Sample records for coating hppc system

  1. Validation of HPPCALC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. R. Belt

    2006-10-01

    HPPCALC 2.1 was developed to analyze the raw data from a PNGV Hybrid Pulse Power Characterization (HPPC) test and produce seven standard plots that consist of resistance, power and available energy relationships. The purpose of the HPPC test is to extrapolate the total power capability within predetermined voltage limits of a prototype or full production cell regardless of chemistry with respect to the PNGV goals as outlined in the PNGV Testing Manual, Revision 3. The power capability gives the Electrochemical Energy Storage team the tools to compare different battery sizes and chemistries for possible use in a hybrid electric vehicle.more » The visual basic program HPPCALC 2.1 opens the comma separated value file that is produced from a Maccor, Bitrode or Energy Systems tester. It extracts the necessary information and performs the appropriate calculations. This information is arranged into seven graphs: Resistance versus Depth of Discharge, Power versus Depth of Discharge, Power versus Energy, Power versus Energy, Energy versus Power, Available Energy versus Power, Available Energy versus Power, and Power versus Depth of Discharge. These are the standard plots that are produced for each HPPC test. The primary metric for the HPPC test is the PNGV power, which is the power at which the available energy is equal to 300 Wh. The PNGV power is used to monitor the power degradation of the battery over the course of cycle or calendar life testing.« less

  2. Parameterization and Estimation of Surrogate Critical Surface Concentration in Lithium-Ion Batteries (PREPRINT)

    DTIC Science & Technology

    2011-03-01

    2003), FreedomCAR battery Test Manual For Power-Assist Hybrid Elecric Veicles , DOE/ID-11069. R. Hermann, A. Krener, (1977), Nonlinear controllability...play an important role in the area of the second generation Hybrid Electric Vehicles (HEV) design as high-rate transient power source or in...validation purpose is a series of ten Hybrid Pulse Power Characterization profiles (HPPC), as indicated in the FreedomCar manual (US DoE, 2003). Each HPPC

  3. Molecular genetic and biochemical responses in human airway epithelial cell cultures exposed to titanium nanoparticles in vitro.

    PubMed

    Aydın, Elanur; Türkez, Hasan; Hacımüftüoğlu, Fazıl; Tatar, Abdulgani; Geyikoğlu, Fatime

    2017-07-01

    Titanium nanoparticles (NPs) have very wide application areas such as paint, cosmetics, pharmaceuticals, and biomedical applications. And, to translate these nanomaterials to the clinic and industrial domains, their safety needs to be verified, particularly in terms of genotoxicity and cytotoxicity. Therefore, in this study, we aimed to investigate of cytotoxicity and changes in gene expression profiles influenced by commonly titanium (as titanium carbide, titanium carbo-nitride, titanium (II) oxide, titanium (III) oxide, titanium (IV) oxide, titanium nitride, titanium silicon oxide) NPs in human alveolar epithelial (HPAEpiC) and pharynx (HPPC) cell lines in vitro since inhalation is an important pathway for exposure to these NPs. HPAEpiC and HPPC cells were treated with titanium (0-100 µg/mL), NPs for 24 and 48 h, and then cytotoxicity was detected by, [3-(4,5-dimethyl-thiazol-2-yl) 2,5-diphenyltetrazolium bromide] (MTT), uptake of neutral red (NR) and lactate dehydrogenase (LDH) release assays, while genotoxicity was also analyzed by cDNA array - RT-PCR assay. According to the results of MTT, NR and LDH assays, all tested NPs induced cytotoxicity on both HPAEpiC and HPPC cells in a time- and dose-dependent manner. Determining and analyzing the gene expression profiles of HPAEpiC and HPPC cells, titanium NPs showed more changes in genes related to DNA damage or repair, oxidative stress, and apoptosis. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2056-2064, 2017. © 2017 Wiley Periodicals, Inc.

  4. Enhanced thermal safety and high power performance of carbon-coated LiFePO4 olivine cathode for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Zaghib, K.; Dubé, J.; Dallaire, A.; Galoustov, K.; Guerfi, A.; Ramanathan, M.; Benmayza, A.; Prakash, J.; Mauger, A.; Julien, C. M.

    2012-12-01

    The carbon-coated LiFePO4 Li-ion oxide cathode was studied for its electrochemical, thermal, and safety performance. This electrode exhibited a reversible capacity corresponding to more than 89% of the theoretical capacity when cycled between 2.5 and 4.0 V. Cylindrical 18,650 cells with carbon-coated LiFePO4 also showed good capacity retention at higher discharge rates up to 5C rate with 99.3% coulombic efficiency, implying that the carbon coating improves the electronic conductivity. Hybrid Pulse Power Characterization (HPPC) test performed on LiFePO4 18,650 cell indicated the suitability of this carbon-coated LiFePO4 for high power HEV applications. The heat generation during charge and discharge at 0.5C rate, studied using an Isothermal Microcalorimeter (IMC), indicated cell temperature is maintained in near ambient conditions in the absence of external cooling. Thermal studies were also investigated by Differential Scanning Calorimeter (DSC) and Accelerating Rate Calorimeter (ARC), which showed that LiFePO4 is safer, upon thermal and electrochemical abuse, than the commonly used lithium metal oxide cathodes with layered and spinel structures. Safety tests, such as nail penetration and crush test, were performed on LiFePO4 and LiCoO2 cathode based cells, to investigate on the safety hazards of the cells upon severe physical abuse and damage.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    An, Seong Jin; Li, Jianlin; Daniel, Claus

    Simple three-electrode pouch cells which can be used in distinguishing the voltage and resistance in individual electrodes of lithium ion batteries have been designed. Baseline (1 mm-staggered alignment, cathode away from a reference electrode) and aligned electrodes to a reference electrode located outside of the anode and cathode were studied to see alignment effects on resistance analysis. Cells composed of A12 graphite anodes, LiNi 0.5Mn 0.3Co 0.2O 2 (NMC 532 or NCM 523) cathodes, lithium foil references, microporous tri-layer membranes, and electrolytes, were cycled with cathode cutoff voltages between 3.0 V and 4.3 V for formation cycles or 4.6 Vmore » for C-rate performance testing. By applying a hybrid pulse power characterization (HPPC) technique to the cells, resistances of the baseline cells contributed by the anode and cathode were found to be different from those of the aligned cells, although overall resistances were close to ones from aligned cells. As a result, resistances obtained via electrochemical impedance spectroscopy (EIS) and 2D simulation were also compared with those obtained from HPPC.« less

  6. Design and Demonstration of Three-Electrode Pouch Cells for Lithium-Ion Batteries

    DOE PAGES

    An, Seong Jin; Li, Jianlin; Daniel, Claus; ...

    2017-06-14

    Simple three-electrode pouch cells which can be used in distinguishing the voltage and resistance in individual electrodes of lithium ion batteries have been designed. Baseline (1 mm-staggered alignment, cathode away from a reference electrode) and aligned electrodes to a reference electrode located outside of the anode and cathode were studied to see alignment effects on resistance analysis. Cells composed of A12 graphite anodes, LiNi 0.5Mn 0.3Co 0.2O 2 (NMC 532 or NCM 523) cathodes, lithium foil references, microporous tri-layer membranes, and electrolytes, were cycled with cathode cutoff voltages between 3.0 V and 4.3 V for formation cycles or 4.6 Vmore » for C-rate performance testing. By applying a hybrid pulse power characterization (HPPC) technique to the cells, resistances of the baseline cells contributed by the anode and cathode were found to be different from those of the aligned cells, although overall resistances were close to ones from aligned cells. As a result, resistances obtained via electrochemical impedance spectroscopy (EIS) and 2D simulation were also compared with those obtained from HPPC.« less

  7. Synthesis, strctural and electrochemical characterizations of lithium- manganese- rich composite cathode materials for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Wang, Dapeng

    The electrification trend for transportation systems requires alternative cathode materials to LiCoO2 with improved safety, lowered cost and extended cycle life. Lithium- manganese- rich composite cathode materials, which can be presented in a two component notation as xLi2MnO3·(1-x)LiMO 2, (M= Ni, Co or Mn) have superior cost and energy density advantages. These cathode materials have shown success in laboratory scale experiments, but are still facing challenges such as voltage fade, moderate rate capacity and tap density for commercialization. The synthesis of precursors with high packing density and suitable physical properties is critical to achieve high energy density as well as the other acceptable electrochemical performance for the next generation lithium ion batteries. The aim of this study is to correlate the electrochemical properties of materials to their structural, morphological, and physical properties by coordinating the science of synthesis with the science of function, in order to enable the use of these compounds in vehicle technologies. Three different precursors including carbonate, hydroxide and oxalate were synthesized by co-precipitation reactions using continuous stirred tank reactor (CSTR) under various conditions. Research focused on areas such as nucleation and growth mechanisms, synthesis optimizations, and intrinsic limitations of each co-precipitation method. A combination of techniques such as PSA, BET, SEM, EDX FIB, TEM, Raman, FTIR, TGA-DSC, XRD, and ICP-MS, as well as electrochemical test methods such as cycling, CV, EIS and HPPC tests were used in correlation with each other in order to deepen our understanding to these materials. Related topics such as the composite structure formation process during the solid state reaction, lithium and nickel content effects on the cathode properties were also discussed. Additionally, the side reactions between the active materials and electrolyte as a result of the high charge potential were mitigated through a simple wet chemical surface coating method, and the positive effect of the surface coating on the cells' performance was also discussed.

  8. Development of single cell lithium ion battery model using Scilab/Xcos

    NASA Astrophysics Data System (ADS)

    Arianto, Sigit; Yunaningsih, Rietje Y.; Astuti, Edi Tri; Hafiz, Samsul

    2016-02-01

    In this research, a lithium battery model, as a component in a simulation environment, was developed and implemented using Scicos/Xcos graphical language programming. Scicos used in this research was actually Xcos that is a variant of Scicos which is embedded in Scilab. The equivalent circuit model used in modeling the battery was Double Polarization (DP) model. DP model consists of one open circuit voltage (VOC), one internal resistance (Ri), and two parallel RC circuits. The parameters of the battery were extracted using Hybrid Power Pulse Characterization (HPPC) testing. In this experiment, the Double Polarization (DP) electrical circuit model was used to describe the lithium battery dynamic behavior. The results of simulation of the model were validated with the experimental results. Using simple error analysis, it was found out that the biggest error was 0.275 Volt. It was occurred mostly at the low end of the state of charge (SOC).

  9. Near-infrared radiation curable multilayer coating systems and methods for applying same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowman, Mark P; Verdun, Shelley D; Post, Gordon L

    2015-04-28

    Multilayer coating systems, methods of applying and related substrates are disclosed. The coating system may comprise a first coating comprising a near-IR absorber, and a second coating deposited on a least a portion of the first coating. Methods of applying a multilayer coating composition to a substrate may comprise applying a first coating comprising a near-IR absorber, applying a second coating over at least a portion of the first coating and curing the coating with near infrared radiation.

  10. Multilayer thermal barrier coating systems

    DOEpatents

    Vance, Steven J.; Goedjen, John G.; Sabol, Stephen M.; Sloan, Kelly M.

    2000-01-01

    The present invention generally describes multilayer thermal barrier coating systems and methods of making the multilayer thermal barrier coating systems. The thermal barrier coating systems comprise a first ceramic layer, a second ceramic layer, a thermally grown oxide layer, a metallic bond coating layer and a substrate. The thermal barrier coating systems have improved high temperature thermal and chemical stability for use in gas turbine applications.

  11. 7 CFR 3201.98 - Wastewater systems coatings.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 15 2014-01-01 2014-01-01 false Wastewater systems coatings. 3201.98 Section 3201.98... Designated Items § 3201.98 Wastewater systems coatings. (a) Definition. Coatings that protect wastewater... procurement preference for qualifying biobased wastewater systems coatings. By that date, Federal agencies...

  12. 7 CFR 3201.98 - Wastewater systems coatings.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 15 2013-01-01 2013-01-01 false Wastewater systems coatings. 3201.98 Section 3201.98... Designated Items § 3201.98 Wastewater systems coatings. (a) Definition. Coatings that protect wastewater... procurement preference for qualifying biobased wastewater systems coatings. By that date, Federal agencies...

  13. Testing of Environmentally Preferable Aluminum Pretreatments and Coating Systems for Use on Space Shuttle Solid Rocket Boosters (SRB)

    NASA Technical Reports Server (NTRS)

    Clayton, C.; Raley, R.; Zook, L.

    2001-01-01

    The solid rocket booster (SRB) has historically used a chromate conversion coating prior to protective finish application. After conversion coating, an organic paint system consisting of a chromated epoxy primer and polyurethane topcoat is applied. An overall systems approach was selected to reduce waste generation from the coatings application and removal processes. While the most obvious waste reduction opportunity involved elimination of the chromate conversion coating, several other coating system configurations were explored in an attempt to reduce the total waste. This paper will briefly discuss the use of a systems view to reduce waste generation from the coating process and present the results of the qualification testing of nonchromated aluminum pretreatments and alternate coating systems configurations.

  14. Measure Guideline: Transitioning from Three-Coat Stucco to One-Coat Stucco with EPS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brozyna, K.; Davis, G.; Rapport, A.

    2012-04-01

    This Measure Guideline has been developed to help builders transition from using a traditional three-coat stucco wall-cladding system to a one-coat stucco wall-cladding system with expanded polystyrene (EPS) insulated sheathing. The three-coat system uses a base layer, a fill layer, and a finish layer. The one-coat system maintains the look of a traditional stucco system but uses only a base layer and a finish coat over EPS insulation that achieves higher levels of energy efficiency. Potential risks associated with the installation of a one-coat stucco system are addressed in terms of design, installation, and warranty concerns such as cracking andmore » delamination, along with mitigation strategies to reduce these risks.« less

  15. Aesthetic coatings for concrete bridge components

    NASA Astrophysics Data System (ADS)

    Kriha, Brent R.

    This thesis evaluated the durability and aesthetic performance of coating systems for utilization in concrete bridge applications. The principle objectives of this thesis were: 1) Identify aesthetic coating systems appropriate for concrete bridge applications; 2) Evaluate the performance of the selected systems through a laboratory testing regimen; 3) Develop guidelines for coating selection, surface preparation, and application. A series of site visits to various bridges throughout the State of Wisconsin provided insight into the performance of common coating systems and allowed problematic structural details to be identified. To aid in the selection of appropriate coating systems, questionnaires were distributed to coating manufacturers, bridge contractors, and various DOT offices to identify high performing coating systems and best practices for surface preparation and application. These efforts supplemented a literature review investigating recent publications related to formulation, selection, surface preparation, application, and performance evaluation of coating materials.

  16. Effect of Layer-Graded Bond Coats on Edge Stress Concentration and Oxidation Behavior of Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Ghosn, Louis J.; Miller, Robert A.

    1998-01-01

    Thermal barrier coating (TBC) durability is closely related to design, processing and microstructure of the coating Z, tn systems. Two important issues that must be considered during the design of a thermal barrier coating are thermal expansion and modulus mismatch between the substrate and the ceramic layer, and substrate oxidation. In many cases, both of these issues may be best addressed through the selection of an appropriate bond coat system. In this study, a low thermal expansion and layer-graded bond coat system, that consists of plasma-sprayed FeCoNiCrAl and FeCrAlY coatings, and a high velocity oxyfuel (HVOF) sprayed FeCrAlY coating, is developed to minimize the thermal stresses and provide oxidation resistance. The thermal expansion and oxidation behavior of the coating system are also characterized, and the strain isolation effect of the bond coat system is analyzed using the finite element method (FEM). Experiments and finite element results show that the layer-graded bond coat system possesses lower interfacial stresses. better strain isolation and excellent oxidation resistance. thus significantly improving the coating performance and durability.

  17. The Development of Environmental Barrier Coating Systems for SiC-SiC Ceramic Matrix Composites: Environment Effects on the Creep and Fatigue Resistance

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Ghosn, Louis J.

    2014-01-01

    Topics covered include: Environmental barrier coating system development: needs, challenges and limitations; Advanced environmental barrier coating systems (EBCs) for CMC airfoils and combustors; NASA EBC systems and material system evolutions, Current turbine and combustor EBC coating emphases, Advanced development, processing, testing and modeling, EBC and EBC bond coats: recent advances; Design tool and life prediction of coated CMC components; Advanced CMC-EBC rig demonstrations; Summary and future directions.

  18. Fundamental studies to elucidate the protection mechanism (s) for making intelligent choices of coatings used in oil and gas production

    NASA Astrophysics Data System (ADS)

    Aljassem, Nasser Ashoor

    Considerable attention has been given by the industries and researchers to develop the organic coating systems because of their importance in protecting and maintaining the integrity of the internal surfaces of oil and gas pipelines against corrosive solutions. Oil and natural gas pipelines mostly encounter both corrosion and wear degradations. The current study focuses on the development of coating systems by incorporating various types and amounts of fillers that are improving its barrier function to ward off the internal pipeline surfaces from the corrosive constituents. Simultaneously, fillers enhance the mechanical property of the coating systems that are capable of resisting a physical wear damage. The coating systems ranged in thickness and with micro to nano-size fillers. The pin-ball wear process, with two loads (100 N and 200 N), were applied on the surfaces of the coating systems. The hardness and reduced Young's modulus of the coated surfaces were characterized. The effect of the wear process with different loads were evaluated by employing a three dimensions (3D)-image profile-meter. A simulation of the sweet (CO2) and sour (CO2 and H2S) environments, with 2000 ppm Cl - ions, pH 4, at (60 °C and 1 bar), and (100 °C and 100 bar), respectively, used in the oil and gas industry were used to immerse and evaluate the coating systems. The coating system surface topographies, after the exposure to corrosive solutions, were evaluated by the 3-D profile-meter, stereoscope and scanning electron microscopy (SEM). The intentional defects imposed on the coating systems were exposed to corrosive solutions and their performance were periodically studied by the electrochemical impedance spectroscopy (EIS) technique. The electrochemical actions and coating system degradations due to the exposure to the corrosive solution were studied by the equivalent circuit models. The calculated EIS parameters were used to understand the interactions between the coating systems and corrosive solution. The effect of the high-load wear process was not considerable on the coating systems with significant amount of fillers. The coating systems with high amount of conductive and non-conductive fillers significantly showed high impedance in both the intact coating case and the highest coating resistance in case of the surface with intentional defects. No critical impact of the harsh environment with high pressure and temperature was observed on the powder phenolic Novolac coating system with defects. The harsh corrosive environment (sour), with high pressure and temperature, had a significant impact on most of the coating systems with defects and, specifically, the coating system that had carbon nanotube fillers. Protection and degradation mechanisms of the coating systems have been proposed.

  19. Emittance and absorptance of NASA ceramic thermal barrier coating system. [for turbine cooling

    NASA Technical Reports Server (NTRS)

    Liebert, C. H.

    1978-01-01

    Spectral emittance measurements were made on a two-layer ceramic thermal barrier coating system consisting of a metal substrate, a NiCrAly bond coating and a yttria-stabilized zirconia ceramic coating. Spectral emittance data were obtained for the coating system at temperatures of 300 to 1590 K, ceramic thickness of zero to 0.076 centimeter, and wavelengths of 0.4 to 14.6 micrometers. The data were transformed into total hemispherical emittance values and correlated with respect to ceramic coating thickness and temperature using multiple regression curve fitting techniques. The results show that the ceramic thermal barrier coating system is highly reflective and significantly reduces radiation heat loads on cooled gas turbine engine components. Calculation of the radiant heat transfer within the nonisothermal, translucent ceramic coating material shows that the gas-side ceramic coating surface temperature can be used in heat transfer analysis of radiation heat loads on the coating system.

  20. Molecular Dynamics Simulation of the Kinetic Reaction between Ni and Al Nanoparticles

    DTIC Science & Technology

    2009-01-01

    reaction time and temperature for separate nanoparticles has been considered as a model system for a powder metallurgy system. Coated nanoparticles in the...separate nanoparticles has been considered as a model system for a powder metallurgy system. Coated nanoparticles in the form of Ni-coated Al nanoparticles...nanoparticles has been considered as a model system for a powder metallurgy system. Coated nanoparticles in the form of Ni-coated Al nanoparticles

  1. Measure Guideline. Transitioning From Three-Coat Stucco to One-Coat Stucco With EPS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brozyna, K.; Davis, G.; Rapport, A.

    2012-04-01

    This measure guideline has been developed to help builders transition from using a traditional three-coat stucco wall-cladding system to a one-coat stucco wall-cladding system with expanded polystyrene (EPS) insulated sheathing. The one-coat system maintains the look of a traditional stucco system but uses only a base layer and a finish coat over EPS insulation that achieves higher levels of energy efficiency. Potential risks associated with the installation of a one-coat stucco system are addressed in terms of design, installation, and warranty concerns such as cracking and delamination, along with mitigation strategies to reduce these risks.

  2. Thermophysical and Thermomechanical Properties of Thermal Barrier Coating Systems

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Miller, Robert A.

    2000-01-01

    Thermal barrier coatings have been developed for advanced gas turbine and diesel engine applications to improve engine reliability and fuel efficiency. However, the issue of coating durability under high temperature cyclic conditions is still of major concern. The coating failure is closely related to thermal stresses and oxidation in the coating systems. Coating shrinkage cracking resulting from ceramic sintering and creep at high temperatures can further accelerate the coating failure process. The purpose of this paper is to address critical issues such as ceramic sintering and creep, thermal fatigue and their relevance to coating life prediction. Novel test approaches have been established to obtain critical thermophysical and thermomechanical properties of the coating systems under near-realistic temperature and stress gradients encountered in advanced engine systems. Emphasis is placed on the dynamic changes of the coating thermal conductivity and elastic modulus, fatigue and creep interactions, and resulting failure mechanisms during the simulated engine tests. Detailed experimental and modeling results describing processes occurring in the thermal barrier coating systems provide a framework for developing strategies to manage ceramic coating architecture, microstructure and properties.

  3. Aesthetic coatings for steel bridge components.

    DOT National Transportation Integrated Search

    2013-11-01

    The effectiveness of aesthetic coating systems for steel bridges was studied. Twelve 2-coat, 3-coat, and duplex : coating systems were selected and subjected to a series of accelerated weathering and mechanical tests to : determine their performance....

  4. Development and Performance Evaluations of HfO2-Si and Rare Earth-Si Based Environmental Barrier Bond Coat Systems for SiC/SiC Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming

    2014-01-01

    Ceramic environmental barrier coatings (EBC) and SiCSiC ceramic matrix composites (CMCs) will play a crucial role in future aircraft propulsion systems because of their ability to significantly increase engine operating temperatures, improve component durability, reduce engine weight and cooling requirements. Advanced EBC systems for SiCSiC CMC turbine and combustor hot section components are currently being developed to meet future turbine engine emission and performance goals. One of the significant material development challenges for the high temperature CMC components is to develop prime-reliant, high strength and high temperature capable environmental barrier coating bond coat systems, since the current silicon bond coat cannot meet the advanced EBC-CMC temperature and stability requirements. In this paper, advanced NASA HfO2-Si based EBC bond coat systems for SiCSiC CMC combustor and turbine airfoil applications are investigated. The coating design approach and stability requirements are specifically emphasized, with the development and implementation focusing on Plasma Sprayed (PS) and Electron Beam-Physic Vapor Deposited (EB-PVD) coating systems and the composition optimizations. High temperature properties of the HfO2-Si based bond coat systems, including the strength, fracture toughness, creep resistance, and oxidation resistance were evaluated in the temperature range of 1200 to 1500 C. Thermal gradient heat flux low cycle fatigue and furnace cyclic oxidation durability tests were also performed at temperatures up to 1500 C. The coating strength improvements, degradation and failure modes of the environmental barrier coating bond coat systems on SiCSiC CMCs tested in simulated stress-environment interactions are briefly discussed and supported by modeling. The performance enhancements of the HfO2-Si bond coat systems with rare earth element dopants and rare earth-silicon based bond coats are also highlighted. The advanced bond coat systems, when integrated with advanced EBC top coats, showed promise to achieve 1500 C temperature capability, helping enable next generation turbine engines with significantly improved engine component temperature capability and long-term durability.

  5. Evaluation of long-term corrosion durability and self-healing ability of scratched coating systems on carbon steel in a marine environment

    NASA Astrophysics Data System (ADS)

    Zhao, Xia; Chen, Changwei; Xu, Weichen; Zhu, Qingjun; Ge, Chengyue; Hou, Baorong

    2017-09-01

    Defects in protective-coating systems on steel surfaces are inevitable in practical engineering applications. A composite coating system, including a primer, middle coat and topcoat, were used to protect carbon steel from corrosion in a marine environment. Two environmental additives, glass fibers and thiourea, were applied in the middle coat to modify the coating system. The long-term corrosion durability and self-healing ability of the scratched coating system were evaluated by multiple methods. Results of the electrochemical technologies indicated that the coating system that contained 0.5 wt.% fibers and 0.5 wt.% thiourea presented good corrosion protection and self-healing for carbon steel when immersed in 3.5% NaCl for 120 d. Evolution of localized corrosion factors with time, as obtained from the current distribution showed that fibers combined with thiourea could inhibit the occurrence of local corrosion in scratched coating systems and retarded the corrosion development significantly. Surface characterization suggested that adequate thiourea could be absorbed uniformly on fibers for a long time to play an important role in protecting the carbon steel. Finally, schematic models were established to demonstrate the action of fibers and thiourea on the exposed surface of the carbon steel and the scratched coating system in the entire deterioration process.

  6. Hex Chrome Free Coatings for Electronics Overview

    NASA Technical Reports Server (NTRS)

    Kessel, Kurt

    2013-01-01

    The overall objective of the Hex Chrome Free Coatings for Electronics project is to evaluate and test pretreatment coating systems not containing hexavalent chrome in avionics and electronics housing applications. This objective will be accomplished by testing strong performing coating systems from prior NASA and DoD testing or new coating systems as determined by the stakeholders.

  7. Performance evaluation of one coat systems for new steel bridges.

    DOT National Transportation Integrated Search

    2011-06-01

    In an effort to address cost issues associated with shop application of conventional three-coat systems, the Federal : Highway Administration completed a study to investigate the performance of eight one-coat systems and two control : coatings for co...

  8. Rocket thrust chamber thermal barrier coatings

    NASA Technical Reports Server (NTRS)

    Batakis, A. P.; Vogan, J. W.

    1985-01-01

    A research program was conducted to generate data and develop analytical techniques to predict the performance and reliability of ceramic thermal barrier coatings in high heat flux environments. A finite element model was used to analyze the thermomechanical behavior of coating systems in rocket thrust chambers. Candidate coating systems (using a copper substrate, NiCrAlY bond coat and ZrO2.8Y2O3 ceramic overcoat) were selected for detailed study based on photomicrographic evaluations of experimental test specimens. The effects of plasma spray application parameters on the material properties of these coatings were measured and the effects on coating performance evaluated using the finite element model. Coating design curves which define acceptable operating envelopes for seleted coating systems were constructed based on temperature and strain limitations. Spray gun power levels was found to have the most significant effect on coating structure. Three coating systems were selected for study using different power levels. Thermal conductivity, strain tolerance, density, and residual stress were measured for these coatings. Analyses indicated that extremely thin coatings ( 0.02 mm) are required to accommodate the high heat flux of a rocket thrust chamber and ensure structural integrity.

  9. Development and Life Prediction of Erosion Resistant Turbine Low Conductivity Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Miller, Robert A.; Kuczmarski, Maria A.

    2010-01-01

    Future rotorcraft propulsion systems are required to operate under highly-loaded conditions and in harsh sand erosion environments, thereby imposing significant material design and durability issues. The incorporation of advanced thermal barrier coatings (TBC) in high pressure turbine systems enables engine designs with higher inlet temperatures, thus improving the engine efficiency, power density and reliability. The impact and erosion resistance of turbine thermal barrier coating systems are crucial to the turbine coating technology application, because a robust turbine blade TBC system is a prerequisite for fully utilizing the potential coating technology benefit in the rotorcraft propulsion. This paper describes the turbine blade TBC development in addressing the coating impact and erosion resistance. Advanced thermal barrier coating systems with improved performance have also been validated in laboratory simulated engine erosion and/or thermal gradient environments. A preliminary life prediction modeling approach to emphasize the turbine blade coating erosion is also presented.

  10. Advanced Thermal Barrier and Environmental Barrier Coating Development at NASA GRC

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Robinson, Craig

    2017-01-01

    This presentation summarizes NASA's advanced thermal barrier and environmental barrier coating systems, and the coating performance improvements that has recently been achieved and documented in laboratory simulated rig test conditions. One of the emphases has been placed on the toughness and impact resistance enhancements of the low conductivity, defect cluster thermal barrier coating systems. The advances in the next generation environmental barrier coatings for SiCSiC ceramic matrix composites have also been highlighted, particularly in the design of a new series of oxide-silicate composition systems to be integrated with next generation SiC-SiC turbine engine components for 2700F coating applications. Major technical barriers in developing the thermal and environmental barrier coating systems are also described. The performance and model validations in the rig simulated turbine combustion, heat flux, steam and calcium-magnesium-aluminosilicate (CMAS) environments have helped the current progress in improved temperature capability, environmental stability, and long-term fatigue-environment system durability of the advanced thermal and environmental barrier coating systems.

  11. Development of a Novel Erosion Resistant Coating System for Use on Rotorcraft Blades

    DTIC Science & Technology

    2012-05-01

    Technologies Research Center (UTRC) and Sikorsky utilizes a two part metal/ cermet coating system on the leading edge of the blades to provide unmatched...ARL, United Technologies Research Center (UTRC) and Sikorsky utilizes a two part metal/ cermet coating system on the leading edge of the blades to...Rotor Blade Tip Fairing A study by Ely et.al. evaluated dozens of coating technologies and down-selected a two-part metal/ceramic coating system on

  12. Method for masking selected regions of a substrate

    DOEpatents

    Fusaro, Jr., Robert Anthony; Bethel, Timothy Francis

    2010-05-04

    Described herein is a method for providing a clean edge at the interface of a portion of a substrate coated with a coating system and an adjacent portion of the substrate which is uncoated. The method includes the step of forming a zone of non-adherence on the substrate portion which is to be uncoated, prior to application of the coating system. The zone of non-adherence is adjacent the interface, so that the coating system will not adhere to the zone of non-adherence, but will adhere to the portion of the substrate which is to be coated with the coating system.

  13. Method For Making Selected Regions Of A Substrate

    DOEpatents

    Fusaro, Jr., Robert Anthony; Bethel, Timothy Francis

    2003-07-15

    Described herein is a method for providing a clean edge at the interface of a portion of a substrate coated with a coating system and an adjacent portion of the substrate which is uncoated. The method includes the step of forming a zone of non-adherence on the substrate portion which is to be uncoated, prior to application of the coating system. The zone of non-adherence is adjacent the interface, so that the coating system will not adhere to the zone of non-adherence, but will adhere to the portion of the substrate which is to be coated with the coating system.

  14. Active coatings technologies for tailorable military coating systems

    NASA Astrophysics Data System (ADS)

    Zunino, J. L., III

    2007-04-01

    The main objective of the U.S. Army's Active Coatings Technologies Program is to develop technologies that can be used in combination to tailor coatings for utilization on Army Materiel. The Active Coatings Technologies Program, ACT, is divided into several thrusts, including the Smart Coatings Materiel Program, Munitions Coatings Technologies, Active Sensor packages, Systems Health Monitoring, Novel Technology Development, as well as other advanced technologies. The goal of the ACT Program is to conduct research leading to the development of multiple coatings systems for use on various military platforms, incorporating unique properties such as self repair, selective removal, corrosion resistance, sensing, ability to modify coatings' physical properties, colorizing, and alerting logistics staff when tanks or weaponry require more extensive repair. A partnership between the U.S. Army Corrosion Office at Picatinny Arsenal, NJ along with researchers at the New Jersey Institute of Technology, NJ, Clemson University, SC, University of New Hampshire, NH, and University of Massachusetts (Lowell), MA, are developing the next generation of Smart Coatings Materiel via novel technologies such as nanotechnology, Micro-electromechanical Systems (MEMS), meta-materials, flexible electronics, electrochromics, electroluminescence, etc. This paper will provide the reader with an overview of the Active Coatings Technologies Program, including an update of the on-going Smart Coatings Materiel Program, its progress thus far, description of the prototype Smart Coatings Systems and research tasks as well as future nanotechnology concepts, and applications for the Department of Defense.

  15. Corrosion Resistance Characterization of Coating Systems Used to Protect Aluminum Alloys Using Electrochemical Impedance Spectroscopy and Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    Gambina, Federico

    In this study, the corrosion protection provided by of a number of chromate and chromate-free coatings systems was characterized in detail. High-solids SrCrO4-pigmented epoxy primers applied to 2024 and 7075 substrates were subject to salt spray exposure testing for 30 days. Samples were removed periodically and an electrochemical impedance measurement (EIS) was made. Although none of the coatings tested showed visual evidence of corrosion, the total impedance of the samples decreased by as much as two orders of magnitude. An analysis of capacitance showed that the primer coatings rapidly took up water from the exposure environment, but the coating-metal remained passive despite the fact that it was wet. These results support the idea that chromate coatings protect by creating a chromate-rich electrolyte within the coating that is passivating to the underlying metal substrate. They also suggest that indications of metal substrate passivity found in the low-frequency capacitive reactance of the impedance spectra are a better indicator of corrosion protection than the total impedance. The low-frequency capacitive reactance from EIS measurements is also good at assessing the protectiveness of chromate-free coatings systems. Fifteen different coatings systems comprising high-solids, chromate-free primers and chromate-free conversion coatings were applied to 2024 and 7075 substrates. These coatings were subject to salt spray exposure and EIS measurements. All coatings were inferior to coating systems containing chromate, but changes in the capacitive reactance measured in EIS was shown to anticipate visual indications of coating failure. A predictive model based on neural networks was trained to recognize the pattern in the capacitive reactance in impedance spectra measured after 48 hours of exposure and make an estimate of remaining coating life. A sensitivity analysis was performed to prune the impedance inputs. As a result of this analysis, a very simple but highly predictive model was constructed that used low-frequency phase angle information extracted directly from EIS measurements to predict time to failure in salt spray up to 30 days of exposure. The exposure and EIS characterization of the chromate-free coatings systems enabled a ranking of the coatings systems in terms of corrosion protection provided. Coating systems were ranked according to several different methods described in the literature. Among the coatings evaluated, Deft 02GN084, a high solids, solvent-borne and Pr-containing primer coating showed best protection when used in conjunction with a number of different conversion coatings and surface pretreatments. Several different trivalent chromium conversion coatings and pretreatment were used. This general type of conversion coating appeared to provide better corrosion protection than other pretreatments whose functions were primarily surface cleaning or adhesion promotion.

  16. Selective emission multilayer coatings for a molybdenum thermophotovoltaic radiator

    DOEpatents

    Cockeram, Brian Vern

    2004-01-27

    Multilayer coating designs have been developed to provide selective emission for a molybdenum thermophotovoltaic (TPV) radiator surface. These coatings increase the surface emissivity of a molybdenum TPV radiator substrate in the wavelength range that matches the bandgap of the TPV cells to increase the power density of the TPV system. Radiator emission at wavelengths greater than the bandgap energy of the TPV cells is greatly reduced through the use of these coatings, which significantly increases the efficiency of the TPV system. The use of this coating greatly improves the performance of a TPV system, and the coating can be tailored to match the bandgap of any practical TPV system.

  17. Evaluation of Erosion Resistance of Advanced Turbine Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Kuczmarski, Maria A.; Miller, Robert A.; Cuy, Michael D.

    2007-01-01

    The erosion resistant turbine thermal barrier coating system is critical to aircraft engine performance and durability. By demonstrating advanced turbine material testing capabilities, we will be able to facilitate the critical turbine coating and subcomponent development and help establish advanced erosion-resistant turbine airfoil thermal barrier coatings design tools. The objective of this work is to determine erosion resistance of advanced thermal barrier coating systems under simulated engine erosion and/or thermal gradient environments, validating advanced turbine airfoil thermal barrier coating systems based on nano-tetragonal phase toughening design approaches.

  18. Advanced ceramic coating development for industrial/utility gas turbines

    NASA Technical Reports Server (NTRS)

    Vogan, J. W.; Stetson, A. R.

    1982-01-01

    A program was conducted with the objective of developing advanced thermal barrier coating (TBC) systems. Coating application was by plasma spray. Duplex, triplex and graded coatings were tested. Coating systems incorporated both NiCrAly and CoCrAly bond coats. Four ceramic overlays were tested: ZrO2.82O3; CaO.TiO2; 2CaO.SiO2; and MgO.Al2O3. The best overall results were obtained with a CaO.TiO2 coating applied to a NiCrAly bond coat. This coating was less sensitive than the ZrO2.8Y2O3 coating to process variables and part geometry. Testing with fuels contaminated with compounds containing sulfur, phosphorus and alkali metals showed the zirconia coatings were destabilized. The calcium titanate coatings were not affected by these contaminants. However, when fuels were used containing 50 ppm of vanadium and 150 ppm of magnesium, heavy deposits were formed on the test specimens and combustor components that required frequent cleaning of the test rig. During the program Mars engine first-stage turbine blades were coated and installed for an engine cyclic endurance run with the zirconia, calcium titanate, and calcium silicate coatings. Heavy spalling developed with the calcium silicate system. The zirconia and calcium titanate systems survived the full test duration. It was concluded that these two TBC's showed potential for application in gas turbines.

  19. An investigation of enhanced capability thermal barrier coating systems for diesel engine components

    NASA Technical Reports Server (NTRS)

    Holtzman, R. L.; Layne, J. L.; Schechter, B.

    1984-01-01

    Material systems and processes for the development of effective and durable thermal barriers for heavy duty diesel engines were investigated. Seven coating systems were evaluated for thermal conductivity, erosion resistance, corrosion/oxidation resistance, and thermal shock resistance. An advanced coating system based on plasma sprayed particle yttria stabilized zirconia (PS/HYSZ) was judged superior in these tests. The measured thermal conductivity of the selected coating was 0.893 W/m C at 371 C. The PS/HYSZ coating system was applied to the piston crown, fire deck and valves of a single cylinder low heat rejection diesel engine. The coated engine components were tested for 24 hr at power levels from 0.83 MPa to 1.17 MPa brake mean effective pressure. The component coatings survived the engine tests with a minimum of distress. The measured fire deck temperatures decreased 86 C (155 F) on the intake side and 42 C (75 F) on the exhaust side with the coating applied.

  20. Fabrication of Refractive Index Tunable Coating with Moisture-Resistant Function for High-Power Laser Systems Based on Homogeneous Embedding of Surface-Modified Nanoparticles.

    PubMed

    Yang, Wei; Lei, Xiangyang; Hui, Haohao; Zhang, Qinghua; Deng, Xueran

    2018-05-07

    Moisture-resistant silicone coatings were prepared on the surface of potassium dihydrogen phosphate (KDP) crystal by means of spin-coating, in which hydrophobic-modified SiO₂ nanoparticles were embedded in a certain proportion. The refractive index of such coating can be tuned arbitrarily in the range of 1.21⁻1.44, which endows the KDP optical component with excellent transmission capability as well as the moisture proof effect. A dual-layer anti-reflective coating system was obtained by covering this silicone coating with a porous SiO₂ coating which is specially treated to enhance the moisture resistance. Transmittance of such a dual-layer coating system could reach 99.60% and 99.62% at 1064 nm and 532 nm, respectively, by precisely matching the refractive index of both layers. Furthermore, the long-term stability of this coating system has been verified at high humidity ambient of 80% RH for 27 weeks.

  1. Design and Characterization of High-strength Bond Coats for Improved Thermal Barrier Coating Durability

    NASA Astrophysics Data System (ADS)

    Jorgensen, David John

    High pressure turbine blades in gas turbine engines rely on thermal barrier coating (TBC) systems for protection from the harsh combustion environment. These coating systems consist of a ceramic topcoat for thermal protection, a thermally grown oxide (TGO) for oxidation passivation, and an intermetallic bond coat to provide compatibility between the substrate and ceramic over-layers while supplying aluminum to sustain Al2O 3 scale growth. As turbine engines are pushed to higher operating temperatures in pursuit of better thermal efficiency, the strength of industry-standard bond coats limits the lifetime of these coating systems. Bond coat creep deformation during thermal cycling leads to a failure mechanism termed rumpling. The interlayer thermal expansion differences, combined with TGO-imposed growth stresses, lead to the development of periodic undulations in the bond coat. The ceramic topcoat has low out-of-plane compliance and thus detaches and spalls from the substrate, resulting in a loss of thermal protection and subsequent degradation of mechanical properties. New creep resistant Ni3Al bond coats were designed with improved high-temperature strength to inhibit this type of premature failure at elevated temperatures. These coatings resist rumpling deformation while maintaining compatibility with the other layers in the system. Characterization methods are developed to quantify rumpling and assess the TGO-bond coat interface toughness of experimental systems. Cyclic oxidation experiments at 1163 °C show that the Ni3Al bond coats do not experience rumpling but have faster oxide growth rates and are quicker to spall TGO than the (Pt,Ni)Al benchmark. However, the Ni 3Al coatings outperformed the benchmark by over threefold in TBC system life due to a higher resistance to rumpling (mechanical degradation) while maintaining adequate oxidation passivation. The Ni3Al coatings eventually grow spinel NiAl2O4 on top of the protective Al2O3 layer, which leads to the detachment of the ceramic topcoat. Furthermore, bilayer Ni3Al+NiAl architectures have been investigated to improve the oxidation performance of the monolithic Ni 3Al coatings while maintaining their high strength. These bilayer architectures are shown to improve the cyclic oxidation performance of the monolithic layers and increase the TBC system life. The design, characterization, and experimentation of these coatings is discussed and related to the development of high-strength coatings.

  2. Adjustment of the ratio of Ca/P in the ceramic coating on Mg alloy by plasma electrolytic oxidation

    NASA Astrophysics Data System (ADS)

    Yao, Zhongping; Li, Liangliang; Jiang, Zhaohua

    2009-04-01

    The ceramic coatings containing Ca and P were prepared on AZ91D Mg alloy by plasma electrolytic oxidation technique in NaOH system and Na 2SiO 3 system, respectively. The phase composition, morphology and the element distribution of the coatings was studied by X-ray diffraction, scanning electron microscopy and energy dispersive spectroscopy. The corrosion resistance of the coatings was examined by polarizing curve methods in a 0.9% NaCl solution. In NaOH system, there were a large number of micro-holes distributing evenly on the surface of the coating, and the coating was mainly composed of Mg, Al, P and Ca. In Na 2SiO 3 system, the micro-holes in the coatings were reduced greatly in number and the distribution of the micro-holes was uneven, and the coating was mainly composed of Mg, Al, Si, P and Ca. The ratio of Ca/P in the coating can be controlled by the adjustment of the technique parameters to a certain extent. The adjustment of the concentration of Ca 2+ in the electrolyte was an effective method to change the ratio of Ca/P in the coating in both systems; the reaction time and the working voltage for the adjustment of the ratio of Ca/P in the coating was more suitable for the NaSi 2O 3 system than the NaOH system. The polarizing curve tests showed the coatings improved the corrosion resistance of the AZ91D Mg alloy in 0.9% NaCl solution by nearly two orders of magnitude.

  3. Thermal Barrier Coatings for Advanced Gas Turbine and Diesel Engines

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Miller, Robert A.

    1999-01-01

    Ceramic thermal barrier coatings (TBCS) have been developed for advanced gas turbine and diesel engine applications to improve engine reliability and fuel efficiency. However, durability issues of these thermal barrier coatings under high temperature cyclic conditions are still of major concern. The coating failure depends not only on the coating, but also on the ceramic sintering/creep and bond coat oxidation under the operating conditions. Novel test approaches have been established to obtain critical thermomechanical and thermophysical properties of the coating systems under near-realistic transient and steady state temperature and stress gradients encountered in advanced engine systems. This paper presents detailed experimental and modeling results describing processes occurring in the ZrO2-Y2O3 thermal barrier coating systems, thus providing a framework for developing strategies to manage ceramic coating architecture, microstructure and properties.

  4. Characterization and study of mechanical and tribological properties on titanium di oxide (TiO2) coated 304L stainless steel

    NASA Astrophysics Data System (ADS)

    Ghanaraja, S.; Ali, Syed Imran; Ravikumar, K. S.; Likith, P.

    2018-04-01

    In the present investigation Atmospheric Plasma Spraying (APS) method is selected for coating the materials on 304L Stainless Steel as a substrate material, also called as substrate of Thermal Barrier Coating (TBC) system developed in the present work. Commercially available Ni-Cr metal powder is selected for bond coat and TiO2 powder is selected for Top Coat. The thickness of bond coat is taken as 75 µm where as the top coat thickness is varied as 100 µm, 200 µm and 300 µm. In plasma sprayed coating more attention is given to obtain uniform thickness on the given substrate. The various surface texture parameters of each sample is tested, morphology and coating thickness of above TBC system are studied with the help of SEM and X-Ray Diffraction for phase analysis. Micro-hardness of each layer of coating is measured by using Vicker's diamond indentation and the abrasive wear resistance of each system has been investigated through Pin-on-disc test, at room temperature by using wear and friction tribometer. The coating system possesses good wear resistance and can be used in various applications.

  5. Demonstration and Validation of Two Coat High Performance Coating System for Steel Structures in Corrosive Environments

    DTIC Science & Technology

    2016-12-01

    System for Steel Structures in Corrosive Environments Final Report on Project F12-AR06 Co ns tr uc tio n En gi ne er in g R es ea rc h La bo ra...Prevention and Control Program ERDC/CERL TR-16-27 December 2016 Demonstration and Validation of Two-Coat High- Performance Coating System for Steel ...Performance Coating System for Steel Structures in Corrosive Environments” ERDC/CERL TR-16-27 ii Abstract Department of Defense (DoD) installations

  6. Systems and methods for coating conduit interior surfaces utilizing a thermal spray gun with extension arm

    DOEpatents

    Moore, Karen A.; Zatorski, Raymond A.

    2005-07-12

    Systems and methods for applying a coating to an interior surface of a conduit. In one embodiment, a spray gun configured to apply a coating is attached to an extension arm which may be inserted into the bore of a pipe. The spray gun may be a thermal spray gun adapted to apply a powder coating. An evacuation system may be used to provide a volume area of reduced air pressure for drawing overspray out of the pipe interior during coating. The extension arm as well as the spray gun may be cooled to maintain a consistent temperature in the system, allowing for more consistent coating.

  7. Corrosion resistant thermal barrier coating. [protecting gas turbines and other engine parts

    NASA Technical Reports Server (NTRS)

    Levine, S. R.; Miller, R. A.; Hodge, P. E. (Inventor)

    1981-01-01

    A thermal barrier coating system for protecting metal surfaces at high temperature in normally corrosive environments is described. The thermal barrier coating system includes a metal alloy bond coating, the alloy containing nickel, cobalt, iron, or a combination of these metals. The system further includes a corrosion resistant thermal barrier oxide coating containing at least one alkaline earth silicate. The preferred oxides are calcium silicate, barium silicate, magnesium silicate, or combinations of these silicates.

  8. Thermal Residual Stress in Environmental Barrier Coated Silicon Nitride - Modeled

    NASA Technical Reports Server (NTRS)

    Ali, Abdul-Aziz; Bhatt, Ramakrishna T.

    2009-01-01

    When exposed to combustion environments containing moisture both un-reinforced and fiber reinforced silicon based ceramic materials tend to undergo surface recession. To avoid surface recession environmental barrier coating systems are required. However, due to differences in the elastic and thermal properties of the substrate and the environmental barrier coating, thermal residual stresses can be generated in the coated substrate. Depending on their magnitude and nature thermal residual stresses can have significant influence on the strength and fracture behavior of coated substrates. To determine the maximum residual stresses developed during deposition of the coatings, a finite element model (FEM) was developed. Using this model, the thermal residual stresses were predicted in silicon nitride substrates coated with three environmental coating systems namely barium strontium aluminum silicate (BSAS), rare earth mono silicate (REMS) and earth mono di-silicate (REDS). A parametric study was also conducted to determine the influence of coating layer thickness and material parameters on thermal residual stress. Results indicate that z-direction stresses in all three systems are small and negligible, but maximum in-plane stresses can be significant depending on the composition of the constituent layer and the distance from the substrate. The BSAS and REDS systems show much lower thermal residual stresses than REMS system. Parametric analysis indicates that in each system, the thermal residual stresses can be decreased with decreasing the modulus and thickness of the coating.

  9. The Development of 2700-3000 F Environmental Barrier Coatings for SiC/SiC Ceramic Matrix Composites: Challenges and Opportunities

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming

    2015-01-01

    Environmental barrier coatings (EBCs) and SiCSiC ceramic matrix composites (CMCs) systems will play a crucial role in future turbine engines for hot-section component applications because of their ability to significantly increase engine operating temperatures, reduce engine weight and cooling requirements. The development of prime-reliant environmental barrier coatings is a key to enable the applications of the envisioned 2700-3000F EBC - CMC systems to help achieve next generation engine performance and durability goals. This paper will primarily address the performance requirements and design considerations of environmental barrier coatings for turbine engine applications. The emphasis is placed on current NASA candidate environmental barrier coating systems for SiCSiC CMCs, their performance benefits and design limitations in long-term operation and combustion environments. The efforts have been also directed to developing prime-reliant, self-healing 2700F EBC bond coat; and high stability, lower thermal conductivity, and durable EBC top coats. Major technical barriers in developing environmental barrier coating systems, the coating integrations with next generation CMCs having the improved environmental stability, cyclic durability, erosion-impact resistance, and long-term system performance will be described. The research and development opportunities for turbine engine environmental barrier coating systems by utilizing improved compositions, state-of-the-art processing methods, and simulated environment testing and durability modeling will be discussed.

  10. Laser-Generated Rayleigh Waves Propagating in Transparent Viscoelastic Adhesive Coating/Metal Substrate Systems

    NASA Astrophysics Data System (ADS)

    Guan, Yi-jun; Sun, Hong-xiang; Yuan, Shou-qi; Zhang, Shu-yi; Ge, Yong

    2016-10-01

    We have established numerical models for simulating laser-generated Rayleigh waves in coating/substrate systems by a finite element method and investigated the propagation characteristics of Rayleigh waves in systems concerning the viscoelasticity and transparency of adhesive coatings. In this way, we have studied the influence of the mechanical properties of the coating, such as the elastic moduli, viscoelastic moduli, coating thickness, transparency, and coating material, on the propagation characteristics of the Rayleigh waves. The results show that the propagation characteristics of the Rayleigh waves can be divided into low- and high-frequency parts. The high-frequency propagation characteristics of the Rayleigh wave are closely related to the properties of the adhesive coating.

  11. Hydrogen plasma tests of some insulating coating systems for the nuclear rocket thrust chamber

    NASA Technical Reports Server (NTRS)

    Current, A. N.; Grisaffe, S. J.; Wycoff, K. C.

    1972-01-01

    Several plasma-sprayed and slurry-coated insulating coating systems were evaluated for structural stability in a low-pressure hot hydrogen environment at a maximum heat flux of 19.6 million watts/sq meter. The heat was provided by an electric-arc plasma generator. The coating systems consisted of a number of thin layers of metal oxides and/or metals. The materials included molybdenum, nichrome, tungsten, alumina, zirconia, and chromia. The study indicates potential usefulness in this environment for some coatings, and points up the need for improved coating application techniques.

  12. Optical tools for high-throughput screening of abrasion resistance of combinatorial libraries of organic coatings

    NASA Astrophysics Data System (ADS)

    Potyrailo, Radislav A.; Chisholm, Bret J.; Olson, Daniel R.; Brennan, Michael J.; Molaison, Chris A.

    2002-02-01

    Design, validation, and implementation of an optical spectroscopic system for high-throughput analysis of combinatorially developed protective organic coatings are reported. Our approach replaces labor-intensive coating evaluation steps with an automated system that rapidly analyzes 8x6 arrays of coating elements that are deposited on a plastic substrate. Each coating element of the library is 10 mm in diameter and 2 to 5 micrometers thick. Performance of coatings is evaluated with respect to their resistance to wear abrasion because this parameter is one of the primary considerations in end-use applications. Upon testing, the organic coatings undergo changes that are impossible to quantitatively predict using existing knowledge. Coatings are abraded using industry-accepted abrasion test methods at single-or multiple-abrasion conditions, followed by high- throughput analysis of abrasion-induced light scatter. The developed automated system is optimized for the analysis of diffusively scattered light that corresponds to 0 to 30% haze. System precision of 0.1 to 2.5% relative standard deviation provides capability for the reliable ranking of coatings performance. While the system was implemented for high-throughput screening of combinatorially developed organic protective coatings for automotive applications, it can be applied to a variety of other applications where materials ranking can be achieved using optical spectroscopic tools.

  13. New temperable solar coatings: Tempsol

    NASA Astrophysics Data System (ADS)

    Demiryont, Hulya

    2001-11-01

    This paper deals with the large area deposition and coating properties of the thermo-stable (temperable/bendable) solar coating material, CuO, and some new optical coating systems comprising CuO films for architectural and automotive/transportation applications. The CuO solar coating is combined with other coating layers, for example, an anti-reflection film, a reflection film, a coloration coating layer, etc., which are also thermo-stable. The film systems are developed at the research laboratory by D.C. Magnetron reactive sputtering process. The new developed technologies then transferred to the production line. Product performances are compared before and after heat treatment of the coating systems. Performance tables and other physical properties, including optical parameters, mechanical and environmental stability, storage properties, etc., are also presented for this new product series.

  14. Electrodepositing behaviors and properties of nano Fe-Ni-Cr/SiC composite coatings from trivalent chromium baths containing compound carboxylate-urea system.

    PubMed

    He, Xinkuai; Hou, Bailong; Cai, Youxing; Li, Chen; Jiang, Yumei; Wu, Luye

    2013-06-01

    The nano Fe-Ni-Cr/SiC composite coatings were prepared using pulse electrodeposition method from trivalent chromium baths containing compound carboxylate-urea system and nano SiC in ultrasonic field. The effects of the carboxylate-urea system on the nano Fe-Ni-Cr/SiC composite coatings have been investigated. These results indicated that the SiC and Cr contents and the thickness of the Fe-Ni-Cr/SiC composite coatings could be obviously improved by the compound carboxylate-urea system. The steady-state polarization curves showed that the hydrogen evolution reaction (HER) could be significantly inhibited by the compound carboxylate-urea system, which was benefit to increase the SiC and Cr contents and the thickness of the composite coatings. The cyclic voltammetry (CV) curves showed that the cathodic polarization of the matrix metal ions could be increased in the bath containing the compound carboxylate-urea system. Thus, a compact Fe-Ni-Cr/SiC composite coating could be obtained using this technique. The surface morphology of the Fe-Ni-Cr/SiC composite coatings checked with the scanning electron micrographs (SEM) showed that the surface smoothness could be also improved and the microcracks and pinholes could be decreased due to the presence of the compound carboxylate-urea system. The phase composition of the as-posited coating was measured by the X-ray diffraction (XRD). XRD data showed that the as-posited coating was Fe-Ni-Cr/SiC composite coating. The chemical composition of the coating was investigated by energy dispersive spectrum (EDS) analysis. The result showed the functional Fe-Ni-Cr/SiC composite coatings with 4.1 wt.% SiC and 25.1 wt.% Cr, and 23.9 microm thickness were obtained in this study, which had best corrosion resistance according to the results of the typical potentiodynamic polarization curves of the Fe-Ni-Cr/SiC composite coatings.

  15. High color fidelity thin film multilayer systems for head-up display use

    NASA Astrophysics Data System (ADS)

    Tsou, Yi-Jen D.; Ho, Fang C.

    1996-09-01

    Head-up display is gaining increasing access in automotive vehicles for indication and position/navigation purposes. An optical combiner, which allows the driver to receive image information from outside and inside of the automobile, is the essential part of this display device. Two multilayer thin film combiner coating systems with distinctive polarization selectivity and broad band spectral neutrality are discussed. One of the coating systems was designed to be located at the lower portion of the windshield. The coating reduced the exterior glare by approximately 45% and provided about 70% average see-through transmittance in addition to the interior information display. The other coating system was designed to be integrated with the sunshield located at the upper portion of the windshield. The coating reflected the interior information display while reducing direct sunlight penetration to 25%. Color fidelity for both interior and exterior images were maintained in both systems. This facilitated the display of full-color maps. Both coating systems were absorptionless and environmentally durable. Designs, fabrication, and performance of these coating systems are addressed.

  16. Development of Advanced Environmental Barrier Coatings for SiC/SiC Composites at NASA GRC: Prime-Reliant Design and Durability Perspectives

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming

    2017-01-01

    Environmental barrier coatings (EBCs) are considered technologically important because of the critical needs and their ability to effectively protect the turbine hot-section SiC/SiC ceramic matrix composite (CMC) components in harsh engine combustion environments. The development of NASA's advanced environmental barrier coatings have been aimed at significantly improved the coating system temperature capability, stability, erosion-impact, and CMAS resistance for SiC/SiC turbine airfoil and combustors component applications. The NASA environmental barrier coating developments have also emphasized thermo-mechanical creep and fatigue resistance in simulated engine heat flux and environments. Experimental results and models for advanced EBC systems will be presented to help establishing advanced EBC composition design methodologies, performance modeling and life predictions, for achieving prime-reliant, durable environmental coating systems for 2700-3000 F engine component applications. Major technical barriers in developing environmental barrier coating systems and the coating integration with next generation composites having further improved temperature capability, environmental stability, EBC-CMC fatigue-environment system durability will be discussed.

  17. The Development of Environmental Barrier Coatings for SiCSiC Ceramic Matrix Composites: Challenges and Opportunities

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming

    2014-01-01

    Environmental barrier coatings (EBCs) and SiC/SiC ceramic matrix composites (CMCs) systems will play a crucial role in future turbine engines for hot-section component applications because of their ability to significantly increase engine operating temperatures, reduce engine weight and cooling requirements. The development of prime-reliant environmental barrier coatings is a key to enable the applications of the envisioned CMC components to help achieve next generation engine performance and durability goals. This paper will primarily address the performance requirements and design considerations of environmental barrier coatings for turbine engine applications. The emphasis is placed on current candidate environmental barrier coating systems for SiCSiC CMCs, their performance benefits and design limitations in long-term operation and combustion environments. Major technical barriers in developing advanced environmental barrier coating systems, the coating integrations with next generation CMC turbine components having improved environmental stability, cyclic durability and system performance will be described. The development trends for turbine environmental barrier coating systems by utilizing improved compositions, state-of-the-art processing methods, and simulated environment testing and durability modeling will be discussed.

  18. Effects of compound carboxylate-urea system on nano Ni-Cr/SiC composite coatings from trivalent chromium baths.

    PubMed

    He, Xinkuai; Hou, Bailong; Cai, Youxing; Wu, Luye

    2013-03-01

    The effects of compound carboxylate-urea system on the nano Ni-Cr/SiC composite coatings from trivalent chromium baths have been investigated in ultrasonic field. These results indicated that the SiC and Cr contents and the thickness of the Ni-Cr/SiC composite coatings could be obviously improved by the compound carboxylate-urea system. The steady-state polarization curves showed that the hydrogen evolution reaction (HER) could be significantly inhibited by the compound carboxylate-urea system, which was benefit to increase the SiC and Cr contents and the thickness of the composite coatings. The cyclic voltammetry (CV) curves showed that both of the Cr(III) and Ni(II) cathodic polarization could be increased in the bath containing the compound carboxylate-urea system. Thus, a compact Ni-Cr/SiC composite coating could be obtained using this technique. The surface morphology of the Ni-Cr/SiC composite coatings checked with the scanning electron micrographs (SEM) showed that the surface smoothness could be also improved and the microcracks and pinholes could be decreased due to the presence of the compound carboxylate-urea system. The phase composition of the as-posited coating was measured by the X-ray diffraction. XRD data showed that the as-posited coating was Ni-Cr/SiC composite coating. The chemical composition of the coating was investigated by energy dispersive spectrum (EDS) analysis. The result showed the Ni-Cr/SiC composite coatings with 3.8 wt.% SiC and 24.68 wt.% Cr were obtained in this study, which had best corrosion resistance according to the results of the typical potentiodynamic polarization curves of the Ni-Cr/SiC composite coatings.

  19. NASA's Advanced Environmental Barrier Coatings Development for SiC/SiC Ceramic Matrix Composites: Understanding Calcium Magnesium Alumino-Silicate (CMAS) Degradations and Resistance

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming

    2014-01-01

    Environmental barrier coatings (EBCs) and SiCSiC ceramic matrix composites (CMCs) systems will play a crucial role in next generation turbine engines for hot-section component applications because of their ability to significantly increase engine operating temperatures with improved efficiency, reduce engine weight and cooling requirements. The development of prime-reliant environmental barrier coatings is essential to the viability and reliability of the envisioned CMC engine component applications, ensuring integrated EBC-CMC system durability and designs are achievable for successful applications of the game-changing component technologies and lifing methodologies.This paper will emphasize recent NASA environmental barrier coating developments for SiCSiC turbine airfoil components, utilizing advanced coating compositions, state-of-the-art processing methods, and combined mechanical and environment testing and durability evaluations. The coating-CMC degradations in the engine fatigue-creep and operating environments are particularly complex; one of the important coating development aspects is to better understand engine environmental interactions and coating life debits, and we have particularly addressed the effect of Calcium-Magnesium-Alumino-Silicate (CMAS) from road sand or volcano-ash deposits on the durability of the environmental barrier coating systems, and how the temperature capability, stability and cyclic life of the candidate rare earth oxide and silicate coating systems will be impacted in the presence of the CMAS at high temperatures and under simulated heat flux conditions. Advanced environmental barrier coating systems, including HfO2-Si with rare earth dopant based bond coat systems, will be discussed for the performance improvements to achieve better temperature capability and CMAS resistance for future engine operating conditions.

  20. Can deformation of a polymer film with a rigid coating model geophysical processes?

    NASA Astrophysics Data System (ADS)

    Volynskii, A. L.; Bazhenov, S. L.

    2007-12-01

    The structural and mechanical behavior of polymer films with a thin rigid coating is analyzed. The behavior of such systems under applied stress is accompanied by the formation of a regular wavy surface relief and by regular fragmentation of the coating. The above phenomena are shown to be universal. Both phenomena (stress-induced development of a regular wavy surface relief and regular fragmentation of the coating) are provided by the specific features of mechanical stress transfer from a compliant soft support to a rigid thin coating. The above phenomena are associated with a specific structure of the system, which is referred to as “a rigid coating on a soft substratum” system (RCSS). Surface microrelief in RCSS systems is similar to the ocean floor relief in the vicinity of mid-oceanic ridges. Thus, the complex system composed of a young oceanic crust and upper Earth's mantle may be considered as typically “a solid coating on a soft substratum” system. Specific features of the ocean floor relief are analyzed in terms of the approach advanced for the description of the structural mechanical behavior of polymer films with a rigid coating. This analysis allowed to estimate the strength of an ocean floor.

  1. Reciprocating sliding wear evaluation of a polymeric/coating tribological system

    NASA Astrophysics Data System (ADS)

    Braza, J. F.; Furst, R. E.

    1993-04-01

    Reciprocating screening tests aimed at simulating a control bearing in a contaminated environment to discern the optimum polymeric/coating combination are described. The polymeric/coating systems were compared with the wear of a baseline phenolic impregnated polytetrafluoroethylene (PTFE) polyester woven fabric composite against an uncoated stainless steel substrate. The polymeric composites under consideration include a polyamide-imide (PAI), a polybenzimidazole, and an injection-moldable PEEK. Results indicate that the system of either PEEK or PAI with an E-Ni-PTFE- or TiN-coated substrate produced the best tribological system. These two composites also exhibited a significant improvement over the baseline fabric when tested against the high-velocity oxygen-fuel thermal spray coating. To discern better the optimum polymeric composite/coating system, full-scale testing must be conducted to study system dynamics, vibrations, counterface hardness and roughness, temperature, external environment and application specific conditions.

  2. Ceramic thermal barrier coatings for electric utility gas turbine engines

    NASA Technical Reports Server (NTRS)

    Miller, R. A.

    1986-01-01

    Research and development into thermal barrier coatings for electric utility gas turbine engines is reviewed critically. The type of coating systems developed for aircraft applications are found to be preferred for clear fuel electric utility applications. These coating systems consists of a layer of plasma sprayed zirconia-yttria ceramic over a layer of MCrAly bond coat. They are not recommended for use when molten salts are presented. Efforts to understand coating degradation in dirty environments and to develop corrosion resistant thermal barrier coatings are discussed.

  3. Evaluation of hot corrosion behavior of thermal barrier coatings

    NASA Technical Reports Server (NTRS)

    Hodge, P. E.; Miller, R. A.; Gedwill, M. A.

    1980-01-01

    Calcium silicate and yttria stabilized zirconia/MCrAlY thermal barrier coating systems on air-cooled specimens were exposed to sodium plus vanadium doped Mach 0.3 combustion gases. Thermal barrier coating endurance was determined to be a strong inverse function of ceramic coating thickness. Coating system durability was increased through the use of higher Cr + Al NiCrAl and CoCrAlY bond coatings. Chemical and electron microprobe analyses supported the predictions of condensate compositions and the determination of their roles in causing spalling of the ceramic coatings.

  4. Industry tests of NASA ceramic thermal barrier coating. [for gas turbine engine applications

    NASA Technical Reports Server (NTRS)

    Liebert, C. H.; Stepka, F. S.

    1979-01-01

    Ceramic thermal barrier coating (TBC) system was tested by industrial and governmental organizations for a variety of aeronautical, marine, and ground-based gas turbine engine applications. This TBC is a two-layer system with a bond coating of nickel-chromium-aluminum-yttrium (Ni-16Cr-6Al-0.6Y, in wt. percent) and a ceramic coating of yttria-stabilized zirconia (ZrO2-12Y2O3, in wt. percent). Seven tests evaluated the system's thermal protection and durability. Five other tests determined thermal conductivity, vibratory fatigue characteristics, and corrosion resistance of the system. The information presented includes test results and photographs of the coated parts. Recommendations are made for improving the coating procedures.

  5. ETV Program Report: Coatings for Wastewater Collection Systems - Standard Cement Materials, Epoxy Coating 4553

    EPA Science Inventory

    The Standard Cement Materials, Inc. Standard Epoxy Coating 4553™ (SEC 4553) epoxy coating used for wastewater collection system rehabilitation was evaluated by EPA’s Environmental Technology Verification Program under laboratory conditions at the Center for Innovative Grouting Ma...

  6. Demonstration of no-VOC/no-HAP wood furniture coating system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, E.W.; Guan, R.; McCrillis, R.C.

    1997-12-31

    The United States Environmental Protection Agency has contracted with AeroVironment Environmental Services, Inc. and its subcontractor, Adhesive Coating Co., to develop and demonstrate a no-VOC (volatile organic compound)/no-HAP (hazardous air pollutant) wood furniture coating system. The objectives of this project are to develop a new wood coating system that is sufficiently mature for demonstration and to develop a technology transfer plan to get the product into public use. The performance characteristics of this new coating system are excellent in terms of adhesion, drying times, gloss, hardness, mar resistance, level of solvents, and stain resistance. Workshops will be held to providemore » detailed information to wood furniture manufacturers on what is required to change to the new coating system. Topics such as spray gun selection, spray techniques, coating repair procedures, drying times and procedures, and spray equipment cleaning materials and techniques will be presented. A cost analysis, including costs of materials, capital outlay, and labor will be conducted comparing costs to finish furniture with the new system to systems currently used. Film performance, coating materials cost per unit production, productivity, manufacturing changes, and emission levels will be compared in the workshops, based on data gathered during the in-plant, full scale demonstrations.« less

  7. Environmental Projects for Aerospace Applications

    DTIC Science & Technology

    2012-05-23

    following for missile systems as part of a total hexavalent chromium free coating system:  1-Evaluate trivalent chromium pretreatment (TCP) for use on...Yourfilename.ppt Hexavalent Chromium Free Coating System for Magnesium Housings on Aviation Systems UNCLASSIFIED UNCLASSIFIED 12 Yourfilename.ppt...Sulfur Dioxide (SO2) testing complete. Hexavalent Chromium Free Coating System for Magnesium Housings on Aviation Systems Description If

  8. Method for coating ultrafine particles, system for coating ultrafine particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jie; Liu, Yung

    The invention provides a method for dispersing particles within a reaction field, the method comprising confining the particles to the reaction field using a standing wave. The invention also provides a system for coating particles, the system comprising a reaction zone; a means for producing fluidized particles within the reaction zone; a fluid to produce a standing wave within the reaction zone; and a means for introducing coating moieties to the reaction zone. The invention also provides a method for coating particles, the method comprising fluidizing the particles, subjecting the particles to a standing wave; and contacting the subjected particlesmore » with a coating moiety.« less

  9. Creep Behavior of Hafnia and Ytterbium Silicate Environmental Barrier Coating Systems on SiC/SiC Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Fox, Dennis S.; Ghosn, Louis J.; Harder, Bryan

    2011-01-01

    Environmental barrier coatings will play a crucial role in future advanced gas turbine engines because of their ability to significantly extend the temperature capability and stability of SiC/SiC ceramic matrix composite (CMC) engine components, thus improving the engine performance. In order to develop high performance, robust coating systems for engine components, appropriate test approaches simulating operating temperature gradient and stress environments for evaluating the critical coating properties must be established. In this paper, thermal gradient mechanical testing approaches for evaluating creep and fatigue behavior of environmental barrier coated SiC/SiC CMC systems will be described. The creep and fatigue behavior of Hafnia and ytterbium silicate environmental barrier coatings on SiC/SiC CMC systems will be reported in simulated environmental exposure conditions. The coating failure mechanisms will also be discussed under the heat flux and stress conditions.

  10. Weightless Environment Training Facility (WETF) materials coating evaluation, volume 2

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This volume consists of Appendices A and B to the report on the Weightless Environment Training Facility Materials Coating Evaluation project. The project selected 10 coating systems to be evaluated in six separate exposure environments, and subject to three tests for physical properties. Appendix A holds the coating system, surface preparation, and application data. Appendix B holds the coating material infrared spectra.

  11. Numerical investigations of failure in EB-PVD thermal barrier coating systems

    NASA Astrophysics Data System (ADS)

    Glynn, Michael L.

    Thermal barrier coating (TBC) systems are used in high temperature applications in turbine engines. TBCs are applied on superalloy substrates and are multilayered coatings comprised of a metallic bond coat, a thermally grown oxide (TGO) and a ceramic top coat. They provide thermal protection for the superalloy substrate and are considered to hold the greatest potential for increased operating temperatures. Failure of the TBC system most commonly occurs as a result of large scale buckling and spallation. The buckling is a consequence of many small-scale delaminations that arise in the top coat above local imperfections in the TGO, and durability of the TBC system is governed by a sequence of crack nucleation, propagation and coalescence. The numerical investigations that are employed in this dissertation are used to determine the stress development near the imperfections and are based on microstructural observations and measured material properties of TBC test buttons supplied by GE Aircraft Engines. The test buttons were subject to thermal cycling at GE and cycled to different percentages of TBC life. Numerical simulations of two different types of TBC tests are used to show that the top coat out-of-plane stress increases with a decrease of the substrate radius of curvature and a decrease in the heating rate. An inherent scaling parameter in the TBC system is identified and used to demonstrate that the stress developed in the top coat is governed by the evolution of an imperfection in the TGO. The effect of a martensitic phase transformation in the bond coat, related to a change in bond coat chemistry, is shown to significantly increase the top coat out-of-plane tensile stress. Finally, a subsurface crack is simulated in the top coat and used to determine the influence of the bond coat on failure of the TBC system. While the bond coat inelastic properties are the most important factors in determining the extent of the crack opening displacement, the bond coat martensitic phase transformation governs when the crack propagates. The crack propagates during heat-up when the martensitic phase transformation is included, and it propagates during cool-down when the transformation is not included.

  12. Integration Of Thin-Film Coatings Into Optical Systems

    NASA Astrophysics Data System (ADS)

    Matteucci, John; Baumeister, Philip

    1980-09-01

    These remarks are directed to professional lens designers, optical systems engineers and fabricators. You are the thoroughly capable experts who configure and construct optical systems that image superbly over vast areas. Many of the systems contain optical coatings that perform some of the functions shown in Figure 1. They serve to enhance the radiant reflectance of a surface, to reduce the Fresnel losses to low values, to alter the state of polarization of the flux, to divide beams into various channels, or to isolate some part of the electromagnetic spectrum. Figure 2 depicts a procedure that is sometimes used to select coatings. Here they are not specified until after the optical system design is frozen. In essence, coatings are allocated the same level of importance as the shade of paint on the exterior of the instrument. Not infrequently disaster lurks in this approach because the coatings are unattainable or they impact the optical system in some unexpected manner. The strategy shown in Figure 3 is safer. Here, the coating selection is integrated into the optical design. If the coatings are difficult (and, hence, costly) to produce, then compromises are investigated that lessen the overall cost of the system.

  13. Advanced Environmental Barrier Coating Development for SiC/SiC Ceramic Matrix Composites: NASA's Perspectives

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming

    2016-01-01

    This presentation reviews NASA environmental barrier coating (EBC) system development programs and the coating materials evolutions for protecting the SiC/SiC Ceramic Matrix Composites in order to meet the next generation engine performance requirements. The presentation focuses on several generations of NASA EBC systems, EBC-CMC component system technologies for SiC/SiC ceramic matrix composite combustors and turbine airfoils, highlighting the temperature capability and durability improvements in simulated engine high heat flux, high pressure, high velocity, and with mechanical creep and fatigue loading conditions. The current EBC development emphasis is placed on advanced NASA 2700F candidate environmental barrier coating systems for SiC/SiC CMCs, their performance benefits and design limitations in long-term operation and combustion environments. Major technical barriers in developing environmental barrier coating systems, the coating integrations with next generation CMCs having the improved environmental stability, erosion-impact resistance, and long-term fatigue-environment system durability performance are described. The research and development opportunities for advanced turbine airfoil environmental barrier coating systems by utilizing improved compositions, state-of-the-art processing methods, and simulated environment testing and durability modeling are discussed.

  14. Performance Evaluation and Modeling of Erosion Resistant Turbine Engine Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Miller, Robert A.; Zhu, Dongming; Kuczmarski, Maria

    2008-01-01

    The erosion resistant turbine thermal barrier coating system is critical to the rotorcraft engine performance and durability. The objective of this work was to determine erosion resistance of advanced thermal barrier coating systems under simulated engine erosion and thermal gradient environments, thus validating a new thermal barrier coating turbine blade technology for future rotorcraft applications. A high velocity burner rig based erosion test approach was established and a new series of rare earth oxide- and TiO2/Ta2O5- alloyed, ZrO2-based low conductivity thermal barrier coatings were designed and processed. The low conductivity thermal barrier coating systems demonstrated significant improvements in the erosion resistance. A comprehensive model based on accumulated strain damage low cycle fatigue is formulated for blade erosion life prediction. The work is currently aiming at the simulated engine erosion testing of advanced thermal barrier coated turbine blades to establish and validate the coating life prediction models.

  15. Methods of producing armor systems, and armor systems produced using such methods

    DOEpatents

    Chu, Henry S; Lillo, Thomas M; McHugh, Kevin M

    2013-02-19

    An armor system and method involves providing a core material and a stream of atomized coating material that comprises a liquid fraction and a solid fraction. An initial layer is deposited on the core material by positioning the core material in the stream of atomized coating material wherein the solid fraction of the stream of atomized coating material is less than the liquid fraction of the stream of atomized coating material on a weight basis. An outer layer is then deposited on the initial layer by positioning the core material in the stream of atomized coating material wherein the solid fraction of the stream of atomized coating material is greater than the liquid fraction of the stream of atomized coating material on a weight basis.

  16. Technical and Economical Aspects of Current Thermal Barrier Coating Systems for Gas Turbine Engines by Thermal Spray and EBPVD: A Review

    NASA Astrophysics Data System (ADS)

    Feuerstein, Albert; Knapp, James; Taylor, Thomas; Ashary, Adil; Bolcavage, Ann; Hitchman, Neil

    2008-06-01

    The most advanced thermal barrier coating (TBC) systems for aircraft engine and power generation hot section components consist of electron beam physical vapor deposition (EBPVD) applied yttria-stabilized zirconia and platinum modified diffusion aluminide bond coating. Thermally sprayed ceramic and MCrAlY bond coatings, however, are still used extensively for combustors and power generation blades and vanes. This article highlights the key features of plasma spray and HVOF, diffusion aluminizing, and EBPVD coating processes. The coating characteristics of thermally sprayed MCrAlY bond coat as well as low density and dense vertically cracked (DVC) Zircoat TBC are described. Essential features of a typical EBPVD TBC coating system, consisting of a diffusion aluminide and a columnar TBC, are also presented. The major coating cost elements such as material, equipment and processing are explained for the different technologies, with a performance and cost comparison given for selected examples.

  17. Absolute Thickness Measurements on Coatings Without Prior Knowledge of Material Properties Using Terahertz Energy

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Cosgriff, Laura M.; Harder, Bryan; Zhu, Dongming; Martin, Richard E.

    2013-01-01

    This study investigates the applicability of a novel noncontact single-sided terahertz electromagnetic measurement method for measuring thickness in dielectric coating systems having either dielectric or conductive substrate materials. The method does not require knowledge of the velocity of terahertz waves in the coating material. The dielectric coatings ranged from approximately 300 to 1400 m in thickness. First, the terahertz method was validated on a bulk dielectric sample to determine its ability to precisely measure thickness and density variation. Then, the method was studied on simulated coating systems. One simulated coating consisted of layered thin paper samples of varying thicknesses on a ceramic substrate. Another simulated coating system consisted of adhesive-backed Teflon adhered to conducting and dielectric substrates. Alumina samples that were coated with a ceramic adhesive layer were also investigated. Finally, the method was studied for thickness measurement of actual thermal barrier coatings (TBC) on ceramic substrates. The unique aspects and limitations of this method for thickness measurements are discussed.

  18. Development of Advanced Environmental Barrier Coatings for SiC/SiC Ceramic Matrix Composites: Path Toward 2700 F Temperature Capability and Beyond

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Harder, Bryan; Hurst, Janet B.; Good, Brian; Costa, Gustavo; Bhatt, Ramakrishna T.; Fox, Dennis S.

    2017-01-01

    Advanced environmental barrier coating systems for SiC-SiC Ceramic Matrix Composite (CMC) turbine and combustor hot section components are currently being developed to meet future turbine engine emission and performance goals. One of the significant coating development challenges is to achieve prime-reliant environmental barrier coating systems to meet the future 2700F EBC-CMC temperature stability and environmental durability requirements. This presentation will emphasize recent NASA environmental barrier coating system testing and down-selects, particularly the development path and properties towards 2700-3000F durability goals by using NASA hafnium-hafnia-rare earth-silicon-silicate composition EBC systems for the SiC-SiC CMC turbine component applications. Advanced hafnium-based compositions for enabling next generation EBC and CMCs capabilities towards ultra-high temperature ceramic coating systems will also be briefly mentioned.

  19. Thermal barrier coating life prediction model development

    NASA Technical Reports Server (NTRS)

    Strangman, T. E.; Neumann, J. F.; Tasooji, A.

    1985-01-01

    This program focuses on predicting the lives of two types of strain-tolerant and oxidation-resistant thermal barrier coating (TBC) systems that are produced by commercial coating suppliers to the gas turbine industry. The plasma-sprayed TBC system is composed of a low pressure, plasma sprayed applied, oxidation resistant NiCrAlY bond coating. The other system is an air plasma sprayed yttria (8 percent) partially stabilized zirconia insulative layer.

  20. Microstructure Evolution and Durability of Advanced Environmental Barrier Coating Systems for SiC/SiC Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Evans, Laura J.; McCue, Terry R.; Harder, Bryan

    2016-01-01

    Environmental barrier coated SiC-SiC ceramic matrix composites (CMCs) systems will play a crucial role in next generation turbine engines for hot-section component applications because of their ability to significantly increase engine operating temperatures with improved efficiency, reduce engine weight and cooling requirements. Advanced HfO2 and rare earth silicate environmental barrier coatings (EBCs), along with multicomponent hafnium and rare earth silicide EBC bond coats have been developed. The coating degradation mechanisms in the laboratory simulated engine thermal cycling, and fatigue-creep operating environments are also being investigated. This paper will focus on the microstructural and compositional evolutions of an advanced environmental barrier coating system on a SiC-SiC CMC substrate during the high temperature simulated durability tests, by using a Field Emission Gun Scanning Electron Microscopy, Energy Dispersive Spectroscopy (EDS) and Wavelength Dispersive Spectroscopy (WDS). The effects of Calcium-Magnesium-Alumino-Silicate (CMAS) from road sand or volcano-ash deposits on the degradation mechanisms of the environmental barrier coating systems will also be discussed. The detailed analysis results help understand the EBC-CMC system performance, aiming at the durability improvements to achieve more robust, prime-reliant environmental barrier coatings.

  1. Methods for coating conduit interior surfaces utilizing a thermal spray gun with extension arm

    DOEpatents

    Moore, Karen A.; Zatorski, Raymond A.

    2007-10-02

    Systems and methods for applying a coating to an interior surface of a conduit. In one embodiment, a spray gun configured to apply a coating is attached to an extension arm which may be inserted into the bore of a pipe. The spray gun may be a thermal spray gun adapted to apply a powder coating. An evacuation system may be used to provide a volume area of reduced air pressure for drawing overspray out of the pipe interior during coating. The extension arm as well as the spray gun may be cooled to maintain a consistent temperature in the system, allowing for more consistent coating.

  2. Increased Reliability of Gas Turbine Components by Robust Coatings Manufacturing

    NASA Astrophysics Data System (ADS)

    Sharma, A.; Dudykevych, T.; Sansom, D.; Subramanian, R.

    2017-08-01

    The expanding operational windows of the advanced gas turbine components demand increasing performance capability from protective coating systems. This demand has led to the development of novel multi-functional, multi-materials coating system architectures over the last years. In addition, the increasing dependency of components exposed to extreme environment on protective coatings results in more severe penalties, in case of a coating system failure. This emphasizes that reliability and consistency of protective coating systems are equally important to their superior performance. By means of examples, this paper describes the effects of scatter in the material properties resulting from manufacturing variations on coating life predictions. A strong foundation in process-property-performance correlations as well as regular monitoring and control of the coating process is essential for robust and well-controlled coating process. Proprietary and/or commercially available diagnostic tools can help in achieving these goals, but their usage in industrial setting is still limited. Various key contributors to process variability are briefly discussed along with the limitations of existing process and product control methods. Other aspects that are important for product reliability and consistency in serial manufacturing as well as advanced testing methodologies to simplify and enhance product inspection and improve objectivity are briefly described.

  3. Thin coatings for protecting titanium aluminides in high-temperature oxidizing environments

    NASA Technical Reports Server (NTRS)

    Wiedemann, K. E.; Taylor, P. J.; Clark, R. K.; Wallace, T. A.

    1991-01-01

    Titanium aluminides have high specific strengths at high temperatures but are susceptible to environmental attack. Their use in many aerospace applications would require that they be protected with coatings that, for structural efficiency, must be thin. It is conceivable that acceptable coatings might be found in several oxide systems, and consequently, oxide coatings of many compositions were prepared from sol-gels for study. Response-surface methodology was used to refine coating compositions and factorial experiments were used to develop coating strategies. Oxygen permeability diagrams of two-layer coatings for several oxide systems, an analysis of multiple-layer coatings on rough and polished surfaces, and modeling of the oxidation weight gain are presented.

  4. Effect of Silver or Copper Nanoparticles-Dispersed Silane Coatings on Biofilm Formation in Cooling Water Systems

    PubMed Central

    Ogawa, Akiko; Kanematsu, Hideyuki; Sano, Katsuhiko; Sakai, Yoshiyuki; Ishida, Kunimitsu; Beech, Iwona B.; Suzuki, Osamu; Tanaka, Toshihiro

    2016-01-01

    Biofouling often occurs in cooling water systems, resulting in the reduction of heat exchange efficiency and corrosion of the cooling pipes, which raises the running costs. Therefore, controlling biofouling is very important. To regulate biofouling, we focus on the formation of biofilm, which is the early step of biofouling. In this study, we investigated whether silver or copper nanoparticles-dispersed silane coatings inhibited biofilm formation in cooling systems. We developed a closed laboratory biofilm reactor as a model of a cooling pipe and used seawater as a model for cooling water. Silver or copper nanoparticles-dispersed silane coating (Ag coating and Cu coating) coupons were soaked in seawater, and the seawater was circulated in the laboratory biofilm reactor for several days to create biofilms. Three-dimensional images of the surface showed that sea-island-like structures were formed on silane coatings and low concentration Cu coating, whereas nothing was formed on high concentration Cu coatings and low concentration Ag coating. The sea-island-like structures were analyzed by Raman spectroscopy to estimate the components of the biofilm. We found that both the Cu coating and Ag coating were effective methods to inhibit biofilm formation in cooling pipes. PMID:28773758

  5. DEVELOPMENT OF A NO-VOC/NO-HAP WOOD FURNITURE COATINGS SYSTEM

    EPA Science Inventory

    The report gives results of the development and demonstration of a no-VOC (volatile organic compound)/no-HAP (hazardous air pollutant) wood furniture coating system. The performance characteristics of the new coating system are excellent in terms of adhesion, drying time, gloss, ...

  6. Development of improved high temperature coatings for IN-792 + HF

    NASA Technical Reports Server (NTRS)

    Profant, D. D.; Naik, S. K.

    1981-01-01

    The development for t-55 l712 engine of high temperature for integral turbine nozzles with improved thermal fatigue resistance without sacrificing oxidation/corrosion protection is discussed. The program evaluated to coating systems which comprised one baseline plasma spray coating (12% Al-NiCoCrALY), three aluminide coatings including the baseline aluminide (701), two CoNiCrAly (6% Al) + aluminide systems and four NiCoCrY + aluminide coating were evaluated. The two-step coating processes were investigated since it offered the advantage of tailoring the composition as well as properly coating surfaces of an integral or segmented nozzle. Cyclic burner rig thermal fatigue and oxidation/corrosion tests were used to evaluate the candidate coating systems. The plasma sprayed 12% Al-NiCoCrAlY was rated the best coating in thermal fatigue resistance and outperformed all coatings by a factor between 1.4 to 2.5 in cycles to crack initiation. However, this coatings is not applicable to integral or segmented nozzles due to the line of sight limitation of the plasma spray process. The 6% Al-CoNiCrAlY + Mod. 701 aluminide (32 w/o Al) was rated the best coating in oxidation/corrosion resistance and was rated the second best in thermal fatigue resistance.

  7. Effect of thermally growth oxides (TGO) on adhesion strength for high purity yitria stabilised zirconia (YSZ) and rare - Earth lanthanum zirconates (LZ) multilayer thermal barrier coating before and after isothermal heat treatment

    NASA Astrophysics Data System (ADS)

    Yunus, Salmi Mohd; Johari, Azril Dahari; Husin, Shuib

    2017-12-01

    Investigation on the effect of Thermally Growth Oxides (TGO) on the adhesion strength for thermal barrier coating (TBC) was carried out. The TBC under studied was the multilayer systems which consist of NiCrAlY bond coat and YSZ/LZ ceramic coating deposited on Ni-based superalloy substrates. The development of thermally growth oxides (TGO) for both TBC systems after isothermal heat treatment was measured. Isothermal heat treatment was carried out at 1100 ˚C for 100 hours to age the samples. ASTM D4541: Standard Test Method for Pull-off Strength of Coatings using Portable Adhesion Tester was used to measure the adhesion strength of both TBC systems before and after heat treatment. The effect of the developed TGO on the measured adhesion strength was examined and correlation between them was established individually for both TBC systems. The failure mechanism of the both system was also identified; either cohesive or adhesive or the combination of both. The results showed that TGO has more than 50% from the bond coat layer for rare-earth LZ system compared to the typical YSZ system, which was less than 10 % from the bond coat layer. This leads to the lower adhesion strength of rare-earth LZ coating system compared to typical YSZ system. Failure mechanism during the pull-off test also was found to be different for both TBC systems. The typical YSZ system experienced cohesive failure whereas the rare-earth LZ system experienced the combination of cohesive and adhesive failure.

  8. Environmental Barrier Coating Development for SiC/SiC Ceramic Matrix Composites: Recent Advances and Future Directions

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming

    2016-01-01

    This presentation briefly reviews the SiC/SiC major environmental and environment-fatigue degradations encountered in simulated turbine combustion environments, and thus NASA environmental barrier coating system evolution for protecting the SiC/SiC Ceramic Matrix Composites for meeting the engine performance requirements. The presentation will review several generations of NASA EBC materials systems, EBC-CMC component system technologies for SiC/SiC ceramic matrix composite combustors and turbine airfoils, highlighting the temperature capability and durability improvements in simulated engine high heat flux, high pressure, high velocity, and with mechanical creep and fatigue loading conditions. This paper will also focus on the performance requirements and design considerations of environmental barrier coatings for next generation turbine engine applications. The current development emphasis is placed on advanced NASA candidate environmental barrier coating systems for SiC/SiC CMCs, their performance benefits and design limitations in long-term operation and combustion environments. The efforts have been also directed to developing prime-reliant, self-healing 2700F EBC bond coat; and high stability, lower thermal conductivity, and durable EBC top coats. Major technical barriers in developing environmental barrier coating systems, the coating integrations with next generation CMCs having the improved environmental stability, erosion-impact resistance, and long-term fatigue-environment system durability performance will be described. The research and development opportunities for turbine engine environmental barrier coating systems by utilizing improved compositions, state-of-the-art processing methods, and simulated environment testing and durability modeling will be briefly discussed.

  9. Fused Silica Surface Coating for a Flexible Silica Mat Insulation System

    NASA Technical Reports Server (NTRS)

    Rhodes, W. H.

    1973-01-01

    Fused silica insulation coatings have been developed for application to a flexible mat insulation system. Based on crystalline phase nucleation and growth kinetics, a 99+% SiO2 glass was selected as the base composition. A coating was developed that incorporated the high emissivity phase NiCr2O4 as a two phase coating with goals of high emittance and minimum change in thermal expansion. A second major coating classification has a plasma sprayed emittance coating over a sealed pure amorphous SiO2 layer. A third area of development centered on extremely thin amorphous SiO2 coatings deposited by chemical vapor deposition. The coating characterization studies presented are mechanical testing of thin specimens extracted from the coatings, cyclic arc exposures, and emittance measurements before and after arc exposures.

  10. Thermal barrier coating for alloy systems

    DOEpatents

    Seals, Roland D.; White, Rickey L.; Dinwiddie, Ralph B.

    2000-01-01

    An alloy substrate is protected by a thermal barrier coating formed from a layer of metallic bond coat and a top coat formed from generally hollow ceramic particles dispersed in a matrix bonded to the bond coat.

  11. Durability and CMAS Resistance of Advanced Environmental Barrier Coatings Systems for SiC/SiC Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming

    2015-01-01

    Environmental barrier coatings (EBCs) and SiCSiC ceramic matrix composites (CMCs) systems will play a crucial role in next generation turbine engines for hot-section component applications because of their ability to significantly increase engine operating temperatures with improved efficiency, reduce engine weight and cooling requirements. This paper will emphasize advanced environmental barrier coating developments for SiCSiC turbine airfoil components, by using advanced coating compositions and processing, in conjunction with mechanical and environment testing and durability validations. The coating-CMC degradations and durability in the laboratory simulated engine fatigue-creep and complex operating environments are being addressed. The effects of Calcium-Magnesium-Alumino-Silicate (CMAS) from road sand or volcano-ash deposits on the degradation mechanisms of the environmental barrier coating systems will be discussed. The results help understand the advanced EBC-CMC system performance, aiming at the durability improvements of more robust, prime-reliant environmental barrier coatings for successful applications of the component technologies and lifing methodologies.

  12. Plasma tests of sprayed coatings for rocket thrust chambers

    NASA Technical Reports Server (NTRS)

    Curren, A. N.; Love, W. K.

    1974-01-01

    Several plasma-sprayed coating systems were evaluated for structural stability in hydrogen plasma and in oxygen plasma mixed with hydrogen plasma. The principal test heat flux was 15 Btu per inch squared seconds. The system consisted of a number of thin 0.002 to 0.020 in. layers of metal oxides and/or metals. The principal materials included are molybdenum nichrome, alumina, and zirconia. The study identifies important factors in coating system fabrication and describes the durability of the coating systems in the test environments. Values of effective thermal conductivity for some of the systems are indicated.

  13. Hexavalent Chrome Free Coatings for Electronics Applications: Joint Test Report

    NASA Technical Reports Server (NTRS)

    Rothgeb, Matt; Kessel, Kurt

    2013-01-01

    The overall objective of the Hexavalent Chrome Free Coatings for Electronics Applications project is to evaluate and test pretreatments not containing hexavalent chrome in avionics and electronics housing applications. This objective will be accomplished by testing strong performing coating systems from prior NASA and DoD testing or new coating systems as determined by the stakeholders.

  14. On approximating guided waves in plates with thin anisotropic coatings by means of effective boundary conditions

    PubMed

    Niklasson; Datta; Dunn

    2000-09-01

    In this paper, effective boundary conditions for elastic wave propagation in plates with thin coatings are derived. These effective boundary conditions are used to obtain an approximate dispersion relation for guided waves in an isotropic plate with thin anisotropic coating layers. The accuracy of the effective boundary conditions is investigated numerically by comparison with exact solutions for two different material systems. The systems considered consist of a metallic core with thin superconducting coatings. It is shown that for wavelengths long compared to the coating thickness there is excellent agreement between the approximate and exact solutions for both systems. Furthermore, numerical results presented might be used to characterize coating properties by ultrasonic techniques.

  15. Coated armor system and process for making the same

    DOEpatents

    Chu, Henry S.; Lillo, Thomas M.; McHugh, Kevin M.

    2010-11-23

    An armor system and method involves providing a core material and a stream of atomized coating material that comprises a liquid fraction and a solid fraction. An initial layer is deposited on the core material by positioning the core material in the stream of atomized coating material wherein the solid fraction of the stream of atomized coating material is less than the liquid fraction of the stream of atomized coating material on a weight basis. An outer layer is then deposited on the initial layer by positioning the core material in the stream of atomized coating material wherein the solid fraction of the stream of atomized coating material is greater than the liquid fraction of the stream of atomized coating material on a weight basis.

  16. Armor systems including coated core materials

    DOEpatents

    Chu, Henry S [Idaho Falls, ID; Lillo, Thomas M [Idaho Falls, ID; McHugh, Kevin M [Idaho Falls, ID

    2012-07-31

    An armor system and method involves providing a core material and a stream of atomized coating material that comprises a liquid fraction and a solid fraction. An initial layer is deposited on the core material by positioning the core material in the stream of atomized coating material wherein the solid fraction of the stream of atomized coating material is less than the liquid fraction of the stream of atomized coating material on a weight basis. An outer layer is then deposited on the initial layer by positioning the core material in the stream of atomized coating material wherein the solid fraction of the stream of atomized coating material is greater than the liquid fraction of the stream of atomized coating material on a weight basis.

  17. Armor systems including coated core materials

    DOEpatents

    Chu, Henry S; Lillo, Thomas M; McHugh, Kevin M

    2013-10-08

    An armor system and method involves providing a core material and a stream of atomized coating material that comprises a liquid fraction and a solid fraction. An initial layer is deposited on the core material by positioning the core material in the stream of atomized coating material wherein the solid fraction of the stream of atomized coating material is less than the liquid fraction of the stream of atomized coating material on a weight basis. An outer layer is then deposited on the initial layer by positioning the core material in the stream of atomized coating material wherein the solid fraction of the stream of atomized coating material is greater than the liquid fraction of the stream of atomized coating material on a weight basis.

  18. Estimation method of state-of-charge for lithium-ion battery used in hybrid electric vehicles based on variable structure extended kalman filter

    NASA Astrophysics Data System (ADS)

    Sun, Yong; Ma, Zilin; Tang, Gongyou; Chen, Zheng; Zhang, Nong

    2016-07-01

    Since the main power source of hybrid electric vehicle(HEV) is supplied by the power battery, the predicted performance of power battery, especially the state-of-charge(SOC) estimation has attracted great attention in the area of HEV. However, the value of SOC estimation could not be greatly precise so that the running performance of HEV is greatly affected. A variable structure extended kalman filter(VSEKF)-based estimation method, which could be used to analyze the SOC of lithium-ion battery in the fixed driving condition, is presented. First, the general lower-order battery equivalent circuit model(GLM), which includes column accumulation model, open circuit voltage model and the SOC output model, is established, and the off-line and online model parameters are calculated with hybrid pulse power characteristics(HPPC) test data. Next, a VSEKF estimation method of SOC, which integrates the ampere-hour(Ah) integration method and the extended Kalman filter(EKF) method, is executed with different adaptive weighting coefficients, which are determined according to the different values of open-circuit voltage obtained in the corresponding charging or discharging processes. According to the experimental analysis, the faster convergence speed and more accurate simulating results could be obtained using the VSEKF method in the running performance of HEV. The error rate of SOC estimation with the VSEKF method is focused in the range of 5% to 10% comparing with the range of 20% to 30% using the EKF method and the Ah integration method. In Summary, the accuracy of the SOC estimation in the lithium-ion battery cell and the pack of lithium-ion battery system, which is obtained utilizing the VSEKF method has been significantly improved comparing with the Ah integration method and the EKF method. The VSEKF method utilizing in the SOC estimation in the lithium-ion pack of HEV can be widely used in practical driving conditions.

  19. Development and Property Evaluation of Selected HfO2-Silicon and Rare Earth-Silicon Based Bond Coats and Environmental Barrier Coating Systems for SiC/SiC Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming

    2016-01-01

    Ceramic environmental barrier coatings (EBC) and SiC/SiC ceramic matrix composites (CMCs) will play a crucial role in future aircraft propulsion systems because of their ability to significantly increase engine operating temperatures, improve component durability, reduce engine weight and cooling requirements. Advanced EBC systems for SiC/SiC CMC turbine and combustor hot section components are currently being developed to meet future turbine engine emission and performance goals. One of the significant material development challenges for the high temperature CMC components is to develop prime-reliant, high strength and high temperature capable environmental barrier coating bond coat systems, since the current silicon bond coat cannot meet the advanced EBC-CMC temperature and stability requirements. In this paper, advanced NASA HfO2-Si and rare earth Si based EBC bond coat EBC systems for SiC/SiC CMC combustor and turbine airfoil applications are investigated. High temperature properties of the advanced EBC systems, including the strength, fracture toughness, creep and oxidation resistance have been studied and summarized. The advanced NASA EBC systems showed some promise to achieve 1500C temperature capability, helping enable next generation turbine engines with significantly improved engine component temperature capability and durability.

  20. Joint Test Report For Validation of Alternatives to Aliphatic Isocyanate Polyurethanes

    NASA Technical Reports Server (NTRS)

    Lewis, Pattie

    2007-01-01

    National Aeronautics and Space Administration (NASA) and Air Force Space Command (AFSPC) have similar missions and therefore similar facilities and structures in similar environments. The standard practice for protecting metallic substrates in atmospheric environments is the application of an applied coating system. The most common topcoats used in coating systems are polyurethanes that contain isocyanates. Isocyanates are classified as potential human carcinogens and are known to cause cancer in animals. The primary objective of this effort was to demonstrate and validate alternatives to aliphatic isocyanate polyurethanes resulting in one or more isocyanate-free coatings qualified for use at AFSPC and NASA installations participating in this project. This joint Test Report (JTR) documents the results of the laboratory and field testing as well as any test modifications made during the execution of the testing. The technical stakeholders agreed upon test procedure modifications documented in this document. This JTR is made available as a reference for future pollution prevention endeavors by other NASA centers, the Department of Defense and commercial users to minimize duplication of effort. All coating system candidates were tested using approved NASA and AFSPC standard coating systems as experimental controls. This study looked at eight alternative coating systems and two control coating systems and was divided into Phase I Screening Tests, Phase II Tests, and Field Testing. The Phase I Screening Tests were preliminary tests performed on all the selected candidate coating systems. Candidate coating systems that did not meet the acceptance criteria of the screening tests were eliminated from further testing. Phase I Screening Tests included: Ease of Application, Surface Appearance, Dry-To-Touch (Sanding), Accelerated Storage Stability, Pot Life (Viscosity), Cure Time (Solvent Rubs), Cleanability, Knife Test, Tensile (pull-off) Adhesion, and X-Cut Adhesion by Wet Tape After a review of the Phase I test results, four of the alternative coating systems showed substandard performance in relation to the Control Systems and were eliminated from the Phase II testing. Due to the interest of stakeholders and time constraints, however, all eight alternatives were subjected to the following Phase II tests, along with field testing at Stennis Space Center (SSC), Mississippi: Hypergol Compatibility, Liquid Oxygen Compatibility, 18-Month Marine Exposure (Gloss Retention, Color Retention, Blistering, Visual Corrosion, Creepage from Scribe, Heat Adhesion), and Field Exposure (6- and 12-month Evaluation for Coating Condition, Color Retention, Gloss Retention). The remaining four alternative coating systems determined to be the best viable alternatives were carried on to Phase II testing that included: Removability, Repairability, Abrasion Resistance, Gravelometer, Fungus Resistance, Accelerated Weathering, Mandrel Bend Flexibility, and Cyclic Corrosion Resistance. Of the systems that continued to Phase II, three (3) alternative coating systems meet the performance requirements as identified by stakeholders. Two (2) other systems, that were not included in Phase II testing, performed well enough on the 18-Month Marine Exposure, the primary requirement for NASA technical standard NASA-STD-5008, Protective Coating of Carbon Steel, Stainless Steel, and Aluminum on Launch Structures, Facilities, and Ground Support Equipment, that they were also considered to be successful candidates. In total, five (5) alternative coating systems were approved for inclusion in the NASA-STD- 5008 Qualified Products List (QPL). The standard is intended to provide a common framework for consistent practices across NASA and is often used by other entities. The standard's QPL does not connote endorsement of the products by NASA, but lists those products that have been tested and meet the requirements as specified.

  1. Performance Evaluation of a Commercial Polyurethane Coating in Marine Environment

    NASA Astrophysics Data System (ADS)

    Mobin, M.; Malik, A. U.; Al-Muaili, F.; Al-Hajri, M.

    2012-07-01

    A material evaluation study has been carried out to determine corrosion behavior of a commercial polyurethane coating system (Souplethane 5) in the marine environment. The coating system is solvent free, two-component polyurethane protective coating. The performance of the coating on steel and rebar concrete was evaluated by conducting different types of tests which include atmospheric exposure, immersion in 5% sodium chloride solution, exposure to splash zone in seawater, salt fog, sabkha soil burial, and electrochemical tests, which include potentiodynamic polarization and AC impedance measurements. Uncoated, coated, and coated scribed specimens were used in each study. In general, the coating showed good corrosion resistance in marine environment. However, the coated samples, when subjected to break under applied compressive load, showed partial or complete detachment from the substrate, e.g., steel and rebar concrete. This appears to be the major drawback of the coating while applying on steel and concrete structures.

  2. Development of nanostructured antireflection coatings for infrared technologies and applications

    NASA Astrophysics Data System (ADS)

    Pethuraja, Gopal G.; Zeller, John W.; Welser, Roger E.; Efstathiadis, Harry; Haldar, Pradeep; Wijewarnasuriya, Priyalal S.; Dhar, Nibir K.; Sood, Ashok K.

    2017-09-01

    Infrared (IR) sensing technologies and systems operating from the near-infrared (NIR) to long-wave infrared (LWIR) spectra are being developed for a variety of defense and commercial systems applications. Reflection losses affecting a significant portion of the incident signal limits the performance of IR sensing systems. One of the critical technologies that will overcome this limitation and enhance the performance of IR sensing systems is the development of advanced antireflection (AR) coatings. Magnolia is actively involved in the development and advancement of ultrahigh performance AR coatings for a wide variety of defense and commercial applications. Ultrahigh performance nanostructured AR coatings have been demonstrated for UV to LWIR spectral bands using various substrates. The AR coatings enhance the optical transmission through optical components and devices by significantly minimizing reflection losses, a substantial improvement over conventional thin-film AR coating technologies. Nanostructured AR coatings are fabricated using a tunable self-assembly process on substrates that are transparent for a given spectrum of interest ranging from UV to LWIR. The nanostructured multilayer structures have been designed, developed and optimized for various optoelectronic applications. The optical properties of the AR-coated optical components and sensor substrates have been measured and fine-tuned to achieve a predicted high level of performance of the coatings. In this paper, we review our latest work on high quality nanostructure-based AR coatings, including recent efforts towards the development of nanostructured AR coatings on IR-transparent substrates.

  3. Solventless dry powder coating for sustained drug release using mechanochemical treatment based on the tri-component system of acetaminophen, carnauba wax and glidant.

    PubMed

    Hoashi, Yohei; Tozuka, Yuichi; Takeuchi, Hirofumi

    2013-02-01

    Solventless dry powder coating methods have many advantages compared to solvent-based methods: they are more economical, simpler, safer, more environmentally friendly and easier to scale up. The purpose of this study was to investigate a highly effective dry powder coating method using the mechanofusion system, a mechanochemical treatment equipped with high compressive and shearing force. Acetaminophen (AAP) and carnauba wax (CW) were selected as core particles of the model drug and coating material, respectively. Mixtures of AAP and CW with and without talc were processed using the mechanofusion system. Sustained AAP release was observed by selecting appropriate processing conditions for the rotation speed and the slit size. The dissolution rate of AAP processed with CW substantially decreased with an increase in talc content up to 40% of the amount of CW loaded. Increasing the coating amount by two-step addition of CW led to more effective coating and extended drug release. Scanning electron micrographs indicated that CW adhered and showed satisfactory coverage of the surface of AAP particles. Effective CW coating onto the AAP surface was successfully achieved by strictly controlling the processing conditions and the composition of core particles, coating material and glidant. Our mechanochemical dry powder coating method using the mechanofusion system is a simple and promising means of solventless pharmaceutical coating.

  4. Fracture toughness of esthetic dental coating systems by nanoindentation and FIB sectional analysis.

    PubMed

    Pecnik, Christina Martina; Courty, Diana; Muff, Daniel; Spolenak, Ralph

    2015-07-01

    Improving the esthetics of Ti-based dental implants is the last challenge remaining in the optimization process. The optical issues were recently solved by the application of highly and selectively reflective coatings on Ti implants. This work focuses on the mechanical durability of these esthetic ceramic based coating systems (with and without adhesion layers). The coating systems (Ti-ZrO2, Ti-Al-ZrO2, Ti-Ti-Al-ZrO2, Ti-Ag-ZrO2, Ti-Ti-Ag-ZrO2, Ti-Bragg and Ti-TiO2-Bragg) were subjected to nanoindentation experiments and examined using scanning electron microscopy and focused ion beam cross sectional analysis. Three coating systems contained adhesion layers (10nm of Ti or 60nm of TiO2 layers). The fracture toughness of selected samples was assessed applying two different models from literature, a classical for bulk materials and an energy-based model, which was further developed and adjusted. The ZrO2 based coating systems (total film thickness<200nm) followed a circumferential cracking behavior in contrast to Bragg coated samples (total film thickness around 1.5μm), which showed radial cracking emanating from the indent corners. For Ti-ZrO2 samples, a fracture toughness between 2.70 and 3.70MPam(1/2) was calculated using an energy-based model. The classical model was applied to Bragg coated samples and their fracture toughness ranged between 0.70 and 0.80MPam(1/2). Furthermore, coating systems containing an additional layer (Ti-Ti-Al-ZrO2, Ti-Ti-Ag-ZrO2 and Ti-TiO2-Bragg) showed an improved adhesion between the substrate and the coating. The addition of a Ti or TiO2 layer improved the adhesion between substrate and coating. The validity of the models for the assessment of the fracture toughness depended on the layer structure and fracture profile of the samples investigated here (classical model for thick coatings and energy-based model for thin coatings). Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Spore coat protein synthesis in cell-free systems from sporulating cells of Bacillus subtilis.

    PubMed

    Nakayama, T; Munoz, L E; Sadaie, Y; Doi, R H

    1978-09-01

    Cell-free systems for protein synthesis were prepared from Bacillus subtilis 168 cells at several stages of sporulation. Immunological methods were used to determine whether spore coat protein could be synthesized in the cell-free systems prepared from sporulating cells. Spore coat protein synthesis first occurred in extracts from stage t2 cells. The proportion of spore coat protein to total proteins synthesized in the cell-free systems was 2.4 and 3.9% at stages t2 and t4, respectively. The sodium dodecyl sulfate-urea-polyacrylamide gel electrophoresis patterns of immunoprecipitates from the cell-free systems showed the complete synthesis of an apparent spore coat protein precursor (molecular weight, 25,000). A polypeptide of this weight was previously identified in studies in vivo (L.E. Munoz, Y. Sadaie, and R.H. Doi, J. Biol. Chem., in press). The synthesis in vitro of polysome-associated nascent spore coat polypeptides with varying molecular weights up to 23,000 was also detected. These results indicate that the spore coat protein may be synthesized as a precursor protein. The removal of proteases in the crude extracts by treatment with hemoglobin-Sepharose affinity techniques may be preventing the conversion of the large 25,000-dalton precursor to the 12,500-dalton mature spore coat protein.

  6. Development of an improved coating for polybenzimidazole foam. [for space shuttle heat shields

    NASA Technical Reports Server (NTRS)

    Neuner, G. J.; Delano, C. B.

    1976-01-01

    An improved coating system was developed for Polybenzimidazole (PBI) foam to provide coating stability, ruggedness, moisture resistance, and to satisfy optical property requirements (alpha sub (s/epsilon) or = 0.4 and epsilon 0.8) for the space shuttle. The effort was performed in five tasks: Task 1 to establish material and process specifications for the PBI foam, and material specifications for the coatings; Task 2 to identify and evaluate promising coatings; Task 3 to establish mechanical and thermophysical properties of the tile components; Task 4 to determine by systems analysis the potential weight trade-offs associated with a coated PBI TPS; and Task 5 to establish a preliminary quality assurance program. The coated PBI tile was, through screening tests, determined to satisfy the design objectives with a reduced system weight over the baseline shuttle silica LRSI TPS. The developed tile provides a thermally stable, extremely rugged, low thermal conductivity insulator with a well characterized optical coating.

  7. Thermal and Environmental Barrier Coatings for Advanced Propulsion Engine Systems

    NASA Technical Reports Server (NTRS)

    Zhu, Dong-Ming; Miller, Robert A.

    2004-01-01

    Ceramic thermal and environmental barrier coatings (TEBCs) are used in gas turbine engines to protect engine hot-section components in the harsh combustion environments, and extend component lifetimes. For future high performance engines, the development of advanced ceramic barrier coating systems will allow these coatings to be used to simultaneously increase engine operating temperature and reduce cooling requirements, thereby leading to significant improvements in engine power density and efficiency. In order to meet future engine performance and reliability requirements, the coating systems must be designed with increased high temperature stability, lower thermal conductivity, and improved thermal stress and erosion resistance. In this paper, ceramic coating design and testing considerations will be described for high temperature and high-heat-flux engine applications in hot corrosion and oxidation, erosion, and combustion water vapor environments. Further coating performance and life improvements will be expected by utilizing advanced coating architecture design, composition optimization, and improved processing techniques, in conjunction with modeling and design tools.

  8. Phase Stability and Thermal Conductivity of Composite Environmental Barrier Coatings on SiC/SiC Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Benkel, Samantha; Zhu, Dongming

    2011-01-01

    Advanced environmental barrier coatings are being developed to protect SiC/SiC ceramic matrix composites in harsh combustion environments. The current coating development emphasis has been placed on the significantly improved cyclic durability and combustion environment stability in high-heat-flux and high velocity gas turbine engine environments. Environmental barrier coating systems based on hafnia (HfO2) and ytterbium silicate, HfO2-Si nano-composite bond coat systems have been processed and their stability and thermal conductivity behavior have been evaluated in simulated turbine environments. The incorporation of Silicon Carbide Nanotubes (SiCNT) into high stability (HfO2) and/or HfO2-silicon composite bond coats, along with ZrO2, HfO2 and rare earth silicate composite top coat systems, showed promise as excellent environmental barriers to protect the SiC/SiC ceramic matrix composites.

  9. Joint Test Plan for Gas Dynamic Spray Technology Demonstration

    NASA Technical Reports Server (NTRS)

    Lewis, Pattie

    2008-01-01

    Air Force Space Command (AFSPC) and NASA have similar missions, facilities, and structures located in similar harsh environments. Both are responsible for a number of facilities/structures with metallic structural and non-structural components in highly and moderately corrosive environments. Regardless of the corrosivity of the environment, all metals require periodic maintenance activity to guard against the insidious effects of corrosion and thus ensure that structures meet or exceed design or performance life. The standard practice for protecting metallic substrates in atmospheric environments is the use of an applied coating system. Current coating systems used across AFSPC and NASA contain volatile organic compounds (VOCs) and hazardous air pollutants (HAPs). These coatings are subject to environmental regulations at the Federal and State levels that limit their usage. In addition, these coatings often cannot withstand the high temperatures and exhaust that may be experienced by AFSPC and NASA structures. In response to these concerns, AFSPC and NASA have approved the use of thermal spray coatings (TSCs). Thermal spray coatings are extremely durable and environmentally friendly coating alternatives, but utilize large cumbersome equipment for application that make the coatings difficult and time consuming to repair. Other concerns include difficulties coating complex geometries and the cost of equipment, training, and materials. Gas Dynamic Spray (GDS) technology (also known as Cold Spray) will be evaluated as a smaller, more maneuverable repair method as well as for areas where thermal spray techniques are not as effective. The technology can result in reduced maintenance and thus reduced hazardous materials/wastes associated with current processes. Thermal spray and GDS coatings also have no VOCs and are environmentally preferable coatings. To achieve a condition suitable for the application of a coating system, including GDS coatings, the substrate must undergo some type of surface preparation and/or depainting operation to ensure adhesion of the new coating system. The GDS unit selected for demonstration has a powder feeding system that can be used for surface preparation or coating application. The surface preparation feature will also be examined. The primary objective of this effort is to demonstrate GDS technology as a repair method for TSCs. The project will also determine the optimal GDS coating thickness for acceptable performance. Successful completion of this project will result in approval of GDS technology as a repair method for TSCs at AFSPC and NASA installations and will improve corrosion protection at critical systems, facilitate easier maintenance activity, extend maintenance cycles, eliminate flight hardware contamination, and reduce the amount of hazardous waste generated.

  10. Multicomponent Oxide Systems for Corrosion Protection.

    DTIC Science & Technology

    1980-11-15

    hydroxides on film growth. New types of mixed oxide coatings deposited from nonaqueous solutions of organometallic compounds were developed. Titanium -aluminum...mixed oxide coatings, deposited from solutions of titanium alkoxides in isopropanol, served as a prototype system for much of this work. It was found...45 13. Coating Steps and Analysis... ...................... 50 14. Auger Depth Profiles of Titanium -Aluminum Mixed Oxide *Coatings Deposited

  11. High Pressure Burner Rig Testing of Advanced Environmental Barrier Coatings for Si3N4 Turbine Components

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Fox, Dennis S.; Pastel, Robert T.

    2007-01-01

    Advanced thermal and environmental barrier coatings are being developed for Si3N4 components for turbine engine propulsion applications. High pressure burner rig testing was used to evaluate the coating system performance and durability. Test results demonstrated the feasibility and durability of the coating component systems under the simulated engine environments.

  12. Probability of detection of defects in coatings with electronic shearography

    NASA Astrophysics Data System (ADS)

    Maddux, Gary A.; Horton, Charles M.; Lansing, Matthew D.; Gnacek, William J.; Newton, Patrick L.

    1994-07-01

    The goal of this research was to utilize statistical methods to evaluate the probability of detection (POD) of defects in coatings using electronic shearography. The coating system utilized in the POD studies was to be the paint system currently utilized on the external casings of the NASA Space Transportation System (STS) Revised Solid Rocket Motor (RSRM) boosters. The population of samples was to be large enough to determine the minimum defect size for 90 percent probability of detection of 95 percent confidence POD on these coatings. Also, the best methods to excite coatings on aerospace components to induce deformations for measurement by electronic shearography were to be determined.

  13. Probability of detection of defects in coatings with electronic shearography

    NASA Technical Reports Server (NTRS)

    Maddux, Gary A.; Horton, Charles M.; Lansing, Matthew D.; Gnacek, William J.; Newton, Patrick L.

    1994-01-01

    The goal of this research was to utilize statistical methods to evaluate the probability of detection (POD) of defects in coatings using electronic shearography. The coating system utilized in the POD studies was to be the paint system currently utilized on the external casings of the NASA Space Transportation System (STS) Revised Solid Rocket Motor (RSRM) boosters. The population of samples was to be large enough to determine the minimum defect size for 90 percent probability of detection of 95 percent confidence POD on these coatings. Also, the best methods to excite coatings on aerospace components to induce deformations for measurement by electronic shearography were to be determined.

  14. Probability of detection of defects in coatings with electronic shearography

    NASA Technical Reports Server (NTRS)

    Russell, S. S.; Lansing, M. D.; Horton, C. M.; Gnacek, W. J.

    1995-01-01

    The goal of this research was to utilize statistical methods to evaluate the probability of detection (POD) of defects in coatings using electronic shearography. The coating system utilized in the POD studies was to be the paint system currently utilized on the external casings of the NASA space transportation system reusable solid rocket motor boosters. The population of samples was to be large enough to determine the minimum defect size for 90-percent POD of 95-percent confidence POD on these coatings. Also, the best methods to excite coatings on aerospace components to induce deformations for measurement by electronic shearography were to be determined.

  15. Cyclic Failure Mechanisms of Thermal and Environmental Barrier Coating Systems Under Thermal Gradient Test Conditions

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Lee, Kang N.; Miller, Robert A.

    2002-01-01

    Plasma-sprayed ZrO2-8wt%Y2O3 and mullite+BSAS/Si multilayer thermal and environmental barrier coating (TBC-EBC) systems on SiC/SiC ceramic matrix composite (CMC) substrates were thermally cyclic tested under high thermal gradients using a laser high-heat-flux rig in conjunction with furnace exposure in water-vapor environments. Coating sintering and interface damage were assessed by monitoring the real-time thermal conductivity changes during the laser heat-flux tests and by examining the microstructural changes after exposure. Sintering kinetics of the coating systems were also independently characterized using a dilatometer. It was found that the coating failure involved both the time-temperature dependent sintering and the cycle frequency dependent cyclic fatigue processes. The water vapor environments not only facilitated the initial coating conductivity increases due to enhanced sintering and interface reaction, but also promoted later conductivity reductions due to the accelerated coating cracking and delamination. The failure mechanisms of the coating systems are also discussed based on the cyclic test results and are correlated to the sintering and thermal stress behavior under the thermal gradient test conditions.

  16. 40 CFR 63.4291 - What are my options for meeting the emission limits?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... emission capture systems and add-on controls, the organic HAP emission rate for the web coating/printing... demonstrate that all capture systems and control devices for the web coating/printing operation(s) meet the... capture systems and control devices for the web coating/printing operation(s) meet the operating limits...

  17. Streaming potential method for characterizing interaction of electrical double layers between rice roots and Fe/Al oxide-coated quartz in situ.

    PubMed

    Liu, Zhao-Dong; Wang, Hai-Cui; Li, Jiu-Yu; Xu, Ren-Kou

    2017-10-01

    The interaction between rice roots and Fe/Al oxide-coated quartz was investigated through zeta potential measurements and column leaching experiments in present study. The zeta potentials of rice roots, Fe/Al oxide-coated quartz, and the binary systems containing rice roots and Fe/Al oxide-coated quartz were measured by a specially constructed streaming potential apparatus. The interactions between rice roots and Fe/Al oxide-coated quartz particles were evaluated/deduced based on the differences of zeta potentials between the binary systems and the single system of rice roots. The zeta potentials of the binary systems moved in positive directions compared with that of rice roots, suggesting that there were overlapping of diffuse layers of electric double layers on positively charged Fe/Al oxide-coated quartz and negatively charged rice roots and neutralization of positive charge on Fe/Al oxide-coated quartz with negative charge on rice roots. The greater amount of positive charges on Al oxide led to the stronger interaction of Al oxide-coated quartz with rice roots and the more shift of zeta potential compared with Fe oxide. The overlapping of diffuse layers on Fe/Al oxide-coated quartz and rice roots was confirmed by column leaching experiments. The greater overlapping of diffuse layers on Al oxide and rice roots led to more simultaneous adsorptions of K + and NO 3 - and greater reduction in leachate electric conductivity when the column containing Al oxide-coated quartz and rice roots was leached with KNO 3 solution, compared with the columns containing rice roots and Fe oxide-coated quartz or quartz. When the KNO 3 solution was replaced with deionized water to flush the columns, more K + and NO 3 - were desorbed from the binary system containing Al oxide-coated quartz and rice roots than from other two binary systems, suggesting that the stronger electrostatic interaction between Al oxide and rice roots promoted the desorption of K + and NO 3 - from the binary system and enhanced overlapping of diffuse layers on these oppositely charged surfaces compared with other two binary systems. In conclusion, the overlapping of diffuse layers occurred between positively charged Fe/Al oxides and rice roots, which led to neutralization of opposite charge and affected adsorption and desorption of ions onto and from the charged surfaces of Fe/Al oxides and rice roots.

  18. Coating and curing apparatus and methods

    DOEpatents

    Brophy, Brenor L; Maghsoodi, Sina; Neyman, Patrick J; Gonsalves, Peter R; Hirsch, Jeffrey G; Yang, Yu S

    2015-02-24

    Disclosed are coating apparatus including flow coating and roll-coating that may be used for uniform sol-gel coating of substrates such as glass, solar panels, windows or part of an electronic display. Also disclosed are methods for substrate preparation, flow coating and roll coating. Lastly systems and methods for skin curing sol-gel coatings deposited onto the surface of glass substrates using a high temperature air-knife are disclosed.

  19. Evaluation of several corrosion protective coating systems on aluminum

    NASA Technical Reports Server (NTRS)

    Higgins, R. H.

    1981-01-01

    A study of several protective coating systems for use on aluminum in seawater/seacoast environments was conducted to review the developments made on protective coatings since early in the Space Shuttle program and to perform comparative studies on these coatings to determine their effectiveness for providing corrosion protection during exposure to seawater/seacoast environments. Panels of 2219-T87 aluminum were coated with 21 different systems and exposed to a 5 percent salt spray for 4000 hr. Application properties, adhesion measurements, heat resistance and corrosion protection were evaluated. For comparative studies, the presently specified Bostik epoxy system used on the SRB structures was included. Results of these tests indicate four systems with outstanding performance and four additional systems with protection almost as good. These systems are based on a chromated pretreatment, a chromate epoxy primer, and a polyurethane topcoat. Consideration for one of these systems should be included for those applications where superior corrosion protection for aluminum surfaces is required.

  20. Edge coating apparatus with movable roller applicator for solar cell substrates

    DOEpatents

    Pavani, Luca; Abas, Emmanuel

    2012-12-04

    A non-contact edge coating apparatus includes an applicator for applying a coating material on an edge of a solar cell substrate and a control system configured to drive the applicator. The control system may drive the applicator along an axis to maintain a distance with an edge of the substrate as the substrate is rotated to have the edge coated with a coating material. The applicator may include a recessed portion into which the edge of the substrate is received for edge coating. For example, the applicator may be a roller with a groove. Coating material may be introduced into the groove for application onto the edge of the substrate. A variety of coating materials may be employed with the apparatus including hot melt ink and UV curable plating resist.

  1. Combined Thermomechanical and Environmental Durability of Environmental Barrier Coating Systems on SiC/SiC Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Harder, Bryan; Bhatt, Ramakrishna

    2016-01-01

    Environmental barrier coatings (EBCs) and SiC/SiC ceramic matrix composites (CMCs) will play a crucial role in next generation turbine engines for hot-section component applications. The development of prime-reliant environmental barrier coatings is essential to the EBC-CMC system durability, ensuring the successful implementations of the high temperature and lightweight engine component technologies for engine applications.This paper will emphasize recent NASA environmental barrier coating and CMC developments for SiC/SiC turbine airfoil components, utilizing advanced coating compositions and processing methods. The emphasis has been particularly placed on thermomechanical and environment durability evaluations of EBC-CMC systems. We have also addressed the integration of the EBCs with advanced SiC/SiC CMCs, and studied the effects of combustion environments and Calcium-Magnesium-Alumino-Silicate (CMAS) deposits on the durability of the EBC-CMC systems under thermal gradient and mechanical loading conditions. Advanced environmental barrier coating systems, including multicomponent rare earth silicate EBCs and HfO2-Si based bond coats, will be discussed for the performance improvements to achieve better temperature capability and CMAS resistance for future engine operating conditions.

  2. Investigation of dynamic characteristics of a rotor system with surface coatings

    NASA Astrophysics Data System (ADS)

    Yang, Yang; Cao, Dengqing; Wang, Deyou

    2017-02-01

    A Jeffcott rotor system with surface coatings capable of describing the mechanical vibration resulting from unbalance and rub-impact is formulated in this article. A contact force model proposed recently to describe the impact force between the disc and casing with coatings is employed to do the dynamic analysis for the rotor system with rubbing fault. Due to the variation of penetration, the contact force model is correspondingly modified. Meanwhile, the Coulomb friction model is applied to simulate the friction characteristics. Then, the case study of rub-impact with surface coatings is simulated by the Runge-Kutta method, in which a linear interpolation method is adopted to predict the rubbing instant. Moreover, the dynamic characteristics of the rotor system with surface coatings are analyzed in terms of bifurcation plot, waveform, whirl orbit, Poincaré map and spectrum plot. And the effects of the hardness of surface coatings on the response are investigated as well. Finally, compared with the classical models, the modified contact force model is shown to be more suitable to solve the rub-impact of aero-engine with surface coatings.

  3. Thick thermal barrier coatings for diesel engines

    NASA Technical Reports Server (NTRS)

    Beardsley, M. Brad

    1995-01-01

    Caterpillar's approach to applying thick thermal barrier coatings (TTBC's) to diesel engine combustion chambers has been to use advanced modeling techniques to predict engine conditions and combine this information with fundamental property evaluation of TTBC systems to predict engine performance and TTBC stress states. Engine testing has been used to verify the predicted performance of the TTBC systems and provide information on failure mechanisms. The objective Caterpillar's program to date has been to advance the fundamental understanding of thick thermal barrier coating systems. Previous reviews of thermal barrier coating technology concluded that the current level of understanding of coating system behavior is inadequate and the lack of fundamental understanding may impeded the application of TTBC's to diesel engines. Areas of TTBC technology being examined in this program include powder characteristics and chemistry; bond coat composition; coating design, microstructure, and thickness as they affect properties, durability, and reliability; and TTBC 'aging' effects (microstructural and property changes) under diesel engine operating conditions. Methods to evaluate the reliability and durability of TTBC's have been developed that attempt to understand the fundamental strength of TTBC's for particular stress states.

  4. Thick thermal barrier coatings for diesel engines

    NASA Technical Reports Server (NTRS)

    Beardsley, M. B.

    1995-01-01

    Caterpillar's approach to applying Thick Thermal Barrier Coatings (TTBC's) to diesel engine combustion chambers has been to use advanced modeling techniques to predict engine conditions and combine this information with fundamental property evaluation of TTBC systems to predict engine performance and TTBC stress states. Engine testing has been used to verify the predicted performance of the TTBC systems and provide information on failure mechanisms. The objective of Caterpillar's subcontract with ORNL is to advance the fundamental understanding of thick thermal barrier coating systems. Previous reviews of thermal barrier coating technology concluded that the current level of understanding of coating system behavior is inadequate and the lack of fundamental understanding may impede the application of TTBC's to diesel engines. Areas of TTBC technology being examined in this program include powder characteristics and chemistry; bond coat composition; coating design, microstructure, and thickness as they affect properties, durability, and reliability; and TTBC 'aging' effects (microstructural and property changes) under diesel engine operating conditions. Methods to evaluate the reliability and durability of TTBC's have been developed that attempt to understand the fundamental strength of TTBC's for particular stress states.

  5. Advanced thermal barrier coatings for operation in high hydrogen content fueled gas turbines.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sampath, Sanjay

    2015-04-02

    The Center for Thermal Spray Research (CTSR) at Stony Brook University in partnership with its industrial Consortium for Thermal Spray Technology is investigating science and technology related to advanced metallic alloy bond coats and ceramic thermal barrier coatings for applications in the hot section of gasified coal-based high hydrogen turbine power systems. In conjunction with our OEM partners (GE and Siemens) and through strategic partnership with Oak Ridge National Laboratory (ORNL) (materials degradation group and high temperature materials laboratory), a systems approach, considering all components of the TBC (multilayer ceramic top coat, metallic bond coat & superalloy substrate) is beingmore » taken during multi-layered coating design, process development and subsequent environmental testing. Recent advances in process science and advanced in situ thermal spray coating property measurement enabled within CTSR has been incorporated for full-field enhancement of coating and process reliability. The development of bond coat processing during this program explored various aspects of processing and microstructure and linked them to performance. The determination of the bond coat material was carried out during the initial stages of the program. Based on tests conducted both at Stony Brook University as well as those carried out at ORNL it was determined that the NiCoCrAlYHfSi (Amdry) bond coats had considerable benefits over NiCoCrAlY bond coats. Since the studies were also conducted at different cycling frequencies, thereby addressing an associated need for performance under different loading conditions, the Amdry bond coat was selected as the material of choice going forward in the program. With initial investigations focused on the fabrication of HVOF bond coats and the performance of TBC under furnace cycle tests , several processing strategies were developed. Two-layered HVOF bond coats were developed to render optimal balance of density and surface roughness and resulted in improved TBC lifetimes. Processing based approaches of identifying optimal processing regimes deploying advanced in-situ coating property measurements and in-flight diagnostic tools were used to develop process maps for bond coats. Having established a framework for the bond coat processing using the HVOF process, effort were channeled towards fabrication of APS and VPS bond coats with the same material composition. Comparative evaluation of the three deposition processes with regard to their microstrcuture , surface profiles and TBC performance were carried out and provided valuable insights into factors that require concurrent consideration for the development of bond coats for advanced TBC systems. Over the course of this program several advancements were made on the development of durable thermal barrier coatings. Process optimization techniques were utilized to identify processing regimes for both conventional YSZ as well as other TBC compositions such as Gadolinium Zirconate and other Co-doped materials. Measurement of critical properties for these formed the initial stages of the program to identify potential challenges in their implementation as part of a TBC system. High temperature thermal conductivity measurements as well as sintering behavior of both YSZ and GDZ coatings were evaluated as part of initial efforts to undersand the influence of processing on coating properties. By effectively linking fundamental coating properties of fracture toughness and elastic modulus to the cyclic performance of coatings, a durability strategy for APS YSZ coatings was developed. In order to meet the goals of fabricating a multimaterial TBC system further research was carried out on the development of a gradient thermal conductivity model and the evaluation of sintering behavior of multimaterial coatings. Layer optimization for desired properties in the multimaterial TBC was achieved by an iterative feedback approach utilizing process maps and in-situ and ex-situ coating property sensors. Addressing the challenges pertaining to the integration of the two materials YSZ and GDZ led to one of most the critical outcomes of this program, the development of durable multimaterial, multifunctional TBC systems.« less

  6. Smart Coating for Corrosion Indication and Prevention: Recent Progress

    NASA Technical Reports Server (NTRS)

    Li, Wenyan; Hintze, Paul; Calle, Luz M.; Buhrow, Jerry; Curran, Jerry; Muehlberg, A. J.; Gelling, V. J.; Webster, D. C.; Croll, S. G.; Contu, F.; hide

    2009-01-01

    The authors are developing a smart coating system based on pH-triggered release microcapsules. These microcapsules can be incorporated into various coating systems for corrosion detection, protection and self-repair of mechanical coating damage. This paper will present the results from progress made to date in the controlled release properties of these microcapsules as well as in their corrosion indication and corrosion inhibition function.

  7. Coating and curing apparatus and methods

    DOEpatents

    Brophy, Brenor L.; Gonsalves, Peter R.; Maghsoodi, Sina; Colson, Thomas E.; Yang, Yu S.; Abrams, Ze'ev R.

    2016-04-19

    Disclosed is a coating apparatus including flow coating and roll-coating that may be used for uniform sol-gel coating of substrates such as glass, solar panels, windows or part of an electronic display. Also disclosed are methods for substrate preparation, flow coating and roll coating. Lastly, systems and methods for curing sol-gel coatings deposited onto the surface of glass substrates using high temperature air-knives, infrared emitters and direct heat applicators are disclosed.

  8. A Combined Brazing and Aluminizing Process for Repairing Turbine Blades by Thermal Spraying Using the Coating System NiCrSi/NiCoCrAlY/Al

    NASA Astrophysics Data System (ADS)

    Nicolaus, M.; Möhwald, K.; Maier, H. J.

    2017-10-01

    The repair and maintenance of components in the aerospace industry play an increasingly important role due to rising manufacturing costs. Besides welding, vacuum brazing is a well-established repair process for turbine blades made of nickel-based alloys. After the coating of the worn turbine blade has been removed, the manual application of the nickel-based filler metal follows. Subsequently, the hot gas corrosion-protective coating is applied by thermal spraying. The brazed turbine blade is aluminized to increase the hot gas corrosion resistance. The thermal spray technology is used to develop a two-stage hybrid technology that allows shortening the process chain for repair brazing turbine blades and is described in the present paper. In the first step, the coating is applied on the base material. Specifically, the coating system employed here is a layer system consisting of nickel filler metal, NiCoCrAlY and aluminum. The second step represents the combination of brazing and aluminizing of the coating system which is subjected to a heat treatment. The microstructure, which results from the combined brazing and aluminizing process, is characterized and the relevant diffusion processes in the coating system are illustrated. The properties of the coating and the ramifications with respect to actual applications will be discussed.

  9. 40 CFR 60.461 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... coil. Coating application station means that portion of the metal coil surface coating operation where.... Finish coat operation means the coating application station, curing oven, and quench station used to... operation means the application system used to apply an organic coating to the surface of any continuous...

  10. Key Durability Issues with Mullite-Based Environmental Barrier Coatings for Si-Based Ceramics

    NASA Technical Reports Server (NTRS)

    Lee, Kang N.

    1999-01-01

    Plasma-sprayed mullite (3Al2O3 central dot 2SiO2) and mullite/yttria-stabilized-zirconia (YSZ) dual layer coatings have been developed to protect silicon-based ceramics from environmental attack. Mullite-based coating systems show excellent durability in air. However, in combustion environments, corrosive species such as molten salt or water vapor penetrate through cracks in the coating and attack the Si-based ceramics along the interface, Thus modification of the coating system for enhanced crack-resistance is necessary for long-term durability in combustion environments. Other key durability issues include interfacial contamination and coating/substrate bonding. Interfacial contamination leads to enhanced oxidation and interfacial pore formation, while weak coating/substrate bonding leads to rapid attack of the interface by corrosive species, both of which can cause premature failure of the coating. Interfacial contamination can be minimized by limiting impurities in coating and substrate materials. The interface may be modified to improve the coating/substrate bond.

  11. Key Durability Issues with Mullite-Based Environmental Barrier Coatings for Si-Based Ceramics

    NASA Technical Reports Server (NTRS)

    Lee, Kang N.

    2000-01-01

    Plasma-sprayed mullite (3Al2O3.2SiO2) and mullite/yttria-stabilized-zirconia (YSZ) dual layer coatings have been developed to protect silicon -based ceramics from environmental attack. Mullite-based coating systems show excellent durability in air. However, in combustion environments, corrosive species such as molten salt or water vapor penetrate through cracks in the coating and attack the Si-based ceramics along the interface. Thus the modification of the coating system for enhanced crack-resistance is necessary for long-term durability in combustion environments. Other key durability issues include interfacial contamination and coating/substrate bonding. Interfacial contamination leads to enhanced oxidation and interfacial pore formation, while a weak coating/substrate bonding leads to rapid attack of the interface by corrosive species, both of which can cause a premature failure of the coating. Interfacial contamination can be minimized by limiting impurities in coating and substrate materials. The interface may be modified to improve the coating/substrate bond.

  12. Evaluation of Oxidation Damage in Thermal Barrier Coating Systems

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Miller, Robert A.

    1996-01-01

    A method based on the technique of dilatometry has been established to quantitatively evaluate the interfacial damage due to the oxidation in a thermal barrier coating system. Strain isolation and adhesion coefficients have been proposed to characterize the thermal barrier coating (TBC) performance based on its thermal expansion behavior. It has been found that, for a thermal barrier coating system consisting of ZrO2-8%Y2O3/FeCrAlY/4140 steel substrate, the oxidation of the bond coat and substrate significantly reduced the ceramic coating adherence, as inferred from the dilatometry measurements. The in-situ thermal expansion measurements under 30 deg C to 700 deg C thermal cycling in air showed that the adhesion coefficient, A(sub i) decreased by 25% during the first 35 oxidation cycles. Metallography showed that delamination occurred at both the ceramic/bond coat and bond coat/substrate interfaces. In addition, the strain isolation effect has been improved by increasing the FeCrAlY bond coat thickness. The strain isolation coefficient, Si, increased from about 0.04 to 0.25, as the bond coat thickness changed from 0.1 mm to 1.0 mm. It may be possible to design optimum values of strain isolation and interface adhesion coefficients to achieve the best TBC performance.

  13. Evaluation of the Lifetime and Thermal Conductivity of Dysprosia-Stabilized Thermal Barrier Coating Systems

    NASA Astrophysics Data System (ADS)

    Curry, Nicholas; Markocsan, Nicolaie; Östergren, Lars; Li, Xin-Hai; Dorfman, Mitch

    2013-08-01

    The aim of this study was the further development of dysprosia-stabilized zirconia coatings for gas turbine applications. The target for these coatings was a longer lifetime and higher insulating performance compared to today's industrial standard thermal barrier coating. Two morphologies of ceramic top coat were studied: one using a dual-layer system and the second using a polymer to generate porosity. Evaluations were carried out using a laser flash technique to measure thermal properties. Lifetime testing was conducted using thermo-cyclic fatigue testing. Microstructure was assessed with SEM and Image analysis was used to characterize porosity content. The results show that coatings with an engineered microstructure give performance twice that of the present reference coating.

  14. Studies on Mathematical Models of Wet Adhesion and Lifetime Prediction of Organic Coating/Steel by Grey System Theory.

    PubMed

    Meng, Fandi; Liu, Ying; Liu, Li; Li, Ying; Wang, Fuhui

    2017-06-28

    A rapid degradation of wet adhesion is the key factor controlling coating lifetime, for the organic coatings under marine hydrostatic pressure. The mathematical models of wet adhesion have been studied by Grey System Theory (GST). Grey models (GM) (1, 1) of epoxy varnish (EV) coating/steel and epoxy glass flake (EGF) coating/steel have been established, and a lifetime prediction formula has been proposed on the basis of these models. The precision assessments indicate that the established models are accurate, and the prediction formula is capable of making precise lifetime forecasting of the coatings.

  15. Studies on Mathematical Models of Wet Adhesion and Lifetime Prediction of Organic Coating/Steel by Grey System Theory

    PubMed Central

    Meng, Fandi; Liu, Ying; Liu, Li; Li, Ying; Wang, Fuhui

    2017-01-01

    A rapid degradation of wet adhesion is the key factor controlling coating lifetime, for the organic coatings under marine hydrostatic pressure. The mathematical models of wet adhesion have been studied by Grey System Theory (GST). Grey models (GM) (1, 1) of epoxy varnish (EV) coating/steel and epoxy glass flake (EGF) coating/steel have been established, and a lifetime prediction formula has been proposed on the basis of these models. The precision assessments indicate that the established models are accurate, and the prediction formula is capable of making precise lifetime forecasting of the coatings. PMID:28773073

  16. Method for fluidizing and coating ultrafine particles, device for fluidizing and coating ultrafine particles

    DOEpatents

    Li, Jie; Liu, Yung Y

    2015-01-20

    The invention provides a method for dispersing particles within a reaction field, the method comprising confining the particles to the reaction field using a standing wave. The invention also provides a system for coating particles, the system comprising a reaction zone; a means for producing fluidized particles within the reaction zone; a fluid to produce a standing wave within the reaction zone; and a means for introducing coating moieties to the reaction zone. The invention also provides a method for coating particles, the method comprising fluidizing the particles, subjecting the particles to a standing wave; and contacting the subjected particles with a coating moiety.

  17. Method of depositing a coating on Si-based ceramic composites

    NASA Technical Reports Server (NTRS)

    Wang, Hongyu (Inventor); Lau, Yuk-Chiu (Inventor); Spitsberg, Irene (Inventor); Henry, Arnold T. (Inventor)

    2004-01-01

    A process of depositing a coating system suitable for use as an environmental barrier coating on various substrate materials, particularly those containing silicon and intended for high temperature applications such as the hostile thermal environment of a gas turbine engine. The process comprises depositing a first coating layer containing mullite, and preferably a second coating layer of an alkaline earth aluminosilicate, such as barium-strontium-aluminosilicate (BSAS), by thermal spraying while maintaining the substrate at a temperature of 800.degree. C. or less, preferably 500.degree. C. or less, by which a substantially crack-free coating system is produced with desirable mechanical integrity.

  18. Source reduction of VOC and hazardous organic emissions from wood furniture coatings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, E.W.; McCrillis, R.C.

    1996-12-31

    Under US EPA sponsorship, AeroVironment, Inc. and Adhesives Coating Co. are teaming up to develop and demonstrate a wood furniture coating system containing no volatile organic compounds (VOCs) and no hazardous air pollutants (HAPs), making it less hazardous to use, and emitting no detectable VOCs and HAPs during curing, therefore contributing significantly to emission reduction. Earlier work on a new topcoat showed excellent performance characteristics in terms of adhesion, gloss value, dry time, hardness, organic solvents content, and chemical/stain resistance. The VOC contents of both the clear topcoat and the white pigmented topcoat were less than 10 g/L, the detectionmore » list of the test method (EPA Method 24). This coating`s performance and properties compared favorably with those of other low-VOC waterborne coatings. Currently, low-/no-VOC stain and sealer wood coatings are being developed so that a complete low-/no-VOC wood coating system will be available for public use. The compatibility of coating components (a stain and sealer) to go with the topcoat is currently being evaluated. The complete system will be demonstrated at several furniture plants. A marketing plan of the developed products is part of this demonstration project.« less

  19. Field Evaluations Test Plan for Validation of Alternatives to Aliphatic Isocyanate Polyurethanes

    NASA Technical Reports Server (NTRS)

    Lewis, Pattie

    2005-01-01

    The objective of this project is to qualify candidate alternatives to Aliphatic Isocyanate Polyurethane coatings under the specifications for the standard system. This project will compare coating performance of the proposed alternatives to existing coating systems or standards.

  20. Article Including Environmental Barrier Coating System

    NASA Technical Reports Server (NTRS)

    Lee, Kang N. (Inventor)

    2015-01-01

    An enhanced environmental barrier coating for a silicon containing substrate. The enhanced barrier coating may include a bond coat doped with at least one of an alkali metal oxide and an alkali earth metal oxide. The enhanced barrier coating may include a composite mullite bond coat including BSAS and another distinct second phase oxide applied over said surface.

  1. Defect Clustering and Nano-phase Structure Characterization of Multicomponent Rare Earth-Oxide-Doped Zirconia-Yttria Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Chen, Yuan L.; Miller, Robert A.

    2004-01-01

    Advanced thermal barrier coatings (TBCs) have been developed by incorporating multicomponent rare earth oxide dopants into zirconia-based thermal barrier coatings to promote the creation of the thermodynamically stable, immobile oxide defect clusters and/or nanophases within the coating systems. In this paper, the defect clusters, induced by Nd, Gd, and Yb rare earth dopants in the zirconia-yttria thermal barrier coatings, were characterized by high-resolution transmission electron microscopy (TEM). The TEM lattice imaging, selected area diffraction (SAD), and electron energy-loss spectroscopy (EELS) analyses demonstrated that the extensive nanoscale rare earth dopant segregation exists in the plasma-sprayed and electron-physical-vapor-deposited (EB PVD) thermal barrier coatings. The nanoscale concentration heterogeneity and the resulting large lattice distortion promoted the formation of parallel and rotational defective lattice clusters in the coating systems. The presence of the 5-to 100-nm-sized defect clusters and nanophases is believed to be responsible for the significant reduction of thermal conductivity, improved sintering resistance, and long-term high temperature stability of the advanced thermal barrier coating systems.

  2. Physicochemical characterization and failure analysis of military coating systems

    NASA Astrophysics Data System (ADS)

    Keene, Lionel Thomas

    Modern military coating systems, as fielded by all branches of the U.S. military, generally consist of a diverse array of organic and inorganic components that can complicate their physicochemical analysis. These coating systems consist of VOC-solvent/waterborne automotive grade polyurethane matrix containing a variety of inorganic pigments and flattening agents. The research presented here was designed to overcome the practical difficulties regarding the study of such systems through the combined application of several cross-disciplinary techniques, including vibrational spectroscopy, electron microscopy, microtomy, ultra-fast laser ablation and optical interferometry. The goal of this research has been to determine the degree and spatial progression of weathering-induced alteration of military coating systems as a whole, as well as to determine the failure modes involved, and characterizing the impact of these failures on the physical barrier performance of the coatings. Transmission-mode Fourier Transform Infrared (FTIR) spectroscopy has been applied to cross-sections of both baseline and artificially weathered samples to elucidate weathering-induced spatial gradients to the baseline chemistry of the coatings. A large discrepancy in physical durability (as indicated by the spatial progression of these gradients) has been found between older and newer generation coatings. Data will be shown implicating silica fillers (previously considered inert) as the probable cause for this behavioral divergence. A case study is presented wherein the application of the aforementioned FTIR technique fails to predict the durability of the coating system as a whole. The exploitation of the ultra-fast optical phenomenon of femtosecond (10-15S) laser ablation is studied as a potential tool to facilitate spectroscopic depth profiling of composite materials. Finally, the interferometric technique of Phase Shifting was evaluated as a potential high-sensitivity technique applied to the problem of determining internal stress evolution in curing and aging coatings.

  3. A SPION-eicosane protective coating for water soluble capsules: Evidence for on-demand drug release triggered by magnetic hyperthermia.

    PubMed

    Che Rose, Laili; Bear, Joseph C; McNaughter, Paul D; Southern, Paul; Piggott, R Ben; Parkin, Ivan P; Qi, Sheng; Mayes, Andrew G

    2016-02-04

    An orally-administered system for targeted, on-demand drug delivery to the gastrointestinal (GI) tract is highly desirable due to the high instances of diseases of that organ system and harsh mechanical and physical conditions any such system has to endure. To that end, we present an iron oxide nanoparticle/wax composite capsule coating using magnetic hyperthermia as a release trigger. The coating is synthesised using a simple dip-coating process from pharmaceutically approved materials using a gelatin drug capsule as a template. We show that the coating is impervious to chemical conditions within the GI tract and is completely melted within two minutes when exposed to an RF magnetic field under biologically-relevant conditions. The overall simplicity of action, durability and non-toxic and inexpensive nature of our system demonstrated herein are key for successful drug delivery systems.

  4. Optical coherence tomography for non-destructive analysis of coatings in pharmaceutical tablets

    NASA Astrophysics Data System (ADS)

    Markl, Daniel; Hannesschläger, Günther; Sacher, Stephan; Khinast, Johannes G.; Leitner, Michael

    2013-04-01

    Tablet coating is a common pharmaceutical technique to apply a thin continuous layer of solid on the top of a tablet or a granule containing active pharmaceutical ingredients (APIs). Coating thickness and homogeneity are critical parameters regarding the drug release rate, and consequently a direct or indirect monitoring strategy of these critical process parameters is essential. With the aid of Optical Coherence Tomography (OCT) it is not only possible to measure the absolute coating thickness, but also to detect inhomogeneities in the coating or substrate material. In this work the possible application of OCT as in-line method for monitoring pharmaceutical tablet film coating is studied. Firstly, the feasibility of OCT for analysis tablet coating is examined. Seven different commercially available film-coated tablets with different shapes, formulations and coating thicknesses were investigated off-line. OCT images were acquired by two different spectral-domain OCT systems operating at center wavelengths of 830 and 1325 nm. Since the images of both systems allow the analysis of the coatings, the OCT system employing the shorter wavelength and thus providing a higher axial resolution was selected for the further experiments. The influence of a moving tablet bed on OCT images was analyzed by considering a static tablet bed and moving the sensor head along the tablet bed. The ability to analyze the coating homogeneity is limited to a speed up to 0.3 m/s. However, determining the coating thickness and inter-coating uniformity is still possible up to a speed of 0.7 m/s.

  5. Field repair of coated columbium Thermal Protection System (TPS)

    NASA Technical Reports Server (NTRS)

    Culp, J. D.

    1972-01-01

    The requirements for field repair of coated columbian panels were studied, and the probable cause of damage were identified. The following types of repair methods were developed, and are ready for use on an operational system: replacement of fused slurrey silicide coating by a short processing cycle using a focused radiant spot heater; repair of the coating by a glassy matrix ceramic composition which is painted or sprayed over the defective area; and repair of the protective coating by plasma spraying molybdenum disilicide over the damaged area employing portable equipment.

  6. Bioactive Coating Systems for Protection Against Bio-Threats: Antimicrobial Coatings for Medical Shelters

    DTIC Science & Technology

    2013-12-23

    the CnC drive, building and integration of the plasma head, installation of gas distribution system, and control systems for the machine. The machine...Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 antimicrobial coatings, atmospheric pressure plasma liquid deposition...polyester fabric using Triton Systems novel atmospheric pressure plasma deposition process (Invexus™). It is envisioned that these new antimicrobial

  7. Residual Stresses in Thermal Barrier Coatings for a Cu-8Cr-4Nb Substrate System

    NASA Technical Reports Server (NTRS)

    Ghosn, Louis J.; Raj, Sai V.

    2002-01-01

    Analytical calculations were conducted to determine the thermal stresses developed in a coated copper-based alloy, Cu-8%(at.%)Cr-4%Nb (designated as GRCop-84), after plasma spraying and during heat-up in a simulated rocket engine environment. Finite element analyses were conducted for two coating systems consisting of a metallic top coat, a pure copper bond coat and the GRCop-84. The through thickness temperature variations were determined as a function of coating thickness for two metallic coatings, a Ni-17%(wt%)Cr-6%Al-0.5%Y alloy and a Ni-50%(at.%)Al alloy. The residual stresses after low-pressure plasma spraying of the NiCrAlY and NiAl coatings on GRCop-84 substrate were also evaluated. These analyses took into consideration a 50.8 mm copper bond coat and the effects of an interface coating roughness. The through the thickness thermal stresses developed in coated liners were also calculated after 15 minutes of exposure in a rocket environment with and without an interfacial roughness.

  8. Covering solid, film cooled surfaces with a duplex thermal barrier coating

    NASA Technical Reports Server (NTRS)

    Liebert, C. H. (Inventor)

    1983-01-01

    Thermal barrier coating systems were applied to hardware having passageways in the walls connecting apertures in the surface to a gas supply for film cooling. An inert gas, such as argon, is discharged through the apertures during the application of the thermal barrier coating system by plasma spraying. This flow of inert gas reduces both blocking of the holes and base metal oxidation during the coating operation.

  9. Active corrosion protection performance of an epoxy coating applied on the mild steel modified with an eco-friendly sol-gel film impregnated with green corrosion inhibitor loaded nanocontainers

    NASA Astrophysics Data System (ADS)

    Izadi, M.; Shahrabi, T.; Ramezanzadeh, B.

    2018-05-01

    In this study the corrosion resistance, active protection, and cathodic disbonding performance of an epoxy coating were improved through surface modification of steel by a hybrid sol-gel system filled with green corrosion inhibitors loaded nanocontainer as intermediate layer on mild steel substrate. The green inhibitor loaded nanocontainers (GIN) were used to induce active inhibition performance in the protective coating system. The corrosion protection performance of the coated panels was investigated by electrochemical impedance spectroscopy (EIS), salt spray, and cathodic disbonding tests. It was observed that the corrosion inhibition performance of the coated mild steel panels was significantly improved by utilization of active multilayer coating system. The inhibitor release from nanocontainers at the epoxy-silane film/steel interface resulted in the anodic and cathodic reactions restriction, leading to the lower coating delamination from the substrate and corrosion products progress. Also, the active inhibition performance of the coating system was approved by electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM), and energy dispersive X-ray (EDS) analysis on the panels with artificial defects. The inhibitive agents were released to the scratch region and blocked the active sites on the metal surface.

  10. Thermal barrier coating life prediction model development

    NASA Technical Reports Server (NTRS)

    Hillery, R. V.; Pilsner, B. H.; Mcknight, R. L.; Cook, T. S.; Hartle, M. S.

    1988-01-01

    This report describes work performed to determine the predominat modes of degradation of a plasma sprayed thermal barrier coating system and to develop and verify life prediction models accounting for these degradation modes. The primary TBC system consisted of a low pressure plasma sprayed NiCrAlY bond coat, an air plasma sprayed ZrO2-Y2O3 top coat, and a Rene' 80 substrate. The work was divided into 3 technical tasks. The primary failure mode to be addressed was loss of the zirconia layer through spalling. Experiments showed that oxidation of the bond coat is a significant contributor to coating failure. It was evident from the test results that the species of oxide scale initially formed on the bond coat plays a role in coating degradation and failure. It was also shown that elevated temperature creep of the bond coat plays a role in coating failure. An empirical model was developed for predicting the test life of specimens with selected coating, specimen, and test condition variations. In the second task, a coating life prediction model was developed based on the data from Task 1 experiments, results from thermomechanical experiments performed as part of Task 2, and finite element analyses of the TBC system during thermal cycles. The third and final task attempted to verify the validity of the model developed in Task 2. This was done by using the model to predict the test lives of several coating variations and specimen geometries, then comparing these predicted lives to experimentally determined test lives. It was found that the model correctly predicts trends, but that additional refinement is needed to accurately predict coating life.

  11. Broad Band Antireflection Coating on Zinc Sulphide Window for Shortwave infrared cum Night Vision System

    NASA Astrophysics Data System (ADS)

    Upadhyaya, A. S.; Bandyopadhyay, P. K.

    2012-11-01

    In state of art technology, integrated devices are widely used or their potential advantages. Common system reduces weight as well as total space covered by its various parts. In the state of art surveillance system integrated SWIR and night vision system used for more accurate identification of object. In this system a common optical window is used, which passes the radiation of both the regions, further both the spectral regions are separated in two channels. ZnS is a good choice for a common window, as it transmit both the region of interest, night vision (650 - 850 nm) as well as SWIR (0.9 - 1.7 μm). In this work a broad band anti reflection coating is developed on ZnS window to enhance the transmission. This seven layer coating is designed using flip flop design method. After getting the final design, some minor refinement is done, using simplex method. SiO2 and TiO2 coating material combination is used for this work. The coating is fabricated by physical vapour deposition process and the materials were evaporated by electron beam gun. Average transmission of both side coated substrate from 660 to 1700 nm is 95%. This coating also acts as contrast enhancement filter for night vision devices, as it reflect the region of 590 - 660 nm. Several trials have been conducted to check the coating repeatability, and it is observed that transmission variation in different trials is not very much and it is under the tolerance limit. The coating also passes environmental test for stability.

  12. Tailored nanoporous coatings fabricated on conformable polymer substrates.

    PubMed

    Poxson, David J; Mont, Frank W; Cho, Jaehee; Schubert, E Fred; Siegel, Richard W

    2012-11-01

    Nanoporous coatings have become the subject of intense investigation, in part because they have been shown to have unique and tailorable physical properties that can depart greatly from their dense or macroscopic counterparts. Nanoporous coatings are frequently fabricated utilizing oblique-angle or glancing-angle physical vapor-phase deposition techniques. However, a significant limitation for such coatings exists; they are almost always deposited on smooth and rigid planar substrates, such as silicon and glass. This limitation greatly constrains the applicability, tailorability, functionality and even the economic viability, of such nanoporous coatings. Here, we report our findings on nanoporous/polymer composite systems (NPCS) fabricated by utilizing oblique-angle electron-beam methodology. These unique composite systems exhibit several favorable characteristics, namely, (i) fine-tuned control over coating nanoporosity and thickness, (ii) excellent adhesion between the nanoporous coating and polymer substrate, (iii) the ability to withstand significant and repeated bending, and (iv) the ability to be molded conformably on two and three-dimensional surfaces while closely retaining the composite system's designed nanoporous film structure and, hence, properties.

  13. Influence of viscoelastic property on laser-generated surface acoustic waves in coating-substrate systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun Hongxiang; Faculty of Science, Jiangsu University, Zhenjiang 212013; Zhang Shuyi

    2011-04-01

    Taking account of the viscoelasticity of materials, the pulsed laser generation of surface acoustic waves in coating-substrate systems has been investigated quantitatively by using the finite element method. The displacement spectra of the surface acoustic waves have been calculated in frequency domain for different coating-substrate systems, in which the viscoelastic properties of the coatings and substrates are considered separately. Meanwhile, the temporal displacement waveforms have been obtained by applying inverse fast Fourier transforms. The numerical results of the normal surface displacements are presented for different configurations: a single plate, a slow coating on a fast substrate, and a fast coatingmore » on a slow substrate. The influences of the viscoelastic properties of the coating and the substrate on the attenuation of the surface acoustic waves have been studied. In addition, the influence of the coating thickness on the attenuation of the surface acoustic waves has been also investigated in detail.« less

  14. Erosion Coatings for High-Temperature Polymer Composites: A Collaborative Project With Allison Advanced Development Company

    NASA Technical Reports Server (NTRS)

    Sutter, James K.

    2000-01-01

    The advantages of replacing metals in aircraft turbine engines with high-temperature polymer matrix composites (PMC's) include weight savings accompanied by strength improvements, reduced part count, and lower manufacturing costs. Successfully integrating high-temperature PMC's into turbine engines requires several long-term characteristics. Resistance to surface erosion is one rarely reported property of PMC's in engine applications because PMC's are generally softer than metals and their erosion resistance suffers. Airflow rates in stationary turbine engine components typically exceed 2.3 kg/sec at elevated temperatures and pressures. In engine applications, as shown in the following photos, the survivability of PMC components is clearly a concern, especially when engine and component life-cycle requirements become longer. Although very few publications regarding the performance of erosion coatings on PMC's are available particularly in high-temperature applications the use of erosion-resistant coatings to significantly reduce wear on metallic substrates is well documented. In this study initiated by the NASA Glenn Research Center at Lewis Field, a low-cost (less than $140/kg) graphite-fiber-reinforced T650 35/PMR 15 sheet-molding compound was investigated with various coatings. This sheet-molding compound has been compression molded into many structurally complicated components, such as shrouds for gas turbine inlet housings and gearboxes. Erosion coatings developed for PMC s in this study consisted of a two-layered system: a bondcoat sprayed onto a cleaned PMC surface, followed by an erosion-resistant, hard topcoat sprayed onto the bondcoat as shown in following photomicrograph. Six erosion coating systems were evaluated for their ability to withstand harsh thermal cycles, erosion resistance (ASTM G76 83 "Standard Practice for Conducting Erosion Tests by Solid Particle Impingement Using Gas Jets") using Al2O3, and adhesion to the graphite fiber polyimide composite (ASTM D 4541 95 "Pull Off Strength of Coatings"). Glenn and Allison Advanced Development Company collaborated to optimize erosion coatings for gas turbine fan and compressor applications. All the coating systems survived aggressive thermal cycling without spalling. During erosion tests (see the final photo), the most promising coating systems tested had Cr3C2-NiCr and WC-Co as the hard topcoats. In all cases, these coating systems performed significantly better than that with a TiN hard topcoat. When material depth (thickness) loss is considered, the Cr3C2-NiCr and WC-Co coating systems provided, on average, an erosion resistance 8.5 times greater than that for the uncoated PMR 15/T650 35 composite. Similarly, Cr3C2-NiCr and WC-Co coating systems adhered to the PMC substrate during tensile tests significantly better than systems containing a TiN topcoat. Differences in topcoats of Cr3C2-NiCr and WC-Co were determined by considering issues such as cost and environmental impact. The preferred erosion-resistant coating system for PMR 15/T650 35 has WC-Co as the hard topcoat. This system provides the following benefits in comparison to the coating system with Cr3C2-NiCr topcoat: lower powder material cost (15 to 20 percent), environmentally friendly materials (Cr3C2-NiCr is hazardous), and higher deposition yield (10 to 15 percent), which results in less waste.

  15. Methods to improve the PVD coatability of brass by using diffusion barriers

    NASA Astrophysics Data System (ADS)

    Langer, Bernd

    Previous work involving PVD coatings on brass has used a combination of multilayers consisting of electroplated films like nickel or chromium and deposited decorative PVD coatings like TiN, TiAIN or ZrN systems. The disadvantages of these systems are the combination of wet electrochemistry and high tech vacuum processes. Furthermore the allergic reaction to nickel and the toxic nature of Cr(VI) must be considered.There is a need for intermediate layers to 'seal-off the brass in order to avoid the evaporation of zinc in vacuum using a diffusion barrier. Furthermore the intermediate layers are required to act as a corrosion barrier.This thesis reports on the development of PVD coatings on heat sensitive brass substrate materials utilising ABS technology with Al, CuAl8 and Nb targets as vapour sources.The brass pretreatment includes careful grinding, polishing and cleaning steps as well as steered arc metal ion etching using the above target materials. The coatings are produced at temperatures between 100 and 250°C in the unbalanced magnetron mode, including layers made from Al, Al-Nb, CuA18, CuAl8-Nb and Nb.Scratch adhesion and Rockwell indentation tests are found not to be directly applicable to the system of soft brass and ductile coating(s). Therefore a new classification for both scratch and indentation tests was defined. The best adhesion was shown by the CuA18 coatings on brass. Corrosion tests showed good results for the Al coatings and poor results for the pure Nb coatings directly applied on brass. The best corrosion result was obtained with a CuAl8-Nb layer system. This layer system also offers very good barrier behaviour concerning Zn diffusion.Other investigations like Glow Discharge Optical Emission Spectroscopy (GDOES), Scanning Electron Microscopy (SEM) imaging, Transmission Electron Microscopy (TEM) and X-ray Diffraction (XRD) were undertaken to characterise the new coating systems for brass.

  16. Functionally graded alumina-based thin film systems

    DOEpatents

    Moore, John J.; Zhong, Dalong

    2006-08-29

    The present invention provides coating systems that minimize thermal and residual stresses to create a fatigue- and soldering-resistant coating for aluminum die casting dies. The coating systems include at least three layers. The outer layer is an alumina- or boro-carbide-based outer layer that has superior non-wettability characteristics with molten aluminum coupled with oxidation and wear resistance. A functionally-graded intermediate layer or "interlayer" enhances the erosive wear, toughness, and corrosion resistance of the die. A thin adhesion layer of reactive metal is used between the die substrate and the interlayer to increase adhesion of the coating system to the die surface.

  17. Advanced Environmental Barrier Coating Development for SiC-SiC Ceramic Matrix Composite Components

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Harder, Bryan; Bhatt, Ramakrishna; Kiser, Doug; Wiesner, Valerie L.

    2016-01-01

    This presentation reviews the NASA advanced environmental barrier coating (EBC) system development for SiCSiC Ceramic Matrix Composite (CMC) components for next generation turbine engines. The emphasis has been placed on the current design challenges of the 2700F environmental barrier coatings; coating processing and integration with SiCSiC CMCs and component systems; and performance evaluation and demonstration of EBC-CMC systems. This presentation also highlights the EBC-CMC system temperature capability and durability improvements through advanced compositions and architecture designs, as shown in recent simulated engine high heat flux, combustion environment, in conjunction with mechanical creep and fatigue loading testing conditions.

  18. Thermal barrier coating life-prediction model development

    NASA Technical Reports Server (NTRS)

    Strangman, T. E.; Neumann, J.; Liu, A.

    1986-01-01

    The program focuses on predicting the lives of two types of strain-tolerant and oxidation-resistant thermal barrier coating (TBC) systems that are produced by commercial coating suppliers to the gas turbine industry. The plasma-sprayed TBC system, composed of a low-pressure plasma-spray (LPPS) or an argon shrouded plasma-spray (ASPS) applied oxidation resistant NiCrAlY or (CoNiCrAlY) bond coating and an air-plasma-sprayed yttria partially stabilized zirconia insulative layer, is applied by both Chromalloy, Klock, and Union Carbide. The second type of TBS is applied by the electron beam-physical vapor deposition (EB-PVD) process by Temescal. The second year of the program was focused on specimen procurement, TMC system characterization, nondestructive evaluation methods, life prediction model development, and TFE731 engine testing of thermal barrier coated blades. Materials testing is approaching completion. Thermomechanical characterization of the TBC systems, with toughness, and spalling strain tests, was completed. Thermochemical testing is approximately two-thirds complete. Preliminary materials life models for the bond coating oxidation and zirconia sintering failure modes were developed. Integration of these life models with airfoil component analysis methods is in progress. Testing of high pressure turbine blades coated with the program TBS systems is in progress in a TFE731 turbofan engine. Eddy current technology feasibility was established with respect to nondestructively measuring zirconia layer thickness of a TBC system.

  19. Phenol-formaldehyde intumescent coating composition and coating prepared therefrom

    NASA Technical Reports Server (NTRS)

    Salyer, Ival O. (Inventor); Fox, Bernard L. (Inventor)

    1986-01-01

    Intumescent coatings which form a thick, uniform, fine celled, low density foam upon exposure to a high intensity heat flux or flame are disclosed, the invention coatings comprise phenolic resin prepolymer containing a blowing agent and a nucleating agent; in the preferred embodiments the coatings also contains a silicone surfactant, the coatings are useful in thermal and fire protection systems.

  20. Influence of coatings on the thermal and mechanical processes at insulating glass units

    NASA Astrophysics Data System (ADS)

    Penkova, Nina; Krumov, Kalin; Surleva, Andriana; Geshkova, Zlatka

    2017-09-01

    Different coatings on structural glass are used in the advances transparent facades and window systems in order to increase the thermal performance of the glass units and to regulate their optical properties. Coated glass has a higher absorptance in the solar spectrum which leads to correspondent higher temperature in the presence of solar load compared to the uncoated one. That process results in higher climatic loads at the insulating glass units (IGU) and in thermal stresses in the coated glass elements. Temperature fields and gradients in glass panes and climatic loads at IGU in window systems are estimated at different coating of glazed system. The study is implemented by numerical simulation of conjugate heat transfer in the window systems at summer time and presence of solar irradiation, as well as during winter night time.

  1. Interfaces - Weak Links, Yet Great Opportunities

    NASA Technical Reports Server (NTRS)

    Hendricks, Robert C.; Dimofte, Florin; Chupp, Raymond E.; Steinetz, Bruce M.

    2011-01-01

    Inadequate turbomachine interface design can rapidly degrade system performance, yet provide great opportunity for improvements. Engineered coatings of seals and bearing interfaces are major issues in the operational life of power systems. Coatings, films, and combined use of both metals and ceramics play a major role in maintaining component life. Interface coatings, like lubricants, are sacrificial for the benefit of the component. Bearing and sealing surfaces are routinely protected by tribologically paired coatings such as silicon diamond like coatings (SiDLC) in combination with an oil lubricated wave bearing that prolongs bearing operational life. Likewise, of several methods used or researched for detecting interface failures, dopants within coatings show failures in functionally graded ceramic coatings. The Bozzolo-Ferrante-Smith (BFS) materials models and quantum mechanical tools, employed in interface design, are discussed.

  2. The self-healing composite anticorrosion coating

    NASA Astrophysics Data System (ADS)

    Yang, Zhao; Wei, Zhang; Le-ping, Liao; Hong-mei, Wang; Wu-jun, Li

    Self-healing coatings, which autonomically repair and prevent corrosion of the underlying substrate, are of particular interest for the researchers. In the article, effectiveness of epoxy resin filled microcapsules was investigated for healing of cracks generated in coatings. Microcapsules were prepared by in situ polymerization of urea-formaldehyde resin to form shell over epoxy resindroplets. Characteristics of these capsules were studied by scanning electron microscope (SEM), thermo gravimetric analyzer (TGA) and particle size analyzer. The model system of self-healing antisepsis coating consists of an epoxy resin matrix, 10 wt% microencapsulated healing agent, 2wt% catalyst solution. The self-healing function of this coating system is evaluated through corrosion testing of damaged and healed coated steel samples compared to control samples. Electrochemical testing provides further evidence of passivation of the substrate by self-healing coatings.

  3. Sensory and Physical Effects of Sugar Reduction in a Caramel Coating System.

    PubMed

    Mayhew, Emily J; Schmidt, Shelly J; Lee, Soo-Yeun

    2017-08-01

    Sugar reduction in processed foods is a pressing and complex problem, as sugars contribute important sensory and physical properties to foods. Composed of sugars and lipids, caramel coating systems, like the coating in caramel popcorns, exemplify this challenge. In order to probe the feasibility and consequences of sugar reduction, both sensory and physical properties were measured for 3 types of caramel coating systems. Four commonly used sugar alcohols, isomalt, maltitol, mannitol, and sorbitol, with different thermal properties and relative sweetness values were chosen to replace sugar in the caramel coating systems at 25% and 50% sugar reduction levels. Full sugar (control) and reduced sugar caramel coating samples were prepared in duplicate. Ten trained panelists participated in a 6-wk descriptive analysis panel to define and quantify the intensity of important sensory characteristics. All 24 sensory terms generated by the panel differed significantly across caramel type and sugar replacer. Thermal properties were measured through differential scanning calorimetry, and textural properties were measured through texture profile analysis. Replacement of sugar with sugar alcohols was found to decrease the glass transition temperature and systematically alter the hardness and resilience of caramel samples. Principal component analysis of sensory and physical data revealed that caramel coating type dictates caramel aroma, aroma by mouth, taste, and aftertaste, while sugar replacer and replacement level dictate texture. This research represents the first comprehensive study of the effects of sugar reduction in a caramel coating system and suggests successful strategies for sugar reduction and key parameters to control in reduced sugar systems. © 2017 Institute of Food Technologists®.

  4. Two-layer thermal barrier coating for turbine airfoils - furnace and burner rig test results

    NASA Technical Reports Server (NTRS)

    Stecura, S.

    1976-01-01

    A simple, two-layer plasma-sprayed thermal barrier coating system was developed which has the potential for protecting high temperature air-cooled gas turbine components. Of those coatings initially examined, the most promising system consisted of a Ni-16Cr-6Al-0.6Y (in wt%) thermal barrier coating (about 0.005 to 0.010 cm thick) and a ZrO2-12Y2O3 (in wt%) thermal barrier coating (about 0.025 to 0.064 cm thick). This thermal barrier substantially lowered the metal temperature of an air-cooled airfoil. The coating withstood 3,200 cycles (80 sec at 1,280 C surface temperature) and 275 cycles (1 hr at 1,490 C surface temperature) without cracking or spalling. No separation of the thermal barrier from the bond coating or the bond coating from the substrate was observed.

  5. Application of lasers and pulsed power to coating removal

    NASA Astrophysics Data System (ADS)

    Young, Chris M.; Moeny, William M.; Curry, Randy D.; McDonald, Ken; Bosma, John T.

    1995-03-01

    Lasers and other pulsed power systems are uniquely suited for removal of coatings from a wide variety of substrates. Coatings which can be removed by these systems include paint, adhesives, epoxies, dips, rust, scale, and bird droppings. Suitable substrates include wood, metal, cloth, stone, ceramic, plastics, and even skin. These systems have the advantage over chemical stripping or mechanical abrasion in that the substrate is left virtually unharmed and in many cases the residue is reduced to a form that is more easily disposed of without toxic byproducts or expensive refurbishment. Furthermore, laser and other pulsed power based systems can be operated using only local containment without the need for special operator protective gear or complete enclosure of the substrate structure. Additional advantages are gained in these systems because they typically combine multiple removal mechanisms for greater effectiveness. For example, pulsed lasers create rapid heating of the coating. This rapid heating can result in chemical breakdown of the coating, thermomechanical stress induced dislocation, shock wave agitation, and physical ablation. This paper presents some of the latest research findings on coating removal using these systems. A comparative survey of the system technology, effectiveness, cost, and application is presented. Also presented is a survey of the commercial potential for the systems. Systems which are presented include lasers (CW, pulsed, Infrared, UV, etc.), flashlamps, electro-cathodic debonders, electron beams, and glow discharges.

  6. Oxidation behavior of thermal barrier coating systems with Al interlayer under isothermal loading

    NASA Astrophysics Data System (ADS)

    Ali, I.; Sokołowski, P.; Grund, T.; Pawłowski, L.; Lampke, T.

    2018-06-01

    In the present study, the phenomena related to the Thermally Grown Oxides (TGO) in atmospheric plasma sprayed Thermal Barrier Coatings (TBCs) are discussed. CoNiCrAlY bond coatings were sprayed on Inconel 600 substrates. Subsequently, thin Al layers were deposited by DC-Magnetron sputtering. Finally, yttria-stabilized zirconia (YSZ) top coatings were deposited to form a three-layered TBC system. The thus produced aluminum interlayer containing thermal barrier coatings (Al-TBC) were subjected to isothermal exposure with different holding times at 1150 °C and compared with reference TBCs of the same kind, but without Al interlayers (R-TBC). The oxide film formation in the interface between bond coating (BC) and top coating (TC) was investigated by scanning electron microscope (SEM) after 100 and 300 h of high temperature isothermal exposure. The growth of this oxide film as a function of the isothermal exposure time was studied. As a result, the designed Al-TBC system exhibited better oxidation resistance in the BC/TC interface than the two-layered R-TBC system. This was lead back to the Al enrichment, which slows down the formation rate of transition metal oxides during thermal loading.

  7. Photocathode device that replenishes photoemissive coating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moody, Nathan A.; Lizon, David C.

    2016-06-14

    A photocathode device may replenish its photoemissive coating to replace coating material that desorbs/evaporates during photoemission. A linear actuator system may regulate the release of a replenishment material vapor, such as an alkali metal, from a chamber inside the photocathode device to a porous cathode substrate. The replenishment material deposits on the inner surface of a porous membrane and effuses through the membrane to the outer surface, where it replenishes the photoemissive coating. The rate of replenishment of the photoemissive coating may be adjusted using the linear actuator system to regulate performance of the photocathode device during photoemission. Alternatively, themore » linear actuator system may adjust a plasma discharge gap between a cartridge containing replenishment material and a metal grid. A potential is applied between the cartridge and the grid, resulting in ejection of metal ions from the cartridge that similarly replenish the photoemissive coating.« less

  8. 14. VIEW OF VACUUM COATING CHAMBER. THE SYSTEM USED TITANIUM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. VIEW OF VACUUM COATING CHAMBER. THE SYSTEM USED TITANIUM VAPORS TO DEPOSIT TITANIUM COATING ONTO URANIUM PARTS UNDER A VACUUM. (1/11/83) - Rocky Flats Plant, Non-Nuclear Production Facility, South of Cottonwood Avenue, west of Seventh Avenue & east of Building 460, Golden, Jefferson County, CO

  9. Thermal Management Coating As Thermal Protection System for Space Transportation System

    NASA Technical Reports Server (NTRS)

    Kaul, Raj; Stuckey, C. Irvin

    2003-01-01

    This paper presents viewgraphs on the development of a non-ablative thermal management coating used as the thermal protection system material for space shuttle rocket boosters and other launch vehicles. The topics include: 1) Coating Study; 2) Aerothermal Testing; 3) Preconditioning Environments; 4) Test Observations; 5) Lightning Strike Test Panel; 6) Test Panel After Impact Testing; 7) Thermal Testing; and 8) Mechanical Testing.

  10. Coatings and Surface Treatments for Reusable Entry Systems

    NASA Technical Reports Server (NTRS)

    Johnson, Sylvia M.

    2016-01-01

    This talk outlines work in coatings for TPS done at NASA Ames. coatings and surface treatments on reusable TPS are critical for controlling the behavior of the materials. coatings discussed include RCG, TUFI and HETC. TUFROc is also discussed.

  11. Evaluation of zinc coating procedures : final report.

    DOT National Transportation Integrated Search

    1978-01-01

    This research project was conducted in order to compare the existing procedure of zinc coating by hot-dip galvanizing with the other zinc coating systems of painting and electroplating. : Hardware coated by these processes was exposed to varied labor...

  12. Federal Highway Administration 100-year coating study.

    DOT National Transportation Integrated Search

    2012-11-01

    The Federal Highway Administration 100-Year Coating Study was initiated in August 2009 to search for durable : coating systems at a reasonable cost. The objective of the study was to identify and evaluate coating materials that can : provide 100 year...

  13. Tailored plasma sprayed MCrAlY coatings for aircraft gas turbine applications

    NASA Technical Reports Server (NTRS)

    Pennisi, F. J.; Gupta, D. K.

    1981-01-01

    Eighteen plasma sprayed coating systems, nine based on the NiCoCrAly chemistry and nine based on the CoCrAly composition, were evaluated to identify coating systems which provide equivalent or superior life to that shown by the electron beam physical vapor deposited NiCoCrAly and CoCrAly coatings respectively. NiCoCrAly type coatings were examined on a single crystal alloy and the CoCrAly based coatings were optimized on the B1900+ Hf alloy. Cyclic burner rig oxidation and hot corrosion and tensile ductility tests used to evaluate the various coating candidates. For the single crystal alloy, a low pressure chamber plasma sprayed NiCoCrAly + Si coating exhibited a 2x oxidation life improvement at 1394 K (2050 F) over the vapor deposited NiCoCrAly material while showing equivalent tensile ductility. A silicon modified low pressure chamber plasma sprayed CoCrAly coating was found to be more durable than the baseline vapor deposited CoCrAly coating on the B1900+ Hf alloy.

  14. Coated columbium thermal protection systems: An assessment of technological readiness

    NASA Technical Reports Server (NTRS)

    Levine, S. R.; Grisaffe, S. J.

    1973-01-01

    Evaluation and development to date show that of the coated columbium alloys FS-85 coated with R512E shows significant promise for a reusable thermal protection system (TPS) as judged by environmental resistance and the retention of mechanical properties and structural integrity of panels upon repeated reentry simulation. Production of the alloy, the coating, and full-sized TPS panels is well within current manufacturing technology. Small defects which arise from impact damage or from local coating breakdown do not appear to have serious immediate consequences in the use environment anticipated for the space shuttle orbiter TPS.

  15. The Principle and the Application of Self-cleaning Anti-pollution Coating in Power System

    NASA Astrophysics Data System (ADS)

    Zhao, Y. J.; Zhang, Z. B.; Liu, Y.; Wang, J. H.; Teng, J. L.; Wu, L. S.; Zhang, Y. L.

    2017-11-01

    The common problem existed in power system is analyzed in this paper. The main reason for the affection of the safe and stable operation to power equipment is flash-over caused by dirt and discharge. Using the self-cleaning anti-pollution coating in the power equipment surface is the key to solve the problem. In the work, the research progress and design principle about the self-cleaning anti-pollution coating was summarized. Furthermore, the preparation technology was also studied. Finally, the application prospect of hard self-cleaning anti-pollution coating in power system was forecast.

  16. Thermal barrier coating life prediction model

    NASA Technical Reports Server (NTRS)

    Hillery, R. V.; Pilsner, B. H.

    1985-01-01

    This is the first report of the first phase of a 3-year program. Its objectives are to determine the predominant modes of degradation of a plasma sprayed thermal barrier coating system, then to develop and verify life prediction models accounting for these degradation modes. The first task (Task I) is to determine the major failure mechanisms. Presently, bond coat oxidation and bond coat creep are being evaluated as potential TBC failure mechanisms. The baseline TBC system consists of an air plasma sprayed ZrO2-Y2O3 top coat, a low pressure plasma sprayed NiCrAlY bond coat, and a Rene'80 substrate. Pre-exposures in air and argon combined with thermal cycle tests in air and argon are being utilized to evaluate bond coat oxidation as a failure mechanism. Unexpectedly, the specimens pre-exposed in argon failed before the specimens pre-exposed in air in subsequent thermal cycles testing in air. Four bond coats with different creep strengths are being utilized to evaluate the effect of bond coat creep on TBC degradation. These bond coats received an aluminide overcoat prior to application of the top coat to reduce the differences in bond coat oxidation behavior. Thermal cycle testing has been initiated. Methods have been selected for measuring tensile strength, Poisson's ratio, dynamic modulus and coefficient of thermal expansion both of the bond coat and top coat layers.

  17. Influence of residual stress on the adhesion and surface morphology of PECVD-coated polypropylene

    NASA Astrophysics Data System (ADS)

    Jaritz, Montgomery; Hopmann, Christian; Behm, Henrik; Kirchheim, Dennis; Wilski, Stefan; Grochla, Dario; Banko, Lars; Ludwig, Alfred; Böke, Marc; Winter, Jörg; Bahre, Hendrik; Dahlmann, Rainer

    2017-11-01

    The properties of plasma-enhanced chemical vapour deposition (PECVD) coatings on polymer materials depend to some extent on the surface and material properties of the substrate. Here, isotactic polypropylene (PP) substrates are coated with silicon oxide (SiO x ) films. Plasmas for the deposition of SiO x are energetic and oxidative due to the high amount of oxygen in the gas mixture. Residual stress measurements using single Si cantilever stress sensors showed that these coatings contain high compressive stress. To investigate the influence of the plasma and the coatings, residual stress, silicon organic (SiOCH) coatings with different thicknesses between the PP and the SiO x coating are used as a means to protect the substrate from the oxidative SiO x coating process. Pull-off tests are performed to analyse differences in the adhesion of these coating systems. It could be shown that the adhesion of the PECVD coatings on PP depends on the coatings’ residual stress. In a PP/SiOCH/SiO x -multilayer system the residual stress can be significantly reduced by increasing the thickness of the SiOCH coating, resulting in enhanced adhesion.

  18. Advanced Low Conductivity Thermal Barrier Coatings: Performance and Future Directions (Invited paper)

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Miller, Robert A.

    2008-01-01

    Thermal barrier coatings will be more aggressively designed to protect gas turbine engine hot-section components in order to meet future engine higher fuel efficiency and lower emission goals. In this presentation, thermal barrier coating development considerations and performance will be emphasized. Advanced thermal barrier coatings have been developed using a multi-component defect clustering approach, and shown to have improved thermal stability and lower conductivity. The coating systems have been demonstrated for high temperature combustor applications. For thermal barrier coatings designed for turbine airfoil applications, further improved erosion and impact resistance are crucial for engine performance and durability. Erosion resistant thermal barrier coatings are being developed, with a current emphasis on the toughness improvements using a combined rare earth- and transition metal-oxide doping approach. The performance of the toughened thermal barrier coatings has been evaluated in burner rig and laser heat-flux rig simulated engine erosion and thermal gradient environments. The results have shown that the coating composition optimizations can effectively improve the erosion and impact resistance of the coating systems, while maintaining low thermal conductivity and cyclic durability. The erosion, impact and high heat-flux damage mechanisms of the thermal barrier coatings will also be described.

  19. Advanced Low Conductivity Thermal Barrier Coatings: Performance and Future Directions

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Miller, Robert A.

    2008-01-01

    Thermal barrier coatings will be more aggressively designed to protect gas turbine engine hot-section components in order to meet future engine higher fuel efficiency and lower emission goals. In this presentation, thermal barrier coating development considerations and performance will be emphasized. Advanced thermal barrier coatings have been developed using a multi-component defect clustering approach, and shown to have improved thermal stability and lower conductivity. The coating systems have been demonstrated for high temperature combustor applications. For thermal barrier coatings designed for turbine airfoil applications, further improved erosion and impact resistance are crucial for engine performance and durability. Erosion resistant thermal barrier coatings are being developed, with a current emphasis on the toughness improvements using a combined rare earth- and transition metal-oxide doping approach. The performance of the toughened thermal barrier coatings has been evaluated in burner rig and laser heat-flux rig simulated engine erosion and thermal gradient environments. The results have shown that the coating composition optimizations can effectively improve the erosion and impact resistance of the coating systems, while maintaining low thermal conductivity and cyclic durability. The erosion, impact and high heat-flux damage mechanisms of the thermal barrier coatings will also be described.

  20. Damage Accumulation and Failure of Plasma-Sprayed Thermal Barrier Coatings under Thermal Gradient Cyclic Conditions

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Choi, Sung R.; Ghosn, Louis J.; Miller, rober A.

    2005-01-01

    Thermal barrier coatings will be more aggressively designed to protect gas turbine engine hot-section components in order to meet future engine higher fuel efficiency and lower emission goals. A fundamental understanding of the sintering and thermal cycling induced delamination of thermal barrier coating systems under engine-like heat flux conditions will potentially help to improve the coating temperature capability. In this study, a test approach is established to emphasize the real-time monitoring and assessment of the coating thermal conductivity, which can initially increase under the steady-state high temperature thermal gradient test due to coating sintering, and later decrease under the thermal gradient cyclic test due to coating cracking and delamination. Thermal conductivity prediction models have been established for a ZrO2-(7- 8wt%)Y2O3 model coating system in terms of heat flux, time, and testing temperatures. The coating delamination accumulation is then assessed based on the observed thermal conductivity response under the combined steady-state and cyclic thermal gradient tests. The coating thermal gradient cycling associated delaminations and failure mechanisms under simulated engine heat-flux conditions will be discussed in conjunction with the coating sintering and fracture testing results.

  1. Ultrasonic Detection of Delamination and Material Characterization of Thermal Barrier Coatings

    NASA Astrophysics Data System (ADS)

    Chen, Hung-Liang Roger; Zhang, Binwei; Alvin, Mary Anne; Lin, Yun

    2012-12-01

    This article describes ultrasonic nondestructive evaluation (NDE) to detect the changes of material properties and provide early warning of delamination in thermal barrier coating (TBC) systems. NDE tests were performed on single-crystal René N5 superalloy coupons that were coated with a commercially available MCrAlY bond coat and an air plasma sprayed 7% yttria-stabilized zirconia (YSZ) top coat deposited by Air Plasma Spray method, as well as Haynes 230 superalloy coupons coated with MCrA1Y bond coat, and an electron beam physical vapor deposit of 7% YSZ top coat. The TBC coupons were subjected to either cyclic or isothermal exposure for various lengths of time at temperatures ranging from 900 to 1100 °C. The ultrasonic measurements performed on the coupons had provided an early warning of delamination along the top coat/TGO interface before exposure time, when delamination occurred. The material's property (Young's modulus) of the top coat was estimated using the measured wave speeds. Finite element analysis (FEA) of the ultrasonic wave propagation was conducted on a simplified TBC system to verify experimental observations. The technique developed was also demonstrated on an as-manufactured turbine blade to estimate normalized top coat thickness measurements.

  2. Validation of Alternatives to Aliphatic Isocyanate Polyurethanes

    NASA Technical Reports Server (NTRS)

    Curran, Jerome

    2007-01-01

    The National Aeronautics and Space Administration (NASA) Headquarters chartered the Acquisition Pollution Prevention (AP2) Office to coordinate agency activities affecting pollution prevention issues identified during system and component acquisition and sustainment processes. The primary objective of this effort is to demonstrate and validate alternatives to aliphatic isocyanate polyurethane coatings. Successful completion of this project will result in one or more isocyanate-free coating systems qualified for use at Air Force Space Command (AFSPC) and NASA centers participating in this study. The objective of this project is to qualify the candidates under the specifications for the standard system. This project will compare coating performance of the proposed alternatives to existing coating systems or standards.

  3. Contamination control in hybrid microelectronic modules. Part 3: Specifications for coating material and process controls

    NASA Technical Reports Server (NTRS)

    Himmel, R. P.

    1975-01-01

    Resin systems for coating hybrids prior to hermetic sealing are described. The resin systems are a flexible silicone junction resin system and a flexible cycloaliphatic epoxy resin system. The coatings are intended for application to the hybrid after all the chips have been assembled and wire bonded, but prior to hermetic sealing of the package. The purpose of the coating is to control particulate contamination by immobilizing particles and by passivating the hybrid. Recommended process controls for the purpose of minimizing contamination in hybrid microcircuit packages are given. Emphasis is placed on those critical hybrid processing steps in which contamination is most likely to occur.

  4. Outer skin protection of columbium Thermal Protection System (TPS) panels

    NASA Technical Reports Server (NTRS)

    Culp, J. D.

    1973-01-01

    A coated columbium alloy material system 0.04 centimeter thick was developed which provides for increased reliability to the load bearing character of the system in the event of physical damage to and loss of the exterior protective coating. The increased reliability to the load bearing columbium alloy (FS-85) was achieved by interposing an oxidation resistant columbium alloy (B-1) between the FS-85 alloy and a fused slurry silicide coating. The B-1 alloy was applied as a cladding to the FS-85 and the composite was fused slurry silicide coated. Results of material evaluation testing included cyclic oxidation testing of specimens with intentional coating defects, tensile testing of several material combinations exposed to reentry profile conditions, and emittance testing after cycling of up to 100 simulated reentries. The clad material, which was shown to provide greater reliability than unclad materials, holds significant promise for use in the thermal protection system of hypersonic reentry vehicles.

  5. Gaseous modification of MCrAlY coatings

    DOEpatents

    Vance, Steven J.; Goedjen, John G.; Sabol, Stephen M.; Sloan, Kelly M.

    2000-01-01

    The present invention generally describes methods for modifying MCrAlY coatings by using gaseous carburization, gaseous nitriding or gaseous carbonitriding. The modified MCrAlY coatings are useful in thermal barrier coating systems, which may be used in gas turbine engines.

  6. Thermal and Environmental Barrier Coating Development for Advanced Propulsion Engine Systems

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Miller, Robert A.; Fox, Dennis S.

    2008-01-01

    Ceramic thermal and environmental barrier coatings (TEBCs) are used in gas turbine engines to protect engine hot-section components in the harsh combustion environments, and extend component lifetimes. Advanced TEBCs that have significantly lower thermal conductivity, better thermal stability and higher toughness than current coatings will be beneficial for future low emission and high performance propulsion engine systems. In this paper, ceramic coating design and testing considerations will be described for turbine engine high temperature and high-heat-flux applications. Thermal barrier coatings for metallic turbine airfoils and thermal/environmental barrier coatings for SiC/SiC ceramic matrix composite (CMC) components for future supersonic aircraft propulsion engines will be emphasized. Further coating capability and durability improvements for the engine hot-section component applications can be expected by utilizing advanced modeling and design tools.

  7. Method for applying a diffusion barrier interlayer for high temperature components

    DOEpatents

    Wei, Ronghua; Cheruvu, Narayana S.

    2016-03-08

    A coated substrate and a method of forming a diffusion barrier coating system between a substrate and a MCrAl coating, including a diffusion barrier coating deposited onto at least a portion of a substrate surface, wherein the diffusion barrier coating comprises a nitride, oxide or carbide of one or more transition metals and/or metalloids and a MCrAl coating, wherein M includes a transition metal or a metalloid, deposited on at least a portion of the diffusion barrier coating, wherein the diffusion barrier coating restricts the inward diffusion of aluminum of the MCrAl coating into the substrate.

  8. Blanch Resistant and Thermal Barrier NiAl Coating Systems for Advanced Copper Alloys

    NASA Technical Reports Server (NTRS)

    Raj, Sai V. (Inventor)

    2005-01-01

    A method of forming an environmental resistant thermal barrier coating on a copper alloy is disclosed. The steps include cleansing a surface of a copper alloy, depositing a bond coat on the cleansed surface of the copper alloy, depositing a NiAl top coat on the bond coat and consolidating the bond coat and the NiAl top coat to form the thermal barrier coating. The bond coat may be a nickel layer or a layer composed of at least one of copper and chromium-copper alloy and either the bond coat or the NiAl top coat or both may be deposited using a low pressure or vacuum plasma spray.

  9. Structure and corrosion properties of PVD Cr-N coatings

    NASA Astrophysics Data System (ADS)

    Liu, C.; Bi, Q.; Ziegele, H.; Leyland, A.; Matthews, A.

    2002-05-01

    PVD Cr-N coatings produced by physical vapor deposition (PVD) are increasingly used for mechanical and tribological applications in various industrial sectors. These coatings are particularly attractive for their excellent corrosion resistance, which further enhances the lifetime and service quality of coated components. PVD Cr-N coated steels in an aqueous solution are usually corroded by galvanic attack via through-coating ``permeable'' defects (e.g., pores). Therefore, the corrosion performance of Cr-N coated steel is determined by a number of variables of the coating properties and corrosive environment. These variables include: (i) surface continuity and uniformity; (ii) through-coating porosity; (iii) film density and chemical stability; (iv) growth stresses; (v) interfacial and intermediate layers; (vi) coating thickness; (vii) coating composition; and (viii) substrate properties. In this article, PVD Cr-N coatings were prepared, by electron-beam PVD and sputter deposition, with different compositions, thicknesses, and surface roughnesses, by changing the N2 flow rate, applying multilayering techniques and changing the substrate finish prior to coating. The microstructure of such coatings is investigated by various analytical techniques such as glancing angle x-ray diffraction and scanning electron microscopy, which are also correlated with the corrosion performance of the coated steel. Both dc polarization and ac impedance spectroscopy were employed to investigate the corrosion resistance of Cr-N coated steel in a 0.5N NaCl solution. It has been found that the N2 flow rate during reactive deposition strongly determines the microstructure of Cr-N coatings (due to the changing nitrogen content in the film) and can thus affect the corrosion resistance of coated systems. The surface finish of the steel substrate also affects the uniformity and coverage of PVD coatings; grooves and inclusions on the original substrate can raise the susceptibility of coated systems to crevice corrosion. Increased coating thickness can also greatly reduce the incidence of through-coating porosity such that the improvement in corrosion performance of thicker Cr-N coatings is significant.

  10. Boron carbide coatings for neutron detection probed by x-rays, ions, and neutrons to determine thin film quality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nowak, G., E-mail: Gregor.Nowak@hzg.de; Störmer, M.; Horstmann, C.

    2015-01-21

    Due to the present shortage of {sup 3}He and the associated tremendous increase of its price, the supply of large neutron detection systems with {sup 3}He becomes unaffordable. Alternative neutron detection concepts, therefore, have been invented based on solid {sup 10}B converters. These concepts require development in thin film deposition technique regarding high adhesion, thickness uniformity and chemical purity of the converter coating on large area substrates. We report on the sputter deposition of highly uniform large-area {sup 10}B{sub 4}C coatings of up to 2 μm thickness with a thickness deviation below 4% using the Helmholtz-Zentrum Geesthacht large area sputtering system.more » The {sup 10}B{sub 4}C coatings are x-ray amorphous and highly adhesive to the substrate. Material analysis by means of X-ray-Photoelectron Spectroscopy, Secondary-Ion-Mass-Spectrometry, and Rutherford-Back-Scattering (RBS) revealed low impurities concentration in the coatings. The isotope composition determined by Secondary-Ion-Mass-Spectrometry, RBS, and inelastic nuclear reaction analysis of the converter coatings evidences almost identical {sup 10}B isotope contents in the sputter target and in the deposited coating. Neutron conversion and detection test measurements with variable irradiation geometry of the converter coating demonstrate an average relative quantum efficiency ranging from 65% to 90% for cold neutrons as compared to a black {sup 3}He-monitor. Thus, these converter coatings contribute to the development of {sup 3}He-free prototype detectors based on neutron grazing incidence. Transferring the developed coating process to an industrial scale sputtering system can make alternative {sup 3}He-free converter elements available for large area neutron detection systems.« less

  11. Boron carbide coatings for neutron detection probed by x-rays, ions, and neutrons to determine thin film quality

    NASA Astrophysics Data System (ADS)

    Nowak, G.; Störmer, M.; Becker, H.-W.; Horstmann, C.; Kampmann, R.; Höche, D.; Haese-Seiller, M.; Moulin, J.-F.; Pomm, M.; Randau, C.; Lorenz, U.; Hall-Wilton, R.; Müller, M.; Schreyer, A.

    2015-01-01

    Due to the present shortage of 3He and the associated tremendous increase of its price, the supply of large neutron detection systems with 3He becomes unaffordable. Alternative neutron detection concepts, therefore, have been invented based on solid 10B converters. These concepts require development in thin film deposition technique regarding high adhesion, thickness uniformity and chemical purity of the converter coating on large area substrates. We report on the sputter deposition of highly uniform large-area 10B4C coatings of up to 2 μm thickness with a thickness deviation below 4% using the Helmholtz-Zentrum Geesthacht large area sputtering system. The 10B4C coatings are x-ray amorphous and highly adhesive to the substrate. Material analysis by means of X-ray-Photoelectron Spectroscopy, Secondary-Ion-Mass-Spectrometry, and Rutherford-Back-Scattering (RBS) revealed low impurities concentration in the coatings. The isotope composition determined by Secondary-Ion-Mass-Spectrometry, RBS, and inelastic nuclear reaction analysis of the converter coatings evidences almost identical 10B isotope contents in the sputter target and in the deposited coating. Neutron conversion and detection test measurements with variable irradiation geometry of the converter coating demonstrate an average relative quantum efficiency ranging from 65% to 90% for cold neutrons as compared to a black 3He-monitor. Thus, these converter coatings contribute to the development of 3He-free prototype detectors based on neutron grazing incidence. Transferring the developed coating process to an industrial scale sputtering system can make alternative 3He-free converter elements available for large area neutron detection systems.

  12. Thermal barrier coating life-prediction model development. Annual report no. 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strangman, T. E.; Neumann, J.; Liu, A.

    1986-10-01

    The program focuses on predicting the lives of two types of strain-tolerant and oxidation-resistant thermal barrier coating (TBC) systems that are produced by commercial coating suppliers to the gas turbine industry. The plasma-sprayed TBC system, composed of a low-pressure plasma-spray (LPPS) or an argon shrouded plasma-spray (ASPS) applied oxidation resistant NiCrAlY or (CoNiCrAlY) bond coating and an air-plasma-sprayed yttria partially stabilized zirconia insulative layer, is applied by both Chromalloy, Klock, and Union Carbide. The second type of TBS is applied by the electron beam-physical vapor deposition (EB-PVD) process by Temescal. The second year of the program was focused on specimenmore » procurement, TMC system characterization, nondestructive evaluation methods, life prediction model development, and TFE731 engine testing of thermal barrier coated blades. Materials testing is approaching completion. Thermomechanical characterization of the TBC systems, with toughness, and spalling strain tests, was completed. Thermochemical testing is approximately two-thirds complete. Preliminary materials life models for the bond coating oxidation and zirconia sintering failure modes were developed. Integration of these life models with airfoil component analysis methods is in progress. Testing of high pressure turbine blades coated with the program TBS systems is in progress in a TFE731 turbofan engine. Eddy current technology feasibility was established with respect to nondestructively measuring zirconia layer thickness of a TBC system.« less

  13. Post Irradiation Evaluation of Thermal Control Coatings and Solid Lubricants to Support Fission Surface Power Systems

    NASA Astrophysics Data System (ADS)

    Bowman, Cheryl L.; Jaworske, Donald A.; Stanford, Malcolm K.; Persinger, Justin A.; Khorsandi, Behrooz; Blue, Thomas E.

    2007-01-01

    The development of a nuclear power system for space missions, such as the Jupiter Icy Moons Orbiter or a lunar outpost, requires substantially more compact reactor design than conventional terrestrial systems. In order to minimize shielding requirements and hence system weight, the radiation tolerance of component materials within the power conversion and heat rejection systems must be defined. Two classes of coatings, thermal control paints and solid lubricants, were identified as material systems for which limited radiation hardness information was available. Screening studies were designed to explore candidate coatings under a predominately fast neutron spectrum. The Ohio State Research Reactor Facility staff performed irradiation in a well characterized, mixed energy spectrum and performed post irradiation analysis of representative coatings for thermal control and solid lubricant applications. Thermal control paints were evaluated for 1 MeV equivalent fluences from 1013 to 1015 n/cm2. No optical degradation was noted although some adhesive degradation was found at higher fluence levels. Solid lubricant coatings were evaluated for 1 MeV equivalent fluences from 1015 to 1016 n/cm2 with coating adhesion and flexibility used for post irradiation evaluation screening. The exposures studied did not lead to obvious property degradation indicating the coatings would have survived the radiation environment for the previously proposed Jupiter mission. The results are also applicable to space power development programs such as fission surface power for future lunar and Mars missions.

  14. Post Irradiation Evaluation of Thermal Control Coatings and Solid Lubricants to Support Fission Surface Power Systems

    NASA Technical Reports Server (NTRS)

    Bowman, Cheryl L.; Jaworske, Donald A.; Stanford, Malcolm K.; Persinger, Justin A.; Khorsandi, Behrooz; Blue, Thomas E.

    2007-01-01

    The development of a nuclear power system for space missions, such as the Jupiter Icy Moons Orbiter or a lunar outpost, requires substantially more compact reactor design than conventional terrestrial systems. In order to minimize shielding requirements and hence system weight, the radiation tolerance of component materials within the power conversion and heat rejection systems must be defined. Two classes of coatings, thermal control paints and solid lubricants, were identified as material systems for which limited radiation hardness information was available. Screening studies were designed to explore candidate coatings under a predominately fast neutron spectrum. The Ohio State Research Reactor Facility staff performed irradiation in a well characterized, mixed energy spectrum and performed post irradiation analysis of representative coatings for thermal control and solid lubricant applications. Thermal control paints were evaluated for 1 MeV equivalent fluences from 10(exp 13) to 10(exp 15) n per square centimeters. No optical degradation was noted although some adhesive degradation was found at higher fluence levels. Solid lubricant coatings were evaluated for 1 MeV equivalent fluences from 10(exp 15) to 10(exp 16) n per square centimeters with coating adhesion and flexibility used for post irradiation evaluation screening. The exposures studied did not lead to obvious property degradation indicating the coatings would have survived the radiation environment for the previously proposed Jupiter mission. The results are also applicable to space power development programs such as fission surface power for future lunar and Mars missions.

  15. Control of volume resistivity in inorganic-organic separators. [for alkaline batteries

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W.; Manzo, M. A.

    1980-01-01

    Control of resistivity in NASA inorganic-organic separators is achieved by incorporating small percentages of high surface area, fine-particle silica with other ingredients in the separator coating. The volume resistivity appears to be predictable from coating composition, that is, from the surface area of filler particles in the coating. The approach has been applied to two polymer-'plasticizer'-filler coating systems, where the filler content of each is below the generally acknowledged critical pigment volume concentration of the coating. Application of these coating systems to 0.0254 cm thick (10 mil) fuel-cell grade asbestos sheet produces inexpensive, flexible, microporous separators that perform at least as well as the original inorganic-organic concept, the Astropower separator.

  16. Development of Protective Coatings for Co-Sequestration Processes and Pipelines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bierwagen, Gordon; Huang, Yaping

    2011-11-30

    The program, entitled Development of Protective Coatings for Co-Sequestration Processes and Pipelines, examined the sensitivity of existing coating systems to supercritical carbon dioxide (SCCO2) exposure and developed new coating system to protect pipelines from their corrosion under SCCO2 exposure. A literature review was also conducted regarding pipeline corrosion sensors to monitor pipes used in handling co-sequestration fluids. Research was to ensure safety and reliability for a pipeline involving transport of SCCO2 from the power plant to the sequestration site to mitigate the greenhouse gas effect. Results showed that one commercial coating and one designed formulation can both be supplied asmore » potential candidates for internal pipeline coating to transport SCCO2.« less

  17. Purchase of a Raman and Photoluminescence Imaging System for Characterization of Advanced Electrochemical and Electronic Materials

    DTIC Science & Technology

    2016-01-05

    2015, Abstract #1092. The Role of Chromium (III) in the Corrosion Inhibition of AA2024-T3 By Trivalent Chromium Process Coatings by Greg Swain...to replace chromate conversion coatings and primers with more environmentally-friendly, non-chromated coatings. The Trivalent Chromium Process (TCP...coatings and primers with more environmentally-friendly, non-chromated coatings. The Trivalent Chromium Process (TCP) coating, originally developed

  18. Internal coating of air cooled gas turbine blades

    NASA Technical Reports Server (NTRS)

    Ahuja, P. L.

    1979-01-01

    Six coating systems were evaluated for internal coating of decent stage (DS) eutectic high pressure turbine blades. Sequential deposition of electroless Ni by the hydrazine process, slurry Cr, and slurry Al, followed by heat treatment provided the coating composition and thickness for internal coating of DS eutectic turbine blades. Both NiCr and NiCrAl coating compositions were evaluated for strain capability and ductile to brittle transition temperature.

  19. Crack Driving Forces in a Multilayered Coating System for Ceramic Matrix Composite Substrates

    NASA Technical Reports Server (NTRS)

    Ghosn, Louis J.; Zhu, Dongming; Miller, Robert A.

    2005-01-01

    The effects of the top coating thickness, modulus and shrinkage strains on the crack driving forces for a baseline multilayer Yttria-Stabilized-Zirconia/Mullite/Si thermal and environment barrier coating (TEBC) system for SiC/SiC ceramic matrix composite substrates are determined for gas turbine applications. The crack driving forces increase with increasing modulus, and a low modulus thermal barrier coating material (below 10 GPa) will have no cracking issues under the thermal gradient condition analyzed. Since top coating sintering increases the crack driving forces with time, highly sintering resistant coatings are desirable to maintain a low tensile modulus and maintain a low crack driving force with time. Finite element results demonstrated that an advanced TEBC system, such as ZrO2/HfO2, which possesses improved sintering resistance and high temperature stability, exhibited excellent durability. A multi-vertical cracked structure with fine columnar spacing is an ideal strain tolerant coating capable of reducing the crack driving forces to an acceptable level even with a high modulus of 50 GPa.

  20. Advanced Oxide Material Systems For 1650 C Thermal/Environmental Barrier Coating Applications

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Fox, Dennis S.; Bansal, Narottam P.; Miller, Robert A.

    2004-01-01

    Advanced thermal/environmental barrier coatings (T/EBCs) are being developed for low emission SiC/SiC ceramic matrix composite (CMC) combustor and vane applications to extend the CMC liner and vane temperature capability to 1650 C (3000 F) in oxidizing and water-vapor containing combustion environments. The 1650 C T/EBC system is required to have better thermal stability, lower thermal conductivity, and improved sintering and thermal stress resistance than current coating systems. In this paper, the thermal conductivity, water vapor stability and cyclic durability of selected candidate zirconia-/hafnia-, pyrochlore- and magnetoplumbite-based T/EBC materials are evaluated. The test results have been used to downselect the T/EBC coating materials, and help demonstrate advanced 1650OC coatings feasibility with long-term cyclic durability.

  1. Advanced Environmental Barrier Coatings Development for Si-Based Ceramics

    NASA Technical Reports Server (NTRS)

    Zhu, Dong-Ming; Choi, R. Sung; Robinson, Raymond C.; Lee, Kang N.; Bhatt, Ramakrishna T.; Miller, Robert A.

    2005-01-01

    Advanced environmental barrier coating concepts based on multi-component HfO2 (ZrO2) and modified mullite systems are developed for monolithic Si3N4 and SiC/SiC ceramic matrix composite (CMC) applications. Comprehensive testing approaches were established using the water vapor cyclic furnace, high pressure burner rig and laser heat flux steam rig to evaluate the coating water vapor stability, cyclic durability, radiation and erosion resistance under simulated engine environments. Test results demonstrated the feasibility and durability of the environmental barrier coating systems for 2700 to 3000 F monolithic Si3N4 and SiC/SiC CMC component applications. The high-temperature-capable environmental barrier coating systems are being further developed and optimized in collaboration with engine companies for advanced turbine engine applications.

  2. Testing and Evaluation of Multifunctional Smart Coatings

    NASA Technical Reports Server (NTRS)

    Buhrow, Jerry; Li, Wenyan; Jolley, Scott; Calle, Luz M.; Pearman, Benjamin; Zhang, Xuejun

    2015-01-01

    A smart coating system, based on pH sensitive microcontainers (microparticles and microcapsules) has been developed. Various corrosion inhibitors have been encapsulated and incorporated into commercial and formulated coatings to test the functionality imparted on the coating by the incorporation of the inhibitor microcontainers. Coated carbon steel and aluminum alloy panels were tested using salt immersion, salt fog, and coastal atmospheric exposure conditions. This paper provides the details on coating sample preparation, evaluation methods, as well as test results of the inhibiting function of smart coatings.

  3. Galvanic Liquid Applied Coating System For Protection of Embedded Steel Surfaces from Corrosion

    NASA Technical Reports Server (NTRS)

    Curran, Joseph; Curran, Jerome; Voska, N. (Technical Monitor)

    2002-01-01

    Corrosion of reinforcing steel in concrete is an insidious problem facing Kennedy Space Center (KSC), other Government Agencies, and the general public. These problems include KSC launch support structures, highway bridge infrastructure, and building structures such as condominium balconies. Due to these problems, the development of a Galvanic Liquid Applied Coating System would be a breakthrough technology having great commercial value for the following industries: Transportation, Infrastructure, Marine Infrastructure, Civil Engineering, and the Construction Industry. This sacrificial coating system consists of a paint matrix that may include metallic components, conducting agents, and moisture attractors. Similar systems have been used in the past with varying degrees of success. These systems have no proven history of effectiveness over the long term. In addition, these types of systems have had limited success overcoming the initial resistance between the concrete/coating interface. The coating developed at KSC incorporates methods proven to overcome the barriers that previous systems could not achieve. Successful development and continued optimization of this breakthrough system would produce great interest in NASA/KSC for corrosion engineering technology and problem solutions. Commercial patents on this technology would enhance KSC's ability to attract industry partners for similar corrosion control applications.

  4. Feasibility studies of concomitant administration of optimized formulation of probiotic-loaded Vancomycin hydrochloride pellets for colon delivery.

    PubMed

    Avachat, Amelia M; Shinde, Amol S

    2016-01-01

    Objective of this study was to develop Vancomycin HCl pellets loaded with Saccharomyces boulardii (S.b.) for pH-dependent system and CODES™ for augmenting the efficacy of Vancomycin HCl in the treatment of colitis. Pellets were prepared by extrusion-spheronization. In the pH-dependent system, the pellets were coated with Eudragit FS 30D. These pellets exhibited spherical form and a uniform surface coating. The CODES™ system consisted of three components: core containing mannitol, drug and probiotic, an inner acid-soluble coating layer, and an outer layer of enteric coating material. Statistical factorial design was used to optimize both formulations. Scanning electron micrographs of coated pellets revealed uniform coating. In vitro drug release of these coated pellets was studied sequentially in various buffers with (2%) and without rat cecal content for a period of 12 h. From the optimized pH-dependent formulation, F6 (20% w/w coating level and 15% w/v concentration of polymer), higher amount of probiotic was released in earlier time phase (first 5 h) as compared to the CODES™ and so R5 [containing acid-soluble inner coating layer (15% w/w coating level and 12% w/v concentration of Eudragit E100), and an outer layer of enteric coating material (12% w/w coating level and 10% w/v concentration of Eudragit L100)] was considered as the best formulation after confirming in vivo X-ray studies conducted on rabbits, suggesting that Vancomycin HCl and S.b. may be co-administered as pellets [CODES™] to enhance the effectiveness of Vancomycin HCl in the treatment of colitis without its associated side effects, which can only be confirmed after clinical trials.

  5. In-situ phosphatizing coatings for aerospace, OEM and coil coating applications

    NASA Astrophysics Data System (ADS)

    Neuder, Heather Aurelia

    The current metal coating process is a multi-step process. The surface is cleaned, primered, dried and then painted. The process is labor intensive and time consuming. The wash primer is a conversion coating, which prepares metal surface for better paint adhesion. The wash primers currently used often contain hexavalent chromium (Cr6+), which seals the pores in the conversion coating. The presence of hexavalent chromium, a known carcinogen, and volatile organic compounds (VOCs) make waste disposal expensive and pose dangers to workers. The novel technique of in-situ phosphatizing coating (ISPC) is a single-step, chrome-free alternative to the present coating practice. Formulation of an ISPC involves predispersal of an in-situ phosphatizing reagent (ISPR) into the paint system to form a stable formulation. The ISPR reacts with the metal surface and bonds with the paint film simultaneously, which eliminates the need for a conversion coating. In acid catalyzed paint systems, such as polyester-melamine paints, the ISPR also catalyzes cross-linking reactions between the melamine and the polyester polyols. ISPCs are formulated using commercially available coating systems including: polyester-melamine, two-component epoxy, polyurethane and high-hydroxy content polyester-melamine coil coating. The ISPCs are applied to metal substrates and their performances are evaluated using electrochemical, thermal and standard American Society for Testing and Materials (ASTM) testing methods. In addition, ISPCs were designed and formulated based on: (1) phosphate chemistry, (2) polymer chemistry, (3) sol-gel chemistry, and (4) the ion-exchange principle. Organo-functionalized silanes, which serve as excellent coupling and dispersion agents, are incorporated into the optimized ISPC formula and evaluated using standard ASTM testing methods and electrochemical spectroscopy. Also, an ion-exchange pigment, which leads to better adhesion by forming a mixed metal silicate surface, is dispersed into an ISPC and the performance of the final coating formulation is evaluated. Successful ISPCs formulated for multiple coating systems exhibited excellent adhesion, hardness and gloss, which supports their suitability as a chrome-free, single-step alternative for aerospace, original equipment manufacturing (OEM) and coil coating applications.

  6. Weightless Environment Training Facility (WETF) materials coating evaluation, volume 3

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This volume consists of Appendices C, D, E, and F to the report on the Weightless Environment Training Facility Materials Coating Evaluation project. The project selected 10 coating systems to be evaluated in six separate exposure environments, and subject to three tests for physical properties. Appendix C is the photographic appendix of the test panels. Appendix D details methods and procedures. Appendix E lists application equipment costs. Appendix F is a compilation of the solicitation of the candidate coating systems.

  7. Characterisation of anti-erosive properties of nanocomposite coatings by the methods of sclerometry

    NASA Astrophysics Data System (ADS)

    Kudryakov, O. V.; Varavka, V. N.; Ilyasov, V. V.

    2017-05-01

    Results of research of coatings of the different metal-ceramics systems are given. Coatings were received by ion-plasma sedimentation in vacuum in the form of multilayered composite material, which had a thickness of layers within nanometric range. Selection of composite systems is determined by applied research problem - namely designing of the anti-erosive coatings durable in the condition of drop impingement impacts. For this purpose the sclerometric studies, the bench erosive tests and optimization of the obtained data were done.

  8. Modulating drug release from gastric-floating microcapsules through spray-coating layers.

    PubMed

    Lee, Wei Li; Tan, Jun Wei Melvin; Tan, Chaoyang Nicholas; Loo, Say Chye Joachim

    2014-01-01

    Floating dosage forms with prolonged gastric residence time have garnered much interest in the field of oral delivery. However, studies had shown that slow and incomplete release of hydrophobic drugs during gastric residence period would reduce drug absorption and cause drug wastage. Herein, a spray-coated floating microcapsule system was developed to encapsulate fenofibrate and piroxicam, as model hydrophobic drugs, into the coating layers with the aim of enhancing and tuning drug release rates. Incorporating fenofibrate into rubbery poly(caprolactone) (PCL) coating layer resulted in a complete and sustained release for up to 8 h, with outermost non-drug-holding PCL coating layer serving as a rate-controlling membrane. To realize a multidrug-loaded system, both hydrophilic metformin HCl and hydrophobic fenofibrate were simultaneously incorporated into these spray-coated microcapsules, with metformin HCl and fenofibrate localized within the hollow cavity of the capsule and coating layer, respectively. Both drugs were observed to be completely released from these coated microcapsules in a sustained manner. Through specific tailoring of coating polymers and their configurations, piroxicam loaded in both the outer polyethylene glycol and inner PCL coating layers was released in a double-profile manner (i.e. an immediate burst release as the loading dose, followed by a sustained release as the maintenance dose). The fabricated microcapsules exhibited excellent buoyancy in simulated gastric fluid, and provided controlled and sustained release, thus revealing its potential as a rate-controlled oral drug delivery system.

  9. Effects of nanoscale coatings on reliability of MEMS ohmic contact switches

    NASA Astrophysics Data System (ADS)

    Tremper, Amber Leigh

    This thesis examines how the electrical and mechanical behavior of Au thin films is altered by the presence of ultra-thin metallic coatings. To examine the mechanical behavior, nanoindentation, nano-scratch, and atomic force microscopy (AFM) testing was performed. The electrical behavior was evaluated through Kelvin probe contact resistance measurements. This thesis shows that ultra-thin, hard, ductile coatings on a softer, ductile underlying layer (such as Ru or Pt on Au) had a significant effect on mechanical behavior of the system, and can be tailored to control the deformation resistance of the thin film system. Despite Ru and Pt having a higher hardness and plane strain modulus than Au, the Ru and Pt coatings decreased both the hardness and plane strain modulus of the layered system when the indentation depth was on the order of the coating thickness. Alternately, when the indentation depth was several times the coating thickness, the ductile, plastically hard, elastically stiff layer significantly hardened the contact response. These results correlate well with membrane stress theoretical predictions, and demonstrate that membrane theory can be applied even when the ratio of indentation depth, h, to coating thickness, t, is very large ( h/t<10). The transition from film-substrate models to membrane models occurs when the indent penetration depth to coating thickness ratio is less than ˜0.5. When the electrical behavior of the Ru-coated Au films was examined, it was found that all the measured resistances of the Au-only film and Ru-coated systems were several orders of magnitude larger than those predicted by Holm's law, but were still in good agreement with previously reported values in the literature. Previous studies attributed the high contact resistances to a variety of causes, including the buildup of an insulating contamination layer. This thesis determined the cause of the deviations to be large sheet resistance contributions to the total measured resistance. Further, studies on aged samples (with thicker contamination layers) conclusively showed that, while contamination increases the contact resistance, it also increases the dependence on force. This thesis also details that the relative contribution of contact resistance to the total measured resistance can be maximized by decreasing the probe spacing and tip radius. AFM testing of the layered systems showed that the coated samples had larger predicted plane strain moduli than the Au sample, in contrast to the nanoindentation testing. Thus, when the contact depth was kept sufficiently small, the contact stiffness increased as predicted by substrate models. When the contact depth was on the order of the coating thickness, the contact stiffness actually decreased. Additionally, the forceseparation plots showed that the Ru and Pt surfaces either accumulated large amounts of contamination or were less susceptible to being wiped clean than the Au film. Further, scratch testing of the Au film and Ru and Pt coatings show that the hard surface coatings reduce material removal and contact wear. Ultra-thin Ru and Pt surface coatings on Au films are shown to be improved material systems for ohmic contact switches. The wear is reduced for coated materials, while the resistance and power consumption through the coating are not significantly affected.

  10. JT90 thermal barrier coated vanes

    NASA Technical Reports Server (NTRS)

    Sheffler, K. D.; Graziani, R. A.; Sinko, G. C.

    1982-01-01

    The technology of plasma sprayed thermal barrier coatings applied to turbine vane platforms in modern high temperature commercial engines was advanced to the point of demonstrated feasibility for application to commercial aircraft engines. The three thermal barrier coatings refined under this program are zirconia stabilized with twenty-one percent magnesia (21% MSZ), six percent yttria (6% YSZ), and twenty percent yttria (20% YSZ). Improvement in thermal cyclic endurance by a factor of 40 times was demonstrated in rig tests. A cooling system evolved during the program which featured air impingement cooling for the vane platforms rather than film cooling. The impingement cooling system, in combination with the thermal barrier coatings, reduced platform cooling air requirements by 44% relative to the current film cooling system. Improved durability and reduced cooling air requirements were demonstrated in rig and engine endurance tests. Two engine tests were conducted, one of 1000 cycles and the other of 1500 cycles. All three coatings applied to vanes fabricated with the final cooling system configuration completed the final 1500 cycle engine endurance test. Results of this test clearly demonstrated the durability of the 6% YSZ coating which was in very good condition after the test. The 21% MSZ and 20% YSZ coatings had numerous occurrences of significant spalling in the test.

  11. Control of volume resistivity in inorganic organic separators

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W.; Manzo, M. A.

    1979-01-01

    Control of resistivity in NASA inorganic-organic separators is achieved by incorporating small percentages of high surface area, fine particle silica with other ingredients in the separator coating. The volume resistivity is predictable from the surface area of filler particles in the coating. The approach is applied to two polymer- plasticizer -filler coating systems, where the filler content of each is below the generally acknowledged critical pigment volume concentration of the coating. Application of these coating systems to 0.0254 cm thick (10-mil) fuel cell grade asbestos sheet produces inexpensive, flexible, microporous separators that perform as well as the original inorganic-organic concept, the Astropower separator.

  12. THE ETV P2 INNOVATIVE COATINGS AND COATING EQUIPMENT PROGRAM--AN UPDATE

    EPA Science Inventory

    The paper focuses on the Pollution Prevention (P2), Recycling, and Waste Treatment Systems Center of the EPA's Environmental Technology Verification (ETV) Program and, specifically, the P2 Innovating Coatings and Coating Equipment Program (CCEP) housed within the Center. The focu...

  13. Oxidation-resistant silicide coating applied to columbium alloy screen

    NASA Technical Reports Server (NTRS)

    Torgerson, R. T.

    1971-01-01

    Coated screens withstand temperature cycling in special transpiration-cooling systems and provide porous surface that is effective at temperatures well above those limiting superalloy screen efficiency. Thickness of coating depends on time, temperature and activator concentration. Coatings are uniform and resistant to thermal cycling.

  14. Layer-by-Layer Assembly of a Self-Healing Anticorrosion Coating on Magnesium Alloys.

    PubMed

    Fan, Fan; Zhou, Chunyu; Wang, Xu; Szpunar, Jerzy

    2015-12-16

    Fabrication of self-healing anticorrosion coatings has attracted attention as it has the ability to extend the service life and prevent the substrate from corrosive attack. However, a coating system with a rapid self-healing ability and an improved corrosion resistance is rarely reported. In this work, we developed a self-healing anticorrosion coating on a magnesium alloy (AZ31). The coating comprises a cerium-based conversion layer, a graphene oxide layer, and a branched poly(ethylene imine) (PEI)/poly(acrylic acid) (PAA) multilayer. We incorporated the graphene oxide as corrosion inhibitors and used the PEI/PAA multilayers to provide the self-healing ability to the coating systems. X-ray diffraction (XRD) and Raman spectroscopy were used to characterize the composition of the multilayers, and scanning electron microscopy (SEM) was used to analyze the surface morphology. The electrochemical impedance spectroscopy (EIS) results illustrate the improved corrosion resistance of the coating. The proposed coating also has a rapid self-healing ability in the presence of water.

  15. Metallic seal for thermal barrier coating systems

    NASA Technical Reports Server (NTRS)

    Miller, Robert A. (Inventor)

    1990-01-01

    The invention is particularly concerned with sealing thermal barrier coating systems of the type in use and being contemplated for use in diesel and other internal combustion engines. The invention also would find application in moderately high temperature regions of gas turbine engines and any other application employing a thermal barrier coating at moderate temperatures. Ni-35Cr-6Al-1Y, Ni-35Cr-6Al-1Yb, or other metallic alloy denoted as MCrAlx is applied over a zirconia-based thermal barrier overlayer. The close-out layer is glass-bead preened to densify its surface. This seals and protects the thermal barrier coating system.

  16. Thermal Gradient Cyclic Behavior of a Thermal/Environmental Barrier Coating System on SiC/SiC Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Lee, Kang N.; Miller, Robert A.

    2002-01-01

    Thermal barrier and environmental barrier coatings (TBCs and EBCs) will play a crucial role in future advanced gas turbine engines because of their ability to significantly extend the temperature capability of the ceramic matrix composite (CMC) engine components in harsh combustion environments. In order to develop high performance, robust coating systems for effective thermal and environmental protection of the engine components, appropriate test approaches for evaluating the critical coating properties must be established. In this paper, a laser high-heat-flux, thermal gradient approach for testing the coatings will be described. Thermal cyclic behavior of plasma-sprayed coating systems, consisting of ZrO2-8wt%Y2O3 thermal barrier and NASA Enabling Propulsion Materials (EPM) Program developed mullite+BSAS/Si type environmental barrier coatings on SiC/SiC ceramic matrix composites, was investigated under thermal gradients using the laser heat-flux rig in conjunction with the furnace thermal cyclic tests in water-vapor environments. The coating sintering and interface damage were assessed by monitoring the real-time thermal conductivity changes during the laser heat-flux tests and by examining the microstructural changes after the tests. The coating failure mechanisms are discussed based on the cyclic test results and are correlated to the sintering, creep, and thermal stress behavior under simulated engine temperature and heat flux conditions.

  17. Hardface coating systems and methods for metal alloys and other materials for wear and corrosion resistant applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seals, Roland D.

    The present disclosure relates generally to hardface coating systems and methods for metal alloys and other materials for wear and corrosion resistant applications. More specifically, the present disclosure relates to hardface coatings that include a network of titanium monoboride (TiB) needles or whiskers in a matrix, which are formed from titanium (Ti) and titanium diboride (TiB.sub.2) precursors by reactions enabled by the inherent energy provided by the process heat associated with coating deposition and, optionally, coating post-heat treatment. These hardface coatings are pyrophoric, thereby generating further reaction energy internally, and may be applied in a functionally graded manner. The hardfacemore » coatings may be deposited in the presence of a number of fluxing agents, beta stabilizers, densification aids, diffusional aids, and multimode particle size distributions to further enhance their performance characteristics.« less

  18. Computational design and experimental validation of new thermal barrier systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Shengmin

    2015-03-31

    The focus of this project is on the development of a reliable and efficient ab initio based computational high temperature material design method which can be used to assist the Thermal Barrier Coating (TBC) bond-coat and top-coat design. Experimental evaluations on the new TBCs are conducted to confirm the new TBCs’ properties. Southern University is the subcontractor on this project with a focus on the computational simulation method development. We have performed ab initio density functional theory (DFT) method and molecular dynamics simulation on screening the top coats and bond coats for gas turbine thermal barrier coating design and validationmore » applications. For experimental validations, our focus is on the hot corrosion performance of different TBC systems. For example, for one of the top coatings studied, we examined the thermal stability of TaZr 2.75O 8 and confirmed it’s hot corrosion performance.« less

  19. Materials for Advanced Turbine Engines (MATE). Project 4: Erosion resistant compressor airfoil coating

    NASA Technical Reports Server (NTRS)

    Rashid, J. M.; Freling, M.; Friedrich, L. A.

    1987-01-01

    The ability of coatings to provide at least a 2X improvement in particulate erosion resistance for steel, nickel and titanium compressor airfoils was identified and demonstrated. Coating materials evaluated included plasma sprayed cobalt tungsten carbide, nickel carbide and diffusion applied chromium plus boron. Several processing parameters for plasma spray processing and diffusion coating were evaluated to identify coating systems having the most potential for providing airfoil erosion resistance. Based on laboratory results and analytical evaluations, selected coating systems were applied to gas turbine blades and evaluated for surface finish, burner rig erosion resistance and effect on high cycle fatigue strength. Based on these tests, the following coatings were recommended for engine testing: Gator-Gard plasma spray 88WC-12Co on titanium alloy airfoils, plasma spray 83WC-17Co on steel and nickel alloy airfoils, and Cr+B on nickel alloy airfoils.

  20. Surface Cracking and Interface Reaction Associated Delamination Failure of Thermal and Environmental Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dong-Ming; Choi, Sung R.; Eldridge, Jeffrey I.; Lee, Kang N.; Miller, Robert A.

    2003-01-01

    In this paper, surface cracking and interface reactions of a BSAS coating and a multi-layer ZrO2-8wt%Y2O3 and mullite/BSAS/Si thermal and environmental barrier coating system on SiC/SiC ceramic matrix composites were characterized after long-term combined laser thermal gradient and furnace cyclic tests in a water vapor containing environment. The surface cracking was analyzed based on the coating thermal gradient sintering behavior and thermal expansion mismatch stress characteristics under the thermal cyclic conditions. The interface reactions, which were largely enhanced by the coating surface cracking in the water vapor environment, were investigated in detail, and the reaction phases were identified for the coating system after the long-term exposure. The accelerated coating delamination failure was attributed to the increased delamination driving force under the thermal gradient cyclic loading and the reduced interface adhesion due to the detrimental interface reactions.

  1. Surface Cracking and Interface Reaction Associated Delamination Failure of Thermal and Environmental Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Choi, Sung R.; Eldridge, Jeffrey I.; Lee, Kang N.; Miller, Robert A.

    2003-01-01

    In this paper, surface cracking and interface reactions of a BSAS coating and a multi-layer ZTO2-8wt%Y2O3 and mullite/BSAS/Si thermal and environmental barrier coating system on SiC/SiC ceramic matrix composites were characterized after long-term combined laser thermal gradient and furnace cyclic tests in a water vapor containing environment. The surface cracking was analyzed based on the coating thermal gradient sintering behavior and thermal expansion mismatch stress characteristics under the thermal cyclic conditions. The interface reactions, which were largely enhanced by the coating surface cracking in the water vapor environment, were investigated in detail, and the reaction phases were identified for the coating system after the long- term exposure. The accelerated coating delamination failure was attributed to the increased delamination driving force under the thermal gradient cyclic loading and the reduced interface adhesion due to the detrimental interface reactions.

  2. Hardface coating systems and methods for metal alloys and other materials for wear and corrosion resistant applications

    DOEpatents

    Seals, Roland D.

    2015-08-18

    The present disclosure relates generally to hardface coating systems and methods for metal alloys and other materials for wear and corrosion resistant applications. More specifically, the present disclosure relates to hardface coatings that include a network of titanium monoboride (TiB) needles or whiskers in a matrix, which are formed from titanium (Ti) and titanium diboride (TiB.sub.2) precursors by reactions enabled by the inherent energy provided by the process heat associated with coating deposition and, optionally, coating post-heat treatment. These hardface coatings are pyrophoric, thereby generating further reaction energy internally, and may be applied in a functionally graded manner. The hardface coatings may be deposited in the presence of a number of fluxing agents, beta stabilizers, densification aids, diffusional aids, and multimode particle size distributions to further enhance their performance characteristics.

  3. Understanding cracking failures of coatings: A fracture mechanics approach

    NASA Astrophysics Data System (ADS)

    Kim, Sung-Ryong

    A fracture mechanics analysis of coating (paint) cracking was developed. A strain energy release rate (G(sub c)) expression due to the formation of a new crack in a coating was derived for bending and tension loadings in terms of the moduli, thicknesses, Poisson's ratios, load, residual strain, etc. Four-point bending and instrumented impact tests were used to determine the in-situ fracture toughness of coatings as functions of increasing baking (drying) time. The system used was a thin coating layer on a thick substrate layer. The substrates included steel, aluminum, polycarbonate, acrylonitrile-butadiene-styrene (ABS), and Noryl. The coatings included newly developed automotive paints. The four-point bending configuration promoted nice transversed multiple coating cracks on both steel and polymeric substrates. The crosslinked type automotive coatings on steel substrates showed big cracks without microcracks. When theoretical predictions for energy release rate were compared to experimental data for coating/steel substrate samples with multiple cracking, the agreement was good. Crosslinked type coatings on polymeric substrates showed more cracks than theory predicted and the G(sub c)'s were high. Solvent evaporation type coatings on polymeric substrates showed clean multiple cracking and the G(sub c)'s were higher than those obtained by tension analysis of tension experiments with the same substrates. All the polymeric samples showed surface embrittlement after long baking times using four-point bending tests. The most apparent surface embrittlement was observed in the acrylonitrile-butadiene-styrene (ABS) substrate system. The impact properties of coatings as a function of baking time were also investigated. These experiments were performed using an instrumented impact tester. There was a rapid decrease in G(sub c) at short baking times and convergence to a constant value at long baking times. The surface embrittlement conditions and an embrittlement toughness were found upon impact loading. This analysis provides a basis for a quantitative approach to measuring coating toughness.

  4. A novel coating concept for ileo-colonic drug targeting: proof of concept in humans using scintigraphy.

    PubMed

    Varum, F J O; Hatton, G B; Freire, A C; Basit, A W

    2013-08-01

    The in vivo proof of concept of a novel double-coating system, based on enteric polymers, which accelerated drug release in the ileo-colonic region, was investigated in humans. Prednisolone tablets were coated with a double-coating formulation by applying an inner layer composed of EUDRAGIT S neutralised to pH 8.0 and a buffer salt (10% KH₂PO₄), which was overcoated with layer of standard EUDRAGIT S organic solution. For comparison, a single coating system was produced by applying the same amount of EUDRAGIT S organic solution on the tablet cores. Dissolution tests on the tablets were carried out using USP II apparatus in 0.1N HCl for 2 h and subsequently in pH 7.4 Krebs bicarbonate buffer. For comparison, tablets were also tested under the USP method established for modified release mesalamine formulations. Ten fasted volunteers received the double-coated and single-coated tablets in a two-way crossover study. The formulations were radiolabelled and followed by gamma scintigraphy; the disintegration times and positions were recorded. There was no drug release from the single-coated or double-coated tablets in 0.1N HCl for 2h. The single-coated tablets showed slow release in subsequent Krebs bicarbonate buffer with a lag time of 120 min, while in contrast drug release from the double-coated tablets was initiated at 60 min. In contrast, using the USP dissolution method, normally employed for modified release mesalamine products, no discrimination was attained. The in vivo disintegration of the single-coated EUDRAGIT S tablets in the large intestine was erratic. Furthermore, in 2 volunteers, the single-coated tablet was voided intact. Double-coated tablets disintegrated in a more consistent way, mainly in the ileo-caecal junction or terminal ileum. The accelerated in vivo disintegration of the double-coating EUDRAGIT S system can overcome the limitations of conventional enteric coatings targeting the colon and avoid the pass-through of intact tablets. Moreover, Krebs bicarbonate buffer has the ability to discriminate between formulations designed to target the ileo-colonic region. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Diatom community structure on in-service cruise ship hulls.

    PubMed

    Hunsucker, Kelli Zargiel; Koka, Abhishek; Lund, Geir; Swain, Geoffrey

    2014-10-01

    Diatoms are an important component of marine biofilms found on ship hulls. However, there are only a few published studies that describe the presence and abundance of diatoms on ships, and none that relate to modern ship hull coatings. This study investigated the diatom community structure on two in-service cruise ships with the same cruise cycles, one coated with an antifouling (AF) system (copper self-polishing copolymer) and the other coated with a silicone fouling-release (FR) system. Biofilm samples were collected during dry docking from representative areas of the ship and these provided information on the horizontal and vertical zonation of the hull, and intact and damaged coating and niche areas. Diatoms from the genera Achnanthes, Amphora and Navicula were the most common, regardless of horizontal ship zonation and coating type. Other genera were abundant, but their presence was more dependent on the ship zonation and coating type. Samples collected from damaged areas of the hull coating had a similar community composition to undamaged areas, but with higher diatom abundance. Diatom fouling on the niche areas differed from that of the surrounding ship hull and paralleled previous studies that investigated differences in diatom community structure on static and dynamically exposed coatings; niche areas were similar to static immersion and the hull to dynamic immersion. Additionally, diatom richness was greater on the ship with the FR coating, including the identification of several new genera to the biofouling literature, viz. Lampriscus and Thalassiophysa. These results are the first to describe diatom community composition on in-service ship hulls coated with a FR system. This class of coatings appears to have a larger diatom community compared to copper-based AF systems, with new diatom genera that have the ability to stick to ship hulls and withstand hydrodynamic forces, thus creating the potential for new problematic species in the biofilm.

  6. Mechanisms of Military Coatings Degradation

    DTIC Science & Technology

    2003-08-01

    fluoride (DuPont Inc., Buffalo, NY) release film. Additionally a primer and topcoat system were also prepared onto a stainless steel mesh substrate...Based Epoxy Surface Treatment: TT- C-490 Zinc Phosphate on a steel s B=(64159), LOW VOC and Zero HAP ARMY SYSTEM Top Coat: MIL-DTL-64159 Water...Zinc Phosphate on a steel su C=(85285), NAVY CONTROL SYSTEM Top Coat: MIL-C-85285 Solvent based Polyurethane Alip polyols Primer: MIL-P

  7. Catalyst for microelectromechanical systems microreactors

    DOEpatents

    Morse, Jeffrey D [Martinez, CA; Sopchak, David A [Livermore, CA; Upadhye, Ravindra S [Pleasanton, CA; Reynolds, John G [San Ramon, CA; Satcher, Joseph H [Patterson, CA; Gash, Alex E [Brentwood, CA

    2010-06-29

    A microreactor comprising a silicon wafer, a multiplicity of microchannels in the silicon wafer, and a catalyst coating the microchannels. In one embodiment the catalyst coating the microchannels comprises a nanostructured material. In another embodiment the catalyst coating the microchannels comprises an aerogel. In another embodiment the catalyst coating the microchannels comprises a solgel. In another embodiment the catalyst coating the microchannels comprises carbon nanotubes.

  8. Catalyst for microelectromechanical systems microreactors

    DOEpatents

    Morse, Jeffrey D [Martinez, CA; Sopchak, David A [Livermore, CA; Upadhye, Ravindra S [Pleasanton, CA; Reynolds, John G [San Ramon, CA; Satcher, Joseph H [Patterson, CA; Gash, Alex E [Brentwood, CA

    2011-11-15

    A microreactor comprising a silicon wafer, a multiplicity of microchannels in the silicon wafer, and a catalyst coating the microchannels. In one embodiment the catalyst coating the microchannels comprises a nanostructured material. In another embodiment the catalyst coating the microchannels comprises an aerogel. In another embodiment the catalyst coating the microchannels comprises a solgel. In another embodiment the catalyst coating the microchannels comprises carbon nanotubes.

  9. Low-stress doped ultrananocrystalline diamond

    DOEpatents

    Sumant, Anirudha V.; Buja, Federico; van Spengen, Willem Merlijn

    2016-10-25

    Nanocrystalline diamond coatings exhibit stress in nano/micro-electro mechanical systems (MEMS). Doped nanocrstalline diamond coatings exhibit increased stress. A carbide forming metal coating reduces the in-plane stress. In addition, without any metal coating, simply growing UNCD or NCD with thickness in the range of 3-4 micron also reduces in-plane stress significantly. Such coatings can be used in MEMS applications.

  10. Calcium-Magnesium-Aluminosilicate (CMAS) Infiltration and Cyclic Degradations of Thermal and Environmental Barrier Coatings in Thermal Gradients

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Harder, Bryan; Smialek, Jim; Miller, Robert A.

    2014-01-01

    In a continuing effort to develop higher temperature capable turbine thermal barrier and environmental barrier coating systems, Calcium-Magnesium-Aluminosilicate (CMAS) resistance of the advanced coating systems needs to be evaluated and improved. This paper highlights some of NASA past high heat flux testing approaches for turbine thermal and environmental barrier coatings assessments in CMAS environments. One of our current emphases has been focused on the thermal barrier - environmental barrier coating composition and testing developments. The effort has included the CMAS infiltrations in high temperature and high heat flux turbine engine like conditions using advanced laser high heat flux rigs, and subsequently degradation studies in laser heat flux thermal gradient cyclic and isothermal furnace cyclic testing conditions. These heat flux CMAS infiltration and related coating durability testing are essential where appropriate CMAS melting, infiltration and coating-substrate temperature exposure temperature controls can be achieved, thus helping quantify the CMAS-coating interaction and degradation mechanisms. The CMAS work is also playing a critical role in advanced coating developments, by developing laboratory coating durability assessment methodologies in simulated turbine engine conditions and helping establish CMAS test standards in laboratory environments.

  11. NASA TEERM Hexavalent Chrome Alternatives Projects

    NASA Technical Reports Server (NTRS)

    Rothgeb, Matt

    2009-01-01

    This slide presentation reviews the NASA/DOD projects to select an alternative to hexavalent chrome in the aerospace industry. The Phase I process of the project performed: (1) Evaluation and testing of non-chromated coating systems as replacements for hexavalent chrome coatings in aircraft and aerospace applications. (2) Testing of coating systems to DoD and NASA specifications for corrosion resistance and adhesion. (3) Bare corrosion resistance and atmospheric exposure will be focus areas of Phase II Testing. The description includes a chart that summarizes the 3000 hour salt fog test results. The second phase of the project includes (1) Evaluation and testing of coating systems that do not contain hexavalent chrome as replacements for aerospace applications. (2) Evaluation of coatings at Beach Test Site and Launch Complex 39B (3) Evaluation of non-chrome coatings for electronic housings (bare corrosion resistance and electrical impedance) is a part of this round of testing. This project was performed for the Technology Evaluation for Environmental Risk Mitigation (TEERM)

  12. Fundamental research on spiking, recovery and understanding seed coat nep counts in AFIS analysis of pre-opened cotton

    USDA-ARS?s Scientific Manuscript database

    Understanding seed coat fragment (SCF) spiking results in Advanced Fiber Information Systems (AFIS) analysis of seed coat neps (SCN) in ginned cottons was confounded by side processes in the system such as particle crushing that results in inflated recoveries. A high degree of machine (AFIS)-fiber ...

  13. An update on pharmaceutical film coating for drug delivery.

    PubMed

    Felton, Linda A; Porter, Stuart C

    2013-04-01

    Pharmaceutical coating processes have generally been transformed from what was essentially an art form in the mid-twentieth century to a much more technology-driven process. This review article provides a basic overview of current film coating processes, including a discussion on polymer selection, coating formulation additives and processing equipment. Substrate considerations for pharmaceutical coating processes are also presented. While polymeric coating operations are commonplace in the pharmaceutical industry, film coating processes are still not fully understood, which presents serious challenges with current regulatory requirements. Novel analytical technologies and various modeling techniques that are being used to better understand film coating processes are discussed. This review article also examines the challenges of implementing process analytical technologies in coating operations, active pharmaceutical ingredients in polymer film coatings, the use of high-solids coating systems and continuous coating and other novel coating application methods.

  14. Combinatorial materials research applied to the development of new surface coatings VII: An automated system for adhesion testing

    NASA Astrophysics Data System (ADS)

    Chisholm, Bret J.; Webster, Dean C.; Bennett, James C.; Berry, Missy; Christianson, David; Kim, Jongsoo; Mayo, Bret; Gubbins, Nathan

    2007-07-01

    An automated, high-throughput adhesion workflow that enables pseudobarnacle adhesion and coating/substrate adhesion to be measured on coating patches arranged in an array format on 4×8in.2 panels was developed. The adhesion workflow consists of the following process steps: (1) application of an adhesive to the coating array; (2) insertion of panels into a clamping device; (3) insertion of aluminum studs into the clamping device and onto coating surfaces, aligned with the adhesive; (4) curing of the adhesive; and (5) automated removal of the aluminum studs. Validation experiments comparing data generated using the automated, high-throughput workflow to data obtained using conventional, manual methods showed that the automated system allows for accurate ranking of relative coating adhesion performance.

  15. Development of improved-durability plasma sprayed ceramic coatings for gas turbine engines

    NASA Technical Reports Server (NTRS)

    Sumner, I. E.; Ruckle, D. L.

    1980-01-01

    As part of a NASA program to reduce fuel consumption of current commercial aircraft engines, methods were investigated for improving the durability of plasma sprayed ceramic coatings for use on vane platforms in the JT9D turbofan engine. Increased durability concepts under evaluation include use of improved strain tolerant microstructures and control of the substrate temperature during coating application. Initial burner rig tests conducted at temperatures of 1010 C (1850 F) indicate that improvements in cyclic life greater than 20:1 over previous ceramic coating systems were achieved. Three plasma sprayed coating systems applied to first stage vane platforms in the high pressure turbine were subjected to a 100-cycle JT9D engine endurance test with only minor damage occurring to the coatings.

  16. Durability and Design Issues of Thermal/environmental Barrier Coatings on Sic/sic Ceramic Matrix Composites Under 1650 C Test Conditions

    NASA Technical Reports Server (NTRS)

    Zhu, Dong-Ming; Choi, Sung R.; Ghosn, Louis J.; Miller, Robert A.

    2004-01-01

    Ceramic thermal/environmental barrier coatings for SiC-based ceramics will play an increasingly important role in future gas turbine engines because of their ability to effectively protect the engine components and further raise engine temperatures. However, the coating durability remains a major concern with the ever-increasing temperature requirements. Currently, advanced T/EBC systems, which typically include a high temperature capable zirconia- (or hahia-) based oxide top coat (thermal barrier) on a less temperature capable mullite/barium-strontium-aluminosilicate (BSAS)/Si inner coat (environmental barrier), are being developed and tested for higher temperature capability Sic combustor applications. In this paper, durability of several thermal/environmental barrier coating systems on SiC/SiC ceramic matrix composites was investigated under laser simulated engine thermal gradient cyclic, and 1650 C (3000 F) test conditions. The coating cracking and delamination processes were monitored and evaluated. The effects of temperature gradients and coating configurations on the ceramic coating crack initiation and propagation were analyzed using finite element analysis (FEA) models based on the observed failure mechanisms, in conjunction with mechanical testing results. The environmental effects on the coating durability will be discussed. The coating design approach will also be presented.

  17. Liquid Coatings for Reducing Corrosion of Steel in Concrete

    NASA Technical Reports Server (NTRS)

    MacDowell, Louis G.; Curran, Joseph

    2003-01-01

    Inorganic coating materials are being developed to slow or stop corrosion of reinforcing steel members inside concrete structures. It is much simpler and easier to use these coating materials than it is to use conventional corrosion-inhibiting systems based on impressed electric currents. Unlike impressed electrical corrosion-inhibiting systems, these coatings do not require continuous consumption of electrical power and maintenance of power-supply equipment. Whereas some conventional systems involve the use of expensive arc-spray equipment to apply the metallic zinc used as the sacrificial anode material, the developmental coatings can be applied by use of ordinary paint sprayers. A coating material of the type under development is formulated as a liquid containing blended metallic particles and/or moisture-attracting compounds. The liquid mixture is sprayed onto a concrete structure. Experiments have shown that even though such a coat resides on the exterior surface, it generates a protective galvanic current that flows to the interior reinforcing steel members. By effectively transferring the corrosion process from the steel reinforcement to the exterior coating, the protective current slows or stops corrosion of the embedded steel. Specific formulations have been found to meet depolarization criteria of the National Association of Corrosion Engineers (NACE) for complete protection of steel reinforcing bars ("rebar") embedded in concrete.

  18. Effects of fixture rotation on coating uniformity for high-performance optical filter fabrication

    NASA Astrophysics Data System (ADS)

    Rubin, Binyamin; George, Jason; Singhal, Riju

    2018-04-01

    Coating uniformity is critical in fabricating high-performance optical filters by various vacuum deposition methods. Simple and planetary rotation systems with shadow masks are used to achieve the required uniformity [J. B. Oliver and D. Talbot, Appl. Optics 45, 13, 3097 (2006); O. Lyngnes, K. Kraus, A. Ode and T. Erguder, in `Method for Designing Coating Thickness Uniformity Shadow Masks for Deposition Systems with a Planetary Fixture', 2014 Technical Conference Proceedings, Optical Coatings, August 13, 2014, DOI: 10.14332/svc14.proc.1817.]. In this work, we discuss the effect of rotation pattern and speed on thickness uniformity in an ion beam sputter deposition system. Numerical modeling is used to determine statistical distribution of random thickness errors in coating layers. The relationship between thickness tolerance and production yield are simulated theoretically and demonstrated experimentally. Production yields for different optical filters produced in an ion beam deposition system with planetary rotation are presented. Single-wavelength and broadband optical monitoring systems were used for endpoint monitoring during filter deposition. Limitations of thickness tolerances that can be achieved in systems with planetary rotation are shown. Paths for improving production yield in an ion beam deposition system are described.

  19. A Novel Approach for Dry Powder Coating of Pellets with Ethylcellulose. Part II: Evaluation of Caffeine Release.

    PubMed

    Albertini, Beatrice; Melegari, Cecilia; Bertoni, Serena; Dolci, Luisa Stella; Passerini, Nadia

    2018-04-01

    The objective of this study was to assess the efficacy and the capability of a novel ethylcellulose-based dry-coating system to obtain prolonged and stable release profiles of caffeine-loaded pellets. Lauric and oleic acids at a suitable proportion were used to plasticize ethylcellulose. The effect of coating level, percentage of drug loading, inert core particle size, and composition of the coating formulation including the anti-sticking agent on the drug release profile were fully investigated. A coating level of 15% w/w was the maximum layered amount which could modify the drug release. The best controlled drug release was obtained by atomizing talc (2.5% w/w) together with the solid plasticizer during the dry powder-coating process. SEM pictures revealed a substantial drug re-crystallization on the pellet surface, and the release studies evidenced that caffeine diffused through the plasticized polymer acting as pore former. Therefore, the phenomenon of caffeine migration across the coating layer had a strong influence on the permeability of the coating membrane. Comparing dry powder-coated pellets to aqueous film-coated ones, drug migration happened during storage, though more sustained release profiles were obtained. The developed dry powder-coating process enabled the production of stable caffeine sustained release pellets. Surprisingly, the release properties of the dry-coated pellets were mainly influenced by the way of addition of talc into the dry powder-coating blend and by the drug nature and affinity to the coating components. It would be interesting to study the efficacy of novel coating system using a different API.

  20. Microstructure, Tensile Adhesion Strength and Thermal Shock Resistance of TBCs with Different Flame-Sprayed Bond Coat Materials Onto BMI Polyimide Matrix Composite

    NASA Astrophysics Data System (ADS)

    Abedi, H. R.; Salehi, M.; Shafyei, A.

    2017-10-01

    In this study, thermal barrier coatings (TBCs) composed of different bond coats (Zn, Al, Cu-8Al and Cu-6Sn) with mullite top coats were flame-sprayed and air-plasma-sprayed, respectively, onto bismaleimide matrix composites. These polyimide matrix composites are of interest to replace PMR-15, due to concerns about the toxicity of the MDA monomer from which PMR-15 is made. The results showed that pores and cracks appeared at the bond coat/substrate interface for the Al-bonded TBC because of its high thermal conductivity and diffusivity resulting in transferring of high heat flux and temperature to the polymeric substrate during top coat deposition. The other TBC systems due to the lower conductivity and diffusivity of bonding layers could decrease the adverse thermal effect on the polymer substrate during top coat deposition and exhibited adhesive bond coat/substrate interfaces. The tensile adhesion test showed that the adhesion strength of the coatings to the substrate is inversely proportional to the level of residual stress in the coatings. However, the adhesion strength of Al bond-coated sample decreased strongly after mullite top coat deposition due to thermal damage at the bond coat/substrate interface. TBC system with the Cu-6Sn bond coat exhibited the best thermal shock resistance, while Al-bonded TBC showed the lowest. It was inferred that thermal mismatch stresses and oxidation of the bond coats were the main factors causing failure in the thermal shock test.

  1. Design and demonstration of a system for the deposition of atomic-oxygen durable coatings for reflective solar dynamic power system concentrators

    NASA Technical Reports Server (NTRS)

    Mcclure, Donald J.

    1988-01-01

    A system for the vacuum deposition of atomic-oxygen durable coatings for reflective solar dynamic power systems (SDPS) concentrators was designed and demonstrated. The design issues pertinent to SDPS were developed by the Government Aerospace Systems Division of the Harris Corporation and are described in NASA-CR-179489. Both design and demonstration phases have been completed. At the time of this report the deposition system was ready for coating of facets for SDPS concentrators. The materials issue relevant to the coating work were not entirely resolved. These issues can only be resolved when substrates which are comparable to those which will be used in flight hardware are available. The substrates available during the contract period were deficient in the areas of surface roughness and contamination. These issues are discussed more thoroughly in the body of the report.

  2. Development and characterization of polymer-coated liposomes for vaginal delivery of sildenafil citrate.

    PubMed

    Refai, Hanan; Hassan, Doaa; Abdelmonem, Rehab

    2017-11-01

    Vaginal administration of sildenafil citrate has shown recently to develop efficiently the uterine lining with subsequent successful embryo implantation following in vitro fertilization. The aim of the present study was to develop sildenafil-loaded liposomes coated with bioadhesive polymers for enhanced vaginal retention and improved drug permeation. Three liposomal formulae were prepared by thin-film method using different phospholipid:cholesterol ratios. The optimal liposomal formulation was coated with bioadhesive polymers (chitosan and HPMC). A marked increase in liposomal size and zeta potential was observed for all coated liposomal formulations. HPMC-coated liposomes showed the greater bioadhesion and higher entrapment efficiency than chitosan-coated formulae. The in vitro release studies showed prolonged release of sildenafil from coated liposomes as compared to uncoated liposomes and sildenafil solution. Ex vivo permeation study revealed the enhanced permeation of coated relative to uncoated liposomes. Chitosan-coated formula demonstrated highest drug permeation and was thus selected for further investigations. Transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy (FTIR) confirmed the successful coating of the liposomes by chitosan. Histopathological in vivo testing proved the efficacy of chitosan-coated liposomes to improve blood flow to the vaginal endometrium and to increase endometrial thickness. Chitosan-coated liposomes can be considered as potential novel drug delivery system intended for the vaginal administration of sildenafil, which would prolong system's retention at the vaginal site and enhance the permeation of sildenafil to uterine blood circulation.

  3. Motorcycle helmets: What about their coating?

    PubMed

    Schnegg, Michaël; Massonnet, Geneviève; Gueissaz, Line

    2015-07-01

    In traffic accidents involving motorcycles, paint traces can be transferred from the rider's helmet or smeared onto its surface. These traces are usually in the form of chips or smears and are frequently collected for comparison purposes. This research investigates the physical and chemical characteristics of the coatings found on motorcycles helmets. An evaluation of the similarities between helmet and automotive coating systems was also performed.Twenty-seven helmet coatings from 15 different brands and 22 models were considered. One sample per helmet was collected and observed using optical microscopy. FTIR spectroscopy was then used and seven replicate measurements per layer were carried out to study the variability of each coating system (intravariability). Principal Component Analysis (PCA) and Hierarchical Cluster Analysis (HCA) were also performed on the infrared spectra of the clearcoats and basecoats of the data set. The most common systems were composed of two or three layers, consistently involving a clearcoat and basecoat. The coating systems of helmets with composite shells systematically contained a minimum of three layers. FTIR spectroscopy results showed that acrylic urethane and alkyd urethane were the most frequent binders used for clearcoats and basecoats. A high proportion of the coatings were differentiated (more than 95%) based on microscopic examinations. The chemical and physical characteristics of the coatings allowed the differentiation of all but one pair of helmets of the same brand, model and color. Chemometrics (PCA and HCA) corroborated classification based on visual comparisons of the spectra and allowed the study of the whole data set at once (i.e., all spectra of the same layer). Thus, the intravariability of each helmet and its proximity to the others (intervariability) could be more readily assessed. It was also possible to determine the most discriminative chemical variables based on the study of the PCA loadings. Chemometrics could therefore be used as a complementary decision-making tool when many spectra and replicates have to be taken into account. Similarities between automotive and helmet coating systems were highlighted, in particular with regard to automotive coating systems on plastic substrates (microscopy and FTIR). However, the primer layer of helmet coatings was shown to differ from the automotive primer. If the paint trace contains this layer, the risk of misclassification (i.e., helmet versus vehicle) is reduced. Nevertheless, a paint examiner should pay close attention to these similarities when analyzing paint traces, especially regarding smears or paint chips presenting an incomplete layer system. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. Performance Stability of Silicone Oxide-Coated Plastic Parenteral Vials.

    PubMed

    Weikart, Christopher M; Pantano, Carlo G; Shallenberger, Jeff R

    2017-01-01

    A new packaging system was developed for parenteral pharmaceuticals that combines the best attributes of plastic and glass without their respective drawbacks. This technological advancement is based on the synergy between high-precision injection-molded plastics and plasma coating technology. The result is a shatter-resistant, optically clear, low-particulate, and chemically durable packaging system. The demand for this product is driven by the expanding market, regulatory constraints, and product recalls for injectable drugs and biologics packaged in traditional glass materials. It is shown that this new packaging system meets or exceeds the important performance characteristics of glass, especially in eliminating the glass delamination and breakage that has been observed in many products. The new packaging system is an engineered, multilayer, glass-coated plastic composite that provides a chemically stable contact surface and oxygen barrier performance that exceeds a 2 year shelf life requirement. Evaluation of the coating system characteristics and performance stability to chemical, temperature, and mechanical extremes are reported herein. LAY ABSTRACT: A new packaging system for parenteral pharmaceuticals was developed that combines the best attributes of plastic and glass without their respective drawbacks. This technological advancement is based on the synergy between high-precision injection-molded plastics and plasma coating technology. The result is a shatter-resistant, optically clear, low-particulate, and chemically durable packaging system. It is shown that this new packaging system meets or exceeds the important performance characteristics of glass, especially in eliminating the glass delamination and breakage that has been observed in many products. The new packaging system is an engineered, multilayer, glass-coated plastic composite that provides a chemically stable contact surface and oxygen barrier performance that exceeds a 2 year shelf life requirement. Evaluation of the coating system characteristics and performance stability to chemical, temperature, and mechanical extremes are reported herein. © PDA, Inc. 2017.

  5. Fused slurry silicide coatings for columbium alloy reentry heat shields. Volume 2: Experimental and coating process details

    NASA Technical Reports Server (NTRS)

    Fitzgerald, B.

    1973-01-01

    The experimental and coating process details are presented. The process specifications which were developed for the formulation and application of the R-512E fused slurry silicide coating using either an acrylic or nitrocellulose base slurry system is also discussed.

  6. 40 CFR 60.461 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... in subpart A of this part. Coating means any organic material that is applied to the surface of metal... operation means the application system used to apply an organic coating to the surface of any continuous... of coating solids, of volatile organic compounds (VOC's) in a coating. (b) All symbols used in this...

  7. 40 CFR 60.461 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... in subpart A of this part. Coating means any organic material that is applied to the surface of metal... operation means the application system used to apply an organic coating to the surface of any continuous... of coating solids, of volatile organic compounds (VOC's) in a coating. (b) All symbols used in this...

  8. 40 CFR 60.461 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... in subpart A of this part. Coating means any organic material that is applied to the surface of metal... operation means the application system used to apply an organic coating to the surface of any continuous... of coating solids, of volatile organic compounds (VOC's) in a coating. (b) All symbols used in this...

  9. 40 CFR 60.461 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... in subpart A of this part. Coating means any organic material that is applied to the surface of metal... operation means the application system used to apply an organic coating to the surface of any continuous... of coating solids, of volatile organic compounds (VOC's) in a coating. (b) All symbols used in this...

  10. EGFR-Targeted Adenovirus Dendrimer Coating for Improved Systemic Delivery of the Theranostic NIS Gene

    PubMed Central

    Grünwald, Geoffrey K; Vetter, Alexandra; Klutz, Kathrin; Willhauck, Michael J; Schwenk, Nathalie; Senekowitsch-Schmidtke, Reingard; Schwaiger, Markus; Zach, Christian; Wagner, Ernst; Göke, Burkhard; Holm, Per S; Ogris, Manfred; Spitzweg, Christine

    2013-01-01

    We recently demonstrated tumor-selective iodide uptake and therapeutic efficacy of combined radiovirotherapy after systemic delivery of the theranostic sodium iodide symporter (NIS) gene using a dendrimer-coated adenovirus. To further improve shielding and targeting we physically coated replication-selective adenoviruses carrying the hNIS gene with a conjugate consisting of cationic poly(amidoamine) (PAMAM) dendrimer linked to the peptidic, epidermal growth factor receptor (EGFR)-specific ligand GE11. In vitro experiments demonstrated coxsackie-adenovirus receptor-independent but EGFR-specific transduction efficiency. Systemic injection of the uncoated adenovirus in a liver cancer xenograft mouse model led to high levels of NIS expression in the liver due to hepatic sequestration, which were significantly reduced after coating as demonstrated by 123I-scintigraphy. Reduction of adenovirus liver pooling resulted in decreased hepatotoxicity and increased transduction efficiency in peripheral xenograft tumors. 124I-PET-imaging confirmed EGFR-specificity by significantly lower tumoral radioiodine accumulation after pretreatment with the EGFR-specific antibody cetuximab. A significantly enhanced oncolytic effect was observed following systemic application of dendrimer-coated adenovirus that was further increased by additional treatment with a therapeutic dose of 131I. These results demonstrate restricted virus tropism and tumor-selective retargeting after systemic application of coated, EGFR-targeted adenoviruses therefore representing a promising strategy for improved systemic adenoviral NIS gene therapy. PMID:24193032

  11. Gas Dynamic Spray Technology Demonstration Project Management. Joint Test Report

    NASA Technical Reports Server (NTRS)

    Lewis, Pattie

    2011-01-01

    The standard practice for protecting metallic substrates in atmospheric environments is the use of an applied coating system. Current coating systems used across AFSPC and NASA contain volatile organic compounds (VOCs) and hazardous air pollutants (HAPs). These coatings are sUbject to environmental regulations at the Federal and State levels that limit their usage. In addition, these coatings often cannot withstand the high temperatures and exhaust that may be experienced by Air Force Space Command (AFSPC) and NASA structures. In response to these concerns, AFSPC and NASA have approved the use of thermal spray coatings (TSCs). Thermal spray coatings are extremely durable and environmentally friendly coating alternatives, but utilize large cumbersome equipment for application that make the coatings difficult and time consuming to repair. Other concerns include difficulties coating complex geometries and the cost of equipment, training, and materials. Gas Dynamic Spray (GOS) technology (also known as Cold Spray) was evaluated as a smaller, more maneuverable repair method as well as for areas where thermal spray techniques are not as effective. The technology can result in reduced maintenance and thus reduced hazardous materials/wastes associated with current processes. Thermal spray and GOS coatings also have no VOCs and are environmentally preferable coatings. The primary objective of this effort was to demonstrate GDS technology as a repair method for TSCs. The aim was that successful completion of this project would result in approval of GDS technology as a repair method for TSCs at AFSPC and NASA installations to improve corrosion protection at critical systems, facilitate easier maintenance activity, extend maintenance cycles, eliminate flight hardware contamination, and reduce the amount of hazardous waste generated.

  12. Liquid hydrogen turbopump rapid start program. [thermal preconditioning using coatings

    NASA Technical Reports Server (NTRS)

    Wong, G. S.

    1973-01-01

    This program was to analyze, test, and evaluate methods of achieving rapid-start of a liquid hydrogen feed system (inlet duct and turbopump) using a minimum of thermal preconditioning time and propellant. The program was divided into four tasks. Task 1 includes analytical studies of the testing conducted in the other three tasks. Task 2 describes the results from laboratory testing of coating samples and the successful adherence of a KX-635 coating to the internal surfaces of the feed system tested in Task 4. Task 3 presents results of testing an uncoated feed system. Tank pressure was varied to determine the effect of flowrate on preconditioning. The discharge volume and the discharge pressure which initiates opening of the discharge valve were varied to determine the effect on deadhead (no through-flow) start transients. Task 4 describes results of testing a similar, internally coated feed system and illustrates the savings in preconditioning time and propellant resulting from the coatings.

  13. Thermographic inspection of external thermal insulation systems with mechanical fixing

    NASA Astrophysics Data System (ADS)

    Simões, Nuno; Simões, Inês; Serra, Catarina; Tadeu, António

    2015-05-01

    An External Thermal Insulation Composite System (ETICS) kit may include anchors to mechanically fix the insulation product onto the wall. Using this option increases safety when compared to a simple bonded solution, however, it is more expensive and needs higher labor resources. The insulation product is then coated with rendering, which applied to the insulation material without any air gap. The rendering comprises one or more layers of coats with an embedded reinforcement. The most common multi-coat rendering system presents a base coat applied directly to the insulation product with a glass fiber mesh as reinforcement, followed by a second base coat, before a very thin coat (key coat) that prepares the surface to receive the finishing and decorative coat. The thickness of the rendering system may vary between around 5 to 10 mm. The higher thicknesses may be associated with a reinforcement composed by two layers of glass fiber mesh. The main purpose of this work is to apply infrared thermography (IRT) techniques to 2 ETICS solution (single or double layer of glass fiber mesh) and evaluate its capability in the detection of anchors. The reliability of IRT was tested using an ETICS configuration of expanded cork boards and a rendering system with one or two layers of glass fiber mesh. An active thermography approach was performed in laboratory conditions, in transmission and reflection mode. In the reflection mode halogen lamps and air heater were employed as the thermal stimulus. Air heater was also the source used in the transmission mode tests. The resulting data was processed in both time and frequency domains. In this last approach, phase contrast images were generated and studied.

  14. Impact of a counter-rotating planetary rotation system on thin-film thickness and uniformity

    DOE PAGES

    Oliver, J. B.

    2017-06-12

    Planetary rotation systems incorporating forward- and counter-rotating planets are used as a means of increasing coating-system capacity for large oblong substrates. Comparisons of planetary motion for the two types of rotating systems are presented based on point tracking for multiple revolutions, as well as comparisons of quantitative thickness and uniformity. Counter-rotation system geometry is shown to result in differences in thin-film thickness relative to standard planetary rotation for precision optical coatings. As a result, this systematic error in thin-film thickness will reduce deposition yields for sensitive coating designs.

  15. Impact of a counter-rotating planetary rotation system on thin-film thickness and uniformity.

    PubMed

    Oliver, J B

    2017-06-20

    Planetary rotation systems incorporating forward- and counter-rotating planets are used as a means of increasing coating-system capacity for large oblong substrates. Comparisons of planetary motion for the two types of rotating systems are presented based on point tracking for multiple revolutions as well as comparisons of quantitative thickness and uniformity. Counter-rotation system geometry is shown to result in differences in thin-film thickness relative to standard planetary rotation for precision optical coatings. This systematic error in thin-film thickness will reduce deposition yields for sensitive coating designs.

  16. Impact of a counter-rotating planetary rotation system on thin-film thickness and uniformity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oliver, J. B.

    Planetary rotation systems incorporating forward- and counter-rotating planets are used as a means of increasing coating-system capacity for large oblong substrates. Comparisons of planetary motion for the two types of rotating systems are presented based on point tracking for multiple revolutions, as well as comparisons of quantitative thickness and uniformity. Counter-rotation system geometry is shown to result in differences in thin-film thickness relative to standard planetary rotation for precision optical coatings. As a result, this systematic error in thin-film thickness will reduce deposition yields for sensitive coating designs.

  17. Stress and structure development in polymeric coatings

    NASA Astrophysics Data System (ADS)

    Vaessen, Diane Melissa

    2002-09-01

    The main goal of this research is to measure the stress evolution in various polymer coating systems to establish the mechanisms responsible for stress development, stress relaxation, and defect formation. Investigated systems include ultraviolet (UV)-curable coatings, dense and porous coatings from polymer solutions, and latex coatings. Coating stress was measured using a controlled environment stress apparatus based on a cantilever deflection principle. For acrylate coatings, it was found that by cycling a UV-lamp on and off, keeping the total dose constant, coating stress was lowered by 60% by decreasing the cycle period. A stress minimum was also found to exist for a given dose of radiation. The lower stress is attributed to stress relaxation and/or slower reaction during dark periods. A viscoelastic stress model of this process was formulated and predicted stress values close to those observed experimentally. During drying of cellulose acetate (CA) coatings cast in acetone, final stress increased from 10 to 45 MPa as coating thickness decreased from 60 to 10 mum. This thickness dependent coating stress for a solvent-cast polymer coating is a new finding and is attributed to (1) less shrinkage in thicker coatings due to more trapped solvent (from skinning) and (2) greater amounts of polymer stress relaxation in thicker coatings. For porous CA coatings prepared by dry-cast phase separation, final in-plane stresses ranged from 20 MPa for coatings containing small pores (˜1 mum) to 5 MPa for coatings containing small pores and macrovoids (˜200 mum). For these coatings, a small amount of stress relaxation occurs due to capillary pressure relief. A stress plateau for the macrovoid-containing coating is likely caused by stress-induced rupture of the polymer-rich phase. Measured stress in pigment-free latex coatings was much lower (˜0.3 MPa) than UV-curable and solvent-cast polymer coatings and was found to increase with increasing latex glass transition temperature. Observations from infrared spectroscopy, scanning electron microscopy, camera imaging, and indentation were also studied to correlate coating properties to measured stresses. The results obtained in this thesis will lead to strategies for material selection, process optimization, and defect elimination in polymeric coatings.

  18. The central role of wood biology in understanding the durability of wood-coating interactions

    Treesearch

    Alex C. Wiedenhoeft

    2007-01-01

    To design effectively for durability, one must actively and honestly assess the material properties and limitations of each of the components in the design system; wood or wood composite, and the coating. Inasmuch as wood coatings are manufactured to specified tolerances from known materials, we have control of that component of the system. Compared to manmade...

  19. Development of polymeric coatings for control of electro-osmotic flow in ASTP MA-011 electrophoresis technology experiment

    NASA Technical Reports Server (NTRS)

    Patterson, W. J.

    1976-01-01

    The development of a methyl cellulose based coating system for control of electro-osmotic flow at the walls of electrophoresis cells is described. Flight electrophoresis columns were coated with this system, resulting in a flight set of six columns. In flight photography of MA-011 electrophoretic separations verified control of electro-osmotic flow.

  20. Advanced Environmental Barrier Coating Development for SiC-SiC Ceramic Matrix Composite Components

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Harder, Bryan; Hurst, Janet B.; Halbig, Michael Charles; Puleo, Bernadette J.; Costa, Gustavo; Mccue, Terry R.

    2017-01-01

    This presentation reviews the NASA advanced environmental barrier coating (EBC) system development for SiC-SiC Ceramic Matrix Composite (CMC) combustors particularly under the NASA Environmentally Responsible Aviation, Fundamental Aeronautics and Transformative Aeronautics Concepts Programs. The emphases have been placed on the current design challenges of the 2700-3000F capable environmental barrier coatings for low NOX emission combustors for next generation turbine engines by using advanced plasma spray based processes, and the coating processing and integration with SiC-SiC CMCs and component systems. The developments also have included candidate coating composition system designs, degradation mechanisms, performance evaluation and down-selects; the processing optimizations using TriplexPro Air Plasma Spray Low Pressure Plasma Spray (LPPS), Plasma Spray Physical Vapor Deposition and demonstration of EBC-CMC systems. This presentation also highlights the EBC-CMC system temperature capability and durability improvements under the NASA development programs, as demonstrated in the simulated engine high heat flux, combustion environments, in conjunction with high heat flux, mechanical creep and fatigue loading testing conditions.

  1. Thermal Conductivity and Elastic Modulus Evolution of Thermal Barrier Coatings under High Heat Flux Conditions

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Miller, Robert A.

    1999-01-01

    Laser high heat flux test approaches have been established to obtain critical properties of ceramic thermal barrier coatings (TBCs) under near-realistic temperature and thermal gradients that may he encountered in advanced engine systems. Thermal conductivity change kinetics of a thin ceramic coating were continuously monitored in real time at various test temperatures. A significant thermal conductivity increase was observed during the laser simulated engine heat flux tests. For a 0.25 mm thick ZrO2-8%Y2O3 coating system, the overall thermal conductivity increased from the initial value of 1.0 W/m-K to 1. 15 W/m-K, 1. 19 W/m-K and 1.5 W/m-K after 30 hour testing at surface temperatures of 990C, 1100C, and 1320C. respectively. Hardness and modulus gradients across a 1.5 mm thick TBC system were also determined as a function of laser testing time using the laser sintering/creep and micro-indentation techniques. The coating Knoop hardness values increased from the initial hardness value of 4 GPa to 5 GPa near the ceramic/bond coat interface, and to 7.5 GPa at the ceramic coating surface after 120 hour testing. The ceramic surface modulus increased from an initial value of about 70 GPa to a final value of 125 GPa. The increase in thermal conductivity and the evolution of significant hardness and modulus gradients in the TBC systems are attributed to sintering-induced micro-porosity gradients under the laser-imposed high thermal gradient conditions. The test techniques provide a viable means for obtaining coating data for use in design, development, stress modeling, and life prediction for various thermal barrier coating applications.

  2. A nanometallic nickel-coated, glass-fibre-based structural health monitoring system for polymer composites

    NASA Astrophysics Data System (ADS)

    Balaji, R.; Sasikumar, M.

    2017-09-01

    Glass-fibre-reinforced polymer matrix composites are widely used in various industries because of their unique high strength to weight ratio. Unlike metals, strain-induced and damage states of composites are complicated to predict under real-time loading due to their anisotropic nature. With that focus, a piezoresistive nanomaterial-based structural health monitoring system for laminated polymer composites is proposed to measure the strain induced in the composite under real-time loading. Nanometallic nickel-coated glass fibres are embedded into the polymer composites to monitor the strain and damage induced in them. The nanometallic nickel is coated over the glass fibre by a dip coating technique using epoxy as the binding agent. A microcontroller-based electrical resistance measurement system is used to measure the piezoresistive variation in the coated glass fibre under real-time loading. Using the piezoresistance variation of the embedded nanometallic nickel-coated glass fibre, the real-time strain and damage induced in the composite can be correlated. The piezoresistive response of the coated glass fibre is descibed in two phases, the deformation phase and the failure phase, which clearly show the various states of strain and damage induced in the composites.

  3. Thermal barrier coating experience in the gas turbine engine

    NASA Technical Reports Server (NTRS)

    Bose, S.; Demasi-Marcin, J.

    1995-01-01

    Thermal Barrier Coatings (TBC), provide thermal insulation and oxidation resistance in an environment consisting of hot combustion gases. TBC's consist of a two layer system. The outer ceramic layer provides good thermal insulation due to the low thermal conductivity of the ceramic coatings used, while the inner metallic bond coat layer provides needed oxidation resistance to the underlying superalloy. Pratt & Whitney has over a decade of experience with several generations of TBC systems on turbine airfoils. This paper will focus on the latest TBC field experience along with a proposed durability model.

  4. Design of broadband multilayer dichroic coating for a high-efficiency solar energy harvesting system.

    PubMed

    Jiachen, Wang; Lee, Sang Bae; Lee, Kwanil

    2015-05-20

    We report on the design and performance of a broadband dichroic coating for a solar energy conversion system. As a spectral beam splitter, the coating facilitates a hybrid system that combines a photovoltaic cell with a thermal collector. When positioned at a 45° angle with respect to incident light, the coating provides high reflectance in the 40-1100 nm and high transmission in the 1200-2000 nm ranges for a photovoltaic cell and a thermal collector, respectively. Numerical simulations show that our design leads to a sharp transition between the reflection and transmission bands, low ripples in both bands, and slight polarization dependence.

  5. High durability antireflection coatings for silicon and multispectral ZnS

    NASA Astrophysics Data System (ADS)

    Joseph, Shay; Marcovitch, Orna; Yadin, Ygal; Klaiman, Dror; Koren, Nitzan; Zipin, Hedva

    2007-04-01

    In the current complex battle field, military platforms are required to operate on land, at sea and in the air in all weather conditions both day and night. In order to achieve such capabilities, advanced electro-optical systems are being constantly developed and improved. These systems such as missile seeker heads, reconnaissance and target acquisition pods and tracking, monitoring and alert systems have external optical components (window or dome) which must remain operational even at extreme environmental conditions. Depending on the intended use of the system, there are a few choices of window and dome materials. Amongst the more common materials one can point out sapphire, ZnS, germanium and silicon. Other materials such as spinel, ALON and yittria may also be considered. Most infrared materials have high indices of refraction and therefore they reflect a large part of radiation. To minimize the reflection and increase the transmission, antireflection (AR) coatings are the most common choice. Since these systems operate at different environments and weather conditions, the coatings must be made durable to withstand these extreme conditions. In cases where the window or dome is made of relatively soft materials such as multispectral ZnS, the coating may also serve as protection for the window or dome. In this work, several antireflection coatings have been designed and manufactured for silicon and multispectral ZnS. The coating materials were chosen to be either oxides or fluorides which are known to have high durability. Ellipsometry measurements were used to characterize the optical constants of the thin films. The effects of the deposition conditions on the optical constants of the deposited thin films and durability of the coatings will be discussed. The coatings were tested according to MIL-STD-810E and were also subjected to rain erosion tests at the University of Dayton Research Institute (UDRI) whirling arm apparatus in which one of the coatings showed no rain drop impact damage at all.

  6. Convergent spray process for environmentally friendly coatings

    NASA Technical Reports Server (NTRS)

    Scarpa, Jack

    1995-01-01

    Conventional spray application processes have poor transfer efficiencies, resulting in an exorbitant loss in materials, solvents, and time. Also, with ever tightening Environmental Protection Agency (EPA) regulations and Occupational Safety and Health Administration requirements, the low transfer efficiencies have a significant impact on the quantities of materials and solvents that are released into the environment. High solids spray processes are also limited by material viscosities, thus requiring many passes over the surface to achieve a thickness in the 0.125 -inch range. This results in high application costs and a negative impact on the environment. Until recently, requirements for a 100 percent solid sprayable, environmentally friendly, lightweight thermal protection system that can be applied in a thick (greater than 0.125 inch) single-pass operation exceeded the capability of existing systems. Such coatings must be applied by hand lay-up techniques, especially for thermal and/or fire protection systems. The current formulation of these coatings has presented many problems such as worker safety, environmental hazards, waste, high cost, and application constraints. A system which can apply coatings without using hazardous materials would alleviate many of these problems. Potential applications include the aerospace thermal protective specialty coatings, chemical and petroleum industries that require fire-protection coatings that resist impact, chemicals, and weather. These markets can be penetrated by offering customized coatings applied by automated processes that are environmentally friendly.

  7. Enteric-coating of pulsatile-release HPC capsules prepared by injection molding.

    PubMed

    Macchi, E; Zema, L; Maroni, A; Gazzaniga, A; Felton, L A

    2015-04-05

    Capsular devices based on hydroxypropyl cellulose (Klucel® LF) intended for pulsatile release were prepared by injection molding (IM). In the present work, the possibility of exploiting such capsules for the development of colonic delivery systems based on a time-dependent approach was evaluated. For this purpose, it was necessary to demonstrate the ability of molded cores to undergo a coating process and that coated systems yield the desired performance (gastric resistance). Although no information was available on the coating of IM substrates, some issues relevant to that of commercially-available capsules are known. Thus, preliminary studies were conducted on molded disks for screening purposes prior to the spray-coating of HPC capsular cores with Eudragit® L 30 D 55. The ability of the polymeric suspension to wet the substrate, spread, start penetrating and initiate hydration/swelling, as well as to provide a gastroresistant barrier was demonstrated. The coating of prototype HPC capsules was carried out successfully, leading to coated systems with good technological properties and able to withstand the acidic medium with no need for sealing at the cap/body joint. Such systems maintained the original pulsatile release performance after dissolution of the enteric film in pH 6.8 fluid. Therefore, they appeared potentially suitable for the development of a colon delivery platform based on a time-dependent approach. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Overlay metallic-cermet alloy coating systems

    NASA Technical Reports Server (NTRS)

    Gedwill, M. A.; Levine, S. R.; Glasgow, T. K. (Inventor)

    1984-01-01

    A substrate, such as a turbine blade, vane, or the like, which is subjected to high temperature use is coated with a base coating of an oxide dispersed, metallic alloy (cermet). A top coating of an oxidation, hot corrosion, erosion resistant alloy of nickel, cobalt, or iron is then deposited on the base coating. A heat treatment is used to improve the bonding. The base coating serves as an inhibitor to interdiffusion between the protective top coating and the substrate. Otherwise, the protective top coating would rapidly interact detrimentally with the substrate and degrade by spalling of the protective oxides formed on the outer surface at elevated temperatures.

  9. Low cost high temperature, duplex coating for superalloys

    NASA Technical Reports Server (NTRS)

    Young, S. G.; Deadmore, D. L.

    1981-01-01

    Duplex silicon-slurry/aluminide coating substantially improves high temperature resistance to oxidation and corrosion of nickel base alloys. Coating used in critical sections of power systems like turbojet engines extends their operating capabilities.

  10. Tests of NASA ceramic thermal barrier coating for gas-turbine engines

    NASA Technical Reports Server (NTRS)

    Liebert, C. H.

    1979-01-01

    A NASA ceramic thermal barrier coating (TBC) system was tested by industrial and governmental organizations for a variety of aeronautical marine, and ground-based gas-turbine engine applications. This TBC is a two-layer system with a bond coating of nickel-chromium-aluminum-yttrium (Ni-16Cr-6Al-0.6Y, in wt %) and a ceramic coating of yttria stabilized zirconia (ZrO2-12Y2O3, in wt %). Tests (Liebert and Stenka, 1979) have been conducted to determine corrosion resistance, thermal protection, durability, thermal conductivity, and fatigue characteristics. The information presented covers some of the significant test results obtained on the first three items. The information also includes photographs of coated parts after tests, measurements of coating loss, amount of metal wall temperature reduction when the TBC is used, and extent of base metal corrosion.

  11. Advanced thin film thermocouples

    NASA Technical Reports Server (NTRS)

    Kreider, K. G.; Semancik, S.; Olson, C.

    1984-01-01

    The fabrication, materials characterization, and performance of thin film platinum rhodium thermocouples on gas turbine alloys was investigated. The materials chosen for the study were the turbine blade alloy systems MAR M200+Hf with NiCoCrAlY and FeCrAlY coatings, and vane alloy systems MAR M509 with FeCrAlY. Research was focussed on making improvements in the problem areas of coating substrate stability, adhesion, and insulation reliability and durability. Diffusion profiles between the substrate and coating with and without barrier coatings of Al2O3 are reported. The relationships between fabrication parameters of thermal oxidation and sputtering of the insulator and its characterization and performance are described. The best thin film thermocouples were fabricated with the NiCoCrAlY coatings which were thermally oxidized and sputter coated with Al2O3.

  12. A new methodology for hydro-abrasive erosion tests simulating penstock erosive flow

    NASA Astrophysics Data System (ADS)

    Aumelas, V.; Maj, G.; Le Calvé, P.; Smith, M.; Gambiez, B.; Mourrat, X.

    2016-11-01

    Hydro-abrasive resistance is an important property requirement for hydroelectric power plant penstock coating systems used by EDF. The selection of durable coating systems requires an experimental characterization of coating performance. This can be achieved by performing accelerated and representative laboratory tests. In case of severe erosion induced by a penstock flow, there is no suitable method or standard representative of real erosive flow conditions. The presented study aims at developing a new methodology and an associated laboratory experimental device. The objective of the laboratory apparatus is to subject coated test specimens to wear conditions similar to the ones generated at the penstock lower generatrix in actual flow conditions. Thirteen preselected coating solutions were first been tested during a 45 hours erosion test. A ranking of the thirteen coating solutions was then determined after characterisation. To complete this first evaluation and to determine the wear kinetic of the four best coating solutions, additional erosion tests were conducted with a longer duration of 216 hours. A comparison of this new method with standardized tests and with real service operating flow conditions is also discussed. To complete the final ranking based on hydro-abrasive erosion tests, some trial tests were carried out on penstock samples to check the application method of selected coating systems. The paper gives some perspectives related to erosion test methodologies for materials and coating solutions for hydraulic applications. The developed test method can also be applied in other fields.

  13. Down-selection and optimization of thermal-sprayed coatings for aluminum mould tool protection and upgrade

    NASA Astrophysics Data System (ADS)

    Gibbons, Gregory John; Hansell, Robert George

    2006-09-01

    This article details the down-selection procedure for thermally sprayed coatings for aluminum injection mould tooling. A down-selection metric was used to rank a wide range of coatings. A range of high-velocity oxyfuel (HVOF) and atmospheric plasma spray (APS) systems was used to identify the optimal coating-process-system combinations. Three coatings were identified as suitable for further study; two CrC NiCr materials and one Fe Ni Cr alloy. No APS-deposited coatings were suitable for the intended application due to poor substrate adhesion (SA) and very high surface roughness (SR). The DJ2700 deposited coating properties were inferior to the coatings deposited using other HVOF systems and thus a Taguchi L18 five parameter, three-level optimization was used to optimize SA of CRC-1 and FE-1. Significant mean increases in bond strength were achieved (147±30% for FE-1 [58±4 MPa] and 12±1% for CRC-1 [67±5 MPa]). An analysis of variance (ANOVA) indicated that the coating bond strengths were primarily dependent on powder flow rate and propane gas flow rate, and also secondarily dependent on spray distance. The optimal deposition parameters identified were: (CRC-1/FE-1) O2 264/264 standard liters per minute (SLPM); C3H8 62/73 SLPM; air 332/311 SLPM; feed rate 30/28 g/min; and spray distance 150/206 mm.

  14. Optical coherence tomography as a novel tool for in-line monitoring of a pharmaceutical film-coating process.

    PubMed

    Markl, Daniel; Hannesschläger, Günther; Sacher, Stephan; Leitner, Michael; Khinast, Johannes G

    2014-05-13

    Optical coherence tomography (OCT) is a contact-free non-destructive high-resolution imaging technique based on low-coherence interferometry. This study investigates the application of spectral-domain OCT as an in-line quality control tool for monitoring pharmaceutical film-coated tablets. OCT images of several commercially-available film-coated tablets of different shapes, formulations and coating thicknesses were captured off-line using two OCT systems with centre wavelengths of 830nm and 1325nm. Based on the off-line image evaluation, another OCT system operating at a shorter wavelength was selected to study the feasibility of OCT as an in-line monitoring method. Since in spectral-domain OCT motion artefacts can occur as a result of the tablet or sensor head movement, a basic understanding of the relationship between the tablet speed and the motion effects is essential for correct quantifying and qualifying of the tablet coating. Experimental data was acquired by moving the sensor head of the OCT system across a static tablet bed. Although examining the homogeneity of the coating turned more difficult with increasing transverse speed of the tablets, the determination of the coating thickness was still highly accurate at a speed up to 0.7m/s. The presented OCT setup enables the investigation of the intra- and inter-tablet coating uniformity in-line during the coating process. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. ETV Program Report: Coatings for Wastewater Collection Systems - Protective Liner Systems, Inc., Epoxy Mastic, PLS-614

    EPA Science Inventory

    The Protective Liner Systems International, Inc. Epoxy Mastic PLS-614 coating used for wastewater collection system rehabilitation was evaluated by EPA’s Environmental Technology Verification Program under laboratory conditions at the Center for Innovative Grouting Material and T...

  16. Environmental Stability and Oxidation Behavior of HfO2-Si and YbGd(O) Based Environmental Barrier Coating Systems for SiCSiC Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Farmer, Serene; McCue, Terry R.; Harder, Bryan; Hurst, Janet B.

    2017-01-01

    Ceramic environmental barrier coatings (EBC) and SiCSiC ceramic matrix composites (CMCs) will play a crucial role in future aircraft propulsion systems because of their ability to significantly increase engine operating temperatures, improve component durability, reduce engine weight and cooling requirements. Advanced EBC systems for SiCSiC CMC turbine and combustor hot section components are currently being developed to meet future turbine engine emission and performance goals. One of the significant material development challenges for the high temperature CMC components is to develop prime-reliant, environmental durable environmental barrier coating systems. In this paper, the durability and performance of advanced Electron Beam-Physical Vapor Deposition (EB-PVD) NASA HfO2-Si and YbGdSi(O) EBC bond coat top coat systems for SiCSiC CMC have been summarized. The high temperature thermomechanical creep, fatigue and oxidation resistance have been investigated in the laboratory simulated high-heat-flux environmental test conditions. The advanced NASA EBC systems showed promise to achieve 1500C temperature capability, helping enable next generation turbine engines with significantly improved engine component temperature capability and durability.

  17. Calcium-Magnesium-Alumino-Silicates (CMAS) Reaction Mechanisms and Resistance of Advanced Turbine Environmental Barrier Coatings for SiC/SiC Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Costa, Gustavo; Harder, Bryan J.; Wiesner, Valerie L.; Hurst, Janet B.; Puleo, Bernadette J.

    2017-01-01

    Environmental barrier coatings (EBCs) and SiC/SiC ceramic matrix composites (CMCs) systems will play a crucial role in future turbine engines for hot-section component applications because of their ability to significantly increase engine operating temperatures, reduce engine weight and cooling requirements. The development of prime-reliant environmental barrier coatings is an essential requirement to enable the applications of the 2700-3000 F EBC - CMC systems. This presentation primarily focuses on the reaction mechanisms of advanced NASA environmental barrier coating systems, when in contact with Calcium-Magnesium Alumino-Silicates (CMAS) at high temperatures. Advanced oxide-silicate defect cluster environmental barrier coatings are being designed for ultimate balanced controls of the EBC temperature capability and CMAS reactivity, thus improving the CMAS resistance. Further CMAS mitigation strategies are also discussed.

  18. Compatibility studies on Mo-coating systems for nuclear fuel cladding applications

    NASA Astrophysics Data System (ADS)

    Koh, Huan Chin; Hosemann, Peter; Glaeser, Andreas M.; Cionea, Cristian

    2017-12-01

    To improve the safety factor of nuclear power plants in accident scenarios, molybdenum (Mo), with its high-temperature strength, is proposed as a potential fuel-cladding candidate. However, Mo undergoes rapid oxidation and sublimation at elevated temperatures in oxygen-rich environments. Thus, it is necessary to coat Mo with a protective layer. The diffusional interactions in two systems, namely, Zircaloy-2 (Zr2) on a Mo tube, and iron-chromium-aluminum (FeCrAl) on a Mo rod, were studied by aging coated Mo substrates in high vacuum at temperatures ranging from 650 °C to 1000° for 1000 h. The specimens were characterized using scanning electron microscopy (SEM), energy-dispersive spectrometry (EDS) and nanoindentation. In both systems, pores in the coating increased in size and number with increasing temperature over time, and cracks were also observed; intermetallic phases formed between the Mo and its coatings.

  19. Thermal Conductivity Change Kinetics of Ceramic Thermal Barrier Coatings Determined by the Steady-State Laser Heat Flux Technique

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Miller, Robert A.

    2000-01-01

    A steady-state laser heat flux technique has been developed at the NASA Glenn Research Center at Lewis Field to obtain critical thermal conductivity data of ceramic thermal barrier coatings under the temperature and thermal gradients that are realistically expected to be encountered in advanced engine systems. In this study, thermal conductivity change kinetics of a plasma-sprayed, 254-mm-thick ZrO2-8 wt % Y2O3 ceramic coating were obtained at high temperatures. During the testing, the temperature gradients across the coating system were carefully measured by the surface and back pyrometers and an embedded miniature thermocouple in the substrate. The actual heat flux passing through the coating system was determined from the metal substrate temperature drop (measured by the embedded miniature thermocouple and the back pyrometer) combined with one-dimensional heat transfer models.

  20. Construction of a novel pH-sensitive drug release system from mesoporous silica tablets coated with Eudragit

    NASA Astrophysics Data System (ADS)

    Xu, Yingpu; Qu, Fengyu; Wang, Yu; Lin, Huiming; Wu, Xiang; Jin, Yingxue

    2011-03-01

    A novel pH-sensitive drug release system has been established by coating Eudragit (Eud) on drug-loaded mesoporous silica (MS) tablets. The release rate of ibuprofen (IBU) from the MS was retarded by coating with Eudragit S-100, and the higher retardation was due to the increase of coating concentration and the coating layers. The target position of the release depended on the pH of the release medium, which was confirmed by the drug release from IBU/MS/Eud increasing rapidly with the change of medium pH from 1.2 to 7.4. This drug delivery system could prohibit irritant drug from leaking in the stomach and make it only release in the intestine. The loaded and unloaded drug samples were characterized by powder X-ray diffraction (XRD), Fourier transform infrared spectrometer (FTIR), N 2 adsorption/desorption, scanning electron microscopy (SEM), and transmission electron microscopy (TEM).

  1. Quality optimization of thermally sprayed coatings produced by the JP-5000 (HVOF) gun using mathematical modeling

    NASA Technical Reports Server (NTRS)

    Tawfik, Hazem

    1994-01-01

    Currently, thermal barrier coatings (TBC) of gas-turbine blades and similar applications have centered around the use of zirconia as a protective coating for high thermal applications. The advantages of zirconia include low thermal conductivity and good thermal shock resistance. Thermally sprayed tungsten carbide hardface coatings are used for a wide range of applications spanning both the aerospace and other industrial markets. Major aircraft engine manufacturers and repair facilities use hardface coatings for original engine manufacture (OEM), as well as in the overhaul of critical engine components. The principle function of these coatings is to resist severe wear environments for such wear mechanisms as abrasion, adhesion, fretting, and erosion. The (JP-5000) thermal spray gun is the most advanced in the High Velocity Oxygen Fuel (HVOF) systems. Recently, it has received considerable attention because of its relative low cost and its production of quality coatings that challenge the very successful but yet very expensive Vacuum Plasma Spraying (VPS) system. The quality of thermal spray coatings is enhanced as porosity, oxidation, residual stress, and surface roughness are reduced or minimized. Higher densification, interfacial bonding strength, hardness and wear resistance of coating are desirable features for quality improvement.

  2. A comparative physico-chemical study of chlorapatite and hydroxyapatite: from powders to plasma sprayed thin coatings.

    PubMed

    Demnati, I; Grossin, D; Combes, C; Parco, M; Braceras, I; Rey, C

    2012-10-01

    Due to their bioactivity and osteoconductivity, hydroxyapatite (HA) plasma sprayed coatings have been widely developed for orthopedic uses. However, the thermodynamic instability of HA leads frequently to a mixture of phases which limit the functional durability of the coating. This study investigates the plasma spraying of chlorapatite (ClA) powder, known to melt without decomposition, onto pure titanium substrates using a low energy plasma spray system (LEPS). Pure ClA powder was prepared by a solid gas reaction at 950 °C and thermogravimetric analysis showed the good thermal stability of ClA powder in the range 30-1400 °C compared to that of the HA powder. Characterization of ClA coating showed that ClA had a very high crystalline ratio and no other crystalline phase was detected in the coating. HA and ClA coatings composition, microstructure and in vitro bioactivity potential were studied, compared and discussed. In vitro SBF test on HA and ClA coatings revealed the formation of a poorly crystalline apatite on the coating surface suggesting that we could expect a good osteoconductivity especially for the ClA coating prepared by the LEPS system.

  3. Use of New Industrial Coatings for the U.S. Navy Waterfront Structures

    DTIC Science & Technology

    2008-12-01

    utilized as a coating for the interior and exterior of piping systems, which either are located in harsh environments or are transporting substances with...typical application process, a separate set of test Table 7. MCU Coating Systems (SSPC SP 10 Surfaces) (5). SystelD CoatiIli System A Zinc -rich urethane...urethane/MID & AI-filled Urethane/MIO-filled urethane 315/315/314 336/336/336 340/340/336 ~ Micaceous iron oxide. \\) Aluminum. C Zinc . 12 as well as an

  4. Abrasion resistant heat pipe

    DOEpatents

    Ernst, D.M.

    1984-10-23

    A specially constructed heat pipe is described for use in fluidized bed combustors. Two distinct coatings are spray coated onto a heat pipe casing constructed of low thermal expansion metal, each coating serving a different purpose. The first coating forms aluminum oxide to prevent hydrogen permeation into the heat pipe casing, and the second coating contains stabilized zirconium oxide to provide abrasion resistance while not substantially affecting the heat transfer characteristics of the system.

  5. ACES. Accelerated Corrosion Expert Simulator

    DTIC Science & Technology

    2010-02-01

    Composites Coating Systems Organic Inorganic Ceramic Materials 22 Inputs and Dimensions Xi Thickness Hardness Strength Ductility Abrasion Resistance...GPU 25 T-Handle Latch 10-Year ACT Material/ Coating Configuration Die Cast Zinc T-Handle Carbon Steel Pin CS Shank CS T-Washer Carbon Steel Dish E- coat ...CARC Zinc Plating Cadmium Plated BoltE- coat /CARC CS Panel CS Panel O-Ring E- coat /CARC Original (10-year ACT) Design Green Flag Color Qualitative

  6. Corrosion Behavior of an Abradable Seal Coating System

    NASA Astrophysics Data System (ADS)

    Zhang, Feng; Xu, Cunguan; Lan, Hao; Huang, Chuanbing; Zhou, Yang; Du, Lingzhong; Zhang, Weigang

    2014-08-01

    A novel NiTi/BN composite abradable coating and two traditional Ni/C and Ni/BN coatings were manufactured with NiAl as the bond layer using thermal spray technology and their corrosion behaviors were investigated. In salt spray corrosion testing of the Ni/BN coating, defective sites of the metal matrix were corroded preferentially. Simulated occlusion experiments and electrochemical tests indicated that migration of ions resulted in pH decrease and Cl- enrichment in defects, and a more aggressive electrolyte led to a decrease of the corrosion potential of the metal inside defects but an increase of the corrosion current density, representing an autocatalytic corrosion process. Moreover, galvanic corrosion between the top and bond coatings of the abradable system was studied via the electrochemical technique. The results showed that, for the NiTi/BN, Ni/BN, and Ni/graphite coatings with a NiAl bond coating, current flow was generated between the anode and cathode. The NiTi/BN coating acted as the cathode due to its passivation, while the Ni/BN and Ni/graphite coatings acted as the anode because of their lower corrosion potential compared with the NiAl coating. The anode suffered serious corrosion damage due to galvanic corrosion, while the cathode corroded only slightly.

  7. Thermoplastic coating of carbon fibers

    NASA Technical Reports Server (NTRS)

    Edie, D. D.; Lickfield, G. C.; Allen, L. E.; Mccollum, J. R.

    1989-01-01

    A continuous powder coating system was developed for coating carbon fiber with LaRC-TPI (Langley Research Center-Thermoplastic Polyimide), a high-temperature thermoplastic polymide invented by NASA-Langley. The coating line developed used a pneumatic fiber spreader to separate the individual fibers. The polymer was applied within a recirculating powder coating chamber then melted using a combination of direct electrical resistance and convective heating to make it adhere to the fiber tow. The tension and speed of the line were controlled with a dancer arm and an electrically driven fiber wind-up and wind-off. The effects of heating during the coating process on the flexibility of the prepreg produced were investigated. The uniformity with which the fiber tow could be coated with polymer also was examined. Composite specimens were fabricated from the prepreg and tested to determine optimum process conditions. The study showed that a very uniform and flexible prepeg with up to 50 percent by volume polymer could be produced with this powder coating system. The coating line minimized powder loss and produced prepeg in lengths of up to 300 m. The fiber spreading was found to have a major effect on the coating uniformity and flexibility. Though test results showed low composite tensile strengths, analysis of fracture surfaces under scanning electron microscope indicated that fiber/matrix adhesion was adequate.

  8. Galvanic Liquid Applied Coating Development for Protection of Steel in Concrete

    NASA Technical Reports Server (NTRS)

    Curran, Joseph John; Curran, Jerry; MacDowell, Louis

    2004-01-01

    Corrosion of reinforcing steel in concrete is a major problem affecting NASA facilities at Kennedy Space Center (KSC), other government agencies, and the general public. Problems include damage to KSC launch support structures, transportation and marine infrastructures, as well as building structures. A galvanic liquid applied coating was developed at KSC in order to address this problem. The coating is a non-epoxy metal rich ethyl silicate liquid coating. The coating is applied as a liquid from initial stage to final stage. Preliminary data shows that this coating system exceeds the NACE 100 millivolt shift criterion. The remainder of the paper details the development of the coating system through the following phases: Phase I: Development of multiple formulations of the coating to achieve easy application characteristics, predictable galvanic activity, long-term protection, and minimum environmental impact. Phase II: Improvement of the formulations tested in Phase I including optimization of metallic loading as well as incorporation of humectants for continuous activation. Phase III: Application and testing of improved formulations on the test blocks. Phase IV: Incorporation of the final formulation upgrades onto large instrumented structures (slabs).

  9. Investigations of surface coatings to reduce memory effect in plastic scintillator detectors used for radioxenon detection

    NASA Astrophysics Data System (ADS)

    Bläckberg, L.; Fay, A.; Jõgi, I.; Biegalski, S.; Boman, M.; Elmgren, K.; Fritioff, T.; Johansson, A.; Mårtensson, L.; Nielsen, F.; Ringbom, A.; Rooth, M.; Sjöstrand, H.; Klintenberg, M.

    2011-11-01

    In this work Al2O3 and SiO2 coatings are tested as Xe diffusion barriers on plastic scintillator substrates. The motivation is improved beta-gamma coincidence detection systems, used to measure atmospheric radioxenon within the verification regime of the Comprehensive Nuclear-Test-Ban Treaty. One major drawback with the current setup of these systems is that the radioxenon tends to diffuse into the plastic scintillator material responsible for the beta detection, resulting in an unwanted memory effect. Here, coatings with thicknesses between 20 and 900 nm have been deposited onto plastic scintillators, and investigated using two different experimental techniques. The results show that all tested coatings reduce the Xe diffusion into the plastic. The reduction is observed to increase with coating thickness for both coating materials. The 425 nm Al2O3 coating is the most successful one, presenting a diffusion reduction of a factor 100, compared to uncoated plastic. In terms of memory effect reduction this coating is thus a viable solution to the problem in question.

  10. Investigation of the potential antimicrobial efficacy of sealants used in HVAC systems.

    PubMed

    Foarde, K K; VanOsdell, D W; Menetrez, M Y

    2001-08-01

    Recent experiments confirm field experience that duct cleaning alone may not provide adequate protection from regrowth of fungal contamination on fiberglass duct liner (FGDL). Current recommendations for remediation of fungally contaminated fiberglass duct materials specify complete removal of the materials. But removal of contaminated materials can be extremely expensive. Therefore, a common practice in the duct-cleaning industry is the postcleaning use of antimicrobial surface coatings with the implication that they may contain or limit regrowth. Little information is available on the efficacy of these treatments. This paper describes a study to evaluate whether three commercially available antimicrobial coatings, placed on a cleaned surface that 1 year previously had been actively growing microorganisms, would be able to prevent regrowth. The three coatings contained different active antimicrobial compounds. All three of the coatings were designed for use on heating, ventilation, and air conditioning (HVAC) system components or interior surfaces of lined and unlined duct systems. Coating I was a polyacrylate copolymer containing zinc oxide and borates. Coating II was an acrylic coating containing decabromodiphenyl oxide and antimony trioxide. Coating III was an acrylic primer containing a phosphated quaternary amine complex. The study included field and laboratory assessments. The three treatments were evaluated in an uncontrolled field setting in an actual duct system. The laboratory study broadened the field study to include a range of humidities under controlled conditions. Both static and dynamic chamber laboratory experiments were performed. The results showed that two of the three antimicrobial coatings limited the regrowth of fungal contamination, at least in the short term (the 3-month time span of the study); the third did not. Before use in the field, testing of the efficacy of antimicrobial coatings under realistic use conditions is recommended because antimicrobials have different baseline activities and interact differently with the substrate that contains them and their local environment.

  11. Hot spot detection system for vanes or blades of a combustion turbine

    DOEpatents

    Twerdochlib, Michael

    1999-01-01

    This invention includes a detection system that can determine if a turbine component, such as a turbine vane or blade, has exceeded a critical temperature, such as a melting point, along any point along the entire surface of the vane or blade. This system can be employed in a conventional combustion turbine having a compressor, a combustor and a turbine section. Included within this system is a chemical coating disposed along the entire interior surface of a vane or blade and a closed loop cooling system that circulates a coolant through the interior of the vane or blade. If the temperature of the vane or blade exceeds a critical temperature, the chemical coating will be expelled from the vane or blade into the coolant. Since while traversing the closed loop cooling system the coolant passes through a detector, the presence of the chemical coating in the coolant will be sensed by the system. If the chemical coating is detected, this indicates that the vane or blade has exceeded a critical temperature.

  12. Peri-implant and systemic effects of high-/low-affinity bisphosphonate-hydroxyapatite composite coatings in a rabbit model with peri-implant high bone turnover

    PubMed Central

    2012-01-01

    Background Hydroxyapatite (HA) coatings composed with bisphosphonates (BPs) which have high mineral-binding affinities have been confirmed to successfully enhance implant stability. However, few previous studies focused on HA coatings composed with low-affinity BPs or on systemic effects of locally released BPs. Methods In this long-term study, we developed two kinds of BP-HA composite coatings using either high-affinity BP (alendronate, ALN) or low-affinity BP (risedronate, RIS). Thirty-six rabbits were divided into three groups according to different coating applications (group I: HA, group II: ALN-HA, and group III: RIS-HA). Implants were inserted into the proximal region of the medullary cavity of the left tibiay. At insertion, 2 × 108 wear particles were injected around implants to induce a peri-implant high bone turnover environment. Both local (left tibias) and systemic (right tibias and lumbar vertebrae) inhibitory effect on bone resorption were compared, including bone-implant integration, bone architecture, bone mineral density (BMD), implant stability, and serum levels of bone turnover markers. Results The results indicated that ALN-HA composite coating, which could induce higher bone-implant contact (BIC) ratio, bone mass augmentation, BMD, and implant stability in the peri-implant region, was more potent on peri-implant bone, while RIS-HA composite coating, which had significant systemic effect, was more potent on non-peri-implant bone, especially lumbar vertebrae. Conclusions It is instructive and meaningful to further clinical studies that we could choose different BP-HA composite coatings according to the patient’s condition. PMID:22686414

  13. Rapid Prototyping of Slot Die Devices for Roll to Roll Production of EL Fibers

    PubMed Central

    Bellingham, Alyssa; Bromhead, Nicholas; Fontecchio, Adam

    2017-01-01

    There is a growing interest in fibers supporting optoelectrical properties for textile and wearable display applications. Solution-processed electroluminescent (EL) material systems can be continuously deposited onto fiber or yarn substrates in a roll-to-roll process, making it easy to scale manufacturing. It is important to have precise control over layer deposition to achieve uniform and reliable light emission from these EL fibers. Slot-die coating offers this control and increases the rate of EL fiber production. Here, we report a highly adaptable, cost-effective 3D printing model for developing slot dies used in automatic coating systems. The resulting slot-die coating system enables rapid, reliable production of alternating current powder-based EL (ACPEL) fibers and can be adapted for many material systems. The benefits of this system over dip-coating for roll-to-roll production of EL fibers are demonstrated in this work. PMID:28772954

  14. Rapid Prototyping of Slot Die Devices for Roll to Roll Production of EL Fibers.

    PubMed

    Bellingham, Alyssa; Bromhead, Nicholas; Fontecchio, Adam

    2017-05-29

    There is a growing interest in fibers supporting optoelectrical properties for textile and wearable display applications. Solution-processed electroluminescent (EL) material systems can be continuously deposited onto fiber or yarn substrates in a roll-to-roll process, making it easy to scale manufacturing. It is important to have precise control over layer deposition to achieve uniform and reliable light emission from these EL fibers. Slot-die coating offers this control and increases the rate of EL fiber production. Here, we report a highly adaptable, cost-effective 3D printing model for developing slot dies used in automatic coating systems. The resulting slot-die coating system enables rapid, reliable production of alternating current powder-based EL (ACPEL) fibers and can be adapted for many material systems. The benefits of this system over dip-coating for roll-to-roll production of EL fibers are demonstrated in this work.

  15. Environmental/Thermal Barrier Coatings for Ceramic Matrix Composites: Thermal Tradeoff Studies

    NASA Technical Reports Server (NTRS)

    Murthy, Pappu L. M.; Brewer, David; Shah, Ashwin R.

    2007-01-01

    Recent interest in environmental/thermal barrier coatings (EBC/TBCs) has prompted research to develop life-prediction methodologies for the coating systems of advanced high-temperature ceramic matrix composites (CMCs). Heat-transfer analysis of EBC/TBCs for CMCs is an essential part of the effort. It helps establish the resulting thermal profile through the thickness of the CMC that is protected by the EBC/TBC system. This report documents the results of a one-dimensional analysis of an advanced high-temperature CMC system protected with an EBC/TBC system. The one-dimensional analysis was used for tradeoff studies involving parametric variation of the conductivity; the thickness of the EBC/TBCs, bond coat, and CMC substrate; and the cooling requirements. The insight gained from the results will be used to configure a viable EBC/TBC system for CMC liners that meet the desired hot surface, cold surface, and substrate temperature requirements.

  16. Demonstration Of A Nanomaterial-Modified Primer For Use In Corrosion-Inhibiting Coating Systems

    DTIC Science & Technology

    2011-11-01

    abrasive blasting or other means. This report documents the materials and methodologies used for testing and application of the new coating systems on the...method with improved corrosion resistant coatings will provide the DoD with a means to cost effectively rehabilitate the outer metal surfaces of...contained with environmental controls in place. ........................................ 9 Figure 6. Abrasive blast-cleaned tank surface

  17. Smart Coatings for Launch Site Corrosion Protection

    NASA Technical Reports Server (NTRS)

    Calle, Luz M.

    2014-01-01

    Smart, environmentally friendly paint system for early corrosion detection, mitigation, and healing that will enable supportability in KSC launch facilities and ground systems through their operational life cycles. KSC's Corrosion Technology Laboratory is developing a smart, self-healing coating that can detect and repair corrosion at an early stage. This coating is being developed using microcapsules specifically designed to deliver the contents of their core when corrosion starts.

  18. A Systems Approach to Depaint Chemistry

    DTIC Science & Technology

    2009-02-01

    continuous colored film by curing through solvent evaporation, oxidation, catylization or other means. – Vehicle: Film former, binder, resin or polymer...impart large changes in properties. – Suspending agents – Driers – Anti-Skinning Agents – Wetting Agents – Anti- Foaming Agents – Coalescing Agents ...volatile stripper inside the coating. Paint Release Agent Coating Removal Mechanism Zone1: PRA Layer Zone2: PRA Initial Permeation into coating system Epoxy

  19. Evaluation of masonry coatings.

    DOT National Transportation Integrated Search

    1969-08-01

    This report describes the evaluation of five coating systems to replace the conventional Class 2 rubbed finish now required on concrete structures. The evaluation consisted of preparing test specimens with each of the five coatings and conducting abs...

  20. Incorporation of Levodopa into Biopolymer Coatings Based on Carboxylated Carbon Nanotubes for pH-Dependent Sustained Release Drug Delivery.

    PubMed

    Tan, Julia Meihua; Saifullah, Bullo; Kura, Aminu Umar; Fakurazi, Sharida; Hussein, Mohd Zobir

    2018-05-31

    Four drug delivery systems were formulated by non-covalent functionalization of carboxylated single walled carbon nanotubes using biocompatible polymers as coating agent (i.e., Tween 20, Tween 80, chitosan or polyethylene glycol) for the delivery of levodopa, a drug used in Parkinson's disease. The chemical interaction between the coating agent and carbon nanotubes-levodopa conjugate was confirmed by Fourier transform infrared (FTIR) and Raman studies. The drug release profiles were revealed to be dependent upon the type of applied coating material and this could be further adjusted to a desired rate to meet different biomedical conditions. In vitro drug release experiments measured using UV-Vis spectrometry demonstrated that the coated conjugates yielded a more prolonged and sustained release pattern compared to the uncoated conjugate. Cytotoxicity of the formulated conjugates was studied by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay using normal mouse embryonic fibroblast 3T3 cell line. Compared to the non-coated conjugate, the MTT data indicated that the coating procedure improved the biocompatibility of all systems by 34⁻41% when the concentration used exceeded 100 μg/mL. In conclusion, the comprehensive results of this study suggest that carbon nanotubes-based drug carrier coated with a suitable biomaterial may possibly be a potential nanoparticle system that could facilitate drug delivery to the brain with tunable physicochemical properties.

  1. A Five-year Performance Study of Low VOC Coatings over Zinc Thermal Spray for the Protection of Carbon Steel at the Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Kolody, Mark R.; Curran, Jerome P.; Calle, Luz Marina

    2014-01-01

    The launch facilities at the Kennedy Space Center (KSC) are located approximately 1000 feet from the Atlantic Ocean where they are exposed to salt deposits, high humidity, high UV degradation, and acidic exhaust from solid rocket boosters. These assets are constructed from carbon steel, which requires a suitable coating to provide long-term protection to reduce corrosion and its associated costs. While currently used coating systems provide excellent corrosion control performance, they are subject to occupational, safety, and environmental regulations at the Federal and State levels that limit their use. Many contain high volatile organic compounds (VOCs), hazardous air pollutants, and other hazardous materials. Hazardous waste from coating operations include vacuum filters, zinc dust, hazardous paint related material, and solid paint. There are also worker safety issues such as exposure to solvents and isocyanates. To address these issues, top-coated thermal spray zinc coating systems were investigated as a promising environmentally friendly corrosion protection for carbon steel in an acidic launch environment. Additional benefits of the combined coating system include a long service life, cathodic protection to the substrate, no volatile contaminants, and high service temperatures. This paper reports the results of a performance based study to evaluate low VOC topcoats (for thermal spray zinc coatings) on carbon steel for use in a space launch environment.

  2. Enhancement and degradation of the R2* relaxation rate resulting from the encapsulation of magnetic particles with hydrophilic coatings.

    PubMed

    de Haan, Hendrick W; Paquet, Chantal

    2011-12-01

    The effects of including a hydrophilic coating around the particles are studied across a wide range of particle sizes by performing Monte Carlo simulations of protons diffusing through a system of magnetic particles. A physically realistic methodology of implementing the coating by cross boundary jump scaling and transition probabilities at the coating surface is developed. Using this formulation, the coating has three distinct impacts on the relaxation rate: an enhancement at small particle sizes, a degradation at intermediate particle sizes, and no effect at large particles sizes. These varied effects are reconciled with the underlying dephasing mechanisms by using the concept of a full dephasing zone to present a physical picture of the dephasing process with and without the coating for all sizes. The enhancement at small particle sizes is studied systemically to demonstrate the existence of an optimal ratio of diffusion coefficients inside/outside the coating to achieve maximal increase in the relaxation rate. Copyright © 2011 Wiley Periodicals, Inc.

  3. Further industrial tests of ceramic thermal barrier coatings

    NASA Technical Reports Server (NTRS)

    Liebert, C. H.; Levine, S. R.

    1982-01-01

    The NASA Lewis Research Center made technical assistance arrangements (contracts) with several commercial organizations under which Lewis designed plasma-sprayed thermal-barrier coatings (TBC) for their products. Lewis was then furnished with the test conditions and evaluations of coating usefulness. The coating systems were developed and sprayed at Lewis. All of the systems incorporated a two-layer, ceramic-bond coating concept. Coating thickness and chemical composition were varied to fit three applications: the leading edges of first-stage turbine vanes for an advanced gas turbine engine; the flame impingement surfaces of a combustor transition section; and diesel engine valves and head surfaces. The TBC incorporated yytria-stabilized zirconia, which lowered metal temperatures, protected metal parts, and increased metal part life. In some cases metal burning, melting, and warping were eliminated. Additional benefits were realized from these endeavors: hands-on experience with thermal-barrier coatings was provided to industry; the success of these endeavors encourages these and other organizations to accelerate the implementation of TBC technology.

  4. Electrochemically assisted deposition of hydroxyapatite on Ti6Al4V substrates covered by CVD diamond films - Coating characterization and first cell biological results.

    PubMed

    Strąkowska, Paulina; Beutner, René; Gnyba, Marcin; Zielinski, Andrzej; Scharnweber, Dieter

    2016-02-01

    Although titanium and its alloys are widely used as implant material for orthopedic and dental applications they show only limited corrosion stability and osseointegration in different cases. The aim of the presented research was to develop and characterize a novel surface modification system from a thin diamond base layer and a hydroxyapatite (HAp) top coating deposited on the alloy Ti6Al4V widely used for implants in contact with bone. This coating system is expected to improve both the long-term corrosion behavior and the biocompatibility and bioactivity of respective surfaces. The diamond base films were obtained by Microwave Plasma Assisted Chemical Vapor Deposition (MW-PACVD); the HAp coatings were formed in aqueous solutions by electrochemically assisted deposition (ECAD) at varying polarization parameters. Scanning electron microscopy (SEM), Raman microscopy, and electrical conductivity measurements were applied to characterize the generated surface states; the calcium phosphate coatings were additionally chemically analyzed for their composition. The biological properties of the coating system were assessed using hMSC cells analyzing for cell adhesion, proliferation, and osteogenic differentiation. Varying MW-PACVD process conditions resulted in composite coatings containing microcrystalline diamond (MCD/Ti-C), nanocrystalline diamond (NCD), and boron-doped nanocrystalline diamond (B-NCD) with the NCD coatings being dense and homogeneous and the B-NCD coatings showing increased electrical conductivity. The ECAD process resulted in calcium phosphate coatings from stoichiometric and non-stoichiometric HAp. The deposition of HAp on the B-NCD films run at lower cathodic potentials and resulted both in the highest coating mass and the most homogenous appearance. Initial cell biological investigations showed an improved cell adhesion in the order B-NCD>HAp/B-NCD>uncoated substrate. Cell proliferation was improved for both investigated coatings whereas ALP expression was highest for the uncoated substrate. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Coating Bores of Light Metal Engine Blocks with a Nanocomposite Material using the Plasma Transferred Wire Arc Thermal Spray Process

    NASA Astrophysics Data System (ADS)

    Bobzin, K.; Ernst, F.; Zwick, J.; Schlaefer, T.; Cook, D.; Nassenstein, K.; Schwenk, A.; Schreiber, F.; Wenz, T.; Flores, G.; Hahn, M.

    2008-09-01

    Engine blocks of modern passenger car engines are generally made of light metal alloys, mostly hypoeutectic AlSi-alloys. Due to their low hardness, these alloys do not meet the tribological requirements of the system cylinder running surface—piston rings—lubricating oil. In order to provide a suitable cylinder running surface, nowadays cylinder liners made of gray cast iron are pressed in or cast into the engine block. A newer approach is to apply thermal spray coatings onto the cylinder bore walls. Due to the geometric conditions, the coatings are applied with specifically designed internal diameter thermal spray systems. With these processes a broad variety of feedstock can be applied, whereas mostly low-alloyed carbon steel feedstock is being used for this application. In the context of this work, an iron-based wire feedstock has been developed, which leads to a nanocrystalline coating. The application of this material was carried out with the Plasma Transferred Wire Arc system. AlMgSi0.5 liners were used as substrates. The coating microstructure and the properties of the coatings were analyzed.

  6. Low friction and galling resistant coatings and processes for coating

    DOEpatents

    Johnson, Roger N.

    1987-01-01

    The present invention describes coating processes and the resultant coated articles for use in high temperature sodium environments, such as those found in liquid metal fast breeder reactors and their associated systems. The substrate to which the coating is applied may be either an iron base or nickel base alloy. The coating itself is applied to the substrate by electro-spark deposition techniques which result in metallurgical bonding between the coating and the substrate. One coating according to the present invention involves electro-spark depositing material from a cemented chromium carbide electrode and an aluminum electrode. Another coating according to the present invention involves electro-spark depositing material from a cemented chromium carbide electrode and a nickel-base hardfacing alloy electrode.

  7. Mechanisms of Deformation and Fracture of Thin Coatings on Different Substrates in Instrumented Indentation

    NASA Astrophysics Data System (ADS)

    Eremina, G. M.; Smolin, A. Yu.; Psakhie, S. G.

    2018-04-01

    Mechanical properties of thin surface layers and coatings are commonly studied using instrumented indentation and scratch testing, where the mechanical response of the coating - substrate system essentially depends on the substrate material. It is quite difficult to distinguish this dependence and take it into account in the course of full-scale experiments due to a multivariative and nonlinear character of the influence. In this study the process of instrumented indentation of a hardening coating formed on different substrates is investigated numerically by the method of movable cellular automata. As a result of modeling, we identified the features of the substrate material influence on the derived mechanical characteristics of the coating - substrate systems and the processes of their deformation and fracture.

  8. Thermal barrier coating life prediction model

    NASA Technical Reports Server (NTRS)

    Pilsner, B. H.; Hillery, R. V.; Mcknight, R. L.; Cook, T. S.; Kim, K. S.; Duderstadt, E. C.

    1986-01-01

    The objectives of this program are to determine the predominant modes of degradation of a plasma sprayed thermal barrier coating system, and then to develop and verify life prediction models accounting for these degradation modes. The program is divided into two phases, each consisting of several tasks. The work in Phase 1 is aimed at identifying the relative importance of the various failure modes, and developing and verifying life prediction model(s) for the predominant model for a thermal barrier coating system. Two possible predominant failure mechanisms being evaluated are bond coat oxidation and bond coat creep. The work in Phase 2 will develop design-capable, causal, life prediction models for thermomechanical and thermochemical failure modes, and for the exceptional conditions of foreign object damage and erosion.

  9. An effective and practical fire-protection system. [for aircraft fuel storage and transport

    NASA Technical Reports Server (NTRS)

    Mansfield, J. A.; Riccitiello, S. R.; Fewell, L. L.

    1975-01-01

    A high-performance sandwich-type fire protection system comprising a steel outer sheath and insulation combined in various configurations is described. An inherent advantage of the sheath system over coatings is that it eliminates problems of weatherability, materials strength, adhesion, and chemical attack. An experimental comparison between the protection performance of state-of-the-art coatings and the sheath system is presented, with emphasis on the protection of certain types of steel tanks for fuel storage and transport. Sheath systems are thought to be more expensive than coatings in initial implementation, although they are less expensive per year for sufficiently long applications.

  10. Sandblasting and silica coating of a glass-infiltrated alumina ceramic: volume loss, morphology, and changes in the surface composition.

    PubMed

    Kern, M; Thompson, V P

    1994-05-01

    Silica coating can improve bonding of resin to glass-infiltrated aluminum oxide ceramic (In-Ceram), and sandblasting is a pretreatment to thermal silica coating (Silicoater MD system) or a tribochemical coating process (Rocatec system). This study evaluated the effects of sandblasting and coating techniques on volume loss, surface morphology, and surface composition of In-Ceram ceramic. Volume loss through sandblasting was 36 times less for In-Ceram ceramic compared with a feldspathic glass ceramic (IPS-Empress), and sandblasting of In-Ceram ceramic did not change its surface composition. After tribochemical coating with the Rocatec system, a layer of small silica particles remained that elevated the silica content to 19.7 weight percentage (energy-dispersive spectroscopy). Ultrasonic cleaning removed loose silica particles from the surface and decreased the silica content to 15.8 weight percentage, which suggested firm attachment of most of the silica layer to the surface. After treatment with the Silicoater MD system, the silica content increased only slightly from that of the sandblasted specimen. The silica layer created by these systems differs greatly in both morphology and thickness, which could result in different bond strengths. Sandblasting of all ceramic clinical restorations with feldspathic glass materials should be avoided, but for In-Ceram ceramic the volume loss was within an acceptable range and similar to that of noble metals.

  11. Influence of High Cycle Thermal Loads on Thermal Fatigue Behavior of Thick Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Miller, Robert A.

    1997-01-01

    Thick thermal barrier coating systems in a diesel engine experience severe thermal Low Cycle Fatigue (LCF) and High Cycle Fatigue (HCF) during engine operation. In the present study, the mechanisms of fatigue crack initiation and propagation, as well as of coating failure, under thermal loads which simulate engine conditions, are investigated using a high power CO2 laser. In general, surface vertical cracks initiate early and grow continuously under LCF and HCF cyclic stresses. It is found that in the absence of interfacial oxidation, the failure associated with LCF is closely related to coating sintering and creep at high temperatures, which induce tensile stresses in the coating after cooling. Experiments show that the HCF cycles are very damaging to the coating systems. The combined LCF and HCF tests produced more severe coating surface cracking, microspallation and accelerated crack growth, as compared to the pure LCF test. It is suggested that the HCF component cannot only accelerate the surface crack initiation, but also interact with the LCF by contributing to the crack growth at high temperatures. The increased LCF stress intensity at the crack tip due to the HCF component enhances the subsequent LCF crack growth. Conversely, since a faster HCF crack growth rate will be expected with lower effective compressive stresses in the coating, the LCF cycles also facilitate the HCF crack growth at high temperatures by stress relaxation process. A surface wedging model has been proposed to account for the HCF crack growth in the coating system. This mechanism predicts that HCF damage effect increases with increasing temperature swing, the thermal expansion coefficient and the elastic modulus of the ceramic coating, as well as the HCF interacting depth. A good agreement has been found between the analysis and experimental evidence.

  12. Carboxylated multiwalled carbon nanotubes/polydimethylsiloxane, a new coating for 96-blade solid-phase microextraction for determination of phenolic compounds in water.

    PubMed

    Kueseng, Pamornrat; Pawliszyn, Janusz

    2013-11-22

    A new thin-film, carboxylated multiwalled carbon nanotubes/polydimethylsiloxane (MWCNTs-COOH/PDMS) coating was developed for 96-blade solid-phase microextraction (SPME) system followed by high performance liquid chromatography with ultraviolet detection (HPLC-UV). The method provided good extraction efficiency (64-90%) for three spiked levels, with relative standard deviations (RSD)≤6%, and detection limits between 1 and 2 μg/L for three phenolic compounds. The MWCNTs-COOH/PDMS 96-blade SPME system presents advantages over traditional methods due to its simplicity of use, easy coating preparation, low cost and high sample throughput (2.1 min per sample). The developed coating is reusable for a minimum of 110 extractions with good extraction efficiency. The coating provided higher extraction efficiency (3-8 times greater) than pure PDMS coatings. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. CNT coated thread micro-electro-mechanical system for finger proprioception sensing

    NASA Astrophysics Data System (ADS)

    Shafi, A. A.; Wicaksono, D. H. B.

    2017-04-01

    In this paper, we aim to fabricate cotton thread based sensor for proprioceptive application. Cotton threads are utilized as the structural component of flexible sensors. The thread is coated with multi-walled carbon nanotube (MWCNT) dispersion by using facile conventional dipping-drying method. The electrical characterization of the coated thread found that the resistance per meter of the coated thread decreased with increasing the number of dipping. The CNT coated thread sensor works based on piezoresistive theory in which the resistance of the coated thread changes when force is applied. This thread sensor is sewed on glove at the index finger between middle and proximal phalanx parts and the resistance change is measured upon grasping mechanism. The thread based microelectromechanical system (MEMS) enables the flexible sensor to easily fit perfectly on the finger joint and gives reliable response as proprioceptive sensing.

  14. Effects of compositional changes on the performance of a thermal barrier coating system. [yttria-stabilized zirconia coatings on gas turbine engine blades

    NASA Technical Reports Server (NTRS)

    Stecura, S.

    1978-01-01

    Currently proposed thermal barrier systems for aircraft gas turbine engines consist of NiCrAlY bond coating covered with an insulating oxide layer of yttria-stabilized zirconia. The effect of yttrium concentration (from 0.15 to 1.08 w/o) in the bond coating and the yttria concentration (4 to 24.4 w/o) in the oxide layer were evaluated. Furnace, natural gas-oxygen torch, and Mach 1.0 burner rig cyclic tests on solid specimens and air-cooled blades were used to identify trends in coating behavior. Results indicate that the combinations of yttrium levels between 0.15 - 0.35 w/o in the bond coating and the yttria concentration between 6 - 8 w/o in the zirconium oxide layer were the most adherent and resistant to high temperature cyclic exposure.

  15. Electrostatic coating technologies for food processing.

    PubMed

    Barringer, Sheryl A; Sumonsiri, Nutsuda

    2015-01-01

    The application of electrostatics in both powder and liquid coating can improve the quality of food, such as its appearance, aroma, taste, and shelf life. Coatings can be found most commonly in the snack food industry, as well as in confectionery, bakery, meat and cheese processing. In electrostatic powder coating, the most important factors influencing coating quality are powder particle size, density, flowability, charge, and resistivity, as well as the surface properties and characteristics of the target. The most important factors during electrostatic liquid coating, also known as electrohydrodynamic coating, include applied voltage and electrical resistivity and viscosity of the liquid. A good understanding of these factors is needed for the design of optimal coating systems for food processing.

  16. New solar selective coating based on carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Abendroth, Thomas; Leupolt, Beate; Mäder, Gerrit; Härtel, Paul; Grählert, Wulf; Althues, Holger; Kaskel, Stefan; Beyer, Eckhard

    2016-05-01

    Carbon nanotubes (CNTs) can be applied to assemble a new type of solar selective coating system for solar thermal applications. In this work the predominant absorption processes occurring by interaction with π-plasmon and Van Hove singularities (VHS) were investigated by UV-VIS-NIR spectroscopy and ellipsometry. Not only optical properties for as deposited SWCNT thin films itself, but also the potential for systematic tailoring will be presented. Besides low cost technologies required, the adjustability of optical properties, as well as their thermal stability render CNT based solar selective coatings as promising alternative to commercially available coating systems.

  17. 40 CFR 63.3544 - How do I determine the emission capture system efficiency?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... mass fraction of TVH liquid input from each coating and thinner used in the coating operation during... materials used in the coating operation during the capture efficiency test run, kg. TVHi = Mass fraction of... protocol compares the mass of liquid TVH in materials used in the coating operation to the mass of TVH...

  18. 40 CFR 63.3544 - How do I determine the emission capture system efficiency?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... mass fraction of TVH liquid input from each coating and thinner used in the coating operation during... materials used in the coating operation during the capture efficiency test run, kg. TVHi = Mass fraction of... protocol compares the mass of liquid TVH in materials used in the coating operation to the mass of TVH...

  19. 40 CFR 63.3544 - How do I determine the emission capture system efficiency?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... mass fraction of TVH liquid input from each coating and thinner used in the coating operation during... materials used in the coating operation during the capture efficiency test run, kg. TVHi = Mass fraction of... protocol compares the mass of liquid TVH in materials used in the coating operation to the mass of TVH...

  20. The spatial distribution the thickness of polymer powder coatings for ultrasonic sensors

    NASA Astrophysics Data System (ADS)

    Gavrilova, V. A.; Fazlyyyakhmatov, M. G.; Kashapov, N. F.

    2014-11-01

    Objects of research are coatings and technology of their applying to the piezoelectric elements for ultrasound. Results of studies the distribution coating thickness according to different modes of coating process are presented. Experimentally confirmed the simulation results of the movement gas suspension on the electrostatic field in the electrode system "needle - plane".

  1. Carbon-Based Wear Coatings: Properties and Applications

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa

    2003-01-01

    The technical function of numerous engineering systems - such as vehicles, machines, and instruments - depends on the processes of motion and on the surface systems. Many processes in nature and technology depend on the motion and dynamic behavior of solids, liquids, and gases. Smart surface systems are essential because of the recent technological push toward higher speeds, loads, and operating temperatures; longer life; lighter weight and smaller size (including nanotechnology); and harsh environments in mechanical, mechatronic, and biomechanical systems. If proper attention is not given to surface systems, then vehicles, machines, instruments, and other technical systems could have short lives, consume excessive energy, experience breakdowns, result in liabilities, and fail to accomplish their missions. Surface systems strongly affect our national economy and our lifestyles. At the NASA Glenn Research Center, we believe that proper attention to surface systems, especially in education, research, and application, could lead to economic savings of between 1.3 and 1.6 percent of the gross domestic product. Wear coatings and surface systems continue to experience rapid growth as new coating and surface engineering technologies are discovered, more cost-effective coating and surface engineering solutions are developed, and marketers aggressively pursue, uncover, and exploit new applications for engineered surface systems in cutting tools and wear components. Wear coatings and smart surface systems have been used widely in industrial, consumer, automotive, aerospace, and biomedical applications. This presentation expresses the author's views of and insights into smart surface systems in wear coatings. A revolution is taking place in carbon science and technology. Diamond, an allotrope of carbon, joins graphite, fullerenes, and nanotubes as its major pure carbon structures. It has a unique combination of extreme properties: hardness and abrasion resistance; adhesion and friction; thermal conductivity; chemical and thermal inertness; corrosion and wear resistance; radiation resistance and biocompatibility; electronic, acoustic, and electrochemical characteristics; and environmental compatibility. These properties make diamond attractive for a wide range of diverse applications. In particular, chemical-vapor-deposited (CVD) diamond coatings offer a broad potential, since size and cost are not as limiting. The production of large, superhard diamond films or sheets at low cost make designer materials possible. This presentation is divided into two sections: properties and applications of hard coatings. The first section is concerned with the fundamental properties of the surfaces of CVD diamonds and related materials. The surface properties of hard coatings with favorable coefficients of friction (less than or equal to 0.1) and dimensional wear coefficients (less than or equal to 10(exp -6) cubic millimeters/N.m) in specific environments are discussed. The second section is devoted to applications. Examples of actual, successful applications and of potential challenging applications of the coatings.such as CVD diamond, diamondlike carbon, and cubic boron nitride-are described. Cutting tools coated with CVD diamond are of immediate commercial interest. Other applications, such as microelectromechanical systems (MEMS), valves, and bearings of CVD diamond, are being developed, but at a slow pace. There is a continually growing interest in commercializing diamondlike carbon for wear parts applications, such as biomedical parts and implants, forming dies, transport guides, magnetic tapes and disks, valves, and gears. Cubic boron nitride films are receiving attention because they can be used on tools to machine ferrous materials or on wear parts in sliding contact with ferrous materials.

  2. Blunt Trauma Performance of Fabric Systems Utilizing Natural Rubber Coated High Strength Fabrics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmad, M. R.; Ahmad, W. Y. W.; Samsuri, A.

    2010-03-11

    The blunt trauma performance of fabric systems against 9 mm bullets is reported. Three shots were fired at each fabric system with impact velocity of 367+-9 m/s and the depth of indentation on the modeling clay backing was measured. The results showed that 18-layer and 21-layer all-neat fabric systems failed the blunt trauma test. However, fabric systems with natural rubber (NR) latex coated fabric layers gave lower blunt trauma of between 25-32 mm indentation depths. Deformations on the neat fabrics upon impact were identified as broken yarns, yarn stretching and yarn pull-out. Deflections of the neat fabrics were more localised.more » For the NR latex coated fabric layers, no significant deformation can be observed except for peeled-off regions of the NR latex film at the back surface of the last layer. From the study, it can be said that the NR latex coated fabric layers were effective in reducing the blunt trauma of fabric systems.« less

  3. Quality of red cell concentrates in relation to the volume of the buffy coat removed by automated processing in a top and bottom system.

    PubMed

    Pietersz, R N; Dekker, W J; Reesink, H A

    1991-01-01

    The effect of automated removal of increasing volumes of buffy coat in a 'top and bottom' system on the composition of red cell concentrates (RCC) was investigated. The volume of the buffy coat was adjusted to group 1:50 ml (n = 31), group 2: 70 ml (n = 31) and group 3: 100 ml (n = 31), respectively. The numbers of platelets and leukocytes in the buffy coats were comparable between the groups, whereas the red cell volumes in the buffy coats showed a significant difference (17 +/- 3.6 ml group 1, versus 22 +/- 4.1 ml group 2 and 26 +/- 3.88 ml group 3; p less than 0.001). The volumes, hematocrits and cell counts of the RCC were not significantly different. The plasma volumes were inversely correlated with the volume of buffy coat removed, i.e. 268 +/- 19 ml group 1, versus 257 +/- 15 ml group 2 and 233 +/- 20 ml group 3 (p less than 0.001). We conclude that in the 'top and bottom' system an increase of the volume of the buffy coat from 50 to 100 ml did not improve the quality of the RCC regarding contamination with leukocytes and platelets.

  4. Robotic Waterblasting

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The Waterblast Research Cell supports development of automated systems that remove thermal protection materials and coatings from space flight hardware. These systems remove expended coatings without harsh chemicals or damaging underlying material. Potential applications of this technology include the removal of coatings from industrial machinery, aircraft, and other large structures. Use of the robot improves worker safety by reducing the exposure of persornel to high-pressure water. This technology is a proactive alternative to hazardous chemical strippers.

  5. Microfluidic Controlled Conformal Coating of Particles

    NASA Astrophysics Data System (ADS)

    Tsai, Scott; Wexler, Jason; Wan, Jiandi; Stone, Howard

    2011-11-01

    Coating flows are an important class of fluid mechanics problems. Typically a substrate is coated with a moving continuous film, but it is also possible to consider coating of discrete objects. In particular, in applications involving coating of particles that are useful in drug delivery, the coatings act as drug-carrying vehicles, while in cell therapy a thin polymeric coating is required to protect the cells from the host's immune system. Although many functional capabilities have been developed for lab-on-a-chip devices, a technique for coating has not been demonstrated. We present a microfluidic platform developed to coat micron-size spheres with a thin aqueous layer by magnetically pulling the particles from the aqueous phase to the non-aqueous phase in a co-flow. Coating thickness can be adjusted by the average fluid speed and the number of beads encapsulated inside a single coat is tuned by the ratio of magnetic to interfacial forces acting on the beads.

  6. High temperature barrier coatings for refractory metals

    NASA Technical Reports Server (NTRS)

    Malone, G. A.; Walech, T.

    1995-01-01

    Improvements in high temperature oxidation resistant metal coating technology will allow NASA and commercial entities to develop competitive civil space transport and communication systems. The success of investigations completed in this program will have a positive impact on broadening the technology base for high temperature materials. The work reported herein describes processes and procedures for successfully depositing coherent oxidation barrier coatings on refractory metals to prevent degradation under very severe operating environments. Application of the new technology developed is now being utilized in numerous Phase 3 applications through several prominent aerospace firms. Major achievements have included: (1) development of means to deposit thick platinum and rhodium coatings with lower stress and fewer microcracks than could be previously achieved; (2) development of processes to deposit thick adherent coatings of platinum group metals on refractory substrates that remain bonded through high temperature excursions and without need for intermediate coatings (bonding processes unique to specific refractory metals and alloys have been defined; (3) demonstration that useful alloys of refractory and platinum coatings can be made through thermal diffusion means; (4) demonstration that selected barrier coatings on refractory substrates can withstand severe oxidizing environments in the range of 1260 deg and 1760 deg C for long time periods essential to the life requirements of the hardware; and (5) successful application of the processes and procedures to prototype hardware. The results of these studies have been instrumental in improved thermal oxidation barrier coatings for the NASP propulsion system. Other Phase 3 applications currently being exploited include small uncooled thrusters for spacecraft and microsatellite maneuvering systems.

  7. NASA TEERM Hexavalent Chrome Alternatives Projects

    NASA Technical Reports Server (NTRS)

    Kessel, Kurt R.; Rothgeb, Matthew

    2011-01-01

    The overall objective of the Hex Chrome Free Coatings for Electronics project is to evaluate and test pretreatment coating systems not containing hexavalent chrome in avionics and electronics housing applications. This objective will be accomplished by testing strong performing coating systems from prior NASA and DoD testing or new coating systems as determined by the stakeholders. The technical stakeholders have agreed that this protocol will focus specifically on Class 3 coatings. Original Equipment Manufacturers (OEMs), depots, and support contractors have to be prepared to deal with an electronics supply chain that increasingly provides parts with lead-free finishes, some labeled no differently and intermingled with their SnPb counterparts. Allowance of lead-free components presents one of the greatest risks to the reliability of military and aerospace electronics. The introduction of components with lead-free terminations, termination finishes, or circuit boards presents a host of concerns to customers, suppliers, and maintainers of aerospace and military electronic systems such as: 1. Electrical shorting due to tin whiskers 2. Incompatibility of lead-free processes and parameters (including higher melting points of lead-free alloys) with other materials in the system 3. Unknown material properties and incompatibilities that could reduce solder joint reliability

  8. Thermal barrier coating life-prediction model development

    NASA Technical Reports Server (NTRS)

    Strangman, T. E.; Neumann, J.

    1985-01-01

    Life predictions are made for two types of strain-tolerant and oxidation-resistant Thermal Barrier Coating (TBC) systems produced by commercial coating suppliers to the gas turbine industry. The plasma-sprayed TBC system, composed of a low-pressure plasma spray (LPPS) applied oxidation-resistant NiCrAlY bond coating and an air-plasma-sprayed yttria (8 percent) partially stabilized zirconia insulative layer, is applied by both Chromalloy and Klock. The second type of TBC is applied by the electron-beam/physical vapor deposition process by Temescal. Thermomechanical and thermochemical testing of the program TBCs is in progress. A number of the former tests has been completed. Fracture mechanics data for the Chromalloy plasma-sprayed TBC system indicate that the cohesive toughness of the zirconia layer is increased by thermal cycling and reduced by high temperature exposure at 1150 C. Eddy current technology feasibility has been established with respect to nondestructively measuring zirconia layer thickness of a TBC system. High pressure turbine blades have been coated with program TBC systems for a piggyback test in a TFE731-5 turbofan factory engine test. Data from this test will be used to validate the TBC life models.

  9. The corrosion mechanisms for primer coated 2219-T87 aluminum

    NASA Technical Reports Server (NTRS)

    Danford, Merlin D.; Knockemus, Ward W.

    1987-01-01

    To investigate metal surface corrosion and the breakdown of metal protective coatings, the ac Impedance Method was applied to zinc chromate primer coated 2219-T87 aluminum. The EG&GPARC Model 368 ac Impedance Measurement System, along with dc measurements with the same system using the Polarization Resistance Method, was used to monitor changing properties of coated aluminum disks immersed in 3.5 percent NaCl solutions buffered at pH 5.5 and pH 8.2 over periods of 40 days each. The corrosion system can be represented by an electronic analog called an equivalent circuit consisting of resistors and capacitors in specific arrangements. This equivalent circuit parallels the impedance behavior of the corrosion system during a frequency scan. Values for resistances and capacitances, that can be assigned in the equivalent circuit following a least squares analysis of the data, describe changes occurring on the corroding metal surface and in the protective coatings. A suitable equivalent circuit has been determined which predicts the correct Bode phase and magnitude for the experimental sample. The dc corrosion current density data are related to equivalent circuit element parameters.

  10. Laser reflector with an interference coating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vol'pyan, O D; Semenov, A A; Yakovlev, P P

    1998-10-31

    An analysis was made of the reflectivity of interference coatings intended for the use in optical pumping of solid-state lasers. Ruby and Nd{sup 3+}:YAG lasers were used as models in comparative pumping efficiency measurements, carried out employing reflectors with interference and silver coatings. Estimates of the service life of reflectors with interference coatings were obtained. The power of a thermo-optical lens was reduced by the use of such coatings in cw lasers. (laser system components)

  11. Ultrasonic technique for measuring porosity of plasma-sprayed alumina coatings

    NASA Astrophysics Data System (ADS)

    Parthasarathi, S.; Tittmann, B. R.; Onesto, E. J.

    1997-12-01

    Porosity is an important factor in plasma-sprayed coatings, especially ceramic coatings. Excessive poros-ity can adversely affect the performance of the coated component in various ways. An ultrasonic nonde-structive measurement technique has been developed to measure porosity in plasma-sprayed alumina coatings. The technique is generic and can be extended to other ceramic coating systems. To test the tech-nique, freestanding alumina coatings with varying levels of porosity were fabricated via plasma spray. Samples with varying porosity, obtained through innovative fabrication techniques, were used to gener-ate a calibration curve. The ultrasonic velocity in the low-frequency range was found to be dependent on the density of freestanding coatings (measured via Archimedian techniques). This dependence is the basis of the development of a technique to measure the density of coatings.

  12. The friction coefficient evolution of a MoS2/WC multi-layer coating system during sliding wear

    NASA Astrophysics Data System (ADS)

    Chan, T. Y.; Hu, Y.; Gharbi, Mohammad M.; Politis, D. J.; Wang, L.

    2016-08-01

    This paper discusses the evolution of friction coefficient for the multi-layered Molybdenum Disulphide (MoS2) and WC coated substrate during sliding against Aluminium AA 6082 material. A soft MoS2 coating was prepared over a hard WC coated G3500 cast iron tool substrate and underwent friction test using a pin-on-disc tribometer. The lifetime of the coating was reduced with increasing load while the Aluminium debris accumulated on the WC hard coating surfaces, accelerated the breakdown of the coatings. The lifetime of the coating was represented by the friction coefficient and the sliding distance before MoS2 coating breakdown and was found to be affected by the load applied and the wear mechanism.

  13. The first aluminum coating of the 3700mm primary mirror of the Devasthal Optical Telescope

    NASA Astrophysics Data System (ADS)

    Bheemireddy, Krishna Reddy; Gopinathan, Maheswar; Pant, Jayshreekar; Omar, Amitesh; Kumar, Brijesh; Uddin, Wahab; Kumar, Nirmal

    2016-07-01

    Initially the primary mirror of the 3.6m Devasthal Optical Telescope is uncoated polished zerodur glass supplied by Lytkarino Optical Glass Factory, Russia/Advanced Mechanical and Optical Systems, Belgium. In order to do the aluminium coating on the primary mirror the coating plant including washing unit is installed near the telescope (extension building of telescope) by Hind High Vacuum (HHV) Bangalore, India. Magnetron sputtering technique is used for the coating. Several coating trials are done before the primary mirror coating; samples are tested for reflectivity, uniformity, adhesivity and finally commissioned. The primary mirror is cleaned, coated by ARIES. We present here a brief description of the coating plant installation, Mirror cleaning and coating procedures and the testing results of the samples.

  14. Daylighting with Fluorescent Concentrators and Highly Reflective Silver-Coated Plastic Films: A New Application for New Materials

    NASA Astrophysics Data System (ADS)

    Zastrow, Armin; Wittwer, Volker

    1986-09-01

    The interest in efficient daylighting systems has grown recently, due to their potential for saving a considerable amount of electrical energy used for lighting purposes. In this paper we discuss the properties of daylighting systems based on either fluorescent planar concentrators and transparent light guiding plates or light pipes coated with highly reflective silver coated plastic films. Finally we give first results from a demonstration project, daylighting systems in the students' living quarters in Stuttgart-Hohenheim, which is supported by the Commission of the European Communities.

  15. Polarization Phase-Compensating Coats for Metallic Mirrors

    NASA Technical Reports Server (NTRS)

    Balasubramanian, Kunjithapatham

    2006-01-01

    A method of compensating for or minimizing phase differences between orthogonal polarizations of light reflected from metallic mirrors at oblique incidence, as, for example, from weakly curved mirrors, is undergoing development. The method is intended to satisfy a need to maintain precise polarization phase relationships or minimum polarization differences needed for proper operation of telescopes and other scientific instruments that include single or multiple mirrors. The basic idea of the method is to optimally coat mirrors with thin engineered layers of materials that introduce phase differences that, as nearly precisely as possible, are opposite of the undesired phase differences arising in reflection with non-optimum coatings. Depending on the specific optical system, the method could involve any or all of the following elements: a) Optimization of a single coat on all the mirrors in the system. b) Optimization of a unique coat for each mirror such that the polarization phase effects of the coat on one mirror compensate, to an acceptably high degree over an acceptably wide wavelength range, for those of the coat on another mirror. c) Tapering the coat on each mirror. Optimization could involve the choice of a single dielectric coating material and its thickness, or design of a more complex coat consisting of multiple layers of different dielectric materials and possibly some metallic materials. Such designs and coatings are particularly significant and needed for obtaining very high quality of wavefront required in high-contrast imaging instruments such as the NASA Terrestrial Planet Finder Coronagraph.

  16. Application of TiC reinforced Fe-based coatings by means of High Velocity Air Fuel Spraying

    NASA Astrophysics Data System (ADS)

    Bobzin, K.; Öte, M.; Knoch, M. A.; Liao, X.; Sommer, J.

    2017-03-01

    In the field of hydraulic applications, different development trends can cause problems for coatings currently used as wear and corrosion protection for piston rods. Aqueous hydraulic fluids and rising raw material prices necessitate the search for alternatives to conventional coatings like galvanic hard chrome or High Velocity Oxygen Fuel (HVOF)-sprayed WC/Co coatings. In a previous study, Fe/TiC coatings sprayed by a HVOF-process, were identified to be promising coating systems for wear and corrosion protection in hydraulic systems. In this feasibility study, the novel High Velocity Air Fuel (HVAF)-process, a modification of the HVOF-process, is investigated using the same feedstock material, which means the powder is not optimized for the HVAF-process. The asserted benefits of the HVAF-process are higher particle velocities and lower process temperatures, which can result in a lower porosity and oxidation of the coating. Further benefits of the HVAF process are claimed to be lower process costs and higher deposition rates. In this study, the focus is set on to the applicability of Fe/TiC coatings by HVAF in general. The Fe/TiC HVAF coating could be produced, successfully. The HVAF- and HVOF-coatings, produced with the same powder, were investigated using micro-hardness, porosity, wear and corrosion tests. A similar wear coefficient and micro-hardness for both processes could be achieved. Furthermore the propane/hydrogen proportion of the HVAF process and its influence on the coating thickness and the porosity was investigated.

  17. Evaluating the critical strain energy release rate of bioactive glass coatings on Ti6Al4V substrates after degradation.

    PubMed

    Matinmanesh, A; Li, Y; Nouhi, A; Zalzal, P; Schemitsch, E H; Towler, M R; Papini, M

    2018-02-01

    It has been reported that the adhesion of bioactive glass coatings to Ti6Al4V reduces after degradation, however, this effect has not been quantified. This paper uses bilayer double cantilever (DCB) specimens to determine G IC and G IIC , the critical mode I and mode II strain energy release rates, respectively, of bioactive coating/Ti6Al4V substrate systems degraded to different extents. Three borate-based bioactive glass coatings with increasing amounts of incorporated SrO (0, 15 and 25mol%) were enamelled onto Ti6Al4V substrates and then immersed in de-ionized water for 2, 6 and 24h. The weight loss of each glass composition was measured and it was found that the dissolution rate significantly decreased with increasing SrO content. The extent of dissolution was consistent with the hypothesis that the compressive residual stress tends to reduce the dissolution rate of bioactive glasses. After drying, the bilayer DCB specimens were created and subjected to nearly mode I and mode II fracture tests. The toughest coating/substrate system (one composed of the glass containing 25mol% SrO) lost 80% and 85% of its G IC and G IIC , respectively, in less than 24h of degradation. The drop in G IC and G IIC occurred even more rapidly for other coating/substrate systems. Therefore, degradation of borate bioactive glass coatings is inversely related to their fracture toughness when coated onto Ti6A4V substrates. Finally, roughening the substrate was found to be inconsequential in increasing the toughness of the system as the fracture toughness was limited by the cohesive toughness of the glass itself. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Innovations in coating technology.

    PubMed

    Behzadi, Sharareh S; Toegel, Stefan; Viernstein, Helmut

    2008-01-01

    Despite representing one of the oldest pharmaceutical techniques, coating of dosage forms is still frequently used in pharmaceutical manufacturing. The aims of coating range from simply masking the taste or odour of drugs to the sophisticated controlling of site and rate of drug release. The high expectations for different coating technologies have required great efforts regarding the development of reproducible and controllable production processes. Basically, improvements in coating methods have focused on particle movement, spraying systems, and air and energy transport. Thereby, homogeneous distribution of coating material and increased drying efficiency should be accomplished in order to achieve high end product quality. Moreover, given the claim of the FDA to design the end product quality already during the manufacturing process (Quality by Design), the development of analytical methods for the analysis, management and control of coating processes has attracted special attention during recent years. The present review focuses on recent patents claiming improvements in pharmaceutical coating technology and intends to first familiarize the reader with the available procedures and to subsequently explain the application of different analytical tools. Aiming to structure this comprehensive field, coating technologies are primarily divided into pan and fluidized bed coating methods. Regarding pan coating procedures, pans rotating around inclined, horizontal and vertical axes are reviewed separately. On the other hand, fluidized bed technologies are subdivided into those involving fluidized and spouted beds. Then, continuous processing techniques and improvements in spraying systems are discussed in dedicated chapters. Finally, currently used analytical methods for the understanding and management of coating processes are reviewed in detail in the last section of the review.

  19. Stress evolution in solidifying coatings

    NASA Astrophysics Data System (ADS)

    Payne, Jason Alan

    The goal of this study is to measure, in situ, and control the evolution of stress in liquid applied coatings. In past studies, the stress in a coating was determined after processing (i.e., drying or curing). However, by observing a coating during drying or curing, the effects of processing variables (e.g., temperature, relative humidity, composition, etc.) on the stress state can be better determined. To meet the project goal, two controlled environment stress measurement devices, based on a cantilever deflection measurement principle, were constructed. Stress evolution experiments were completed for a number of coating systems including: solvent-cast homopolymers, tape-cast ceramics, aqueous gelatins, and radiation-cured multifunctional acrylates. In the majority of systems studied here, the final stresses were independent of coating thickness and solution concentration. Typical stress magnitudes for solvent-cast polymers ranged from zero to 18 MPa depending upon the pure polymer glass transition temperature (Tsb{g}), the solvent volatility, and additional coating components, such as plasticizers. Similar magnitudes and dependencies were observed in tape-cast ceramic layers. Stresses in gelatin coatings reached 50 MPa (due to the high Tsb{g} of the gelatin) and were highly dependent upon drying temperature and relative humidity. In contrast to the aforementioned coatings, stress in UV-cured tri- and tetrafunctional acrylate systems showed a large thickness dependence. For these materials, stress evolution rate and magnitude increased with photoinitiator concentration and with light intensity. Somewhat unexpectedly, larger monomer functionality led to greater stresses at faster rates even though the overall conversion fell. The stress magnitude and evolution rate at any stage in the solidification process are the result of a competition between shrinkage (due to drying, curing, etc.) and stress relaxation. A firm understanding of the mechanical, the thermal, and the microstructural properties of a coating is therefore necessary to properly study stress effects. Hence, observations from dynamic mechanical analysis, indentation, infrared spectroscopy, and optical microscopy were also studied in order to correlate coating properties (mechanical, thermal, and structural) to measured stresses.

  20. System for Repairing Cracks in Structures

    NASA Technical Reports Server (NTRS)

    Smith, Stephen W. (Inventor); Newman, John A. (Inventor); Piascik, Robert S. (Inventor); Glaessgen, Edward H. (Inventor)

    2014-01-01

    A first material with a known maximum temperature of operation is coated with a second material on at least one surface of the first material. The coating has a melting temperature that is greater than the maximum temperature of operation of the first material. The coating is heated to its melting temperature until the coating flows into any cracks in the first material's surface.

  1. Thermal barrier coating life prediction model

    NASA Technical Reports Server (NTRS)

    Hillery, R. V.; Pilsner, B. H.; Cook, T. S.; Kim, K. S.

    1986-01-01

    This is the second annual report of the first 3-year phase of a 2-phase, 5-year program. The objectives of the first phase are to determine the predominant modes of degradation of a plasma sprayed thermal barrier coating system and to develop and verify life prediction models accounting for these degradation modes. The primary TBC system consists of an air plasma sprayed ZrO-Y2O3 top coat, a low pressure plasma sprayed NiCrAlY bond coat, and a Rene' 80 substrate. Task I was to evaluate TBC failure mechanisms. Both bond coat oxidation and bond coat creep have been identified as contributors to TBC failure. Key property determinations have also been made for the bond coat and the top coat, including tensile strength, Poisson's ratio, dynamic modulus, and coefficient of thermal expansion. Task II is to develop TBC life prediction models for the predominant failure modes. These models will be developed based on the results of thermmechanical experiments and finite element analysis. The thermomechanical experiments have been defined and testing initiated. Finite element models have also been developed to handle TBCs and are being utilized to evaluate different TBC failure regimes.

  2. Dissolved organic matter effects on the performance of a barrier to polycyclic aromatic hydrocarbon transport by groundwater

    NASA Astrophysics Data System (ADS)

    Moon, Jung-Won; Goltz, Mark N.; Ahn, Kyu-Hong; Park, Jae-Woo

    2003-02-01

    In order to contain the movement of organic contaminants in groundwater, a subsurface sorption barrier consisting of sand or clay minerals coated with a cationic surfactant has been proposed. The effectiveness of such a sorption barrier might be affected by the presence of dissolved organic matter (DOM) in the groundwater. To study the impact of DOM on barrier performance, a series of batch experiments were performed by measuring naphthalene and phenanthrene sorption onto sand coated with cetylpyridinium chloride (CPC) and bentonite coated with hexadecyltrimethylammonium bromide (HDTMA) in the presence of various concentrations of DOM. The overall soil-water distribution coefficient ( K*) of naphthalene and phenanthrene onto CPC-coated sand decreased with increasing DOM concentration, whereas the K* of the compounds onto HDTMA-coated bentonite slightly increased with increasing DOM concentration. To describe the overall distribution of polycyclic aromatic hydrocarbons (PAHs) in the systems, a competitive multiphase sorption (CMS) model was developed and compared with an overall mechanistic sorption (OMS) model. The modeling studies showed that while the OMS model did not explain the CPC-coated sand experimental results, a model that included competitive sorption between DOM and PAH did. The experimental results and the modeling study indicated that there was no apparent competition between DOM and PAH in the HDTMA-coated bentonite system, and indicated that in groundwater systems with high DOM, a barrier using HDTMA-coated bentonite might be more effective.

  3. Development of Ion-Plasma Coatings for Protecting Intermetallic Refractory Alloys VKNA-1V and VKNA-25 in the Temperature Range of 1200 - 1250°C

    NASA Astrophysics Data System (ADS)

    Budinovskii, S. A.; Matveev, P. V.; Smirnov, A. A.

    2017-05-01

    Multilayer heat-resistant ion-plasma coatings for protecting the parts of the hot duct of gas-turbine engines produced from refractory nickel alloys based on VKNA intermetallics from high-temperature oxidation are considered. Coatings of the Ni - Cr - Al (Ta, Re, Hf, Y) + Al - Ni - Y systems are tested for high-temperature strength at 1200 and 1250°C. Metallographic and microscopic x-ray spectrum analyses of the structure and composition of the coatings in the initial condition and after the testing are performed. The effect of protective coatings of the Ni - Cr - Al - Hf + Al - Ni - Y systems on the long-term strength of alloys VKNA-1V and VKNA-25 at 1200°C is studied.

  4. Thermodynamic aspects of the coating formation through mechanochemical synthesis in vibration technology systems

    NASA Astrophysics Data System (ADS)

    Shtyn, S. U.; Lebedev, V. A.; Gorlenko, A. O.

    2017-02-01

    On the basis of thermodynamic concepts of the process, we proposed an energy model that reflects the mechanochemical essence of coating forming in terms of vibration technology systems, which takes into account the contribution to the formation of the coating, the increase of unavailable energy due to the growth of entropy, the increase in the energy of elastic-plastic crystal lattice distortion as a result of the mechanical influence of working environment indenters, surface layer internal energy change which occurs as a result of chemical interaction of the contacting media. We proposed adhesion strength of the local volume modified through processing as a criterion of the energy condition of the formed coating. We established analytical dependence which helps to obtain the coating strength of the material required by operating conditions.

  5. Method of protecting a surface with a silicon-slurry/aluminide coating. [coatings for gas turbine engine blades and vanes

    NASA Technical Reports Server (NTRS)

    Deadmore, D. L.; Young, S. G. (Inventor)

    1982-01-01

    A low cost coating for protecting metallic base system substrates from high temperatures, high gas velocity oxidation, thermal fatigue and hot corrosion is described. The coating is particularly useful for protecting vanes and blades in aircraft and land based gas turbine engines. A lacquer slurry comprising cellulose nitrate containing high purity silicon powder is sprayed onto the superalloy substrates. The silicon layer is then aluminized to complete the coating. The Si-Al coating is less costly to produce than advanced aluminides and protects the substrate from oxidation and thermal fatigue for a much longer period of time than the conventional aluminide coatings. While more expensive Pt-Al coatings and physical vapor deposited MCrAlY coatings may last longer or provide equal protection on certain substrates, the Si-Al coating exceeded the performance of both types of coatings on certain superalloys in high gas velocity oxidation and thermal fatigue. Also, the Si-Al coating increased the resistance of certain superalloys to hot corrosion.

  6. Structural steel coatings for corrosion mitigation.

    DOT National Transportation Integrated Search

    2010-10-01

    Task 1 of this project was to survey the performance of coating systems for steel bridges in Missouri and to evaluate coating and : recoating practices. Task 1 was led under the direction of Dr. Glenn Washer from the University of Missouri located in...

  7. DEMONSTRATION OF NO-VOC/NO-HAP WOOD FURNITURE COATING SYSTEM

    EPA Science Inventory

    The United States Environmental Protection Agency has contracted with AeroVironment Environmental Services, Inc. and its subcontractor, Adhesives Coating Co., to develop and demonstrate a no-VOC (volatile organic compound)/no-HAP (hazardous air pollutant) wood furniture coating s...

  8. Thermal spray for commercial shipbuilding

    NASA Astrophysics Data System (ADS)

    Rogers, F. S.

    1997-09-01

    Thermal spraying of steel with aluminum to protect it from corrosion is a technology that has been proven to work in the marine environment. The thermal spray coating system includes a paint sealer that is applied over the thermally sprayed aluminum. This extends the service life of the coating and provides color to the end product. The thermal spray system protects steel both through the principle of isolation (as in painting) and galvanizing. With this dual protection mechanism, steel is protected from corrosion even when the coating is damaged. The thermal- sprayed aluminum coating system has proved the most cost- effective corrosion protection system for the marine environment. Until recently, however, the initial cost of application has limited its use for general application. Arc spray technology has reduced the application cost of thermal spraying of aluminum to below that of painting. Commercial shipbuilders could use this technology to enhance their market position in the marine industry.

  9. Friction behavior of a multi-interface system and improved performance by AlMgB 14–TiB 2–C and diamond-like-carbon coatings

    DOE PAGES

    Qu, Jun; Blau, Peter J.; Higdon, Clifton; ...

    2016-03-29

    We investigated friction behavior of a bearing system with two interfaces involved: a roller component experiencing rolling–sliding interaction against twin cylinders under point contacts while simultaneously undergoing pure sliding interaction against a socket under a conformal contact. Lubrication modeling predicted a strong correlation between the roller's rolling condition and the system's friction behavior. Experimental observations first validated the analytical predictions using steel and iron components. Diamond-like-carbon (DLC) coating and AlMgB 14–TiB 2 coating with a carbon topcoat (BAMC) were then applied to the roller and twin cylinders, respectively. In conclusion, testing and analysis results suggest that the coatings effectively decreasedmore » the slip ratio for the roller–cylinder contact and the sliding friction at both bearing interfaces and, as a result, significantly reduced the system frictional torque.« less

  10. Measurement of Interfacial Adhesion in Glass-Epoxy Systems Using the Indentation Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hutchins, Karen Isabel

    2015-07-01

    The adhesion of coatings often controls the performance of the substrate-coating system. Certain engineering applications require an epoxy coating on a brittle substrate to protect and improve the performance of the substrate. Experimental observations and measurements of interfacial adhesion in glass-epoxy systems are described in this thesis. The Oliver and Pharr method was utilized to calculate the bulk epoxy hardness and elastic modulus. Spherical indentations were used to induce delaminations at the substrate-coating interface. The delamination sizes as a function of load were used to calculate the interfacial toughness. The interfacial fracture energy of my samples is an order ofmore » magnitude higher than a previous group who studied a similar glass-epoxy system. A comparison study of how different glass treatments affect adhesion was also conducted: smooth versus rough, clean versus dirty, stressed versus non-stressed.« less

  11. Manufacturing Techniques for Application of Erosion Resistant Coatings to Turbine Engine Compressor Components.

    DTIC Science & Technology

    means of increasing the life of aircraft gas turbine compressor rotor blades and stator vanes . Two proprietary erosion resistant coating systems... engine tests as the two most promising systems for doubling compressor airfoil lives. An Air Force Sponsored program to evaluate the applicability of...Helicopter engine erosion has become a severe problem in S. E. Asia because of extensive operations in sand and dust. Hard coatings offer a potential

  12. Benefit from NASA

    NASA Image and Video Library

    2004-04-15

    The Waterblast Research Cell supports development of automated systems that remove thermal protection materials and coatings from space flight hardware. These systems remove expended coatings without harsh chemicals or damaging underlying material. Potential applications of this technology include the removal of coatings from industrial machinery, aircraft, and other large structures. Use of the robot improves worker safety by reducing the exposure of persornel to high-pressure water. This technology is a proactive alternative to hazardous chemical strippers.

  13. A Purchasing Agent’s Guide to Buying Paints and Coatings

    DTIC Science & Technology

    1993-03-01

    taken to topside systems , where an inorganic zinc silicate is often used as the corrosion preventa- tive primer. then topcoats such as alkyds , vinyls...interior coaling systems or as topcoats for exterior applications. Alkyd coatings are economical and easy to apply. They do, however, operate as a barrier...combined with alkyd technology to produce a hybrid coating which embodies some of the desirable quali- ties of both. These include reduced drying times

  14. Hot spot detection system for vanes or blades of a combustion turbine

    DOEpatents

    Twerdochlib, M.

    1999-02-02

    This invention includes a detection system that can determine if a turbine component, such as a turbine vane or blade, has exceeded a critical temperature, such as a melting point, along any point along the entire surface of the vane or blade. This system can be employed in a conventional combustion turbine having a compressor, a combustor and a turbine section. Included within this system is a chemical coating disposed along the entire interior surface of a vane or blade and a closed loop cooling system that circulates a coolant through the interior of the vane or blade. If the temperature of the vane or blade exceeds a critical temperature, the chemical coating will be expelled from the vane or blade into the coolant. Since while traversing the closed loop cooling system the coolant passes through a detector, the presence of the chemical coating in the coolant will be sensed by the system. If the chemical coating is detected, this indicates that the vane or blade has exceeded a critical temperature. 5 figs.

  15. Thermoset coatings from epoxidized sucrose soyate and blocked, bio-based dicarboxylic acids.

    PubMed

    Kovash, Curtiss S; Pavlacky, Erin; Selvakumar, Sermadurai; Sibi, Mukund P; Webster, Dean C

    2014-08-01

    A new 100% bio-based thermosetting coating system was developed from epoxidized sucrose soyate crosslinked with blocked bio-based dicarboxylic acids. A solvent-free, green method was used to block the carboxylic acid groups and render the acids miscible with the epoxy resin. The thermal reversibility of this blocking allowed for the formulation of epoxy-acid thermoset coatings that are 100% bio-based. This was possible due to the volatility of the vinyl ethers under curing conditions. These systems have good adhesion to metal substrates and perform well under chemical and physical stress. Additionally, the hardness of the coating system is dependent on the chain length of the diacid used, making it tunable. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Evaluation of thermal barrier coating systems on novel substrates

    NASA Astrophysics Data System (ADS)

    Pint, B. A.; Wright, I. G.; Brindley, W. J.

    2000-06-01

    Testing was conducted on both plasma-sprayed (PS) and electron beam-physical vapor deposited (EB-PVD) Y2O3-stabilized ZrO2 (YSZ) thermal barrier coatings (TBCs) applied directly to oxidation-resistant substrates such as β-NiAl, oxide-dispersed FeCrAl, and NiCr. On an alloy that forms a very adherent alumina scale, β-NiAl+Zr, the coating lifetime of YSZ in furnace cyclic tests was 6 or more times longer than on state-of-the-art, YSZ coatings on single-crystal Ni-base superalloys with MCrAlY or Pt aluminide bond coats. Coatings on FeCrAl alloys appear to be a viable option for applications such as the external skin of the X-33, single stage to orbit, reusable launch vehicle. Model chromia-forming bond coat compositions also show promise for power generation applications at temperatures where hot corrosion may be a major problem. In general, while this work examined unique materials systems, many of the same fundamental failure mechanisms observed in conventional TBCs were observed.

  17. Thermal Conductivity of Advanced Ceramic Thermal Barrier Coatings Determined by a Steady-state Laser Heat-flux Approach

    NASA Technical Reports Server (NTRS)

    Zhu, Dong-Ming; Miller, Robert A.

    2004-01-01

    The development of low conductivity and high temperature capable thermal barrier coatings requires advanced testing techniques that can accurately and effectively evaluate coating thermal conductivity under future high-performance and low-emission engine heat-flux conditions. In this paper, a unique steady-state CO2 laser (wavelength 10.6 microns) heat-flux approach is described for determining the thermal conductivity and conductivity deduced cyclic durability of ceramic thermal and environmental barrier coating systems at very high temperatures (up to 1700 C) under large thermal gradients. The thermal conductivity behavior of advanced thermal and environmental barrier coatings for metallic and Si-based ceramic matrix composite (CMC) component applications has also been investigated using the laser conductivity approach. The relationships between the lattice and radiation conductivities as a function of heat flux and thermal gradient at high temperatures have been examined for the ceramic coating systems. The steady-state laser heat-flux conductivity approach has been demonstrated as a viable means for the development and life prediction of advanced thermal barrier coatings for future turbine engine applications.

  18. 40 CFR 63.4165 - How do I determine the emission capture system efficiency?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... system; coating solvent flash-off and coating, curing, and drying occurs within the capture system and... when being moved between a spray booth and a curing oven. (b) If the capture system does not meet both... surface preparation activities and drying or curing time. (c) Liquid-to-uncaptured-gas protocol using a...

  19. Silica coatings on clarithromycin.

    PubMed

    Bele, Marjan; Dmitrasinovic, Dorde; Planinsek, Odon; Salobir, Mateja; Srcic, Stane; Gaberscek, Miran; Jamnik, Janko

    2005-03-03

    Pre-crystallized clarithromycin (6-O-methylerythromycin A) particles were coated with silica from the tetraethyl orthosilicate (TEOS)-ethanol-aqueous ammonia system. The coatings had a typical thickness of 100-150 nm and presented about 15 wt.% of the silica-drug composite material. The properties of the coatings depended on reactant concentration, temperature and mixing rate and, in particular, on the presence of a cationic surfactant (cetylpyridinium chloride). In the presence of cetylpyridinium chloride the silica coatings slightly decreased the rate of pure clarithromycin dissolution.

  20. Field Evaluation of Six Protective Coatings Applied to T56 Turbines after 1500 Hours Engine Use

    DTIC Science & Technology

    1991-06-01

    Six Coating Systems On First-stage Gas Turbine Blades In The Engines of a Long-Range Maritime Patrol Aircraft ", Surface and Coating Technology, 36...based coatings. They were applied to the first-stage turbine blades in the engines of two long range maritime patrol aircraft operated by the Royal...incorrect. These differently coated turbine - blades have in fact seen 1500 hours service in a T56 engine . The title and further reference in the text should

  1. Pixelated coatings and advanced IR coatings

    NASA Astrophysics Data System (ADS)

    Pradal, Fabien; Portier, Benjamin; Oussalah, Meihdi; Leplan, Hervé

    2017-09-01

    Reosc developed pixelated infrared coatings on detector. Reosc manufactured thick pixelated multilayer stacks on IR-focal plane arrays for bi-spectral imaging systems, demonstrating high filter performance, low crosstalk, and no deterioration of the device sensitivities. More recently, a 5-pixel filter matrix was designed and fabricated. Recent developments in pixelated coatings, shows that high performance infrared filters can be coated directly on detector for multispectral imaging. Next generation space instrument can benefit from this technology to reduce their weight and consumptions.

  2. Tests of NASA ceramic thermal barrier coating for gas-turbine engines

    NASA Technical Reports Server (NTRS)

    Liebert, C. H.

    1979-01-01

    A two-layer thermal barrier coating system with a bond coating of nickel-chromium-aluminum-yttrium and a ceramic coating of yttria-stabilized zirconia was tested for corrosion protection, thermal protection and durability. Full-scale gas-turbine engine tests demonstrated that this coating eliminated burning, melting, and warping of uncoated parts. During cyclic corrosion resistance tests made in marine diesel fuel products of combustion in a burner rig, the ceramic cracked on some specimens. Metallographic examination showed no base metal deterioration.

  3. Characteristics of coated copper wire specimens using high frequency ultrasonic complex vibration welding equipments.

    PubMed

    Tsujino, J; Ihara, S; Harada, Y; Kasahara, K; Sakamaki, N

    2004-04-01

    Welding characteristic of thin coated copper wires were studied using 40, 60, 100 kHz ultrasonic complex vibration welding equipments with elliptical to circular vibration locus. The complex vibration systems consisted of a longitudinal-torsional vibration converter and a driving longitudinal vibration system. Polyurethane coated copper wires of 0.036 mm outer diameter and copper plates of 0.3 mm thickness and the other dimension wires were used as welding specimens. The copper wire part is completely welded on the copper substrate and the insulated coating material is driven from welded area to outsides of the wire specimens by high frequency complex vibration.

  4. Results from the first single cell Nb 3Sn cavity coatings at JLab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eremeev, Grigory

    2015-09-01

    Nb 3Sn is a promising superconducting material for SRF applications and has the potential to exceed the limitations of niobium. We have used the recently commissioned Nb 3Sn coating system to investigate Nb 3Sn coatings on several single cell cavities by applying the same coating procedure on several different single cells with different history and pre-coating surface preparation. We report on our findings with four 1.5 GHz CEBAF-shape single cell and one 1.3 GHz ILC-shape single cavities that were coated, inspected, and tested.

  5. Measuring Thicknesses of Coatings on Metals

    NASA Technical Reports Server (NTRS)

    Cotty, Glenn M., Jr.

    1986-01-01

    Digital light sensor and eddy-current sensor measure thickness without contact. Surface of Coating reflects laser beam to optical sensor. Position of reflected spot on sensor used by microcomputer to calculate coating thickness. Eddy-current sensor maintains constant distance between optical sensor and metal substrate. When capabilities of available components fully exploited, instrument measures coatings from 0.001 to 6 in. (0.0025 to 15 cm) thick with accuracy of 1 part in 4,000. Instrument readily incorporated in automatic production and inspection systems. Used to inspect thermal-insulation layers, paint, and protective coatings. Also used to control application of coatings to preset thicknesses.

  6. Aircraft surface coatings

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Liquid, spray on elastomeric polyurethanes are selected and investigated as best candidates for aircraft external protective coatings. Flight tests are conducted to measure drag effects of these coatings compared to paints and a bare metal surface. The durability of two elastometric polyurethanes are assessed in airline flight service evaluations. Laboratory tests are performed to determine corrosion protection properties, compatibility with aircraft thermal anti-icing systems, the effect of coating thickness on erosion durability, and the erosion characteristics of composite leading edges-bare and coated. A cost and benefits assessment is made to determine the economic value of various coating configurations to the airlines.

  7. Anticorrosive organic/inorganic hybrid coatings

    NASA Astrophysics Data System (ADS)

    Gao, Tongzhai

    Organic/inorganic hybrid coating system was developed for anticorrosion applications using polyurea, polyurethane or epoxide as the organic phase and polysiloxane, formed by sol-gel process, as the inorganic phase. Polyurea/polysiloxane hybrid coatings were formulated and moisture cured using HDI isocyanurate, alkoxysilane-functionalized HDI isocyanurate, and tetraethyl orthosilicate (TEOS) oligomers. Two urethanes were prepared using the same components as abovementioned in addition to the oligoesters derived from either cyclohexane diacids (CHDA) and 2-butyl-2-ethyl-1,3-propanediol (BEPD) or adipic acid (AA), isophthalic acid (IPA), 1,6-hexanediol (HD), and trimethylol propane (TMP). Accelerated weathering and outdoor exposure were performed to study the weatherability of the polyurethane/polysiloxane hybrid coating system. FTIR and solid-state 13C NMR revealed that the degradation of the hybrid coatings occurred at the urethane and ester functionalities of the organic phase. DMA and DSC analyses showed the glass transition temperature increased and broadened after weathering. SEM was employed to observe the change of morphology of the hybrid coatings and correlated with the gloss variation after weathering. Rutile TiO2 was formulated into polyurethane/polysiloxane hybrid coatings in order to investigate the effect of pigmentation on the coating properties and the sol-gel precursor. Chemical interaction between the TiO2 and the sol-gel precursor was investigated using solid-state 29Si NMR and XPS. The morphology, mechanical, viscoelastic, thermal properties of the pigmented coatings were evaluated as a function of pigmentation volume concentration (PVC). Using AFM and SEM, the pigment were observed to be well dispersed in the polymer matrix. The thermal stability, the tensile modulus and strength of the coatings were enhanced with increasing PVC, whereas the pull-off adhesion and flexibility were reduced with increasing PVC. Finally, the pigmented coatings were evaluated by electrochemical impedance spectroscopy (EIS) and the results showed that 10 wt% pigmentation improved the corrosion resistance of the entire coating system. The effect of pigmentation on epoxide/polysiloxane hybrid coatings was also investigated. The epoxide was successfully modified using 3-(triethoxysilyl) propyl isocyanate (TEOSPI) as indicated by FTIR and NMR. Good dispersion of the pigment particles was achieved as revealed by the SEM images. The tensile modulus, tensile strength, pencil hardness and thermal stability of the hybrid coatings were improved while the flexibility and pull-off adhesion were deteriorated when increasing PVC.

  8. Preliminary thermal imaging of cotton impurities

    USDA-ARS?s Scientific Manuscript database

    Discrepancies exist between the Advanced Fiber Information Systems (AFIS) seed coat nep measurements and the seed coat fragment count upon visual inspection. Various studies have indicated that the two techniques may not be sensing the same contaminants as seed coat entities. Thermal imaging is an...

  9. Overlay coating degradation by simultaneous oxidation and coating/substrate interdiffusion. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Nesbitt, J. A.

    1983-01-01

    Degradation of NiCrAlZr overlay coatings on various NiCrAl substrates was examined after cyclic oxidation. Concentration/distance profiles were measured in the coating and substrate after various oxidation exposures at 1150 C. For each stubstrate, the Al content in the coating decreased rapidly. The concentration/distance profiles, and particularly that for Al, reflected the oxide spalling resistance of each coated substrate. A numerical model was developed to simulate diffusion associated with overlay-coating degradation by oxidation and coating/substrate interdiffusion. Input to the numerical model consisted of the Cr and Al content of the coating and substrate, ternary diffusivities, and various oxide spalling parameters. The model predicts the Cr and Al concentrations in the coating and substrate after any number of oxidation/thermal cycles. The numerical model also predicts coating failure based on the ability of the coating to supply sufficient Al to the oxide scale. The validity of the model was confirmed by comparison of the predicted and measured concentration/distance profiles. The model was subsequently used to identify the most critical system parameters affecting coating life.

  10. Dry coating of solid dosage forms: an overview of processes and applications.

    PubMed

    Foppoli, Anastasia Anna; Maroni, Alessandra; Cerea, Matteo; Zema, Lucia; Gazzaniga, Andrea

    2017-12-01

    Dry coating techniques enable manufacturing of coated solid dosage forms with no, or very limited, use of solvents. As a result, major drawbacks associated with both organic solvents and aqueous coating systems can be overcome, such as toxicological, environmental, and safety-related issues on the one hand as well as costly drying phases and impaired product stability on the other. The considerable advantages related to solventless coating has been prompting a strong research interest in this field of pharmaceutics. In the article, processes and applications relevant to techniques intended for dry coating are analyzed and reviewed. Based on the physical state of the coat-forming agents, liquid- and solid-based techniques are distinguished. The former include hot-melt coating and coating by photocuring, while the latter encompass press coating and powder coating. Moreover, solventless techniques, such as injection molding and three-dimensional printing by fused deposition modeling, which are not purposely conceived for coating, are also discussed in that they would open new perspectives in the manufacturing of coated-like dosage forms.

  11. Antibacterial characteristics of thermal plasma spray system.

    PubMed

    Goudarzi, M; Saviz, Sh; Ghoranneviss, M; Salar Elahi, A

    2018-03-15

    The objective of this study is to investigate antibacterial characteristics of a thermal plasma spray system. For this purpose, copper powder was coated on a handmade atmospheric plasma spraying system made by the stainless steel 316 substrate, which is preheated at different temperatures before spraying. A number of deposition characteristics such as antibacterial characteristics, adhesion strength and hardness of coating, was investigated. All of the spray parameters are fixed except the substrate temperature. The chemical composition was analyzed by X-ray diffraction (XRD). A scanning electron microscopy (SEM) and back scattering electron microscopy (BSE) were used to show the coating microstructure, its thickness and also the powder micrograph. The energy dispersive X-ray spectroscopy (EDX) was used to analyze the coating particles. Hardness of the deposition was examined by Vickers tester (HV0.1). Its adhesion strength was declared by cross cut tester (TQC). In addition, the percentage of bactericidal coating was evidenced with Staphylococcus aurous and Escherichia coli bacteria. Study results show that as the substrates temperature increases, the number of splats in the shape of pancake increases, the greatness and percentage of the deposition porosity both decrease. The increment of the substrate temperature leads to more oxidation and makes thicker dendrites on the splat. The enhancement of the substrate temperature also enlarges thickness and efficiency of coating. The interesting results are that antibacterial properties of coatings against the Escherichia coli are more than Staphylococcus aurous bacteria. However the bactericidal percentage of the coatings against Staphylococcus aurous and Escherichia coli bacteria roughly does not change with increasing the substrate temperature. Furthermore, by increment of the substrate temperature, coatings with both high adhesion and hardness are obtained. Accordingly, the temperature of substrate can be an important parameter for progressing mechanical properties of the antiseptic deposition.

  12. Headspace versus direct immersion solid phase microextraction in complex matrixes: investigation of analyte behavior in multicomponent mixtures.

    PubMed

    Gionfriddo, Emanuela; Souza-Silva, Érica A; Pawliszyn, Janusz

    2015-08-18

    This work aims to investigate the behavior of analytes in complex mixtures and matrixes with the use of solid-phase microextraction (SPME). Various factors that influence analyte uptake such as coating chemistry, extraction mode, the physicochemical properties of analytes, and matrix complexity were considered. At first, an aqueous system containing analytes bearing different hydrophobicities, molecular weights, and chemical functionalities was investigated by using commercially available liquid and solid porous coatings. The differences in the mass transfer mechanisms resulted in a more pronounced occurrence of coating saturation in headspace mode. Contrariwise, direct immersion extraction minimizes the occurrence of artifacts related to coating saturation and provides enhanced extraction of polar compounds. In addition, matrix-compatible PDMS-modified solid coatings, characterized by a new morphology that avoids coating fouling, were compared to their nonmodified analogues. The obtained results indicate that PDMS-modified coatings reduce artifacts associated with coating saturation, even in headspace mode. This factor, coupled to their matrix compatibility, make the use of direct SPME very practical as a quantification approach and the best choice for metabolomics studies where wide coverage is intended. To further understand the influence on analyte uptake on a system where additional interactions occur due to matrix components, ex vivo and in vivo sampling conditions were simulated using a starch matrix model, with the aim of mimicking plant-derived materials. Our results corroborate the fact that matrix handling can affect analyte/matrix equilibria, with consequent release of high concentrations of previously bound hydrophobic compounds, potentially leading to coating saturation. Direct immersion SPME limited the occurrence of the artifacts, which confirms the suitability of SPME for in vivo applications. These findings shed light into the implementation of in vivo SPME strategies in quantitative metabolomics studies of complex plant-based systems.

  13. Environmental Barrier Coating Fracture, Fatigue and High-Heat-Flux Durability Modeling and Stochastic Progressive Damage Simulation

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Nemeth, Noel N.

    2017-01-01

    Advanced environmental barrier coatings will play an increasingly important role in future gas turbine engines because of their ability to protect emerging light-weight SiC/SiC ceramic matrix composite (CMC) engine components, further raising engine operating temperatures and performance. Because the environmental barrier coating systems are critical to the performance, reliability and durability of these hot-section ceramic engine components, a prime-reliant coating system along with established life design methodology are required for the hot-section ceramic component insertion into engine service. In this paper, we have first summarized some observations of high temperature, high-heat-flux environmental degradation and failure mechanisms of environmental barrier coating systems in laboratory simulated engine environment tests. In particular, the coating surface cracking morphologies and associated subsequent delamination mechanisms under the engine level high-heat-flux, combustion steam, and mechanical creep and fatigue loading conditions will be discussed. The EBC compostion and archtechture improvements based on advanced high heat flux environmental testing, and the modeling advances based on the integrated Finite Element Analysis Micromechanics Analysis Code/Ceramics Analysis and Reliability Evaluation of Structures (FEAMAC/CARES) program will also be highlighted. The stochastic progressive damage simulation successfully predicts mud flat damage pattern in EBCs on coated 3-D specimens, and a 2-D model of through-the-thickness cross-section. A 2-parameter Weibull distribution was assumed in characterizing the coating layer stochastic strength response and the formation of damage was therefore modeled. The damage initiation and coalescence into progressively smaller mudflat crack cells was demonstrated. A coating life prediction framework may be realized by examining the surface crack initiation and delamination propagation in conjunction with environmental degradation under high-heat-flux and environment load test conditions.

  14. Improved coating for silica fiber based ceramic Reusable Surface Insulation (CRSI)

    NASA Technical Reports Server (NTRS)

    Ormiston, T. J.

    1974-01-01

    A series of coatings was developed for the space shuttle type silica fiber insulation system and characterized for optical and physical properties. Reentry simulation tests were run using a radiant panel and also using a hypersonic plasma arc. The coatings produced had improved physical and optical properties as well as greater reuse capability over the GE version of the JSC-0042 coating.

  15. Insect abatement system

    NASA Technical Reports Server (NTRS)

    Spiro, Clifford Lawrence (Inventor); Burnell, Timothy Brydon (Inventor); Wengrovius, Jeffrey Hayward (Inventor)

    1997-01-01

    An insect abatement system prevents adhesion of insect debris to surfaces which must be kept substantially free of insect debris. An article is coated with an insect abatement coating comprising polyorganosiloxane with a Shore A hardness of less than 50 and a tensile strength of less than 4 MPa. A method for preventing the adhesion of insect debris to surfaces includes the step of applying an insect abatement coating to a surface which must be kept substantially free of insect debris.

  16. Effects of vacuum exposure on stress and spectral shift of high reflective coatings

    NASA Astrophysics Data System (ADS)

    Stolz, C. J.; Taylor, J. R.; Eickelberg, W. K.; Lindh, J. D.

    1992-06-01

    The Atomic Vapor Laser Isotope Laser Separation (AVLIS) program operates the world's largest average power dye laser; the dye laser beams are combined, formatted, and transported in vacuum. The optical system is aligned at atmosphere, while the system must meet requirements in vacuum. Therefore, coating performance must be characterized in both atmosphere and vacuum. Changes in stress and spectral shift in ambient and vacuum environments are reported for conventional and dense multilayer dielectric coatings.

  17. Development of a titanium dioxide-coated microfluidic-based photocatalyst-assisted reduction device to couple high-performance liquid chromatography with inductively coupled plasma-mass spectrometry for determination of inorganic selenium species.

    PubMed

    Shih, Tsung-Ting; Lin, Cheng-Hsing; Hsu, I-Hsiang; Chen, Jian-Yi; Sun, Yuh-Chang

    2013-11-05

    We developed a selective and sensitive hyphenated system employing a microfluidic-based vapor generation (VG) system in conjunction with high-performance liquid chromatography (HPLC) separation and inductively coupled plasma-mass spectrometry (ICPMS) detection for the determination of trace inorganic selenium (Se) species. The VG system exploited poly(methyl methacrylate) (PMMA) substrates of high optical quality to fabricate a microfluidic-based photocatalyst-assisted reduction device (microfluidic-based PCARD). Moreover, to reduce the consumption of photocatalysts during analytical procedures, a microfluidic-based PCARD coated with titanium dioxide nanoparticles (nano-TiO2) was employed to avoid consecutive loading. Notably, to simplify the coating procedure and improve the stability of the coating materials, a dynamic coating method was utilized. Under the optimized conditions for the selenicals of interest, the online HPLC/TiO2-coated microfluidic-based PCARD/ICPMS system enabled us to achieve detection limits (based on 3σ) of 0.043 and 0.042 μg L(-1) for Se(IV) and Se(VI), respectively. Both Se(IV) and Se(VI) could be efficiently vaporized within 15 s, while a series of validation experiments indicated that our proposed method could be satisfactorily applied to the determination of inorganic Se species in the environmental water samples.

  18. Development of a novel tablet-in-capsule formulation of mesalamine for inflammatory bowel disease.

    PubMed

    Patel, Mayur M; Amin, Avani F

    2013-01-01

    The objective of the present work was to develop a tablet-in-capsule type of multiunit system, which releases the drug in a controlled manner at pre-programmed time intervals. The system consists of an enteric-coated hydroxypropyl methylcellulose capsule filled with four units of mesalamine minitablets, each of which was further coated with different ratios of Eudragit(®) E100 and Eudragit(®) RS100. In vitro evaluation of tablets coated with Eudragit(®) E100 and Eudragit(®) RS100 at different pH conditions revealed that at lower pH levels (2.0, 3.6 and 5.5 pH), the drug release is mainly governed by the dissolution of Eudragit(®) E100 from the Eudragit(®) E100 and Eudragit(®) RS100 coat. In vitro evaluation of capsules enteric coated with Eudragit(®) L100 and Eudragit(®) S100 revealed that a maximum lag time of 3 h and 4 h was obtained, respectively. In vivo roentgenographic evaluation in rabbits revealed that the developed system remained intact until it reaches the targeted region of the gastrointestinal tract, i.e. ileum and colon, where the tablets were released after the dissolution of the enteric coat Eudragit(®) L100 and Eudragit(®) S100, respectively. The developed system exhibited a promising targeting behavior and hence may be used for the treatment of inflammatory bowel disease.

  19. Microstructural, mechanical and oxidation features of NiCoCrAlY coating produced by plasma activated EB-PVD

    NASA Astrophysics Data System (ADS)

    He, Jian; Guo, Hongbo; Peng, Hui; Gong, Shengkai

    2013-06-01

    NiCoCrAlY coatings produced by electron beam-physical vapor deposition (EB-PVD) have been extensively used as the oxidation resistance coatings or suitable bond coats in thermal barrier coating (TBC) system. However, the inherent imperfections caused by EB-PVD process degrade the oxidation resistance of the coatings. In the present work, NiCoCrAlY coatings were creatively produced by plasma activated electron beam-physical vapor deposition (PA EB-PVD). The novel coatings showed a terraced substructure on the surface of each grain due to the increased energy of metal ions and enhanced mobility of adatoms. Also a strong (1 1 1) crystallographic texture of γ/γ' grains was observed. The toughness of the coatings got remarkably improved compared with the coatings deposited by conventional EB-PVD and the oxidation behavior at 1373 K showed that the novel coatings had excellent oxidation resistance. The possible mechanism was finally discussed.

  20. Manufacturing and coating of optical components for the EnMAP hyperspectral imager

    NASA Astrophysics Data System (ADS)

    Schürmann, M.; Gäbler, D.; Schlegel, R.; Schwinde, S.; Peschel, T.; Damm, C.; Jende, R.; Kinast, J.; Müller, S.; Beier, M.; Risse, S.; Sang, B.; Glier, M.; Bittner, H.; Erhard, M.

    2016-07-01

    The optical system of the hyperspectral imager of the Environmental Mapping and Analysis Program (EnMAP) consists of a three-mirror anastigmat (TMA) and two independent spectrometers working in the VNIR and SWIR spectral range, respectively. The VNIR spectrometer includes a spherical NiP coated Al6061 mirror that has been ultra-precisely diamond turned and finally coated with protected silver as well as four curved fused silica (FS) and flint glass (SF6) prisms, respectively, each with broadband antireflection (AR) coating, while the backs of the two outer prisms are coated with a high-reflective coating. For AR coating, plasma ion assisted deposition (PIAD) has been used; the high-reflective enhanced Ag-coating on the backside has been deposited by magnetron sputtering. The SWIR spectrometer contains four plane and spherical gold-coated mirrors, respectively, and two curved FS prisms with a broadband antireflection coating. Details about the ultra-precise manufacturing of metal mirrors and prisms as well as their coating are presented in this work.

  1. Design Optimization of Liquid Fueled High Velocity Oxy- Fuel Thermal Spraying Technique for Durable Coating for Fossil Power Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choudhuri, Ahsan; Love, Norman

    High-velocity oxy–fuel (HVOF) thermal spraying was developed in 1930 and has been commercially available for twenty-five years. HVOF thermal spraying has several benefits over the more conventional plasma spray technique including a faster deposition rate which leads to quicker turn-around, with more durable coatings and higher bond strength, hardness and wear resistance due to a homogeneous distribution of the sprayed particles. HVOF thermal spraying is frequently used in engineering to deposit cermets, metallic alloys, composites and polymers, to enhance product life and performance. HVOF thermal spraying system is a highly promising technique for applying durable coatings on structural materials formore » corrosive and high temperature environments in advanced ultra-supercritical coal- fired (AUSC) boilers, steam turbines and gas turbines. HVOF thermal spraying is the preferred method for producing coatings with low porosity and high adhesion. HVOF thermal spray process has been shown to be one of the most efficient techniques to deposit high performance coatings at moderate cost. Variables affecting the deposit formation and coating properties include hardware characteristics such as nozzle geometry and spraying distance and process parameters such as equivalence ratio, gas flow density, and powder feedstock. In the spray process, the powder particles experience very high speeds combined with fast heating to the powder material melting point or above. This high temperature causes evaporation of the powder, dissolution, and phase transformations. Due to the complex nature of the HVOF technique, the control and optimization of the process is difficult. In general, good coating quality with suitable properties and required performance for specific applications is the goal in producing thermal spray coatings. In order to reach this goal, a deeper understanding of the spray process as a whole is needed. Although many researchers studied commercial HVOF thermal spray systems, there exists a lack of fundamental understanding of the effect of hardware characteristics and operating parameters on HVOF thermally sprayed coatings. Motivated by these issues, this study is devoted to investigate the effect of hardware characteristics (e.g. spraying distance) and operating parameters (e.g. combustion chamber pressure, equivalence ratio, and total gas flow rate) on HVOF sprayed coatings using Inconel 718 alloy. The current study provides extensive understanding of several key operating and process parameters to optimize the next generation of HVOF thermally sprayed coatings for high temperature and harsh environment applications. A facility was developed to support this endeavor in a safe and efficient way, including a HVOF thermal spray system with a Data Acquisition and Remote Controls system (DARCS). The coatings microstructure and morphology were examined using X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM) and Nanoindentation.« less

  2. Ultrasound-assisted synthesis of zinc molybdate nanocrystals and molybdate-doped epoxy/PDMS nanocomposite coatings for Mg alloy protection.

    PubMed

    Eduok, Ubong; Szpunar, Jerzy

    2018-06-01

    Zinc molybdate (ZM) is a safer anticorrosive additive for cooling systems when compared with chromates and lead salts, due to its insolubility in aqueous media. For most molybdate pigments, their molybdate anion (MoO 4 -2 ) acts as an anionic inhibitor and its passivation capacity is comparable with chromate anion (CrO 4 -2 ). To alleviate the environmental concerns involving chromates-based industrial protective coatings, we have proposed new alternative in this work. We have synthesized ZM nanocrystals via ultrasound-assisted process and encapsulated them within an epoxy/PDMS coating towards corrosion protection. The surface morphology and mechanical properties of these ZM doped epoxy/PDMS nanocomposite coatings is exhaustively discussed to show the effect of ZM content on protective properties. The presence of ZM nanocrystals significantly contributed to the corrosion barrier performance of the coating while the amount of ZM nanocrystals needed to prepare an epoxy coating with optimum barrier performance was established. Beyond 2 wt% ZM concentration, the siloxane-structured epoxy coating network became saturated with ZM pigments. This further broadened inherent pores channels, leading to the percolation of corrosion chloride ions through the coating. SEM evidence has revealed proof of surface delamination on ZM3 coating. A model mechanism of corrosion resistance has been proposed for ZM doped epoxy/PDMS nanocomposite coatings from exhaustive surface morphological investigations and evidence. This coating matrix may have emerging applications in cooling systems as anticorrosive surface paints as well as create an avenue for environmental corrosion remediation. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Protection from high-velocity impact particles for quartz glass by coatings on the basis of Al-Si-N

    NASA Astrophysics Data System (ADS)

    Bozhko, I. A.; Rybalko, E. V.; Fedorischeva, M. V.; Solntsev, V. L.; Cherniavsky, A. G.; Kaleri, A. Yu.; Psakhie, S. G.; Sergeev, V. P.

    2016-11-01

    The paper presents the results of the research of the phase composition and the mechanical properties of the coatings on the basis of Al-Si-N system produced by pulsed magnetron sputtering on the KV glass substrates. By the X-ray diffraction method, it has been discovered that the coatings contain AlN phase (hcp) with different thickness. The deposition of Al-Si-N coating system allows both increasing the microhardness of the surface layer of the quartz glass up to 29 GPa, and maintaining high elastic properties (We > 0.70). The laboratory tests have been carried out involving the impact of high-speed flows of iron particles on the Al-Si-N protective coating with different thicknesses produced by pulsed magnetron sputtering. The increase of Al-Si-N coating thickness from 1µm to 10µm decreases 4-fold the surface density of the craters on the samples caused by a high-speed flow of iron particles.

  4. High-Heat-Flux Cyclic Durability of Thermal and Environmental Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Ghosn, Louis L.; Miller, Robert A.

    2007-01-01

    Advanced ceramic thermal and environmental barrier coatings will play an increasingly important role in future gas turbine engines because of their ability to protect the engine components and further raise engine temperatures. For the supersonic vehicles currently envisioned in the NASA fundamental aeronautics program, advanced gas turbine engines will be used to provide high power density thrust during the extended supersonic flight of the aircraft, while meeting stringent low emission requirements. Advanced ceramic coating systems are critical to the performance, life and durability of the hot-section components of the engine systems. In this work, the laser and burner rig based high-heat-flux testing approaches were developed to investigate the coating cyclic response and failure mechanisms under simulated supersonic long-duration cruise mission. The accelerated coating cracking and delamination mechanism under the engine high-heat-flux, and extended supersonic cruise time conditions will be addressed. A coating life prediction framework may be realized by examining the crack initiation and propagation in conjunction with environmental degradation under high-heat-flux test conditions.

  5. Oxidation Control with Chromate Pretreatment of MCrAlY Unmelted Particle and Bond Coat in Thermal Barrier Systems

    NASA Astrophysics Data System (ADS)

    Yamano, Hideaki; Tani, Kazumi; Harada, Yoshio; Teratani, Takema

    2008-06-01

    MCrAlY alloy bond coat is widely used in thermal barrier coating (TBC) systems to protect substrates from high-temperature oxidizing environments. However, failure of the ceramic topcoat can occur due to a thermally grown oxide (TGO) that grows at the interface between the bond coat and the topcoat. In this study, the effect of chromate treatment was investigated. Prior to topcoat deposition, a thin film of Cr2O3 was formed on the bond coat surface. High-temperature oxidation tests were carried out, and the oxidation rates were determined by inspection of cross sections. Similar oxidation tests were carried out using MCrAlY powder material assumed to be unmelted particles. As a result, the chromate-treated bond coat showed outstanding oxidation resistance. Calculations that take into account the oxidation of particles in the topcoat indicated the generation of internal stress to cause local fracture of the topcoat.

  6. Emittance and absorptance of the National Aeronautics and Space Administration ceramic thermal barrier coating. [for gas turbine engine components

    NASA Technical Reports Server (NTRS)

    Liebert, C. H.

    1978-01-01

    The spectral emittance of a NASA developed zirconia ceramic thermal barrier coating system, consisting of a metal substrate, a layer of Ni-Cr-Al-Y bond material and a layer of yttria-stabilized zirconia ceramic material, is analyzed. The emittance, needed for evaluation of radiant heat loads on cooled coated gas turbine components, was measured over a range of temperatures that would be typical of its use on such components. Emittance data were obtained with a spectrometer, a reflectometer and a radiation pyrometer at a single bond coating thickness of 0.010 cm and at a ceramic coating thickness of 0-0.076 cm. The data were transformed into the hemispherical total emittance and were correlated to the ceramic coating thickness and temperature using multiple-regression curve-fitting techniques. The system was found to be highly reflective, and, consequently, capable of significantly reducing radiation heat loads on cooled gas turbine engine components.

  7. Development of strain tolerant thermal barrier coating systems, tasks 1 - 3

    NASA Technical Reports Server (NTRS)

    Anderson, N. P.; Sheffler, K. D.

    1983-01-01

    Insulating ceramic thermal barrier coatings can reduce gas turbine airfoil metal temperatures as much as 170 C (about 300 F), providing fuel efficiency improvements greater than one percent and durability improvements of 2 to 3X. The objective was to increase the spalling resistance of zirconia based ceramic turbine coatings. To accomplish this, two baseline and 30 candidate duplex (layered MCrAlY/zirconia based ceramic) coatings were iteratively evaluated microstructurally and in four series of laboratory burner rig tests. This led to the selection of two candidate optimized 0.25 mm (0.010 inch) thick plasma sprayed partially stabilized zirconia ceramics containing six weight percent yttria and applied with two different sets of process parameters over a 0.13 mm (0.005 inch) thick low pressure chamber sprayed MCrAlY bond coat. Both of these coatings demonstrated at least 3X laboratory cyclic spalling life improvement over the baseline systems, as well as cyclic oxidation life equivalent to 15,000 commercial engine flight hours.

  8. Effects of MAR-M247 substrate (modified) composition on coating oxidation coating/substrate interdiffusion. M.S. Thesis. Final Report; [protective coatings for hot section components of gas turbine engines

    NASA Technical Reports Server (NTRS)

    Pilsner, B. H.

    1985-01-01

    The effects of gamma+gamma' Mar-M247 substrate composition on gamma+beta Ni-Cr-Al-Zr coating oxidation and coating/substrate interdiffusion were evaluated. These results were also compared to a prior study for a Ni-Cr-Al-Zr coated gamma Ni-Cr-Al substrate with equivalent Al and Cr atomic percentages. Cyclic oxidation behavior at 1130 C was investigated using change in weight curves. Concentration/distance profiles were measured for Al, Cr, Co, W, and Ta. The surface oxides were examined by X-ray diffraction and scanning electron microscopy. The results indicate that variations of Ta and C concentrations in the substrate do not affect oxidation resistance, while additions of grain boundary strengthening elements (Zr, Hf, B) increase oxidation resistance. In addition, the results indicate that oxidation phenomena in gamma+beta/gamma+gamma' Mar-M247 systems have similar characteristics to the l gamma+beta/gamma Ni-Cr-Al system.

  9. Effect of resin coating and occlusal loading on microleakage of Class II computer-aided design/computer-aided manufacturing fabricated ceramic restorations: a confocal microscopic study.

    PubMed

    Kitayama, Shuzo; Nasser, Nasser A; Pilecki, Peter; Wilson, Ron F; Nikaido, Toru; Tagami, Junji; Watson, Timothy F; Foxton, Richard M

    2011-05-01

    To evaluate the effect of resin coating and occlusal loading on microleakage of class II computer-aided design/computer-aided manufacturing (CAD/CAM) ceramic restorations. Molars were prepared for an mesio-occlusal-distal (MOD) inlay and were divided into two groups: non-coated (controls); and resin-coated, in which the cavity was coated with a combination of a dentin bonding system (Clearfil Protect Bond) and a flowable resin composite (Clearfil Majesty Flow). Ceramic inlays were fabricated using the CAD/CAM technique (CEREC 3) and cemented with resin cement (Clearfil Esthetic Cement). After 24 h of water storage, the restored teeth in each group were divided into two subgroups: unloaded or loaded with an axial force of 80 N at a rate of 2.5 cycles/s for 250,000 cycles while stored in water. After immersion in 0.25% Rhodamine B solution, the teeth were sectioned bucco-lingually at the mesial and distal boxes. Tandem scanning confocal microscopy (TSM) was used for evaluation of microleakage. The locations of the measurements were assigned to the cavity walls and floor. Loading did not have a significant effect on microleakage in either the resin-coated or non-coated group. Resin coating significantly reduced microleakage regardless of loading. The cavity floor exhibited greater microleakage compared to the cavity wall. TSM observation also revealed that microleakage at the enamel surface was minimal regardless of resin coating. In contrast, non-coated dentin showed extensive leakage, whereas resin-coated dentin showed decreased leakage. Resin coating with a combination of a dentin-bonding system and a flowable resin composite may be indicated prior to impression-taking when restoring teeth with CAD/CAM ceramic inlays in order to reduce microleakage at the tooth-resin interface.

  10. High-temperature superconductor coating for coupling impedance reduction in the FCC-hh beam screen

    NASA Astrophysics Data System (ADS)

    Krkotić, Patrick; Niedermayer, Uwe; Boine-Frankenheim, Oliver

    2018-07-01

    The international Future Circular Collider study develops a conceptual design for a post Large Hadron Collider particle accelerator using 16 T superconducting dipoles for achieving p-p center-of-mass collision energies up to 100 TeV. One concern for this project is the beam coupling impedance especially at injection energy. A copper coated beam screen as in the LHC is planned, but preliminary studies indicate that copper at the high operating temperature of 50 K might not provide a sufficiently low impedance for a stable beam. In order to reduce the coupling impedance, we investigate high-temperature superconductors as a possible coating material in combination with copper as a hybrid system. The effect of different coating combinations are estimated through numerical calculations to identify the best hybrid beam screen coating system.

  11. Burner Rig Evaluation of Thermal Barrier Coating Systems for Nickel-Base Alloys

    NASA Technical Reports Server (NTRS)

    Gedwill, M. A.

    1981-01-01

    Eight plasma sprayed bond coatings were evaluated for their potential use with ZrO2-Y2O3 thermal barrier coatings (TECs) which are being developed for coal derived fuel fired gas turbines. Longer TBC lives in cyclic burner rig oxidation to 1050 C were achieved with the more oxidation resistant bond coatings. These were Ni-14.1Cr-13.4A1-0.10Ar, Ni-14.1C4-14.4Al-0.16Y, and Ni-15.8Cr-12.8Al-0.36Y on Rene 41. The TBC systems performed best when 0.015-cm thick bond coatings were employed that were sprayed at 20 kW using argon 3.5v/o hydrogen. Cycling had a more life limiting influence on the TBC than accumulated time at 1050 C.

  12. Performance and Durability of Environmental Barrier Coatings on SiC/SiC Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Harder, Bryan; Bhatt, Ramakrishna

    2016-01-01

    This presentation highlights advanced environmental barrier coating (EBC) and SiC-SiC Ceramic Matrix Composites (CMC) systems for next generation turbine engines. The emphasis will be placed on fundamental coating and CMC property evaluations; and the integrated system performance and degradation mechanisms in simulated laboratory turbine engine testing environments. Long term durability tests in laser rig simulated high heat flux the rmomechanical creep and fatigue loading conditions will also be presented. The results can help improve the future EBC-CMC system designs, validating the advanced EBC-CMC technologies for hot section turbine engine applications.

  13. Laser-induced damage threshold tests of ultrafast multilayer dielectric coatings in various environmental conditions relevant for operation of ELI beamlines laser systems

    NASA Astrophysics Data System (ADS)

    Ďurák, Michal; Velpula, Praveen Kumar; Kramer, Daniel; Cupal, Josef; Medřík, Tomáš; Hřebíček, Jan; Golasowski, Jiří; Peceli, Davorin; Kozlová, Michaela; Rus, Bedřich

    2017-01-01

    Increasing the laser-induced damage resistance of optical components is one of the major challenges in the development of Peta-watt (PW) class laser systems. The extreme light infrastructure (ELI) beamlines project will provide ultrafast laser systems with peak powers up to 10 PW available every minute and PW class beams at 10 Hz complemented by a 5-TW, 1-kHz beamline. Sustainable performance of PW class laser systems relies on the durability of the employed optical components. As part of an effort to evaluate the damage resistance of components utilized in ELI beamlines systems, damage thresholds of several optical multilayer dielectric coatings were measured with different laser parameters and in different environments. Three coatings were tested with 10 Hz and 1 kHz pulse repetition rates, and the effect of a cleaning treatment on their damage resistance was examined. To explore the damage threshold behavior at different vacuum levels, one coating was subject to tests at various residual gas pressures. No change of damage threshold in a high vacuum with respect to ambient pressure was recorded. The effect of the cleaning treatment was found to be inconsistent, suggesting that development of the optimal cleaning treatment for a given coating requires consideration of its specific properties.

  14. Improved piston ring materials for 650 deg C service

    NASA Technical Reports Server (NTRS)

    Bjorndahl, W. D.

    1986-01-01

    A program to develop piston ring material systems which will operate at 650C was performed. In this program, two candidate high temperature piston ring substrate materials, Carpenter 709-2 and 440B, were hot formed into the piston ring shape and subsequently evaluated. In a parallel development effort ceramic and metallic piston ring coating materials were applied to cast iron rings by various processing techniques and then subjected to thermal shock and wear evaluation. Finally, promising candidate coatings were applied to the most thermally stable hot formed substrate. The results of evaluation tests of the hot formed substrate show that Carpenter 709-2 has greater thermal stability than 440B. Of the candidate coatings, plasma transferred arc (PTA) applied tungsten carbide and molybdenum based systems exhibit the greatest resistance to thermal shock. For the ceramic based systems, thermal shock resistance was improved by bond coat grading. Wear testing was conducted to 650C (1202F). For ceramic systems, the alumina/titania/zirconia/yttria composition showed highest wear resistance. For the PTA applied systems, the tungsten carbide based system showed highest wear resistance.

  15. Kinetic Monte Carlo Simulations of Diffusion in Environmental Barrier Coating Materials

    NASA Technical Reports Server (NTRS)

    Good, Brian

    2017-01-01

    Ceramic Matrix Components (CMC) components for use in turbine engines offer a number of advantages compared with current practice. However, such components are subject to degradation through a variety of mechanisms. In particular, in the hot environment inside a turbine in operation a considerable amount of water vapor is present, and this can lead to corrosion and recession. Environmental Barrier Coating (EBC) systems that limit the amount of oxygen and water reaching the component are required to reduce this degradation and extend component life. A number of silicate-based materials are under consideration for use in such coating systems, including Yttterbium and Yttrium di- and monosilicates. In this work, we present results of kinetic Monte Carlo computer simulations of oxygen diffusion in Yttrium disilicate, and compare with previous work on Yttterbium disilicate. Coatings may also exhibit cracking, and the cracks can provide a direct path for oxygen to reach the component. There is typically a bond coat between the coating and component surface, but the bond coat material is generally chosen for properties other than low oxygen diffusivity. Nevertheless, the degree to which the bond coat can inhibit oxygen diffusion is of interest, as it may form the final defense against oxygen impingement on the component. We have therefore performed similar simulations of oxygen diffusion through HfSiO4, a proposed bond coat material.

  16. Ceramic Coatings for Clad (The C 3 Project): Advanced Accident-Tolerant Ceramic Coatings for Zr-Alloy Cladding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sickafus, Kurt E.; Wirth, Brian; Miller, Larry

    The goal of this NEUP-IRP project is to develop a fuel concept based on an advanced ceramic coating for Zr-alloy cladding. The coated cladding must exhibit demonstrably improved performance compared to conventional Zr-alloy clad in the following respects: During normal service, the ceramic coating should decrease cladding oxidation and hydrogen pickup (the latter leads to hydriding and embrittlement). During a reactor transient (e.g., a loss of coolant accident), the ceramic coating must minimize or at least significantly delay oxidation of the Zr-alloy cladding, thus reducing the amount of hydrogen generated and the oxygen ingress into the cladding. The specific objectivesmore » of this project are as follows: To produce durable ceramic coatings on Zr-alloy clad using two possible routes: (i) MAX phase ceramic coatings or similar nitride or carbide coatings; and (ii) graded interface architecture (multilayer) ceramic coatings, using, for instance, an oxide such as yttria-stabilized zirconia (YSZ) as the outer protective layer. To characterize the structural and physical properties of the coated clad samples produced in 1. above, especially the corrosion properties under simulated normal and transient reactor operating conditions. To perform computational analyses to assess the effects of such coatings on fuel performance and reactor neutronics, and to perform fuel cycle analyses to assess the economic viability of modifying conventional Zr-alloy cladding with ceramic coatings. This project meets a number of the goals outlined in the NEUP-IRP call for proposals, including: Improve the fuel/cladding system through innovative designs (e.g. coatings/liners for zirconium-based cladding) Reduce or eliminate hydrogen generation Increase resistance to bulk steam oxidation Achievement of our goals and objectives, as defined above, will lead to safer light-water reactor (LWR) nuclear fuel assemblies, due to improved cladding properties and built-in accident resistance, as well as the possibilities for enhanced fuel/clad system performance and longevity.« less

  17. Predictable pulsatile release of tramadol hydrochloride for chronotherapeutics of arthritis.

    PubMed

    Dabhi, Chandu; Randale, Shivsagar; Belgamwar, Veena; Gattani, Surendra; Tekade, Avinash

    2010-07-01

    The present investigation deals with the development of a pH and time-dependent press-coated pulsatile drug delivery system for delivering drugs into the colon. The system consists of a drug containing core, coated by a combination of natural polymer Delonix regia gum (DRG) and hydroxypropyl methylcellulose (HPMC K4M) in various proportions, which controls the onset of release. The whole system was coated with methacrylic acid copolymers, which not only prevents the drug release in the stomach, but also prolongs the lag time. Tramadol HCl was used as a model drug and varying combinations of DRG and HPMC K4M were used to achieve the desired lag time before rapid and complete release of the drug in the colon. It was observed that the lag time depends on the coating ratio of DRG to HPMC and also on press coating weight. Drug release was found to be increased by 15-30% in the presence of colonic microbial flora. The results showed the capability of the system in achieving pulsatile release for a programmable period of time and pH-dependent release to attain colon-targeted delivery.

  18. Investigation into the Coating and Desensitization Effect on HNIW of Paraffin Wax/Stearic Acid Composite System

    NASA Astrophysics Data System (ADS)

    Wang, Dong-Xu; Chen, Shu-Sen; Jin, Shao-Hua; Shu, Qing-Hai; Jiang, Zhen-Ming; Shang, Feng-Qin; Li, Jin-Xin

    2016-01-01

    2,4,6,8,10,12-Hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (HNIW) was bonded by fluorine rubber and then desensitized by paraffin wax (PW), stearic acid (SA), and a PW/SA composite system using an aqueous suspension method. The coating and desensitization effects of the composite systems on HNIW and the influence of the addition of SA on the mechanical properties of the coated HNIW samples were studied. In addition, the PW/SA composite solution was simulated using a molecular dynamics method, and the relationship between the desensitization effect on HNIW and the properties of the composite solution was investigated. The results showed that the PW/SA composite system, of which the desensitization effect on HNIW was between those of the two desensitizers, could effectively coat HNIW and that the composite solution had the most stable and well-distributed state when using benzene as solvent with the mass ratio of PW/SA equal to 7/3 or 3/7, thus resulting in the best desensitization effect on HNIW. Moreover, the addition of stearic acid was successful in enhancing the mechanical properties of the coated HNIW samples.

  19. Microencapsulation of Self Healing Agents for Corrosion Control Coatings

    NASA Technical Reports Server (NTRS)

    Jolley, S. T.; Li, W.; Buhrow, J. W.; Calle, L. M.

    2011-01-01

    Corrosion, the environmentally induced degradation of materials, is a very costly problem that has a major impact on the global economy. Results from a 2-year breakthrough study released in 2002 by the U.S. Federal Highway Administration (FHWA) showed that the total annual estimated direct cost associated with metallic corrosion in nearly every U.S. industry sector was a staggering $276 billion, approximately 3.1% of the nation's Gross Domestic Product (GOP). Corrosion protective coatings are widely used to protect metallic structures from the detrimental effects of corrosion but their effectiveness can be seriously compromised by mechanical damage, such as a scratch, that exposes the metallic substrate. The incorporation of a self healing mechanism into a corrosion control coating would have the potential to significantly increase its effectiveness and useful lifetime. This paper describes work performed to incorporate a number of microcapsule-based self healing systems into corrosion control coatings. The work includes the preparation and evaluation of self-healing systems based on curable epoxy, acrylate, and siloxane resins, as well as, microencapsulated systems based on passive, solvent born, healing agent delivery. The synthesis and optimization of microcapsule-based self healing systems for thin coating (less than 100 micron) will be presented.

  20. Membrane-spacer assembly for flow-electrode capacitive deionization

    NASA Astrophysics Data System (ADS)

    Lee, Ki Sook; Cho, Younghyun; Choo, Ko Yeon; Yang, SeungCheol; Han, Moon Hee; Kim, Dong Kook

    2018-03-01

    Flow-electrode capacitive deionization (FCDI) is a desalination process designed to overcome the limited desalination capacity of conventional CDI systems due to their fixed electrodes. Such a FCDI cell system is comprised of a current collector, freestanding ion-exchange membrane (IEM), gasket, and spacer for flowing saline water. To simplify the cell system, in this study we combined the membrane and spacer into a single unit, by coating the IEM on a porous ceramic structure that acts as the spacer. The combination of membrane with the porous structure avoids the use of costly freestanding IEM. Furthermore, the FCDI system can be readily scaled up by simply inserting the IEM-coated porous structures in between the channels for flow electrodes. However, coating the IEM on such porous ceramic structures can cause a sudden drop in the treatment capacity, if the coated IEM penetrates the ceramic pores and prevents these pores from acting as saline flow channels. To address this issue, we blocked the larger microscale pores on the outer surface with SiO2 and polymeric multilayers. Thus, the IEM is coated only onto the top surface of the porous structure, while the internal pores remain empty to function as water channels.

  1. Advanced Environmental Barrier Coating and SA Tyrannohex SiC Composites Integration for Improved Thermomechanical and Environmental Durability

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Halbig, Michael; Singh, Mrityunjay

    2018-01-01

    The development of 2700 degF capable environmental barrier coating (EBC) systems, particularly, the Rare Earth "Hafnium" Silicon bond coat systems, have significantly improved the temperature capability and environmental stability of SiC/SiC Ceramic Matrix Composite Systems. We have specifically developed the advanced 2700 degF EBC systems, integrating the EBC to the high temperature SA Tyrannohex SiC fiber composites, for comprehensive performance and durability evaluations for potential turbine engine airfoil component applications. The fundamental mechanical properties, environmental stability and thermal gradient cyclic durability performance of the EBC - SA Tyrannohex composites were investigated. The paper will particularly emphasize the high pressure combustion rig recession, cyclic thermal stress resistance and thermomechanical low cycle fatigue testing of uncoated and environmental barrier coated Tyrannohex SiC SA composites in these simulated turbine engine combustion water vapor, thermal gradients, and mechanical loading conditions. We have also investigated high heat flux and flexural fatigue degradation mechanisms, determined the upper limits of operating temperature conditions for the coated SA composite material systems in thermomechanical fatigue conditions. Recent progress has also been made by using the self-healing rare earth-silicon based EBCs, thus enhancing the SA composite hexagonal fiber columns bonding for improved thermomechanical and environmental durability in turbine engine operation environments. More advanced EBC- composite systems based on the new EBC-Fiber Interphases will also be discussed.

  2. Precise Morphology Control and Continuous Fabrication of Perovskite Solar Cells Using Droplet-Controllable Electrospray Coating System.

    PubMed

    Hong, Seung Chan; Lee, Gunhee; Ha, Kyungyeon; Yoon, Jungjin; Ahn, Namyoung; Cho, Woohyung; Park, Mincheol; Choi, Mansoo

    2017-03-08

    Herein, we developed a novel electrospray coating system for continuous fabrication of perovskite solar cells with high performance. Our system can systemically control the size of CH 3 NH 3 PbI 3 precursor droplets by modulating the applied electrical potential, shown to be a crucial factor for the formation of perovskite films. As a result, we have obtained pinhole-free and large grain-sized perovskite solar cells, yielding the best PCE of 13.27% with little photocurrent hysteresis. Furthermore, the average PCE through the continuous coating process was 11.56 ± 0.52%. Our system demonstrates not only the high reproducibility but also a new way to commercialize high-quality perovskite solar cells.

  3. PERMANENT PRIMER/REPLACEABLE TOPCOAT AIRCRAFT COATING SYSTEM WITH MINIMUM VOC AND CHROMIUM EXPOSURE - PHASE I

    EPA Science Inventory

    In Phase I, Foster-Miller, Inc., will develop the permanent primer replacement topcoat (PPRT), produce coated test panels, and analyze test panels for key performance properties. Topcoat stripping also will be demonstrated. The team includes coating experts and an aircraft ...

  4. Silicon-slurry/aluminide coating. [protecting gas turbine engine vanes and blades

    NASA Technical Reports Server (NTRS)

    Deadmore, D. L.; Young, S. G. (Inventor)

    1983-01-01

    A low cost coating protects metallic base system substrates from high temperatures, high gas velocity ovidation, thermal fatigue and hot corrosion and is particularly useful fo protecting vanes and blades in aircraft and land based gas turbine engines. A lacquer slurry comprising cellulose nitrate containing high purity silicon powder is sprayed onto the superalloy substrates. The silicon layer is then aluminized to complete the coating. The Si-Al coating is less costly to produce than advanced aluminides and protects the substrates from oxidation and thermal fatigue for a much longer period of time than the conventional aluminide coatings. While more expensive Pt-Al coatings and physical vapor deposited MCrAlY coatings may last longer or provide equal protection on certain substrates, the Si-Al coating exceeded the performance of both types of coatings on certain superalloys in high gas velocity oxidation and thermal fatigue and increased the resistance of certain superalloys to hot corrosion.

  5. Molecular Adsorber Coating

    NASA Technical Reports Server (NTRS)

    Straka, Sharon; Peters, Wanda; Hasegawa, Mark; Hedgeland, Randy; Petro, John; Novo-Gradac, Kevin; Wong, Alfred; Triolo, Jack; Miller, Cory

    2011-01-01

    A document discusses a zeolite-based sprayable molecular adsorber coating that has been developed to alleviate the size and weight issues of current ceramic puck-based technology, while providing a configuration that more projects can use to protect against degradation from outgassed materials within a spacecraft, particularly contamination-sensitive instruments. This coating system demonstrates five times the adsorption capacity of previously developed adsorber coating slurries. The molecular adsorber formulation was developed and refined, and a procedure for spray application was developed. Samples were spray-coated and tested for capacity, thermal optical/radiative properties, coating adhesion, and thermal cycling. Work performed during this study indicates that the molecular adsorber formulation can be applied to aluminum, stainless steel, or other metal substrates that can accept silicate-based coatings. The coating can also function as a thermal- control coating. This adsorber will dramatically reduce the mass and volume restrictions, and is less expensive than the currently used molecular adsorber puck design.

  6. Development and Testing of Ceramic Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Choi, Sung R.; Miller, Robert A.

    2004-01-01

    Ceramic thermal barrier coatings will play an increasingly important role in future gas turbine engines because of their ability to effectively protect the engine components and further raise engine temperatures. Durability of the coating systems remains a critical issue with the ever-increasing temperature requirements. Thermal conductivity increase and coating degradation due to sintering and phase changes are known to be detrimental to coating performance. There is a need to characterize the coating behavior and temperature limits, in order to potentially take full advantage of the current coating capability, and also accurately assess the benefit gained from advanced coating development. In this study, thermal conductivity behavior and cyclic durability of plasma-sprayed ZrO2-8wt%Y2O3 thermal barrier coatings were evaluated under laser heat-flux simulated high temperature, large thermal gradient and thermal cycling conditions. The coating degradation and failure processes were assessed by real-time monitoring of the coating thermal conductivity under the test conditions. The ceramic coating crack propagation driving forces and resulting failure modes will be discussed in light of high temperature mechanical fatigue and fracture testing results.

  7. Protective matching polymer powder coating of piezoelectric element

    NASA Astrophysics Data System (ADS)

    Gavrilova, V. A.; Fazlyyyakhmatov, M. G.; Kashapov, N. F.

    2013-12-01

    Objects of research are coatings and technology of their applying to the piezoelectric elements for ultrasound. Acoustic impedance and thicknesses of matching layers for medical ultrasound transducers have been defined. In this paper performance characteristics of coating systems with predetermined properties have been selected. The conditions for selection of polymer powder paint for quarter wave matching layer have been determined. Conditions of forming polymer powder coatings have been proposed.

  8. Evaluation of coated columbium test panels having application to a secondary nozzle extension for the RL10 rocket engine system, parts 1 and 2

    NASA Technical Reports Server (NTRS)

    Murphy, Kenneth S.; Castro, Joaquin H.

    1988-01-01

    The activity performed on the screening and evaluation of various coatings for application on columbium alloy test panels representative of a radiation-cooled nozzle extension for the RL10 rocket engine is summarized. Vendors and processes of candidate coatings were evaluated. Post engine test evaluations of the two selected coatings are discussed.

  9. Simulation of thermal stress in Er2O3 and Al2O3 tritium penetration barriers by finite-element analysis

    NASA Astrophysics Data System (ADS)

    Ze, LIU; Guogang, YU; Anping, HE; Ling, WANG

    2017-09-01

    The physical vapor deposition method is an effective way to deposit Al2O3 and Er2O3 on 316L stainless steel substrates acting as tritium permeation barriers in a fusion reactor. The distribution of residual thermal stress is calculated both in Al2O3 and Er2O3 coating systems with planar and rough substrates using finite element analysis. The parameters influencing the thermal stress in the sputter process are analyzed, such as coating and substrate properties, temperature and Young’s modulus. This work shows that the thermal stress in Al2O3 and Er2O3 coating systems exhibit a linear relationship with substrate thickness, temperature and Young’s modulus. However, this relationship is inversed with coating thickness. In addition, the rough substrate surface can increase the thermal stress in the process of coating deposition. The adhesive strength between the coating and the substrate is evaluated by the shear stress. Due to the higher compressive shear stress, the Al2O3 coating has a better adhesive strength with a 316L stainless steel substrate than the Er2O3 coating. Furthermore, the analysis shows that it is a useful way to improve adhesive strength with increasing interface roughness.

  10. Phase evolution and thermal properties of yttria-stabilized hafnia nano-coatings deposited on alumina

    NASA Astrophysics Data System (ADS)

    Rubio, Ernesto Javier

    High-temperature coatings are critical to the future power-generation systems and industries. Thermal barrier coatings (TBCs), which are usually the ceramic materials applied as thin coatings, protect engine components and allow further increase in engine temperatures for higher efficiency. Thus, the durability and reliability of the coating systems have to be more robust compared to current natural gas based engines. While a near and mid-term target is to develop TBC architecture with a 1300 °C surface temperature tolerance, a deeper understanding of the structure evolution and thermal behavior of the TBC-bond coat interface, specifically the thermally grown oxide (TGO), is of primary importance. In the present work, attention is directed towards yttria-stabilized hafnia (YSH) coatings on alumina (α-Al2O 3) to simulate the TBC-TGO interface and understand the phase evolution, microstructure and thermal oxidation of the coatings. YSH coatings were grown on α-Al2O3 substrates by sputter deposition by varying coating thickness in a wide range ˜30-1000 nm. The effect of coating thickness on the structure, morphology and the residual stress has been investigated using X-ray diffraction (XRD) and high resolution scanning electron microscopy (SEM). Thermal oxidation behavior of the coatings has been evaluated using the isothermal oxidation measurements under static conditions. X-ray diffraction analyses revealed the existence of monoclinic hafnia phase for relatively thin coatings indicating that the interfacial phenomena are dominant in phase stabilization. The evolution towards pure stabilized cubic phase of hafnia with the increasing coating thickness is observed. The SEM results indicate the changes in morphology of the coatings; the average grain size increases from 15 to 500 nm with increasing thickness. Residual stress was calculated employing XRD using the variable ψ-angle. Relation between residual stress and structural change is also studied. The results obtained on the thermal oxidation behavior indicate that the YSH coatings exhibit initial mass gain in the first 6 hours and sustained structure for extended hours of thermal treatment.

  11. Modeling degradation and failure of Ni-Cr-Al overlay coatings

    NASA Technical Reports Server (NTRS)

    Nesbitt, J. A.; Heckel, R. W.

    1984-01-01

    Degradation of a Ni-16Cr-25Al-0.06Zr overlay coating on a Ni-22Cr substrate was examined after oxidation accompanied by thermal cycling. Concentration/distance profiles were measured in the coating and substrate after various one-hour cycles at 1150 C. A numerical model was developed to simulate coating degradation by simultaneous oxidation and coating/substrate interdiffusion. The validity of the model was confirmed by comparison of predicted and measured concentration/distance profiles. The ability of the model to identify critical system parameters was demonstrated for the case of the initial Al and Cr content of the coating and substrate.

  12. --No Title--

    Science.gov Websites

    Security Robots Lasers RSS Feed Prev Next Air Force scientists are developing an improved system for coating materials performance evaluations that will accelerate the implementation of new aircraft coatings . New Evaluation System Helps Air Force Better Understand Corrosion Air Force scientists are developing

  13. Slurry Coating System Statement of Work and Specification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chan, S. M.

    2017-02-06

    The Slurry Coating System will be used to coat crystals with a polymer to support Lawrence Livermore National Security, LLC (LLNS) research and development at Lawrence Livermore National Laboratory (LLNL). The crystals will be suspended in water in a kettle. A polymer solution is added, temperature of the kettle is raised and aggregates of the crystals and polymer form. The slurry is heated under vacuum to drive off the solvents and slowly cooled while mixing to room temperature. The resulting aggregates are then filtered and dried. The performance characteristics and fielding constraints define a unique set of requirements for amore » new system. This document presents the specifications and requirements for the system.« less

  14. Amorphous metal formulations and structured coatings for corrosion and wear resistance

    DOEpatents

    Farmer, Joseph C.

    2014-07-15

    A system for coating a surface comprising providing a source of amorphous metal that contains more than 11 elements and applying the amorphous metal that contains more than 11 elements to the surface by a spray. Also a coating comprising a composite material made of amorphous metal that contains more than 11 elements. An apparatus for producing a corrosion-resistant amorphous-metal coating on a structure comprises a deposition chamber, a deposition source in the deposition chamber that produces a deposition spray, the deposition source containing a composite material made of amorphous metal that contains more than 11 elements, and a system that directs the deposition spray onto the structure.

  15. Amorphous metal formulations and structured coatings for corrosion and wear resistance

    DOEpatents

    Farmer, Joseph C [Tracy, CA

    2011-12-13

    A system for coating a surface comprising providing a source of amorphous metal that contains more than 11 elements and applying the amorphous metal that contains more than 11 elements to the surface by a spray. Also a coating comprising a composite material made of amorphous metal that contains more than 11 elements. An apparatus for producing a corrosion-resistant amorphous-metal coating on a structure comprises a deposition chamber, a deposition source in the deposition chamber that produces a deposition spray, the deposition source containing a composite material made of amorphous metal that contains more than 11 elements, and a system that directs the deposition spray onto the structure.

  16. Measurement of Microscale Bio-Thermal Responses by Means of a Micro-Thermocouple Probe

    DTIC Science & Technology

    2001-10-25

    3) A silane coupler (VM-652, HD MicroSystems) was applied as a primer for good adhesion of the polyimide coating (Pyralin® PI2556, HD...MicroSystems), which was used as an insulating layer. We also used SiO2 instead of polyimide . (4) A gold (Au) thin film was deposited by means of the ion...sputtering technique. (5) A coating of polyimide /SiO2 was applied. (6) Finally, a coating of MPC (2-methacryloyloxyethyl phosphorylcholine) copolymers

  17. Refractory Oxide Coatings on Sic Ceramics

    NASA Technical Reports Server (NTRS)

    Lee, Kang N.; Jacobson, Nathan S.; Miller, Robert A.

    1994-01-01

    Silicon carbide with a refractory oxide coating is potentially a very attractive ceramic system. It offers the desirable mechanical and physical properties of SiC and the environmental durability of a refractory oxide. The development of a thermal shock resistant plasma-sprayed mullite coating on SiC is discussed. The durability of the mullite/SiC in oxidizing, reducing, and molten salt environments is discussed. In general, this system exhibits better behavior than uncoated SiC. Areas for further developments are discussed.

  18. Evaluation of coated columbian alloy heat shields for space shuttle thermal protection system application. Volume 1: Phase 1 - Environmental criteria and material characterization, October 1970 - March 1972

    NASA Technical Reports Server (NTRS)

    Black, W. E.

    1972-01-01

    The studies presented are directed toward establishing criteria for a niobium alloy thermal protection system for the space shuttle. Evaluation of three niobium alloys and two silicon coatings for heat shield configurations culminated in the selection of two coating/substrate combinations for environmental criteria and material characterization tests. Specimens were exposed to boost and reentry temperatures, pressure, and loads simulating a space shuttle orbiter flight profile.

  19. Durable silver thin film coating for diffraction gratings

    DOEpatents

    Wolfe, Jesse D [Discovery Bay, CA; Britten, Jerald A [Oakley, CA; Komashko, Aleksey M [San Diego, CA

    2006-05-30

    A durable silver film thin film coated non-planar optical element has been developed to replace Gold as a material for fabricating such devices. Such a coating and resultant optical element has an increased efficiency and is resistant to tarnishing, can be easily stripped and re-deposited without modifying underlying grating structure, improves the throughput and power loading of short pulse compressor designs for ultra-fast laser systems, and can be utilized in variety of optical and spectrophotometric systems, particularly high-end spectrometers that require maximized efficiency.

  20. Proceedings of the DARPA (Defense Advanced Research Projects Agency) Workshop on Diamond-Like Carbon Coatings, held at Albuquerque, New Mexico on April 19-20, 1982,

    DTIC Science & Technology

    1982-01-01

    COATINGS 1 REQUIREMENTS AND POTENTIAL APPLICATIONS Possible Applications of Diamondlike Carbon Coatings for Missile Systems and Lasers - H. E. Bennett 15...34,’’- .- ’’,.’-""." .’ ’" " - - 1 .’ , -. - - . ’- ,-. reach (e.g., the sunglasses, or coatings for land vehicle optics) while others may require fairly long development...lenses and mirrors K. (e) Heat sinks for electronics f) Passivating coatings (in optical discs, solar cells , etc.) (g) Wear-reslstant/eroslon-resistant

  1. Mechanical properties of PEO-coatings on the surface of magnesium alloy MA8 modified by TiN nanoparticles

    NASA Astrophysics Data System (ADS)

    Imshinetsky, Igor M.; Mashtalyar, Dmitriy V.; Sunebryukhov, Sergey L.; Gnedenkov, Sergey V.

    2017-09-01

    The methods to form protective coatings by the plasma electrolytic oxidation method (PEO) in the electrolytic system containing nanosized particles of titanium nitride has been develoted. Tribological and morfological studies of the composite coatings have been carried out. It has been established that the microhardness of the coating with nanoparticles concentration of 3 g/l increases by 2 folds, while the wear resistance - by 2.2 fold, as compared to respective values for the PEO-coating formed in the electrolyte without nanoparticles.

  2. Improvement of silicon solar cell performance through the use of thin film coatings.

    PubMed

    Reynard, D L; Andrew, A

    1966-01-01

    Thin film coatings are used universally in solar cell power systems for spacecraft. Antireflective coatings are used to increase the amount of useful energy reaching the active surface of the cell. Multilayer interference filters are employed to reject unwanted portions of the solar spectrum in order to reduce equilibrium temperature and to prevent ultraviolet damage. Glass covers are used in conjunction with these coatings for the purpose of increasing the thermal emittance of the surface. Appreciable performance increases can be obtained through the uses of these filters and coatings.

  3. Ceramic thermal barrier coatings for commercial gas turbine engines

    NASA Technical Reports Server (NTRS)

    Meier, Susan Manning; Gupta, Dinesh K.; Sheffler, Keith D.

    1991-01-01

    The paper provides an overview of the short history, current status, and future prospects of ceramic thermal barrier coatings for gas turbine engines. Particular attention is given to plasma-sprayed and electron beam-physical vapor deposited yttria-stabilized (7 wt pct Y2O3) zirconia systems. Recent advances include improvements in the spallation life of thermal barrier coatings, improved bond coat composition and spraying techniques, and improved component design. The discussion also covers field experience, life prediction modeling, and future directions in ceramic coatings in relation to gas turbine engine design.

  4. Thermal Conductivity and Thermal Gradient Cyclic Behavior of Refractory Silicate Coatings on SiC/SiC Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Lee, Kang N.; Miller, Robert A.

    2001-01-01

    Plasma-sprayed mullite and BSAS coatings have been developed to protect SiC/SiC ceramic matrix composites from high temperature environmental attack. In this study, thermal conductivity and thermal barrier functions of these coating systems are evaluated using a laser high-heat-flux test rig. The effects of water vapor on coating thermal conductivity and durability are studied by using alternating furnace and laser thermal gradient cyclic tests. The influence of laser high thermal-gradient cycling on coating failure modes is also investigated.

  5. Optical coatings on polymers

    NASA Astrophysics Data System (ADS)

    Bauer, Thomas

    2005-09-01

    Optical transparent polymers are used for technical optics for more than 50 years and currently replace glass as optical material in several application fields. Optical functional coatings like mirrors, filters, beam splitters and anti-reflection coatings gain increasingly in importance. New light sources and head mounted systems need light and effective reflector designs. The paper gives an overview about vacuum coating technologies for metal and dielectric layers on polymers for technical optics. Especially for polymers controlling the complete process chain from injection moulding to storing, coating and shipping decides on the technological and commercial success.

  6. The Lattice and Thermal Radiation Conductivity of Thermal Barrier Coatings: Models and Experiments

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Spuckler, Charles M.

    2010-01-01

    The lattice and radiation conductivity of ZrO2-Y2O3 thermal barrier coatings was evaluated using a laser heat flux approach. A diffusion model has been established to correlate the coating apparent thermal conductivity to the lattice and radiation conductivity. The radiation conductivity component can be expressed as a function of temperature, coating material scattering, and absorption properties. High temperature scattering and absorption of the coating systems can be also derived based on the testing results using the modeling approach. A comparison has been made for the gray and nongray coating models in the plasma-sprayed thermal barrier coatings. The model prediction is found to have a good agreement with experimental observations.

  7. Concept and clinical application of the resin-coating technique for indirect restorations.

    PubMed

    Nikaido, Toru; Tagami, Junji; Yatani, Hirofumi; Ohkubo, Chikahiro; Nihei, Tomotaro; Koizumi, Hiroyasu; Maseki, Toshio; Nishiyama, Yuichiro; Takigawa, Tomoyoshi; Tsubota, Yuji

    2018-03-30

    The resin-coating technique is one of the successful bonding techniques used for the indirect restorations. The dentin surfaces exposed after cavity preparation are coated with a thin film of a coating material or a dentin bonding system combined with a flowable composite resin. Resin coating can minimize pulp irritation and improve the bond strength between a resin cement and tooth structures. The technique can also be applied to endodontically treated teeth, resulting in prevention of coronal leakage of the restorations. Application of a resin coating to root surface provides the additional benefit of preventing root caries in elderly patients. Therefore, the coating materials have the potential to reinforce sound tooth ("Super Tooth" formation), leading to preservation of maximum tooth structures.

  8. Composite neutron absorbing coatings for nuclear criticality control

    DOEpatents

    Wright, Richard N.; Swank, W. David; Mizia, Ronald E.

    2005-07-19

    Thermal neutron absorbing composite coating materials and methods of applying such coating materials to spent nuclear fuel storage systems are provided. A composite neutron absorbing coating applied to a substrate surface includes a neutron absorbing layer overlying at least a portion of the substrate surface, and a corrosion resistant top coat layer overlying at least a portion of the neutron absorbing layer. An optional bond coat layer can be formed on the substrate surface prior to forming the neutron absorbing layer. The neutron absorbing layer can include a neutron absorbing material, such as gadolinium oxide or gadolinium phosphate, dispersed in a metal alloy matrix. The coating layers may be formed by a plasma spray process or a high velocity oxygen fuel process.

  9. Corrosion Performance of Nano-ZrO₂ Modified Coatings in Hot Mixed Acid Solutions.

    PubMed

    Xu, Wenhua; Wang, Zhenyu; Han, En-Hou; Wang, Shuai; Liu, Qian

    2018-06-01

    A nano-ZrO₂ modified coating system was prepared by incorporation of nano-ZrO₂ concentrates into phenolic-epoxy resin. The corrosion performance of the coatings was evaluated in hot mixed acid solution, using electrochemical methods combined with surface characterization, and the effects of nano-ZrO₂ content were specially focused on. The results showed that 1% and 3% nano-ZrO₂ addition enhanced the corrosion resistance of the coatings, while 5% nano-ZrO₂ addition declined it. The coating with 3% nano-ZrO₂ presented the minimum amount of species diffusion, the lowest average roughness (5.94 nm), and the highest C/O ratio (4.55) and coating resistance, and it demonstrated the best corrosion performance among the coating specimens.

  10. Low Conductivity Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dong-Ming

    2005-01-01

    Thermal barrier coatings will be more aggressively designed to protect gas turbine engine hot-section components in order to meet future engine higher fuel efficiency and lower emission goals. In this presentation, thermal barrier coating development considerations and requirements will be discussed. An experimental approach is established to monitor in real time the thermal conductivity of the coating systems subjected to high-heat-flux, steady-state and cyclic temperature gradients. Advanced low conductivity thermal barrier coatings have also been developed using a multi-component defect clustering approach, and shown to have improved thermal stability. The durability and erosion resistance of low conductivity thermal barrier coatings have been improved utilizing advanced coating architecture design, composition optimization, in conjunction with more sophisticated modeling and design tools.

  11. 40 CFR 60.391 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... truck including hoods, fenders, cargo boxes, doors, and grill opening panels. Bake oven means a device...-duty truck assembly lines between the coating application system (dip tank or spray booth) and the bake oven. Guide coat operation means the guide coat spray booth, flash-off area and bake oven(s) which are...

  12. 40 CFR 60.391 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... truck including hoods, fenders, cargo boxes, doors, and grill opening panels. Bake oven means a device...-duty truck assembly lines between the coating application system (dip tank or spray booth) and the bake oven. Guide coat operation means the guide coat spray booth, flash-off area and bake oven(s) which are...

  13. 40 CFR 60.391 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... truck including hoods, fenders, cargo boxes, doors, and grill opening panels. Bake oven means a device...-duty truck assembly lines between the coating application system (dip tank or spray booth) and the bake oven. Guide coat operation means the guide coat spray booth, flash-off area and bake oven(s) which are...

  14. 40 CFR 60.391 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... truck including hoods, fenders, cargo boxes, doors, and grill opening panels. Bake oven means a device...-duty truck assembly lines between the coating application system (dip tank or spray booth) and the bake oven. Guide coat operation means the guide coat spray booth, flash-off area and bake oven(s) which are...

  15. 40 CFR 60.391 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... truck including hoods, fenders, cargo boxes, doors, and grill opening panels. Bake oven means a device...-duty truck assembly lines between the coating application system (dip tank or spray booth) and the bake oven. Guide coat operation means the guide coat spray booth, flash-off area and bake oven(s) which are...

  16. PAINT ADHESION AND CORROSION PERFORMANCE OF CHROMIUM-FREE PRETREATMENTS OF 55% AL-ZN-COATED STEEL

    EPA Science Inventory

    The adhesion and corrosion performances for several pretreatments of 55% Al-Zn-coated steels which were coil-coated with polyester paint systems were determined. The objective of this study was to evaluate new, silane-based metal pretreatments and to compare their performance wit...

  17. Thermal barrier coating

    DOEpatents

    Bowker, Jeffrey Charles; Sabol, Stephen M.; Goedjen, John G.

    2001-01-01

    A thermal barrier coating for hot gas path components of a combustion turbine based on a zirconia-scandia system. A layer of zirconium scandate having the hexagonal Zr.sub.3 Sc.sub.4 O.sub.12 structure is formed directly on a superalloy substrate or on a bond coat formed on the substrate.

  18. Duplex aluminized coatings

    NASA Technical Reports Server (NTRS)

    Gedwill, M. A.; Grisaffe, S. J. (Inventor)

    1975-01-01

    The surface of a metallic base system is initially coated with a metallic alloy layer that is ductile and oxidation resistant. An aluminide coating is then applied to the metallic alloy layer. The chemistry of the metallic alloy layer is such that the oxidation resistance of the subsequently aluminized outermost layer is not seriously degraded.

  19. An analytical model for transient deformation of viscoelastically coated beams: Applications to static-mode microcantilever chemical sensors

    NASA Astrophysics Data System (ADS)

    Heinrich, S. M.; Wenzel, M. J.; Josse, F.; Dufour, I.

    2009-06-01

    The problem governing the transient deformation of an elastic cantilever beam with viscoelastic coating, subjected to a time-dependent coating eigenstrain, is mathematically formulated. An analytical solution for an exponential eigenstrain history, exact within the context of beam theory, is obtained in terms of the coating and base layer thicknesses, the elastic modulus of the base material, the initial coating modulus, the coating relaxation percentage (0%-100%), and the time constants of the coating's relaxation process and its eigenstrain history. Approximate formulas, valid for thin coatings, are derived as special cases to provide insight into system behavior. Main results include (1) the time histories of the beam curvature and the coating stresses, (2) a criterion governing the response type (monotonic or "overshoot" response), and (3) simple expressions for the overshoot ratio, defined as the peak response scaled by the steady-state response, and the time at which the peak response occurs. Applications to polymer-coated microcantilever-based chemical sensors operating in the static mode are discussed.

  20. Wear resistance of WC/Co HVOF-coatings and galvanic Cr coatings modified by diamond nanoparticles

    NASA Astrophysics Data System (ADS)

    Kandeva, M.; Grozdanova, T.; Karastoyanov, D.; Assenova, E.

    2017-02-01

    The efforts in the recent 20 years are related to search of ecological solutions in the tribotechnologies for the replacement of galvanic Cr coatings in the contact systems operating under extreme conditions: abrasion, erosion, cavitation, corrosion, shock and vibration loads. One of the solutions is in the composite coatings deposited by high velocity gas-flame process (HVOF). The present paper presents comparative study results for mechanical and tribological characteristics of galvanic Cr coatings without nanoparticles, galvanic Cr coatings modified by diamond nanoparticles NDDS of various concentration 0.6; 10; 15 и 20% obtained under three technological regimes, and composite WC-12Co coating. Comparative results about hardness, wear, wear resistance and friction coefficient are obtained for galvanic Cr-NDDS and WC-12Co coatings operating at equal friction conditions of dry friction on abrasive surface. The WC-12Co coating shows 5.4 to 7 times higher wear resistance compared to the galvanic Cr-NDDS coatings.

  1. Hydrophilic nano-silica coating agents with platinum and diamond nanoparticles for denture base materials.

    PubMed

    Yoshizaki, Taro; Akiba, Norihisa; Inokoshi, Masanao; Shimada, Masayuki; Minakuchi, Shunsuke

    2017-05-31

    Preventing microorganisms from adhering to the denture surface is important for ensuring the systemic health of elderly denture wearers. Silica coating agents provide high hydrophilicity but lack durability. This study investigated solutions to improve the durability of the coating layer, determine an appropriate solid content concentration of SiO 2 in the silica coating agent, and evaluate the effect of adding platinum (Pt) and diamond nanoparticles (ND) to the agent. Five coating agents were prepared with different SiO 2 concentrations with/without Pt and ND additives. The contact angle was measured, and the brush-wear test was performed. Scanning electron microscopy was used to investigate the silica coating layer. The appropriate concentration of SiO 2 was found to be 0.5-0.75 wt%. The coating agents with additives showed significantly high hydrophilicity immediately after coating and after the brush-wear test. The coating agents with/without additives formed a durable coating layer even after the brush-wear test.

  2. Modulation of a pulsatile release drug delivery system using different swellable/rupturable materials.

    PubMed

    El-Maradny, Hoda A

    2007-11-01

    Diclofenac sodium tablets consisting of core coated with two layers of swelling and rupturable coatings were prepared and evaluated as a pulsatile drug delivery system. Cores containing the drug were prepared by direct compression using microcrystalline cellulose and Ludipress as hydrophilic excipients with the ratio of 1:1. Cores were then coated sequentially with an inner swelling layer of different swellable materials; either Explotab, Croscarmellose sodium, or Starch RX 1500, and an outer rupturable layer of different levels of ethylcellulose. The effect of the nature of the swelling layer and the level of the rupturable coating on the lag time and the water uptake were investigated. Drug release rate studies were performed using USP paddle method. Results showed the dependence of the lag time and water uptake prior to tablet rupture on the nature of the swelling layer and the coating levels. Explotab showed a significant decrease in the lag time, followed by Croscarmellose sodium and finally by Starch RX 1500. Increasing the level of ethylcellulose coating retarded the diffusion of the release medium to the swelling layer and the rupture of the coat, thus prolonging the lag time.

  3. Nanocontainer-based corrosion sensing coating.

    PubMed

    Maia, F; Tedim, J; Bastos, A C; Ferreira, M G S; Zheludkevich, M L

    2013-10-18

    The present paper reports on the development of new sensing active coating on the basis of nanocontainers containing pH-indicating agent. The coating is able to detect active corrosion processes on different metallic substrates. The corrosion detection functionality based on the local colour change in active cathodic zones results from the interaction of hydroxide ions with phenolphthalein encapsulated in mesoporous nanocontainers which function as sensing nanoreactors. The mesoporous silica nanocontainers are synthesized and loaded with pH indicator phenolphthalein in a one-stage process. The resulting system is mesoporous, which together with bulkiness of the indicator molecules limits their leaching. At the same time, penetration of water molecules and ions inside the container is still possible, allowing encapsulated phenolphthalein to be sensitive to the pH in the surrounding environment and outperforming systems when an indicator is directly dispersed in the coating layer.The performed tests demonstrate the pH sensitivity of the developed nanocontainers being dispersed in aqueous solutions. The corrosion sensing functionality of the protective coatings with nanocontainers are proven for aluminium- and magnesium-based metallic substrates. As a result, the developed nanocontainers show high potential to be used in a new generation of active protective coatings with corrosion-sensing coatings.

  4. Development of AC impedance methods for evaluating corroding metal surfaces and coatings

    NASA Technical Reports Server (NTRS)

    Knockemus, Ward

    1986-01-01

    In an effort to investigate metal surface corrosion and the breakdown of metal protective coatings the AC Impedance Method was applied to zinc chromate primer coated 2219-T87 aluminum. The model 368-1 AC Impedance Measurement System recently acquired by the MSFC Corrosion Research Branch was used to monitor changing properties of coated aluminum disks immersed in 3.5% NaCl buffered at ph 5.5 over three to four weeks. The DC polarization resistance runs were performed on the same samples. The corrosion system can be represented by an electronic analog called an equivalent circuit that consists of transistors and capacitors in specific arrangements. This equivalent circuit parallels the impedance behavior of the corrosion system during a frequency scan. Values for resistances and capacities that can be assigned in the equivalent circuit following a least squares analysis of the data describe changes that occur on the corroding metal surface and in the protective coating. A suitable equivalent circuit was determined that predicts the correct Bode phase and magnitude for the experimental sample. The DC corrosion current density data are related to equivalent circuit element parameters.

  5. Deposition Mechanism and Microstructure of Laser-Assisted Cold-Sprayed (LACS) Al-12 wt.%Si Coatings: Effects of Laser Power

    NASA Astrophysics Data System (ADS)

    Olakanmi, E. O.; Tlotleng, M.; Meacock, C.; Pityana, S.; Doyoyo, M.

    2013-06-01

    Surface treatment is one of the most costly processes for treating metallic components against corrosion. Laser-assisted cold spray (LACS) has an opportunity to decrease those costs particularly in transportation systems, chemical industries, and renewable energy systems. This article highlights some of those potential applications. In the LACS process, a laser beam irradiates the substrate and the particles, thereby softening both of them. Consequently, the particles deform upon impact at the substrate and build up a coating. To circumvent the processing problems associated with cold-spray (CS) deposition of low-temperature, corrosion-resistant Al-12 wt.%Si coatings, a preliminary investigation detailing the effect of laser power on its LACS deposition mechanism and microstructural properties is presented. The deposition efficiency, the microstructure, and the microhardness of the LACS-deposited coatings produced by a 4.4-kW Nd:YAG laser system were evaluated. The outcome of this study shows that pore- and crack-free Al-12 wt.%Si coatings were deposited via softening by laser irradiation and adiabatic shearing phenomena at an optimum laser power of 2.5 kW.

  6. A new measurement method of coatings thickness based on lock-in thermography

    NASA Astrophysics Data System (ADS)

    Zhang, Jin-Yu; Meng, Xiang-bin; Ma, Yong-chao

    2016-05-01

    Coatings have been widely used in modern industry and it plays an important role. Coatings thickness is directly related to the performance of the functional coatings, therefore, rapid and accurate coatings thickness inspection has great significance. Existing coatings thickness measurement method is difficult to achieve fast and accurate on-site non-destructive coatings inspection due to cost, accuracy, destruction during inspection and other reasons. This paper starts from the introduction of the principle of lock-in thermography, and then performs an in-depth study on the application of lock-in thermography in coatings inspection through numerical modeling and analysis. The numerical analysis helps explore the relationship between coatings thickness and phase, and the relationship lays the foundation for accurate calculation of coatings thickness. The author sets up a lock-in thermography inspection system and uses thermal barrier coatings specimens to conduct an experiment. The specimen coatings thickness is measured and calibrated to verify the quantitative inspection. Experiment results show that the lock-in thermography method can perform fast coatings inspection and the inspection accuracy is about 95%. Therefore, the method can meet the field testing requirements for engineering projects.

  7. Cast iron cutting with nano TiN and multilayer TiN-CrN coated inserts

    NASA Astrophysics Data System (ADS)

    Perucca, M.; Durante, S.; Semmler, U.; Rüger, C.; Fuentes, G. G.; Almandoz, E.

    2012-09-01

    During the past decade great success has been achieved in the development of duplex and multilayer multi-functional surface systems. Among these surface systems outstanding properties have nanoscale multilayer coatings. Within the framework of the M3-2S project funded in the 7th European Framework Programme, several nanoscale multilayer coatings have been developed and investigated for experimental and industrial validation. This paper shows the performance of TiN and TiN/CrN nanoscale multilayer coatings on WC cutting inserts when machining GJL250 cast iron. The thin films have been deposited by cathodic arc evaporation in an industrial PVD system. The multilayer deposition characteristic and its properties are shown. The inserts have been investigated in systematic cutting experiments of cast iron bars on a turning machine specifically equipped for force measurements, accompanied by wear determination. Furthermore, equivalent experiments have been carried out on an industrial turning unit. Industrial validation criteria have been applied to assess the comparative performance of the coatings. The choice of the material and the machined parts is driven by an interest in automotive applications. The industrial tests show the need to further optimise the multi-scale modelling approach in order to reduce the lead time of the coating development as well as to improve simulation reliability.

  8. Advanced study of thermal behaviour of CSZ comparing with the classic YSZ coating

    NASA Astrophysics Data System (ADS)

    Dragomirescu, A.; Constantin, N.; Ştefan, A.; Manoliu, V.; Truşcă, R.

    2017-01-01

    Thermal barrier coatings (TBC) are advanced materials typically applied to metal surfaces subjected to extreme temperatures to protect them and increase their lifetime. Ceria stabilized zirconia ceramic layer (CSZ) is increasingly used as an alternative improved as replace for classical TBC system - yttria stabilized zirconia - thanks to superior properties, including mechanical and high resistance to thermal corrosion. The paper describes the thermal shock testing of two types of thermal barrier coatings used to protect a nickel super alloy. For the experimental procedure, it was used plate samples from nickel super alloy with a bond coat and a ceramic top coat. The top coat was different: on some samples, it was used YSZ and on others CSZ. Ni based super alloys have good corrosion resistance in reducing environments action, but poor in oxidizing conditions. Extreme environments can lead to loss of material by oxidation / corrosion, along with decreased mechanical properties of the substrate due to damaging elements which diffuses into the substrate at high temperatures. Using laboratory equipment, the TBC systems were exposed repeatedly to extreme high temperatures for a short time and then cooled. After the thermal shock tests, the samples were morph-structured characterized using electronic microscopy to analyze the changes. The experimental results were compared to rank the TBC systems in order of performance.

  9. Use of bicarbonate buffer systems for dissolution characterization of enteric-coated proton pump inhibitor tablets.

    PubMed

    Shibata, Hiroko; Yoshida, Hiroyuki; Izutsu, Ken-Ichi; Goda, Yukihiro

    2016-04-01

    The aim of this study was to assess the effects of buffer systems (bicarbonate or phosphate at different concentrations) on the in vitro dissolution profiles of commercially available enteric-coated tablets. In vitro dissolution tests were conducted using an USP apparatus II on 12 enteric-coated omeprazole and rabeprazole tablets, including innovator and generic formulations in phosphate buffers, bicarbonate buffers and a media modified Hanks (mHanks) buffer. Both omeprazole and rabeprazole tablets showed similar dissolution profiles among products in the compendial phosphate buffer system. However, there were large differences between products in dissolution lag time in mHanks buffer and bicarbonate buffers. All formulations showed longer dissolution lag times at lower concentrations of bicarbonate or phosphate buffers. The dissolution rank order of each formulation differed between mHanks buffer and bicarbonate buffers. A rabeprazole formulation coated with a methacrylic acid copolymer showed the shortest lag time in the high concentration bicarbonate buffer, suggesting varied responses depending on the coating layer and buffer components. Use of multiple dissolution media during in vitro testing, including high concentration bicarbonate buffer, would contribute to the efficient design of enteric-coated drug formulations. © 2016 Royal Pharmaceutical Society, Journal of Pharmacy and Pharmacology.

  10. Synthesis and Electrochemical Properties of Amorphous Carbon Coated Sn Anode Material for Lithium Ion Batteries and Sodium Ion Batteries.

    PubMed

    Choi, Ji-Seub; Lee, Hoi-Jin; Ha, Jong-Keun; Cho, Kwon-Koo

    2018-09-01

    Sn is one of the promising anode material for lithium-ion and sodium-ion batteries because of Sn has many advantages such as a high theoretical capacity of 994 mAh/g, inexpensive, abundant and nontoxic. However, Sn-based anodes have a critical problem from pulverization of the particles due to large volume change (>300% in lithium-ion battery and 420% in the sodium-ion battery) during alloying/dealloying reaction. To overcome this problem, we fabricate Sn/C particle of core/shell structure. Sn powder was produced by pulsed wire explosion in liquid media, and amorphous carbon coating process was prepared by hydrothermal synthesis. The charge capacity of Sn electrode and amorphous carbon coated Sn electrode was 413 mAh/g and 452 mAh/g after 40 cycles in lithium half-cell test. The charge capacity of Sn electrode and amorphous carbon coated Sn electrode was 240 mAh/g and 487 mAh/g after 40 cycles in sodium half-cell test. Amorphous carbon coating contributed to the improvement of capacity in lithium and sodium battery systems. And the effect of amorphous carbon coating in sodium battery system was superior to that in lithium battery system.

  11. Evaluating the potential efficacy of three antifungal sealants of duct liner and galvanized steel as used in HVAC systems.

    PubMed

    Foarde, Karin K; Menetrez, M Y

    2002-07-01

    Current recommendations for remediation of fiberglass duct materials contaminated with fungi specify complete removal, which can be extremely expensive, but in-place duct cleaning may not provide adequate protection from regrowth of fungal contamination. Therefore, a common practice in the duct-cleaning industry is the postcleaning use of antifungal surface coatings with the implication that they may contain or limit regrowth. However, even the proper use of these products has generally been discouraged because little research has been conducted on the effectiveness of most products as used in heating, ventilating, and air-conditioning (HVAC) systems. Three different coatings were evaluated on fiberglass duct liner (FGDL). Two of the three coatings were able to limit growth in the 3-month study; the third did not. One of the coatings that was able to limit growth was further evaluated in a comparison of FGDL or galvanized steel (GS) under conditions that mimicked their use in HVAC systems. The results showed that both moderately soiled and heavily soiled uncoated FGDL and GS duct material can support fungal growth, but that GS duct material was more readily cleaned. The use of an antifungal coating helped limit, but did not fully contain, regrowth on FGDL. No regrowth was detected on the coated GS.

  12. The Prediction of Long-Term Coating Performance from Short-Term Electrochemical Data. Part 2; Comparison of Electrochemical Data to Field Exposure Results for Coatings on Steel

    NASA Technical Reports Server (NTRS)

    Contu, F.; Taylor, S. R.; Calle, L. M.; Hintze, P. E.; Curran, J. P.; Li, W.

    2009-01-01

    The pace of coatings development is limited by the time required to assess their corrosion protection properties. This study takes a step f orward from Part I in that it correlates the corrosion performance of organic coatings assessed by a series of short-term electrochemical measurement with 18-month beachside exposure results of duplicate pan els. A series of 19 coating systems on A36 steel substrates were test ed in a completely blind study using the damage tolerance test (DTT). In the DTT, a through-film pinhole defect is created, and the electro chemical characteristics of the defect are then monitored over the ne xt 4 to 7 days while immersed in 0.SM NaCl. The open circuit potentia l, anodic potentiostatic polarization tests and electrochemical imped ance spectroscopy were used to study the corrosion behavior of the co ating systems. The beachside exposure tests were conducted at the Ken nedy Space Center according to ASTM D610-01. It was found that for 79 % of the coatings systems examined, the 18 month beachside exposure r esults could be predicted by two independent laboratory tests obtained within 7 days.

  13. Improvement of reusable surface insulation material

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The results are presented of a program to improve the reusable surface insulation (RSI) system through the improvement of the LI-1500 material properties and the simplification of the RSI system. The improvements made include: 2500 F-capability RSI systems, water-impervious surface coatings, establishment of a high-emittance coating constituent, development of a secondary water-reduction system, and achievement of a lower density (9 pcf) RSI material.

  14. Investigation into the role of primer, pre-treatments and coating microstructure in preventing cut edge corrosion of organically coated steels

    NASA Astrophysics Data System (ADS)

    Khan, Khalil

    Investigations were carried out to assess the role of primer, pretreatments and coating microstructure in preventing cutedge corrosion of chrome free organically coated steels. Zinc runoff was monitored from a range of organically coated steels with a large cutedge length exposed over 18 months at Swansea University roof top site. The zinc in the runoff leaches from the zinc-aluminium alloy coating of the substrate. The paint systems' corrosion performance was assessed by monitoring the levels of zinc in the runoff. Consequently the levels of zinc reflected the effectiveness of the applied paint system against corrosion. Runoff was high in initial months with zinc levels reducing with time due to the build up of corrosion products that hindered the progress of corrosion. An accelerated laboratory test using a distilled water electrolyte was developed that predict long-term external weathering runoff from panels of a range of organically coated steels. The corrosion mechanisms of a variety of organically coated Galvalloy steel have been examined using the scanning vibrating electrode technique (SVET) in 0.1%NaCI. The corrosion behaviour of a coating is related to the zinc-aluminium alloy coating structure and combination of pretreatment and primer. The SVET has been used to assess total zinc loss and the corrosion rate for a comparative measure of organically coating system performance. A correlation has been developed from SVET 24hour experiment data to accelerated weathering data and external weather data that can aid more accurately predicting the in service life of the product. Also considered were the effects of electrolyte conductivity on the morphology of corrosion on pure zinc. A mathematical model has been developed to predict corrosion pit population. Altered microstructure of solidifying zinc aluminium alloy melt via ultrasonication was investigated. Ultrasound irradiation significantly altered the final microstructure. The influence of morphed microstructure upon the corrosion behaviour was explored using the SVET in 0.1%NaCI. The ultrasound manipulated microstructure had generally a positive effect on the corrosion behaviour.

  15. ETV Program Report: Coatings for Wastewater Collection Systems - Epoxy Tec International, Inc., CPP RC3

    EPA Science Inventory

    The Epoxytec, Inc. CPP™ epoxy coating used for wastewater collection system rehabilitation was evaluated by EPA’s Environmental Technology Verification Program under laboratory conditions at the Center for Innovative Grouting Material and Technology (CIGMAT) Laboratory at the Uni...

  16. Mechanistic modelling of drug release from polymer-coated and swelling and dissolving polymer matrix systems.

    PubMed

    Kaunisto, Erik; Marucci, Mariagrazia; Borgquist, Per; Axelsson, Anders

    2011-10-10

    The time required for the design of a new delivery device can be sensibly reduced if the release mechanism is understood and an appropriate mathematical model is used to characterize the system. Once all the model parameters are obtained, in silico experiments can be performed, to provide estimates of the release from devices with different geometries and compositions. In this review coated and matrix systems are considered. For coated formulations, models describing the diffusional drug release, the osmotic pumping drug release, and the lag phase of pellets undergoing cracking in the coating due to the build-up of a hydrostatic pressure are reviewed. For matrix systems, models describing pure polymer dissolution, diffusion in the polymer and drug release from swelling and eroding polymer matrix formulations are reviewed. Importantly, the experiments used to characterize the processes occurring during the release and to validate the models are presented and discussed. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Alignment of a multilayer-coated imaging system using extreme ultraviolet Foucault and Ronchi interferometric testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ray-Chaudhuri, A.K.; Ng, W.; Cerrina, F.

    1995-11-01

    Multilayer-coated imaging systems for extreme ultraviolet (EUV) lithography at 13 nm represent a significant challenge for alignment and characterization. The standard practice of utilizing visible light interferometry fundamentally provides an incomplete picture since this technique fails to account for phase effects induced by the multilayer coating. Thus the development of optical techniques at the functional EUV wavelength is required. We present the development of two EUV optical tests based on Foucault and Ronchi techniques. These relatively simple techniques are extremely sensitive due to the factor of 50 reduction in wavelength. Both techniques were utilized to align a Mo--Si multilayer-coated Schwarzschildmore » camera. By varying the illumination wavelength, phase shift effects due to the interplay of multilayer coating and incident angle were uniquely detected. {copyright} {ital 1995} {ital American} {ital Vacuum} {ital Society}« less

  18. Solid state properties and drug release behavior of co-amorphous indomethacin-arginine tablets coated with Kollicoat® Protect.

    PubMed

    Petry, Ina; Löbmann, Korbinian; Grohganz, Holger; Rades, Thomas; Leopold, Claudia S

    2017-10-01

    A promising approach to improve the solubility of poorly water-soluble drugs and to overcome the stability issues related to the plain amorphous form of the drugs, is the formulation of drugs as co-amorphous systems. Although polymer coatings have been proven very useful with regard to tablet stability and modifying drug release, there is little known on coating co-amorphous formulations. Hence, the aim of the present study was to investigate whether polymer coating of co-amorphous formulations is possible without inducing recrystallization. Tablets containing either a physical mixture of crystalline indomethacin and arginine or co-amorphous indomethacin-arginine were coated with a water soluble polyvinyl alcohol-polyethylene glycol graft copolymer (Kollicoat® Protect) and stored at 23°C/0% RH and 23°C/75% RH. The solid state properties of the coated tablets were analyzed by XRPD and FTIR and the drug release behavior was tested for up to 4h in phosphate buffer pH 4.5. The results showed that the co-amorphous formulation did not recrystallize during the coating process or during storage at both storage conditions for up to three months, which confirmed the high physical stability of this co-amorphous system. Furthermore, the applied coating could partially inhibit recrystallization of indomethacin during drug release testing, as coated tablets reached a higher level of supersaturation compared to the respective uncoated formulations and showed a lower decrease of the dissolved indomethacin concentration upon precipitation. Thus, the applied coating enhanced the AUC of the dissolution curve of the co-amorphous tablets by about 30%. In conclusion, coatings might improve the bioavailability of co-amorphous formulations. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Synergistic effect of two cell recognition systems: glycosphingolipid-glycosphingolipid interaction and integrin receptor interaction with pericellular matrix protein.

    PubMed

    Kojima, N; Hakomori, S

    1991-12-01

    GM3-expressing cells adhere, spread and migrate on plastic plates coated with Gg3, LacCer and Gb4, but not with other glycosphingolipids (GSLs). Thus, cell adhesion, spreading and migration through GSL-GSL interaction occur in an analogous fashion to the interaction of cells with adhesive matrix proteins [AP, e.g. fibronectin (FN), laminin (LN)] through their integrin receptors. In this study, the adhesion of two GM3-expressing cell lines (B16 melanoma and HEL299 fibroblast) on plastic plates co-coated with GSL plus AP is compared with adhesion on plates coated with GSL (Gg3 or LacCer) alone, or coated with AP alone. Results show that: (i) cell adhesion on GSL-coated plates takes place earlier in the incubation period than that on AP-coated plates; (ii) cell adhesion, as well as spreading, was greatly enhanced (in terms of strength and rapidity) on plates co-coated with GSL plus AP; (iii) repulsion (negative adhesion) of cells was observed on plates co-coated with AP plus N-acetyl-GM3 (NAcGM3) and was presumably based on repulsive NAcGM3-NAcGM3 interaction; (iv) GM3-dependent cell adhesion on GSL-coated plates, as well as synergistic promotion of cell adhesion (based on the GSL-GSL and AP-integrin systems), was suppressed by incubation of cells with anti-GM3 monoclonal antibody DH2 or sialidase. Synergistic adhesion of cells on GSL/AP co-coated plates was less inhibited by incubation with peptide sequences RGDS or YIGSR than was adhesion on plates coated with AP alone.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Continuous Sputter Deposition Coating of Long Monofilaments

    DTIC Science & Technology

    2014-04-01

    sectional view of sample 1. Using SEM, the copper coated monofilament was observed to be smooth with little to no indications of flaking or cracked...monofilament. The magnetron sputter deposition (MSD) process was used to apply copper coatings on the order of 10–100 nanometers thick onto both nylon...of monofilaments. Though only copper coatings are discussed in this report, the system could also be used to apply a variety of sputtered metal or

  1. Corrosion prevention of cold rolled steel using water dispersible lignosulfonic acid doped polyaniline

    NASA Technical Reports Server (NTRS)

    Viswanathan, Tito (Inventor)

    2007-01-01

    The invention provides coatings useful for preventing corrosion of metals. The coatings comprise a film-forming resin and conductive polymers comprising linearly conjugated .pi.-systems and residues of sulfonated lignin or a sulfonated polyflavonoid or derivatives of solfonated lignin or a sulfonated polyflavonoid. The invention also provides a latex formulation of the coatings, and articles of manufacture comprising a metal substrate and a coating in contact with the metal substrate.

  2. Corrosion Prevention of Cold Rolled Steel Using Water Dispersible Lignosulfonic Acid Doped Polyaniline

    NASA Technical Reports Server (NTRS)

    Viswanathan, Tito (Inventor)

    2007-01-01

    The invention provides coatings useful for preventing corrosion of metals. The coatings comprise a film-forming resin and conductive polymers comprising linearly conjugated x-systems and residues of sulfonated lignin or a sulfonated polyflavonoid or derivatives of solfonated lignin or a sulfonated polyflavonoid. The invention also provides a latex formulation of the coatings, and articles of manufacture comprising a metal substrate and a coating in contact with the metal substrate.

  3. CORROSION PREVENTION OF COLD ROLLED STEEL USING WATER DISPERSIBLE LIGNOSULFONIC ACID DOPED POLYANILINE

    NASA Technical Reports Server (NTRS)

    Viswanathan, Tito (Inventor)

    2005-01-01

    The invention provides coatings useful for preventing corrosion of metals. The coatings comprise a film-forming resin and conductive polymers comprising linearly conjugated pi-systems and residues of sulfonated lignin or a sulfonated polyflavonoid or derivatives of sulfonated lignin or a sulfonated polyflavonoid. The invention also provides a latex formulation of the coatings, and articles of manufacture comprising a metal substrate and a coating in contact with the metal substrate.

  4. pH Sensitive Microcapsules for Delivery of Corrosion Inhibitors

    NASA Technical Reports Server (NTRS)

    Li, Wenyan; Calle, Luz M.

    2006-01-01

    A considerable number of corrosion problems can be solved by coatings. However, even the best protective coatings can fail by allowing the slow diffusion of oxygen and moisture to the metal surface. Corrosion accelerates when a coating delaminates. Often, the problems start when microscopic nicks or pits on the surface develop during manufacturing or through wear and tear. This problem can be solved by the incorporation of a self-healing function into the coating. Several new concepts are currently under development to incorporate this function into a coating. Conductive polymers, nanoparticles, and microcapsules are used to release corrosion-inhibiting ions at a defect site. The objective of this investigation is to develop a smart coating for the early detection and inhibition of corrosion. The dual function of this new smart coating system is performed by pH-triggered release microcapsules. The microcapsules can be used to deliver healing agents to terminate the corrosion process at its early stage or as corrosion indicators by releasing dyes at the localized corrosion sites. The dyes can be color dyes or fluorescent dyes, with or without pH sensitivity. Microcapsules were formed through the interfacial polymerization process. The average size of the microcapsules can be adjusted from 1 to 100 micron by adjusting the emulsion formula and the microcapsule forming conditions. A typical microcapsule size is around 10 microns with a narrow size distribution. The pH sensitivity of the microcapsule can also be controlled by adjusting the emulsion formula and the polymerization reaction time. Both corrosion indicator (pH indicator) and corrosion inhibitor containing microcapsules were formed and incorporated into paint systems. Test panels of selected steels and aluminum alloys were painted using these paints. Testing of compatibility between the microcapsule system and different paint systems are in progress. Initial experiments with the microcapsule containing paint show visible color changes at induced corrosion sites and improvement of corrosion protection. Further investigation of the performance of the coating using electrochemical techniques and long term exposure are currently underway.

  5. Low-Temperature Self-Healing of a Microcapsule-Type Protective Coating.

    PubMed

    Kim, Dong-Min; Cho, Yu-Jin; Choi, Ju-Young; Kim, Beom-Jun; Jin, Seung-Won; Chung, Chan-Moon

    2017-09-14

    Low-temperature self-healing capabilities are essential for self-healing materials exposed to cold environments. Although low-temperature self-healing concepts have been proposed, there has been no report of a microcapsule-type low-temperature self-healing system wherein the healing ability was demonstrated at low temperature. In this work, low-temperature self-healing of a microcapsule-type protective coating was demonstrated. This system employed silanol-terminated polydimethylsiloxane (STP) as a healing agent and dibutyltin dilaurate (DD) as a catalyst. STP underwent a condensation reaction at -20 °C in the presence of DD to give a viscoelastic product. The reaction behavior of STP and the viscoelasticity of the reaction product were investigated. STP and DD were separately microencapsulated by in situ polymerization and interfacial polymerization methods, respectively. The STP- and DD-loaded microcapsules were mixed into a commercial enamel paint, and the resulting formulation was applied to glass slides, steel panels, and mortars to prepare self-healing coatings. When the self-healing coatings were damaged at a low temperature (-20 °C), STP and DD were released from broken microcapsules and filled the damaged area. This process was effectively visualized using a fluorescent dye. The self-healing coatings were scratched and subjected to corrosion tests, electrochemical tests, and saline solution permeability tests. The temperature of the self-healing coatings was maintained at -20 °C before and after scratching and during the tests. We successfully demonstrated that the STP/DD-based coating system has good low-temperature self-healing capability.

  6. An investigation of the curing process for moisture-crosslinkable polyethylene used in cable coating extrusion

    NASA Astrophysics Data System (ADS)

    Cantor, Kirk Martin

    1998-12-01

    Moisture-crosslinkable polyethylene used in the extrusion coating of electrical cable has many advantages over other polymer systems used for crosslinked cable coating. However, one of its major drawbacks is the long cure times required. The purpose of this study was to describe how curing takes place in cable systems using moisture-crosslinkable polyethylene, with an ultimate goal of gaining insight into how cure times might be reduced. Crosslinking was investigated with an emphasis on how the curing reaction proceeds through the coating, using analyses to characterize processing conditions and resulting mechanical and structural properties. In the design of the study, material compounds were varied as were curing conditions. Cable coatings were sectioned by position through the coating thickness and characterized using several techniques. Mechanical, thermal, and structural properties of the polymer coating were measured. A significant finding from the study was that the degree of cure was highest at positions in the coating closest to the conductor. Because this was opposite to what was expected, an investigation into the cause of this finding was pursued. It was found that during cure at elevated temperature, the inside surface of the coating remains at a generally higher temperature than the outside surface. This provides a more favorable cure condition for positions in the coating closest to the conductor. Based on the results of this study, a list of suggested follow-up studies is provided at the end of the dissertation. One proposal for investigating reduced cure times involves providing heat to the interior of the cable during cure.

  7. Thermal certification tests of Orbiter Thermal Protection System tiles coated with KSC coating slurries

    NASA Technical Reports Server (NTRS)

    Milhoan, James D.; Pham, Vuong T.; Sherborne, William D.

    1993-01-01

    Thermal tests of Orbiter thermal protection system (TPS) tiles, which were coated with borosilicate glass slurries fabricated at Kennedy Space Center (KSC), were performed in the Radiant Heat Test Facility and the Atmospheric Reentry Materials & Structures Evaluation Facility at Johnson Space Center to verify tile coating integrity after exposure to multiple entry simulation cycles in both radiant and convective heating environments. Eight high temperature reusable surface insulation (HRSI) tiles and six low temperature reusable surface insulation (LRSI) tiles were subjected to 25 cycles of radiant heat at peaked surface temperatures of 2300 F and 1200 F, respectively. For the LRSI tiles, an additional cycle at peaked surface temperature of 2100 F was performed. There was no coating crack on any of the HRSI specimens. However, there were eight small coating cracks (less than 2 inches long) on two of the six LRSI tiles on the 26th cycle. There was practically no change on the surface reflectivity, physical dimensions, or weight of any of the test specimens. There was no observable thermal-chemical degradation of the coating either. For the convective heat test, eight HRSI tiles were tested for five cycles at a surface temperature of 2300 F. There was no thermal-induced coating crack on any of the test specimens, almost no change on the surface reflectivity, and no observable thermal-chemical degradation with an exception of minor slumping of the coating under painted TPS identification numbers. The tests demonstrated that KSC's TPS slurries and coating processes meet the Orbiter's thermal specification requirements.

  8. Final Report on NASA Portable Laser Coating Removal Systems Field Demonstrations and Testing

    NASA Technical Reports Server (NTRS)

    Rothgeb, Matthew J; McLaughlin, Russell L.

    2008-01-01

    Processes currently used throughout the National Aeronautics and Space Administration (NASA) to remove corrosion and coatings from structures, ground service equipment, small parts and flight components result in waste streams consisting of toxic chemicals, spent media blast materials, and waste water. When chemicals are used in these processes they are typically high in volatile organic compounds (VOC) and are considered hazardous air pollutants (HAP). When blast media is used, the volume of hazardous waste generated is increased significantly. Many of the coatings historically used within NASA contain toxic metals such as hexavalent chromium, and lead. These materials are highly regulated and restrictions on worker exposure continue to increase. Most recently the Occupational Safety and Health Administration (OSHA) reduced the permissible exposure limit (PEL) for hexavalent chromium (CrVI) from 52 to 5 micrograms per cubic meter of air as an 8-hour time-weighted average. Hexavalent chromium is found in numerous pretreatment and primer coatings used within the Space Shuttle Program. In response to the need to continue to protect assets within the agency and the growing concern over these new regulations, NASA is researching different ways to continue the required maintenance of both facility and flight equipment in a safe, efficient, and environmentally preferable manner. The use of laser energy to prepare surfaces for a variety of processes, such as corrosion and coating removal, weld preparation, and non destructive evaluation (NDE) is a relatively new application of the technology that has been proven to be environmentally preferable and in many cases less labor intensive than currently used removal methods. The novel process eliminates VOCs and blast media and captures the removed coatings with an integrated vacuum system. This means that the only waste generated are the coatings that are removed, resulting in an overall cleaner process. The development of a Portable Laser Coating Removal System (PLCRS) started as the goal of a Joint Group on Pollution Prevention (JG-PP) project, led by the Air Force, where several types of lasers in several configurations were thoroughly evaluated. Following this project, NASA decided to evaluate the best performers on processes and coatings specific to the agency. Laser systems used during this project were all of a similar design, between 40 and 500 Watts, most of which had integrated vacuum systems in order to collect materials removed from substrate surfaces during operation.

  9. Development and Fatigue Testing of Ceramic Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dong-Ming; Choi, Sung R.; Miller, Robert A.

    2004-01-01

    Ceramic thermal barrier coatings will play an increasingly important role in future gas turbine engines because of their ability to effectively protect the engine components and further raise engine temperatures. Durability of the coating systems remains a critical issue with the ever-increasing temperature requirements. Thermal conductivity increase and coating degradation due to sintering and phase changes are known to be detrimental to coating performance. There is a need to characterize the coating thermal fatigue behavior and temperature limit, in order to potentially take full advantage of the current coating capability. In this study, thermal conductivity and cyclic fatigue behaviors of plasma-sprayed ZrO2-8wt%Y2O3 thermal barrier coatings were evaluated under high temperature, large thermal gradient and thermal cycling conditions. The coating degradation and failure processes were assessed by real-time monitoring of the coating thermal conductivity under the test conditions. The ceramic coating crack initiation and propagation driving forces and failure modes under the cyclic thermal loads will be discussed in light of the high temperature mechanical fatigue and fracture testing results.

  10. A hydrogel-based versatile screening platform for specific biomolecular recognition in a well plate format.

    PubMed

    Beer, Meike V; Rech, Claudia; Diederichs, Sylvia; Hahn, Kathrin; Bruellhoff, Kristina; Möller, Martin; Elling, Lothar; Groll, Jürgen

    2012-04-01

    Precise determination of biomolecular interactions in high throughput crucially depends on a surface coating technique that allows immobilization of a variety of interaction partners in a non-interacting environment. We present a one-step hydrogel coating system based on isocyanate functional six-arm poly(ethylene oxide)-based star polymers for commercially available 96-well microtiter plates that combines a straightforward and robust coating application with versatile bio-functionalization. This system generates resistance to unspecific protein adsorption and cell adhesion, as demonstrated with fluorescently labeled bovine serum albumin and primary human dermal fibroblasts (HDF), and high specificity for the assessment of biomolecular recognition processes when ligands are immobilized on this surface. One particular advantage is the wide range of biomolecules that can be immobilized and convert the per se inert coating into a specifically interacting surface. We here demonstrate the immobilization and quantification of a broad range of biochemically important ligands, such as peptide sequences GRGDS and GRGDSK-biotin, the broadly applicable coupler molecule biocytin, the protein fibronectin, and the carbohydrates N-acetylglucosamine and N-acetyllactosamine. A simplified protocol for an enzyme-linked immunosorbent assay was established for the detection and quantification of ligands on the coating surface. Cell adhesion on the peptide and protein-modified surfaces was assessed using HDF. All coatings were applied using a one-step preparation technique, including bioactivation, which makes the system suitable for high-throughput screening in a format that is compatible with the most routinely used testing systems.

  11. Advances in far-ultraviolet reflective and transmissive coatings for space applications

    NASA Astrophysics Data System (ADS)

    Rodríguez-de Marcos, Luis; Aznárez, José A.; Méndez, José A.; Larruquert, Juan I.; Vidal-Dasilva, M.; Malvezzi, A. Marco; Giglia, Angelo; Capobianco, Gerardo; Massone, Giuseppe; Fineschi, Silvano; Nannarone, Stefano

    2016-07-01

    Exploitation of far ultraviolet (FUV, 100-200 nm) observations extends to most areas of modern astronomy, from detailed observations of Solar System objects, the interstellar medium, exoplanets, stars and galaxies, to studies of crucial cosmological relevance. Despite several developments in recent decades, yet many observations are not possible due to technical limitations, of which one of the most important is the lack of optical coatings with high throughput. Development and optimization of such efficient FUV coatings have been identified in several roadmap reports as a key goal for future missions. The success of this development will ultimately improve the performance of nowadays feasible optical instruments and will enable new scientific imaging capabilities. GOLD's research is devoted to developing novel coatings with enhanced performance for space optics. Several deposition systems are available for the deposition of multilayer coatings. A deposition system was developed to deposit FUV coatings to satisfy space requirements. It consists of a 75-cm-diameter deposition chamber pumped with a cryo-pump and placed in an ISO-6 clean room. This chamber is available for deposition by evaporation of top-requirement coatings such as Al/ MgF2 mirrors or (Al/MgF2)n multilayer coatings for transmittance filters. A plan to add an Ion-Beam-Sputtering system in this chamber is under way. In this and other chambers at GOLD the following FUV coatings can be prepared: Transmittance filters based on (Al/MgF2)n multilayer coatings. These filters can be designed to have a peak at the FUV spectral line or band of interest and a high peak-to-visible transmittance ratio. Filters can be designed with a peak transmittance at a wavelength as short as 120 nm and with a transmittance in the visible smaller than 10-5. Narrowband reflective coatings peaked close to H Lyman β (102.6 nm) with a reflectance at H Lyman α (121.6 nm) two orders of magnitude below the one at 102.6 nm. Other potential spectral lines at which these coatings could be peaked are the OVI doublet (103.2, 103.8 nm). Narrowband reflective mirrors based on (MgF2/LaF3)n multilayers peaked at a wavelength as short as 120 nm. Target wavelengths include lines of high interest for space observations, such as H Lyman α (121.6 nm), OI (130.4 and 135.6 nm), CIV (154.8, 155.1 nm), among others. Coating-based linear polarizers tuned at H Lyman α (121.6 nm) both based on reflectance or on transmittance. Reflective polarizers present a high efficiency. Transmissive polarizers have a more modest peak performance compared to reflective polarizers; however, they involve spectral filtering properties to reject the long FUV and even more the near UV to the IR, which turn them competitive compared to reflective polarizers. In this communication we present a summary of our research on the above FUV coatings developed at GOLD.

  12. Novel Surface Modification Method for Ultrasupercritical Coal-Fired Boilers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, T. Danny

    2013-05-22

    US Department of Energy seeks an innovative coating technology for energy production to reduce the emission of SOx, NOx, and CO2 toxic gaseous species. To realize this need, Inframat Corporation (IMC) proposed an SPS thermal spray coating technique to produce ultrafine/nanocoatings that can be deposited onto the surfaces of high temperature boiler tubes, so that higher temperatures of boiler operation becomes possible, leading to significantly reduced emission of toxic gaseous species. It should be noted that the original PI was Dr. Xinqing Ma, who after 1.5 year conducting this project left Inframat in December, 2008. Thus, the PI was transferredmore » to Dr. Danny Xiao, who originally co-authored the proposal with Dr. Ma, in order to carry the project into a completion. Phase II Objectives: The proposed technology has the following attributes, including: (1). Dispersion of a nanoparticle or alloyed particle in a solvent to form a uniform slurry feedstock; (2). Feeding of the slurry feedstock into a thermal spray flame, followed by deposition of the slurry feedstock onto substrates to form tenacious nanocoatings; (3). High coating performance: including high bonding strength, and high temperature service life in the temperature range of 760oC/1400oF. Following the above premises, our past Phase I project has demonstrated the feasibility in small scale coatings on boiler substrates. The objective of this Phase II project was to focus on scale-up the already demonstrated Phase I work for the fabrication of SPS coatings that can satisfy DOE's emission reduction goals for energy production operations. Specifically, they are: (1). Solving engineering problems to scale-up the SPS-HVOF delivery system to a prototype production sub-delivery system; (2). Produce ultrafine/nanocoatings using the scale-up prototype system; (3). Demonstrate the coated components using the scale-up device having superior properties. Proposed Phase II Tasks: In the original Phase II proposal, we have six (6) technical tasks plus one (1) reporting task, as described below: Task 1 Scale-up and optimize the SPS process; Task 2 Coating design and fabrication with desired microstructure; Task 3 Evaluate microstructure and physical properties; Task 4 Test performance of long-term corrosion and erosion; Task 5 Test mechanical property and reliability; Task 6 Coating of a prototype boiler tube for evaluation; Task 7 Reporting task. To date, we have already completed all the technical tasks of 1 through 6. Major Phase II Achievements: In this four (4) year working period, Inframat had spent great effort to complete the proposed tasks. The project had been completed; the goals have been accomplished. Major achievements obtained include: (1). Developed a prototype scale-up slurry feedstock delivery system for thermal spray coatings; (2). Successfully coated high performance coatings using this scale-up slurry delivery system; (3). Commercial applications in energy efficiency and clean energy components have been developed using this newly fabricated slurry feedstock delivery system.« less

  13. Growth Structure and Properties of Gradient Nanocrystalline Coatings of the Ti-Al-Si-Cu-N System

    NASA Astrophysics Data System (ADS)

    Ovchinnikov, S. V.; Pinzhin, Yu. P.

    2016-10-01

    Methods of electron microprobe analysis, X-ray structure analysis and electron microscopy were used to study the element composition and features of the structure-phase, elastic stress state of nanocrystalline coatings of the Ti- Al- Si- Cu- N system with gradient of copper concentration across their thickness. The authors established the effects of element composition modification, non-monotonous behavior of the lattice constant of alloyed nitride and rise in the bending-torsion value of the crystalline lattice in individual nanocrystals to values of around 400 degrees/μm with increase in copper concentration, whereas the sizes of alloyed nitride crystals remained practically unchanged. Mechanical (hardness), adhesion and tribological properties of coatings were examined. Comparative analysis demonstrates higher values of adhesion characteristics in the case of gradient coatings of the Ti- Al- Si- Cu- N system than in the case of single-layer (with constant element concentration) analogues.

  14. Advanced Oxide Material Systems for 1650 C Thermal/Environmental Barrier Coating Applications

    NASA Technical Reports Server (NTRS)

    Zhu, Dong-Ming; Fox, Dennis S.; Bansal, Narottam P.; Miller, Robert A.

    2004-01-01

    Advanced thermal and environmental barrier coatings (TEBCs) are being developed for low-emission SiC/SiC ceramic matrix composite (CMC) combustor and vane applications to extend the CMC liner and vane temperature capability to 1650 C (3000 F) in oxidizing and water-vapor-containing combustion environments. The advanced 1650 C TEBC system is required to have a better high-temperature stability, lower thermal conductivity, and more resistance to sintering and thermal stress than current coating systems under engine high-heat-flux and severe thermal cycling conditions. In this report, the thermal conductivity and water vapor stability of selected candidate hafnia-, pyrochlore- and magnetoplumbite-based TEBC materials are evaluated. The effects of dopants on the materials properties are also discussed. The test results have been used to downselect the TEBC materials and help demonstrate the feasibility of advanced 1650 C coatings with long-term thermal cycling durability.

  15. Development Status and Performance Comparisons of Environmental Barrier Coating Systems for SiCSiC Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Harder, Bryan

    2016-01-01

    Environmental barrier coatings (EBC) and SiCSiC ceramic matrix composites (CMCs) will play a crucial role in future aircraft turbine engine systems, because of their ability to significantly increase engine operating temperatures, reduce engine weight and cooling requirements. This paper presents current NASA EBC-CMC development emphases including: the coating composition and processing improvements, laser high heat flux-thermal gradient thermo-mechanical fatigue - environmental testing methodology development, and property evaluations for next generation EBC-CMC systems. EBCs processed with various deposition techniques including Plasma Spray, Electron Beam - Physical Vapor Deposition, and Plasma Spray Physical Vapor Deposition (PS-PVD) will be particularly discussed. The testing results and demonstrations of advanced EBCs-CMCs in complex simulated engine thermal gradient cyclic fatigue, oxidizing-steam and CMAS environments will help provide insights into the coating development strategies to meet long-term engine component durability goals.

  16. Sunlight-induced self-healing of a microcapsule-type protective coating.

    PubMed

    Song, Young-Kyu; Jo, Ye-Hyun; Lim, Ye-Ji; Cho, Sung-Youl; Yu, Hwan-Chul; Ryu, Byung-Cheol; Lee, Sang-In; Chung, Chan-Moon

    2013-02-01

    Photopolymerization behavior of a methacryloxypropyl-terminated polydimethylsiloxane (MAT-PDMS) healing agent was investigated in the presence of benzoin isobutyl ether (BIE) photoinitiator by Fourier transform infrared (FT-IR) spectroscopy. MAT-PDMS and BIE were microencapsulated with urea-formaldehyde polymer. The surface and shell morphology of the microcapsules was investigated by scanning electron microscopy (SEM). Mean diameter and size distribution of the microcapsules could be controlled by agitation rate. A coating matrix formulation was prepared by sol-gel reaction of tetraethyl orthosilicate (TEOS) in the presence of a polysiloxane and by subsequent addition of an adhesion promoter. The formulation and microcapsules were mixed to give a self-healing coating formulation, which was then sprayed to surface of cellulose-fiber-reinforced-cement (CRC) board or mortar. Contact angle measurements showed that both the polymerized MAT-PDMS and the prepared coating matrix are hydrophobic, and the coating matrix has good wettability with MAT-PDMS. It was confirmed by optical microscopy and SEM that, when the self-healing coating is damaged, the healing agent is released from ruptured microcapsules and fills the damaged region. The self-healing coating was evaluated as protective coating for mortar, and it was demonstrated by water permeability and chloride ion penetration tests that our system has sunlight-induced self-healing capability. Our self-healing coating is the first example of capsule-type photoinduced self-healing system, and offers the advantages of catalyst-free, environmentally friendly, inexpensive, practical healing.

  17. Scalable process for mitigation of laser-damaged potassium dihydrogen phosphate crystal optic surfaces with removal of damaged antireflective coating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elhadj, S.; Steele, W. A.; VanBlarcom, D. S.

    Here, we investigate an approach for the recycling of laser-damaged large-aperture deuterated potassium dihydrogen phosphate (DKDP) crystals used for optical switching (KDP) and for frequency conversion (DKDP) in megajoule-class high-power laser systems. The approach consists of micromachining the surface laser damage sites (mitigation), combined with multiple soaks and ultrasonication steps in a coating solvent to remove, synergistically, both the highly adherent machining debris and the laser-damage-affected antireflection coating. We then identify features of the laser-damage-affected coating, such as the “solvent-persistent” coating and the “burned-in” coating, that are difficult to remove by conventional approaches without damaging the surface. We also providemore » a solution to the erosion problem identified in this work when colloidal coatings are processed during ultrasonication. Finally, we provide a proof of principle of the approach by testing the full process that includes laser damage mitigation of DKDP test parts, coat stripping, reapplication of a new antireflective coat, and a laser damage test demonstrating performance up to at least 12 J/cm 2 at UV wavelengths, which is well above current requirements. Our approach ultimately provides a potential path to a scalable recycling loop for the management of optics in large, high-power laser systems that can reduce cost and extend lifetime of highly valuable and difficult to grow large DKDP crystals.« less

  18. Scalable process for mitigation of laser-damaged potassium dihydrogen phosphate crystal optic surfaces with removal of damaged antireflective coating

    DOE PAGES

    Elhadj, S.; Steele, W. A.; VanBlarcom, D. S.; ...

    2017-03-07

    Here, we investigate an approach for the recycling of laser-damaged large-aperture deuterated potassium dihydrogen phosphate (DKDP) crystals used for optical switching (KDP) and for frequency conversion (DKDP) in megajoule-class high-power laser systems. The approach consists of micromachining the surface laser damage sites (mitigation), combined with multiple soaks and ultrasonication steps in a coating solvent to remove, synergistically, both the highly adherent machining debris and the laser-damage-affected antireflection coating. We then identify features of the laser-damage-affected coating, such as the “solvent-persistent” coating and the “burned-in” coating, that are difficult to remove by conventional approaches without damaging the surface. We also providemore » a solution to the erosion problem identified in this work when colloidal coatings are processed during ultrasonication. Finally, we provide a proof of principle of the approach by testing the full process that includes laser damage mitigation of DKDP test parts, coat stripping, reapplication of a new antireflective coat, and a laser damage test demonstrating performance up to at least 12 J/cm 2 at UV wavelengths, which is well above current requirements. Our approach ultimately provides a potential path to a scalable recycling loop for the management of optics in large, high-power laser systems that can reduce cost and extend lifetime of highly valuable and difficult to grow large DKDP crystals.« less

  19. Shop primer as part of the corrosion protective coating for submerged steel structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bjordal, M.; Steinsmo, U.

    In Norwegian workshops the standard pre-treatment procedures for steel structures intended for sub-sea use, normally include removal of shop primer by blast cleaning to Sa 2 1/2 before application of corrosion protective coatings. This is also stated in the Norwegian offshore standard NORSOK. Omitting this stage in fabrication will represent large reductions in both time consumption and costs, and reduce the volume of waste from the blast cleaning. This report presents results from investigations of how a shop primer will influence on the coating properties. The aim of the investigation was to test whether the systems are good enough ifmore » the shop primer is left on the surface. Two different zinc silicate shop primers have been included in the investigation. As protective coatings the authors have used three different epoxy mastic systems with Al pigments. In addition to panels with original shop primer, they have also tested shop primed panels pre-treated in various ways, such as heated, corroded and blast cleaned to various degrees before coating. The coatings have been tested in the ASTM-G8 121 test and in a long term test in sea water polarized with a Zn anode. They have found that coatings including the zinc silicate shop primer are more susceptible to cathodic disbonding than the coating applied directly on blast cleaned steel. It is however possible to meet the NORSOK criteria with a zinc silicate shop primer as first coat.« less

  20. Conception de couches minces tribologiques pour augmenter la resistance a l'erosion par impacts de particules

    NASA Astrophysics Data System (ADS)

    Hassani, Salim

    Solid particle erosion (SPE) is a serious problem in gas turbines, pumps, heat exchangers and piping systems in aircrafts and other applications. Sand and dust ingested by gas turbine engines may cause major damage to compressor gas path components, leading to severe performance degradation, excessive wear, increased maintenance and eventually premature failure of the engines. For the compressor section of aerospace gas turbine engines, in addition to the complex filtration systems used to screen the eroding particles, tribological coatings, such as TiN, Ti/TiN, CrN and TiAlN are used as protective layers of the base titanium alloy (Ti-6Al-4V) or stainless steels (17-4PH and 410) materials (substrates) against erosive wear. Such coatings can extend the service life of the components, but their performance still remains insufficient due to the complexity of failure mechanisms occurring upon SPE. Therefore, aerospace industry seeks to develop high performance coatings for the protection against erosion by solid particles. However, with many new materials used and tested for different applications and operation under different conditions, conducting experiments for each one of them is becoming increasingly difficult. Presently, coating selection criteria to prevent damage caused by erosion are based on trial and error experiments instead of prior design of coating's architecture and properties to maximize erosion resistance. The present work focuses on the use of advanced finite element (FE) methods to design erosion resistant (ER) coatings. It contributes a new methodology based on the analysis of transient stresses generated by a single impact event. Identification of coating architectures in which such stresses are minimized and crack propagation suppressed, allows one to predict and possibly minimize the erosion rate. Erosion mechanisms and governing erosion parameters are investigated to predict the coating behavior in simulated erosion conditions. The calculation variables include impact velocity (in the range of 50--300 m/s), particle size and the mechanical properties of both the target and the impacting particle. Specifically, we investigate the impact response of coatings fabricated by physical vapor deposition (PVD) and plasma enhanced chemical vapor deposition (PECVD). This includes single and multilayer TiN and nanocomposite nc-TiN/a-SiN1.3 and nc-TiCN/a-SiCN systems on titanium alloy and stainless steel substrates. In particular, we correlate the thickness and the coating macroscopic properties, such as hardness, Young's modulus, and toughness with the erosion. The calculations confirmed earlier findings that for a single layer coating, a combination of low modulus and a high thickness lead to local stress reduction and hence possible erosion resistance enhancement. The FE simulations have further shown that a tensile stress exceeding a critical stress sigmacrit = 3.95 GPa can be easily produced by a single particle impact. For each combination of particle velocity and size, a map of tensile stresses in the TiN coating, corresponding to the predicted erosion performance, was produced. The FE model has then been extended to multilayer coating systems containing superhard nanocomposite materials. These coatings configurations, when combined with tailored mechanical properties have shown to provide an improvement of the performance over comparable single layer configurations. The development of high performance erosion-resistant coatings also requires understanding of stress propagation upon particle impact. In the second part of this work, we apply a finite element methodology to enhance and optimize the resistance of protective coatings to erosion by solid particles with appropriate stress management. A controlled distribution of the initial residual stress in the coating was used to counteract impact stress, while a Young's modulus distribution was applied to optimize impact energy spreading throughout the coating system. Considering both tensile stress reduction and energy absorption, a multi-layer configuration with specific Young's modulus and residual stress distributions along the coating depth is suggested as an optimal coating architecture. In the third part of this work, we propose practical semi-empirical and numerical predictive methods to determine erosion resistance of tribological coatings. The study presents data obtained by FE calculations that can be compared with those obtained by classical theories developed for the erosion of materials. The simulation-based approach allows one to express the functional dependence of erosion on the coating properties, and to quantitatively predict the erosion rate. We determined a proportionality coefficient for a wide range of hard coatings. This coefficient was then used, in combination with the semi-empirical expression derived from FE simulations, to determine the erosion rate of different coatings. The existing erosion theories tend to emphasize hardness, H, and Young's modulus, E, as the main parameters defining erosion resistance. In this context, we specifically focus here on the role of the H/E and H3/E 2 ratios. We demonstrate that the latter characteristics allow one to rank coatings with respect to their erosion performance. Target values for these two ratios were determined for an optimal erosion resistance. We demonstrate that the FE design of the coating architecture, combined with the tailored mechanical properties of individual components of the coating systems, opens new opportunities as a predictive tool for high performance erosion coatings. The present thesis also includes a complementary experimental study of a new kind of ER coatings. We modify the surface profile of hard coatings such as diamond like carbon (DLC) and chrome silicon nitride CrSiN in attempt to correlate the surface characteristics to the functional performance. A specific surface texture (or pattern), designed to enhance erosion resistance, was obtained using a simple and cost effective method consisting of a masking operation, followed by conventional film fabrication techniques PVD or PECVD. Micro-patterned coatings (MPC) possessing specific 3D profiles were produced. In addition to a high potential for several tribological applications, MPC allowed to provide erosion resistance enhancement by a factor of 30 compared to the non-coated stainless steel and of 3--5 times compared to that of the same coating without micro pattern.

  1. A New Type of Self-lubricated Thermal Spray Coatings: Liquid Lubricants Embedded in a Metal Matrix

    NASA Astrophysics Data System (ADS)

    Espallargas, N.; Armada, S.

    2015-01-01

    Oils and greases are commonly used for lubricating, rotating and sliding systems such as bearings, gears, connectors, etc. The maintenance of such lubricated systems in some applications where access is difficult (e.g., offshore wind farms and subsea equipment) increases the operational costs. In some cases, it can be thought that the use of solid lubricants (MoS2, PTFE, graphite, etc.) embedded in coatings could be a solution for such applications; however, the mechanical and dynamic conditions of most of the systems are not appropriate for solid lubricants. Despite this, solid lubricants such as PTFE and MoS2 have been largely employed in different industries, especially in those applications where liquid lubricants cannot be used and when the dynamic conditions allow for it. Self-lubricated coatings have been a major topic of interest in thermal spray in the last decades. Although the use of liquid lubricants is desirable whenever it is possible, limited research has been addressed toward the development of self-lubricated coatings containing liquid lubricants. One of the main reasons for this is due to the complexity of embedding liquid lubricant reservoirs inside the coating matrix. In the present work, a new type of liquid-solid self-lubricated coatings is presented, being the matrix a metal alloy. Three thermal spray techniques used were as follows: arc-spray, plasma spray, and HVOAF. The metal matrices were two stainless steel types and liquid lubricant-filled capsules with different liquid contents were used. No degradation of the capsules during spraying was observed and the coatings containing capsules were able to keep a low coefficient of friction. The optimal performance is found for the coatings obtained at the lowest spraying temperature and velocity.

  2. Development of a reservoir type prolonged release system with felodipine via simplex methodology

    PubMed Central

    IOVANOV, RAREŞ IULIU; TOMUŢĂ, IOAN; LEUCUŢA, SORIN EMILIAN

    2016-01-01

    Background and aims Felodipine is a dihydropyridine calcium antagonist that presents good characteristics to be formulated as prolonged release preparations. The aim of the study was the formulation and in vitro characterization of a reservoir type prolonged release system with felodipine, over a 12 hours period using the Simplex method. Methods The first step of the Simplex method was to study the influence of the granules coating method on the felodipine release. Furthermore the influence of the coating polymer type, the percent of the coating polymer and the percent of pore forming agent in the coating on the felodipine release were studied. Afterwards these two steps of the experimental design the percent of Surelease applied on the felodipine loaded granules and the percent of pore former in the polymeric coating formulation variables were studied. The in vitro dissolution of model drug was performed in phosphate buffer solution (pH 6.5) with 1% sodium lauryl sulfate. The released drug quantification was done using an HPLC method. The release kinetics of felodipine from the final granules was assessed using different mathematical models. Results A 12 hours release was achieved using granules with the size between 315–500 μm coated with 45% Surelease with different pore former ratios in the coating via the top-spray method. Conclusion We have prepared prolonged release coated granules with felodipine using a fluid bed system based on the Simplex method. The API from the studied final formulations was released over a 12 hours period and the release kinetics of the model drug substance from the optimized preparations fitted best the Higuchi and Peppas kinetic models. PMID:27004036

  3. Modeling Oxidation Induced Stresses in Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Ferguson, B. L.; Freborg, A. M.; Petrus, G. J.; Brindley, William J.

    1998-01-01

    The use of thermal barrier coatings (TBC's) in gas turbines has increased dramatically in recent years, due mainly to the need for component protection from ever increasing service temperatures. Oxidation of the bond coat has been identified as an important contributing factor to spallation of the ceramic top coat during service. Additional variables found to influence TBC thermal cycle life include bond coat coefficient of thermal expansion, creep behavior of both the ceramic and bond coat layers, and modulus of elasticity. The purpose of this work was to characterize the effects of oxidation on the stress states within the TBC system, as well as to examine the interaction of oxidation with other factors affecting TBC life.

  4. Direct morphological comparison of vacuum plasma sprayed and detonation gun sprayed hydroxyapatite coatings for orthopaedic applications.

    PubMed

    Gledhill, H C; Turner, I G; Doyle, C

    1999-02-01

    Hydroxyapatite coatings on titanium substrates were produced using two thermal spray techniques vacuum plasma spraying and detonation gun spraying. X-ray diffraction was used to compare crystallinity and residual stresses in the coatings. Porosity was measured using optical microscopy in conjunction with an image analysis system. Scanning electron microscopy and surface roughness measurements were used to characterise the surface morphologies of the coatings. The vacuum plasma sprayed coatings were found to have a lower residual stress, a higher crystallinity and a higher level of porosity than the detonation gun coatings. It is concluded that consideration needs to be given to the significance of such variations within the clinical context.

  5. UV-blocking properties of Zn/ZnO coatings on wood deposited by cold plasma spraying at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Wallenhorst, L.; Gurău, L.; Gellerich, A.; Militz, H.; Ohms, G.; Viöl, W.

    2018-03-01

    In this study, artificial ageing of beech wood coated with Zn/ZnO particles by means of a cold plasma spraying process as well as coating systems including a Zn/ZnO layer and additional conventional sealings were examined. As ascertained by colour measurements, the particle coatings significantly decreased UV light-induced discolouration. Even though no significant colour changes were observed for particle-coated and alkyd-sealed samples, ATR-FTIR measurements revealed photocatalytic degradation of the alkyd matrix. In contrast, the polyurethane sealing appeared to be stabilised by the Zn/ZnO coating. Furthermore, morphologic properties of the pure particle coatings were studied by SEM and roughness measurements. SEM measurements confirmed a melting and solidifying process during deposition.

  6. 40 CFR 63.4292 - What operating limits must I meet?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... systems on the web coating/printing operation(s) and dyeing/finishing operations for which you use this... Limitations § 63.4292 What operating limits must I meet? (a) For any web coating/printing operation, slashing operation, or dyeing/finishing operation on which you use the compliant material option; web coating...

  7. BLISTERING AND DEGRADATION OF POLYURETHANE COATINGS UNDER DIFFERENT ACCELERATED WEATHERING TESTS. (R828081E01)

    EPA Science Inventory

    An epoxy primer with a high gloss polyurethane topcoat coating system was exposed either only in a QUV chamber or exposed in a QUV chamber and a Prohesion chamber, alternatively, in this study. AFM studies found that micro blisters formed on the coating surface after both expo...

  8. Poly(2,5-bis(N-Methyl-N-Hexylamino)Phenylene Vinylene) (BAM-PPV) as Pretreatment Coating for Aerospace Applications: Laboratory and Field Studies

    PubMed Central

    Zarras, Peter; Buhrmaster, Diane; Webber, Cindy; Anderson, Nicole; Stenger-Smith, John D.; Goodman, Paul A.

    2014-01-01

    In this study, an electroactive polymer (EAP), poly(2,5-bis(N-methyl-N-hexylamino)phenylene vinylene) (BAM-PPV) was investigated as a potential alternative surface pretreatment for hexavalent chromium (Cr(VI))-based aerospace coatings. BAM-PPV was tested as a pretreatment coating on an aerospace aluminum alloy (AA2024-T3) substrate in combination with a non-Cr(VI) epoxy primer and a polyurethane Advanced Performance Coating (APC) topcoat. This testing was undertaken to determine BAM-PPV’s adhesion, corrosion-inhibition, compatibility and survivability in laboratory testing and during outdoor field-testing. BAM-PPV showed excellent adhesion and acceptable corrosion performance in laboratory testing. The BAM-PPV aerospace coating system (BAM-PPV, non-Cr(VI) epoxy primer and polyurethane APC topcoat) was field tested for one year on the rear hatch door of the United States Air Force C-5 cargo plane. After one year of field testing there was no evidence of delamination or corrosion of the BAM-PPV aerospace coating system. PMID:28788292

  9. Protective broadband window coatings

    NASA Astrophysics Data System (ADS)

    Askinazi, Joel; Narayanan, Authi A.

    1997-06-01

    Optical windows employed in current and future airborne and ground based optical sensor systems are required to provide long service life under extreme environmental conditions including blowing sand and high speed rain. State of the art sensor systems are employing common aperture windows which must provide optical bandpasses from the TV to the LWIR. Operation Desert Storm experience indicates that current optical coatings provide limited environmental protection which adversely affects window life cycle cost. Most of these production coatings also have limited optical bandpasses (LWIR, MWIR, or TV-NIR). A family of optical coatings has been developed which provide a significant increase in rain and sand impact protection to current optical window materials. These coatings can also be tailored to provide either narrow optical bandwidth (e.g., LWIR) or broadband transmittance (TV- LWIR). They have been applied to a number of standard optical window materials. These coating have successfully completed airborne rain and sand abrasion test with minimal impact on optical window performance. Test results are presented. Low cost service life is anticipated as well as the ability to operate windows in even more taxing environments than currently feasible.

  10. Poly(2,5-bis(N-Methyl-N-Hexylamino)Phenylene Vinylene) (BAM-PPV) as Pretreatment Coating for Aerospace Applications: Laboratory and Field Studies.

    PubMed

    Zarras, Peter; Buhrmaster, Diane; Webber, Cindy; Anderson, Nicole; Stenger-Smith, John D; Goodman, Paul A

    2014-12-17

    In this study, an electroactive polymer (EAP), poly(2,5-bis( N -methyl- N -hexylamino)phenylene vinylene) (BAM-PPV) was investigated as a potential alternative surface pretreatment for hexavalent chromium (Cr(VI))-based aerospace coatings. BAM-PPV was tested as a pretreatment coating on an aerospace aluminum alloy (AA2024-T3) substrate in combination with a non-Cr(VI) epoxy primer and a polyurethane Advanced Performance Coating (APC) topcoat. This testing was undertaken to determine BAM-PPV's adhesion, corrosion-inhibition, compatibility and survivability in laboratory testing and during outdoor field-testing. BAM-PPV showed excellent adhesion and acceptable corrosion performance in laboratory testing. The BAM-PPV aerospace coating system (BAM-PPV, non-Cr(VI) epoxy primer and polyurethane APC topcoat) was field tested for one year on the rear hatch door of the United States Air Force C-5 cargo plane. After one year of field testing there was no evidence of delamination or corrosion of the BAM-PPV aerospace coating system.

  11. New generation all-silica based optical elements for high power laser systems

    NASA Astrophysics Data System (ADS)

    Tolenis, T.; GrinevičiÅ«tÄ--, L.; Melninkaitis, A.; Selskis, A.; Buzelis, R.; MažulÄ--, L.; Drazdys, R.

    2017-08-01

    Laser resistance of optical elements is one of the major topics in photonics. Various routes have been taken to improve optical coatings, including, but not limited by, materials engineering and optimisation of electric field distribution in multilayers. During the decades of research, it was found, that high band-gap materials, such as silica, are highly resistant to laser light. Unfortunately, only the production of anti-reflection coatings of all-silica materials are presented to this day. A novel route will be presented in materials engineering, capable to manufacture high reflection optical elements using only SiO2 material and GLancing Angle Deposition (GLAD) method. The technique involves the deposition of columnar structure and tailoring the refractive index of silica material throughout the coating thickness. A numerous analysis indicate the superior properties of GLAD coatings when compared with standard methods for Bragg mirrors production. Several groups of optical components are presented including anti-reflection coatings and Bragg mirrors. Structural and optical characterisation of the method have been performed and compared with standard methods. All researches indicate the possibility of new generation coatings for high power laser systems.

  12. An Electromagnetic/Capacitive Composite Sensor for Testing of Thermal Barrier Coatings

    PubMed Central

    Ren, Yuan; Pan, Mengchun; Chen, Dixiang; Tian, Wugang

    2018-01-01

    Thermal barrier coatings (TBCs) can significantly reduce the operating temperature of the aeroengine turbine blade substrate, and their testing technology is very urgently demanded. Due to their complex multi-layer structure, it is hard to evaluate TBCs with a single function sensor. In this paper, an electromagnetic/capacitive composite sensor is proposed for the testing of thermal barrier coatings. The dielectric material is tested with planar capacitor, and the metallic material is tested with electromagnetic coils. Then, the comprehensive test and evaluation of thermal barrier coating system can be realized. The sensor is optimized by means of theoretical and simulation analysis, and the interaction between the planar capacitor and the electromagnetic coil is studied. The experimental system is built based on an impedance analyser and multiplex unit to evaluate the performance of the composite sensor. The transimpedances and capacitances are measured under different coating parameters, such as thickness and permittivity of top coating as well as bond layer conductivity. The experimental results agree with the simulation analysis, and the feasibility of the sensor is proved. PMID:29783746

  13. Coating Systems for Biodegradable Magnesium Applications

    NASA Astrophysics Data System (ADS)

    Seitz, Jan-Marten; Eifler, Rainer; Vaughan, Matthew; Seal, Chris; Hyland, Margaret; Maier, Hans Jürgen

    Current research for degradable magnesium implants has shown a multitude of potential applications for these materials. Within various studies, the research focuses especially on Mg alloys' biocompatibility and also its mechanical and corrosive behaviour in in vitro/in vivo environments. In particular, the corrosive properties of Mg alloys often remain problematic, showing either a rapid or a burst degradation, limiting their applicability. Besides changing the alloy, a magnesium implant's initial corrosion properties can be improved and controllable by means of applied coatings. In general, a multitude of coating solutions (e.g. on basis of phosphates or degradable polymers) are already available for permanent implants. If these are applicable to Mg, the next step requires that they delay corrosion and inhibit burst corrosion. In this study, the applicability and corrosion-delaying properties of PLA and MgF2 coatings on the magnesium alloy LANd442, respecting their singular and combined application, is shown. By means of corrosion tests in a simulated body fluid the use of combined coatings was proven to be advantageous regarding longevity and toughness of the coating system.

  14. NASA and ESA Collaboration on Hexavalent Chrome Alternatives Pretreatments Only Interim Test Report

    NASA Technical Reports Server (NTRS)

    Kessel, Kurt R.

    2015-01-01

    NASA and ESA continue to search for an alternative to hexavalent chromium in coatings applications that meet their performance requirements in corrosion protection, cost, operability, and health and safety, while typically specifying that performance must be equal to or greater than existing systems. The overall objective of the collaborative effort between NASA TEERM and ESA is to test and evaluate coating systems (pretreatments, pretreatments with primer, and pretreatments with primer and topcoat) as replacements for hexavalent chrome coatings in aerospace applications. This objective will be accomplished by testing promising coatings identified from previous NASA, ESA, Department of Defense (DOD), and other project experience. Additionally, several new materials will be analyzed according to ESA-identified specifications.

  15. Influence of Feedstock Materials and Spray Parameters on Thermal Conductivity of Wire-Arc-Sprayed Coatings

    NASA Astrophysics Data System (ADS)

    Yao, H. H.; Zhou, Z.; Wang, G. H.; He, D. Y.; Bobzin, K.; Zhao, L.; Öte, M.; Königstein, T.

    2017-03-01

    To manufacture a protective coating with high thermal conductivity on drying cylinders in paper production machines, a FeCrB-cored wire was developed, and the spraying parameters for wire-arc spraying were optimized in this study. The conventional engineering materials FeCrAl and FeCrMo coatings were produced as the reference coatings under the same experimental condition. It has been shown that the oxide content in coating influences the thermal conductivity of coating significantly. The FeCrB coating exhibits a relative higher thermal conductivity due to the lower oxide content in comparison with conventional FeCrAl and FeCrMo coatings. Moreover, the oxidation of in-flight particles can be reduced by decreasing the standoff distance contributing to the increase in the thermal conductivity of coating. Total energy consumption of a papermaking machine can be significantly reduced if the coatings applied to dryer section exhibit high thermal conductivity. Therefore, the FeCrB coating developed in this study is a highly promising coating system for drying cylinders regarding the improved thermal conductivity and low operation costs in paper production industry.

  16. How reduced vacuum pumping capability in a coating chamber affects the laser damage resistance of HfO 2/SiO 2 antireflection and high reflection coatings.

    DOE PAGES

    Field, Ella Suzanne; Bellum, John Curtis; Kletecka, Damon E.

    2016-06-01

    Optical coatings with the highest laser damage thresholds rely on clean conditions in the vacuum chamber during the coating deposition process. A low base pressure in the coating chamber, as well as the ability of the vacuum system to maintain the required pressure during deposition, are important aspects of limiting the amount of defects in an optical coating that could induce laser damage. Our large optics coating chamber at Sandia National Laboratories normally relies on three cryo pumps to maintain low pressures for e-beam coating processes. However, on occasion, one or more of the cryo pumps have been out ofmore » commission. In light of this circumstance, we explored how deposition under compromised vacuum conditions resulting from the use of only one or two cryo pumps affects the laser-induced damage thresholds of optical coatings. Finally, the coatings of this study consist of HfO 2 and SiO 2 layer materials and include antireflection coatings for 527 nm at normal incidence, and high reflection coatings for 527 nm, 45⁰ angle of incidence (AOI), in P-polarization (P-pol).« less

  17. How reduced vacuum pumping capability in a coating chamber affects the laser damage resistance of HfO 2/SiO 2 antireflection and high-reflection coatings

    DOE PAGES

    Field, Ella S.; Bellum, John C.; Kletecka, Damon E.

    2016-07-15

    Here, optical coatings with the highest laser damage thresholds rely on clean conditions in the vacuum chamber during the coating deposition process. A low-base pressure in the coating chamber, as well as the ability of the vacuum system to maintain the required pressure during deposition, are important aspects of limiting the amount of defects in an optical coating that could induce laser damage. Our large optics coating chamber at Sandia National Laboratories normally relies on three cryo pumps to maintain low pressures for e-beam coating processes. However, on occasion, one or more of the cryo pumps have been out ofmore » commission. In light of this circumstance, we explored how deposition under compromised vacuum conditions resulting from the use of only one or two cryo pumps affects the laser-induced damage thresholds of optical coatings. The coatings of this study consist of HfO 2 and SiO 2 layer materials and include antireflection coatings for 527 nm at normal incidence and high-reflection coatings for 527 nm at 45-deg angle of incidence in P-polarization.« less

  18. VOC/HAP control systems for the shipbuilding and aerospace industries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lukey, M.E.; Toothman, D.A.

    1999-07-01

    Compliant coating systems, i.e., those which meet limits on pounds of volatile organic compound (VOC)/hazardous air pollutant (HAP) per gallon, on a solids applied basis, are routinely used to meet emission regulations in the shipbuilding and aerospace industries. However, there are occasions when solvent based systems must be used. Total capture and high destruction of the solvents in those systems is necessary in order to meet the required emission limit, e.g., a reasonably available control technology (RACT) limit of 3.5lbs of VOC/gallon. Water based marine coatings and certain aerospace finish coats do not provide sufficient longevity or meet other customermore » specifications in these instances. Furthermore, because of best available control technology (BACT) determinations or facility limits for operation in serious, severe, and extreme nonattainment areas, it is necessary to reduce annual emissions to levels which are below the levels required by the coating standards. The paper discusses those operations for controlling emissions from large-scale solvent based painting and coating systems in those instances when a high degree of overall control is required. Permanent total enclosures (stationary and portable), concentrators, regenerative thermal oxidizers, and other air pollution control systems are evaluated, both for technical applicability and economic feasibility. Several case studies are presented which illustrate techniques for capturing painting emissions, options for air handling in the workplace, and methods for destroying exhaust stream VOC concentrations of less than 40 ppm.« less

  19. An evaluation of the electric arc spray and (HPPS) processes for the manufacturing of high power plasma spraying MCrAIY coatings

    NASA Astrophysics Data System (ADS)

    Sacriste, D.; Goubot, N.; Dhers, J.; Ducos, M.; Vardelle, A.

    2001-06-01

    The high power plasma torch (PlazJet) can be used to spray refractory ceramics with high spray rates and deposition efficiency. It can provide dense and hard coating with high bond strengths. When manufacturing thermal barrier coatings, the PlazJet gun is well adapted to spraying the ceramic top coat but not the MCrAIY materials that are used as bond coat. Arc spraying can compete with plasma spraying for metallic coatings since cored wires can be used to spray alloys and composites. In addition, the high production rate of arc spraying enables a significant decrease in coating cost. This paper discusses the performances of the PlazJet gun, and a twin-wire are spray system, and compares the properties and cost of MCrAIY coatings made with these two processes. For arc spraying, the use of air or nitrogen as atomizing gas is also investigated.

  20. Effects of yttrium, aluminum, and chromium concentrations in bond coatings on the performance of zirconia-yttria thermal barriers

    NASA Technical Reports Server (NTRS)

    Stecura, S.

    1979-01-01

    A cyclic furnace study was conducted between 990 - 280 C and 1095 - 280 C to evaluate the effects of yttrium, chromium, and aluminum concentrations in nickel base alloy bond coatings and also the effect of the bond coating thickness on the performance of yttria-stabilized zirconia thermal barrier coatings. The presence and the concentration of yttrium is very critical. Without yttrium, rapid oxidation of Ni-Al, Ni-Cr, and Ni-Cr-Al bond coatings causes zirconia thermal barrier coatings to fail very rapidly. Concentrations of chrominum and aluminum in Ni-Cr-Al-Y bond coating have a very significant effect on the thermal barrier coating life. This effect, however, is not as great as that due to yttrium. Furthermore, the thickness and the thickness uniformity also have a very significant effect on the life of the thermal barrier system.

Top