lytic, filamentous bacteriophages that are assembled primarily from thousands of copies of the major coat protein gp8 and just five copies of each of the four minor coat proteins gp3, gp6, gp7 and gp9. Inovirus display studies have shown that the architecture of inoviruses makes all coat proteins of the inoviral particle accessible to the outside. This particular feature of IAVs allows foreign antigenic peptides to be displayed on the outer surface of the virion fused to its coat proteins and for more than two decades has been exploited in many applications including antibody or peptide display libraries, drug design, and vaccine development against infectious and non-infectious diseases. As vaccine carriers, IAVs have been shown to elicit both a cellular and humoral response against various pathogens through the display of antibody epitopes on their coat proteins. Despite their high immunogenicity, the goal of developing an effective vaccine against HIV-1 has not yet materialized. One possible limitation of previous efforts was the use of broadly neutralizing antibodies, which exhibited autoreactivity properties. In the past five years, however, new, more potent broadly neutralizing antibodies that do not exhibit autoreactivity properties have been isolated from HIV-1 infected individuals, suggesting that vaccination strategies aimed at producing such broadly neutralizing antibodies may confer protection against infection. The utilization of these new, broadly neutralizing antibodies in combination with the architectural traits of IAVs have driven the current developments in the design of an inovirus-based vaccine against HIV-1. This article reviews the applications of IAVs in vaccine development, with particular emphasis on the design of inoviral-based vaccines against HIV-1.

  12. The effects of variations in the number and sequence of targeting signals on nuclear uptake

    PubMed Central

    1988-01-01

    To determine if the number of targeting signals affects the transport of proteins into the nucleus, Xenopus oocytes were injected with colloidal gold particles, ranging in diameter from 20 to 280 A, that were coated with BSA cross-linked with synthetic peptides containing the SV-40 large T-antigen nuclear transport signal. Three BSA conjugate preparations were used; they had an average of 5, 8, and 11 signals per molecule of carrier protein. In addition, large T-antigen, which contains one signal per monomer, was used as a coating agent. The cells were fixed at various times after injection and subsequently analyzed by electron microscopy. Gold particles coated with proteins containing the SV-40 signal entered the nucleus through central channels located within the nuclear pores. Analysis of the intracellular distribution and size of the tracers that entered the nucleus indicated that the number of signals per molecule affect both the relative uptake of particles and the functional size of the channels available for translocation. In control experiments, gold particles coated with BSA or BSA conjugated with inactive peptides similar to the SV-40 transport signal were virtually excluded from the nucleus. Gold particles coated with nucleoplasmin, an endogenous karyophilic protein that contains five targeting signals per molecule, was transported through the nuclear pores more effectively than any of the BSA-peptide conjugates. Based on a correlation between the peri-envelope density of gold particles and their relative uptake, it is suggested that the differences in the activity of the two targeting signals is related to their binding affinity for envelope receptors. It was also determined, by performing coinjection experiments, that individual pores are capable of recognizing and transporting proteins that contain different nuclear targeting signals. PMID:3170630

  13. COSIM: A Finite-Difference Computer Model to Predict Ternary Concentration Profiles Associated With Oxidation and Interdiffusion of Overlay-Coated Substrates

    NASA Technical Reports Server (NTRS)

    Nesbitt, James A.

    2001-01-01

    A finite-difference computer program (COSIM) has been written which models the one-dimensional, diffusional transport associated with high-temperature oxidation and interdiffusion of overlay-coated substrates. The program predicts concentration profiles for up to three elements in the coating and substrate after various oxidation exposures. Surface recession due to solute loss is also predicted. Ternary cross terms and concentration-dependent diffusion coefficients are taken into account. The program also incorporates a previously-developed oxide growth and spalling model to simulate either isothermal or cyclic oxidation exposures. In addition to predicting concentration profiles after various oxidation exposures, the program can also be used to predict coating life based on a concentration dependent failure criterion (e.g., surface solute content drops to 2%). The computer code is written in FORTRAN and employs numerous subroutines to make the program flexible and easily modifiable to other coating oxidation problems.

  14. Effect of proteins and their conformation change during brushite transformation to hydroxyapatite

    NASA Astrophysics Data System (ADS)

    Xie, Jing

    2000-10-01

    Hydroxyapatite (HA, Ca5(PO4)3OH) coatings on metallic orthopedic implant are being used to achieve implant integration. However, HA is stable in physiological solutions, other more reactive calcium phosphate ceramics (CPC) such as brushite (CaHPO4·2H 2O) have been found to release calcium and phosphate ions during their transformation to HA. The release of these ions may induce faster bone growth and enhance implant integration. This work examines the biocompatibility of the CPC phases that form during the transformation process. Since biocompatibility is associated with cellular response, which in turn is initiated by protein adsorption, this work focuses on the mutual effect between protein adsorption and CPC transformation. The first part of the study is focused on the influence of protein adsorption on transformation kinetics and chemistry. Brushite coated samples immersed in protein free and proteinaceous physiological solutions were retrieved after different exposures times. These were examined using XRD, EDS and FTIR/reflectance. Results show that the presence of Bovine Serum Albumin (BSA) in physiological solution retards the transformation, but the presence of Fibronectin (FN) accelerates the transformation to HA. Interestingly, neither BSA nor FN alters the transformation chemistry. Due to the limitations of the techniques used, this part of the work does not monitor the effect of transformation on adsorbed proteins but only the effect of adsorbed protein on the transforming calcium phosphate coating. The second part of the work examines in situ conformational changes of adsorbed proteins during the CPC transformation using FTIR/ATR. Protein adsorbed on different surfaces such as germanium, CPC, zinc selenide and titanium shows different conformation indicated by the Amide I and II absorption bands in the infrared spectra. During the transformation of brushite to HA, both BSA and FN show a continuous change in conformation, which suggests that the transformation of CPC coating influences adsorbed protein structure.

  15. Temperature-Triggered Protein Adsorption on Polymer-Coated Nanoparticles in Serum.

    PubMed

    Koshkina, Olga; Lang, Thomas; Thiermann, Raphael; Docter, Dominic; Stauber, Roland H; Secker, Christian; Schlaad, Helmut; Weidner, Steffen; Mohr, Benjamin; Maskos, Michael; Bertin, Annabelle

    2015-08-18

    The protein corona, which forms on the nanoparticle's surface in most biological media, determines the nanoparticle's physicochemical characteristics. The formation of the protein corona has a significant impact on the biodistribution and clearance of nanoparticles in vivo. Therefore, the ability to influence the formation of the protein corona is essential to most biomedical applications, including drug delivery and imaging. In this study, we investigate the protein adsorption on nanoparticles with a hydrodynamic radius of 30 nm and a coating of thermoresponsive poly(2-isopropyl-2-oxazoline) in serum. Using multiangle dynamic light scattering (DLS) we demonstrate that heating of the nanoparticles above their phase separation temperature induces the formation of agglomerates, with a hydrodynamic radius of 1 μm. In serum, noticeably stronger agglomeration occurs at lower temperatures compared to serum-free conditions. Cryogenic transmission electron microscopy (cryo-TEM) revealed a high packing density of agglomerates when serum was not present. In contrast, in the presence of serum, agglomerated nanoparticles were loosely packed, indicating that proteins are intercalated between them. Moreover, an increase in protein content is observed upon heating, confirming that protein adsorption is induced by the alteration of the surface during phase separation. After cooling and switching the surface back, most of the agglomerates were dissolved and the main fraction returned to the original size of approximately 30 nm as shown by asymmetrical flow-field flow fractionation (AF-FFF) and DLS. Furthermore, the amounts of adsorbed proteins are similar before and after heating the nanoparticles to above their phase-separation temperature. Overall, our results demonstrate that the thermoresponsivity of the polymer coating enables turning the corona formation on nanoparticles on and off in situ. As the local heating of body areas can be easily done in vivo, the thermoresponsive coating could potentially be used to induce the agglomeration of nanoparticles and proteins and the accumulation of nanoparticles in a targeted body region.

  16. A base substitution in the donor site of intron 12 of KIT gene is responsible for the dominant white coat colour of blue fox (Alopex lagopus).

    PubMed

    Yan, S Q; Hou, J N; Bai, C Y; Jiang, Y; Zhang, X J; Ren, H L; Sun, B X; Zhao, Z H; Sun, J H

    2014-04-01

    The dominant white coat colour of farmed blue fox is inherited as a monogenic autosomal dominant trait and is suggested to be embryonic lethal in the homozygous state. In this study, the transcripts of KIT were identified by RT-PCR for a dominant white fox and a normal blue fox. Sequence analysis showed that the KIT transcript in normal blue fox contained the full-length coding sequence of 2919 bp (GenBank Acc. No KF530833), but in the dominant white individual, a truncated isoform lacking the entire exon 12 specifically co-expressed with the normal transcript. Genomic DNA sequencing revealed that a single nucleotide polymorphism (c.1867+1G>T) in intron 12 appeared only in the dominant white individuals and a 1-bp ins/del polymorphism in the same intron showed in individuals representing two different coat colours. Genotyping results of the SNP with PCR-RFLP in 185 individuals showed all 90 normal blue foxes were homozygous for the G allele, and all dominant white individuals were heterozygous. Due to the truncated protein with a deletion of 35 amino acids and an amino acid replacement (p.Pro623Ala) located in the conserved ATP binding domain, we propose that the mutant receptor had absent tyrosine kinase activity. These findings reveal that the base substitution at the first nucleotide of intron 12 of KIT gene, resulting in skipping of exon 12, is a causative mutation responsible for the dominant white phenotype of blue fox. © 2013 Stichting International Foundation for Animal Genetics.

  17. Method for estimating protein binding capacity of polymeric systems.

    PubMed

    Sharma, Vaibhav; Blackwood, Keith A; Haddow, David; Hook, Lilian; Mason, Chris; Dye, Julian F; García-Gareta, Elena

    2015-01-01

    Composite biomaterials made from synthetic and protein-based polymers are extensively researched in tissue engineering. To successfully fabricate a protein-polymer composite, it is critical to understand how strongly the protein binds to the synthetic polymer, which occurs through protein adsorption. Currently, there is no cost-effective and simple method for characterizing this interfacial binding. To characterize this interfacial binding, we introduce a simple three-step method that involves: 1) synthetic polymer surface characterisation, 2) a quick, inexpensive and robust novel immuno-based assay that uses protein extraction compounds to characterize protein binding strength followed by 3) an in vitro 2D model of cell culture to confirm the results of the immuno-based assay. Fibrinogen, precursor of fibrin, was adsorbed (test protein) on three different polymeric surfaces: silicone, poly(acrylic acid)-coated silicone and poly(allylamine)-coated silicone. Polystyrene surface was used as a reference. Characterisation of the different surfaces revealed different chemistry and roughness. The novel immuno-based assay showed significantly stronger binding of fibrinogen to both poly(acrylic acid) and poly(allylamine) coated silicone. Finally, cell studies showed that the strength of the interaction between the protein and the polymer had an effect on cell growth. This novel immuno-based assay is a valuable tool in developing composite biomaterials of synthetic and protein-based polymers with the potential to be applied in other fields of research where protein adsorption onto surfaces plays an important role.

  18. Mediating the gap between the white coat ceremony and the ethics and professionalism curriculum.

    PubMed

    Cohn, Felicia; Lie, Désirée

    2002-11-01

    Like many other medical schools, the University of California, Irvine annually conducts a White Coat ceremony in which incoming students take a professional oath of ethical conduct.(1) We report a new educational activity to connect the values expressed in the oath taken to the Ethics and Professionalism (EP) curriculum for first-year medical students(2) and its potential impact on physician training. Following the White Coat ceremony, students participated in the Patient Doctor Society course that integrates diverse curricular topics centered on physician-patient communication. During this course, the students were introduced to EP content through a collaborative peer exercise. With the assistance of background readings on professional values and ethics concepts, small groups of students were asked to construct their own codes of ethics. The process of working in a group became part of the learning. After developing a code of ethics, each group was asked to identify primary values embodied in its code; primary obligations to patients and their families, other members of the health care team, and the community; key factors influencing code development; and likely effects of the code on the conduct of medical students and physicians. The goals of the session were to recognize formally both individual values and the values to which students commit themselves during the White Coat ceremony, to facilitate understanding of those values, and to begin to reconcile differences between personal and professional values. The small groups convened to report their findings in a three-hour session. Common values expressed by the students included patient autonomy, respect, beneficence, and professionalism. The delivery of quality health care, communication, education, and the equitable distribution of health care were among the most often listed obligations. The students reported that culture, societal values, family, experience, religion, education, and assigned readings were the key sources of the values in their codes. Most of the students enjoyed and learned from the exercise, believing that a code of ethics will serve as a helpful educational guide while they are students and as an action guide in their future practices. Student evaluations, narrative feedback, and faculty observation indicated that the students appreciated the opportunity to work in teams and to explore professional values. The students' most common suggestion for improvement involved incorporating analysis of clinical cases in which questions about professional values arise. Medical educators suggest that students' values and professional behaviors change throughout medical school, but such change is difficult to assess. The code-development exercise established a baseline of values at entry to medical school. We plan to track this cohort of students by reintroducing this exercise in their fourth year and will compare the codes developed in their first and fourth years to identify changes in values and to suggest what the students have learned about values during medical school. The comparison will be used to inform further development of the EP curriculum toward the goal of shaping and supporting the positive professional growth of our student-physicians.

  19. A deletion mutation at the ep locus causes low seed coat peroxidase activity in soybean.

    PubMed

    Gijzen, M

    1997-11-01

    The Ep locus severely affects the amount of peroxidase enzyme in soybean seed coats. Plants containing the dominant Ep allele accumulate large amounts of peroxidase in the hourglass cells of the sub-epidermis. Homozygous recessive epep genotypes do not accumulate peroxidase in the hourglass cells and are much reduced in total seed coat peroxidase activity. To isolate the gene encoding the seed coat peroxidase and to determine whether it corresponds to the Ep locus, a cDNA library was constructed from developing seed coats and an abundant 1.3 kb peroxidase transcript was cloned. The corresponding structural gene was also isolated from a genomic library. Sequence analysis shows that the seed coat peroxidase is translated as a 352 amino acid precursor protein of 38 kDa. Processing of a putative 26 amino acid signal sequence results in a mature protein of 326 residues with a calculated mass of 35 kDa and a pl of 4.4. Using probes derived from the cDNA, genomic DNA blot hybridization and polymerase chain reaction analysis detected polymorphisms that distinguished EpEp and epep genotypes. Co-segregation of the polymorphisms in an F2 population from a cross of EpEp and epep plants shows that the Ep locus encodes the seed coat peroxidase protein. Comparison of Ep and ep alleles indicates that the recessive gene lacks 87 bp of sequence encompassing the translation start codon. Analysis by RNA blot hybridization shows that epep plants have drastically reduced amounts of peroxidase transcript compared with EpEp plants. The peroxidase mRNA is abundant in seed coat tissues of EpEp plants during the late stages of seed maturation, and could also be detected in root tissues, but not in the flower, embryo, pod or leaf. The results indicate that the lack of peroxidase accumulation in seed coats of homozygous recessive epep plants is due to a mutation of the structural gene that reduces transcript abundance.

  20. 40 CFR 59.507 - What are the labeling requirements for aerosol coatings?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... in Table 1 of this subpart or a company-specific code, if that code is explained as required by § 59.511(a); (2) The applicable PWR limit for the product specified in Table 1 of this subpart; (3) The day... this subpart. (b) The label on the product must be displayed in such a manner that it is readily...

  1. Osseointegration mechanisms: a proteomic approach.

    PubMed

    Araújo-Gomes, N; Romero-Gavilán, F; García-Arnáez, I; Martínez-Ramos, C; Sánchez-Pérez, A M; Azkargorta, M; Elortza, F; de Llano, J J Martín; Gurruchaga, M; Goñi, I; Suay, J

    2018-05-01

    The prime objectives in the development of biomaterials for dental applications are to improve the quality of osseointegration and to short the time needed to achieve it. Design of implants nowadays involves changes in the surface characteristics to obtain a good cellular response. Incorporating osteoinductive elements is one way to achieve the best regeneration possible post-implantation. This study examined the osteointegrative potential of two distinct biomaterials: sandblasted acid-etched titanium and a silica sol-gel hybrid coating, 70% MTMOS-30% TEOS. In vitro, in vivo, and proteomic characterisations of the two materials were conducted. Enhanced expression levels of ALP and IL-6 in the MC3T3-E1 cells cultured with coated discs, suggest that growing cells on such surfaces may increase mineralisation levels. 70M30T-coated implants showed improved bone growth in vivo compared to uncoated titanium. Complete osseointegration was achieved on both. However, coated implants displayed osteoinductive properties, while uncoated implants demonstrated osteoconductive characteristics. Coagulation-related proteins attached predominantly to SAE-Ti surface. Surface properties of the material might drive the regenerative process of the affected tissue. Analysis of the proteins on the coated dental implant showed that few proteins specifically attached to its surface, possibly indicating that its osteoinductive properties depend on the silicon delivery from the implant.

  2. Genomic determinants of sporulation in Bacilli and Clostridia: towards the minimal set of sporulation-specific genes.

    PubMed

    Galperin, Michael Y; Mekhedov, Sergei L; Puigbo, Pere; Smirnov, Sergey; Wolf, Yuri I; Rigden, Daniel J

    2012-11-01

    Three classes of low-G+C Gram-positive bacteria (Firmicutes), Bacilli, Clostridia and Negativicutes, include numerous members that are capable of producing heat-resistant endospores. Spore-forming firmicutes include many environmentally important organisms, such as insect pathogens and cellulose-degrading industrial strains, as well as human pathogens responsible for such diseases as anthrax, botulism, gas gangrene and tetanus. In the best-studied model organism Bacillus subtilis, sporulation involves over 500 genes, many of which are conserved among other bacilli and clostridia. This work aimed to define the genomic requirements for sporulation through an analysis of the presence of sporulation genes in various firmicutes, including those with smaller genomes than B. subtilis. Cultivable spore-formers were found to have genomes larger than 2300 kb and encompass over 2150 protein-coding genes of which 60 are orthologues of genes that are apparently essential for sporulation in B. subtilis. Clostridial spore-formers lack, among others, spoIIB, sda, spoVID and safA genes and have non-orthologous displacements of spoIIQ and spoIVFA, suggesting substantial differences between bacilli and clostridia in the engulfment and spore coat formation steps. Many B. subtilis sporulation genes, particularly those encoding small acid-soluble spore proteins and spore coat proteins, were found only in the family Bacillaceae, or even in a subset of Bacillus spp. Phylogenetic profiles of sporulation genes, compiled in this work, confirm the presence of a common sporulation gene core, but also illuminate the diversity of the sporulation processes within various lineages. These profiles should help further experimental studies of uncharacterized widespread sporulation genes, which would ultimately allow delineation of the minimal set(s) of sporulation-specific genes in Bacilli and Clostridia. Published 2012. This article is a U.S. Government work and is in the public domain in the USA.

  3. Cell cycle, oncogenic and tumor suppressor pathways regulate numerous long and macro non-protein-coding RNAs

    PubMed Central

    2014-01-01

    Background The genome is pervasively transcribed but most transcripts do not code for proteins, constituting non-protein-coding RNAs. Despite increasing numbers of functional reports of individual long non-coding RNAs (lncRNAs), assessing the extent of functionality among the non-coding transcriptional output of mammalian cells remains intricate. In the protein-coding world, transcripts differentially expressed in the context of processes essential for the survival of multicellular organisms have been instrumental in the discovery of functionally relevant proteins and their deregulation is frequently associated with diseases. We therefore systematically identified lncRNAs expressed differentially in response to oncologically relevant processes and cell-cycle, p53 and STAT3 pathways, using tiling arrays. Results We found that up to 80% of the pathway-triggered transcriptional responses are non-coding. Among these we identified very large macroRNAs with pathway-specific expression patterns and demonstrated that these are likely continuous transcripts. MacroRNAs contain elements conserved in mammals and sauropsids, which in part exhibit conserved RNA secondary structure. Comparing evolutionary rates of a macroRNA to adjacent protein-coding genes suggests a local action of the transcript. Finally, in different grades of astrocytoma, a tumor disease unrelated to the initially used cell lines, macroRNAs are differentially expressed. Conclusions It has been shown previously that the majority of expressed non-ribosomal transcripts are non-coding. We now conclude that differential expression triggered by signaling pathways gives rise to a similar abundance of non-coding content. It is thus unlikely that the prevalence of non-coding transcripts in the cell is a trivial consequence of leaky or random transcription events. PMID:24594072

  4. PsB multiprotein complex of Dictyostelium discoideum. Demonstration of cellulose binding activity and order of protein subunit assembly.

    PubMed

    McGuire, V; Alexander, S

    1996-06-14

    The differentiated spores of Dictyostelium are surrounded by an extracellular matrix, the spore coat, which protects them from environmental factors allowing them to remain viable for extended periods of time. This presumably is a major evolutionary advantage. This unique extracellular matrix is composed of cellulose and glycoproteins. Previous work has shown that some of these spore coat glycoproteins exist as a preassembled multiprotein complex (the PsB multiprotein complex) which is stored in the prespore vesicles (Watson, N., McGuire, V., and Alexander, S (1994) J. Cell Sci. 107, 2567-2579). Later in development, the complex is synchronously secreted from the prespore vesicles and incorporated into the spore coat. We now have shown that the PsB complex has a specific in vitro cellulose binding activity. The analysis of mutants lacking individual subunits of the PsB complex revealed the relative order of assembly of the subunit proteins and demonstrated that the protein subunits must be assembled for cellulose binding activity. These results provide a biochemical explanation for the localization of this multiprotein complex in the spore coat.

  5. A new approach to the immobilisation of poly(ethylene oxide) for the reduction of non-specific protein adsorption on conductive substrates

    NASA Astrophysics Data System (ADS)

    Cole, Martin A.; Thissen, Helmut; Losic, Dusan; Voelcker, Nicolas H.

    2007-04-01

    Biomedical and biotechnological devices often require surface modifications to improve their performance. In most cases, uniform coatings are desired which provide a specific property or lead to a specific biological response. In the present work, we have generated pinhole-free coatings providing amine functional groups achieved by electropolymerisation of tyramine on highly doped silicon substrates. Furthermore, amine groups were used for the subsequent grafting of poly(ethylene oxide) aldehyde via reductive amination. All surface modification steps were characterized by X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). The results indicate that the stability and the density of amine functional groups introduced at the surface via electropolymerisation compare favourably with alternative coatings frequently used in biomedical and biotechnological devices such as plasma polymer films. Furthermore, protein adsorption on amine and poly(ethylene oxide) coatings was studied by XPS and a colorimetric assay to test enzymatic activity. The grafting of poly(ethylene oxide) under cloud point conditions on electropolymerised tyramine layers resulted in surfaces with extremely low protein fouling character.

  6. Turnip Yellow Mosaic Virus

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The bumpy exterior of the turnip yellow mosaic virus (TYMV) protein coat, or capsid, was defined in detail by Dr. Alexander McPherson of the University of California, Irvin using proteins crystallized in space for analysis on Earth. TYMV is an icosahedral virus constructed from 180 copies of the same protein arranged into 12 clusters of five proteins (pentamers), and 20 clusters of six proteins (hexamers). The final TYMV structure led to the unexpected hypothesis that the virus releases its RNA by essentially chemical-mechanical means. Most viruses have fairly flat coats, but in TYNV, the fold in each protein, called the jellyroll, is clustered at the points where the protein pentamers and hexamers join. The jellyrolls are almost standing on end, producing a bumpy surface with knobs at all of the pentamers and hexamers. At the inside surface of the pentamers is a void that is not present at the hexamers. The coating had been seen in early stuties of TYMV, but McPherson's atomic structure shows much more detail. The inside surface is strikingly, and unexpectedly, different than the outside. While the pentamers contain a central void on the inside, the hexameric units contain peptides linked to each other, forming a ring or, more accurately, rings to fill the void. Credit: Dr. Alexander McPherson, University of California, Irvine

  7. Microgravity

    NASA Image and Video Library

    2000-05-01

    The bumpy exterior of the turnip yellow mosaic virus (TYMV) protein coat, or capsid, was defined in detail by Dr. Alexander McPherson of the University of California, Irvin using protein crystallized in space for analysis on Earth. TYMV is an icosahedral virus constructed from 180 copies of the same protein arranged into 12 clusters of five proteins (pentamers), and 20 clusters of six proteins (hexamers). The final TYMV structure led to the enexpected hypothesis that the virus release its RNA by essentially chemical-mechanical means. Most viruses have farly flat coats, but in TYMV, the fold in each protein, called the jellyroll, is clustered at the points where the protein pentamers and hexamers join. The jellyrolls are almost standing on end, producing a bumpy surface with knobs at all of the pentamers and hexamers. At the inside surface of the pentamers is a void that is not present at the hexamers. The coating had been seen in early studies of TYMV, but McPhereson's atomic structure shows much more detail. The inside surface is strikingly, and unexpectedly, different than the outside. While the pentamers contain a central viod on the inside, the hexameric units contain peptides liked to each other, forming a ring or, more accurately, rings to fill the voild. Credit: Dr. Alexander McPherson, University of California, Irvine.

  8. Turnip Yellow Mosaic Virus Structure

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The bumpy exterior of the turnip yellow mosaic virus (TYMV) protein coat, or capsid, was defined in detail by Dr. Alexander McPherson of the University of California, Irvin using protein crystallized in space for analysis on Earth. TYMV is an icosahedral virus constructed from 180 copies of the same protein arranged into 12 clusters of five proteins (pentamers), and 20 clusters of six proteins (hexamers). The final TYMV structure led to the enexpected hypothesis that the virus release its RNA by essentially chemical-mechanical means. Most viruses have farly flat coats, but in TYMV, the fold in each protein, called the jellyroll, is clustered at the points where the protein pentamers and hexamers join. The jellyrolls are almost standing on end, producing a bumpy surface with knobs at all of the pentamers and hexamers. At the inside surface of the pentamers is a void that is not present at the hexamers. The coating had been seen in early studies of TYMV, but McPhereson's atomic structure shows much more detail. The inside surface is strikingly, and unexpectedly, different than the outside. While the pentamers contain a central viod on the inside, the hexameric units contain peptides liked to each other, forming a ring or, more accurately, rings to fill the voild. Credit: Dr. Alexander McPherson, University of California, Irvine.

  9. Microgravity

    NASA Image and Video Library

    2000-05-01

    The bumpy exterior of the turnip yellow mosaic virus (TYMV) protein coat, or capsid, was defined in detail by Dr. Alexander McPherson of the University of California, Irvin using proteins crystallized in space for analysis on Earth. TYMV is an icosahedral virus constructed from 180 copies of the same protein arranged into 12 clusters of five proteins (pentamers), and 20 clusters of six proteins (hexamers). The final TYMV structure led to the unexpected hypothesis that the virus releases its RNA by essentially chemical-mechanical means. Most viruses have fairly flat coats, but in TYNV, the fold in each protein, called the jellyroll, is clustered at the points where the protein pentamers and hexamers join. The jellyrolls are almost standing on end, producing a bumpy surface with knobs at all of the pentamers and hexamers. At the inside surface of the pentamers is a void that is not present at the hexamers. The coating had been seen in early stuties of TYMV, but McPherson's atomic structure shows much more detail. The inside surface is strikingly, and unexpectedly, different than the outside. While the pentamers contain a central void on the inside, the hexameric units contain peptides linked to each other, forming a ring or, more accurately, rings to fill the void. Credit: Dr. Alexander McPherson, University of California, Irvine

  10. Protein patterning in polycarbonate microfluidic channels

    NASA Astrophysics Data System (ADS)

    Thomson, David A.; Hayes, Jason P.; Thissen, Helmut

    2004-03-01

    In this work protein patterning has been achieved within a polycarbonate microfluidic device. Channel structures were first coated with plasma polymerized allylamine (ALAPP) followed by the "cloud point" deposition of polyethylene oxide (PEO), a protein repellent molecule. Excimer laser micromachining was used to pattern the PEO to control protein localization. Subsequent removal of a sacrificial layer of polycarbonate resulted in the patterned polymer coating only in the channels of a simple fluidic device. Following a final diffusion bonding fabrication step the devices were filled with a buffer containing Streptavidin conjugated with fluorescein, and visualized under a confocal fluorescent microscope. This confirmed that protein adhesion occurred only in laser patterned areas. The ability to control protein adhesion in microfludic channels leads to the possibility of generating arrays of proteins or cells within polymer microfludics for cheap automated biosensors and synthesis systems.

  11. The Coding of Biological Information: From Nucleotide Sequence to Protein Recognition

    NASA Astrophysics Data System (ADS)

    Štambuk, Nikola

    The paper reviews the classic results of Swanson, Dayhoff, Grantham, Blalock and Root-Bernstein, which link genetic code nucleotide patterns to the protein structure, evolution and molecular recognition. Symbolic representation of the binary addresses defining particular nucleotide and amino acid properties is discussed, with consideration of: structure and metric of the code, direct correspondence between amino acid and nucleotide information, and molecular recognition of the interacting protein motifs coded by the complementary DNA and RNA strands.

  12. Dual genetically encoded phage-displayed ligands.

    PubMed

    Mohan, Kritika; Weiss, Gregory A

    2014-05-15

    M13 bacteriophage display presents polypeptides as fusions to phage coat proteins. Such phage-displayed ligands offer useful reagents for biosensors. Here, we report a modified phage propagation protocol for the consistent and robust display of two different genetically encoded ligands on the major coat protein, P8. The results demonstrate that the phage surface reaches a saturation point for maximum peptide display. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Tomato yellow leaf curl virus C4 protein is a determinant of disease phenotype in tomato

    USDA-ARS?s Scientific Manuscript database

    Tomato yellow leaf curl virus (TYLCV) is a monopartite begomovirus. Its genome contains six open reading frames, with V1 and V2 in sense, and C1 to C4 in complementary orientation. The functions of V1 and V2 are for coat protein and pre-coat, respectively. C1 is for virus replication, C2 for trans-a...

  14. Sticky Situation: An Investigation of Robust Aqueous-Based Recombinant Spider Silk Protein Coatings and Adhesives.

    PubMed

    Harris, Thomas I; Gaztambide, Danielle A; Day, Breton A; Brock, Cameron L; Ruben, Ashley L; Jones, Justin A; Lewis, Randolph V

    2016-11-14

    The mechanical properties and biocompatibility of spider silks have made them one of the most sought after and studied natural biomaterials. A biomimetic process has been developed that uses water to solvate purified recombinant spider silk proteins (rSSps) prior to material formation. The absence of harsh organic solvents increases cost effectiveness, safety, and decreases the environmental impact of these materials. This development allows for the investigation of aqueous-based rSSps as coatings and adhesives and their potential applications. In these studies it was determined that fiber-based rSSps in nonfiber formations have the capability to coat and adhere numerous substrates, whether rough, smooth, hydrophobic, or hydrophilic. Further, these materials can be functionalized for a variety of processes. Drug-eluting coatings have been made with the capacity to release a variety of compounds in addition to their inherent ability to prevent blood clotting and biofouling. Additionally, spider silk protein adhesives are strong enough to outperform some conventional glues and still display favorable tissue implantation properties. The physical properties, corresponding capabilities, and potential applications of these nonfibrous materials were characterized in this study. Mechanical properties, ease of manufacturing, biodegradability, biocompatibility, and functionality are the hallmarks of these revolutionary spider silk protein materials.

  15. The Purine Bias of Coding Sequences is Determined by Physicochemical Constraints on Proteins.

    PubMed

    Ponce de Leon, Miguel; de Miranda, Antonio Basilio; Alvarez-Valin, Fernando; Carels, Nicolas

    2014-01-01

    For this report, we analyzed protein secondary structures in relation to the statistics of three nucleotide codon positions. The purpose of this investigation was to find which properties of the ribosome, tRNA or protein level, could explain the purine bias (Rrr) as it is observed in coding DNA. We found that the Rrr pattern is the consequence of a regularity (the codon structure) resulting from physicochemical constraints on proteins and thermodynamic constraints on ribosomal machinery. The physicochemical constraints on proteins mainly come from the hydropathy and molecular weight (MW) of secondary structures as well as the energy cost of amino acid synthesis. These constraints appear through a network of statistical correlations, such as (i) the cost of amino acid synthesis, which is in favor of a higher level of guanine in the first codon position, (ii) the constructive contribution of hydropathy alternation in proteins, (iii) the spatial organization of secondary structure in proteins according to solvent accessibility, (iv) the spatial organization of secondary structure according to amino acid hydropathy, (v) the statistical correlation of MW with protein secondary structures and their overall hydropathy, (vi) the statistical correlation of thymine in the second codon position with hydropathy and the energy cost of amino acid synthesis, and (vii) the statistical correlation of adenine in the second codon position with amino acid complexity and the MW of secondary protein structures. Amino acid physicochemical properties and functional constraints on proteins constitute a code that is translated into a purine bias within the coding DNA via tRNAs. In that sense, the Rrr pattern within coding DNA is the effect of information transfer on nucleotide composition from protein to DNA by selection according to the codon positions. Thus, coding DNA structure and ribosomal machinery co-evolved to minimize the energy cost of protein coding given the functional constraints on proteins.

  16. Cell and protein adhesion studies in glaucoma drainage device development

    PubMed Central

    The, A

    1999-01-01

    AIM—To examine in vitro whether phosphorylcholine coating of poly(methylmethacrylate) can reduce the adhesion of fibrinogen, fibrin, human scleral fibroblast and macrophage compared with current biomaterials used in the construction of glaucoma drainage devices.
METHODS—Sample discs (n=6) of poly(methylmethacrylate), silicone, polypropylene, PTFE, and phosphorylcholine coated poly(methylmethacrylate) were seeded with fibrinogen, fibrin, fibroblast, and macrophages and incubated for variable lengths of time. The quantification was performed using radioactivity, spectrophotometry, ATP dependent luminometry, and immunohistochemistry respectively.
RESULTS—Fibrinogen and fibrin adhesion to phosphorylcholine coated poly(methylmethacrylate) were significantly lower than PMMA (p=0.004). Phosphorylcholine coating of poly(methylmethacrylate) also significantly reduced the adhesion of human scleral fibroblast (p=0.002) and macrophage (p=0.01) compared with PMMA. All the other biomaterials showed either similar or insignificantly different levels of adhesion to all the proteins and cells tested compared with PMMA.
CONCLUSION—Phosphorylcholine coating is a new material technology that offers considerable promise in the field of glaucoma drainage device development.

 PMID:10502580

  17. Effects of orthopedic implants with a polycaprolactone polymer coating containing bone morphogenetic protein-2 on osseointegration in bones of sheep.

    PubMed

    Niehaus, Andrew J; Anderson, David E; Samii, Valerie F; Weisbrode, Steven E; Johnson, Jed K; Noon, Mike S; Tomasko, David L; Lannutti, John J

    2009-11-01

    To determine elution characteristics of bone morphogenetic protein (BMP)-2 from a polycaprolactone coating applied to orthopedic implants and determine effects of this coating on osseointegration. 6 sheep. An in vitro study was conducted to determine BMP-2 elution from polycaprolactone-coated implants. An in vivo study was conducted to determine the effects on osseointegration when the polycaprolactone with BMP-2 coating was applied to bone screws. Osseointegration was assessed via radiography, measurement of peak removal torque and bone mineral density, and histomorphometric analysis. Physiologic response was assessed by measuring serum bone-specific alkaline phosphatase activity and uptake of bone markers. Mean +/- SD elution on day 1 of the in vitro study was 263 +/- 152 pg/d, which then maintained a plateau at 59.8 +/- 29.1 pg/d. Mean peak removal torque for screws coated with polycalprolactone and BMP-2 (0.91 +/- 0.65 dN x m) and screws coated with polycaprolactone alone (0.97 +/- 1.30 dN.m) did not differ significantly from that for the control screws (2.34 +/- 1.62 dN x m). Mean bone mineral densities were 0.535 +/- 0.060 g/cm(2), 0.596 +/- 0.093 g/cm(2), and 0.524 +/- 0.142 g/cm(2) for the polycaprolactone-BMP-2-coated, polycaprolactone-coated, and control screws, respectively, and did not differ significantly among groups. Histologically, bone was in closer apposition to the implant with the control screws than with either of the coated screws. BMP-2 within the polycaprolactone coating did not stimulate osteogenesis. The polycaprolactone coating appeared to cause a barrier effect that prevented formation of new bone. A longer period or use of another carrier polymer may result in increased osseointegration.

  18. In vitro evidence for RNA binding properties of the coat protein of prunus necrotic ringspot ilarvirus and their comparison to related and unrelated viruses.

    PubMed

    Pallás, V; Sánchez-Navarro, J A; Díez, J

    1999-01-01

    The RNA binding properties of the prunus necrotic ringspot virus (PNRSV) coat protein (CP) were demonstrated by northwestern and dot-blot analyses. The capability to bind PNRSV RNA 4 was compared with viruses representing three different interactions prevailing in the assembly and architecture of virions. The results showed that cucumber mosaic virus (CMV) and PNRSV CPs, which stabilise their virions mainly through RNA-protein interactions bound PNRSV RNA 4 even at very high salt concentrations. The CP of cherry leaf roll nepovirus, whose virions are predominantly stabilised by protein-protein interactions did not bind even at the lowest salt concentration tested. Finally the CP of carnation mottle carmovirus, that has an intermediate position in which both RNA-protein and protein-protein interactions are equally important showed a salt-dependent RNA binding.

  19. Influence of albumin and inorganic ions on electrochemical corrosion behavior of plasma electrolytic oxidation coated magnesium for surgical implants

    NASA Astrophysics Data System (ADS)

    Wan, Peng; Lin, Xiao; Tan, LiLi; Li, Lugee; Li, WeiRong; Yang, Ke

    2013-10-01

    Magnesium and its alloys are of great interest for biodegradable metallic devices. However, the degradation behavior and mechanisms of magnesium treated with coating in physiological environment in the presence of organic compound such as albumin have not been elucidated. In this study, the plasma electrolytic oxidation coated magnesium immersed in four different simulated body fluids: NaCl, PBS and with the addition of albumin to investigate the influence of protein and inorganic ions on degradation behavior by electrochemical methods. The results of electrochemical tests showed that aggressive corrosion took place in 0.9 wt.% NaCl solution; whereas albumin can act as an inhibitor, its adsorption impeded further dissolution of the coating. The mechanism was attributed to the synergistic effect of protein adsorption and precipitation of insoluble salts.

  20. A hydrogel-based versatile screening platform for specific biomolecular recognition in a well plate format.

    PubMed

    Beer, Meike V; Rech, Claudia; Diederichs, Sylvia; Hahn, Kathrin; Bruellhoff, Kristina; Möller, Martin; Elling, Lothar; Groll, Jürgen

    2012-04-01

    Precise determination of biomolecular interactions in high throughput crucially depends on a surface coating technique that allows immobilization of a variety of interaction partners in a non-interacting environment. We present a one-step hydrogel coating system based on isocyanate functional six-arm poly(ethylene oxide)-based star polymers for commercially available 96-well microtiter plates that combines a straightforward and robust coating application with versatile bio-functionalization. This system generates resistance to unspecific protein adsorption and cell adhesion, as demonstrated with fluorescently labeled bovine serum albumin and primary human dermal fibroblasts (HDF), and high specificity for the assessment of biomolecular recognition processes when ligands are immobilized on this surface. One particular advantage is the wide range of biomolecules that can be immobilized and convert the per se inert coating into a specifically interacting surface. We here demonstrate the immobilization and quantification of a broad range of biochemically important ligands, such as peptide sequences GRGDS and GRGDSK-biotin, the broadly applicable coupler molecule biocytin, the protein fibronectin, and the carbohydrates N-acetylglucosamine and N-acetyllactosamine. A simplified protocol for an enzyme-linked immunosorbent assay was established for the detection and quantification of ligands on the coating surface. Cell adhesion on the peptide and protein-modified surfaces was assessed using HDF. All coatings were applied using a one-step preparation technique, including bioactivation, which makes the system suitable for high-throughput screening in a format that is compatible with the most routinely used testing systems.

  1. Polyethylenimine-coated Fe3O4 nanoparticles effectively quench fluorescent DNA, which can be developed as a novel platform for protein detection.

    PubMed

    Ma, Long; Sun, Nana; Zhang, Jinyan; Tu, Chunhao; Cao, Xiuqi; Duan, Demin; Diao, Aipo; Man, Shuli

    2017-11-23

    We report a novel assembly of polyethyleneimine (PEI)-coated Fe 3 O 4 nanoparticles (NPs) with single-stranded DNA (ssDNA), and the fluorescence of the dye labeled in the DNA is remarkably quenched. In the presence of a target protein, the protein-DNA aptamer mutual interaction releases the ssDNA from this assembly and hence restores the fluorescence. This feature could be adopted to develop an aptasensor for protein detection. As a proof-of-concept, for the first time, we have used this proposed sensing strategy to detect thrombin selectively and sensitively. Furthermore, simultaneous multiple detection of thrombin and lysozyme in a complex protein mixture has been proven to be possible.

  2. Huntingtin Interacting Protein 1 Is a Clathrin Coat Binding Protein Required for Differentiation of late Spermatogenic Progenitors

    PubMed Central

    Rao, Dinesh S.; Chang, Jenny C.; Kumar, Priti D.; Mizukami, Ikuko; Smithson, Glennda M.; Bradley, Sarah V.; Parlow, A. F.; Ross, Theodora S.

    2001-01-01

    Huntingtin-interacting protein 1 (HIP1) interacts with huntingtin, the protein whose gene is mutated in Huntington's disease. In addition, a fusion between HIP1 and platelet-derived growth factor β receptor causes chronic myelomonocytic leukemia. The HIP1 proteins, including HIP1 and HIP1-related (HIP1r), have an N-terminal polyphosphoinositide-interacting epsin N-terminal homology, domain, which is found in proteins involved in clathrin-mediated endocytosis. HIP1 and HIP1r also share a central leucine zipper and an actin binding TALIN homology domain. Here we show that HIP1, like HIP1r, colocalizes with clathrin coat components. We also show that HIP1 physically associates with clathrin and AP-2, the major components of the clathrin coat. To further understand the putative biological role(s) of HIP1, we have generated a targeted deletion of murine HIP1. HIP1−/− mice developed into adulthood, did not develop overt neurologic symptoms in the first year of life, and had normal peripheral blood counts. However, HIP1-deficient mice exhibited testicular degeneration with increased apoptosis of postmeiotic spermatids. Postmeiotic spermatids are the only cells of the seminiferous tubules that express HIP1. These findings indicate that HIP1 is required for differentiation, proliferation, and/or survival of spermatogenic progenitors. The association of HIP1 with clathrin coats and the requirement of HIP1 for progenitor survival suggest a role for HIP1 in the regulation of endocytosis. PMID:11604514

  3. Morphogenesis of mimivirus and its viral factories: an atomic force microscopy study of infected cells.

    PubMed

    Kuznetsov, Yuri G; Klose, Thomas; Rossmann, Michael; McPherson, Alexander

    2013-10-01

    Amoebas infected with mimivirus were disrupted at sequential stages of virus production and were visualized by atomic force microscopy. The development of virus factories proceeded over 3 to 4 h postinfection and resulted from the coalescence of 0.5- to 2-μm vesicles, possibly bearing nucleic acid, derived from either the nuclear membrane or the closely associated rough endoplasmic reticulum. Virus factories actively producing virus capsids on their surfaces were imaged, and this allowed the morphogenesis of the capsids to be delineated. The first feature to appear on a virus factory surface when a new capsid is born is the center of a stargate, which is a pentameric protein oligomer. As the arms of the stargate grow from the pentamer, a rough disk the diameter of a capsid thickens around it. This marks the initial emergence of a protein-coated membrane vesicle. The capsid self-assembles on the vesicle. Hillocks capped by different pentameric proteins spontaneously appear on the emerging vesicle at positions that are ultimately occupied by 5-fold icosahedral vertices. A lattice of coat protein nucleates at each of the 5-fold vertices, but not at the stargate, and then spreads outward from the vertices over the surface, merging seamlessly to complete the icosahedral capsid. Filling with DNA and associated proteins occurs by the transfer of nucleic acid from the interior of the virus factory into the nearly completed capsids. The portal, through which the DNA enters, is sealed by a plug of protein having a diameter of about 40 nm. A layer of integument protein that anchors the surface fibers is acquired by the passage of capsids through a membrane enriched in the protein. The coating of surface fibers is similarly acquired when the integument protein-coated capsids pass through a second membrane that has a forest of surface fibers embedded on one side.

  4. Morphogenesis of Mimivirus and Its Viral Factories: an Atomic Force Microscopy Study of Infected Cells

    PubMed Central

    Kuznetsov, Yuri G.; Klose, Thomas; Rossmann, Michael

    2013-01-01

    Amoebas infected with mimivirus were disrupted at sequential stages of virus production and were visualized by atomic force microscopy. The development of virus factories proceeded over 3 to 4 h postinfection and resulted from the coalescence of 0.5- to 2-μm vesicles, possibly bearing nucleic acid, derived from either the nuclear membrane or the closely associated rough endoplasmic reticulum. Virus factories actively producing virus capsids on their surfaces were imaged, and this allowed the morphogenesis of the capsids to be delineated. The first feature to appear on a virus factory surface when a new capsid is born is the center of a stargate, which is a pentameric protein oligomer. As the arms of the stargate grow from the pentamer, a rough disk the diameter of a capsid thickens around it. This marks the initial emergence of a protein-coated membrane vesicle. The capsid self-assembles on the vesicle. Hillocks capped by different pentameric proteins spontaneously appear on the emerging vesicle at positions that are ultimately occupied by 5-fold icosahedral vertices. A lattice of coat protein nucleates at each of the 5-fold vertices, but not at the stargate, and then spreads outward from the vertices over the surface, merging seamlessly to complete the icosahedral capsid. Filling with DNA and associated proteins occurs by the transfer of nucleic acid from the interior of the virus factory into the nearly completed capsids. The portal, through which the DNA enters, is sealed by a plug of protein having a diameter of about 40 nm. A layer of integument protein that anchors the surface fibers is acquired by the passage of capsids through a membrane enriched in the protein. The coating of surface fibers is similarly acquired when the integument protein-coated capsids pass through a second membrane that has a forest of surface fibers embedded on one side. PMID:23926353

  5. A baculovirus-mediated strategy for full-length plant virus coat protein expression and purification.

    PubMed

    Ardisson-Araújo, Daniel Mendes Pereira; Rocha, Juliana Ribeiro; da Costa, Márcio Hedil Oliveira; Bocca, Anamélia Lorenzetti; Dusi, André Nepomuceno; de Oliveira Resende, Renato; Ribeiro, Bergmann Morais

    2013-08-15

    Garlic production is severely affected by virus infection, causing a decrease in productivity and quality. There are no virus-free cultivars and garlic-infecting viruses are difficult to purify, which make specific antibody production very laborious. Since high quality antisera against plant viruses are important tools for serological detection, we have developed a method to express and purify full-length plant virus coat proteins using baculovirus expression system and insects as bioreactors. In this work, we have fused the full-length coat protein (cp) gene from the Garlic Mite-borne Filamentous Virus (GarMbFV) to the 3'-end of the Polyhedrin (polh) gene of the baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV). The recombinant baculovirus was amplified in insect cell culture and the virus was used to infect Spodoptera frugiperda larvae. Thus, the recombinant fused protein was easily purified from insect cadavers using sucrose gradient centrifugation and analyzed by Western Blotting. Interestingly, amorphous crystals were produced in the cytoplasm of cells infected with the recombinant virus containing the chimeric-protein gene but not in cells infected with the wild type and recombinant virus containing the hexa histidine tagged Polh. Moreover, the chimeric protein was used to immunize rats and generate antibodies against the target protein. The antiserum produced was able to detect plants infected with GarMbFV, which had been initially confirmed by RT-PCR. The expression of a plant virus full-length coat protein fused to the baculovirus Polyhedrin in recombinant baculovirus-infected insects was shown to produce high amounts of the recombinant protein which was easily purified and efficiently used to generate specific antibodies. Therefore, this strategy can potentially be used for the development of plant virus diagnostic kits for those viruses that are difficult to purify, are present in low titers or are present in mix infection in their plant hosts.

  6. Coat Protein Regulation by CK2, CPIP, HSP70, and CHIP Is Required for Potato Virus A Replication and Coat Protein Accumulation

    PubMed Central

    Lõhmus, Andres; Hafrén, Anders

    2016-01-01

    ABSTRACT We demonstrate here that both coat protein (CP) phosphorylation by protein kinase CK2 and a chaperone system formed by two heat shock proteins, CP-interacting protein (CPIP) and heat shock protein 70 (HSP70), are essential for potato virus A (PVA; genus Potyvirus) replication and that all these host proteins have the capacity to contribute to the level of PVA CP accumulation. An E3 ubiquitin ligase called carboxyl terminus Hsc70-interacting protein (CHIP), which may participate in the CPIP-HSP70-mediated CP degradation, is also needed for robust PVA gene expression. Residue Thr243 within the CK2 consensus sequence of PVA CP was found to be essential for viral replication and to regulate CP protein stability. Substitution of Thr243 either with a phosphorylation-mimicking Asp (CPADA) or with a phosphorylation-deficient Ala (CPAAA) residue in CP expressed from viral RNA limited PVA gene expression to the level of nonreplicating PVA. We found that both the CPAAA mutant and CK2 silencing inhibited, whereas CPADA mutant and overexpression of CK2 increased, PVA translation. From our previous studies, we know that phosphorylation reduces the RNA binding capacity of PVA CP and an excess of CP fully blocks viral RNA translation. Together, these findings suggest that binding by nonphosphorylated PVA CP represses viral RNA translation, involving further CP phosphorylation and CPIP-HSP70 chaperone activities as prerequisites for PVA replication. We propose that this mechanism contributes to shifting potyvirus RNA from translation to replication. IMPORTANCE Host protein kinase CK2, two host chaperones, CPIP and HSP70, and viral coat protein (CP) phosphorylation at Thr243 are needed for potato virus A (PVA) replication. Our results show that nonphosphorylated CP blocks viral translation, likely via binding to viral RNA. We propose that this translational block is needed to allow time and space for the formation of potyviral replication complex around the 3′ end of viral RNA. Progression into replication involves CP regulation by both CK2 phosphorylation and chaperones CPIP and HSP70. PMID:27852853

  7. Detection of genetic diversity and selection at the coding region of the melanocortin receptor 1 (MC1R) gene in Tibetan pigs and Landrace pigs.

    PubMed

    Liu, Rui; Jin, Long; Long, Keren; Chai, Jie; Ma, Jideng; Tang, Qianzi; Tian, Shilin; Hu, Yaodong; Lin, Ling; Wang, Xun; Jiang, Anan; Li, Xuewei; Li, Mingzhou

    2016-01-10

    Domestication and subsequent selective pressures have produced a large variety of pig coat colors in different regions and breeds. The melanocortin 1 receptor (MC1R) gene plays a crucial role in determining coat color of mammals. Here, we investigated genetic diversity and selection at the coding region of the porcine melanocortin receptor 1 (MC1R) in Tibetan pigs and Landrace pigs. By contrast, genetic variability was much lower in Landrace pigs than in Tibetan pigs. Meanwhile, haplotype analysis showed that Tibetan pigs possessed shared haplotypes, suggesting a possibility of recent introgression event by way of crossbreeding with neighboring domestic pigs or shared ancestral polymorphism. Additionally, we detected positive selection at the MC1R in both Tibetan pigs and Landrace pigs through the dN/dS analysis. These findings suggested that novel phenotypic change (dark coat color) caused by novel mutations may help Tibetan pigs against intensive solar ultraviolet (UV) radiation and camouflage in wild environment, whereas white coat color in Landrace were intentionally selected by human after domestication. Furthermore, both the phylogenetic analysis and the network analysis provided clues that MC1R in Asian and European wild boars may have initially experienced different selective pressures, and MC1R alleles diversified in modern domesticated pigs. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Polymer Brush-Functionalized Chitosan Hydrogels as Antifouling Implant Coatings.

    PubMed

    Buzzacchera, Irene; Vorobii, Mariia; Kostina, Nina Yu; de Los Santos Pereira, Andres; Riedel, Tomáš; Bruns, Michael; Ogieglo, Wojciech; Möller, Martin; Wilson, Christopher J; Rodriguez-Emmenegger, Cesar

    2017-06-12

    Implantable sensor devices require coatings that efficiently interface with the tissue environment to mediate biochemical analysis. In this regard, bioinspired polymer hydrogels offer an attractive and abundant source of coating materials. However, upon implantation these materials generally elicit inflammation and the foreign body reaction as a consequence of protein fouling on their surface and concomitant poor hemocompatibility. In this report we investigate a strategy to endow chitosan hydrogel coatings with antifouling properties by the grafting of polymer brushes in a "grafting-from" approach. Chitosan coatings were functionalized with polymer brushes of oligo(ethylene glycol) methyl ether methacrylate and 2-hydroxyethyl methacrylate using photoinduced single electron transfer living radical polymerization and the surfaces were thoroughly characterized by XPS, AFM, water contact angle goniometry, and in situ ellipsometry. The antifouling properties of these new bioinspired hydrogel-brush coatings were investigated by surface plasmon resonance. The influence of the modifications to the chitosan on hemocompatibility was assessed by contacting the surfaces with platelets and leukocytes. The coatings were hydrophilic and reached a thickness of up to 180 nm within 30 min of polymerization. The functionalization of the surface with polymer brushes significantly reduced the protein fouling and eliminated platelet activation and leukocyte adhesion. This methodology offers a facile route to functionalizing implantable sensor systems with antifouling coatings that improve hemocompatibility and pave the way for enhanced device integration in tissue.

  9. Detection and partial molecular characterization of atypical plum pox virus isolates from naturally infected sour cherry.

    PubMed

    Chirkov, Sergei; Ivanov, Peter; Sheveleva, Anna

    2013-06-01

    Atypical isolates of plum pox virus (PPV) were discovered in naturally infected sour cherry in urban ornamental plantings in Moscow, Russia. The isolates were detected by polyclonal double antibody sandwich ELISA and RT-PCR using universal primers specific for the 3'-non-coding and coat protein (CP) regions of the genome but failed to be recognized by triple antibody sandwich ELISA with the universal monoclonal antibody 5B and by RT-PCR using primers specific to for PPV strains D, M, C and W. Sequence analysis of the CP genes of nine isolates revealed 99.2-100 % within-group identity and 62-85 % identity to conventional PPV strains. Phylogenetic analysis showed that the atypical isolates represent a group that is distinct from the known PPV strains. Alignment of the N-terminal amino acid sequences of CP demonstrated their close similarity to those of a new tentative PPV strain, CR.

  10. A Simultaneously Antimicrobial, Protein-Repellent, and Cell-Compatible Polyzwitterion Network.

    PubMed

    Kurowska, Monika; Eickenscheidt, Alice; Guevara-Solarte, Diana-Lorena; Widyaya, Vania Tanda; Marx, Franziska; Al-Ahmad, Ali; Lienkamp, Karen

    2017-04-10

    A simultaneously antimicrobial, protein-repellent, and cell-compatible surface-attached polymer network is reported, which reduces the growth of bacterial biofilms on surfaces through its multifunctionality. The coating was made from a poly(oxonorbornene)-based zwitterion (PZI), which was surface-attached and cross-linked in one step by simultaneous UV-activated CH insertion and thiol-ene reaction. The process was applicable to both laboratory surfaces like silicon, glass, and gold and real-life surfaces like polyurethane foam wound dressings. The chemical structure and physical properties of the PZI surface and the two reference surfaces SMAMP ("synthetic mimic of an antimicrobial peptide"), an antimicrobial but protein-adhesive polymer coating, and PSB (poly(sulfobetaine)), a protein-repellent but not antimicrobial polyzwitterion coating were characterized by Fourier transform infrared spectroscopy, ellipsometry, contact angle measurements, photoelectron spectroscopy, swellability measurements (using surface plasmon resonance spectroscopy, SPR), zeta potential measurements, and atomic force microscopy. The time-dependent antimicrobial activity assay (time-kill assay) confirmed the high antimicrobial activity of the PZI; SPR was used to demonstrate that it was also highly protein-repellent. Biofilm formation studies showed that the material effectively reduced the growth of Escherichia coli and Staphylococcus aureus biofilms. Additionally, it was shown that the PZI was highly compatible with immortalized human mucosal gingiva keratinocytes and human red blood cells using the Alamar Blue assay, the live-dead stain, and the hemolysis assay. PZI thus may be an attractive coating for biomedical applications, particularly for the fight against bacterial biofilms on medical devices and in other applications.

  11. Frameshifting in the p6 cDNA phage display system.

    PubMed

    Govarts, Cindy; Somers, Klaartje; Stinissen, Piet; Somers, Veerle

    2010-12-20

    Phage display is a powerful technique that enables easy identification of targets for any type of ligand. Targets are displayed at the phage surface as a fusion protein to one of the phage coat proteins. By means of a repeated process of affinity selection on a ligand, specific enrichment of displayed targets will occur. In our studies using C-terminal display of cDNA fragments to phage coat protein p6, we noticed the occasional enrichment of targets that do not contain an open reading frame. This event has previously been described in other phage display studies using N-terminal display of targets to phage coat proteins and was due to uncommon translational events like frameshifting. The aim of this study was to examine if C-terminal display of targets to p6 is also subjected to frameshifting. To this end, an enriched target not containing an open reading frame was selected and an E-tag was coupled at the C-terminus in order to measure target display at the surface of the phage. The tagged construct was subsequently expressed in 3 different reading frames and display of both target and E-tag measured to detect the occurrence of frameshifting. As a result, we were able to demonstrate display of the target both in the 0 and in the +1 reading frame indicating that frameshifting can also take place when C-terminal fusion to minor coat protein p6 is applied.

  12. Multiscale Simulations of ALD in Cross Flow Reactors

    DOE PAGES

    Yanguas-Gil, Angel; Libera, Joseph A.; Elam, Jeffrey W.

    2014-08-13

    In this study, we have developed a multiscale simulation code that allows us to study the impact of surface chemistry on the coating of large area substrates with high surface area/high aspect-ratio features. Our code, based on open-source libraries, takes advantage of the ALD surface chemistry to achieve an extremely efficient two-way coupling between reactor and feature length scales, and it can provide simulated quartz crystal microbalance and mass spectrometry data at any point of the reactor. By combining experimental surface characterization with simple analysis of growth profiles in a tubular cross flow reactor, we are able to extract amore » minimal set of reactions to effectively model the surface chemistry, including the presence of spurious CVD, to evaluate the impact of surface chemistry on the coating of large, high surface area substrates.« less

  13. Synthesis of nanostructured porous silica coatings on titanium and their cell adhesive and osteogenic differentiation properties.

    PubMed

    Inzunza, Débora; Covarrubias, Cristian; Von Marttens, Alfredo; Leighton, Yerko; Carvajal, Juan Carlos; Valenzuela, Francisco; Díaz-Dosque, Mario; Méndez, Nicolás; Martínez, Constanza; Pino, Ana María; Rodríguez, Juan Pablo; Cáceres, Mónica; Smith, Patricio

    2014-01-01

    Nanostructured porous silica coatings were synthesized on titanium by the combined sol-gel and evaporation-induced self-assembly process. The silica-coating structures were characterized by X-ray diffraction, transmission electron microscopy, scanning electron microscopy, and nitrogen sorptometry. The effect of the nanoporous surface on apatite formation in simulated body fluid, protein adsorption, osteoblast cell adhesion behavior, and osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs) is reported. Silica coatings with highly ordered sub-10 nm porosity accelerate early osteoblast adhesive response, a favorable cell response that is attributed to an indirect effect due to the high protein adsorption observed on the large-specific surface area of the nanoporous coating but is also probably due to direct mechanical stimulus from the nanostructured topography. The nanoporous silica coatings, particularly those doped with calcium and phosphate, also promote the osteogenic differentiation of hBMSCs with spontaneous mineral nodule formation in basal conditions. The bioactive surface properties exhibited by the nanostructured porous silica coatings make these materials a promising alternative to improve the osseointegration properties of titanium dental implants and could have future impact on the nanoscale design of implant surfaces. Copyright © 2013 Wiley Periodicals, Inc., a Wiley Company.

  14. In-depth analysis of switchable glycerol based polymeric coatings for cell sheet engineering.

    PubMed

    Becherer, Tobias; Heinen, Silke; Wei, Qiang; Haag, Rainer; Weinhart, Marie

    2015-10-01

    Scaffold-free cell sheet engineering using thermoresponsive substrates provides a promising alternative to conventional tissue engineering which in general employs biodegradable scaffold materials. We have previously developed a thermoresponsive coating with glycerol based linear copolymers that enables gentle harvesting of entire cell sheets. In this article we present an in-depth analysis of these thermoresponsive linear polyglycidyl ethers and their performance as coating for substrates in cell culture in comparison with commercially available poly(N-isopropylacrylamide) (PNIPAM) coated culture dishes. A series of copolymers of glycidyl methyl ether (GME) and glycidyl ethyl ether (EGE) was prepared in order to study their thermoresponsive properties in solution and on the surface with respect to the comonomer ratio. In both cases, when grafted to planar surfaces or spherical nanoparticles, the applied thermoresponsive polyglycerol coatings render the respective surfaces switchable. Protein adsorption experiments on copolymer coated planar surfaces with surface plasmon resonance (SPR) spectroscopy reveal the ability of the tested thermoresponsive coatings to be switched between highly protein resistant and adsorptive states. Cell culture experiments demonstrate that these thermoresponsive coatings allow for adhesion and proliferation of NIH 3T3 fibroblasts comparable to TCPS and faster than on PNIPAM substrates. Temperature triggered detachment of complete cell sheets from copolymer coated substrates was accomplished within minutes while maintaining high viability of the harvested cells. Thus such glycerol based copolymers present a promising alternative to PNIPAM as a thermoresponsive coating of cell culture substrates. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  15. A Promising Solution to Enhance the Sensocompatibility of Biosensors in Continuous Glucose Monitoring Systems

    PubMed Central

    van den Bosch, Edith E.M.; de Bont, Nik H.M.; Qiu, Jun; Gelling, Onko-Jan

    2013-01-01

    Background Continuous glucose monitors (CGMs) measure glucose in real time, making it possible to improve glycemic control. A promising technique involves glucose sensors implanted in subcutaneous tissue measuring glucose concentration in interstitial fluid. A major drawback of this technique is sensor bioinstability, which can lead to unpredictable drift and reproducibility. The bioinstability is partly due to sensor design but is also affected by naturally occurring subcutaneous inflammations. Applying a nonbiofouling coating to the sensor membrane could be a means to enhancing sensocompatibility. Methods This study evaluates the suitability of a polyethylene-glycol-based coating on sensors in CGMs. Methods used include cross hatch, wet paper rub, paper double rub, bending, hydrophilicity, protein adsorption, bio-compatibility, hemocompatibility, and glucose/oxygen permeability testing. Results Results demonstrate that coating homogeneity, adhesion, integrity, and scratch resistance are good. The coating repels lysozyme and bovine serum albumin, and only a low level of fibrin and blood platelet adsorption to the coating was recorded when testing in whole human blood. Cytotoxicity, irritation, sensitization, and hemolysis were assessed, and levels suggested good biocompatibility of the coating in subcutaneous tissue. Finally, it was shown that the coating can be applied to cellulose acetate membranes of different porosity without changing their permeability for glucose and oxygen. Conclusions These results suggest that the mechanical properties of the coating are sufficient for the given application, that the coating is effective in preventing protein adsorption and blood clot formation on the sensor surface, and that the coating can be applied to membranes without hindering their glucose and oxygen transport. PMID:23567005

  16. Hairpin plum pox virus coat protein (hpPPV-CP) structure in 'HoneySweet' C5 plum provides PPV resistance when genetically engineered into plum (Prunus domestica) seedlings

    USDA-ARS?s Scientific Manuscript database

    The genetically engineered plum 'HoneySweet' (aka C5) has proven to be highly resistant to Plum pox virus (PPV) for over 10 years in field trials. The original vector used for transformation to develop 'HoneySweet' carried a single sense sequence of the full length PPV coat protein (ppv-cp) gene, y...

  17. THE PROTEIN COATS OR "GHOSTS" OF COLIPHAGE T2

    PubMed Central

    Herriott, Roger M.; Barlow, James L.

    1957-01-01

    A method of preparing the protein coats or ghosts of phage T2 is described along with proof that the lytic action is a property of the ghost. An assay based on the lytic action toward host cells has been developed which permits a rapid evaluation of the number of ghosts with a reliability of ±15 per cent. The antigenic and certain physicochemical properties of the ghost have been determined. PMID:13428990

  18. Chemically Modified Bacteriophage as a Streamlined Approach to Noninvasive Breast Cancer Imaging

    DTIC Science & Technology

    2012-10-01

    major MALDI peaks is 245 Da, which is presumably an aldol addition of the ketone group to the PLP aldehyde (expected change: 248 Da...modification of filamentous (fd) phage. N-terminal alanines (Ala) of the pVIII coat proteins lining the filamentous phage are converted to ketone ...the ∼4200 coat proteins into ketone groups. These sites can then serve as chemospecific handles for the attachment of alkoxyamine groups through

  19. New Insights into Asian Prunus Viruses in the Light of NGS-Based Full Genome Sequencing.

    PubMed

    Marais, Armelle; Faure, Chantal; Candresse, Thierry

    2016-01-01

    Double stranded RNAs were purified from five Prunus sources of Asian origin and submitted to 454 pyrosequencing after a random, whole genome amplification. Four complete genomes of Asian prunus virus 1 (APV1), APV2 and APV3 were reconstructed from the sequencing reads, as well as four additional, near-complete genome sequences. Phylogenetic analyses confirmed the close relationships of these three viruses and the taxonomical position previously proposed for APV1, the only APV so far completely sequenced. The genetic distances in the respective polymerase and coat protein genes as well as their gene products suggest that APV2 should be considered as a distinct viral species in the genus Foveavirus, even if the amino acid identity levels in the polymerase are very close to the species demarcation criteria for the family Betaflexiviridae. However, the situation is more complex for APV1 and APV3, for which opposite conclusions are obtained depending on the gene (polymerase or coat protein) analyzed. Phylogenetic and recombination analyses suggest that recombination events may have been involved in the evolution of APV. Moreover, genome comparisons show that the unusually long 3' non-coding region (3' NCR) is highly variable and a hot spot for indel polymorphisms. In particular, two APV3 variants differing only in their 3' NCR were identified in a single Prunus source, with 3' NCRs of 214-312 nt, a size similar to that observed in other foveaviruses, but 567-850 nt smaller than in other APV3 isolates. Overall, this study provides critical genome information of these viruses, frequently associated with Prunus materials, even though their precise role as pathogens remains to be elucidated.

  20. New Insights into Asian Prunus Viruses in the Light of NGS-Based Full Genome Sequencing

    PubMed Central

    Marais, Armelle; Faure, Chantal; Candresse, Thierry

    2016-01-01

    Double stranded RNAs were purified from five Prunus sources of Asian origin and submitted to 454 pyrosequencing after a random, whole genome amplification. Four complete genomes of Asian prunus virus 1 (APV1), APV2 and APV3 were reconstructed from the sequencing reads, as well as four additional, near-complete genome sequences. Phylogenetic analyses confirmed the close relationships of these three viruses and the taxonomical position previously proposed for APV1, the only APV so far completely sequenced. The genetic distances in the respective polymerase and coat protein genes as well as their gene products suggest that APV2 should be considered as a distinct viral species in the genus Foveavirus, even if the amino acid identity levels in the polymerase are very close to the species demarcation criteria for the family Betaflexiviridae. However, the situation is more complex for APV1 and APV3, for which opposite conclusions are obtained depending on the gene (polymerase or coat protein) analyzed. Phylogenetic and recombination analyses suggest that recombination events may have been involved in the evolution of APV. Moreover, genome comparisons show that the unusually long 3’ non-coding region (3' NCR) is highly variable and a hot spot for indel polymorphisms. In particular, two APV3 variants differing only in their 3’ NCR were identified in a single Prunus source, with 3' NCRs of 214–312 nt, a size similar to that observed in other foveaviruses, but 567–850 nt smaller than in other APV3 isolates. Overall, this study provides critical genome information of these viruses, frequently associated with Prunus materials, even though their precise role as pathogens remains to be elucidated. PMID:26741704

  1. Sorting by COP I-coated vesicles under interphase and mitotic conditions

    PubMed Central

    1996-01-01

    COP I-coated vesicles were analyzed for their content of resident Golgi enzymes (N-acetylgalactosaminyltransferase; N- acetylglucosaminyltransferase I; mannosidase II; galactosyltransferase), cargo (rat serum albumin; polyimmunoglobulin receptor), and recycling proteins (-KDEL receptor; ERGIC-53/p58) using biochemical and morphological techniques. The levels of these proteins were similar when the vesicles were prepared under interphase or mitotic conditions showing that sorting was unaffected. The average density relative to starting membranes for resident enzymes (14-30%), cargo (16-23%), and recycling proteins (81-125%) provides clues to the function of COP I vesicles in transport through the Golgi apparatus. PMID:8830771

  2. The structure of the bacteriophage PRD1 spike sheds light on the evolution of viral capsid architecture.

    PubMed

    Merckel, Michael C; Huiskonen, Juha T; Bamford, Dennis H; Goldman, Adrian; Tuma, Roman

    2005-04-15

    Comparisons of bacteriophage PRD1 and adenovirus protein structures and virion architectures have been instrumental in unraveling an evolutionary relationship and have led to a proposal of a phylogeny-based virus classification. The structure of the PRD1 spike protein P5 provides further insight into the evolution of viral proteins. The crystallized P5 fragment comprises two structural domains: a globular knob and a fibrous shaft. The head folds into a ten-stranded jelly roll beta barrel, which is structurally related to the tumor necrosis factor (TNF) and the PRD1 coat protein domains. The shaft domain is a structural counterpart to the adenovirus spike shaft. The structural relationships between PRD1, TNF, and adenovirus proteins suggest that the vertex proteins may have originated from an ancestral TNF-like jelly roll coat protein via a combination of gene duplication and deletion.

  3. Synergistic effect of two cell recognition systems: glycosphingolipid-glycosphingolipid interaction and integrin receptor interaction with pericellular matrix protein.

    PubMed

    Kojima, N; Hakomori, S

    1991-12-01

    GM3-expressing cells adhere, spread and migrate on plastic plates coated with Gg3, LacCer and Gb4, but not with other glycosphingolipids (GSLs). Thus, cell adhesion, spreading and migration through GSL-GSL interaction occur in an analogous fashion to the interaction of cells with adhesive matrix proteins [AP, e.g. fibronectin (FN), laminin (LN)] through their integrin receptors. In this study, the adhesion of two GM3-expressing cell lines (B16 melanoma and HEL299 fibroblast) on plastic plates co-coated with GSL plus AP is compared with adhesion on plates coated with GSL (Gg3 or LacCer) alone, or coated with AP alone. Results show that: (i) cell adhesion on GSL-coated plates takes place earlier in the incubation period than that on AP-coated plates; (ii) cell adhesion, as well as spreading, was greatly enhanced (in terms of strength and rapidity) on plates co-coated with GSL plus AP; (iii) repulsion (negative adhesion) of cells was observed on plates co-coated with AP plus N-acetyl-GM3 (NAcGM3) and was presumably based on repulsive NAcGM3-NAcGM3 interaction; (iv) GM3-dependent cell adhesion on GSL-coated plates, as well as synergistic promotion of cell adhesion (based on the GSL-GSL and AP-integrin systems), was suppressed by incubation of cells with anti-GM3 monoclonal antibody DH2 or sialidase. Synergistic adhesion of cells on GSL/AP co-coated plates was less inhibited by incubation with peptide sequences RGDS or YIGSR than was adhesion on plates coated with AP alone.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. Genomic analysis of organismal complexity in the multicellular green alga Volvox carteri

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prochnik, Simon E.; Umen, James; Nedelcu, Aurora

    2010-07-01

    Analysis of the Volvox carteri genome reveals that this green alga's increased organismal complexity and multicellularity are associated with modifications in protein families shared with its unicellular ancestor, and not with large-scale innovations in protein coding capacity. The multicellular green alga Volvox carteri and its morphologically diverse close relatives (the volvocine algae) are uniquely suited for investigating the evolution of multicellularity and development. We sequenced the 138 Mb genome of V. carteri and compared its {approx}14,500 predicted proteins to those of its unicellular relative, Chlamydomonas reinhardtii. Despite fundamental differences in organismal complexity and life history, the two species have similarmore » protein-coding potentials, and few species-specific protein-coding gene predictions. Interestingly, volvocine algal-specific proteins are enriched in Volvox, including those associated with an expanded and highly compartmentalized extracellular matrix. Our analysis shows that increases in organismal complexity can be associated with modifications of lineage-specific proteins rather than large-scale invention of protein-coding capacity.« less

  5. GOLGI TRANSPORT 1B Regulates Protein Export from the Endoplasmic Reticulum in Rice Endosperm Cells[OPEN

    PubMed Central

    Liu, Feng; Wang, Yunlong; Liu, Xi; Wang, Di; Zhu, Xiaopin; Jing, Ruonan; Wu, Mingming; Hao, Yuanyuan; Jiang, Ling; Wang, Chunming

    2016-01-01

    Coat protein complex II (COPII) mediates the first step of anterograde transport of newly synthesized proteins from the endoplasmic reticulum (ER) to other endomembrane compartments in eukaryotes. A group of evolutionarily conserved proteins (Sar1, Sec23, Sec24, Sec13, and Sec31) constitutes the basic COPII coat machinery; however, the details of how the COPII coat assembly is regulated remain unclear. Here, we report a protein transport mutant of rice (Oryza sativa), named glutelin precursor accumulation4 (gpa4), which accumulates 57-kD glutelin precursors and forms two types of ER-derived abnormal structures. GPA4 encodes the evolutionarily conserved membrane protein GOT1B (also known as GLUP2), homologous to the Saccharomyces cerevisiae GOT1p. The rice GOT1B protein colocalizes with Arabidopsis thaliana Sar1b at Golgi-associated ER exit sites (ERESs) when they are coexpressed in Nicotiana benthamiana. Moreover, GOT1B physically interacts with rice Sec23, and both proteins are present in the same complex(es) with rice Sar1b. The distribution of rice Sar1 in the endomembrane system, its association with rice Sec23c, and the ERES organization pattern are significantly altered in the gpa4 mutant. Taken together, our results suggest that GOT1B plays an important role in mediating COPII vesicle formation at ERESs, thus facilitating anterograde transport of secretory proteins in plant cells. PMID:27803308

  6. Immunochemical and biological properties of a mouse monoclonal antibody reactive to prunus necrotic ringspot ilarvirus.

    PubMed

    Aebig, J A; Jordan, R L; Lawson, R H; Hsu, H T

    1987-01-01

    A monoclonal antibody reacting with prunus necrotic ringspot ilarvirus was tested in immunochemical studies, neutralization of infectivity assays, and by immuno-electron microscopy. The antibody was able to detect the 27,000 Mr coat protein of prunus necrotic ringspot ilarvirus in western blots and also detected all polypeptide fragments generated after incubation of whole virus with proteolytic enzymes. In neutralization of infectivity studies, the antibody blocked virus infectivity, although it did not precipitate the antigen in agar gel Ouchterlony double diffusion tests. Immuno-electron microscopy confirmed that the antibody coats virions but does not cause clumping. The antibody may be a useful tool for investigating coat protein-dependent initiation of ilarvirus infection.

  7. Protein nanocoatings on synthetic polymeric nanofibrous membranes designed as carriers for skin cells.

    PubMed

    Bacakova, Marketa; Pajorova, Julia; Stranska, Denisa; Hadraba, Daniel; Lopot, Frantisek; Riedel, Tomas; Brynda, Eduard; Zaloudkova, Margit; Bacakova, Lucie

    2017-01-01

    Protein-coated resorbable synthetic polymeric nanofibrous membranes are promising for the fabrication of advanced skin substitutes. We fabricated electrospun polylactic acid and poly(lactide- co -glycolic acid) nanofibrous membranes and coated them with fibrin or collagen I. Fibronectin was attached to a fibrin or collagen nanocoating, in order further to enhance the cell adhesion and spreading. Fibrin regularly formed a coating around individual nanofibers in the membranes, and also formed a thin noncontinuous nanofibrous mesh on top of the membranes. Collagen also coated most of the fibers of the membrane and randomly created a soft gel on the membrane surface. Fibronectin predominantly adsorbed onto a thin fibrin mesh or a collagen gel, and formed a thin nanofibrous structure. Fibrin nanocoating greatly improved the attachment, spreading, and proliferation of human dermal fibroblasts, whereas collagen nanocoating had a positive influence on the behavior of human HaCaT keratinocytes. In addition, fibrin stimulated the fibroblasts to synthesize fibronectin and to deposit it as an extracellular matrix. Fibrin coating also showed a tendency to improve the ultimate tensile strength of the nanofibrous membranes. Fibronectin attached to fibrin or to a collagen coating further enhanced the adhesion, spreading, and proliferation of both cell types.

  8. Protein nanocoatings on synthetic polymeric nanofibrous membranes designed as carriers for skin cells

    PubMed Central

    Bacakova, Marketa; Pajorova, Julia; Stranska, Denisa; Hadraba, Daniel; Lopot, Frantisek; Riedel, Tomas; Brynda, Eduard; Zaloudkova, Margit; Bacakova, Lucie

    2017-01-01

    Protein-coated resorbable synthetic polymeric nanofibrous membranes are promising for the fabrication of advanced skin substitutes. We fabricated electrospun polylactic acid and poly(lactide-co-glycolic acid) nanofibrous membranes and coated them with fibrin or collagen I. Fibronectin was attached to a fibrin or collagen nanocoating, in order further to enhance the cell adhesion and spreading. Fibrin regularly formed a coating around individual nanofibers in the membranes, and also formed a thin noncontinuous nanofibrous mesh on top of the membranes. Collagen also coated most of the fibers of the membrane and randomly created a soft gel on the membrane surface. Fibronectin predominantly adsorbed onto a thin fibrin mesh or a collagen gel, and formed a thin nanofibrous structure. Fibrin nanocoating greatly improved the attachment, spreading, and proliferation of human dermal fibroblasts, whereas collagen nanocoating had a positive influence on the behavior of human HaCaT keratinocytes. In addition, fibrin stimulated the fibroblasts to synthesize fibronectin and to deposit it as an extracellular matrix. Fibrin coating also showed a tendency to improve the ultimate tensile strength of the nanofibrous membranes. Fibronectin attached to fibrin or to a collagen coating further enhanced the adhesion, spreading, and proliferation of both cell types. PMID:28223803

  9. Extracellular matrix proteins as temporary coating for thin-film neural implants

    NASA Astrophysics Data System (ADS)

    Ceyssens, Frederik; Deprez, Marjolijn; Turner, Neill; Kil, Dries; van Kuyck, Kris; Welkenhuysen, Marleen; Nuttin, Bart; Badylak, Stephen; Puers, Robert

    2017-02-01

    Objective. This study investigates the suitability of a thin sheet of extracellular matrix (ECM) proteins as a resorbable coating for temporarily reinforcing fragile or ultra-low stiffness thin-film neural implants to be placed on the brain, i.e. microelectrocorticographic (µECOG) implants. Approach. Thin-film polyimide-based electrode arrays were fabricated using lithographic methods. ECM was harvested from porcine tissue by a decellularization method and coated around the arrays. Mechanical tests and an in vivo experiment on rats were conducted, followed by a histological tissue study combined with a statistical equivalence test (confidence interval approach, 0.05 significance level) to compare the test group with an uncoated control group. Main results. After 3 months, no significant damage was found based on GFAP and NeuN staining of the relevant brain areas. Significance. The study shows that ECM sheets are a suitable temporary coating for thin µECOG neural implants.

  10. Nanoparticle-Based Receptors Mimic Protein-Ligand Recognition.

    PubMed

    Riccardi, Laura; Gabrielli, Luca; Sun, Xiaohuan; De Biasi, Federico; Rastrelli, Federico; Mancin, Fabrizio; De Vivo, Marco

    2017-07-13

    The self-assembly of a monolayer of ligands on the surface of noble-metal nanoparticles dictates the fundamental nanoparticle's behavior and its functionality. In this combined computational-experimental study, we analyze the structure, organization, and dynamics of functionalized coating thiols in monolayer-protected gold nanoparticles (AuNPs). We explain how functionalized coating thiols self-organize through a delicate and somehow counterintuitive balance of interactions within the monolayer itself and with the solvent. We further describe how the nature and plasticity of these interactions modulate nanoparticle-based chemosensing. Importantly, we found that self-organization of coating thiols can induce the formation of binding pockets in AuNPs. These transient cavities can accommodate small molecules, mimicking protein-ligand recognition, which could explain the selectivity and sensitivity observed for different organic analytes in NMR chemosensing experiments. Thus, our findings advocate for the rational design of tailored coating groups to form specific recognition binding sites on monolayer-protected AuNPs.

  11. Missense and nonsense mutations in melanocortin 1 receptor (MC1R) gene of different goat breeds: association with red and black coat colour phenotypes but with unexpected evidences

    PubMed Central

    2009-01-01

    Background Agouti and Extension loci control the relative amount of eumelanin and pheomelanin production in melanocytes that, in turn, affects pigmentation of skin and hair. The Extension locus encodes the melanocortin 1 receptor (MC1R) whose permanent activation, caused by functional mutations, results in black coat colour, whereas other inactivating mutations cause red coat colour in different mammals. Results The whole coding region of the MC1R gene was sequenced in goats of six different breeds showing different coat colours (Girgentana, white cream with usually small red spots in the face; Maltese, white with black cheeks and ears; Derivata di Siria, solid red; Murciano-Granadina, solid black or solid brown; Camosciata delle Alpi, brown with black stripes; Saanen, white; F1 goats and the parental animals). Five single nucleotide polymorphisms (SNPs) were identified: one nonsense mutation (p.Q225X), three missense mutations (p.A81V, p.F250V, and p.C267W), and one silent mutation. The stop codon at position 225 should cause the production of a shorter MC1R protein whose functionality may be altered. These SNPs were investigated in a larger sample of animals belonging to the six breeds. The Girgentana breed was almost fixed for the p.225X allele. However, there was not complete association between the presence of red spots in the face and the presence of this allele in homozygous condition. The same allele was identified in the Derivata di Siria breed. However, its frequency was only 33%, despite the fact that these animals are completely red. The p.267W allele was present in all Murciano-Granadina black goats, whereas it was never identified in the brown ones. Moreover, the same substitution was present in almost all Maltese goats providing evidence of association between this mutation and black coat colour. Conclusion According to the results obtained in the investigated goat breeds, MC1R mutations may determine eumelanic and pheomelanic phenotypes. However, they are probably not the only factors. In particular, the surprising not complete association of the nonsense mutation (p.Q225X) with red coat colour raises a few hypotheses on the determination of pheomelanic phenotypes in goats that should be further investigated. PMID:19706191

  12. Missense and nonsense mutations in melanocortin 1 receptor (MC1R) gene of different goat breeds: association with red and black coat colour phenotypes but with unexpected evidences.

    PubMed

    Fontanesi, Luca; Beretti, Francesca; Riggio, Valentina; Dall'Olio, Stefania; González, Elena Gómez; Finocchiaro, Raffaella; Davoli, Roberta; Russo, Vincenzo; Portolano, Baldassare

    2009-08-25

    Agouti and Extension loci control the relative amount of eumelanin and pheomelanin production in melanocytes that, in turn, affects pigmentation of skin and hair. The Extension locus encodes the melanocortin 1 receptor (MC1R) whose permanent activation, caused by functional mutations, results in black coat colour, whereas other inactivating mutations cause red coat colour in different mammals. The whole coding region of the MC1R gene was sequenced in goats of six different breeds showing different coat colours (Girgentana, white cream with usually small red spots in the face; Maltese, white with black cheeks and ears; Derivata di Siria, solid red; Murciano-Granadina, solid black or solid brown; Camosciata delle Alpi, brown with black stripes; Saanen, white; F1 goats and the parental animals). Five single nucleotide polymorphisms (SNPs) were identified: one nonsense mutation (p.Q225X), three missense mutations (p.A81V, p.F250V, and p.C267W), and one silent mutation. The stop codon at position 225 should cause the production of a shorter MC1R protein whose functionality may be altered. These SNPs were investigated in a larger sample of animals belonging to the six breeds. The Girgentana breed was almost fixed for the p.225X allele. However, there was not complete association between the presence of red spots in the face and the presence of this allele in homozygous condition. The same allele was identified in the Derivata di Siria breed. However, its frequency was only 33%, despite the fact that these animals are completely red. The p.267W allele was present in all Murciano-Granadina black goats, whereas it was never identified in the brown ones. Moreover, the same substitution was present in almost all Maltese goats providing evidence of association between this mutation and black coat colour. According to the results obtained in the investigated goat breeds, MC1R mutations may determine eumelanic and pheomelanic phenotypes. However, they are probably not the only factors. In particular, the surprising not complete association of the nonsense mutation (p.Q225X) with red coat colour raises a few hypotheses on the determination of pheomelanic phenotypes in goats that should be further investigated.

  13. The Role of Cargo Proteins in GGA Recruitment

    PubMed Central

    Hirst, Jennifer; Seaman, Matthew N J; Buschow, Sonja I; Robinson, Margaret S

    2007-01-01

    Coat proteins are recruited onto membranes to form vesicles that transport cargo from one compartment to another, but the extent to which the cargo helps to recruit the coat proteins is still unclear. Here we have examined the role of cargo in the recruitment of Golgi-localized, γ-ear-containing, ADP ribosylation factor (ARF)-binding proteins (GGAs) onto membranes in HeLa cells. Moderate overexpression of CD8 chimeras with cytoplasmic tails containing DXXLL-sorting signals, which bind to GGAs, increased the localization of all three GGAs to perinuclear membranes, as observed by immunofluorescence. GGA2 was also expressed at approximately twofold higher levels in these cells because it was degraded more slowly. However, this difference only partially accounted for the increase in membrane localization because there was a approximately fivefold increase in GGA2 associated with crude membranes and a ∼12-fold increase in GGA2 associated with clathrin-coated vesicles (CCVs) in cells expressing CD8-DXXLL chimeras. The effect of cargo proteins on GGA recruitment was reconstituted in vitro using permeabilized control and CD8-DXXLL-expressing cells incubated with cytosol containing recombinant GGA2 constructs. Together, these results demonstrate that cargo proteins contribute to the recruitment of GGAs onto membranes and to the formation of GGA-positive CCVs. PMID:17451558

  14. Stabilization of model beverage cloud emulsions using protein-polysaccharide electrostatic complexes formed at the oil-water interface.

    PubMed

    Harnsilawat, Thepkunya; Pongsawatmanit, Rungnaphar; McClements, David J

    2006-07-26

    The potential of utilizing interfacial complexes, formed through the electrostatic interactions of proteins and polysaccharides at oil-water interfaces, to stabilize model beverage cloud emulsions has been examined. These interfacial complexes were formed by mixing charged polysaccharides with oil-in-water emulsions containing oppositely charged protein-coated oil droplets. Model beverage emulsions were prepared that consisted of 0.1 wt % corn oil droplets coated by beta-lactoglobulin (beta-Lg), beta-Lg/alginate, beta-Lg/iota-carrageenan, or beta-Lg/gum arabic interfacial layers (pH 3 or 4). Stable emulsions were formed when the polysaccharide concentration was sufficient to saturate the protein-coated droplets. The emulsions were subjected to variations in pH (from 3 to 7), ionic strength (from 0 to 250 mM NaCl), and thermal processing (from 30 or 90 degrees C), and the influence on their stability was determined. The emulsions containing alginate and carrageenan had the best stability to ionic strength and thermal processing. This study shows that the controlled formation of protein-polysaccharide complexes at droplet surfaces may be used to produce stable beverage emulsions, which may have important implications for industrial applications.

  15. A Conserved Coatomer-related Complex Containing Sec13 and Seh1 Dynamically Associates With the Vacuole in Saccharomyces cerevisiae*

    PubMed Central

    Dokudovskaya, Svetlana; Waharte, Francois; Schlessinger, Avner; Pieper, Ursula; Devos, Damien P.; Cristea, Ileana M.; Williams, Rosemary; Salamero, Jean; Chait, Brian T.; Sali, Andrej; Field, Mark C.; Rout, Michael P.; Dargemont, Catherine

    2011-01-01

    The presence of multiple membrane-bound intracellular compartments is a major feature of eukaryotic cells. Many of the proteins required for formation and maintenance of these compartments share an evolutionary history. Here, we identify the SEA (Seh1-associated) protein complex in yeast that contains the nucleoporin Seh1 and Sec13, the latter subunit of both the nuclear pore complex and the COPII coating complex. The SEA complex also contains Npr2 and Npr3 proteins (upstream regulators of TORC1 kinase) and four previously uncharacterized proteins (Sea1–Sea4). Combined computational and biochemical approaches indicate that the SEA complex proteins possess structural characteristics similar to the membrane coating complexes COPI, COPII, the nuclear pore complex, and, in particular, the related Vps class C vesicle tethering complexes HOPS and CORVET. The SEA complex dynamically associates with the vacuole in vivo. Genetic assays indicate a role for the SEA complex in intracellular trafficking, amino acid biogenesis, and response to nitrogen starvation. These data demonstrate that the SEA complex is an additional member of a family of membrane coating and vesicle tethering assemblies, extending the repertoire of protocoatomer-related complexes. PMID:21454883

  16. Effects of protein-coated nanofibers on conformation of gingival fibroblast spheroids: potential utility for connective tissues regeneration.

    PubMed

    Kaufman, Gili; Whitescarver, Ryan; Nunes, Laiz; Palmer, Xavier-Lewis; Skrtic, Drago; Tutak, Wojtek

    2017-10-09

    Deep wounds in the gingiva caused by trauma or surgery require a rapid and robust healing of connective tissues. We propose utilizing gas-brushed nanofibers coated with collagen and fibrin for that purpose. Our hypotheses are that protein-coated nanofibers will: (i) attract and mobilize cells in various spatial orientations, and (ii) regulate the expression levels of specific extracellular matrix (ECM)-associated proteins, determining the initial conformational nature of dense and soft connective tissues. Gingival fibroblast monolayers and 3D spheroids were cultured on ECM substrate and covered with gas-blown poly-(DL-lactide-co-glycolide) (PLGA) nanofibers (uncoated/coated with collagen and fibrin). Cell attraction and rearrangement was followed by F-actin staining and confocal microscopy. Thicknesses of the cell layers, developed within the nanofibers, were quantified by imageJ software. The expression of collagen1α1 chain (Col1α1), fibronectin, and metalloproteinase 2 (MMP2) encoding genes was determined by quantitative reverse transcription analysis. Collagen- and fibrin- coated nanofibers induced cell migration toward fibers and supported cellular growth within the scaffolds. Both proteins affected the spatial rearrangement of fibroblasts by favoring packed cell clusters or intermittent cell spreading. These cell arrangements resembled the structural characteristic of dense and soft connective tissues, respectively. Within 3 days of incubation, fibroblast spheroids interacted with the fibers and grew robustly by increasing their thickness compared to monolayers. While the ECM key components, such as fibronectin and MMP2 encoding genes, were expressed in both protein groups, Col1α1 was predominantly expressed in bundled fibroblasts grown on collagen fibers. This enhanced expression of collagen1 is typical for dense connective tissue. Based on results of this study, our gas-blown, collagen- and fibrin-coated PLGA nanofibers are viable candidates for engineering soft and dense connective tissues with the required structural characteristics and functions needed for wound healing applications. Rapid regeneration of these layers should enhance healing of open wounds in a harsh oral environment. © 2017 IOP Publishing Ltd.

  17. Death of a dogma: eukaryotic mRNAs can code for more than one protein

    PubMed Central

    Mouilleron, Hélène; Delcourt, Vivian; Roucou, Xavier

    2016-01-01

    mRNAs carry the genetic information that is translated by ribosomes. The traditional view of a mature eukaryotic mRNA is a molecule with three main regions, the 5′ UTR, the protein coding open reading frame (ORF) or coding sequence (CDS), and the 3′ UTR. This concept assumes that ribosomes translate one ORF only, generally the longest one, and produce one protein. As a result, in the early days of genomics and bioinformatics, one CDS was associated with each protein-coding gene. This fundamental concept of a single CDS is being challenged by increasing experimental evidence indicating that annotated proteins are not the only proteins translated from mRNAs. In particular, mass spectrometry (MS)-based proteomics and ribosome profiling have detected productive translation of alternative open reading frames. In several cases, the alternative and annotated proteins interact. Thus, the expression of two or more proteins translated from the same mRNA may offer a mechanism to ensure the co-expression of proteins which have functional interactions. Translational mechanisms already described in eukaryotic cells indicate that the cellular machinery is able to translate different CDSs from a single viral or cellular mRNA. In addition to summarizing data showing that the protein coding potential of eukaryotic mRNAs has been underestimated, this review aims to challenge the single translated CDS dogma. PMID:26578573

  18. A novel approach for application of nylon membranes in the biosensing domain

    NASA Astrophysics Data System (ADS)

    Farahmand, Elham; Ibrahim, Fatimah; Hosseini, Samira; Rothan, Hussin A.; Yusof, Rohana; Koole, Leo H.; Djordjevic, Ivan

    2015-10-01

    In this paper we report the polymer-coated microporous nylon membranes and their application as platforms for protein immobilization and subsequent detection of the dengue virus (DV) in blood serum. Protein recognition experiments were performed with enzyme-linked immunosorbent assay (ELISA). The polymers used for coatings were synthesized by free-radical polymerization reaction between methyl methacrylate (MMA) and methacrylic acid (MAA) in different concentrations. The MAA monomer has carefully been chosen to generate polymers with pendant carboxyl (-COOH) groups, which also exist on polymer surfaces. A high degree of control over surface-exposed -COOH groups has been achieved through variation of monomers concentration in polymerization reaction. The general aspect of this work relies on the dengue antibody (Ab) immobilization on surface -COOH groups via physical attachment or covalent immobilization. Prior to Ab immobilization and ELISA experiment, polymer-coated nylon samples were analyzed in detail for their physical properties by atomic force microscopy (AFM), scanning electron microscopy (SEM), and water-in-air contact angle (WCA) measurements. Membranes were further analyzed by Fourier transform infrared spectroscopy (FTIR) in order to establish the relationship between wettability, porosity, and surface roughness with chemical composition and concentration of -COOH groups on the coating's surface. Optimized coatings have shown high sensitivity towards dengue Ab molecules, revealing fundamental aspect of polymer-protein interfaces as a function of surface -COOH groups' concentration.

  19. Microencapsulation of Lactobacillus plantarum spp in an alginate matrix coated with whey proteins.

    PubMed

    Gbassi, Gildas Komenan; Vandamme, Thierry; Ennahar, Saïd; Marchioni, Eric

    2009-01-31

    Whey proteins were used as a coating material to improve encapsulation of Lactobacillus plantarum strains in calcium alginate beads. L. plantarum 299v, L. plantarum 800 and L. plantarum CIP A159 were used in this study. Inactivation experiments were carried out in simulated gastric fluid (SGF) and simulated intestinal fluid (SIF). Cross-sections of freeze-dried beads revealed the random distribution of bacteria throughout the alginate network. From an initial count of 10.04+/-0.01 log(10) CFU g(-1) for L. plantarum 299v, 10.12+/-0.04 for L. plantarum CIP A159 and 10.03+/-0.01 for L. plantarum 800, bacteria in coated beads and incubated in SGF (37 degrees C, 60 min) showed a better survival for L. plantarum 299v, L. plantarum CIP A159 and L. plantarum 800 (respectively 7.76+/-0.12, 6.67+/-0.08 and 5.81+/-0.25 log(10) CFU g(-1)) when compared to uncoated beads (2.19+/-0.09, 1.89+/-0.09 and 1.65+/-0.10 log(10) CFU g(-1)) (p<0.05). Only bacteria in the coated beads survived in the SIF medium (37 degrees C, 180 min) after SGF treatment. This preliminary work showed that whey proteins are a convenient, cheap and efficient material for coating alginate beads loaded with bacteria.

  20. Assessment of the capillary zone electrophoretic behavior of proteins in the presence of electroosmotic modifiers: protein-polyamine interaction studied using a polyacrylamide-coated capillary.

    PubMed

    Kubo, K; Hattori, A

    2001-10-01

    The use of polyamines as electroosmotic modifiers has been shown to be effective in enhancing resolution of protein glycoforms in capillary zone electrophoresis (CZE) using a bare capillary tube. In this study, effectiveness was evaluated by using a polyacrylamide-coated capillary tube instead of a bare capillary tube. Electropherograms obtained in the presence of polyamines were inferior to those obtained in their absence with respect to resolution. Electrophoretic mobility of the proteins decreased and their peaks were broadened by polyamines bound to them. This unfavorable effect was dependent on both the species of polyamines and the pH values of the electrolyte buffer. The reduction of resolution caused by polyamines was in the following order: spermidine (SPD) approximately spermidine-tri-hydrochloride (SPD-HCI) > putrescine (PUT) > hexamethonium chloride (HMC). The observed effect can be ascribed to the formation of complexes between the proteins and the polyamines. In addition, for the bare capillary tube the complexes showed interaction with the inner surface, resulting in local suppression of electroosmosis and poor resolution. The high resolution obtained in the coated capillary tube was reduced in the presence of the polyamines. Thus, the use of the polyamines has a negative effect on the analysis of protein microheterogeneity as a result of protein-polyamine interaction.

  1. Surface Passivation for Single-molecule Protein Studies

    PubMed Central

    Chandradoss, Stanley D.; Haagsma, Anna C.; Lee, Young Kwang; Hwang, Jae-Ho; Nam, Jwa-Min; Joo, Chirlmin

    2014-01-01

    Single-molecule fluorescence spectroscopy has proven to be instrumental in understanding a wide range of biological phenomena at the nanoscale. Important examples of what this technique can yield to biological sciences are the mechanistic insights on protein-protein and protein-nucleic acid interactions. When interactions of proteins are probed at the single-molecule level, the proteins or their substrates are often immobilized on a glass surface, which allows for a long-term observation. This immobilization scheme may introduce unwanted surface artifacts. Therefore, it is essential to passivate the glass surface to make it inert. Surface coating using polyethylene glycol (PEG) stands out for its high performance in preventing proteins from non-specifically interacting with a glass surface. However, the polymer coating procedure is difficult, due to the complication arising from a series of surface treatments and the stringent requirement that a surface needs to be free of any fluorescent molecules at the end of the procedure. Here, we provide a robust protocol with step-by-step instructions. It covers surface cleaning including piranha etching, surface functionalization with amine groups, and finally PEG coating. To obtain a high density of a PEG layer, we introduce a new strategy of treating the surface with PEG molecules over two rounds, which remarkably improves the quality of passivation. We provide representative results as well as practical advice for each critical step so that anyone can achieve the high quality surface passivation. PMID:24797261

  2. Novel Coatings for Enhancement of Light-Emitting Diodes (LEDs)

    DTIC Science & Technology

    2006-10-28

    quantum efficiency of LEDs. SAIC’s strength is this area is a proprietary nonimaging optics code. In consultation with Lumileds, SAIC developed designs for...five different optical ele- ments that collect and project light from a LED. The simulations showed that the designs achieve a significant improvement... optical microscope at 100x power the coating is not visible. Fire sample 6DecO4P1 in tube furnace As a first test, sample 6Dec04P1 was progressively

  3. Environmental Integrity of Coating/Metal Interface.

    DTIC Science & Technology

    1988-01-01

    34. Report No. 1 FROM 02/01/87 TO 01/31/88 1988, JANUARY 32 * ’B SUPOLEMEN’ARY NOTATiON - 7 COSAT CODES 18 SUBJECT TERMS ,Co’r ’nXe on reverse ’,"ecessa’, ac ...AgCI accelerate disbonding by the formation of a weak fluid boundary layer at the coating/metal interface just ahead of electroosmotically produced...pockets of electroosmotically formed electrolyte or swollen regions of the heterogeneous polymer. A time series of micrographs allowed a virtually

  4. An Investigation of the Oxide Adhesion and Growth Characteristics on Platinum Modified Aluminide Coatings.

    DTIC Science & Technology

    1986-09-01

    OfI STANDARITD N0 A S In 0 Lfl NAVAL POSTGRADUATE SCHOOL Monterey, California THESIS 49 o AN INVESTIGATION OF THE OXIDE ADHESION AND GROWTH...CHARACTERISTICS ON PLATINUM MODIFIED ALUMIINIDE COATINGS by Margaret Shannon Farrell September 1986 Thesis Advisor: P. H. Boone Approved for public release...COVERED 14 DATE OF REPORT (Year, Month. Day) 15 PAGE COLNT Mlaster’s Thesis FROM TO__ 1986 September 61 𔄀 5i-PALEV ENTARY NOTATION - COSATI CODES 18

  5. Metallic glass coating on metals plate by adjusted explosive welding technique

    NASA Astrophysics Data System (ADS)

    Liu, W. D.; Liu, K. X.; Chen, Q. Y.; Wang, J. T.; Yan, H. H.; Li, X. J.

    2009-09-01

    Using an adjusted explosive welding technique, an aluminum plate has been coated by a Fe-based metallic glass foil in this work. Scanning electronic micrographs reveal a defect-free metallurgical bonding between the Fe-based metallic glass foil and the aluminum plate. Experimental evidence indicates that the Fe-based metallic glass foil almost retains its amorphous state and mechanical properties after the explosive welding process. Additionally, the detailed explosive welding process has been simulated by a self-developed hydro-code and the bonding mechanism has been investigated by numerical analysis. The successful welding between the Fe-based metallic glass foil and the aluminum plate provides a new way to obtain amorphous coating on general metal substrates.

  6. Effects of proton irradiation on thin-film materials for optical filters

    NASA Astrophysics Data System (ADS)

    Scaglione, Salvatore; Piegari, Angela; Sytchkova, Anna; Jakšić, Milko

    2017-11-01

    The behaviour of interference optical filters for space applications has been investigated under low energy proton irradiation. In order to understand the behaviour of the interference coating subjected to proton irradiation, the interaction of protons with coating and substrate was simulated by the SRIM code. A beam of protons of 60 KeV with an integrated fluence of 1013 p+/cm2 was used. The spectral transmittances of fused silica, TiO2 and HfO2 single layers and interference coatings were measured before and after irradiation and, according to simulations, no significant effects were detected in the visible-near infrared spectrum, while some variations appeared at shorter wavelengths.

  7. A tetraethylene glycol coat gives gold nanoparticles long in vivo half-lives with minimal increase in size

    PubMed Central

    Willett, Julian DS; Lawrence, Marlon G; Wilder, Jennifer C; Smithies, Oliver

    2017-01-01

    In this study, we describe the experiments determining whether coating gold nanoparticles with tetraethylene glycol (TEG) provides pharmacologically relevant advantages, such as increased serum half-life and resistance to protein adsorption. Monodisperse TEG-coated, NaBH4-reduced gold nanoparticles with a hydrodynamic size comparable to albumin were synthesized by reducing gold chloride with NaBH4 under alkaline conditions in the presence of TEG-SH. The particles were characterized by gel electrophoresis, column chromatography, and transmission electron microscopy. The nanoparticles were subsequently injected intravenously into mice, and their half-lives and final destinations were determined via photometric analysis, light microscopy (LM), and transmission electron microscopy. The TEG particles had a long half-life (~400 minutes) that was not influenced by splenectomy. After 500 minutes of injection, TEG particles were found in kidney proximal tubule cell vesicles and in spleen red and white pulp. The particles induced apoptosis in the spleen red pulp but not in white pulp or the kidney. Some of the TEG particles appeared to have undergone ligand exchange reactions that increased their charge. The TEG particles were shown to be resistant to nonspecific protein adsorption, as judged by gel electrophoresis and column chromatography. These results demonstrate that naturally monodisperse, small-sized gold nanoparticles coated with TEG have long in vivo plasma half-lives, are minimally toxic, and are resistant to protein adsorption. This suggests that a TEG coating should be considered as an alternative to a polyethylene glycol coating, which is polydisperse and of much larger size. PMID:28408825

  8. The Potato leafroll virus structural proteins manipulate overlapping, yet distinct protein interaction networks during infection

    USDA-ARS?s Scientific Manuscript database

    Potato leafroll virus (PLRV) produces a readthrough protein (RTP) via translational readthrough of the coat protein amber stop codon. The RTP functions as a structural component of the virion and as a non-incorporated protein in concert with numerous insect and plant proteins to regulate virus movem...

  9. Preparation of recombinant coat protein of Prunus necrotic ringspot virus.

    PubMed

    Petrzik, K; Mráz, I; Kubelková, D

    2001-02-01

    The coat protein (CP) gene of Prunus necrotic ringspot virus (PNRSV) was cloned into pET 16b vector and expressed in Escherichia coli. CP-enriched fractions were prepared from whole cell lysate by differential centrifugation. The fraction sedimenting at 20,000 x g for 30 mins was used for preparation of a rabbit antiserum to CP. This antiserum had a titer of 1:2048 and reacted in a double-antibody sandwich ELISA (DAS-ELISA).

  10. Asymmetric interactions in the adenosine-binding pockets of the MS2 coat protein dimer

    PubMed Central

    Powell, Amy J; Peabody, David S

    2001-01-01

    Background The X-ray structure of the MS2 coat protein-operator RNA complex reveals the existence of quasi-synmetric interactions of adenosines -4 and -10 in pockets formed on different subunits of the coat protein dimer. Both pockets utilize the same five amino acid residues, namely Val29, Thr45, Ser47, Thr59, and Lys61. We call these sites the adenosine-binding pockets. Results We present here a heterodimer complementation analysis of the contributions of individual A-pocket amino acids to the binding of A-4 and A-10 in different halves of the dimer. Various substitutions of A-pocket residues were introduced into one half of single-chain coat protein heterodimers where they were tested for their abilities to complement Y85H or T91I substitutions (defects in the A-4 and A-10 half-sites, respectively) present in the other dimer half. Conclusions These experiments provide functional tests of interactions predicted from structural analyses, demonstrating the importance of certain amino acid-nucleotide contacts observed in the crystal structure, and showing that others make little or no contribution to the stability of the complex. In summary, Val29 and Lys61 form important stabilizing interactions with both A-4 and A-10. Meanwhile, Ser47 and Thr59 interact primarily with A-10. The important interactions with Thr45 are restricted to A-4. PMID:11504563

  11. Collective helicity switching of a DNA-coat assembly

    NASA Astrophysics Data System (ADS)

    Kim, Yongju; Li, Huichang; He, Ying; Chen, Xi; Ma, Xiaoteng; Lee, Myongsoo

    2017-07-01

    Hierarchical assemblies of biomolecular subunits can carry out versatile tasks at the cellular level with remarkable spatial and temporal precision. As an example, the collective motion and mutual cooperation between complex protein machines mediate essential functions for life, such as replication, synthesis, degradation, repair and transport. Nucleic acid molecules are far less dynamic than proteins and need to bind to specific proteins to form hierarchical structures. The simplest example of these nucleic acid-based structures is provided by a rod-shaped tobacco mosaic virus, which consists of genetic material surrounded by coat proteins. Inspired by the complexity and hierarchical assembly of viruses, a great deal of effort has been devoted to design similarly constructed artificial viruses. However, such a wrapping approach makes nucleic acid dynamics insensitive to environmental changes. This limitation generally restricts, for example, the amplification of the conformational dynamics between the right-handed B form to the left-handed Z form of double-stranded deoxyribonucleic acid (DNA). Here we report a virus-like hierarchical assembly in which the native DNA and a synthetic coat undergo repeated collective helicity switching triggered by pH change under physiological conditions. We also show that this collective helicity inversion occurs during translocation of the DNA-coat assembly into intracellular compartments. Translating DNA conformational dynamics into a higher level of hierarchical dynamics may provide an approach to create DNA-based nanomachines.

  12. The Sla1 adaptor-clathrin interaction regulates coat formation and progression of endocytosis.

    PubMed

    Tolsma, Thomas O; Cuevas, Lena M; Di Pietro, Santiago M

    2018-06-01

    Clathrin-mediated endocytosis is a fundamental transport pathway that depends on numerous protein-protein interactions. Testing the importance of the adaptor protein-clathrin interaction for coat formation and progression of endocytosis in vivo has been difficult due to experimental constrains. Here, we addressed this question using the yeast clathrin adaptor Sla1, which is unique in showing a cargo endocytosis defect upon substitution of 3 amino acids in its clathrin-binding motif (sla1 AAA ) that disrupt clathrin binding. Live-cell imaging showed an impaired Sla1-clathrin interaction causes reduced clathrin levels but increased Sla1 levels at endocytic sites. Moreover, the rate of Sla1 recruitment was reduced indicating proper dynamics of both clathrin and Sla1 depend on their interaction. sla1 AAA cells showed a delay in progression through the various stages of endocytosis. The Arp2/3-dependent actin polymerization machinery was present for significantly longer time before actin polymerization ensued, revealing a link between coat formation and activation of actin polymerization. Ultimately, in sla1 AAA cells a larger than normal actin network was formed, dramatically higher levels of various machinery proteins other than clathrin were recruited, and the membrane profile of endocytic invaginations was longer. Thus, the Sla1-clathrin interaction is important for coat formation, regulation of endocytic progression and membrane bending. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Anisotropic biodegradable lipid coated particles for spatially dynamic protein presentation.

    PubMed

    Meyer, Randall A; Mathew, Mohit P; Ben-Akiva, Elana; Sunshine, Joel C; Shmueli, Ron B; Ren, Qiuyin; Yarema, Kevin J; Green, Jordan J

    2018-05-01

    There has been growing interest in the use of particles coated with lipids for applications ranging from drug delivery, gene delivery, and diagnostic imaging to immunoengineering. To date, almost all particles with lipid coatings have been spherical despite emerging evidence that non-spherical shapes can provide important advantages including reduced non-specific elimination and increased target-specific binding. We combine control of core particle geometry with control of particle surface functionality by developing anisotropic, biodegradable ellipsoidal particles with lipid coatings. We demonstrate that these lipid coated ellipsoidal particles maintain advantageous properties of lipid polymer hybrid particles, such as the ability for modular protein conjugation to the particle surface using versatile bioorthogonal ligation reactions. In addition, they exhibit biomimetic membrane fluidity and demonstrate lateral diffusive properties characteristic of natural membrane proteins. These ellipsoidal particles simultaneously provide benefits of non-spherical particles in terms of stability and resistance to non-specific phagocytosis by macrophages as well as enhanced targeted binding. These biomaterials provide a novel and flexible platform for numerous biomedical applications. The research reported here documents the ability of non-spherical polymeric particles to be coated with lipids to form anisotropic biomimetic particles. In addition, we demonstrate that these lipid-coated biodegradable polymeric particles can be conjugated to a wide variety of biological molecules in a "click-like" fashion. This is of interest due to the multiple types of cellular mimicry enabled by this biomaterial based technology. These features include mimicry of the highly anisotropic shape exhibited by cells, surface presentation of membrane bound protein mimetics, and lateral diffusivity of membrane bound substrates comparable to that of a plasma membrane. This platform is demonstrated to facilitate targeted cell binding while being resistant to non-specific cellular uptake. Such a platform could allow for investigations into how physical parameters of a particle and its surface affect the interface between biomaterials and cells, as well as provide biomimetic technology platforms for drug delivery and cellular engineering. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  14. The Electronic Structure of Transition Metal Coated Fullerenes

    NASA Astrophysics Data System (ADS)

    Patton, David C.; Pederson, Mark R.; Kaxiras, Efthimios

    1998-03-01

    Clusters composed of fullerene molecules with an outer shell of transition metal atoms in the composition C_60M_62 (M being a transition metal) have been produced with laser vaporisation techniques(F. Tast, N. Malinowski, S. Frank, M. Heinebrodt, I.M.L. Billas, and T. P. Martin, Z. Phys D 40), 351 (1997).. We have studied several of these very large systems with a parallel version of the all-electron NRLMOL cluster code. Optimized geometries of the metal encased fullerenes C_60Ti_62 and C_60V_62 are presented along with their HOMO-LUMO gaps, electron affinities, ionization energies, and cohesive energies. We compare the stability of these clusters to relaxed met-car structures (e.g. Ti_8C_12) and to relaxed rocksalt metal-carbide fragments (TiC)n with n=8 and 32. In addition to metal-coated fullerenes we consider the possibility of a trilayered structure consisting of a small shell of metal atoms enclosed by a metal coated fullerene. The nature of bonding in these systems is analyzed by studying the electronic charge distributions.

  15. Aragonite-Associated Mollusk Shell Protein Aggregates To Form Mesoscale “Smart” Hydrogels

    DOE PAGES

    Perovic, Iva; Davidyants, Anastasia; Evans, John Spencer

    2016-11-30

    In the mollusk shell there exists a framework silk fibroin-polysaccharide hydrogel coating around nacre aragonite tablets, and this coating facilitates the synthesis and organization of mineral nanoparticles into mesocrystals. In this report, we identify that a protein component of this coating, n16.3, is a hydrogelator. Due to the presence of intrinsic disorder, aggregation-prone regions, and nearly equal balance of anionic and cationic side chains, this protein assembles to form porous mesoscale hydrogel particles in solution and on mica surfaces. These hydrogel particles change their dimensionality, organization, and internal structure in response to pH and ions, particularly Ca(II), which indicates thatmore » these behave as ion-responsive or “smart” hydrogels. Thus, in addition to silk fibroins, the gel phase of the mollusk shell nacre framework layer may actually consist of several framework hydrogelator proteins, such as n16.3, which can promote mineral nanoparticle organization and assembly during the nacre biomineralization process and also serve as a model system for designing ion-responsive, composite, and smart hydrogels.« less

  16. Identification of proteins associated with polyhydroxybutyrate granules from Herbaspirillum seropedicae SmR1--old partners, new players.

    PubMed

    Tirapelle, Evandro F; Müller-Santos, Marcelo; Tadra-Sfeir, Michelle Z; Kadowaki, Marco A S; Steffens, Maria B R; Monteiro, Rose A; Souza, Emanuel M; Pedrosa, Fabio O; Chubatsu, Leda S

    2013-01-01

    Herbaspirillum seropedicae is a diazotrophic ß-Proteobacterium found associated with important agricultural crops. This bacterium produces polyhydroxybutyrate (PHB), an aliphatic polyester, as a carbon storage and/or source of reducing equivalents. The PHB polymer is stored as intracellular insoluble granules coated mainly with proteins, some of which are directly involved in PHB synthesis, degradation and granule biogenesis. In this work, we have extracted the PHB granules from H. seropedicae and identified their associated-proteins by mass spectrometry. This analysis allowed us to identify the main phasin (PhaP1) coating the PHB granule as well as the PHB synthase (PhbC1) responsible for its synthesis. A phbC1 mutant is impaired in PHB synthesis, confirming its role in H. seropedicae. On the other hand, a phaP1 mutant produces PHB granules but coated mainly with the secondary phasin (PhaP2). Furthermore, some novel proteins not previously described to be involved with PHB metabolism were also identified, bringing new possibilities to PHB function in H. seropedicae.

  17. Identification of Proteins Associated with Polyhydroxybutyrate Granules from Herbaspirillum seropedicae SmR1 - Old Partners, New Players

    PubMed Central

    Tirapelle, Evandro F.; Müller-Santos, Marcelo; Tadra-Sfeir, Michelle Z.; Kadowaki, Marco A. S.; Steffens, Maria B. R.; Monteiro, Rose A.; Souza, Emanuel M.; Pedrosa, Fabio O.; Chubatsu, Leda S.

    2013-01-01

    Herbaspirillum seropedicae is a diazotrophic ß-Proteobacterium found associated with important agricultural crops. This bacterium produces polyhydroxybutyrate (PHB), an aliphatic polyester, as a carbon storage and/or source of reducing equivalents. The PHB polymer is stored as intracellular insoluble granules coated mainly with proteins, some of which are directly involved in PHB synthesis, degradation and granule biogenesis. In this work, we have extracted the PHB granules from H. seropedicae and identified their associated-proteins by mass spectrometry. This analysis allowed us to identify the main phasin (PhaP1) coating the PHB granule as well as the PHB synthase (PhbC1) responsible for its synthesis. A phbC1 mutant is impaired in PHB synthesis, confirming its role in H. seropedicae. On the other hand, a phaP1 mutant produces PHB granules but coated mainly with the secondary phasin (PhaP2). Furthermore, some novel proteins not previously described to be involved with PHB metabolism were also identified, bringing new possibilities to PHB function in H. seropedicae. PMID:24086439

  18. End-of-Life Optical Property Predictions of White Conductive Thermal Control Coatings through Analysis of On-Orbit and Ground Based Testing Data

    NASA Technical Reports Server (NTRS)

    Hasegawa, Mark; Freese, Scott; Kauder, Lon; Triolo, Jack

    2011-01-01

    New system requirements pertaining to thermal optical properties and coating electrical properties are commonly specified on non-low earth orbit missions. An increasing number of projects are specifying coatings with a surface resistivity of less than lE-9 ohm/square to mitigate electrostatic charge buildup events over a range of operational temperatures. There are a limited number of coatings that. meet these electrical property requirements while having flight derived optical properties in representative environments. Goddard Space Flight Center Code 546, Contamination and Thermal Coatings Group has recently explored the variety of electrically conductive white coatings available through domestic vendors to evaluate properties to meet project requirements in a geostationary orbit. The lack of significant flight data in representative environments required the careful selection of samples in ground based tests to establish end of life thermal properties. Attention must be given to the origin and pedigree of samples used on past on-orbit experiments to insure that the present formulations for the materials are similar and will react in similar manner.

  19. Evaluation of design parameters for TRISO-coated fuel particles to establish manufacturing critical limits using PARFUME

    DOE PAGES

    Skerjanc, William F.; Maki, John T.; Collin, Blaise P.; ...

    2015-12-02

    The success of modular high temperature gas-cooled reactors is highly dependent on the performance of the tristructural-isotopic (TRISO) coated fuel particle and the quality to which it can be manufactured. During irradiation, TRISO-coated fuel particles act as a pressure vessel to contain fission gas and mitigate the diffusion of fission products to the coolant boundary. The fuel specifications place limits on key attributes to minimize fuel particle failure under irradiation and postulated accident conditions. PARFUME (an integrated mechanistic coated particle fuel performance code developed at the Idaho National Laboratory) was used to calculate fuel particle failure probabilities. By systematically varyingmore » key TRISO-coated particle attributes, failure probability functions were developed to understand how each attribute contributes to fuel particle failure. Critical manufacturing limits were calculated for the key attributes of a low enriched TRISO-coated nuclear fuel particle with a kernel diameter of 425 μm. As a result, these critical manufacturing limits identify ranges beyond where an increase in fuel particle failure probability is expected to occur.« less

  20. Informational structure of genetic sequences and nature of gene splicing

    NASA Astrophysics Data System (ADS)

    Trifonov, E. N.

    1991-10-01

    Only about 1/20 of DNA of higher organisms codes for proteins, by means of classical triplet code. The rest of DNA sequences is largely silent, with unclear functions, if any. The triplet code is not the only code (message) carried by the sequences. There are three levels of molecular communication, where the same sequence ``talks'' to various bimolecules, while having, respectively, three different appearances: DNA, RNA and protein. Since the molecular structures and, hence, sequence specific preferences of these are substantially different, the original DNA sequence has to carry simultaneously three types of sequence patterns (codes, messages), thus, being a composite structure in which one had the same letter (nucleotide) is frequently involved in several overlapping codes of different nature. This multiplicity and overlapping of the codes is a unique feature of the Gnomic, language of genetic sequences. The coexisting codes have to be degenerate in various degrees to allow an optimal and concerted performance of all the encoded functions. There is an obvious conflict between the best possible performance of a given function and necessity to compromise the quality of a given sequence pattern in favor of other patterns. It appears that the major role of various changes in the sequences on their ``ontogenetic'' way from DNA to RNA to protein, like RNA editing and splicing, or protein post-translational modifications is to resolve such conflicts. New data are presented strongly indicating that the gene splicing is such a device to resolve the conflict between the code of DNA folding in chromatin and the triplet code for protein synthesis.

  1. Vanilla mosaic virus isolates from French Polynesia and the Cook Islands are Dasheen mosaic virus strains that exclusively infect vanilla.

    PubMed

    Farreyrol, K; Pearson, M N; Grisoni, M; Cohen, D; Beck, D

    2006-05-01

    Sequence was determined for the coat protein (CP) gene and 3' non-translated region (3'NTR) of two vanilla mosaic virus (VanMV) isolates from Vanilla tahitensis, respectively from the Cook Islands (VanMV-CI) and French Polynesia (VanMV-FP). Both viruses displayed distinctive features in the N-terminal region of their CPs; for VanMV-CI, a 16-amino-acid deletion including the aphid transmission-related DAG motif, and for VanMV-FP, a stretch of GTN repeats that putatively belongs to the class of natively unfolded proteins. VanMV-FP CP also has a novel DVG motif in place of the DAG motif, and an uncommon Q//V protease cleavage site. The sequences were compared to a range of Dasheen mosaic virus (DsMV) strains and to potyviruses infecting orchids. Identity was low to DsMV strains across the entire CP coding region and across the 3'NTR, but high across the CP core and the CI-6K2-NIa region. In accordance with current ICTV criteria for species demarcation within the family Potyviridae, VanMV-CI and VanMV-FP are strains of DsMV that exclusively infect vanilla.

  2. Use of gamma-irradiation technology in combination with edible coating to produce shelf-stable foods

    NASA Astrophysics Data System (ADS)

    Ouattara, B.; Sabato, S. F.; Lacroix, M.

    2002-03-01

    This research was undertaken to determine the effectiveness of low-dose gamma-irradiation combined with edible coatings to produce shelf-stable foods. Three types of commercially distributed food products were investigated: precooked shrimps, ready to cook pizzas, and fresh strawberries. Samples were coated with various formulations of protein-based solutions and irradiated at total doses between 0 and 3 kGy. Samples were stored at 4°C and evaluated periodically for microbial growth. Sensorial analysis was also performed using a nine-point hedonic scale to evaluate the organoleptic characteristics (odor, taste and appearance). The results showed significant ( p⩽0.05) combined effect of gamma-irradiation and coating on microbial growth (APCs and Pseudomonas putida). The shelf-life extension periods ranged from 3 to 10 days for shrimps and from 7 to 20 days for pizzas, compared to uncoated/unirradiated products. No significant ( p>0.05) detrimental effect of gamma-irradiation on sensorial characteristics (odor, taste, appearance) was observed. In strawberries, coating with irradiated protein solutions resulted in significant reduction of the percentage of mold contamination.

  3. Raising the shields: PCR in the presence of metallic surfaces protected by tailor-made coatings.

    PubMed

    Scherag, Frank D; Brandstetter, Thomas; Rühe, Jürgen

    2014-10-01

    The implementation of PCR reactions in the presence of metallic surfaces is interesting for the generation of novel bioanalytical devices, because metals exhibit high mechanical stability, good thermal conductivity, and flexibility during deformation. However, metallic substrates are usually non-compatible with enzymatic reactions such as PCR due to poisoning of the active center of the enzyme or nonspecific adsorption of the enzymeto the metal surface, which could result in protein denaturation. We present a method for the generation of polymer coatings on metallic surfaces which are designed to minimize protein adsorption and also prevent the release of metal ions. These coatings consist of three layers covalently linked to each other; a self-assembled monolayer to promote adhesion, a photochemically generated barrier layer and a photochemically generated hydrogel. The coatings can be deposited onto aluminum, stainless steel, gold and copper surfaces. We compare PCR efficiencies in the presence of bare metallic surfaces with those of surfaces treated with the novel coating system. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. On the design of composite protein-quantum dot biomaterials via self-assembly.

    PubMed

    Majithia, Ravish; Patterson, Jan; Bondos, Sarah E; Meissner, Kenith E

    2011-10-10

    Incorporation of nanoparticles during the hierarchical self-assembly of protein-based materials can impart function to the resulting composite materials. Herein we demonstrate that the structure and nanoparticle distribution of composite fibers are sensitive to the method of nanoparticle addition and the physicochemical properties of both the nanoparticle and the protein. Our model system consists of a recombinant enhanced green fluorescent protein-Ultrabithorax (EGFP-Ubx) fusion protein and luminescent CdSe-ZnS core-shell quantum dots (QDs), allowing us to optically assess the distribution of both the protein and nanoparticle components within the composite material. Although QDs favorably interact with EGFP-Ubx monomers, the relatively rough surface morphology of composite fibers suggests EGFP-Ubx-QD conjugates impact self-assembly. Indeed, QDs templated onto EGFP-Ubx film post-self-assembly can be subsequently drawn into smooth composite fibers. Additionally, the QD surface charge impacts QD distribution within the composite material, indicating that surface charge plays an important role in self-assembly. QDs with either positively or negatively charged coatings significantly enhance fiber extensibility. Conversely, QDs coated with hydrophobic moieties and suspended in toluene produce composite fibers with a heterogeneous distribution of QDs and severely altered fiber morphology, indicating that toluene severely disrupts Ubx self-assembly. Understanding factors that impact the protein-nanoparticle interaction enables manipulation of the structure and mechanical properties of composite materials. Since proteins interact with nanoparticle surface coatings, these results should be applicable to other types of nanoparticles with similar chemical groups on the surface.

  5. Finite Element Simulation of Residual Stress Development in Thermally Sprayed Coatings

    NASA Astrophysics Data System (ADS)

    Elhoriny, Mohamed; Wenzelburger, Martin; Killinger, Andreas; Gadow, Rainer

    2017-04-01

    The coating buildup process of Al2O3/TiO2 ceramic powder deposited on stainless-steel substrate by atmospheric plasma spraying has been simulated by creating thermomechanical finite element models that utilize element death and birth techniques in ANSYS commercial software and self-developed codes. The simulation process starts with side-by-side deposition of coarse subparts of the ceramic layer until the entire coating is created. Simultaneously, the heat flow into the material, thermal deformation, and initial quenching stress are computed. The aim is to be able to predict—for the considered spray powder and substrate material—the development of residual stresses and to assess the risk of coating failure. The model allows the prediction of the heat flow, temperature profile, and residual stress development over time and position in the coating and substrate. The proposed models were successfully run and the results compared with actual residual stresses measured by the hole drilling method.

  6. COSIM: A Finite-Difference Computer Model to Predict Ternary Concentration Profiles Associated with Oxidation and Interdiffusion of Overlay-Coated Substrates

    NASA Technical Reports Server (NTRS)

    Nesbitt, James A.

    2000-01-01

    A finite-difference computer program (COSIM) has been written which models the one-dimensional, diffusional transport associated with high-temperature oxidation and interdiffusion of overlay-coated substrates. The program predicts concentration profiles for up to three elements in the coating and substrate after various oxidation exposures. Surface recession due to solute loss is also predicted. Ternary cross terms and concentration-dependent diffusion coefficients are taken into account. The program also incorporates a previously-developed oxide growth and spalling model to simulate either isothermal or cyclic oxidation exposures. In addition to predicting concentration profiles after various oxidation exposures, the program can also be used to predict coating fife based on a concentration dependent failure criterion (e.g., surface solute content drops to two percent). The computer code, written in an extension of FORTRAN 77, employs numerous subroutines to make the program flexible and easily modifiable to other coating oxidation problems.

  7. Nanoporous Aluminum Oxide Membranes Coated with Atomic Layer Deposition-Grown Titanium Dioxide for Biomedical Applications: An In Vitro Evaluation.

    PubMed

    Petrochenko, Peter E; Kumar, Girish; Fu, Wujun; Zhang, Qin; Zheng, Jiwen; Liang, Chengdu; Goering, Peter L; Narayan, Roger J

    2015-12-01

    The surface topographies of nanoporous anodic aluminum oxide (AAO) and titanium dioxide (TiO2) membranes have been shown to modulate cell response in orthopedic and skin wound repair applications. In this study, we: (1) demonstrate an improved atomic layer deposition (ALD) method for coating the porous structures of 20, 100, and 200 nm pore diameter AAO with nanometer-thick layers of TiO2 and (2) evaluate the effects of uncoated AAO and TiO2-coated AAO on cellular responses. The TiO2 coatings were deposited on the AAO membranes without compromising the openings of the nanoscale pores. The 20 nm TiO2-coated membranes showed the highest amount of initial protein adsorption via the micro bicinchoninic acid (micro-BCA) assay; all of the TiO2-coated membranes showed slightly higher protein adsorption than the uncoated control materials. Cell viability, proliferation, and inflammatory responses on the TiO2-coated AAO membranes showed no adverse outcomes. For all of the tested surfaces, normal increases in proliferation (DNA content) of L929 fibroblasts were observed over from 4 hours to 72 hours. No increases in TNF-alpha production were seen in RAW 264.7 macrophages grown on TiO2-coated AAO membranes compared to uncoated AAO membranes and tissue culture polystyrene (TCPS) surfaces. Both uncoated AAO membranes and TiO2-coated AAO membranes showed no significant effects on cell growth and inflammatory responses. The results suggest that TiO2-coated AAO may serve as a reasonable prototype material for the development of nanostructured wound repair devices and orthopedic implants.

  8. Long non-coding RNAs and mRNAs profiling during spleen development in pig.

    PubMed

    Che, Tiandong; Li, Diyan; Jin, Long; Fu, Yuhua; Liu, Yingkai; Liu, Pengliang; Wang, Yixin; Tang, Qianzi; Ma, Jideng; Wang, Xun; Jiang, Anan; Li, Xuewei; Li, Mingzhou

    2018-01-01

    Genome-wide transcriptomic studies in humans and mice have become extensive and mature. However, a comprehensive and systematic understanding of protein-coding genes and long non-coding RNAs (lncRNAs) expressed during pig spleen development has not been achieved. LncRNAs are known to participate in regulatory networks for an array of biological processes. Here, we constructed 18 RNA libraries from developing fetal pig spleen (55 days before birth), postnatal pig spleens (0, 30, 180 days and 2 years after birth), and the samples from the 2-year-old Wild Boar. A total of 15,040 lncRNA transcripts were identified among these samples. We found that the temporal expression pattern of lncRNAs was more restricted than observed for protein-coding genes. Time-series analysis showed two large modules for protein-coding genes and lncRNAs. The up-regulated module was enriched for genes related to immune and inflammatory function, while the down-regulated module was enriched for cell proliferation processes such as cell division and DNA replication. Co-expression networks indicated the functional relatedness between protein-coding genes and lncRNAs, which were enriched for similar functions over the series of time points examined. We identified numerous differentially expressed protein-coding genes and lncRNAs in all five developmental stages. Notably, ceruloplasmin precursor (CP), a protein-coding gene participating in antioxidant and iron transport processes, was differentially expressed in all stages. This study provides the first catalog of the developing pig spleen, and contributes to a fuller understanding of the molecular mechanisms underpinning mammalian spleen development.

  9. Tunable thick porous silica coating fabricated by multilayer-by-multilayer bonding of silica nanoparticles for open-tubular capillary chromatographic separation.

    PubMed

    Qu, Qishu; Liu, Yuanyuan; Shi, Wenjun; Yan, Chao; Tang, Xiaoqing

    2015-06-19

    A simple coating procedure employing a multilayer-by-multilayer process to modify the inner surface of bare fused-silica capillaries with silica nanoparticles was established. The silica nanoparticles were adsorbed onto the capillary wall via a strong electrostatic interaction between amino functional groups and silica particles. The thickness of the coating could be tuned from 130 to 600 nm by increasing the coating cycles from one to three. Both the retention factor and the resolution were greatly increased with increasing coating cycles. The loading capacity determined by naphthalene in the column with three coating cycles is 152.1 pmol. The effects of buffer concentration and pH value on the stability of the coating were evaluated. The retention reproducibility of the separation of toluene was 0.8, 1.2, 2.3, and 4.5%, respectively, for run-to-run, day-to-day, column-to-column, and batch-to-batch, respectively. The chromatographic performance of these columns was evaluated by both capillary liquid chromatography and open-tubular capillary electrochromatography (OT-CEC). Separation of aromatic hydrocarbons in the column with three coating cycles provided high theoretical plate numbers (up to 269,280 plates m(-1) for toluene) and short separation time (<15 min) by using OT-CEC mode. The method was also used to separate egg white proteins. Both acidic and basic proteins as well as four glycoisoforms were separated in a single run. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Engineered Protein Coatings to Improve the Osseointegration of Dental and Orthopaedic Implants

    PubMed Central

    Raphel, Jordan; Karlsson, Johan; Galli, Silvia; Wennerberg, Ann; Lindsay, Christopher; Haugh, Matthew; Pajarinen, Jukka; Goodman, Stuart B.; Jimbo, Ryo; Andersson, Martin; Heilshorn, Sarah C.

    2016-01-01

    Here we present the design of an engineered, elastin-like protein (ELP) that is chemically modified to enable stable coatings on the surfaces of titanium-based dental and orthopaedic implants by novel photocrosslinking and solution processing steps. The ELP includes an extended RGD sequence to confer bio-signaling and an elastin-like sequence for mechanical stability. ELP thin films were fabricated on cp-Ti and Ti6Al4V surfaces using scalable spin and dip coating processes with photoactive covalent crosslinking through a carbene insertion mechanism. The coatings withstood procedures mimicking dental screw and hip replacement stem implantations, a key metric for clinical translation. They promoted rapid adhesion of MG63 osteoblast-like cells, with over 80% adhesion after 24 hours, compared to 38% adhesion on uncoated Ti6Al4V. MG63 cells produced significantly more mineralization on ELP coatings compared to uncoated Ti6Al4V. Human bone marrow mesenchymal stem cells (hMSCs) had an earlier increase in alkaline phosphatase activity, indicating more rapid osteogenic differentiation and mineral deposition on adhesive ELP coatings. Rat tibia and femur in vivo studies demonstrated that cell-adhesive ELP-coated implants increased bone-implant contact area and interfacial strength after one week. These results suggest that ELP coatings withstand surgical implantation and promote rapid osseointegration, enabling earlier implant loading and potentially preventing micromotion that leads to aseptic loosening and premature implant failure. PMID:26790146

  11. Complement proteins bind to nanoparticle protein corona and undergo dynamic exchange in vivo

    NASA Astrophysics Data System (ADS)

    Chen, Fangfang; Wang, Guankui; Griffin, James I.; Brenneman, Barbara; Banda, Nirmal K.; Holers, V. Michael; Backos, Donald S.; Wu, Linping; Moghimi, Seyed Moein; Simberg, Dmitri

    2017-05-01

    When nanoparticles are intravenously injected into the body, complement proteins deposit on the surface of nanoparticles in a process called opsonization. These proteins prime the particle for removal by immune cells and may contribute toward infusion-related adverse effects such as allergic responses. The ways complement proteins assemble on nanoparticles have remained unclear. Here, we show that dextran-coated superparamagnetic iron oxide core-shell nanoworms incubated in human serum and plasma are rapidly opsonized with the third complement component (C3) via the alternative pathway. Serum and plasma proteins bound to the nanoworms are mostly intercalated into the nanoworm shell. We show that C3 covalently binds to these absorbed proteins rather than the dextran shell and the protein-bound C3 undergoes dynamic exchange in vitro. Surface-bound proteins accelerate the assembly of the complement components of the alternative pathway on the nanoworm surface. When nanoworms pre-coated with human plasma were injected into mice, C3 and other adsorbed proteins undergo rapid loss. Our results provide important insight into dynamics of protein adsorption and complement opsonization of nanomedicines.

  12. Exploiting the biomolecular corona: pre-coating of nanoparticles enables controlled cellular interactions.

    PubMed

    Simon, Johanna; Müller, Laura K; Kokkinopoulou, Maria; Lieberwirth, Ingo; Morsbach, Svenja; Landfester, Katharina; Mailänder, Volker

    2018-06-14

    Formation of the biomolecular corona ultimately determines the successful application of nanoparticles in vivo. Adsorption of biomolecules such as proteins is an inevitable process that takes place instantaneously upon contact with physiological fluid (e.g. blood). Therefore, strategies are needed to control this process in order to improve the properties of the nanoparticles and to allow targeted drug delivery. Here, we show that the design of the protein corona by a pre-formed protein corona with tailored properties enables targeted cellular interactions. Nanoparticles were pre-coated with immunoglobulin depleted plasma to create and design a protein corona that reduces cellular uptake by immune cells. It was proven that a pre-formed protein corona remains stable even after nanoparticles were re-introduced to plasma. This opens up the great potential to exploit protein corona formation, which will significantly influence the development of novel nanomaterials.

  13. In vitro and in vivo mapping of the Prunus necrotic ringspot virus coat protein C-terminal dimerization domain by bimolecular fluorescence complementation.

    PubMed

    Aparicio, Frederic; Sánchez-Navarro, Jesús A; Pallás, Vicente

    2006-06-01

    Interactions between viral proteins are critical for virus viability. Bimolecular fluorescent complementation (BiFC) technique determines protein interactions in real-time under almost normal physiological conditions. The coat protein (CP) of Prunus necrotic ringspot virus is required for multiple functions in its replication cycle. In this study, the region involved in CP dimerization has been mapped by BiFC in both bacteria and plant tissue. Full-length and C-terminal deleted forms of the CP gene were fused in-frame to the N- and C-terminal fragments of the yellow fluorescent protein. The BiFC analysis showed that a domain located between residues 9 and 27 from the C-end plays a critical role in dimerization. The importance of this C-terminal region in dimer formation and the applicability of the BiFC technique to analyse viral protein interactions are discussed.

  14. Portal protein functions akin to a DNA-sensor that couples genome-packaging to icosahedral capsid maturation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lokareddy, Ravi K.; Sankhala, Rajeshwer S.; Roy, Ankoor

    Tailed bacteriophages and herpesviruses assemble infectious particles via an empty precursor capsid (or ‘procapsid’) built by multiple copies of coat and scaffolding protein and by one dodecameric portal protein. Genome packaging triggers rearrangement of the coat protein and release of scaffolding protein, resulting in dramatic procapsid lattice expansion. Here, we provide structural evidence that the portal protein of the bacteriophage P22 exists in two distinct dodecameric conformations: an asymmetric assembly in the procapsid (PC-portal) that is competent for high affinity binding to the large terminase packaging protein, and a symmetric ring in the mature virion (MV-portal) that has negligible affinitymore » for the packaging motor. Modelling studies indicate the structure of PC-portal is incompatible with DNA coaxially spooled around the portal vertex, suggesting that newly packaged DNA triggers the switch from PC- to MV-conformation. Thus, we propose the signal for termination of ‘Headful Packaging’ is a DNA-dependent symmetrization of portal protein.« less

  15. The RecF protein antagonizes RecX function via direct interaction

    PubMed Central

    Lusetti, Shelley L.; Hobbs, Michael D.; Stohl, Elizabeth A.; Chitteni-Pattu, Sindhu; Inman, Ross B.; Seifert, H. Steven; Cox, Michael M.

    2014-01-01

    Summary The RecX protein inhibits RecA filament extension leading to net filament disassembly. The RecF protein physically interacts with the RecX protein and protects RecA from the inhibitory effects of RecX. In vitro, efficient RecA filament formation onto SSB-coated circular single-stranded DNA in the presence of RecX occurs only when all of the RecFOR proteins are present. The RecOR proteins contribute only to RecA filament nucleation onto SSB-coated single-stranded DNA and are unable to counter the inhibitory effects of RecX on RecA filaments. RecF protein uniquely supports substantial RecA filament extension in the presence of RecX. In vivo, RecF protein counters a RecX-mediated inhibition of plasmid recombination. Thus, a significant positive contribution of RecF to RecA filament assembly is to antagonize the effects of the negative modulator, RecX, specifically during the extension phase. PMID:16387652

  16. Poly(Lactic Acid) Nanoparticles Targeting α5β1 Integrin as Vaccine Delivery Vehicle, a Prospective Study

    PubMed Central

    Gutjahr, Alice; Terrat, Céline; Exposito, Jean-Yves; Verrier, Bernard; Lethias, Claire

    2016-01-01

    Biodegradable polymeric nanoparticles are vehicles of choice for drug delivery and have the ability to encapsulate and present at their surface different molecules of interest. Among these bio-nanocarriers, poly(lactic acid) (PLA) nanoparticles have been used as adjuvant and vehicle for enhanced vaccine efficacy. In order to develop an approach to efficient vaccine delivery, we developed nanoparticles to target α5β1 positive cells. We first overproduced, in bacteria, human fibronectin FNIII9/10 recombinant proteins possessing an integrin α5β1 binding site, the RGDS sequence, or a mutated form of this site. After having confirmed the integrin binding properties of these recombinant proteins in cell culture assays, we were able to formulate PLA nanoparticles with these FNIII9/10 proteins at their surface. We then confirmed, by fluorescence and confocal microscopy, an enhanced cellular uptake by α5β1+ cells of RGDS-FNIII9/10 coated PLA nanoparticles, in comparison to KGES-FNIII9/10 coated or non-coated controls. As a first vaccination approach, we prepared PLA nanoparticles co-coated with p24 (an HIV antigen), and RGDS- or KGES-FNIII9/10 proteins, followed by subcutaneous vaccine administration, in mice. Although we did not detect improvements in the apparent humoral response to p24 antigen in the serum of RGDS/p24 nanoparticle-treated mice, the presence of the FNIII proteins increased significantly the avidity index of anti-p24 antibodies compared to p24-nanoparticle-injected control mice. Future developments of this innovative targeted vaccine are discussed. PMID:27973577

  17. Three-dimensional reconstructions of the bacteriophage CUS-3 virion reveal a conserved coat protein I-domain but a distinct tailspike receptor-binding domain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parent, Kristin N., E-mail: kparent@msu.edu; Tang, Jinghua; Cardone, Giovanni

    CUS-3 is a short-tailed, dsDNA bacteriophage that infects serotype K1 Escherichia coli. We report icosahedrally averaged and asymmetric, three-dimensional, cryo-electron microscopic reconstructions of the CUS-3 virion. Its coat protein structure adopts the “HK97-fold” shared by other tailed phages and is quite similar to that in phages P22 and Sf6 despite only weak amino acid sequence similarity. In addition, these coat proteins share a unique extra external domain (“I-domain”), suggesting that the group of P22-like phages has evolved over a very long time period without acquiring a new coat protein gene from another phage group. On the other hand, the morphologymore » of the CUS-3 tailspike differs significantly from that of P22 or Sf6, but is similar to the tailspike of phage K1F, a member of the extremely distantly related T7 group of phages. We conclude that CUS-3 obtained its tailspike gene from a distantly related phage quite recently. - Highlights: • Asymmetric and symmetric three-dimensional reconstructions of phage CUS-3 are presented. • CUS-3 major capsid protein has a conserved I-domain, which is found in all three categories of “P22-like phage”. • CUS-3 has very different tailspike receptor binding domain from those of P22 and Sf6. • The CUS-3 tailspike likely was acquired by horizontal gene transfer.« less

  18. Hybrid Phospholipid Bilayer Coatings for Separations of Cationic Proteins in Capillary Zone Electrophoresis

    PubMed Central

    Gallagher, Elyssia S.; Adem, Seid M.; Bright, Leonard K.; Calderon, Isen A. C.; Mansfield, Elisabeth; Aspinwall, Craig A.

    2014-01-01

    Protein separations in capillary zone electrophoresis (CZE) suffer from non-specific adsorption of analytes to the capillary surface. Semi-permanent phospholipid bilayers (PLBs) have been used to minimize adsorption, but must be regenerated regularly to ensure reproducibility. We investigated the formation, characterization, and use of hybrid phospholipid bilayers (HPBs) as more stable biosurfactant capillary coatings for CZE protein separations. HPBs are formed by covalently modifying a support with a hydrophobic monolayer onto which a self-assembled lipid monolayer is deposited. Monolayers prepared in capillaries using 3-cyanopropyldimethylchlorosilane (CPDCS) or n-octyldimethylchlorosilane (ODCS) yielded hydrophobic surfaces with lowered surface free energies of 6.0 ± 0.3 or 0.2 ± 0.1 mJ m−2, respectively, compared to 17 ± 1 mJ m−2 for bare silica capillaries. HPBs were formed by subsequently fusing vesicles comprised of 1,2-dilauroyl-sn-glycero-3-phosphocholine or 1,2-dioleoyl-sn-glycero-3-phosphocholine to CPDCS- or ODCS-modified capillaries. The resultant HPB coatings shielded the capillary surface and yielded reduced electroosmotic mobility (1.3 – 1.9 × 10−4 cm2 V−1s−1) compared to CPDCS- and ODCS-modified or bare capillaries (3.6 ± 0.2 × 10−4 cm2 V−1s−1, 4.8 ± 0.4 × 10−4 cm2 V−1s−1, and 6.0 ± 0.2 × 10−4 cm2 V−1s−1, respectively), with increased stability compared to PLB coatings. HPB-coated capillaries yielded reproducible protein migration times (RSD ≤ 3.6 %, n ≥ 6) with separation efficiencies as high as 200,000 plates m−1. PMID:24459085

  19. Characterization of the yrbA Gene of Bacillus subtilis, Involved in Resistance and Germination of Spores

    PubMed Central

    Takamatsu, Hiromu; Kodama, Takeko; Nakayama, Tatsuo; Watabe, Kazuhito

    1999-01-01

    Insertional inactivation of the yrbA gene of Bacillus subtilis reduced the resistance of the mutant spores to lysozyme. The yrbA mutant spores lost their optical density at the same rate as the wild-type spores upon incubation with l-alanine but became only phase gray and did not swell. The response of the mutant spores to a combination of asparagine, glucose, fructose, and KCl was also extremely poor; in this medium yrbA spores exhibited only a small loss in optical density and gave a mixture of phase-bright, -gray, and -dark spores. Northern blot analysis of yrbA transcripts in various sig mutants indicated that yrbA was transcribed by RNA polymerase with ςE beginning at 2 h after the start of sporulation. The yrbA promoter was localized by primer extension analysis, and the sequences of the −35 (TCATAAC) and −10 (CATATGT) regions were similar to the consensus sequences of genes recognized by ςE. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of proteins solubilized from intact yrbA mutant spores showed an alteration in the protein profile, as 31- and 36-kDa proteins, identified as YrbA and CotG, respectively, were absent, along with some other minor changes. Electron microscopic examination of yrbA spores revealed changes in the spore coat, including a reduction in the density and thickness of the outer layer and the appearance of an inner coat layer-like structure around the outside of the coat. This abnormal coat structure was also observed on the outside of the developing forespores of the yrbA mutant. These results suggest that YrbA is involved in assembly of some coat proteins which have roles in both spore lysozyme resistance and germination. PMID:10438771

  20. Genomic anatomy of the Tyrp1 (brown) deletion complex

    PubMed Central

    Smyth, Ian M.; Wilming, Laurens; Lee, Angela W.; Taylor, Martin S.; Gautier, Phillipe; Barlow, Karen; Wallis, Justine; Martin, Sancha; Glithero, Rebecca; Phillimore, Ben; Pelan, Sarah; Andrew, Rob; Holt, Karen; Taylor, Ruth; McLaren, Stuart; Burton, John; Bailey, Jonathon; Sims, Sarah; Squares, Jan; Plumb, Bob; Joy, Ann; Gibson, Richard; Gilbert, James; Hart, Elizabeth; Laird, Gavin; Loveland, Jane; Mudge, Jonathan; Steward, Charlie; Swarbreck, David; Harrow, Jennifer; North, Philip; Leaves, Nicholas; Greystrong, John; Coppola, Maria; Manjunath, Shilpa; Campbell, Mark; Smith, Mark; Strachan, Gregory; Tofts, Calli; Boal, Esther; Cobley, Victoria; Hunter, Giselle; Kimberley, Christopher; Thomas, Daniel; Cave-Berry, Lee; Weston, Paul; Botcherby, Marc R. M.; White, Sharon; Edgar, Ruth; Cross, Sally H.; Irvani, Marjan; Hummerich, Holger; Simpson, Eleanor H.; Johnson, Dabney; Hunsicker, Patricia R.; Little, Peter F. R.; Hubbard, Tim; Campbell, R. Duncan; Rogers, Jane; Jackson, Ian J.

    2006-01-01

    Chromosome deletions in the mouse have proven invaluable in the dissection of gene function. The brown deletion complex comprises >28 independent genome rearrangements, which have been used to identify several functional loci on chromosome 4 required for normal embryonic and postnatal development. We have constructed a 172-bacterial artificial chromosome contig that spans this 22-megabase (Mb) interval and have produced a contiguous, finished, and manually annotated sequence from these clones. The deletion complex is strikingly gene-poor, containing only 52 protein-coding genes (of which only 39 are supported by human homologues) and has several further notable genomic features, including several segments of >1 Mb, apparently devoid of a coding sequence. We have used sequence polymorphisms to finely map the deletion breakpoints and identify strong candidate genes for the known phenotypes that map to this region, including three lethal loci (l4Rn1, l4Rn2, and l4Rn3) and the fitness mutant brown-associated fitness (baf). We have also characterized misexpression of the basonuclin homologue, Bnc2, associated with the inversion-mediated coat color mutant white-based brown (Bw). This study provides a molecular insight into the basis of several characterized mouse mutants, which will allow further dissection of this region by targeted or chemical mutagenesis. PMID:16505357

  1. Development and characterization of silk fibroin coated quantum dots

    NASA Astrophysics Data System (ADS)

    Nathwani, B. B.; Needham, C.; Mathur, A. B.; Meissner, K. E.

    2008-02-01

    Recent progress in the field of semiconductor nanocrystals or Quantum Dots (QDs) has seen them find wider acceptance as a tool in biomedical research labs. As produced, high quality QDs, synthesized by high temperature organometallic synthesis, are coated with a hydrophobic ligand. Therefore, they must be further processed to be soluble in water and to be made biocompatible. To accomplish this, the QDs are generally coated with a synthetic polymer (eg. block copolymers) or the hydrophobic surface ligands exchanged with hydrophilic material (eg. thiols). Advances in this area have enabled the QDs to experience a smooth transition from being simple inorganic fluorophores to being smart sensors, which can identify specific cell marker proteins and help in diagnosis of diseases such as cancer. In order to improve the biocompatibility and utility of the QDs, we report the development of a procedure to coat QDs with silk fibroin, a fibrous crystalline protein extracted from Bombyx Mori silkworm. Following the coating process, we characterize the size, quantum yield and two-photon absorption cross section of the silk coated QDs. Additionally, the results of biocompatibility studies carried out to compare the properties of these QD-silks with conventional QDs are presented. These natural polymer coatings on QDs could enhance the intracellular delivery and enable the use of these nanocrystals as an imaging tool for studying subcellular machinery at the molecular level.

  2. Applications of Functional Amyloids from Fungi: Surface Modification by Class I Hydrophobins.

    PubMed

    Piscitelli, Alessandra; Cicatiello, Paola; Gravagnuolo, Alfredo Maria; Sorrentino, Ilaria; Pezzella, Cinzia; Giardina, Paola

    2017-06-26

    Class I hydrophobins produced from fungi are amongst the first proteins recognized as functional amyloids. They are amphiphilic proteins involved in the formation of aerial structures such as spores or fruiting bodies. They form chemically robust layers which can only be dissolved in strong acids. These layers adhere to different surfaces, changing their wettability, and allow the binding of other proteins. Herein, the modification of diverse types of surfaces with Class I hydrophobins is reported, highlighting the applications of the coated surfaces. Indeed, these coatings can be exploited in several fields, spanning from biomedical to industrial applications, which include biosensing and textile manufacturing.

  3. Chemically Modified Bacteriophage as a Streamlined Approach to Noninvasive Breast Cancer Imaging

    DTIC Science & Technology

    2013-12-01

    between the two major MALDI peaks is 245 Da, which is presumably an aldol addition of the ketone group to the PLP aldehyde (expected change: 248 Da...of the pVIII coat proteins lining the filamentous phage are converted to ketone groups, which can be subsequently modified with small molecule...chemistry to convert the N-terminal amines of the ∼4200 coat proteins into ketone groups. These sites can then serve as chemospecific handles for the

  4. Critical review of stress coatings for membrane optics

    NASA Astrophysics Data System (ADS)

    Morrison, S.; Gavrin, A.; Gonyer, R.; Blizard, K.; Bradshaw, J.; Gunderson, L.; Jenkins, C.

    2005-08-01

    The need and desire for large-scale reflectors is immediate and long lasting. Therefore engineers and designers are turning toward processes that produce reflectors much different than the conventional ground glass mirror. This paradigm shift encompasses many new and emerging technologies, including, but not limited to, pressure-augmented stress-coated membrane mirrors. Recent research has centered on determining the proper amount of stress (from the coating) to apply to a membrane substrate to produce a near-net shape that can be augmented with positive pressure to conclude in the smallest figure error. The bulge test has been applied to membrane samples of seven inch diameter, both uncoated and after coating, and central displacements used as data points when coupled with the finite element code ABAQUS to determine strain and stress values. These values are then correlated to the coating process to determine a 'coating prescription' by which that state of minimal figure error can be attained. Vibration testing in vacuum also shows promise as an effective method to determine the amount of stress present in the coated membrane. The shifts in natural frequencies of a coated membrane versus its uncoated self are unique and indicative of the stress increase by the addition of the coating. These natural frequencies are input into theoretical and ABAQUS models to determine strain and stress. This method is used to provide confidence with the bulge test results.

  5. Death of a dogma: eukaryotic mRNAs can code for more than one protein.

    PubMed

    Mouilleron, Hélène; Delcourt, Vivian; Roucou, Xavier

    2016-01-08

    mRNAs carry the genetic information that is translated by ribosomes. The traditional view of a mature eukaryotic mRNA is a molecule with three main regions, the 5' UTR, the protein coding open reading frame (ORF) or coding sequence (CDS), and the 3' UTR. This concept assumes that ribosomes translate one ORF only, generally the longest one, and produce one protein. As a result, in the early days of genomics and bioinformatics, one CDS was associated with each protein-coding gene. This fundamental concept of a single CDS is being challenged by increasing experimental evidence indicating that annotated proteins are not the only proteins translated from mRNAs. In particular, mass spectrometry (MS)-based proteomics and ribosome profiling have detected productive translation of alternative open reading frames. In several cases, the alternative and annotated proteins interact. Thus, the expression of two or more proteins translated from the same mRNA may offer a mechanism to ensure the co-expression of proteins which have functional interactions. Translational mechanisms already described in eukaryotic cells indicate that the cellular machinery is able to translate different CDSs from a single viral or cellular mRNA. In addition to summarizing data showing that the protein coding potential of eukaryotic mRNAs has been underestimated, this review aims to challenge the single translated CDS dogma. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  6. Pseudomonas oleovorans Strain KBPF-004 Culture Supernatants Reduced Seed Transmission of Cucumber green mottle mosaic virus and Pepper mild mottle virus, and Remodeled Aggregation of 126 kDa and Subcellular Localization of Movement Protein of Pepper mild mottle virus

    PubMed Central

    Kim, Nam-Gyu; Seo, Eun-Young; Han, Sang-Hyuk; Gong, Jun-Su; Park, Cheol-Nam; Park, Ho-Seop; Domier, Leslie L; Hammond, John; Lim, Hyoun-Sub

    2017-01-01

    Efforts to control viral diseases in crop production include several types of physical or chemical treatments; antiviral extracts of a number of plants have also been examined to inhibit plant viral infection. However, treatments utilizing naturally selected microorganisms with activity against plant viruses are poorly documented. Here we report isolation of a soil inhabiting bacterium, Pseudomonas oleovorans strain KBPF-004 (developmental code KNF2016) which showed antiviral activity against mechanical transmission of tobamoviruses. Antiviral activity was also evaluated in seed transmission of two tobamoviruses, Pepper mild mottle virus (PMMoV) and Cucumber green mottle mosaic virus (CGMMV), by treatment of seed collected from infected pepper and watermelon, respectively. Pepper and watermelon seeds were treated with culture supernatant of P. oleovorans strain KBPF-004 or control strain ATCC 8062 before planting. Seeds germinated after treatment with water or ATCC 8062 yielded about 60% CGMMV or PMMoV positive plants, whereas < 20% of KBPF-004-treated seeds were virus-infected, a significantly reduced seed transmission rate. Furthermore, supernatant of P. oleovorans strain KBPF-004 remodeled aggregation of PMMoV 126 kDa protein and subcellular localization of movement protein in Nicotiana benthamiana, diminishing aggregation of the 126 kDa protein and essentially abolishing association of the movement protein with the microtubule network. In leaves agroinfiltrated with constructs expressing the coat protein (CP) of either PMMoV or CGMMV, less full-size CP was detected in the presence of supernatant of P. oleovorans strain KBPF-004. These changes may contribute to the antiviral effects of P. oleovorans strain KBPF-004. PMID:28811756

  7. Complete mitochondrial genome of Germain's Peacock-Pheasant Polyplectron germaini (Aves, Galliformes, Phasianidae).

    PubMed

    Omeire, Destiny; Abdin, Shaunte; Brooks, Daniel M; Miranda, Hector C

    2015-04-01

    The Germain's Peacock-Pheasant Polyplectron germaini (Aves, Galliformes, Phasianidae) is classified as Near Threatened on the IUCN Red List. The complete mitochondrial genome of P. germaini is 16,699 bp, consisting of 13 protein-coding genes, 2 rRNA, 22 tRNA genes and 1 control region. All of the 13 protein-coding genes have ATG as start codon. Eight of the 13 protein-coding genes have TAA as stop codon.

  8. Adaptive Covariation between the Coat and Movement Proteins of Prunus Necrotic Ringspot Virus

    PubMed Central

    Codoñer, Francisco M.; Fares, Mario A.; Elena, Santiago F.

    2006-01-01

    The relative functional and/or structural importance of different amino acid sites in a protein can be assessed by evaluating the selective constraints to which they have been subjected during the course of evolution. Here we explore such constraints at the linear and three-dimensional levels for the movement protein (MP) and coat protein (CP) encoded by RNA 3 of prunus necrotic ringspot ilarvirus (PNRSV). By a maximum-parsimony approach, the nucleotide sequences from 46 isolates of PNRSV varying in symptomatology, host tree, and geographic origin have been analyzed and sites under different selective pressures have been identified in both proteins. We have also performed covariation analyses to explore whether changes in certain amino acid sites condition subsequent variation in other sites of the same protein or the other protein. These covariation analyses shed light on which particular amino acids should be involved in the physical and functional interaction between MP and CP. Finally, we discuss these findings in the light of what is already known about the implication of certain sites and domains in structure and protein-protein and RNA-protein interactions. PMID:16731922

  9. Adaptive covariation between the coat and movement proteins of prunus necrotic ringspot virus.

    PubMed

    Codoñer, Francisco M; Fares, Mario A; Elena, Santiago F

    2006-06-01

    The relative functional and/or structural importance of different amino acid sites in a protein can be assessed by evaluating the selective constraints to which they have been subjected during the course of evolution. Here we explore such constraints at the linear and three-dimensional levels for the movement protein (MP) and coat protein (CP) encoded by RNA 3 of prunus necrotic ringspot ilarvirus (PNRSV). By a maximum-parsimony approach, the nucleotide sequences from 46 isolates of PNRSV varying in symptomatology, host tree, and geographic origin have been analyzed and sites under different selective pressures have been identified in both proteins. We have also performed covariation analyses to explore whether changes in certain amino acid sites condition subsequent variation in other sites of the same protein or the other protein. These covariation analyses shed light on which particular amino acids should be involved in the physical and functional interaction between MP and CP. Finally, we discuss these findings in the light of what is already known about the implication of certain sites and domains in structure and protein-protein and RNA-protein interactions.

  10. Easy-to-fabricate thin-film coating on PDMS substrate with super hydrophilicity and stability.

    PubMed

    Sun, Lijun; Luo, Yong; Gao, Zhigang; Zhao, Weijie; Lin, Bingcheng

    2015-03-01

    With the fast expansion of microfluidic applications, stable, and easy-to-fabricate PDMS surface coating with super hydrophilicity is highly desirable. In this study, we introduce a new kind of copolymer-based, single-layer thin-film coating for PDMS. The coating can exist in air at room temperature for at least 6 months without any noticeable deterioration in the super hydrophilicity (water contact angle ∼7°), resistance of protein adsorption, or inhibition of the EOF. In addition, this coating enables arbitrary patterning of cells on planar surfaces. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Biomechanics of Spider Silks

    DTIC Science & Technology

    2006-03-02

    observed attachment to the sericin coat (sem picture above) and slippage of the silk fibroin fibres. Hence it appears that choosing silk cocoon thin...several thick layers of sericin coating 9,10. Both fibroin and sericin are proteins, but of very different composition and properties 𔃺. The two brins...produced and coated in separate ducts, are pressed together while still inside the animal; the sericin hardens in air and typically on the cocoon to

  12. Extracellular matrix mediators of metastatic cell colonization characterized using scaffold mimics of the pre-metastatic niche

    PubMed Central

    Aguado, Brian A.; Caffe, Jordan R.; Nanavati, Dhaval; Rao, Shreyas S.; Bushnell, Grace G.; Azarin, Samira M.; Shea, Lonnie D.

    2016-01-01

    Metastatic tumor cells colonize the pre-metastatic niche, which is a complex microenvironment consisting partially of extracellular matrix (ECM) proteins. We sought to identify and validate novel contributors to tumor cell colonization using ECM coated poly(ε-caprolactone) (PCL) scaffolds as mimics of the pre-metastatic niche. Utilizing orthotopic breast cancer mouse models, fibronectin and collagen IV-coated scaffolds implanted in the subcutaneous space captured colonizing tumor cells, showing a greater than 2-fold increase in tumor cell accumulation at the implant site compared to uncoated scaffolds. As a strategy to identify additional ECM colonization contributors, decellularized matrix (DCM) from lungs and livers containing metastatic tumors were characterized. In vitro, metastatic cell adhesion was increased on DCM coatings from diseased organs relative to healthy DCM. Furthermore, in vivo implantations of diseased DCM-coated scaffolds had increased tumor cell colonization relative to healthy DCM coatings. Mass-spectrometry proteomics was performed on healthy and diseased DCM to identify candidates associated with colonization. Myeloperoxidase was identified as abundantly present in diseased organs and validated as a contributor to colonization using myeloperoxidase-coated scaffold implants. This work identified novel ECM proteins associated with colonization using decellularization and proteomics techniques and validated candidates using a scaffold to mimic the pre-metastatic niche. PMID:26844426

  13. Solubility Interactions and the Design of Chemically Selective Sorbent Coatings for Chemical Sensors and Arrays

    DTIC Science & Technology

    1990-07-27

    sorptionpiezoelectric sorption 63 detector, surface acoustic wave, pattern recognition, array, 16. PRICE CODE molecular recognition , 17. SECURITY...1 PIEZOELECTRIC SORPTION DETECTORS ........................................................... 6 SOLUBILITY... SORPTION AND LINEAR SOLVATION ENERGY RELATIONSHIPS (LSER) ................................................................................... 9

  14. Impact of surface coating and food-mimicking media on nanosilver-protein interaction

    NASA Astrophysics Data System (ADS)

    Burcza, Anna; Gräf, Volker; Walz, Elke; Greiner, Ralf

    2015-11-01

    The application of silver nanoparticles (AgNPs) in food contact materials has recently become a subject of dispute due to the possible migration of silver in nanoform into foods and beverages. Therefore, the analysis of the interaction of AgNPs with food components, especially proteins, is of high importance in order to increase our knowledge of the behavior of nanoparticles in food matrices. AgPURE™ W10 (20 nm), an industrially applied nanomaterial, was compared with AgNPs of similar size frequently investigated for scientific purposes differing in the surface capping agent (spherical AgNP coated with either PVP or citrate). The interactions of the AgNPs with whey proteins (BSA, α-lactalbumin and β-lactoglobulin) at different pH values (4.2, 7 or 7.4) were investigated using surface plasmon resonance, SDS-PAGE, and asymmetric flow field-flow fractionation. The data obtained by the three different methods correlated well. Besides the nature of the protein and the nanoparticle coating, the environment was shown to affect the interaction significantly. The strongest interaction was obtained with BSA and AgNPs in an acidic environment. Neutral and slightly alkaline conditions however, seemed to prevent the AgNP-protein interaction almost completely. Furthermore, the interaction of whey proteins with AgPURE™ W10 was found to be weaker compared to the interaction with the other two AgNPs under all conditions investigated.

  15. Antibody Fab display and selection through fusion to the pIX coat protein of filamentous phage.

    PubMed

    Tornetta, Mark; Baker, Scott; Whitaker, Brian; Lu, Jin; Chen, Qiang; Pisors, Eileen; Shi, Lei; Luo, Jinquan; Sweet, Raymond; Tsui, Ping

    2010-08-31

    Fab antibody display on filamentous phage is widely applied to de novo antibody discovery and engineering. Here we describe a phagemid system for the efficient display and affinity selection of Fabs through linkage to the minor coat protein pIX. Display was successful by fusion of either Fd or Lc through a short linker to the amino terminus of pIX and co-expression of the counter Lc or Fd as a secreted, soluble fragment. Assembly of functional Fab was confirmed by demonstration of antigen-specific binding using antibodies of known specificity. Phage displaying a Fab specific for RSV-F protein with Fd linked to pIX showed efficient, antigen-specific enrichment when mixed with phage displaying a different specificity. The functionality of this system for antibody engineering was evaluated in an optimization study. A RSV-F protein specific antibody with an affinity of about 2nM was randomized at 4 positions in light chain CDR1. Three rounds of selection with decreasing antigen concentration yielded Fabs with an affinity improvement up to 70-fold and showed a general correlation between enrichment frequency and affinity. We conclude that the pIX coat protein complements other display systems in filamentous phage as an efficient vehicle for low copy display and selection of Fab proteins. 2010 Elsevier B.V. All rights reserved.

  16. Development of Scaffolds for Light Harvesting and Photocatalysis from the Coat Protein of Tobacco Mosaic Virus

    NASA Astrophysics Data System (ADS)

    Dedeo, Michel Toussaint

    The utility of a previously developed TMV-based light harvesting system has been dramatically expanded through the introduction of reactive handles for the site-specific modification of the interior and exterior surfaces. Further experiments to reengineer the coat protein have produced structures with unique, unexpected, and useful assembly properties that complement the newly available surface modifications. Energy transfer from chromophores in the RNA channel of self-assembled TMV structures to the exterior was made possible by conjugation of acceptor dyes and porphyrins to the N-terminus. By repositioning the N-terminus to the pore through circular permutation, this process was repeated to create structures that mimic the light harvesting 1 complex of photosynthetic bacteria. To study and improve upon natural photosynthesis, closely packed chromophore arrays and gold nanoparticles were tethered to the pore of stabilized TMV disks through introduction of a uniquely reactive lysine. Finally, a dimeric TMV coat protein was produced to control the distribution and arrangement of synthetic groups with synergistic activity.

  17. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform

    PubMed Central

    Hu, Che-Ming J.; Zhang, Li; Aryal, Santosh; Cheung, Connie; Fang, Ronnie H.; Zhang, Liangfang

    2011-01-01

    Efforts to extend nanoparticle residence time in vivo have inspired many strategies in particle surface modifications to bypass macrophage uptake and systemic clearance. Here we report a top-down biomimetic approach in particle functionalization by coating biodegradable polymeric nanoparticles with natural erythrocyte membranes, including both membrane lipids and associated membrane proteins for long-circulating cargo delivery. The structure, size and surface zeta potential, and protein contents of the erythrocyte membrane-coated nanoparticles were verified using transmission electron microscopy, dynamic light scattering, and gel electrophoresis, respectively. Mice injections with fluorophore-loaded nanoparticles revealed superior circulation half-life by the erythrocyte-mimicking nanoparticles as compared to control particles coated with the state-of-the-art synthetic stealth materials. Biodistribution study revealed significant particle retention in the blood 72 h following the particle injection. The translocation of natural cellular membranes, their associated proteins, and the corresponding functionalities to the surface of synthetic particles represents a unique approach in nanoparticle functionalization. PMID:21690347

  18. Electrochemical analysis of gold-coated magnetic nanoparticles for detecting immunological interaction

    NASA Astrophysics Data System (ADS)

    Pham, Thao Thi-Hien; Sim, Sang Jun

    2010-01-01

    An electrochemical impedance immunosensor was developed for detecting the immunological interaction between human immunoglobulin (IgG) and protein A from Staphylococcus aureus based on the immobilization of human IgG on the surface of modified gold-coated magnetic nanoparticles. The nanoparticles with an Au shell and Fe oxide cores were functionalized by a self-assembled monolayer of 11-mercaptoundecanoic acid. The electrochemical analysis was conducted on the modified magnetic carbon paste electrodes with the nanoparticles. The magnetic nanoparticles were attached to the surface of the magnetic carbon paste electrodes via magnetic force. The cyclic voltammetry technique and electrochemical impedance spectroscopy measurements of the magnetic carbon paste electrodes coated with magnetic nanoparticles-human IgG complex showed changes in its alternating current (AC) response both after the modification of the surface of the electrode and the addition of protein A. The immunological interaction between human IgG on the surface of the modified magnetic carbon paste electrodes and protein A in the solution could be successfully monitored.

  19. Relationship between welding fume concentration and systemic inflammation after controlled exposure of human subjects with welding fumes from metal inert gas brazing of zinc-coated materials.

    PubMed

    Brand, Peter; Bauer, Marcus; Gube, Monika; Lenz, Klaus; Reisgen, Uwe; Spiegel-Ciobanu, Vilia Elena; Kraus, Thomas

    2014-01-01

    It has been shown that exposure of subjects to emissions from a metal inert gas (MIG) brazing process of zinc-coated material led to an increase of high-sensitivity C-reactive protein (hsCRP) in the blood. In this study, the no-observed-effect level (NOEL) for such emissions was assessed. Twelve healthy subjects were exposed for 6 hours to different concentrations of MIG brazing fumes under controlled conditions. High-sensitivity C-reactive protein was measured in the blood. For welding fumes containing 1.20 and 1.50 mg m zinc, high-sensitivity C-reactive protein was increased the day after exposure. For 0.90 mg m zinc, no increase was detected. These data indicate that the no-observed-effect level for emissions from a MIG brazing process of zinc-coated material in respect to systemic inflammation is found for welding fumes with zinc concentrations between 0.90 and 1.20 mg m.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perovic, Iva; Davidyants, Anastasia; Evans, John Spencer

    In the mollusk shell there exists a framework silk fibroin-polysaccharide hydrogel coating around nacre aragonite tablets, and this coating facilitates the synthesis and organization of mineral nanoparticles into mesocrystals. In this report, we identify that a protein component of this coating, n16.3, is a hydrogelator. Due to the presence of intrinsic disorder, aggregation-prone regions, and nearly equal balance of anionic and cationic side chains, this protein assembles to form porous mesoscale hydrogel particles in solution and on mica surfaces. These hydrogel particles change their dimensionality, organization, and internal structure in response to pH and ions, particularly Ca(II), which indicates thatmore » these behave as ion-responsive or “smart” hydrogels. Thus, in addition to silk fibroins, the gel phase of the mollusk shell nacre framework layer may actually consist of several framework hydrogelator proteins, such as n16.3, which can promote mineral nanoparticle organization and assembly during the nacre biomineralization process and also serve as a model system for designing ion-responsive, composite, and smart hydrogels.« less

  1. Requirement of the basic region of N-WASP/WAVE2 for actin-based motility.

    PubMed

    Suetsugu, S; Miki, H; Yamaguchi, H; Takenawa, T

    2001-04-06

    WASP family proteins activate nucleation by the Arp2/3 complex, inducing rapid actin polymerization in vitro. Although the C-terminal portion of WASP family proteins (VCA) activates nucleation by the Arp2/3 complex in pure systems, we find that this fragment lacks activity in cell extracts. Thus, polystyrene beads coated with VCA did not move in brain cytosol, while beads coated with N-WASP or WAVE2 did move. The basic clusters between the WH1 domain and the CRIB domain of N-WASP were critical for movement since beads coated with N-WASP or WAVE2 constructs missing the basic clusters (Delta basic) also did not move. Furthermore, VCA and N-WASP/WAVE2 Delta basic constructs were much less able than wild-type N-WASP and WAVE2 to induce actin polymerization in cytosol. All of the proteins, with or without the basic domain, were potent activators of nucleation by purified Arp2/3 complex. Copyright 2001 Academic Press.

  2. Characterization of edible coatings consisting of pea starch, whey protein isolate, and Carnauba wax and their effects on oil rancidity and sensory properties of walnuts and pine nuts.

    PubMed

    Mehyar, Ghadeer F; Al-Ismail, Khalid; Han, Jung H; Chee, Grace W

    2012-02-01

    Edible coatings made of whey protein isolate (WPI), pea starch (PS), and their combinations with carnauba wax (CW) were prepared and characterized. WPI combined with CW formed stable emulsion while PS with CW formed unstable emulsion and both formulations produced non-homogeneous films. Addition of PS to WPI: CW combination at the ratio of 1:1:1, respectively, resulted in stable emulsion and homogenous films. The emulsion PS: WPI: CW (1:1:2) was stable and formed a continuous film but had less homogenous droplets size distribution when compared to 1:1:1 film. Combined films had a reduced tensile strength and elongation compared to single component films. WPI : CW (1:1) films had higher elastic modulus than the WPI films, but the modulus reduced by the addition of PS. All the coating formulations were effective in preventing oxidative and hydrolytic rancidity of walnuts and pine nuts stored at 25 °C throughout the storage (12 d) but were less effective at 50 °C. Increasing the concentration of CW from 1:1:1 to 1:1:2 in PS: WPI: CW formulation did not contribute in further prevention of oil rancidity at 25 °C. Using of PS: WPI: CW (1:1:1) coating on both nuts significantly (P < 0.05) improved their smoothness and taste but the PS: WPI: CW (1:1:2) coatings imparted unacceptable yellowish color on walnuts. Edible coating of walnuts and pine nuts by whey protein isolate, pea starch, and carnauba wax reduced the oxidative and hydrolytic rancidity of the nuts and improved sensory characteristics. © 2012 Institute of Food Technologists®

  3. Adhesion of Porphyromonas gingivalis and Tannerella forsythia to dentin and titanium with sandblasted and acid etched surface coated with serum and serum proteins - An in vitro study.

    PubMed

    Eick, Sigrun; Kindblom, Christian; Mizgalska, Danuta; Magdoń, Anna; Jurczyk, Karolina; Sculean, Anton; Stavropoulos, Andreas

    2017-03-01

    To evaluate the adhesion of selected bacterial strains incl. expression of important virulence factors at dentin and titanium SLA surfaces coated with layers of serum proteins. Dentin- and moderately rough SLA titanium-discs were coated overnight with human serum, or IgG, or human serum albumin (HSA). Thereafter, Porphyromonas gingivalis, Tannerella forsythia, or a six-species mixture were added for 4h and 24h. The number of adhered bacteria (colony forming units; CFU) was determined. Arg-gingipain activity of P. gingivalis and mRNA expressions of P. gingivalis and T. forsythia proteases and T. forsythia protease inhibitor were measured. Coating specimens never resulted in differences exceeding 1.1 log10 CFU, comparing to controls, irrespective the substrate. Counts of T. forsythia were statistically significantly higher at titanium than dentin, the difference was up to 3.7 log10 CFU after 24h (p=0.002). No statistically significant variation regarding adhesion of the mixed culture was detected between surfaces or among coatings. Arg-gingipain activity of P. gingivalis was associated with log10 CFU but not with the surface or the coating. Titanium negatively influenced mRNA expression of T. forsythia protease inhibitor at 24h (p=0.026 uncoated, p=0.009 with serum). The present findings indicate that: a) single bacterial species (T. forsythia) can adhere more readily to titanium SLA than to dentin, b) low expression of T. forsythia protease inhibitor may influence the virulence of the species on titanium SLA surfaces in comparison with teeth, and c) surface properties (e.g. material and/or protein layers) do not appear to significantly influence multi-species adhesion. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Intravascular local gene transfer mediated by protein-coated metallic stent.

    PubMed

    Yuan, J; Gao, R; Shi, R; Song, L; Tang, J; Li, Y; Tang, C; Meng, L; Yuan, W; Chen, Z

    2001-10-01

    To assess the feasibility, efficiency and selectivity of adenovirus-mediated gene transfer to local arterial wall by protein-coated metallic stent. A replication-defective recombinant adenovirus carrying the Lac Z reporter gene for nuclear-specific beta-galactosidase (Ad-beta gal) was used in this study. The coating for metallic stent was made by immersing it in a gelatin solution containing crosslinker. The coated stents were mounted on a 4.0 or 3.0 mm percutaneous transluminal coronary angioplasty (PTCA) balloon and submersed into a high-titer Ad-beta gal viral stock (2 x 10(10) pfu/ml) for 3 min, and then implanted into the carotid arteries in 4 mini-swines and into the left anterior descending branch of the coronary artery in 2 mini-swines via 8F large lumen guiding catheters. The animals were sacrificed 7 (n = 4), 14 (n = 1) and 21 (n = 1) days after implantation, respectively. The beta-galactosidase expression was assessed by X-gal staining. The results showed that the expression of transgene was detected in all animal. In 1 of carotid artery with an intact intima, the beta-gal expression was limited to endothelial cells. In vessels with denuded endothelium, gene expression was found in the sub-intima, media and adventitia. The transfection efficiency of medial smooth muscle cells was 38.6%. In 2 animals sacrificed 7 days after transfection, a microscopic examination of X-gal-stained samples did not show evidence of transfection in remote organs and arterial segments adjacent to the treated arterial site. Adenovirus-mediated arterial gene transfer to endothelial, smooth muscle cells and adventitia by protein-coated metallic stent is feasible. The transfection efficiency is higher. The coated stent may act as a good carrier of adenovirus-mediated gene transfer and have a potential to prevent restenosis following PTCA.

  5. Application of quartz crystal microbalance to study the impact of pH and ionic strength on protein-silicone oil interactions.

    PubMed

    Dixit, Nitin; Maloney, Kevin M; Kalonia, Devendra S

    2011-06-30

    In this study, we have used quartz crystal microbalance (QCM) to quantitate the adsorption of a protein on silicone oil coated surfaces as a function of protein concentration, pH and ionic strength using a 5 MHz quartz crystal. Protein adsorption isotherms were generated at different solution pH and ionic strengths. Surface saturation concentrations were selected from adsorption isotherms and used to generate adsorption profiles from pH 3.0 to 9.0, and at ionic strengths of 10 mM and 150 mM. At low ionic strength (10mM) and pH 5.0 (close to the isoelectric point of the protein), maximum adsorption of protein to the silicone oil surface was observed. At higher ionic strength (150 mM), no significant pH influence on adsorption was observed. QCM could be used as a reliable technique to study the binding of proteins to silicone oil coated surfaces. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. A solid-phase assay for studying direct binding of progranulin to TNFR and progranulin antagonism of TNF/TNFR interactions.

    PubMed

    Tian, Qingyun; Zhao, Shuai; Liu, Chuanju

    2014-01-01

    The discovery that TNF receptors (TNFR) serve as the binding receptors for progranulin (PGRN) reveals the significant role of PGRN in inflammatory and autoimmune diseases, including inflammatory arthritis. Herein we describe a simple, antibody-free analytical assay, i.e., a biotin-based solid-phase binding assay, to examine the direct interaction of PGRN/TNFR and the PGRN inhibition of TNF/TNFR interactions. Briefly, a 96-well high-binding microplate is first coated with the first protein (protein A), and after blocking, the coated microplate is incubated with the biotin-labeled second protein (protein B) in the absence or presence of the third protein (protein C). Finally the streptavidin conjugated with a detecting enzyme is added, followed by a signal measurement. Also discussed in this chapter are the advantages of the strategy, key elements to obtain reliable results, and discrepancies among various PGRN proteins in view of the binding activity with TNFR.

  7. The Rice Tungro Bacilliform Virus Gene II Product Interacts with the Coat Protein Domain of the Viral Gene III Polyprotein

    PubMed Central

    Herzog, Etienne; Guerra-Peraza, Orlene; Hohn, Thomas

    2000-01-01

    Rice tungro bacilliform virus (RTBV) is a plant pararetrovirus whose DNA genome contains four genes encoding three proteins and a large polyprotein. The function of most of the viral proteins is still unknown. To investigate the role of the gene II product (P2), we searched for interactions between this protein and other RTBV proteins. P2 was shown to interact with the coat protein (CP) domain of the viral gene III polyprotein (P3) both in the yeast two-hybrid system and in vitro. Domains involved in the P2-CP association have been identified and mapped on both proteins. To determine the importance of this interaction for viral multiplication, the infectivity of RTBV gene II mutants was investigated by agroinoculation of rice plants. The results showed that virus viability correlates with the ability of P2 to interact with the CP domain of P3. This study suggests that P2 could participate in RTBV capsid assembly. PMID:10666237

  8. Trypsin and MALDI matrix pre-coated targets simplify sample preparation for mapping proteomic distributions within biological tissues by imaging mass spectrometry

    PubMed Central

    Zubair, Faizan; Laibinis, Paul E.; Swisher, William G.; Yang, Junhai; Spraggins, Jeffrey M.; Norris, Jeremy L.; Caprioli, Richard M.

    2017-01-01

    Prefabricated surfaces containing α-cyano-4-hydroxycinnamic acid and trypsin have been developed to facilitate enzymatic digestion of endogenous tissue proteins prior to matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS). Tissue sections are placed onto slides that were previously coated with α-cyano-4-hydroxycinnamic acid and trypsin. After incubation to promote enzymatic digestion, the tissue is analyzed by MALDI IMS to determine the spatial distribution of the tryptic fragments. The peptides detected in the MALDI IMS dataset were identified by Liquid chromatography-tandem mass spectrometry/mass spectrometry. Protein identification was further confirmed by correlating the localization of unique tryptic fragments originating from common parent proteins. Using this procedure, proteins with molecular weights as large as 300 kDa were identified and their distributions were imaged in sections of rat brain. In particular, large proteins such as myristoylated alanine-rich C-kinase substrate (29.8 kDa) and spectrin alpha chain, non-erythrocytic 1 (284 kDa) were detected that are not observed without trypsin. The pre-coated targets simplify workflow and increase sample throughput by decreasing the sample preparation time. Further, the approach allows imaging at higher spatial resolution compared with robotic spotters that apply one drop at a time. PMID:27676701

  9. Colloid-probe AFM studies of the interaction forces of proteins adsorbed on colloidal crystals.

    PubMed

    Singh, Gurvinder; Bremmell, Kristen E; Griesser, Hans J; Kingshott, Peter

    2015-04-28

    In recent years, colloid-probe AFM has been used to measure the direct interaction forces between colloidal particles of different size or surface functionality in aqueous media, as one can study different forces in symmerical systems (i.e., sphere-sphere geometry). The present study investigates the interaction between protein coatings on colloid probes and hydrophilic surfaces decorated with hexagonally close packed single particle layers that are either uncoated or coated with proteins. Controlled solvent evaporation from aqueous suspensions of colloidal particles (coated with or without lysozyme and albumin) produces single layers of close-packed colloidal crystals over large areas on a solid support. The measurements have been carried out in an aqueous medium at different salt concentrations and pH values. The results show changes in the interaction forces as the surface charge of the unmodified or modified particles, and ionic strength or pH of the solution is altered. At high ionic strength or pH, electrostatic interactions are screened, and a strong repulsive force at short separation below 5 nm dominates, suggesting structural changes in the absorbed protein layer on the particles. We also study the force of adhesion, which decreases with an increment in the salt concentration, and the interaction between two different proteins indicating a repulsive interaction on approach and adhesion on retraction.

  10. Preparation and Evaluation of Enteric-Coated Chitosan Derivative-Based Microparticles Loaded with Salmon Calcitonin as an Oral Delivery System.

    PubMed

    Onishi, Hiraku; Tokuyasu, Ayako

    2016-09-13

    The production of protein drugs has recently increased due to advances in biotechnology, but their clinical use is generally limited to parenteral administration due to low absorption in non-parenteral administration. Therefore, non-parenteral delivery systems allowing sufficient absorption draw much attention. Microparticles (MP) were prepared using chitosan-4-thio-butylamidine conjugate (Ch-TBA), trimethyl-chitosan (TMC), and chitosan (Ch). Using salmon calcitonin (sCT) as a model protein drug, Ch-TBA-, Ch-TBA/TMC (4/1)-, and Ch-based MP were produced, and their Eudragit L100 (Eud)-coated MP, named Ch-TBA-MP/Eud, Ch-TBA/TMC-MP/Eud, and Ch-MP/Eud, respectively, were prepared as oral delivery systems. These enteric-coated microparticles were examined in vitro and in vivo. All microparticles before and after enteric coating had a submicron size (600-800 nm) and micrometer size (1300-1500 nm), respectively. In vitro release patterns were similar among all microparticles; release occurred gradually, and the release rate was slower at pH 1.2 than at pH 6.8. In oral ingestion, Ch-TBA-MP/Eud suppressed plasma Ca levels most effectively among the microparticles tested. The relative effectiveness of Ch-TBA-MP/Eud to the intramuscular injection was 8.6%, while the sCT solution showed no effectiveness. The results suggest that Eud-coated Ch-TBA-based microparticles should have potential as an oral delivery system of protein drugs.

  11. NCO-sP(EO-stat-PO) coatings on gold sensors--a QCM study of hemocompatibility.

    PubMed

    Sinn, Stefan; Eichler, Mirjam; Müller, Lothar; Bünger, Daniel; Groll, Jürgen; Ziemer, Gerhard; Rupp, Frank; Northoff, Hinnak; Geis-Gerstorfer, Jürgen; Gehring, Frank K; Wendel, Hans P

    2011-01-01

    The reliability of implantable blood sensors is often hampered by unspecific adsorption of plasma proteins and blood cells. This not only leads to a loss of sensor signal over time, but can also result in undesired host vs. graft reactions. Within this study we evaluated the hemocompatibility of isocyanate conjugated star shaped polytheylene oxide-polypropylene oxide co-polymers NCO-sP(EO-stat-PO) when applied to gold surfaces as an auspicious coating material for gold sputtered blood contacting sensors. Quartz crystal microbalance (QCM) sensors were coated with ultrathin NCO-sP(EO-stat-PO) films and compared with uncoated gold sensors. Protein resistance was assessed by QCM measurements with fibrinogen solution and platelet poor plasma (PPP), followed by quantification of fibrinogen adsorption. Hemocompatibility was tested by incubation with human platelet rich plasma (PRP). Thrombin antithrombin-III complex (TAT), β-thromboglobulin (β-TG) and platelet factor 4 (PF4) were used as coagulation activation markers. Furthermore, scanning electron microscopy (SEM) was used to visualize platelet adhesion to the sensor surfaces. Compared to uncoated gold sensors, NCO-sP(EO-stat-PO) coated sensors revealed significant better resistance against protein adsorption, lower TAT generation and a lower amount of adherent platelets. Moreover, coating with ultrathin NCO-sP(EO-stat-PO) films creates a cell resistant hemocompatible surface on gold that increases the chance of prolonged sensor functionality and can easily be modified with specific receptor molecules.

  12. Preparation and Evaluation of Enteric-Coated Chitosan Derivative-Based Microparticles Loaded with Salmon Calcitonin as an Oral Delivery System

    PubMed Central

    Onishi, Hiraku; Tokuyasu, Ayako

    2016-01-01

    Background: The production of protein drugs has recently increased due to advances in biotechnology, but their clinical use is generally limited to parenteral administration due to low absorption in non-parenteral administration. Therefore, non-parenteral delivery systems allowing sufficient absorption draw much attention. Methods: Microparticles (MP) were prepared using chitosan-4-thio-butylamidine conjugate (Ch-TBA), trimethyl-chitosan (TMC), and chitosan (Ch). Using salmon calcitonin (sCT) as a model protein drug, Ch-TBA-, Ch-TBA/TMC (4/1)-, and Ch-based MP were produced, and their Eudragit L100 (Eud)-coated MP, named Ch-TBA-MP/Eud, Ch-TBA/TMC-MP/Eud, and Ch-MP/Eud, respectively, were prepared as oral delivery systems. These enteric-coated microparticles were examined in vitro and in vivo. Results: All microparticles before and after enteric coating had a submicron size (600–800 nm) and micrometer size (1300–1500 nm), respectively. In vitro release patterns were similar among all microparticles; release occurred gradually, and the release rate was slower at pH 1.2 than at pH 6.8. In oral ingestion, Ch-TBA-MP/Eud suppressed plasma Ca levels most effectively among the microparticles tested. The relative effectiveness of Ch-TBA-MP/Eud to the intramuscular injection was 8.6%, while the sCT solution showed no effectiveness. Conclusion: The results suggest that Eud-coated Ch-TBA-based microparticles should have potential as an oral delivery system of protein drugs. PMID:27649146

  13. Synthesis and characterization of a stable, label-free optical biosensor from TiO2-coated porous silicon.

    PubMed

    Li, Jianlin; Sailor, Michael J

    2014-05-15

    A nanoscale layer of TiO2 is coated on the inner pore walls of a porous silicon (PSi) film by room-temperature infiltration of a TiO2 sol-gel precursor and firing at 500 °C. The PSi:TiO2 composite films are characterized by Fourier transform infrared (FTIR), X-ray diffraction (XRD), energy dispersive X-ray spectral analysis (EDS), scanning electron microscopy (SEM) and reflective interferometric Fourier transform spectroscopy (RIFTS). The analysis indicates that TiO2 conformally coats the inner pore surfaces of the PSi film. The film displays greater aqueous stability in the pH range 2-12 relative to a PSi:SiO2 surface. A label-free optical interference immunosensor based on the TiO2-coated PSi film is demonstrated by real-time monitoring of the physical adsorption of protein A, followed by the specific binding of rabbit anti-sheep immunoglobulin (IgG) and then specific capture of sheep IgG. The time to achieve equilibrium for the physical adsorption of protein A on the surface of TiO2-coated PSi film is significantly greater than that of PSi film. The specificity of the protein A and rabbit anti-sheep IgG construct on the sensor is confirmed by tests with non-binding chicken IgG. The sensitivity of the immunosensor is shown to be 8210 ± 170 nm/refractive index unit (RIU). Copyright © 2013 Elsevier B.V. All rights reserved.

  14. NCO-sP(EO-stat-PO) Coatings on Gold Sensors—a QCM Study of Hemocompatibility

    PubMed Central

    Sinn, Stefan; Eichler, Mirjam; Müller, Lothar; Bünger, Daniel; Groll, Jürgen; Ziemer, Gerhard; Rupp, Frank; Northoff, Hinnak; Geis-Gerstorfer, Jürgen; Gehring, Frank K.; Wendel, Hans P.

    2011-01-01

    The reliability of implantable blood sensors is often hampered by unspecific adsorption of plasma proteins and blood cells. This not only leads to a loss of sensor signal over time, but can also result in undesired host vs. graft reactions. Within this study we evaluated the hemocompatibility of isocyanate conjugated star shaped polytheylene oxide—polypropylene oxide co-polymers NCO-sP(EO-stat-PO) when applied to gold surfaces as an auspicious coating material for gold sputtered blood contacting sensors. Quartz crystal microbalance (QCM) sensors were coated with ultrathin NCO-sP(EO-stat-PO) films and compared with uncoated gold sensors. Protein resistance was assessed by QCM measurements with fibrinogen solution and platelet poor plasma (PPP), followed by quantification of fibrinogen adsorption. Hemocompatibility was tested by incubation with human platelet rich plasma (PRP). Thrombin antithrombin-III complex (TAT), β-thromboglobulin (β-TG) and platelet factor 4 (PF4) were used as coagulation activation markers. Furthermore, scanning electron microscopy (SEM) was used to visualize platelet adhesion to the sensor surfaces. Compared to uncoated gold sensors, NCO-sP(EO-stat-PO) coated sensors revealed significant better resistance against protein adsorption, lower TAT generation and a lower amount of adherent platelets. Moreover, coating with ultrathin NCO-sP(EO-stat-PO) films creates a cell resistant hemocompatible surface on gold that increases the chance of prolonged sensor functionality and can easily be modified with specific receptor molecules. PMID:22163899

  15. The effects of aggregation and protein corona on the cellular internalization of iron oxide nanoparticles.

    PubMed

    Safi, M; Courtois, J; Seigneuret, M; Conjeaud, H; Berret, J-F

    2011-12-01

    Engineered inorganic nanoparticles are essential components in the development of nanotechnologies. For applications in nanomedicine, particles need to be functionalized to ensure a good dispersibility in biological fluids. In many cases however, functionalization is not sufficient: the particles become either coated by a corona of serum proteins or precipitate out of the solvent. In the present paper, we show that by changing the coating of iron oxide nanoparticles from a low-molecular weight ligand (citrate ions) to small carboxylated polymers (poly(acrylic acid)), the colloidal stability of the dispersion is improved and the adsorption/internalization of iron toward living mammalian cells is profoundly affected. Citrate-coated particles are shown to destabilize in all fetal-calf-serum based physiological conditions tested, whereas the polymer coated particles exhibit an outstanding dispersibility as well as a structure devoid of protein corona. The interactions between nanoparticles and human lymphoblastoid cells are investigated by transmission electron microscopy and flow cytometry. Two types of nanoparticle/cell interactions are underlined. Iron oxides are found either adsorbed on the cellular membranes, or internalized into membrane-bound endocytosis compartments. For the precipitating citrate-coated particles, the kinetics of interactions reveal a massive and rapid adsorption of iron oxide on the cell surfaces. The quantification of the partition between adsorbed and internalized iron was performed from the cytometry data. The results highlight the importance of resilient adsorbed nanomaterials at the cytoplasmic membrane. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Promoter analysis reveals globally differential regulation of human long non-coding RNA and protein-coding genes

    DOE PAGES

    Alam, Tanvir; Medvedeva, Yulia A.; Jia, Hui; ...

    2014-10-02

    Transcriptional regulation of protein-coding genes is increasingly well-understood on a global scale, yet no comparable information exists for long non-coding RNA (lncRNA) genes, which were recently recognized to be as numerous as protein-coding genes in mammalian genomes. We performed a genome-wide comparative analysis of the promoters of human lncRNA and protein-coding genes, finding global differences in specific genetic and epigenetic features relevant to transcriptional regulation. These two groups of genes are hence subject to separate transcriptional regulatory programs, including distinct transcription factor (TF) proteins that significantly favor lncRNA, rather than coding-gene, promoters. We report a specific signature of promoter-proximal transcriptionalmore » regulation of lncRNA genes, including several distinct transcription factor binding sites (TFBS). Experimental DNase I hypersensitive site profiles are consistent with active configurations of these lncRNA TFBS sets in diverse human cell types. TFBS ChIP-seq datasets confirm the binding events that we predicted using computational approaches for a subset of factors. For several TFs known to be directly regulated by lncRNAs, we find that their putative TFBSs are enriched at lncRNA promoters, suggesting that the TFs and the lncRNAs may participate in a bidirectional feedback loop regulatory network. Accordingly, cells may be able to modulate lncRNA expression levels independently of mRNA levels via distinct regulatory pathways. Our results also raise the possibility that, given the historical reliance on protein-coding gene catalogs to define the chromatin states of active promoters, a revision of these chromatin signature profiles to incorporate expressed lncRNA genes is warranted in the future.« less

  17. Promoter analysis reveals globally differential regulation of human long non-coding RNA and protein-coding genes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alam, Tanvir; Medvedeva, Yulia A.; Jia, Hui

    Transcriptional regulation of protein-coding genes is increasingly well-understood on a global scale, yet no comparable information exists for long non-coding RNA (lncRNA) genes, which were recently recognized to be as numerous as protein-coding genes in mammalian genomes. We performed a genome-wide comparative analysis of the promoters of human lncRNA and protein-coding genes, finding global differences in specific genetic and epigenetic features relevant to transcriptional regulation. These two groups of genes are hence subject to separate transcriptional regulatory programs, including distinct transcription factor (TF) proteins that significantly favor lncRNA, rather than coding-gene, promoters. We report a specific signature of promoter-proximal transcriptionalmore » regulation of lncRNA genes, including several distinct transcription factor binding sites (TFBS). Experimental DNase I hypersensitive site profiles are consistent with active configurations of these lncRNA TFBS sets in diverse human cell types. TFBS ChIP-seq datasets confirm the binding events that we predicted using computational approaches for a subset of factors. For several TFs known to be directly regulated by lncRNAs, we find that their putative TFBSs are enriched at lncRNA promoters, suggesting that the TFs and the lncRNAs may participate in a bidirectional feedback loop regulatory network. Accordingly, cells may be able to modulate lncRNA expression levels independently of mRNA levels via distinct regulatory pathways. Our results also raise the possibility that, given the historical reliance on protein-coding gene catalogs to define the chromatin states of active promoters, a revision of these chromatin signature profiles to incorporate expressed lncRNA genes is warranted in the future.« less

  18. Reading Through Paint

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Two-dimensional data matrix symbols, which contain encoded letters and numbers, are permanently etched on items for identification. They can store up to 100 times more information than traditional bar codes. While the symbols provide several advantages over bar codes, once they are covered by paint they can no longer be read by optical scanners. Since most products are painted eventually, this presents a problem for industries relying on the symbols for identification and tracking. In 1987, NASA s Marshall Space Flight Center began studying direct parts marking with matrix symbols in order to track millions of Space Shuttle parts. Advances in the technology proved that by incorporating magnetic properties into the paints, inks, and pastes used to apply the matrix symbols, the codes could be read by a magnetic scanner even after being covered with paint or other coatings. NASA received a patent for such a scanner in 1998, but the system it used for development was not portable and was too costly. A prototype was needed as a lead-in to a production model. In the summer of 2000, NASA began seeking companies to build a hand-held scanner that would detect the Read Through Paint data matrix identification marks containing magnetic materials through coatings.

  19. Different evolutionary patterns of SNPs between domains and unassigned regions in human protein-coding sequences.

    PubMed

    Pang, Erli; Wu, Xiaomei; Lin, Kui

    2016-06-01

    Protein evolution plays an important role in the evolution of each genome. Because of their functional nature, in general, most of their parts or sites are differently constrained selectively, particularly by purifying selection. Most previous studies on protein evolution considered individual proteins in their entirety or compared protein-coding sequences with non-coding sequences. Less attention has been paid to the evolution of different parts within each protein of a given genome. To this end, based on PfamA annotation of all human proteins, each protein sequence can be split into two parts: domains or unassigned regions. Using this rationale, single nucleotide polymorphisms (SNPs) in protein-coding sequences from the 1000 Genomes Project were mapped according to two classifications: SNPs occurring within protein domains and those within unassigned regions. With these classifications, we found: the density of synonymous SNPs within domains is significantly greater than that of synonymous SNPs within unassigned regions; however, the density of non-synonymous SNPs shows the opposite pattern. We also found there are signatures of purifying selection on both the domain and unassigned regions. Furthermore, the selective strength on domains is significantly greater than that on unassigned regions. In addition, among all of the human protein sequences, there are 117 PfamA domains in which no SNPs are found. Our results highlight an important aspect of protein domains and may contribute to our understanding of protein evolution.

  20. Cucumber Necrosis Virus Recruits Cellular Heat Shock Protein 70 Homologs at Several Stages of Infection

    PubMed Central

    Alam, Syed Benazir

    2015-01-01

    ABSTRACT RNA viruses often depend on host factors for multiplication inside cells due to the constraints of their small genome size and limited coding capacity. One such factor that has been exploited by several plant and animal viruses is heat shock protein 70 (HSP70) family homologs which have been shown to play roles for different viruses in viral RNA replication, viral assembly, disassembly, and cell-to-cell movement. Using next generation sequence analysis, we reveal that several isoforms of Hsp70 and Hsc70 transcripts are induced to very high levels during cucumber necrosis virus (CNV) infection of Nicotiana benthamiana and that HSP70 proteins are also induced by at least 10-fold. We show that HSP70 family protein homologs are co-opted by CNV at several stages of infection. We have found that overexpression of Hsp70 or Hsc70 leads to enhanced CNV genomic RNA, coat protein (CP), and virion accumulation, whereas downregulation leads to a corresponding decrease. Hsc70-2 was found to increase solubility of CNV CP in vitro and to increase accumulation of CNV CP independently of viral RNA replication during coagroinfiltration in N. benthamiana. In addition, virus particle assembly into virus-like particles in CP agroinfiltrated plants was increased in the presence of Hsc70-2. HSP70 was found to increase the targeting of CNV CP to chloroplasts during infection, reinforcing the role of HSP70 in chloroplast targeting of host proteins. Hence, our findings have led to the discovery of a highly induced host factor that has been co-opted to play multiple roles during several stages of the CNV infection cycle. IMPORTANCE Because of the small size of its RNA genome, CNV is dependent on interaction with host cellular components to successfully complete its multiplication cycle. We have found that CNV induces HSP70 family homologs to a high level during infection, possibly as a result of the host response to the high levels of CNV proteins that accumulate during infection. Moreover, we have found that CNV co-opts HSP70 family homologs to facilitate several aspects of the infection process such as viral RNA, coat protein and virus accumulation. Chloroplast targeting of the CNV CP is also facilitated, which may aid in CNV suppression of host defense responses. Several viruses have been shown to induce HSP70 during infection and others to utilize HSP70 for specific aspects of infection such as replication, assembly, and disassembly. We speculate that HSP70 may play multiple roles in the infection processes of many viruses. PMID:26719261

  1. The Number, Organization, and Size of Polymorphic Membrane Protein Coding Sequences as well as the Most Conserved Pmp Protein Differ within and across Chlamydia Species.

    PubMed

    Van Lent, Sarah; Creasy, Heather Huot; Myers, Garry S A; Vanrompay, Daisy

    2016-01-01

    Variation is a central trait of the polymorphic membrane protein (Pmp) family. The number of pmp coding sequences differs between Chlamydia species, but it is unknown whether the number of pmp coding sequences is constant within a Chlamydia species. The level of conservation of the Pmp proteins has previously only been determined for Chlamydia trachomatis. As different Pmp proteins might be indispensible for the pathogenesis of different Chlamydia species, this study investigated the conservation of Pmp proteins both within and across C. trachomatis,C. pneumoniae,C. abortus, and C. psittaci. The pmp coding sequences were annotated in 16 C. trachomatis, 6 C. pneumoniae, 2 C. abortus, and 16 C. psittaci genomes. The number and organization of polymorphic membrane coding sequences differed within and across the analyzed Chlamydia species. The length of coding sequences of pmpA,pmpB, and pmpH was conserved among all analyzed genomes, while the length of pmpE/F and pmpG, and remarkably also of the subtype pmpD, differed among the analyzed genomes. PmpD, PmpA, PmpH, and PmpA were the most conserved Pmp in C. trachomatis,C. pneumoniae,C. abortus, and C. psittaci, respectively. PmpB was the most conserved Pmp across the 4 analyzed Chlamydia species. © 2016 S. Karger AG, Basel.

  2. Analyses of protein corona on bare and silica-coated gold nanorods against four mammalian cells.

    PubMed

    Das, Minakshi; Yi, Dong Kee; An, Seong Soo A

    2015-01-01

    The purpose of this study was to investigate the mechanisms responsible for the toxic effects of gold nanorods (AuNRs). Here, a comprehensive study was performed by examining the effects of bare (uncoated) AuNRs and AuNRs functionalized with silica (SiO2-AuNRs) against various mammalian cell lines, including cervical cancer cells, fibroblast cells, human umbilical vein endothelial cells, and neuroblastoma cells. The interactions between AuNRs and mammalian cells were investigated with cell viability and mortality assays. Dihydrorhodamine-123 assay was carried out for evaluating reactive oxygen species (ROS) generation, along with mass spectroscopy analysis for determining the composition of the protein corona. Our results suggest that even the lowest concentrations of AuNRs (0.7 μg/mL) induced ROS production leading to cell mortality. On the other hand, cellular viability and ROS production were maintained even at a higher concentration of SiO2-coated AuNRs (12 μg/mL). The increased production of ROS by AuNRs seemed to cause the toxicity observed in all four mammalian cell types. The protein corona on the bare AuNRs did not appear to reduce ROS generation; however, different compositions of the protein corona on bare and SiO2-coated AuNRs may affect cellular behavior differently. Therefore, it was determined that SiO2-coated AuNRs would be more advantageous than bare AuNRs for cellular applications.

  3. Experimental studies related to the origin of the genetic code and the process of protein synthesis - A review

    NASA Technical Reports Server (NTRS)

    Lacey, J. C., Jr.; Mullins, D. W., Jr.

    1983-01-01

    A survey is presented of the literature on the experimental evidence for the genetic code assignments and the chemical reactions involved in the process of protein synthesis. In view of the enormous number of theoretical models that have been advanced to explain the origin of the genetic code, attention is confined to experimental studies. Since genetic coding has significance only within the context of protein synthesis, it is believed that the problem of the origin of the code must be dealt with in terms of the origin of the process of protein synthesis. It is contended that the answers must lie in the nature of the molecules, amino acids and nucleotides, the affinities they might have for one another, and the effect that those affinities must have on the chemical reactions that are related to primitive protein synthesis. The survey establishes that for the bulk of amino acids, there is a direct and significant correlation between the hydrophobicity rank of the amino acids and the hydrophobicity rank of their anticodonic dinucleotides.

  4. Study of the adhesion of neurodegenerative proteins on plasma-modified and coated polypropylene surfaces.

    PubMed

    Poncin-Epaillard, F; Mille, C; Debarnot, D; Zorzi, W; El Moualij, B; Coudreuse, A; Legeay, G; Quadrio, I; Perret-Liaudet, A

    2012-01-01

    The inner polymeric surface of an ELISA titration well is plasma-modified and coated with different surfactant molecules. The titration of neurodegenerative proteins markers (prion, Tau and β-synuclein), previously demonstrated as more efficient with such modified tubes, is related to the adhesion behaviour of these proteins and their corresponding capture antibodies. The adhesion process is studied in terms of anchoring and specific mechanisms. The proteins and antibodies binding onto such modified surfaces is related to the substrate hydrophilic character calculated from the angle contact measure, to the polymer surface charge measured through the streaming potential determination at different pH and the inner surface roughness determined from AFM images. Furthermore, the influence of the blocking agent used during the ELISA titration is also studied.

  5. Towards a high yield recovery of polyphenols from olive mill wastewater on activated carbon coated with milk proteins: Experimental design and antioxidant activity.

    PubMed

    Yangui, Asma; Abderrabba, Manef

    2018-10-01

    Activated carbon coated with milk proteins was used for the removal and recovery of phenolic compounds from actual olive mill wastewater (OMW). The extraction of polyphenols using the new adsorbent based on natural coating agent has significant potential compared with traditional extraction methods, as it significantly increases the extraction yield (80%) and overall efficiencies of the process for total phenols (75.4%) and hydroxytyrosol (90.6%) which is the most valuable compound. Complete discussions on the adsorption isotherms, kinetic and thermodynamic were performed and the optimum adsorption variables were investigated using the response surface methodology and the central composite experimental design. The extracted polyphenols exhibited a high antioxidant activity and a fast scavenging effect on DPPH free radical. The strategy devised in this work for polyphenol extraction using modified activated carbon with biological coating agent is of simple design, very effective and ensure the recovery of highly antioxidant extract. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Immobilization of bacterial S-layer proteins from Caulobacter crescentus on iron oxide-based nanocomposite: synthesis and spectroscopic characterization of zincite-coated Fe₂O₃ nanoparticles.

    PubMed

    Habibi, Neda

    2014-05-05

    Zinc oxide was coated on Fe2O3 nanoparticles using sol-gel spin-coating. Caulobacter crescentus have a crystalline surface layer (S-layer), which consist of one protein or glycoprotein species. The immobilization of bacterial S-layers obtained from C. crescentus on zincite-coated nanoparticles of iron oxide was investigated. The SDS PAGE results of S-layers isolated from C. crescentus showed the weight of 50 KDa. Nanoparticles of the Fe2O3 and zinc oxide were synthesized by a sol-gel technique. Fe2O3 nanoparticles with an average size of 50 nm were successfully prepared by the proper deposition of zinc oxide onto iron oxide nanoparticles surface annealed at 450 °C. The samples were characterized by field-emission scanning electron microscope (FESEM), atomic force microscopy (AFM), powder X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FT-IR). Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Effect of antifreeze protein on heterogeneous ice nucleation based on a two-dimensional random-field Ising model

    NASA Astrophysics Data System (ADS)

    Dong, Zhen; Wang, Jianjun; Zhou, Xin

    2017-05-01

    Antifreeze proteins (AFPs) are the key biomolecules that protect many species from suffering the extreme conditions. Their unique properties of antifreezing provide the potential of a wide range of applications. Inspired by the present experimental approaches of creating an antifreeze surface by coating AFPs, here we present a two-dimensional random-field lattice Ising model to study the effect of AFPs on heterogeneous ice nucleation. The model shows that both the size and the free-energy effect of individual AFPs and their surface coverage dominate the antifreeze capacity of an AFP-coated surface. The simulation results are consistent with the recent experiments qualitatively, revealing the origin of the surprisingly low antifreeze capacity of an AFP-coated surface when the coverage is not particularly high as shown in experiment. These results will hopefully deepen our understanding of the antifreeze effects and thus be potentially useful for designing novel antifreeze coating materials based on biomolecules.

  8. Controlled, sustained release of proteins via an injectable, mineral-coated microsphere delivery vehicle

    NASA Astrophysics Data System (ADS)

    Franklin-Ford, Travelle

    Hydroxyapatite interfaces have demonstrated strong protein binding and protein selection from a passing solution and can serve as a biocompatible carrier for controlled protein delivery. Hydroxyapatite is a major component of long bones and tooth enamel and is the most stable of all calcium phosphate isoforms in aqueous solutions at physiologic pH, providing a sensitive chromatographic mechanism for separating proteins. Here we describe an approach to create a synthetic hydroxyapatite coating through a biomimetic, heterogeneous nucleation from a modified simulated body fluid--supersaturated with calcium and phosphate ions on the surface of injectable polymer microspheres. We are able to bind and release bioactive growth factors into a variety of in vitro and in vivo conditions, demonstrating the functionality and advantage of the biomaterial. Creating a hydroxyapatite layer on the Poly(D,L-lactide-co-glycolide) (PLG) microsphere surface, avails the microsphere interior for another application that will not compete with protein binding and release. Encapsulating an imaging agent within the aqueous phase of the emulsion provides a visual reference for the injectable therapy upon microsphere fabrication. Another advantage of this system is that the mineral coating and subsequent protein binding is not compromised by the encapsulated imaging agent. This dual function delivery vehicle is not only advantageous for spatial tracking therapeutic applications, but also determining the longevity of the delivery vehicle once injected. In the broader sense, providing a mechanism to image and track our temporally controlled, sustained delivery system gives more evidence to support the effects of released protein on in vivo responses (bioactivity) and locate microspheres within different biological systems.

  9. Thermo-stable carbon nanotube-TiO₂ nanocompsite as electron highways in dye-sensitized solar cell produced by bio-nano-process.

    PubMed

    Inoue, Ippei; Yamauchi, Hirofumi; Okamoto, Naofumi; Toyoda, Kenichi; Horita, Masahiro; Ishikawa, Yasuaki; Yasueda, Hisashi; Uraoka, Yukiharu; Yamashita, Ichiro

    2015-07-17

    We produced a thermostable TiO2-(anatase)-coated multi-walled-carbon-nanotube (MWNT) nanocomposite for use in dye-sensitized solar cells (DSSCs) using biological supuramolecules as catalysts. We synthesized two different sizes of iron oxide nanoparticles (NPs) and arrayed the NPs on a silicon substrate utilizing two kinds of genetically modified cage-shaped proteins with silicon-binding peptide aptamers on their outer surfaces. Chemical vapor deposition (CVD) with the vapor-liquid-solid phase (VLS) method was applied to the substrate, and thermostable MWNTs with a diameter of 6 ± 1 nm were produced. Using a genetically modified cage-shaped protein with carbon-nanomaterials binding and Ti-mineralizing peptides as a catalyst, we were able to mineralize a titanium compound around the surface of the MWNT. The products were sintered, and thin TiO2-layer-coated MWNTs nanocomoposites were successfully produced. Addition of a 0.2 wt% TiO2-coated MWNT nanocomposite to a DSSC photoelectrode improved current density by 11% and decreased electric resistance by 20% compared to MWNT-free reference DSSCs. These results indicate that a nanoscale TiO2-layer-coated thermostable MWNT structure produced by our mutant proteins works as a superior electron transfer highway within TiO2 photoelectrodes.

  10. Thermo-stable carbon nanotube-TiO2 nanocompsite as electron highways in dye-sensitized solar cell produced by bio-nano-process

    NASA Astrophysics Data System (ADS)

    Inoue, Ippei; Yamauchi, Hirofumi; Okamoto, Naofumi; Toyoda, Kenichi; Horita, Masahiro; Ishikawa, Yasuaki; Yasueda, Hisashi; Uraoka, Yukiharu; Yamashita, Ichiro

    2015-07-01

    We produced a thermostable TiO2-(anatase)-coated multi-walled-carbon-nanotube (MWNT) nanocomposite for use in dye-sensitized solar cells (DSSCs) using biological supuramolecules as catalysts. We synthesized two different sizes of iron oxide nanoparticles (NPs) and arrayed the NPs on a silicon substrate utilizing two kinds of genetically modified cage-shaped proteins with silicon-binding peptide aptamers on their outer surfaces. Chemical vapor deposition (CVD) with the vapor-liquid-solid phase (VLS) method was applied to the substrate, and thermostable MWNTs with a diameter of 6 ± 1 nm were produced. Using a genetically modified cage-shaped protein with carbon-nanomaterials binding and Ti-mineralizing peptides as a catalyst, we were able to mineralize a titanium compound around the surface of the MWNT. The products were sintered, and thin TiO2-layer-coated MWNTs nanocomoposites were successfully produced. Addition of a 0.2 wt% TiO2-coated MWNT nanocomposite to a DSSC photoelectrode improved current density by 11% and decreased electric resistance by 20% compared to MWNT-free reference DSSCs. These results indicate that a nanoscale TiO2-layer-coated thermostable MWNT structure produced by our mutant proteins works as a superior electron transfer highway within TiO2 photoelectrodes.

  11. Chromatographic matrix based on hydrogel-coated reticulated polyurethane foams, prepared by gamma irradiation

    NASA Astrophysics Data System (ADS)

    Sánchez, Mirna L.; Giménez, Claudia Y.; Delgado, Juan F.; Martínez, Leandro J.; Grasselli, Mariano

    2017-12-01

    Novel chromatographic materials for protein purification with high adsorption capacity and fouling resistance are highly demanded to improve downstream processes. Here, we describe a novel adsorptive material based on reticulated polyurethane foam (rPUF) coated with a functional hydrogel layer. rPUF provides physical rigidity through its macroscopic structure, whereas the hydrogel layer provides capacity to adsorb proteins by specific interactions. The hydrogel coating process was performed by the dip-coating method, using a polyvinyl alcohol (PVA) solution. The PVA hydrogel was linked to the rPUF material by using a radiation-induced crosslinking process in aqueous ethanol solution. The ethanol in the solvent mixture allowed a balance between PVA swelling and PVA dissolution during the irradiation step. The resulting material showed higher thermal stability than the non-irradiated one. In addition, a simultaneous radiation-induced grafting polymerization (SRIGP) was done by simple addition of glycidyl methacrylate monomer into the irradiation solution. In a further step, sulfonic ligands were included specifically in the hydrogel layer, which contained around 200% of PVA respect to the original rPUF. Materials were characterized by FT-IR, thermogravimetric analysis, SEM microscopy and EDX analysis. The cation-exchange rPUF material was functionally characterized by the Langmuir isotherm and a dynamic adsorption experiment to analyze the chromatographic properties for protein purification processes.

  12. Semi-permeable coatings fabricated from comb-polymers efficiently protect proteins in vivo

    NASA Astrophysics Data System (ADS)

    Liu, Mi; Johansen, Pål; Zabel, Franziska; Leroux, Jean-Christophe; Gauthier, Marc A.

    2014-11-01

    In comparison to neutral linear polymers, functional and architecturally complex (that is, non-linear) polymers offer distinct opportunities for enhancing the properties and performance of therapeutic proteins. However, understanding how to harness these parameters is challenging, and studies that capitalize on them in vivo are scarce. Here we present an in vivo demonstration that modification of a protein with a polymer of appropriate architecture can impart low immunogenicity, with a commensurably low loss of therapeutic activity. These combined properties are inaccessible by conventional strategies using linear polymers. For the model protein L-asparaginase, a comb-polymer bio-conjugate significantly outperformed the linear polymer control in terms of lower immune response and more sustained bioactivity. The semi-permeability characteristics of the coatings are consistent with the phase diagram of the polymer, which will facilitate the application of this strategy to other proteins and with other therapeutic models.

  13. Exploring luminescence-based temperature sensing using protein-passivated gold nanoclusters

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Essner, Jeremy B.; Baker, Gary A.

    2014-07-01

    We explore the analytical performance and limitations of optically monitoring aqueous-phase temperature using protein-protected gold nanoclusters (AuNCs). Although not reported elsewhere, we find that these bio-passivated AuNCs show pronounced hysteresis upon thermal cycling. This unwanted behaviour can be eliminated by several strategies, including sol-gel coating and thermal denaturation of the biomolecular template, introducing protein-templated AuNC probes as viable nanothermometers.We explore the analytical performance and limitations of optically monitoring aqueous-phase temperature using protein-protected gold nanoclusters (AuNCs). Although not reported elsewhere, we find that these bio-passivated AuNCs show pronounced hysteresis upon thermal cycling. This unwanted behaviour can be eliminated by several strategies, including sol-gel coating and thermal denaturation of the biomolecular template, introducing protein-templated AuNC probes as viable nanothermometers. Electronic supplementary information (ESI) available: Supplemental figures and experimental details. See DOI: 10.1039/c4nr02069c

  14. Enrichment of plasma membrane proteins using nanoparticle pellicles: comparison between silica and higher density nanoparticles

    PubMed Central

    Choksawangkarn, Waeowalee; Kim, Sung-Kyoung; Cannon, Joe R.; Edwards, Nathan J.; Lee, Sang Bok; Fenselau, Catherine

    2013-01-01

    Proteomic and other characterization of plasma membrane proteins is made difficult by their low abundance, hydrophobicity, frequent carboxylation and dynamic population. We and others have proposed that underrepresentation in LC-MS/MS analysis can be partially compensated by enriching the plasma membrane and its proteins using cationic nanoparticle pellicles. The nanoparticles increase the density of plasma membrane sheets and thus enhance separation by centrifugation from other lysed cellular components. Herein we test the hypothesis that the use of nanoparticles with increased densities can provide enhanced enrichment of plasma membrane proteins for proteomic analysis. Multiple myeloma cells were grown and coated in suspension with three different pellicles of three different densities and both pellicle coated and uncoated suspensions analyzed by high-throughput LC-MS/MS. Enrichment was evaluated by the total number and the spectral counts of identified plasma membrane proteins. PMID:23289353

  15. Surface functionalization of dopamine coated iron oxide nanoparticles for various surface functionalities

    NASA Astrophysics Data System (ADS)

    Sherwood, Jennifer; Xu, Yaolin; Lovas, Kira; Qin, Ying; Bao, Yuping

    2017-04-01

    We present effective conjugation of four small molecules (glutathione, cysteine, lysine, and Tris(hydroxymethyl)aminomethane) onto dopamine-coated iron oxide nanoparticles. Conjugation of these molecules could improve the surface functionality of nanoparticles for more neutral surface charge at physiological pH and potentially reduce non-specific adsorption of proteins to nanoparticles surfaces. The success of conjugation was evaluated with dynamic light scattering by measuring the surface charge changes and Fourier transform infrared spectroscopy for surface chemistry analysis. The stability of dopamine-coated nanoparticles and the ability of conjugated nanoparticles to reduce the formation of protein corona were evaluated by measuring the size and charge of the nanoparticles in biological medium. This facile conjugation method opens up possibilities for attaching various surface functionalities onto iron oxide nanoparticle surfaces for biomedical applications.

  16. Lima bean (Phaseolus lunatus) seed coat phaseolin is detrimental to the cowpea weevil (Callosobruchus maculatus).

    PubMed

    Moraes, R A; Sales, M P; Pinto, M S; Silva, L B; Oliveira, A E; Machado, O L; Fernandes, K V; Xavier-Filho, J

    2000-02-01

    The presence of phaseolin (a vicilin-like 7S storage globulin) peptides in the seed coat of the legume Phaseolus lunatus L. (lima bean) was demonstrated by N-terminal amino acid sequencing. Utilizing an artificial seed system assay we showed that phaseolin, isolated from both cotyledon and testa tissues of P. lunatus, is detrimental to the nonhost bruchid Callosobruchus maculatus (F) (cowpea weevil) with ED50 of 1.7 and 3.5%, respectively. The level of phaseolin in the seed coat (16.7%) was found to be sufficient to deter larval development of this bruchid. The expression of a C. maculatus-detrimental protein in the testa of nonhost seeds suggests that the protein may have played a significant role in the evolutionary adaptation of bruchids to legume seeds.

  17. Phylogeny of lion tamarins (Leontopithecus spp) based on interphotoreceptor retinol binding protein intron sequences.

    PubMed

    Mundy, N I; Kelly, J

    2001-05-01

    The evolutionary relationships of the lion tamarins (Leontopithecus) were investigated using nuclear interphotoreceptor retinol binding protein (IRBP) intron sequences. Phylogenetic reconstructions strongly support the monophyly of the genus, and a sister relationship between the golden lion tamarin, Leontopithecus rosalia, and the black lion tamarin, L. chrysopygus, to the exclusion of the golden-headed lion tamarin, L. chrysomelas. The most parsimonious evolutionary reconstruction suggests that the ancestral lion tamarin and the common ancestor of L. rosalia and L. chrysopygus had predominantly black coats. This reconstruction is not consistent with a theory of orthogenetic evolution of coat color that was based on coat color evolution in marmosets and tamarins. An alternative reconstruction that is consistent with metachromism requires that ancestral lion tamarins had agouti hairs. Copyright 2001 Wiley-Liss, Inc.

  18. Use of proteins to minimize the physical aging of EUDRAGIT sustained release films.

    PubMed

    Kucera, Shawn A; McGinity, James W; Zheng, Weijia; Shah, Navnit H; Malick, A Waseem; Infeld, Martin H

    2007-07-01

    The objective of this study was to investigate the influence of two proteins, albumin and type B gelatin, on the physical aging of EUDRAGIT RS 30 D and RL 30 D coated theophylline pellets. The physicomechanical properties of sprayed films, thermal properties of cast films, influence of proteins on the zeta potential and particle size of the dispersion, and the release of proteins from cast films under simulated dissolution conditions were investigated. The release rate of theophylline decreased significantly over time from pellets coated with an acrylic dispersion containing 10% albumin when there was no acidification of the acrylic dispersion; however, when pellets were coated with an acidified EUDRAGIT/albumin dispersion, the theophylline release rate was stable for dosage forms stored in the absence of humidity. The drug release rate was faster for pellets coated with acrylic dispersions containing 10% gelatin compared to the albumin-containing formulations. When sprayed films were stored at 40 degrees C/75% RH, the water vapor permeability decreased significantly for both EUDRAGIT films and those containing EUDRAGIT and albumin; however, there was no significant change in this parameter when 10% gelatin was present. Albumin was released from the acrylic films when the pH of the dissolution media was below the isoelectric point of the protein while no quantitative release of gelatin was observed in pH 1.2 or 7.4 media. The effect of gelatin to prevent the decrease in drug release rate was due to stabilization in water vapor permeability of the film. Acidification of the polymeric dispersion resulted in electrostatic repulsive forces between albumin and the acrylic polymer, which stabilized the drug release rate when the dosage forms were stored in aluminum induction sealed containers at both 40 degrees C/75% RH and 25 degrees C/60% RH.

  19. Upregulation of cell proliferation via Shc and ERK1/2 MAPK signaling in SaOS-2 osteoblasts grown on magnesium alloy surface coating with tricalcium phosphate.

    PubMed

    Jiang, Tianlong; Guo, Lei; Ni, Shenghui; Zhao, Yuyan

    2015-04-01

    Magnesium (Mg) alloys have been demonstrated to be viable orthopedic implants because of mechanical and biocompatible properties similar to natural bone. In order to improve its osteogenic properties, a porous β-tricalcium phosphate (β-TCP) was coated on the Mg-3AI-1Zn alloy by alkali-heat treatment technique. The human bone-derived cells (SaOS-2) were cultured on (β-TCP)-Mg-3AI-1Zn in vitro, and the osteoblast response, the morphology and the elements on this alloy surface were investigated. Also, the regulation of key intracellular signalling proteins was investigated in the SaOS-2 cells cultured on alloy surface. The results from scanning electron microscope and immunofluorescence staining demonstrated that (β-TCP)-Mg-3AI-1Zn induced significant osteogenesis. SaOS-2 cell proliferation was improved by β-TCP coating. Moreover, the (β-TCP)-Mg-3AI-1Zn surface induced activation of key intracellular signalling proteins in SaOS-2 cells. We observed an enhanced activation of Src homology and collagen (Shc), a common point of integration between bone morphogenetic protein 2, and the Ras/mitogen-activated protein kinase (MAPK) pathway. ERK1/2 MAP kinase activation was also upregulated, suggesting a role in mediating osteoblastic cell interactions with biomaterials. The signalling pathway involving c-fos (member of the activated protein-1) was also shown to be upregulated in osteoblasts cultured on the (β-TCP)-Mg-3AI-1Zn. These results suggest that β-TCP coating may contribute to successful osteoblast function on Mg alloy surface. (β-TCP)-Mg-3AI-1Zn may upregulate cell proliferation via Shc and ERK1/2 MAPK signaling in SaOS-2 osteoblasts grown on Mg alloy surface.

  20. Dynamic interactions of the asialoglycoprotein receptor subunits with coated pits. Enhanced interactions of H2 following association with H1.

    PubMed

    Katzir, Z; Nardi, N; Geffen, I; Fuhrer, C; Henis, Y I

    1994-08-26

    Lateral mobility studies comparing native and mutated membrane proteins, combined with treatments that alter clathrin lattice structure, can measure membrane protein-coated pit interactions in intact cells (Fire, E., Zwart, D., Roth, M. G., and Henis, Y. I. (1991) J. Cell Biol. 115, 1585-1594). We applied this approach to study the interactions of the H1 and H2 human asialoglycoprotein receptor subunits with coated pits. The lateral mobilities of singly expressed and coexpressed H1 and H2B (the H2 species that reaches the cell surface) were measured by fluorescence photobleaching recovery. They were compared with mutant proteins, H1(5A) (Tyr-5 replaced by Ala) and H2(5A) (Phe-5 replaced by Ala). While the mobile fractions of H1, H2B, and their mutants were similar, the lateral diffusion rate (measured by D, the lateral diffusion coefficient) was significantly slower for H1, whether expressed alone or with H2B. Coexpression with H1 reduced D of H2B to that of H1. Disruption of the clathrin lattices by hypertonic medium elevated D of H1, H1(5A), H2B, and H2(5A) to the same final level, without affecting their mobile fractions. Cytosol acidification, which retains altered clathrin lattices attached to the membrane and prevents coated vesicle formation, immobilized part of the H1 molecules, reflecting stable entrapment in "frozen" coated pits. H1(5A), H2B, and H2(5A) were not affected; however, coexpression of H2B with H1 conferred the sensitivity to cytosol acidification on H2B. Our results suggest that H1 lateral mobility is inhibited by dynamic interactions with coated pits in which Tyr-5 is involved. H2B resembles H1(5A) rather than H1, and its interactions with coated pits are weaker; efficient interaction of H2B with coated pits depends on complex formation with H1.

  1. Molecular analysis of the mouse agouti gene and the role of dominant agouti-locus mutations in obesity and insulin resistance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klebig, M.L.; Woychik, R.P.; Wilkinson, J.E.

    1994-09-01

    The lethal yellow (A{sup y/-}) and viable yellow (A{sup vy/-}) mouse agouti mutants have a predominantly yellow pelage and display a complex syndrome that includes obesity, hyperinsulinemia, and insulin resistance, hallmark features of obesity-associated noninsulin-dependent diabetes mellitus (NIDDM) in humans. A new dominant agouti allele, A{sup iapy}, has recently been identified; like the A{sup vy} allele, it is homozygous viable and confers obesity and yellow fur in heterozygotes. The agouti gene was cloned and characterized at the molecular level. The gene is expressed in the skin during hair growth and is predicted to encode a 131 amino acid protein, thatmore » is likely to be a secreted factor. In both Ay/- and A{sup iapy}/- mice, the obesity and other dominant pleiotropic effects are associated with an ectopic expression of agouti in many tissues where the gene product is normally not produced. In Ay, a 170-kb deletion has occurred that causes an upstream promoter to drive the ectopic expression of the wild-type agouti coding exons. In A{sup iapy}, the coding region of the gene is expressed from a cryptic promoter within the LTR of an intracisternal A-particle (IAP), which has integrated within the region just upstream of the first agouti coding exon. Transgenic mice ubiquitously expressing the cloned agouti gene under the influence of the beta-actin and phosphoglycerate kinase promoters display obesity, hyperinsulinemia, and yellow coat color. This demonstrates unequivocally that ectopic expression of agouti is responsible for the yellow obese syndrome.« less

  2. Spore formation in Myxococcus xanthus is tied to cytoskeleton functions and polysaccharide spore coat deposition

    PubMed Central

    Müller, Frank D.; Schink, Christian W.; Hoiczyk, Egbert; Cserti, Emöke; Higgs, Penelope I.

    2011-01-01

    Summary Myxococcus xanthus is a Gram-negative bacterium that differentiates into environmentally resistant spores. Spore differentiation involves septation-independent remodelling of the rod-shaped vegetative cell into a spherical spore and deposition of a thick and compact spore coat outside of the outer membrane. Our analyses suggest that spore coat polysaccharides are exported to the cell surface by the Exo outer membrane polysaccharide export/polysaccharide co-polymerase 2a (OPX/PCP-2a) machinery. Conversion of the capsule-like polysaccharide layer into a compact spore coat layer requires the Nfs proteins which likely form a complex in the cell envelope. Mutants in either nfs, exo, or two other genetic loci encoding homologs of polysaccharide synthesis enzymes, fail to complete morphogenesis from rods to spherical spores and instead produce a transient state of deformed cell morphology before reversion into typical rods. We additionally provide evidence that the cell cytoskeletal protein, MreB, plays an important role in rod to spore morphogenesis and for spore outgrowth. These studies provide evidence that this novel gram-negative differentiation process is tied to cytoskeleton functions and polysaccharide spore coat deposition. PMID:22188356

  3. Structural Phylogenomics Retrodicts the Origin of the Genetic Code and Uncovers the Evolutionary Impact of Protein Flexibility

    PubMed Central

    Caetano-Anollés, Gustavo; Wang, Minglei; Caetano-Anollés, Derek

    2013-01-01

    The genetic code shapes the genetic repository. Its origin has puzzled molecular scientists for over half a century and remains a long-standing mystery. Here we show that the origin of the genetic code is tightly coupled to the history of aminoacyl-tRNA synthetase enzymes and their interactions with tRNA. A timeline of evolutionary appearance of protein domain families derived from a structural census in hundreds of genomes reveals the early emergence of the ‘operational’ RNA code and the late implementation of the standard genetic code. The emergence of codon specificities and amino acid charging involved tight coevolution of aminoacyl-tRNA synthetases and tRNA structures as well as episodes of structural recruitment. Remarkably, amino acid and dipeptide compositions of single-domain proteins appearing before the standard code suggest archaic synthetases with structures homologous to catalytic domains of tyrosyl-tRNA and seryl-tRNA synthetases were capable of peptide bond formation and aminoacylation. Results reveal that genetics arose through coevolutionary interactions between polypeptides and nucleic acid cofactors as an exacting mechanism that favored flexibility and folding of the emergent proteins. These enhancements of phenotypic robustness were likely internalized into the emerging genetic system with the early rise of modern protein structure. PMID:23991065

  4. Titania-polymeric powder coatings with nano-topography support enhanced human mesenchymal cell responses.

    PubMed

    Mozumder, Mohammad Sayem; Zhu, Jesse; Perinpanayagam, Hiran

    2012-10-01

    Titanium implant osseointegration is dependent on the cellular response to surface modifications and coatings. Titania-enriched nanocomposite polymeric resin coatings were prepared through the application of advanced ultrafine powder coating technology. Their surfaces were readily modified to create nano-rough (<100 nm) surface nano-topographies that supported human embryonic palatal mesenchymal cell responses. Energy dispersive x-ray spectroscopy confirmed continuous and homogenous coatings with a similar composition and even distribution of titanium. Scanning electron microscopy (SEM) showed complex micro-topographies, and atomic force microscopy revealed intricate nanofeatures and surface roughness. Cell counts, mitochondrial enzyme activity reduction of yellow 3-(4,5-dimethythiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) to dark purple, SEM, and inverted fluorescence microscopy showed a marked increase in cell attachment, spreading, proliferation, and metabolic activity on the nanostructured surfaces. Reverse Transcription- Polymerase Chain Reaction (RT-PCR) analysis showed that type I collagen and Runx2 expression were induced, and Alizarin red staining showed that mineral deposits were abundant in the cell cultures grown on nanosurfaces. This enhancement in human mesenchymal cell attachment, growth, and osteogenesis were attributed to the nanosized surface topographies, roughness, and moderate wetting characteristics of the coatings. Their dimensional similarity to naturally occurring matrix proteins and crystals, coupled with their increased surface area for protein adsorption, may have facilitated the response. Therefore, this application of ultrafine powder coating technology affords highly biocompatible surfaces that can be readily modified to accentuate the cellular response. Copyright © 2012 Wiley Periodicals, Inc.

  5. CombAlign: a code for generating a one-to-many sequence alignment from a set of pairwise structure-based sequence alignments.

    PubMed

    Zhou, Carol L Ecale

    2015-01-01

    In order to better define regions of similarity among related protein structures, it is useful to identify the residue-residue correspondences among proteins. Few codes exist for constructing a one-to-many multiple sequence alignment derived from a set of structure or sequence alignments, and a need was evident for creating such a tool for combining pairwise structure alignments that would allow for insertion of gaps in the reference structure. This report describes a new Python code, CombAlign, which takes as input a set of pairwise sequence alignments (which may be structure based) and generates a one-to-many, gapped, multiple structure- or sequence-based sequence alignment (MSSA). The use and utility of CombAlign was demonstrated by generating gapped MSSAs using sets of pairwise structure-based sequence alignments between structure models of the matrix protein (VP40) and pre-small/secreted glycoprotein (sGP) of Reston Ebolavirus and the corresponding proteins of several other filoviruses. The gapped MSSAs revealed structure-based residue-residue correspondences, which enabled identification of structurally similar versus differing regions in the Reston proteins compared to each of the other corresponding proteins. CombAlign is a new Python code that generates a one-to-many, gapped, multiple structure- or sequence-based sequence alignment (MSSA) given a set of pairwise sequence alignments (which may be structure based). CombAlign has utility in assisting the user in distinguishing structurally conserved versus divergent regions on a reference protein structure relative to other closely related proteins. CombAlign was developed in Python 2.6, and the source code is available for download from the GitHub code repository.

  6. Deep transcriptome annotation enables the discovery and functional characterization of cryptic small proteins

    PubMed Central

    Delcourt, Vivian; Lucier, Jean-François; Gagnon, Jules; Beaudoin, Maxime C; Vanderperre, Benoît; Breton, Marc-André; Motard, Julie; Jacques, Jean-François; Brunelle, Mylène; Gagnon-Arsenault, Isabelle; Fournier, Isabelle; Ouangraoua, Aida; Hunting, Darel J; Cohen, Alan A; Landry, Christian R; Scott, Michelle S

    2017-01-01

    Recent functional, proteomic and ribosome profiling studies in eukaryotes have concurrently demonstrated the translation of alternative open-reading frames (altORFs) in addition to annotated protein coding sequences (CDSs). We show that a large number of small proteins could in fact be coded by these altORFs. The putative alternative proteins translated from altORFs have orthologs in many species and contain functional domains. Evolutionary analyses indicate that altORFs often show more extreme conservation patterns than their CDSs. Thousands of alternative proteins are detected in proteomic datasets by reanalysis using a database containing predicted alternative proteins. This is illustrated with specific examples, including altMiD51, a 70 amino acid mitochondrial fission-promoting protein encoded in MiD51/Mief1/SMCR7L, a gene encoding an annotated protein promoting mitochondrial fission. Our results suggest that many genes are multicoding genes and code for a large protein and one or several small proteins. PMID:29083303

  7. Poly(l-glutamic acid)-g-poly(ethylene glycol) external layer in polyelectrolyte multilayer films: Characterization and resistance to serum protein adsorption.

    PubMed

    Szczepanowicz, Krzysztof; Kruk, Tomasz; Świątek, Wiktoria; Bouzga, Aud M; Simon, Christian R; Warszyński, Piotr

    2018-06-01

    Formation of protein-resistant surfaces is a major challenge in the design of novel biomaterials and an important strategy to prevent protein adsorption is the formation of protein-resistant coatings. It can be achieved by proper modification of surfaces, e.g., by immobilization of hydrophilic polymers such as poly(ethylene glycol) (PEG). An appropriate method to immobilize PEG at charged surfaces is the adsorption of copolymers with PEG chains grafted onto polyelectrolyte backbone. The growing interest in the use of polyelectrolyte multilayer coatings in biomedical applications to improve biocompatibility and/or to prepare coating with antiadhesive properties has been the main reason for these studies. Therefore the aim was to produce protein resistant polyelectrolyte multilayer films. They were formed via the layer-by-layer approach, while their pegylation by the deposition of pegylated polyanion, PGA-g-PEG, as an external layer. The influence of PEG chain length and grafting density of PGA-g-PEG copolymers on the protein antiadhesive properties of pegylated polyelectrolyte multilayer films was investigated. To monitor the formation of pegylated and non-pegylated multilayer films, adsorption of the following proteins: HSA, Fibrinogen, and FBS were measured by quartz crystal microbalance (QCM - D). We found that protein adsorption onto all pegylated polyelectrolyte multilayers was significantly reduced in comparison to non-pegylated ones. Long-term performance tests confirmed the stability and the durability of the protein resistant properties of the pegylated multilayers. Antiadhesive properties of tested surfaces pegylated by PGA-g-PEG were compared to the available data for pegylated polycation PLL-g-PEG. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Dual function of the hemagglutinin H5 fused to chicken CD154 in a potential strategy of DIVA against avian influenza disease: preliminary study.

    PubMed

    Pose, A G; Rodríguez, E S; Méndez, A C; Gómez, J N; Redondo, A V; Rodríguez, E R; Ramos, E M G; Gutiérrez, A Á; Moltó, M P R; Roche, D G; Ugalde, Y S; López, A M

    2015-01-01

    In this study we demonstrated that the vaccine candidate against avian influenza virus H5N1 based on the hemagglutinin H5 (HA) fused to the chicken CD154 (HACD) can also be used for differentiating infected from vaccinated animals (DIVA). As the strategy of DIVA requires at least two proteins, we obtained a variant of the nucleoprotein (NP49-375) in E. coli. After its purification by IMAC, the competence of the proteins NP49-375 and HACD as coating antigens in indirect ELISA assays were tested by using the sera of chickens immunized with the proteins HA and HACD and the reference sera from several avian influenza subtypes. Together with these sera, the sera from different species of birds and the sera of chickens infected with other avian viral diseases were analyzed by competition ELISA assays coated with the proteins NP49-375 and HACD. The results showed that the segment CD154 in the chimeric protein HACD did not interfere with the recognition of the molecule HA by its specific antibodies. Also, we observed variable detection levels when the reference sera were analyzed in the ELISA plates coated with the protein NP49-375. Moreover, only the antibodies of the reference serum subtype H5 were detected in the ELISA plates coated with the protein HACD. The competition ELISA assays showed percentages of inhibition of 88-91% for the positives sera and less than 20% for the negative sera. We fixed the cut-off value of these assays at 25%. No antibody detection was observed in the sera from different species of birds or the sera of chickens infected with other avian viral diseases. This study supported the fact that the ELISA assays using the proteins NP49-375 and HACD could be valuable tools for avian influenza surveillance and as a strategy of DIVA for counteracting the highly pathogenic avian influenza virus H5N1 outbreaks.

  9. Transient Heat Transfer in Coated Superconductors.

    DTIC Science & Technology

    1982-10-29

    of the use of the SCEPTRE code are contained in the instruction manual and the book on the code. 30 An example of an actual SCEPTRE program is given in...22. 0. Tsukomoto and S. Kobayashi, J. of Appl. Physics, 46, 1359, (1975) 23. Y Iwasa and B.A. Apgar , Cryogenics 18, 267, (1978) 24. D.E. Baynham, V.W...Computer program for circuit and Systems Analysis. Prentice Hall 1971 and J.C. Bowers et. al. Users Manual for Super-Sceptre Government Document AD/A-OIl

  10. Monolayer coated gold nanoparticles for delivery applications

    PubMed Central

    Rana, Subinoy; Bajaj, Avinash; Mout, Rubul; Rotello, Vincent M.

    2011-01-01

    Gold nanoparticles (AuNPs) provide attractive vehicles for delivery of drugs, genetic materials, proteins, and small molecules. AuNPs feature low core toxicity coupled with the ability to parametrically control particle size and surface properties. In this review, we focus on engineering of the AuNP surface monolayer, highlighting recent advances in tuning monolayer structures for efficient delivery of drugs and biomolecules. This review covers two broad categories of particle functionalization, organic monolayers and biomolecule coatings, and discusses their applications in drug, DNA/RNA, protein and small molecule delivery. PMID:21925556

  11. Engineering of M13 Bacteriophage for Development of Tissue Engineering Materials.

    PubMed

    Jin, Hyo-Eon; Lee, Seung-Wuk

    2018-01-01

    M13 bacteriophages have several qualities that make them attractive candidates as building blocks for tissue regenerating scaffold materials. Through genetic engineering, a high density of functional peptides and proteins can be simultaneously displayed on the M13 bacteriophage's outer coat proteins. The resulting phage can self-assemble into nanofibrous network structures and can guide the tissue morphogenesis through proliferation, differentiation and apoptosis. In this manuscript, we will describe methods to develop major coat-engineered M13 phages as a basic building block and aligned tissue-like matrices to develop regenerative nanomaterials.

  12. Molecular Structure, Function, and Dynamics of Clathrin-Mediated Membrane Traffic

    PubMed Central

    Kirchhausen, Tom; Owen, David; Harrison, Stephen C.

    2014-01-01

    Clathrin is a molecular scaffold for vesicular uptake of cargo at the plasma membrane, where its assembly into cage-like lattices underlies the clathrin-coated pits of classical endocytosis. This review describes the structures of clathrin, major cargo adaptors, and other proteins that participate in forming a clathrin-coated pit, loading its contents, pinching off the membrane as a lattice-enclosed vesicle, and recycling the components. It integrates as much of the structural information as possible at the time of writing into a sketch of the principal steps in coated-pit and coated-vesicle formation. PMID:24789820

  13. Enhancement of transdermal protein delivery by photothermal effect of gold nanorods coated on polysaccharide-based hydrogel.

    PubMed

    Haine, Aung Thu; Koga, Yuki; Hashimoto, Yuta; Higashi, Taishi; Motoyama, Keiichi; Arima, Hidetoshi; Niidome, Takuro

    2017-10-01

    Transdermal protein delivery is a useful and attractive method for protein therapy and dermal vaccination. However, this delivery method is restricted by the low permeability of the stratum corneum. The purpose of this study was to develop a transdermal delivery system for enhancement of protein permeability into the skin. First, we prepared a transparent gel patch made of polysaccharides with gold nanorods on the gel surface and fluorescein isothiocyanate-modified ovalbumin (FITC-OVA) inside. Next, the gel patch was placed on mouse skin to allow contact with the coated gold nanorods, and irradiated by a continuous-wave laser. The laser irradiation heated the gold nanorods and the skin temperature increased to 43°C, resulting in enhanced translocation of FITC-OVA into the skin. These results confirmed the capability of the transdermal protein delivery system to perforate the stratum corneum and thus facilitate the passage of proteins across the skin. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Quantitative characterization of all single amino acid variants of a viral capsid-based drug delivery vehicle.

    PubMed

    Hartman, Emily C; Jakobson, Christopher M; Favor, Andrew H; Lobba, Marco J; Álvarez-Benedicto, Ester; Francis, Matthew B; Tullman-Ercek, Danielle

    2018-04-11

    Self-assembling proteins are critical to biological systems and industrial technologies, but predicting how mutations affect self-assembly remains a significant challenge. Here, we report a technique, termed SyMAPS (Systematic Mutation and Assembled Particle Selection), that can be used to characterize the assembly competency of all single amino acid variants of a self-assembling viral structural protein. SyMAPS studies on the MS2 bacteriophage coat protein revealed a high-resolution fitness landscape that challenges some conventional assumptions of protein engineering. An additional round of selection identified a previously unknown variant (CP[T71H]) that is stable at neutral pH but less tolerant to acidic conditions than the wild-type coat protein. The capsids formed by this variant could be more amenable to disassembly in late endosomes or early lysosomes-a feature that is advantageous for delivery applications. In addition to providing a mutability blueprint for virus-like particles, SyMAPS can be readily applied to other self-assembling proteins.

  15. The complete mitochondrial genome of Hydra vulgaris (Hydroida: Hydridae).

    PubMed

    Pan, Hong-Chun; Fang, Hong-Yan; Li, Shi-Wei; Liu, Jun-Hong; Wang, Ying; Wang, An-Tai

    2014-12-01

    The complete mitochondrial genome of Hydra vulgaris (Hydroida: Hydridae) is composed of two linear DNA molecules. The mitochondrial DNA (mtDNA) molecule 1 is 8010 bp long and contains six protein-coding genes, large subunit rRNA, methionine and tryptophan tRNAs, two pseudogenes consisting respectively of a partial copy of COI, and terminal sequences at two ends of the linear mtDNA, while the mtDNA molecule 2 is 7576 bp long and contains seven protein-coding genes, small subunit rRNA, methionine tRNA, a pseudogene consisting of a partial copy of COI and terminal sequences at two ends of the linear mtDNA. COI gene begins with GTG as start codon, whereas other 12 protein-coding genes start with a typical ATG initiation codon. In addition, all protein-coding genes are terminated with TAA as stop codon.

  16. Genetic Code Expansion of Mammalian Cells with Unnatural Amino Acids.

    PubMed

    Brown, Kalyn A; Deiters, Alexander

    2015-09-01

    The expansion of the genetic code of mammalian cells enables the incorporation of unnatural amino acids into proteins. This is achieved by adding components to the protein biosynthetic machinery, specifically an engineered aminoacyl-tRNA synthetase/tRNA pair. The unnatural amino acids are chemically synthesized and supplemented to the growth medium. Using this methodology, fundamental new chemistries can be added to the functional repertoire of the genetic code of mammalian cells. This protocol outlines the steps necessary to incorporate a photocaged lysine into proteins and showcases its application in the optical triggering of protein translocation to the nucleus. Copyright © 2015 John Wiley & Sons, Inc.

  17. Protein corona: Opportunities and challenges

    PubMed Central

    Zanganeh, Saeid; Spitler, Ryan; Erfanzadeh, Mohsen; Alkilany, Alaaldin M.; Mahmoudi, Morteza

    2017-01-01

    In contact with biological fluids diverse type of biomolecules (e.g., proteins) adsorb onto nanoparticles forming protein corona. Surface properties of the coated nanoparticles, in terms of type and amount of associated proteins, dictate their interactions with biological systems and thus biological fate, therapeutic efficiency and toxicity. In this perspective, we will focus on the recent advances and pitfalls in the protein corona field. PMID:26783938

  18. Human-like collagen protein-coated magnetic nanoparticles with high magnetic hyperthermia performance and improved biocompatibility

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoli; Zhang, Huan; Chang, Le; Yu, Baozhi; Liu, Qiuying; Wu, Jianpeng; Miao, Yuqing; Ma, Pei; Fan, Daidi; Fan, Haiming

    2015-01-01

    Human-like collagen (HLC)-coated monodispersed superparamagnetic Fe3O4 nanoparticles have been successfully prepared to investigate its effect on heat induction property and cell toxicity. After coating of HLC, the sample shows a faster rate of temperature increase under an alternating magnetic field although it has a reduced saturation magnetization. This is most probably a result of the effective heat conduction and good colloid stability due to the high charge of HLC on the surface. In addition, compared with Fe3O4 nanoparticles before coating with HLC, HLC-coated Fe3O4 nanoparticles do not induce notable cytotoxic effect at higher concentration which indicates that HLC-coated Fe3O4 nanoparticles has improved biocompatibility. Our results clearly show that Fe3O4 nanoparticles after coating with HLC not only possess effective heat induction for cancer treatment but also have improved biocompatibility for biomedicine applications.

  19. Sci-Sat AM: Radiation Dosimetry and Practical Therapy Solutions - 02: Dosimetric effects of gold nanoparticle surface coatings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koger, Brandon; Kirkby, Charles

    2016-08-15

    Introduction: Gold nanoparticles (GNPs) can enhance radiation therapy within a tumour, increasing local energy deposition under irradiation, but experimental evidence suggests the enhancement is not as large as predicted by dose enhancement alone. Many studies neglect to account for surface coatings that are frequently used to optimize GNP uptake and biological distribution. This study uses Monte Carlo methods to investigate the consequences on local dose enhancement due to including these surface coatings. Methods: Using the PENELOPE Monte Carlo code system, GNP irradiation was simulated both with and without surface coatings of polyethylene glycol (PEG) of various molecular weights. Dose wasmore » scored to the gold, coating, and surrounding water, and the dosimetric differences between these scenarios were examined. Results: The simulated PEG coating absorbs a large portion of the energy that would otherwise be deposited in the medium. The mean dose to water was reduced by up to 2.5, 3.5, and 4.5% for GNPs of diameters 50, 20, and 10 nm, respectively. This effect was more pronounced for smaller GNPs, thicker coatings, and low photon source energies where the enhancement due to GNPs is the greatest. The molecular weight of the coating material did not have a significant impact on the dose. Conclusions: The inclusion of a coating material in GNP enhanced radiation may reduce the dose enhancement due to the nanoparticles. Both the composition and size of the coating play a role in the level of this reduction and should be considered carefully.« less

  20. Arbitrariness is not enough: towards a functional approach to the genetic code.

    PubMed

    Lacková, Ľudmila; Matlach, Vladimír; Faltýnek, Dan

    2017-12-01

    Arbitrariness in the genetic code is one of the main reasons for a linguistic approach to molecular biology: the genetic code is usually understood as an arbitrary relation between amino acids and nucleobases. However, from a semiotic point of view, arbitrariness should not be the only condition for definition of a code, consequently it is not completely correct to talk about "code" in this case. Yet we suppose that there exist a code in the process of protein synthesis, but on a higher level than the nucleic bases chains. Semiotically, a code should be always associated with a function and we propose to define the genetic code not only relationally (in basis of relation between nucleobases and amino acids) but also in terms of function (function of a protein as meaning of the code). Even if the functional definition of meaning in the genetic code has been discussed in the field of biosemiotics, its further implications have not been considered. In fact, if the function of a protein represents the meaning of the genetic code (the sign's object), then it is crucial to reconsider the notion of its expression (the sign) as well. In our contribution, we will show that the actual model of the genetic code is not the only possible and we will propose a more appropriate model from a semiotic point of view.

Top