Science.gov

Sample records for coated xenogenic bone

  1. Alveolar Ridge Preservation Using Xenogeneic Collagen Matrix and Bone Allograft

    PubMed Central

    Parashis, Andreas O.; Kalaitzakis, Charalampos J.; Tatakis, Dimitris N.; Tosios, Konstantinos

    2014-01-01

    Alveolar ridge preservation (ARP) has been shown to prevent postextraction bone loss. The aim of this report is to highlight the clinical, radiographic, and histological outcomes following use of a bilayer xenogeneic collagen matrix (XCM) in combination with freeze-dried bone allograft (FDBA) for ARP. Nine patients were treated after extraction of 18 teeth. Following minimal flap elevation and atraumatic extraction, sockets were filled with FDBA. The XCM was adapted to cover the defect and 2-3 mm of adjacent bone and flaps were repositioned. Healing was uneventful in all cases, the XCM remained in place, and any matrix exposure was devoid of further complications. Exposed matrix portions were slowly vascularized and replaced by mature keratinized tissue within 2-3 months. Radiographic and clinical assessment indicated adequate volume of bone for implant placement, with all planned implants placed in acceptable positions. When fixed partial dentures were placed, restorations fulfilled aesthetic demands without requiring further augmentation procedures. Histological and immunohistochemical analysis from 9 sites (4 patients) indicated normal mucosa with complete incorporation of the matrix and absence of inflammatory response. The XCM + FDBA combination resulted in minimal complications and desirable soft and hard tissue therapeutic outcomes, suggesting the feasibility of this approach for ARP. PMID:25328523

  2. The issue of bioresorption of the Bio-Oss xenogeneic bone substitute in bone defects.

    PubMed

    Duda, Mariusz; Pajak, Jacek

    2004-01-01

    Bone grafts and bone substitute biomaterial implemented in guided tissue regeneration should undergo the process of biological decomposition in the recipient's system. The aim of this work is the presentation of current views concerning the issue of Bio-Oss bovine bone bioresorption and their juxtaposition with the results of the author's own research. The work presents histopathological and immunohistochemical tests of the xenogeneic Bio-Oss preparation from biopsies carried out 30 months after implantation. It was observed that the preparations contained correct bone neighbouring remnant particles of Bio-Oss, intratrabecular fibromatosis around the implant, abundant vascularisation, absence of osteoid and of active inflammatory process. A small number of T and B lymphocytes was detected. The results obtained in the above-described case testify to the descending character of the inflammatory infiltration 30 months after the implementation of Bio-Oss and efficient restoration of the bone. The prevalent view in literature is that Bio-Oss is resorbable biomaterial. However, there are also reports questioning this view as remnants of Bio-Oss have been detected even 44 months after implantation into the bone defect. In the author's own cases, Bio-Oss remnants could be observed 30 months after implanting. It seems that although the creation of new bone structure is indisputable, the process of biological decomposition of Bio-Oss should be described as slow bioresorption.

  3. Vertical ridge augmentation using xenogenous bone blocks: a comparison between the flap and tunneling procedures.

    PubMed

    Xuan, Feng; Lee, Chun-Ui; Son, Jeong-Seog; Fang, Yiqin; Jeong, Seung-Mi; Choi, Byung-Ho

    2014-09-01

    Previous studies have shown that the subperiosteal tunneling procedure in vertical ridge augmentation accelerates healing after grafting and prevents graft exposure, with minor postoperative complications. It is conceivable that new bone formation would be greater with the tunneling procedure than with the flap procedure, because the former is minimally invasive. This hypothesis was tested in this study by comparing new bone formation between the flap and tunneling procedures after vertical ridge augmentation using xenogenous bone blocks in a canine mandible model. Two Bio-Oss blocks were placed on the edentulous ridge in each side of the mandibles of 6 mongrel dogs. The blocks in each side were randomly assigned to grafting with a flap procedure (flap group) or grafting with a tunneling procedure (tunneling group). The mean percentage of newly formed bone within the block was 15.3 ± 6.6% in the flap group and 46.6 ± 23.4% in the tunneling group. Based on data presented in this study, when a tunneling procedure is used to place xenogenous bone blocks for vertical ridge augmentation, bone formation in the graft sites is significantly greater than when a flap procedure is used. Copyright © 2014 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  4. Isolation, cultivation and characterisation of pigeon osteoblasts seeded on xenogeneic demineralised cancellous bone scaffold for bone grafting.

    PubMed

    Harvanová, Denisa; Hornák, Slavomír; Amrichová, Judita; Spaková, Tímea; Mikes, Jaromír; Plsíková, Jana; Ledecký, Valent; Rosocha, Ján

    2014-09-01

    Avian osteoblasts have been isolated particularly from chicken embryo, but data about other functional tissue sources of adult avian osteoblast precursors are missing. The method of preparation of pigeon osteoblasts is described in this study. We demonstrate that pigeon cancellous bone derived osteoblasts have particular proliferative capacity in vitro in comparison to mammalian species and developed endogenous ALP. Calcium deposits formation in vitro was confirmed by alizarin red staining. Only a few studies have attempted to investigate bone grafting and treatment of bone loss in birds. Lack of autologous bone grafts in birds has prompted investigation into the use of avian xenografts for bone augmentation. Here we present a method of xenografting of ostrich demineralised cancellous bone scaffold seeded with allogeneic adult pigeon osteoblasts. Ostrich demineralised cancellous bone scaffold supported proliferation of pigeon osteoblasts during two weeks of co - cultivation in vitro. Scanning electron microscopy demonstrated homogeneous adult pigeon osteoblasts attachment and distribution on the surface of xenogeneic ostrich demineralised cancellous bone. Our preliminary in vitro results indicate that demineralised cancellous bone from ostrich tibia could provide an effective biological support for growth and proliferation of allogeneic osteoblasts derived from cancellous bone of pigeons.

  5. Characterization and angiogenic potential of xenogeneic bone grafting materials: Role of periodontal ligament cells.

    PubMed

    Rombouts, Charlotte; Jeanneau, Charlotte; Camilleri, Josette; Laurent, Patrick; About, Imad

    2016-12-01

    Adequate revascularization is a prerequisite for successful healing of periodontal bone defects. This study characterized three different xenogeneic bone grafting materials: Gen-Os of equine and porcine origins, and anorganic Bio-Oss. We also investigated their angiogenic potential. All materials were composed of poorly crystalline calcium oxide phosphate, with Bio-Oss exhibiting a carbonated phase and larger particle size and both Gen-Os showing the presence of collagen. Both Gen-Os materials significantly enhanced vascular endothelial growth factor (VEGF) secretion by PDL cells. A significant increase in endothelial cell proliferation was observed in cultures with both Gen-Os conditioned media, but not with that of Bio-Oss. Finally, angiogenesis was stimulated by both Gen-Os conditioned media as demonstrated by an increased formation of capillary-like structures. Taken together, these findings indicate an enhanced angiogenic potential of both Gen-Os bone grafting materials when applied on PDL cells, most likely by increasing VEGF production.

  6. Bone regeneration in the presence of a synthetic hydroxyapatite/silica oxide-based and a xenogenic hydroxyapatite-based bone substitute material.

    PubMed

    Kruse, A; Jung, R E; Nicholls, F; Zwahlen, R A; Hämmerle, C H F; Weber, F E

    2011-05-01

    A comparison of synthetic hydroxyapatite/silica oxide, xenogenic hydroxyapatite-based bone substitute materials with empty control sites in terms of bone regeneration enhancement in a rabbit calvarial four non-critical-sized defect model. In each of six rabbits, four bicortical calvarial bone defects were generated. The following four treatment modalities were randomly allocated: (1) empty control site, (2) synthetic hydroxyapatite/silica oxide-based (HA/SiO) test granules, (3) xenogenic hydroxyapatite -based granules, (4) synthetic hydroxyapatite/silica oxide -based (HA/SiO) test two granules. The results of the latter granules have not been reported due to their size being three times bigger than the other two granule types. After 4 weeks, the animals were sacrificed and un-decalcified sections were obtained for histological analyses. For statistical analysis, the Kruskal-Wallis test was applied (P<0.05). Histomorphometric analysis showed an average area fraction of newly formed bone of 12.32±10.36% for the empty control, 17.47±6.42% for the xenogenic hydroxyapatite -based granules group, and 21.2±5.32% for the group treated with synthetic hydroxyapatite/silica oxide -based granules. Based on the middle section, newly formed bone bridged the defect to 38.33±37.55% in the empty control group, 54.33±22.12% in the xenogenic hydroxyapatite -based granules group, and to 79±13.31% in the synthetic hydroxyapatite/silica oxide -based granules group. The bone-to-bone substitute contact was 46.38±18.98% for the xenogenic and 59.86±14.92% for the synthetic hydroxyapatite/silica oxide-based granules group. No significant difference in terms of bone formation and defect bridging could be detected between the two bone substitute materials or the empty defect. There is evidence that the synthetic hydroxyapatite/silica oxide granules provide comparable results with a standard xenogenic bovine mineral in terms of bone formation and defect bridging in non-critical size

  7. Experimental bone defect healing with xenogenic demineralized bone matrix and bovine fetal growth plate as a new xenograft: radiological, histopathological and biomechanical evaluation.

    PubMed

    Bigham, A S; Dehghani, S N; Shafiei, Z; Nezhad, S Torabi

    2009-02-01

    The following study was designed to evaluate xenogenic bovine demineralized bone matrix (DBM) and new xenograft (Bovine fetal growth plate) effects on bone healing process. Twenty male White New Zealand rabbits were used in this study. In group I (n = 10) the defect was filled by xenogenic DBM and in group II (n = 10) the defect was filled by a segment of bovine fetal growth plate and was fixed by cercelage wire. Radiological, histopathological, and biomechanical evaluations were performed blindly and results scored and analyzed statistically. Statistical tests did not support significant differences between two groups radiographically (P > 0.05). There was a significant difference for union at the 28th postoperative radiologically (P < 0.05). Xenograft was superior to DBM group at the 28th postoperative day for radiological union (P < 0.03). Histopathological and biomechanical evaluation revealed no significant differences between two groups. In conclusion, the results of this study indicate that satisfactory healing occurred in rabbit radius defect filled with xenogenic bovine DBM and xenogenic bovine fetal growth plate. Complications were not identified and healing was faster in two grafting groups.

  8. Heterotopically induced bone marrow. I. Cellular composition of bone marrow derived from the heterotopic ossicles induced in mice by xenogeneic epithelia of human amnion and dog's transitional epithelium.

    PubMed

    Włodarski, K; Jakóbisiak, M

    1978-01-01

    Following heterotopic osteogenesis by implantation of xenogeneic epithelia (FL and WISH cell line, transitional epithelium of dog) in mice a biogenesis of hemopoietic tissue among induced ossicles is observed. Precursors and mature forms of all types of blood cells are found in the induced bone marrow. The concentration of lymphocytes in the induced bone marrow is higher, and that of erythropoietic cells lower as compared with orthotopic femur bone marrow. The yield of myeloid cells varied from 0.14 to 3.61 x 10(6) cells per induced bone-containing nodule.

  9. Transplanted xenogenic bone marrow stem cells survive and generate new bone formation in the posterolateral lumbar spine of non-immunosuppressed rabbits.

    PubMed

    Kim, Hyung-Jun; Park, Jong-Beom; Lee, Jin Kyung; Park, Eun-Young; Park, Eun-Ae; Riew, K Daniel; Rhee, Seung-Koo

    2008-11-01

    Bone marrow stem cells (BMSCs) are pluripotent cells that have been used to facilitate bone repair because of their capability of differentiating into osteoblasts. However, it is well known that the number of BMSCs with osteogenic potential decreases in patients with old age, osteoporosis, and metabolic diseases. In such conditions, xenogenic BMSCs may provide an alternative to autologous BMSCs. In the current study, we investigated the potential of transplanted xenogenic BMSCs to survive and generate new bone formation in the posterolateral lumbar spine of non-immunosuppressed rabbits. The BMSCs were obtained from bilateral femurs of four male rats, cultured and expanded in medium with osteoinduction supplement. The BMSCs (1,000,000 cells) of male rats loaded onto 5 cc compression resistant matrix (CRM; Medtronic Sofamor Danek, USA) were implanted bilaterally onto the L4-5 intertransverse processes of 16 female rabbits (xenogenic BMSCs + CRM group). The 16 female rabbits that received 5 cc CRM alone were used as controls (CRM alone group). To exclude the possibility of migration of BMSCs from the transverse processes of the recipient rabbits, we did not decorticate the transverse processes. No rabbits received any immunosuppressive medications during the experiment. Four rabbits each in both of the experimental and control groups were killed at 1, 2, 4, and 6 months postimplantation, and the lumbar spine underwent radiological and histological analyses for evaluation of new bone formation. The polymerase chain reaction (PCR) for Sry gene (Y-chromosome-specific marker) was used to evaluate the survival of transplanted xenogenic BMSCs. The expression of Sry gene was clearly identified in the lumbar spines of all the 16 rabbits in the xenogenic BMSCs + CRM group at 1-6 months postimplantation. Serial plain radiographs showed gradual resorption of CRM; however, it was difficult to clearly identify the presence of new bone formation due to the radiopacity of the

  10. Bone Tissue Engineering Under Xenogeneic-Free Conditions in a Large Animal Model as a Basis for Early Clinical Applicability.

    PubMed

    Weigand, Annika; Beier, Justus P; Schmid, Rafael; Knorr, Tobias; Kilian, David; Götzl, Rebekka; Gerber, Thomas; Horch, Raymund E; Boos, Anja M

    2017-03-01

    For decades, researchers have been developing a range of promising strategies in bone tissue engineering with the aim of producing a significant clinical benefit over existing therapies. However, a major problem concerns the traditional use of xenogeneic substances for the expansion of cells, which complicates direct clinical transfer. The study's aim was to establish a totally autologous sheep model as a basis for further preclinical studies and future clinical application. Ovine mesenchymal stromal cells (MSC) were cultivated in different concentrations (0%, 2%, 5%, 10%, and 25%) of either autologous serum (AS) or fetal calf serum (FCS). With an increase of serum concentration, enhanced metabolic activity and proliferation could be observed. There were minor differences between MSC cultivated in AS or FCS, comparing gene and protein expression of osteogenic and stem cell markers, morphology, and osteogenic differentiation. MSC implanted subcutaneously in the sheep model, together with a nanostructured bone substitute, either in stable block or moldable putty form, induced similar vascularization and remodeling of the bone substitute irrespective of cultivation of MSC in AS or FCS and osteogenic differentiation. The bone substitute in block form together with MSC proved particularly advantageous in the induction of ectopic bone formation compared to the cell-free control and putty form. It could be demonstrated that AS is suitable for replacement of FCS for cultivation of ovine MSC for bone tissue engineering purposes. Substantial progress has been made in the development of a strictly xenogeneic-free preclinical animal model to bring future clinical application of bone tissue engineering strategies within reach.

  11. Characterization of xenogeneic mouse-to-rat bone marrow chimeras. I. Examination of hematologic and immunologic function

    SciTech Connect

    Wade, A.C.; Luckert, P.H.; Tazume, S.; Niedbalski, J.L.; Pollard, M.

    1987-07-01

    Eighteen xenogeneic chimeric rats (survival: greater than 100 days) were established by transplanting bone marrow cells from femurs of 10 gnotobiotic CFW mice into each germfree Sprague-Dawley or Wistar rat. The erythrocytes circulating in the rats were of mouse origin as determined by hemagglutination. Hemoglobin electrophoresis, radial immunodiffusion for IgG, and assay of granulocytic neutrophils for leukocyte alkaline phosphatase verified that true chimerism was achieved. The extent of hematological and immunological reconstitution varied. In general, hematocrit levels were low to normal, white blood cell counts and differentials were within normal limits, and serum protein levels were normal. Levels of circulating IgG of each species were comparable to those of germfree rat and mouse controls. Natural killer (NK) activity was depressed, a phenomenon that may be attributable to the radiation treatment of recipients, or to failure to transfer NK cells or precursors. Mitogenic stimulation reactions were varied, but most chimeric rats demonstrated moderately depressed responses. Reactions as a whole suggested that gnotobiotic rats with xenogeneic bone marrow are incompletely reconstituted, both hematologically and immunologically. No acute graft-versus-host reaction was seen.

  12. Histological and Radiological Analyses of a Maxillary Sinus Lift with Extensive Drilling of the Schneider Membrane Using Xenogeneic Bone

    PubMed Central

    Romano, Marcelo M.; Smanio, Júlia A.; Ferreira, Lorraine B.; Arana-Chavez, Victor E.; Soares, Mário S.

    2014-01-01

    The objective of this study is to report a clinical case of maxillary sinus with lyophilized, xenogeneic graft, in which, despite a large perforation of the sinus membrane, the surgery was not aborted and the results of histological examinations indicate bone neoformation in the surgical area. Results. This case showed that the biomaterials evaluated in this study and the procedure used to place them proved to be biocompatible and presented high osteogenic potential, leading to a successful surgery and osseointegration implant. Conclusion. Positioning Schneider's membrane and filling it with the graft biomaterial helped to achieve the desired osteoconduction and proliferation of bone cells even though the patient had a large perforation of the sinus membrane. PMID:25258686

  13. Tendon Reattachment to Bone in an Ovine Tendon Defect Model of Retraction Using Allogenic and Xenogenic Demineralised Bone Matrix Incorporated with Mesenchymal Stem Cells.

    PubMed

    Thangarajah, Tanujan; Shahbazi, Shirin; Pendegrass, Catherine J; Lambert, Simon; Alexander, Susan; Blunn, Gordon W

    2016-01-01

    Tendon-bone healing following rotator cuff repairs is mainly impaired by poor tissue quality. Demineralised bone matrix promotes healing of the tendon-bone interface but its role in the treatment of tendon tears with retraction has not been investigated. We hypothesized that cortical demineralised bone matrix used with minimally manipulated mesenchymal stem cells will result in improved function and restoration of the tendon-bone interface with no difference between xenogenic and allogenic scaffolds. In an ovine model, the patellar tendon was detached from the tibial tuberosity and a complete distal tendon transverse defect measuring 1 cm was created. Suture anchors were used to reattach the tendon and xenogenic demineralised bone matrix + minimally manipulated mesenchymal stem cells (n = 5), or allogenic demineralised bone matrix + minimally manipulated mesenchymal stem cells (n = 5) were used to bridge the defect. Graft incorporation into the tendon and its effect on regeneration of the enthesis was assessed using histomorphometry. Force plate analysis was used to assess functional recovery. Compared to the xenograft, the allograft was associated with significantly higher functional weight bearing at 6 (P = 0.047), 9 (P = 0.028), and 12 weeks (P = 0.009). In the allogenic group this was accompanied by greater remodeling of the demineralised bone matrix into tendon-like tissue in the region of the defect (p = 0.015), and a more direct type of enthesis characterized by significantly more fibrocartilage (p = 0.039). No failures of tendon-bone healing were noted in either group. Demineralised bone matrix used with minimally manipulated mesenchymal stem cells promotes healing of the tendon-bone interface in an ovine model of acute tendon retraction, with superior mechanical and histological results associated with use of an allograft.

  14. Tendon Reattachment to Bone in an Ovine Tendon Defect Model of Retraction Using Allogenic and Xenogenic Demineralised Bone Matrix Incorporated with Mesenchymal Stem Cells

    PubMed Central

    2016-01-01

    Background Tendon-bone healing following rotator cuff repairs is mainly impaired by poor tissue quality. Demineralised bone matrix promotes healing of the tendon-bone interface but its role in the treatment of tendon tears with retraction has not been investigated. We hypothesized that cortical demineralised bone matrix used with minimally manipulated mesenchymal stem cells will result in improved function and restoration of the tendon-bone interface with no difference between xenogenic and allogenic scaffolds. Materials and Methods In an ovine model, the patellar tendon was detached from the tibial tuberosity and a complete distal tendon transverse defect measuring 1 cm was created. Suture anchors were used to reattach the tendon and xenogenic demineralised bone matrix + minimally manipulated mesenchymal stem cells (n = 5), or allogenic demineralised bone matrix + minimally manipulated mesenchymal stem cells (n = 5) were used to bridge the defect. Graft incorporation into the tendon and its effect on regeneration of the enthesis was assessed using histomorphometry. Force plate analysis was used to assess functional recovery. Results Compared to the xenograft, the allograft was associated with significantly higher functional weight bearing at 6 (P = 0.047), 9 (P = 0.028), and 12 weeks (P = 0.009). In the allogenic group this was accompanied by greater remodeling of the demineralised bone matrix into tendon-like tissue in the region of the defect (p = 0.015), and a more direct type of enthesis characterized by significantly more fibrocartilage (p = 0.039). No failures of tendon-bone healing were noted in either group. Conclusion Demineralised bone matrix used with minimally manipulated mesenchymal stem cells promotes healing of the tendon-bone interface in an ovine model of acute tendon retraction, with superior mechanical and histological results associated with use of an allograft. PMID:27606597

  15. Long-term bony integration and resorption kinetics of a xenogeneic bone substitute after sinus floor augmentation: histomorphometric analyses of human biopsy specimens.

    PubMed

    Klein, Marcus O; Kämmerer, Peer W; Götz, Hermann; Duschner, Heinz; Wagner, Wilfried

    2013-01-01

    In this case series, a systematic histomorphometric analysis of two human bone biopsy specimens was conducted 1 and 5 years after grafting with a xenogeneic bovine bone substitute material (BSM). While the 1-year specimen still showed extensive signs of an active desmal ossification, the specimen after 5 years mainly showed mature lamellar bone without bone turnover or remodeling. A completed bony integration without extensive resorption of the BSM particles could be detected. Altogether, a good integration in the bone with osteoconduction and a high biocompatibility was seen.

  16. Comparative, Histological and Histomorphometric Analysis of Three Anorganic Bovine Xenogenous Bone Substitutes: Bio-Oss, Bone-Fill and Gen-Ox Anorganic.

    PubMed

    Manfro, Rafael; Fonseca, Fabiano Silva; Bortoluzzi, Marcelo Carlos; Sendyk, Wilson Roberto

    2014-12-01

    Anorganic bovine xenogenous grafts show the best performance as bone substitutes in implantodontics. Bio-Oss is the world's most widely used and investigated anorganic bone substitute. This article compares two anorganic bovine bone substitutes (Bone-Fill and Gen-Ox anorganic) with Bio-Oss. Eight New Zealand rabbits were implanted with 4 titanium cylinders randomly filled with Bio-Oss, Bone-Fill, Gen-Ox anorganic or a blood clot. Four animals were sacrificed after 8 weeks; 12 weeks later, the remaining four were sacrificed. The contents of the cylinders were removed, cut and stained with HE before they were evaluated with an optical microscope. The samples were submitted to histomorphometry for analysis. The bone formation with Bio-Oss at 8 weeks was 8.43 mm(2); at 12 weeks, it was 9.32 mm(2). The bone formation with Bone-Fill at 8 weeks was 7.24 mm(2); at 12 weeks, it was 9.01 mm(2). The bone formation with Gen-Ox anorganic at 8 weeks was 2.78 mm(2); at 12 weeks, it was 3.02 mm(2). The bone formation with the blood clot at 8 weeks was 0.65 mm(2); at 12 weeks, it was 0.63 mm(2). Following this model, Bone-Fill was comparable to Bio-Oss and superior to Gen-Ox and blood clot.

  17. Removal Rates of Dental Implants Placed in Conjunction With Autologous Bone and Xenogeneic and Synthetic Alloplastic Materials in Finland Between 1994 and 2012.

    PubMed

    Wolff, Jan; Pyysalo, Mikko; Antalainen, Anna-Kaisa; Sándor, George K; Helminen, Mika

    2015-10-01

    This study aimed to assess the use of bone augmentation materials in Finland from 1994 to 2012 by assessing removal rates of implants placed in combination with autologous bone, xenogeneic grafts, and synthetic alloplastic materials. The National Institute for Health and Welfare in Finland granted permission to access raw data of the Finnish Dental Implant Register for implant augmentation materials and removal rates of implants placed in augmented sites from April 1994 to April 2012. A total of 198,538 implants were placed in Finland between 1994 and 2012 in 110,543 operations. A total of 3318 (1.7%) of the placed implants were removed during the observation period. Augmentations were performed on 20,812 (18.8%) operations during 1994-2012. The removal rates of implants placed at sites augmented with autologous bone were 2.31%, xenogeneic materials 0.91%, and synthetic alloplastic materials 2.80%. The removal rate was 1.87% when no augmentation material was used. The placement of dental implants in conjunction with bone augmentation materials is predictable with a low complication rate.

  18. Treatment of through-and-through bone lesion using autologous growth factors and xenogeneic bone graft: a case report.

    PubMed

    Taschieri, Silvio; Rosano, Gabriele; Weinstein, Tommaso; Bortolin, Monica; Del Fabbro, Massimo

    2012-03-01

    This pilot case study aimed at evaluating the possibility of achieving optimal hard and soft tissue regeneration using plasma rich in growth factors (PRGF) and anorganic bovine bone (ABB) for the surgical treatment of a large through-and-through periapical bone lesion. Maxillary incisors of a patient with through-and-through periapical lesion of endodontic origin were treated using modern endodontic surgical technique with the adjunct of PRGF. The PRGF clot was positioned over the palatal side of the lesion while the remaining bone defect was grafted with PRGF and ABB. A collagen membrane embedded with plasma very rich in growth factors covered the graft. Post-operative pain and swelling were negligible, and soft tissue healing was very fast. One-year clinical and radiographic outcome showed complete healing and functionality. The addition of PRGF to ABB could improve the regenerative process, reducing postoperative symptoms and resulting in a fast and predictable hard and soft tissue healing.

  19. Antitumor effects of murine bone marrow-derived dendritic cells infected with xenogeneic livin alpha recombinant adenoviral vectors against Lewis lung carcinoma.

    PubMed

    Xie, Junping; Xiong, Liang; Tao, Xiaonan; Li, Xiao; Su, Yuan; Hou, Xiaohua; Shi, Huanzhong

    2010-06-01

    Transduction with recombinant, replication-defective adenoviral (rAd) vectors encoding a transgene is an efficient method for gene transfer into dendritic cells (DCs). Livin is a member of the inhibitor of apoptosis protein family. Lung cancer and many other tumors express livin at high levels; whereas, normal fully differentiated cells generally do not. Therefore, livin represents a tumor-specific target for cancer vaccine therapy. Self proteins like livin may not stimulate potent antitumor immune responses due to central immunologic tolerance. Small variations in protein sequence that may exist between homologous proteins of different species can break tolerance to the native antigen. To study immunogenicity of a xenogeneic livin protein, we constructed an recombinant adenoviral vectors containing the human livin alpha genes (rAd-hlivin alpha) and vaccinated C57BL/6 mice with mouse bone marrow dendritic cells (BMDCs) transfected with rAd-hlivin alpha gave rise to potent livin-specific cytotoxic T lymphocyte (CTL) capable of lysing Lewis lung carcinoma (LLC) cells. Moreover, vaccination of mice with rAd-hlivin alpha-transduced DCs (rAd-hlivin alpha DCs) induced a potent protective and therapeutic anti-tumor immunity to LLC in a subcutaneous model along with prolonged survival compared to mice vaccinated with control recombinant adenovirus-transduced DCs(rAd-c DCs) or DCs alone. Therefore, xenogeneic differences between human and murine sequences might be exploited to develop immunogenic tumor vaccines. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.

  20. Efficacy of xenogeneic bone grafting with guided tissue regeneration in the management of bone defects after surgical endodontics.

    PubMed

    Taschieri, Silvio; Del Fabbro, Massimo; Testori, Tiziano; Weinstein, Roberto

    2007-06-01

    The purpose of this prospective clinical trial was to monitor the outcomes of periradicular surgery in large periapical lesions with or without guided tissue regeneration (GTR) and anorganic bovine bone. All teeth in the study revealed a periradicular lesion measuring at least 10 mm. A total of 63 teeth in 44 patients were included according to specific selection criteria. In the test group, after root end filling was completed, the defect was filled with anorganic bovine bone and was covered with a resorbable collagen membrane. In the control group, neither graft nor membrane was used. A total of 59 teeth in 41 patients were evaluable at 1-year follow-up. Of these, 24 teeth belonged to the test group and 35 to the control group. Overall, 46 teeth (78%) had successfully healed, 10 (16.9%) demonstrated uncertain healing, and 3 exhibited treatment failure. Investigators found no statistically significant differences in outcome between test and control groups. The present study showed that the use of GTR in association with anorganic bovine bone in the treatment of patients with large periradicular lesions of strictly endodontic origin has no beneficial effect on outcome.

  1. Choice of xenogenic-free expansion media significantly influences the myogenic differentiation potential of human bone marrow-derived mesenchymal stromal cells.

    PubMed

    Brun, Juliane; Abruzzese, Tanja; Rolauffs, Bernd; Aicher, Wilhelm K; Hart, Melanie L

    2016-03-01

    Mesenchymal stromal cells (MSCs) have great potential for use in cell-based therapies for restoration of structure and function of many tissue types including smooth muscle. We compared proliferation, immunophenotype, differentiation capability and gene expression of bone marrow-derived MSCs expanded in different media containing human serum, plasma and platelet lysate in combination with commonly used protocols for myogenic, osteogenic, chondrogenic and adipogenic differentiation. Moreover, we developed a xenogenic-free protocol for myogenic differentiation of MSCs. Expansion of MSCs in media complemented with serum, serum + platelet lysate or plasma + platelet lysate were multipotent because they differentiated toward four mesenchymal (myogenic, osteogenic, chondrogenic, adipogenic) lineages. Addition of platelet lysate to expansion media increased the proliferation of MSCs and their expression of CD146. Incubation of MSCs in medium containing human serum or plasma plus 5% human platelet lysate in combination with smooth muscle cell (SMC)-inducing growth factors TGFβ1, PDGF and ascorbic acid induced high expression of ACTA2, TAGLN, CNN1 and/or MYH11 contractile SMC markers. Osteogenic, adipogenic and chondrogenic differentiations served as controls. Our study provides novel data on the myogenic differentiation potential of human MSCs toward the SMC lineage using different xenogenic-free cell culture expansion media in combination with distinct differentiation medium compositions. We show that the choice of expansion medium significantly influences the differentiation potential of human MSCs toward the smooth muscle cell, as well as osteogenic, adipogenic and chondrogenic lineages. These results can aid in designing studies using MSCs for tissue-specific therapeutic applications. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  2. A New Method for Xenogeneic Bone Graft Deproteinization: Comparative Study of Radius Defects in a Rabbit Model

    PubMed Central

    Lei, Pengfei; Sun, Rongxin; Wang, Long; Zhou, Jialin; Wan, Lifei; Zhou, Tianjian; Hu, Yihe

    2015-01-01

    Background and Objectives Deproteinization is an indispensable process for the elimination of antigenicity in xenograft bones. However, the hydrogen peroxide (H2O2) deproteinized xenograft, which is commonly used to repair bone defect, exhibits limited osteoinduction activity. The present study was designed to develop a new method for deproteinization and compare the osteogenic capacities of new pepsin deproteinized xenograft bones with those of conventional H2O2 deproteinized ones. Methods Bones were deproteinized in H2O2 or pepsin for 8 hours. The morphologies were compared by HE staining. The content of protein and collagen I were measured by the Kjeldahl method and HPLC-MS, respectively. The physical properties were evaluated by SEM and mechanical tests. For in vivo study, X-ray, micro-CT and HE staining were employed to monitor the healing processes of radius defects in rabbit models transplanted with different graft materials. Results Compared with H2O2 deproteinized bones, no distinct morphological and physical changes were observed. However, pepsin deproteinized bones showed a lower protein content, and a higher collagen content were preserved. In vivo studies showed that pepsin deproteinized bones exhibited better osteogenic performance than H2O2 deproteinized bones, moreover, the quantity and quality of the newly formed bones were improved as indicated by micro-CT analysis. From the results of histological examination, the newly formed bones in the pepsin group were mature bones. Conclusions Pepsin deproteinized xenograft bones show advantages over conventional H2O2 deproteinized bones with respect to osteogenic capacity; this new method may hold potential clinical value in the development of new biomaterials for bone grafting. PMID:26719896

  3. Synthetic bone substitute material comparable with xenogeneic material for bone tissue regeneration in oral cancer patients: First and preliminary histological, histomorphometrical and clinical results

    PubMed Central

    Ghanaati, Shahram; Barbeck, Mike; Lorenz, Jonas; Stuebinger, Stefan; Seitz, Oliver; Landes, Constantin; Kovács, Adorján F.; Kirkpatrick, Charles J.; Sader, Robert A.

    2013-01-01

    Background: The present study was first to evaluate the material-specific cellular tissue response of patients with head and neck cancer to a nanocrystalline hydroxyapatite bone substitute NanoBone (NB) in comparison with a deproteinized bovine bone matrix Bio-Oss (BO) after implantation into the sinus cavity. Materials and Methods: Eight patients with tumor resection for oral cancer and severely resorbed maxillary bone received materials according to a split mouth design for 6 months. Bone cores were harvested prior to implantation and analyzed histologically and histomorphometrically. Implant survival was followed-up to 2 years after placement. Results: Histologically, NB underwent a higher vascularization and induced significantly more tartrate-resistant acid phosphatase-positive (TRAP-positive) multinucleated giant cells when compared with BO, which induced mainly mononuclear cells. No significant difference was observed in the extent of new bone formation between both groups. The clinical follow-up showed undisturbed healing of all implants in the BO-group, whereas the loss of one implant was observed in the NB-group. Conclusions: Within its limits, the present study showed for the first time that both material classes evaluated, despite their induction of different cellular tissue reactions, may be useful as augmentation materials for dental and maxillofacial surgical applications, particularly in patients who previously had oral cancer. PMID:24205471

  4. Synthetic bone substitute material comparable with xenogeneic material for bone tissue regeneration in oral cancer patients: First and preliminary histological, histomorphometrical and clinical results.

    PubMed

    Ghanaati, Shahram; Barbeck, Mike; Lorenz, Jonas; Stuebinger, Stefan; Seitz, Oliver; Landes, Constantin; Kovács, Adorján F; Kirkpatrick, Charles J; Sader, Robert A

    2013-07-01

    The present study was first to evaluate the material-specific cellular tissue response of patients with head and neck cancer to a nanocrystalline hydroxyapatite bone substitute NanoBone (NB) in comparison with a deproteinized bovine bone matrix Bio-Oss (BO) after implantation into the sinus cavity. Eight patients with tumor resection for oral cancer and severely resorbed maxillary bone received materials according to a split mouth design for 6 months. Bone cores were harvested prior to implantation and analyzed histologically and histomorphometrically. Implant survival was followed-up to 2 years after placement. Histologically, NB underwent a higher vascularization and induced significantly more tartrate-resistant acid phosphatase-positive (TRAP-positive) multinucleated giant cells when compared with BO, which induced mainly mononuclear cells. No significant difference was observed in the extent of new bone formation between both groups. The clinical follow-up showed undisturbed healing of all implants in the BO-group, whereas the loss of one implant was observed in the NB-group. Within its limits, the present study showed for the first time that both material classes evaluated, despite their induction of different cellular tissue reactions, may be useful as augmentation materials for dental and maxillofacial surgical applications, particularly in patients who previously had oral cancer.

  5. Biodegradable nanocomposite coatings accelerate bone healing: In vivo evaluation

    PubMed Central

    Mehdikhani-Nahrkhalaji, Mehdi; Fathi, Mohammad Hossein; Mortazavi, Vajihesadat; Mousavi, Sayed Behrouz; Akhavan, Ali; Haghighat, Abbas; Hashemi-Beni, Batool; Razavi, Sayed Mohammad; Mashhadiabbas, Fatemeh

    2015-01-01

    Background: The aim of this study was to evaluate the interaction of bioactive and biodegradable poly (lactide-co-glycolide)/bioactive glass/hydroxyapatite (PBGHA) and poly (lactide-co-glycolide)/bioactive glass (PBG) nanocomposite coatings with bone. Materials and Methods: Sol-gel derived 58S bioactive glass nanoparticles, 50/50 wt% poly (lactic acid)/poly (glycolic acid) and hydroxyapatite nanoparticles were used to prepare the coatings. The nanocomposite coatings were characterized by scanning electron microscopy, X-ray diffraction and atomic force microscopy. Mechanical stability of the prepared nanocomposite coatings was studied during intramedullary implantation of coated Kirschner wires (K-wires) into rabbit tibia. Titanium mini-screws coated with nanocomposite coatings and without coating were implanted intramedullary in rabbit tibia. Bone tissue interaction with the prepared nanocomposite coatings was evaluated 30 and 60 days after surgery. The non-parametric paired Friedman and Kruskal-Wallis tests were used to compare the samples. For all tests, the level of significance was P < 0.05. Results: The results showed that nanocomposite coatings remained stable on the K-wires with a minimum of 96% of the original coating mass. Tissue around the coated implants showed no adverse reactions to the coatings. Woven and trabecular bone formation were observed around the coated samples with a minimum inflammatory reaction. PBG nanocomposite coating induced more rapid bone healing than PBGHA nanocomposite coating and titanium without coating (P < 0.05). Conclusion: It was concluded that PBG nanocomposite coating provides an ideal surface for bone formation and it could be used as a candidate for coating dental and orthopedic implants. PMID:25709681

  6. Clinical evaluation of regenerative potential of type I collagen membrane along with xenogenic bone graft in the treatment of periodontal intrabony defects assessed with surgical re-entry and radiographic linear and densitometric analysis

    PubMed Central

    Sowmya, N. K.; Tarun Kumar, A. B.; Mehta, D. S.

    2010-01-01

    Background and Objectives: The primary goal of periodontal therapy is to restore the tooth supporting tissues lost due to periodontal disease. The aim of the present study was to compare the efficacy of combination of type I collagen (GTR membrane) and xenogenic bone graft with open flap debridement (OFD) in treatment of periodontal intrabony defects. Materials and Methods: Twenty paired intrabony defects were surgically treated using split mouth design. The defects were randomly assigned to treatment with OFD + collagen membrane + bone graft (Test) or OFD alone (Control). The clinical efficacy of two treatment modalities was evaluated at 9 month postoperatively by clinical, radiographical, and intrasurgical (re-entry) parameters. The measurements included probing pocket depth (PD), clinical attachment level (CAL), gingival recession (GR), bone fill (BF), bone density (BD) and intra bony component (INTRA). Results: The mean reduction in PD at 0–9 month was 3.3±0.82 mm and CAL gain of 3.40±1.51 mm occurred in the collagen membrane + bone graft (Test) group; corresponding values for OFD (Control) were 2.20±0.63 mm and 1.90±0.57 mm. Similar pattern of improvement was observed when radiographical and intra-surgical (re-entry) post operative evaluation was made. All improvement in different parameters was statistically significant (P< 0.01). Interpretation and Conclusion: Treatment with a combination of collagen membrane and bone graft led to a significantly more favorable clinical outcome in intrabony defects as compared to OFD alone. PMID:20922075

  7. Effect of bone mineral density and amorphous diamond coatings on insertion torque of bone screws.

    PubMed

    Koistinen, Arto; Santavirta, Seppo S; Kröger, Heikki; Lappalainen, Reijo

    2005-10-01

    In this study, the potential of high-quality amorphous diamond (AD) coatings in reducing the torque and failures of bone screws was studied. Torque values were recorded for 32 stainless steel screws, 2.7 or 3.5 mm in diameter and 60 mm in length. Half of the screw sets were coated with the AD coating before installing in predrilled holes of human cadaveric femoral bone samples. The bone samples were selected from two groups of four persons with mean ages of 34 years (range 25-41 years) and 75 years (range 73-77 years), respectively. The bone mineral density (BMD) values of the samples were determined exactly at the screw insertion site by peripheral quantitative computed tomography (pQCT). In the mechanical tests, insertion and removal torques were measured. BMD had a significant effect on insertion torque; the maximum torque (adjusted with respect to the screw diameter) was significantly higher for the young bone than for the old bone (p < 0.05). By using a polished AD coating, insertion torque was decreased even up to 50% in comparison with the screws without coating. The results suggest that AD coating provides a stable, smooth surface and reduces the risk of screw failures.

  8. Electrodeposited silk coatings for bone implants

    PubMed Central

    Elia, Roberto; Michelson, Courtney D.; Perera, Austin L.; Brunner, Teresa F.; Harsono, Masly; Leisk, Gray G.; Kugel, Gerard; Kaplan, David L.

    2014-01-01

    The aim of this study was to characterize the mechanical properties and drug elution features of silk protein-based electrodeposited dental implant coatings. Silk processing conditions were modified to obtain coatings with a range of mechanical properties on titanium studs. These coatings were assessed for adhesive strength and dissolution, with properties tuned using water vapor annealing or glycerol incorporation to modulate crystalline content. Coating reproducibility was demonstrated over a range of silk concentrations from 1 to 10%. Surface roughness of titanium substrates was altered using industry relevant acid etching and grit blasting, and the effect of surface topography on silk coating adhesion was assessed. Florescent compounds were incorporated into the silk coatings, which were modulated for crystalline content, to achieve four days of sustained release of the compounds. This silk electrogelation technique offers a safe and relatively simple approach to generate mechanically robust, biocompatible and degradable implant coatings that can also be functionalized with bioactive compounds to modulate the local regenerative tissue environment. PMID:25545462

  9. Porous coatings from wire mesh for bone implants

    DOEpatents

    Sump, Kenneth R.

    1986-01-01

    A method of coating areas of bone implant elements and the resulting implant having a porous coating are described. Preselected surface areas are covered by a preform made from continuous woven lengths of wire. The preform is compressed and heated to assure that diffusion bonding occurs between the wire surfaces and between the surface boundaries of the implant element and the wire surfaces in contact with it. Porosity is achieved by control of the resulting voids between the bonded wire portions.

  10. Serum albumin coating of demineralized bone matrix results in stronger new bone formation.

    PubMed

    Horváthy, Dénes B; Vácz, Gabriella; Szabó, Tamás; Szigyártó, Imola C; Toró, Ildikó; Vámos, Boglárka; Hornyák, István; Renner, Károly; Klára, Tamás; Szabó, Bence T; Dobó-Nagy, Csaba; Doros, Attila; Lacza, Zsombor

    2016-01-01

    Blood serum fractions are hotly debated adjuvants in bone replacement therapies. In the present experiment, we coated demineralized bone matrices (DBM) with serum albumin and investigated stem cell attachment in vitro and bone formation in a rat calvaria defect model. In the in vitro experiments, we observed that significantly more cells adhere to the serum albumin coated DBMs at every time point. In vivo bone formation with albumin coated and uncoated DBM was monitored biweekly by computed tomography until 11 weeks postoperatively while empty defects served as controls. By the seventh week, the bone defect in the albumin group was almost completely closed (remaining defect 3.0 ± 2.3%), while uncoated DBM and unfilled control groups still had significant defects (uncoated: 40.2 ± 9.1%, control: 52.4 ± 8.9%). Higher density values were also observed in the albumin coated DBM group. In addition, the serum albumin enhanced group showed significantly higher volume of newly formed bone in the microCT analysis and produced significantly higher breaking force and stiffness compared to the uncoated grafts (peak breaking force: uncoated: 15.7 ± 4 N, albumin 46.1 ± 11 N). In conclusion, this investigation shows that implanting serum albumin coated DBM significantly reduces healing period in nonhealing defects and results in mechanically stronger bone. These results also support the idea that serum albumin coating provides a convenient milieu for stem cell function, and a much improved bone grafting success can be achieved without the use of exogenous stem cells.

  11. Effective expansion of human adipose-derived stromal cells and bone marrow-derived mesenchymal stem cells cultured on a fragmin/protamine nanoparticles-coated substratum with human platelet-rich plasma.

    PubMed

    Kishimoto, Satoko; Ishihara, Masayuki; Mori, Yasutaka; Takikawa, Megumi; Hattori, Hidemi; Nakamura, Shingo; Sato, Toshinori

    2013-12-01

    Fragmin/protamine nanoparticles (F/P NPs) can be stably coated onto plastic surfaces and used as a substratum for the absorption and controlled release of growth factors (GFs) secreted from human platelet-rich plasma (PRP). In this study, we investigated the capability of F/P NP-coated plates to act as a substratum for the proliferation of human adipose-derived stromal cells (ASCs) and bone marrow-derived mesenchymal stem cells (BMSCs) with GFs in PRP. Both cell types adhered well to the F/P NP-coated plates and grew optimally, with a doubling time of 30 and 32 h in low-concentration PRP (0.5%) medium supplemented with 5 ng/ml fibroblast growth factor-2 (FGF-2) on the F/P NP-coated plates. These cells maintained their multilineage potential for differentiation into adipocytes or osteoblasts. Furthermore, ASCs and BMSCs grew well in medium without PRP and FGF-2 on F/P NP-coated plates pretreated with PRP and FGF-2 in a concentration-dependent manner. Thus, F/P NP-coated plates are a useful substratum for the adherence and proliferation of ASCs and BMSCs in low-concentration PRP medium supplemented with FGF-2. No xenogeneic serum is required. Copyright © 2012 John Wiley & Sons, Ltd.

  12. Osteogenesis mechanism of chitosan-coated calcium sulfate pellets on the restoration of segmental bone defects.

    PubMed

    Cui, Xu; Zhao, Dewei; Zhang, Boxun; Gao, Yongliang

    2009-09-01

    A radial segmental defect model of a rabbit was used to study the restoration effect on defects treated with chitosan-coated pressed calcium sulfate pellets combined with recombinant human bone morphogenetic protein-2 (rhBMP-2), coated pressed calcium sulfate pellets, and uncoated pressed calcium sulfate pellets. Nothing was implanted in the control group. After 4, 8, and 12 weeks, the results indicated that coated pressed calcium sulfate pellets combined with rhBMP-2 and coated pressed calcium sulfate pellets facilitated new bone formation on defected bones and that, particularly, the coated pressed calcium sulfate pellets combined with rhBMP-2 was more effective than the coated pressed calcium sulfate pellet. Histologic and tetracycline fluorimetric findings showed that the osteogenesis mechanism of chitosan-coated pressed calcium sulfate pellets is membrane bone formation, and the pellets showed slightly slower resorption that closely coincides with the growth rate of new bone.

  13. Strontium and zoledronate hydroxyapatites graded composite coatings for bone prostheses.

    PubMed

    Boanini, Elisa; Torricelli, Paola; Sima, Felix; Axente, Emanuel; Fini, Milena; Mihailescu, Ion N; Bigi, Adriana

    2015-06-15

    Both strontium and zoledronate (ZOL) are known to be useful for the treatment of bone diseases associated to the loss of bone substance. In this work, we applied an innovative technique, Combinatorial Matrix-Assisted Pulsed Laser Evaporation (C-MAPLE), to deposit gradient thin films with variable compositions of Sr-substituted hydroxyapatite (SrHA) and ZOL modified hydroxyapatite (ZOLHA) on Titanium substrates. Compositional gradients were obtained by simultaneous laser vaporization of the two distinct material targets. The coatings display good crystallinity and granular morphology, which do not vary with composition. Osteoblast-like MG63 cells and human osteoclasts were co-cultured on the thin films up to 21 days. The results show that Sr counteracts the negative effect of relatively high concentration of ZOL on osteoblast viability, whereas both Sr and ZOL enhance extracellular matrix deposition. In particular, ZOL promotes type I collagen production, whereas Sr increases the production of alkaline phosphatase. Moreover, ZOL exerts a greater effect than Sr on osteoprotegerin/RANKL ratio and, as a consequence, on the reduction of osteoclast proliferation and activity. The deposition method allows to modulate the composition of the thin films and hence the promotion of bone growth and the inhibition of bone resorption.

  14. Xenogene vaccination in the therapy of cancer.

    PubMed

    Cavallo, Federica; Aurisicchio, Luigi; Mancini, Rita; Ciliberto, Gennaro

    2014-10-01

    The advent of cancer immunotherapy is going to profoundly transform the therapy of cancer. In this context, therapeutic cancer vaccines will offer significant opportunities, provided an efficient and robust technology is developed. Targeting tumor-associated antigens via immunization with homologous immunogens derived from other species, an approach called xeno vaccination, combined with gene delivery is believed to be a viable strategy. Xenogene vaccination has demonstrated to be more efficient than vaccination with 'self' antigens in rodent models in prophylactic and therapeutic settings against cancer. Depending upon the targeted antigen, the mechanism of action of xeno vaccines has been shown to depend upon the development of antibody and/or cytotoxic T-cell responses. More importantly, xenogene vaccination has been shown to reproducibly affect cancer growth and to improve survival in veterinary cancer patients, mainly in dogs affected by spontaneous disease. One of these vaccines against dog melanoma has been approved by regulatory authorities in USA. Finally, several xenogene vaccines have been advanced to early Phase I/II human clinical trials where they have shown to be safe, well tolerated and capable to induce detectable immune responses against human tumor antigens. Based on this compendium of results we believe that xenogene vaccination may soon become a well-established weapon in the fight against cancer.

  15. Are allogenic or xenogenic screws and plates a reasonable alternative to alloplastic material for osteosynthesis--a histomorphological analysis in a dynamic system.

    PubMed

    Jacobsen, C; Obwegeser, J A

    2010-12-01

    Despite invention of titanium and resorbable screws and plates, still, one of the main challenges in bone fixation is the search for an ideal osteosynthetic material. Biomechanical properties, biocompatibility, and also cost effectiveness and clinical practicability are factors for the selection of a particular material. A promising alternative seems to be screws and plates made of bone. Recently, xenogenic bone pins and screws have been invented for use in joint surgery. In this study, screws made of allogenic sheep and xenogenic human bone were analyzed in a vital and dynamic sheep-model and compared to conventional titanium screws over a standard period of bone healing of 56 days with a constant applied extrusion force. Biomechanical analysis and histomorphological evaluation were performed. After 56 days of insertion xenogenic screws made of human bone showed significantly larger distance of extrusion of on average 173.8 μm compared to allogenic screws made of sheep bone of on average 27.8 and 29.95 μm of the titanium control group. Severe resorption processes with connective tissue interposition were found in the histomorphological analysis of the xenogenic screws in contrast to new bone formation and centripetal vascularization of the allogenic bone screw, as well as in processes of incorporation of the titanium control group. The study showed allogenic cortical bone screws as a substantial alternative to titanium screws with good biomechanical properties. In contrast to other reports a different result was shown for the xenogenic bone screws. They showed insufficient holding strength with confirmative histomorphological signs of degradation and insufficient osseointegration. Before common clinical use of xenogenic osteosynthetic material, further evaluation should be performed.

  16. Peri- and intra-implant bone response to microporous Ti coatings with surface modification.

    PubMed

    Braem, Annabel; Chaudhari, Amol; Vivan Cardoso, Marcio; Schrooten, Jan; Duyck, Joke; Vleugels, Jozef

    2014-02-01

    Bone growth on and into implants exhibiting substantial surface porosity is a promising strategy in order to improve the long-term stable fixation of bone implants. However, the reliability in clinical applications remains a point of discussion. Most attention has been dedicated to the role of macroporosity, leading to the general consensus of a minimal pore size of 50-100 μm in order to allow bone ingrowth. In this in vivo study, we assessed the feasibility of early bone ingrowth into a predominantly microporous Ti coating with an average thickness of 150 μm and the hypothesis of improving the bone response through surface modification of the porous coating. Implants were placed in the cortical bone of rabbit tibiae for periods of 2 and 4 weeks and evaluated histologically and histomorphometrically using light microscopy and scanning electron microscopy. Bone with osteocytes encased in the mineralized matrix was found throughout the porous Ti coating up to the coating/substrate interface, highlighting that osseointegration of microporosities (<10 μm) was achievable. The bone trabeculae interweaved with the pore struts, establishing a large contact area which might enable an improved load transfer and stronger implant/bone interface. Furthermore, there was a clear interconnection with the surrounding cortical bone, suggesting that mechanical interlocking of the coating in the host bone in the long term is possible. When surface modifications inside the porous structure further reduced the interconnective pore size to the submicrometer level, bone ingrowth was impaired. On the other hand, application of a sol-gel-derived bioactive glass-ceramic coating without altering the pore characteristics was found to significantly improve bone regeneration around the coating, while still supporting bone ingrowth. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  17. Assessment of bone ingrowth potential of biomimetic hydroxyapatite and brushite coated porous E-beam structures.

    PubMed

    Biemond, J Elizabeth; Eufrásio, Tatiane S; Hannink, Gerjon; Verdonschot, Nico; Buma, Pieter

    2011-04-01

    The bone ingrowth potential of biomimetic hydroxyapatite and brushite coatings applied on porous E-beam structure was examined in goats and compared to a similar uncoated porous structure and a conventional titanium plasma spray coating. Specimens were implanted in the iliac crest of goats for a period of 3 (4 goats) or 15 weeks (8 goats). Mechanical implant fixation generated by bone ingrowth was analyzed by a push out test. Histomorphometry was performed to assess the bone ingrowth depth and bone implant contact. The uncoated and hydroxyapatite-coated cubic structure had significantly higher mechanical strength at the interface compared to the Ti plasma spray coating at 15 weeks of implantation. Bone ingrowth depth was significantly larger for the hydroxyapatite- and brushite-coated structures compared to the uncoated structure. In conclusion, the porous E-beam surface structure showed higher bone ingrowth potential compared to a conventional implant surface after 15 weeks of implantation. Addition of a calcium phosphate coating to the E-beam structure enhanced bone ingrowth significantly. Furthermore, the calcium phosphate coating appears to work as an accelerator for bone ingrowth.

  18. Bone properties surrounding hydroxyapatite-coated custom osseous integrated dental implants.

    PubMed

    Baker, M I; Eberhardt, A W; Martin, D M; McGwin, G; Lemons, J E

    2010-10-01

    Calcium phosphate (hydroxyapatite or HA) coatings have been applied to Custom Osseous Integrated Implants (COIIs) to improve the quality of the bone-implant integration, yet little is known concerning the biomechanical properties of bone surrounding the HA-coated implants in humans over the long term. The purpose of this study was to characterize the mechanical and histomorphometric properties of the bone along the implant interface. Specimens were prepared from three similar mandibular implants that were functional in three female patients for about 11 years. Histomorphometric analyses showed bone-implant contact averaging 75% for all specimens. Area coverage of residual HA-coating ranged from 52 to 70%. When compared with previous studies, these results show a relatively high percentage of residual HA after a decade in vivo. Nanoindentation showed similar average values of hardness and modulus (p = 0.53 and p = 0.56, respectively) comparing bone adjacent to residual HA-coating and regions where the coating was absent. The elastic modulus was significantly lower for bone near the bone-implant interface (<200 μm) as compared with bone distant (>1000 μm) from the interface (p = 0.05), thereby reflecting different properties of the bone near these interfaces. Backscattered electron imaging showed darker gray levels which indicated decreased mineral content in bone adjacent to the implant, consistent with the nanoindentation results.

  19. Effect of surface roughness and calcium phosphate coating on the implant/bone response.

    PubMed

    Hayakawa, T; Yoshinari, M; Nemoto, K; Wolke, J G; Jansen, J A

    2000-08-01

    The influence of surface roughness and calcium phosphate (Ca-P) coating on the bone response of titanium implants was investigated. Four types of titanium implants, i.e. as-machined, grit blasted, as-machined with Ca-P sputter coating, and grit blasted with Ca-P sputter coating, were prepared. The Ca-P sputter-coating, produced by using the RF magnetron sputter technique, was rapid heat-treated with infrared radiation at 600 degrees C. These implants were inserted into the left and right femoral condyles and the left and right tibial diaphyses of the rabbits. After implantation periods of 2 and 12 weeks, the bone-implant interface was evaluated histologically and histomorphometrically. Histological evaluation revealed no new bone formation around different implant materials after 2 weeks of implantation. After 12 weeks, bone healing was almost completed. For both tibial and femoral implants, Ca-P coated implants always showed a higher amount of bone contact than either of the non-coated implants. On the other hand, surface roughness improved only the response to implants inserted into the tibial diaphysis. On the basis of these findings, we concluded that 1) deposition of a sputtered Ca-P coating on an implant has a beneficial effect on the bone response to this implant during the healing phase, and 2) besides implant surface conditions the bone response is also determined by local implant site conditions.

  20. Interfacial and biological properties of the gradient coating on polyamide substrate for bone substitute.

    PubMed

    Huang, Di; Niu, Lulu; Wei, Yan; Guo, Meiqing; Zuo, Yi; Zou, Qin; Hu, Yinchun; Chen, Weiyi; Li, Yubao

    2014-10-06

    Fabrication of bioactive and mechanical matched bone substitutes is crucial for clinical application in bone defects repair. In this study, nano-hydroxyapatite/polyamide (nHA/PA) composite was coated on injection-moulded PA by a chemical corrosion and phase-inversion technique. The shear strength, gradient composition and pore structure of the bioactive coating were characterized. Osteoblast-like MG63 cells were cultured on pure PA and composite-coated PA samples. The cells' adhesion, spread and proliferation were determined using MTT assay and microscopy. The results confirm that the samples with the nHA/PA composite coating have better cytocompatibility and have no negative effects on cells. To investigate the in vivo biocompatibility, both pure PA and composite-coated PA cylinders were implanted in the trochlea of rabbit femurs and studied histologically, and the bonding ability with bone were determined using push-out tests. The results show that composite-coated implants exhibit better biocompatibility and the shear strength of the composite-coated implants with host bone at 12 weeks can reach 3.49±0.42 MPa, which is significantly higher than that of pure PA implants. These results indicate that composite-coated PA implants have excellent biocompatibility and bonding abilities with host bone and they have the potential to be applied in repair of bone defects.

  1. Interfacial and biological properties of the gradient coating on polyamide substrate for bone substitute

    PubMed Central

    Huang, Di; Niu, Lulu; Wei, Yan; Guo, Meiqing; Zuo, Yi; Zou, Qin; Hu, Yinchun; Chen, Weiyi; Li, Yubao

    2014-01-01

    Fabrication of bioactive and mechanical matched bone substitutes is crucial for clinical application in bone defects repair. In this study, nano-hydroxyapatite/polyamide (nHA/PA) composite was coated on injection-moulded PA by a chemical corrosion and phase-inversion technique. The shear strength, gradient composition and pore structure of the bioactive coating were characterized. Osteoblast-like MG63 cells were cultured on pure PA and composite-coated PA samples. The cells' adhesion, spread and proliferation were determined using MTT assay and microscopy. The results confirm that the samples with the nHA/PA composite coating have better cytocompatibility and have no negative effects on cells. To investigate the in vivo biocompatibility, both pure PA and composite-coated PA cylinders were implanted in the trochlea of rabbit femurs and studied histologically, and the bonding ability with bone were determined using push-out tests. The results show that composite-coated implants exhibit better biocompatibility and the shear strength of the composite-coated implants with host bone at 12 weeks can reach 3.49 ± 0.42 MPa, which is significantly higher than that of pure PA implants. These results indicate that composite-coated PA implants have excellent biocompatibility and bonding abilities with host bone and they have the potential to be applied in repair of bone defects. PMID:25121648

  2. Mechanical and bone ingrowth properties of a polymer-coated, porous, synthetic, coralline hydroxyapatite bone-graft material.

    PubMed

    Tencer, A F; Woodard, P L; Swenson, J; Brown, K L

    1988-01-01

    CHAG, that is, porous hydroxyapatite hydrothermally converted from the calcium carbonate exoskeleton of a coral (genus Goniopora), has been shown to be effective as a scaffold for bone ingrowth. The large pores in the material, however, resulted in low compressive strengths. Compressive testing was performed to assess the changes in mechanical properties by coating the internal surfaces of CHAG with DL-PLA. Plugs of CHAG with thick (3:1 chloroform to DL-PLA by weight), medium (10:1), and thin (30:1) coatings as well as uncoated CHAG were then implanted transcortically in the proximal third of the diaphysis of rabbit tibiae to assess the in vivo response. The mechanical tests demonstrated significantly improved compressive strength, stiffness, and energy absorption for coated specimens compared with uncoated specimens. Coated specimens were not significantly different from canine tibial cancellous bone in strength and stiffness although they achieved only 36% of the energy absorption capacity. Specimens from rabbit tibiae were harvested at 3, 12, and 24 weeks for interface shear strength determination and contralaterally for histological and histomorphometric assessment. At 12 weeks, uncoated CHAG plugs developed an average ultimate interface shear stress of 26.7 MPa compared with 17 MPa for specimens with 30:1 coatings and 8 MPa for specimens with 10:1 and 3:1 coatings. At 24 weeks, there were no significant differences in shear stress between any of the specimens. Histomorphometric assessments showed that the ratio of area fraction of new bone to area fraction of new bone and void space increased from 68-70% for specimens with 3:1 and 10:1 coatings at 3 weeks to 85.5-89.5% at 24 weeks. In comparison, uncoated and 30:1 specimens had area fraction ratios of about 82% at 3 weeks and 93% at 24 weeks. Histologic sections demonstrated direct apposition of new bone to both the coating and the hydroxyapatite as well as degradation of the coating.

  3. Coating with a Modular Bone Morphogenetic Peptide Promotes Healing of a Bone-Implant Gap in an Ovine Model

    PubMed Central

    Lu, Yan; Lee, Jae Sung; Nemke, Brett; Graf, Ben K.; Royalty, Kevin; Illgen, Richard; Vanderby, Ray; Markel, Mark D.; Murphy, William L.

    2012-01-01

    Despite the potential for growth factor delivery strategies to promote orthopedic implant healing, there is a need for growth factor delivery methods that are controllable and amenable to clinical translation. We have developed a modular bone growth factor, herein termed “modular bone morphogenetic peptide (mBMP)”, which was designed to efficiently bind to the surface of orthopedic implants and also stimulate new bone formation. The purpose of this study was to coat a hydroxyapatite-titanium implant with mBMP and evaluate bone healing across a bone-implant gap in the sheep femoral condyle. The mBMP molecules efficiently bound to a hydroxyapatite-titanium implant and 64% of the initially bound mBMP molecules were released in a sustained manner over 28 days. The results demonstrated that the mBMP-coated implant group had significantly more mineralized bone filling in the implant-bone gap than the control group in C-arm computed tomography (DynaCT) scanning (25% more), histological (35% more) and microradiographic images (50% more). Push-out stiffness of the mBMP group was nearly 40% greater than that of control group whereas peak force did not show a significant difference. The results of this study demonstrated that mBMP coated on a hydroxyapatite-titanium implant stimulates new bone formation and may be useful to improve implant fixation in total joint arthroplasty applications. PMID:23185610

  4. Self-dissolution assisted coating on magnesium metal for biodegradable bone fixation devices

    NASA Astrophysics Data System (ADS)

    Khakbaz, Hadis; Walter, Rhys; Gordon, Timothy; Bobby Kannan, M.

    2014-12-01

    An attempt was made to develop a self-dissolution assisted coating on a pure magnesium metal for potential bone fixation implants. Magnesium phosphate cement (MPC) was coated successfully on the magnesium metal in ammonium dihydrogen phosphate solution. The in vitro degradation behaviour of the MPC coated metal was evaluated using electrochemical techniques. The MPC coating increased the polarisation resistance (RP) of the metal by ˜150% after 2 h immersion in simulated body fluid (SBF) and reduced the corrosion current density (icorr) by ˜80%. The RP of the MPC coated metal remained relatively high even after 8 h immersion period. However, post-degradation analysis of the MPC coated metal revealed localized attack. Hence, the study suggests that MPC coating alone may not be beneficial, but this novel coating could provide additional protection if used as a precursor for other potential coatings such as biodegradable polymers or calcium phosphates.

  5. Application of Gelatin-Coated Magnetic Particles for Isolation of Genomic DNA from Bones.

    PubMed

    Khanpetch, Pongsak; Intorasoot, Sorasak; Prasitwattanseree, Sukon; Mekjaidee, Karnda; Mahakkanukrauh, Pasuk

    2015-07-01

    To develop a method for human genomic DNA extraction from bone using gelatin-coated magnetic particles. Thirty human metacarpal with the bone age ranging from 36 to 93 years were included in the present study. Genomic DNA was extracted from bones using gelatin-coated magnetic particles. The concentration and purity of DNA were analyzed in comparison with a reference method. In addition, the quality of extracted DNA was examined for sex determination by conventional polymerase chain reaction (PCR). The average DNA concentration using gelatin coated magnetic particles exhibited approximately 15 times higher than a reference method with an insignificantly difference of the DNA purity in both methods. Twelve (40%) and fifteen (50%) samples out of thirty DNA isolated using established and reference method, respectively, could be amplified and sex correctly determined by PCR. Gelatin coated magnetic particle is rapid, simple, and well-suited for isolation of DNA from bones.

  6. Specific tolerance induction across a xenogeneic barrier: Production of mixed rat/mouse lymphohematopoietic chimeras using a nonlethal preparative regimen

    SciTech Connect

    Sharabi, Y.; Aksentijevich, I.; Sundt, T.M. 3d.; Sachs, D.H.; Sykes, M. )

    1990-07-01

    The development of safe methods for inducing donor-specific tolerance across xenogeneic barriers could potentially relieve the critical shortage of allograft donors that currently limits the applicability of organ transplantation. We report here that such tolerance can be induced in a xenogeneic combination (rat----mouse) using a nonmyeloablative and nonlethal preparative regimen. Successful induction of chimerism and donor-specific transplantation tolerance required pretreatment of recipients with monoclonal antibodies (mAbs) against NK1.1, Thy-1.2, CD4 and CD8, followed by administration of 3 Gy whole body radiation (WBI), 7 Gy thymic irradiation, and infusion of T cell-depleted rat bone marrow cells (BMC). Rat cells appeared among peripheral blood lymphocytes (PBL) of such recipients by 2-3 wk, and rat T cells by 2-5 wk following bone marrow transplantation (BMT). Donor-type rat skin grafts placed 4 mo after BMT were accepted, while simultaneously placed non-donor-type rat skin grafts were promptly rejected. In addition to its clinical potential, the ability to induce donor-specific tolerance across xenogeneic barriers using such a nonlethal preparative regimen provides a valuable model for the study of mechanisms of xenogeneic transplantation tolerance.

  7. Long-term antibiotic delivery by chitosan-based composite coatings with bone regenerative potential

    NASA Astrophysics Data System (ADS)

    Ordikhani, F.; Simchi, A.

    2014-10-01

    Composite coatings with bone-bioactivity and drug-eluting capacity are considered as promising materials for titanium bone implants. In this work, drug-eluting chitosan-bioactive glass coatings were fabricated by a single-step electrophoretic deposition technique. Drug-loading and -releasing capacity of the composite coatings were carried out using the vancomycin antibiotic. Uniform coatings with a thickness of ∼55 μm containing 23.7 wt% bioactive glass particles and various amounts of the antibiotic (380-630 μg/cm2) were produced. The coatings were bioactive in terms of apatite-forming ability in simulated body fluid and showed favorable cell adhesion and growth. In vitro biological tests also indicated that the composite coatings had better cellular affinity than pristine chitosan coatings. The in vitro elution kinetics of the composite coating revealed an initial burst release of around 40% of the drug within the first elution step of 1 h and following by a continuous eluting over 4 weeks, revealing long-term drug-delivering potential. Antibacterial tests using survival assay against Gram-positive Staphylococcus aureus bacteria determined the effect of vancomycin release on reduction of infection risk. Almost no bacteria were survived on the coatings prepared from the EPD suspension containing ≥0.5 g/l vancomycin. The developed chitosan-based composite coatings with bone bioactivity and long-term drug-delivery ability may be potentially useful for metallic implants to reduce infection risk.

  8. [Antitumoral effect of xenogenic substances in vivo and in vitro].

    PubMed

    Munder, P G; Stiefel, T; Widmann, K H; Theurer, K

    1982-04-01

    The proliferation of various tumour cells was inhibited in vivo and in vitro after application of/or incubation with xenogeneic liver tissue. The development of s.c.-implanted meth-A-sarcoma was blocked by the prophylactic injection of these preparations. In addition firmly established tumours regressed under therapy. Preparations obtained from xenogeneic organs like thymus, placenta or brain had a similar antitumor activity. A mixture of various xenogeneic tissues from different species had a much higher therapeutic efficiency. In the Meth-A-system the xenogeneic material surpassed the antineoplastic effect of rather high doses of cyclophosphamide. The preparations showed no side-effects in mice and rats. These results were supported by experiments in tissue culture. This new antitumour activity of xenogeneic tissues in vivo is interpreted as mediated by an increased host defense. The results in tissue culture however, indicate also a direct regulatory effect on cells.

  9. Effects of chitosan-coated pressed calcium sulfate pellets combined with recombinant human bone morphogenetic protein 2 on bone formation in femoral condyle-contained bone defects.

    PubMed

    Chen, Hua; Cui, Xu; Yu, XueZhong; Tian, XueZhong; Zhang, BoXun; Tang, PeiFu; Wang, Yan

    2010-01-01

    Calcium sulfate has a rapid degradation rate and little osteoinductive capability. Chitosan-coated pressed calcium sulfate pellets combined with recombinant human bone morphogenetic protein 2 (rhBMP-2) have been developed that exhibit decreased resorption speed and increased compressive strength and osteoinduction. A rabbit femoral condyle-contained bone defect model was used to study the restoration of the defects treated with chitosan-coated pressed calcium sulfate pellets combined with rhBMP-2, chitosan-coated pressed calcium sulfate pellets, and uncoated pressed calcium sulfate pellets. No pellets were implanted in the control group. After 3 and 13 weeks, the results indicated that chitosan-coated pressed calcium sulfate pellets exhibited relatively slower resorption that closely coincides with the growth rate of new bone and enhanced osteogenesis when combined with rhBMP-2.

  10. Recovery of hair coat color in Gray Collie (cyclic neutropenia)-normal bone marrow transplant chimeras.

    PubMed Central

    Yang, T. J.

    1978-01-01

    Gray Collie-normal bone marrow transplantation chimeras showed normal coloration of the hair coat on tails and several other areas 2 years after successful transplantation of bone marrow to correct cyclic neutropenia of the Gray Collie syndrome. Images Figures 1-2 PMID:347941

  11. The effect of impaction and a bioceramic coating on bone ingrowth in porous titanium particles

    PubMed Central

    2011-01-01

    Background and purpose Porous titanium (Ti) particles can be impacted like cancellous allograft bone particles, and may therefore be used as bone substitute in impaction grafting. We evaluated the effect of impaction and of a thin silicated biphasic calcium phosphate coating on osteoconduction by Ti particles. Methods The bone conduction chamber of Aspenberg was used in goats and filled with various groups of coated or uncoated small Ti particles (diameter 1.0–1.4 mm). Impacted allograft bone particles and empty chambers were used in control groups. Fluorochromes were administered at 4, 8, and 12 weeks. Maximum bone ingrowth distance was evaluated by histomorphometric analysis. Results Histology of Ti particle graft cylinders showed a dense matrix with narrow inter-particle and intra-particle pores (< 100 μm), occluding the lumen of the bone chamber. Bone ingrowth distances gradually increased with time in all groups. Maximum bone ingrowth distance was higher in originally empty chambers than those with allograft bone particles (p = 0.01) and Ti particles (p < 0.001). Maximum bone ingrowth in allograft bone particles was higher than in all Ti groups (p ≤ 0.001). Impaction reduced osteoconduction and the coating partially compensated for the negative effect of impaction, but these differences were not statistically significant. No osteolytic reactions were found. Interpretation Osteoconduction in the bone conduction chamber was reduced more by the insertion of small Ti particles than by insertion of small allograft bone particles. The osteoconductive potential of porous Ti particles should be studied further with larger-sized particles, which may allow bone ingrowth after impaction through larger inter-particle pores. PMID:21504310

  12. Increased Release Time of Antibiotics from Bone Allografts through a Novel Biodegradable Coating

    PubMed Central

    Madácsi, Edit; Kalugyer, Pálma; Vácz, Gabriella; Horváthy, Dénes B.; Szendrői, Miklós; Han, Weiping; Lacza, Zsombor

    2014-01-01

    The use of bone allografts is contraindicated in septic revision surgery due to the high risk of graft reinfection. Antibiotic release from the graft may solve the problem and these combinations can theoretically be used for prevention or even therapy of infection. The present study investigated whether amoxicillin, ciprofloxacin, and vancomycin alone or in combination with chitosan or alginate are suitable for short-term or long-term bone coating. Human bone allografts were prepared from femoral head and lyophilized. Antibiotic coating was achieved by incubating the grafts in antibiotic solution and freeze-drying again. Two biopolymers chitosan and alginate were used for creating sustained-release implantable coatings and the drug release profile was characterized in vitro by spectrophotometry. Using lyophilization with or without chitosan only resulted in short-term release that lasted up to 48 hours. Alginate coating enabled a sustained release that lasted for 8 days with amoxicillin, 28 days with ciprofloxacin coating, and 50 days with vancomycin coating. Using only implantable biodegradable allograft and polymers, a sustained release of antibiotics was achieved with ciprofloxacin and vancomycin for several weeks. Since the calculated daily release of the antibiotic was lower than the recommended IV dose, the calcium alginate coated bone graft can support endoprosthesis revision surgery. PMID:25045678

  13. Bone growth on and resorption of calcium phosphate coatings obtained by pulsed laser deposition.

    PubMed

    Clèries, L; Fernández-Pradas, J M; Morenza, J L

    2000-01-01

    Three different calcium phosphate coatings of crystalline hydroxyapatite (HA), alpha- and beta-tricalcium phosphate (alpha+beta-TCP), or amorphous calcium phosphate (ACP) obtained by pulsed laser deposition on Ti-6Al-4V were incubated in a potentially osteogenic primary cell culture (rat bone marrow) in order to evaluate the amount and mode of mineralized bone matrix formation after 2 weeks with special emphasis on the type of interfacial structure that was created. Evaluation techniques included fluorescence labeling and scanning electron microscopy. The resistance to cellular resorption by osteoclasts was also studied. Bone matrix delaminated from the ACP coatings, while it remained on the HA and the alpha+beta-TCP coatings even after fracturing. A cementlike line was seen as the immediate contiguous interface with the nondegrading dense HA surface and with the surface of the remaining porous beta-TCP coating. Highly dense and crystalline HA coatings do not dissolve but are capable of establishing a strong bond with the bone matrix grown on top. Chemical and mechanical bonding were considered in this case. Cellular resorption was practically not observed on the HA coatings, but it was observed on the alpha+beta-TCP coatings. Resorption took place as dissolution that was due to the acidic microenvironment.

  14. Chemical changes in DMP1-null murine bone & silica based pecvd coatings for titanium implant osseoapplications

    NASA Astrophysics Data System (ADS)

    Maginot, Megen

    In order to improve clinical outcomes in bone-implant systems, a thorough understanding of both local bone chemistry and implant surface chemistry is necessary. This study consists, therefore, of two main parts: one focused on determining the nature of the changes in bone chemistry in a DMP1-null transgenic disease model and the other on the development of amorphous silica-based coatings for potential use as titanium bone implant coatings. For the study of bone mineral in the DMP1 transgenic model, which is known to have low serum phosphate levels, transgenic DMP1-null and wild type mice were fed a high phosphate diet, sacrificed, and had their long bone harvested. This bone was characterized using SEM, FTIR, microCT and XANES and compared to DMP1-null and wild type control groups to assess the therapeutic effect of high Pi levels on the phenotype and the role of DMP1 in mineralization in vivo. Findings suggest that though the high phosphate diet results in restoring serum phosphate levels, it does not completely rescue the bone mineral phenotype at an ultrastructural level and implicates DMP1 in phosphate nucleation. Since plasma enhanced chemical vapor deposition (PECVD) silica like coatings have not previously been fabricated for use in oessoapplications, the second part of this study initially focused on the characterization of novel SiOx chemistries fabricated via a chemical vapor deposition process that were designed specifically to act as bioactive coatings with a loose, hydrogenated structure. These coatings were then investigated for their potential initial stage response to bone tissue through immersion in a simulated body fluid and through the culture of MC3T3 cells on the coating surfaces. Coating surfaces were characterized by SEM, FTIR, contact angle measurements, and XANES. Coating dissolution and ionic release were also investigated by ICP-OES. Findings suggest that some SiOx chemistries may form a bioactive coating while more highly substituted

  15. Effect of trehalose coating on basic fibroblast growth factor release from tailor-made bone implants.

    PubMed

    Choi, Sungjin; Lee, Jongil; Igawa, Kazuyo; Suzuki, Shigeki; Mochizuki, Manabu; Nishimura, Ryohei; Chung, Ung-il; Sasaki, Nobuo

    2011-12-01

    Artificial bone implants are often incorporated with osteoinductive factors to facilitate early bone regeneration. Calcium phosphate, the main component in artificial bone implants, strongly binds these factors, and in a few cases, the incorporated proteins are not released from the implant under conditions of physiological pH, thereby leading to reduction in their osteoinductivity. In this study, we coated tailor-made bone implants with trehalose to facilitate the release of basic fibroblast growth factor (bFGF). In an in vitro study, mouse osteoblastic cells were separately cultured for 48 hr in a medium with a untreated implant (T-), trehalose-coated implant (T+), bFGF-incorporated implant (FT-), and bFGF-incorporated implant with trehalose coating (FT+). In the FT+ group, cell viability was significantly higher than that in the other groups (P<0.05). Scanning electron microscopy (SEM) and X-ray diffraction (XRD) revealed that trehalose effectively covered the surface of the artificial bone implant without affecting the crystallinity or the mechanical strength of the artificial bone implant. These results suggest that coating artificial bone implants with trehalose could limit the binding of bFGF to calcium phosphate.

  16. Effects of zinc-substituted nano-hydroxyapatite coatings on bone integration with implant surfaces*

    PubMed Central

    Zhao, Shi-fang; Dong, Wen-jing; Jiang, Qiao-hong; He, Fu-ming; Wang, Xiao-xiang; Yang, Guo-li

    2013-01-01

    Objective: The purpose of this study was to investigate the effects of a zinc-substituted nano-hydroxyapatite (Zn-HA) coating, applied by an electrochemical process, on implant osseointegraton in a rabbit model. Methods: A Zn-HA coating or an HA coating was deposited using an electrochemical process. Surface morphology was examined using field-emission scanning electron microscopy. The crystal structure and chemical composition of the coatings were examined using an X-ray diffractometer (XRD) and Fourier transform infrared spectroscopy (FTIR). A total of 78 implants were inserted into femurs and tibias of rabbits. After two, four, and eight weeks, femurs and tibias were retrieved and prepared for histomorphometric evaluation and removal torque (RTQ) tests. Results: Rod-like HA crystals appeared on both implant surfaces. The dimensions of the Zn-HA crystals seemed to be smaller than those of HA. XRD patterns showed that the peaks of both coatings matched well with standard HA patterns. FTIR spectra showed that both coatings consisted of HA crystals. The Zn-HA coating significantly improved the bone area within all threads after four and eight weeks (P<0.05), the bone to implant contact (BIC) at four weeks (P<0.05), and RTQ values after four and eight weeks (P<0.05). Conclusions: The study showed that an electrochemically deposited Zn-HA coating has potential for improving bone integration with an implant surface. PMID:23733429

  17. Impact of Mixed Xenogeneic Porcine Hematopoietic Chimerism on Human NK Cell Recognition in a Humanized Mouse Model.

    PubMed

    Li, H W; Vishwasrao, P; Hölzl, M A; Chen, S; Choi, G; Zhao, G; Sykes, M

    2017-02-01

    Mixed chimerism is a promising approach to inducing allograft and xenograft tolerance. Mixed allogeneic and xenogeneic chimerism in mouse models induced specific tolerance and global hyporesponsiveness, respectively, of host mouse natural killer (NK) cells. In this study, we investigated whether pig/human mixed chimerism could tolerize human NK cells in a humanized mouse model. Our results showed no impact of induced human NK cell reconstitution on porcine chimerism. NK cells from most pig/human mixed chimeric mice showed either specifically decreased cytotoxicity to pig cells or global hyporesponsiveness in an in vitro cytotoxicity assay. Mixed xenogeneic chimerism did not hamper the maturation of human NK cells but was associated with an alteration in NK cell subset distribution and interferon gamma (IFN-γ) production in the bone marrow. In summary, we demonstrate that mixed xenogeneic chimerism induces human NK cell hyporesponsiveness to pig cells. Our results support the use of this approach to inducing xenogeneic tolerance in the clinical setting. However, additional approaches are required to improve the efficacy of tolerance induction while ensuring adequate NK cell functions.

  18. Coating of carbon fiber-reinforced polyetheretherketone implants with titanium to improve bone apposition.

    PubMed

    Devine, Declan M; Hahn, Joachim; Richards, R Geoffery; Gruner, Heiko; Wieling, Ronald; Pearce, Simon G

    2013-05-01

    Carbon fiber-reinforced polyetheretherketone (CF/PEEK) is a thermoplastic composite biomaterial exhibiting properties suitable for load-bearing orthopedic implants. However, the hydrophobic surface of CF/PEEK implants induces the deposition of a peri-implant fibrous tissue capsule preventing bone apposition. However, if bone apposition was improved, the use of CF/PEEK in orthopedics could be increased as it has many advantages compared with metallic implants. In this study, CF/PEEK screws were coated with titanium (Ti) using two different techniques, namely vacuum plasma spraying (VPS) and physical vapor deposition (PVD) with uncoated screws as controls. These coatings were characterized and implanted in a loaded sheep tibia model. In the characterization of the screw surfaces using microscopy techniques, the uncoated screws were seen to have an irregular surface. The PVD coating appeared smooth and consistent, whereas the VPS coating appeared to be a rough coating with some inhomogeneities, which did not cover the entire surface area. Nevertheless, in the ex vivo analysis the VPS-coated screws had a screw removal torque which was statistically greater than uncoated and PVD-coated screws (p ≤ 0.002 for both comparisons). Additionally, the VPS-coated screws had a statistically higher bone contact area than the uncoated screws (p = 0.006), whereas no statistical difference was detected between VPS and PVD coating types (p = 0.11). Thereby illustrating that Ti coating of CF/PEEK screws significantly improve bone apposition and removal torque compared with uncoated CF/PEEK screws. Copyright © 2012 Wiley Periodicals, Inc.

  19. Coating of Biomaterial Scaffolds with the Collagen-Mimetic Peptide GFOGER for Bone Defect Repair

    PubMed Central

    Wojtowicz, Abigail M.; Shekaran, Asha; Oest, Megan E.; Dupont, Kenneth M.; Templeman, Kellie L.; Hutmacher, Dietmar W.; Guldberg, Robert E.; García, Andrés J.

    2009-01-01

    Healing large bone defects and non-unions remains a significant clinical problem. Current treatments, consisting of auto- and allografts, are limited by donor supply and morbidity, insufficient bioactivity and risk of infection. Biotherapeutics, including cells, genes and proteins, represent promising alternative therapies, but these strategies are limited by technical roadblocks to biotherapeutic delivery, cell sourcing, high cost, and regulatory hurdles. In the present study, the collagen-mimetic peptide, GFOGER, was used to coat synthetic PCL scaffolds to promote bone formation in critically-sized segmental defects in rats. GFOGER is a synthetic triple helical peptide that binds to the α2β1 integrin receptor involved in osteogenesis. GFOGER coatings passively-adsorbed onto polymeric scaffolds, in the absence of exogenous cells or growth factors, significantly accelerated and increased bone formation in non-healing femoral defects compared to uncoated scaffolds and empty defects. Despite differences in bone volume, no differences in torsional strength were detected after 12 weeks, indicating that bone mass but not bone quality was improved in this model. This work demonstrates a simple, cell/growth factor-free strategy to promote bone formation in challenging, non-healing bone defects. This biomaterial coating strategy represents a cost effective and facile approach translatable into a robust clinical therapy for musculoskeletal applications. PMID:20056517

  20. Coating of biomaterial scaffolds with the collagen-mimetic peptide GFOGER for bone defect repair.

    PubMed

    Wojtowicz, Abigail M; Shekaran, Asha; Oest, Megan E; Dupont, Kenneth M; Templeman, Kellie L; Hutmacher, Dietmar W; Guldberg, Robert E; García, Andrés J

    2010-03-01

    Healing large bone defects and non-unions remains a significant clinical problem. Current treatments, consisting of auto and allografts, are limited by donor supply and morbidity, insufficient bioactivity and risk of infection. Biotherapeutics, including cells, genes and proteins, represent promising alternative therapies, but these strategies are limited by technical roadblocks to biotherapeutic delivery, cell sourcing, high cost, and regulatory hurdles. In the present study, the collagen-mimetic peptide, GFOGER, was used to coat synthetic PCL scaffolds to promote bone formation in critically-sized segmental defects in rats. GFOGER is a synthetic triple helical peptide that binds to the alpha(2)beta(1) integrin receptor involved in osteogenesis. GFOGER coatings passively adsorbed onto polymeric scaffolds, in the absence of exogenous cells or growth factors, significantly accelerated and increased bone formation in non-healing femoral defects compared to uncoated scaffolds and empty defects. Despite differences in bone volume, no differences in torsional strength were detected after 12 weeks, indicating that bone mass but not bone quality was improved in this model. This work demonstrates a simple, cell/growth factor-free strategy to promote bone formation in challenging, non-healing bone defects. This biomaterial coating strategy represents a cost-effective and facile approach, translatable into a robust clinical therapy for musculoskeletal applications. Copyright 2009 Elsevier Ltd. All rights reserved.

  1. Early bone growth on the surface of titanium implants in rat femur is enhanced by an amorphous diamond coating

    PubMed Central

    2011-01-01

    Background and purpose Amorphous diamond (AD) is a durable and compatible biomaterial for joint prostheses. Knowledge regarding bone growth on AD-coated implants and their early-stage osseointegration is poor. We investigated bone growth on AD-coated cementless intramedullary implants implanted in rats. Titanium was chosen as a reference due to its well-known performance. Materials and methods We placed AD-coated and non-coated titanium implants (Ra ≈ 0.2 μm) into the femoral bone marrow of 25 rats. The animals were divided in 2 groups according to implant coating and they were killed after 4 or 12 weeks. The osseointegration of the implants was examined from hard tissue specimens by measuring the new bone formation on their surface. Results 4 weeks after the operation, the thickness of new bone in the AD-coated group was greater than that in the non-coated group (15.3 (SD 7.1) μm vs. 7.6 (SD 6.0) μm). 12 weeks after the operation, the thickness of new bone was similar in the non-coated group and in the AD-coated group. Interpretation We conclude that AD coating of femoral implants can enhance bone ongrowth in rats in the acute, early stage after the operation and might be an improvement over earlier coatings. PMID:21504369

  2. Stainless steel screws coated with bisphosphonates gave stronger fixation and more surrounding bone. Histomorphometry in rats.

    PubMed

    Wermelin, K; Suska, F; Tengvall, P; Thomsen, P; Aspenberg, P

    2008-02-01

    Coating of stainless steel screws with bisphosphonate in a fibrinogen matrix leads to an enhancement of the pullout strength 2 weeks after insertion in rat tibiae. This effect then increases over time until at least 8 weeks. The pullout force reflects the mechanical properties of the bone within the threads, which acts as a screw nut. The aim of the present study was to find descriptive and morphometric histological correlates to the increased pullout strength. Because the bisphosphonates are applied via the implant surface, we also measured bone to implant contact and how far away from the surface any effects could be seen. Stainless steel screws underwent one of three treatments: uncoated control, controls coated with a layer of cross-linked fibrinogen, or screws further modified with bisphosphonates covalently linked and physically adsorbed to the fibrinogen layer. At 1 (n=33) and 8 (n=27) weeks, bone to implant contact and bone area density in the threads were measured, as well as bone area density at 250 and 500 microm from the outer edge of the threads. Additionally, removal torque for each screw treatment was measured at 2 weeks (n=28). At 8 weeks, the part of the bisphosphonate screw that was located in the marrow cavity had become surrounded with bone, whereas there was almost no bone surrounding the controls. The bone area density in the threads along the entire bisphosphonate screw was increased by 40% compared with uncoated controls, and at 250 microm distance it was more than doubled. At 1 week, coated screws had less implant-bone contact, but at 8 weeks there was no difference between uncoated and bisphosphonate-coated screws. The bisphosphonate screws had 50% increased removal torque at 2 weeks compared to uncoated screws. Howship's lacunae and osteoclasts were found near the screws with bisphosphonates at 8 weeks, suggesting that some bone remodeling took place near the implant, in spite of the presence of bisphosphonates.

  3. Surface-mediated bone tissue morphogenesis from tunable nanolayered implant coatings*

    PubMed Central

    Shah, Nisarg J.; Hyder, Md. Nasim; Moskowitz, Joshua S.; Quadir, Mohiuddin A.; Morton, Stephen W.; Seeherman, Howard J.; Padera, Robert F.; Spector, Myron; Hammond, Paula T.

    2014-01-01

    The functional success of a biomedical implant critically depends on its stable bonding with the host tissue. Aseptic implant loosening accounts for over half of all joint replacement failures. Various materials, including metals and plastic, confer mechanical integrity to the device, but often these materials are not suitable for direct integration with the host tissue, which leads to implant loosening and patient morbidity. We describe a self-assembled, osteogenic, polymer-based conformal coating that promotes stable mechanical fixation of an implant in a surrogate rodent model. A single modular, polymer-based multilayered coating was deposited using a water-based layer-by-layer approach, by which each element was introduced on the surface in nanoscale layers. Osteoconductive hydroxyapatite (HAP) and osteoinductive bone morphogenetic protein 2 (BMP-2) contained within the nanostructured coating acted synergistically to induce osteoblastic differentiation of endogenous progenitor cells within the bone marrow, without indications of a foreign body response. The tuned release of BMP-2, controlled by a hydrolytically degradable poly(β-amino ester), was essential for tissue regeneration and, in the presence of HAP, the modular coating encouraged the direct deposition of highly cohesive trabecular bone on the implant surface. The bone-implant interfacial tensile strength was significantly higher than standard bone cement, did not fracture at the interface, and had long-term stability. Collectively, these results suggest that the multilayered coating system promotes biological fixation of orthopedic and dental implants to improve surgical outcomes by preventing loosening and premature failure. PMID:23803705

  4. Titania and titania-silica coatings for titanium: comparison of ectopic bone formation within cell-seeded scaffolds.

    PubMed

    Meretoja, Ville V; Tirri, Teemu; Aäritalo, Virpi; Walboomers, X Frank; Jansen, John A; Närhi, Timo O

    2007-04-01

    The aim of this study was to compare titania (TiO(2))-coated, titania-silica (TiSi)-coated, and uncoated (cpTi) titanium fiber meshes as scaffolds for bone engineering. The scaffolds were loaded with bone marrow stromal cells and implanted subcutaneously in rats. Ectopic bone formation after 1, 4, and 12 weeks of implantation was evaluated using histology and histomorphometry. After 1 week of implantation, multiple patches of unorganized mineralizing tissue were seen in all implants. The amount of this bone-like tissue clearly increased from 1 to 4 weeks. Bone apposition occurred in direct contact with coated meshes, while a thin layer of unmineralized fibrous tissue was often observed surrounding cpTi mesh fibers. After 12 weeks, the structure of bone, with bone marrow-like tissue, was further matured and mesh fibers were embedded in lamellar bone. No statistical differences in the amount of mineralized bone were observed between scaffold types at any point of time. Only TiSi scaffolds showed further increase in bone area from 4 to 12 weeks (p < 0.01). A notable difference was that the sol-gel coatings resulted in enhanced initial bone contact and distribution of bone tissue, whereas uncoated implants showed bone formation mainly in the center of the scaffolds. In conclusion, TiO(2)-based sol-gel coatings may be used in tissue engineering to gain more uniform distribution of bone throughout titanium fiber mesh scaffolds.

  5. Hydroxyapatite coating on cobalt alloys using electrophoretic deposition method for bone implant application

    NASA Astrophysics Data System (ADS)

    Aminatun; M, Shovita; I, Chintya K.; H, Dyah; W, Dwi

    2017-05-01

    Damage on bone due to osteoporosis and cancer triggered high demand for bone implant prosthesis which is a permanent implant. Thus, a prosthesis coated with hydroxyapatite (HA) is required because it is osteoconductive that can trigger the growth of osteoblast cells. The purpose of this study is to determine the optimum concentration of HA suspension in terms of the surface morphology, coating thickness, adhesion strength and corrosion rate resulting in the HA coating with the best characteristics for bone implant. Coating using electrophoretic deposition (EPD) method with concentrations of 0.02M, 0.04M, 0.06M, 0.08M, and 0.1M was performed on the voltage and time of 120V and 30 minutes respectively. The process was followed by sintering at the temperature of 900 °C for 10 minutes. The results showed that the concentration of HA suspension influences the thickness and the adhesion of layer of HA. The higher the concentration of HA-ethanol suspension the thicker the layer of HA, but its coating adhesion strength values became lower. The concentration of HA suspension of 0.04 M is the best concentration, with characteristics that meet the standards of the bone implant prosthesis. The characteristics are HA coating thickness of 199.93 ± 4.85 μm, the corrosion rate of 0.0018 mmpy and adhesion strength of 4.175 ± 0.716 MPa.

  6. Enhanced repair of segmental bone defects in rabbit radius by porous tantalum scaffolds modified with the RGD peptide.

    PubMed

    Wang, Hui; Li, Qijia; Wang, Qian; Zhang, Hui; Shi, Wei; Gan, Hongquan; Song, Huiping; Wang, Zhiqiang

    2017-03-01

    Fast and stable repair of segmental bone defects remains a challenge for clinical orthopedic surgery. In recent years, porous tantalum has been widely applied in clinical orthopedics for low modulus of elasticity, with three-dimensional microstructures similar to cancellous bone and excellent biocompatibility. To further improve bone the repairing ability of porous tantalum, the cyclo(-RGDfK-) peptide was coated on the surface of porous tantalum scaffolds. A model of 15 mm segmental defect was made at the midshaft of right radius in New Zealand White rabbits. In the experimental group, defects were implanted (press-fit) using porous tantalum scaffolds modified with cyclo(-RGDfK-) peptide. Control animals were implanted with non-modified porous tantalum scaffolds or xenogeneic cancellous bone scaffolds, respectively. No implant was provided for the blank group. Bone repair was assessed by X-ray and histological observations at 4, 8, and 16 weeks post-operation, with biomechanical tests and micro-computed tomography performed at 16 weeks post-surgery. The results showed that bone formation was increased at the interface and inside the inner pores of modified porous tantalum scaffolds than those of non-modified porous tantalum scaffolds; biomechanical properties in the modified porous tantalum group were superior to those of the non-modified porous tantalum and xenogeneic cancellous bone groups, while new bone volume fractions using micro-computed tomography analysis were similar between the modified porous tantalum and xenogeneic cancellous bone groups. Our findings suggested that modified porous tantalum scaffolds had enhanced repairing ability in segmental bone defect in rabbit radius, and may serve as a potential material for repairing large bone defects.

  7. Coated vs uncoated implants: bone defect configurations after progressive peri-implantitis in dogs.

    PubMed

    Madi, Marwa; Zakaria, Osama; Kasugai, Shohei

    2014-12-01

    In this study, hydroxyapatite coated vs uncoated implants were used to evaluate the type and dimensions of bone defects after progressive peri-implantitis in dogs. Thirty-two dental implants with 4 different surfaces-machined (M), sandblasted acid-etched (SA), 1-μm thin sputter hydroxyapatite (HA)-coated (S), and plasma-sprayed HA-coated (P)-were inserted into the mandibles of 4 beagle dogs after extracting all mandibular premolars. Experimental peri-implantitis was induced after 3 months using ligature to allow for plaque accumulation. After 4 months, ligatures were removed and plaque accumulation continued for 5 months (progression period). The open flap surgery demonstrated 3 patterns of peri-implantitis bone defect: (1) Class I defect: represented as circumferential intra-alveolar bone loss; (2) Class II defect: circumferential intra-alveolar defect with supra-alveolar bone loss exposing the implant surface; and (3) Class III defect: represented as circumferential intra-alveolar defect with supra-alveolar bone loss and buccal dehiscence. Class I was the most frequent (62.5%) defect pattern around implant types M, SA, and S; while implant type-P showed a recurring majority of Class II (62.5%). Comparison among the 4 implant groups revealed a significant defect width (DW) in implant type-P relative to other types (P < 0.01). However, no statistically significant differences were noted for defect depth (DD) (P > 0.05). We concluded that the shape and size of peri-implantitis bone defects were influenced by the type and thickness of the HA coat together with the quantity of the available peri-implant bone. Plasma-sprayed HA-coated implants showed larger peri-implant defects than did thin sputter HA-coated implants.

  8. Osteointegration of bioactive glass-coated zirconia in healthy bone: an in vivo evaluation.

    PubMed

    Stanic, V; Aldini, N Nicoli; Fini, M; Giavaresi, G; Giardino, R; Krajewski, A; Ravaglioli, A; Mazzocchi, M; Dubini, B; Bossi, M G Ponzi; Rustichelli, F

    2002-09-01

    Osteointegration of yttria stabilised tetragonal zirconia (YSTZ), either coated with bioactive glass named RKKP bioglaze (RKKP) or uncoated, was evaluated in an animal model. RKKP-coated and uncoated (controls) YSTZ cylinders were implanted in the distal femoral epiphyses of 14 Sprague Dawley rats under general anaesthesia. At the experimental times of 30 and 60 days after sacrifice, histomorphometry and SEM microanalysis were performed on methylmethacrylate-embedded undecalcified sections to determine the osteointegration rate. At 30 days, a significantly higher affinity index was demonstrated in vivo by histomorphometric evaluation in RKKP-coated versus uncoated YSTZ implants p < 0.05); at 60 days, the coated implants behaved better than controls (affinity index of + 32%), but the difference observed lay within the statistical uncertainty. SEM analysis demonstrated better bone adhesion to the material in RKKP-coated YSTZ at both 30 and 60 days. These findings suggest that YSTZ coated with the bioactive glass named RKKP enhances osteointegration of ceramics.

  9. Induction plasma sprayed Sr and Mg doped nano hydroxyapatite coatings on Ti for bone implant.

    PubMed

    Roy, Mangal; Bandyopadhyay, Amit; Bose, Susmita

    2011-11-01

    In this study, we report fabrication of strontium (Sr) and magnesium (Mg) doped hydroxyapatite (HA) coating on commercially pure titanium (Cp-Ti) substrates using inductively coupled radio frequency (RF) plasma spray. HA powder was doped with 1 wt % Sr (Sr-HA) and 1 wt % Mg (Mg-HA), heat treated at 800°C for 6 h and then used for plasma spray coating. X-ray diffraction (XRD) and Fourier transformed infrared spectroscopic (FTIR) analysis indicated that the coatings were primarily composed of phase pure crystalline HA. When compared to undoped HA coating, physical properties such as microstructure, grain size, and adhesive bond strength of the doped HA coatings did not change significantly. Microstructure of the coatings showed coherency in the structure with an average grain size of 200-280 μm HA particles, where each of the HA grains consisted of 20-30 nm sized particles. An average adhesive bond strength of 17 MPa ensured sufficient mechanical strength of the coatings. A chemistry dependent improvement in bone cell-coating interaction was noticed for doped coatings although it had minimal effect on physical properties of the coatings. In vitro cell-materials interactions using human fetal osteoblasts (hFOB) showed better cell attachment and proliferation on Sr-HA coatings compared to HA or Mg-HA coatings. Presence of Sr in the coating also stimulated hFOB cell differentiation and alkaline phosphatase (ALP) expression. Improvement in bioactivity of Sr doped HA coatings on Ti without compromising its mechanical properties makes it an excellent material of choice for coated implant.

  10. Immunogenicity in xenogeneic scaffold generation: antigen removal vs. decellularization.

    PubMed

    Wong, Maelene L; Griffiths, Leigh G

    2014-05-01

    Decades of research have been undertaken towards the goal of tissue engineering using xenogeneic scaffolds. The primary advantages associated with use of xenogeneic tissue-derived scaffolds for in vitro development of replacement tissues and organs stem from the inherent extracellular matrix (ECM) composition and architecture. Native ECM possesses appropriate mechanical properties for physiological function of the biomaterial and signals for cell binding, growth and differentiation. Additionally, xenogeneic tissue is readily available. However, translation of xenogeneic scaffold-derived engineered tissues or organs into clinical therapies requires xenoantigenicity of the material to be adequately addressed prior to implantation. Failure to achieve this goal will result in a graft-specific host immune rejection response, jeopardizing in vivo survival of the resultant scaffold, tissue or organ. This review explores (i) the appropriateness of scaffold acellularity as an outcome measure for assessing reduction of the immunological barriers to the use of xenogeneic scaffolds for tissue engineering applications and (ii) the need for tissue engineers to strive for antigen removal during xenogeneic scaffold generation.

  11. Bone Tissue Response to Porous and Functionalized Titanium and Silica Based Coatings

    PubMed Central

    Chaudhari, Amol; Braem, Annabel; Vleugels, Jozef; Martens, Johan A.; Naert, Ignace; Cardoso, Marcio Vivan; Duyck, Joke

    2011-01-01

    Background Topography and presence of bio-mimetic coatings are known to improve osseointegration. The objective of this study was to evaluate the bone regeneration potential of porous and osteogenic coatings. Methodology Six-implants [Control (CTR); porous titanium coatings (T1, T2); thickened titanium (Ti) dioxide layer (TiO2); Amorphous Microporous Silica (AMS) and Bio-active Glass (BAG)] were implanted randomly in tibiae of 20-New Zealand white rabbits. The animals were sacrificed after 2 or 4 weeks. The samples were analyzed histologically and histomorphometrically. In the initial bone-free areas (bone regeneration areas (BRAs)), the bone area fraction (BAF) was evaluated in the whole cavity (500 µm, BAF-500), in the implant vicinity (100 µm, BAF-100) and further away (100–500 µm, BAF-400) from the implant. Bone-to-implant contact (BIC-BAA) was measured in the areas where the implants were installed in contact to the host bone (bone adaptation areas (BAAs)) to understand and compare the bone adaptation. Mixed models were used for statistical analysis. Principal Findings After 2 weeks, the differences in BAF-500 for different surfaces were not significant (p>0.05). After 4 weeks, a higher BAF-500 was observed for BAG than CTR. BAF-100 for AMS was higher than BAG and BAF-400 for BAG was higher than CTR and AMS. For T1 and AMS, the bone regeneration was faster in the 100-µm compared to the 400-µm zone. BIC-BAA for AMS and BAG was lower after 4 than 2 weeks. After 4 weeks, BIC-BAA for BAG was lower than AMS and CTR. Conclusions BAG is highly osteogenic at a distance from the implant. The porous titanium coatings didn't stimulate bone regeneration but allowed bone growth into the pores. Although AMS didn't stimulate higher bone response, it has a potential of faster bone growth in the vicinity compared to further away from the surface. BIC-BAA data were inconclusive to understand the bone adaptation. PMID:21935382

  12. Bone formation in transforming growth factor beta-1-coated porous poly(propylene fumarate) scaffolds.

    PubMed

    Vehof, Johan W M; Fisher, John P; Dean, David; van der Waerden, Jan-Paul C M; Spauwen, Paul H M; Mikos, Antonios G; Jansen, John A

    2002-05-01

    This study determined the bone growth into pretreated poly(propylene fumarate) (PPF) scaffolds implanted into a subcritical size, rabbit cranial defect. PPF scaffolds were constructed by using a photocrosslinking-porogen leaching technique. These scaffolds were then either prewetted (PPF-Pw), treated with RF glow-discharge (PPF-Gd), coated with fibronectin (PPF-Fn), or coated with rhTGF-beta1 (PPF-TGF-beta1). One of each scaffold type was then placed into the cranium of nine rabbits. The rabbits were sacrificed after 8 weeks, and the scaffolds were retrieved for histological analysis. The most bone formation was present in the PPF-TGF-beta1 implants; the newly formed bone had a trabecular appearance together with bone marrow-like tissue. Little or no bone formation was observed in implants without rhTGF-beta1. These histological findings were confirmed by image analysis. Bone surface area, bone area percentage, pore fill percentage, and pore area percentage were significantly higher in the rhTGF-beta1-coated implants than in the noncoated implants. No statistical difference was seen between the PPF-Fn, PPF-Pw, or PPF-Gd scaffolds for these parameters. Quadruple fluorochrome labeling showed that in PPF-TGF-beta1 implants bone formation mainly started in the interior of a pore and proceeded toward the scaffold. We conclude that (a) PPF-TGF-beta1 scaffolds can indeed adequately induce bone formation in porous PPF, and (b) PPF scaffolds prepared by the photocrosslinking-porogen leaching technique are good candidates for the creation of bone graft substitutes.

  13. PCL-coated hydroxyapatite scaffold derived from cuttlefish bone: morphology, mechanical properties and bioactivity.

    PubMed

    Milovac, Dajana; Gallego Ferrer, Gloria; Ivankovic, Marica; Ivankovic, Hrvoje

    2014-01-01

    In the present study, poly(ε-caprolactone)-coated hydroxyapatite scaffold derived from cuttlefish bone was prepared. Hydrothermal transformation of aragonitic cuttlefish bone into hydroxyapatite (HAp) was performed at 200°C retaining the cuttlebone architecture. The HAp scaffold was coated with a poly(ε-caprolactone) (PCL) using vacuum impregnation technique. The compositional and morphological properties of HAp and PCL-coated HAp scaffolds were studied by means of X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA) and scanning electron microscopy (SEM) with energy dispersive X-ray (EDX) analysis. Bioactivity was tested by immersion in Hank's balanced salt solution (HBSS) and mechanical tests were performed at compression. The results showed that PCL-coated HAp (HAp/PCL) scaffold resulted in a material with improved mechanical properties that keep the original interconnected porous structure indispensable for tissue growth and vascularization. The compressive strength (0.88MPa) and the elastic modulus (15.5MPa) are within the lower range of properties reported for human trabecular bones. The in vitro mineralization of calcium phosphate (CP) that produces the bone-like apatite was observed on both the pure HAp scaffold and the HAp/PCL composite scaffold. The prepared bioactive scaffold with enhanced mechanical properties is a good candidate for bone tissue engineering applications. © 2013.

  14. Antibacterial efficacy of a new gentamicin-coating for cementless prostheses compared to gentamicin-loaded bone cement.

    PubMed

    Neut, Daniëlle; Dijkstra, René J B; Thompson, Jonathan I; van der Mei, Henny C; Busscher, Henk J

    2011-11-01

    Cementless prostheses are increasingly popular but require alternative prophylactic measures than the use of antibiotic-loaded bone cements. Here, we determine the 24-h growth inhibition of gentamicin-releasing coatings from grit-blasted and porous-coated titanium alloys, and compare their antibacterial efficacies and gentamicin release-profiles to those of a commercially available gentamicin-loaded bone cement. Antibacterial efficacy increased with increasing doses of gentamicin in the coating and loading with 1.0 and 0.1 mg gentamicin/cm(2) on both grit-blasted and porous-coated samples yielded comparable efficacy to gentamicin-loaded bone cement. The coating had a higher burst release than bone cement, and also inhibited growth of gentamicin-resistant strains. Antibacterial efficacy of the gentamicin coatings disappeared after 4 days, while gentamicin-loaded bone cement exhibited efficacy over at least 7 days. Shut-down after 4 days of gentamicin-release from coatings is advantageous over the low-dosage tail-release from bone cements, as it minimizing risk of inducing antibiotic-resistant strains. Both gentamicin-loaded cement discs and gentamicin-coated titanium coupons were able to kill gentamicin-sensitive and -resistant bacteria in a simulated prothesis-related interfacial gap. In conclusion, the gentamicin coating provided similar antibacterial properties to those seen by gentamicin-loaded bone cement, implying protection of a prosthesis from being colonized by peri-operatively introduced bacteria in cementless total joint arthroplasty.

  15. Processing of hydroxylapatite coatings on titanium alloy bone prostheses

    DOEpatents

    Nastasi, Michael A.; Levine, Timothy E.; Mayer, James W.; Pizziconi, Vincent B.

    1998-01-01

    Processing of hydroxylapatite sol-gel films on titanium alloy bone prostheses. A method utilizing non-line-of-sight ion beam implantation and/or rapid thermal processing to provide improved bonding of layers of hydroxylapatite to titanium alloy substrates while encouraging bone ingrowth into the hydroxylapatite layers located away from the substrate, is described for the fabrication of prostheses. The first layer of hydroxylapatite is mixed into the substrate by the ions or rapidly thermally annealed, while subsequent layers are heat treated or densified using ion implantation to form layers of decreasing density and larger crystallization, with the outermost layers being suitable for bone ingrowth.

  16. Processing of hydroxylapatite coatings on titanium alloy bone prostheses

    DOEpatents

    Nastasi, M.A.; Levine, T.E.; Mayer, J.W.; Pizziconi, V.B.

    1998-10-06

    Processing of hydroxylapatite sol-gel films on titanium alloy bone prostheses. A method utilizing non-line-of-sight ion beam implantation and/or rapid thermal processing to provide improved bonding of layers of hydroxylapatite to titanium alloy substrates while encouraging bone ingrowth into the hydroxylapatite layers located away from the substrate, is described for the fabrication of prostheses. The first layer of hydroxylapatite is mixed into the substrate by the ions or rapidly thermally annealed, while subsequent layers are heat treated or densified using ion implantation to form layers of decreasing density and larger crystallization, with the outermost layers being suitable for bone ingrowth.

  17. Bioactive lipid coating of bone allografts directs engraftment and fate determination of bone marrow-derived cells in rat GFP chimeras.

    PubMed

    Das, Anusuya; Segar, Claire E; Chu, Yihsuan; Wang, Tiffany W; Lin, Yong; Yang, Chunxi; Du, Xeujun; Ogle, Roy C; Cui, Quanjun; Botchwey, Edward A

    2015-09-01

    Bone grafting procedures are performed to treat wounds incurred during wartime trauma, accidents, and tumor resections. Endogenous mechanisms of repair are often insufficient to ensure integration between host and donor bone and subsequent restoration of function. We investigated the role that bone marrow-derived cells play in bone regeneration and sought to increase their contributions by functionalizing bone allografts with bioactive lipid coatings. Polymer-coated allografts were used to locally deliver the immunomodulatory small molecule FTY720 in tibial defects created in rat bone marrow chimeras containing genetically-labeled bone marrow for monitoring cell origin and fate. Donor bone marrow contributed significantly to both myeloid and osteogenic cells in remodeling tissue surrounding allografts. FTY720 coatings altered the phenotype of immune cells two weeks post-injury, which was associated with increased vascularization and bone formation surrounding allografts. Consequently, degradable polymer coating strategies that deliver small molecule growth factors such as FTY720 represent a novel therapeutic strategy for harnessing endogenous bone marrow-derived progenitors and enhancing healing in load-bearing bone defects.

  18. Clinical, Radiographic, and Histologic Evaluation of Maxillary Sinus Lift Procedure Using a Highly Purified Xenogenic Graft (Laddec®)

    PubMed Central

    Belleggia, Fabrizio; Ippoliti, Stefano; DeVilliers, Patrica; Stefanelli, Luigi Vito; Di Carlo, Stefano; Pompa, Giorgio

    2016-01-01

    ABSTRACT Objectives The aim of this study was to evaluate the clinical, radiographic and histologic results when a highly purified xenogenic bone (Laddec®) was used as grafting material in maxillary sinuses. Material and Methods In fifteen patients requiring unilateral maxillary sinus augmentation, the grafting procedure was performed with Laddec®. Forty-two implants were installed after a 6 month healing period. The height of the augmented sinus was measured radiographically immediately after augmentation and postoperatively up to 36 months. At the time of implant placement, a bone core was harvested in each patient for histological examination. Results The cumulative implant survival rate was 97.6%. The original height was 3.65 (SD 0.7) mm and the augmented sinus height was 13.8 (SD 1.4) mm after the surgery. The reduced height of grafted xenogenic material (RDL) at the implant insertion was 0.83 (SD 0.38) mm, and at the final postoperative visit was 0.91 (SD 0.25) mm, showing no significant correlation with the follow-up periods by Spearman’s test (P = 0.118). In addition, no significant difference in the RDL was observed according to the site of implantation (P = 0.682). The mean implant marginal bone loss was 0.38 (SD 0.24) mm. Histological analysis showed the bone cores were composed of 64.72 (SD 3.44)% newly formed bone, 17.41 (SD 2.02)% connective tissue, 16.93 (SD 2.83)% residual graft particles, and 0.94 (SD 0.11)% inflammatory cells. Conclusions According to our data, the highly purified xenogenic bone (Laddec®), used as graft material in the sinus lift procedure, may create adequate bone volume, and appropriate osseointegration of dental implants. PMID:27099697

  19. The Role of Dextran Coatings on the Cytotoxicity Properties of Ceria Nanoparticles Toward Bone Cancer Cells

    NASA Astrophysics Data System (ADS)

    Yazici, Hilal; Alpaslan, Ece; Webster, Thomas J.

    2015-04-01

    Cerium oxide nanoparticles have demonstrated great potential as antioxidant and radioprotective agents for nanomedicine applications especially for cancer therapy. The surface chemistry of nanoparticles is an important property that has a significant effect on their performance in biological applications including cancer diagnosis, cancer treatment, and bacterial infection. Recently, various nanosized cerium oxide particles with different types of polymer coatings have been developed to improve aqueous solubility and allow for surface functionalization for distinct applications. In this study, the role of ceria nanoparticles coated with dextran on the cytotoxicity properties of bone cancer cells was shown. Specifically, 0.1 M and 0.01 M dextran-coated, <5-nm ceria nanoparticles, were synthesized. The cytotoxicity of 0.1 M and 0.01 M dextran-coated ceria nanoparticles was evaluated against osteosarcoma cells. A change in cell viability was observed when treating osteosarcoma cells with 0.1 M dextran-coated ceria nanoparticles in the 250 -1000 μg/mL concentration range. In contrast, minimal toxicity to bone cancer cells was observed for the 0.01 M dextran coating after 3 days compared with the 0.1 M dextran coating. These results indicated that surface dextran functionalization had a positive impact on the cytotoxicity of cerium oxide nanoparticles against osteosarcoma cells.

  20. Hydroxyapatite coating of cellulose sponges attracts bone-marrow-derived stem cells in rat subcutaneous tissue

    PubMed Central

    Tommila, Miretta; Jokilammi, Anne; Terho, Perttu; Wilson, Timothy; Penttinen, Risto; Ekholm, Erika

    2009-01-01

    The presence of bone-marrow-derived stem cells was investigated in a wound-healing model where subcutaneously implanted cellulose sponges were used to induce granulation tissue formation. When cellulose was coated with hydroxyapatite (HA), the sponges attracted circulating haemopoietic and mesenchymal progenitor cells more efficiently than uncoated cellulose. We hypothesized that the giant cells/macrophages of HA-coated sponges recognize HA as foreign material, phagocyte or hydrolyse it and release calcium ions, which are recognized by the calcium-sensing receptors (CaRs) expressed on many cells including haemopoietic progenitors. Our results showed, indeed, that the HA-coated sponges contained more CaR-positive cells than untreated sponges. The stem cells are, most probably, responsible for the richly vascularized granulation tissue formed in HA-coated sponges. This cell-guiding property of HA-coated cellulose might be useful in clinical situations involving impaired wound repair. PMID:19324666

  1. Porous biomorphic silicon carbide ceramics coated with hydroxyapatite as prospective materials for bone implants.

    PubMed

    Gryshkov, Oleksandr; Klyui, Nickolai I; Temchenko, Volodymyr P; Kyselov, Vitalii S; Chatterjee, Anamika; Belyaev, Alexander E; Lauterboeck, Lothar; Iarmolenko, Dmytro; Glasmacher, Birgit

    2016-11-01

    Porous and cytocompatible silicon carbide (SiC) ceramics derived from wood precursors and coated with bioactive hydroxyapatite (HA) and HA-zirconium dioxide (HA/ZrO2) composite are materials with promising application in engineering of bone implants due to their excellent mechanical and structural properties. Biomorphic SiC ceramics have been synthesized from wood (Hornbeam, Sapele, Tilia and Pear) using a forced impregnation method. The SiC ceramics have been coated with bioactive HA and HA/ZrO2 using effective gas detonation deposition approach (GDD). The surface morphology and cytotoxicity of SiC ceramics as well as phase composition and crystallinity of deposited coatings were analyzed. It has been shown that the porosity and pore size of SiC ceramics depend on initial wood source. The XRD and FTIR studies revealed the preservation of crystal structure and phase composition of in the HA coating, while addition of ZrO2 to the initial HA powder resulted in significant decomposition of the final HA/ZrO2 coating and formation of other calcium phosphate phases. In turn, NIH 3T3 cells cultured in medium exposed to coated and uncoated SiC ceramics showed high re-cultivation efficiency as well as metabolic activity. The recultivation efficiency of cells was the highest for HA-coated ceramics, whereas HA/ZrO2 coating improved the recultivation efficiency of cells as compared to uncoated SiC ceramics. The GDD method allowed generating homogeneous HA coatings with no change in calcium to phosphorus ratio. In summary, porous and cytocompatible bio-SiC ceramics with bioactive coatings show a great promise in construction of light, robust, inexpensive and patient-specific bone implants for clinical application. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. The inhibitory effect of alendronate-hydroxyapatite composite coating on wear debris-induced peri-implant high bone turnover.

    PubMed

    Niu, Shun; Cao, Xiaorui; Zhang, Yan; Zhu, Qingsheng; Zhu, Jinyu

    2013-01-01

    Bisphosphonate (BP) has been confirmed as the most potent drug for enhancing implant stability. There have been few studies focused on BP-hydroxyapatite (HA) composite coatings, and the mechanisms through which BPs inhibit wear debris-induced high bone turnover have not been comprehensively discussed. Thirty rabbits were divided into three groups. HA-coated implants were inserted into the proximal region of the medullary cavity of the left tibia. In groups II and III, particles were injected around the implant and into the knee joint during implantation. Low-dose alendronate (ALN) was combined with the HA coating in group III. The efficacy of the composite coating was evaluated using several parameters, including the intra-articular pressure, histology of the synovial membranes and bone-implant interfaces, bone histomorphometry and mineralization, implant stability, osteolysis-related cytokine levels, and the duration of ALN release in vitro. The results indicate that the ALN-HA composite coating reduces peri-implant high bone turnover; improves bone-implant integration, bone quality, and implant stability; and inhibits particle migration. In vitro results suggest that the ALN-HA composite coating can afford long release duration. This study may help us further realize the mechanisms through which BPs enhance bone-implant integration in a state of peri-implant high bone turnover. BP-HA composite coatings are promising materials, particularly in revision surgeries. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Antibacterial chitosan coating on nano-hydroxyapatite/polyamide66 porous bone scaffold for drug delivery.

    PubMed

    Huang, Di; Zuo, Yi; Zou, Qin; Zhang, Li; Li, Jidong; Cheng, Lin; Shen, Juan; Li, Yubao

    2011-01-01

    This study describes a new drug-loaded coating scaffold applied in infection therapy during bone regeneration. Chitosan (CS) containing antibacterial berberine was coated on a nano-hydroxyapatite/polyamide66 (n-HA/PA66) scaffold to realize bone regeneration together with antimicrobial properties. The porous scaffold was fabricated using the phase-inversion method with a porosity of about 84% and macropore size of 400-600 μm. The morphology, mechanical properties and drug-release behavior were investigated at different ratios of chitosan to berberine. The results show that the elastic modulus and compressive strength of the coated scaffolds were improved to 35.4 MPa and 1.7 MPa, respectively, about 7 times and 3 times higher than the uncoated scaffolds. After a burst release of berberine within the first 3 h in PBS solution, a continuous berberine release can last 150 h, which is highly dependent on the coating concentration and suitable for antibacterial requirement of orthopaedic surgery. The bactericidal test confirms a strong antibiotic effect of the delivery system and the minimum inhibitory concentration of the drug is 0.02 mg/ml. Moreover, in vitro biological evaluation demonstrates that the coating scaffolds act as a good matrix for MG63 adhesion, crawl, growth and proliferation, suggesting that the antibacterial delivery system has no cytotoxicity. We expect the drug-delivery system to have a potential application in bone regeneration or defect repair.

  4. Bone apposition to laminin-1 coated implants: histologic and 3D evaluation.

    PubMed

    Bougas, K; Jimbo, R; Vandeweghe, S; Hayashi, M; Bryington, M; Kozai, Y; Schwartz-Filho, H O; Tovar, N; Adolfsson, E; Ono, D; Coelho, P G; Wennerberg, A

    2013-05-01

    Laminin-1 has been reported as one of the factors responsible for the nucleation of calcium phosphates and, in vitro, has been reported to selectively recruit osteoprogenitors. This article focused on its in vivo effects, and evaluated the effect of laminin-1 local application on osseointegration. Polished cylindrical hydroxyapatite implants were coated with laminin-1 (test) and the bone responses in the rabbit tibiae after 2 and 4 weeks were evaluated and compared to the non-coated implants (control). Before the samples were processed for histological sectioning, they were three-dimensionally analysed with micro computed tomography (μCT). Both evaluation methods were analysed with regards to bone area around the implant and bone to implant contact. From the histologic observation, new bone formation around the laminin-1 coated implant at 2 weeks seemed to have increased the amount of supporting bone around the implant, however, at 4 weeks, the two groups presented no notable differences. The two-dimensional and three-dimensional morphometric evaluation revealed that both histologic and three-dimensional analysis showed some tendency in favour of the test group implants, however there was no statistical significance between the test and control group results. Copyright © 2012 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  5. Acid-etched microtexture for enhancement of bone growth into porous-coated implants.

    PubMed

    Hacking, S A; Harvey, E J; Tanzer, M; Krygier, J J; Bobyn, J D

    2003-11-01

    We designed an in vivo study to determine if the superimposition of a microtexture on the surface of sintered titanium beads affected the extent of bone ingrowth. Cylindrical titanium intramedullary implants were coated with titanium beads to form a porous finish using commercial sintering techniques. A control group of implants was left in the as-sintered condition. The test group was etched in a boiling acidic solution to create an irregular surface over the entire porous coating. Six experimental dogs underwent simultaneous bilateral femoral intramedullary implantation of a control implant and an acid etched implant. At 12 weeks, the implants were harvested in situ and the femora processed for undecalcified, histological examination. Eight transverse serial sections for each implant were analysed by backscattered electron microscopy and the extent of bone ingrowth was quantified by computer-aided image analysis. The extent of bone ingrowth into the control implants was 15.8% while the extent of bone ingrowth into the etched implants was 25.3%, a difference of 60% that was statistically significant. These results are consistent with other research that documents the positive effect of microtextured surfaces on bone formation at an implant surface. The acid etching process developed for this study represents a simple method for enhancing the potential of commonly available porous coatings for biological fixation.

  6. Adaptive growth factor delivery from a polyelectrolyte coating promotes synergistic bone tissue repair and reconstruction

    PubMed Central

    Shah, Nisarg J.; Hyder, Md. Nasim; Quadir, Mohiuddin A.; Dorval Courchesne, Noémie-Manuelle; Seeherman, Howard J.; Nevins, Myron; Spector, Myron; Hammond, Paula T.

    2014-01-01

    Traumatic wounds and congenital defects that require large-scale bone tissue repair have few successful clinical therapies, particularly for craniomaxillofacial defects. Although bioactive materials have demonstrated alternative approaches to tissue repair, an optimized materials system for reproducible, safe, and targeted repair remains elusive. We hypothesized that controlled, rapid bone formation in large, critical-size defects could be induced by simultaneously delivering multiple biological growth factors to the site of the wound. Here, we report an approach for bone repair using a polyelectrolye multilayer coating carrying as little as 200 ng of bone morphogenetic protein-2 and platelet-derived growth factor-BB that were eluted over readily adapted time scales to induce rapid bone repair. Based on electrostatic interactions between the polymer multilayers and growth factors alone, we sustained mitogenic and osteogenic signals with these growth factors in an easily tunable and controlled manner to direct endogenous cell function. To prove the role of this adaptive release system, we applied the polyelectrolyte coating on a well-studied biodegradable poly(lactic-co-glycolic acid) support membrane. The released growth factors directed cellular processes to induce bone repair in a critical-size rat calvaria model. The released growth factors promoted local bone formation that bridged a critical-size defect in the calvaria as early as 2 wk after implantation. Mature, mechanically competent bone regenerated the native calvaria form. Such an approach could be clinically useful and has significant benefits as a synthetic, off-the-shelf, cell-free option for bone tissue repair and restoration. PMID:25136093

  7. Bioactive ceramic coating on orthopedic implants for enhanced bone tissue integration

    NASA Astrophysics Data System (ADS)

    Aniket

    Tissue integration between bone and orthopedic implant is essential for implant fixation and longevity. An immunological response leads to fibrous encapsulation of metallic implants leading to implant instability and failure. Bioactive ceramics have the ability to directly bond to bone; however, they have limited mechanical strength for load bearing applications. Coating bioactive ceramics on metallic implant offers the exciting opportunity to enhance bone formation without compromising the mechanical strength of the implant. In the present study, we have developed a novel bioactive silica-calcium phosphate nanocomposite (SCPC) coating on medical grade Ti-6Al-4V orthopedic implant using electrophoretic deposition (EPD) and evaluated bone tissue response to the coated implant at the cellular level. The effect of SCPC composition and suspending medium pH on the zeta potential of three different SCPC formulations; SCPC25, SCPC50 and SCPC75 were analyzed. The average zeta potential of SCPC50 in pure ethanol was more negative than that of SCPC25 or SCPC75; however the difference was not statistically significant. Ti-6Al-4V discs were passivated, coated with SCPC50 (200 nm - 10 mum) and thermally treated at 600 - 800 ºC to produce a coating thickness in the range of 43.1 +/- 5.7 to 30.1 +/- 4.6 μm. After treatment at 600, 700 and 800 ºC, the adhesion strength at the SCPC50/Ti-6Al-4V interface was 42.6 +/- 3.6, 44.7 +/- 8.7 and 47.2 +/- 4.3 MPa, respectively. XRD analyses of SCPC50 before and after EPD coating indicated no change in the crystallinity of the material. Fracture surface analyses showed that failure occurred within the ceramic layer or at the ceramic/polymer interface; however, the ceramic/metal interface was intact in all samples. The adhesion strength of SCPC50-coated substrates after immersion in PBS for 2 days (11.7 +/- 3.9 MPa) was higher than that measured on commercially available hydroxyapatite (HA) coated substrates (5.5 +/- 2.7 MPa), although the

  8. Hydroxyapatite nanocrystals functionalized with alendronate as bioactive components for bone implant coatings to decrease osteoclastic activity

    NASA Astrophysics Data System (ADS)

    Bosco, Ruggero; Iafisco, Michele; Tampieri, Anna; Jansen, John A.; Leeuwenburgh, Sander C. G.; van den Beucken, Jeroen J. J. P.

    2015-02-01

    The integration of bone implants within native bone tissue depends on periprosthetic bone quality, which is severely decreased in osteoporotic patients. In this work, we have synthesized bone-like hydroxyapatite nanocrystals (nHA) using an acid-base neutralization reaction and analysed their physicochemical properties. Subsequently, we have functionalized the nHA with alendronate (nHAALE), a well-known bisphosphonate drug used for the treatment of osteoporosis. An in vitro osteoclastogenesis test was carried out to evaluate the effect of nHAALE on the formation of osteoclast-like cells from monocytic precursor cells (i.e. RAW264.7 cell line) showing that nHAALE significantly promoted apoptosis of osteoclast-like cells. Subsequently, nHA and nHAALE were deposited on titanium disks using electrospray deposition (ESD), for which characterisation of the deposited coatings confirmed the presence of alendronate in nHAALE coatings with nanoscale thickness of about 700 nm. These results indicate that alendronate linked to hydroxyapatite nanocrystals has therapeutic potential and nHAALE can be considered as an appealing coating constituent material for orthopaedic and oral implants for application in osteoporotic patients.

  9. Coating cortical bone allografts with periosteum-mimetic scaffolds made of chitosan, trimethyl chitosan, and heparin.

    PubMed

    Romero, Raimundo; Chubb, Laura; Travers, John K; Gonzales, Timothy R; Ehrhart, Nicole P; Kipper, Matt J

    2015-05-20

    Bone allografts have very limited healing leading to high rates of failure from non-union, fracture, and infection. The limited healing of bone allografts is due in large part to devitalization and removal of the periosteum, which removes osteogenic cells and osteoinductive signals. Here we report techniques for directly coating cortical bone with tissue scaffolds, and evaluate the scaffolds' capacity to support osteoprogenitor cells. Three types of coatings are investigated: N,N,N-trimethyl chitosan-heparin polyelectrolyte multilayers, freeze-dried porous chitosan foam coatings, and electrospun chitosan nanofibers. The freeze-dried and electrospun scaffolds are also further modified with polyelectrolyte multilayers. All of the scaffolds are durable to subsequent aqueous processing, and are cytocompatible with adipose-derived stem cells. Alkaline phosphatase and receptor activator of nuclear factor kappa-B ligand expression at days 7 and 21 suggest that these scaffolds support an osteoprogenitor phenotype. These scaffolds could serve as periosteum mimics, deliver osteoprogenitor cells, and improve bone allograft healing.

  10. Bone response to the multilayer BMP-2 gene coated porous titanium implant surface.

    PubMed

    Jiang, Qiao-Hong; Liu, Li; Peel, Sean; Yang, Guo-Li; Zhao, Shi-Fang; He, Fu-Ming

    2013-08-01

    Evaluate hBMP-2 expression following gene delivery from plasmid multilayers formed on sandblasted titanium in vitro and bone formation around similarly prepared implant surfaces in vivo. Multilayers of cationic lipid/rhBMP-2 plasmid DNA complex (LDc) and anionic hyaluronic acid (HA) was assembled on sandblasted-dual acid etched pure titanium disks or implant surfaces using layer-by-layer (LBL) assembly. Gene delivery and hBMP-2 expression in cells exposed to the LDc multilayers was measured in vitro. To determine the effect of BMP delivery from such multilyaers in vivo, roughened implants coated with BMP-2 LDc multilayers or uncoated control implants (n = 15 for both) were implanted in the femurs of NZW rabbits. After 2, 4, 8 weeks, femurs were retrieved and prepared for histomorphometric evaluation (n = 5 rabbits per time point). MC3T3-E1 cells cultured directly on the BMP-2 LDc coated titanium disks showed EGFP and hBMP-2 expression after 48 h in culture. Increased gene delivery occurred by increasing the number of assembly layers when cells were cultured for 48 h. Cells cultured on LDc coated surfaces had significantly higher cell viability than control cells cultured on uncoated porous titanium surfaces. Histologic observation of the implants showed that after 4 weeks healing, the bone to implant contact (BIC) on the LDc coated surface was much lower than that on the control surface, but didn't reach significant. In contrast, the percentage of bone within the implant's threads was significantly higher than the control group (P = 0.047). The BMP-2 gene coated sandblasted dual acid etched titanium implants slightly accelerated early bone formation around implants. © 2011 John Wiley & Sons A/S.

  11. Effect of coating Straumann Bone Ceramic with Emdogain on mesenchymal stromal cell hard tissue formation.

    PubMed

    Mrozik, Krzysztof Marek; Gronthos, Stan; Menicanin, Danijela; Marino, Victor; Bartold, P Mark

    2012-06-01

    Periodontal tissue engineering requires a suitable biocompatible scaffold, cells with regenerative capacity, and instructional molecules. In this study, we investigated the capacity of Straumann Bone Ceramic coated with Straumann Emdogain, a clinical preparation of enamel matrix protein (EMP), to aid in hard tissue formation by post-natal mesenchymal stromal cells (MSCs) including bone marrow stromal cells (BMSCs) and periodontal ligament fibroblasts (PDLFs). MSCs were isolated and ex vivo-expanded from human bone marrow and periodontal ligament and, in culture, allowed to attach to Bone Ceramic in the presence or absence of Emdogain. Gene expression of bone-related proteins was investigated by real time RT-PCR for 72 h, and ectopic bone formation was assessed histologically in subcutaneous implants of Bone Ceramic containing MSCs with or without Emdogain in NOD/SCID mice. Alkaline phosphatase activity was also assessed in vitro, in the presence or absence of Emdogain. Collagen-I mRNA was up-regulated in both MSC populations over the 72-h time course with Emdogain. Expression of BMP-2 and the osteogenic transcription factor Cbfa-1 showed early stimulation in both MSC types after 24 h. In contrast, expression of BMP-4 was consistently down-regulated in both MSC types with Emdogain. Up-regulation of osteopontin and periostin mRNA was restricted to BMSCs, while higher levels of bone sialoprotein-II were observed in PDLFs with Emdogain. Furthermore, alkaline phosphatase activity levels were reduced in both BMSCs and PDLFs in the presence of Emdogain. Very little evidence was found for ectopic bone formation following subcutaneous implantation of MSCs with Emdogain-coated or -uncoated Bone Ceramic in NOD/SCID mice. The early up-regulation of several important bone-related genes suggests that Emdogain may have a significant stimulatory effect in the commitment of mesenchymal cells to osteogenic differentiation in vitro. While Emdogain inhibited AP activity and appeared

  12. Bone integration capability of nanopolymorphic crystalline hydroxyapatite coated on titanium implants

    PubMed Central

    Yamada, Masahiro; Ueno, Takeshi; Tsukimura, Naoki; Ikeda, Takayuki; Nakagawa, Kaori; Hori, Norio; Suzuki, Takeo; Ogawa, Takahiro

    2012-01-01

    The mechanism by which hydroxyapatite (HA)-coated titanium promotes bone–implant integration is largely unknown. Furthermore, refining the fabrication of nano-structured HA to the level applicable to the mass production process for titanium implants is challenging. This study reports successful creation of nanopolymorphic crystalline HA on microroughened titanium surfaces using a combination of flame spray and low-temperature calcination and tests its biological capability to enhance bone–implant integration. Sandblasted microroughened titanium implants and sandblasted + HA-coated titanium implants were subjected to biomechanical and histomorphometric analyses in a rat model. The HA was 55% crystallized and consisted of nanoscale needle-like architectures developed in various diameters, lengths, and orientations, which resulted in a 70% increase in surface area compared to noncoated microroughened surfaces. The HA was free from impurity contaminants, with a calcium/phosphorus ratio of 1.66 being equivalent to that of stoichiometric HA. As compared to microroughened implants, HA-coated implants increased the strength of bone–implant integration consistently at both early and late stages of healing. HA-coated implants showed an increased percentage of bone–implant contact and bone volume within 50 μm proximity of the implant surface, as well as a remarkably reduced percentage of soft tissue intervention between bone and the implant surface. In contrast, bone volume outside the 50 μm border was lower around HA-coated implants. Thus, this study demonstrated that the addition of pure nanopolymorphic crystalline HA to microroughened titanium not only accelerates but also enhances the level of bone–implant integration and identified the specific tissue morphogenesis parameters modulated by HA coating. In particular, the nanocrystalline HA was proven to be drastic in increasing osteoconductivity and inhibiting soft tissue infiltration, but the effect was

  13. Biodegradation rate of shellac coated bovine hydroxyapatite for bone filler material

    NASA Astrophysics Data System (ADS)

    Triyono, Joko; Triyono, Susilowati, Endang; Murdiyantara, Suci Anindya

    2016-03-01

    This work reports on the effect of shellac coated hydroxyapatite (HA) on the biodegradation rate. The HA was processed from bovine bone. Shellac was derived from the resinous secretion of the lac insect. The aims of the addition of shellac solution is to know how the biodegradation rate material in the Phosphate Buffered Saline (PBS) solution. The four different of shellac solutions (2,5%; 5%; 7,5%; and 10% weight) coated HA scaffoldand one ratio as a control. It was concluded that the ability of biodegradation rate a materialwas not influenced by the ratio of shellac. All materials were biodegradedwhen they were soaked in PBS solution.

  14. TGF-β1-Enhanced TCP-Coated Sensate Scaffolds Can Detect Bone Bonding

    PubMed Central

    Szivek, J.A.; Margolis, D.S.; Garrison, B.K.; Nelson, E.; Vaidyanathan, R.K.; DeYoung, D.W.

    2008-01-01

    Porous polybutylene terephthalate (PBT) scaffold systems were tested as orthopedic implants to determine whether these scaffolds could be used to detect strain transfer following bone growth into the scaffold. Three types of scaffold systems were tested: porous PBT scaffolds, porous PBT scaffolds with a thin β-tricalcium phosphate coating (LC-PBT), and porous PBT scaffolds with the TCP coating vacuum packed into the scaffold pores (VI-PBT). In addition, the effect of applying TGF-β1 to scaffolds as an enhancement was examined. The scaffolds were placed onto the femora of rats and left in vivo for 4 months. The amount of bone ingrowth and the strain transfer through various scaffolds was evaluated by using scanning electron microscopy, histology, histomorphometry, and cantilever bend testing. The VI-PBT scaffold showed the highest and most consistent degree of mechanical interaction between bone and scaffold, providing strain transfers of 68.5% (±20.6) and 79.2% (±8.7) of control scaffolds in tension and compression, respectively. The strain transfer through the VI-PBT scaffold decreased to 29.1% (±24.3) and 30.4% (±25.8) in tension and compression when used with TGF-β1. TGF-β1 enhancement increased the strain transfer through LC-PBT scaffolds in compression from 9.4% (±8.7) to 49.7% (±31.0). The significant changes in mechanical strain transfer through LC-PBT and VI-PBT scaffolds correlated with changes in bone ingrowth fraction, which was increased by 39.6% in LC-PBT scaffolds and was decreased 21.3% in VI-PBT scaffolds after TGF-β1 enhancement. Overall, the results indicate that strain transfer through TCP-coated PBT scaffolds correlate with bone ingrowth after implantation, making these instrumented scaffolds useful for monitoring bone growth by monitoring strain transfer. PMID:15682399

  15. Porous Tantalum Coatings Prepared by Vacuum Plasma Spraying Enhance BMSCs Osteogenic Differentiation and Bone Regeneration In Vitro and In Vivo

    PubMed Central

    Tang, Ze; Xie, Youtao; Yang, Fei; Huang, Yan; Wang, Chuandong; Dai, Kerong; Zheng, Xuebin; Zhang, Xiaoling

    2013-01-01

    Tantalum, as a potential metallic implant biomaterial, is attracting more and more attention because of its excellent anticorrosion and biocompatibility. However, its significantly high elastic modulus and large mechanical incompatibility with bone tissue make it unsuitable for load-bearing implants. In this study, porous tantalum coatings were first successfully fabricated on titanium substrates by vacuum plasma spraying (VPS), which would exert the excellent biocompatibility of tantalum and alleviate the elastic modulus of tantalum for bone tissue. We evaluated cytocompatibility and osteogenesis activity of the porous tantalum coatings using human bone marrow stromal cells (hBMSCs) and its ability to repair rabbit femur bone defects. The morphology and actin cytoskeletons of hBMSCs were observed via electron microscopy and confocal, and the cell viability, proliferation and osteogenic differentiation potential of hBMSCs were examined quantitatively by PrestoBlue assay, Ki67 immunofluorescence assay, real-time PCR technology and ALP staining. For in vivo detection, the repaired femur were evaluated by histomorphology and double fluorescence labeling 3 months postoperation. Porous tantalum coating surfaces promoted hBMSCs adhesion, proliferation, osteogenesis activity and had better osseointegration and faster new bone formation rate than titanium coating control. Our observation suggested that the porous tantalum coatings had good biocompatibility and could enhance osseoinductivity in vitro and promote new bone formation in vivo. The porous tantalum coatings prepared by VPS is a promising strategy for bone regeneration. PMID:23776648

  16. Porous tantalum coatings prepared by vacuum plasma spraying enhance bmscs osteogenic differentiation and bone regeneration in vitro and in vivo.

    PubMed

    Tang, Ze; Xie, Youtao; Yang, Fei; Huang, Yan; Wang, Chuandong; Dai, Kerong; Zheng, Xuebin; Zhang, Xiaoling

    2013-01-01

    Tantalum, as a potential metallic implant biomaterial, is attracting more and more attention because of its excellent anticorrosion and biocompatibility. However, its significantly high elastic modulus and large mechanical incompatibility with bone tissue make it unsuitable for load-bearing implants. In this study, porous tantalum coatings were first successfully fabricated on titanium substrates by vacuum plasma spraying (VPS), which would exert the excellent biocompatibility of tantalum and alleviate the elastic modulus of tantalum for bone tissue. We evaluated cytocompatibility and osteogenesis activity of the porous tantalum coatings using human bone marrow stromal cells (hBMSCs) and its ability to repair rabbit femur bone defects. The morphology and actin cytoskeletons of hBMSCs were observed via electron microscopy and confocal, and the cell viability, proliferation and osteogenic differentiation potential of hBMSCs were examined quantitatively by PrestoBlue assay, Ki67 immunofluorescence assay, real-time PCR technology and ALP staining. For in vivo detection, the repaired femur were evaluated by histomorphology and double fluorescence labeling 3 months postoperation. Porous tantalum coating surfaces promoted hBMSCs adhesion, proliferation, osteogenesis activity and had better osseointegration and faster new bone formation rate than titanium coating control. Our observation suggested that the porous tantalum coatings had good biocompatibility and could enhance osseoinductivity in vitro and promote new bone formation in vivo. The porous tantalum coatings prepared by VPS is a promising strategy for bone regeneration.

  17. Investigation of the immune response to autologous, allogeneic, and xenogeneic mesenchymal stem cells after intra-articular injection in horses.

    PubMed

    Pigott, John H; Ishihara, Akikazu; Wellman, Maxey L; Russell, Duncan S; Bertone, Alicia L

    2013-11-15

    Mesenchymal stem cells have demonstrated immunomodulatory capabilities as well as modest efficacy in animal models of joint injury, warranting further study as a potential treatment of joint disease. The goal of the study was to investigate the blood and synovial immune and histologic response to intra-articular injection of autologous, allogeneic, and xenogeneic bone marrow-derived mesenchymal stem cells (MSC) in horses. The study group consisted of 6 five-year-old Thoroughbred mares that had been injected previously with 15 million, genetically modified autologous, allogeneic, or xenogeneic MSC into the fetlock joints. One group of autologous cells was genetically modified to permit MSC biolocalization in the synovium. To assess response to the injection, synovial biopsies were obtained via arthroscopy 60 days after MSC injection for gross, histologic and molecular analyses. Peripheral blood mononuclear cells were isolated from each horse 120 days after MSC injection and co-cultured with a monolayer of each MSC group to permit quantification of activated CD4+ lymphocytes and cytokine release (ELISA) upon re-exposure to MSC. Arthroscopic examination revealed normal synovium with no grossly detrimental effect to the synovium or cartilage. Intra-articular MSC produced a persistent mononuclear infiltrate for at least 60 days, mostly perivascular, identified as CD3+ lymphocytes. An immune response (significant increase in CD4+ lymphocytes) was detected upon re-exposure to xenogeneic but not to allogeneic or autologous MSC. An inflammatory cytokine release from peripheral blood mononuclear cell/MSC co-cultures was present in all MSC groups but was significantly greater in the xenogeneic group. In conclusion, intra-articular injection of MSC, regardless of cell origin, incited a persistent mononuclear synovitis demonstrating a sustained biologic influence of these cells. Allogeneic cells did not elicit a detectable immune response upon re-exposure using our methods

  18. Direct Laser Processing of Tantalum Coating on Titanium for Bone Replacement Structures

    PubMed Central

    Balla, Vamsi Krishna; Banerjee, Shashwat; Bose, Susmita; Bandyopadhyay, Amit

    2010-01-01

    Recently, tantalum is gaining more attention as a new metallic biomaterial as it has been shown to be bioactive and biologically bond to the bone. However, relatively high cost of manufacture and inability to produce a modular all tantalum implant has limited'its widespread acceptance. In this study, we have successfully deposited Ta coating on Ti using Laser Engineered Net Shaping (LENS™) to enhance osseointegration properties. In vitro biocompatibility study, using human osteoblast cell line hFOB, showed excellent cellular adherence and growth with abundant extracellular matrix formation on Ta coating surface compare to Ti surface. Six times higher living cell density was observed on Ta coating than on Ti control surface during MMT assay. High surface energy and wettability of Ta surface were observed to contribute to its significantly better cell-materials interactions. Also, these dense Ta coatings do not suffer from low fatigue resistance due to the absence of porosity and sharp interface between the coating and the substrate, which is a major concern for porous coatings used for enhanced/early biological fixation. PMID:19931654

  19. In vitro and in vivo evaluation of zinc-modified ca-si-based ceramic coating for bone implants.

    PubMed

    Yu, Jiangming; Li, Kai; Zheng, Xuebin; He, Dannong; Ye, Xiaojian; Wang, Meiyan

    2013-01-01

    The host response to calcium silicate ceramic coatings is not always favorable because of their high dissolution rates, leading to high pH within the surrounding physiological environment. Recently, a zinc-incorporated calcium silicate-based ceramic Ca2ZnSi2O7 coating, developed on a Ti-6Al-4V substrate using plasma-spray technology, was found to exhibit improved chemical stability and biocompatibility. This study aimed to investigate and compare the in vitro response of osteoblastic MC3T3-E1 cells cultured on Ca2ZnSi2O7 coating, CaSiO3 coating, and uncoated Ti-6Al-4V titanium control at cellular and molecular level. Our results showed Ca2ZnSi2O7 coating enhanced MC3T3-E1 cell attachment, proliferation, and differentiation compared to CaSiO3 coating and control. In addition, Ca2ZnSi2O7 coating increased mRNA levels of osteoblast-related genes (alkaline phosphatase, procollagen α1(I), osteocalcin), insulin-like growth factor-I (IGF-I), and transforming growth factor-β1 (TGF-β1). The in vivo osteoconductive properties of Ca2ZnSi2O7 coating, compared to CaSiO3 coating and control, was investigated using a rabbit femur defect model. Histological and histomorphometrical analysis demonstrated new bone formation in direct contact with the Ca2ZnSi2O7 coating surface in absence of fibrous tissue and higher bone-implant contact rate (BIC) in the Ca2ZnSi2O7 coating group, indicating better biocompatibility and faster osseointegration than CaSiO3 coated and control implants. These results indicate Ca2ZnSi2O7 coated implants have applications in bone tissue regeneration, since they are biocompatible and able to osseointegrate with host bone.

  20. In Vitro and In Vivo Evaluation of Zinc-Modified Ca–Si-Based Ceramic Coating for Bone Implants

    PubMed Central

    Zheng, Xuebin; He, Dannong; Ye, Xiaojian; Wang, Meiyan

    2013-01-01

    The host response to calcium silicate ceramic coatings is not always favorable because of their high dissolution rates, leading to high pH within the surrounding physiological environment. Recently, a zinc-incorporated calcium silicate-based ceramic Ca2ZnSi2O7 coating, developed on a Ti-6Al-4V substrate using plasma-spray technology, was found to exhibit improved chemical stability and biocompatibility. This study aimed to investigate and compare the in vitro response of osteoblastic MC3T3-E1 cells cultured on Ca2ZnSi2O7 coating, CaSiO3 coating, and uncoated Ti-6Al-4V titanium control at cellular and molecular level. Our results showed Ca2ZnSi2O7 coating enhanced MC3T3-E1 cell attachment, proliferation, and differentiation compared to CaSiO3 coating and control. In addition, Ca2ZnSi2O7 coating increased mRNA levels of osteoblast-related genes (alkaline phosphatase, procollagen α1(I), osteocalcin), insulin-like growth factor-I (IGF-I), and transforming growth factor-β1 (TGF-β1). The in vivo osteoconductive properties of Ca2ZnSi2O7 coating, compared to CaSiO3 coating and control, was investigated using a rabbit femur defect model. Histological and histomorphometrical analysis demonstrated new bone formation in direct contact with the Ca2ZnSi2O7 coating surface in absence of fibrous tissue and higher bone-implant contact rate (BIC) in the Ca2ZnSi2O7 coating group, indicating better biocompatibility and faster osseointegration than CaSiO3 coated and control implants. These results indicate Ca2ZnSi2O7 coated implants have applications in bone tissue regeneration, since they are biocompatible and able to osseointegrate with host bone. PMID:23483914

  1. Strontium content and collagen-I coating of Magnesium-Zirconia-Strontium implants influence osteogenesis and bone resorption.

    PubMed

    Mushahary, Dolly; Wen, Cuie; Kumar, Jerald M; Sravanthi, Ragamouni; Hodgson, Peter; Pande, Gopal; Li, Yuncang

    2016-02-01

    Our objective was to study the role of Collagen type-I (Col-I) coating on Magnesium-Zirconia (Mg-Zr) alloys, containing different quantities of Strontium (Sr), in enhancing the in vitro bioactivity and in vivo bone-forming and mineralisation properties of the implants. MC3T3-E1 osteoblast cell line was used to analyse the in vitro properties of Col-I coated and uncoated alloys. Cell viability analysis was performed by MTT assay; cell attachment on alloy surfaces was studied by scanning electron microscopy (SEM); and gene profiling of bone-specific markers in cells plated on uncoated alloys was performed by Quantitative RT-PCR. In vivo studies were performed by implanting 2-mm-sized cylindrical pins of uncoated and coated alloys in male New Zealand white rabbits (n = 33). Bone formation and mineralisation was studied by Dual Energy X-ray Absorptiometry (DXA) and histological analysis at one and three months post-implantation. Our results clearly showed that Sr content and Col-I coating of Mg-Zr-Sr alloys significantly improved their bone inducing activity in vitro and in vivo. Osteoblasts on coated alloys showed better viability and surface binding than those on uncoated alloys. Sr inclusion in the alloys enhanced their bone-specific gene expression. The in vivo activity of implants with higher Sr and Col-I coating was superior to uncoated and other coated alloys as they showed faster bone induction and higher mineral content in the newly formed bone. Our results indicate that bone-forming and mineralising activity of Mg-Zr-Sr implants can be significantly improved by controlling their Sr content and coating their surface with Col-I. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Enhancement of osteogenesis and biodegradation control by brushite coating on Mg-Nd-Zn-Zr alloy for mandibular bone repair.

    PubMed

    Guan, Xingmin; Xiong, Meiping; Zeng, Feiyue; Xu, Bin; Yang, Lingdi; Guo, Han; Niu, Jialin; Zhang, Jian; Chen, Chenxin; Pei, Jia; Huang, Hua; Yuan, Guangyin

    2014-12-10

    To diminish incongruity between bone regeneration and biodegradation of implant magnesium alloy applied for mandibular bone repair, a brushite coating was deposited on a matrix of a Mg-Nd-Zn-Zr (hereafter, denoted as JDBM) alloy to control the degradation rate of the implant and enhance osteogenesis of the mandible bone. Both in vitro and in vivo evaluations were carried out in the present work. Viability and adhesion assays of rabbit bone marrow mesenchyal stem cells (rBM-MSCs) were applied to determine the biocompatibility of a brushite-coated JDBM alloy. Osteogenic gene expression was characterized by quantitative real-time polymerase chain reaction (RT-PCR). Brushite-coated JDBM screws were implanted into mandible bones of rabbits for 1, 4, and 7 months, respectively, using 316L stainless steel screws as a control group. In vivo biodegradation rate was determined by synchrotron radiation X-ray microtomography, and osteogenesis was observed and evaluated using Van Gieson's picric acid-fuchsin. Both the naked JDBM and brushite-coated JDBM samples revealed adequate biosafety and biocompatibility as bone repair substitutes. In vitro results showed that brushite-coated JDBM considerably induced osteogenic differentiation of rBM-MSCs. And in vivo experiments indicated that brushite-coated JDBM screws presented advantages in osteoconductivity and osteogenesis of mandible bone of rabbits. Degradation rate was suppressed at a lower level at the initial stage of implantation when new bone tissue formed. Brushite, which can enhance oeteogenesis and partly control the degradation rate of an implant, is an appropriate coating for JDBM alloys used for mandibular repair. The Mg-Nd-Zn-Zr alloy with brushite coating possesses great potential for clinical applications for mandibular repair.

  3. Bone-like apatite coating on functionalized poly(etheretherketone) surface via tailored silanization layers technique.

    PubMed

    Zheng, Yanyan; Xiong, Chengdong; Zhang, Shenglan; Li, Xiaoyu; Zhang, Lifang

    2015-10-01

    Poly(etheretherketone) (PEEK) is a rigid semi-crystalline polymer with outstanding mechanical properties, bone-like stiffness and suitable biocompatibility that has attracted much interest as a biomaterial for orthopedic and dental implants. However, the bio-inert surface of PEEK limits its biomedical applications when direct osteointegration between the implants and the host tissue is desired. In this work, -PO4H2, -COOH and -OH groups were introduced on the PEEK surface by further chemical treatments of the vinyl-terminated silanization layers formed on the hydroxylation-pretreated PEEK surface. Both the surface-functionalized and pristine specimens were characterized by X-ray photoelectron spectroscopy (XPS), attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy and water contact angle measurements. When placed in 1.5 strength simulated body fluid (SBF) solution, apatite was observed to form uniformly on the functionalized PEEK surface and firmly attach to the substrate. The characterized results demonstrated that the coating was constituted by poorly crystallized bone-like apatite and the effect of surface functional groups on coating formation was also discussed in detail. In addition, in vitro biocompatibility of PEEK, in terms of pre-osteoblast cell (MC3T3-E1) attachment, spreading and proliferation, was remarkably enhanced by the bone-like apatite coating. Thus, this study provides a method to enhance the bioactivity of PEEK and expand its applications in orthopedic and dental implants.

  4. Effect of Nanoparticle Incorporation and Surface Coating on Mechanical Properties of Bone Scaffolds: A Brief Review

    PubMed Central

    Corona-Gomez, Jesus; Chen, Xiongbiao; Yang, Qiaoqin

    2016-01-01

    Mechanical properties of a scaffold play an important role in its in vivo performance in bone tissue engineering, due to the fact that implanted scaffolds are typically subjected to stress including compression, tension, torsion, and shearing. Unfortunately, not all the materials used to fabricate scaffolds are strong enough to mimic native bones. Extensive research has been conducted in order to increase scaffold strength and mechanical performance by incorporating nanoparticles and/or coatings. An incredible improvement has been achieved; and some outstanding examples are the usage of nanodiamond, hydroxyapatite, bioactive glass particles, SiO2, MgO, and silver nanoparticles. This review paper aims to present the results, to summarize significant findings, and to give perspective for future work, which could be beneficial to future bone tissue engineering. PMID:27420104

  5. Autogenous Bone Marrow Aspirate Coated Synthetic Hydroxyapatite for Reconstruction of Maxillo-Mandibular Osseous Defects: A Prospective Study.

    PubMed

    Gali, Raja Sekhar; Devireddy, Sathya Kumar; Mohan Rao, N; Kishore Kumar, R V; Kanubaddy, Sridhar Reddy; Dasari, Mallikarjuna; Sowjanya, K; Pathapati, Rama Mohan

    2017-03-01

    This prospective study was conducted to evaluate the bone regeneration capacity of synthetic hydroxyapatite mixed with autogenous bone marrow aspirate when used as a bone graft substitute in maxillo-mandibular osseous defects. This study included nine patients with histopathalogically proven benign osteolytic lesions in maxilla and mandible that were treated with enucleation or marginal resection followed by bone marrow aspirate coated synthetic biphasic hydroxyapatite (hydroxyapatite and beta tricalcium phosphate) graft placement. Incorporation of graft was assessed based on Irwin's radiologic staging. The efficacy of graft to form new bone was radiologically evaluated by observing the sequential changes of density at grafted site using gray scale level histogram which was processed in adobe photoshop 7.0 elements. Clinical assessment of recipient and donor sites was done. Based on Irwin's radiologic staging, at 6 month follow up period, obvious incorporation of graft with new bone was observed. Sequential changes in bone density measured by gray scale histogram revealed initial resorption followed by replacement of BMA coated hydroxyapatite with new bone formation. None of the patients eventually had complications like infection, wound dehiscence, graft loss at recipient sites at 6 months follow up period. Autogenous bone marrow aspirate in combination with synthetic hydroxyapatite is an effective option for accelerating bone regeneration in small to moderate sized jaw bone defects. This mixture provides all the three critical elements needed for bone regeneration (osteogenesis, osteoinduction and osteoconduction) with an added advantage of obviating donor site morbidity.

  6. Improvement of osteogenic potential of biphasic calcium phosphate bone substitute coated with synthetic cell binding peptide sequences

    PubMed Central

    Choi, Hyunmin; Park, Nho-Jae; Jamiyandorj, Otgonbold; Hong, Min-Ho; Oh, Seunghan; Park, Young-Bum

    2012-01-01

    Purpose The aim of this study was to evaluate the improvement of osteogenic potential of biphasic calcium phosphate (BCP) bone substitute coated with synthetic cell-binding peptide sequences in a standardized rabbit sinus model. Methods Standardized 6-mm diameter defects were created bilaterally on the maxillary sinus of ten male New Zealand white rabbits, receiving BCP bone substitute coated with synthetic cell binding peptide sequences on one side (experimental group) and BCP bone substitute without coating (control group) on the other side. Histologic and histomorphometric analysis of bone formation was carried out after a healing period of 4 or 8 weeks. Results Histological analysis revealed signs of new bone formation in both experimental groups (4- and 8-week healing groups) with a statistically significant increase in bone formation in the 4-week healing group compared to the control group. However, no statistically significant difference in bone formation was found between the 8-week healing group and the control group. Conclusions This study found that BCP bone substitute coated with synthetic cell-binding peptide sequences enhanced osteoinductive potential in a standardized rabbit sinus model and its effectiveness was greater in the 4-week healing group than in the 8-week healing group. PMID:23185697

  7. In vivo study of microarc oxidation coated biodegradable magnesium plate to heal bone fracture defect of 3mm width.

    PubMed

    Wu, Y F; Wang, Y M; Jing, Y B; Zhuang, J P; Yan, J L; Shao, Z K; Jin, M S; Wu, C J; Zhou, Y

    2017-06-23

    Microarc oxidation (MAO) coated magnesium (Mg) with improved corrosion resistance appeal increasing interests as a revolutionary biodegradable metal for fractured bone fixing implants application. However, the in vivo corrosion degradation of the implants and bone healing response are not well understood, which is highly required in clinic. In the present work, 10μm and 20μm thick biocompatible MAO coatings mainly composed of MgO, Mg2SiO4, CaSiO3 and Mg3(PO4)2 phases were fabricated on AZ31 magnesium alloy. The electrochemical tests indicated an improved corrosion resistance of magnesium by the MAO coatings. The 10μm and 20μm coated and uncoated magnesium plates were separately implanted into the radius bone fracture site of adult New Zealand white rabbits using a 3mm width bone fracture defect model to investigate the magnesium implants degradation and uninhibited bone healing. Taking advantage of the good biocompatibility of the MAO coatings, no adverse effects were detected through the blood test and histological examination. The implantation groups of coated and uncoated magnesium plates were both observed the promoting effect of bone fracture healing compared with the simple fracture group without implant. The releasing Mg(2+) by the degradation of implants into the fracture site improved the bone fracture healing, which is attributed to the magnesium promoting CGRP-mediated osteogenic differentiation. Mg degradation and bone fracture healing promoting must be tailored by microarc oxidation coating with different thickness for potential clinic application. Copyright © 2017. Published by Elsevier B.V.

  8. Bone response to porous alumina implants coated with bioactive materials, observed using different characterization techniques.

    PubMed

    Camilo, Claudia C; Silveira, Celey A E; Faeda, Rafael S; de Almeida Rollo, João M D; Purquerio, Benedito de Moraes; Fortulan, Carlos Alberto

    2017-07-27

    Implants or implantable devices should integrate into the host tissue faster than fibrous capsule formation, in which the design of the interface is one of the biggest challenges. Generally, bioactive materials are not viable for load-bearing applications, so inert biomaterials are proposed. However, the surface must be modified through techniques such as coating with bioactive materials, roughness and sized pores. The aim of this research was to validate an approach for the evaluation of the tissue growth on implants of porous alumina coated with bioactive materials. Porous alumina implants were coated with 45S5 Bioglass® (BG) and hydroxyapatite (HA) and implanted in rat tibiae for a period of 28 days. Ex vivo resections were performed to analyze osseointegration, along with histological analysis, Scanning Electron Microscopy with Energy Dispersive X-Ray spectroscopy (SEM-EDX) line scanning, radiography and biomechanical testing. Given that the process of implant integration needs with the bone tissue to be accelerated, it was then seen that BG acted to start the rapid integration, and HA acted to sustaining the process. Inert materials coated with bioglass and HA present a potential for application as bone substitutes, preferably with pores of diameters between 100 μm and 400 μm and, restrict for smaller than 100 μm, because it prevents pores without organized tissue formation or vacant. Designed as functional gradient material, stand out for applications in bone tissue under load, where, being the porous surface responsible for the osseointegration and the inner material to bear and to transmit the loads.

  9. Tantalum coating of porous carbon scaffold supplemented with autologous bone marrow stromal stem cells for bone regeneration in vitro and in vivo

    PubMed Central

    Wei, Xiaowei; Wang, Benjie; Wang, Wei; Kang, Kai; Xie, Hui; Liu, Baoyi; Zhang, Xiuzhi; Zhang, Jinsong; Yang, Zhenming

    2016-01-01

    Porous tantalum metal with low elastic modulus is similar to cancellous bone. Reticulated vitreous carbon (RVC) can provide three-dimensional pore structure and serves as the ideal scaffold of tantalum coating. In this study, the biocompatibility of domestic porous tantalum was first successfully tested with bone marrow stromal stem cells (BMSCs) in vitro and for bone tissue repair in vivo. We evaluated cytotoxicity of RVC scaffold and tantalum coating using BMSCs. The morphology, adhesion, and proliferation of BMSCs were observed via laser scanning confocal microscope and scanning electron microscopy. In addition, porous tantalum rods with or without autologous BMSCs were implanted on hind legs in dogs, respectively. The osteogenic potential was observed by hard tissue slice examination. At three weeks and six weeks following implantation, new osteoblasts and new bone were observed at the tantalum–host bone interface and pores. At 12 weeks postporous tantalum with autologous BMSCs implantation, regenerated trabecular equivalent to mature bone was found in the pore of tantalum rods. Our results suggested that domestic porous tantalum had excellent biocompatibility and could promote new bone formation in vivo. Meanwhile, the osteogenesis of porous tantalum associated with autologous BMSCs was more excellent than only tantalum implantation. Future clinical studies are warranted to verify the clinical efficacy of combined implantation of this domestic porous tantalum associated with autologous BMSCs implantation and compare their efficacy with conventional autologous bone grafting carrying blood vessel in patients needing bone repairing. PMID:26843518

  10. Tantalum coating of porous carbon scaffold supplemented with autologous bone marrow stromal stem cells for bone regeneration in vitro and in vivo.

    PubMed

    Wei, Xiaowei; Zhao, Dewei; Wang, Benjie; Wang, Wei; Kang, Kai; Xie, Hui; Liu, Baoyi; Zhang, Xiuzhi; Zhang, Jinsong; Yang, Zhenming

    2016-03-01

    Porous tantalum metal with low elastic modulus is similar to cancellous bone. Reticulated vitreous carbon (RVC) can provide three-dimensional pore structure and serves as the ideal scaffold of tantalum coating. In this study, the biocompatibility of domestic porous tantalum was first successfully tested with bone marrow stromal stem cells (BMSCs) in vitro and for bone tissue repair in vivo. We evaluated cytotoxicity of RVC scaffold and tantalum coating using BMSCs. The morphology, adhesion, and proliferation of BMSCs were observed via laser scanning confocal microscope and scanning electron microscopy. In addition, porous tantalum rods with or without autologous BMSCs were implanted on hind legs in dogs, respectively. The osteogenic potential was observed by hard tissue slice examination. At three weeks and six weeks following implantation, new osteoblasts and new bone were observed at the tantalum-host bone interface and pores. At 12 weeks postporous tantalum with autologous BMSCs implantation, regenerated trabecular equivalent to mature bone was found in the pore of tantalum rods. Our results suggested that domestic porous tantalum had excellent biocompatibility and could promote new bone formation in vivo. Meanwhile, the osteogenesis of porous tantalum associated with autologous BMSCs was more excellent than only tantalum implantation. Future clinical studies are warranted to verify the clinical efficacy of combined implantation of this domestic porous tantalum associated with autologous BMSCs implantation and compare their efficacy with conventional autologous bone grafting carrying blood vessel in patients needing bone repairing. © 2016 by the Society for Experimental Biology and Medicine.

  11. Changes in bone regeneration by trehalose coating and basic fibroblast growth factor after implantation of tailor-made bone implants in dogs.

    PubMed

    Choi, Sungjin; Lee, Jongil; Igawa, Kazuyo; Liu, I-Li; Honnami, Muneki; Suzuki, Shigeki; Nishimura, Ryohei; Chung, Ung-Il; Sasaki, Nobuo; Mochizuki, Manabu

    2013-01-01

    In this study, we aimed to determine the effect of trehalose coating and the optimal dose of basic fibroblast growth factor (bFGF), an osteoinductive protein, loaded onto tailor-made bone implants for implant-induced bone formation in vivo. We fabricated tailor-made α-tricalcium phosphate bone implants (11 mm diameter with 2 parallel cylindrical holes). bFGF 0, 1, 10, 100 or 200 μg/implant was incorporated into implants with and without a trehalose coating, and these were subsequently implanted into dogs to correct temporal bone defects of the same size and shape. Four weeks after implantation, we analyzed the bone implants and surrounding tissues by using micro-computed tomography imaging and histological analyses, as well as gross evaluation. No significant difference in new bone formation was observed between implants with and without a trehalose coating at any of the bFGF doses. Bone implants with 100 and 200 μg bFGF showed significantly more new bone formation at the implant site and within the cylindrical holes of the implants than those without bFGF (P<0.05). However, heterotopic bone formation on the skull near the implant was observed in the group that received 200 μg bFGF. These results suggest that 100 μg bFGF is the optimal dose for this implant in dogs, and that the trehalose coating may not be necessary in vivo, probably due to the presence of blood proteins and electrolytes at the implant site.

  12. Controllable mineral coatings on scaffolds as carriers for growth factor release for bone tissue engineering

    NASA Astrophysics Data System (ADS)

    Saurez-Gonzalez, Darilis

    The work presented in this document, focused on the development and characterization of mineral coatings on scaffold materials to serve as templates for growth factor binding and release. Mineral coatings were formed using a biomimetic approach that consisted in the incubation of scaffolds in modified simulated body fluids (mSBF). To modulate the properties of the mineral coating, which we hypothesized would dictate growth factor release, we used carbonate (HCO3) concentration in mSBF of 4.2 mM, 25mM, and 100mM. Analysis of the mineral coatings formed using scanning electron microscopy indicated growth of a continuous layer of mineral with different morphologies. X-ray diffraction analysis showed peaks associated with hydroxyapatite. FTIR data confirmed the substitution of HCO3 in the mineral. As the extent of HCO3 substitution increased, the coating exhibited more rapid dissolution kinetics in an environment deficient in calcium and phosphate. The mineral coatings provided an effective mechanism for bioactive growth factor binding and release. Peptide versions of vascular endothelial growth factor (VEGF) and bone morphogenetic protein 2 (BMP2) were bound with efficiencies up to 90% to mineral-coated PCL scaffolds. Recombinant human vascular endothelial growth factor (rhVEGF) also bound to mineral coated scaffolds with lower efficiency (20%) and released with faster release kinetics compared to peptides growth factor. Released rhVEGF induced human umbilical vein endothelial cell (HUVEC) proliferation in vitro and enhanced blood vessel formation in vivo in an intramuscular sheep model. In addition to the use the mineral coatings for single growth factor release, we expanded the concept and bound both an angiogenic (rhVEGF) and osteogenic (mBMP2) growth factor by a simple double dipping process. Sustained release of both growth factors was demonstrated for over 60 days. Released rhVEGF enhanced blood vessel formation in vivo in sheep and its biological activity was

  13. Photoexcited formation of bone apatite-like coatings on micro-arc oxidized titanium.

    PubMed

    Han, Yong; Xu, Kewei

    2004-12-15

    A novel method to rapidly deposit bone apatite-like coatings on titanium implants in simulated body fluid (SBF) is proposed in this article. The processing was composed of two steps; for example, micro-arc oxidation (MAO) of titanium to form titania films, and UV-light illumination of the titania-coated titanium in SBF. The morphology, crystalline structure, and bond strength of the MAO films were investigated as a function of the applied voltage (in the range of 250-400 V) by using scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectrometry, Fourier transform infrared spectroscopy, adhesion-tensile test, and scratch test. Results showed that the MAO films were porous and nanocrystalline with pore sizes varying from 1 to 3 microm and grain sizes varying from 10-20 to 70-80 nm; the predominant phase in titania films changed from anatase to rutile, and the bond strength of the films decreased from 43.4 to 32.9 MPa as the applied voltage increased from 250 to 400 V. After UV-light illumination of the films in SBF for 2 h, bone apatite-like coating was deposited on the MAO film formed at 250 V. The bond strength of the apatite/titania bilayer was about 44.2 MPa. However, no apatite was observed on the MAO film formed at 400 V after UV-light illumination.

  14. Osteointegration of hydroxyapatite-titanium implants coated with nonglycosylated recombinant human bone morphogenetic protein-2 (BMP-2) in aged sheep.

    PubMed

    Sachse, A; Wagner, A; Keller, M; Wagner, O; Wetzel, W-D; Layher, F; Venbrocks, R-A; Hortschansky, P; Pietraszczyk, M; Wiederanders, B; Hempel, H J; Bossert, J; Horn, J; Schmuck, K; Mollenhauer, J

    2005-11-01

    Osteointegration of metal implants into aged organisms can be severely compromised due to reduced healing capacity of bone, lack of precursor cells for new bone formation, or osteoporosis. Here, we report on successful implant healing in a novel model of aged sheep in the presence of nonglycosylated bone morphogenetic protein 2 (BMP-2). Ewes of 8 to 12 years with significant radiologic and histologic signs of osteoporosis and adipocytic bone marrow received a cylindrical hydroxyapatite-titanium implant of 12 x 10 mm. BMP-2 has been produced as a bacterial recombinant fusion protein with maltose-binding protein and in vitro generation of mature BMP-2 by renaturation and proteolytic cleavage. A BMP-2 inhibition ELISA was developed to measure the in vitro release kinetics of bioactive human BMP-2 from immersed solid implant materials by using Escherichia coli expressed and biotinylated recombinant human BMP-2 receptor IA extracellular domain (ALK-3 ECD). The implants were placed laterally below both tibial plateaus, with the left leg implant carrying 380 microg BMP-2. Both implant types became integrated within the following 20 weeks. The control implant only integrated at the cortical bone, and little new bone formation was found within the pre-existing trabecular bone or the marrow cavity. Marrow fat tissue was partially replaced by unspecific connective tissue. In contrast, BMP-2-coated implants initiated significant new bone formation, initially in trabecular arrangements to be replaced by cortical-like bone after 20 weeks. The new bone was oriented towards the cylinder. Highly viable bone marrow appeared and filled the lacunar structures of the new bone. In mechanical tests, the BMP-2-coated implants displayed in average 50% higher stability. This animal model provided first evidence that application of nonglycosylated BMP-2 coated on solid implants may foster bone healing and regeneration even in aged-compromised individuals.

  15. Evaluation in a Dog Model of Three Antimicrobial Glassy Coatings: Prevention of Bone Loss around Implants and Microbial Assessments.

    PubMed

    López-Píriz, Roberto; Solá-Linares, Eva; Rodriguez-Portugal, Mercedes; Malpica, Beatriz; Díaz-Güemes, Idoia; Enciso, Silvia; Esteban-Tejeda, Leticia; Cabal, Belén; Granizo, Juan José; Moya, José Serafín; Torrecillas, Ramón

    2015-01-01

    The aim of the present study is to evaluate, in a ligature-induced peri-implantitis model, the efficacy of three antimicrobial glassy coatings in the prevention of biofilm formation, intrasulcular bacterial growth and the resulting peri-implant bone loss. Mandibular premolars were bilaterally extracted from five beagle dogs. Four dental implants were inserted on each hemiarch. Eight weeks after, one control zirconia abutment and three with different bactericidal coatings (G1n-Ag, ZnO35, G3) were connected. After a plaque control period, bacterial accumulation was allowed and biofilm formation on abutments was observed by Scanning Electron Microscopy (SEM). Peri-implantitis was induced by cotton ligatures. Microbial samples and peri-implant crestal bone levels of all implant sites were obtained before, during and after the breakdown period. During experimental induce peri-implantitis: colony forming units counts from intrasulcular microbial samples at implants with G1n-Ag coated abutment remained close to the basal inoculum; G3 and ZnO35 coatings showed similar low counts; and anaerobic bacterias counts at control abutments exhibited a logarithmic increase by more than 2. Bone loss during passive breakdown period was no statistically significant. Additional bone loss occurred during ligature-induce breakdown: 0.71 (SD 0.48) at G3 coating, 0.57 (SD 0.36) at ZnO35 coating, 0.74 (SD 0.47) at G1n-Ag coating, and 1.29 (SD 0.45) at control abutments; and statistically significant differences (p<0.001) were found. The lowest bone loss at the end of the experiment was exhibited by implants dressing G3 coated abutments (mean 2.1; SD 0.42). Antimicrobial glassy coatings could be a useful tool to ward off, diminish or delay peri-implantitis progression.

  16. Evaluation in a Dog Model of Three Antimicrobial Glassy Coatings: Prevention of Bone Loss around Implants and Microbial Assessments

    PubMed Central

    López-Píriz, Roberto; Solá-Linares, Eva; Rodriguez-Portugal, Mercedes; Malpica, Beatriz; Díaz-Güemes, Idoia; Enciso, Silvia; Esteban-Tejeda, Leticia; Cabal, Belén; Granizo, Juan José; Moya, José Serafín; Torrecillas, Ramón

    2015-01-01

    Objectives The aim of the present study is to evaluate, in a ligature-induced peri-implantitis model, the efficacy of three antimicrobial glassy coatings in the prevention of biofilm formation, intrasulcular bacterial growth and the resulting peri-implant bone loss. Methods Mandibular premolars were bilaterally extracted from five beagle dogs. Four dental implants were inserted on each hemiarch. Eight weeks after, one control zirconia abutment and three with different bactericidal coatings (G1n-Ag, ZnO35, G3) were connected. After a plaque control period, bacterial accumulation was allowed and biofilm formation on abutments was observed by Scanning Electron Microscopy (SEM). Peri-implantitis was induced by cotton ligatures. Microbial samples and peri-implant crestal bone levels of all implant sites were obtained before, during and after the breakdown period. Results During experimental induce peri-implantitis: colony forming units counts from intrasulcular microbial samples at implants with G1n-Ag coated abutment remained close to the basal inoculum; G3 and ZnO35 coatings showed similar low counts; and anaerobic bacterias counts at control abutments exhibited a logarithmic increase by more than 2. Bone loss during passive breakdown period was no statistically significant. Additional bone loss occurred during ligature-induce breakdown: 0.71 (SD 0.48) at G3 coating, 0.57 (SD 0.36) at ZnO35 coating, 0.74 (SD 0.47) at G1n-Ag coating, and 1.29 (SD 0.45) at control abutments; and statistically significant differences (p<0.001) were found. The lowest bone loss at the end of the experiment was exhibited by implants dressing G3 coated abutments (mean 2.1; SD 0.42). Significance Antimicrobial glassy coatings could be a useful tool to ward off, diminish or delay peri-implantitis progression. PMID:26489088

  17. Calcium Silicate/Chitosan-Coated Electrospun Poly (Lactic Acid) Fibers for Bone Tissue Engineering

    PubMed Central

    Su, Chu-Jung; Tu, Ming-Gene; Wei, Li-Ju; Hsu, Tuan-Ti; Kao, Chia-Tze; Chen, Tsui-Han; Huang, Tsui-Hsien

    2017-01-01

    Electrospinning technology allows fabrication of nano- or microfibrous fibers with inorganic and organic matrix and it is widely applied in bone tissue engineering as it allows precise control over the shapes and structures of the fibers. Natural bone has an ordered composition of organic fibers with dispersion of inorganic apatite among them. In this study, poly (lactic acid) (PLA) mats were fabricated with electrospinning and coated with chitosan (CH)/calcium silicate (CS) mixer. The microstructure, chemical component, and contact angle of CS/CH-PLA composites were analyzed by scanning electron microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy. In vitro, various CS/CH-coated PLA mats increased the formation of hydroxyapatite on the specimens’ surface when soaked in cell cultured medium. During culture, several biological characteristics of the human mesenchymal stem cells (hMSCs) cultured on CS/CH-PLA groups were promoted as compared to those on pure PLA mat. Increased secretion levels of Collagen I and fibronectin were observed in calcium silicate-powder content. Furthermore, with comparison to PLA mats without CS/CH, CS10 and CS15 mats markedly enhanced the proliferation of hMSCs and their osteogenesis properties, which was characterized by osteogenic-related gene expression. These results clearly demonstrated that the biodegradable and electroactive CS/CH-PLA composite mats are an ideal and suitable candidate for bone tissue engineering. PMID:28772861

  18. Hydroxyapatite-coated magnesium implants with improved in vitro and in vivo biocorrosion, biocompatibility, and bone response.

    PubMed

    Kim, Sae-Mi; Jo, Ji-Hoon; Lee, Sung-Mi; Kang, Min-Ho; Kim, Hyoun-Ee; Estrin, Yuri; Lee, Jong-Ho; Lee, Jung-Woo; Koh, Young-Hag

    2014-02-01

    Magnesium and its alloys are candidate materials for biodegradable implants; however, excessively rapid corrosion behavior restricts their practical uses in biological systems. For such applications, surface modification is essential, and the use of anticorrosion coatings is considered as a promising avenue. In this study, we coated Mg with hydroxyapatite (HA) in an aqueous solution containing calcium and phosphate sources to improve its in vitro and in vivo biocorrosion resistance, biocompatibility and bone response. A layer of needle-shaped HA crystals was created uniformly on the Mg substrate even when the Mg sample had a complex shape of a screw. In addition, a dense HA-stratum between this layer and the Mg substrate was formed. This HA-coating layer remarkably reduced the corrosion rate of the Mg tested in a simulated body fluid. Moreover, the biological response, including cell attachment, proliferation and differentiation, of the HA-coated samples was enhanced considerably compared to samples without a coating layer. The preliminary in vivo experiments also showed that the biocorrosion of the Mg implant was significantly retarded by HA coating, which resulted in good mechanical stability. In addition, in the case of the HA-coated implants, biodegradation was mitigated, particularly over the first 6 weeks of implantation. This considerably promoted bone growth at the interface between the implant and bone. These results confirmed that HA-coated Mg is a promising material for biomedical implant applications. © 2013 Wiley Periodicals, Inc.

  19. Amorphous calcium phosphate nanospheres/polylactide composite coated tantalum scaffold: facile preparation, fast biomineralization and subchondral bone defect repair application.

    PubMed

    Zhou, Rong; Xu, Wei; Chen, Feng; Qi, Chao; Lu, Bing-Qiang; Zhang, Hao; Wu, Jin; Qian, Qi-Rong; Zhu, Ying-Jie

    2014-11-01

    Calcium phosphate (CaP) materials are widely used in various biomedical areas such as drug/gene delivery and bone repair/tissue engineering. In this study, amorphous CaP nanospheres synthesized by a simple co-precipitation method are used to prepare the CaP-polylactide (CaP-PLA) composite. Then, the as-prepared CaP-PLA composite is used to coat tantalum (Ta) plates and porous scaffolds. Compared with bare Ta plate, CaP-PLA coated Ta plates show a high performance of surface biomineralization in simulated body fluid (SBF). In addition, the hydrophilicity of the CaP-PLA coated Ta plates is significantly improved. CaP-PLA coated Ta plates with bovine serum albumin (BSA) are prepared and used for the investigation of BSA release in vitro. The experimental results indicate a sustained BSA release property and simultaneous biomineralization of the as-prepared BSA-containing CaP-PLA coated Ta plates. Furthermore, CaP-PLA coated Ta scaffolds are favorable for the human osteoblast-like MG63 cells adhesion and spreading. The vascular endothelial growth factor (VEGF) and transforming growth factor (TGF)-containing CaP-PLA coated porous Ta scaffolds are used for the study of rabbit subchondral bone defect repair, covering with autogeneic periosteums. The as-prepared CaP-PLA composite coated Ta scaffolds are useful to guide the bone regeneration in vivo. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Polyether ether ketone implants achieve increased bone fusion when coated with nano-sized hydroxyapatite: a histomorphometric study in rabbit bone

    PubMed Central

    Johansson, Pär; Jimbo, Ryo; Naito, Yoshihito; Kjellin, Per; Currie, Fredrik; Wennerberg, Ann

    2016-01-01

    Polyether ether ketone (PEEK) possesses excellent mechanical properties similar to those of human bone and is considered the best alternative material other than titanium for orthopedic spine and trauma implants. However, the deficient osteogenic properties and the bioinertness of PEEK limit its fields of application. The aim of this study was to limit these drawbacks by coating the surface of PEEK with nano-scaled hydroxyapatite (HA) minerals. In the study, the biological response to PEEK, with and without HA coating, was investigated. Twenty-four screw-like and apically perforated implants in the rabbit femur were histologically evaluated at 3 weeks and 12 weeks after surgery. Twelve of the 24 implants were HA coated (test), and the remaining 12 served as uncoated PEEK controls. At 3 weeks and 12 weeks, the mean bone–implant contact was higher for test compared to control (P<0.05). The bone area inside the threads was comparable in the two groups, but the perforating hole showed more bone area for the HA-coated implants at both healing points (P<0.01). With these results, we conclude that nano-sized HA coating on PEEK implants significantly improved the osteogenic properties, and in a clinical situation this material composition may serve as an implant where a rapid bone fusion is essential. PMID:27103801

  1. [Effect of Zinc Doped Calcium Phosphate Coating on Bone Formation and the Underlying Biological Mechanism].

    PubMed

    Luo, Wenjing; Zhao, Jinghui; Meng, Xing; Ma, Shanshan; Sun, Qianyue; Guo, Tianqi; Wang, Yufeng; Zhou, Yanmin

    2015-12-01

    Implant surface modified coating can improve its osteoinductivity, about which simple calcium phosphate coating has been extensively studied. But it has slow osteointegration speed and poor antibacterial property, while other metal ions added, such as nano zinc ion, can compensate for these deficiencies. This paper describes the incorporation form, the effect on physical and chemical properties of the material and the antibacterial property of nano zinc, and summarizes the material's biological property given by calcium ion, zinc ion and inorganic phosphate (Pi), mainly focusing on the influence of these three inorganic ions on osteoblast proliferation, differentiation, protein synthesis and matrix mineralization in order to present the positive function of zinc doped calcium phosphate in the field of bone formation.

  2. Photoinduced properties of nanocrystalline TiO2-anatase coating on Ti-based bone implants.

    PubMed

    Lorenzetti, Martina; Biglino, Daniele; Novak, Saša; Kobe, Spomenka

    2014-04-01

    The paper reports on the photoinduced properties of hydrothermally treated (HT) titanium used for bone implants. The anatase coatings composed of 30-100nm anatase crystals exhibited high photocatalytic activity and good photo-induced wettability, reaching a superhydrophilic state, despite the larger crystal dimensions than the previously reported optimal ones. These properties are due to a suitable combination of surface texture, roughness, thickness, crystal morphology and particle size, which allowed the two independent photo-induced phenomena to occur simultaneously. The results on caffeine degradation by photocatalysis and the prolonged effect (up to two weeks) of photo-induced wettability in dark suggested a possible applicability of the HT anatase coatings as bacteria-repelling surfaces for body implants, in favor of a better osseointegration in vivo.

  3. Poly(dopamine) coating to biodegradable polymers for bone tissue engineering.

    PubMed

    Tsai, Wei-Bor; Chen, Wen-Tung; Chien, Hsiu-Wen; Kuo, Wei-Hsuan; Wang, Meng-Jiy

    2014-02-01

    In this study, a technique based on poly(dopamine) deposition to promote cell adhesion was investigated for the application in bone tissue engineering. The adhesion and proliferation of rat osteoblasts were evaluated on poly(dopamine)-coated biodegradable polymer films, such as polycaprolactone, poly(l-lactide) and poly(lactic-co-glycolic acid), which are commonly used biodegradable polymers in tissue engineering. Cell adhesion was significantly increased to a plateau by merely 15 s of dopamine incubation, 2.2-4.0-folds of increase compared to the corresponding untreated substrates. Cell proliferation was also greatly enhanced by poly(dopamine) deposition, indicated by shortened cell doubling time. Mineralization was also increased on the poly(dopamine)-deposited surfaces. The potential of poly(dopamine) deposition in bone tissue engineering is demonstrated in this study.

  4. Bone quality around bioactive silica-based coated stainless steel implants: analysis by micro-Raman, XRF and XAS techniques.

    PubMed

    Ballarre, Josefina; Desimone, Paula M; Chorro, Matthieu; Baca, Matías; Orellano, Juan Carlos; Ceré, Silvia M

    2013-11-01

    Surface modification of surgical stainless steel implants by sol gel coatings has been proposed as a tool to generate a surface that besides being protective could also create a "bioactive" interface to generate a natural bonding between the metal surface and the existing bone. The aim of this work is to analyze the quality and bone formation around hybrid bioactive coatings containing glass-ceramic particles, made by sol-gel process on 316L stainless steel used as permanent implant in terms of mineralization, calcium content and bone maturity with micro Raman, X-ray microfluorescence and X-ray absorption techniques. Uncoated implants seem to generate a thin bone layer at the beginning of osseointegration process and then this layer being separated from the surface with time. The hybrid coatings without glass-ceramic particles generate new bone around implants, with high concentration of Ca and P at the implant/tissue interface. This fact seems to be related with the presence of silica nanoparticles in the layer. The addition of bioactive particles promotes and enhances the bone quality with a homogeneous Ca and P content and a low rate of beta carbonate substitution and crystallinity, similar to young and mechanical resistant bone.

  5. The fluoride coated AZ31B magnesium alloy improves corrosion resistance and stimulates bone formation in rabbit model.

    PubMed

    Sun, Wei; Zhang, Guangdao; Tan, Lili; Yang, Ke; Ai, Hongjun

    2016-06-01

    This study aimed to evaluate the effect of fluorine coated Mg alloy and clarify its mechanism in bone formation. We implanted the fluorine coated AZ31B Mg alloy screw (group F) in rabbit mandibular and femur in vivo. Untreated AZ31B Mg alloy screw (group A) and titanium screw (group T) were used as control. Then, scanning electron microscopy, the spectral energy distribution analysis, hard and decalcified bone tissues staining were performed. Immunohistochemistry was employed to examine the protein expressions of bone morphogenetic protein 2 (BMP-2) and collagen type I in the vicinity of the implant. Compared with the group A, the degradation of the alloy was reduced, the rates of Mg corrosion and Mg ion release were slowed down, and the depositions of calcium and phosphate increased in the group F in the early stage of implantation. Histological results showed that fluorine coated Mg alloy had well osteogenic activity and biocompatibility. Moreover, fluoride coating obviously up-regulated the expressions of collagen type I and BMP-2. This study confirmed that the fluorine coating might improve the corrosion resistance of AZ31B Mg alloy and promote bone formation by up-regulated the expressions of collagen type I and BMP-2.

  6. Introduction of a coiled solid-phase microextraction fiber based on a coating of animal bone waste for chromatographic analysis.

    PubMed

    Razmi, Habib; Farrokhzadeh, Samaneh

    2017-04-01

    We attempt to introduce animal bone waste as a coating material with an organic-inorganic structure for the fabrication of a coiled solid-phase microextraction fiber for the first time. The coiled fiber was simply prepared with the use of copper wire and coated with bone waste suspension through the dip-coating method. The bone waste coating was characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, and X-ray diffraction analysis. It was applied as new type of solid-phase microextraction fiber for preconcentration of polycyclic aromatic hydrocarbons before determination by high-performance liquid chromatography with UV detection. A wide linear range 0.01-99.0 μg/L and limits of detection in the range 3.0-11.1 ng/L were obtained at optimized conditions. The bone waste coated coiled solid-phase microextraction fiber has promise in sample preparation techniques because it is cost effective, available, stable in aqueous and organic solutions, environmentally friendly, and easy to fabricate and operate. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Platelet lysate coating on scaffolds directly and indirectly enhances cell migration, improving bone and blood vessel formation.

    PubMed

    Leotot, Julie; Coquelin, Laura; Bodivit, Gwellaouen; Bierling, Philippe; Hernigou, Philippe; Rouard, Helene; Chevallier, Nathalie

    2013-05-01

    Suitable colonization and vascularization of tissue-engineered constructs after transplantation represent critical steps for the success of bone repair. Human platelet lysate (hPL) is composed of numerous growth factors known for their proliferative, differentiative and chemo-attractant effects on various cells involved in wound healing and bone growth. The aim of this study was to determine whether the delivery of human mesenchymal stromal cells (hMSC) seeded on hPL-coated hydroxyapatite/β-tricalcium phosphate (HA/β-TCP) scaffolds could enhance vascularization and bone formation, as well as to investigate the mechanisms by which hMSC participate in tissue regeneration. Our study demonstrates that hPL can be coated on HA/β-TCP scaffolds, which play direct and indirect effects on implanted and/or resident stem cells. Effectively, we show that hPL coating directly increases chemo-attraction to and adhesion of hMSC and endothelial cells on the scaffold. Moreover, we show that hPL coating induces hMSC to produce and secrete pro-angiogenic proteins (placental growth factor and vascular endothelial growth factor) which allow the proliferation and specific chemo-attraction of endothelial cells in vitro, thus improving in vivo neovascularization and new bone formation. This study highlights the potential of functionalizing biomaterials with hPL and shows that this growth factor combination can have synergistic effects leading to enhanced bone and blood vessel formation.

  8. Polypyrrole coating on poly-(lactide/glycolide)-β-tricalcium phosphate screws enhances new bone formation in rabbits.

    PubMed

    Zhao, Ming-Dong; Björninen, Miina; Cao, Lu; Wang, Hui-Ren; Pelto, Jani; Li, Xiang-Qian; Hyttinen, Jari; Jiang, Yun-Qi; Kellomäki, Minna; Miettinen, Susanna; Sándor, George K; Seppänen, Riitta; Haimi, Suvi; Dong, Jian

    2015-11-27

    Polypyrrole (PPy) has gained interest as an implant material due to its multifunctional properties and its high compatibility with several cell and tissue types. For the first time, the biocompatibility and osteointegration of PPy coating, incorporated with chondroitin sulfate (CS), were studied in vivo by implanting PPy-coated bioabsorbable bone fixation composite screws of poly-(lactide/glycolide) copolymer (PLGA) and β-tricalcium phosphate (TCP) into New Zealand white rabbits. Uncoated bioabsorbable polymer composite screws and commercially available stainless steel cortical screws were used as reference implants. The rabbits were euthanized 12 and 26 weeks after the implantation. The systemic effects were evaluated from food and water consumption, body weight, body temperature, clinical signs, blood samples, internal organ weights, and histological examination. Local effects were studied from bone tissue and surrounding soft tissue histology. New bone formation was evaluated by micro-computed tomography, tetracycline labeling and torsion tests. Torsion tests were performed in order to capture the peak value of the torsion force during the course of the screw's loosening. The coated screws induced significantly more bone formation than the uncoated screws. In addition, none of the implants induced any systemic or local toxicity. The results suggest that PPy is biocompatible with bone tissue and is a potential coating for enhancing osteointegration in orthopedic implants.

  9. Effect of rhBMP-2 on guided bone regeneration in humans.

    PubMed

    Jung, Ronald E; Glauser, Roland; Schärer, Peter; Hämmerle, Christoph H F; Sailer, Hermann F; Weber, Franz E

    2003-10-01

    The aim of the present clinical study was to test whether or not the addition of recombinant human bone morphogenetic protein-2 (rhBMP-2) to a xenogenic bone substitute mineral (Bio-Oss) will improve guided bone regeneration therapy regarding bone volume, density and maturation. In 11 partially edentulous patients, 34 Brånemark implants were placed at two different sites in the same jaw (five maxillae, six mandibles) requiring lateral ridge augmentation. The bone defects were randomly assigned to test and control treatments: the test and the control defects were both augmented with the xenogenic bone substitute and a resorbable collagen membrane (Bio-Gide). At the test sites, the xenogenic bone substitute mineral was coated with rhBMP-2 in a lyophilization process. Following implant insertion (baseline), the peri-implant bone defect height was measured from the implant shoulder to the first implant-bone contact. After an average healing period of 6 months (SD 0.17, range 5.7-6.2), the residual defects were again measured and trephine burs were used to take 22 bone biopsies from the augmented regions. The healing period was uneventful except for one implant site that showed a wound dehiscence, which spontaneously closed after 4 weeks. Later at reentry, all implants were stable. At baseline, the mean defect height was 7.0 mm (SD 2.67, range 3-12 mm) at test and 5.8 mm (SD 1.81, range 3-8 mm) at control sites. At reentry, the mean defect height decreased to 0.2 mm (SD 0.35, range 0-1 mm) at test sites (corresponding to 96% vertical defect fill) and to 0.4 mm (SD 0.66, range 0-2 mm) at the control site (vertical defect fill of 91%). Reduction in defect height from baseline to reentry for both test and control sites was statistically significant (Wilcoxon P<0.01). Histomorphometric analysis showed an average area density of 37% (SD 11.2, range 23-51%) newly formed bone at test sites and 30% (SD 8.9, range 18-43%) at control sites. The fraction of mineralized bone

  10. Improvement of the compressive strength of a cuttlefish bone-derived porous hydroxyapatite scaffold via polycaprolactone coating.

    PubMed

    Kim, Beom-Su; Kang, Hyo Jin; Lee, Jun

    2013-10-01

    Cuttlefish bones (CBs) have emerged as attractive biomaterials because of their porous structure and components that can be converted into hydroxyapatite (HAp) via a hydrothermal reaction. However, their brittleness and low strength restrict their application in bone tissue engineering. Therefore, to improve the compressive strength of the scaffold following hydrothermal conversion to a HAp form of CB (CB-HAp), the scaffold was coated using a polycaprolactone (PCL) polymer at various concentrations. In this study, raw CB was successfully converted into HAp via a hydrothermal reaction. We then evaluated their surface properties and composition by scanning electron microscopy and X-ray diffraction analysis. The CB-HAp coated with PCL showed improved compressive performance and retained a microporous structure. The compressive strength was significantly increased upon coating with 5 and 10% PCL, by 2.09- and 3.30-fold, respectively, as compared with uncoated CB-HAp. However, coating with 10% PCL resulted in a reduction in porosity. Furthermore, an in vitro biological evaluation demonstrated that MG-63 cells adhered well, proliferated and were able to be differentiated on the PCL-coated CB-HAp scaffold, which was noncytotoxic. These results suggest that a simple coating method is useful to improve the compressive strength of CB-HAp for bone tissue engineering applications. Copyright © 2013 Wiley Periodicals, Inc.

  11. Antibacterial activity and increased bone marrow stem cell functions of Zn-incorporated TiO2 coatings on titanium.

    PubMed

    Hu, H; Zhang, W; Qiao, Y; Jiang, X; Liu, X; Ding, C

    2012-02-01

    In this work, zinc was incorporated into TiO2 coatings on titanium by plasma electrolytic oxidation to obtain the implant with good bacterial inhibition ability and bone-formability. The porous and nanostructured Zn-incorporated TiO2 coatings are built up from pores smaller than 5 μm and grains 20-100 nm in size, in which the element Zn exists as ZnO. The results obtained from the antibacterial studies suggest that the Zn-incorporated TiO2 coatings can greatly inhibit the growth of both Staphylococcus aureus and Escherichia coli, and the ability to inhibit bacteria can be improved by increasing the Zn content in the coatings. Moreover, the in vitro cytocompatibility evaluation demonstrates that the adhesion, proliferation and differentiation of rat bone marrow stem cells (bMSC) on Zn-incorporated coatings are significantly enhanced compared with Zn-free coating and commercially pure Ti plate, and no cytotoxicity appeared on any of the Zn-incorporated TiO2 coatings. Moreover, bMSC express higher level of alkaline phosphatase activity on Zn-incorporated TiO2 coatings and are induced to differentiate into osteoblast cells. The better antibacterial activity, cytocompatibility and the capability to promote bMSC osteogenic differentiation of Zn-incorporated TiO2 coatings may be attributed to the fact that Zn ions can be slowly and constantly released from the coatings. In conclusion, innovative Zn-incorporated TiO2 coatings on titanium with excellent antibacterial activity and biocompatibility are promising candidates for orthopedic and dental implants.

  12. Evaluation of bone loss in antibacterial coated dental implants: An experimental study in dogs.

    PubMed

    Godoy-Gallardo, Maria; Manzanares-Céspedes, Maria Cristina; Sevilla, Pablo; Nart, José; Manzanares, Norberto; Manero, José M; Gil, Francisco Javier; Boyd, Steven K; Rodríguez, Daniel

    2016-12-01

    The aim of this study was to evaluate the in vivo effect of antibacterial modified dental implants in the first stages of peri-implantitis. Thirty dental implants were inserted in the mandibular premolar sites of 5 beagle dogs. Sites were randomly assigned to Ti (untreated implants, 10units), Ti_Ag (silver electrodeposition treatment, 10units), and Ti_TSP (silanization treatment, 10units). Coated implants were characterized by scanning electron microscopy, interferometry and X-ray photoelectron spectroscopy. Two months after implant insertion, experimental peri-implantitis was initiated by ligature placement. Ligatures were removed 2months later, and plaque formation was allowed for 2 additional months. Clinical and radiographic analyses were performed during the study. Implant-tissue samples were prepared for micro computed tomography, backscattered scanning electron microscopy, histomorphometric and histological analyses and ion release measurements. X-ray, SEM and histology images showed that vertical bone resorption in treated implants was lower than in the control group (P<0.05). This effect is likely due to the capacity of the treatments to reduce bacteria colonization on the implant surface. Histological analysis suggested an increase of peri-implant bone formation on silanized implants. However, the short post-ligature period was not enough to detect differences in clinical parameters among implant groups. Within the limits of this study, antibacterial surface treatments have a positive effect against bone resorption induced by peri-implantitis. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Bone ingrowth and wear debris in well-fixed cementless porous-coated tibial components removed from patients.

    PubMed

    Sumner, D R; Kienapfel, H; Jacobs, J J; Urban, R M; Turner, T M; Galante, J O

    1995-04-01

    Bone ingrowth and the distribution of wear debris within the porous coating of 13 primary cementless porous-coated tibial components removed for reasons unrelated to fixation or infection were quantitatively described. The average length of implantation was 15.3 months (range, 3-30 months). The implants were all of the same design, made for Ti6A14V with a commercially pure titanium fiber-metal porous coating, which covered the undersurface of the tray and the four fixation pegs. In all but one component, supplemental screw fixation was used. The average extent of bone ingrowth within the tray was 27.1 +/- 16.1%, and the average volume fraction was 9.5 +/- 7.5%. There was significantly more bone ingrowth within the fixation pegs than within the tray and also more bone ingrowth in the anterior half of the tray than posteriorly. There was no correlation between the amount of bone ingrowth and the length of implantation, age, or sex of the patient; however, the depth and orientation of the resection plane were found to correlate with the topographic distribution of bone ingrowth. Particulate debris appeared to gain access to the interface via soft tissue pathways both at the periphery and through the holes for adjuvant screw fixation.

  14. In Vitro Corrosion and Cytocompatibility Properties of Nano-Whisker Hydroxyapatite Coating on Magnesium Alloy for Bone Tissue Engineering Applications

    PubMed Central

    Yang, Huawei; Yan, Xueyu; Ling, Min; Xiong, Zuquan; Ou, Caiwen; Lu, Wei

    2015-01-01

    We report here the successful fabrication of nano-whisker hydroxyapatite (nHA) coatings on Mg alloy by using a simple one-step hydrothermal process in aqueous solution. The nHA coating shows uniform structure and high crystallinity. Results indicate that nHA coating is promising for improving the in vitro corrosion and cytocompatibility properties of Mg-based implants and devices for bone tissue engineering. In addition, the simple hydrothermal deposition method used in the current study is also applicable to substrates with complex shapes or surface geometries. PMID:25789500

  15. Development of bioactive glass based scaffolds for controlled antibiotic release in bone tissue engineering via biodegradable polymer layered coating.

    PubMed

    Nooeaid, Patcharakamon; Li, Wei; Roether, Judith A; Mouriño, Viviana; Goudouri, Ourania-Menti; Schubert, Dirk W; Boccaccini, Aldo R

    2014-12-01

    Highly porous 45S5 Bioglass(®)-based scaffolds coated with two polymer layers were fabricated to serve as a multifunctional device with controlled drug release capability for bone regeneration applications. An interior poly(d,l-lactide)/poly(ethylene glycol)-(polypropylene glycol)-poly(ethylene glycol) triblock copolymer (Pluronic P123) coating improved the mechanical stability of Bioglass-based scaffolds, while an exterior natural polymer (alginate or gelatin) coating served as an antibiotic drug carrier. The results showed improved mechanical properties of Bioglass-based scaffolds by the bilayer polymer coating. In addition, hydrochloride tetracycline loaded in either alginate or gelatin coatings was released rapidly at the initial stage (∼1 h), while the released rate subsequently decreased and was sustained for 14 days in phosphate buffered saline. Therefore, these layered polymer coated scaffolds exhibit attractive characteristics in terms of improved mechanical properties and controlled drug release, simultaneously with the added advantage that the drug release rate is decoupled from the intrinsic scaffold Bioglass degradation mechanism. The layered polymer coated scaffolds are of interest for drug-delivery enhanced bone regeneration applications.

  16. Composite coating of 58S bioglass and hydroxyapatite on a poly (ethylene terepthalate) artificial ligament graft for the graft osseointegration in a bone tunnel

    NASA Astrophysics Data System (ADS)

    Li, Hong; Wu, Yang; Ge, Yunsheng; Jiang, Jia; Gao, Kai; Zhang, Pengyun; Wu, Lingxiang; Chen, Shiyi

    2011-09-01

    The purpose of this study was to determine the effect of the combination of hydroxyapatite (HA) and bioglass (BG) on polyethylene terephthalate (PET) artificial ligament graft osseointegration within the bone tunnel. The results of in vitro culturing of MC3T3-E1 mouse osteoblastic cells proved that this HA/BG composite coating can promote the cell compatibility of grafts. A rabbit extraarticular tendon-to-bone healing model was used to evaluate the effect of this composite coating on PET artificial ligaments in vivo. The final results demonstrated that HA/BG coating improved new bone formation at the graft-bone interface and increased the load-to-failure property of graft in bone tunnel compared to the control group at early time. The study has shown that HA/BG composite coating on the PET artificial ligament surface has a positive effect in the induction of artificial ligament osseointegration within the bone tunnel.

  17. The outcomes of reconstruction using frozen autograft combined with iodine-coated implants for malignant bone tumors: compared with non-coated implants.

    PubMed

    Shirai, Toshiharu; Tsuchiya, Hiroyuki; Terauchi, Ryu; Tsuchida, Shinji; Mizoshiri, Naoki; Igarashi, Kentaro; Miwa, Shinji; Takeuchi, Akihiko; Kimura, Hiroaki; Hayashi, Katsuhiro; Yamamoto, Norio; Kubo, Toshikazu

    2016-08-01

    We perform reconstruction using frozen tumor bone treated by liquid nitrogen after excision of malignant bone tumors. To prevent post-operative infection, we use iodine-coated implants that we developed. The purpose of this study is to compare the outcome of reconstruction using frozen autograft with non-coated implants (group N) and iodine-coated implants (group I). Sixty-two patients were included in group N. The mean age was 31.9 ± 2.3 years. A total of 20 patients died and two were lost to follow-up, averaging 20.0 ± 2.9 months post-operatively, leaving 40 patients available for an assessment at a mean of 79.1 ± 5.8 months post-operatively. There were 38 patients in group I. The mean age was 29.8 ± 3.9 years. The mean follow-up period was 32.1 ± 3.0 months. All patients were alive at the latest follow-up. Survival of frozen bone was determined by Kaplan-Meier analysis. In group N, survival of frozen bone was 80.7 ± 6.0% and 57.4 ± 10.2% at 5 and 10 years, respectively. Complications were encountered in 31 of 62 patients (50.0%), including deep infection in 10 (16.1%), fracture in 11 (17.7%), local soft-tissue recurrence in 6 (9.7%) and bone absorption in 4 (6.5%). In group I, survival of frozen bone was 86.7 ± 6.3% at 5 years. Complications were encountered in 8 of 38 patients (21.1%), including deep infection in one (2.6%), fracture in four (10.5%), local soft-tissue recurrence in two (5.3%) and bone absorption in one (2.6%). There was a significantly lower infection rate in group I (P = 0.032). Reconstruction using frozen autograft combined with iodine-coated implants for patients with malignant bone tumor is very useful method in which good limb function can be gained with minimized risk of infection. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Peri-implant bone response around a human hydroxyapatite-coated implant retrieved after a 10-year loading period: a case report.

    PubMed

    Iezzi, Giovanna; Malchiodi, Luciano; Quaranta, Alessandro; Ghensi, Paolo; Piattelli, Adriano

    2013-01-01

    This case report presents a histologic and histomorphometric evaluation of the peri-implant tissues of a HA-coated implant retrieved due to peri-implantitis after a 10-year loading period. The implant was retrieved with a trephine and treated to obtain thin ground sections. At low-power magnification mostly compact, mature bone with small marrow spaces could be observed at the interface with the implant. The coating was always present in the areas where bone was detected, the bone was always in close contact with the coating, and there was no detachment between the metal and coating or between the coating and bone. Areas of bone remodeling were demonstrated by the presence of many secondary osteons and reversal lines close to the implant surface. The bone-implant contact percentage was 36.3% ± 1.2%. The percentage of the implant surface covered by the HA coating without bone, where bone may have detached during retrieval, was 32.6% ± 2.8%. This HA-coated implant, continued to demonstrate more than adequate BIC after many years of function and the potential to maintain osseointegration in the long term.

  19. Radiologic Evaluation of Bone Loss at Implants with Biocide Coated Titanium Abutments: A Study in the Dog

    PubMed Central

    López-Píriz, Roberto; Solá-Linares, Eva; Granizo, Juan J.; Díaz-Güemes, Idohia; Enciso, Silvia; Bartolomé, José F.; Cabal, Belén; Esteban-Tejeda, Leticia; Torrecillas, Ramón; Moya, José S.

    2012-01-01

    The objective of the present study is to evaluate bone loss at implant abutments coated with a soda-lime glass containing silver nanoparticles subjected to experimental peri-implantitis. Five beagle dogs were used in the experiments, 3 implants were installed in each quadrant of the mandibles. Glass/n-Ag coted abutments were connected to implant platform. Cotton floss ligatures were placed in a submarginal position around the abutment necks and the animals were subject to a diet which allowed plaque accumulation, and after 15 weeks the dogs were sacrificed. Radiographs of all implant sites were obtained at the beginning and at the end of the experimentally induced peri-implantitis. The radiographic examination indicated that significant amounts of additional bone loss occurred in implants without biocide coating, considering both absolute and relative values of bone loss. Percentages of additional bone loss observed in implants dressed with a biocide coated abutment were about 3 times lower (p<0.006 distal aspect; and p<0.031 at mesial aspect) than the control ones. Within the limits of the present study it seems promising the use of soda-lime glass/nAg coatings on abutments to prevent peri-implant diseases. PMID:23285206

  20. Host tissue reactions of non-demineralized autogenic and xenogenic dentin blocks implanted in a non-osteogenic environment. An experimental study in rabbits.

    PubMed

    Al-Asfour, Adel; Farzad, Payam; Andersson, Lars; Joseph, Bobby; Dahlin, Christer

    2014-06-01

    Dentoalveolar ankylosis with osseous replacement is often seen after replantation of avulsed teeth, and this process may be used for preservation of alveolar crests after trauma. Its exact mechanisms with regard to osteoinductive properties are not yet fully understood and need to be systematically investigated. Dentin can possibly act as a slow-releasing carrier of bone morphogenic proteins (BMP), and this property of dentin has been proposed to be used as an alternative or supplement to bone grafting in the maxillofacial region. We aimed to initially asses host tissue reactions to dentin by implanting dentin blocks of autogenic and xenogenic human origin in rabbit connective tissue of the abdominal wall and femoral muscle. Animals were sacrificed after a period of 3 months, and histological processing, sectioning and examinations were carried out. Bone formation, cell counts and thickness of capsule surrounding the grafts were evaluated. Only minor signs of heterotopic bone formation were seen. There were no significant differences between autografts and xenografts or grafts implanted in connective tissue or muscle with regards to tissue reactions except for a significant difference (P = 0.018) in findings of more local inflammatory cells in relation to grafts placed in connective tissue in the autograft group. We conclude that during the time frame of this study, non-demineralized dentin, whether autogenous or xenogenic did not have the potential to induce bone formation when implanted in non-osteogenic areas such as the abdominal wall and abdominal muscle of rabbits.

  1. Osteointegration of bioactive glass-coated and uncoated zirconia in osteopenic bone: an in vivo experimental study.

    PubMed

    Aldini, N Nicoli; Fini, M; Giavaresi, G; Martini, L; Dubini, B; Ponzi Bossi, M G; Rustichelli, F; Krajewski, A; Ravaglioli, A; Mazzocchi, M; Giardino, R

    2004-02-01

    In elderly and osteoporotic patients an age-related loss of osteoinductivity could be the biological cause of implant failure regardless of the high quality of the implanted device. yttria stabilized tetragonal zirconia (YSTZ), either coated with the bioactive glass named RKKP bioglaze (RKKP) or uncoated, was implanted in the distal femurs of sham-operated and ovariectomized female rats. Animals were sacrificed at 30 and 60 days. Histomorphometry and microhardness tests were performed to assess osteointegration rate as well as bone quality around the implants. Significant decreases (p < 0.0005) in trabecular bone volume, BV/TV (41%), trabecular bone surface BS/TV (33%), trabecular thickness Tb.Th (20%), and trabecular number Tb.N (32%), together with a significant increase in trabecular separation Tb.Sp (184%), were found for the osteopenic rats compared with the sham-operated rats. At both experimental times the RKKP coating ensured a better osteointegration rate with higher AI values than the uncoated YSTZ, even when osteopenic rats were used (48% at 30 days and 12% at 60 days). No differences were observed at the bone-biomaterial interfaces for either material when comparing sham-operated with osteopenic rats. The present results demonstrate that the RKKP bioactive glass used as a coating ensures a high osteointegration rate even in osteoporotic bone, which is already visible from postoperative day 30 and is still apparent on day 60. Copyright 2003 Wiley Periodicals, Inc. J Biomed Mater Res 68A: 264-272, 2004

  2. Photo-acoustic excitation and detection of guided ultrasonic waves in bone samples covered by a soft coating layer

    NASA Astrophysics Data System (ADS)

    Zhao, Zuomin; Moilanen, Petro; Karppinen, Pasi; Määttä, Mikko; Karppinen, Timo; Hæggström, Edward; Timonen, Jussi; Myllylä, Risto

    2012-12-01

    Photo-acoustic (PA) excitation was combined with skeletal quantitative ultrasound (QUS) for multi-mode ultrasonic assessment of human long bones. This approach permits tailoring of the ultrasonic excitation and detection so as to efficiently detect the fundamental flexural guided wave (FFGW) through a coating of soft tissue. FFGW is a clinically relevant indicator of cortical thickness. An OPO laser with tunable optical wavelength, was used to excite a photo-acoustic source in the shaft of a porcine femur. Ultrasonic signals were detected by a piezoelectric transducer, scanning along the long axis of the bone, 20-50 mm away from the source. Five femurs were measured without and with a soft coating. The coating was made of an aqueous gelatin-intralipid suspension that optically and acoustically mimicked real soft tissue. An even coating thickness was ensured by using a specific mold. The optical wave length of the source (1250 nm) was tuned to maximize the amplitude of FFGW excitation at 50 kHz frequency. The experimentally determined FFGW phase velocity in the uncoated samples was consistent with that of the fundamental antisymmetric Lamb mode (A0). Using appropriate signal processing, FFGW was also identified in the coated bone samples, this time with a phase velocity consistent with that theoretically predicted for the first mode of a fluid-solid bilayer waveguide (BL1). Our results suggest that photo-acoustic quantitative ultrasound enables assessment of the thickness-sensitive FFGW in bone through a layer of soft tissue. Photo-acoustic characterization of the cortical bone thickness may thus become possible.

  3. Mesoporous silica coatings for cephalosporin active release at the bone-implant interface

    NASA Astrophysics Data System (ADS)

    Rădulescu, Dragoş; Voicu, Georgeta; Oprea, Alexandra Elena; Andronescu, Ecaterina; Grumezescu, Valentina; Holban, Alina Maria; Vasile, Bogdan Stefan; Surdu, Adrian Vasile; Grumezescu, Alexandru Mihai; Socol, Gabriel; Mogoantă, Laurenţiu; Mogoşanu, George Dan; Balaure, Paul Cătălin; Rădulescu, Radu; Chifiriuc, Mariana Carmen

    2016-06-01

    In this study, we investigated the potential of MAPLE-deposited coatings mesoporous silica nanoparticles (MSNs) to release Zinforo (ceftarolinum fosmil) in biologically active form. The MSNs were prepared by using a classic procedure with cetyltrimethylammonium bromide as sacrificial template and tetraethylorthosilicate as the monomer. The Brunauer-Emmett-Teller (BET) and transmission electron microscopy (TEM) analyses revealed network-forming granules with diameters under 100 nm and an average pore diameter of 2.33 nm. The deposited films were characterized by SEM, TEM, XRD and IR. Microbiological analyses performed on ceftaroline-loaded films demonstrated that the antibiotic was released in an active form, decreasing the microbial adherence rate and colonization of the surface. Moreover, the in vitro and in vivo assays proved the excellent biodistribution and biocompatibility of the prepared systems. Our results suggest that the obtained bioactive coatings possess a significant potential for the design of drug delivery systems and antibacterial medical-use surfaces, with great applications in bone implantology.

  4. Bone char surface modification by nano-gold coating for elemental mercury vapor removal

    NASA Astrophysics Data System (ADS)

    Assari, Mohamad javad; Rezaee, Abbas; Rangkooy, Hossinali

    2015-07-01

    The present work was done to develop a novel nanocomposite using bone char coated with nano-gold for capture of elemental mercury (Hg0) from air. The morphologies, structures, and chemical constitute of the prepared nanocomposite were evaluated by UV-VIS-NIR, dynamic light-scattering (DLS), X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infra-red (FTIR) spectroscopy, and energy dispersive X-ray spectroscopy (EDS). The capture performance of nanocomposite was evaluated in a needle trap for mercury vapor. An on-line setup based on cold vapor atomic absorption spectrometry (CVAAS) was designed for Hg0 determination. Dynamic capacity of nanocomposite for Hg0 was shown high efficient operating capacity of 586.7 μg/g. As temperature increases, the dynamic adsorption capacity of the nanocomposite was decreased, which are characteristics of physicosorption processes. It was found that the surface modification of bone char with nano-gold has various advantages such as high operating dynamic adsorption capacity and low cost preparation. It was also demonstrated that the developed nanocomposite is suitable for on-line monitoring of Hg0. It could be applied for the laboratory and field studies.

  5. PCL-coated hydroxyapatite scaffold derived from cuttlefish bone: in vitro cell culture studies.

    PubMed

    Milovac, Dajana; Gamboa-Martínez, Tatiana C; Ivankovic, Marica; Gallego Ferrer, Gloria; Ivankovic, Hrvoje

    2014-09-01

    In the present study, we examined the potential of using highly porous poly(ε-caprolactone) (PCL)-coated hydroxyapatite (HAp) scaffold derived from cuttlefish bone for bone tissue engineering applications. The cell culture studies were performed in vitro with preosteoblastic MC3T3-E1 cells in static culture conditions. Comparisons were made with uncoated HAp scaffold. The attachment and spreading of preosteoblasts on scaffolds were observed by Live/Dead staining Kit. The cells grown on the HAp/PCL composite scaffold exhibited greater spreading than cells grown on the HAp scaffold. DNA quantification and scanning electron microscopy (SEM) confirmed a good proliferation of cells on the scaffolds. DNA content on the HAp/PCL scaffold was significantly higher compared to porous HAp scaffolds. The amount of collagen synthesis was determined using a hydroxyproline assay. The osteoblastic differentiation of the cells was evaluated by determining alkaline phosphatase (ALP) activity and collagen type I secretion. Furthermore, cell spreading and cell proliferation within scaffolds were observed using a fluorescence microscope. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Technical note: Bone DNA extraction and purification using silica-coated paramagnetic beads.

    PubMed

    Dukes, Mary J; Williams, Audra L; Massey, Corina M; Wojtkiewicz, Patrick W

    2012-07-01

    The goal of this study was to develop a simple method to improve DNA recovery from challenging bone samples. To this end, an optimized procedure was developed that combined the demineralization and DNA extraction into a single step, followed by DNA purification using an automated silica-coated paramagnetic bead procedure. This method replaced a previous silica-membrane-based procedure, which was able to recover sufficient DNA to obtain full autosomal and Y chromosome STR profiles from greater than 90% of the samples, including samples greater than 20 years old. The development process began with the evaluation of buffer and demineralization systems to determine the best reagent combination. During the developmental process, we observed that the addition of EDTA and DTT affected silica-based DNA purification methods by raising the pH of the digest buffer. The protocols with buffer ATL, PK, EDTA, and DTT followed by lowering the pH with sodium acetate just before purification resulted in the best yields. The method reduced the extraction volume from 10 to 1.5 ml and used commercially available reagents already being utilized in forensic DNA casework. Because of the simplicity and small volume needed for the procedure, many steps where contamination could be introduced have been eliminated or minimized. This study demonstrated a new method of recovering DNA from bone samples capable of extracting trace quantities of DNA, removing potential inhibitors, and minimizing the potential for exogenous DNA contamination.

  7. A systematic review and meta-analysis on the influence of biological implant surface coatings on periimplant bone formation.

    PubMed

    Jenny, Gregor; Jauernik, Johanna; Bierbaum, Susanne; Bigler, Martin; Grätz, Klaus W; Rücker, Martin; Stadlinger, Bernd

    2016-11-01

    This systematic review and meta-analysis evaluated the influence of biological implant surface coatings on periimplant bone formation in comparison to an uncoated titanium reference surface in experimental large animal models. The analysis was structured according to the PRISMA criteriae. Of the1077 studies, 30 studies met the inclusion criteriae. Nineteen studies examined the bone implant contact (BIC) and were included in the meta-analysis. Overall, the mean increase in BIC for the test surfaces compared to the reference surfaces was 3.7 percentage points (pp) (95% CI -3.9-11.2, p = 0.339). Analyzing the increase in BIC for specific coated surfaces in comparison to uncoated reference surfaces, inorganic surface coatings showed a significant mean increase in BIC of 14.7 pp (95% CI 10.6-18.9, p < 0.01), extracellular matrix (ECM) surface coatings showed an increase of 10.0 pp (95% CI 4.4-15.6, p < 0.001), and peptide coatings showed a statistical trend with 7.1 pp BIC increase (95% CI -0.8-15.0, p = 0.08). In this review, no statistically significant difference could be found for growth factor surface coatings (observed difference -3.3 pp, 95% CI -16.5-9.9, p = 0.6). All analyses are exploratory in nature. The results show a statistically significant effect of inorganic and ECM coatings on periimplant bone formation. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2898-2910, 2016. © 2016 Wiley Periodicals, Inc.

  8. Designer Dual Therapy Nanolayered Implant Coatings Eradicate Biofilms and Accelerate Bone Tissue Repair.

    PubMed

    Min, Jouha; Choi, Ki Young; Dreaden, Erik C; Padera, Robert F; Braatz, Richard D; Spector, Myron; Hammond, Paula T

    2016-04-26

    Infections associated with orthopedic implants cause increased morbidity and significant healthcare cost. A prolonged and expensive two-stage procedure requiring two surgical steps and a 6-8 week period of joint immobilization exists as today's gold standard for the revision arthroplasty of an infected prosthesis. Because infection is much more common in implant replacement surgeries, these issues greatly impact long-term patient care for a continually growing part of the population. Here, we demonstrate that a single-stage revision using prostheses coated with self-assembled, hydrolytically degradable multilayers that sequentially deliver the antibiotic (gentamicin) and the osteoinductive growth factor (BMP-2) in a time-staggered manner enables both eradication of established biofilms and complete and rapid bone tissue repair around the implant in rats with induced osteomyelitis. The nanolayered construct allows precise independent control of release kinetics and loading for each therapeutic agent in an infected implant environment. Antibiotics contained in top layers can be tuned to provide a rapid release at early times sufficient to eliminate infection, followed by sustained release for several weeks, and the underlying BMP-2 component enables a long-term sustained release of BMP-2, which induced more significant and mechanically competent bone formation than a short-term burst release. The successful growth factor-mediated osteointegration of the multilayered implants with the host tissue improved bone-implant interfacial strength 15-fold when compared with the uncoated one. These findings demonstrate the potential of this layered release strategy to introduce a durable next-generation implant solution, ultimately an important step forward to future large animal models toward the clinic.

  9. Comparison of new bone formation, implant integration, and biocompatibility between RGD-hydroxyapatite and pure hydroxyapatite coating for cementless joint prostheses--an experimental study in rabbits.

    PubMed

    Bitschnau, Achim; Alt, Volker; Böhner, Felicitas; Heerich, Katharina Elisabeth; Margesin, Erika; Hartmann, Sonja; Sewing, Andreas; Meyer, Christof; Wenisch, Sabine; Schnettler, Reinhard

    2009-01-01

    This is the first work to report on additional Arginin-Glycin-Aspartat (RGD) coating on precoated hydroxyapatite (HA) surfaces regarding new bone formation, implant bone contact, and biocompatibility compared to pure HA coating and uncoated stainless K-wires. There were 39 rabbits in total with 6 animals for the RGD-HA and HA group for the 4 week time period and 9 animals for each of the 3 implant groups for the 12 week observation. A 2.0 K-wire either with RGD-HA or with pure HA coating or uncoated was placed into the intramedullary canal of the tibia. After 4 and 12 weeks, the tibiae were harvested and three different areas of the tibia were assessed for quantitative and qualitative histology for new bone formation, direct implant bone contact, and formation of multinucleated giant cells. Both RGD-HA and pure HA coating showed statistically higher new bone formation and implant bone contact after 12 weeks than the uncoated K-wire. There were no significant differences between the RGD-HA and the pure HA coating in new bone formation and direct implant bone contact after 4 and 12 weeks. The number of multinucleated giant did not differ significantly between the RGD-HA and HA group after both time points. Overall, no significant effects of an additional RGD coating on HA surfaces were detected in this model after 12 weeks.

  10. In vivo efficacy of bone-marrow-coated polycaprolactone scaffolds for the reconstruction of orbital defects in the pig.

    PubMed

    Rohner, Dennis; Hutmacher, Dietmar W; Cheng, Tan Kim; Oberholzer, Martin; Hammer, Beat

    2003-08-15

    Alloplastic materials offer a number of advantages over bone autografts in the reconstruction of craniofacial defects. These include: lack of donor site morbidity, unlimited quantities of available material, and the possibility to conform exactly to the defect. An ideal bioresorbable material would degrade slowly, and have osteoconductive properties to allow replacement and remodeling by osseous tissue. This is seldom observed, the materials instead being replaced by fibrous tissue. Polycaprolactone (PCL), an FDA-approved bioresorbable polymer, has several properties that might make it suitable for reconstruction of craniofacial defects. The technique of fused deposition modeling (FDM) allows for the fabrication of highly reproducible bioresorbable 3D scaffolds. The nature of the fully interconnected pore network might enhance vascular ingrowth and osteoconductive properties. It was hypothesized that coating the scaffolds in bone marrow might enhance bone formation due to the osteoinductive nature of the bone-marrow mesenchymal cells. This study aimed to test these hypotheses in the pig model. Defects measuring 2 x 2 cm were surgically created in each orbit of eight Yorkshire pigs. The orbits were divided into three groups: Group 1 (n=4), no reconstruction (control); Group 2 (n=6), reconstruction with no coated PCL scaffolds; and Group 3 (n=6) reconstruction with bone-marrow-coated PCL scaffolds. The results were evaluated at 3 months by histological and histomorphometric analyses. The defects in Group 1 were covered with fibrous scar tissue. The shape of the reconstructed area was insufficient. The defects in Groups 2 and 3 were reconstructed correctly. In Group 2 the noncoated scaffolds showed 4.5% of new bone formation compared with 14.1% in Group 3, which is statistically significant (p<0.05). The entirely interconnected 3D polycaprolactone scaffold seems to be a promising material. It induces the bone ingrowth required for reconstructing craniofacial and

  11. Value of color Doppler ultrasonography and radiography for the assessment of the cancellous bone scaffold coated with nano-hydroxyapatite in repair of radial bone in rabbit.

    PubMed

    Rahimzadeh, Rasoul; Veshkini, Abbas; Sharifi, Davood; Hesaraki, Saeed

    2012-02-01

    To evaluate the osteo-regenerative capacity of proprietary bone grafting material as a bone defect filler and osteogenetic stimulation to speed up bone healing too. Eighteen adult male New Zealand white rabbits were anesthetized and a segmental full thickness bone defect of 10 mm in length was created in the middle of the right radial shaft in all rabbits. They were divided into two groups of 9 rabbits. Group I was considered as control and the fractured site was fixed using finger bone plate with 4 screws, whereas the cancellous bone scaffold coated with Nano-Hydroxyapatite was used to fill the gap after fracture fixation in Group II. Radiography, two dimensional and color Doppler ultrasonography were done before and after creating defects and on 0, 15, 30, 60 and 90 days to evaluate local reaction as far as new blood vessels network and callus formation are observed. On the radiographs during the whole process, bone repair in Group I was not as perfect as those in Group II samples and trace of internal callus filled the gap incompletely in 60 days in Group I, whereas in Group II internal callus almost was formed on 30 days and in addition intercortical callus was seen supporting to cover and filled the gap completely in this group in 60 day; Sonographic findings confirmed the protrusion of newly formed blood vascular network in 30 days in Group I and from 15 days in Group II and remarkably increased till end of observation period. The nano-hydroxyapatite with more features and shorter in time, made possible the reconstruction of bone tissue and alternative techniques as well as previous bone graft, also radiography and ultrasonography are reliable techniques to trace local reaction at proper time.

  12. Plasma-sprayed hydroxyapatite coating on carbon/carbon composite scaffolds for bone tissue engineering and related tests in vivo.

    PubMed

    Cao, Ning; Dong, Jianwen; Wang, Qiangxiu; Ma, Quansheng; Wang, Feng; Chen, Huaying; Xue, Chengqian; Li, Musen

    2010-03-01

    The bioactive hydroxyapatite (HA) coatings were successfully prepared on carbon/carbon composites (C/C) by means of sand-blasting pretreatment and plasma-spraying technology. X-ray diffraction was employed to analyze the phase constitute of the coatings. Meanwhile, the bond strength between the HA coatings and C/C substrates was determined via shear test. Experimental results show that the coatings constitute HA, CaO, and other amorphous phosphates. The post heat treatment could effectively increase crystallization and purity of the coatings. Through observation and analysis by electron microprobe and scanning electron microscopy, it is concluded that the bond strength of the plasma-sprayed HA coatings on C/C is mainly determined by the interface structure and can be further improved by the post heat treatment. Meanwhile, the implantation in vivo was carried out in hybrid goats. The histological observation revealed that the osteoplaque gradually grew on the surface of the HA coatings and the pure C/C surface was covered by the fibrous tissues. No inflammation symptoms were found in the bone tissue around the implants.

  13. Metal-ion release from titanium and TiN coated implants in rat bone*

    NASA Astrophysics Data System (ADS)

    Ferrari, F.; Miotello, A.; Pavloski, L.; Galvanetto, E.; Moschini, G.; Galassini, S.; Passi, P.; Bogdanović, S.; Fazinić, S.; Jaksić, M.; Valković, V.

    1993-06-01

    Titanium is a good material for dental and orthopaedic implants, but many authors reported that it releases ions into the surrounding tissues and into the serum. Titanium nitride has good mechanical properties and chemical inertless and may be employed as an implant coating material. In this experiment, pure titanium and SiO 2 coated with TiN implants were inserted in the tibia of rats. After thirty days, the bones were taken and examined by a proton microprobe. TiN-coated implants showed a lower ion release into the bone compared with pure titanium. This suggests that TiN may be a good coating for endosseous implants.

  14. Coatings.

    ERIC Educational Resources Information Center

    Anderson, Dennis G.

    1989-01-01

    This review covers analytical techniques applicable to the examination of coatings, raw materials, and substrates upon which coatings are placed. Techniques include chemical and electrochemical methods, chromatography, spectroscopy, thermal analysis, microscopy, and miscellaneous techniques. (MVL)

  15. Coatings.

    ERIC Educational Resources Information Center

    Anderson, Dennis G.

    1989-01-01

    This review covers analytical techniques applicable to the examination of coatings, raw materials, and substrates upon which coatings are placed. Techniques include chemical and electrochemical methods, chromatography, spectroscopy, thermal analysis, microscopy, and miscellaneous techniques. (MVL)

  16. Bone ingrowth potential of electron beam and selective laser melting produced trabecular-like implant surfaces with and without a biomimetic coating.

    PubMed

    Biemond, J E; Hannink, G; Verdonschot, N; Buma, P

    2013-03-01

    The bone ingrowth potential of trabecular-like implant surfaces produced by either selective laser melting (SLM) or electron beam melting (EBM), with or without a biomimetic calciumphosphate coating, was examined in goats. For histological analysis and histomorphometry of bone ingrowth depth and bone implant contact specimens were implanted in the femoral condyle of goats. For mechanical push out tests to analyse mechanical implant fixation specimens were implanted in the iliac crest. The follow up periods were 4 (7 goats) and 15 weeks (7 goats). Both the SLM and EBM produced trabecular-like structures showed a variable bone ingrowth after 4 weeks. After 15 weeks good bone ingrowth was found in both implant types. Irrespective to the follow up period, and the presence of a coating, no histological differences in tissue reaction around SLM and EBM produced specimens was found. Histological no coating was detected at 4 and 15 weeks follow up. At both follow up periods the mechanical push out strength at the bone implant interface was significantly lower for the coated SLM specimens compared to the uncoated SLM specimens. The expected better ingrowth characteristics and mechanical fixation strength induced by the coating were not found. The lower mechanical strength of the coated specimens produced by SLM is a remarkable result, which might be influenced by the gross morphology of the specimens or the coating characteristics, indicating that further research is necessary.

  17. Peri-implant and systemic effects of high-/low-affinity bisphosphonate-hydroxyapatite composite coatings in a rabbit model with peri-implant high bone turnover

    PubMed Central

    2012-01-01

    Background Hydroxyapatite (HA) coatings composed with bisphosphonates (BPs) which have high mineral-binding affinities have been confirmed to successfully enhance implant stability. However, few previous studies focused on HA coatings composed with low-affinity BPs or on systemic effects of locally released BPs. Methods In this long-term study, we developed two kinds of BP-HA composite coatings using either high-affinity BP (alendronate, ALN) or low-affinity BP (risedronate, RIS). Thirty-six rabbits were divided into three groups according to different coating applications (group I: HA, group II: ALN-HA, and group III: RIS-HA). Implants were inserted into the proximal region of the medullary cavity of the left tibiay. At insertion, 2 × 108 wear particles were injected around implants to induce a peri-implant high bone turnover environment. Both local (left tibias) and systemic (right tibias and lumbar vertebrae) inhibitory effect on bone resorption were compared, including bone-implant integration, bone architecture, bone mineral density (BMD), implant stability, and serum levels of bone turnover markers. Results The results indicated that ALN-HA composite coating, which could induce higher bone-implant contact (BIC) ratio, bone mass augmentation, BMD, and implant stability in the peri-implant region, was more potent on peri-implant bone, while RIS-HA composite coating, which had significant systemic effect, was more potent on non-peri-implant bone, especially lumbar vertebrae. Conclusions It is instructive and meaningful to further clinical studies that we could choose different BP-HA composite coatings according to the patient’s condition. PMID:22686414

  18. Bone Loss at Implant with Titanium Abutments Coated by Soda Lime Glass Containing Silver Nanoparticles: A Histological Study in the Dog

    PubMed Central

    Martinez, Arturo; Guitián, Francisco; López-Píriz, Roberto; Bartolomé, José F.; Cabal, Belén; Esteban-Tejeda, Leticia; Torrecillas, Ramón; Moya, José S.

    2014-01-01

    The aim of the present study was to evaluate bone loss at implants connected to abutments coated with a soda-lime glass containing silver nanoparticles, subjected to experimental peri-implantitis. Also the aging and erosion of the coating in mouth was studied. Five beagle dogs were used in the experiments. Three implants were placed in each mandible quadrant: in 2 of them, Glass/n-Ag coated abutments were connected to implant platform, 1 was covered with a Ti-mechanized abutment. Experimental peri-implantitis was induced in all implants after the submarginal placement of cotton ligatures, and three months after animals were euthanatized. Thickness and morphology of coating was studied in abutment cross-sections by SEM. Histology and histo-morphometric studies were carried on in undecalfied ground slides. After the induced peri-implantitis: 1.The abutment coating shown losing of thickness and cracking. 2. The histometry showed a significant less bone loss in the implants with glass/n-Ag coated abutments. A more symmetric cone of bone resorption was observed in the coated group. There were no significant differences in the peri-implantitis histological characteristics between both groups of implants. Within the limits of this in-vivo study, it could be affirmed that abutments coated with biocide soda-lime-glass-silver nanoparticles can reduce bone loss in experimental peri-implantitis. This achievement makes this coating a suggestive material to control peri-implantitis development and progression. PMID:24466292

  19. Regeneration of hyaline cartilage promoted by xenogeneic mesenchymal stromal cells embedded within elastin-like recombinamer-based bioactive hydrogels.

    PubMed

    Pescador, David; Ibáñez-Fonseca, Arturo; Sánchez-Guijo, Fermín; Briñón, Jesús G; Arias, Francisco Javier; Muntión, Sandra; Hernández, Cristina; Girotti, Alessandra; Alonso, Matilde; Del Cañizo, María Consuelo; Rodríguez-Cabello, José Carlos; Blanco, Juan Francisco

    2017-08-01

    Over the last decades, novel therapeutic tools for osteochondral regeneration have arisen from the combination of mesenchymal stromal cells (MSCs) and highly specialized smart biomaterials, such as hydrogel-forming elastin-like recombinamers (ELRs), which could serve as cell-carriers. Herein, we evaluate the delivery of xenogeneic human MSCs (hMSCs) within an injectable ELR-based hydrogel carrier for osteochondral regeneration in rabbits. First, a critical-size osteochondral defect was created in the femora of the animals and subsequently filled with the ELR-based hydrogel alone or with embedded hMSCs. Regeneration outcomes were evaluated after three months by gross assessment, magnetic resonance imaging and computed tomography, showing complete filling of the defect and the de novo formation of hyaline-like cartilage and subchondral bone in the hMSC-treated knees. Furthermore, histological sectioning and staining of every sample confirmed regeneration of the full cartilage thickness and early subchondral bone repair, which was more similar to the native cartilage in the case of the cell-loaded ELR-based hydrogel. Overall histological differences between the two groups were assessed semi-quantitatively using the Wakitani scale and found to be statistically significant (p < 0.05). Immunofluorescence against a human mitochondrial antibody three months post-implantation showed that the hMSCs were integrated into the de novo formed tissue, thus suggesting their ability to overcome the interspecies barrier. Hence, we conclude that the use of xenogeneic MSCs embedded in an ELR-based hydrogel leads to the successful regeneration of hyaline cartilage in osteochondral lesions.

  20. Degradation and biological properties of Ca-P contained micro-arc oxidation self-sealing coating on pure magnesium for bone fixation

    PubMed Central

    Wang, Weidan; Wan, Peng; Liu, Chen; Tan, Lili; Li, Weirong; Li, Lugee; Yang, Ke

    2015-01-01

    Poor corrosion resistance is one of the main disadvantages for biodegradable magnesium-based metals, especially applied for bone fixation, where there is a high demand of bio-mechanical strength and stability. Surface coating has been proved as an effective method to control the in vivo degradation. In this study a Ca-P self-sealing micro-arc oxidation (MAO) coating was studied to verify its efficacy and biological properties by in vitro and in vivo tests. It was found that the MAO coating could effectively retard the degradation according to immersion and electrochemical tests as well as 3D reconstruction by X-ray tomography after implantation. The MAO coating exhibited no toxicity and could stimulate the new bone formation. Therefore, the Ca-P self-sealing MAO coating could be a potential candidate for application of biodegradable Mg-based implant in bone fixations. PMID:26816635

  1. Bone defect rehabilitation using lyophilized bone preshaped on a stereolithographic model

    PubMed Central

    Bohner, Lauren Oliveira Lima; Mukai, Eduardo; Mukai, Sueli; Tortamano, Pedro; Sesma, Newton

    2016-01-01

    Bone grafting provides ideal conditions to the patient's rehabilitation with dental implants. In addition, prototyped tridimensional models allow the surgical procedure to be simulated and enable important anatomic structures to be visualized. To present a bone defect rehabilitated with xenogenic bone preshaped on a stereolithographic model and the follow-up after 7 years of treatment. The present case report describes a bone defect rehabilitated with a lyophilized bone block preshaped on a stereolithographic model. The patient, a 56-year-old woman, was referred to the dental office presenting a bone defect in the anterior maxilla. Bone regeneration intervention was performed with xenogenic grafting and barrier membrane. The follow-up of the postoperative period and after 7 years is presented. After 7 years, the tomographic exam showed the maintenance of bone at the grafted site, representing the long-term success of the treatment. PMID:27630509

  2. Modified n-HA/PA66 scaffolds with chitosan coating for bone tissue engineering: cell stimulation and drug release.

    PubMed

    Zou, Qin; Li, Junfeng; Niu, Lulu; Zuo, Yi; Li, Jidong; Li, Yubao

    2017-09-01

    The dipping-drying procedure and cross-linking method were used to make drug-loaded chitosan (CS) coating on nano-hydroxyapatite/polyamide66 (nHA/PA66) composite porous scaffold, endowing the scaffold controlled drug release functionality. The prefabricated scaffold was immersed into an aqueous drug/CS solution in a vacuum condition and then crosslinked by vanillin. The structure, porosity, composition, compressive strength, swelling ratio, drug release and cytocompatibility of the pristine and coating scaffolds were investigated. After coating, the scaffold porosity and pore interconnection were slightly decreased. Cytocompatibility performance was observed through an in vitro experiment based on cell attachment and the MTT assay by MG63 cells which revealed positive cell viability and increasing proliferation over the 11-day period in vitro. The drug could effectively release from the coated scaffold in a controlled fashion and the release rate was sustained for a long period and highly dependent on coating swelling, suggesting the possibility of a controlled drug release. Our results demonstrate that the scaffold with drug-loaded crosslinked CS coating can be used as a simple technique to render the surfaces of synthetic scaffolds active, thus enabling them to be a promising high performance biomaterial in bone tissue engineering.

  3. In vitro antimicrobial properties of silver-polysaccharide coatings on porous fiber-reinforced composites for bone implants.

    PubMed

    Nganga, Sara; Travan, Andrea; Marsich, Eleonora; Donati, Ivan; Söderling, Eva; Moritz, Niko; Paoletti, Sergio; Vallittu, Pekka K

    2013-12-01

    Biostable fiber-reinforced composite (FRC) implants prepared from bisphenol-A-dimethacrylate and triethyleneglycoldimethacrylate resin reinforced with E-glass fibers have been successfully used in cranial reconstructions in 15 patients. Recently, porous FRC structures were suggested as potential implant materials. Compared with smooth surface, porous surface allows implant incorporation via bone ingrowth, but is also a subject to bacterial attachment. Non-cytotoxic silver-polysaccharide nanocomposite coatings may provide a way to decrease the risk of bacterial contamination of porous FRC structures. This study is focused on the in vitro characterization of the effect porosity on the antimicrobial efficiency of the coatings against Staphylococcus aureus and Pseudomonas aeruginosa by a series of microbiological tests (initial adhesion, antimicrobial efficacy, and biofilm formation). Characterization included confocal laser scanning microscopy and scanning electron microscopy. The effect of porosity on the initial attachment of S. aureus was pronounced, but in the case of P. aeruginosa the effect was negligible. There were no significant effects of the coatings on the initial bacterial attachment. In the antimicrobial efficacy test, the coatings were potent against both strains regardless of the sample morphology. In the biofilm tests, there were no clear effects either of morphology or of the coating. Further coating development is foreseen to achieve a longer-term antimicrobial effect to inhibiting bacterial implant colonization.

  4. Vacuum plasma sprayed coatings using ionic silver doped hydroxyapatite powder to prevent bacterial infection of bone implants.

    PubMed

    Guimond-Lischer, Stefanie; Ren, Qun; Braissant, Olivier; Gruner, Philipp; Wampfler, Bruno; Maniura-Weber, Katharina

    2016-03-10

    Fast and efficient osseointegration of implants into bone is of crucial importance for their clinical success; a process that can be enhanced by coating the implant surface with hydroxyapatite (HA) using the vacuum plasma spray technology (VPS). However, bacterial infections, especially the biofilm formation on implant surfaces after a surgery, represent a serious complication. With ever-increasing numbers of antibiotic-resistant bacteria, there is great interest in silver (Ag) as an alternative to classical antibiotics due to its broad activity against Gram-positive and Gram-negative bacterial strains. In the present study, silver ions were introduced into HA spray powder by ion exchange and the HA-Ag powder was applied onto titanium samples by VPS. The Ag-containing surfaces were evaluated for the kinetics of the silver release, its antibacterial effect against Staphylococcus aureus as well as Escherichia coli, and possible cytotoxicity against human bone cells. The HA-Ag coatings with different concentrations of Ag displayed mechanical and compositional properties that fulfill the regulatory requirements. Evaluation of the Ag release kinetic showed a high release rate in the first 24 h followed by a decreasing release rate over the four subsequent days. The HA-Ag coatings showed no cytotoxicity to primary human bone cells while exhibiting antibacterial activity to E. coli and S. aureus.

  5. New approach to bone tissue engineering: simultaneous application of hydroxyapatite and bioactive glass coated on a poly(L-lactic acid) scaffold.

    PubMed

    Dinarvand, Peyman; Seyedjafari, Ehsan; Shafiee, Abbas; Jandaghi, Ali Babaei; Doostmohammadi, Ali; Fathi, Mohammad Hossein; Farhadian, Shirin; Soleimani, Masoud

    2011-11-01

    A combination of bioceramics and polymeric nanofibers holds promising potential for bone tissue engineering applications. In the present study, hydroxyapatite (HA), bioactive glass (BG), and tricalcium phosphate (TCP) particles were coated on the surface of electrospun poly(L-lactic acid) (PLLA) nanofibers, and the capacity of the PLLA, BG-PLLA, HA-PLLA, HA-BG-PLLA, and TCP-PLLA scaffolds for bone regeneration was investigated in rat critical-size defects using digital mammography, multislice spiral-computed tomography (MSCT) imaging, and histological analysis. Electrospun scaffolds exhibited a nanofibrous structure with a homogeneous distribution of bioceramics along the surface of PLLA nanofibers. A total of 8 weeks after implantation, no sign of complication or inflammation was observed at the site of the calvarial bone defect. On the basis of imaging analysis, a higher level of bone reconstruction was observed in the animals receiving HA-, BG-, and TCP-coated scaffolds compared to an untreated control group. In addition, simultaneous coating of HA and BG induced the highest regeneration among all groups. Histological staining confirmed these findings and also showed an efficient osseointegration in HA-BG-coated nanofibers. On the whole, it was demonstrated that nanofibrous structures could serve as an appropriate support to guide the healing process, and coating their surface with bioceramics enhanced bone reconstruction. These bioceramic-coated scaffolds can be used as new bone-graft substitutes capable of efficiently inducing osteoconduction and osseointegration in orthopedic fractures and defects.

  6. Role of Osteogenic Coatings on Implant Surfaces in Promoting Bone-To-Implant Contact in Experimental Osteoporosis: A Systematic Review and Meta-Analysis.

    PubMed

    Ghanem, Alexis; Kellesarian, Sergio Varela; Abduljabbar, Tariq; Al-Hamoudi, Nawwaf; Vohra, Fahim; Javed, Fawad

    2017-10-01

    The aim of this systematic review and meta-analysis was to evaluate the role of osteogenic coatings (placement of a thin film of organic and inorganic osteoinductive and osteoproliferative materials) on implant surfaces in augmenting bone-to-implant contact (BIC) in osteoporotic bone. To answer the focused question "Do osteogenic coatings on implant surfaces increase BIC in osteoporotic bone?" PubMed/MEDLINE, EMBASE, ISI Web of Knowledge, Scopus, and Google-Scholar databases were searched till June 2017 using different combinations of the following key words: bone-to-implant contact, coating, implant surface, osseointegration, and osteoporosis. Letters to the Editor, review articles, case-reports/case-series, and commentaries were excluded. Six animal studies were included, in which osteoporosis was induced by bilateral ovariectomy. In all studies, implant surface roughness was increased by various osteogenic surface coatings including alumina, hydroxyapatite, calcium phosphate, and zoledronic acid. Five studies showed that bone volume and BIC are significantly higher around implants with coated surfaces than noncoated implants. In 1 study, there was no difference in BIC around coated and noncoated implants. Although experimental studies have shown that osteogenic coatings are effective in enhancing BIC, their clinical relevance requires further investigations.

  7. Selection of highly osteogenic and chondrogenic cells from bone marrow stromal cells in biocompatible polymer-coated plates.

    PubMed

    Liu, G; Iwata, K; Ogasawara, T; Watanabe, J; Fukazawa, K; Ishihara, K; Asawa, Y; Fujihara, Y; Chung, U-L; Moro, T; Takatori, Y; Takato, T; Nakamura, K; Kawaguchi, H; Hoshi, K

    2010-03-15

    To enrich the subpopulation that preserves self-renewal and multipotentiality from conventionally prepared bone marrow stromal cells (MSCs), we attempted to use 2-methacryloyloxyethyl phosphorylcholine (MPC) polymer-coated plates that selected the MSCs with strong adhesion ability and evaluated the proliferation ability or osteogenic/chondrogenic potential of the MPC polymer-selected MSCs. The number of MSCs that were attached to the MPC polymer-coated plates decreased with an increase in the density of MPC unit (0-10%), whereas no significant difference in the proliferation ability was seen among these cells. The surface epitopes of CD29, CD44, CD105, and CD166, and not CD34 or CD45, were detectable in the cells of all MPC polymer-coated plates, implying that they belong to the MSC category. In the osteogenic and chondrogenic induction, the MSCs selected by the 2-5% MPC unit composition showed higher expression levels of osteoblastic and chondrocytic markers (COL1A1/ALP, or COL2A1/COL10A1/Sox9) at passage 2, compared with those of 0-1% or even 10% MPC unit composition, while the enhanced effects continued by passage 5. The selection based on the adequate cell adhesiveness by the MPC polymer-coated plates could improve the osteogenic and chondrogenic potential of MSCs, which would provide cell sources that can be used to treat the more severe and various bone/cartilage diseases.

  8. Calcium phosphate fibers coated with collagen: In vivo evaluation of the effects on bone repair.

    PubMed

    Ueno, Fabio Roberto; Kido, Hueliton Wilian; Granito, Renata Neves; Gabbai-Armelin, Paulo Roberto; Magri, Angela Maria Paiva; Fernandes, Kelly Rosseti; da Silva, Antonio Carlos; Braga, Francisco José Correa; Renno, Ana Claudia Muniz

    2016-08-12

    The aim of this study was to assess the characteristics of the CaP/Col composites, in powder and fiber form, via scanning electron microscopy (SEM), pH and calcium release evaluation after immersion in SBF and to evaluate the performance of these materials on the bone repair process in a tibial bone defect model. For this, four different formulations (CaP powder - CaPp, CaP powder with collagen - CaPp/Col, CaP fibers - CaPf and CaP fibers with collagen - CaPf/Col) were developed. SEM images indicated that both material forms were successfully coated with collagen and that CaPp and CaPf presented HCA precursor crystals on their surface. Although presenting different forms, FTIR analysis indicated that CaPp and CaPf maintained the characteristic peaks for this class of material. Additionally, the calcium assay study demonstrated a higher Ca uptake for CaPp compared to CaPf for up to 5 days. Furthermore, pH measurements revealed that the collagen coating prevented the acidification of the medium, leading to higher pH values for CaPp/Col and CaPf/Col. The histological analysis showed that CaPf/Col demonstrated a higher amount of newly formed bone in the region of the defect and a reduced presence of material. In summary, the results indicated that the fibrous CaP enriched with the organic part (collagen) glassy scaffold presented good degradability and bone-forming properties and also supported Runx2 and RANKL expression. These results show that the present CaP/Col fibrous composite may be used as a bone graft for inducing bone repair.

  9. Comparison between alkali heat treatment and sprayed hydroxyapatite coating on thermally-sprayed rough Ti surface in rabbit model: Effects on bone-bonding ability and osteoconductivity.

    PubMed

    Kawai, Toshiyuki; Takemoto, Mitsuru; Fujibayashi, Shunsuke; Tanaka, Masashi; Akiyama, Haruhiko; Nakamura, Takashi; Matsuda, Shuichi

    2015-07-01

    In this study, we investigated the effect of different surface treatments (hydroxyapatite (HA) coating, alkali heat treatment, and no treatment) on the ability of bone to bond to a rough arc-sprayed Ti metal surface, using rabbit models. The bone-to-implant contacts for untreated, HA-coated, and alkali heat-treated implants were 21.2%, 72.1%, and 33.8% at 4 weeks, 21.8%, 70.9%, and 30.0% at 8 weeks, and 16.3%, 70.2%, and 29.9% at 16 weeks, respectively (n = 8). HA -coated implants showed significantly higher bone-to-implant contacts than the untreated and alkali heat-treated implants at all the time point, whereas alkali heat-treated implants showed significantly higher bone-to-implant contacts than untreated implants at 4 and 16 weeks. The failure loads in a mechanical test for untreated, HA coated, alkali heat-treated plates were 65.4 N, 70.7 N, and 90.8 N at 4 weeks, 76.1 N, 64.7 N, and 104.8 N at 8 weeks and 88.7 N, 92.6 N, and 118.5 N at 16 weeks, respectively (n = 8). The alkali heat-treated plates showed significantly higher failure loads than HA-coated plates at 8 and 16 weeks. The difference between HA-coated plates and untreated plates were not statistically significant at any time point. Thus HA coating, although it enables high bone-to-implant contact, may not enhance the bone-bonding properties of thermally-sprayed rough Ti metal surfaces. In contrast, alkali heat treatment can be successfully applied to thermally-sprayed Ti metal to enhance both bone-to-implant contact and bone-bonding strength. © 2014 Wiley Periodicals, Inc.

  10. The role of nano-sized manganese coatings on bone char in removing arsenic(V) from solution: Implications for permeable reactive barrier technologies.

    PubMed

    Liu, Jing; He, Lile; Dong, Faqin; Hudson-Edwards, Karen A

    2016-06-01

    Although the removal of arsenic(V) (As(V)) from solution can be improved by forming metal-bearing coatings on solid media, there has been no research to date examining the relationship between the coating and As(V) sorption performance. Manganese-coated bone char samples with varying concentrations of Mn were created to investigate the adsorption and desorption of As(V) using batch and column experiments. Breakthrough curves were obtained by fitting the Convection-Diffusion Equation (CDE), and retardation factors were used to quantify the effects of the Mn coatings on the retention of As(V). Uncoated bone char has a higher retention factor (44.7) than bone char with 0.465 mg/g of Mn (22.0), but bone char samples with between 5.02 mg/g and 14.5 mg/g Mn have significantly higher retention factors (56.8-246). The relationship between retardation factor (Y) and Mn concentration (X) is Y = 15.1 X + 19.8. Between 0.2% and 0.6% of the sorbed As is desorbed from the Mn-coated bone char at an initial pH value of 4, compared to 30% from the uncoated bone char. The ability of the Mn-coated bone char to neutralize solutions increases with increased amounts of Mn on the char. The results suggest that using Mn-coated bone char in Permeable Reactive Barriers would be an effective method for remediating As(V)-bearing solutions such as acid mine drainage.

  11. Efficacy of a small cell-binding peptide coated hydroxyapatite substitute on bone formation and implant fixation in sheep.

    PubMed

    Ding, Ming; Andreasen, Christina M; Dencker, Mads L; Jensen, Anders E; Theilgaard, Naseem; Overgaard, Søren

    2015-04-01

    Cylindrical critical size defects were created at the distal femoral condyles bilaterally of eight female adult sheep. Titanium implants with 2-mm concentric gaps were inserted and the gaps were filled with one of the four materials: allograft; a synthetic 15-amino acid cell-binding peptide coated hydroxyapatite (ABM/P-15); hydroxyapatite + βtricalciumphosphate+ Poly-Lactic-Acid (HA/βTCP-PDLLA); or ABM/P-15+HA/βTCP-PDLLA. After nine weeks, bone-implant blocks were harvested and sectioned for micro-CT scanning, push-out test, and histomorphometry. Significant bone formation and implant fixation could be observed in all four groups. Interestingly, the microarchitecture of the ABM/P-15 group was significantly different from the control group. Tissue volume fraction and thickness were significantly greater in the ABM/P-15 group than in the allograft group. Bone formation and bone ingrowth to porous titanium implant were not significantly different among the four groups. The ABM/P-15 group had similar shear mechanical properties on implant fixation as the allograft group. Adding HA/βTCP-PDLLA to ABM/P-15 did not significantly change these parameters. This study revealed that ABM/P-15 had significantly bone formation in concentric gap, and its enhancements on bone formation and implant fixation were at least as good as allograft. It is suggested that ABM/P-15 might be a good alternative biomaterial for bone implant fixation in this well-validated critical-size defect gap model in sheep. Nevertheless, future clinical researches should focus on prospective, randomized, controlled trials in order to fully elucidate whether ABM/P-15 could be a feasible candidate for bone substitute material in orthopedic practices.

  12. Copper-releasing, boron-containing bioactive glass-based scaffolds coated with alginate for bone tissue engineering.

    PubMed

    Erol, M M; Mouriňo, V; Newby, P; Chatzistavrou, X; Roether, J A; Hupa, L; Boccaccini, Aldo R

    2012-02-01

    The aim of this study was to synthesize and characterize new boron-containing bioactive glass-based scaffolds coated with alginate cross-linked with copper ions. A recently developed bioactive glass powder with nominal composition (wt.%) 65 SiO2, 15 CaO, 18.4 Na2O, 0.1 MgO and 1.5 B2O3 was fabricated as porous scaffolds by the foam replica method. Scaffolds were alginate coated by dipping them in alginate solution. Scanning electron microscopy investigations indicated that the alginate effectively attached on the surface of the three-dimensional scaffolds leading to a homogeneous coating. It was confirmed that the scaffold structure remained amorphous after the sintering process and that the alginate coating improved the scaffold bioactivity and mechanical properties. Copper release studies showed that the alginate-coated scaffolds allowed controlled release of copper ions. The novel copper-releasing composite scaffolds represent promising candidates for bone regeneration. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  13. Can the Hydroxyapatite-Coated Skin-Penetrating Abutment for Bone Conduction Hearing Implants Integrate with the Surrounding Skin?

    PubMed

    van Hoof, Marc; Wigren, Stina; Duimel, Hans; Savelkoul, Paul H M; Flynn, Mark; Stokroos, Robert Jan

    2015-01-01

    Percutaneous implants, such as bone conduction hearing implants, suffer from complications that include inflammation of the surrounding skin. A sealed skin-abutment interface can prevent the ingress of bacteria, which should reduce the occurrence of peri-abutment dermatitis. It was hypothesized that a hydroxyapatite (HA)-coated abutment in conjunction with soft tissue preservation surgery should enable integration with the adjacent skin. Previous research has confirmed that integration is never achieved with as-machined titanium abutments. Here, we investigate, in vivo, if skin integration is achievable in patients using a HA-coated abutment. One titanium abutment (control) and one HA-coated abutment (case) together with the surrounding skin were surgically retrieved from two patients who had a medical indication for this procedure. Histological sections of the skin were investigated using light microscopy. The abutment was qualitatively analyzed using scanning electron microscopy. The titanium abutment only had a partial and thin layer of attached amorphous biological material. The HA-coated abutment was almost fully covered by a pronounced thick layer of organized skin, composed of different interconnected structural layers. Proof-of-principle evidence that the HA-coated abutment can achieve integration with the surrounding skin was presented for the first time.

  14. [The mechanism of anti-tumor immune response against mouse melanoma to xenogeneic vaccination].

    PubMed

    Luo, Feng; Mao, Yong-qiu; Kan, Bing; He, Qiu-Ming; Jiang, Yu; Peng, Feng; Yang, Li; Tian, Ling

    2004-11-01

    To investigate the immunological mechanism for inhibiting melanoma growth in mouse by vaccination with xenogeneic melanocytes. Xenogeneic vaccine was prepared from pig eye melanocytes. By means of indirect ELISA the antibodies against pig melanocytes and B16 melanoma cells in immunized mice sera were detected and the immunoglobulin subclass were analyzed. Then after purification, the immunoglobulins were used for the inhibition of cell proliferation in vitro. Analyses of cross-reactive antigen in both pig melanocytes and B16 melanoma cells were performed by Western blot. Xenogeneic vaccine was used before B16 melanoma challenge in C57 BL/c mice and then the growth of tumor was monitored. Meanwhile, other mice immunized with xenogeneic vaccine were depleted of NK cells or CD4+ or CD8+ T lymphocytes. The antibodies against pig melanocytes and B16 melanoma cells in mice sera were not detected by indirect ELISA until 2 weeks after first xenogeneic vaccination, and after the first finding, the antibody titers increased with the time of immunization. The anti-tumor activity and production of autoantibodies, conspicuously those of the elevated IgG, could be abrogated by the depletion of CD4+ T lymphocytes. The cross-reactive antigen with 180 kda protein in both pig melanocytes and B16 melanoma cells was confirmed. Xenogeneic vaccination resulted in inhibition of tumor growth in 90% of the immunized mice. The protective immune response elicited in this fashion was dispelled in the mice depleted of CD4+ T lymphocytes. However this response was found in 70% of the mice depleted of CD8+ T lymphocytes, and the depletion NK cells did not influence the anti-tumor effect of the vaccine. The anti-tumor immune response is capable of inhibiting melanoma growth; both humoral immunity and cellular immunity could be induced by xenogeneic melanocytes vaccination. This immune response is mainly mediated by CD4+ T lymphocytes.

  15. The effects of hydroxyapatite coating and bone allograft on fixation of loaded experimental primary and revision implants

    PubMed Central

    Søballe, Kjeld; Mouzin, Olivier R G; Kidder, Louis A; Overgaard, Søren; Bechtold, Joan E

    2015-01-01

    We used our established experimental model of revision joint replacement to examine the roles of hydroxyapatite coating and bone graft in improving the fixation of revision implants. The revision protocol uses the Søballe micromotion device in a preliminary 8-week period of implant instability for the presence of particulate polyethylene. During this procedure, a sclerotic endosteal bone rim forms, and a dense fibrous membrane is engendered, having macrophages with ingested polyethylene and high levels of inflammatory cytokines. At the time of revision after 8 weeks, the cavity is revised with either a titanium alloy (Ti) or a hydroxyapatite (HA) 6.0 mm plasma-sprayed implant, in the presence or absence of allograft packed into the initial 0.75 mm peri-implant gap. The contralateral limb is subjected to primary surgery with the same implant configuration, and serves as control. 8 implants were included in each of the 8 treatment groups (total 64 implants in 32 dogs). The observation period was 4 weeks after revision. Outcome measures are based on histomorphometry and mechanical pushout properties. The revision setting was always inferior to its primary counterpart. Bone graft improved the revision fixation in all treatment groups, as also did the HA coating. The sole exception was revision-grafted HA implants, which reached the same fixation as primary Ti and HA grafted implants. The revision, which was less active in general, seems to need the dual stimulation of bone graft and HA implant surface, to obtain the same level of fixation associated with primary implants. Our findings suggest that the combination of HA implant and bone graft may be of benefit in the clinical revision implant setting. PMID:12899541

  16. Peri-implant bone formation and implant integration strength of peptide-modified p(AAM-co-EG/AAC) interpenetrating polymer network-coated titanium implants.

    PubMed

    Barber, Thomas A; Ho, James E; De Ranieri, Aladino; Virdi, Amarjit S; Sumner, Dale R; Healy, Kevin E

    2007-02-01

    Interpenetrating polymer networks (IPNs) of poly (acrylamide-co-ethylene glycol/acrylic acid) functionalized with an -Arg-Gly-Asp- (RGD) containing 15 amino acid peptides, derived from rat bone sialoprotein (bsp-RGD(15), were grafted to titanium implants in an effort to modulate bone formation in the peri-implant region in the rat femoral ablation model. Bone-implant contact (BIC) and bone formation within the medullary canal were determined using microcomputed tomography at 2 and 4 weeks postimplantation. BIC for bsp-RGD(15)-IPN implants was enhanced relative to hydroxyapatite tricalcium phosphate (HA-TCP) coated implants, but was similar to all other groups. Aggregate bone formation neither indicated a dose-dependent effect of bsp-RGD(15) nor a meaningful trend. Mechanical testing of implant fixation revealed that only the HA-TCP coated implants supported significant (>1 MPa) interfacial shear strength, despite exhibiting lower overall BIC, an indication that bone ingrowth into the rougher coating was the primary mode of implant fixation. While no evidence was found to support the hypothesis that bsp-RGD(15)-modified IPN coated implants significantly impacted bone-implant bonding, these results point to the lack of correlation between in vitro studies employing primary osteoblasts and in vivo wound healing in the peri-implant region.

  17. Anti-Leukemia Activity of In Vitro-Expanded Human Gamma Delta T Cells in a Xenogeneic Ph+ Leukemia Model

    PubMed Central

    Siegers, Gabrielle M.; Felizardo, Tania C.; Mathieson, A. Mark; Kosaka, Yoko; Wang, Xing-Hua; Medin, Jeffrey A.; Keating, Armand

    2011-01-01

    Gamma delta T cells (GDTc) lyse a variety of hematological and solid tumour cells in vitro and in vivo, and are thus promising candidates for cellular immunotherapy. We have developed a protocol to expand human GDTc in vitro, yielding highly cytotoxic Vgamma9/Vdelta2 CD27/CD45RA double negative effector memory cells. These cells express CD16, CD45RO, CD56, CD95 and NKG2D. Flow cytometric, clonogenic, and chromium release assays confirmed their specific cytotoxicity against Ph+ cell lines in vitro. We have generated a fluorescent and bioluminescent Ph+ cell line, EM-2eGFPluc, and established a novel xenogeneic leukemia model. Intravenous injection of EM-2eGFPluc into NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG) mice resulted in significant dose-dependent bone marrow engraftment; lower levels engrafted in blood, lung, liver and spleen. In vitro-expanded human GDTc injected intraperitoneally were found at higher levels in blood and organs compared to those injected intravenously; GDTc survived at least 33 days post-injection. In therapy experiments, we documented decreased bone marrow leukemia burden in mice treated with GDTc. Live GDTc were found in spleen and bone marrow at endpoint, suggesting the potential usefulness of this therapy. PMID:21304898

  18. Poly-ε-caprolactone Coated and Functionalized Porous Titanium and Magnesium Implants for Enhancing Angiogenesis in Critically Sized Bone Defects.

    PubMed

    Roland, Laura; Grau, Michael; Matena, Julia; Teske, Michael; Gieseke, Matthias; Kampmann, Andreas; Beyerbach, Martin; Murua Escobar, Hugo; Haferkamp, Heinz; Gellrich, Nils-Claudius; Nolte, Ingo

    2015-12-22

    For healing of critically sized bone defects, biocompatible and angiogenesis supporting implants are favorable. Murine osteoblasts showed equal proliferation behavior on the polymers poly-ε-caprolactone (PCL) and poly-(3-hydroxybutyrate)/poly-(4-hydroxybutyrate) (P(3HB)/P(4HB)). As vitality was significantly better for PCL, it was chosen as a suitable coating material for further experiments. Titanium implants with 600 µm pore size were evaluated and found to be a good implant material for bone, as primary osteoblasts showed a vitality and proliferation onto the implants comparable to well bottom (WB). Pure porous titanium implants and PCL coated porous titanium implants were compared using Live Cell Imaging (LCI) with Green fluorescent protein (GFP)-osteoblasts. Cell count and cell covered area did not differ between the implants after seven days. To improve ingrowth of blood vessels into porous implants, proangiogenic factors like Vascular Endothelial Growth Factor (VEGF) and High Mobility Group Box 1 (HMGB1) were incorporated into PCL coated, porous titanium and magnesium implants. An angiogenesis assay was performed to establish an in vitro method for evaluating the impact of metallic implants on angiogenesis to reduce and refine animal experiments in future. Incorporated concentrations of proangiogenic factors were probably too low, as they did not lead to any effect. Magnesium implants did not yield evaluable results, as they led to pH increase and subsequent cell death.

  19. Poly-ε-caprolactone Coated and Functionalized Porous Titanium and Magnesium Implants for Enhancing Angiogenesis in Critically Sized Bone Defects

    PubMed Central

    Roland, Laura; Grau, Michael; Matena, Julia; Teske, Michael; Gieseke, Matthias; Kampmann, Andreas; Beyerbach, Martin; Murua Escobar, Hugo; Haferkamp, Heinz; Gellrich, Nils-Claudius; Nolte, Ingo

    2015-01-01

    For healing of critically sized bone defects, biocompatible and angiogenesis supporting implants are favorable. Murine osteoblasts showed equal proliferation behavior on the polymers poly-ε-caprolactone (PCL) and poly-(3-hydroxybutyrate)/poly-(4-hydroxybutyrate) (P(3HB)/P(4HB)). As vitality was significantly better for PCL, it was chosen as a suitable coating material for further experiments. Titanium implants with 600 µm pore size were evaluated and found to be a good implant material for bone, as primary osteoblasts showed a vitality and proliferation onto the implants comparable to well bottom (WB). Pure porous titanium implants and PCL coated porous titanium implants were compared using Live Cell Imaging (LCI) with Green fluorescent protein (GFP)-osteoblasts. Cell count and cell covered area did not differ between the implants after seven days. To improve ingrowth of blood vessels into porous implants, proangiogenic factors like Vascular Endothelial Growth Factor (VEGF) and High Mobility Group Box 1 (HMGB1) were incorporated into PCL coated, porous titanium and magnesium implants. An angiogenesis assay was performed to establish an in vitro method for evaluating the impact of metallic implants on angiogenesis to reduce and refine animal experiments in future. Incorporated concentrations of proangiogenic factors were probably too low, as they did not lead to any effect. Magnesium implants did not yield evaluable results, as they led to pH increase and subsequent cell death. PMID:26703586

  20. Evaluation of 3D-Printed Polycaprolactone Scaffolds Coated with Freeze-Dried Platelet-Rich Plasma for Bone Regeneration

    PubMed Central

    Li, Junda; Chen, Meilin; Wei, Xiaoying; Hao, Yishan; Wang, Jinming

    2017-01-01

    Three-dimensional printing is one of the most promising techniques for the manufacturing of scaffolds for bone tissue engineering. However, a pure scaffold is limited by its biological properties. Platelet-rich plasma (PRP) has been shown to have the potential to improve the osteogenic effect. In this study, we improved the biological properties of scaffolds by coating 3D-printed polycaprolactone (PCL) scaffolds with freeze-dried and traditionally prepared PRP, and we evaluated these scaffolds through in vitro and in vivo experiments. In vitro, we evaluated the interaction between dental pulp stem cells (DPSCs) and the scaffolds by measuring cell proliferation, alkaline phosphatase (ALP) activity, and osteogenic differentiation. The results showed that freeze-dried PRP significantly enhanced ALP activity and the mRNA expression levels of osteogenic genes (ALP, RUNX2 (runt-related gene-2), OCN (osteocalcin), OPN (osteopontin)) of DPSCs (p < 0.05). In vivo, 5 mm calvarial defects were created, and the PRP-PCL scaffolds were implanted. The data showed that compared with traditional PRP-PCL scaffolds or bare PCL scaffolds, the freeze-dried PRP-PCL scaffolds induced significantly greater bone formation (p < 0.05). All these data suggest that coating 3D-printed PCL scaffolds with freeze-dried PRP can promote greater osteogenic differentiation of DPSCs and induce more bone formation, which may have great potential in future clinical applications. PMID:28773189

  1. Chub mackerel gonads support colonization, survival, and proliferation of intraperitoneally transplanted xenogenic germ cells.

    PubMed

    Yazawa, Ryosuke; Takeuchi, Yutaka; Higuchi, Kentaro; Yatabe, Takashi; Kabeya, Naoki; Yoshizaki, Goro

    2010-05-01

    The production of xenogenic gametes from large-bodied, commercially important marine fish species in closely related smaller host fish species with short generation times may enable rapid and simple seed production of the target species. As a first step toward this goal, we assessed the suitability of chub mackerel, Scomber japonicus, as a small-bodied recipient species for xenogenic spermatogonial transplantation. Histological observation of the early gonadal development of chub mackerel larvae and transplantation of fluorescent-labeled spermatogonia from Nibe croaker, Nibea mitsukurii, revealed that 5.3-mm chub mackerel larvae were suitable recipients for successful transplantation. Intraperitoneally transplanted xenogenic spermatogonia efficiently colonized the gonads of these recipient larvae, and donor-derived Nibe croaker germ cells proliferated rapidly soon after colonization. Moreover, gonadal soma-derived growth factor (gsdf) mRNA, a gonadal somatic cell marker, was expressed in recipient-derived cells surrounding the incorporated donor-derived germ cells, suggesting that donor-derived germ cells had settled at an appropriate location in the recipient gonad. Our data show that xenogenic spermatogonial transplantation was successful in chub mackerel and that the somatic microenvironment of the chub mackerel gonad can support the colonization, survival, and proliferation of intraperitoneally transplanted xenogenic germ cells derived from a donor species of a different taxonomic family.

  2. Platelet-rich plasma improves expansion of human mesenchymal stem cells and retains differentiation capacity and in vivo bone formation in calcium phosphate ceramics.

    PubMed

    Vogel, Julia P; Szalay, Krisztian; Geiger, Florian; Kramer, Martin; Richter, Wiltrud; Kasten, Philip

    2006-11-01

    Mesenchymal stem cells (MSC) applied to bone substitution materials can improve bone healing. Bone formation in biocomposites is highly dependent on the kind of biomaterial, its pre-treatment and the applied cells. Potentially immunogenic or infectious supplements such as fetal calf serum (FCS) should be avoided in cell expansion media. Therefore, we developed an expansion protocol free of xenogenic supplements. Cells expanded with two different media were tested on distinct biomaterials for their bone formation capacity after ectopic implantation in vivo, as well as for their growth rate and differentiation capacity in vitro. MSC of six donors were expanded with cell expansion medium containing FCS (2%) or platelet-rich plasma (PRP, 3%). Their growth rate and osteogenic, adipogenic and chondrogenic differentiation capacity were compared in vitro. For the in vivo bone formation assay, expanded cells (2 x 105 or 2 x 106) were seeded on calcium-deficient hydroxyapatite (CDHA; n = 12) and on beta-tricalcium phosphate (beta-TCP; n = 12) blocks, which had been coated with either fibronectin or human serum. They were then implanted subcutaneously in severe combined immunodeficient mice (SCID), harvested after 8 weeks and analysed by histology. Bone formation was assessed by a semi-quantitative bone score, after toluidine blue and alizarin red staining. Human cells were detected by an in situ hybridisation for human-specific alu sequences. PRP-supplemented expansion medium yielded two-fold higher cell numbers compared to medium with FCS (P = 0.046) after 3 weeks (four passages) and retained a similar capacity to differentiate towards the osteogenic, chondrogenic and adipogenic lineage. In vivo bone formation was equal for cells expanded with PRP and FCS and depended on the specific surface area of the carrier. CDHA (specific surface area (SSA) 48 m2/g) showed a significantly better bone formation in deep layers (P = 0.005) than beta-TCP (SSA 0.5 m2/g). Fibronectin-coating

  3. Silk coating on a bioactive ceramic scaffold for bone regeneration: effective enhancement of mechanical and in vitro osteogenic properties towards load-bearing applications.

    PubMed

    Li, Jiao Jiao; Roohani-Esfahani, Seyed-Iman; Kim, Kyungsook; Kaplan, David L; Zreiqat, Hala

    2017-06-01

    Bioactive ceramic scaffolds represent competitive choices for clinical bone reconstruction, but their widespread use is restricted by inherent brittleness and weak mechanical performance under load. This study reports the development of strong and tough bioactive scaffolds suitable for use in load-bearing bone reconstruction. A strong and bioactive ceramic scaffold (strontium-hardystonite-gahnite) is combined with single and multiple coating layers of silk fibroin to enhance its toughness, producing composite scaffolds which match the mechanical properties of cancellous bone and show enhanced capacity to promote in vitro osteogenesis. Also reported for the first time is a comparison of the coating effects obtained when a polymeric material is coated on ceramic scaffolds with differing microstructures, namely the strontium-hardystonite-gahnite scaffold with high-density struts as opposed to a conventional ceramic scaffold, such as biphasic calcium phosphate, with low-density struts. The results show that silk coating on a unique ceramic scaffold can lead to simple and effective enhancement of its mechanical and biological properties to suit a wider range of applications in clinical bone reconstruction, and also establish the influence of ceramic microstructure on the effectiveness of silk coating as a method of reinforcement when applied to different types of ceramic bone graft substitutes. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  4. Polycaprolactone-Coated 3D Printed Tricalcium Phosphate Scaffolds for Bone Tissue Engineering: In Vitro Alendronate Release Behavior and Local Delivery Effect on In Vivo Osteogenesis

    PubMed Central

    2015-01-01

    The aim of this work was to evaluate the effect of in vitro alendronate (AD) release behavior through polycaprolactone (PCL) coating on in vivo bone formation using PCL-coated 3D printed interconnected porous tricalcium phosphate (TCP) scaffolds. Higher AD and Ca2+ ion release was observed at lower pH (5.0) than that at higher pH (7.4). AD and Ca2+ release, surface morphology, and phase analysis after release indicated a matrix degradation dominated AD release caused by TCP dissolution. PCL coating showed its effectiveness for controlled and sustained AD release. Six different scaffold compositions, namely, (i) TCP (bare TCP), (ii) TCP + AD (AD-coated TCP), (iii) TCP + PCL (PCL-coated TCP), (iv) TCP + PCL + AD, (v) TCP + AD + PCL, and (vi) TCP + AD + PCL + AD were tested in the distal femoral defect of Sprague–Dawley rats for 6 and 10 weeks. An excellent bone formation inside the micro and macro pores of the scaffolds was observed from histomorphology. Histomorphometric analysis revealed maximum new bone formation in TCP + AD + PCL scaffolds after 6 weeks. No adverse effect of PCL on bioactivity of TCP and in vivo bone formation was observed. All scaffolds with AD showed higher bone formation and reduced TRAP (tartrate resistant acid phosphatase) positive cells activity compared to bare TCP and TCP coated with only PCL. Bare TCP scaffolds showed the highest TRAP positive cells activity followed by TCP + PCL scaffolds, whereas TCP + AD scaffolds showed the lowest TRAP activity. A higher TRAP positive cells activity was observed in TCP + AD + PCL compared to TCP + AD scaffolds after 6 weeks. Our results show that in vivo local AD delivery from PCL-coated 3DP TCP scaffolds could further induce increased early bone formation. PMID:24826838

  5. The age of unusual xenogenic zircons from Yakutian kimberlites

    NASA Astrophysics Data System (ADS)

    Vladykin, N. V.; Lepekhina, E. A.

    2009-12-01

    Several spindle-shaped grains of zircon, which have a small size (<0.25 mm) and a distinct purplish pink coloration were found in the crushed samples of kimberlites from the Aykhal, Komsomolskaya-Magnitnaya, Botuobinskaya (Siberian platform), and Nyurbinskaya (Yakutia) pipes and olivine lamproites of the Khani massif (West Aldan). U-Pb SHRIMP II zircon dating performed at the VSEGEI Center for Isotopic Research yielded the ages of 1870-1890 Ma for the pipes of the Western province (Aykhal and Komsomolskaya) and 2200-2750 Ma for the pipes of the eastern province (Nyurbinskaya and Botuobinskaya), which allowed us to consider these zircons to be xenogenic to kimberlites. Although these zircons resemble in their age and color those from the granulite xenoliths in the Udachnaya pipe [2], no other granulite minerals are found there. Thus, major geological events in the mantle and lower crust, which led to the formation of zircon-bearing rocks, happened at 1800-1900 Ma in the northern part of the kimberlite province, whereas in the Eastern part of the province (Nakyn field) these events were much older (2220-2700 Ma). It is known that the period of 1800-1900 Ma in the Earth’s history was accompanied by intense tectonic movements and widespread alkaline-carbonatite magmatism. This magmatism was related to plume activity responsible for overheating the large portions of the mantle to the temperatures at which some diamonds in mantle rocks would burn (northern part of the kimberlite province). In the Nakyn area, the mantle underwent few or no geological processes at that time, and perhaps for this reason this area hosts more diamondiferous kimberlites. The age of olivine lamproites from the Khani massif is 2672-2732 Ma. Thus, these are some of the world’s oldest known K-alkaline rocks.

  6. Mechanical properties and drug release behavior of PCL/zein coated 45S5 bioactive glass scaffolds for bone tissue engineering application.

    PubMed

    Fereshteh, Zeinab; Nooeaid, Patcharakamon; Fathi, Mohammadhossein; Bagri, Akbar; Boccaccini, Aldo R

    2015-09-01

    This article presents data related to the research article entitled "The effect of coating type on mechanical properties and controlled drug release of PCL/zein coated 45S5 bioactive glass scaffolds for bone tissue engineering" [1]. We provide data on mechanical properties, in vitro bioactivity and drug release of bioactive glass (BG) scaffolds coated by poly (ε-caprolactone) (PCL) and zein used as a controlled release device for tetracycline hydrochloride (TCH). By coating the BG scaffolds with PCL or PCL/zein blend the mechanical properties of the scaffolds were substantially improved, i.e., the compressive strength increased from 0.004±0.001 MPa (uncoated BG scaffolds) to 0.15±0.02 MPa (PCL/zein coated BG scaffolds). A dense bone-like apatite layer formed on the surface of PCL/zein coated scaffolds immersed for 14 days in simulated body fluid (SBF). The data describe control of drug release and in vitro degradation behavior of coating by engineering the concentration of zein. Thus, the developed scaffolds exhibit attractive properties for application in bone tissue engineering research.

  7. Cellulose Nanocrystals--Bioactive Glass Hybrid Coating as Bone Substitutes by Electrophoretic Co-deposition: In Situ Control of Mineralization of Bioactive Glass and Enhancement of Osteoblastic Performance.

    PubMed

    Chen, Qiang; Garcia, Rosalina Pérez; Munoz, Josemari; Pérez de Larraya, Uxua; Garmendia, Nere; Yao, Qingqing; Boccaccini, Aldo R

    2015-11-11

    Surface functionalization of orthopedic implants is being intensively investigated to strengthen bone-to-implant contact and accelerate bone healing process. A hybrid coating, consisting of 45S5 bioactive glass (BG) individually wrapped and interconnected with fibrous cellulose nanocrystals (CNCs), is deposited on 316L stainless steel from aqueous suspension by a one-step electrophoretic deposition (EPD) process. Apart from the codeposition mechanism elucidated by means of zeta-potential and scanning electron microscopy measurements, in vitro characterization of the deposited CNCs-BG coating in simulated body fluid reveals an extremely rapid mineralization of BG particles on the coating (e.g., the formation of hydroxyapatite crystals layer after 0.5 day). A series of comparative trials and characterization methods were carried out to comprehensively understand the mineralization process of BG interacting with CNCs. Furthermore, key factors for satisfying the applicability of an implant coating such as coating composition, surface topography, and adhesion strength were quantitatively investigated as a function of mineralization time. Cell culture studies (using MC3T3-E1) indicate that the presence of CNCs-BG coating substantially accelerated cell attachment, spreading, proliferation, differentiation, and mineralization of extracellular matrix. This study has confirmed the capability of CNCs to enhance and regulate the bioactivity of BG particles, leading to mineralized CNCs-BG hybrids for improved bone implant coatings.

  8. Mechanical properties and drug release behavior of PCL/zein coated 45S5 bioactive glass scaffolds for bone tissue engineering application

    PubMed Central

    Fereshteh, Zeinab; Nooeaid, Patcharakamon; Fathi, Mohammadhossein; Bagri, Akbar; Boccaccini, Aldo R.

    2015-01-01

    This article presents data related to the research article entitled “The effect of coating type on mechanical properties and controlled drug release of PCL/zein coated 45S5 bioactive glass scaffolds for bone tissue engineering” [1]. We provide data on mechanical properties, in vitro bioactivity and drug release of bioactive glass (BG) scaffolds coated by poly (ε-caprolactone) (PCL) and zein used as a controlled release device for tetracycline hydrochloride (TCH). By coating the BG scaffolds with PCL or PCL/zein blend the mechanical properties of the scaffolds were substantially improved, i.e., the compressive strength increased from 0.004±0.001 MPa (uncoated BG scaffolds) to 0.15±0.02 MPa (PCL/zein coated BG scaffolds). A dense bone-like apatite layer formed on the surface of PCL/zein coated scaffolds immersed for 14 days in simulated body fluid (SBF). The data describe control of drug release and in vitro degradation behavior of coating by engineering the concentration of zein. Thus, the developed scaffolds exhibit attractive properties for application in bone tissue engineering research. PMID:26966716

  9. Combined Effect of a Microporous Layer and Type I Collagen Coating on a Biphasic Calcium Phosphate Scaffold for Bone Tissue Engineering

    PubMed Central

    Lee, Mun-Hwan; You, Changkook; Kim, Kyo-Han

    2015-01-01

    In this study, type I collagen was coated onto unmodified and modified microporous biphasic calcium phosphate (BCP) scaffolds. Surface characterization using a scanning electron microscope (SEM) and a surface goniometer confirmed the modification of the BCP coating. The quantity of the collagen coating was investigated using Sirius Red staining, and quantitative assessment of the collagen coating showed no significant differences between the two groups. MG63 cells were used to evaluate cell proliferation and ALP activity on the modified BCP scaffolds. The modified microporous surfaces showed low contact angles and large surface areas, which enhanced cell spreading and proliferation. Coating of the BCP scaffolds with type I collagen led to enhanced cell-material interactions and improved MG63 functions, such as spreading, proliferation, and differentiation. The micropore/collagen-coated scaffold showed the highest rate of cell response. These results indicate that a combination of micropores and collagen enhances cellular function on bioengineered bone allograft tissue. PMID:28787993

  10. Fortifying the Bone-Implant Interface Part 2: An In Vivo Evaluation of 3D-Printed and TPS-Coated Triangular Implants

    PubMed Central

    Lindsey, Derek P.; Woods, Shane A.; Lalor, Peggy A.; Gundanna, Mukund I.; Yerby, Scott A.

    2017-01-01

    Background Minimally invasive surgical fusion of the sacroiliac (SI) joint using machined solid triangular titanium plasma spray (TPS) coated implants has demonstrated positive clinical outcomes in SI joint pain patients. Additive manufactured (AM), i.e. 3D-printed, fenestrated triangular titanium implants with porous surfaces and bioactive agents, such as nanocrystalline hydroxyapatite (HA) or autograft, may further optimize bony fixation and subsequent biomechanical stability. Methods A bilateral ovine distal femoral defect model was used to evaluate the cancellous bone-implant interfaces of TPS-coated and AM implants. Four implant groups (n=6/group/time-point) were included: 1)TPS-coated, 2)AM, 3)AM+HA, and 4)AM+Autograft. The bone-implant interfaces of 6- and 12-week specimens were investigated via radiographic, biomechanical, and histomorphometric methods. Results Imaging showed peri-implant bone formation around all implants. Push-out testing demonstrated forces greater than 2500 N, with no significant differences among groups. While TPS implants failed primarily at the bone-implant interface, AM groups failed within bone ~2-3mm away from implant surfaces. All implants exhibited bone ongrowth, with no significant differences among groups. AM implants had significantly more bone ingrowth into their porous surfaces than TPS-coated implants (p<0.0001). Of the three AM groups, AM+Auto implants had the greatest bone ingrowth into the porous surface and through their core (p<0.002). Conclusions Both TPS and AM implants exhibited substantial bone ongrowth and ingrowth, with additional bone through growth into the AM implants’ core. Overall, AM implants experienced significantly more bone infiltration compared to TPS implants. While HA-coating did not further enhance results, the addition of autograft fostered greater osteointegration for AM implants. Clinical Relevance Additive manufactured implants with a porous surface provide a highly interconnected porous

  11. Improving the osteointegration and bone-implant interface by incorporation of bioactive particles in sol-gel coatings of stainless steel implants.

    PubMed

    Ballarre, Josefina; Manjubala, Inderchand; Schreiner, Wido H; Orellano, Juan Carlos; Fratzl, Peter; Ceré, Silvia

    2010-04-01

    In this study, we report a hybrid organic-inorganic TEOS-MTES (tetraethylorthosilicate-methyltriethoxysilane) sol-gel-made coating as a potential solution to improve the in vivo performance of AISI 316L stainless steel, which is used as permanent bone implant material. These coatings act as barriers for ion migration, promoting the bioactivity of the implant surface. The addition of SiO(2) colloidal particles to the TEOS-MTES sol (10 or 30 mol.%) leads to thicker films and also acts as a film reinforcement. Also, the addition of bioactive glass-ceramic particles is considered responsible for enhancing osseointegration. In vitro assays for bioactivity in simulated body fluid showed the presence of crystalline hydroxyapatite (HA) crystals on the surface of the double coating with 10mol.% SiO(2) samples on stainless steel after 30 days of immersion. The HA crystal lattice parameters are slightly different from stoichiometric HA. In vivo implantation experiments were carried out in a rat model to observe the osteointegration of the coated implants. The coatings promote the development of newly formed bone in the periphery of the implant, in both the remodellation zone and the marrow zone. The quality of the newly formed bone was assessed for mechanical and structural integrity by nanoindentation and small-angle X-ray scattering experiments. The different amount of colloidal silica present in the inner layer of the coating slightly affects the material quality of the newly formed bone but the nanoindentation results reveal that the lower amount of silica in the coating leads to mechanical properties similar to cortical bone. Copyright 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  12. Behavior of Human Bone Marrow-Derived Mesenchymal Stem Cells on Various Titanium-Based Coatings

    PubMed Central

    Qu, Chengjuan; Kaitainen, Salla; Kröger, Heikki; Lappalainen, Reijo; Lammi, Mikko J.

    2016-01-01

    The chemical composition and texture of titanium coatings can influence the growth characteristics of the adhered cells. An enhanced proliferation of the human mesenchymal stem cells (hMSCs) would be beneficial. The present study was aimed to investigate whether titanium deposited at different atmospheres would affect the cell growth properties, cellular morphology, and expression of surface markers of hMSCs. Titanium-based coatings were deposited on silicon wafers under oxygen, nitrogen, or argon atmospheres by ultra-short pulsed laser deposition using two different gas pressures followed by heating at 400 °C for 2 h. The characteristics of the coated surfaces were determined via contact angle, zeta potential, and scanning electron microscopy (SEM) techniques. Human MSCs were cultivated on differently coated silicon wafers for 48 h. Subsequently, the cell proliferation rates were analyzed with an MTT assay. The phenotype of hMSCs was checked via immunocytochemical stainings of MSC-associated markers CD73, CD90, and CD105, and the adhesion, spreading, and morphology of hMSCs on coated materials via SEM. The cell proliferation rates of the hMSCs were similar on all coated silicon wafers. The hMSCs retained the MSC phenotype by expressing MSC-associated markers and fibroblast-like morphology with cellular projections. Furthermore, no significant differences could be found in the size of the cells when cultured on all various coated surfaces. In conclusion, despite certain differences in the contact angles and the zeta potentials of various titanium-based coatings, no single coating markedly improved the growth characteristics of hMSCs. PMID:28773947

  13. Bone regeneration in critical bone defects using three-dimensionally printed β-tricalcium phosphate/hydroxyapatite scaffolds is enhanced by coating scaffolds with either dipyridamole or BMP-2.

    PubMed

    Ishack, Stephanie; Mediero, Aranzazu; Wilder, Tuere; Ricci, John L; Cronstein, Bruce N

    2017-02-01

    Bone defects resulting from trauma or infection need timely and effective treatments to restore damaged bone. Using specialized three-dimensional (3D) printing technology we have created custom 3D scaffolds of hydroxyapatite (HA)/beta-tri-calcium phosphate (β-TCP) to promote bone repair. To further enhance bone regeneration we have coated the scaffolds with dipyridamole, an agent that increases local adenosine levels by blocking cellular uptake of adenosine. Nearly 15% HA:85% β-TCP scaffolds were designed using Robocad software, fabricated using a 3D Robocasting system, and sintered at 1100°C for 4 h. Scaffolds were coated with BMP-2 (200 ng mL(-1) ), dypiridamole 100 µM or saline and implanted in C57B6 and adenosine A2A receptor knockout (A2AKO) mice with 3 mm cranial critical bone defects for 2-8 weeks. Dipyridamole release from scaffold was assayed spectrophotometrically. MicroCT and histological analysis were performed. Micro-computed tomography (microCT) showed significant bone formation and remodeling in HA/β-TCP-dipyridamole and HA/β-TCP-BMP-2 scaffolds when compared to scaffolds immersed in vehicle at 2, 4, and 8 weeks (n = 5 per group; p ≤ 0.05, p ≤ 0.05, and p ≤ 0.01, respectively). Histological analysis showed increased bone formation and a trend toward increased remodeling in HA/β-TCP- dipyridamole and HA/β-TCP-BMP-2 scaffolds. Coating scaffolds with dipyridamole did not enhance bone regeneration in A2AKO mice. In conclusion, scaffolds printed with HA/β-TCP promote bone regeneration in critical bone defects and coating these scaffolds with agents that stimulate A2A receptors and growth factors can further enhance bone regeneration. These coated scaffolds may be very useful for treating critical bone defects due to trauma, infection or other causes. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 366-375, 2017.

  14. Bone

    NASA Astrophysics Data System (ADS)

    Helmberger, Thomas K.; Hoffmann, Ralf-Thorsten

    The typical clinical signs in bone tumours are pain, destruction and destabilization, immobilization, neurologic deficits, and finally functional impairment. Primary malignant bone tumours are a rare entity, accounting for about 0.2% of all malignancies. Also benign primary bone tumours are in total rare and mostly asymptomatic. The most common symptomatic benign bone tumour is osteoid osteoma with an incidence of 1:2000.

  15. Biological Response of Human Bone Marrow-Derived Mesenchymal Stem Cells to Commercial Tantalum Coatings with Microscale and Nanoscale Surface Topographies

    NASA Astrophysics Data System (ADS)

    Skoog, Shelby A.; Kumar, Girish; Goering, Peter L.; Williams, Brian; Stiglich, Jack; Narayan, Roger J.

    2016-06-01

    Tantalum is a promising orthopaedic implant coating material due to its robust mechanical properties, corrosion resistance, and excellent biocompatibility. Previous studies have demonstrated improved biocompatibility and tissue integration of surface-treated tantalum coatings compared to untreated tantalum. Surface modification of tantalum coatings with biologically inspired microscale and nanoscale features may be used to evoke optimal tissue responses. The goal of this study was to evaluate commercial tantalum coatings with nanoscale, sub-microscale, and microscale surface topographies for orthopaedic and dental applications using human bone marrow-derived mesenchymal stem cells (hBMSCs). Tantalum coatings with different microscale and nanoscale surface topographies were fabricated using a diffusion process or chemical vapor deposition. Biological evaluation of the tantalum coatings using hBMSCs showed that tantalum coatings promote cellular adhesion and growth. Furthermore, hBMSC adhesion to the tantalum coatings was dependent on surface feature characteristics, with enhanced cell adhesion on sub-micrometer- and micrometer-sized surface topographies compared to hybrid nano-/microstructures. Nanostructured and microstructured tantalum coatings should be further evaluated to optimize the surface coating features to promote osteogenesis and enhance osseointegration of tantalum-based orthopaedic implants.

  16. The effect of layer-by-layer chitosan-hyaluronic acid coating on graft-to-bone healing of a poly(ethylene terephthalate) artificial ligament.

    PubMed

    Li, Hong; Ge, Yunsheng; Zhang, Pengyun; Wu, Lingxiang; Chen, Shiyi

    2012-01-01

    Surface coating with an organic layer-by-layer self-assembled template of chitosan and hyaluronic acid on a poly(ethylene terephthalate) (PET) artificial ligament was designed for the promotion and enhancement of graft-to-bone healing after artificial ligament implantation in a bone tunnel. The results of in vitro culturing of MC3T3-E1 mouse osteoblastic cells supported the hypothesis that the layer-by-layer coating of chitosan and hyaluronic acid could promote the cell compatibility of grafts and could promote osteoblast proliferation. A rabbit extra-articular tendon-to-bone healing model was used to evaluate the effect of this kind of surface-modified stainless artificial ligament in vivo. The final results proved that this organic compound coating could significantly promote and enhance new bone formation at the graft-bone interface histologically and, correspondingly, the experimental group with coating had significantly higher biomechanical properties compared with controls at 8 weeks (P < 0.05).

  17. Coating of biodegradable magnesium alloy bone implants using nanostructured diopside (CaMgSi2O6)

    NASA Astrophysics Data System (ADS)

    Razavi, Mehdi; Fathi, Mohammadhossein; Savabi, Omid; Beni, Batoul Hashemi; Razavi, Seyed Mohammad; Vashaee, Daryoosh; Tayebi, Lobat

    2014-01-01

    Magnesium alloys with their biodegradable characteristic can be a very good candidate to be used in orthopedic implants. However, magnesium alloys may corrode and degrade too fast for applications in the bone healing procedure. In order to enhance the corrosion resistance and the in vitro bioactivity of a magnesium alloy, a nanostructured diopside (CaMgSi2O6) film was coated on AZ91 magnesium alloy through combined micro-arc oxidation (MAO) and electrophoretic deposition (EPD) methods. The crystalline structures, morphologies and compositions of the coated and uncoated substrates were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy. Polarization, electrochemical impedance spectroscopy, and immersion test in simulated body fluid (SBF) were employed to evaluate the corrosion resistance and the in vitro bioactivity of the samples. The results of our investigation showed that the nanostructured diopside coating deposited on the MAO layer increases the corrosion resistance and improves the in vitro bioactivity of the biodegradable magnesium alloy.

  18. Collagen-Coated Bovine Bone in Peri-implantitis Defects: A Pilot Study on a Novel Approach.

    PubMed

    Rotenberg, Shaun A; Steiner, Rob; Tatakis, Dimitris N

    2016-01-01

    As dental implants have become routine therapy, clinicians are more frequently being faced with treating peri-implantitis. To date, no single treatment protocol has been shown to be the preferred means to treat peri-implantitis. The aim of this retrospective case series is to present a novel approach utilizing porcine collagen-coated bovine bone (CBB) to treat peri-implantitis. Eleven patients, with no history of periodontitis, presenting with peri-implantitis around a single restored dental implant, were included in the study. At initial and follow-up examinations, bleeding on probing (BOP), probing depth (PD), and gingival margin location (GM) were recorded. Following surgical debridement of the peri-implant defect and treatment of the implant surface with a 0.12% chlorhexidine gluconate solution, bony defects were grafted with CBB. All patients had 12 months of follow-up. Upon presentation, average PD at the deepest site (DS) was 7.6 ± 1.9 mm. At the time of surgery, excess cement was found around nine implants (81%). All patients healed uneventfully without postoperative complications. At 6 and 12 months, all implants showed favorable results with average DS PD reduction of 3.9 ± 1.5 mm and 4.1 ± 1.6 mm, respectively. All implants showed radiographic signs of bone fill, while GM showed no changes from preoperative measurements at either 6 (0.1 ± 0.5 mm) or 12 (0.0 ± 0.6 mm) months. The use of a porcine collagen-coated bovine bone graft to treat peri-implantitis represents a potentially predictable therapeutic modality. Randomized controlled trials are necessary to substantiate the treatment outcomes.

  19. Immunological consequences of the use of xenogeneic hepatocytes in a bioartificial liver for acute liver failure.

    PubMed

    te Velde, A A; Flendrig, L M; Ladiges, N C; Chamuleau, R A

    1997-04-01

    The use of cells from xenogeneic origin in a bioartificial liver can have a number of immunological consequences, not only for the cells in the bioartificial liver but also for the patient receiving the bioartificial liver treatment. The impact of these consequences will depend on the immune status of the patient receiving bioartificial liver treatment, the duration and frequency of the treatment and on the extent of interaction between the patients blood (or plasma) and the xenogeneic liver cells. In an experimental model we infused rats with a culture supernatant of pig hepatocytes and demonstrated using Western blots and immunohistological techniques that antibodies are raised against the very small amounts of the pig hepatocyte-derived proteins present in the culture medium. Potential problems of bioartificial liver destruction and the possibility of hypersensitivity reactions due to the secretion of xenogeneic proteins into the circulation of the patient are discussed. Because the liver has an important role in the clearance of immune complexes it is concluded that precautions should be taken when (repeated) application of a xenogeneic bioartificial liver in patients with liver failure is considered.

  20. Repopulation of laser-perforated chondroepiphyseal matrix with xenogeneic chondrocytes: An experimental model

    SciTech Connect

    Caruso, E.M.; Lewandrowski, K.U.; Ohlendorf, C.; Tomford, W.W.; Zaleske, D.J.

    1996-01-01

    Growth of chondrocytes into a xenogeneic chondroepiphyseal matrix was investigated in an in vitro experimental model by combining viable calf chondrocytes with chick epiphyseal matrix devoid of viable chondrocytes. The chondrocytes were harvested from the wrist joints of newborn calves and cultured for 2 days. The epiphyses were harvested from the distal femurs and the proximal tibias of fetal chicks after development was arrested at 17 days by freezing. The epiphyseal specimens were prepared in four ways. These included femoral and tibial epiphyses without holes and femoral and tibial epiphyses with holes made by a laser. These epiphyseal specimens were co-cultured with calf chondrocytes for various periods. After digestion of the epiphyseal matrix, viable chondrocytes were counted in suspension. Chondrocyte division in the matrix was assessed by [{sup 3}H]thymidine incorporation. The growth of calf chondrocytes into the xenogeneic chick matrix was evaluated by fluorescence microscopy on fresh thick epiphyseal sections. The percentage of viable chondrocytes in the xenogeneic epiphyseal matrix increased with culture time to a maximum at day 21. The addition of laser-drilled holes was found to extend a plateau of chondrocyte viability until day 29. A decrease in cell viability was detected at later observation points. This study demonstrates that xenogeneic matrix may serve as a morphogenetic scaffold for chondrocytic growth. 22 refs., 3 figs.

  1. Preparation of bone-implants by coating hydroxyapatite nanoparticles on self-formed titanium dioxide thin-layers on titanium metal surfaces.

    PubMed

    Wijesinghe, W P S L; Mantilaka, M M M G P G; Chathuranga Senarathna, K G; Herath, H M T U; Premachandra, T N; Ranasinghe, C S K; Rajapakse, R P V J; Rajapakse, R M G; Edirisinghe, Mohan; Mahalingam, S; Bandara, I M C C D; Singh, Sanjleena

    2016-06-01

    Preparation of hydroxyapatite coated custom-made metallic bone-implants is very important for the replacement of injured bones of the body. Furthermore, these bone-implants are more stable under the corrosive environment of the body and biocompatible than bone-implants made up of pure metals and metal alloys. Herein, we describe a novel, simple and low-cost technique to prepare biocompatible hydroxyapatite coated titanium metal (TiM) implants through growth of self-formed TiO2 thin-layer (SFTL) on TiM via a heat treatment process. SFTL acts as a surface binder of HA nanoparticles in order to produce HA coated implants. Colloidal HA nanorods prepared by a novel surfactant-assisted synthesis method, have been coated on SFTL via atomized spray pyrolysis (ASP) technique. The corrosion behavior of the bare and surface-modified TiM (SMTiM) in a simulated body fluid (SBF) medium is also studied. The highest corrosion rate is found to be for the bare TiM plate, but the corrosion rate has been reduced with the heat-treatment of TiM due to the formation of SFTL. The lowest corrosion rate is recorded for the implant prepared by heat treatment of TiM at 700 °C. The HA-coating further assists in the passivation of the TiM in the SBF medium. Both SMTiM and HA coated SMTiM are noncytotoxic against osteoblast-like (HOS) cells and are in high-bioactivity. The overall production process of bone-implant described in this paper is in high economic value.

  2. Collagen type I coating stimulates bone regeneration and osteointegration of titanium implants in the osteopenic rat.

    PubMed

    Sartori, Maria; Giavaresi, Gianluca; Parrilli, Annapaola; Ferrari, Andrea; Aldini, Nicolò Nicoli; Morra, Marco; Cassinelli, Clara; Bollati, Daniele; Fini, Milena

    2015-10-01

    To investigate the effects of titanium implants functionalised with collagen type I (TiColl) on bone regeneration and osteointegration in a healthy and osteopenic rat animal model. TiColl screws were implanted into the femoral condyles of healthy and osteopenic rats and compared with acid-etched titanium (Ti) screws. The osteointegration process was evaluated by a complementary approach combining microtomographic, histological, histomorphometric and biomechanical investigations at four and 12 weeks. The TiColl screw also ensured a greater mechanical stability; the push-out values for TiColl screws increased from four to 12 weeks (+28 %). The energy necessary to detach the bone from the screw was significantly higher for TiColl-functionalised screws in comparison to Ti screws (+23 %) at 12 weeks. Histomorphometric investigation revealed that total bone-to-implant contact was higher in TiColl screws in comparison to Ti screws (P < 0.05) and at epiphyseal level, increased bone-to-implant contact was found with TiColl screws in comparison to Ti screws (P < 0.05) in an ovariectomy (OVX) condition. A significant increase in the measured total bone ingrowth from four to 12 weeks was detected for both materials, but more significant for the TiColl material (P < 0.0005). Finally, bone ingrowth in the TiColl group was significantly higher (P < 0.005) in comparison to that of Ti screws in the SHAM condition at metaphyseal level at 12 weeks. The present results showed that TiColl is effective in promoting implant osteointegration even in compromised bone.

  3. Informed consent: cultural and religious issues associated with the use of allogeneic and xenogeneic mesh products.

    PubMed

    Jenkins, Eric D; Yip, Michael; Melman, Lora; Frisella, Margaret M; Matthews, Brent D

    2010-04-01

    Our aim was to investigate the views of major religions and cultural groups regarding the use of allogeneic and xenogeneic mesh for soft tissue repair. We contacted representatives from Judaism, Islam, Buddhism, Hinduism, Scientology, and Christianity (Baptists, Methodists, Seventh-Day Adventists, Catholics, Lutherans, Church of Jesus Christ of Latter-Day Saints, Evangelical, and Jehovah's Witnesses). We also contacted American Vegan and People for the Ethical Treatment of Animals (PETA). Standardized questionnaires were distributed to the religious and cultural authorities. Questions solicited views on the consumption of beef and pork products and the acceptability of human-, bovine-, or porcine-derived acellular grafts. Dietary restrictions among Jews and Muslims do not translate to tissue implantation restriction. Approximately 50% of Seventh-day Adventists and 40% of Buddhists practice vegetarianism, which may translate into a refusal of the use of xenogeneic tissue. Some Hindus categorically prohibit the use of human tissue and animal products; others allow the donation and receipt of human organs and tissues. PETA is opposed to all uses of animals, but not to human acellular grafts or organ transplantation. Some vegans prefer allogeneic to xenogeneic tissue. Allogeneic and xenogeneic acellular grafts are acceptable among Scientologists, Baptists, Lutherans, Evangelicals, and Catholics. Methodists, Jehovah's Witnesses, and The Church of Jesus Christ of Latter-Day Saints leave the decision up to the individual. Knowledge of religious and cultural preferences regarding biologic mesh assists the surgeon in obtaining a culturally sensitive informed consent for procedures involving acellular allogeneic or xenogeneic grafts. Copyright (c) 2010 American College of Surgeons. Published by Elsevier Inc. All rights reserved.

  4. Influence of Hydroxyapatite-Coated and Growth Factor–Releasing Interference Screws on Tendon-Bone Healing in an Ovine Model

    PubMed Central

    Lu, Yan; Markel, Mark D.; Nemke, Brett; Lee, J. Sam; Graf, Ben K.; Murphy, William L.

    2014-01-01

    Purpose Our purpose was to determine whether a bioresorbable interference screw coated with a hydroxyapatite-based mineral layer designed to release an engineered peptide growth factor (linkBMP-2 [where “BMP-2” indicates bone morphogenetic protein 2]) improved tendon-bone healing compared with a screw without coating. Methods Tagged linkBMP-2 peptides were used to quantify binding efficiency and release kinetics on 9 mineral-coated BIORCI screws (Smith & Nephew, Andover, MA). Fourteen mature female sheep were used in this study. In each of the 14 sheep, each stifle was randomized to either receive a linkBMP-2–coated or uncoated interference screw (n ± 14 per treatment). The sheep were euthanized at 6 weeks after surgery. Eight sheep were subjected to biomechanical testing for peak load at failure and stiffness, and six sheep were used for histologic analysis according to a semiquantitative scoring scale. Results The linkBMP-2 molecule bound efficiently to the surface of mineral-coated interference screws. Over 80% of the initially bound linkBMP-2 was released during a 6-week time frame in vitro. Peak load at failure in the linkBMP-2–coated interference screw group (mean ± SD, 449.3 ± 84.7 N) was not significantly different from that in the uncoated group (421.0 ± 61.8 N) (P = .22). Stiffness in the linkBMP-2–coated interference screw group (157.3 ± 39.6 N/mm) was not significantly different from that in the uncoated group (140.6 ± 20.3 N/mm) (P = .12). Histologic analysis showed that the tendons in the linkBMP-2–coated interference screw group had higher scores (better) than the uncoated group. In the linkBMP-2–coated interference screw group, mesenchymal cells were present at the interface between screw and tendon, whereas these cells were not present in the uncoated group. Conclusions We found that linkBMP-2 can be bound onto a mineral-coated BIORCI interference screw surface and subsequently released from the screw surface in a sustained

  5. The use of postoperative irradiation for the prevention of heterotopic bone after total hip replacement with biologic fixation (porous coated) prosthesis: An animal model

    SciTech Connect

    Konski, A.; Weiss, C.; Rosier, R.; Poulter, C.; Pelligrini, V.; Anthony, P.; Evarts, C.M.; Richardson, M.; Henzler, M.; Rubin, P. )

    1990-04-01

    Radiation has been shown to be effective in the prevention of heterotopic bone. The exact etiology of heterotopic bone is unknown. Total hip prosthetic devices that do not depend upon bone cement for fixation have become increasingly popular. The mechanism by which the bone forms around the prosthesis is similar to the process by which fractures heal which has been shown to be sensitive to irradiation. Using a rabbit model we have undertaken a study to investigate the effect of irradiation on the bony ingrowth on porous coated implants. Forty-five rabbits had porous coated implants surgically placed in the tibiae bilaterally. Each rabbit had one tibia randomly irradiated with 1,000 cGy in 5 fractions starting on the first post-operative day. Animals were sacrificed weekly starting 2 weeks post-operatively and the tibae were sent for pullout studies. The amount of force necessary to pullout the treated tibae was statistically less than the amount of force necessary to remove the untreated tibae at 2 weeks. From 3 weeks on there was no difference in the force necessary to remove the prosthesis from the untreated or treated tibae. Histologically, the untreated tibae showed bone formation while the treated tibae did not. Because of these results, it is suggested that the treatment of patients at risk for development of heterotopic bone be modified to only include the area between the femur and pelvis avoiding treatment of the prosthetic device.

  6. Xenogeneic Bio-Root Prompts the Constructive Process Characterized by Macrophage Phenotype Polarization in Rodents and Nonhuman Primates.

    PubMed

    Li, Hui; Sun, Jingjing; Li, Jie; Yang, Hefeng; Luo, Xiangyou; Chen, Jinlong; Xie, Li; Huo, Fangjun; Zhu, Tian; Guo, Weihua; Tian, Weidong

    2017-03-01

    Tissue or organ regeneration using xenogeneic matrices is a promising approach to address the shortage of donor matrices for allotransplantation. Success of such approach has been demonstrated to correlate with macrophage-mediated fibrotic homeostasis and tissue remodeling. The previous studies have demonstrated that treated dentin matrix (TDM) could be a suitable bioactive substrate for allogeneic tooth root regeneration. This study constructed xenogeneic bioengineered tooth root (bio-root) via a combination of porcine TDM (pTDM) with allogeneic dental follicle cells (DFCs). Macrophage phenotypes are used to evaluate the remodeling process of xenogeneic bio-roots in vitro and in vivo. pTDM can facilitate odontoblast differentiation of human derived DFCs. Xenogeneic bio-roots in rat subcutaneous tissue prompt constructive response via M1 macrophage infiltration during early postimplantation stages and increase restorative M2 phenotype at later stages. After implantation of bio-roots into jaws of rhesus monkeys for six months, periodontal ligament-like fibers accompanied by macrophage polarization are observed, which are positive for COL-1, Periostin, βIII-tubulin and display such structures as fibroblasts and blood vessels. The reconstructed bio-root possesses biomechanical properties for the dissipation of masticatory forces. These results support that xenogeneic bio-root could maintain fibrotic homeostasis during remodeling process and highlight the potential application of xenogeneic matrices in regenerative medicine.

  7. Bone response to titanium implants coated with thin sputtered HA film subject to hydrothermal treatment and implanted in the canine mandible.

    PubMed

    Ozeki, K; Okuyama, Y; Fukui, Y; Aoki, H

    2006-01-01

    Hydroxyapatite (HA) was coated onto titanium implants using radio frequency magnetron sputtering. The HA films were crystallized in an autoclave tube using low temperature hydrothermal treatment. The average film thickness on the implant was 1.1 microm. HA-coated and pure-titanium implants were inserted into canine mandibles for up to 24 weeks. Forty-eight implants were placed in eight beagles. After 2, 4, 12 and 24 weeks, implants were retrieved and prepared for histological observation, and the HA film thickness was determined using energy-dispersive X-ray spectroscopy. Light microscopy revealed that, after two weeks, the bone response to the HA-coated implants was much better than to the pure titanium implants, and osteoblasts were observed at the bone-implant interface. After four weeks, the screw threads of the HA-coated implants were almost completely covered with bone. The HA film thickness rapidly decreased up to four weeks of implantation, then gently decreased, reaching 0.40+/-0.03 microm at the upper region of the implant after 12 weeks. That indicates that about 80% of the HA film had dissolved after 12 weeks of implantation. The rate of decrease in the HA film thickness was greater with increasing implant depth.

  8. Humanized mouse model for assessing the human immune response to xenogeneic and allogeneic decellularized biomaterials.

    PubMed

    Wang, Raymond M; Johnson, Todd D; He, Jingjin; Rong, Zhili; Wong, Michelle; Nigam, Vishal; Behfar, Atta; Xu, Yang; Christman, Karen L

    2017-06-01

    Current assessment of biomaterial biocompatibility is typically implemented in wild type rodent models. Unfortunately, different characteristics of the immune systems in rodents versus humans limit the capability of these models to mimic the human immune response to naturally derived biomaterials. Here we investigated the utility of humanized mice as an improved model for testing naturally derived biomaterials. Two injectable hydrogels derived from decellularized porcine or human cadaveric myocardium were compared. Three days and one week after subcutaneous injection, the hydrogels were analyzed for early and mid-phase immune responses, respectively. Immune cells in the humanized mouse model, particularly T-helper cells, responded distinctly between the xenogeneic and allogeneic biomaterials. The allogeneic extracellular matrix derived hydrogels elicited significantly reduced total, human specific, and CD4(+) T-helper cell infiltration in humanized mice compared to xenogeneic extracellular matrix hydrogels, which was not recapitulated in wild type mice. T-helper cells, in response to the allogeneic hydrogel material, were also less polarized towards a pro-remodeling Th2 phenotype compared to xenogeneic extracellular matrix hydrogels in humanized mice. In both models, both biomaterials induced the infiltration of macrophages polarized towards a M2 phenotype and T-helper cells polarized towards a Th2 phenotype. In conclusion, these studies showed the importance of testing naturally derived biomaterials in immune competent animals and the potential of utilizing this humanized mouse model for further studying human immune cell responses to biomaterials in an in vivo environment.

  9. ITIM-dependent negative signaling pathways for the control of cell-mediated xenogeneic immune responses.

    PubMed

    del Rio, Maria-Luisa; Seebach, Jörg D; Fernández-Renedo, Carlos; Rodriguez-Barbosa, Jose-Ignacio

    2013-01-01

    Xenotransplantation is an innovative field of research with the potential to provide us with an alternative source of organs to face the severe shortage of human organ donors. For several reasons, pigs have been chosen as the most suitable source of organs and tissues for transplantation in humans. However, porcine xenografts undergo cellular immune responses representing a major barrier to their acceptance and normal functioning. Innate and adaptive xenogeneic immunity is mediated by both the recognition of xenogeneic tissue antigens and the lack of inhibition due to molecular cross-species incompatibilities of regulatory pathways. Therefore, the delivery of immunoreceptor tyrosine-based inhibitory motif (ITIM)-dependent and related negative signals to control innate (NK cells, macrophages) and adaptive T and B cells might overcome cell-mediated xenogeneic immunity. The proof of this concept has already been achieved in vitro by the transgenic overexpression of human ligands of several inhibitory receptors in porcine cells resulting in their resistance against xenoreactivity. Consequently, several transgenic pigs expressing tissue-specific human ligands of inhibitory coreceptors (HLA-E, CD47) or soluble competitors of costimulation (belatacept) have already been generated. The development of these robust and innovative approaches to modulate human anti-pig cellular immune responses, complementary to conventional immunosuppression, will help to achieve long-term xenograft survival. In this review, we will focus on the current strategies to enhance negative signaling pathways for the regulation of undesirable cell-mediated xenoreactive immune responses.

  10. A xenogeneic-free system generating functional human gut organoids from pluripotent stem cells

    PubMed Central

    Uchida, Hajime; Machida, Masakazu; Miura, Takumi; Kawasaki, Tomoyuki; Sasaki, Kengo; Sakamoto, Seisuke; Ohuchi, Noriaki; Kasahara, Mureo; Umezawa, Akihiro

    2017-01-01

    Functional intestines are composed of cell types from all 3 primary germ layers and are generated through a highly orchestrated and serial developmental process. Directed differentiation of human pluripotent stem cells (hPSCs) has been shown to yield gut-specific cell types; however, these structures do not reproduce critical functional interactions between cell types of different germ layers. Here, we developed a simple protocol for the generation of mature functional intestinal organoids from hPSCs under xenogeneic-free conditions. The stem cell–derived gut organoids produced here were found to contain distinct types of intestinal cells, including enterocytes, goblet cells, Paneth cells, and enteroendocrine cells, that were derived from all 3 germ layers; moreover, they demonstrated intestinal functions, including peptide absorption, and showed innervated bowel movements in response to stimulation with histamine and anticholinergic drugs. Importantly, the gut organoids obtained using this xenogeneic-free system could be stably maintained in culture for prolonged periods and were successfully engrafted in vivo. Our xenogeneic-free approach for generating gut organoids from hPSCs provides a platform for studying human intestinal diseases and for pharmacological testing. PMID:28097227

  11. A xenogeneic-free system generating functional human gut organoids from pluripotent stem cells.

    PubMed

    Uchida, Hajime; Machida, Masakazu; Miura, Takumi; Kawasaki, Tomoyuki; Okazaki, Takuya; Sasaki, Kengo; Sakamoto, Seisuke; Ohuchi, Noriaki; Kasahara, Mureo; Umezawa, Akihiro; Akutsu, Hidenori

    2017-01-12

    Functional intestines are composed of cell types from all 3 primary germ layers and are generated through a highly orchestrated and serial developmental process. Directed differentiation of human pluripotent stem cells (hPSCs) has been shown to yield gut-specific cell types; however, these structures do not reproduce critical functional interactions between cell types of different germ layers. Here, we developed a simple protocol for the generation of mature functional intestinal organoids from hPSCs under xenogeneic-free conditions. The stem cell-derived gut organoids produced here were found to contain distinct types of intestinal cells, including enterocytes, goblet cells, Paneth cells, and enteroendocrine cells, that were derived from all 3 germ layers; moreover, they demonstrated intestinal functions, including peptide absorption, and showed innervated bowel movements in response to stimulation with histamine and anticholinergic drugs. Importantly, the gut organoids obtained using this xenogeneic-free system could be stably maintained in culture for prolonged periods and were successfully engrafted in vivo. Our xenogeneic-free approach for generating gut organoids from hPSCs provides a platform for studying human intestinal diseases and for pharmacological testing.

  12. A poly(glycerol sebacate)-coated mesoporous bioactive glass scaffold with adjustable mechanical strength, degradation rate, controlled-release and cell behavior for bone tissue engineering.

    PubMed

    Lin, Dan; Yang, Kai; Tang, Wei; Liu, Yutong; Yuan, Yuan; Liu, Changsheng

    2015-07-01

    Various requirements in the field of tissue engineering have motivated the development of three-dimensional scaffold with adjustable physicochemical properties and biological functions. A series of multiparameter-adjustable mesoporous bioactive glass (MBG) scaffolds with uncrosslinked poly(glycerol sebacate) (PGS) coating was prepared in this article. MBG scaffold was prepared by a modified F127/PU co-templating process and then PGS was coated by a simple adsorption and lyophilization process. Through controlling macropore parameters and PGS coating amount, the mechanical strength, degradation rate, controlled-release and cell behavior of the composite scaffold could be modulated in a wide range. PGS coating successfully endowed MBG scaffold with improved toughness and adjustable mechanical strength covering the bearing range of trabecular bone (2-12MPa). Multilevel degradation rate of the scaffold and controlled-release rate of protein from mesopore could be achieved, with little impact on the protein activity owing to an "ultralow-solvent" coating and "nano-cavity entrapment" immobilization method. In vitro studies indicated that PGS coating promoted cell attachment and proliferation in a dose-dependent manner, without affecting the osteogenic induction capacity of MBG substrate. These results first provide strong evidence that uncrosslinked PGS might also yield extraordinary achievements in traditional MBG scaffold. With the multiparameter adjustability, the composite MBG/PGS scaffolds would have a hopeful prospect in bone tissue engineering. The design considerations and coating method of this study can also be extended to other ceramic-based artificial scaffolds and are expected to provide new thoughts on development of future tissue engineering materials. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Local delivery of parathyroid hormone-related protein-derived peptides coated onto a hydroxyapatite-based implant enhances bone regeneration in old and diabetic rats.

    PubMed

    Ardura, Juan A; Portal-Núñez, Sergio; Lozano, Daniel; Gutiérrez-Rojas, Irene; Sánchez-Salcedo, Sandra; López-Herradón, Ana; Mulero, Francisca; Villanueva-Peñacarrillo, María L; Vallet-Regí, María; Esbrit, Pedro

    2016-08-01

    Diabetes mellitus (DM) and aging are associated with bone fragility and increased fracture risk. Both (1-37) N- and (107-111) C-terminal parathyroid hormone-related protein (PTHrP) exhibit osteogenic properties. We here aimed to evaluate and compare the efficacy of either PTHrP (1-37) or PTHrP (107-111) loaded into gelatin-glutaraldehyde-coated hydroxyapatite (HA-Gel) foams to improve bone repair of a transcortical tibial defect in aging rats with or without DM, induced by streptozotocin injection at birth. Diabetic old rats showed bone structural deterioration compared to their age-matched controls. Histological and μ-computerized tomography studies showed incomplete bone repair at 4 weeks after implantation of unloaded Ha-Gel foams in the transcortical tibial defects, mainly in old rats with DM. However, enhanced defect healing, as shown by an increase of bone volume/tissue volume and trabecular and cortical thickness and decreased trabecular separation, occurred in the presence of either PTHrP peptide in the implants in old rats with or without DM. This was accompanied by newly formed bone tissue around the osteointegrated HA-Gel implant and increased gene expression of osteocalcin and vascular endothelial growth factor (bone formation and angiogenic markers, respectively), and decreased expression of Sost gene, a negative regulator of bone formation, in the healing bone area. Our findings suggest that local delivery of PTHrP (1-37) or PTHrP (107-111) from a degradable implant is an attractive strategy to improve bone regeneration in aged and diabetic subjects. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2060-2070, 2016.

  14. Self-complementary AAV2.5-BMP2-coated Femoral Allografts Mediated Superior Bone Healing Versus Live Autografts in Mice With Equivalent Biomechanics to Unfractured Femur

    PubMed Central

    Yazici, Cemal; Takahata, Masahiko; Reynolds, David G; Xie, Chao; Samulski, R Jude; Samulski, Jade; Beecham, E Jeffrey; Gertzman, Arthur A; Spilker, Mark; Zhang, Xinping; O'Keefe, Regis J; Awad, Hani A; Schwarz, Edward M

    2011-01-01

    Structural allografts used for critical bone defects have limited osteogenic properties for biointegration. Although ex vivo tissue-engineered constructs expressing bone morphogenetic protein-2 (BMP2) have demonstrated efficacy in critical defect models, similar success has not been achieved with off-the-shelf acellular approaches, including allografts coated with freeze-dried single-stranded adeno-associated virus (ssAAV-BMP2). To see whether the self-complementary AAV serotype 2.5 vector (scAAV2.5-BMP2) could overcome this, we performed side-by-side comparisons in vitro and in the murine femoral allograft model. Although ssAAV-BMP2 was unable to induce BMP2 expression and differentiation of C3H10T1/2 cells in culture, scAAV2.5-BMP2 transduction led to dose-dependent BMP2 expression and alkaline phosphatase activity, and displayed a 25-fold increased transduction efficiency in vivo. After 6 weeks, the ssAAV-BMP2 coating failed to demonstrate any significant effects. However, all allografts coated with 1010 scAAV2.5-BMP2 formed a new cortical shell that was indistinguishable to that formed by live autografts. Additionally, coated allografts experienced reduced resorption resulting in a threefold increase in graft bone volume versus autograft. This led to biomechanical superiority versus both allografts and autografts, and equivalent torsional rigidity to unfractured femur. Collectively, these results demonstrate that scAAV2.5-BMP2 coating overcomes the major limitations of structural allografts, which can be used to heal critical defects of any size. PMID:21206485

  15. Comparative Decellularization and Recellularization of Wild-Type and Alpha 1,3 Galactosyltransferase Knockout Pig Lungs: A Model for Ex Vivo Xenogeneic Lung Bioengineering and Transplantation.

    PubMed

    Platz, Joseph; Bonenfant, Nicholas R; Uhl, Franziska E; Coffey, Amy L; McKnight, Tristan; Parsons, Charles; Sokocevic, Dino; Borg, Zachary D; Lam, Ying-Wai; Deng, Bin; Fields, Julia G; DeSarno, Michael; Loi, Roberto; Hoffman, Andrew M; Bianchi, John; Dacken, Brian; Petersen, Thomas; Wagner, Darcy E; Weiss, Daniel J

    2016-08-01

    A novel potential approach for lung transplantation could be to utilize xenogeneic decellularized pig lung scaffolds that are recellularized with human lung cells. However, pig tissues express several immunogenic proteins, notably galactosylated cell surface glycoproteins resulting from alpha 1,3 galactosyltransferase (α-gal) activity, that could conceivably prevent effective use. Use of lungs from α-gal knock out (α-gal KO) pigs presents a potential alternative and thus comparative de- and recellularization of wild-type and α-gal KO pig lungs was assessed. Decellularized lungs were compared by histologic, immunohistochemical, and mass spectrometric techniques. Recellularization was assessed following compartmental inoculation of human lung bronchial epithelial cells, human lung fibroblasts, human bone marrow-derived mesenchymal stromal cells (all via airway inoculation), and human pulmonary vascular endothelial cells (CBF) (vascular inoculation). No obvious differences in histologic structure was observed but an approximate 25% difference in retention of residual proteins was determined between decellularized wild-type and α-gal KO pig lungs, including retention of α-galactosylated epitopes in acellular wild-type pig lungs. However, robust initial recellularization and subsequent growth and proliferation was observed for all cell types with no obvious differences between cells seeded into wild-type versus α-gal KO lungs. These proof of concept studies demonstrate that decellularized wild-type and α-gal KO pig lungs can be comparably decellularized and comparably support initial growth of human lung cells, despite some differences in retained proteins. α-Gal KO pig lungs are a suitable platform for further studies of xenogeneic lung regeneration.

  16. Comparative Decellularization and Recellularization of Wild-Type and Alpha 1,3 Galactosyltransferase Knockout Pig Lungs: A Model for Ex Vivo Xenogeneic Lung Bioengineering and Transplantation

    PubMed Central

    Platz, Joseph; Bonenfant, Nicholas R.; Uhl, Franziska E.; Coffey, Amy L.; McKnight, Tristan; Parsons, Charles; Sokocevic, Dino; Borg, Zachary D.; Lam, Ying-Wai; Deng, Bin; Fields, Julia G.; DeSarno, Michael; Loi, Roberto; Hoffman, Andrew M.; Bianchi, John; Dacken, Brian; Petersen, Thomas; Wagner, Darcy E.

    2016-01-01

    Background: A novel potential approach for lung transplantation could be to utilize xenogeneic decellularized pig lung scaffolds that are recellularized with human lung cells. However, pig tissues express several immunogenic proteins, notably galactosylated cell surface glycoproteins resulting from alpha 1,3 galactosyltransferase (α-gal) activity, that could conceivably prevent effective use. Use of lungs from α-gal knock out (α-gal KO) pigs presents a potential alternative and thus comparative de- and recellularization of wild-type and α-gal KO pig lungs was assessed. Methods: Decellularized lungs were compared by histologic, immunohistochemical, and mass spectrometric techniques. Recellularization was assessed following compartmental inoculation of human lung bronchial epithelial cells, human lung fibroblasts, human bone marrow-derived mesenchymal stromal cells (all via airway inoculation), and human pulmonary vascular endothelial cells (CBF) (vascular inoculation). Results: No obvious differences in histologic structure was observed but an approximate 25% difference in retention of residual proteins was determined between decellularized wild-type and α-gal KO pig lungs, including retention of α-galactosylated epitopes in acellular wild-type pig lungs. However, robust initial recellularization and subsequent growth and proliferation was observed for all cell types with no obvious differences between cells seeded into wild-type versus α-gal KO lungs. Conclusion: These proof of concept studies demonstrate that decellularized wild-type and α-gal KO pig lungs can be comparably decellularized and comparably support initial growth of human lung cells, despite some differences in retained proteins. α-Gal KO pig lungs are a suitable platform for further studies of xenogeneic lung regeneration. PMID:27310581

  17. In vitro and in vivo evaluation of bone morphogenetic protein-2 (BMP-2) immobilized collagen-coated polyetheretherketone (PEEK)

    NASA Astrophysics Data System (ADS)

    Du, Ya-Wei; Zhang, Li-Nan; Ye, Xin; Nie, He-Min; Hou, Zeng-Tao; Zeng, Teng-Hui; Yan, Guo-Ping; Shang, Peng

    2015-03-01

    Polyetheretherketone (PEEK) is regarded as one of the most potential candidates of biomaterials in spinal implant applications. However, as a bioinert material, PEEK plays a limited role in osteoconduction and osseointegration. In this study, recombinant human bone morphogenetic protein-2 (rhBMP-2) was immobilized onto the surface of collagen-coated PEEK in order to prepare a multi-functional material. After adsorbed onto the PEEK surface by hydrophobic interaction, collagen was cross-linked with N-(3-dimethylaminopropyl)-N'-ethyl carbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS). EDC/NHS system also contributed to the immobilization of rhBMP-2. Water contact angle tests, XPS and SEM clearly demonstrated the surface changes. ELISA tests quantified the amount of rhBMP-2 immobilized and the release over a period of 30 d. In vitro evaluation proved that the osteogenesis differentiation rate was higher when cells were cultured on modified PEEK discs than on regular ones. In vivo tests were conducted and positive changes of major parameters were presented. This report demonstrates that the rhBMP-2 immobilized method for PEEK modification increase bioactivity in vitro and in vivo, suggesting its practicability in orthopedic and spinal clinical applications.

  18. A dual-task design of corrosion-controlling and osteo-compatible hexamethylenediaminetetrakis- (methylene phosphonic acid) (HDTMPA) coating on magnesium for biodegradable bone implants application.

    PubMed

    Zhao, Sheng; Chen, Yingqi; Liu, Bo; Chen, Meiyun; Mao, Jinlong; He, Hairuo; Zhao, Yuancong; Huang, Nan; Wan, Guojiang

    2015-05-01

    Magnesium as well as its alloys appears increasingly as a revolutionary bio-metal for biodegradable implants application but the biggest challenges exist in its too fast bio-corrosion/degradation. Both corrosion-controllable and bio-compatible Mg-based bio-metal is highly desirable in clinic. In present work, hexamethylenediaminetetrakis (methylenephosphonic acid) [HDTMPA, (H2 O3 P-CH2 )2 -N-(CH2 )6 -N-(CH2 -PO3 H2 )2 ], as a natural and bioactive organic substance, was covalently immobilized and chelating-deposited onto Mg surface by means of chemical conversion process and dip-coating method, to fullfill dual-task performance of corrosion-protective and osteo-compatible functionalities. The chemical grafting of HDTMPA molecules, by participation of functional groups on pretreated Mg surface, ensured a firmly anchored base layer, and then sub-sequential chelating reactions of HDTMPA molecules guaranteed a homogenous and dense HDTMPA coating deposition on Mg substrate. Electrochemical corrosion and immersion degradation results reveal that the HDTMPA coated Mg provides a significantly better controlled bio-corrosion/degradation behavior in phosphate buffer saline solution as compared with untreated Mg from perspective of clinic requirement. Moreover, the HDTMPA coated Mg exhibits osteo-compatible in that it induces not only bioactivity of bone-like apatite precipitation but also promotes osteoblast cells adhesion and proliferation. Our well-controlled biodegradable and biocompatible HDTMPA modified Mg might bode well for next generation bone implant application.

  19. The effect of two novel amino acid-coated magnetic nanoparticles on survival in vascular endothelial cells, bone marrow stromal cells, and macrophages

    PubMed Central

    2014-01-01

    Magnetic nanoparticles (MNPs) have been popularly used in many fields. Recently, many kinds of MNPs are modified as new absorbents, which have attracted considerable attention and are promising to be applied in waste water. In our previous study, we synthesized two novel MNPs surface-coated with glycine or lysine, which could efficiently remove many anionic and cationic dyes under severe conditions. It should be considered that MNP residues in water may exert some side effects on human health. In the present study, we evaluated the potential nanotoxicity of MNPs in human endothelial cells, macrophages, and rat bone marrow stromal cells. The results showed that the two kinds of nanoparticles were consistently absorbed into the cell cytoplasm. The concentration of MNPs@Gly that could distinctly decrease survival was 15 μg/ml in human umbilical vascular endothelial cells (HUVECs) or bone marrow stromal cells (BMSCs) and 10 μg/ml in macrophages. While the concentration of MNPs@Lys that obviously reduced viability was 15 μg/ml in HUVECs or macrophages and 50 μg/ml in BMSCs. Furthermore, cell nucleus staining and cell integrity assay indicated that the nanoparticles induced cell apoptosis, but not necrosis even at a high concentration. Altogether, these data suggest that the amino acid-coated magnetic nanoparticles exert relatively high cytotoxicity. By contrast, lysine-coated magnetic nanoparticles are more secure than glycine-coated magnetic nanoparticles. PMID:25276100

  20. The effect of two novel amino acid-coated magnetic nanoparticles on survival in vascular endothelial cells, bone marrow stromal cells, and macrophages

    NASA Astrophysics Data System (ADS)

    Wu, Qinghua; Meng, Ning; Zhang, Yanru; Han, Lei; Su, Le; Zhao, Jing; Zhang, Shangli; Zhang, Yun; Zhao, Baoxiang; Miao, Junying

    2014-09-01

    Magnetic nanoparticles (MNPs) have been popularly used in many fields. Recently, many kinds of MNPs are modified as new absorbents, which have attracted considerable attention and are promising to be applied in waste water. In our previous study, we synthesized two novel MNPs surface-coated with glycine or lysine, which could efficiently remove many anionic and cationic dyes under severe conditions. It should be considered that MNP residues in water may exert some side effects on human health. In the present study, we evaluated the potential nanotoxicity of MNPs in human endothelial cells, macrophages, and rat bone marrow stromal cells. The results showed that the two kinds of nanoparticles were consistently absorbed into the cell cytoplasm. The concentration of MNPs@Gly that could distinctly decrease survival was 15 μg/ml in human umbilical vascular endothelial cells (HUVECs) or bone marrow stromal cells (BMSCs) and 10 μg/ml in macrophages. While the concentration of MNPs@Lys that obviously reduced viability was 15 μg/ml in HUVECs or macrophages and 50 μg/ml in BMSCs. Furthermore, cell nucleus staining and cell integrity assay indicated that the nanoparticles induced cell apoptosis, but not necrosis even at a high concentration. Altogether, these data suggest that the amino acid-coated magnetic nanoparticles exert relatively high cytotoxicity. By contrast, lysine-coated magnetic nanoparticles are more secure than glycine-coated magnetic nanoparticles.

  1. Loss of mechanical properties in vivo and bone-implant interface strength of AZ31B magnesium alloy screws with Si-containing coating.

    PubMed

    Tan, Lili; Wang, Qiang; Lin, Xiao; Wan, Peng; Zhang, Guangdao; Zhang, Qiang; Yang, Ke

    2014-05-01

    In this study the loss of mechanical properties and the interface strength of coated AZ31B magnesium alloy (a magnesium-aluminum alloy) screws with surrounding host tissues were investigated and compared with non-coated AZ31B, degradable polymer and biostable titanium alloy screws in a rabbit animal model after 1, 4, 12 and 21weeks of implantation. The interface strength was evaluated in terms of the extraction torque required to back out the screws. The loss of mechanical properties over time was indicated by one-point bending load loss of the screws after these were extracted at different times. AZ31B samples with a silicon-containing coating had a decreased degradation rate and improved biological properties. The extraction torque of Ti6Al4V, poly-l-lactide (PLLA) and coated AZ31B increased significantly from 1week to 4weeks post-implantation, indicating a rapid osteosynthesis process over 3weeks. The extraction torque of coated AZ31B increased with implantation time, and was higher than that of PLLA after 4weeks of implantation, equalling that of Ti6Al4V at 12weeks and was higher at 21weeks. The bending loads of non-coated AZ31B and PLLA screws degraded sharply after implantation, and that of coated AZ31B degraded more slowly. The biodegradation mechanism, the coating to control the degradation rate and the bioactivity of magnesium alloys influencing the mechanical properties loss over time and bone-implant interface strength are discussed in this study and it is concluded that a suitable degradation rate will result in an improvement in the mechanical performance of magnesium alloys, making them more suitable for clinical application.

  2. Optimization of implant/bone attachment: The effects of implant surface porosity, bioactive ceramic coatings, and delivery of adsorbed growth factors

    NASA Astrophysics Data System (ADS)

    Melican, Mora Carolynne

    Various surface treatments and coating materials have been tested for use on metal alloy orthopaedic implants. Their purpose has been to enhance the bioactivity of the implant surfaces, and thus to increase the rate and degree of bony attachment in vivo in an attempt to hasten recovery time, increase implant service lifetime, and lessen pain associated with loosened orthopaedic implants. A series of in vivo and in vitro studies were performed to determine the influence of different implant surfaces including porous metal surfaces with varied porosity with depth, resorbable and non-resorbable plasma-sprayed hydroxyapatite (HA) coatings, and finally HA coatings with an adsorbed layer of human recombinant bone morphogenetic protein (rhBMP-2), an osteoinductive protein. Textured as-cast metal surfaces produced by investment casting in three dimensionally printed ceramic molds have exhibited superior bony ingrowth and attachment. Plasma-sprayed HA coatings have been shown to be appropriate substrates for osteoblast proliferation (particularly on highly crystalline HA) and stem cell proliferation (particularly on less crystalline HA). Less crystalline HA coatings have shown promise as delivery systems for different levels of rhBMP-2. The osteoinductive protein has been shown to remain active after delivery to the system, and was most effective when delivered in concentrations ranging from 30 to 50 ng/ml. Combinations of these surface treatments for metal implant surfaces warrant further investigation.

  3. Surface biofunctionalization of three-dimensional porous poly(lactic acid) scaffold using chitosan/OGP coating for bone tissue engineering.

    PubMed

    Zeng, Sen; Ye, Jianhua; Cui, Zhixiang; Si, Junhui; Wang, Qianting; Wang, Xiaofeng; Peng, Kaiping; Chen, Wenzhe

    2017-08-01

    As one of the stimulators on bone formation, osteogenic growth peptide (OGP) improves both proliferation and differentiation of the bone cells in vitro and in vivo. The aim of this work was the preparation of three dimensional porous poly(lactic acid) (PLA) scaffold with high porosity from PLA-dioxane-water ternary system with the use of vacuum-assisted solvent casting, phase separation, solvent extraction and particle leaching methods. Then, by surface coating of PLA scaffold with chitosan (CS)/OGP solution, biofunctionalization of PLA scaffold had been completed for application in bone regeneration. The effects of frozen temperature (-20, -50, -80°C) and PLA solution concentration (10, 12, 14wt%) on the microstructure, water absorption, porosity, hydrophilicity, mechanical properties, and biocompatibility of PLA and CS/OGP/PLA scaffold were investigated. Results showed that both PLA and CS/OGP/PLA scaffolds have an interconnected network structure and a porosity of up to 96.1% and 91.5%, respectively. The CS/OGP/PLA scaffold exhibited better hydrophilicity and mechanical properties than that of uncoated PLA scaffold. Moreover, the results of cell culture test showed that CS/OGP coating could stimulate the proliferation and growth of osteoblast cells on CS/OGP/PLA scaffold. These finding suggested that the surface biofunctionalization by CS/OGP coating layer could be an effective method on enhancing cell adhesion to synthetic polymer-based scaffolds in tissue engineering application and the developed porous CS/OGP/PLA scaffold should be considered as alternative biomaterials for bone regeneration. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Genetic engineering strategies to prevent the effects of antibody and complement on xenogeneic chondrocytes.

    PubMed

    Sommaggio, R; Bello-Gil, D; Pérez-Cruz, M; Brokaw, J L; Máñez, R; Costa, C

    2015-11-18

    Advances in animal transgenesis may allow using xenogeneic chondrocytes in tissue-engineering applications for clinical cartilage repair. Porcine cartilage is rejected by humoral and cellular mechanisms that could be overcome by identifying key molecules triggering rejection and developing effective genetic-engineering strategies. Accordingly, high expression of α1,2-fucosyltransferase (HT) in xenogeneic cartilage protects from galactose α1,3-galactose (Gal)-mediated antibody responses. Now, we studied whether expression of a complement inhibitor provides further protection. First, porcine articular chondrocytes (PAC) were isolated from non-transgenic, single and double transgenic pigs expressing HT and moderate levels of human CD59 (hCD59) and their response to human serum was assessed. High recombinant expression of human complement regulatory molecules hCD59 and hDAF was also attained by retroviral transduction of PAC for further analyses. Complement activation on PAC after exposure to 20 % human serum for 24 hours mainly triggered the release of pro-inflammatory cytokines IL-6 and IL-8. Transgenic expression of HT and hCD59 did not suffice to fully counteract this effect. Nevertheless, the combination of blocking anti-Gal antibodies (or C5a) and high hCD59 levels conferred very high protection. On the contrary, high hDAF expression attained the most dramatic reduction in IL-6/IL-8 secretion by a single strategy, but the additional inhibition of anti-Gal antibodies or C5a did not provide further improvement. Notably, we demonstrate that both hCD59 and hDAF inhibit anaphylatoxin release in this setting. In conclusion, our study identifies genetic-engineering approaches to prevent humoral rejection of xenogeneic chondrocytes for use in cartilage repair.

  5. DTIC xenogenized lines obtained from an L1210 clone: clonal analysis of cytotoxic T lymphocyte reactivity.

    PubMed Central

    Marelli, O.; Franco, P.; Canti, G.; Ricci, L.; Prandoni, N.; Nicolin, A.; Festenstein, H.

    1988-01-01

    Antineoplastic compounds can induce on tumour cells new antigens that undetectable on parental cells and which are transmissible as a genetic character. In this study mouse leukaemia L1210 was cloned in vitro by limiting dilution and one cloned line was recloned in vivo. Four subcloned tumour cell lines (A,D,R,S) were xenogenized in vivo by DTIC treatment (A/DTIC, D/DTIC, R/DTIC, S/DTIC) following a schedule previously described. Up to 10(7) cells of these xenogenized subclones, injected i.p., were rejected by syngeneic hosts, although they grew in immunosuppressed hosts. The DTIC treated subclones were lysed by in vivo-primed, in vitro-restimulated (with the relevant subclone) lymphocytes. The cytotoxic lymphocyte activity was not strictly specific since parental, DTIC-untreated cells were also lysed, although less efficiently. CTL directed against the D/DTIC subclone were cloned by limiting dilution. Ninety-four CTL clones were assayed against L1210 subcloned cells, DTIC-treated and untreated, and against different murine tumours (syngeneic or allogenic). Three specific antigens could be identified in the 51Cr release assay. The DTIC subclones expressed one antigen that was specifically recognized by a set of CTL clones. A number of CTL clones were able to lyse the L1210 subcloned cell exclusively, targetting a tumour-associated antigen that did not appear to be modified in the DTIC-treated subclones. A third antigen was demonstrated in the parental and DTIC treated D subclone. On the basis of these results it was postulated that there was at least one common DTIC-inducible antigen specific and reproducible within an identical cell population. Moreover, DTIC treatment did not modify histocompatibility antigens or TAA pre-existing in L1210 cells. The findings discussed here provide new information about permanent xenogenization of tumour cells, which might be exploited for experimental chemo-immunotherapy of cancer. PMID:2458749

  6. Xenotransplantation and the potential risk of xenogeneic transmission of porcine viruses.

    PubMed Central

    Yoo, D; Giulivi, A

    2000-01-01

    The clinical success of allotransplantation and the shortage of donor organs have led to a proposal for the use of animal organs as alternative therapeutic materials for humans. In that regard, swine are preferable to non-human primates as a source of donor organs. While applications for clinical trials for xenotransplantation have not yet been received in Canada, several trials have already been authorized in the United States. A major concern, however, is the potential for xenogeneic transmission of viruses from animals to humans via organ, tissue, or cellular transplantation or via ex vivo exposure of humans to porcine biologic materials. Xenotransplantation allows viruses to bypass the normal immunological defense mechanisms of the recipient. Furthermore, the use of immunosuppressive drugs following transplantation may facilitate the xenogeneic transmission of zoonotic agents. Of porcine viruses, swine hepatitis E virus does not cause any clinical symptoms in the natural host but is a likely zoonotic agent that can infect humans and cause hepatitis. Porcine circovirus type 1 is prevalent in swine populations with no known association with clinical disease, while circovirus type 2 causes post-weaning multi-systemic wasting syndrome. Porcine endogenous retrovirus is integrated into the host chromosomes while porcine cytomegalovirus undergoes latent infection. Two additional porcine herpesviruses have recently been identified in swine and have been named porcine lymphotrophic herpesviruses. These herpesviruses can potentially become reactivated in human recipients after xenotransplantation. All in all, there are a number of viruses in swine that are of primary concern to screen and eliminate from xenotransplantation protocols. Epidemiology and the current knowledge on xenogeneic risk of these viruses are discussed. PMID:11041495

  7. Experiments in cardiac xenotransplantation. Response to intrathymic xenogeneic cells and intravenous cobra venom factor.

    PubMed

    Mohiuddin, M; Kline, G; Shen, Z; Ruggiero, V; Rostami, S; DiSesa, V J

    1993-10-01

    Permanent tolerance to an experimental cardiac allograft can be achieved by pretransplantation intrathymic inoculation of donor-specific lymphoid cells. We studied the effects of intrathymic inoculation of xenogeneic cells and intravenous cobra venom factor in a rodent model of cardiac xenotransplantation. Lewis rats underwent intraabdominal heterotopic heart transplantation with Syrian hamster donors. In untreated animals, mean graft survival time was 3 days. Five rats had 1 ml of antilymphocyte serum administered intraperitoneally. One day later, 2.5 x 10(7) hamster spleen cells were inoculated into the thymus under direct vision. Twenty-one days after antilymphocyte serum was given, heterotopic heart transplantation with a hamster donor was carried out. In all cases, rejection was accelerated and occurred between 20 minutes and 1 day after transplantation. Mean graft survival time was 5.2 hours (p < 0.0001 versus control). Six animals treated with antilymphocyte serum and intrathymic xenogeneic cells had 0.5 ml of cobra venom factor, a complement antagonist, administered intravenously 3 hours before transplantation and every other day thereafter. Mean graft survival was 3 days, which was not different from the response of naive animals. Animals treated with antilymphocyte serum only had no prolongation of graft survival (mean survival time 3 days, p = not significant). Animals treated with cobra venom factor alone (n = 5) before transplantation and on alternate days subsequently had mild graft prolongation with a mean survival time of 4 days (p = 0.0133). In contrast to experimental allograft models, intrathymic inoculation of xenogeneic cells produces hyperacute rejection in these naturally concordant species. The administration of cobra venom factor abrogates the hyperacute response, but the combination of cobra venom factor and intrathymic inoculation does not produce long-term graft survival.

  8. In vivo xenogeneic scaffold fate is determined by residual antigenicity and extracellular matrix preservation

    PubMed Central

    Wong, Maelene L.; Wong, Janelle L.; Vapniarsky, Natalia; Griffiths, Leigh G.

    2017-01-01

    The immunological potential of animal-derived tissues and organs is the critical hurdle to increasing their clinical implementation. Glutaraldehyde-fixation cross-links proteins in xenogeneic tissues (e.g., bovine pericardium) to delay immune rejection, but also compromises the regenerative potential of the resultant biomaterial. Unfixed xenogeneic biomaterials in which xenoantigenicity has been ameliorated and native extracellular matrix (ECM) architecture has been maintained have the potential to overcome limitations of current clinically utilized glutaraldehyde-fixed biomaterials. The objective of this work was to determine how residual antigenicity and ECM architecture preservation modulate recipient immune and regenerative responses towards unfixed bovine pericardium (BP) ECM scaffolds. Disruption of ECM architecture during scaffold generation, with either SDS-decellularization or glutaraldehyde-fixation, stimulated recipient foreign body response and resultant fibrotic encapsulation following leporine subpannicular implantation. Conversely, BP scaffolds subjected to stepwise removal of hydrophilic and lipophilic antigens using amidosulfobetaine-14 (ASB-14) maintained native ECM architecture and thereby avoided fibrotic encapsulation. Removal of hydrophilic and lipophilic antigens significantly decreased local and systemic graft-specific, adaptive immune responses and subsequent calcification of BP scaffolds compared to scaffolds undergoing hydrophile removal only. Critically, removal of antigenic components and preservation of ECM architecture with ASB-14 promoted full-thickness recipient non-immune cellular repopulation of the BP scaffold. Further, unlike clinically utilized fixed BP, ASB-14-treated scaffolds fostered rapid intimal and medial vessel wall regeneration in a porcine carotid patch angioplasty model. This work highlights the importance of residual antigenicity and ECM architecture preservation in modulating recipient immune and regenerative

  9. A radiographical study on the changes in height of grafting materials after sinus lift: a comparison between two types of xenogenic materials.

    PubMed

    Hieu, Pham-Duong; Chung, Jin-Hyung; Yim, Sung-Bin; Hong, Ki-Seok

    2010-02-01

    The performance of implant surgery in the posterior maxilla often poses a challenge due to insufficient available bone. Sinus floor elevation was developed to increase the needed vertical height to overcome this problem. However, grafting materials used for the sinus lift technique eventually show resorption. The present study radiographically compared and evaluated the changes in height of the grafting materials after carrying out maxillary sinus elevation with a window opening procedure. This study also evaluated the difference between two xenogenic bone materials when being used for the sinus lifting procedure. Twenty-one patients were recruited for this study and underwent a sinus lift procedure. All sites were treated with either bovine bone (Bio-Oss(R)) with platelet-rich plasma (PRP) or bovine bone (OCS-B(R))/PRP. A total of 69 implants were placed equally 6-8 months after the sinus lift. All sites were clinically and radiographically evaluated right after the implant surgery, 7-12 months, 13-24 months, and 25-48 months after their prosthetic loading. Changes of implant length/bone length with time showed a statistically significant decreasing tendency (P < 0.05). There was no significant change in the Bio-Oss(R) group (P > 0.05). In contrast, the OCS-B(R) group showed a significant decrease with time (P < 0.05). However, no significant difference was observed between the two groups (P > 0.05). The results showed that there was significant reduction in comparison with data right after placement, after 7 to 12 months, 13 to 24 months, and over 25 months; however, reduction rates between each period have shown to be without significance. No significant difference in height change was observed between the Bio-Oss(R) and the OCS-B(R) groups.

  10. [Use of xenogenic lyophilized hepatocytes in the treatment of acute and chronic liver diseases].

    PubMed

    Musselius, S G; Vasina, N V; Gladskikh, L V

    1998-01-01

    Therapeutic effect of lyophilized xenogenic hepatocytes was demonstrated on 30 dogs with acute hepatic failure and on white mice. The major biochemical values were corrected and the yeast fermentation test showed biological activity of isolated hepatocytes. Clinically, lyophilized hepatocytes were used in the treatment of patients with acute hepatic failure: orally in 47 and for extracorporeal dialysis in 8. The therapeutic effect of lyophilized hepatocytes is based on active detoxication and hemostasis correction. Clinical, laboratory, and instrumental studies showed improvement of the clinical status, decreased encephalopathy, and accelerated repair processes in the liver. Addition of lyophilized hepatocytes to combined therapy decreased the mortality by 2.5 times.

  11. Biologic effects of bacterial superantigens in a xenogeneic transplantation model for psoriasis.

    PubMed

    Boehncke, W H

    2001-12-01

    Both clinical as well as experimental data support the concept of psoriasis being a T-cell-mediated immune disease possibly triggered by bacterial superantigens. Further analysis of its pathogenesis was facilitated by the generation of a xenogeneic transplantation model in which skin from psoriatic patients is grafted onto SCID mice lacking functional B and T cells. Applying this model it was demonstrated that psoriasis can be triggered by bacterial superantigens; this process depends on the presence of immunocytes. Mutated variants of the respective superantigens exhibiting no measurable affinity to HLA class II molecules can function as competitive inhibitors in vivo.

  12. Three-phase bone scan and indium white blood cell scintigraphy following porous coated hip arthroplasty: A prospective study of the prosthetic tip

    SciTech Connect

    Oswald, S.G.; Van Nostrand, D.; Savory, C.G.; Callaghan, J.J. )

    1989-08-01

    Although few reports address the use of three-phase bone scanning (TPBS) and {sup 111}In-labeled white blood cell (In-WBC) scintigraphy in hip arthroplasty utilizing a porous coated prosthesis, the literature suggests that scintigraphic patterns in the uncomplicated patient may differ from that seen in the cemented prosthesis. In an attempt to determine the scintigraphic natural history, 25 uncomplicated porous coated hip arthroplasties in 21 patients were prospectively studied with serial TPBS and In-WBC at approximately 7 days, and at 3, 6, 12, 18, and 24 mo postoperatively. This report deals with findings related to the prosthetic tip. Only one of 136 flow studies were abnormal and only two of 136 blood-pool images demonstrated focally increased activity. All 25 prostheses (120 of 143 scans) demonstrated increased uptake on the bone phase images. The area about the tip was divided into three segments; increased uptake at 24 mo was noted in the medial, distal, and lateral segments in 16%, 72%, and 56% of prostheses, respectively. Twenty of 25 prostheses (82 of 142 scans) showed uptake on In-WBC scintigraphy, being noted in 48% of prostheses at 24 mo. We conclude that scintigraphic patterns in the uncomplicated patient with a porous coated prosthesis appear to differ from patterns described in cemented prostheses.

  13. The acetabulum: A prospective study of three-phase bone and indium white blood cell scintigraphy following porous-coated hip arthroplasty

    SciTech Connect

    Oswald, S.G.; Van Nostrand, D.; Savory, C.G.; Anderson, J.H.; Callaghan, J.J. )

    1990-03-01

    Although few studies address the use of three-phase bone scanning (TPBS) and indium-111-labeled white blood cell scintigraphy ({sup 111}In-WBC) in hip arthroplasty utilizing a porous-coated prosthesis, the literature suggests that scintigraphic patterns in the uncomplicated patient may differ from that seen with the cemented prosthesis. In an attempt to determine the scintigraphic natural history, 25 uncomplicated porous-coated hip arthroplasties in 21 patients were prospectively studied with serial TPBS and {sup 111I}n-WBC at approximately 7 days, and 3, 6, 12, 18, and 24 mo postoperatively. This report deals with findings related to the acetabulum. All 25 prostheses (144 of 144 scans) demonstrated increased uptake on the bone-phase images. Although this activity decreased with time, 76% had persistent uptake at 24 mo. Twenty-three of 25 prostheses (126 of 140 scans) showed increased uptake on {sup 111}In-WBC scintigraphy, invariably decreasing with time, but with 37% having significant uptake at 24 mo. Scintigraphic patterns in the uncomplicated porous-coated hip arthroplasty patient appear to differ from patterns described in cemented prostheses.

  14. [Xenogeneic cell therapeutics: Treatment of type 1 diabetes using porcine pancreatic islets and islet cells].

    PubMed

    Godehardt, Antonia W; Schilling-Leiß, Dagmar; Sanzenbacher, Ralf; Tönjes, Ralf R

    2015-11-01

    In view of the existing shortage of human donor organs and tissues, xenogeneic cell therapeutics (xCT) offer an alternative for adequate treatment. In particular, porcine pancreatic islets and islet cells have already entered the field of experimental therapy for type-1 diabetes mellitus (T1DM) patients. Thereby, xCT depict challenging products with a glance on medical, ethical, and regulatory questions. With cross-species transplantation (xenotransplantation), the risk of immunological graft rejection as well as the risk of infectious transmission of microbial and viral pathogens must be considered. This includes the bidirectional transmission of microorganisms from graft to host as well as from host to graft. Crossing the border of species requires a critical risk-benefit evaluation as well as a thorough longtime surveillance of transplant recipients after treatment. The international legal and regulatory requirements for xCT are inter alia based on the World Health Organization criteria summarized in the Changsha Communiqué (2008). In the European Union, they were reflected by the European Medicines Agency (EMA) Guideline on Xenogeneic Cell-based Medicinal Products following the implementation of the Regulation on Advanced Therapies (ATMP). On the basis of this regulation, the first non-clinical and clinical experiences were obtained for porcine islets. The results suggest that supportive treatment of T1DM risk patients with xCT may be an alternative to established allogeneic organ transplantation in the future.

  15. Oral immunization with xenogeneic antibodies stimulates the production of systemic and mucosal anti-idiotypic antibodies.

    PubMed Central

    Collins, A M; Roberton, D M; Hosking, C S; Flannery, G R

    1991-01-01

    The humoral and mucosal immune responses to oral immunization with xenogeneic antibodies were studied using an animal model in which female rabbits were fed daily doses of the MOPC-315 murine IgA antibody, and were mated during the course of the feeding programme. Serum and colostrum samples were assayed for the presence of anti-idiotypic antibodies by ELISA assay, before and after depletion of anti-IgA antibodies, by affinity chromatography using another murine IgA idiotype. It was shown that all animals responded to exposure to the MOPC-315 idiotype with the production of serum anti-murine immunoglobulin antibodies and that four of six animals produced serum anti-idiotypic antibodies. That the immune response included antibodies directed against the antigen-binding site was confirmed by competition ELISA assay. Mucosal IgG and IgA anti-immunoglobulin antibodies were present in milk from all antibody-fed rabbits tested, and IgA anti-idiotypic antibodies were detectable in the colostrum of one rabbit. The results provide some support for the hypothesis that human exposure to xenogeneic antibodies, most commonly bovine milk immunoglobulins, may provoke the production of anti-idiotypic antibodies, and that such exposure may lead to disturbances of immune regulation. PMID:1916890

  16. Processed xenogenic cartilage as innovative biomatrix for cartilage tissue engineering: effects on chondrocyte differentiation and function.

    PubMed

    Schwarz, Silke; Elsaesser, Alexander F; Koerber, Ludwig; Goldberg-Bockhorn, Eva; Seitz, Andreas M; Bermueller, Christian; Dürselen, Lutz; Ignatius, Anita; Breiter, Roman; Rotter, Nicole

    2015-12-01

    One key point in the development of new bioimplant matrices for the reconstruction and replacement of cartilage defects is to provide an adequate microenvironment to ensure chondrocyte migration and de novo synthesis of cartilage-specific extracellular matrix (ECM). A recently developed decellularization and sterilization process maintains the three-dimensional (3D) collagen structure of native septal cartilage while increasing matrix porosity, which is considered to be crucial for cartilage tissue engineering. Human primary nasal septal chondrocytes were amplified in monolayer culture and 3D-cultured on processed porcine nasal septal cartilage scaffolds. The influence of chondrogenic growth factors on neosynthesis of ECM proteins was examined at the protein and gene expression levels. Seeding experiments demonstrated that processed xenogenic cartilage matrices provide excellent environmental properties for human nasal septal chondrocytes with respect to cell adhesion, migration into the matrix and neosynthesis of cartilage-specific ECM proteins, such as collagen type II and aggrecan. Matrix biomechanical stability indicated that the constructs retrieve full stability and function during 3D culture for up to 42 days, proportional to collagen type II and GAG production. Thus, processed xenogenic cartilage offers a suitable environment for human nasal chondrocytes and has promising potential for cartilage tissue engineering in the head and neck region.

  17. Superior Immunologic and Therapeutic Efficacy of a Xenogeneic Genetic Cancer Vaccine Targeting Carcinoembryonic Human Antigen

    PubMed Central

    Roscilli, Giuseppe; Marra, Emanuele; Luberto, Laura; Mancini, Rita; La Monica, Nicola; Ciliberto, Gennaro

    2015-01-01

    Abstract We have generated a xenogeneic vaccine against human carcinoembryonic antigen (hCEACAM-5 or commonly hCEA) using as immunogen rhesus CEA (rhCEA). RhCEA cDNA was codon-usage optimized (rhCEAopt) and delivered by sequential DNA electro-gene-transfer (DNA-EGT) and adenoviral (Ad) vector. RhCEAopt was capable to break tolerance to CEA in hCEA transgenic mice and immune responses were detected against epitopes distributed over the entire length of the protein. Xenovaccination with rhCEA resulted in the activation of CD4+ T-cell responses in addition to self-reactive CD8+ T-cells, the development of high-titer antibodies against hCEA, and significant antitumor effects upon challenge with hCEA+ tumor cells. The superior activity of rhCEAopt compared with hCEAopt was confirmed in hCEA/HHD double-transgenic mice, where potent CD8+ T-cell responses against specific human HLA A*0201 hCEA epitopes were detected. Our data show that xenogeneic gene-based vaccination with rhCEA is a viable approach to break tolerance against CEA, thus suggesting further development in the clinical setting. PMID:25869226

  18. Superior Immunologic and Therapeutic Efficacy of a Xenogeneic Genetic Cancer Vaccine Targeting Carcinoembryonic Human Antigen.

    PubMed

    Aurisicchio, Luigi; Roscilli, Giuseppe; Marra, Emanuele; Luberto, Laura; Mancini, Rita; La Monica, Nicola; Ciliberto, Gennaro

    2015-06-01

    We have generated a xenogeneic vaccine against human carcinoembryonic antigen (hCEACAM-5 or commonly hCEA) using as immunogen rhesus CEA (rhCEA). RhCEA cDNA was codon-usage optimized (rhCEAopt) and delivered by sequential DNA electro-gene-transfer (DNA-EGT) and adenoviral (Ad) vector. RhCEAopt was capable to break tolerance to CEA in hCEA transgenic mice and immune responses were detected against epitopes distributed over the entire length of the protein. Xenovaccination with rhCEA resulted in the activation of CD4+ T-cell responses in addition to self-reactive CD8+ T-cells, the development of high-titer antibodies against hCEA, and significant antitumor effects upon challenge with hCEA+ tumor cells. The superior activity of rhCEAopt compared with hCEAopt was confirmed in hCEA/HHD double-transgenic mice, where potent CD8+ T-cell responses against specific human HLA A*0201 hCEA epitopes were detected. Our data show that xenogeneic gene-based vaccination with rhCEA is a viable approach to break tolerance against CEA, thus suggesting further development in the clinical setting.

  19. Genetic modification of alphaGal expression in xenogeneic endothelial cells yields a complex immunological response.

    PubMed

    Fischbeck, J A; Baier, J M; Akella, R; Hern-Anderson, D; Schmidt, C E

    2001-12-01

    The source of cells for tissue engineering applications remains a hurdle, predominantly for procedures in which there is insufficient time to harvest a patient's own cells. Animal cells are readily available, but undergo immune rejection. Rejection of animal (i.e., xenogeneic) tissue involves practically every component of the immune system. The initial phase, hyperacute rejection (HAR), involves natural xenoreactive antibodies and the complement system, and leads to endothelial cell lysis and rapid tissue destruction. The cell-surface epitope, galactose-alpha(1,3)-galactose (alphaGal), is presumed to play a key role in HAR. The later stage of immune response (delayed xenograft rejection or DXR), is mediated by immune cells such as monocytes. Carbohydrates are likely also involved in DXR, but their role in this phase of the immune response is less clear. A better understanding of all stages of xenogeneic immune rejection may make it feasible to create cell lines that are immune tolerant. In these studies, we have genetically modified bovine endothelial cells to study the roles of carbohydrates in immune rejection. Our studies suggest that one or more epitopes other than alphaGal may influence complement-mediated lysis. Furthermore, antibodies, as instigators in the complement response, and monocytes appear to recognize different cell surface epitopes.

  20. Xenogeneic acellular dermal matrix in combination with pectoralis major myocutaneous flap reconstructs hypopharynx and cervical esophagus.

    PubMed

    Yin, Danhui; Tang, Qinglai; Wang, Shuang; Li, Shisheng; He, Xiangbo; Liu, Jiajia; Liu, Bingbing; Yang, Mi; Yang, Xinming

    2015-11-01

    The aim of this study was to explore xenogeneic acellular dermal matrix (ADM) in combination with pectoralis major myocutaneous flap in hypopharynx and cervical esophagus reconstruction. A total of five patients were treated with this surgical method to reconstruct hypopharynx and cervical esophagus in Second Xiangya Hospital between January 2012 and April 2013. Four of them had hypopharyngeal carcinoma with laryngeal and cervical esophageal invasion, while the fifth patient with hypopharyngeal cancer had developed scars and atresia after postoperative radiotherapy. The defect length after hypopharyngeal and cervical esophageal resection was 6-8 cm, and was repaired by a combination of ADM and pectoralis major myocutaneous flap by our team. Interestingly, the four patients had primary healing and regained their eating function about 2-3 weeks after surgery, the fifth individual suffered from pharyngeal fistula, but recovered after dressing change about 2 months. Postoperative esophageal barium meals revealed that the pharynx and esophagus were unobstructed in all five patients. Xenogeneic ADM in combination with pectoralis major myocutaneous flap for hypopharynx and cervical esophagus reconstruction is a simple, safe and effective method with fewer complications. Nevertheless, according to the defect length of the cervical esophagus, the patients need to strictly follow the medical advice.

  1. Comparative study of the efficacy of decellularization treatment of allogenic and xenogeneic nerves as nerve conduits.

    PubMed

    Wang, Wei; Itoh, Soichiro; Takakuda, Kazuo

    2016-02-01

    The objective of this study was to compare the results of allogenic and xenogeneic nerve grafts that were treated using decellularization. The sciatic nerves of Sprague-Dawley rats and the median nerves of Japanese white rabbits were decellularized with sodium dodecyl sulfate and Triton X-100 and examined with a scanning electron microscope and immunofluorescence staining. A bridge-graft into the sciatic nerve in Wistar rats was performed with the decellularized nerves (10 mm in length for short-term evaluation; 15 mm in length for long-term evaluation). As a control, an isograft was performed. The specimens were harvested at 4 weeks postoperatively and prepared for immunohistochemistry. Function, electrophysiological and histomorphological analyses were performed to evaluate nerve recovery at 24 weeks postoperatively. The 3-dimensional structure of the basal lamina column, on which the cell adhesion molecules were integrated, was preserved through the decellularization protocols. Limited ED1-positive macrophage invasion was observed, and abundant NF 160-positive axons, which were accompanied by S-100-positive Schwann cells, penetrated through the implanted nerves. The sciatic nerve function and electrophysiological and histomorphological analyses suggest that the xenogeneic nerve graft was statistically indistinguishable from the allogenic nerve graft but slightly inferior to the isograft in supporting the axonal regeneration and functional recovery.

  2. The effect of surface treatment on the surface texture and contact angle of electrochemically deposited hydroxyapatite coating and on its interaction with bone-forming cells.

    PubMed

    Eliaz, Noam; Shmueli, Sharon; Shur, Irena; Benayahu, Dafna; Aronov, Daniel; Rosenman, Gil

    2009-10-01

    This work demonstrates the effects of both surface preparation and surface post-treatment by exposure to electron beam on the surface texture, contact angle and the interaction with bone-forming cells of electrochemically deposited hydroxyapatite (HAp) coating. Both the surface texture and the contact angle of the ground titanium substrate changed as a result of either heat treatment following soaking in NaOH solution or soaking in H(2)O(2) solution. Consequently, the shape of the current transients during potentiostatic deposition of HAp changed, and the resulting coatings exhibited different surface textures and contact angles. The developed interfacial area ratio Sdr and the core fluid retention index Sci were found more reliable than the mean roughness R(a) and the root-mean-square roughness Z(rms) in correlating the adhesion of the coating to the metal substrate and the cellular response with surface texture. The NaOH pretreatment provided the highest surface area and induced the highest cell attachment, even though the H(2)O(2) treatment provided the highest hydrophilicity to the metal substrate. Electrodeposition at pH 6 was found preferable compared to electrodeposition at pH 4.2. The ability to modify the cellular response by exposure to unique electron-beam surface treatment was demonstrated. The very high hydrophilicity of the as-deposited HAp coating enhanced its bioactivity.

  3. Long-term Bone Remodeling in HA-coated Stems: A Radiographic Review of 208 Total Hip Arthroplasties (THAs) with 15 to 20 Years Follow-up.

    PubMed

    Boldt, Jens G; Cartillier, Jean-Claude; Machenaud, Alain; Vidalain, Jean-Pierre

    2015-11-01

    We present a prospective study focused on radiographic long-term outcomes and bone remodeling at a mean of 17.0 years (range: 15 to 20) in 208 cementless fully HA-coated femoral stems (Corail, DePuy International Ltd, Leeds, UK). Total hip replacements in this study were performed by three members of the surgeon design group between 1986 and 1991. Radiographic evaluation focused on periprosthetic osteolysis, bone remodeling, osseous integration, subsidence, metaphyseal or diaphyseal load transfer, and femoral stress shielding. The radiographs were digitized and examined with contrast-enhancing software for analysis of the trabecular architecture. Radiographic signs of aseptic stem loosening were visible in two cases (1%). Three stems (1.4%) showed metaphyseal periprosthetic osteolysis in four of seven Gruen zones associated with eccentric polyethylene wear awaiting metaphyseal bone grafting and cup liner exchange. One stem (0.5%) was revised due to infection. No stem altered in varus or valgus alignment more than two degrees, and mean subsidence was 0.1 mm (range: 0 to 2 mm) after a mean of 17.0 years. A total of 5 stems (2.4%) required or are awaiting revision surgery. Trabecular orientation and micro-anatomy suggested main proximal load-transfer patterns in all except 3 cases (98.6%). Combined metaphyseal and diaphyseal osseointegration and bone remodeling were visible in 100 stems (48%). Diaphyseal stress shielding and cortical thickening were observed in 3 stems (1.4%). Other radiographic features are discussed in depth. This long-term study of 208 fully HA-coated Corail stems showed satisfactory osseointegration and fixation in 203 cases (97.6%) after a mean of 17.0 years follow-up. Stem failures were associated with extreme eccentric polyethylene wear.

  4. Fluoride and calcium-phosphate coated sponges of the magnesium alloy AX30 as bone grafts: a comparative study in rabbits.

    PubMed

    Lalk, Mareike; Reifenrath, Janin; Angrisani, Nina; Bondarenko, Alexandr; Seitz, Jan-Marten; Mueller, Peter P; Meyer-Lindenberg, Andrea

    2013-02-01

    Biocompatibility and degradation of magnesium sponges (alloy AX30) with a fluoride (MgF(2) sponge, n = 24, porosity 63 ± 6 %, pore size 394 ± 26 μm) and with a fluoride and additional calcium-phosphate coating (CaP sponge, n = 24, porosity 6 ± 4 %, pore size 109 ± 37 μm) were evaluated over 6, 12 and 24 weeks in rabbit femurs. Empty drill holes (n = 12) served as controls. Clinical and radiological examinations, in vivo and ex vivo μ-computed tomographies and histological examinations were performed. Clinically both sponge types were tolerated well. Radiographs and XtremeCT evaluations showed bone changes comparable to controls and mild gas formation. The μCT80 depicted a higher and more inhomogeneous degradation of the CaP sponges. Histomorphometrically, the MgF(2) sponges resulted in the highest bone and osteoid fractions and were integrated superiorly into the bone. Histologically, the CaP sponges showed more inflammation and lower vascularization. MgF(2) sponges turned out to be better biocompatible and promising, biodegradable bone replacements.

  5. Biological Evaluation (In Vitro and In Vivo) of Bilayered Collagenous Coated (Nano Electrospun and Solid Wall) Chitosan Membrane for Periodontal Guided Bone Regeneration.

    PubMed

    Lotfi, Ghogha; Shokrgozar, Mohammad Ali; Mofid, Rasoul; Abbas, Fatemeh Mashhadi; Ghanavati, Farzin; Baghban, Alireza Akbarzadeh; Yavari, Seyedeh Kimia; Pajoumshariati, Seyedramin

    2016-07-01

    The application of barrier membranes in guided bone regeneration (GBR) has become a commonly used surgical technique in periodontal research. The objectives of this study were to evaluate the in vitro biocompatibility and osteogenic differentiation of mesenchymal stem cells (MSCs) on two different collagenous coatings (nano electrospun fibrous vs. solid wall) of bilayered collagen/chitosan membrane and their histological evaluation on bone regeneration in rabbit calvarial defects. It was found that chitosan-nano electrospun collagen (CNC) membranes had higher proliferation/metabolic activity compared to the chitosan-collagen (CC) and pristine chitosan membranes. The qRT-PCR analysis demonstrated the CNC membranes induced significant expression of osteogenic genes (Osteocalcin, RUNX2 and Col-α1) in MSCs. Moreover, higher calcium content and alkaline phosphatase activity of MSCs were observed compared to the other groups. Histologic and histomorphometric evaluations were performed on the uncovered (negative control) as well as covered calvarial defects of ten adult white rabbits with different membranes (CNC, CC, BioGide (BG, positive control)) at 1 and 2 months after surgery. More bone formation was detected in the defects covered with CNC and BG membranes than those covered by CC and the negative control. No inflammation and residual biomaterial particles were observed on the membrane surface or in the surrounding tissues in the surgical areas. These results suggest that bilayer CNC membrane can have the potential for use as a GBR membrane material facilitating bone formation.

  6. Characterizing the Mechanistic Pathways of the Instant Blood-Mediated Inflammatory Reaction in Xenogeneic Neonatal Islet Cell Transplantation

    PubMed Central

    Liuwantara, David; Chew, Yi Vee; Favaloro, Emmanuel J.; Hawkes, Joanne M.; Burns, Heather L.; O'Connell, Philip J.; Hawthorne, Wayne J.

    2016-01-01

    Introduction The instant blood-mediated inflammatory reaction (IBMIR) causes major loss of islets after transplantation and consequently represents the initial barrier to survival of porcine neonatal islet cell clusters (NICC) after xenotransplantation. Methods This study used novel assays designed to characterize the various immunologic components responsible for xenogeneic IBMIR to identify initiators and investigate processes of IBMIR-associated coagulation, complement activation and neutrophil infiltration. The IBMIR was induced in vitro by exposing NICC to platelet-poor or platelet-rich human plasma or isolated neutrophils. Results We found that xenogeneic IBMIR was characterized by rapid, platelet-independent thrombin generation, with addition of platelets both accelerating and exacerbating this response. Platelet-independent complement activation was observed as early as 30 minutes after NICC exposure to plasma. However, membrane attack complex formation was not observed in NICC histopathology sections until after 60 minutes. We demonstrated for the first time that NICC-mediated complement activation was necessary for neutrophil activation in the xenogeneic IBMIR setting. Finally, using the Seahorse extracellular flux analyzer, we identified substantial loss of islet function (up to 40%) after IBMIR with surviving NICC showing evidence of mitochondrial damage. Conclusions This study used novel assays to describe multiple key pathways by which xenogeneic IBMIR causes islet destruction, allowing further refinement of future interventions aimed at resolving the issue of IBMIR in xenotransplantation. PMID:27500267

  7. Cu-releasing BG/PCL Coating on Mg with Antibacterial and Anticorrosive Properties for Bone Tissue Engineering.

    PubMed

    Yang, Yuyun; Zheng, Kai; Liang, Ruifang; Mainka, Astrid; Taccardi, Nicola; Roether, Judith A; Detsch, Rainer; Goldmann, Wolfgang; Virtanen, Sannakaisa; Boccaccini, Aldo R

    2017-08-23

    Copper (Cu)-containing bioactive glass nanoparticles (Cu-BGNs) were introduced in polycaprolactone (PCL) coating systems to improve the bioactivity, antibacterial property, and corrosion resistance of vulnerable magnesium matrices under physiological conditions. The influence of different amounts of Cu-BGNs in PCL coatings was thoroughly investigated determining the wettability, electrochemical properties, and antibacterial effects against Staphylococcus carnosus and Escherichia coli, as well as their cyto-compatibility. Cu-BGNs were observed randomly scattered in PCL coatings. Increasing concentration of Cu-BGNs resulted in slightly decreasing water contact angle, and reducing anti-corrosion properties of the Cu-BGNs composite coatings. Yet higher Cu-BGNs content in coatings led to more calcium phosphate formation on the surface after 7 days of immersion in DMEM, which was confirmed by FTIR and XPS. The growth of S. carnosus and E. coli was inhibited by Cu2+ ion released from Cu-BGN coatings. In addition, both direct and indirect cyto-compatibility experiments showed that the viability and proliferation of MG-63 cells on Cu-BGN coatings were highly increased compared to pure magnesium; however, an additional increase of Cu-BGNs concentration showed a slight decrease of cell proliferation and cell activity. In summary, Cu-BGN/PCL composite coatings impart magnesium-based biomaterials antibacterial and anticorrosive properties for clinical applications. © 2017 IOP Publishing Ltd.

  8. Parathyroid hormone-related protein (107-111) improves the bone regeneration potential of gelatin-glutaraldehyde biopolymer-coated hydroxyapatite.

    PubMed

    Lozano, Daniel; Sánchez-Salcedo, Sandra; Portal-Núñez, Sergio; Vila, Mercedes; López-Herradón, Ana; Ardura, Juan Antonio; Mulero, Francisca; Gómez-Barrena, Enrique; Vallet-Regí, María; Esbrit, Pedro

    2014-07-01

    Biopolymer-coated nanocrystalline hydroxyapatite (HA) made as macroporous foams which are degradable and flexible are promising candidates as orthopaedic implants. The C-terminal (107-111) epitope of parathyroid hormone-related protein (PTHrP) exhibits osteogenic properties. The main aim of this study was to evaluate whether PTHrP (107-111) loading into gelatin-glutaraldehyde biopolymer-coated HA (HAGlu) scaffolds would produce an optimal biomaterial for tissue engineering applications. HAGlu scaffolds with and without PTHrP (107-111) were implanted into a cavitary defect performed in both distal tibial metaphysis of adult rats. Animals were sacrificed after 4 weeks for histological, microcomputerized tomography and gene expression analysis of the callus. At this time, bone healing occurred only in the presence of PTHrP (107-111)-containing HAGlu implant, related to an increase in bone volume/tissue volume and trabecular thickness, cortical thickness and gene expression of osteocalcin and vascular cell adhesion molecule 1, but a decreased gene expression of Wnt inhibitors, SOST and dickkopf homolog 1. The autonomous osteogenic effect of the PTHrP (107-111)-loaded HAGlu scaffolds was confirmed in mouse and human osteoblastic cell cultures. Our findings demonstrate the advantage of loading PTHrP (107-111) into degradable HAGlu scaffolds for achieving an optimal biomaterial that is promising for low load bearing clinical applications. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  9. Inkjet printing of Chitlac-nanosilver--a method to create functional coatings for non-metallic bone implants.

    PubMed

    Nganga, Sara; Moritz, Niko; Kolakovic, Ruzica; Jakobsson, Kristina; Nyman, Johan O; Borgogna, Massimiliano; Travan, Andrea; Crosera, Matteo; Donati, Ivan; Vallittu, Pekka K; Sandler, Niklas

    2014-10-22

    Biostable fiber-reinforced composites, based on bisphenol-A-dimethacrylate and triethyleneglycoldimethacrylate thermoset polymer matrix reinforced with E-glass fibers have been successfully used in cranial reconstructions and the material has been approved for clinical use. As a further refinement of these implants, antimicrobial, non-cytotoxic coatings on the composites were created by an immersion procedure driven by strong electrostatic interactions. Silver nanoparticles (nAg) were immobilized in lactose-modified chitosan (Chitlac) to prepare the bacteriostatic coatings. Herein, we report the use of inkjet technology (a drop-on-demand inkjet printer) to deposit functional Chitlac-nAg coatings on the thermoset substrates. Characterization methods included scanning electron microscopy, scanning white light interferometry and electro-thermal atomic absorption spectroscopy. Inkjet printing enabled the fast and flexible functionalization of the thermoset surfaces with controlled coating patterns. The coatings were not impaired by the printing process: the kinetics of silver release from the coatings created by inkjet printing and conventional immersion technique was similar. Further research is foreseen to optimize printing parameters and to tailor the characteristics of the coatings for specific clinical applications.

  10. Are xenogeneic anti-tissue transglutaminase antibodies the holy grail for celiac patients?

    PubMed

    Ivanovski, Petar Ilija; Ivanovski, Ivan P; Sedlarevic, Rade

    2007-01-01

    Celiac disease is an immune mediated disorder, the only one with a well-established origin, resulting from a permanent gluten intolerance. Although a gluten-free diet is currently the "safe" and appropriate therapy for celiac disease, this is not always an easy and simple option as "harmful" gluten may contaminate food during the processing and preparation phases. There are also further social pressures, which might be more pressing for young celiac patients, in following a strict gluten-free diet. Therefore, a new therapeutic approaches are sought which would permit celiacs to "peacefully" coexist with gluten. Presently, the most promising looks search for genetically modified wheat lacking toxic gluten peptides and the use of oral endopeptidases in attempt to curb gluten toxicity. Recently discovered role of anti-tissue transglutaminase antibodies in celiac pathogenesis has brought a prospect for a new hypothetical therapeutic approach, an oral immunization of celiacs with xenogeneic anti-tissue transglutaminase antibodies.

  11. Xenogenic transfer of isolated murine mitochondria into human rho0 cells can improve respiratory function.

    PubMed

    Katrangi, Eyad; D'Souza, Gerard; Boddapati, Sarathi V; Kulawiec, Mariola; Singh, Keshav K; Bigger, Brian; Weissig, Volkmar

    2007-12-01

    Mitochondrial DNA mutations are the direct cause of several physiological disorders and are also associated with the aging process. The modest progress made over the past two decades towards manipulating the mitochondrial genome and understanding its function within living mammalian cells means that cures for mitochondrial DNA mutations are still elusive. Here, we report that transformed mammalian cells internalize exogenous isolated mitochondria upon simple co-incubation. We first demonstrate the physical presence of internalized mitochondria within recipient cells using fluorescence microscopy. Second, we show that xenogenic transfer of murine mitochondria into human cells lacking functional mitochondria can functionally restore respiration in cells lacking mtDNA. Third, utilizing the natural competence of isolated mitochondria to take up linear DNA molecules, we demonstrate the feasibility of using cellular internalization of isolated exogenous mitochondria as a potential tool for studying mitochondrial genetics in living mammalian cells.

  12. Regeneration of facial nerve defects with xenogeneic acellular nerve grafts in a rat model.

    PubMed

    Zhu, Guochen; Lou, Weihua

    2014-04-01

    Because of ease of harvest and low immunogenicity, xenogeneic acellular nerve graft (XANG) may be an alternative to autologous nerve to repair facial nerve defects. Facial nerve defects of Wistar rats were repaired by XANG, and nerve gap regeneration was investigated by electrophysiological test, horseradish peroxidase (HRP) retrograde tracing and histomorphometric analysis, as compared to autograft. Twenty weeks after the grafting, electrophysiology showed that whisker pad muscles responded to the electrical stimuli given at the site proximal to the transplantation in 2 groups. Some HRP-labeled facial motorneurons were located on the facial nucleus of the operated side, and an abundance of myelinated axons were found at the middle of the grafts and obvious motor endplates in the target muscles in 2 groups, although they were inferior to the contralateral side in numbers. XANG represents an alternative approach for the reconstruction of peripheral facial nerve defects. Copyright © 2013 Wiley Periodicals, Inc.

  13. Success rates and immunologic responses of autogenic, allogenic, and xenogenic treatments to repair articular cartilage defects.

    PubMed

    Revell, Christopher M; Athanasiou, Kyriacos A

    2009-03-01

    This review examines current approaches available for articular cartilage repair, not only in terms of their regeneration potential, but also as a function of immunologic response. Autogenic repair techniques, including osteochondral plug transplantation, chondrocyte implantation, and microfracture, are the most widely accepted clinical treatment options due to the lack of immunogenic reactions, but only moderate graft success rates have been reported. Although suspended allogenic chondrocytes are shown to evoke an immune response upon implantation, allogenic osteochondral plugs and tissue-engineered grafts using allogenic chondrocytes exhibit a tolerable immunogenic response. Additionally, these repair techniques produce neotissue with success rates approaching those of currently available autogenic repair techniques, while simultaneously obviating their major hindrance of donor tissue scarcity. To date, limited research has been performed with xenogenic tissue, although several studies demonstrate the potential for its long-term success. This article focuses on the various treatment options for cartilage repair and their associated success rates and immunologic responses.

  14. Success Rates and Immunologic Responses of Autogenic, Allogenic, and Xenogenic Treatments to Repair Articular Cartilage Defects

    PubMed Central

    Revell, Christopher M.

    2009-01-01

    This review examines current approaches available for articular cartilage repair, not only in terms of their regeneration potential, but also as a function of immunologic response. Autogenic repair techniques, including osteochondral plug transplantation, chondrocyte implantation, and microfracture, are the most widely accepted clinical treatment options due to the lack of immunogenic reactions, but only moderate graft success rates have been reported. Although suspended allogenic chondrocytes are shown to evoke an immune response upon implantation, allogenic osteochondral plugs and tissue-engineered grafts using allogenic chondrocytes exhibit a tolerable immunogenic response. Additionally, these repair techniques produce neotissue with success rates approaching those of currently available autogenic repair techniques, while simultaneously obviating their major hindrance of donor tissue scarcity. To date, limited research has been performed with xenogenic tissue, although several studies demonstrate the potential for its long-term success. This article focuses on the various treatment options for cartilage repair and their associated success rates and immunologic responses. PMID:19063664

  15. Enhanced Ex Vivo Expansion of Human Hematopoietic Progenitors on Native and Spin Coated Acellular Matrices Prepared from Bone Marrow Stromal Cells

    PubMed Central

    Wasnik, Samiksha; Kantipudi, Suma; Kirkland, Mark A.; Pande, Gopal

    2016-01-01

    The extracellular microenvironment in bone marrow (BM) is known to regulate the growth and differentiation of hematopoietic stem and progenitor cells (HSPC). We have developed cell-free matrices from a BM stromal cell line (HS-5), which can be used as substrates either in native form or as tissue engineered coatings, for the enhanced ex vivo expansion of umbilical cord blood (UCB) derived HSPC. The physicochemical properties (surface roughness, thickness, and uniformity) of native and spin coated acellular matrices (ACM) were studied using scanning and atomic force microscopy (SEM and AFM). Lineage-specific expansion of HSPC, grown on these substrates, was evaluated by immunophenotypic (flow cytometry) and functional (colony forming) assays. Our results show that the most efficient expansion of lineage-specific HSPC occurred on spin coated ACM. Our method provides an improved protocol for ex vivo HSPC expansion and it offers a system to study the in vivo roles of specific molecules in the hematopoietic niche that influence HSPC expansion. PMID:26981135

  16. Decellularized Extracellular Matrix Derived from Porcine Adipose Tissue as a Xenogeneic Biomaterial for Tissue Engineering

    PubMed Central

    Choi, Young Chan; Choi, Ji Suk; Kim, Beob Soo; Kim, Jae Dong; Yoon, Hwa In

    2012-01-01

    Cells in tissues are surrounded by the extracellular matrix (ECM), a gel-like material of proteins and polysaccharides that are synthesized and secreted by cells. Here we propose that the ECM can be isolated from porcine adipose tissue and holds great promise as a xenogeneic biomaterial for tissue engineering and regenerative medicine. Porcine adipose tissue is easily obtained in large quantities from commonly discarded food waste. Decellularization protocols have been developed for extracting an intact ECM while effectively eliminating xenogeneic epitopes and minimally disrupting the ECM composition. Porcine adipose tissue was defatted by homogenization and centrifugation. It was then decellularized via chemical (1.5 M sodium chloride and 0.5% sodium dodecyl sulfate) and enzymatic treatments (DNase and RNase) with temperature control. After decellularization, immunogenic components such as nucleic acids and α-Gal were significantly reduced. However, abundant ECM components, such as collagen (332.9±12.1 μg/mg ECM dry weight), sulfated glycosaminoglycan (GAG, 85±0.7 μg/mg ECM dry weight), and elastin (152.6±4.5 μg/mg ECM dry weight), were well preserved in the decellularized material. The biochemical and mechanical features of a decellularized ECM supported the adhesion and growth of human cells in vitro. Moreover, the decellularized ECM exhibited biocompatibility, long-term stability, and bioinductivity in vivo. The overall results suggest that the decellularized ECM derived from porcine adipose tissue could be useful as an alternative biomaterial for xenograft tissue engineering. PMID:22559904

  17. The protective effects of prostaglandin E1 on sinusoidal endothelial cells in xenogeneic pig liver perfusion.

    PubMed

    Yagi, T; Ikai, I; Terajima, H; Satoh, S; Kanazawa, A; Shinohara, H; Uesugi, T; Yoneyama, T; Gomi, T; Takahashi, R; Yamamoto, M; Inamoto, T; Yamaoka, Y

    1997-11-01

    The effects of prostaglandin E1 (PGE1) on hepatic sinusoidal endothelial cells (SEC) in the xenogeneic immunoreaction were investigated. Porcine livers were perfused with fresh human blood via the portal vein (PV) and the hepatic artery (HA) either with the administration of PGE1 (Group PG) or without PGE1 (Group C). The creatine kinase-BB component (CK-BB) in the perfusate was measured to assess SEC damage. SEC activation and complement activation were evaluated immunohistochemically by the expression of von Willebrand factor (vWF) and by the deposition of membrane attack complex (MAC), respectively. Xenoperfusion in Group C was discontinued between 4 and 6 hr due to the rapid elevation of HA pressures and the massive loss of perfusate. In Group PG, both PV and HA pressures were kept stable for up to 9 hr. In Group C, severe interlobular bleeding and diffuse extrasinusoidal hemorrhage were observed at 4 hr histologically, while in Group PG, the hepatic architecture was maintained without hemorrhage at 6 hr. MAC was markedly deposited on SEC and parenchymal cells at 3 hr in both groups. The amount of vWF, however, was expressed on SEC in large amounts at 1 hr in Group C, while small amounts were expressed at 1 hr in Group PG. In Group PG, CK-BB release was significantly lower than in Group C (P < 0.01). These results suggest that PGE1 suppressed SEC activation and protected the impairment of hepatic SEC during xenoperfusion without suppressing complement activation, resulting in the prolongation of xenogeneic liver perfusion.

  18. tBHQ Suppresses Osteoclastic Resorption in Xenogeneic-Treated Dentin Matrix-Based Scaffolds.

    PubMed

    Sun, Jingjing; Li, Jie; Li, Hui; Yang, Hefeng; Chen, Jinlong; Yang, Bo; Huo, Fangjun; Guo, Weihua; Tian, Weidong

    2017-09-01

    Extracellularmatrix (ECM)-based scaffolds are important for their potential therapeutic application. Treated dentin matrix (TDM), a kind of ECM, seeded with allogeneic dental follicle stem cells (TDM/aDFC) provides a suitable inductive microenvironment for tooth root regeneration. Considering the limited sources, xenogeneic TDM (xTDM) is a possible alternative to allogeneic TDM; however, xTDM-based scaffold presents severe osteolysis and resorption lacunae causing regenerated tooth root failure. Immune response-induced excessive osteoclastogenesis plays a critical role in xenogeneic scaffold osteolysis and resorption. The impact of antioxidant, tert-butylhydroquinone (tBHQ), on xTDM/aDFCs-induced osteoclastogenesis and osteoclastic resorption in vivo and in vitro are investigated. tBHQ upregulates heme oxygenase-1 release and downregulates high mobility group box 1 mRNA expression. mRNA expression of other osteoclast-related genes including nuclear factor-kappa Bp65, receptor activator of nuclear factor kappa-B, nuclear factor of activated T-cells cytoplasmic 1, cathepsin K, and integrin β3, also decreases significantly. Furthermore, tBHQ-treated xTDM/aDFCs scaffolds implanted into rhesus macaques show reduced osteolysis and osteoclastic resorption by microcomputed tomography and tartrate-resistant acid phosphatase staining. tBHQ-induced suppression of xTDM/aDFC-induced osteoclastogenesis and osteoclastic resorption presents a new strategy for the regeneration of biological tooth root and could be applied to the regeneration of other complex tissues and organs. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Prevention of human PC-346C prostate cancer growth in mice by a xenogeneic tissue vaccine.

    PubMed

    Suckow, Mark A; Rosen, Elliot D; Wolter, William R; Sailes, Valerie; Jeffrey, Randy; Tenniswood, Martin

    2007-08-01

    Vaccination, as an approach to prostate cancer, has largely focused on immunotherapy utilizing specific molecules or allogeneic cells. Such methods are limited by the focused antigenic menu presented to the immune system and by immunotolerance to antigens recognized as "self". To examine if a xenogeneic tissue vaccine could stimulate protective immunity in a human prostate cancer cell line, a vaccine was produced by glutaraldehyde fixation of harvested PAIII prostate cancer cells tumors (GFT cell vaccine) from Lobund-Wistar rats. Immunocompetent Ncr-Foxn1 mice were vaccinated with the GFT cell vaccine four times, 7 days apart. The control animals were either not vaccinated or vaccinated with media or glutaraldehyde-fixed PC346C human prostate cancer cells and adjuvant. About 8 days after the final boost, serum and spleens were harvested. The splenocytes were co-incubated with PC346C cells and then transplanted orthotopically into sygneneic immunodeficient nude mice. About 10 weeks later, the prostates were weighed and sampled for histolologic examination. The spleens were harvested from additional mice, and the splenocytes were cultured, either with or without pulsing by GFT cells, and the supernatants harvested 72 h later for cytokine analysis. Results showed that vaccination with GFT cells resulted in increased serum antibody to a PAIII cell lysate; reduced weight of the prostate/seminal vesicle complex and reduced incidence of prostate cancer in nude mice; increased splenocyte supernatant levels of TNF-alpha, IL-2, IFN-gamma and IL-12, cytokines associated with Th1 immunity; and increased splenocyte supernatant levels of IL-4 and IL-10, cytokines associated with Th2 immunity. In summary, the results suggest that use of a xenogeneic tissue vaccine can stimulate protective immunity against human prostate cancer cells.

  20. Periimplant bone-level reduction in relation to hydroxyapatite-coated dental implants that act as mandibular overdenture retainers: results at 6 to 10 years.

    PubMed

    Leventi, Eleni; Malden, Nicholas J; Lopes, Victor R

    2014-10-01

    Edentulism in combination with chronic alveolar ridge resorption can lead to a debilitating oral state which conventional complete dentures cannot alleviate. The provision of anterior mandibular implants positively contributes to both function and an improved quality of life for these patients. However, individuals who could most benefit from the treatment are usually older and more likely to have or develop serious health issues. The purpose of the study was to assess the long-term success of one of the simpler implant treatments available and to consider the impact of a number of factors, including sex, age, health issues, and tobacco habits. This study also assessed the specific implant used, the Calcitek hydroxyapatite coated cylinder. Forty-one patients who received 102 implants for mandibular overdenture retention from 1 operator between 1996 and 2002 were included in the study. Measurements were made from a series of radiographs to assess the effect of periimplant bone loss on surviving implants after a period of implant function of between 6 and 10 years. The loss of 1 implant lowered the survival rate to 99%. The overall annual bone loss observed was 0.16 mm/year. Individuals with a significant comorbidity exhibited a slight but significant increase in annual bone loss. The implant system in this study performed to an acceptable level in a mixed cohort of older individuals, including those with a serious comorbidity or tobacco habit. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  1. A new uncemented hydroxyapatite-coated femoral component for the treatment of femoral neck fractures: two-year radiostereometric and bone densitometric evaluation in 50 hips.

    PubMed

    Sköldenberg, O G; Salemyr, M O; Bodén, H S; Lundberg, A; Ahl, T E; Adolphson, P Y

    2011-05-01

    Our aim in this pilot study was to evaluate the fixation of, the bone remodelling around, and the clinical outcome after surgery of a new, uncemented, fully hydroxyapatite-coated, collared and tapered femoral component, designed specifically for elderly patients with a fracture of the femoral neck. We enrolled 50 patients, of at least 70 years of age, with an acute displaced fracture of the femoral neck in this prospective single-series study. They received a total hip replacement using the new component and were followed up regularly for two years. Fixation was evaluated by radiostereometric analysis and bone remodelling by dual-energy x-ray absorptiometry. Hip function and the health-related quality of life were assessed using the Harris hip score and the EuroQol-5D. Up to six weeks post-operatively there was a mean subsidence of 0.2 mm (-2.1 to +0.5) and a retroversion of a mean of 1.2° (-8.2° to +1.5°). No component migrated after three months. The patients had a continuous loss of peri-prosthetic bone which amounted to a mean of 16% (-49% to +10%) at two years. The mean Harris hip score was 82 (51 to 100) after two years. The two-year results from this pilot study indicate that this new, uncemented femoral component can be used for elderly patients with osteoporotic fractures of the femoral neck.

  2. Promotion of osteogenic differentiation of stem cells and increase of bone-bonding ability in vivo using urease-treated titanium coated with calcium phosphate and gelatin

    NASA Astrophysics Data System (ADS)

    Huang, Zhong-Ming; Qi, Yi-Ying; Du, Shao-Hua; Feng, Gang; Unuma, Hidero; Yan, Wei-Qi

    2013-10-01

    Because of its excellent biocompatibility and low allergenicity, titanium has been widely used for bone replacement and tissue engineering. To produce a desirable composite with enhanced bone response and mechanical strength, in this study bioactive calcium phosphate (CaP) and gelatin composites were coated onto titanium (Ti) via a novel urease technique. The cellular responses to the CaP/gelatin/Ti (CaP/gel/Ti) and bone bonding ability were evaluated with proliferation and osteogenic differentiation of mesenchymal stem cells (MSCs) on CaP/gel/Ti and CaP/Ti in vitro. The results showed that the optical density values, alkaline phosphatase expression and genes expression of MSCs on CaP/gel/Ti were similar to those on CaP/Ti, yet significantly higher than those on pure Ti (p < 0.05). CaP/gel/Ti and CaP/Ti rods (2 mm in diameter, 10 mm in length) were also implanted into femoral shaft of rabbits and pure Ti rods served as control (n = 10). Histological examination, scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) measurements were performed at 4 and 8 weeks after the operation. The histological and SEM observations demonstrated clearly that more new bone formed on the surface of CaP/gel/Ti than in the other two groups at each time point. The CaP/gel/Ti bonded to the surrounding bone directly with no intervening soft tissue layer. An interfacial layer, containing Ti, Ca and P, was found to form at the interface between bone and the implant on all three groups by EDS analysis. However, the content of Ca, P in the surface of CaP/gel/Ti implants was more than in the other two groups at each time point. The CaP/gel/Ti modified by the urease method was not only beneficial for MSCs proliferation and osteogenic differentiation, but also favorable for bone bonding ability on Ti implants in vivo, suggesting that Ti functionalized with CaP and gelatin might have a great potential in clinical joint replacement or dental implants.

  3. Bone ingrowth around porous-coated acetabular implant: a three-dimensional finite element study using mechanoregulatory algorithm.

    PubMed

    Mukherjee, Kaushik; Gupta, Sanjay

    2016-04-01

    Fixation of uncemented implant is influenced by peri-prosthetic bone ingrowth, which is dependent on the mechanical environment of the implant-bone structure. The objective of the study is to gain an insight into the tissue differentiation around an acetabular component. A mapping framework has been developed to simulate appropriate mechanical environment in the three-dimensional microscale model, implement the mechanoregulatory tissue differentiation algorithm and subsequently assess spatial distribution of bone ingrowth around an acetabular component, quantitatively. The FE model of implanted pelvis subjected to eight static load cases during a normal walking cycle was first solved. Thereafter, a mapping algorithm has been employed to include the variations in implant-bone relative displacement and host bone material properties from the macroscale FE model of implanted pelvis to the microscale FE model of the beaded implant-bone interface. The evolutionary tissue differentiation was observed in each of the 13 microscale models corresponding to 13 acetabular regions. The total implant-bone relative displacements, averaged over each region of the acetabulum, were found to vary between 10 and 60 μm. Both the linear elastic and biphasic poroelastic models predicted similar mechanoregulatory peri-prosthetic tissue differentiation. Considerable variations in bone ingrowth (13-88%), interdigitation depth (0.2-0.82 mm) and average tissue Young's modulus (970-3430 MPa) were predicted around the acetabular cup. A progressive increase in the average Young's modulus, interdigitation depth and decrease in average radial strains of newly formed tissue layer were also observed. This scheme can be extended to investigate tissue differentiation for different surface texture designs on the implants.

  4. Effective immobilization of BMP-2 mediated by polydopamine coating on biodegradable nanofibers for enhanced in vivo bone formation.

    PubMed

    Cho, Hyeong-jin; Perikamana, Sajeesh Kumar Madhurakkat; Lee, Ji-hye; Lee, Jinkyu; Lee, Kyung-Mi; Shin, Choongsoo S; Shin, Heungsoo

    2014-07-23

    Although bone morphogenic proteins (BMPs) have been widely used for bone regeneration, the ideal delivery system with optimized dose and minimized side effects is still active area of research. In this study, we developed bone morphogenetic protein-2(BMP-2) immobilized poly(l-lactide) (PLLA) nanofibers inspired by polydopamine, which could be ultimately used as membranes for guided bone regeneration, and investigated their effect on guidance of in vitro cell behavior and in vivo bone formation. Surface chemical analysis of the nanofibers confirmed successful immobilization of BMP-2 mediated by polydopamine, and about 90% of BMP-2 was stably retained on the nanofiber surface for at least 28 days. The alkaline phosphatase activity and calcium mineralization of human mesenchymal stem cells (hMSCs) after 14 days of in vitro culture was significantly enhanced on nanofibers immobilized with BMP-2. More importantly, BMP-2 at a relatively small dose was highly active following implantation to the critical-sized defect in the cranium of mice; radiographic analysis demonstrated that 77.8 ± 11.7% of newly formed bone was filled within the defect for a BMP-2-immobilized groups at the concentration of 124 ± 9 ng/cm(2), as compared to 5.9 ± 1.0 and 34.1 ± 5.5% recovery, for a defect-only and a polydopamine-only group, respectively. Scanning and transmission electron microscopy of samples from the BMP-2 immobilized group showed fibroblasts and osteoblasts with nanofiber strands in the middle of regenerated bone tissue, revealing the importance of interaction between implanted nanofibers and the neighboring extracellular environment. Taken together, our data support that the presentation of BMP-2 on the surface of nanofibers as immobilized by utilizing polydopamine chemistry may be an effective method to direct bone growth at relatively low local concentration.

  5. Comparative Efficacies of Long-Term Serial Transplantation of Syngeneic, Allogeneic, Xenogeneic, or CTLA4Ig-Overproducing Xenogeneic Adipose Tissue-Derived Mesenchymal Stem Cells on Murine Systemic Lupus Erythematosus.

    PubMed

    Choi, Eun Wha; Lee, Hee Woo; Shin, Il Seob; Park, Ji Hyun; Yun, Tae Won; Youn, Hwa Young; Kim, Sung-Joo

    2016-01-01

    Allogeneic and xenogeneic transplantation are suitable alternatives for treating patients with stem cell defects and autoimmune diseases. The purpose of this study was to compare the effects of long-term serial transplantation of adipose tissue-derived mesenchymal stem cells (ASCs) from (NZB × NZW) F1 mice (syngeneic), BALB/c mice (allogeneic), or humans (xenogeneic) on systemic lupus erythematosus (SLE). The effects of transplanting human ASCs overproducing CTLA4Ig (CTLA4Ig-hASC) were also compared. Animals were divided into five experimental groups, according to the transplanted cell type. Approximately 500,000 ASCs were administered intravenously every 2 weeks from 6 to 60 weeks of age to all mice except for the control mice, which received saline. The human ASC groups (hASC and CTLA4Ig-hASC) showed a 13-week increase in average life spans and increased survival rates and decreased blood urea nitrogen, proteinuria, and glomerular IgG deposition. The allogeneic group also showed higher survival rates compared to those of the control, up to 40, 41, 42, 43, 44, 45, 52, and 53 weeks of age. Syngeneic ASC transplantation did not accelerate the mortality of the mice. The mean life span of both the syngeneic and allogeneic groups was prolonged for 6-7 weeks. Both human ASC groups displayed increased serum interleukin-10 and interleukin-4 levels, whereas both mouse ASC groups displayed significantly increased GM-CSF and interferon-γ levels in the serum. The strongest humoral immune response was induced by xenogeneic transplantation, followed by allogeneic, CTLA4Ig-xenogeneic, and syngeneic transplantations. Long-term serial transplantation of the ASCs from various sources displayed different patterns of cytokine expression and humoral responses, but all of them increased life spans in an SLE mouse model.

  6. Modulation of the nanometer pore size improves magnesium adsorption into mesoporous titania coatings and promotes bone morphogenic protein 4 expression in adhering osteoblasts.

    PubMed

    Cecchinato, Francesca; Atefyekta, Saba; Wennerberg, Ann; Andersson, Martin; Jimbo, Ryo; Davies, Julia R

    2016-07-01

    Mesoporous (MP) titania films used as implant coatings have recently been considered as release systems for controlled administration of magnesium to enhance initial osteoblast proliferation in vitro. Tuning of the pore size in such titania films is aimed at increasing the osteogenic potential through effects on the total loading capacity and the release profile of magnesium. In this study, evaporation-induced self-assembly (EISA) was used with different structure-directing agents to form three mesoporous films with average pore sizes of 2nm (MP1), 6nm (MP2) and 7nm (MP3). Mg adsorption and release was monitored using quartz crystal microbalance with dissipation (QCM-D). The film surfaces were characterized with atomic force microscopy (AFM), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The effect of different Mg release on osteogenesis was investigated in human fetal osteoblasts (hFOB) using pre-designed osteogenesis arrays and real-time polymerase chain reaction (RT-PCR). Results showed a sustained release from all the films investigated, with higher magnesium adsorption into MP1 and MP3 films. No significant differences were observed in the surface nanotopography of the films, either with or without the presence of magnesium. MP3 films (7nm pore size) had the greatest effect on osteogenesis, up-regulating 15 bone-related genes after 1 week of hFOB growth and significantly promoting bone morphogenic protein (BMP4) expression after 3 weeks of growth. The findings indicate that the increase in pore width on the nano scale significantly enhanced the bioactivity of the mesoporous coating, thus accelerating osteogenesis without creating differences in surface roughness. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  7. Evaluation of a novel reconstituted bone xenograft using processed bovine cancellous bone in combination with purified bovine bone morphogenetic protein.

    PubMed

    Long, Bi; Dan, Li; Jian, Liu; Yunyu, Hu; Shu, He; Zhi, Yuan

    2012-01-01

    Xenogeneic grafting represents an alternative to autogenous grafting in osseous reconstruction and exhibits many beneficial properties. However, the usefulness of xenogeneic bone relies on necessary processing procedures for removing antigens and viruses, and preserving biological activities simultaneously. By chemical treatment of bovine cancellous bone to make it an antigen-free scaffold, and extraction of bone morphogenetic protein (BMP) from bovine cortical bone, followed by recombination of the scaffold with the BMP, we developed a new grafting material, reconstituted bone xenograft (RBX). In this study, scanning electron microscope and energy dispersive X-ray were first employed to observe the structure and components of RBX. Then the biomechanical property was evaluated by applying compression in a materials testing machine. Subsequently, the immunologic evaluation was performed by measuring galactose-alpha-1,3-galactose (α-gal) epitope in vivo and proinflammatory cytokine (TNF-α) secreted by human monocytic cell line (THP-1) in vitro. Finally, this RBX was implanted into segmental radial defects in a rabbit model, and its ability to treat large bone defects was specifically evaluated. Although the compressive strength of RBX was 10% lower than that of unprocessed bovine cancellous bone (UBCB), the basic porous structure and natural components were still kept in this composite. The α-gal xenoantigen level was significantly lower in RBX (P < 0.05) compared with UBCB. Moreover, the TNF-α level was significantly (P < 0.05) reduced compared with UBCB when THP-1 was exposed to RBX. On the other hand, RBX appeared to induce cartilage formation from immature cell populations and resulted in osteogenesis through endochondral-like ossification from 4 to 12 weeks in repairing segmental bone defects. These results demonstrate that RBX, with its natural microstructure and components, certain mechanical strength and strong osteoinductivity without evoking immune

  8. Evaluation of osteoinduction properties of the demineralized bovine foetal growth plate powder as a new xenogenic biomaterial in rat.

    PubMed

    Bigham, A S; Shadkhast, M; Bigham Sadegh, A; Shafiei, Z; Lakzian, A; Khalegi, M R

    2011-10-01

    The aim of this study was evaluation of osteoinductive properties of demineralized bovine foetal growth plate in submuscular transplantation (ectopic osteoinduction) as a new xenogenic biomaterial in rat model. Demineralized bovine foetal growth plate was ectopically implanted in 18 male Sprague-Dawley rats. In 18 of the animals under aseptic conditions two submuscular pouches were created between external and internal oblique abdominal muscles in the two flanks: the right was left empty (sham) and the left was filled with 20mg of demineralized bovine foetal growth plate powder. Radiographs were taken in 2, 4 and 6 weeks after the surgery, then six animals were pharmacologically euthanized after 2, 4 and 6 weeks for histopathological evaluation. Results showed: (1) osteoinductivity of xenogenic demineralized bovine foetal growth plate powder, and (2) earlier mineralization of ectopically implanted demineralized bovine foetal growth plate in the submuscular implanted area. Our results show that submuscular implantation of xenogenic demineralized bovine foetal growth plate has osteoinductive properties in a rat model.

  9. Enhanced bone forming ability of SLA-treated Ti coated with a calcium phosphate thin film formed by e-beam evaporation.

    PubMed

    Kim, Hyeongil; Choi, Seong-Ho; Chung, Sung-Min; Li, Long-Hao; Lee, In-Seop

    2010-08-01

    With an electron-beam evaporation process, a calcium phosphate (Ca-P) thin film of approximately 500 nm thick was deposited on sand blasted with large grits and acid etched (SLA) Ti without changing the typical morphology of the SLA surface. Dissolution behavior was investigated by measuring the amount of dissolved phosphate ions with ion chromatography after immersing the SLA Ti sample coated with a Ca-P film in 1 ml de-ionized water maintained at 37 degrees C for different periods of soaking time, and the surface morphology was observed with field emission scanning electron microscopy. The amount of phosphate ions increased quickly right after immersion but began to decrease after 2 days of immersion by redeposition with Ca ions as apatite, and the amount of biomimetic apatite increased with the extended soaking time. The Saos-2 cell was more attached on the coated surface, and the in vivo evaluation was that the Ca-P deposited SLA implant greatly improved the new bone formation ability.

  10. Nanosized mesoporous bioactive glass/poly(lactic-co-glycolic acid) composite-coated CaSiO3 scaffolds with multifunctional properties for bone tissue engineering.

    PubMed

    Shi, Mengchao; Zhai, Dong; Zhao, Lang; Wu, Chengtie; Chang, Jiang

    2014-01-01

    It is of great importance to prepare multifunctional scaffolds combining good mechanical strength, bioactivity, and drug delivery ability for bone tissue engineering. In this study, nanosized mesoporous bioglass/poly(lactic-co-glycolic acid) composite-coated calcium silicate scaffolds, named NMBG-PLGA/CS, were successfully prepared. The morphology and structure of the prepared scaffolds were characterized by scanning electron microscopy and X-ray diffraction. The effects of NMBG on the apatite mineralization activity and mechanical strength of the scaffolds and the attachment, proliferation, and alkaline phosphatase activity of MC3T3 cells as well as drug ibuprofen delivery properties were systematically studied. Compared to pure CS scaffolds and PLGA/CS scaffolds, the prepared NMBG-PLGA/CS scaffolds had greatly improved apatite mineralization activity in simulated body fluids, much higher mechanical property, and supported the attachment of MC3T3 cells and enhanced the cell proliferation and ALP activity. Furthermore, the prepared NMBG-PLGA/CS scaffolds could be used for delivering ibuprofen with a sustained release profile. Our study suggests that the prepared NMBG-PLGA/CS scaffolds have improved physicochemical, biological, and drug-delivery property as compared to conventional CS scaffolds, indicating that the multifunctional property of the prepared scaffolds for the potential application of bone tissue engineering.

  11. Nanosized Mesoporous Bioactive Glass/Poly(lactic-co-glycolic Acid) Composite-Coated CaSiO3 Scaffolds with Multifunctional Properties for Bone Tissue Engineering

    PubMed Central

    Zhai, Dong; Zhao, Lang

    2014-01-01

    It is of great importance to prepare multifunctional scaffolds combining good mechanical strength, bioactivity, and drug delivery ability for bone tissue engineering. In this study, nanosized mesoporous bioglass/poly(lactic-co-glycolic acid) composite-coated calcium silicate scaffolds, named NMBG-PLGA/CS, were successfully prepared. The morphology and structure of the prepared scaffolds were characterized by scanning electron microscopy and X-ray diffraction. The effects of NMBG on the apatite mineralization activity and mechanical strength of the scaffolds and the attachment, proliferation, and alkaline phosphatase activity of MC3T3 cells as well as drug ibuprofen delivery properties were systematically studied. Compared to pure CS scaffolds and PLGA/CS scaffolds, the prepared NMBG-PLGA/CS scaffolds had greatly improved apatite mineralization activity in simulated body fluids, much higher mechanical property, and supported the attachment of MC3T3 cells and enhanced the cell proliferation and ALP activity. Furthermore, the prepared NMBG-PLGA/CS scaffolds could be used for delivering ibuprofen with a sustained release profile. Our study suggests that the prepared NMBG-PLGA/CS scaffolds have improved physicochemical, biological, and drug-delivery property as compared to conventional CS scaffolds, indicating that the multifunctional property of the prepared scaffolds for the potential application of bone tissue engineering. PMID:24724080

  12. Comparison of Clinical Efficacy Between Modular Cementless Stem Prostheses and Coated Cementless Long-Stem Prostheses on Bone Defect in Hip Revision Arthroplasty

    PubMed Central

    Li, Huibin; Chen, Fang; Wang, Zhe; Chen, Qian

    2016-01-01

    Background The aim of this study was to investigate and compare the clinical efficacy of modular cementless stem and coated cementless long-stem prostheses in hip revision arthroplasty. Material/Methods Sixty-five patients with complete hip revision surgery data during January 2005 to March 2015 were selected from the People’s Hospital of Linyi City and randomly divided into a S-ROM group (implanted with cementless modular stem prostheses, n=32) and a SLR-PLUS group (implanted with cementless coated long-stem prostheses, n=33). Harris score was used to evaluate the hip function of the patients in order to measure the clinical efficacy of the prostheses in total hip arthroplasty. Anteroposterior pelvic radiographs and lateral pelvic radiographs were taken and each patient’s hip arthroplasty condition was recorded. Kaplan-Meier method was applied to compare the cumulative 5-year non-revision rate between the 2 prostheses and log-rank method was used to inspect the statistical data. Results The Harris scores of both the S-ROM group and the SLR-PLUS group were significantly higher at 12 months after the operation than those before the operation (both P<0.05). The Harris scores of the patients with type I/II bone defects in the S-ROM group were not significantly different from those of the same types in the SLR-PLUS group at all time points (all P>0.05), while the Harris scores of the patients with type IIIA/IIIB in the S-ROM group were both significantly higher than those of the same types in the SLR-PLUS group at 3 months, 6 months, and 12 months after the operation (all P<0.05). No significant difference was found in the cumulative 5-year non-revision rate between the type I/II patients in the S-ROM group (92.31%) and the patients of the same types in the SLR-PLUS group (85.71%) (P>0.05). However, the cumulative 5-year non-revision rate of the type IIIA/IIIB patients in the S-ROM group (89.47%) was significantly different from the patients of the same types in

  13. Poly(dopamine) coating of 3D printed poly(lactic acid) scaffolds for bone tissue engineering.

    PubMed

    Kao, Chia-Tze; Lin, Chi-Chang; Chen, Yi-Wen; Yeh, Chia-Hung; Fang, Hsin-Yuan; Shie, Ming-You

    2015-11-01

    3D printing is a versatile technique to generate large quantities of a wide variety of shapes and sizes of polymer. The aim of this study is to develop functionalized 3D printed poly(lactic acid) (PLA) scaffolds and use a mussel-inspired surface coating to regulate cell adhesion, proliferation and differentiation of human adipose-derived stem cells (hADSCs). We prepared PLA 3D scaffolds coated with polydopamine (PDA). The chemical composition and surface properties of PDA/PLA were characterized by XPS. PDA/PLA modulated hADSCs' responses in several ways. Firstly, adhesion and proliferation, and cell cycle of hADSCs cultured on PDA/PLA were significantly enhanced relative to those on PLA. In addition, the collagen I secreted from cells was increased and promoted cell attachment and cell cycle progression were depended on the PDA content. In osteogenesis assay, the ALP activity and osteocalcin of hADSCs cultured on PDA/PLA were significantly higher than seen in those cultured on pure PLA scaffolds. Moreover, hADSCs cultured on PDA/PLA showed up-regulation of the ang-1 and vWF proteins associated with angiogenic differentiation. Our results demonstrate that the bio-inspired coating synthetic PLA polymer can be used as a simple technique to render the surfaces of synthetic scaffolds active, thus enabling them to direct the specific responses of hADSCs. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Tooth-derived bone graft material

    PubMed Central

    Kim, Young-Kyun; Lee, Junho; Kim, Kyung-Wook; Murata, Masaru; Akazawa, Toshiyuki; Mitsugi, Masaharu

    2013-01-01

    With successful extraction of growth factors and bone morphogenic proteins (BMPs) from mammalian teeth, many researchers have supported development of a bone substitute using tooth-derived substances. Some studies have also expanded the potential use of teeth as a carrier for growth factors and stem cells. A broad overview of the published findings with regard to tooth-derived regenerative tissue engineering technique is outlined. Considering more than 100 published papers, our team has developed the protocols and techniques for processing of bone graft material using extracted teeth. Based on current studies and studies that will be needed in the future, we can anticipate development of scaffolds, homogenous and xenogenous tooth bone grafts, and dental restorative materials using extracted teeth. PMID:24471027

  15. In vivo depletion of lymphotoxin-alpha expressing lymphocytes inhibits xenogeneic graft-versus-host-disease.

    PubMed

    Chiang, Eugene Y; Kolumam, Ganesh; McCutcheon, Krista M; Young, Judy; Lin, Zhonghua; Balazs, Mercedesz; Grogan, Jane L

    2012-01-01

    Graft-versus-host disease (GVHD) is a major barrier to successful allogeneic hematopoietic cell transplantation and is largely mediated by activated donor lymphocytes. Lymphotoxin (LT)-α is expressed by subsets of activated T and B cells, and studies in preclinical models demonstrated that targeted depletion of these cells with a mouse anti-LT-α monoclonal antibody (mAb) was efficacious in inhibiting inflammation and autoimmune disease. Here we demonstrate that LT-α is also upregulated on activated human donor lymphocytes in a xenogeneic model of GVHD and targeted depletion of these donor cells ameliorated GVHD. A depleting humanized anti-LT-α mAb, designated MLTA3698A, was generated that specifically binds to LT-α in both the soluble and membrane-bound forms, and elicits antibody-dependent cellular cytotoxicity (ADCC) activity in vitro. Using a human peripheral blood mononuclear cell transplanted SCID (Hu-SCID) mouse model of GVHD, the anti-human LT-α mAb specifically depleted activated LT-expressing human donor T and B cells, resulting in prolonged survival of the mice. A mutation in the Fc region, rendering the mAb incapable of mediating ADCC, abolished all in vitro and in vivo effects. These data support a role for using a depleting anti-LT-α antibody in treating immune diseases such as GVHD and autoimmune diseases.

  16. Transferring Xenogenic Mitochondria Provides Neural Protection Against Ischemic Stress in Ischemic Rat Brains.

    PubMed

    Huang, Po-Jui; Kuo, Chi-Chung; Lee, Hsiu-Chin; Shen, Ching-I; Cheng, Fu-Chou; Wu, Shih-Fang; Chang, Jui-Chih; Pan, Hung-Chuan; Lin, Shinn-Zong; Liu, Chin-San; Su, Hong-Lin

    2016-01-01

    Transferring exogenous mitochondria has therapeutic effects on damaged heart, liver, and lung tissues. Whether this protective effect requires the symbiosis of exogenous mitochondria in host cells remains unknown. Here xenogenic mitochondria derived from a hamster cell line were applied to ischemic rat brains and rat primary cortical neurons. Isolated hamster mitochondria, either through local intracerebral or systemic intra-arterial injection, significantly restored the motor performance of brain-ischemic rats. The brain infarct area and neuronal cell death were both attenuated by the exogenous mitochondria. Although internalized mitochondria could be observed in neurons and astrocytes, the low efficacy of mitochondrial internalization could not completely account for the high rate of rescue of the treated neural cells. We further illustrated that disrupting electron transport or ATPase synthase in mitochondria significantly attenuated the protective effect, suggesting that intact respiratory activity is essential for the mitochondrial potency on neural protection. These results emphasize that nonsymbiotic extracellular mitochondria can provide an effective cell defense against acute injurious ischemic stress in the central nervous system.

  17. Cytokine production following experimental implantation of xenogenic dermal collagen and polypropylene grafts in mice.

    PubMed

    Zheng, Fang; Xu, Luo; Verbiest, Lieve; Verbeken, Eric; De Ridder, Dirk; Deprest, Jan

    2007-01-01

    We earlier showed that xenogenic Pelvicol (Bard, Olen, Belgium) implants induce a lesser inflammatory response than Prolene (Johnson and Johnson, Dilbeek, Belgium). The purpose of this study was to determine cytokine profiles in the host immune responses to Pelvicol in a mouse model. The hypothesis was that Pelvicol would induce a "T-helper2" (Th2) rather than T-helper1 (Th1) type of inflammatory response. Mice were implanted subcutaneously with Pelvicol or Prolene and the graft sites were harvested at 3 to 28 days. Histopathology was done and cytokine levels were determined by immunohistochemistry and RT-PCR. Flow cytometry was used to identify which cell population contributed to the observed cytokine production profiles. Pelvicol induced a decreased inflammation and displayed an increase in IL-10 and TGF-beta, but reduce of TNF-alpha and IFN-gamma, indicating a Th2 type dominated response as examined by immunohistochemistry and RT-PCR. Flow cytometry showed that the monocytes/maceophages were the main cell population responsible for production of these cytokines. Monocytes/maceophages from Pelvicol explants showed upregulated expression of IL-10 while Prolene explants expressed TNF-alpha. Pelvicol induced a Th2 type cytokine-dominated immune response after subcutaneous implantation in mice. (c) 2006 Wiley-Liss, Inc.

  18. Peripheral target reinnervation following orthotopic grafting of fetal allogeneic and xenogeneic dorsal root ganglia.

    PubMed

    Rosario, C M; Dubovy, P; Sidman, R L; Aldskogius, H

    1995-04-01

    The sensory reinnervation of dermal papillae and epidermis of glabrous skin, interosseal Pacinian corpuscles, and muscle spindles of the soleus and extensor digitorum longus muscles has been examined 1, 3, and 8 months (allografts) or 3 and 5 weeks (xenografts) following orthotopic grafting of fetal allogeneic or xenogeneic (mouse) dorsal root ganglia (DRG) into ganglionectomized adult rats. Sensory axons in target tissues were identified immunohistochemically by monoclonal antibodies against growth-associated peptide (GAP-43), heavy neurofilament protein (RT-97), anti-mouse-specific membrane glycoprotein Thy-1.2, and polyclonal antibody to calcitonin gene-related peptide (CGRP). Absence of axonal marker staining in target structures of control animals 10 days or 3 months following ipsilateral enucleation of the L3-L6 DRG without grafting indicated an elimination of host normal (intact), regenerating, or collaterally sprouting nerve fibers. The consistent finding of immunolabeled axons ending free and in encapsulated structures in the target tissues of both allo- and xenografted rats indicates that grafted primary sensory neurons can survive and send axonal processes down the full length of the hind limb, to terminate in host target tissues. Axons of xenografted fetal mouse sensory neurons grow in adult rat hosts for distances of 4 cm or more, attaining lengths far greater than called for by their normal developmental programs.

  19. Radiologic bone remodeling pattern around DCPD-coated, metaphyseal-loading cementless short stems in elderly patients.

    PubMed

    Oh, Kwang-Jun; Mishra, Amit; Yang, Jae-Hyuk

    2014-07-01

    Concerns exist regarding using short stems during total hip arthroplasties performed in elderly patients. For this study, the authors assessed sequential bone remodeling findings in metaphyseal-loading short stems using serial radiography. A total of 100 consecutive primary THAs using short stems were performed in patients with an average age of 78.3 years. The presence and patterns of radiolucent lines, radiopaque lines, calcar rounding, proximal bone resorption, spot welds, cortical hypertrophy, and intramedullary bone formation around the distal tip were assessed. The final study group comprised 92 hips, and mean follow-up was 60±3 months (range, 48-72 months). At final follow-up, condensations of spot welds were noted in 84 (91.3%) hips. Spot weld formation occurred in all zones except 1 and 4. Calcar rounding was observed in 90 (97.8%) hips. Atrophy of the calcar was noted in 19 (20.6%) hips. Analysis of the proximal zones revealed reactive radiodense lines in zones 1 and 2 (tensile area/shoulder of stem) in 22 (23.9%) hips. A prominent reactive line around the tip of the stem was recorded in 32 (34.8%) hips on radiographs at final follow-up. However, there was no increase in space between the tip of the stem and the radiopaque line. No acetabular or femoral component migrated by more than 1 mm at final follow-up. No acetabular or femoral osteolysis was identified. The radiographic findings of metaphyseal-loading short stems in elderly patients suggest that 91.3% of implants were osseointegrated. No patient required stem revision. Metaphyseal-loading short stems in elderly patients provide continued fixation with adaptive bone remodeling. Copyright 2014, SLACK Incorporated.

  20. Xenogeneic Graft-versus-Host-Disease in NOD-scid IL-2Rγnull Mice Display a T-Effector Memory Phenotype

    PubMed Central

    Ali, Niwa; Flutter, Barry; Sanchez Rodriguez, Robert; Sharif-Paghaleh, Ehsan; Barber, Linda D.; Lombardi, Giovanna; Nestle, Frank O.

    2012-01-01

    The occurrence of Graft-versus-Host Disease (GvHD) is a prevalent and potentially lethal complication that develops following hematopoietic stem cell transplantation. Humanized mouse models of xenogeneic-GvHD based upon immunodeficient strains injected with human peripheral blood mononuclear cells (PBMC; “Hu-PBMC mice”) are important tools to study human immune function in vivo. The recent introduction of targeted deletions at the interleukin-2 common gamma chain (IL-2Rγnull), notably the NOD-scid IL-2Rγnull (NSG) and BALB/c-Rag2null IL-2Rγnull (BRG) mice, has led to improved human cell engraftment. Despite their widespread use, a comprehensive characterisation of engraftment and GvHD development in the Hu-PBMC NSG and BRG models has never been performed in parallel. We compared engrafted human lymphocyte populations in the peripheral blood, spleens, lymph nodes and bone marrow of these mice. Kinetics of engraftment differed between the two strains, in particular a significantly faster expansion of the human CD45+ compartment and higher engraftment levels of CD3+ T-cells were observed in NSG mice, which may explain the faster rate of GvHD development in this model. The pathogenesis of human GvHD involves anti-host effector cell reactivity and cutaneous tissue infiltration. Despite this, the presence of T-cell subsets and tissue homing markers has only recently been characterised in the peripheral blood of patients and has never been properly defined in Hu-PBMC models of GvHD. Engrafted human cells in NSG mice shows a prevalence of tissue homing cells with a T-effector memory (TEM) phenotype and high levels of cutaneous lymphocyte antigen (CLA) expression. Characterization of Hu-PBMC mice provides a strong preclinical platform for the application of novel immunotherapies targeting TEM-cell driven GvHD. PMID:22937164

  1. Anticancer effect and immunologic response to xenogeneic embryonic proteins in mice bearing Ehrlich solid carcinoma.

    PubMed

    Symchych, T V; Fedosova, N I; Karaman, О М; Yevstratieva, L M; Potebnia, H P

    2017-03-01

    To investigate anticancer and immunologic effects of chicken embryonic proteins (CEP) in mice bearing Ehrlich solid carcinoma. The study was carried out on male Balb/c mice bearing Ehrlich solid carcinoma. The immunizations were performed after the tumor transplantation. The immune status was assessed on days 7, 14, 21 and 28 after the tumor challenge. Cytotoxic activity (CAT) of macrophages (Mph), natural killer cells (NK), cytotoxic T-lymphocytes (CTL) and blood serum, as well as the influence of the blood serum on immune cells activity was checked in MTT-assay; Mph's cytochemical activity was tested in NBT-assay; Ehrlich antigen-specific or CEP-specific antibodies were detected in ELISA-assay; medium size circulating immune complexes (CIC) were detected in reaction of 4.5% polyethylene glycol precipitation. The immunization resulted in tumor growth suppression and significant 25.64% prolongation of the survival time. In both control and immunized mice with transplanted tumors antibodies specific to Ehrlich carcinoma antigens and to CEP were detected, but antibody response was more balanced in the treatment group. In the treatment group both cytochemical and CAT of Mph was moderately activated and well preserved until late stages of tumor development; CAT of NK and CTL remained in the range of the intact mice until day 28 after the tumor transplantation. The immunized mice were well protected from accumulation of CIC and suppressive activity of autologous blood serum. Collectively, our data indicate that CEP can elicit immunomodulating and immunoprotecting effects sufficient to provide tumor growth inhibition. The further elaboration of a xenogeneic anticancer vaccine based on CEP is warranted.

  2. Xenogeneic therapeutic cancer vaccines as breakers of immune tolerance for clinical application: to use or not to use?

    PubMed

    Strioga, Marius M; Darinskas, Adas; Pasukoniene, Vita; Mlynska, Agata; Ostapenko, Valerijus; Schijns, Virgil

    2014-07-07

    Accumulation of firm evidence that clinically apparent cancer develops only when malignant cells manage to escape immunosurveillance led to the introduction of tumor immunotherapy strategies aiming to reprogramm the cancer-dysbalanced antitumor immunity and restore its capacity to control tumor growth. There are several immunotherapeutical strategies, among which specific active immunotherapy or therapeutic cancer vaccination is one of the most promising. It targets dendritic cells (DCs) which have a unique ability of inducing naive and central memory T cell-mediated immune response in the most efficient manner. DCs can be therapeutically targeted either in vivo/in situ or by ex vivo manipulations followed by their re-injection back into the same patient. The majority of current DC targeting strategies are based on autologous or allogeneic tumor-associated antigens (TAAs) which possess various degrees of inherent tolerogenic potential. Therefore still limited efficacy of various tumor immunotherapy approaches may be attributed, among various other mechanisms, to the insufficient immunogenicity of self-protein-derived TAAs. Based on such an idea, the use of homologous xenogeneic antigens, derived from different species was suggested to overcome the natural immune tolerance to self TAAs. Xenoantigens are supposed to differ sufficiently from self antigens to a degree that renders them immunogenic, but at the same time preserves an optimal homology range with self proteins still allowing xenoantigens to induce cross-reactive T cells. Here we discuss the concept of xenogeneic vaccination, describe the cons and pros of autologous/allogeneic versus xenogeneic therapeutic cancer vaccines, present the results of various pre-clinical and several clinical studies and highlight the future perspectives of integrating xenovaccination into rapidly developing tumor immunotherapy regimens. Copyright © 2014. Published by Elsevier Ltd.

  3. Silencing porcine CMAH and GGTA1 genes significantly reduces xenogeneic consumption of human platelets by porcine livers

    PubMed Central

    Butler, James R.; Paris, Leela L.; Blankenship, Ross L.; Sidner, Richard A.; Martens, Gregory R.; Ladowski, Joeseph M.; Li, Ping; Estrada, Jose L; Tector, Matthew; Tector, A. Joseph

    2015-01-01

    Background A profound thrombocytopenia limits hepatic xenotransplantation in the pig-to-primate model. Porcine livers also have shown the ability to phagocytose human platelets in the absence of immune-mediate injury. Recently, inactivation of the porcine ASGR1 gene has been shown to decrease this phenomenon. Inactivating GGTA1 and CMAH genes has reduced the antibody-mediated barrier to xenotransplantation; herein we describe the effect that these modifications have on xenogeneic consumption of human platelets in the absence of immune-mediated graft injury. Methods WT, ASGR1−/−, GGTA1−/−, and GGTA1−/−CMAH−/− knockout pigs were compared for their xenogeneic hepatic consumption of human platelets. An in vitro assay was established to measure the association of human platelets with liver sinusoidal endothelial cells (LSECs) by immunohistochemistry. Perfusion models were used to measure human platelet uptake in livers from WT, ASGR1−/−, GGTA1−/−, and GGTA1−/− CMAH−/− pigs. Results GGTA1−/−, CMAH−/− LSECs exhibited reduced levels of human platelet binding in vitro, when compared to GGTA1−/− and WT LSECs. In a continuous perfusion model, GGTA1−/− CMAH−/− livers consumed fewer human platelets than GGTA1−/− and WT livers. GGTA1−/− CMAH−/− livers also consumed fewer human platelets than ASGR1−/− livers in a single pass model. Conclusions Silencing the porcine carbohydrate genes necessary to avoid antibody-mediated rejection in a pig-to-human model also reduces the xenogeneic consumption of human platelets by the porcine liver. The combination of these genetic modifications may be an effective strategy to limit the thrombocytopenia associated with pig-to-human hepatic xenotransplantation. PMID:26906939

  4. [Bone substitutes used for sinus lift].

    PubMed

    Kamm, T; Kamm, S; Heppt, W

    2015-07-01

    In dental surgery today a variety of bone substitutes are used for sinus lift. After the increased application of synthetics during the last decade there has now been a move back to autologous bone transplants, combined with allogenic and xenogenic augmentation materials. The effects of transforming growth factors and recombinant equivalents of bone morphogenetic proteins remain to be seen. Covering the augmented area with a collagen membrane is the basic standard in many cases. Concomitant illnesses of dental origin or of the maxillary sinus have to be assessed prior to any sinus lift. Once complications such as laceration of the Schneiderian membrane, infection or adverse reaction have occurred, early and consistent therapy is required.

  5. An in vitro biomechanical comparison of hydroxyapatite coated and uncoated ao cortical bone screws for a limited contact: dynamic compression plate fixation of osteotomized equine 3rd metacarpal bones.

    PubMed

    Durham, Myra E; Sod, Gary A; Riggs, Laura M; Mitchell, Colin F

    2015-02-01

    To compare the monotonic biomechanical properties of a broad 4.5 mm limited contact-dynamic compression plate (LC-DCP) fixation secured with hydroxyapatite (HA) coated cortical bone screws (HA-LC-DCP) versus uncoated cortical bone screws (AO-LC-DCP) to repair osteotomized equine 3rd metacarpal (MC3) bones. Experimental. Adult equine cadaveric MC3 bones (n = 12 pair). Twelve pairs of equine MC3 were divided into 3 test groups (4 pairs each) for: (1) 4 point bending single cycle to failure testing; (2) 4 point bending cyclic fatigue testing; and (3) torsional single cycle to failure testing. For the HA-LC-DCP-MC3 construct, an 8-hole broad LC-DCP (Synthes Ltd, Paoli, PA) was secured on the dorsal surface of each randomly selected MC3 bone with a combination of four 5.5 mm and four 4.5 mm HA-coated cortical screws. For the AO-LC-DCP-MC3 construct, an 8-hole 4.5 mm broad LC-DCP was secured on the dorsal surface of the contralateral MC3 bone with a combination of four 5.5 mm and four 4.5 mm uncoated cortical screws. All MC3 bones had mid-diaphyseal osteotomies. Mean test variable values for each method were compared using a paired t-test within each group. Significance was set at P < .05. Mean yield load, yield bending moment, composite rigidity, failure load, and failure bending moment, under 4 point bending, single cycle to failure, of the HA-LC-DCP fixation were significantly greater than those of the AO-LC-DCP fixation. Mean ± SD values for the HA-LC-DCP and the AO-LC-DCP fixation techniques, respectively, in single cycle to failure under 4 point bending were: yield load, 26.7 ± 2.15 and 16.3 ± 1.38 kN; yield bending moment, 527.4 ± 42.4 and 322.9 ± 27.2 N-m; composite rigidity, 5306 ± 399 and 3003 ± 300 N-m/rad; failure load, 40.6 ± 3.94 and 26.5 ± 2.52 kN; and failure bending moment, 801.9 ± 77.9 and 522.9 ± 52.2 N-m. Mean cycles to failure in 4 point bending of the HA

  6. Biocompatible cephalosporin-hydroxyapatite-poly(lactic-co-glycolic acid)-coatings fabricated by MAPLE technique for the prevention of bone implant associated infections

    NASA Astrophysics Data System (ADS)

    Rădulescu, Dragoş; Grumezescu, Valentina; Andronescu, Ecaterina; Holban, Alina Maria; Grumezescu, Alexandru Mihai; Socol, Gabriel; Oprea, Alexandra Elena; Rădulescu, Marius; Surdu, Adrian; Trusca, Roxana; Rădulescu, Radu; Chifiriuc, Mariana Carmen; Stan, Miruna S.; Constanda, Sabrina; Dinischiotu, Anca

    2016-06-01

    In this study we aimed to obtain functionalized thin films based on hydroxyapatite/poly(lactic-co-glycolic acid) (HAp/PLGA) containing ceftriaxone/cefuroxime antibiotics (ATBs) deposited by Matrix Assisted Pulsed Laser Evaporation (MAPLE) technique. The prepared thin films were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-Ray diffraction (XRD), selected area electron diffraction (SAED), and infra red (IR) analysis. HAp/PLGA/ATBs thin films sustained the growth of human osteoblasts, proving their good biocompatibility. The microscopic evaluation and the culture-based quantitative assay of the E. coli biofilm development showed that the thin films inhibited the initial step of microbial attachment as well as the subsequent colonization and biofilm development on the respective surfaces. This study demonstrates that MAPLE technique could represent an appealing technique for the fabrication of antibiotics-containing polymeric implant coatings. The bioevaluation results recommend this type of surfaces for the prevention of bone implant microbial contamination and for the enhanced stimulation of the implant osseointegration process.

  7. Production of Human Endothelial Cells Free from Soluble Xenogeneic Antigens for Bioartificial Small Diameter Vascular Graft Endothelization

    PubMed Central

    de Carvalho, Juliana Lott; Zonari, Alessandra; de Paula, Ana Cláudia Chagas; Martins, Thaís Maria da Mata; Gomes, Dawidson Assis; Goes, Alfredo Miranda

    2015-01-01

    Arterial bypass graft implantation remains the primary therapy for patients with advanced cardiovascular disease, but most lack adequate saphenous vein or other conduits for bypass procedures and would benefit from a bioartificial conduit. This study aimed to produce human endothelial cells (hECs) in large scale, free from xenogeneic antigens, to develop a small diameter, compatible vessel for potential use as a vascular graft. Human adipose-derived stromal cells (hASCs) were isolated, cultured, and differentiated in the presence of human serum and used for the reendothelization of a decellularized rat aorta. hASC derived ECs (hASC-ECs) expressed VEGFR2, vWf and CD31 endothelial cell markers, the latter in higher levels than hASCs and HUVECs, and were shown to be functional. Decellularization protocol yielded aortas devoid of cell nuclei, with preserved structure, including a preserved basement membrane. When seeded with hASC-ECs, the decellularized aorta was completely reendothelized, and the hASC-ECs maintained their phenotype in this new condition. hASCs can be differentiated into functional hECs without the use of animal supplements and are capable of reendothelizing a decellularized rat aorta while maintaining their phenotype. The preservation of the basement membrane following decellularization supported the complete reendothelization of the scaffold with no cell migration towards other layers. This approach is potentially useful for rapid obtention of compatible, xenogeneic-free conduit. PMID:26146626

  8. Production of Human Endothelial Cells Free from Soluble Xenogeneic Antigens for Bioartificial Small Diameter Vascular Graft Endothelization.

    PubMed

    de Carvalho, Juliana Lott; Zonari, Alessandra; de Paula, Ana Cláudia Chagas; Martins, Thaís Maria da Mata; Gomes, Dawidson Assis; Goes, Alfredo Miranda

    2015-01-01

    Arterial bypass graft implantation remains the primary therapy for patients with advanced cardiovascular disease, but most lack adequate saphenous vein or other conduits for bypass procedures and would benefit from a bioartificial conduit. This study aimed to produce human endothelial cells (hECs) in large scale, free from xenogeneic antigens, to develop a small diameter, compatible vessel for potential use as a vascular graft. Human adipose-derived stromal cells (hASCs) were isolated, cultured, and differentiated in the presence of human serum and used for the reendothelization of a decellularized rat aorta. hASC derived ECs (hASC-ECs) expressed VEGFR2, vWf and CD31 endothelial cell markers, the latter in higher levels than hASCs and HUVECs, and were shown to be functional. Decellularization protocol yielded aortas devoid of cell nuclei, with preserved structure, including a preserved basement membrane. When seeded with hASC-ECs, the decellularized aorta was completely reendothelized, and the hASC-ECs maintained their phenotype in this new condition. hASCs can be differentiated into functional hECs without the use of animal supplements and are capable of reendothelizing a decellularized rat aorta while maintaining their phenotype. The preservation of the basement membrane following decellularization supported the complete reendothelization of the scaffold with no cell migration towards other layers. This approach is potentially useful for rapid obtention of compatible, xenogeneic-free conduit.

  9. Assessment of bone healing in rabbit calvaria grafted with three different biomaterials.

    PubMed

    Takauti, Carlos Alberto Yoshihiro; Futema, Fabio; Brito Junior, Rui Barbosa de; Abrahão, Aline Corrêa; Costa, Claudio; Queiroz, Celso Silva

    2014-01-01

    This study evaluated the bone regeneration process in rabbit calvaria induced by three types of biomaterials: two xenogenous, consisting of deproteinized bovine bone, while the other was alloplastic, based on biphasic calcium phosphate. Five New Zealand white rabbits weighing between 2,900 and 3,500 g were submitted to four standard 8 mm-diameter perforations at the parietal bone. Three perforations were filled with three grafts and biomaterials, two of them received bovine Bio-Oss® and Endobon® Xenograft Granules, and the other consisted of fully alloplastic Straumann® Bone Ceramic. The fourth remaining cavity was used as control with coagulum. After eight weeks, the animals were sacrificed, and the samples were prepared for morphometric and qualitative analysis. The cavities filled with alloplastic biomaterials showed higher percentages of newly formed bone (p<0.05), while the cavities with xenogenous biomaterials showed higher amount of residual graft (p<0.05). Although the results showed greater bone formation with Straumann® Bone Ceramic, further studies are required to prove which is the more effective biomaterial for bone induction process.

  10. Low-magnitude, high-frequency vibration promotes the adhesion and the osteogenic differentiation of bone marrow-derived mesenchymal stem cells cultured on a hydroxyapatite-coated surface: The direct role of Wnt/β-catenin signaling pathway activation.

    PubMed

    Chen, Bailing; Lin, Tao; Yang, Xiaoxi; Li, Yiqiang; Xie, Denghui; Zheng, Wenhui; Cui, Haowen; Deng, Weimin; Tan, Xin

    2016-11-01

    The positive effect of low-magnitude, high‑frequency (LMHF) vibration on implant osseointegration has been demonstrated; however, the underlying cellular and molecular mechanisms remain unknown. The aim of this study was to explore the effect of LMHF vibration on the adhesion and the osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs) cultured on hydroxyapatite (HA)-coated surfaces in an in vitro model as well as to elucidate the molecular mechanism responsible for the effects of LMHF vibration on osteogenesis. LMHF vibration resulted in the increased expression of fibronectin, which was measured by immunostaining and RT-qPCR. Stimulation of BMSCs by LMHF vibration resulted in the rearrangement of the actin cytoskeleton with more prominent F-actin. Moreover, the expression of β1 integrin, vinculin and paxillin was notably increased following LMHF stimulation. Scanning electron microscope observations revealed that there were higher cell numbers and more extracellular matrix attached to the HA-coated surface in the LMHF group. Alkaline phosphatase activity as well as the expression of osteogenic-specific genes, namely Runx2, osterix, collagen I and osteocalcin, were significantly elevated in the LMHF group. In addition, the protein expression of Wnt10B, β-catenin, Runx2 and osterix was increased following exposure to LMHF vibration. Taken together, the findings of this study indicate that LMHF vibration promotes the adhesion and the osteogenic differentiation of BMSCs on HA-coated surfaces in vitro, and LMHF vibration may directly induce osteogenesis by activating the Wnt/β‑catenin signaling pathway. These data suggest that LMHF vibration enhances the osseointegration of bone to a HA-coated implant, and provide a scientific foundation for improving bone-implant osseointegration through the application of LMHF vibration.

  11. Proliferative Capacity and Phenotypical Alteration of Multipotent Ecto-Mesenchymal Stem Cells from Human Exfoliated Deciduous Teeth Cultured in Xenogeneic and Allogeneic Media.

    PubMed

    Suchánek, J; Suchánková Kleplová, T; Řeháček, V; Browne, K Z; Soukup, T

    2016-01-01

    Foetal calf serum (FCS) is a standard supplement used in media for in vitro stem cell cultivation. This xenogeneic supplement remains widely used for its favourable growth-promoting properties and ease of accessibility; however, it is inherently not fit for human medicine due to its capacity to temper with the cultured cell quality. For this reason, the international community encourages research and development of allogeneic sera, which would expunge this issue. This study aims to investigate the differences in proliferative capacity, phenotype, and differentiation capacity of ecto-mesenchymal stem cells from human exfoliated deciduous teeth (SHED) cultured in vitro in media supplemented with allogeneic and xenogeneic sera. To address these aims, we cultured three lineages of stem cells in media supplemented with FCS in a concentration of 2% + growth factors; human blood plasma and platelet-rich plasma in concentrations of 2% + growth factors, and 10%. Here, the xenogeneic cultivation was considered as a basis for comparison because this serum is commonly used in studies concerning ecto-mesenchymal stem cells. The study shows that multipotent ecto-mesenchymal SHED can be feasibly cultivated in media where the xenogeneic FCS is substituted by allogeneic platelet-rich plasma, considering the cultured cell proliferative and differentiation capacities. We have also proved that different sera impact the cultured cells' phenotype differently, which has major implications for previous and future stem cell research and regenerative therapy.

  12. Dextran-coated fluorapatite crystals doped with Yb3+/Ho3+ for labeling and tracking chondrogenic differentiation of bone marrow mesenchymal stem cells in vitro and in vivo.

    PubMed

    Hu, Xiaoqing; Zhu, Jingxian; Li, Xiyu; Zhang, Xin; Meng, Qingyang; Yuan, Lan; Zhang, Jiying; Fu, Xin; Duan, Xiaoning; Chen, Haifeng; Ao, Yingfang

    2015-06-01

    Upconversion fluorescent nanoparticles are becoming more widely used as imaging contrast agents, owing to their high resolution and penetration depth, and avoidance of tissue auto-fluorescence and photodamage to cells. Here, we synthesized upconversion fluorescent crystals from rare-earth Yb3+ and Ho3+ co-doped fluorapatite (FA:Yb3+/Ho3+) suitable for long-term tracking and monitoring cartilage development (chondrogenesis) in bone marrow mesenchymal stem cells (BMSCs) in vitro and in vivo. We initially determined the structure, morphology and luminescence of the products using X-ray powder diffraction, transmission electron microscopy and two-photon confocal microscopy. When excited at 980 nm, FA:Yb3+/Ho3+ crystals exhibited distinct upconversion fluorescence peaks at 543 nm and 654 nm. We then conjugated FA:Yb3+/Ho3+ crystals with dextran to enhance hydrophilicity, biocompatibility and cell penetration. Next, we employed the dextran-coated FA:Yb3+/Ho3+ crystals in labeling and tracking chondrogenic differentiation processes in BMSCs stably expressing green fluorescent protein (BMSCsGFP) in vitro and in vivo. Labeled BMSCsGFP were shown to reproducibly exhibit chondrogenic differentiation potential in RT-PCR analysis, histological assessment and immunohistochemistry. We observed continuous luminescence from the FA:Yb3+/Ho3+ upconversion crystals at 4 weeks and 12 weeks post transplantation in BMSCsGFP, while GFP fluorescence in both control and crystal-treated groups significantly decreased at 12 weeks after BMSCsGFP transplantation. We therefore demonstrate the high biocompatibility and stability of FA:Yb3+/Ho3+ crystals in tracking and monitoring BMSCs chondrogenesis in vitro and in vivo, highlighting their excellent cell labeling potential in cartilage tissue engineering. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Bone graft

    MedlinePlus

    Autograft - bone; Allograft - bone; Fracture - bone graft; Surgery - bone graft; Autologous bone graft ... Fuse joints to prevent movement Repair broken bones (fractures) that have bone loss Repair injured bone that ...

  14. A silver carp skin derived collagen in bone defect treatment-A histological study in a rat model.

    PubMed

    Hadzik, Jakub; Kubasiewicz-Ross, Paweł; Kunert-Keil, Christiane; Jurczyszyn, Kamil; Nawrot-Hadzik, Izabela; Dominiak, Marzena; Gedrange, Tomasz

    2016-11-01

    In recent years, there has been increasing interest in elaboration of novel therapeutic strategies, such as the use of the marine collagen products. Biochemical properties of marine collagen are different from those of mammalian collagen; e.g., its extremely high solubility in diluted acid. Extracts produced using low temperature techniques contain a number of small proteins and collagen with preserved triple helix structure. The aim of the study was to evaluate the influence of a new marine product Collgel(®) obtained with a unique method from a silver carp (Hypophthalmichthys molitrix) on bone defect healing in a rat study. For this purpose bone defects with diameters of 5mm were created in 15 animals and subsequently filled with Collgel combined with another commercially available material. Samples were processed for histological evaluation and a Micro-CT study was performed. Histological analysis showed new bone formation in all groups after 8 weeks. The bone formation was significantly increased in treated bone lesions compared to untreated bone tissue. However no significant difference was noted between the healing of the defects filled with xenogenic bovine derived bone substitute alone and xenogenic, bovine derived bone substitute combined with a marine delivered collagen. Finding from the histological examination was confirmed in a Micro-CT study. The study has shown that the new marine product can be used instead of conventional porcine or bovine collagen membranes in guided bone regeneration. Copyright © 2016 Elsevier GmbH. All rights reserved.

  15. In vitro osteoinduction of demineralized bone.

    PubMed

    Torricelli, P; Fini, M; Giavaresi, G; Giardino, R

    1998-05-01

    Among numerous available materials for osseous repair and reconstruction, those presenting osteoinductive characteristics and promoting bone regeneration are preferable. Fresh autologous bone is one of the most effective, but it has some disadvantages and risks. Demineralized bone matrix (DBM) is considered to be a valid alternative, because it seems to show osteogenic potential, ascribed to the presence of bone morphogenetic proteins. In addition it can be prepared without difficulty and preserved without losing osteoinductive properties. The aim of the study was to evaluate the osteoinductive ability of xenogenic DBM, by testing DBM powder obtained from rabbit long bones, in cell culture of murine fibroblasts, alone or associated with electromagnetic field (EMF), that are known to exhibit biologic effects on cells: in particular they are used in orthopedics to improve bone formation. At the end of experiment, alkaline phosphatase (ALP) activity, calcium levels and cell proliferation and morphology were evaluated. A statistically significant stimulation of ALP activity and cell proliferation and a morphological change of fibroblasts were found. The results obtained show how DBM and EMF have different effects on cells, and that together they have synergic action toward bone induction.

  16. Results of a phase I/II clinical trial: standardized, non-xenogenic, cultivated limbal stem cell transplantation

    PubMed Central

    2014-01-01

    Background To determine if a standardized, non-xenogenic, reduced manipulation cultivation and surgical transplantation of limbal stem cell grafts is a safe and effective treatment option for patients with total and partial limbal stem cell deficiency. Methods In vitro cellular outgrowth and phenotype of the limbal epithelial cell and composite grafts were validated using a new protocol. Patients received either autologous (n = 15) or allogenic (n = 3) explants cultured using a standardized protocol free from xenogenic products. The resulting grafts were transplanted using a reduced manipulation surgical technique. Results The majority of cells (>50%) displayed a progenitor phenotype typified by positive immunofluorescence for ∆Np63, CK14 and ABCG2 and low immunofluorescence for CK3/12 and desmoglein 3 proteins. The surgical protocol was designed to minimize manipulation and the graft itself was secured without sutures. The transplant recipients were followed for a mean of 24 months. Twelve of the 18 transplant recipients were graded as anatomically successful (67%), based on the defined success parameters. There was a significant reduction in corneal neovascularization, which was accompanied by an improvement in pain though not photophobia or central corneal opacity post transplant. The transplantation protocol showed no measureable effect on visual acuity. Conclusion We conclude that this standardized culture system and surgical approach is safe and effective in reducing corneal neovascularization. The technique is free from animal contaminants and maintains a large proportion of progenitor cells. Although this technique did not improve visual function, restoring a functional epithelial cell layer and reducing corneal neovascularization provides an improved platform for a penetrating keratoplasty to ultimately improve visual function. PMID:24589151

  17. Xenogeneic cell-based vaccine therapy for stage III melanoma: safety, immune-mediated responses and survival benefits.

    PubMed

    Seledtsova, Galina V; Shishkov, Alexey A; Kaschenko, Erika A; Goncharov, Andrey G; Gazatova, Natalya D; Seledtsov, Victor I

    2016-04-01

    New therapies for melanoma have yielded promising results, but their application is limited because of serious side-effects and only moderate impact on patient survival. Vaccine therapies may offer some hope by targeting tumor-specific responses, considering the immunogenic nature of melanomas. To investigate the safety profile and efficiency of a xenogeneic cell-based vaccine therapy in stage III melanoma patients and evaluate the survival rate in treated patients. Twenty-seven stage III melanoma patients were immunized with a lyophilized xenogeneic polyantigenic vaccine (XPV) prepared from murine melanoma B16 and carcinoma LLC cells. Neither grade III/IV toxicities, nor clinically significant changes in blood and biochemical parameters were noted after an induction course of 10 XPV subcutaneous immunizations. No laboratory or clinical signs of systemic autoimmunity were documented. Following 10 vaccinations, a relative increase in the numbers of circulating memory CD4+CD45RO+ T cells (but not CD8+ CD45RO+ T cells) was observed. Peripheral blood mononuclear cells obtained from XPV-treated patients demonstrated increased proliferative responses to human BRO melanoma-associated antigens and marked increases in serum levels of IFN-γ and IL-8. Serum levels of TNF-α, IL-4 and IL-6 were not affected. The overall five-year survival rate in the treated patients was significantly higher than that in 27 control patients with matched clinical and prognostic characteristics (55% vs 18%). XPV-based immunotherapy could be maximally effective when started as early as possible before or after surgical excision of the primary tumor and local metastases, i.e. when tumor-mediated suppressive effects on immunity are minimal.

  18. Efficacy of reconstruction of alveolar bone using an alloplastic hydroxyapatite tricalcium phosphate graft under biodegradable chambers.

    PubMed

    Almasri, Mazen; Altalibi, Mostafa

    2011-09-01

    Our aim was to test the efficacy of a synthetic alloplastic graft under biodegradable chambers to reconstruct a horizontal bony deficiency as an alternative to autogenous, allogeneic, or xenogenic grafts. We used 11 New Zealand white rabbits. On each rabbit's mandible one test sample (grafted chamber) was placed on the (right or left) body, while its control sample (empty (E) chamber) was placed on the other side. Twelve weeks postoperatively the animals were sacrificed and the samples extracted for gross assessment, micro-computed tomographic imaging, and histological and histomorphometric analyses. There was significantly more new bone with a greater surface area in the test group than in the control group, and the alloplastic graft was osteoconductive when used as an onlay graft under a synthetic biodegradable chamber. Synthetic products can be efficient alternatives to autogenic, allogeneic, or xenogenic grafts. Copyright © 2010 British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  19. Tissue engineering construct on the basis of multipotent stromal adipose tissue cells and Osteomatrix for regeneration of the bone tissue.

    PubMed

    Bukharova, T B; Arutyunyan, I V; Shustrov, S A; Alekseeva, I S; Fedyunina, I A; Logovskaya, L V; Volkov, A V; Rzhaninova, A A; Grigor'yan, A S; Kulakov, A A; Gol'dshtein, D V

    2011-11-01

    We developed a new method of creation of tissue engineering constructs for regeneration of the bone tissue based on the principle of free distribution of cells in a fibrin clot within a scaffold. The tissue engineering construct includes multipotent stromal adipose tissue cells committed in osteogenic lineage, platelet-rich plasma, and resorbed material on the basis of xenogeneic bone collagen. The culture of bone progenitor cells was characterized by the main markers of osteoblastic differon. The material meets all requirements for materials intended for tissue engineering. An innovative high-technological tissue engineering product for clinical application is prepared.

  20. Induction of multinucleated giant cells in response to small sized bovine bone substitute (Bio-Oss™) results in an enhanced early implantation bed vascularization

    PubMed Central

    Barbeck, M.; Udeabor, S. E.; Lorenz, J.; Kubesch, A.; Choukroun, J.; Sader, R. A.; Kirkpatrick, C. J.; Ghanaati, S.

    2014-01-01

    Purpose: The host tissue reaction to the xenogeneic bone substitute Bio-Oss™ (Geistlich Biomaterials, Wolhousen, Switzerland) was investigated focusing on the participating inflammatory cells and implantation bed vascularization. Materials and Methods: Bio-Oss™ was implanted subcutaneously into CD1 mice for up to 60 days and analyzed by means of specialized histological and histomorphometrical techniques after explantation. Results: Bio-Oss™ induced within the first 15 days an early high vascularization combined with a marked presence of multinucleated giant cells. The latter cells were associated mainly with the smaller sized granules within the implantation bed. Toward the end of the study the number of multinucleated giant cells decreased while the tissue reaction to the larger granules was mainly mononuclear. Conclusion: The results of the present study showed that smaller xenogeneic bone substitute granules induce multinucleated giant cells, whereas the larger-sized ones became integrated within the implantation bed by means of a mononuclear cell-triggered granulation tissue. Obviously, the presence of multinucleated giant cells within biomaterial implantation beds is not only related to the type of synthetic bone substitute material, but also to the granule size of the natural-based xenogeneic bone substitute material. PMID:25593863

  1. Genipin crosslinking reduced the immunogenicity of xenogeneic decellularized porcine whole-liver matrices through regulation of immune cell proliferation and polarization

    NASA Astrophysics Data System (ADS)

    Wang, Yujia; Bao, Ji; Wu, Xiujuan; Wu, Qiong; Li, Yi; Zhou, Yongjie; Li, Li; Bu, Hong

    2016-04-01

    Decellularized xenogeneic whole-liver matrices are plausible biomedical materials for the bioengineering of liver transplantation. A common method to reduce the inflammatory potential of xenogeneic matrices is crosslinking. Nevertheless, a comprehensive analysis of the immunogenic features of cross-linked decellularized tissue is still lacking. We aimed to reduce the immunogenicity of decellularized porcine whole-liver matrix through crosslinking with glutaraldehyde or genipin, a new natural agent, and investigated the mechanism of the immune-mediated responses. The histologic assessment of the host’s immune reaction activated in response to these scaffolds, as well as the M1/M2 phenotypic polarization profile of macrophages, was studied in vivo. The genipin-fixed scaffold elicited a predominantly M2 phenotype response, while the glutaraldehyde-fixed scaffold resulted in disrupted host tissue remodeling and a mixed macrophage polarization profile. The specific subsets of immune cells involved in the responses to the scaffolds were identified in vitro. Crosslinking alleviated the host response by reducing the proliferation of lymphocytes and their subsets, accompanied by a decreased release of both Th1 and Th2 cytokines. Therefore, we conclude that the natural genipin crosslinking could lower the immunogenic potential of xenogeneic decellularized whole-liver scaffolds.

  2. Genipin crosslinking reduced the immunogenicity of xenogeneic decellularized porcine whole-liver matrices through regulation of immune cell proliferation and polarization

    PubMed Central

    Wang, Yujia; Bao, Ji; Wu, Xiujuan; Wu, Qiong; Li, Yi; Zhou, Yongjie; Li, Li; Bu, Hong

    2016-01-01

    Decellularized xenogeneic whole-liver matrices are plausible biomedical materials for the bioengineering of liver transplantation. A common method to reduce the inflammatory potential of xenogeneic matrices is crosslinking. Nevertheless, a comprehensive analysis of the immunogenic features of cross-linked decellularized tissue is still lacking. We aimed to reduce the immunogenicity of decellularized porcine whole-liver matrix through crosslinking with glutaraldehyde or genipin, a new natural agent, and investigated the mechanism of the immune-mediated responses. The histologic assessment of the host’s immune reaction activated in response to these scaffolds, as well as the M1/M2 phenotypic polarization profile of macrophages, was studied in vivo. The genipin-fixed scaffold elicited a predominantly M2 phenotype response, while the glutaraldehyde-fixed scaffold resulted in disrupted host tissue remodeling and a mixed macrophage polarization profile. The specific subsets of immune cells involved in the responses to the scaffolds were identified in vitro. Crosslinking alleviated the host response by reducing the proliferation of lymphocytes and their subsets, accompanied by a decreased release of both Th1 and Th2 cytokines. Therefore, we conclude that the natural genipin crosslinking could lower the immunogenic potential of xenogeneic decellularized whole-liver scaffolds. PMID:27098308

  3. Biocomposite coatings based on Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/calcium phosphates obtained by MAPLE for bone tissue engineering

    NASA Astrophysics Data System (ADS)

    Raşoga, O.; Sima, L.; Chiriţoiu, M.; Popescu-Pelin, G.; Fufǎ, O.; Grumezescu, V.; Socol, M.; Stǎnculescu, A.; Zgurǎ, I.; Socol, G.

    2017-09-01

    The aim of our research was to synthesize and investigate the physico-chemical and biological features of composite coatings based on poly(3-hydroxybutyrate-co-hydroxyvalerate) (PHBV) and commercial calcium phosphates (CaPs), hydroxyapatite and β-tricalcium phosphate, obtained by means of matrix assisted pulsed laser evaporation (MAPLE) technique. In this respect, laser fluence and dropcast studies were performed for pristine polymer and PHBV-CaPs composites. The microstructure of the synthesized coatings was investigated by scanning electron microscopy, while for the chemical structure and functional integrity we performed Fourier transform infrared spectroscopy comparative analysis. By using the X-ray diffraction measurements we experimentally evaluated the crystalline nature of the obtained composite materials, while relevant data regarding the hydrophilic/hydrophobic behavior of the synthesized coatings were obtained by performing static CA measurements. The biocompatibility of PHBV/CaPs coatings was evaluated by performing cellular adhesion and differentiation in vitro assays on mesenchymal stem cells.

  4. Analysis of retrieved hydroxyapatite-coated hip prostheses

    NASA Astrophysics Data System (ADS)

    Gross, K. A.; Walsh, W.; Swarts, E.

    2004-06-01

    Hydroxyapatite (HAp) coatings are used extensively on orthopaedic devices to improve the adhesion of bone to the prosthesis. This approach increases the integrity and longevity of the implanted prosthesis. Four HAp-coated hip components recovered from patients during revision surgery were investigated for bone attachment and coating modification after storage in ethanol or formaldehyde. Orthopedic components displayed preferable bone attachment on microtextured areas and little bone on smoother areas. The coating microstructure differed between three coatings that remained on the prosthesis surface, ranging from completely crystalline coatings made by vacuum plasma spraying to less crystalline coatings manufactured by air plasma spraying. Coating failure for the lower crystallinity coatings was observed by a crack at the interface that was possibly caused by the dissolution of an amorphous phase. While higher crystallinity coatings degraded by coating delamination, the lower crystallinity coating produced loose particulate on the outer coating surface. Coating morphology as observed by scanning electron microscopy (SEM) displayed lamellae fracture, chemical dissolution, osteoclastic resorption, and precipitation in agreement with previously identified in-vitro events. The coating longevity appeared to be extended in those areas subject to lower levels of stress and more bone coverage.

  5. A Xenogeneic-Free Protocol for Isolation and Expansion of Human Adipose Stem Cells for Clinical Uses

    PubMed Central

    Escobedo-Lucea, Carmen; Bellver, Carmen; Gandia, Carolina; Sanz-Garcia, Andres; Esteban, Francisco J.; Mirabet, Vicente; Forte, Giancarlo; Moreno, Isabel; Lezameta, Melissa; Ayuso-Sacido, Angel; Garcia-Verdugo, José M.

    2013-01-01

    Human adipose stem cells (hASCs) play a crucial role in the fields of regenerative medicine and tissue engineering for different reasons: the abundance of adipose tissue, their easy harvesting, the ability to multipotent differentiation and the fact that they do not trigger allogeneic blood response or secrete cytokines that act as immunosuppressants. The vast majority of protocols use animal origin reagents, with the underlying risk of transmitting infections by non-human pathogens. We have designed a protocol to isolate and maintain the properties of hASCs avoiding xenogeneic reagents. These changes not only preserve hASCs morphology, but also increase cell proliferation and maintain their stem cell marker profile. On the other hand, human serum albumin (HSA), Tryple® and human Serum (HS), do not affect hASCs multipotent differentiation ability. The amendments introduced do not trigger modifications in the transcriptional profile of hASCs, alterations in key biochemical pathways or malignization. Thus, we have proven that it is possible to isolate and maintain hASCs avoiding animal reagents and, at the same time, preserving crucial culture parameters during long term culture. Thereby we have revealed a novel and effective tool for the improvement of clinical, cell-based therapies. PMID:23874459

  6. Xenogenic (porcine) acellular dermal matrix promotes growth of granulation tissues in the wound healing of Fournier gangrene.

    PubMed

    Zhang, Zhaoxin; Lv, Lei; Mamat, Masut; Chen, Zhao; Zhou, Zhitao; Liu, Lihua; Wang, Zhizhong

    2015-01-01

    This article investigates the application values of Xenogenic (porcine) acellular dermal matrix (XADM) in preparation of a Fournier gangrene wound bed. Thirty-six consecutive cases of patients with Fournier gangrene between 2002 and 2012 were enrolled in our department of our hospital. The patients were divided into two groups according to different methods of wound bed preparation after surgical débridement, including the experimental group (17 cases) and the control group (19 cases). The wounds in the experimental group were covered with XADM after surgical wound débridement, whereas the wounds were cleaned with hydrogen peroxide and sodium hypochlorite solution (one time/day) in the control group. The wound bed preparation time and hospital stay were then compared in the two groups. The wound preparation time was 13.64 ± 1.46 days and hospitalization period was 26.06 ± 0.83 days in the experimental XADM group. In the control group, the wound bed preparation time and hospitalization period were 22.37 ± 1.38 and 38.11 ± 5.60 days, respectively. The results showed statistical differences between these two groups. When used in wound débridement after Fournier gangrene, XADM protects interecological organizations, promotes the growth of granulation tissues, and maximally retains function and morphology of the perineum and penis.

  7. Effects of xenogeneic, allogeneic and isogeneic thymus grafts on lymphocyte populations in peripheral lymphoid organs of the nude rat.

    PubMed

    Hougen, H P; Klausen, B; Stenvang, J P; Kraemmer, J; Rygaard, J

    1987-04-01

    In order to gain information about the effect of xenografted, allografted and isografted thymic tissue on peripheral lymphoid organs of immune-deficient rats, athymic nude LEW rats of ninth backcross-intercross were grafted with fetal calf and neonatal BDIX and LEW thymus. Adrenalectomy was also performed in some animals in order to obtain a possible enhancement of the immunological reconstitution. Both groups of isogeneic-thymus-grafted animals had more T helper cells than the nude controls. Furthermore, they had more densely populated paracortical areas in the inguinal lymph nodes and higher lymphocyte counts in the thoracic duct lymph. Finally, the inguinal lymph nodes contained germinal centres. Xenogeneic and allogeneic thymus transplants did not induce constant changes in the parameters observed compared with the untreated nudes. No clear difference was observed between the adrenalectomized and non-adrenalectomized thymic-isografted animals. We therefore conclude that of all the experimental animals examined the isografted nude rats show by far the best response and that adrenalectomy seems unnecessary for the success of neonatal isogeneic thymus grafts. We also conclude that the isogeneic-thymus-grafted nude rat is a suitable tool for immunological reconstitution studies.

  8. Successful xenogeneic germ cell transplantation from Jundia catfish (Rhamdia quelen) into adult Nile tilapia (Oreochromis niloticus) testes.

    PubMed

    Silva, M A; Costa, G M J; Lacerda, S M S N; Brandão-Dias, P F P; Kalapothakis, E; Silva Júnior, A F; Alvarenga, E R; França, L R

    2016-05-01

    Fish germ cell transplantation presents several important potential applications for aquaculture, including the preservation of germplasm from endangered fish species with high genetic and commercial values. Using this technique in studies developed in our laboratory with adult male Nile tilapias (Oreochromis niloticus), all the necessary procedures were successfully established, allowing the production of functional sperm and healthy progeny approximately 2months after allogeneic transplantation. In the present study, we evaluated the viability of the adult Nile tilapia testis to generate sperm after xenogeneic transplant of germ cells from sexually mature Jundia catfish (Rhamdia quelen) that belong to a different taxonomic order. Therefore, in order to investigate at different time-periods post-transplantation, the presence and development of donor PKH26 labeled catfish germ cells were followed in the tilapia seminiferous tubules. From 7 to 20days post-transplantation, only PKH26 labeled spermatogonia were observed, whereas spermatocytes at different stages of development were found at 70days. Germ cell transplantation success and progression of spermatogenesis were indicated by the presence of labeled PKH26 spermatids and sperm on days 90 and 120 post-transplantation, respectively. Confirming the presence of the catfish genetic material in the tilapia testis, all recipient tilapias evaluated (n=8) showed the genetic markers evaluated. Therefore, we demonstrated for the first time that the adult Nile tilapia testis offers the functional conditions for development of spermatogenesis with sperm production from a fish species belonging to a different order, which provides an important new venue for aquaculture advancement.

  9. Efficacy of healing process of bone defects after apicectomy: results after 6 and 12 months.

    PubMed

    Dominiak, M; Lysiak-Drwal, K; Gedrange, T; Zietek, M; Gerber, H

    2009-12-01

    The aim of this study was to assess the efficacy of selected surgical treatment techniques of bone defects after apectomy. A total of 106 postresection bone defects, located in maxilla and mandible were included in the study: the defects were treated with resorbable collagen membrane (BG I- 26 defects), xenogenic bovine material (BOC II- 30 defects) and xenogenic bovine material with platelet rich plasma (BOC/PRP III- 20 defects). In the control group the defects were left to heal spontaneously. Clinical and radiological assessment was performed at 6 and 12 months after the procedures. The analysis among groups revealed higher efficiency of the method of treatment that uses guide bone regeneration in comparison to the group in both post-operative control periods. After 6 months, the differences were statistically significant for each group using the regeneration methods, but after 12 months only for the BOC/PRP group. Treatment using selected guided bone regeneration techniques proved superior to the control group in both observation periods, but after 6 as well 12 months the best results in the BOC/PRP group were observed.

  10. Biomechanical and microscopic response of bone to titanium implants in the presence of inorganic grafts.

    PubMed

    Munhoz, Etiene Andrade; Bodanezi, Augusto; Cestari, Tania Mary; Taga, Rumio; Ferreira Junior, Osny; de Carvalho, Paulo Sergio Perri

    2011-01-01

    This study evaluated the biomechanical and microscopic response of previously grafted bone to titanium implants. The lower incisors of 16 rabbits were surgically extracted, and bilateral perforations communicating with the remaining sockets were created distally. A socket/perforation defect on each mandible was chosen at random to be immediately filled with a xenogenic graft, whereas the contralateral perforation was left to heal naturally and served as a paired control. After 60 days, titanium implants were installed in the previously operated areas. After periods of 2 and 6 months, the animals were killed, and the force necessary to retrieve implants as well as the bone-implant contact (BIC) and bone mass (BM) were quantified and statistically compared by 2-way analysis of variance and Tukey's test (α  =  .05). No significant differences in removal torque were observed, either by time or by treatment condition. Differences in BIC and BM between experimental and control groups were not statistically significant through the intervals studied (P < .05). The presence of a xenogenic graft did not influence the microscopic tissue response to titanium implants or fixation into newly formed or mature bone.

  11. Bone reconstruction after surgical treatment of experimental peri-implantitis defects at a sandblasted/acid-etched hydroxyapatite-coated implant: an experimental study in the dog.

    PubMed

    Namgoong, Hee; Kim, Myung-duck; Ku, Young; Rhyu, In-Chul; Lee, Yong Moo; Seol, Yang Jo; Gu, Hee Jin; Susin, Cristiano; Wikesjö, Ulf M E; Koo, Ki-Tae

    2015-10-01

    The objective of this study was to evaluate bone formation/osseointegration following surgical treatment of experimental peri-implantitis at dental implants with different surface characteristics exposed to ligature-induced breakdown conditions. Ten turned (control), 10 sandblasted/acid-etched (SA), and 10 SA/hydroxyapatite nanocoated (HA) implants were installed into the edentulated posterior mandible in five Beagle dogs and allowed to osseointegrate for 12 weeks. Ligature-induced breakdown defects were then induced over 23 weeks using stainless steel wire ligatures. The ligatures were removed and soft tissues were allowed to heal for 3 weeks. Next, exposed implant surfaces were decontaminated followed by guided bone regeneration using a collagen membrane and submerged wound healing. The animals were euthanized for histometric analysis at 12 weeks post-surgery. The radiographic analysis showed vertical bone loss following ligature-induced breakdown without statistically significant differences among implant technologies. The histometric analysis showed significantly enhanced bone formation (height) at SA and SA/HA compared with turned implants (p = 0.028) following reconstructive surgery. Bone formation area was greater at SA/HA compared with turned implants, however the difference did not reach statistical significance. While ligature-induced defect progression does not appear implant surface dependent in this animal model, bone formation at the decontaminated implant surfaces appears more favourable at SA and SA/HA over turned implants following reconstructive surgery. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Sandcastle Worm-Inspired Blood-Resistant Bone Graft Binder Using a Sticky Mussel Protein for Augmented In Vivo Bone Regeneration.

    PubMed

    Kim, Hyo Jeong; Choi, Bong-Hyuk; Jun, Sang Ho; Cha, Hyung Joon

    2016-12-01

    Xenogenic bone substitutes are commonly used during orthopedic reconstructive procedures to assist bone regeneration. However, huge amounts of blood accompanied with massive bone loss usually increase the difficulty of placing the xenograft into the bony defect. Additionally, the lack of an organic matrix leads to a decrease in the mechanical strength of the bone-grafted site. For effective bone grafting, this study aims at developing a mussel adhesion-employed bone graft binder with great blood-resistance and enhanced mechanical properties. The distinguishing water (or blood) resistance of the binder originates from sandcastle worm-inspired complex coacervation using negatively charged hyaluronic acid (HA) and a positively charged recombinant mussel adhesive protein (rMAP) containing tyrosine residues. The rMAP/HA coacervate stabilizes the agglomerated bone graft in the presence of blood. Moreover, the rMAP/HA composite binder enhances the mechanical and hemostatic properties of the bone graft agglomerate. These outstanding features improve the osteoconductivity of the agglomerate and subsequently promote in vivo bone regeneration. Thus, the blood-resistant coacervated mussel protein glue is a promising binding material for effective bone grafting and can be successfully expanded to general bone tissue engineering.

  13. Bone Diseases

    MedlinePlus

    ... avoid smoking and drinking too much alcohol. Bone diseases can make bones easy to break. Different kinds ... break Osteogenesis imperfecta makes your bones brittle Paget's disease of bone makes them weak Bones can also ...

  14. Cytotoxic activity of immune cells following administration of xenogeneic cancer vaccine in mice with melanoma B-16.

    PubMed

    Fedosova, N I; Voeykova, I M; Karaman, О М; Symchych, T V; Didenko, G V; Lisovenko, G S; Evstratieva, L М; Potebnia, G P

    2015-06-01

    To study the effects of xenogeneic cancer vaccine (XCV) developed on the basis of nervous tissue antigen from rat embryo of late gestation period and protein-containing metabolite of Bacillus subtilis with molecular weight of 70 kDa, on specific and unspecific antitumor reactions of cellular and humoral chains of immune system, and to analyze possible mechanisms of its antimetastatic action. XCV was administered triply with 3-day intervals after surgical removal of experimental melanoma В-16 in C57Bl/6 mice. Cytotoxic activity (CTA) of splenocytes against target cells К-562 as well as CTA of splenocytes, peritoneal macrophages (PM) and blood serum against melanoma В-16 target cells were determined using МТТ test. The content of circulating immune complexes (CIC) in blood serum was evaluated by precipitation reaction. Immunologic effects of XCV vaccination in experimental animals with surgically removed melanoma B-16 in comparison with similarly treated unvaccinated mice were as follows: prevention of medium molecular weight CIC accumulation in blood serum during all observation period, significant increase (р < 0.05) of CTA of effectors of unspecific antitumor immunity (natural killer cells - NK - by 25.5 ± 1.7 vs 12.5 ± 5.4%, and PM - by 37.3 ± 0.6 vs 32.0 ± 0.9%, respectively) at 37(th) day after the surgery, and also preservation of functional activity of specific cytotoxic lymphocytes at the level of intact control. The results of the study allow propose that antimetastatic effect of XCV vaccination could be based on increased CTA of NK and PM, and preservation of CTL functional activity at late terms after surgical removal of B-16 primary tumors.

  15. Rapamycin generates anti-apoptotic human Th1/Tc1 cells via autophagy for induction of xenogeneic GVHD.

    PubMed

    Amarnath, Shoba; Flomerfelt, Francis A; Costanzo, Carliann M; Foley, Jason E; Mariotti, Jacopo; Konecki, Daniel M; Gangopadhyay, Anu; Eckhaus, Michael; Wong, Susan; Levine, Bruce L; June, Carl H; Fowler, Daniel H

    2010-05-01

    Murine T cells exposed to rapamycin maintain flexibility towards Th1/Tc1 differentiation, thereby indicating that rapamycin promotion of regulatory T cells (Tregs) is conditional. The degree to which rapamycin might inhibit human Th1/Tc1 differentiation has not been evaluated. In the presence of rapamycin, T cell costimulation and polarization with IL-12 or IFN-α permitted human CD4+ and CD8+ T cell differentiation towards a Th1/Tc1 phenotype; activation of STAT1 and STAT4 pathways essential for Th1/Tc1 polarity was preserved during mTOR blockade but instead abrogated by PI3 kinase inhibition. Such rapamycin-resistant human Th1/Tc1 cells: (1) were generated through autophagy (increased LC3BII expression; phenotype reversion by autophagy inhibition via 3-MA or siRNA for Beclin1); (2) expressed anti-apoptotic bcl-2 family members (reduced Bax, Bak; increased phospho-Bad); (3) maintained mitochondrial membrane potentials; and (4) displayed reduced apoptosis. In vivo, type I polarized and rapamycin-resistant human T cells caused increased xenogeneic graft-versus-host disease (x-GVHD). Murine recipients of rapamycin-resistant human Th1/Tc1 cells had: (1) persistent T cell engraftment; (2) increased T cell cytokine and cytolytic effector function; and (3) T cell infiltration of skin, gut, and liver. Rapamycin therefore does not impair human T cell capacity for type I differentiation. Rather, rapamycin yields an anti-apoptotic Th1/Tc1 effector phenotype by promoting autophagy.

  16. Effect of platelet-rich plasma combined with demineralised bone matrix on bone healing in rabbit ulnar defects.

    PubMed

    Galanis, Vasilios; Fiska, Alice; Kapetanakis, Stylianos; Kazakos, Konstantinos; Demetriou, Thespis

    2017-09-01

    This study evaluates the effect of autologous platelet-rich plasma (PRP) combined with xenogeneic demineralised bone matrix (DBM) on bone healing of critical-size ulnar defects (2-2.5 times the ulnar diameter) in New Zealand White rabbits. Critical-size defects were created unilaterally in the ulna of 36 rabbits, while keeping the contralateral limb intact. They were divided into three groups. In Group A, the defect was filled with autologous PRP and in Group B, with autologous PRP combined with DBM; in Group C, the defect remained empty. The rabbits were euthanised 12 weeks postoperatively. Radiological, biomechanical and histological assessments were carried out and statistical analysis of the results was performed. Group B had significantly higher radiological and histological scores than Groups A and C. Defects in Group B showed significant new bone formation, whereas there was minimal or no new bone formation in Groups A and C. Only specimens in Group B showed macroscopic bone union. Biomechanical evaluation of the treated and intact contralateral limbs in Group B showed significant differences. In this study, statistically significant enhancement of bone healing was found in critical-size defects treated with PRP and DBM, as shown by radiological findings, gross assessment, and biomechanical and histopathological results. Defects in the two other groups remained unbridged. Therefore, PRP was effective only when it was used in combination with a bone graft.

  17. Ion Beam Sputtered Coatings of Bioglass

    NASA Technical Reports Server (NTRS)

    Hench, Larry L.; Wilson, J.; Ruzakowski, Patricia Henrietta Anne

    1982-01-01

    The ion beam sputtering technique available at the NASA-Lewis was used to apply coatings of bioglass to ceramic, metallic, and polymeric substrates. Experiments in vivo and in vitro described investigate these coatings. Some degree of substrate masking was obtained in all samples although stability and reactivity equivalent to bulk bioglass was not observed in all coated samples. Some degree of stability was seen in all coated samples that were reacted in vitro. Both metallic and ceramic substrates coated in this manner failed to show significantly improved coatings over those obtained with existing techniques. Implantation of the coated ceramic substrate samples in bone gave no definite bonding as seen with bulk glass; however, partial and patchy bonding was seen. Polymeric substrates in these studies showed promise of success. The coatings applied were sufficient to mask the underlying reactive test surface and tissue adhesion of collagen to bioglass was seen. Hydrophilic, hydrophobic, charged, and uncharged polymeric surfaces were successfully coated.

  18. Delivery of bone morphogenetic protein-2 and substance P using graphene oxide for bone regeneration

    PubMed Central

    La, Wan-Geun; Jin, Min; Park, Saibom; Yoon, Hee-Hun; Jeong, Gun-Jae; Bhang, Suk Ho; Park, Hoyoung; Char, Kookheon; Kim, Byung-Soo

    2014-01-01

    In this study, we demonstrate that graphene oxide (GO) can be used for the delivery of bone morphogenetic protein-2 (BMP-2) and substance P (SP), and that this delivery promotes bone formation on titanium (Ti) implants that are coated with GO. GO coating on Ti substrate enabled a sustained release of BMP-2. BMP-2 delivery using GO-coated Ti exhibited a higher alkaline phosphatase activity in bone-forming cells in vitro compared with bare Ti. SP, which is known to recruit mesenchymal stem cells (MSCs), was co-delivered using Ti or GO-coated Ti to further promote bone formation. SP induced the migration of MSCs in vitro. The dual delivery of BMP-2 and SP using GO-coated Ti showed the greatest new bone formation on Ti implanted in the mouse calvaria compared with other groups. This approach may be useful to improve osteointegration of Ti in dental or orthopedic implants. PMID:24872706

  19. Cementless hydroxyapatite coated hip prostheses.

    PubMed

    Herrera, Antonio; Mateo, Jesús; Gil-Albarova, Jorge; Lobo-Escolar, Antonio; Ibarz, Elena; Gabarre, Sergio; Más, Yolanda; Gracia, Luis

    2015-01-01

    More than twenty years ago, hydroxyapatite (HA), calcium phosphate ceramics, was introduced as a coating for cementless hip prostheses. The choice of this ceramic is due to its composition being similar to organic apatite bone crystals. This ceramic is biocompatible, bioactive, and osteoconductive. These qualities facilitate the primary stability and osseointegration of implants. Our surgical experience includes the implantation of more than 4,000 cementless hydroxyapatite coated hip prostheses since 1990. The models implanted are coated with HA in the acetabulum and in the metaphyseal area of the stem. The results corresponding to survival and stability of implants were very satisfactory in the long-term. From our experience, HA-coated hip implants are a reliable alternative which can achieve long term survival, provided that certain requirements are met: good design selection, sound choice of bearing surfaces based on patient life expectancy, meticulous surgical technique, and indications based on adequate bone quality.

  20. Cementless Hydroxyapatite Coated Hip Prostheses

    PubMed Central

    Herrera, Antonio; Mateo, Jesús; Gil-Albarova, Jorge; Lobo-Escolar, Antonio; Ibarz, Elena; Gabarre, Sergio; Más, Yolanda

    2015-01-01

    More than twenty years ago, hydroxyapatite (HA), calcium phosphate ceramics, was introduced as a coating for cementless hip prostheses. The choice of this ceramic is due to its composition being similar to organic apatite bone crystals. This ceramic is biocompatible, bioactive, and osteoconductive. These qualities facilitate the primary stability and osseointegration of implants. Our surgical experience includes the implantation of more than 4,000 cementless hydroxyapatite coated hip prostheses since 1990. The models implanted are coated with HA in the acetabulum and in the metaphyseal area of the stem. The results corresponding to survival and stability of implants were very satisfactory in the long-term. From our experience, HA-coated hip implants are a reliable alternative which can achieve long term survival, provided that certain requirements are met: good design selection, sound choice of bearing surfaces based on patient life expectancy, meticulous surgical technique, and indications based on adequate bone quality. PMID:25802848

  1. COATED ALLOYS

    DOEpatents

    Harman, C.G.; O'Bannon, L.S.

    1958-07-15

    A coating is described for iron group metals and alloys, that is particularly suitable for use with nickel containing alloys. The coating is glassy in nature and consists of a mixture containing an alkali metal oxide, strontium oxide, and silicon oxide. When the glass coated nickel base metal is"fired'' at less than the melting point of the coating, it appears the nlckel diffuses into the vitreous coating, thus providing a closely adherent and protective cladding.

  2. Aluminide coatings

    DOEpatents

    Henager, Jr; Charles, H [Kennewick, WA; Shin, Yongsoon [Richland, WA; Samuels, William D [Richland, WA

    2009-08-18

    Disclosed herein are aluminide coatings. In one embodiment coatings are used as a barrier coating to protect a metal substrate, such as a steel or a superalloy, from various chemical environments, including oxidizing, reducing and/or sulfidizing conditions. In addition, the disclosed coatings can be used, for example, to prevent the substantial diffusion of various elements, such as chromium, at elevated service temperatures. Related methods for preparing protective coatings on metal substrates are also described.

  3. A retrospective review of outcome and survival following surgery and adjuvant xenogeneic DNA vaccination in 32 dogs with oral malignant melanoma.

    PubMed

    Treggiari, Elisabetta; Grant, Jessica Pauline; North, Susan Margaret

    2016-06-01

    A xenogeneic DNA vaccination has been licensed for use in dogs with locally controlled stage II and III oral malignant melanoma (OMM). At present, there are limited outcome data for dogs with OMM treated with surgery and immunotherapy. The aim of this study is to retrospectively review the outcome and survival of 32 dogs affected by OMM that were treated with a combination of surgery and the xenogeneic DNA vaccination (with the addition of radiotherapy in some cases) and to determine the influence of surgical margins and delay in receiving vaccination. The overall median survival time (MST) was 335 days (95% CI: 301-540 days), and the overall median progression-free survival (PFS) was 160 days (mean 182 days, 95% CI: 132-232 days). Stage, completeness of surgical margins and delay in administration of the vaccine did not appear to statistically influence survival or PFS, although these results may reflect the low statistical power of the study due to small numbers. Further studies are required to assess whether the addition of any adjuvant treatment to surgery, including immunotherapy, is able to significantly prolong survival in cases of canine oral melanoma.

  4. Fractal texture analysis of the healing process after bone loss.

    PubMed

    Borowska, Marta; Szarmach, Janusz; Oczeretko, Edward

    2015-12-01

    Radiological assessment of treatment effectiveness of guided bone regeneration (GBR) method in postresectal and postcystal bone loss cases, observed for one year. Group of 25 patients (17 females and 8 males) who underwent root resection with cystectomy were evaluated. The following combination therapy of intraosseous deficits was used, consisting of bone augmentation with xenogenic material together with covering regenerative membranes and tight wound closure. The bone regeneration process was estimated, comparing the images taken on the day of the surgery and 12 months later, by means of Kodak RVG 6100 digital radiography set. The interpretation of the radiovisiographic image depends on the evaluation ability of the eye looking at it, which leaves a large margin of uncertainty. So, several texture analysis techniques were developed and used sequentially on the radiographic image. For each method, the results were the mean from the 25 images. These methods compute the fractal dimension (D), each one having its own theoretic basis. We used five techniques for calculating fractal dimension: power spectral density method, triangular prism surface area method, blanket method, intensity difference scaling method and variogram analysis. Our study showed a decrease of fractal dimension during the healing process after bone loss. We also found evidence that various methods of calculating fractal dimension give different results. During the healing process after bone loss, the surfaces of radiographic images became smooth. The result obtained show that our findings may be of great importance for diagnostic purpose. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Mesoporous titanium dioxide coating for metallic implants.

    PubMed

    Xia, Wei; Grandfield, Kathryn; Hoess, Andreas; Ballo, Ahmed; Cai, Yanling; Engqvist, Håkan

    2012-01-01

    A bioactive mesoporous titanium dioxide (MT) coating for surface drug delivery has been investigated to develop a multifunctional implant coating, offering quick bone bonding and biological stability. An evaporation induced self-assembly (EISA) method was used to prepare a mesoporous titanium dioxide coating of the anatase phase with BET surface area of 172 m(2)/g and average pore diameter of 4.3 nm. Adhesion tests using the scratch method and an in situ screw-in/screw-out technique confirm that the MT coating bonds tightly with the metallic substrate, even after removal from bone. Because of its high surface area, the bioactivity of the MT coating is much better than that of a dense TiO(2) coating of the same composition. Quick formation of hydroxyapatite (HA) in vitro can be related to enhance bonding with bone. The uptake of antibiotics by the MT coating reached 13.4 mg/cm(3) within a 24 h loading process. A sustained release behavior has been obtained with a weak initial burst. By using Cephalothin as a model drug, drug loaded MT coating exhibits a sufficient antibacterial effect on the material surface, and within millimeters from material surface, against E.coli. Additionally, the coated and drug loaded surfaces showed no cytotoxic effect on cell cultures of the osteoblastic cell line MG-63. In conclusion, this study describes a novel, biocompatiblemesoporous implant coating, which has the ability to induce HA formation and could be used as a surface drug-delivery system.

  6. Mid-Term Outcomes and Complications with Cementless Distal Locking Hip Revision Stem with Hydroxyapatite Coating for Proximal Bone Defects and Fractures.

    PubMed

    Carrera, Lluis; Haddad, Sleiman; Minguell, Joan; Amat, Carles; Corona, Pablo S

    2015-06-01

    We revised the first 100 revision total hip arthroplasties using a cementless distal locking revision stem conducted in our referral centre. Average follow-up was 9.2 years (range: 5.5-12 years). Harris Hip Score improved from 42.5 to 81.6, and none had thigh pain at last follow-up. No significant stress shielding, osteolysis, or radiologic loosening was found. All patients showed radiological evidence of secondary implant osseointegration. Overall survival was 97% with three patients being revised: two stem ruptures and one subsidence. We could trace these complications to technical errors. These findings suggest that a diaphyseal fixation of the revision stem with distal locking can provide the needed primary axial and rotational stability of the prosthesis. This would allow further bony ingrowth, enhanced by the hydroxyapatite coating.

  7. Human peripheral blood leucocyte non-obese diabetic-severe combined immunodeficiency interleukin-2 receptor gamma chain gene mouse model of xenogeneic graft-versus-host-like disease and the role of host major histocompatibility complex

    PubMed Central

    King, M A; Covassin, L; Brehm, M A; Racki, W; Pearson, T; Leif, J; Laning, J; Fodor, W; Foreman, O; Burzenski, L; Chase, T H; Gott, B; Rossini, A A; Bortell, R; Shultz, L D; Greiner, D L

    2009-01-01

    Immunodeficient non-obese diabetic (NOD)-severe combined immune-deficient (scid) mice bearing a targeted mutation in the gene encoding the interleukin (IL)-2 receptor gamma chain gene (IL2rγnull) engraft readily with human peripheral blood mononuclear cells (PBMC). Here, we report a robust model of xenogeneic graft-versus-host-like disease (GVHD) based on intravenous injection of human PBMC into 2 Gy conditioned NOD-scid IL2rγnull mice. These mice develop xenogeneic GVHD consistently (100%) following injection of as few as 5 × 106 PBMC, regardless of the PBMC donor used. As in human disease, the development of xenogeneic GVHD is highly dependent on expression of host major histocompatibility complex class I and class II molecules and is associated with severely depressed haematopoiesis. Interrupting the tumour necrosis factor-α signalling cascade with etanercept, a therapeutic drug in clinical trials for the treatment of human GVHD, delays the onset and progression of disease. This model now provides the opportunity to investigate in vivo mechanisms of xenogeneic GVHD as well as to assess the efficacy of therapeutic agents rapidly. PMID:19659776

  8. Enhanced osteointegration of orthopaedic implant gradient coating composed of bioactive glass and nanohydroxyapatite.

    PubMed

    Xie, Xin-Hui; Yu, Xiao-Wei; Zeng, Shao-Xian; Du, Rui-Lin; Hu, Yu-Huai; Yuan, Zhen; Lu, Er-Yi; Dai, Ke-Rong; Tang, Ting-Ting

    2010-07-01

    We conducted histologic and histomorphometric studies to evaluate the osteointegration of gradient coatings composed of bioactive glass and nanohydroxyapatite (BG-nHA) on titanium-alloy orthopaedic implants and surrounding bone tissue in vivo. Titanium-alloy implants with a gradient coating (gradient coating group), uncoated implants (uncoated group), and implants with a conventional hydroxyapatite (HA) coating (HA coating group) were randomly implanted in bilateral femoral condyles of 36 male New Zealand rabbits. The bone-implant contact at 12 and 24 weeks and the new bone volume in the notch created for observing bone ingrowth at 4, 12, and 24 weeks were found greater in the gradient coating group than those in both the uncoated group and the HA coating group (p < 0.05). Fluorescence micrographs showed active osteogenesis in the gradient coating group at 4 weeks after implantation. These findings indicated that BG-nHA gradient coatings could enhance the osteointegration of orthopaedic implant.

  9. Transgenic expression of human cytoxic T-lymphocyte associated antigen4-immunoglobulin (hCTLA4Ig) by porcine skin for xenogeneic skin grafting.

    PubMed

    Wang, Yong; Yang, Hua-Qiang; Jiang, Wen; Fan, Na-Na; Zhao, Ben-Tian; Ou-Yang, Zhen; Liu, Zhao-Ming; Zhao, Yu; Yang, Dong-Shan; Zhou, Xiao-Yang; Shang, Hai-Tao; Wang, Lu-Lu; Xiang, Peng-Ying; Ge, Liang-Peng; Wei, Hong; Lai, Liang-Xue

    2015-04-01

    Porcine skin is frequently used as a substitute of human skin to cover large wounds in clinic practice of wound care. In our previous work, we found that transgenic expression of human cytoxicT-lymphocyte associated antigen4-immunoglobulin (hCTLA4Ig) in murine skin graft remarkably prolonged its survival in xenogeneic wounds without extensive immunosuppression in recipients, suggesting that transgenic hCTLA4Ig expression in skin graft may be an effective and safe method to prolong xenogeneic skin graft survival. In this work, using a transgene construct containing hCTLA4Ig coding sequence under the drive of human Keratine 14 (k14) promoter, hCTLA4Ig transgenic pigs were generated by somatic nuclear transfer. The derived transgenic pigs were healthy and exhibited no signs of susceptibility to infection. The hCTLA4Ig transgene was stably transmitted through germline over generations, and thereby a transgenic pig colony was established. In the derived transgenic pigs, hCTLA4Ig expression in skin was shown to be genetically stable over generations, and detected in heart, kidney and corneal as well as in skin. Transgenic hCTLA4Ig protein in pigs exhibited expected biological activity as it suppressed human lymphocyte proliferation in human mixed lymphocyte culture to extents comparable to those of commercially purchased purified hCTLA4Ig protein. In skin grafting from pigs to rats, transgenic porcine skin grafts exhibited remarkably prolonged survival compared to the wild-type skin grafts derived from the same pig strain (13.33 ± 3.64 vs. 6.25 ± 2.49 days, P < 0.01), further indicating that the transgenic hCTLA4Ig protein was biologically active and capable of extending porcine skin graft survival in xenogeneic wounds. The transgenic pigs generated in this work can be used as a reproducible resource to provide porcine skin grafts with extended survival for wound coverage, and also as donors to investigate the impacts of hCTLA4Ig on xenotransplantation of other organs

  10. In vitro characterisation of a sol-gel derived in situ silica-coated silicate and carbonate co-doped hydroxyapatite nanopowder for bone grafting.

    PubMed

    Latifi, Seyed Mohsen; Fathi, Mohammadhossein; Sharifnabi, Ali; Varshosaz, Jaleh

    2017-06-01

    Design and synthesis of materials with better properties and performance are essential requirements in the field of biomaterials science that would directly improve patient quality of life. For this purpose, in situ silica-coated silicate and carbonate co-doped hydroxyapatite (Sc/S.C.HA) nanopowder was synthesized via the sol-gel method. Characterisation of the prepared nanopowder was carried out by XRD, FTIR, TEM, SEM, EDX, ICP, zeta potential, acid dissolution test, and cell culture test. The substitution of the silicate and carbonate ions into hydroxyapatite structure was confirmed by FTIR analysis. XRD analysis showed that silica is an amorphous phase, which played a role in covering the surface of the S.C.HA nanoparticles as confirmed by acid dissolution test. Low thickness and low integrity of the amorphous silica surface layer facilitated ions release from S.C.HA nanoparticles into physiological saline solution. Zeta potential of the prepared nanopowder suspended in physiological saline solution was -27.3±0.2mV at pH7.4. This negatively charged surface, due to the presence of amorphous silica layer upon the S.C.HA nanoparticles, not only had an accelerating effect on in vitro biomineralization of apatite, but also had a positive effect on cell attachment. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Co-delivery of platelet-derived growth factor (PDGF-BB) and bone morphogenic protein (BMP-2) coated onto heparinized titanium for improving osteoblast function and osteointegration.

    PubMed

    Kim, Sung Eun; Yun, Young-Pil; Lee, Jae Yong; Shim, June-Sung; Park, Kyeongsoon; Huh, Jung-Bo

    2015-12-01

    The aim of this study was to improve osteoblast function by delivering two growth factors, PDGF-BB and BMP-2, incorporated onto heparinized titanium (Hep-Ti) substrate. To achieve co-delivery of PDGF-BB and BMP-2, the surface of anodized Ti was immobilized with heparin, and then the two growth factors were coated onto the Hep-Ti surface. Incorporation of the two growth factors onto Hep-Ti was evaluated by SEM and XPS. Incorporated PDGF-BB and BMP-2 were released from the Hep-Ti substrate in a sustained manner. In vitro studies revealed that osteoblasts grown on PDGF-BB- and BMP-2-immobilized Hep-Ti increased ALP activity, calcium deposition, osteocalcin and osteopontin levels as compared to those grown on PDGF-BB alone- or BMP-2 alone-immobilized Hep-Ti. These results suggested that co-delivery of PDGF-BB and BMP-2 using Hep-Ti substrate will be a promising material for the enhancement of osteoblast function and osteointegration. Copyright © 2013 John Wiley & Sons, Ltd.

  12. Metal Coatings

    NASA Technical Reports Server (NTRS)

    1994-01-01

    During the Apollo Program, General Magnaplate Corporation developed process techniques for bonding dry lubricant coatings to space metals. The coatings were not susceptible to outgassing and offered enhanced surface hardness and superior resistance to corrosion and wear. This development was necessary because conventional lubrication processes were inadequate for lightweight materials used in Apollo components. General Magnaplate built on the original technology and became a leader in development of high performance metallurgical surface enhancement coatings - "synergistic" coatings, - which are used in applications from pizza making to laser manufacture. Each of the coatings is designed to protect a specific metal or group of metals to solve problems encountered under operating conditions.

  13. The Current Techniques for Preparing Bioglass Coatings

    NASA Astrophysics Data System (ADS)

    Zhao, Yafan; Chen, Chuanzhong; Wang, Diangang

    Bioglasses are promising alternatives as biomedical materials to repair or replace damaged parts of bones because of its good bioactivity and biocompatibility. It is possible to combine the bone-bonding ability of the bioglass surface with the high mechanical properties of the metallic substrate though the coating of metallic implants with bioglass. The principles and characteristics of some coating techniques, including sintering, plasma spray, sol-gel, electrophoresis deposition, ion beam assisted deposition and pulsed laser deposition, are introduced. Their current applications in preparing bioglass coatings are reviewed in detail. The future application trends are also reviewed.

  14. Extra-oral defect augmentation using autologous, bovine and equine bone blocks: A preclinical histomorphometrical comparative study.

    PubMed

    Moest, Tobias; Wehrhan, Falk; Lutz, Rainer; Schmitt, Christian Martin; Neukam, Friedrich Wilhelm; Schlegel, Karl Andreas

    2015-05-01

    This study aimed to compare autologous bone (AB), bovine bone (BB), and equine bone (EB) blocks with regard to de novo bone formation, connective tissue, and residual bone substitute material portions in a standardized defect animal model. In the frontal skull of 20 pigs, 106 standardized cylindrical "critical size defects" were prepared. Defects were randomly filled with AB, BB, and EB blocks. After a healing period of 30 and 60 days, de novo bone formation, residual bone substitute material, and connective tissue portion was assessed by means of histomorphometry (Toluidine blue O staining). Mann-Whitney U-tests were used to evaluate differences between the groups. The de novo bone formation was significantly higher in the AB group in comparison to the xenogeneic groups (p < 0.05). After 30 days, EB showed significantly (p < 0.05) more newly formed bone compared to the BB group. The soft tissue formation was significantly higher in the BB and EB group. Defects augmented with BB showed significantly (p < 0.05) higher portions of bone substitute materials compared to sides augmented with EB after 30 days. In the extra-oral model, AB blocks were superior concerning de novo bone formation. No clinical advantages of EB blocks could be observed. Copyright © 2015 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  15. Evaluation of Cross-presentation in Bone Marrow-derived Dendritic Cells in vitro and Splenic Dendritic Cells ex vivo Using Antigen-coated Beads

    PubMed Central

    Alloatti, Andrés; Kotsias, Fiorella; Hoffmann, Eik; Amigorena, Sebastian

    2017-01-01

    Antigen presentation by MHC class I molecules, also referred to as cross-presentation, elicits cytotoxic immune responses. In particular, dendritic cells (DC) are the most proficient cross-presenting cells, since they have developed unique means to control phagocytic and degradative pathways. This protocol allows the evaluation of antigen cross-presentation both in vitro (by using bone marrow-derived DC) and ex vivo (by purifying CD8+ DC from spleen after incorporation of particulate antigen) using ovalbumin (OVA)-coupled particles. Cross-presentation efficiency is measured by three different readouts: the B3Z hybridoma T cell line (Karttunen et al., 1992) and stimulation of antigen-specific CD8+ T cells (OT-I) (Kurts et al., 1996), either analyzing OT-I activation by CD69 expression or OT-I proliferation after labeling them with carboxyfluorescein succinimidyl ester (CFSE). By using this approach, we could show recently that DCs are able to increase cross-presentation efficiency transiently upon engagement of TLR4 (Alloatti et al., 2015). PMID:28239619

  16. Experimental coating defects in hydroxylapatite-coated implants.

    PubMed

    Cook, S D; Thomas, K A; Kay, J F

    1991-04-01

    Defects in hydroxyapatite (HA)-coated metallic implant systems, including cracks, flakes, or scratches, may occur at the time of surgery or in time because of in vivo loading. Such defects may affect the bone-implant interface response because of increased local metallic corrosion and ion release. Using a canine transcortical push-out model, the interface mechanics and histology of HA-coated titanium and cobalt-chromium-molybdenum alloy implants with and without coating defects were evaluated. The coating defects extended through the HA material to the underlying metallic substrate. Interface mechanical testing and undecalcified histologic techniques were used to evaluate differences in interface response at three, five, six, ten, 12, and 32 weeks postimplantation. There were no statistically significant differences between the HA-coated implants with and without defects for either interface shear strength or stiffness; however, both HA-coated implant types developed significantly greater interface strength and stiffness when compared to uncoated metallic implants. Histologically, in all areas away from the defect, a progression to nearly complete mineralization of osseous tissue directly onto the HA-coated surface was observed with no interpositional fibrous tissue layer. At early time periods (up to six weeks) in the area of the coating defect, bone apposition and mineralization appeared to stop at the edge of the HA coating. At later time periods (greater than ten weeks), the area of the defect was filled with mineralized osseous tissue in approximately one-half of the specimens. A thin fibrous interpositional layer was observed at the interface of the exposed metal substrate.

  17. GMP-compliant isolation and expansion of bone marrow-derived MSCs in the closed, automated device quantum cell expansion system.

    PubMed

    Rojewski, Markus T; Fekete, Natalie; Baila, Stefano; Nguyen, Kim; Fürst, Daniel; Antwiler, Delbert; Dausend, Julia; Kreja, Ludwika; Ignatius, Anita; Sensebé, Luc; Schrezenmeier, Hubert

    2013-01-01

    The estimated frequency of MSCs in BM is about 0.001-0.01% of total nucleated cells. Most commonly, one applied therapeutic cell dose is about 1-5 million MSCs/kg body weight, necessitating a reliable, fast, and safe expansion system. The limited availability of MSCs demands for an extensive ex vivo amplification step to accumulate sufficient cell numbers. Human platelet lysate (PL) has proven to be a safe and feasible alternative to animal-derived serum as supplement for MSC cultivation. We have investigated the functionally closed automated cell culture hollow fiber bioreactor Quantum cell expansion system as an alternative novel tool to conventional tissue flasks for efficient clinical-scale MSC isolation and expansion from bone marrow using PL. Cells expanded in the Quantum system fulfilled MSC criteria as shown by flow cytometry and adipogenic, chondrogenic, and osteogenic differentiation capacity. Cell surface expression of a variety of chemokine receptors, adhesion molecules, and additional MSC markers was monitored for several passages by flow cytometry. The levels of critical media components like glucose and lactate were analyzed. PDGF-AA, PDGF-AB/BB, bFGF, TGF-β1, sICAM-1, sVCAM-1, RANTES, GRO, VEGF, sCD40L, and IL-6 were assessed using a LUMINEX platform. Originally optimized for the use of fetal calf serum (FCS) as supplement and fibronectin as coating reagent, we succeeded to obtain an average of more than 100×10(6) of MSCs from as little as 18.8-28.6 ml of BM aspirate using PL. We obtained similar yields of MSCs/µl BM in the FCS-containing and the xenogen-free expansion system. The Quantum system reliably produces a cellular therapeutic dose in a functionally closed system that requires minimal manipulation. Both isolation and expansion are possible using FCS or PL as supplement. Coating of the hollow fibers of the bioreactor is mandatory when loading MSCs. Fibronectin, PL, and human plasma may serve as coating reagents.

  18. Engineering bone grafts with enhanced bone marrow and native scaffolds.

    PubMed

    Hung, Ben P; Salter, Erin K; Temple, Josh; Mundinger, Gerhard S; Brown, Emile N; Brazio, Philip; Rodriguez, Eduardo D; Grayson, Warren L

    2013-01-01

    The translation of tissue engineering approaches to the clinic has been hampered by the inability to find suitable multipotent cell sources requiring minimal in vitro expansion. Enhanced bone marrow (eBM), which is obtained by reaming long bone medullary canals and isolating the solid marrow putty, has large quantities of stem cells and demonstrates significant potential to regenerate bone tissues. eBM, however, cannot impart immediate load-bearing mechanical integrity or maintain the gross anatomical structure to guide bone healing. Yet, its putty-like consistency creates a challenge for obtaining the uniform seeding necessary to effectively combine it with porous scaffolds. In this study, we examined the potential for combining eBM with mechanically strong, osteoinductive trabecular bone scaffolds for bone regeneration by creating channels into scaffolds for seeding the eBM. eBM was extracted from the femurs of adult Yorkshire pigs using a Synthes reamer-irrigator-aspirator device, analyzed histologically, and digested to extract cells and characterize their differentiation potential. To evaluate bone tissue formation, eBM was seeded into the channels in collagen-coated or noncoated scaffolds, cultured in osteogenic conditions for 4 weeks, harvested and assessed for tissue distribution and bone formation. Our data demonstrates that eBM is a heterogenous tissue containing multipotent cell populations. Furthermore, coating scaffolds with a collagen hydrogel significantly enhanced cellular migration, promoted uniform tissue development and increased bone mineral deposition. These findings suggest the potential for generating customized autologous bone grafts for treating critical-sized bone defects by combining a readily available eBM cell source with decellularized trabecular bone scaffolds.

  19. Living Bones, Strong Bones

    NASA Image and Video Library

    In this classroom activity, engineering, nutrition, and physical activity collide when students design and build a healthy bone model of a space explorer which is strong enough to withstand increas...

  20. [Fracture healing under intramedullary insertion of wires with hydroxyapatite coating].

    PubMed

    Ir'ianov, Iu M; Kir'ianov, N A; Popkov, A V

    2014-01-01

    To study morphological features of the bone formation process in consolidation of fractures of long tubular bones in conditions of intramedullary wires insertion with bioactive calcium-phosphate coating of hydroxyapatite. In experimental study in dogs was simulated open comminuted tibia fracture and performed intramedullary insertion of wires with hydroxyapatite coating. Using light and electron microscopy, using X-ray electron microprobe microanalyses were studied bone regenerates in 14-360 days after surgery. It was found that around wires there is a formation of an area of active reparative bone formation and angiogenesis, bone shaped case with the properties of the conductor and inducer of osteogenesis. Fracture consolidation is carried out in the early stages of the primary type without formation of cartilage and connective tissue in the bone adhesion. Study results testify that intramedullary wires with hydroxyapatite coating positively influence on the process and intensity of reparative bone formation in fracture healing.

  1. The BALB/c-specific polymorphic SIRPA enhances its affinity for human CD47, inhibiting phagocytosis against human cells to promote xenogeneic engraftment.

    PubMed

    Iwamoto, Chika; Takenaka, Katsuto; Urata, Shingo; Yamauchi, Takuji; Shima, Takahiro; Kuriyama, Takuro; Daitoku, Shinya; Saito, Yasuyuki; Miyamoto, Toshihiro; Iwasaki, Hiromi; Kitabayashi, Issay; Itoh, Katsuhiko; Kishimoto, Junji; Kohda, Daisuke; Matozaki, Takashi; Akashi, Koichi

    2014-03-01

    It has been shown that in xenotransplantation of human cells into immunodeficient mice, the mouse strain background is critical. For example, the nonobese diabetic (NOD) strain is most efficient, the BALB/c is moderate, and the C57BL/6 is inefficient for human cell engraftment. We have shown that the NOD-specific polymorphism of the signal regulatory protein-alpha (Sirpa) allows NOD SIRPA to bind human CD47, and the resultant "don't eat me" signaling by this binding prevents host macrophages to engulf human grafts, thereby inhibiting rejection. Here we tested whether the efficient xenotransplantation capability of the BALB/c strain is also mediated by the SIRPA-CD47 self-recognition system. BALB/c SIRPA was capable of binding to human CD47 at an intermediate level between those of C57BL/6 SIRPA and NOD SIRPA. Consistent with its binding activity, BALB/c-derived macrophages exhibited a moderate inhibitory effect on human long-term culture-initiating cells in in vitro cultures, and showed moderate phagocytic activity against human hematopoietic stem cells. The increased affinity of BALB/c SIRPA for human CD47 was mounted at least through the BALB/c-specific L29V SNP within the IgV domain. Thus, the mouse strain effect on xenogeneic engraftment might be ascribed mainly to the binding affinity of strain-specific polymorphic SIRPA with human CD47. This information should be useful for developing a novel immunodeficient strain with superior efficiency for xenogeneic transplantation of human cells. Copyright © 2014 ISEH - Society for Hematology and Stem Cells. Published by Elsevier Inc. All rights reserved.

  2. Characterisation of the Xenogeneic Immune Response to Microencapsulated Fetal Pig Islet-Like Cell Clusters Transplanted into Immunocompetent C57BL/6 Mice

    PubMed Central

    Ratnapala, Sabina; Foster, Jayne; Vaghjiani, Vijesh; Manuelpillai, Ursula; Tuch, Bernard E.

    2013-01-01

    Xenotransplantation of microencapsulated fetal pig islet-like cell clusters (FP ICCs) offers a potential cellular therapy for type 1 diabetes. Although microcapsules prevent direct contact of the host immune system with the xenografted tissue, poor graft survival is still an issue. This study aimed to characterise the nature of the host immune cells present on the engrafted microcapsules and effects on encapsulated FP ICCs that were transplanted into immunocompetent mice. Encapsulated FP ICCs were transplanted into the peritoneal cavity of C57BL/6 mice. Grafts retrieved at days 1, 3, 7, 14 and 21 post-transplantation were analysed for pericapsular fibrotic overgrowth (PFO), cell viability, intragraft porcine gene expression, macrophages, myofibroblasts and intraperitoneal murine cytokines. Graft function was assessed ex vivo by insulin secretion studies. Xenogeneic immune response to encapsulated FP ICCs was associated with enhanced intragraft mRNA expression of porcine antigens MIP-1α, IL-8, HMGB1 and HSP90 seen within the first two weeks post-transplantation. This was associated with the recruitment of host macrophages, infiltration of myofibroblasts and collagen deposition leading to PFO which was evident from day 7 post-transplantation. This was accompanied by a decrease in cell viability and loss of FP ICC architecture. The only pro-inflammatory cytokine detected in the murine peritoneal flushing was TNF-α with levels peaking at day 7 post transplantation. This correlated with the onset of PFO at day 7 implying activated macrophages as its source. The anti-inflammatory cytokines detected were IL-5 and IL-4 with levels peaking at days 1 and 7, respectively. Porcine C-peptide was undetectable at all time points post-transplantation. PFO was absent and murine intraperitoneal cytokines were undetectable when empty microcapsules were transplanted. In conclusion, this study demonstrated that the macrophages are direct effectors of the xenogeneic immune response to

  3. Influence of chronic L-DOPA treatment on immune response following allogeneic and xenogeneic graft in a rat model of Parkinson's disease.

    PubMed

    Breger, Ludivine S; Kienle, Korbinian; Smith, Gaynor A; Dunnett, Stephen B; Lane, Emma L

    2017-03-01

    Although intrastriatal transplantation of fetal cells for the treatment of Parkinson's disease had shown encouraging results in initial open-label clinical trials, subsequent double-blind studies reported more debatable outcomes. These studies highlighted the need for greater preclinical analysis of the parameters that may influence the success of cell therapy. While much of this has focused on the cells and location of the transplants, few have attempted to replicate potentially critical patient centered factors. Of particular relevance is that patients will be under continued L-DOPA treatment prior to and following transplantation, and that typically the grafts will not be immunologically compatible with the host. The aim of this study was therefore to determine the effect of chronic L-DOPA administered during different phases of the transplantation process on the survival and function of grafts with differing degrees of immunological compatibility. To that end, unilaterally 6-OHDA lesioned rats received sham surgery, allogeneic or xenogeneic transplants, while being treated with L-DOPA before and/or after transplantation. Irrespective of the L-DOPA treatment, dopaminergic grafts improved function and reduced the onset of L-DOPA induced dyskinesia. Importantly, although L-DOPA administered post transplantation was found to have no detrimental effect on graft survival, it did significantly promote the immune response around xenogeneic transplants, despite the administration of immunosuppressive treatment (cyclosporine). This study is the first to systematically examine the effect of L-DOPA on graft tolerance, which is dependent on the donor-host compatibility. These findings emphasize the importance of using animal models that adequately represent the patient paradigm.

  4. Allogeneic/xenogeneic transplantation of peptide-labeled mitochondria in Parkinson's disease: restoration of mitochondria functions and attenuation of 6-hydroxydopamine-induced neurotoxicity.

    PubMed

    Chang, Jui-Chih; Wu, Shey-Lin; Liu, Ko-Hung; Chen, Ya-Hui; Chuang, Chieh-Sen; Cheng, Fu-Chou; Su, Hong-Lin; Wei, Yau-Huei; Kuo, Shou-Jen; Liu, Chin-San

    2016-04-01

    Although restoration of mitochondrial function in mitochondrial diseases through peptide-mediated allogeneic mitochondrial delivery (PMD) has been demonstrated in vitro, the in vivo therapeutic efficacy of PMD in Parkinson's disease (PD) has yet to be determined. In this study, we compared the functionality of mitochondrial transfer with or without Pep-1 conjugation in neurotoxin (6-hydroxydopamine, 6-OHDA)-induced PC12 cells and PD rat models. We injected mitochondria into the medial forebrain bundle (MFB) of the PD rats after subjecting the nigrostriatal pathway to a unilateral 6-OHDA lesion for 21 days, and we verified the effectiveness of the mitochondrial graft in enhancing mitochondrial function in the soma of the substantia nigra (SN) neuron through mitochondrial transport dynamics in the nigrostriatal circuit. The result demonstrated that only PMD with allogeneic and xenogeneic sources significantly sustained mitochondrial function to resist the neurotoxin-induced oxidative stress and apoptotic death in the rat PC12 cells. The remaining cells exhibited a greater capability of neurite outgrowth. Furthermore, allogeneic and xenogeneic transplantation of peptide-labeled mitochondria after 3 months improved the locomotive activity in the PD rats. This increase was accompanied by a marked decrease in dopaminergic neuron loss in the substantia nigra pars compacta (SNc) and consistent enhancement of tyrosine hydroxylase-positive immunoreaction of dopaminergic neurons in the SNc and striatum. We also observed that in the SN dopaminergic neuron in the treated PD rats, mitochondrial complex I protein and mitochondrial dynamics were restored, thus ameliorating the oxidative DNA damage. Moreover, we determined signal translocation of graft allogeneic mitochondria from the MFB to the calbindin-positive SN neuron, which demonstrated the regulatory role of mitochondrial transport in alleviating 6-OHDA-induced degeneration of dopaminergic neurons.

  5. Preferential magnetic nanoparticle uptake by bone marrow derived macrophages sub-populations: effect of surface coating on polarization, toxicity, and in vivo MRI detection

    NASA Astrophysics Data System (ADS)

    Al Faraj, Achraf

    2013-07-01

    Noninvasive imaging of macrophages activity has raised increasing interest for diagnosis of different diseases, which make them attractive vehicles to deliver contrast agents or drugs for diagnostic or therapeutic purposes. In this study, the effect of polyethylene glycol functionalization of magnetic iron oxide nanoparticles and their further surface modification with carboxylic groups on bone marrow-derived M1 and M2 macrophages phenotype, labeling efficiency, uptake mechanism, biocompatibility, and their in vivo MR detection was assessed. An enhanced labeling efficiency was observed for carboxylic surface-modified superparamagnetic iron oxide (SPIO) compared to PEGylated SPIO and to a higher extent to plain SPIO along with a higher uptake by M2 subsets. Magnetic nanoparticles were found located in the periphery of the vesicles dispersed in the cytoplasm in TEM. Investigation of the labeling mechanism by inhibiting different uptake pathways revealed that endocytosis via scavenger receptor A, a process known to be clathrin mediated, plays a central role in the cellular uptake kinetics of both macrophages subpopulations. Biocompatibility evaluation showed no variation in cell viability and mitochondrial membrane potential with a low release of ROS. Flow cytometry and measurement of iNOS and Arginase 1 activity as marker of M1 and M2 macrophages polarization confirmed that magnetic labeling of macrophages subsets did not affect their polarization. In addition, no variation was observed in the biodistribution of magnetic iron oxide-labeled M1 and M2 macrophages subsets when monitored using noninvasive magnetic resonance imaging with a better detection for the enhanced SPIO-PEG-COOH-labeled cells.

  6. Bone Cancer

    MedlinePlus

    Cancer that starts in a bone is uncommon. Cancer that has spread to the bone from another ... more common. There are three types of bone cancer: Osteosarcoma - occurs most often between ages 10 and ...

  7. Early loading of implants in the atrophic posterior maxilla: lateral sinus lift with autogenous bone and Bio-Oss versus crestal mini sinus lift and 8-mm hydroxyapatite-coated implants. A randomised controlled clinical trial.

    PubMed

    Cannizzaro, Gioacchino; Felice, Pietro; Leone, Michele; Viola, Paolo; Esposito, Marco

    2009-01-01

    To evaluate the efficacy of 10- to 16-mm-long implants inserted in maxillary sinuses augmented according to a lateral approach technique with 50% particulated autogenous bone harvested from the oral cavity and 50% Bio-Oss, versus 8-mm-long hydroxyapatite-coated implants placed in crestally augmented sinuses with autogenous bone according to the Cosci technique. All implants were early loaded at 45 days after placement. Forty partially or fully edentulous patients having 3 to 6 mm of residual crestal height and at least 4 mm thickness below the maxillary sinuses (measured on a CT scan) were randomised to receive one to three, 10- to 16-mm-long implants (20 patients) after lateral sinus lifting with 50% anorganic bovine (Bio-Oss) and 50% autogenous bone, or 8-mm-long implants (20 patients) after crestal sinus lifting with autogenous bone. Implants were submerged and left to heal for 45 days. Within 1 week of abutment connection, implants were loaded with screw-retained full acrylic provisional prostheses. Definitive metal-ceramic prostheses were provisionally cemented 45 days after abutment connection. Outcome measures were the number of prosthesis and implant failures, and any complications. In addition, the stability of individual implants was assessed with Osstell and Periotest at abutment connection (baseline) and after 1 year of loading by a blinded outcome assessor. All patients were followed up for 1 year after loading. No patient dropped out. In three patients of the 8-mm implant group, primary stability could not be initially obtained. However, after immediately replacing the unstable implants with implants with a larger diameter, sufficient primary stability was obtained. One implant failed in the short implant group and five implants failed in three patients of the longer implant group. The difference was not statistically significant. There were no differences in complications between groups. However, two major post-operative complications occurred in the

  8. Concise review: The evolution of human pluripotent stem cell culture: from feeder cells to synthetic coatings.

    PubMed

    Villa-Diaz, L G; Ross, A M; Lahann, J; Krebsbach, P H

    2013-01-01

    Current practices to maintain human pluripotent stem cells (hPSCs), which include induced pluripotent stem cells and embryonic stem cells, in an undifferentiated state typically depend on the support of feeder cells such as mouse embryonic fibroblasts (MEFs) or an extracellular matrix such as Matrigel. Culture conditions that depend on these undefined support systems limit our ability to interpret mechanistic studies aimed at resolving how hPSCs interact with their extracellular environment to remain in a unique undifferentiated state and to make fate-changing lineage decisions. Likewise, the xenogeneic components of MEFs and Matrigel ultimately hinder our ability to use pluripotent stem cells to treat debilitating human diseases. Many of these obstacles have been overcome by the development of synthetic coatings and bioreactors that support hPSC expansion and self-renewal within defined culture conditions that are free from xenogeneic contamination. The establishment of defined culture conditions and synthetic matrices will facilitate studies to more precisely probe the molecular basis of pluripotent stem cell self-renewal and differentiation. When combined with three-dimensional cultures in bioreactors, these systems will also enable large-scale expansion for future clinical applications. Copyright © 2012 AlphaMed Press.

  9. Bone and bone turnover.

    PubMed

    Crofton, Patricia M

    2009-01-01

    Children with cancer are exposed to multiple influences that may adversely affect bone health. Some treatments have direct deleterious effects on bone whilst others may have indirect effects mediated through various endocrine abnormalities. Most clinical outcome studies have concentrated on survivors of acute lymphoblastic leukaemia (ALL). There is now good evidence that earlier treatment protocols that included cranial irradiation with doses of 24 Gy or greater may result in growth hormone deficiency and low bone mineral density (BMD) in the lumbar spine and femoral neck. Under current protocols, BMD decreases during intensive chemotherapy and fracture risk increases. Although total body BMD may eventually return to normal after completion of chemotherapy, lumbar spine trabecular BMD may remain low for many years. The implications for long-term fracture risk are unknown. Risk factors for low BMD include high dose methotrexate, higher cumulative doses of glucocorticoids, male gender and low physical activity. BMD outcome in non-ALL childhood cancers has been less well studied but there is evidence that survivors of childhood brain or bone tumours, and survivors of bone marrow transplants for childhood malignancy, all have a high risk of long-term osteopenia. Long-term follow-up is required, with appropriate treatment of any endocrine abnormalities identified.

  10. Parathyroid Hormone-Induced Bone Marrow Mesenchymal Stem Cell Chondrogenic Differentiation and its Repair of Articular Cartilage Injury in Rabbits

    PubMed Central

    Chen, Yushu; Chen, Yi; Zhang, Shujiang; Du, Xiufan; Bai, Bo

    2016-01-01

    Background We explored the effect of parathyroid hormone (PTH)-induced bone marrow stem cells (BMSCs) complexed with fibrin glue (FG) in the repair of articular cartilage injury in rabbits. Material/Methods Forty-eight rabbits randomized into four groups were subjected to articular surgery (cartilage loss). The PTH and non-PTH intervention groups included transplantation with PTH/BMSC/FG xenogeneic and BMSC/FG xenogeneic complexes, respectively, into the injured area. The injured group contained no transplant while the control group comprised rabbits without any articular injury. Samples were monitored for cartilage repair up to three months post-surgery. Immunohistochemistry as well as real-time fluorescent quantitative PCR and Western blot were used to analyze the expression of type II collagen and aggrecan in the repaired tissue. Results At 12 weeks post-surgery, the loss of articular cartilage in the PTH group was fully repaired by hyaline tissue. Typical cartilage lacunae and intact subchondral bone were found. The boundary separating the surrounding normal cartilage tissue disappeared. The gross and International Cartilage Repair Society (ICRS) histological ranking of the repaired tissue was significantly higher in the PTH intervention group than in the non-PTH intervention and injury groups (p<0.05) without any significant difference compared to the control group (p>0.05). Type II collagen and aggrecan stained positive and the average optical density, relative mRNA expression and protein-integrated optical density in the PTH group were higher than in non-PTH and injured groups (p<0.05) but not significantly different from the control group (p>0.05). Conclusions PTH/BMSC/FG xenogeneic complexes effectively repaired the loss of cartilage in rabbit knee injury. PMID:27847384

  11. Multinucleated giant cells in the implant bed of bone substitutes are foreign body giant cells-New insights into the material-mediated healing process.

    PubMed

    Barbeck, Mike; Booms, Patrick; Unger, Ronald; Hoffmann, Verena; Sader, Robert; Kirkpatrick, Charles James; Ghanaati, Shahram

    2017-04-01

    In addition to macrophages, multinucleated giant cells (MNGCs) are involved in the tissue reaction to a variety of biomaterials. Especially in the case of bone substitute materials it has been assumed that the MNGCs are osteoclasts, based on the chemical and physical similarity of many materials to the calcified matrix and the bony environment in which they are used. However, many studies indicate that these cells belong to the cell line of the foreign body giant cells (FBGCs), which are of "inflammatory origin", although they have been shown to possess both a pro- and also anti-inflammatory phenotype. Moreover, no information is available about their role in the tissue reaction to bone substitute materials. The present study was conducted to analyze the origin of MNGCs in the implant beds of a synthetic and a xenogeneic bone substitute and focused on the application of immunohistochemical methods. Two antibodies against integrin molecules specific for osteoclasts (β-3 integrin) or FBGCs (β-2 integrin) were used to distinguish both giant cell types. The results of the present study indicate that the MNGCs induced by both kinds of bone substitutes are FBGCs, as they express only β-2 integrin in contrast to the osteoclasts outside of the immediate implantation areas, which only demonstrate β-3 integrin expression. These data give new insight into the tissue reaction to both xenogeneic and synthetic bone substitutes. Based on this new knowledge further research concerning the proteomic profile of the FBGCs especially based on the different physicochemical properties of bone substitutes is necessary. This may show that specific characteristics of bone substitutes may exhibit a substantial influence on the regeneration process via the expression of anti-inflammatory molecules by FBGCs. Based on this information it may be possible to formulate and choose bone substitutes that can guide the process of bone tissue regeneration on the molecular level. © 2017 Wiley

  12. Wear Performance of Laser Processed Tantalum Coatings

    PubMed Central

    Dittrick, Stanley; Balla, Vamsi Krishna; Bose, Susmita; Bandyopadhyay, Amit

    2011-01-01

    This first generation investigation evaluates the in vitro tribological performance of laser-processed Ta coatings on Ti for load-bearing implant applications. Linear reciprocating wear tests in simulated body fluid showed one order of magnitude less wear rate, of the order of 10−4mm3(N.m)−1, for Ta coatings compared to Ti. Our results demonstrate that Ta coatings can potentially minimize the early-stage bone-implant interface micro-motion induced wear debris generation due to their excellent bioactivity comparable to that of hydroxyapatite (HA), high wear resistance and toughness compared to popular HA coatings. PMID:22058608

  13. Superelastic Orthopedic Implant Coatings

    NASA Astrophysics Data System (ADS)

    Fournier, Eric; Devaney, Robert; Palmer, Matthew; Kramer, Joshua; El Khaja, Ragheb; Fonte, Matthew

    2014-07-01

    The demand for hip and knee replacement surgery is substantial and growing. Unfortunately, most joint replacement surgeries will fail within 10-25 years, thereby requiring an arduous, painful, and expensive revision surgery. To address this issue, a novel orthopedic implant coating material ("eXalt") has been developed. eXalt is comprised of super elastic nitinol wire that is knit into a three-dimensional spacer fabric structure. eXalt expands in vivo to conform to the implantation site and is porous to allow for bone ingrowth. The safety and efficacy of eXalt were evaluated through structural analysis, mechanical testing, and a rabbit implantation model. The results demonstrate that eXalt meets or exceeds the performance of current coating technologies with reduced micromotion, improved osseointegration, and stronger implant fixation in vivo.

  14. Nano-structured titanium coating for improving biological performance.

    PubMed

    Xie, Youtao; Yang, Fei; Zheng, Xuebin; Ding, Chuanxian; Dai, Kerong; Huang, Liping

    2011-12-01

    Nano-structured titanium coating was obtained by alkali treating the vacuum plasma sprayed samples following hot water immersing for 24 h. The influences of the surface microstructure on the biological performance were studied. A canine model was applied for in vivo evaluation of the bone bonding ability of the coatings. The histological examination results demonstrate that new bone was formed more rapidly on the nano-structured coating implants and grew into the porosity than the as-sprayed one. After 4 weeks implantation, the nano-structured implants were found to appose directly to the surrounding bone while large lacunae could still be observed at the interface between the as-sprayed samples and bone. All these results indicate that a nano-structured surface on the porous titanium coating is favorable for bone bonding.

  15. Hydroxyapatite coatings.

    PubMed

    Lacefield, W R

    1988-01-01

    Four coating techniques were evaluated to determine which is most suitable for producing a dense, highly adherent coating onto metallic and ceramic implant materials. Two of the selected coating methods have serious limitations for use in this particular application, and did not meet the specified criteria for satisfactory coating as defined in the initial stages of the study. For example, the dip coating-sintering technique was judged to be unsatisfactory because of the adverse effect of the high-temperature sintering cycle on the mechanical properties of the metallic substrate materials. These materials could not be used in load-bearing applications because of the excessive grain growth and loss of the wrought structure of both the commercially pure Ti and Ti-6Al-4V substrates, and the loss of ductility in the cast Co-Cr-Mo alloy. Another area of concern was that bond strength between the HA coating and the substrate was not high enough to insure that interfacial failure would not occur during the lifetime of the implant. The immersion-coating technique, in which the metal substrate is immersed into the molten ceramic, was shown in a previous study to be the best method of coating a bioreactive glass onto a Co-Cr-Mo implant. Heating HA above its melting temperature, however, caused undesired compositional and structural changes, and upon solidification very limited adherence between the modified ceramic and substrate material occurred under the conditions of this study. The HIP technique, in which the Ti powder substrate and the HA powder coating are sintered together in a high-pressure autoclave, shows great promise for the fabrication of high-quality composite implants. Initial studies have indicated that high-density Ti substrates with a small grain size that are well bonded to a dense HA coating can be produced under optimum conditions. Sintering and densification additives, such as SiO2 powder, do not appear to be necessary. The main drawback to this

  16. Regulatory Aspects of Coatings

    USDA-ARS?s Scientific Manuscript database

    This chapter gives a history of the development and uses of edible coating regulations, detailed chapters on coating caracteristics, determination of coating properties, methods for making coatings, and discription of coating film formers (polysaccharieds, lipids, resins, proteins). The chapter also...

  17. Bone marrow aspiration

    MedlinePlus

    Iliac crest tap; Sternal tap; Leukemia - bone marrow aspiration; Aplastic anemia - bone marrow aspiration; Myelodysplastic syndrome - bone marrow aspiration; Thrombocytopenia - bone marrow aspiration; Myelofibrosis - bone marrow aspiration

  18. Surface modification of implants in long bone.

    PubMed

    Förster, Yvonne; Rentsch, Claudia; Schneiders, Wolfgang; Bernhardt, Ricardo; Simon, Jan C; Worch, Hartmut; Rammelt, Stefan

    2012-01-01

    Coatings of orthopedic implants are investigated to improve the osteoinductive and osteoconductive properties of the implant surfaces and thus to enhance periimplant bone formation. By applying coatings that mimic the extracellular matrix a favorable environment for osteoblasts, osteoclasts and their progenitor cells is provided to promote early and strong fixation of implants. It is known that the early bone ongrowth increases primary implant fixation and reduces the risk of implant failure. This review presents an overview of coating titanium and hydroxyapatite implants with components of the extracellular matrix like collagen type I, chondroitin sulfate and RGD peptide in different small and large animal models. The influence of these components on cells, the inflammation process, new bone formation and bone/implant contact is summarized.

  19. Development of Bioactive Ceramic Coating on Titanium Alloy substrate for Biomedical Application Using Dip Coating Method

    NASA Astrophysics Data System (ADS)

    Asmawi, R.; Ibrahim, M. H. I.; Amin, A. M.; Mustafa, N.; Noranai, Z.

    2017-08-01

    Bioactive apatite, such as hydroxyapatite ceramic (HA), [Ca10(PO4)6(OH)2] has been extensively investigated for biomedical applications due to its excellent biocompatibility and tissue bioactivity properties. Its bioactivity provides direct bonding to the bone tissue. Because of its similarity in chemical composition to the inorganic matrix of bone, HA is widely used as implant materials for bone. Unfortunately, because of its poor mechanical properties,. this bioactive material is not suitable for load bearing applications. In this study, by the assistance of dip-coating technique, HA coatings were deposited on titanium alloy substrates by employing hydrothermal derived HA powder. The produced coatings then were oven-dried at 130°C for 1 hour and calcined at various temperature over the range of 200-800°C for 1 hour. XRD measurement showed that HA was the only phase present in the coatings. However coatings calcined at 800°C comprised a mixture of HA and tri-calcium phosphate (TCP). FTIR measurement showed the existence of hydroxyl, phosphate, and carbonate bands. PO4 - band became sharper and narrower with the increased of calcination temperature. FESEM observation showed that the coating is polycrystalline with individual particles of nano to submicron size and has an average particle size of 35 nm. The thickness of the coating are direcly propotional with the viscosity of coating slurry. It was shown that the more viscous coating slurry would produce a thicker ceramic coating. Mechanical properties of the coating were measured in term of adhesion strength using a Micro Materials Nano Test microscratch testing machine. The result revealed that the coating had a good adhesion to the titanium alloy substrate.

  20. Comparison of Immunomodulation Properties of Porcine Mesenchymal Stromal/Stem Cells Derived from the Bone Marrow, Adipose Tissue, and Dermal Skin Tissue

    PubMed Central

    Ock, Sun-A; Baregundi Subbarao, Raghavendra; Lee, Yeon-Mi; Lee, Jeong-Hyeon; Jeon, Ryoung-Hoon; Lee, Sung-Lim; Park, Ji Kwon; Hwang, Sun-Chul; Rho, Gyu-Jin

    2016-01-01

    Mesenchymal stromal/stem cells (MSCs) demonstrate immunomodulation capacity that has been implicated in the reduction of graft-versus-host disease. Accordingly, we herein investigated the capacity of MSCs derived from several tissue sources to modulate both proinflammatory (interferon [IFN] γ and tumor necrosis factor [TNF] α) and immunosuppressive cytokines (transforming growth factor [TGF] β and interleukin [IL] 10) employing xenogeneic human MSC-mixed lymphocyte reaction (MLR) test. Bone marrow-derived MSCs showed higher self-renewal capacity with relatively slow proliferation rate in contrast to adipose-derived MSCs which displayed higher proliferation rate. Except for the lipoprotein gene, there were no marked changes in osteogenesis- and adipogenesis-related genes following in vitro differentiation; however, the histological marker analysis revealed that adipose MSCs could be differentiated into both adipose and bone tissue. TGFβ and IL10 were detected in adipose MSCs and bone marrow MSCs, respectively. However, skin-derived MSCs expressed both IFNγ and IL10, which may render them sensitive to immunomodulation. The xenogeneic human MLR test revealed that MSCs had a partial immunomodulation capacity, as proliferation of activated and resting peripheral blood mononuclear cells was not affected, but this did not differ among MSC sources. MSCs were not tumorigenic when introduced into immunodeficient mice. We concluded that the characteristics of MSCs are tissue source-dependent and their in vivo application requires more in-depth investigation regarding their precise immunomodulation capacities. PMID:26798368

  1. Versatile Coating

    NASA Technical Reports Server (NTRS)

    1990-01-01

    A radome at Logan Airport and a large parabolic antenna at the Wang Building in Massachusetts are protected from weather, corrosion and ultraviolet radiation by a coating, specially designed for antennas and radomes, known as CRC Weathertite 6000. The CRC 6000 line that emerged from Boyd Coatings Research Co., Inc. is a solid dispersion of fluorocarbon polymer and polyurethane that yields a tough, durable film with superior ultraviolet resistance and the ability to repel water and ice over a long term. Additionally, it provides resistance to corrosion, abrasion, chemical attacks and impacts. Material can be used on a variety of substrates, such as fiberglass, wood, plastic and concrete in addition to steel and aluminum. In addition Boyd Coatings sees CRC 6000 applicability as an anti-icing system coated on the leading edge of aircraft wings.

  2. Protective Coating

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Inorganic Coatings, Inc.'s K-Zinc 531 protective coating is water-based non-toxic, non-flammable and has no organic emissions. High ratio silicate formula bonds to steel, and in 30 minutes, creates a very hard ceramic finish with superior adhesion and abrasion resistance. Improved technology allows application over a minimal commercial sandblast, fast drying in high humidity conditions and compatibility with both solvent and water-based topcoats. Coating is easy to apply and provides long term protection with a single application. Zinc rich coating with water-based potassium silicate binder offers cost advantages in materials, labor hours per application, and fewer applications over a given time span.

  3. Bone tumor

    MedlinePlus

    ... primary bone tumors include: Chondrosarcoma Ewing sarcoma Fibrosarcoma Osteosarcomas Cancers that most often spread to the bone are cancers of the: Breast Kidney Lung Prostate Thyroid These forms of cancer usually affect ...

  4. Bone grafts.

    PubMed

    Hubble, Matthew J W

    2002-09-01

    Bone grafts are used in musculoskeletal surgery to restore structural integrity and enhance osteogenic potential. The demand for bone graft for skeletal reconstruction in bone tumor, revision arthroplasty, and trauma surgery, couple with recent advances in understanding and application of the biology of bone transplantation, has resulted in an exponential increase in the number of bone-grafting procedures performed over the last decade. It is estimated that 1.5 million bone-grafting procedures are currently performed worldwide each year, compared to a fraction of that number 20 years ago. Major developments also have resulted in the harvesting, storage, and use of bone grafts and production of graft derivatives, substitutes, and bone-inducing agents.

  5. In situ application of hydrogel-type fibrin-islet composite optimized for rapid glycemic control by subcutaneous xenogeneic porcine islet transplantation.

    PubMed

    Kim, Jung-Sik; Lim, Jong-Hyung; Nam, Hye-Young; Lim, Hyun-Ju; Shin, Jun-Seop; Shin, Jin-Young; Ryu, Ju-Hee; Kim, Kwangmeyung; Kwon, Ick-Chan; Jin, Sang-Man; Kim, Hang-Rae; Kim, Sang-Joon; Park, Chung-Gyu

    2012-09-10

    Maximum engraftment of transplanted islets is essential for the clinical application of a subcutaneous site. Significant barriers to the current approaches are associated with their low effectiveness, complexity and unproven biosafety. Here, we evaluated and optimized a fibrin-islet composite for effective glycemic control in a subcutaneous site whose environment is highly hypoxic due to low vascularization potential. In the setting of xenogeneic porcine islet transplantation into the subcutaneous space of a diabetic mouse, the in vivo islet functions were greatly affected by the concentrations of fibrinogen and thrombin. The optimized hydrogel-type fibrin remarkably reduced the marginal islet mass to approximately one tenth that of islets without fibrin. This marginal islet mass was comparable to that in the setting of the subcapsular space of the kidney, which is a highly vascularized organ. Highly vascularized structures were generated inside and on the outer surface of the grafts. A hydrogel-type fibrin-islet composite established early diabetic control within an average of 3.4days after the transplantation. In the mechanistic studies, fibrin promoted local angiogenesis, enhanced islet viability and prevented fragmentation of islets into single cells. In conclusion, in situ application of hydrogel-type fibrin-islet composite may be a promising modality in the clinical success of subcutaneous islet transplantation.

  6. Preclinical Testing of Antihuman CD28 Fab' Antibody in a Novel Nonhuman Primate Small Animal Rodent Model of Xenogenic Graft-Versus-Host Disease.

    PubMed

    Hippen, Keli L; Watkins, Benjamin; Tkachev, Victor; Lemire, Amanda M; Lehnen, Charles; Riddle, Megan J; Singh, Karnail; Panoskaltsis-Mortari, Angela; Vanhove, Bernard; Tolar, Jakub; Kean, Leslie S; Blazar, Bruce R

    2016-12-01

    Graft-versus-host disease (GVHD) is a severe complication of hematopoietic stem cell transplantation. Current therapies to prevent alloreactive T cell activation largely cause generalized immunosuppression and may result in adverse drug, antileukemia and antipathogen responses. Recently, several immunomodulatory therapeutics have been developed that show efficacy in maintaining antileukemia responses while inhibiting GVHD in murine models. To analyze efficacy and better understand immunological tolerance, escape mechanisms, and side effects of clinical reagents, testing of species cross-reactive human agents in large animal GVHD models is critical. We have previously developed and refined a nonhuman primate (NHP) large animal GVHD model. However, this model is not readily amenable to semi-high throughput screening of candidate clinical reagents. Here, we report a novel, optimized NHP xenogeneic GVHD (xeno-GVHD) small animal model that recapitulates many aspects of NHP and human GVHD. This model was validated using a clinically available blocking, monovalent anti-CD28 antibody (FR104) whose effects in a human xeno-GVHD rodent model are known. Because human-reactive reagents may not be fully cross-reactive or effective in vivo on NHP immune cells, this NHP xeno-GVHD model provides immunological insights and direct testing on NHP-induced GVHD before committing to the intensive NHP studies that are being increasingly used for detailed evaluation of new immune therapeutic strategies before human trials.

  7. Antagonistic effects of the staphylococcal enterotoxin a mutant, SEA(F47A/D227A), on psoriasis in the SCID-hu xenogeneic transplantation model.

    PubMed

    Boehncke, W H; Hardt-Weinelt, K; Nilsson, H; Wolter, M; Dohlsten, M; Ochsendorf, F R; Kaufmann, R; Antonsson, P

    2001-04-01

    Psoriasis is a T-cell-mediated immune dermatosis probably triggered by bacterial superantigens. This pathomechanism has been experimentally reproduced in a SCID-hu xenogeneic transplantation model. We analyzed the effects of different bacterial superantigens on the induction of psoriasis in this model. Staphylococcal enterotoxin B and exfoliative toxin triggered the onset of psoriasis when administered repetitively intracutaneously over a period of 2 wk, whereas staphylococcal enterotoxin A representing a distinct subfamily of staphylococcal enterotoxins only mimicked certain aspects of psoriasis. The biologic effects of staphylococcal enterotoxin A were more pronounced when a mutated form, SEA(H187A), of this superantigen with reduced affinity to major histocompatibility complex class II was coinjected. Another mutated variant, SEA(F47A/D227A), exhibiting no measurable major histocompatibility complex class II affinity blocked the effects triggered by wild-type staphylococcal enterotoxin A when injected in a 10-fold higher dose. Inhibition was specific as induction of psoriasiform epidermal changes by staphylococcal enterotoxin B could not be blocked. As staphylococcal enterotoxin A, in contrast to the other superantigens tested, is capable of inducing epidermal thickening but not the typical appearance of psoriasis, we conclude that bacterial superantigens may differ with regard to their effects on human nonlesional psoriatic skin. Staphylococcal-enterotoxin-A-mediated effects were blocked by a genetically engineered superantigen highlighting the potential therapeutic use of mutated superantigens.

  8. Stirred tank bioreactor culture combined with serum-/xenogeneic-free culture medium enables an efficient expansion of umbilical cord-derived mesenchymal stem/stromal cells.

    PubMed

    Mizukami, Amanda; Fernandes-Platzgummer, Ana; Carmelo, Joana G; Swiech, Kamilla; Covas, Dimas T; Cabral, Joaquim M S; da Silva, Cláudia L

    2016-08-01

    Mesenchymal stem/stromal cells (MSC) are being widely explored as promising candidates for cell-based therapies. Among the different human MSC origins exploited, umbilical cord represents an attractive and readily available source of MSC that involves a non-invasive collection procedure. In order to achieve relevant cell numbers of human MSC for clinical applications, it is crucial to develop scalable culture systems that allow bioprocess control and monitoring, combined with the use of serum/xenogeneic (xeno)-free culture media. In the present study, we firstly established a spinner flask culture system combining gelatin-based Cultispher(®) S microcarriers and xeno-free culture medium for the expansion of umbilical cord matrix (UCM)-derived MSC. This system enabled the production of 2.4 (±1.1) x10(5) cells/mL (n = 4) after 5 days of culture, corresponding to a 5.3 (±1.6)-fold increase in cell number. The established protocol was then implemented in a stirred-tank bioreactor (800 mL working volume) (n = 3) yielding 115 million cells after 4 days. Upon expansion under stirred conditions, cells retained their differentiation ability and immunomodulatory potential. The development of a scalable microcarrier-based stirred culture system, using xeno-free culture medium that suits the intrinsic features of UCM-derived MSC represents an important step towards a GMP compliant large-scale production platform for these promising cell therapy candidates.

  9. Production of porous coating on a prosthesis

    DOEpatents

    Sump, Kenneth R.

    1987-01-01

    Preselected surface areas of a prosthesis are covered by a blend of matching primary metallic particles and expendable particles. The particles are compressed and heated to assure that deformation and metallurgical bonding occurs between them and between the primary particles and the surface boundaries of the prosthesis. Porosity is achieved by removal of the expendable material. The result is a coating including discrete bonded particles separated by a network of interconnected voids presenting a homogeneous porous coating about the substrate. It has strength suitable for bone implant usage without intermediate adhesives, and adequate porosity to promote subsequent bone ingrowth.

  10. Bone Analyzer

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The danger of disuse osteoporosis under weightless condition in space led to extensive research into measurements of bone stiffness and mass by the Biomedical Research Division of Ames and Stanford University. Through its Technology Utilization Program, NASA funded an advanced SOBSA, a microprocessor-controlled bone probe system. SOBSA determines bone stiffness by measuring responses to an electromagnetic shaker. With this information, a physician can identify bone disease, measure deterioration and prescribe necessary therapy. The system is now undergoing further testing.

  11. Bone cement

    PubMed Central

    Vaishya, Raju; Chauhan, Mayank; Vaish, Abhishek

    2013-01-01

    The knowledge about the bone cement is of paramount importance to all Orthopaedic surgeons. Although the bone cement had been the gold standard in the field of joint replacement surgery, its use has somewhat decreased because of the advent of press-fit implants which encourages bone in growth. The shortcomings, side effects and toxicity of the bone cement are being addressed recently. More research is needed and continues in the field of nanoparticle additives, enhanced bone–cement interface etc. PMID:26403875

  12. Bone Infections

    MedlinePlus

    ... bloodstream. People who are at risk for bone infections include those with diabetes, poor circulation, or recent injury to the bone. You may also be at risk if you are having hemodialysis. Symptoms of bone infections include Pain in the infected area Chills and ...

  13. Ceramic-coated implant systems.

    PubMed

    Meffert, R M

    1999-06-01

    Practitioners have used hydroxyapatite-coated (HA-coated) endosseous and subperiosteal implants in various forms for many years. These have included root forms in both screw and cylindrical shapes, blades, and subperiosteals. The clinical predictability remains controversial and subject to claims and counterclaims. The early days of dental implantology involving root-form implants recommended their placement in fully edentulous cases only, and anterior to the maxillary sinus and mental foramen. Today's philosophy and rationale of dental implantology include the placement of a single implant replacing a missing natural tooth (especially where the teeth adjacent to the edentulous site have no caries or restorative experience). Implants are used to replace the natural dentition in one quadrant/segment, often preceded or accompanied by ridge augmentation and/or sinus grafting if sufficient bone is not present. So we have to address the clinical predictability of survival in terms of indications, quantity, and quality of bone. Clinical data and experience suggest that hydroxyapatite-coated (HA) dental implants may (and possibly should) be used in (1) Type IV bone, (2) fresh extraction sites, (3) grafted maxillary and/or nasal sinuses, or (4) with short implants (< or = 10 mm in length).

  14. Bone calcium, phosphorus detection by Auger electron spectroscopy.

    PubMed

    Tzaphlidou, Margaret; Berillis, Panagiotis; Matthopoulos, Demetrios

    2005-01-01

    Auger electron spectroscopy was used to detect calcium and phosphorus of cortical bone from rat femoral neck and rear tibia. Spectra were taken from bone pieces as well as from disks prepared from grinded bone material. Experimental conditions were found whereby the samples could be analyzed without conductive coatings. The results of this preliminary investigation demonstrate that Auger electron spectroscopy can be used to study bone mineral elements.

  15. Osseointegration of a hydroxyapatite-coated multilayered mesh stem.

    PubMed

    Kusakabe, Hiroshi; Sakamaki, Toyonori; Nihei, Kotaro; Oyama, Yasuo; Yanagimoto, Shigeru; Ichimiya, Masaru; Kimura, Jun; Toyama, Yoshiaki

    2004-07-01

    A new type of porous coating for hip prostheses called "multilayered mesh" was tested under weight-bearing conditions. The surface of the stem is constructed of titanium mesh produced by etching. The hip stems of hydroxyapatite (HA)-coated multilayered mesh and conventional beads were implanted into canine right hips, and animals were killed 3, 6 and 10 weeks and 6 and 12 months after implantation. Shear strength between the implant and the bone was evaluated by the push-out test. Bone ingrowth was calculated from backscattered electron imaging-scanning electron microscopy (BEI-SEM) images of transverse sections. Toluidine blue stained sections and the BEI-SEM images were evaluated histologically. The break sites of the specimens after the push-out test were evaluated on BEI-SEM images of longitudinal sections. The mean push-out strength of the HA-coated multilayered mesh samples was greater than that of the beads-coated samples every time tested, and the HA-coated multilayered mesh implants had significantly stronger push-out strength at 3 and 6 weeks (p<0.05). The strength of the HA-coated multilayered mesh implants was even greater at 6 and 12 months, whereas the strength of the beads-coated samples decreased. The HA-coated multilayered mesh implants showed significantly higher percentages of bone ingrowth than the beads-coated implants every time tested, except at 6 months (p<0.05). At 6 and 12 months, the bone ingrowth data for the HA-coated multilayered mesh implants increased, whereas it decreased for the beads-coated implants. The new bone formation had reached the bottom of the porous area of the HA-coated multilayered mesh surface by 3 weeks, but not had reached the bottom of the conventional beads surface. At 6 and 12 months, the smaller pores of the bead surface stopped the thickening of trabecular bone, and at 12 months, the break sites were at the bone-implant interface of the bead surface, whereas they were on the bone side of the HA-coated

  16. Bone Densitometry (Bone Density Scan)

    MedlinePlus

    ... In some communities, a CT scan with special software can also be used to diagnose or monitor ... patient's bone mineral density. DEXA machines feature special software that compute and display the bone density measurements ...

  17. Diamond Coatings

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Advances in materials technology have demonstrated that it is possible to get the advantages of diamond in a number of applications without the cost penalty, by coating and chemically bonding an inexpensive substrate with a thin film of diamond-like carbon (DLC). Diamond films offer tremendous technical and economic potential in such advances as chemically inert protective coatings; machine tools and parts capable of resisting wear 10 times longer; ball bearings and metal cutting tools; a broad variety of optical instruments and systems; and consumer products. Among the American companies engaged in DLC commercialization is Diamonex, Inc., a diamond coating spinoff of Air Products and Chemicals, Inc. Along with its own proprietary technology for both polycrystalline diamond and DLC coatings, Diamonex is using, under an exclusive license, NASA technology for depositing DLC on a substrate. Diamonex is developing, and offering commercially, under the trade name Diamond Aegis, a line of polycrystalline diamond-coated products that can be custom tailored for optical, electronic and engineering applications. Diamonex's initial focus is on optical products and the first commercial product is expected in late 1990. Other target applications include electronic heat sink substrates, x-ray lithography masks, metal cutting tools and bearings.

  18. In vivo and in vitro investigations of a nanostructured coating material – a preclinical study

    PubMed Central

    Adam, Martin; Ganz, Cornelia; Xu, Weiguo; Sarajian, Hamid-Reza; Götz, Werner; Gerber, Thomas

    2014-01-01

    Immediate loading of dental implants is only possible if a firm bone-implant anchorage at early stages is developed. This implies early and high bone apposition onto the implant surface. A nanostructured coating material based on an osseoinductive bone grafting is investigated in relation to the osseointegration at early stages. The goal is to transmit the structure (silica matrix with embedded hydroxyapatite) and the properties of the bone grafting into a coating material. The bone grafting substitute offers an osseoinductive potential caused by an exchange of the silica matrix in vivo accompanied by vascularization. X-ray diffraction and transmission electron microscopy analysis show that the coating material consists of a high porous silica matrix with embedded nanocrystalline hydroxyapatite with the same morphology as human hydroxyapatite. An in vitro investigation shows the early interaction between coating and human blood. Energy-dispersive X-ray analysis showed that the silica matrix was replaced by an organic matrix within a few minutes. Uncoated and coated titanium implants were inserted into the femora of New Zealand White rabbits. The bone-to-implant contact (BIC) was measured after 2, 4, and 6 weeks. The BIC of the coated implants was increased significantly at 2 and 4 weeks. After 6 weeks, the BIC was decreased to the level of the control group. A histological analysis revealed high bone apposition on the coated implant surface after 2 and 4 weeks. Osteoblastic and osteoclastic activities on the coating material indicated that the coating participates in the bone-remodeling process. The nanostructure of the coating material led to an exchange of the silica matrix by an autologous, organic matrix without delamination of the coating. This is the key issue in understanding initial bone formation on a coated surface. PMID:24627631

  19. Bone poroelasticity.

    PubMed

    Cowin, S C

    1999-03-01

    Poroelasticity is a well-developed theory for the interaction of fluid and solid phases of a fluid-saturated porous medium. It is widely used in geomechanics and has been applied to bone by many authors in the last 30 years. The purpose of this work is, first, to review the literature related to the application of poroelasticity to the interstitial bone fluid and, second, to describe the specific physical and modeling considerations that establish poroelasticity as an effective and useful model for deformation-driven bone fluid movement in bone tissue. The application of poroelasticity to bone differs from its application to soft tissues in two important ways. First, the deformations of bone are small while those of soft tissues are generally large. Second, the bulk modulus of the mineralized bone matrix is about six times stiffer than that of the fluid in the pores while the bulk moduli of the soft tissue matrix and the pore water are almost the same. Poroelasticity and electrokinetics can be used to explain strain-generated potentials in wet bone. It is noted that strain-generated potentials can be used as an effective tool in the experimental study of local bone fluid flow, and that the knowledge of this technique will contribute to the answers of a number of questions concerning bone mineralization, osteocyte nutrition and the bone mechanosensory system.

  20. [Bone substitutes].

    PubMed

    Jordana, Fabienne; Le Visage, Catherine; Weiss, Pierre

    2017-01-01

    Bone substitutes, used to fill a defect after a surgery or a trauma, provide a mechanical support and might induce bone healing. They constitute an alternative to autogenous bone grafts, the 'gold standard' which remains the reference despite its risk of postoperative complications. The clinician choice of a bone substitute is based on the required bone volume, the handling (injectability, malleability) and mechanical properties (setting time, viscosity, resorbability among others) of the material. Bone substitutes are commonly used in orthopedic surgery, neurosurgery, stomatology and dental applications. Their use increases steadily, with the recent clinical development of injectable forms. In addition, novel technologies by subtractive or additive techniques allow today the production of controlled architecture materials. Here, we present a bone substitutes classification according to their origin (natural or synthetic) and chemical composition, and the most common use of these substitutes. © 2017 médecine/sciences – Inserm.

  1. IN VIVO PERFORMANCE OF THE EXPERIMENTAL CHITOSAN BASED BONE SUBSTITUTE--ADVANCED THERAPY MEDICINAL PRODUCT. A STUDY IN SHEEP.

    PubMed

    Bojar, Witold; Kucharska, Martyna; Ciach, Tomasz; Paśnik, Iwona; Korobowicz, Elzbieta; Patkowski, Krzysztof; Gruszecki, Tomasz; Szymanowski, Marek; Rzodkiewicz, Przemysław

    2016-01-01

    When evaluating a novel bone substitute material, advanced in vivo testing is an important step in development and safety affirmation. Sheep seems to be a valuable model for human bone turnover and remodeling activity. The experimental material composed with the stem cells is an advanced therapy medicinal product (acc. to EC Regulation 1394/2007). Our research focuses on histological differences in bone formation (guided bone regeneration--GBR) in sheep maxillas after implantation of the new chitosan/tricalcium phosphate/alginate (CH/TCP/Alg) biomaterial in comparison to the commercially available xenogenic bone graft and a/m enhanced with the stem cells isolated from the adipose tissue. Twelve adult female sheep of BCP synthetic line, weighing 60-70 kg were used for the study. The 11 mm diameter defects in maxilla bone were prepared with a trephine bur under general anesthesia and then filled with the bone substitute materials: CH/TCP/Alg, BioOss Collagen, Geistlich AG (BO), CH/TCP/Alg composed with the stem cells (CH/S) or left just with the blood clot (BC). Inbreeding cycle of the animals terminated at 4 months after surgery. Dissected specimens of the maxilla were evaluated histologically and preliminary under microtomography. Histological evaluation showed early new bone formation observed around the experimental biomaterial and commercially available BO. There were no features of purulent inflammation and necrosis, or granulomatous inflammation. Microscopic examination after 4 months following the surgery revealed trabecular bone formation around chitosan based bone graft and xenogenic material with no significant inflammatory response. Different results--no bone recreation were observed for the negative control (BC). In conclusion, the tested materials (CH/TCP/Alg and BO) showed a high degree of biocompatibility and some osteoconductivity in comparison with the control group. Although the handiness, granules size and setting time of CHffCP/Alg may be refined

  2. Protective Coatings

    NASA Technical Reports Server (NTRS)

    1980-01-01

    General Magnaplate Corporation's pharmaceutical machine is used in the industry for high speed pressing of pills and capsules. Machine is automatic system for molding glycerine suppositories. These machines are typical of many types of drug production and packaging equipment whose metal parts are treated with space spinoff coatings that promote general machine efficiency and contribute to compliance with stringent federal sanitation codes for pharmaceutical manufacture. Collectively known as "synergistic" coatings, these dry lubricants are bonded to a variety of metals to form an extremely hard slippery surface with long lasting self lubrication. The coatings offer multiple advantages; they cannot chip, peel or be rubbed off. They protect machine parts from corrosion and wear longer, lowering maintenance cost and reduce undesired heat caused by power-robbing friction.

  3. Nanostructured Coatings

    NASA Astrophysics Data System (ADS)

    Rivière, J.-P.

    In many branches of technology where surfaces are playing a growing role, the use of coatings is often the only way to provide surfaces with specific functional properties. For example, the austenitic stainless steels or titanium alloys exhibit poor resistance to wear and low hardness values, which limits the field of applications. The idea then is to develop new solutions which would improve the mechanical performance and durability of objects used in contact and subjected to mechanical forces in hostile gaseous or liquid environments. Hard coatings are generally much sought after to enhance the resistance to wear and corrosion. They are of particular importance because they constitute a class of protective coatings which is already widely used on an industrial scale to improve the hardness and lifetime of cutting tools.

  4. Gold Coating

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Epner Technology Inc. responded to a need from Goddard Space Flight Center for the ultimate in electroplated reflectivity needed for the Mars Global Surveyor Mars Orbiter Laser Altimeter (MOLA). Made of beryllium, the MOLA mirror was coated by Epner Technology Laser Gold process, specially improved for the project. Improved Laser Gold- coated reflectors have found use in an epitaxial reactor built for a large semiconductor manufacturer as well as the waveguide in Braun-Thermoscan tympanic thermometer and lasing cavities in various surgical instruments.

  5. Osteoclastic resorption of biomimetic calcium phosphate coatings in vitro.

    PubMed

    Leeuwenburgh, S; Layrolle, P; Barrère, F; de Bruijn, J; Schoonman, J; van Blitterswijk, C A; de Groot, K

    2001-08-01

    A new biomimetic method for coating metal implants enables the fast formation of dense and homogeneous calcium phosphate coatings. Titanium alloy (Ti6Al4V) disks were coated with a thin, carbonated, amorphous calcium phosphate (ACP) by immersion in a saturated solution of calcium, phosphate, magnesium, and carbonate. The ACP-coated disks then were processed further by incubation in calcium phosphate solutions to produce either crystalline carbonated apatite (CA) or octacalcium phosphate (OCP). The resorption behavior of these three biomimetic coatings was studied using osteoclast-enriched mouse bone-marrow cell cultures for 7 days. Cell-mediated degradation was observed for both carbonated apatite and octacalcium phosphate coatings. Numerous resorption lacunae characteristic of osteoclastic resorption were found on carbonated apatite after cell culture. The results showed that carbonated apatite coatings are resorbed by osteoclasts in a manner consistent with normal osteoclastic resorption. Osteoclasts also degraded the octacalcium phosphate coatings but not by classical pit formation.

  6. Engineered PlyCB as Novel Implant Coating for Osseointegration

    DTIC Science & Technology

    2011-09-01

    for visualization by fluorescent microscopy in later aims. Next, we tested the binding of mutants to hydroxyapatite (HA) under various salt, pH...osteoblast, hydroxyapatite , titanium implant, bioactive coating 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF...or shortened lifespan under physiological loads. Coatings such as hydroxyapatite , the mineral component of bone, are often used to promote

  7. Maxillary Sinus Augmentation Combining Bio-Oss with the Bone Marrow Aspirate Concentrate: A Histomorphometric Study in Humans

    PubMed Central

    Pasquali, Paulo José; Teixeira, Marcelo Lucchesi; de Oliveira, Thiago Altro; de Macedo, Luis Guilherme Scavone; Aloise, Antonio Carlos; Pelegrine, André Antonio

    2015-01-01

    Purpose. To investigate the regenerative results obtained with the association of bone marrow aspirate concentrate using the Bone Marrow Aspirate Concentrate (BMAC) method to a xenogeneic bone graft (Bio-Oss) in sinus floor elevation. Materials and Methods. Using a randomized controlled study design in eight consecutive patients (age of 55.4 ± 9.2 years), 16 sinus floor lift procedures were performed with Bio-Oss alone (control group, CG, n = 8) or combined with bone marrow aspirate concentrate obtained via the BMAC method (test group, TG, n = 8). Six months after the grafting procedures, bone biopsies were harvested during implant placement and were analyzed by histomorphometry. Results. Histomorphometric analysis revealed a significantly higher amount (p < 0.05) of vital mineralized tissue in TG when compared to the CG (55.15 ± 20.91% and 27.30 ± 5.55%, resp.). For nonvital mineralized tissue, TG presented a statistically higher level of Bio-Oss resorption (p < 0.05) when compared with the CG (6.32 ± 12.03% and 22.79 ± 9.60%, resp.). Both groups (TG and CG) showed no significantly different levels (p > 0.05) of nonmineralized tissue (38.53 ± 13.08% and 49.90 ± 7.64%, resp.). Conclusion. The use of bone marrow concentrate obtained by BMAC method increased bone formation in sinus lift procedures. PMID:26543482

  8. Maxillary Sinus Augmentation Combining Bio-Oss with the Bone Marrow Aspirate Concentrate: A Histomorphometric Study in Humans.

    PubMed

    Pasquali, Paulo José; Teixeira, Marcelo Lucchesi; de Oliveira, Thiago Altro; de Macedo, Luis Guilherme Scavone; Aloise, Antonio Carlos; Pelegrine, André Antonio

    2015-01-01

    Purpose. To investigate the regenerative results obtained with the association of bone marrow aspirate concentrate using the Bone Marrow Aspirate Concentrate (BMAC) method to a xenogeneic bone graft (Bio-Oss) in sinus floor elevation. Materials and Methods. Using a randomized controlled study design in eight consecutive patients (age of 55.4 ± 9.2 years), 16 sinus floor lift procedures were performed with Bio-Oss alone (control group, CG, n = 8) or combined with bone marrow aspirate concentrate obtained via the BMAC method (test group, TG, n = 8). Six months after the grafting procedures, bone biopsies were harvested during implant placement and were analyzed by histomorphometry. Results. Histomorphometric analysis revealed a significantly higher amount (p < 0.05) of vital mineralized tissue in TG when compared to the CG (55.15 ± 20.91% and 27.30 ± 5.55%, resp.). For nonvital mineralized tissue, TG presented a statistically higher level of Bio-Oss resorption (p < 0.05) when compared with the CG (6.32 ± 12.03% and 22.79 ± 9.60%, resp.). Both groups (TG and CG) showed no significantly different levels (p > 0.05) of nonmineralized tissue (38.53 ± 13.08% and 49.90 ± 7.64%, resp.). Conclusion. The use of bone marrow concentrate obtained by BMAC method increased bone formation in sinus lift procedures.

  9. Structural bone allograft combined with genetically engineered mesenchymal stem cells as a novel platform for bone tissue engineering.

    PubMed

    Xie, Chao; Reynolds, David; Awad, Hani; Rubery, Paul T; Pelled, Gadi; Gazit, Dan; Guldberg, Robert E; Schwarz, Edward M; O'Keefe, Regis J; Zhang, Xinping

    2007-03-01

    The presence of live periosteal progenitor cells on the surface of bone autografts confers better healing than devitalized allograft. We have previously demonstrated in a murine 4 mm segmental femoral bone-grafting model that live periosteum produces robust endochondral and intramembraneous bone formation that is essential for effective healing and neovascularization of structural bone grafts. To the end of engineering a live pseudo-periosteum that could induce a similar response onto devitalized bone allograft, we seeded a mesenchymal stem cell line stably transfected with human bone morphogenic protein-2/beta-galactosidase (C9) onto devitalized bone allografts or onto a membranous small intestinal submucosa scaffold that was wrapped around the allograft. Histology showed that C9-coated allografts displayed early cartilaginous tissue formation at day 7. By 6 and 9 weeks, a new cortical shell was found bridging the segmental defect that united the host bones. Biomechanical testing showed that C9-coated allografts displayed torsional strength and stiffness equivalent to intact femurs at 6 weeks and superior to live isografts at 9 weeks. Volumetric and histomorphometric micro-computed tomography analyses demonstrated a 2-fold increase in new bone formation around C9-coated allografts, which resulted in a substantial increase in polar moment of inertia (pMOI) due to the formation of new cortical shell around the allografts. Positive correlations between biomechanics and new bone volume and pMOI were found, suggesting that the biomechanical function of the grafted femur relates to both morphological parameters. C9-coated allograft also exhibited slower resorption of the graft cortex at 9 weeks than live isograft. Both new bone formation and the persistent allograft likely contributed to the improved biomechanics of C9-coated allograft. Taken together, we propose a novel strategy to combine structural bone allograft with genetically engineered mesenchymal stem cells as

  10. Preparing hydroxyapatite-silicon composite suspensions with homogeneous distribution of multi-walled carbon nano-tubes for electrophoretic coating of NiTi bone implant and their effect on the surface morphology

    NASA Astrophysics Data System (ADS)

    Khalili, Vida; Khalil-Allafi, Jafar; Xia, Wei; Parsa, Alireza B.; Frenzel, Jan; Somsen, Christoph; Eggeler, Gunther

    2016-03-01

    Preparing a stable suspension is a main step towards the electrophoretically depositing of homogeneous and dense composite coatings on NiTi for its biomedical application. In the present study, different composite suspensions of hydroxyapatite, silicon and multi-walled carbon nano-tubes were prepared using n-butanol and triethanolamine as media and dispersing agent, respectively. Multi-walled carbon nanotubes were first functionalized in the nitric acid vapor for 15 h at 175 °C, and then mixed into suspensions. Thermal desorption spectroscopy profiles indicate the formation of functional groups on multi-walled carbon nano-tubes. An excellent suspension stability can be achieved for different amounts of triethanolamine. The amount of triethanolamine can be increased by adding a second component to a stable hydroxyapatite suspension due to an electrostatic interaction between components in suspension. The stability of composite suspension is less than that of the hydroxyapatite suspension, due to density differences, which under the gravitational force promote the demixing. The scanning electron microscopy images of the coatings surface show that more dense coatings are developed on NiTi substrate using electrophoretic deposition and sintering at 850 °C in the simultaneous presence of silicon and multi-walled carbon nanotubes in the hydroxyapatite coatings. The atomic force microscopy results of the coatings surface represent that composite coatings of hydroxyapatite-20 wt.% silicon and hydroxyapatite-20 wt.% silicon-1 wt.% multi-walled carbon nano-tubes with low zeta potential have rougher surfaces.

  11. Feeding NOD mice with pig splenocytes induces transferable mechanisms that modulate cellular and humoral xenogeneic reactions against pig spleen or islet cells

    PubMed Central

    YOU, S; GOUIN, E; SAÏ, P

    2002-01-01

    We have reported previously that oral administration of pig cells to NOD mice modified xenogeneic cellular response against pig islet cells (PICs), and hypothesized that it may have induced active suppression. This preliminary report evaluated only the effect of feeding pig cells by ‘primary’ proliferation, i.e. when splenocytes from fed mice are confronted with pig cells in vitro. The present study also considered ‘secondary’ proliferation and cytokine production after feeding and subsequent in vivo graft of pig cells. Additionally, serum IgM and IgG isotypes were quantified by ELISA using pig target cells. Induction of active mechanism by feeding was hypothetical, which led us here to transfer splenocytes from mice fed pig spleen cells (PSC) and evaluate ‘primary’ (after transfer) and ‘secondary’ (after transfer and subsequent graft of pig cells) proliferations and cytokine secretions in recipient mice. We also determined whether the effects of feeding pig cells persisted after depression of suppressor mechanisms by cyclophosphamide. Mice fed with PSC displayed increased ‘primary’ splenocyte proliferation to PSC or PIC (P < 0·0001), while ‘secondary’ responses were decreased (P < 0·03) in those fed PSC and subsequently grafted with PSC. The increased ‘primary’ and decreased ‘secondary’ proliferations were reduced (P < 0·04) by pretreatment with cyclophosphamide. The IL-10/ and IL-4/IFNγ ratios produced in response to PSC increased (P < 0·04) in mice fed and grafted with PSC compared to those grafted only with PSC. IgM and IgG levels against pig cells were, respectively, increased (P < 0·04) and decreased (P < 0·04) in mice fed and grafted with PSC. IgG2a and IgG2b, but not IgG1, levels were lower (P < 0·01). These effects of feeding PSC on ‘secondary’ proliferation, cytokine and antibody productions, were not detected when mice were fed PSC only after graft with PSC. Transfer with splenocytes from mice fed PSC increased

  12. The effect of deproteinized bovine bone mineral on saos-2 cell proliferation.

    PubMed

    Khojasteh, Arash; Ghahremani, Mohammad Hossein; Ostad, Seyed Nasser; Eslami, Mohammad; Motahhary, Pourya; Morad, Golnaz; Shidfar, Shireen

    2013-01-01

    Deproteinized bovine bone mineral (Bio-Oss) is a xenogenic bone substitute, widely used in maxillofacial bone regeneration. The aim of this in vitro study was to investigate its influence on the growth behavior of human osteosarcoma cell line, Saos-2 culture, and compare it with the physiologic dose of Dexamethasone, an inductive factor for osteoblasts. Human osteosarcoma cells, Saos-2, were cultured on Bio-Oss and their growth rate was compared to Saos-2 cultures treated with Dexamethasone 10(-7) M in contrast to cells cultivated in PBS, in the control group. Assessment of proliferation was performed after 24, 36, and 48 hours by counting cells using trypan blue exclusion method. Alkaline phosphatase was measured spectrophotometrically at 405 nm with paranitrophenol buffer. After 48 hours, the number of Saos-2 cells increased significantly when subcultured with Bio-Oss. Bio-Oss was more effective on the enhancement of proliferation of Saos-2 cells when compared to the physiologic dose of Dexamethasone (P<0.05). Alkaline phosphatase activity increased in cells grown on Bio-Oss and dexamethasone 10(-7) M in contrast to cells cultivated in PBS control group. The greatest level of activity was observed in the group containing Bio-Oss after 48 hour. The significant increase of cell proliferation and alkaline phosphatase activity in cells cultured on Bio-Oss, compared to Dexamethasone-treated cells, suggests the important role of this bone substitute in promoting bone regeneration.

  13. Experimental study on repairing of nude mice skin defects with composite skin consisting of xenogeneic dermis and epidermal stem cells and hair follicle dermal papilla cells.

    PubMed

    Qi, Shao-Hai; Liu, Po; Xie, Ju-Lin; Shu, Bin; Xu, Ying-Bin; Ke, Chang-Neng; Liu, Xu-Sheng; Li, Tian-Zeng

    2008-05-01

    To investigate the influence of hair follicle dermal papilla cells (DPCs) on biological features of composite skin. In the test group, xenogeneic acellular dermal matrix was employed as the frame, DPCs were seeded on the subcutaneous side, and epithelial stem cells onto the dermal papilla side of the dermal frame so as to construct a composite skin. In the control group, there was no DPC in the frame. The two kinds of composite skin were employed to cover skin defects on the back of the nude mice. Wound healing was observed 4 weeks after grafting and area was analyzed and contraction rate was calculated. The tissue samples in the grafted area were harvested for HE staining and the state of the composite skin was observed. The stress-strain curve of the sampled skin was measured, so as to calculate the maximal breaking power of the sample. The data were collected and statistically analyzed. HE staining indicated that the epithelial depth was increased (more than 10 layers of cells) in test group, with only 6-7 layers in control group. The skin contraction rate in test group on the 4th week after skin grafting (3.94+/-0.013)% was much lower than that in control group (29.07+/-0.018)% (P<0.05). It was indicated by biomechanical test that the stress-strain curve of the composite skin in the test group was closer to that of normal nude mice skin in comparison to that in control group. The maximal breaking force of the composite skin in test group was (1.835+/-0.035)N (Newton), while that in control group was (1.075+/-0.065)N (P<0.01). Reconstruction of epidermis in composite skin was promoted by dermal DPCs seeded in the dermal matrix frame. As a result, there was less skin contraction in the composite skin with DPCs, so that the biological characteristics of the skin were improved.

  14. A long-term in vivo investigation on the effects of xenogenous based, electrospun, collagen implants on the healing of experimentally-induced large tendon defects.

    PubMed

    Oryan, A; Moshiri, A; Parizi Meimandi, A; Silver, I A

    2013-09-01

    This study was designed to investigate the effect of novel 3-dimensional (3-D) collagen implants on the healing of large, experimentally-induced, tendon-defects in rabbits. Forty mature male white New Zealand rabbits were divided randomly into treated and control groups. Two cm of the left Achilles tendon was excised and the gap was spanned by Kessler suture. In the treated group, a novel 3-D collagen implant was inserted between the cut ends of the tendon. No implant was used in the control group. During the course of the experiment the bioelectrical characteristics of the healing and normal tendons of both groups were investigated weekly. At 120 days post injury (DPI), the tendons were dissected and inspected for gross pathology, examined by transmission and scanning electron microscopy, and their biomechanical properties, percentage dry matter and hydroxyproline concentration assessed. The collagen implant significantly improved the bioelectrical characteristics, gross appearance and tissue alignment of the healed, treated tendons, compared to the healed, control scars. It also significantly increased fibrillogenesis, diameter and density of the collagen fibrils, dry matter content, hydroxyproline concentration, maximum load, stiffness, stress and modulus of elasticity of the treated tendons, as compared to the control tendons. Treatment also significantly decreased peri-tendinous adhesions, and improved the hierarchical organization of the tendon from the collagen fibril to fibre-bundle level. 3-D xenogeneic-based collagen implants induced newly regenerated tissue that was ultrastructurally and biomechanically superior to tissue that was regenerated by natural unassisted healing. This type of bioimplant was biocompatible, biodegradable and appeared suitable for clinical use.

  15. Human neuroblastoma cell growth in xenogeneic hosts: comparison of T cell-deficient and NK-deficient hosts, and subcutaneous or intravenous injection routes.

    PubMed

    Turner, W J; Chatten, J; Lampson, L A

    1990-04-01

    We have examined two features of neuroblastoma cells that had not been well-characterized in a xenogeneic model: The cells display unusual immunologic properties in other experimental systems, and the original tumors display widespread and characteristic patterns of metastasis. To determine the most appropriate immunodeficient host for primary tumor growth, T cell-deficient nude mice, NK-deficient beige mice, beige-nudes, and controls were injected with the well-characterized line CHP-100. To define the pattern of tumor spread, complete autopsies were performed following subcutaneous, intraperitoneal and intravenous injections. CHP-100 consistently formed subcutaneous tumors in T cell-deficient mice (nude and beige-nude), but not in T cell-competent mice (beige, heterozygous nu/+ and bg/+, or wild-type). The growth rate and final size of the subcutaneous tumors were not greater in beige-nudes than in nudes. All mice showed early CHP-100 cell death after subcutaneous injection; the nature of the immunodeficiency was more relevant for the surviving subpopulation. Widespread dissemination was seen following intravenous injection, particularly in beige-nudes. Aspects of the growth patterns were appropriate to the tumor of origin. The behavior in immunodeficient mice suggests that T cells can play a role in controlling the growth of these cells; the next steps will be to define the effector mechanisms, and to determine if they can be exploited for human patients. The hematogenous spread following intravenous injection suggests that insights into the control of blood-borne tumor may also come from further study of this model.

  16. Repeated PD-1/PD-L1 monoclonal antibody administration induces fatal xenogeneic hypersensitivity reactions in a murine model of breast cancer

    PubMed Central

    Mall, Christine; Sckisel, Gail D.; Proia, David A.; Mirsoian, Annie; Grossenbacher, Steven K.; Pai, Chien-Chun Steven; Chen, Mingyi; Monjazeb, Arta M.; Kelly, Karen; Blazar, Bruce R.; Murphy, William J.

    2016-01-01

    ABSTRACT Monoclonal antibodies (mAbs) targeting coinhibitory molecules such as PD-1, PD-L1 and CTLA-4 are increasingly used as targets of therapeutic intervention against cancer. While these targets have led to a critical paradigm shift in treatments for cancer, these approaches are also plagued with limitations owing to cancer immune evasion mechanisms and adverse toxicities associated with continuous treatment. It has been difficult to reproduce and develop interventions to these limitations preclinically due to poor reagent efficacy and reagent xenogenecity not seen in human trials. In this study, we investigated adverse effects of repeated administration of PD-1 and PD-L1 mAbs in the murine 4T1 mammary carcinoma model. We observed rapid and fatal hypersensitivity reactions in tumor bearing mice within 30–60 min after 4–5 administrations of PD-L1 or PD-1 mAb but not CTLA-4 antibody treatment. These events occurred only in mice bearing the highly inflammatory 4T1 tumor and did not occur in mice bearing non-inflammatory tumors. We observed that mortality was associated with systemic accumulation of IgG1 antibodies, antibodies specific to the PD-1 mAb, and accumulation of Gr-1high neutrophils in lungs which have been implicated in the IgG mediated pathway of anaphylaxis. Anti-PD-1 associated toxicities were alleviated when PD-1 blockade was combined with the therapeutic HSP90 inhibitor, ganetespib, which impaired immune responses toward the xenogeneic PD-1 mAb. This study highlights a previously uncharacterized fatal hypersensitivity exacerbated by the PD-1/PD-L1 axis in the broadly used 4T1 tumor model as well as an interesting relationship between this particular class of checkpoint blockade and tumor-dependent immunomodulation. PMID:27057446

  17. [Influence of covering of auto-crosslinked sodium hyaluronate gel in combination with xenogenic acellular dermal matrix on healing of full-thickness skin defect wound in pig].

    PubMed

    Qiu, Y X; Zhang, G A; Wan, J B; Zhao, X Z

    2016-09-20

    To explore the influence of covering of auto-crosslinked sodium hyaluronate gel in combination with xenogenic acellular dermal matrix (ADM) on healing of full-thickness skin defect wound in pig. Totally four 10 cm×10 cm full-thickness skin defect wounds were reproduced symmetrically on both sides of spine on the back of each one of the six Chinese experimental minipigs. After autologous microskin grafting, the 4 wounds in each pig were divided into 4 groups according to the random number table, with 6 wounds in each group. Wounds in allogenic skin group (AS) were covered by full-thickness skin from one (not the recipient) of the 6 pigs; wounds in xenogenic skin group (XS) were covered by full-thickness skin of sheep; wounds in xenogenic ADM group (XA) were covered by ADM of sheep; wounds in combination group (C) were covered by ADM of sheep combined with auto-crosslinked sodium hyaluronate gel. The wounds were bound up with pressure, and the dressing was changed once every 7 days. On post surgery day (PSD) 7, 14, 21, 28, 35, and 42 when changing dressing, the condition of wounds and the exfoliation of the covering on microskin were observed, and the complete exfoliation time of the covering was recorded. On PSD 28, 35, and 42, the wound healing rate was calculated. Data were processed with one-way analysis of variance and SNK test. (1) On PSD 7, no fluid appeared under the covering of wounds in groups AS and C, while plenty of fluid appeared under the covering of wounds in groups XS and XA. From PSD 14 to 35, most of the full-thickness skin of pig in group AS did not exfoliate. All the full-thickness skin of sheep in group XS exfoliated, leaving a lot of crusts on the surface of the wounds on PSD 14. Most of the ADM of sheep in group XA separated from the wound with the crusts turning dry and exfoliating on PSD 14. All the ADM of sheep exfoliated with most of the wounds healed in group C on PSD 35. On PSD 42, all the full-thickness skin of pig in group AS

  18. Bone cutting.

    PubMed

    Giraud, J Y; Villemin, S; Darmana, R; Cahuzac, J P; Autefage, A; Morucci, J P

    1991-02-01

    Bone cutting has always been a problem for surgeons because bone is a hard living material, and many osteotomes are still very crude tools. Technical improvement of these surgical tools has first been their motorization. Studies of the bone cutting process have indicated better features for conventional tools. Several non-conventional osteotomes, particularly ultrasonic osteotomes are described. Some studies on the possible use of lasers for bone cutting are also reported. Use of a pressurised water jet is also briefly examined. Despite their advantages, non-conventional tools still require improvement if they are to be used by surgeons.

  19. [Bone diseases].

    PubMed

    Uebelhart, Brigitte; Rizzoli, René

    2016-01-13

    Calcium intake shows a small impact on bone mineral density and fracture risk. Denosumab is a more potent inhibitor of bone resorption than zoledronate. Abaloparatide, PTHrP analog, increases bone mineral density and decreases fracture incidence. Teriparatide could be delivered via a transdermic device. Romosozumab and odanacatib improve calculated bone strength. Sequential or combined treatments with denosumab and teriparatide could be of interest, but not denosumab followed by teriparatide. Fibrous dysplasia, Paget disease and hypophosphatasia are updated, as well as atypical femoral fracture and osteonecrosis of the jaw.

  20. Bone marrow transplantation concurrently reconstitutes donor liver and immune system across host species barrier in mice.

    PubMed

    Qi, Ziping; Li, Lu; Wang, Xuefu; Gao, Xiang; Wang, Xin; Wei, Haiming; Zhang, Jian; Sun, Rui; Tian, Zhigang

    2014-01-01

    Liver immunopathologic mechanisms during hepatotropic infection, malignant transformation, and autoimmunity are still unclear. Establishing a chimeric mouse with a reconstituted liver and immune system derived from a single donor across species is critical to study regional donor immune responses in recipient liver. Using a strain of mice deficient in tyrosine catabolic enzyme fumarylacetoacetate hydrolase (fah-/-) and bone marrow transplantation (BMT), we reconstituted the donor's hepatocytes and immune cells across host species barrier. Syngeneic, allogeneic or even xenogeneic rat BMT rescued most recipient fah-/- mice against liver failure by donor BM-derived FAH+ hepatocytes. Importantly, immune system developed normally in chimeras, and the immune cells together with organ architecture were intact and functional. Thus, donor BM can across host species barrier and concurrently reconstitutes MHC-identical response between immune cells and hepatocytes, giving rise to a new simple and convenient small animal model to study donor's liver immune response in mice.

  1. Bone Marrow Transplantation Concurrently Reconstitutes Donor Liver and Immune System across Host Species Barrier in Mice

    PubMed Central

    Qi, Ziping; Li, Lu; Wang, Xuefu; Gao, Xiang; Wang, Xin; Wei, Haiming; Zhang, Jian; Sun, Rui; Tian, Zhigang

    2014-01-01

    Liver immunopathologic mechanisms during hepatotropic infection, malignant transformation, and autoimmunity are still unclear. Establishing a chimeric mouse with a reconstituted liver and immune system derived from a single donor across species is critical to study regional donor immune responses in recipient liver. Using a strain of mice deficient in tyrosine catabolic enzyme fumarylacetoacetate hydrolase (fah-/-) and bone marrow transplantation (BMT), we reconstituted the donor's hepatocytes and immune cells across host species barrier. Syngeneic, allogeneic or even xenogeneic rat BMT rescued most recipient fah-/- mice against liver failure by donor BM-derived FAH+ hepatocytes. Importantly, immune system developed normally in chimeras, and the immune cells together with organ architecture were intact and functional. Thus, donor BM can across host species barrier and concurrently reconstitutes MHC-identical response between immune cells and hepatocytes, giving rise to a new simple and convenient small animal model to study donor's liver immune response in mice. PMID:25191899

  2. Polydopamine-Assisted Surface Modification for Bone Biosubstitutes

    PubMed Central

    Zhou, Xin

    2016-01-01

    Polydopamine (PDA) prepared in the form of a layer of polymerized dopamine (DA) in a weak alkaline solution has been used as a versatile biomimetic surface modifier as well as a broadly used immobilizing macromolecule. This review mainly discusses the progress of biomaterial surface modification inspired by the participation of PDA in bone tissue engineering. A comparison between PDA-assisted coating techniques and traditional surface modification applied to bone tissue engineering is first presented. Secondly, the chemical composition and the underlying formation mechanism of PDA coating layer as a unique surface modifier are interpreted and discussed. Furthermore, several typical examples are provided to evidence the importance of PDA-assisted coating techniques in the construction of bone biosubstitutes and the improvement of material biocompatibility. Nowadays, the application of PDA as a superior surface modifier in multifunctional biomaterials is drawing tremendous interests in bone tissue scaffolds to promote the osteointegration for bone regeneration. PMID:27595097

  3. BMP-Functionalised Coatings to Promote Osteogenesis for Orthopaedic Implants

    PubMed Central

    Wang, Jianfeng; Guo, Jing; Liu, Jingsong; Wei, Limin; Wu, Gang

    2014-01-01

    The loss of bone integrity can significantly compromise the aesthetics and mobility of patients and can be treated using orthopaedic implants. Over the past decades; various orthopaedic implants; such as allografts; xenografts and synthetic materials; have been developed and widely used in clinical practice. However; most of these materials lack intrinsic osteoinductivity and thus cannot induce bone formation. Consequently; osteoinductive functionalisation of orthopaedic implants is needed to promote local osteogenesis and implant osteointegration. For this purpose; bone morphogenetic protein (BMP)-functionalised coatings have proven to be a simple and effective strategy. In this review; we summarise the current knowledge and recent advances regardingBMP-functionalised coatings for orthopaedic implants. PMID:24914764

  4. COATING METHOD

    DOEpatents

    Townsend, R.G.

    1959-08-25

    A method is described for protectively coating beryllium metal by etching the metal in an acid bath, immersing the etched beryllium in a solution of sodium zincate for a brief period of time, immersing the beryllium in concentrated nitric acid, immersing the beryhlium in a second solution of sodium zincate, electroplating a thin layer of copper over the beryllium, and finally electroplating a layer of chromium over the copper layer.

  5. Talking Bones.

    ERIC Educational Resources Information Center

    Johnson, Jaclyn; Kassing, Sharon

    2002-01-01

    Describes cooperation with the Saint Louis Zoo to provide opportunities for elementary school students to learn about bones, how animals move, what they eat, and how much they grow. Uses biofacts which include bones, skulls, and other parts to make the laboratory a hands-on experience for students. (YDS)

  6. Talking Bones.

    ERIC Educational Resources Information Center

    Johnson, Jaclyn; Kassing, Sharon

    2002-01-01

    Describes cooperation with the Saint Louis Zoo to provide opportunities for elementary school students to learn about bones, how animals move, what they eat, and how much they grow. Uses biofacts which include bones, skulls, and other parts to make the laboratory a hands-on experience for students. (YDS)

  7. Control of surface topography in biomimetic calcium phosphate coatings.

    PubMed

    Costa, Daniel O; Allo, Bedilu A; Klassen, Robert; Hutter, Jeffrey L; Dixon, S Jeffrey; Rizkalla, Amin S

    2012-02-28

    The behavior of cells responsible for bone formation, osseointegration, and bone bonding in vivo are governed by both the surface chemistry and topography of scaffold matrices. Bone-like apatite coatings represent a promising method to improve the osteoconductivity and bonding of synthetic scaffold materials to mineralized tissues for regenerative procedures in orthopedics and dentistry. Polycaprolactone (PCL) films were coated with calcium phosphates (CaP) by incubation in simulated body fluid (SBF). We investigated the effect of SBF ion concentration and soaking time on the surface properties of the resulting apatite coatings. CaP coatings were examined by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectrometry (FTIR), and energy dispersive X-ray spectrometry (EDX). Young's modulus (E(s)) was determined by nanoindentation, and surface roughness was assessed by atomic force microscopy (AFM) and mechanical stylus profilometry. CaP such as carbonate-substituted apatite were deposited onto PCL films. SEM and AFM images of the apatite coatings revealed an increase in topographical complexity and surface roughness with increasing ion concentration of SBF solutions. Young's moduli (E(s)) of various CaP coatings were not significantly different, regardless of the CaP phase or surface roughness. Thus, SBF with high ion concentrations may be used to coat synthetic polymers with CaP layers of different surface topography and roughness to improve the osteoconductivity and bone-bonding ability of the scaffold.

  8. Effects of sodium hydroxide, sodium hypochlorite, and gaseous hydrogen peroxide on the natural properties of cancellous bone.

    PubMed

    Bi, Long; Li, De-Cheng; Huang, Zhao-Song; Yuan, Zhi

    2013-07-01

    Processed xenegeneic cancellous bone represents an alternative to bone autograft. In order to observe the effects of present prion inactivation treatments on the natural properties of xenogeneic cancellous bones, we treated bovine bone granules with sodium hydroxide (NaOH), sodium hypochlorite (NaOCl), and gaseous hydrogen peroxide (gH2 O2 ) respectively in this study. The microstructure, composition, and mineral content of the granules were evaluated by scanning electron micrograph, energy dispersive X-ray spectroscopy, ash analysis, and micro-computed tomography. The biomechanical property was analyzed by a materials testing machine. The cytocompatibility was evaluated by using a mouse fibroblast cell line (3T3). The microstructure, organic content, and mechanical strength were dramatically altered at the surface of bone in both NaOH- and NaOCl-treated groups, but not in the gH2 O2 -treated group. Compared with the gH2 O2 -treated group, attachment and proliferation of 3T3 were reduced in either NaOH- or NaOCl-treated groups. As the consequence, gH2 O2 treatment may be a useful approach of disinfection for the preparation of natural cancellous bone with well-preserved structural, mechanical, and biological properties. © 2013, Copyright the Authors. Artificial Organs © 2013, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  9. Long-term rabbits bone response to titanium implants in the presence of inorganic bovine-derived graft.

    PubMed

    Munhoz, Etiene Andrade; Bodanezi, Augusto; Cestari, Tania Mary; Taga, Rumio; de Carvalho, Paulo Sergio Perri; Ferreira, Osny

    2012-07-01

    This study evaluated bone responses to titanium implants in the presence of an inorganic graft material. The bilateral mandible incisors of 24 rabbits were surgically extracted and one of the exposed sockets, chosen at random, was filled with an inorganic xenogenic bone graft (Gen-ox®), whereas the remaining socket was left to heal naturally and served as a control. After 60 days, titanium implants were inserted in the specific areas, and on days 0, 30, 60, and 180 after the implant insertions, six animals of each group were killed. Digital periapical radiography of implant region was obtained and vertical bone height (VBH) and bone density (BD) were evaluated by digital analysis system. In the undecalcified tissue cuts, bone-to-implant contact (BIC) and bone area (BA) within the limits of the implant threads were evaluated and compared statistically by means of two-way ANOVA and Tukey's test (ρ < 0.05). No significant differences were detected in VBH and BA, either between groups or between different experimental intervals. The BD was significantly higher in the experimental group than in the control group in all the intervals tested, but there were no significant differences by interval. The BIC was statistically lower in the control group on day 0; however, a significant increase was observed on days 60 and 180 (ρ < 0.05). The use of an inorganic xenograft prior to insertion of a titanium implant did not interfere with the course of osseointegration.

  10. Study on the neotype zirconia's implant coated nanometer hydroxyapatite ceramics

    NASA Astrophysics Data System (ADS)

    Zhu, J. W.; Yang, D. W.

    2007-07-01

    In recent years, biologic ceramics is a popular material of implants and bioactive surface modification of dental implant became a research emphasis, which aims to improve bioactivity of implants materials and acquire firmer implants-bone interface. The zirconia ceramic has excellent mechanical properties and nanometer HA ceramics is a bioceramic well known for its bioactivity, therefore, nanometer HA ceramics coating on zirconia, allows combining the excellent mechanical properties of zirconia substrates with its bioactivity. This paper shows a new method for implant shape design and bioactive modification of dental implants surface. Zirconia's implant substrate was prepared by sintered method, central and lateral tunnels were drilled in the zirconia hollow porous cylindrical implants by laser processing. The HA powders and needle-like HA crystals were made by a wet precipitation and calcining method. Its surface was coated with nanometer HA ceramics which was used brush HA slurry and vacuum sintering. Mechanical testing results revealed that the attachment strength of nanometer HA ceramics coated zirconia samples is high. SEM and interface observation after inserted experiment indicated that calcium and phosphor content increased and symmetrically around coated implant-bone tissue interface. A significantly higher affinity index was demonstrated in vivo by histomorphometric evaluation in coated versus uncoated implants. SEM analysis demonstrated better bone adhesion to the material in coated implant at any situation. In addition, the hollow porous cylindrical implant coated with nanometer HA ceramics increase the interaction of bone and implant, the new bone induced into the surface of hollow porous cylindrical implant and through the most tunnels filled into central hole. The branch-like structure makes the implant and bone a body, which increased the contact area and decreased elastic ratio. Therefore, the macroscopical and microcosmic nested structure of

  11. Paget's Disease of Bone

    MedlinePlus

    ... page please turn Javascript on. Paget's Disease of Bone What is Paget's Disease of Bone? Click for more information Enlarged and Misshapen Bones Paget's disease of bone causes affected bones to ...

  12. Thermal radiative properties: Coatings.

    NASA Technical Reports Server (NTRS)

    Touloukian, Y. S.; Dewitt, D. P.; Hernicz, R. S.

    1972-01-01

    This volume consists, for the most part, of a presentation of numerical data compiled over the years in a most comprehensive manner on coatings for all applications, in particular, thermal control. After a moderately detailed discussion of the theoretical nature of the thermal radiative properties of coatings, together with an overview of predictive procedures and recognized experimental techniques, extensive numerical data on the thermal radiative properties of pigmented, contact, and conversion coatings are presented. These data cover metallic and nonmetallic pigmented coatings, enamels, metallic and nonmetallic contact coatings, antireflection coatings, resin coatings, metallic black coatings, and anodized and oxidized conversion coatings.

  13. Bone densitometry.

    PubMed

    Chun, Kwang J

    2011-05-01

    Conventional radiographic methods allow physicians to visualize bone structure. However, they do not offer information on the bone mineral density (BMD), which can facilitate early diagnosis and treatment of osteoporosis. Bone densitometry, by contrast, helps to detect bone mineral loss at an early stage because it provides accurate quantitative measurement of BMD. With an emphasis on quantification, shorter scanning time and precision, scientists have been developing BMD measurement devices that use absorption technique. They first developed single-energy absorptiometry (single-photon absorptiometry) by using I-125, which could measure BMD of peripheral bones. Single-photon absorptiometry was replaced by dual-energy absorptiometry (dual photon absorptiometry [DPA]) that used gadolinium-153. DPA had greater accuracy in measuring the BMD of central skeletal bones. Single-energy x-ray absorptiometry was also developed but it had limitations in measuring central skeletal BMD. In the mid-1980s, dual-energy x-ray absorptiometry (DXA) was introduced and widely accepted for the early detection, treatment, and follow-up study of osteoporosis. There are several reasons for the popularity. DXA can measure BMD of posteroanterior spine and hip in a much shorter time than DPA while being capable of measuring BMD of peripheral bones. Other advantages include very low radiation doses to the patients, high image resolution, precision, and stable calibration of the instruments. In recent years, DXA has also been applied to lateral spine for the density of trabecular bone, to the whole body for the measurement of total body bone density and for the body composition, and to the spine for the vertebral fracture assessment. Still, posteroanterior spine and hip scans remain the most common applications of DXA because data on the normal range of BMD of the skeletal sites for different age, sex, and ethnic groups are compiled and made available with the devices, which gives the physician

  14. Substituted hydroxyapatites for bone repair.

    PubMed

    Shepherd, Jennifer H; Shepherd, David V; Best, Serena M

    2012-10-01

    Calcium phosphates such as hydroxyapatite have a wide range of applications both in bone grafts and for the coating of metallic implants, largely as a result of their chemical similarity to the mineral component of bone. However, to more accurately mirror the chemistry, various substitutions, both cationic (substituting for the calcium) and anionic (substituting for the phosphate or hydroxyl groups) have been produced. Significant research has been carried out in the field of substituted apatites and this paper aims to summarise some of the key effect of substitutions including magnesium, zinc, strontium, silicon and carbonate on physical and biological characteristics. Even small substitutions have been shown to have very significant effects on thermal stability, solubility, osteoclastic and osteoblastic response in vitro and degradation and bone regeneration in vivo.

  15. Bone Health

    PubMed Central

    Manske, Sarah L.; Lorincz, Caeley R.; Zernicke, Ron F.

    2009-01-01

    Mechanical loading is a crucial factor for maintaining skeletal health. Physical activities, exercise, and sports provide a wealth and variety of mechanical loads to bones, through muscle forces, ground reaction forces, and other contact or impact forces. Weightbearing activities can be effective exercises to enhance bone health—particularly, those that involve jumping and impact loads (with greater strain magnitudes, rates, and frequencies). Physical activity appears to be acutely beneficial for enhancing bone health in the early pubertal period and in older age, such as in postmenopausal women. In preparing this article, PubMed, Web of Science, and relevant edited books (English language) were reviewed from 1961 to present. PMID:23015892

  16. Upregulation of CC Chemokine Receptor 7 (CCR7) Enables Migration of Xenogeneic Human Adipose-Derived Mesenchymal Stem Cells to Rat Secondary Lymphoid Organs

    PubMed Central

    Ma, Tian; Luan, Shao-Liang; Huang, Hong; Sun, Xing-Kun; Yang, Yan-Mei; Zhang, Hui; Han, Wei-dong; Li, Hong; Han, Yan

    2016-01-01

    Background CC chemokine receptor 7 (CCR7) expression is vital for cell migration to secondary lymphoid organs (SLOs). Our previous work showed that inducing CCR7 expression enabled syngeneic mesenchymal stem cells (MSCs) to migrate into SLOs, resulting in enhanced immunosuppressive performance in mice. Given that human adipose-derived stem cells (hASCs) are widely used in clinical therapy, we further investigated whether upregulation of CCR7 enables xenogeneic hASCs to migrate to rat SLOs. Material/Methods hASCs rarely express CCR7; therefore, hASCs were transfected with lentivirus encoding rat CCR7 (rCCR7) plus green fluorescence protein (GFP) or GFP alone. CCR7 mRNA and cell surface expression of rCCR7-hASCs and GFP-hASCs were examined by reverse transcription-polymerase chain reaction (RT-PCR) and flow cytometry (FCM), respectively. The phenotype, differentiation, and proliferation capacity of each cell type was also determined. To examine migration, rCCR7-hASCs and GFP-hASCs were injected intravenously into Lewis rats, and the proportion of GFP-positive cells in the spleen and lymph nodes was determined with FCM. Results mRNA and cell surface protein expression of CCR7 was essentially undetectable in hASCs and GFP-ASCs; however, CCR7 was highly expressed in rCCR7-ASCs. rCCR7-hASCs, GFP-hASCs, and hASCs shared a similar immunophenotype, and maintained the ability of multilineage differentiation and proliferation. In addition, the average proportion of GFP-positive cells was significantly higher following transplantation of rCCR7-hASCs compared with GFP-hASCs (p<0.01). Conclusions These results suggest that upregulation of rat CCR7 expression does not change the phenotype, differentiation, or proliferation capacity of hASCs, but does enable efficient migration of hASCs to rat SLOs. PMID:28035134

  17. Upregulation of CC Chemokine Receptor 7 (CCR7) Enables Migration of Xenogeneic Human Adipose-Derived Mesenchymal Stem Cells to Rat Secondary Lymphoid Organs.

    PubMed

    Ma, Tian; Luan, Shao-Liang; Huang, Hong; Sun, Xing-Kun; Yang, Yan-Mei; Zhang, Hui; Han, Wei-Dong; Li, Hong; Han, Yan

    2016-12-30

    BACKGROUND CC chemokine receptor 7 (CCR7) expression is vital for cell migration to secondary lymphoid organs (SLOs). Our previous work showed that inducing CCR7 expression enabled syngeneic mesenchymal stem cells (MSCs) to migrate into SLOs, resulting in enhanced immunosuppressive performance in mice. Given that human adipose-derived stem cells (hASCs) are widely used in clinical therapy, we further investigated whether upregulation of CCR7 enables xenogeneic hASCs to migrate to rat SLOs. MATERIAL AND METHODS hASCs rarely express CCR7; therefore, hASCs were transfected with lentivirus encoding rat CCR7 (rCCR7) plus green fluorescence protein (GFP) or GFP alone. CCR7 mRNA and cell surface expression of rCCR7-hASCs and GFP-hASCs were examined by reverse transcription-polymerase chain reaction (RT-PCR) and flow cytometry (FCM), respectively. The phenotype, differentiation, and proliferation capacity of each cell type was also determined. To examine migration, rCCR7-hASCs and GFP-hASCs were injected intravenously into Lewis rats, and the proportion of GFP-positive cells in the spleen and lymph nodes was determined with FCM. RESULTS mRNA and cell surface protein expression of CCR7 was essentially undetectable in hASCs and GFP-ASCs; however, CCR7 was highly expressed in rCCR7-ASCs. rCCR7-hASCs, GFP-hASCs, and hASCs shared a similar immunophenotype, and maintained the ability of multilineage differentiation and proliferation. In addition, the average proportion of GFP-positive cells was significantly higher following transplantation of rCCR7-hASCs compared with GFP-hASCs (p<0.01). CONCLUSIONS These results suggest that upregulation of rat CCR7 expression does not change the phenotype, differentiation, or proliferation capacity of hASCs, but does enable efficient migration of hASCs to rat SLOs.

  18. Enhanced biocompatibility and osseointegration of calcium titanate coating on titanium screws in rabbit femur.

    PubMed

    Wang, Zi-Li; He, Rong-Zhen; Tu, Bin; Cao, Xu; He, Jin-Shen; Xia, Han-Song; Liang, Chi; Zou, Min; Wu, Song; Wu, Zhen-Jun; Xiong, Kun

    2017-06-01

    This study aimed to examine the biocompatibility of calcium titanate (CaTiO3) coating prepared by a simplified technique in an attempt to assess the potential of CaTiO3 coating as an alternative to current implant coating materials. CaTiO3-coated titanium screws were implanted with hydroxyapatite (HA)-coated or uncoated titanium screws into medial and lateral femoral condyles of 48 New Zealand white rabbits. Imaging, histomorphometric and biomechanical analyses were employed to evaluate the osseointegration and biocompatibility 12 weeks after the implantation. Histology and scanning electron microscopy revealed that bone tissues surrounding the screws coated with CaTiO3 were fully regenerated and they were also well integrated with the screws. An interfacial fibrous membrane layer, which was found in the HA coating group, was not noticeable between the bone tissues and CaTiO3-coated screws. X-ray imaging analysis showed in the CaTiO3 coating group, there was a dense and tight binding between implants and the bone tissues; no radiation translucent zone was found surrounding the implants as well as no detachment of the coating and femoral condyle fracture. In contrast, uncoated screws exhibited a fibrous membrane layer, as evidenced by the detection of a radiation translucent zone between the implants and the bone tissues. Additionally, biomechanical testing revealed that the binding strength of CaTiO3 coating with bone tissues was significantly higher than that of uncoated titanium screws, and was comparable to that of HA coating. The study demonstrated that CaTiO3 coating in situ to titanium screws possesses great biocompatibility and osseointegration comparable to HA coating.

  19. Bone Scan

    MedlinePlus

    ... injected, then shortly after the injection, and again two to four hours later. To better see some bones in your body, your doctor might order additional imaging called single-photon emission computerized tomography (SPECT). This imaging can help ...

  20. Interpreting Bones.

    ERIC Educational Resources Information Center

    Weymouth, Patricia P.

    1986-01-01

    Describes an activity which introduces students to the nature and challenges of paleoanthropology. In the exercise, students identify diagrammed bones and make interpretations about the creature. Presents questions and tasks employed in the lesson. (ML)

  1. Microwave-induced biomimetic approach for hydroxyapatite coatings of chitosan scaffolds.

    PubMed

    Kaynak Bayrak, Gökçe; Demirtaş, T Tolga; Gümüşderelioğlu, Menemşe

    2017-02-10

    Simulated body fluid (SBF) can form calcium phosphates on osteoinductive materials, so it is widely used for coating of bone scaffolds to mimic natural extracellular matrix (ECM). However, difficulties of bulk coating in 3D scaffolds and the necessity of long process times are the common problems for coating with SBF. In the present study, a microwave-assisted process was developed for rapid and internal coating of chitosan scaffolds. The scaffolds were fabricated as superporous hydrogel (SPH) by combining microwave irradiation and gas foaming methods. Then, they were immersed into 10x  SBF-like solution and homogenous bone-like hydroxyapatite (HA) coating was achieved by microwave treatment at 600W without the need of any nucleating agent. Cell culture studies with MC3T3-E1 preosteoblasts showed that microwave-assisted biomimetic HA coating process could be evaluated as an efficient and rapid method to obtain composite scaffolds for bone tissue engineering.

  2. NICKEL COATED URANIUM ARTICLE

    DOEpatents

    Gray, A.G.

    1958-10-01

    Nickel coatings on uranium and various methods of obtaining such coatings are described. Specifically disclosed are such nickel or nickel alloy layers as barriers between uranium and aluminum- silicon, chromium, or copper coatings.

  3. [Progress of researches on carbon/carbon composites used in human loaded bones].

    PubMed

    Sui, Jinling; Li, Musen; Lü, Yupeng

    2004-08-01

    Carbon/carbon composites have excellent biocompatibility with human hard tissue and elasticity modulus similar with that of human bones, which endow them great potential applications in substitution for human loaded bones. The current research situations and applications of carbon/carbon composites in human loaded bones are reviewed. The coating technologies of bioactive layers on carbon/carbon composites are discussed. The problems to be solved and the prospects of carbon/carbon composites in human loaded bones are analyzed and predicted. It is believed that bioactive layers coating on carbon/carbon composites should play an important role in human loaded bones.

  4. Bone and bone marrow: the same organ.

    PubMed

    Del Fattore, Andrea; Capannolo, Marta; Rucci, Nadia

    2010-11-01

    Interplays between bone and bone marrow are not limited to merely anatomic and histological connections, but include a tight functional correlation. Bone marrow resides within the medullary cavity of the bones and the process of hematopoiesis is regulated, at least in part, by bone cells. Moreover, osteoclasts and osteoblasts derive from precursors of hematopoietic and mesenchymal origin, respectively, both residing within the bone marrow. Alterations in one of these components typically cause impairment in the other, so diseases of the bone marrow compartment often affect the bone and vice versa. All these findings could make us to speculate that bone and bone marrow are not two separate districts, but can be considered as the two elements of the same unique functional unit, the bone-bone marrow organ. Here we will describe histological and functional interplays between bone and bone marrow, and will illustrate some diseases in which this tight correlation is evident.

  5. Volumetric analysis of bone substitute material performance within the human sinus cavity of former head and neck cancer patients: A prospective, randomized clinical trial

    PubMed Central

    Lorenz, Jonas; Eichler, Kathrin; Barbeck, Mike; Lerner, Henriette; Stübinger, Stefan; Seipel, Catherine; Vogl, Thomas J.; Kovács, Adorján F.; Ghanaati, Shahram; Sader, Robert A.

    2016-01-01

    Background: In numerous animal and human studies, it could be detected that in bone augmentation procedures, material's physicochemical characteristics can influence the cellular inflammatory pattern and therefore the integration in the host tissue. Histological, histomorphometrical, and clinical analyses of the integration of the biomaterial in the surrounding tissue are well established methodologies; however, they do not make a statement on volume and density changes of the augmented biomaterial. Aims: The aim of the present study was to assess the volume and density of a xenogeneic (Bio-Oss®, BO) and a synthetic (NanoBone®, NB) bone substitute material in split-mouth sinus augmentations in former tumor patients to complete histological and histomorphometrical assessment. Methods: Immediately and 6 months after sinus augmentation computed tomography scans were recorded, bone grafts were marked, and the volume was calculated with radiologic RIS-PACS software (General Electric Healthcare, Chalfont St. Giles, Great Britain) to determine the integration and degradation behavior of both biomaterials. Results: Radiographic analysis revealed a volume reduction of the initial augmented bone substitute material (i.e. 100%) to 77.36 (±11.68) % in the BO-group, respectively, 75.82 (±22.28) % in the NB-group six months after augmentation. In both materials, the volume reduction was not significant. Bone density significantly increased in both groups. Conclusion: The presented radiological investigation presents a favorable method to obtain clinically relevant information concerning the integration and degradation behavior of bone substitute materials. PMID:28299254

  6. Mesenchymal Stem Cells and Nano-Bioceramics for Bone Regeneration.

    PubMed

    Kankilic, Berna; Köse, Sevil; Korkusuz, Petek; Timuçin, Muharrem; Korkusuz, Feza

    Orthopedic disorders and trauma usually result in bone loss. Bone grafts are widely used to replace this tissue. Bone grafts excluding autografts unfortunately have disadvantages like evoking immune response, contamination and rejection. Autografts are of limited sources and optimum biomaterials that can replace bone have been searched for several decades. Bioceramics, which have the similar inorganic structure of natural bone, are widely used to regenerate bone or coat metallic implants. As people continuously look for a higher life quality, there are developments in technology almost everyday to meet their expectations. Nanotechnology is one of such technologies and it attracts everyone's attention in biomaterial science. Nano scale biomaterials have many advantages like larger surface area and higher biocompatibility and these properties make them more preferable than micro scale. Also, stem cells are used for bone regeneration besides nano-bioceramics due to their differentiation characteristics. This review covers current research on nano-bioceramics and mesenchymal stem cells and their role in bone regeneration.

  7. Corrosion resistant coating

    DOEpatents

    Wrobleski, Debra A.; Benicewicz, Brian C.; Thompson, Karen G.; Bryan, Coleman J.

    1997-01-01

    A method of protecting a metal substrate from corrosion including coating a metal substrate of, e.g., steel, iron or aluminum, with a conductive polymer layer of, e.g., polyaniline, coating upon said metal substrate, and coating the conductive polymer-coated metal substrate with a layer of a topcoat upon the conductive polymer coating layer, is provided, together with the resultant coated article from said method.

  8. Corrosion resistant coating

    DOEpatents

    Wrobleski, D.A.; Benicewicz, B.C.; Thompson, K.G.; Bryan, C.J.

    1997-08-19

    A method of protecting a metal substrate from corrosion including coating a metal substrate of, e.g., steel, iron or aluminum, with a conductive polymer layer of, e.g., polyaniline, coating upon said metal substrate, and coating the conductive polymer-coated metal substrate with a layer of a topcoat upon the conductive polymer coating layer, is provided, together with the resultant coated article from said method.

  9. Effects of bone drilling on local temperature and bone regeneration: an in vivo study.

    PubMed

    Karaca, Faruk; Aksakal, Bünyamin; Köm, Mustafa

    2014-01-01

    The aim of this study was to examine the influence of bone drilling on local bone temperature and bone regeneration and determine optimal drilling speed and pressure in an animal model. The study included 12 skeletally mature New Zealand white rabbits, weighing between 2.8 to 3.2 kg. Rabbits were divided into 2 groups and euthanized at the end of Day 21 (Group A) and Day 42 (Group B). The same drilling protocol was used in both groups. Three drill holes with different pressure (5, 10 and 20 N) were made in each rabbit tibias using 3 different rotational drill speeds (230, 370 and 570 rpm). During drilling, local temperature was recorded. Rabbit tibia underwent histopathological exam for bone regeneration. Bone temperature was affected by drilling time and depth. Lower drill speeds reduced the bone temperature and revealed better bone regeneration when compared to the drilled bones at higher drill speeds. Titanium boron nitride coating on the drill bits had no significant effects on bone temperature and structure. Bone regeneration was superior in Group B rabbits that had drilling at 230 rpm and 20 N. Our results suggested that lower drilling speed with higher pressure is necessary for better bone regeneration. The optimal drilling speed is 230 rpm and optimal drilling pressure 20 N.

  10. A novel graded bioactive high adhesion implant coating

    NASA Astrophysics Data System (ADS)

    Brohede, Ulrika; Zhao, Shuxi; Lindberg, Fredrik; Mihranyan, Albert; Forsgren, Johan; Strømme, Maria; Engqvist, Håkan

    2009-06-01

    One method to increase the clinical success rate of metal implants is to increase their bone bonding properties, i.e. to develop a bone bioactive surface leading to reduced risks of interfacial problems. Much research has been devoted to modifying the surface of metals to make them become bioactive. Many of the proposed methods include depositing a coating on the implant. However, there is a risk of coating failure due to low substrate adhesion. This paper describes a method to obtain bioactivity combined with a high coating adhesion via a gradient structure of the coating. Gradient coatings were deposited on Ti (grade 5) using reactive magnetron sputtering with increasing oxygen content. To increase the grain size in the coating, all coatings were post annealed at 385 °C. The obtained coating exhibited a gradual transition over 70 nm from crystalline titanium oxide (anatase) at the surface to metallic Ti in the substrate, as shown using cross-section transmission electron microscopy and X-ray photoelectron spectroscopy depth profiling. Using scratch testing, it could be shown that the adhesion to the substrate was well above 1 GPa. The bioactivity of the coating was verified in vitro by the spontaneous formation of hydroxylapatite upon storage in phosphate buffer solution at 37 °C for one week. The described process can be applied to implants irrespective of bulk metal in the base and should introduce the possibility to create safer permanent implants like reconstructive devices, dental, or spinal implants.

  11. Characterization of bone marrow mononuclear cells on biomaterials for bone tissue engineering in vitro.

    PubMed

    Henrich, Dirk; Verboket, René; Schaible, Alexander; Kontradowitz, Kerstin; Oppermann, Elsie; Brune, Jan C; Nau, Christoph; Meier, Simon; Bonig, Halvard; Marzi, Ingo; Seebach, Caroline

    2015-01-01

    Bone marrow mononuclear cells (BMCs) are suitable for bone tissue engineering. Comparative data regarding the needs of BMC for the adhesion on biomaterials and biocompatibility to various biomaterials are lacking to a large extent. Therefore, we evaluated whether a surface coating would enhance BMC adhesion and analyze the biocompatibility of three different kinds of biomaterials. BMCs were purified from human bone marrow aspirate samples. Beta tricalcium phosphate (β-TCP, without coating or coated with fibronectin or human plasma), demineralized bone matrix (DBM), and bovine cancellous bone (BS) were assessed. Seeding efficacy on β-TCP was 95% regardless of the surface coating. BMC demonstrated a significantly increased initial adhesion on DBM and β-TCP compared to BS. On day 14, metabolic activity was significantly increased in BMC seeded on DBM in comparison to BMC seeded on BS. Likewise increased VEGF-synthesis was observed on day 2 in BMC seeded on DBM when compared to BMC seeded on BS. The seeding efficacy of BMC on uncoated biomaterials is generally high although there are differences between these biomaterials. Beta-TCP and DBM were similar and both superior to BS, suggesting either as suitable materials for spatial restriction of BMC used for regenerative medicine purposes in vivo.

  12. Vertical osteoconductivity of sputtered hydroxyapatite-coated mini titanium implants after dura mater elevation: Rabbit calvarial model.

    PubMed

    Wang, Xin; Zakaria, Osama; Madi, Marwa; Kasugai, Shohei

    2015-01-01

    This study evaluated the quantity and quality of newly formed vertical bone induced by sputtered hydroxyapatite-coated titanium implants compared with sandblasted acid-etched implants after dura mater elevation. Hydroxyapatite-coated and non-coated implants (n = 20/group) were used and divided equally into two groups. All implants were randomly placed into rabbit calvarial bone (four implants for each animal) emerging from the inferior cortical layer, displacing the dura mater 3 mm below the original bone. Animals were sacrificed at 4 (n = 5) and 8 (n = 5) weeks post-surgery. Vertical bone height and area were analyzed histologically and radiographically below the original bone. Vertical bone formation was observed in both groups. At 4 and 8 weeks, vertical bone height reached a significantly higher level in the hydroxyapatite compared with the non-coated group (p < 0.05). Vertical bone area was significantly larger in the hydroxyapatite compared with the non-coated group at 4 and 8 weeks (p < 0.05). This study indicates that vertical bone formation can be induced by dura mater elevation and sputtered hydroxyapatite coating can enhance vertical bone formation.

  13. Bacterial adhesion to bisphosphonate coated hydroxyapatite.

    PubMed

    Ganguli, A; Steward, C; Butler, S L; Philips, G J; Meikle, S T; Lloyd, A W; Grant, M H

    2005-04-01

    Staphylococcus aureus (S. aureus) is commonly associated with microbial infection of orthopaedic implants. Such infections often lead to osteomyelitis, which may result in failure of the implant due to localised bone destruction. Bacterial adhesion and subsequent colonisation of the device may occur as a consequence of contamination during surgery, or by seeding from a distant site through the blood circulation. Coating of the hydroxyapatite (HA) ceramic component of artificial hip joints with the bisphosphonates clodronate (C) and pamidronate (P) has been proposed as a means to minimise osteolysis and thereby prevent loosening of the implant. However, the effect of the bisphosphonate coating on bacterial adhesion to the HA materials must be determined before this approach can be implemented. In this study coated HA materials were incubated with the S. aureus and the number of adherent bacteria determined using the Modified Vortex Device (MVD) method. The number of bacteria adherent to the P coated HA material was significantly greater than that adherent to uncoated HA (60-fold increase) or to the C coated HA (90-fold increase). Therefore, even though earlier studies suggested that P bound to HA may improve osseointegration, the results presented would suggest that the use of this coating may be limited by the potential increased susceptibility of the coated device to infection.

  14. Osteoinductive composite coatings for flexible intramedullary nails.

    PubMed

    Bolbasov, E N; Popkov, A V; Popkov, D A; Gorbach, E N; Khlusov, I A; Golovkin, A S; Sinev, A; Bouznik, V M; Tverdokhlebov, S I; Anissimov, Y G

    2017-06-01

    This work presents composite coatings based on a copolymer of vinylidene fluoride with tetrafluoroethylene (VDF-TeFE) and hydroxyapatite (HA) for flexible intramedullary nails (FIN). The effect of the proportion of VDF-TeFE (100-25% wt.) on physicochemical and biological properties of the composite coatings was investigated. It was shown that a decrease of VDF-TeFE in the coating hinders its crystallization in β and γ forms which have piezoelectric properties. The decrease also reduces an adhesive strength to 9.9±2.4MPa and a relative elongation to 5.9±1.2%, but results in increased osteogenesis. It was demonstrated that the composite coatings with 35% VDF-TeFE has the required combination of physicochemical properties and osteogenic activity. Comparative studies of composite coatings (35% VDF-TeFE) and calcium phosphate coatings produced using micro-arc oxidation, demonstrated comparable results for strength of bonding of these FINs with trabecular bones (~530MPa). It was hypothesized that the high osteoinductive properties of the composite coatings are due to their piezoelectric properties. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. The Chemistry of Coatings.

    ERIC Educational Resources Information Center

    Griffith, James R.

    1981-01-01

    The properties of natural and synthetic polymeric "coatings" are reviewed, including examples and uses of such coatings as cellulose nitrate lacquers (for automobile paints), polyethylene, and others. (JN)

  16. The Chemistry of Coatings.

    ERIC Educational Resources Information Center

    Griffith, James R.

    1981-01-01

    The properties of natural and synthetic polymeric "coatings" are reviewed, including examples and uses of such coatings as cellulose nitrate lacquers (for automobile paints), polyethylene, and others. (JN)

  17. Evaluation of thin amorphous calcium phosphate coatings on titanium dental implants deposited using magnetron sputtering.

    PubMed

    Yokota, Sou; Nishiwaki, Naruhiko; Ueda, Kyosuke; Narushima, Takayuki; Kawamura, Hiroshi; Takahashi, Tetsu

    2014-06-01

    Calcium phosphate is used for dental material because of its biocompatibility and osteoconductivity. Amorphous calcium phosphate (ACP) coatings deposited by magnetron sputtering can control their thickness and absorbability. This study aimed to evaluate and characterize ACP coatings deposited via magnetron sputtering. It was hypothesized that ACP coatings would enhance bone formation and be absorbed rapidly in vivo. ACP coatings that are 0.5 μm in thickness were deposited via magnetron sputtering on dental implants. Uncoated implants served as controls. The effect of the ACP coatings in vivo was investigated in New Zealand white rabbit. To evaluate the effect of the ACP coatings on the bone response of the implants, the removal torque, implant stability quotient, and histomorphometric analysis were performed on the implants at 1, 2, and 4 weeks after implantation. Results of the x-ray diffraction analyses confirmed the deposition of ACP coatings. Images from the scanning electron microscopy revealed that the coatings were dense, uniform, and 0.5 μm in thickness and that they were absorbed completely. Mechanical stability and bone formation in the case of the ACP-coated implants were higher than those of control. These results suggest that implants coated with thin ACP layers improve implant fixation and accelerate bone response.

  18. Osteointegration of femoral stem prostheses with a bilayered calcium phosphate coating.

    PubMed

    Goyenvalle, Eric; Aguado, Eric; Nguyen, Jean-Michel; Passuti, Norbert; Le Guehennec, Laurent; Layrolle, Pierre; Daculsi, Guy

    2006-03-01

    Our purpose was to evaluate the osteointegration of bilayered calcium phosphate (CaP)-coated femoral hip stems in a canine model. A first layer of hydroxyapatite (HA) 20 microm thick and a superficial layer of Biphasic Calcium Phosphate (BCP) 30 microm thick were plasma-sprayed on to the proximal region of sandblasted Ti6Al4V prostheses. Bilayered CaP-coated and non-coated canine femoral stems were implanted bilaterally under general anesthesia in 6 adult female Beagle dogs. After 6 and 12 months, a significant degradation of the bilayered coating occurred with a remainder of 33.1+/-12.4 and 23.6+/-9.2 microm in thickness, respectively. Lamellar bone apposition was observed on bilayered coated implants while fibrous tissue encapsulation was observed on non-coated femoral stems. The bone-implant contacts (BIC) were 91+/-3% and 81+/-8% for coated and 7+/-8% and 8+/-12% for non-coated implants, at 6 and 12 months, respectively. Our study supports the concept of a direct relationship between the biodegradation of CaP coating and the enhanced osteointegration of titanium prostheses. A bilayered CaP coating might therefore enhance bone apposition in the early stages because of the superior bioactivity of the BCP layer while the more stable HA layer might sustain bone bonding over long periods.

  19. Bioactivity and osteointegration of hydroxyapatite-coated stainless steel and titanium wires used for intramedullary osteosynthesis.

    PubMed

    Popkov, Arnold V; Gorbach, Elena N; Kononovich, Natalia A; Popkov, Dmitry A; Tverdokhlebov, Sergey I; Shesterikov, Evgeniy V

    2017-08-01

    A lot of research was conducted on the use of various biomaterials in orthopedic surgery. Our study investigated the effects of nanostructured calcium-phosphate coating on metallic implants introduced into the bone marrow canal. Stainless steel or titanium 2-mm wires (groups 1 and 2, respectively), and hydroxyapatite-coated stainless steel or titanium wires of the same diameter (groups 3 and 4, respectively) were introduced into the tibial bone marrow canal of 20 dogs (each group = 5 dogs). Hydroxyapatite coating was deposited on the wires with the method of microarc oxidation. Light microscopy to study histological diaphyseal transverse sections, scanning electron microscopy to study the bone marrow area around the implant and an X-ray electron probe analyzer to study the content of calcium and phosphorus were used to investigate bioactivity and osteointegration after a four weeks period. Osteointegration was also assessed by measuring wires' pull-off strength with a sensor dynamometer. Bone formation was observed round the wires in the bone marrow canal in all the groups. Its intensity depended upon the features of wire surfaces and implant materials. Maximum percentage volume of trabecular bone was present in the bone marrow canals of group 4 dogs that corresponded to a mean of 27.1 ± 0.14%, while it was only 6.7% in group 1. The coating in groups 3 and 4 provided better bioactivity and osteointegration. Hydroxyapatite-coated titanium wires showed the highest degree of bone formation around them and greater pull-off strength. Nanostructured hydroxyapatite coating of metallic wires induces an expressed bone formation and provides osteointegration. Hydroxyapatite-coated wires could be used along with external fixation for bone repair enhancement in diaphyseal fractures, management of osteogenesis imperfecta and correction of bone deformities in phosphate diabetes.

  20. Bone Densitometry (Bone Density Scan)