Science.gov

Sample records for coatings acomparative study

  1. Biocompatible Silver-containing a-C:H and a-C coatings: AComparative Study

    SciTech Connect

    Endrino, Jose Luis; Allen, Matthew; Escobar Galindo, Ramon; Zhang, Hanshen; Anders, Andre; Albella, Jose Maria

    2007-04-01

    Hydrogenated diamond-like-carbon (a-C:H) and hydrogen-free amorphous carbon (a-C) coatings are known to be biocompatible and have good chemical inertness. For this reason, both of these materials are strong candidates to be used as a matrix that embeds metallic elements with antimicrobial effect. In this comparative study, we have incorporated silver into diamond-like carbon (DLC) coatings by plasma based ion implantation and deposition (PBII&D) using methane (CH4) plasma and simultaneously depositing Ag from a pulsed cathodic arc source. In addition, we have grown amorphous carbon - silver composite coatings using a dual-cathode pulsed filtered cathodic-arc (FCA) source. The silver atomic content of the deposited samples was analyzed using glow discharge optical spectroscopy (GDOES). In both cases, the arc pulse frequency of the silver cathode was adjusted in order to obtain samples with approximately 5 at.% of Ag. Surface hardness of the deposited films was analyzed using the nanoindentation technique. Cell viability for both a-C:H/Ag and a-C:/Ag samples deposited on 24-well tissue culture plates has been evaluated.

  2. DESIGN DATA STUDY FOR COATED COLUMBIUM ALLOYS

    DTIC Science & Technology

    ANTIOXIDANTS, * COATINGS , * NIOBIUM ALLOYS, *REFRACTORY COATINGS , *SILICON COATINGS , ALLOYS, ALUMINUM, DEFORMATION, ELASTIC PROPERTIES, HIGH...TEMPERATURE, OXIDATION, PLASTIC PROPERTIES, REENTRY VEHICLES, REFRACTORY MATERIALS, SHEETS, SILICIDES , VACUUM APPARATUS, VAPOR PLATING, ZIRCONIUM ALLOYS

  3. Volvo laboratory study of zinc-coated steel sheet-introduction and metallographic characterization of the coatings

    SciTech Connect

    Ostrom, P.; Otterberg, R.

    1989-01-01

    An outline of the Volvo laboratory study of zinc-coated steel sheet is presented. Fourteen different coatings were included in this study. They were all commercially available hot-dip zinc, electrolytic zinc and zinc-rich paint coatings. Not only pure zinc but also coatings alloyed with iron, aluminum and nickel were studied. One-, two- and three-layer coatings were also included. All fourteen coatings are metallographically characterized in this paper.

  4. Coatings.

    ERIC Educational Resources Information Center

    Anderson, Dennis G.

    1989-01-01

    This review covers analytical techniques applicable to the examination of coatings, raw materials, and substrates upon which coatings are placed. Techniques include chemical and electrochemical methods, chromatography, spectroscopy, thermal analysis, microscopy, and miscellaneous techniques. (MVL)

  5. The coating curing properties study using terahertz time domain spectroscopy

    NASA Astrophysics Data System (ADS)

    Ren, Jiaojiao; Zhao, Duo; Li, Lijuan

    2015-10-01

    Coating curing curve is one of the most important methods to reflect the coating curing properties. It is of great significance for the coating curing properties. In this paper, by using the reflective Terahertz (THz) time-domain spectroscope technique, the curing properties of coating with different thicknesses are studied. Three different parameters used for studying the properties of coating curing curve are proposed in this paper. They are respectively the differential time of flight, power spectrum and amplitude for reflective THz time-domain waveform. In this paper, two kinds of coating (with different thicknesses) curing properties curves are established and the relative errors from three parameter analysis methods are compared respectively. This study shows that the study on coating curing properties curves by using the power spectrum of reflective THz time-domain waveform is superior to the amplitude parameter method. But for the thick coating, the differential time of flight for the reflective THz time-domain waveform can also better reflect the coating curing properties.

  6. Electrochemical Studies Of Aluminum Coated With Primer

    NASA Technical Reports Server (NTRS)

    Danford, Merlin D.; Knockemus, Ward W.

    1989-01-01

    Technical paper describes experiments using ac-impedance method of analyzing corrosion of metal surfaces and breakdown of protective coatings. Alternating-current-impedance scans provide more detailed information, indicating changes in corrosion rates, progressive deterioration of coatings, changes in metal surfaces, and reaction mechanisms. Changes in conditions of coatings detected by ac method before dc methods show increase in metal-corrosion current. Measurements of impedance as function of frequency provides sufficient data to enable resistances and capacitances to be determined by performing least-squares fit. Knowledge of dependence of these values on time leads to more detailed understanding of corrosion process.

  7. Study of protective coatings for aluminum die casting molds

    NASA Astrophysics Data System (ADS)

    Peter, Ildiko; Rosso, Mario; Gobber, Federico Simone

    2015-12-01

    In this paper, the development and characterization of some protective coatings on steel substrate are presented. The coatings are realized by plasma spray techniques. The substrate material used is a Cr-Mo-V based hot work tool steel, initially submitted to vacuum heat treatment to achieve homogeneous hardness. The main attention is focused on the study of wear and on the characterization of the interface between the substrate material and the coating layer, because of their key role in determining the resistance of the coating layer. Simulation of friction and wear processes is performed by pin-on-disk test and the tested samples are observed by scanning electron microscopy.

  8. A Study of Deposition Coatings Formed by Electroformed Metallic Materials

    PubMed Central

    Shimura, Kojiro; Tobayama, Go; Togashi, Toshio

    2016-01-01

    Major joining methods of dental casting metal include brazing and laser welding. However, brazing cannot be applied for electroformed metals since heat treatment could affect the fit, and, therefore, laser welding is used for such metals. New methods of joining metals that do not impair the characteristics of electroformed metals should be developed. When new coating is performed on the surface of the base metal, surface treatment is usually performed before re-coating. The effect of surface treatment is clinically evaluated by peeling and flex tests. However, these testing methods are not ideal for deposition coating strength measurement of electroformed metals. There have been no studies on the deposition coating strength and methods to test electroformed metals. We developed a new deposition coating strength test for electroformed metals. The influence of the negative electrolytic method, which is one of the electrochemical surface treatments, on the strength of the deposition coating of electroformed metals was investigated, and the following conclusions were drawn: 1. This process makes it possible to remove residual deposits on the electrodeposited metal surface layer. 2. Cathode electrolysis is a simple and safe method that is capable of improving the surface treatment by adjustments to the current supply method and current intensity. 3. Electrochemical treatment can improve the deposition coating strength compared to the physical or chemical treatment methods. 4. Electro-deposition coating is an innovative technique for the deposition coating of electroformed metal. PMID:27326757

  9. CASE STUDIES: LOW-VOC/HAP WOOD FURNITURE COATINGS

    EPA Science Inventory


    The report gives results of a study in which wood furniture manufacturing facilities were identified that had converted at least one of their primary coating steps to low-volatile organic compound (VOC)/hazardous Air pollutant (HAP) wood furniture coatings: high-solids, water...

  10. Biophysical Studies of the Cell Coat

    NASA Astrophysics Data System (ADS)

    Curtis, Jennifer

    2009-11-01

    Many mammalian cell types are enveloped by a coat of polysaccharides and proteins. This coat influences vital biological processes such as cell adhesion, proliferation, motility and embryogenesis. The constitution and thickness of this layer, referred to as the pericellular coat (PCC), pericellular matrix or glycocalyx, can vary considerably. Despite its significance, the macromolecular organization of the cell coat remains speculative. Here we focus on cell coats whose vital structural backbone is hyaluronan (HA), a highly-hydrated polysaccharide that anchors the coat to the cell membrane. The molecular interaction of HA with different HA-binding proteins determines the architecture of the PCC. The resultant mesoscopic arrangement of the different PCC components influences the cell's perception of the extracellular environment and its ability to withstand compression. The stress transduction through the PCC is especially important for chondrocytes, cells located in the load-bearing cartilage. The molecular structure of some PCC components, especially the HA-binding protein aggrecan, changes with age or osteoarthritis. These changes alter the viscoelasticity of the PCC and may also affect its molecular architecture. We employ a combination of passive microrheology and optical force probe microscopy on the PCC of living rat chondrocytes (RCJ-P) cells, which serve as a well-established model system for HA-rich coats. We establish the first micromechanical map of the PCC which reveals an increase in both the viscosity and elasticity of the PCC towards the cell surface. Further, we characterize the distribution of HA and observe a linear increase in fluorescence intensity towards the cell membrane. Comparing the results of these approaches using polymer theory sheds light on the macromolecular architecture of the PCC. Our data indicate that the structure of PCC is far more complex than expected from a pure end-grafted polymer brush.

  11. A study on in-line tablet coating--the influence of compaction and coating on tablet dimensional changes.

    PubMed

    Cahyadi, C; Tan, B X; Chan, L W; Heng, P W S

    2012-09-01

    Prior to coating, tablets are usually stored for a definite period to enable complete strain recovery and prevent subsequent volumetric expansion-related coating defects. In-line coating is defined as the coating of tablets immediately after compaction. In-line coating will be expected to improve manufacturing efficiencies. In this study, the possibility of in-line coating was studied by evaluating the influence of compaction and coating on tablet dimensional changes. The use of tapered dies for compaction was also evaluated. Two types of tablet coaters which presented different coating environments, namely the Supercell™ coater and pan coater, were employed for coating. The extent of tablet dimensional changes was studied in real time using optical laser sensors in a controlled environment. After compaction, tablet dimensional changes were found to be anisotropic. In contrast, coating resulted in isotropic volume expansion in both the axial and radial directions. Pan coating resulted in significantly greater tablet dimensional changes compared to Supercell™ coating. There was no significant difference in dimensional changes of tablets coated in line or after complete viscoelastic strain recovery for Supercell™ coating. However, significantly different dimensional changes were observed for pan coating. The use of tapered dies during compaction was found to result in more rapid viscoelastic strain recovery and also significantly reduced tablet dimensional changes when tablets were immediately coated after compaction using the pan coater. In conclusion, the Supercell™ coater appeared to be more suitable for in-line tablet coating, while tapered dies were beneficial in reducing tablet dimensional changes when the pan coater was employed for in-line coating.

  12. Study on Ceramic Interconnect Manufactured by Slurry Dip Coating and Plasma Spray Coating Processes

    NASA Astrophysics Data System (ADS)

    Lee, Gil-Yong; Kim, Jong-Hee; Ryoo, Sung-Nam; Peck, Dong-Hyun; Jung, Doo-Hwan; Shul, Yong-Gun; Shin, Dong-Ryul; Song, Rak-Hyun

    To get a stable and dense interconnect layer of anode-supported flat tubular solid oxide fuel cell stack, we have studied on the synthesis of precursors with a fine particle size and the ceramic interconnect coating technology. Coated interconnects by slurry dipping and air plasma spray processes were sintered by 2-step sintering method. Ca-doped LaCrO3 perovskites such as La0.75Ca0.27CrO3(LCC27), La0.6Ca0.41CrO3(LCC41), and La0.8Sr0.05Ca0.15CrO3(LSCC), were synthesized by Pechini process and their average particle sizes were about 1 μm. LSCC layer is a functional layer to prevent Ca migration and then LCC41 layer is coated onto it. The Ca migration in the LSCC layer did not occur. The LCC41 was coated on the air plasma spray-coated LCC27 layer by slurry dip coating process and sintered at 1200°C for 20hr. Its electrical conductivity indicated about 27 S/cm at 800°C and the bubble test showed that there is no gas permeation at pressure difference of 0.4 kgf/cm2 at room temperature.

  13. Study for Blade Ceramic Coating Delamination Detection for Gas Turbine

    NASA Astrophysics Data System (ADS)

    Choi, Choul-Jun; Choi, Seung Hyun; Kim, Jae-Yeol

    The component of the hot gas path in gas turbines can survive to very high temperatures because they are protected by ceramic Thermal Barrier Coating (TBC); the failure of such coating can dramatically reduce the component life. A reliable assessment of the Coating integrity and/or an Incipient TBC Damage Detection can help both in optimizing the inspection intervals and in finding the appropriate remedial actions. This study gives the TBC integrity; so other methods are required, like thermography to obtain indications of TBC delamination. Pulsed Thermography detects coating detachments and interface defects, with a large area of view but a spatial resolution of few mm. The mentioned techniques as a whole constitute a powerful tool for the life assessment of thermal barrier coating.

  14. Comprehensive study of dynamic curing effect on tablet coating structure.

    PubMed

    Gendre, Claire; Genty, Muriel; da Silva, Julio César; Tfayli, Ali; Boiret, Mathieu; Lecoq, Olivier; Baron, Michel; Chaminade, Pierre; Péan, Jean Manuel

    2012-08-01

    The dissolution method is still widely used to determine curing end-points to ensure long-term stability of film coatings. Nevertheless, the process of curing has not yet been fully investigated. For the first time, joint techniques were used to elucidate the mechanisms of dynamic curing over time from ethylcellulose (Aquacoat)-based coated tablets. X-ray micro-computed tomography (XμCT), Near Infrared (NIR), and Raman spectroscopies as well as X-ray microdiffraction were employed as non-destructive techniques to perform direct measurements on tablets. All techniques indicated that after a dynamic curing period of 4h, reproducible drug release can be achieved and no changes in the microstructure of the coating were any longer detected. XμCT analysis highlighted the reduced internal porosity, while both NIR and Raman measurements showed that spectral information remained unaltered after further curing. X-ray microdiffraction revealed densification of the coating layer with a decrease in the overall coating thickness of about 10 μm as a result of curing. In addition, coating heterogeneity attributed to cetyl alcohol was observed from microscopic images and Raman analysis. This observation was confirmed by X-ray microdiffraction that showed that crystalline cetyl alcohol melted and spread over the coating surface with curing. Prior to curing, X-ray microdiffraction also revealed the existence of two coating zones differing in crystalline cetyl alcohol and sodium lauryl sulfate concentrations which could be explained by migration of these constituents within the coating layer. Therefore, the use of non-destructive techniques allowed new insights into tablet coating structures and provided precise determination of the curing end-point compared to traditional dissolution testing. This thorough study may open up new possibilities for process and formulation control.

  15. Thermal-barrier-coated turbine blade study

    NASA Technical Reports Server (NTRS)

    Siemers, P. A.; Hillig, W. B.

    1981-01-01

    The effects of coating TBC on a CF6-50 stage 2 high-pressure turbine blade were analyzed with respect to changes in the mean bulk temperature, cooling air requirements, and high-cycle fatigue. Localized spallation was found to have a possible deleterious effect on low-cycle fatigue life. New blade design concepts were developed to take optimum advantage of TBCs. Process and material development work and rig evaluations were undertaken which identified the most promising combination as ZrO2 containing 8 w/o Y2O3 applied by air plasma spray onto a Ni22Cr-10Al-1Y bond layer. The bond layer was applied by a low-pressure, high-velocity plasma spray process onto the base alloy. During the initial startup cycles the blades experienced localized leading edge spallation caused by foreign objects.

  16. Electrochemical noise methods applied to the study of organic coatings and pretreatments

    SciTech Connect

    Bierwagen, G.P.; Talhnan, D.E.; Touzain, S.; Smith, A.; Twite, R.; Balbyshev, V.; Pae, Y.

    1998-12-31

    The use of electrochemical noise methods (ENM) to examine organic coatings was first performed in 1986 by Skerry and Eden. The technique uses the spontaneous voltage and current noise that occurs between two identical coated electrodes in electrolyte immersion to determine resistance properties of the coating as well as low frequency noise impedance data for the system. It is a non-perturbing measurement, and one that allows judgment and ranking of coating systems performance. This paper will summarize work in the lab over the past five years on the use of ENM for examining the properties of organic coatings and pretreatment over metals. They have studied marine coatings, pipeline coatings, coil coatings, electrodeposited organic coatings (e-coats), and aircraft coatings by this method and found it to be useful, especially when used in conjunction with impedance and other electrochemical techniques.

  17. Cold sprayed copper coating: numerical study of particle impact and coating characterization

    NASA Astrophysics Data System (ADS)

    Mebdoua, Yamina; Fizi, Yazid; Bouhelal, Nadjet

    2016-05-01

    Cold spraying technique is a promising process fabricating high quality metallic coatings. This work concerns both numerical and experimental investigations of cold sprayed copper coating taking into account impact conditions including, particle velocities and temperature, gas pressure and material nature. The conducted numerical study is an examination of the deformation behavior of Cu particles sprayed onto steel substrate using Abaqus/explicit software, allowing a good understanding of the deposition characteristics of copper particles and the effect of particle velocity on the coating microstructure. The numerical results show that particle impact velocity has a significant effect on its morphology; Lagrangian method exhibits an excessive distortion of the elements in the case of high impact velocity and fine meshing size, whereas simulation of particle impact using arbitrary Lagrangian-Eulerian (ALE) method is close to the experimental observations. Contribution to the topical issue "Materials for Energy Harvesting, Conversion and Storage (ICOME 2015) - Elected submissions", edited by Jean-Michel Nunzi, Rachid Bennacer and Mohammed El Ganaoui

  18. Subminiature eddy current transducers for studying boride coatings

    NASA Astrophysics Data System (ADS)

    Dmitriev, S. F.; Ishkov, A. V.; Malikov, V. N.; Sagalakov, A. M.

    2016-07-01

    Strengthening of parts and units of machines, increased reliability and longer service life is an important task of modern mechanical engineering. The main objects of study in the work were selected steel 65G and 50HGA, wear-resistant boride coatings ternary system Fe-B-Fe n B which were investigated by scanning electron microscopy and eddy-current nondestructive methods.

  19. Activation studies of NEG coatings by surface techniques

    SciTech Connect

    Sharma, R. K.; Jagannath,; Bhushan, K. G.; Gadkari, S. C.; Mukund, R.; Gupta, S. K.

    2013-02-05

    NEG (Non Evaporable Getters)materials in the form of ternary alloy coatings have many benefits compare to traditional bare surfaces such as Extreme high vacuum(XHV), lower secondary electron yield(SEY), low photon desorption cofficient. The extreme high vacuum (pressure > 10{sup -10} mbar) is very useful to the study of surfaces of the material, for high energy particle accelerators(LHC, Photon Factories), synchrotrons (ESRF, Ellectra) etc. Low secondary electron yield leads to better beam life time. In LHC the pressure in the interaction region of the two beams is something of the order of 10{sup -12} mbar. In this paper preparation of the coatings and their characterization to get the Activation temperature by using the surface techniques XPS, SEM and SIMS has been shown.

  20. Aircraft surface coatings study: Energy efficient transport program. [sprayed and adhesive bonded coatings for drag reduction

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Surface coating materials for application on transport type aircraft to reduce drag, were investigated. The investigation included two basic types of materials: spray on coatings and adhesively bonded films. A cost/benefits analysis was performed, and recommendations were made for future work toward the application of this technology.

  1. The National Shipbuilding Research Program: Productivity Study of Hydroblast Removal of Coatings

    DTIC Science & Technology

    1998-12-01

    procedures and standards for the evaluation of water- jetting. These procedures include surface cleanliness , surface contamination, coating removal rates...Information ÒGeneral InformationÓ data encompassed initial surface cleanliness , coating condition, and contamination levels (measured as chloride and...study. Task 3. Determine test procedures and standards for surface cleanliness , surface contamination, coating removal rates, visual appearance, air

  2. Studies on adhesion characteristics and corrosion behaviour of vinyltriethoxysilane/epoxy coating protective system on aluminium

    NASA Astrophysics Data System (ADS)

    Bajat, Jelena B.; Milošev, Ingrid; Jovanović, Željka; Mišković-Stanković, Vesna B.

    2010-03-01

    The corrosion stability of vinyltriethoxysilane/epoxy coating protective system on aluminium is strongly related to the strength of bonds forming at the metal/organic coating interface. This article is a study of adhesion, composition, electrochemical and transport properties of epoxy coatings electrodeposited on bare aluminium and aluminium pretreated by vinyltriethoxysilane (VTES) during exposure to 3% NaCl. The VTES film was deposited on aluminium surface from 2% vinyltriethoxysilane solution during 30 s. From the values of adhesion strength (pull-off test), time dependence of pore resistance and coating capacitance of epoxy coating (impedance measurements) and diffusion coefficient of water through epoxy coating (gravimetric liquid sorption measurements), the influence of VTES sublayer on the corrosion stability of the electrodeposited epoxy coating was shown. The work discusses the role of the VTES pretreatment in the enhanced adhesion and corrosion stability of epoxy cataphoretic coating. The electrochemical results showed that the aluminium pretreatment by VTES film improved barrier properties of epoxy coating (greater pore resistance and lower coating capacitance). The lower value of diffusion coefficient of water through epoxy coating indicates the lower porosity, while the smaller adhesion reduction points to better adhesion of epoxy coating on aluminium pretreated by VTES film. The composition of the deposited coatings investigated by XPS enabled the clarification of the bonding mechanism.

  3. A study on coating class damage degree by use cycle of gas turbine blade coating

    NASA Astrophysics Data System (ADS)

    Choi, Choul Jun; Kim, Jae Yeol

    2007-07-01

    The component of the hot gas path in gas turbines can survive to very high temperatures because they are protected by ceramic Thermal Barrier Coating(TBC); the failure of such coating can dramatically reduce the component life. A reliable assessment of the Coating integrity and/or an Incipient TBC Damage Detection can help both in optimizing the inspection intervals and in finding the appropriate remedial actions. In this paper the potential of NDT techniques applicable to the metallo/ceramic coating hot parts are discussed in the light of both results obtained on laboratory aged specimens and in field measurements on operated components. An investigation of the NDTs capability to detect damage evolution was performed on thermal-cycled specimens coated with TBC by pulsed thermography. The observation of metallogaphy sections of the thermal cycled specimens allowed to give the right the interpretation to the results of NDT methodology and enlightened its specific characteristics and potentiality. Moreover in field applicability is discussed for each technique. Finally it is shown how an integrated approach of suitable coating evolution models and complimentary NDT techniques can provide an interesting assessment of the damage level of the metallo/ceramic coating of operated rotating blade

  4. Interface behavior study of WC92-Co8 coating produced by electrospark deposition

    NASA Astrophysics Data System (ADS)

    Ruijun, Wang; Yiyu, Qian; Jun, Liu

    2005-02-01

    WC92-Co8 coating produced by electrospark deposition effectively improves the surface performance of the substrate. The behavior of the interface between the WC92-Co8 coating and the substrate is studied in this paper. The high-melting-point WC92-Co8 was deposited onto the surface of Ti alloy, and the coating was usually more than 50 μm thick. The surface of the coating is mainly composed of TiC and W 2C besides a small amount of W, and its micro hardness reaches HV1129. The coating dramatically improves the performance of the substrate.

  5. Dielectric properties of WS2-coated multiwalled carbon nanotubes studied by energy-loss spectroscopic profiling

    NASA Astrophysics Data System (ADS)

    Stolojan, Vlad; Silva, S. R. P.; Goringe, Michael J.; Whitby, R. L. D.; Hsu, Wang K.; Walton, D. R. M.; Kroto, Harold W.

    2005-02-01

    We investigate experimentally the electronic properties of the coating for multiwalled carbon nanotubes covered in tungsten disulfide (WS2) of various thicknesses. Coatings of thicknesses between 2 and 8 monolayers (ML) are analyzed using energy-loss spectroscopic profiling (ELSP), by studying the variations in the plasmon excitations across the coated nanotube, as a function of the coating thickness. We find a change in the ELSP for coatings above 5 ML thickness, which we interpret in terms of a change in its dielectric properties.

  6. Biocatalytic coatings for air pollution control: a proof of concept study on VOC biodegradation.

    PubMed

    Estrada, José M; Bernal, Oscar I; Flickinger, Michael C; Muñoz, Raúl; Deshusses, Marc A

    2015-02-01

    Although biofilm-based biotechnologies exhibit a large potential as solutions for off-gas treatment, the high water content of biofilms often causes pollutant mass transfer limitations, which ultimately limit their widespread application. The present study reports on the proof of concept of the applicability of bioactive latex coatings for air pollution control. Toluene vapors served as a model volatile organic compound (VOC). The results showed that Pseudomonas putida F1 cells could be successfully entrapped in nanoporous latex coatings while preserving their toluene degradation activity. Bioactive latex coatings exhibited toluene specific biodegradation rates 10 times higher than agarose-based biofilms, because the thin coatings were less subject to diffusional mass transfer limitations. Drying and pollutant starvation were identified as key factors inducing a gradual deterioration of the biodegradation capacity in these innovative coatings. This study constitutes the first application of bioactive latex coatings for VOC abatement. These coatings could become promising means for air pollution control.

  7. Studies on Tribological Behavior of Aluminum Nitride-Coated Steel

    NASA Astrophysics Data System (ADS)

    Ionescu, G. C.; Nae, I.; Ripeanu, R. G.; Dinita, A.; Stan, G.

    2017-02-01

    The new opportunities introduced by the large development of the IoT (internet of things) are increasing the demand for sensors to be located as close as possible to the supervised process. The Aluminum Nitride (AIN) is one of the most promising materials for sensors due to its piezoelectric, excellent mechanical properties, chemical inertness and high melting point. Due to these material properties, the AlN sensors are suitable to operate in high temperature and harsh environment conditions and therefore are very promising to be employed in industrial applications. In this article are presented the studies conducted on several Aluminum Nitride-Coated Steel structures with the goal of producing sensors embedded in the ball bearings, bearings and other mobile parts of machine tools. The experiments were conducted on simple coatings structures without lubricating materials and the obtained results are promising, demonstrating that, with some limitations the AIN could be used in such applications. This paper was accepted for publication in Proceedings after double peer reviewing process but was not presented at the Conference ROTRIB’16

  8. Multilayered DNA coatings: in vitro bioactivity studies and effects on osteoblast-like cell behavior.

    PubMed

    van den Beucken, J J J P; Walboomers, X F; Leeuwenburgh, S C G; Vos, M R J; Sommerdijk, N A J M; Nolte, R J M; Jansen, J A

    2007-07-01

    This study describes the effect of multilayered DNA coatings on (i) the formation of mineralized depositions from simulated body fluids (SBF); and (ii) osteoblast-like cell behavior with and without pretreatment in SBF. DNA coatings were generated using electrostatic self-assembly, with poly-d-lysine or poly(allylamine hydrochloride) as cationic polyelectrolytes, on titanium substrates. Coated substrates and non-coated controls were immersed in SBF with various compositions. The deposition of calcium phosphate was enhanced on multilayered DNA coatings as compared with non-coated controls, and was dependent on the type of cationic polyelectrolyte used in the build-up of the DNA coatings. Further analysis showed that the depositions consisted of carbonated apatite. Non-pretreated DNA coatings were found to have no effect on osteoblast-like cell behavior compared with titanium controls. On the other hand, SBF-pretreatment of DNA coatings affected the differentiation of osteoblast-like cells through an increased deposition of osteocalcin. The results of this study are indicative of the bone-bonding capacities of DNA coatings. Nevertheless, future animal experiments are required to provide conclusive evidence for the bioactivity of DNA coatings.

  9. Study on the electromagnetic properties of a coated radar absorbent

    NASA Astrophysics Data System (ADS)

    Zhang, Shuan-Qin

    2012-06-01

    The sol-gel method is used to fabricate Fe crystalline powders coated with SiO2. By controlling the molar ratio R of diluted water to tetraethoxysilane (TEOS), Fe powders coated with SiO2 with different morphological characteristics are fabricated. The influence of the core diameter on electromagnetic parameters is investigated. The effect of the amount of the coating material SiO2 on electromagnetic parameters is given. Radar wave absorbing properties of Fe coated with SiO2 and TiO2 respectively are compared.

  10. A Laboratory Study Investigating the Feasibility of Applying Calcite-Type Coatings to Segregated Ballast Tanks

    DTIC Science & Technology

    1981-08-01

    A LABORATORY STUDY INVESTIGATIING THE FEASIBILITY OF APPLYING CALCITE -TYPE COATINGS TO SEGREGATED BALLAST TANKS AUGUST, 1981 Prepared by: Ocean City...Laboratory Study Investigating The Feasibility of Applying Calcite -Type Coatings to Segregated Ballast Tanks 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c...Executive Summary List of Figures I. Conclusions II. Introduction III. Background-The Development and Use of Calcite -Type Coatings IV. Experimental

  11. Thin film thermoelectric devices as thermal control coatings: A study

    NASA Technical Reports Server (NTRS)

    Clemons, J. M.; Krupnick, A. C.

    1973-01-01

    Peltier effect, Thomson effect, and Seeback effect are utilized in design of thermal control coating that serves as versatile means for controlling heat absorbed and radiated by surface. Coatings may be useful in extreme temperature environment enclosures or as heat shields.

  12. A feasibility study on pellet coating using a high-speed quasi-continuous coater.

    PubMed

    Cahyadi, Christine; Koh, Jackson Jie Sheng; Loh, Zhi Hui; Chan, Lai Wah; Heng, Paul Wan Sia

    2012-12-01

    Pellet coating is traditionally carried out using the Wurster coater. This study investigated the feasibility of pellet coating in a newly developed coater built with a unique airflow system, the Supercell™ coater (GEA Pharma Systems, UK). A full factorial design study was carried out to evaluate the influences of the spray rate of the coating dispersion, batch size of the pellet load, pellet size fraction and plenum pressure of the fluidizing air on the color coating of pellets in the Supercell™ coater. Results showed that pellets could be successfully coated using the Supercell™ coater. Higher plenum pressures and lower spray rates were found to minimize pellet agglomeration during coating. Although coating efficiencies were comparable amongst the different pellet size fractions, larger batch sizes of pellets were coated with higher efficiencies. Process optimization was carried out for each pellet size fraction and a large batch size (120 g) in combination with a high plenum pressure (1,500 mm WC) were deemed optimal. Optimal spray rates differed according to pellet size fraction and a lower spray rate was required for smaller pellets. Pellet flow patterns observed during coating were dependent on the pressure drop across the fluidized load. A 'swirling' pellet flow pattern was generally observed at coating conditions which led to optimal outcomes.

  13. An evidence-based practice case study: white coat hypertension.

    PubMed

    Richardson, Mary Ellis

    2015-01-01

    White coat hypertension, also referred to as isolated clinical hypertension, is a condition in which blood pressure rises in the medical setting due to anxiety. White coat hypertension causes no more than 15 mmHg increase in systolic blood pressure or 7 mmHg increase in diastolic blood pressure in normotensive patients, and these increases in blood pressures should return to baseline within 3 visits to the medical provider. In this case, a 77-year-old white man presented to preoperative testing, with a blood pressure of 265/101 mmHg, claiming to have white coat hypertension. This case discusses the interventions implemented for this particular patient and the misdiagnosis and misperceptions of white coat hypertension by both clinicians and patients. This article also addresses recommendations for diagnosis, treatment options, and follow-up for patients with true white coat hypertension.

  14. Comparative study of microstructural characteristics of electrospark and Nd:YAG laser epitaxially growing coatings

    NASA Astrophysics Data System (ADS)

    Xie, Yu-jiang; Wang, Mao-cai; Huang, Da-wei

    2007-05-01

    As low-heat input welding processes, electrospark deposition and pulsed Nd:YAG laser cladding can be commonly used to prepare epitaxially growing coatings. However, these two processes have quite different characteristics in the energy input, the amount of materials involved, and the temperature gradient, and hence might result in dissimilar microstructural characteristics. In this paper, a comparative study has been made between microstructural characteristics in epitaxial growth coatings prepared by electrospark deposition and pulsed Nd:YAG laser cladding. Some interesting results have been achieved. Firstly, epitaxial growth coatings can be commonly achieved by these two techniques. Secondly, microstructural morphologies of these two epitaxial growth coatings are obviously different, cellular columnar structure prevails in the electrospark coating while columnar dendritic structure occupies most of the laser coating thickness, more importantly, electrospark coating remains fully columnar in the whole layer whereas laser coating tends to change from columnar to equiaxed at the top of the layer. Thirdly, electrospark coating possesses finer and more homogeneous microstructure than laser coating.

  15. Calcium coated B80 fullerene: A study on various coating configurations of B80

    NASA Astrophysics Data System (ADS)

    Olguin, Marco; Baruah, Tunna; Zope, Rajendra R.

    2011-09-01

    We investigate the adsorption of calcium atoms on the surface of novel boron fullerenes and the α-boron sheet using an all electron density functional method within the generalized gradient approximation. Recent theoretical works show that the B80 fullerene coated with one Ca atom on each pentagonal ring is capable of storing up to 60 H2 molecules, yielding a gravimetric density of 8.2 wt.%. We have performed a detailed investigation of Ca adsorption on the B80 fullerene. At variance with recent results, our calculations show that a single Ca atom prefers to occupy a hexagonal site rather than a pentagonal site. The calculations on Ca12B80, Ca20B80 and Ca32B80 indicate that Ca atoms prefer to uniformly coat the whole surface over selectively occupying the pentagonal or hexagonal sites.

  16. POLLUTION PREVENTION CASE STUDIES: LOW-VOC/HAP WOOD FURNITURE COATINGS

    EPA Science Inventory

    This article provides a brief profile of the wood furniture industry, discusses pollution prevention activities typically implemented, describes the four low-VOC/HAP coating technologies studied. and summarizes one case study for each of the low-VOC/HAP coating yechnologies inves...

  17. Study on the neotype zirconia's implant coated nanometer hydroxyapatite ceramics

    NASA Astrophysics Data System (ADS)

    Zhu, J. W.; Yang, D. W.

    2007-07-01

    In recent years, biologic ceramics is a popular material of implants and bioactive surface modification of dental implant became a research emphasis, which aims to improve bioactivity of implants materials and acquire firmer implants-bone interface. The zirconia ceramic has excellent mechanical properties and nanometer HA ceramics is a bioceramic well known for its bioactivity, therefore, nanometer HA ceramics coating on zirconia, allows combining the excellent mechanical properties of zirconia substrates with its bioactivity. This paper shows a new method for implant shape design and bioactive modification of dental implants surface. Zirconia's implant substrate was prepared by sintered method, central and lateral tunnels were drilled in the zirconia hollow porous cylindrical implants by laser processing. The HA powders and needle-like HA crystals were made by a wet precipitation and calcining method. Its surface was coated with nanometer HA ceramics which was used brush HA slurry and vacuum sintering. Mechanical testing results revealed that the attachment strength of nanometer HA ceramics coated zirconia samples is high. SEM and interface observation after inserted experiment indicated that calcium and phosphor content increased and symmetrically around coated implant-bone tissue interface. A significantly higher affinity index was demonstrated in vivo by histomorphometric evaluation in coated versus uncoated implants. SEM analysis demonstrated better bone adhesion to the material in coated implant at any situation. In addition, the hollow porous cylindrical implant coated with nanometer HA ceramics increase the interaction of bone and implant, the new bone induced into the surface of hollow porous cylindrical implant and through the most tunnels filled into central hole. The branch-like structure makes the implant and bone a body, which increased the contact area and decreased elastic ratio. Therefore, the macroscopical and microcosmic nested structure of

  18. Morphological and microstructural studies on aluminizing coating of carbon steel

    SciTech Connect

    Samsu, Zaifol; Othman, Norinsan Kamil; Daud, Abd Razak; Hussein, Hishammuddin

    2013-11-27

    Hot dip aluminizing is one of the most effective methods of surface protection for steels and is gradually gaining popularity. The morphology and microstructure of an inter-metallic layer form on the surface of low carbon steel by hot dip aluminization treatment had been studied in detail. This effect has been investigated using optical and scanning electron microscopy, and X-ray diffraction. The result shows that the reaction between the steel and the molten aluminium leads to the formation of Fe–Al inter-metallic compounds on the steel surface. X-ray diffraction and electron microscopic studies showed that a two layer coating was formed consisting of an external Al layer and a (Fe{sub 2}Al{sub 5}) inter metallic on top of the substrate after hot dip aluminizing process. The inter-metallic layer is ‘thick’ and exhibits a finger-like growth into the steel. Microhardness testing shown that the intermetallic layer has high hardness followed by steel substrate and the lowest hardness was Al layer.

  19. Mechanical Study of Novel VPS-Titanium Coating on Polyethylene Substrates

    NASA Astrophysics Data System (ADS)

    Wolinne, Géraldine; Harnisch, Céline; Héripré, Eva; Ruch, Sylvie; Salito, Armando; Jeandin, Michel; Corté, Laurent

    2015-01-01

    Thick metallic or ceramic functional coatings onto polymers are of great interest for different domains such as the aerospace and medical industries. A vacuum plasma spray process has been developed to produce coatings on high- and low-temperature melting polymers including PEEK and polyethylene. This study reports the first experimental characterization of the strength and adherence of such titanium coatings on medical grade polyethylene substrates. Four-point bending coupled to microscopic observations show the existence of a critical tensile strain of 1% corresponding to the onset of cracking in the coating. For strains up to 6%, the crack density increases without any noticeable debonding. Fatigue tests over 106 cycles reveal that under this critical strain the coating remains uncracked while above it, the cracks number and size remain stable with no noticeable coating detachment. A protocol for laser shock adhesion testing (LASAT®) was developed to characterize the coating-substrate adhesion and captured the existence of a debonding threshold. These results provide quantitative guides for the design of orthopedic implants for which such a titanium coating is used to enhance anchorage to bone tissues. More generally, they open the way for systematic measurements quantifying the adhesion of metallic coating onto polymer substrates.

  20. CASE STUDIES: LOW-VOC/HAP WOOD FURNITURE COATINGS (PROJECT SUMMARY)

    EPA Science Inventory

    The report gives results of a study in which wood furniture manufacturing fa-cilities were identified that had converted at least one of their primary coating steps to low-volatile organic compound (VOC)/hazardous air pollut-ant (HAP) wood furniture coatings [high-solids, waterbo...

  1. Isotopic study of oxygen diffusion in oxide coatings

    NASA Technical Reports Server (NTRS)

    Gulino, Daniel A.; Kren, Lawrence A.; Dever, Therese M.

    1989-01-01

    Diffusion of oxygen in thin films of silicon dioxide was studied using oxygen isotopically enriched in oxygen of atomic mass 18 (O-18). This subject is of interest because thin films of dielectrics such as SiO2 are proposed for use as a protective coatings for solar mirrors in low Earth orbit, which is a strongly oxidizing environment. Films of this material were prepared with a direct current magnetron using reactive sputtering techniques. To produce (O-18)- enriched SiO2, a standard 3.5-in.-diameter silicon wafer was reactively sputtered using (O-18)-enriched (95 percent) oxygen as the plasma feed gas. The films were characterized using Rutherford backscattering and Secondary Ion Mass Spectrometer (SIMS) to establish stoichiometry and purity. Subsequently, the films were exposed to an air-derived oxygen plasma in a standard laboratory plasma reactor for durations of up to 10 hr. The concentration ratio of O-16 as a function of depth was determined using SIMS profiling and compared to a baseline, nonplasma exposed sample. A value for the diffusivity of oxygen near the surface of these films was obtained and found to be about 10(-15)sq cm/sec.

  2. Nanocomposites coated with xyloglucan for drug delivery: In vitro studies.

    PubMed

    Ribeiro, C; Arizaga, G G C; Wypych, F; Sierakowski, M-R

    2009-02-09

    Enalaprilate (Enal), an active pharmaceutical component, was intercalated into a layered double hydroxide (Mg/Al-LDH) by an ion exchange reaction. The use of a layered double hydroxide (LDH) to release active drugs is limited by the low pH of the stomach (pH approximately 1.2), in whose condition it is readily dissolved. To overcome this limitation, xyloglucan (XG) extracted from Hymenaea courbaril (jatobá) seeds, Brazilian species, was used to protect the LDH and allow the drug to pass through the gastrointestinal tract. All the materials were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, elemental analyses, transmission electronic microscopy, thermal analyses, and a kinetic study of the in vitro release was monitored by ultraviolet spectroscopy. The resulting hybrid system containing HDL-Enal-XG(3) slowly released the Enal. In an 8-h of test, the system protected 40% (w/v) of the drug. The kinetic profile showed that the drug release was a co-effect behavior, involving dissolution of inorganic material and ion exchange between the intercalated anions in the lamella and those of phosphate in the buffer solution. The nanocomposite coated protection with XG was therefore efficient in obtaining a slow release of Enal.

  3. Isolation of nuclear proteins from flax (Linum usitatissimum L.) seed coats for gene expression regulation studies

    PubMed Central

    2012-01-01

    Background While seed biology is well characterized and numerous studies have focused on this subject over the past years, the regulation of seed coat development and metabolism is for the most part still non-elucidated. It is well known that the seed coat has an essential role in seed development and its features are associated with important agronomical traits. It also constitutes a rich source of valuable compounds such as pharmaceuticals. Most of the cell genetic material is contained in the nucleus; therefore nuclear proteins constitute a major actor for gene expression regulation. Isolation of nuclear proteins responsible for specific seed coat expression is an important prerequisite for understanding seed coat metabolism and development. The extraction of nuclear proteins may be problematic due to the presence of specific components that can interfere with the extraction process. The seed coat is a rich source of mucilage and phenolics, which are good examples of these hindering compounds. Findings In the present study, we propose an optimized nuclear protein extraction protocol able to provide nuclear proteins from flax seed coat without contaminants and sufficient yield and quality for their use in transcriptional gene expression regulation by gel shift experiments. Conclusions Routinely, around 250 μg of nuclear proteins per gram of fresh weight were extracted from immature flax seed coats. The isolation protocol described hereafter may serve as an effective tool for gene expression regulation and seed coat-focused proteomics studies. PMID:22230709

  4. A design of experiment study of plasma sprayed alumina-titania coatings

    SciTech Connect

    Steeper, T.J.; Varacalle, D.J. Jr.; Wilson, G.C.; Riggs, W.L. II; Rotolico, A.J.; Nerz, J.E.

    1992-08-01

    An experimental study of the plasma spraying of alumina-titania powder is presented in this paper. This powder system is being used to fabricate heater tubes that emulate nuclear fuel tubes for use in thermal-hydraulic testing. Coating experiments were conducted using a Taguchi fractional-factorial design parametric study. Operating parameters were varied around the typical spray parameters in a systematic design of experiments in order to display the range of plasma processing conditions and their effect on the resultant coating. The coatings were characterized by hardness and electrical tests, image analysis, and optical metallography. Coating qualities are discussed with respect to dielectric strength, hardness, porosity, surface roughness, deposition efficiency, and microstructure. The attributes of the coatings are correlated with the changes in operating parameters.

  5. Aircraft surface coatings study: Verification of selected materials

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Three liquid coatings and four films that might improve and/or maintain the smoothness of transport aircraft surfaces are considered. Laboratory tests were performed on the liquid coatings (elastomeric polyurethanes) exposed to synthetic type hydraulic fluid, with and without a protective topcoat. Results were analyzed of a 14-month flight service evaluation of coatings applied to leading edges of an airline 727. Two additional airline service evaluations were initiated. Labortory tests were conducted on the films, bonded to aluminum substrate with various adhesives, to determine the best film/adhesive combinations. A cost/benefits analysis was performed and recommendations made for future work toward the application of this technology to commercial transports.

  6. RF surface resistance study of non-evaporable getter coatings

    NASA Astrophysics Data System (ADS)

    Malyshev, Oleg B.; Gurran, Lewis; Goudket, Philippe; Marinov, Kiril; Wilde, Stuart; Valizadeh, Reza; Burt, Graeme

    2017-02-01

    In many particle accelerators the beam parameters could be affected by the beam pipe wakefield impedance. It is vital to understand how the wakefield impedance might vary due to various coatings on the surface of the vacuum chamber, and this can be derived from surface resistance measurements. The bulk conductivity of two types of NEG films (dense and columnar) is determined. This is achieved by measuring the surface resistance of NEG-coated samples using an RF test cavity and fitting the experimental data to a standard theoretical model. The conductivity values obtained are then used to compare resistive wall wakefield effects in beam pipes coated with either of the two types of film.

  7. Bisphosphonate coating might improve fixation of dental implants in the maxilla: a pilot study.

    PubMed

    Abtahi, J; Tengvall, P; Aspenberg, P

    2010-07-01

    This pilot study evaluates the clinical stability of bisphosphonate-coated dental implants placed using a two-stage surgical procedure in five patients. Each patient received seven regular Brånemark implants, one of which was coated with bisphosphonate in a fibrinogen matrix. The coated implant was inserted where the bone was expected to have the least favourable quality. The level of the marginal bone around each implant was measured by intraoral periapical radiographs and implant stability was recorded using resonance frequency measurements. Frequency values (ISQ) were obtained peroperatively before flap closure and after 6 months at abutment connection. At abutment connection the bisphosphonate-coated implants were removed en bloc in two patients for histological examination. An animal experiment had previously confirmed that gamma-sterilization did not reduce bioactivity of the bisphosphonate coating. In each patient, the bisphosphonate-coated implant showed the largest improvement in ISQ level of all implants. Their values at the start tended to be lower, and the absolute value at 6 months did not differ. No complications occurred with the coated implants. Histology showed no abnormalities. Improvement in ISQ values was an expected effect of the bisphosphonate coating, but could be due to the choice of insertion site. This finding warrants a randomized, blinded study.

  8. The Study of Indicatrices of Space Object Coatings in a Controlled Laboratory Environment

    NASA Astrophysics Data System (ADS)

    Koshkin, N.; Burlak, N.; Petrov, M.; Strakhova, S.

    The indicatrices of light scattering by radiation balance coatings used on space objects (SO) were determined in the laboratory experiment in a controlled condition. The laboratory device for the physical simulation of photometric observations of space objects in orbit, which was used in this case to study optical properties of coating samples, is described. The features of light reflection off plane coating samples, including multi-layer insulation (MLI) blankets, metal surfaces coated with several layers of enamel EP-140, special polyacrylate enamel AK-512 and matte finish Tp-CO-2, were determined. The indicated coatings are compound reflectors which exhibit both diffuse and specular reflections. The data obtained are to be used in the development of computer optical-geometric models of space objects or their fragments (space debris) to interpret the photometry results for real space objects.

  9. A study of the deposition of carbide coatings on graphite fibers. [to increase electrical resistance

    NASA Technical Reports Server (NTRS)

    Suplinskas, R. J.; Henze, T. W.

    1979-01-01

    The chemical vapor deposition of boron carbide and silicon carbide on graphite fibers to increase their electrical resistance was studied. Silicon carbide coatings were applied without degradation of the mechanical properties of the filaments. These coatings typically added 1000 ohms to the resistance of a filament as measured between two mercury pools. When SiC-coated filaments were oxidized by refluxing in boiling phosphoric acid, average resistance increased by an additional 1000 ohms; in addition resistance increases as high as 150 K ohms and breakdown voltages as high as 17 volts were noted. Data on boron carbide coatings indicated that such coatings would not be effective in increasing resistance, and would degrade the mechanical properties.

  10. Study on Microstructure and Electrochemical Corrosion Behavior of PEO Coatings Formed on Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Xiang, N.; Song, R. G.; Li, H.; Wang, C.; Mao, Q. Z.; Xiong, Y.

    2015-12-01

    Plasma electrolytic oxidation (PEO) treated 6063 aluminum alloy was applied in a silicate- and borate-based alkaline solution. The microstructure and electrochemical corrosion behavior were studied by scanning electron microscopy, electrochemical impedance spectroscopy (EIS), and potentiodynamic polarization techniques. The results showed that the silicate-based PEO coating was of a denser structure compared with that of borate-based PEO coating. In addition, the silicate-based PEO coating was composed of more phased (Al9Si) than borate-based PEO coating. The results of corrosion test indicated that the silicate-based PEO coating provided a superior protection to 6063 aluminum alloy substrate, while borate-based PEO coating with a porous structure showed an inferior conservancy against corrosive electrolyte. Furthermore, the EIS tests proved that both coatings were capable to resist the aggressive erosion in 0.5 M NaCl solution after 72 h of immersion. However, the borate-based PEO coating could not provide sufficient protection to the substrate after 72-h immersion in 1 M NaCl solution.

  11. Study on structural and optical properties of TiO2 ALD coated silicon nanostructures

    NASA Astrophysics Data System (ADS)

    Pavlenko, Mykola; Myndrul, Valerii; Iatsunskyi, Igor; Jurga, Stefan; Smyntyna, Valentyn

    2016-04-01

    Structural and optical properties of TiO2 ALD coated silicon nanostructures were investigated. The morphology and chemical composition of TiO2 coated silicon nanopillars and porous silicon were studied by using methods of scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX). Optical characteristics were studied using measurements of reflectance and luminescence spectra. Detailed analysis of morphological features and photoluminescence mechanisms were provided. Peculiarities of reflectance spectra were discussed. It was shown the possible application of these structures as antireflectance coatings.

  12. Hydroxyapatite coating on PEEK implants: Biomechanical and histological study in a rabbit model.

    PubMed

    Durham, John W; Montelongo, Sergio A; Ong, Joo L; Guda, Teja; Allen, Matthew J; Rabiei, Afsaneh

    2016-11-01

    A bioactive two-layer coating consisting of hydroxyapatite (HA) and yttria-stabilized zirconia (YSZ) was investigated on cylindrical polyetheretherketone (PEEK) implants using ion beam assisted deposition (IBAD). Post-deposition heat treatments via variable frequency microwave annealing with and without subsequent autoclaving were used to crystallize the as-deposited amorphous HA layer. Microstructural analysis, performed by TEM and EDS, showed that these methods were capable of crystallizing HA coating on PEEK. The in vivo response to cylindrical PEEK samples with and without coating was studied by implanting uncoated PEEK and coated PEEK implants in the lateral femoral condyle of 18 rabbits. Animals were studied in two groups of 9 for observation at 6 or 18weeks post surgery. Micro-CT analysis, histology, and mechanical pull-out tests were performed to determine the effect of the coating on osseointegration. The heat-treated HA/YSZ coatings showed improved implant fixation as well as higher bone regeneration and bone-implant contact area compared to uncoated PEEK. The study offers a novel method to coat PEEK implants with improved osseointegration.

  13. Chronic Effects of Coated Silver Nanoparticles on Marine Invertebrate Larvae: A Proof of Concept Study

    PubMed Central

    Chan, Christine Ying Shan; Chiu, Jill Man Ying

    2015-01-01

    Silver nanoparticles (AgNPs), owing to their unique physical and chemical properties, have become increasingly popular in consumer products. However, data on their potential biological effects on marine organisms, especially invertebrates, remain very limited. This proof of principle study reports the chronic sub-lethal toxicity of two coated AgNPs (oleic acid coated AgNPs and polyvinylpyrrolidone coated AgNPs) on marine benthic invertebrate larvae across three phyla (i.e., the barnacle Balanus Amphitrite, the slipper-limpet Crepidula onyx, and the polychaete Hydroides elegans) in terms of growth, development, and metamorphosis. Bioaccumulation and biodistribution of silver were also investigated. Larvae were also exposed to silver nitrate (AgNO3) in parallel to distinguish the toxic effects derived from nano-silver and the aqueous form of silver. The sub-lethal effect of chronic exposure to coated AgNPs resulted in a significant retardation in growth and development, and reduction of larval settlement rate. The larval settlement rate of H. elegans was significantly lower in the coated AgNP treatment than the AgNO3 treatment, suggesting that the toxicity of coated AgNPs might not be solely evoked by the release of silver ions (Ag+) in the test medium. The three species accumulated silver effectively from coated AgNPs as well as AgNO3, and coated AgNPs were observed in the vacuoles of epithelial cell in the digestive tract of C. onyx. Types of surface coatings did not affect the sub-lethal toxicity of AgNPs. This study demonstrated that coated AgNPs exerted toxic effects in a species-specific manner, and their exposure might allow bioaccumulation of silver, and affect growth, development, and settlement of marine invertebrate larvae. This study also highlighted the possibility that coated AgNPs could be taken up through diet and the toxicity of coated AgNPs might be mediated through toxic Ag+ as well as the novel modalities of coated AgNPs. PMID:26171857

  14. Experimental study of ceramic coated tip seals for turbojet engines

    SciTech Connect

    Biesiadny, T.J.; Klann, G.A.; Lassow, E.S.; Mchenry, M.

    1985-01-01

    Ceramic gas-path seals were fabricated and successfully operated over 1000 cycles from flight idle to maximum power in a small turboshaft engine. The seals were fabricated by plasma spraying zirconia over a NiCoCrAlX bond boat on the Haynes 25 substrate. Coolant-side substrate temperatures and related engine parameters were recorded. Post-test inspection revealed mudflat surface cracking with penetration to the ceramic bond-coat interface.

  15. Corrosion study of bare and coated stainless steel

    NASA Technical Reports Server (NTRS)

    Morrison, J. D.

    1972-01-01

    A program was conducted at Kennedy Space Center from February 1968 to February 1971 to evaluate the performance of austenitic stainless steel alloys used in fluid systems lines. For several years, there had been numerous failures of stainless steel hardware caused by pitting and stress corrosion cracking. Several alloys were evaluated for effectiveness of certain sacrificial-type protective coverings in preventing corrosion failures. Samples were tested in specially designed racks placed 91 meters (100 yards) above high-tide line at Cape Kennedy. It is concluded that: (1) unprotected tubing samples showed evidence of pitting initiation after 2 weeks; (2) although some alloys develop larger pits than others, it is probable that the actual pitting rate is independent of alloy type; (3) the deepest pitting occurred in the sheltered part of the samples; and (4) zinc-rich coatings and an aluminum-filled coating have afforded sacrificial protection against pitting for at least 28 months. It is believed that a much longer effective coating life can be expected.

  16. Comparison study of streptavidin-coated microtitration plates.

    PubMed

    Välimaa, Lasse; Laurikainen, Katja

    2006-01-20

    Streptavidin (SAv)-coated 96-well microtitration plates from commercial suppliers (six plates) and our laboratory (two plates) were tested with respect to their binding capacity for small and large molecules, leaching, well-to-well variation and immunoassay performance. The binding capacities for europium-labelled biotin (Eu-biotin) varied from 4.4 to above 150 pmol/well depending on the plate, and for biotinylated monoclonal antibody from 1.2 to 6.4 pmol/well (190-1030 ng). Incubation for 1 h in regular immunoassay buffer resulted in leaching of 0.6-76 ng of SAv from unwashed wells and 0.5-60 ng from pre-washed wells. The desorbed quantity represented up to 3.4% of the maximal Eu-biotin binding capacity. Coating-related variation of 96 wells (CV% values) ranged from 1.2% to 8.0% when tested with respect to maximum binding capacity. Immunofluorometric assay for TSH as well as enzyme immunoassays for CA125 and PSA revealed immunoassay-related performance of the plates, regarding signal levels, variation and non-specific binding characteristics. Non-specific binding and variation tended to increase in the highest capacity plates, whereas some low capacity plates fulfilled the assay requirements optimally. Good performance with respect to capacity, coating homogeneity or leaching was not by definition reflected in the performance of two-site heterogeneous immunoassays.

  17. Effects of tongue cleaning on bacterial flora in tongue coating and dental plaque: a crossover study

    PubMed Central

    2014-01-01

    Background The effects of tongue cleaning on reconstruction of bacterial flora in dental plaque and tongue coating itself are obscure. We assessed changes in the amounts of total bacteria as well as Fusobacterium nucleatum in tongue coating and dental plaque specimens obtained with and without tongue cleaning. Methods We conducted a randomized examiner-blind crossover study using 30 volunteers (average 23.7 ± 3.2 years old) without periodontitis. After dividing randomly into 2 groups, 1 group was instructed to clean the tongue, while the other did not. On days 1 (baseline), 3, and 10, tongue coating and dental plaque samples were collected after recording tongue coating score (Winkel tongue coating index: WTCI). After a washout period of 3 weeks, the same examinations were performed with the subjects allocated to the alternate group. Genomic DNA was purified from the samples and applied to SYBR® Green-based real-time PCR to quantify the amounts of total bacteria and F. nucleatum. Results After 3 days, the WTCI score recovered to baseline, though the amount of total bacteria in tongue coating was significantly lower as compared to the baseline. In plaque samples, the bacterial amounts on day 3 and 10 were significantly lower than the baseline with and without tongue cleaning. Principal component analysis showed that variations of bacterial amounts in the tongue coating and dental plaque samples were independent from each other. Furthermore, we found a strong association between amounts of total bacteria and F. nucleatum in specimens both. Conclusions Tongue cleaning reduced the amount of bacteria in tongue coating. However, the cleaning had no obvious contribution to inhibit dental plaque formation. Furthermore, recovery of the total bacterial amount induced an increase in F. nucleatum in both tongue coating and dental plaque. Thus, it is recommended that tongue cleaning and tooth brushing should both be performed for promoting oral health. PMID:24423407

  18. Bioequivalence study of 400 and 100 mg imatinib film-coated tablets in healthy volunteers.

    PubMed

    Ostrowicz, Andrzej; Mikołajczak, Przemysław L; Wierzbicka, Marzena; Boguradzki, Piotr

    2014-01-01

    The aim of the study was to investigate the bioavailability of a generic product of 100 mg and 400 mg imatinib film-coated tablets (test) as compared to that of a branded product (reference) at the same strength to determine bioequivalence. The secondary objective of the study was to evaluate tolerability of both products. An open-label, randomized, crossover, two-period, single-dose, comparative study was conducted in 43 (Imatynib-Biofarm 100 mg film-coated tablet) and in 42 (Imatynib-Biofarm 400 mg film-coated tablet), brand name Imatenil, Caucasian healthy volunteers in fed conditions. A single oral dose administration of the test or reference product was separated by 14-day washout period. The imatinib and its metabolite N-desmethyl imatinib concentrations were determined using a validated LC MS/MS method. The results of the single-dose study in healthy volunteers indicated that the film-coated tablets of Imatynib-Biofarm 100 mg and 400 mg film-coated tablets manufactured by Biofarm Sp. z o.o. (test products) are bioequivalent to those of Glivec 100 mg and 400 mg film-coated tablets manufactured by Novartis Pharma GmbH (reference products). Both products in the two doses of imatinib were well tolerated.

  19. A study of the magnetic properties of cobalt ferrite-coated zinc ferrite particles

    NASA Astrophysics Data System (ADS)

    Tang, Huan; Du, You-wei; Qiu, Zi-qiang; Walker, J. C.

    1987-04-01

    Nearly spherical Zn0.2Fe2.8O4 particles coated with an epitaxial layer of CoFe2O4 ferrites of various thicknesses were studied with Mössbauer spectroscopy. Measurements reveal that the magnetic structures of these particles are different at room temperature and liquid nitrogen or liquid helium temperatures, indicating the existence of a Verwey transition, which occurs between 77 and 119 K. Coating of Co-ferrite has no sizable effect on the transition.

  20. In Situ Surface Studies Of Conversion Coatings For Steel And Aluminum

    DTIC Science & Technology

    1992-11-10

    functional electrolyte groups such as carboxylic acid (-COOH) and sulfonic acid (-S03H). Sugama et al.1413 found poly(acrylic acid ), herein referred to as PAA... acid (PAA) complexed zinc phosphate conversion coatings on steel. Atomic force microscopy (AFM) using tunnel current control was developed and applied...Microscopy Studies of Zinc Phosphate and Polyacrylic Acid Complexed Zinc Phosphate Conversion Coatings on Steel 11 1. Background 12 2. Samples 12 3

  1. In situ studies of phase separation and crystallization directed by Marangoni instabilities during spin-coating.

    PubMed

    Toolan, Daniel T W; Pullan, Nikki; Harvey, Michael J; Topham, Paul D; Howse, Jonathan R

    2013-12-23

    Results of a pioneering study are presented in which for the first time, crystallization, phase separation and Marangoni instabilities occurring during the spin-coating of polymer blends are directly visualized, in real-space and real-time. The results provide exciting new insights into the process of self-assembly, taking place during spin-coating, paving the way for the rational design of processing conditions, to allow desired morphologies to be obtained.

  2. Novel Conductive Coatings of Carbon Nanotubes: A Fundamental Study

    DTIC Science & Technology

    2008-02-29

    organic dye from parsley : Parsley leaves were chopped on fine pieces then dissolved in acetone. The mixture was stirred for 3 hours. The extract was then...sensitized solar cell made by coating pigments in an extract from parsley leaves on a nanocrystalline film of TiO 2 has been tested (Figure 6). The...4 2 0 0 2 4 6 8 10 Voltage (V) 16 Figure 6. Solar Cell 17 Figure 7. Output characteristics of a solar cell Absorbance spectrum of parsley 4.5. 4 3.5

  3. A comparison of enteric coated microspheres with enteric coated tablet pancreatic enzyme preparations in cystic fibrosis. A controlled study.

    PubMed

    Vyas, H; Matthew, D J; Milla, P J

    1990-01-01

    A comparative study of the efficacy of pH sensitive enteric coated microspheres (ECM) with an enteric coated tablet (ECT) pancreatic enzyme preparation was carried out in 20 children with cystic fibrosis in a double-blind double-placebo crossover manner. Steatorrhoea was assessed by 3 day faecal fat analysis and dosage of medication, stool frequency and consistency; abdominal pain and appetite were documented by a patient-kept diary card. ECM controlled steatorrhoea (11.8 +/- 9.2 g vs 23.2 +/- 18.9 g, P less than 0.02), stool frequency (1.7 +/- 0.6 vs 2.1 +/- 0.9, P less than 0.01) and abdominal pain (8.8 +/- 13.8 vs 23.4 +/- 24.1, P less than 0.05) significantly better than ECT. Out of 20 patients 17 preferred ECM to ECT (P less than 0.00036). ECM preparations should allow more satisfactory dietary management of patients with cystic fibrosis with longterm beneficial effect.

  4. Study on iron oxide nanoparticles coated with glucose-derived polymers for biomedical applications

    NASA Astrophysics Data System (ADS)

    Herea, D. D.; Chiriac, H.; Lupu, N.; Grigoras, M.; Stoian, G.; Stoica, B. A.; Petreus, T.

    2015-10-01

    This study reports an approach for a facile one-step synthesis of magnetic nanoparticles (MNPs) coated with glucose-derived polymers (GDP) through a mechanochemical hydrothermal process for biomedical applications. Polymer-coated magnetic nanoparticles (Fe2O3/Fe3O4), with sizes below 10 nm, exhibited superparamagnetic behavior, with a specific magnetization saturation value of about 40 emu/g, and a maximum specific absorption rate (SAR) of 30 W/g in AC magnetic fields. Depending on the intensity of the applied AC magnetic field, a temperature of 42 °C can be achieved in 4-17 min. The surface polymerized layer affords functional hydroxyl groups for binding to biomolecules containing carboxyl, thiol, or amino groups, thereby making the coated nanoparticles feasible for bio-conjugation. In vitro cytotoxicity evaluation pointed out that a relatively high concentration of polymer-coated magnetic nanoparticles (GDP-MNPs) did not induce severe cell alteration, suggesting a good biocompatibility.

  5. Synthesis and Corrosion Study of Zirconia-Coated Carbonyl Iron Particles

    SciTech Connect

    Shen, R.; Shafrir, S.N.; Miao, C.; Wang, M.; Lambropoulos, J.C.; Jacobs, S.D.; Yang, H.

    2010-01-07

    This paper describes the surface modification of micrometer-sized magnetic carbonyl iron particles (CI) with zirconia from zirconium(IV) butoxide using a sol–gel method. Zirconia shells with various thicknesses and different grain sizes and shapes are coated on the surface of CI particles by changing the reaction conditions, such as the amounts of zirconia sol, nitric acid, and CI particles. A silica adhesive layer made from 3-aminopropyl trimethoxysilane (APTMS) can be introduced first onto the surface of CI particles in order to adjust both the size and the shape of zirconia crystals, and thus the roughness of the coating. The microanalyses on these coated particles are studied by field-emission scanning electron microscopy (FE-SEM) and X-ray-diffraction (XRD). Accelerated acid corrosion and air oxidation tests indicate that the coating process dramatically improved oxidation and acid corrosion resistances, which are critical issues in various applications of CI magnetic particles.

  6. Study of Rb-vapor coated cells — Atomic diffusion and cell curing process

    NASA Astrophysics Data System (ADS)

    Atutov, S. N.; Benimetskiy, F. A.; Plekhanov, A. I.; Sorokin, V. A.

    2016-02-01

    We present the results of a study on an optical-resonant cell filled by a vapor of the Rb atoms and coated with a non-stick polydimethylsiloxane (PDMS) polymer. We show that it is possible to define correctly the diffusion coefficient of the atoms in the coating using the geometric parameters of the cell and the vapor density in the cell volume only. The dependence of the diffusion coefficient on the cell curing time is presented. It is shown that the mysterious cell curing process can be explained in terms of the polymerization of the polymer coating by alkali atoms. The anomalous long dwell time of the Rb atoms on the PDMS coating is discussed as well.

  7. A Study on the Tribological Behavior of Vanadium-Doped Arc Sprayed Coatings

    NASA Astrophysics Data System (ADS)

    Tillmann, Wolfgang; Hagen, Leif; Kokalj, David; Paulus, Michael; Tolan, Metin

    2017-02-01

    The formation of thin reactive films in sliding contacts under elevated temperature provides enhanced tribological properties since the formation of Magnéli phases leads to the ability of self-lubricating behavior. This phenomenon was studied for vanadium-doped coating systems which were produced using CVD and PVD technology. Vanadium-containing arc sprayed coatings were not widely examined so far. The aim of this study was to characterize Fe-V coatings deposited by the Twin Wire Arc Spraying process with respect to their oxidation behavior at elevated temperatures and to correlate the formation of oxides to the tribological properties. Dry sliding experiments were performed in the temperature range between 25 and 750 °C. The Fe-V coating possesses a reduced coefficient of friction and wear coefficient ( k) at 650 and 750 °C, which were significant lower when compared to conventional Fe-based coatings. The evolution of oxide phases was identified in situ by x-ray diffraction for the investigated temperature range. Further oxidation of (pre-oxidized) arc sprayed Fe-V coatings, as verified by differential thermal analysis and thermo-gravimetric analysis, starts at about 500 °C.

  8. Nano-crystalline diamond-coated titanium dental implants - a histomorphometric study in adult domestic pigs.

    PubMed

    Metzler, Philipp; von Wilmowsky, Cornelius; Stadlinger, Bernd; Zemann, Wolfgang; Schlegel, Karl Andreas; Rosiwal, Stephan; Rupprecht, Stephan

    2013-09-01

    Promising biomaterial characteristics of diamond-coatings in biomedicine have been described in the literature. However, there is a lack of knowledge about implant osseointegration of this surface modification compared to the currently used sandblasted acid-etched Ti-Al6-V4 implants. The aim of this study was to investigate the osseointegration of microwave plasma-chemical-vapour deposition (MWP-CVD) diamond-coated Ti-Al6-V4 dental implants after healing periods of 2 and 5 months. Twenty-four MWP-CVD diamond-coated and 24 un-coated dental titanium-alloy implants (Ankylos(®)) were placed in the frontal skull of eight adult domestic pigs. To evaluate the effects of the nano-structured surfaces on bone formation, a histomorphometric analysis was performed after 2 and 5 months of implant healing. Histomorphometry analysed the bone-to-implant contact (BIC). No significant difference in BIC for the diamond-coated implants in comparison to reference implants could be observed for both healing periods. Scanning electron microscopy revealed an adequate interface between the bone and the diamond surface. No delamination or particle-dissociation due to shearing forces could be detected. In this study, diamond-coated dental titanium-alloy implants and sandblasted acid-etched implants showed a comparable degree of osseointegration.

  9. A Study on the Tribological Behavior of Vanadium-Doped Arc Sprayed Coatings

    NASA Astrophysics Data System (ADS)

    Tillmann, Wolfgang; Hagen, Leif; Kokalj, David; Paulus, Michael; Tolan, Metin

    2017-01-01

    The formation of thin reactive films in sliding contacts under elevated temperature provides enhanced tribological properties since the formation of Magnéli phases leads to the ability of self-lubricating behavior. This phenomenon was studied for vanadium-doped coating systems which were produced using CVD and PVD technology. Vanadium-containing arc sprayed coatings were not widely examined so far. The aim of this study was to characterize Fe-V coatings deposited by the Twin Wire Arc Spraying process with respect to their oxidation behavior at elevated temperatures and to correlate the formation of oxides to the tribological properties. Dry sliding experiments were performed in the temperature range between 25 and 750 °C. The Fe-V coating possesses a reduced coefficient of friction and wear coefficient (k) at 650 and 750 °C, which were significant lower when compared to conventional Fe-based coatings. The evolution of oxide phases was identified in situ by x-ray diffraction for the investigated temperature range. Further oxidation of (pre-oxidized) arc sprayed Fe-V coatings, as verified by differential thermal analysis and thermo-gravimetric analysis, starts at about 500 °C.

  10. Hydroxyapatite coatings.

    PubMed

    Lacefield, W R

    1988-01-01

    Four coating techniques were evaluated to determine which is most suitable for producing a dense, highly adherent coating onto metallic and ceramic implant materials. Two of the selected coating methods have serious limitations for use in this particular application, and did not meet the specified criteria for satisfactory coating as defined in the initial stages of the study. For example, the dip coating-sintering technique was judged to be unsatisfactory because of the adverse effect of the high-temperature sintering cycle on the mechanical properties of the metallic substrate materials. These materials could not be used in load-bearing applications because of the excessive grain growth and loss of the wrought structure of both the commercially pure Ti and Ti-6Al-4V substrates, and the loss of ductility in the cast Co-Cr-Mo alloy. Another area of concern was that bond strength between the HA coating and the substrate was not high enough to insure that interfacial failure would not occur during the lifetime of the implant. The immersion-coating technique, in which the metal substrate is immersed into the molten ceramic, was shown in a previous study to be the best method of coating a bioreactive glass onto a Co-Cr-Mo implant. Heating HA above its melting temperature, however, caused undesired compositional and structural changes, and upon solidification very limited adherence between the modified ceramic and substrate material occurred under the conditions of this study. The HIP technique, in which the Ti powder substrate and the HA powder coating are sintered together in a high-pressure autoclave, shows great promise for the fabrication of high-quality composite implants. Initial studies have indicated that high-density Ti substrates with a small grain size that are well bonded to a dense HA coating can be produced under optimum conditions. Sintering and densification additives, such as SiO2 powder, do not appear to be necessary. The main drawback to this

  11. An Experimental Study of Microstructure-Property Relationships in Thermal Barrier Coatings

    NASA Astrophysics Data System (ADS)

    Gupta, M.; Dwivedi, G.; Nylén, P.; Vackel, A.; Sampath, S.

    2013-06-01

    The thermal-mechanical properties of thermal barrier coatings are highly influenced by the defects present in coating microstructure. The aim of this study was to meet the future needs of the gas turbine industry by further development of zirconia coatings through the assessment of microstructure-property relationships. A design of experiments was conducted for this purpose with current, spray distance, and powder feed rate as the varied parameters. Microstructure was assessed with SEM and image analysis was used to characterize porosity content. Evaluations were carried out using laser flash technique to measure thermal properties. A bi-layer beam curvature technique in conjunction with controlled thermal cycling was used to assess the mechanical properties, in particular their nonlinear elastic response. Coating lifetime was evaluated by thermo-cyclic fatigue testing. Relationships between microstructure and coating properties are discussed. Dense vertically cracked microstructure and highly porous microstructure with large globular pores were also fabricated. Correlations between parameters obtained from nonlinear measurements and lifetime based on a priori established microstructural analysis were attempted in an effort to develop and identify a simplified strategy to assess coating durability following sustained long-term exposure to high temperature thermal cycling.

  12. [Experimental study on biomaterials coated with titanium-nitride ceramic for orthopedics].

    PubMed

    Suka, T

    1986-06-01

    Ceramic has excellent properties. However, the brittleness of ceramic is one of the major problems. Coating ceramic on stronger substance materials may be one of the ways to overcome this problem. In this study, stainless steel (316L) coated with titanium nitride ceramic (TiN), produced by using a physical vapor deposition method, was investigated. The results indicated that although the yielding strength was decreased by exposing the material to 550 degrees C, the grain structure did not change. Stainless steel with 3.0 micron TiN coating demonstrated high resistance to bending stress and friction. In addition, this material displayed sufficient fatigue strength for an orthopaedic implant after 10(7) loading repetitions. Based on organ cultures and animal experiments, the biocompatibility of TiN coated stainless steel appeared to be superior to uncoated stainless steel. The TiN coating dissolved in H2O2 although it was stable to HNO3. In conclusion, titanium nitride ceramic coated stainless steel appears to be a promising material for implantation. However, further investigation is necessary for a long term results as an implant material.

  13. Composites from powder coated towpreg - Studies with variable tow sizes

    NASA Astrophysics Data System (ADS)

    Hugh, Maylene K.; Marchello, Joseph M.; Baucom, Robert M.; Johnston, Norman J.

    Part fabrication from composite materials usually costs less when larger fiber tow bundles are used. On the other hand, mechanical properties generally are lower for composites made using larger size tows. This situation gives rise to a choice between costs and properties in determining the best fiber tow bundle size to employ in preparing prepreg materials for part fabrication. To address this issue, unidirectional and eight harness satin fabric composite specimens were fabricated from 3k, 6k, and 12k carbon fiber reinforced LARC-TPI powder coated towpreg. Short beam shear strengths and longitudinal and transverse flexure properties were obtained for the unidirectional specimens. Tension properties were obtained for the eight harness satin woven towpreg specimens. Knowledge of the variation of properties with tow size may serve as a guide in material selection for part fabrication.

  14. Composites from powder coated towpreg - Studies with variable tow sizes

    NASA Technical Reports Server (NTRS)

    Hugh, Maylene K.; Marchello, Joseph M.; Baucom, Robert M.; Johnston, Norman J.

    1992-01-01

    Part fabrication from composite materials usually costs less when larger fiber tow bundles are used. On the other hand, mechanical properties generally are lower for composites made using larger size tows. This situation gives rise to a choice between costs and properties in determining the best fiber tow bundle size to employ in preparing prepreg materials for part fabrication. To address this issue, unidirectional and eight harness satin fabric composite specimens were fabricated from 3k, 6k, and 12k carbon fiber reinforced LARC-TPI powder coated towpreg. Short beam shear strengths and longitudinal and transverse flexure properties were obtained for the unidirectional specimens. Tension properties were obtained for the eight harness satin woven towpreg specimens. Knowledge of the variation of properties with tow size may serve as a guide in material selection for part fabrication.

  15. Comparative study of alkali-vapour cells with alkane-, alkeneand 1-nonadecylbenzene-based antirelaxation wall coatings

    SciTech Connect

    Balabas, M V; Tretiak, O Yu

    2013-12-31

    The dependence of both longitudinal and transverse relaxation times of ground-state magnetic polarisation in alkali atoms on the coating temperature is experimentally studied for the first time in a rubidium-vapour cell with 1-nonadecylbenzene antirelaxation coating of inner walls. The comparison of these times with the relaxation times in a caesium-vapour cell with alkane wall coatings is presented. It is found that within the studied temperature range (294 – 340K) the transverse relaxation time decreases with increasing temperature of alkene and 1-nonadecylbenzene coatings. For the alkane coating such a dependence was not explicitly found. The longitudinal relaxation time begins to decrease in all cases when passing a certain critical temperature of the coating material. It is found that the unsaturated radical structure of the coating material molecules strongly affects its antirelaxation properties. (optical pumping)

  16. Antifouling Coatings Influence both Abundance and Community Structure of Colonizing Biofilms: a Case Study in the Northwestern Mediterranean Sea

    PubMed Central

    Camps, Mercedes; Barani, Aude; Gregori, Gérald; Bouchez, Agnès; Le Berre, Brigitte; Bressy, Christine; Blache, Yves

    2014-01-01

    When immersed in seawater, substrates are rapidly colonized by both micro- and macroorganisms. This process is responsible for important economic and ecological prejudices, particularly when related to ship hulls or aquaculture nets. Commercial antifouling coatings are supposed to reduce biofouling, i.e., micro- and macrofoulers. In this study, biofilms that primarily settled on seven different coatings (polyvinyl chloride [PVC], a fouling release coating [FRC], and five self-polishing copolymer coatings [SPC], including four commercial ones) were quantitatively studied, after 1 month of immersion in summer in the Toulon Bay (Northwestern Mediterranean Sea, France), by using flow cytometry (FCM), microscopy, and denaturing gradient gel electrophoresis. FCM was used after a pretreatment to separate cells from the biofilm matrix, in order to determine densities of heterotrophic bacteria, picocyanobacteria, and pico- and nanoeukaryotes on these coatings. Among diatoms, the only microphytobenthic class identified by microscopy, Licmophora, Navicula, and Nitzschia were determined to be the dominant taxa. Overall, biocide-free coatings showed higher densities than all other coatings, except for one biocidal coating, whatever the group of microorganisms. Heterotrophic bacteria always showed the highest densities, and diatoms showed the lowest, but the relative abundances of these groups varied depending on the coating. In particular, the copper-free SPC failed to prevent diatom settlement, whereas the pyrithione-free SPC exhibited high picocyanobacterial density. These results highlight the interest in FCM for antifouling coating assessment as well as specific selection among microbial communities by antifouling coatings. PMID:24907329

  17. Parity as a factor affecting the white-coat effect in pregnant women: the BOSHI study.

    PubMed

    Ishikuro, Mami; Obara, Taku; Metoki, Hirohito; Ohkubo, Takayoshi; Iwama, Noriyuki; Katagiri, Mikiko; Nishigori, Hidekazu; Narikawa, Yoko; Yagihashi, Katsuyo; Kikuya, Masahiro; Yaegashi, Nobuo; Hoshi, Kazuhiko; Suzuki, Masakuni; Kuriyama, Shinichi; Imai, Yutaka

    2015-11-01

    Parity has previously been reported to affect the difference in blood pressure (BP) measured in the office and at home, also known as the white-coat effect, during pregnancy. The objective of this study was to identify possible factors that cause the white-coat effect during pregnancy, focusing on parity. In total, 530 pregnant women (31.3±4.7 years old) who delivered at a maternal clinic were eligible for the study. The association between parity and the white-coat effect (clinic BP compared with home BP) was investigated for each trimester of pregnancy by multivariate analysis of covariance adjusted for age, body mass index, family history of hypertension and smoking habits. The magnitudes of the white-coat effect for systolic BP in the first, second and third trimesters were 4.1±9.8, 3.4±7.1 and 1.8±6.0 mm Hg, respectively and those for diastolic BP were 3.8±7.4, 1.6±5.8 and 2.4±4.9 mm Hg, respectively. Parity was significantly and negatively associated with the white-coat effect for systolic BP in the first trimester of pregnancy (nulliparous women: 5.07±0.61 mm Hg and multiparous women: 2.78±0.74 mm Hg, P=0.02) as well as for diastolic BP in the second and third trimesters of pregnancy. Age, body mass index, family history of hypertension and smoking were not significantly associated with the white-coat effect in any trimester of pregnancy. Parity may have an influence on the white-coat effect in pregnancy; however, the observed effect, on average 1-2 mm Hg, was small.

  18. Antibacterial-Coated Suture in Reducing Surgical Site Infection in Breast Surgery: A Prospective Study

    PubMed Central

    Laas, Enora; Poilroux, Cécile; Bézu, Corinne; Coutant, Charles; Uzan, Serge; Rouzier, Roman; Chéreau, Elisabeth

    2012-01-01

    Background. To reduce the incidence of microbial colonization of suture material, Triclosan- (TC-)coated suture materials have been developed. The aim of this study was to assess the incidence of suture-related complications (SRC) in breast surgery with and without the use of TC-coated sutures. Methods. We performed a study on two consecutive periods: 92 patients underwent breast surgery with conventional sutures (Group 1) and 98 with TC-coated sutures (Group 2). We performed subgroups analyses and developed a model to predict SRC in Group 1 and tested its clinical efficacy in Group 2 using a nomogram-based approach. Results. The SRC rates were 13% in Group 1 and 8% in Group 2. We found that some subgroups may benefit from TC-coated sutures. The discrimination obtained from a logistic regression model developed in Group 1 and based on multifocality, age and axillary lymphadenectomy was 0.88 (95% CI 0.77–0.95) (P < 10−4). There was a significant difference in Group 2 between predicted probabilities and observed percentages (P < 10−5). The predicted and observed proportions of complications in the high-risk group were 38% and 13%, respectively. Conclusion. This study used individual predictions of SRC and showed that using TC-coated suture may prevent SRC. This was particularly significant in high-risk patients. PMID:23316373

  19. A Study of Soil Tillage Tools from Boronized Sintered Iron

    NASA Astrophysics Data System (ADS)

    Yazici, A.; Çavdar, U.

    2017-03-01

    Acomparative analysis of the properties of boronized sintered iron and quenched steels 30MnB5, 28MnCrB5 used for making soil tillage tools is performed. The microstructure, phase composition, hardness and strength characteristics of the materials are studied. The composition of the boride phase formed in the sintered iron after boronizing is determined by an x-ray method. The losses to abrasive wear are evaluated with the help of a device containing a special bin with a sample of abrasive soil.

  20. Implants coated with bioactive glass by CO2-laser, an in vivo study.

    PubMed

    Moritz, N; Rossi, S; Vedel, E; Tirri, T; Ylänen, H; Aro, H; Närhi, T

    2004-07-01

    Due to ageing of the population, the number of revision operations is expected to increase. Thus good fixation of medical implants is crucial for successful treatment. In our previous studies, a method to coat titanium implants with bioactive glass (BAG) via CO2 laser treatment was introduced. It allows to localise the application of a bioactive coating, without heat treatment of the whole implant. In the present study, cylindrical titanium implants were used (BAG-coated, control group: NaOH-treated and grit-blasted Ti). Three implants were placed in each femoral epicondyle of six rabbits. After eight weeks the animals were sacrificed. Half of the implants were subjected to a torsional loading test. In the control groups, the failure occurred at the bone-implant interface, in the BAG group the failure occurred mainly in the reacted glass. The implants coated with BAG were integrated into host bone without a connective tissue capsule and were surrounded by significantly more bone than the control implants. The findings indicate clearly that the use of CO2 laser radiation to create BAG coatings did not inhibit the bioactive properties of the glass in terms of osteoconduction.

  1. Raman study of TiO2 coatings modified by UV pulsed laser

    NASA Astrophysics Data System (ADS)

    Belka, Radosław; Keczkowska, Justyna; Sek, Piotr

    2016-12-01

    The TiO2 coatings were prepared by simple sol-gel method and modified by UV pulsed laser. TiO2, also know as titania, is a ceramic compound, existing in numerous polymorphic forms, mainly as tetragonal rutile and anatase, and rhomboidal brookite. Rutile is the most stable form of titanium dioxide, whereas anatase is a metastable form, created in lower temperatures than rutile. Anatase is marked with higher specific surface area, porosity and a higher number of surface hydroxyl groups as compared to rutile. The unique optical and electronic properties of TiO2 results in its use as semiconductors dielectric mirrors, sunscreen and UV-blocking pigments and especially as photocatalyst. In this paper, the tetraisopropoxide was used as Ti precursor according to sol-gel method. An organic base was applied during sol preparation. Prepared gel was coated on glass substrates and calcined in low temperature to obtain amorphous phase of titania. Prepared coatings were modified by UV picosecond pulse laser with different pulse repetition rate and pulse power. Physical modification of the coatings using laser pulses was intended in order change the phase content of the produced material. Raman spectroscopy (RS) method was applied to studies of modified coatings as it is one of the basic analytical techniques, supporting the identification of compounds and obtaining information about the structure. Especially, RS is a useful method for distinguishing the anatase and rutile phases. In these studies, anatase to rutile transformation was observed, depending on laser parameters.

  2. Coated mesh photocatalytic reactor for air treatment applications: comparative study of support materials.

    PubMed

    Passalía, Claudio; Nocetti, Emanuel; Alfano, Orlando; Brandi, Rodolfo

    2016-06-14

    An experimental comparative study of different meshes as support materials for photocatalytic applications in gas phase is presented. The photocatalytic oxidation of dichloromethane in air was addressed employing different coated meshes in a laboratory-scale, continuous reactor. Two fiberglass meshes and a stainless steel mesh were studied regarding the catalyst load, adherence, and catalytic activity. Titanium dioxide photocatalyst was immobilized on the meshes by dip-coating cycles. Results indicate the feasibility of the dichloromethane elimination in the three cases. When the number of coating cycles was doubled, the achieved conversion levels were increased twofold for stainless steel and threefold for the fiberglass meshes. One of the fiberglass meshes (FG2) showed the highest reactivity per mass of catalyst and per catalytic surface area.

  3. Calix[4]arene coated QCM sensors for detection of VOC emissions: Methylene chloride sensing studies.

    PubMed

    Temel, Farabi; Tabakci, Mustafa

    2016-06-01

    This paper describes the sensing studies of QCM sensors with coated some calixarene derivatives bearing different functional groups for some selected Volatile Organic Compounds (VOCs) such as acetone, acetonitrile, carbon tetrachloride, chloroform, methylene chloride (MC), N,N-dimethylformamide, 1,4-dioxane, ethanol, ethyl acetate, xylene, methanol, n-hexane and toluene. The initial experiments have revealed that whole the calix[4]arene modified QCM sensors exhibited strongest sensing ability to MC emissions. Thus, the detailed studies were performed for only MC emissions after the determination of relatively more effective calix-coated QCM sensors for MC emissions in aqueous media. The results demonstrated that QCM sensor coated with calix-7 bearing both amino and imidazole groups was most useful sensor for MC emissions with 54.1ppm of detection limit. Moreover, it was understood that cyclic structures, H-bonding capabilities and also good preorganization properties of calixarene derivatives played an important role in VOC sensing processes.

  4. CASE STUDY PROJECT: THE USE OF LOW-VOC/HAP COATINGS AT WOOD FURNITURE MANUFACTURING FACILITIES

    EPA Science Inventory

    The paper discusses a study of pollution prevention and the use of low-VOC/HAP (volatile organic compound/hazardous air pollutant) coatings at wood furniture manufacturing facilities. The study is to identify wood furniture and cabinet manufacturing facilities that have converted...

  5. XPS and bioactivity study of the bisphosphonate pamidronate adsorbed onto plasma sprayed hydroxyapatite coatings

    NASA Astrophysics Data System (ADS)

    McLeod, Kate; Kumar, Sunil; Smart, Roger St. C.; Dutta, Naba; Voelcker, Nicolas H.; Anderson, Gail I.; Sekel, Ron

    2006-12-01

    This paper reports the use of X-ray photoelectron spectroscopy (XPS) to investigate bisphosphonate (BP) adsorption onto plasma sprayed hydroxyapatite (HA) coatings commonly used for orthopaedic implants. BPs exhibit high binding affinity for the calcium present in HA and hence can be adsorbed onto HA-coated implants to exploit their beneficial properties for improved bone growth at the implant interface. A rigorous XPS analysis of pamidronate, a commonly used nitrogenous BP, adsorbed onto plasma sprayed HA-coated cobalt-chromium substrates has been carried out, aimed at: (a) confirming the adsorption of this BP onto HA; (b) studying the BP diffusion profile in the HA coating by employing the technique of XPS depth profiling; (c) confirming the bioactivity of the adsorbed BP. XPS spectra of plasma sprayed HA-coated discs exposed to a 10 mM aqueous BP solution (pamidronate) for periods of 1, 2 and 24 h showed nitrogen and phosphorous photoelectron signals corresponding to the BP, confirming its adsorption onto the HA substrate. XPS depth profiling of the 2 h BP-exposed HA discs showed penetration of the BP into the HA matrix to depths of at least 260 nm. The bioactivity of the adsorbed BP was confirmed by the observed inhibition of osteoclast (bone resorbing) cell activity. In comparison to the HA sample, the HA sample with adsorbed BP exhibited a 25-fold decrease in primary osteoclast cells.

  6. a Study on Microstructure Characteristics of IN SITU Formed TiC Reinforced Composite Coatings

    NASA Astrophysics Data System (ADS)

    Liu, Peng; Guo, Wei; Luo, Hui

    2012-04-01

    In situ synthesized TiC reinforced composite coating was fabricated by laser cladding of Al-Ni-Cr-C powders on titanium alloys, which can greatly improve the surface performance of the substrate. In this study, the Al-Ni-Cr-C laser-cladded composite coatings have been researched by means of X-ray diffraction, scanning electron microscope (SEM) and electron probe micro-analyzer (EPMA). There was a metallurgical combination between the Al-Ni-Cr-C laser-cladded coating and the Ti-6Al-4V substrate, and the micro-hardness of the Al-Ni-Cr-C laser-cladded coating was in the range of 1200-1450 HV0.2, which was 3-4 times higher than that of Ti-6Al-4V substrate. Furthermore, the reinforcement of theAl-Ni-Cr-C laser-cladded coating were mainly contributed to the action of the TiC, Ti3Al, Cr7C3, Al8Cr5 phases and the solution strengthening.

  7. In vivo study of nanostructured akermanite/PEO coating on biodegradable magnesium alloy for biomedical applications.

    PubMed

    Razavi, Mehdi; Fathi, Mohammadhossein; Savabi, Omid; Vashaee, Daryoosh; Tayebi, Lobat

    2015-05-01

    The major issue for biodegradable magnesium alloys is the fast degradation and release of hydrogen gas. In this article, we aim to overcome these disadvantages by using a surface modified magnesium implant. We have recently coated AZ91 magnesium implants by akermanite (Ca2 MgSi2 O7 ) through the combined electrophoretic deposition (EPD) and plasma electrolytic oxidation (PEO) methods. In this work, we performed the in vitro and in vivo examinations of these coated implants using L-929 cell line and rabbit animal model. The in vitro study confirmed the higher cytocompatibility of the coated implants compare to the uncoated ones. For the in vivo experiment, the rod samples were implanted into the greater trochanter of rabbits and monitored for two months. The results indicated a noticeable biocompatibility improvement of the coated implants which includes slower implant weight loss, reduction in Mg ion released from the coated samples in the blood plasma, lower release of hydrogen bubbles, increase in the amount of bone formation and ultimately lower bone inflammation after the surgery according to the histological images. Our data exemplifies that the proper surface treatment of the magnesium implants can improve their biocompatibility under physiological conditions to make them applicable in clinical uses. © 2014 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 103A: 1798-1808, 2015.

  8. Cytotoxicity of a new antimicrobial coating for surgical screws: an in vivo study

    PubMed Central

    Güzel, Yunus; Elmadag, Mehmet; Uzer, Gokcer; Yıldız, Fatih; Bilsel, Kerem; Tuncay, İbrahim

    2017-01-01

    INTRODUCTION The risk of surgery-related infection is a persistent problem in orthopaedics and infections involving implants are particularly difficult to treat. This study explored the responses of bone and soft tissue to antimicrobial-coated screws. We investigated whether such screws, which have never been used to fix bony tissues, would result in a cytotoxic effect. We hypothesised that the coated screws would not be toxic to the bone and that the likelihood of infection would be reduced since bacteria are not able to grow on these screws. METHODS Titanium screws were inserted into the left supracondylar femoral regions of 16 rabbits. The screws were either uncoated (control group, n = 8) or coated with a polyvinylpyrrolidone-polyurethane interpolymer with tertiary amine functional groups (experimental group, n = 8). At Week 6, histological samples were obtained and examined. The presence of necrosis, fibrosis and inflammation in the bony tissue and the tissue surrounding the screws was recorded. RESULTS Live, cellular bone marrow was present in all the rabbits from the experimental group, but was replaced with connective tissue in four rabbits from the control group. Eight rabbits from the control group and two rabbits from the experimental group had necrosis in fatty bone marrow. Inflammation was observed in one rabbit from the experimental group and five rabbits from the control group. CONCLUSION Titanium surgical screws coated with polyvinylpyrrolidone-polyurethane interpolymer were associated with less necrosis than standard uncoated screws. The coated screws were also not associated with any cytotoxic side effect. PMID:26805670

  9. Computational Study of the Surface-Enhanced Raman Scattering from Silica-Coated Silver Nanowires†

    PubMed Central

    DeVetter, Brent M.; Bhargava, Rohit; Murphy, Catherine J.

    2015-01-01

    Surface-enhanced Raman scattering (SERS) is a popular vibrational spectroscopic technique that can have several applications in chemical and biological sensing. Within the last decade or so, our ability to chemically synthesize nanostructures has improved to the point that the rational design of a variety of SERS substrates is now viable. In this report, we describe a computational study using the finite element method (FEM) to investigate the effects of patchy silica coatings on silver nanowires. We found that varying the degree of silica coating on silver nanowires impacts the enhancement and may be explained through two processes. The first process is a consequence of changes in the dielectric environment surrounding the nanowire due to the silica. As additional layers of silica coat the nanowire, the localized surface plasmon resonance of the nanowire redshifts. The second process is a result of silica distorting the local electric field around the nanowire surface. Anisotropic silica coating can influence anticipated enhancement depending on its spatial localization with respect to excited plasmon modes in the nanowire. We propose that the design of nanostructures with patchy silica coatings can be a viable tool for increasing surface enhancement. PMID:24188479

  10. Environmental/Thermal Barrier Coatings for Ceramic Matrix Composites: Thermal Tradeoff Studies

    NASA Technical Reports Server (NTRS)

    Murthy, Pappu L. M.; Brewer, David; Shah, Ashwin R.

    2007-01-01

    Recent interest in environmental/thermal barrier coatings (EBC/TBCs) has prompted research to develop life-prediction methodologies for the coating systems of advanced high-temperature ceramic matrix composites (CMCs). Heat-transfer analysis of EBC/TBCs for CMCs is an essential part of the effort. It helps establish the resulting thermal profile through the thickness of the CMC that is protected by the EBC/TBC system. This report documents the results of a one-dimensional analysis of an advanced high-temperature CMC system protected with an EBC/TBC system. The one-dimensional analysis was used for tradeoff studies involving parametric variation of the conductivity; the thickness of the EBC/TBCs, bond coat, and CMC substrate; and the cooling requirements. The insight gained from the results will be used to configure a viable EBC/TBC system for CMC liners that meet the desired hot surface, cold surface, and substrate temperature requirements.

  11. Optical coherence tomography complemented by hyperspectral imaging for the study of protective wood coatings

    NASA Astrophysics Data System (ADS)

    Dingemans, L. M.; Papadakis, V. M.; Liu, P.; Adam, A. J. L.; Groves, R. M.

    2015-06-01

    Optical coherence tomography (OCT) is a contactless and non-destructive testing (NDT) technique based on low-coherence interferometry. It has recently become a popular NDT-tool for evaluating cultural heritage. In this study, protective coatings on wood and their penetration into the wood structure were measured with a customized infrared fiber optic OCT instrument. In order to enhance the understanding of the OCT measurements of coatings on real wooden samples, an optimization of the measuring and analyzing methodology was performed by developing an averaging approach and by post-processing the data. The collected information was complemented by data obtained with hyperspectral imaging to allow data from local OCT A-scans to be used in mapping the coating thicknesses over larger areas.

  12. A Comparative Study of Natural Fiber and Glass Fiber Fabrics Properties with Metal or Oxide Coatings

    NASA Astrophysics Data System (ADS)

    Lusis, Andrej; Pentjuss, Evalds; Bajars, Gunars; Sidorovicha, Uljana; Strazds, Guntis

    2015-03-01

    Rapidly growing global demand for technical textiles industries is stimulated to develop new materials based on hybrid materials (yarns, fabrics) made from natural and glass fibres. The influence of moisture on the electrical properties of metal and metal oxide coated bast (flax, hemp) fibre and glass fibre fabrics are studied by electrical impedance spectroscopy and thermogravimetry. The bast fibre and glass fiber fabrics are characterized with electrical sheet resistance. The method for description of electrical sheet resistance of the metal and metal oxide coated technical textile is discussed. The method can be used by designers to estimate the influence of moisture on technical data of new metal coated hybrid technical textile materials and products.

  13. Study on the Sensing Coating of the Optical Fibre CO2 Sensor

    PubMed Central

    Wysokiński, Karol; Napierała, Marek; Stańczyk, Tomasz; Lipiński, Stanisław; Nasiłowski, Tomasz

    2015-01-01

    Optical fibre carbon dioxide (CO2) sensors are reported in this article. The principle of operation of the sensors relies on the absorption of light transmitted through the fibre by a silica gel coating containing active dyes, including methyl red, thymol blue and phenol red. Stability of the sensor has been investigated for the first time for an absorption based CO2 optical fiber sensor. Influence of the silica gel coating thickness on the sensitivity and response time has also been studied. The impact of temperature and humidity on the sensor performance has been examined too. Response times of reported sensors are very short and reach 2–3 s, whereas the sensitivity of the sensor ranges from 3 to 10 for different coating thicknesses. Reported parameters make the sensor suitable for indoor and industrial use. PMID:26694412

  14. A Study on Wear Resistance of HVOF-Sprayed Ni-MoS2 Self-Lubricating Composite Coatings

    NASA Astrophysics Data System (ADS)

    Liu, Y. L.; Jeng, M. C.; Hwang, J. R.; Chang, C. H.

    2015-02-01

    Composite coating techniques are becoming increasingly popular owing to their peculiar performances. In this study, the wear resistance of thermally sprayed Ni-MoS2 composite coatings on an AISI 1020 steel substrate was investigated. Ni-MoS2 composite powder (size: 60-90 μm) containing 25 wt.% of dispersed MoS2 was prepared by electroless plating. Ni-MoS2 composite coatings were then prepared by HVOF thermal spraying. The coatings were characterized by structural, surface morphological, and compositional analyses by means of microhardness tests, SEM/EDS, XRD, and ICP-AES. For the evaluation of their anti-wear properties, the composites were subjected to ball-on-disk dry wear tests based on the ASTM G99 standard at room temperature. Experimental results showed that some of the MoS2 content dispersed in the Ni-based composite coating burnt away during the high-temperature spraying process, thereby reducing the MoS2 concentration in the coating. In the wear test, the weight loss in the Ni-MoS2 composite coating was minimal under a low load (<15 N) but increased rapidly with increasing load (>30 N). The average wear rate of the coatings was found to be ~1/40 times that of a Ni coating, showing that the wear resistance of the composite coatings was significantly improved by MoS2 addition.

  15. Microstructural characterization and thermal fatigue study of a coated Incoloy 909 Superalloy

    NASA Astrophysics Data System (ADS)

    Balachander, Mettupalayam

    This research focuses on studying the microstructure of alloy 909, its susceptibility to oxidation at elevated temperatures (˜700°C) and substrate coatings compatibility with high velocity oxy fuel (HVOF) sprayed oxidation resistance coatings. The characterization work involved in studying the microstructure of Incoloy 909 at three heat treated conditions namely solution treated condition (ST), commercially recommended solution heat treated and aged condition (STA), and solution treated and over aged condition (STOA) using optical microscopy, analytical scanning electron microscopy, and analytical transmission electron microscopy. The oxidation susceptibility were investigated at elevated temperatures of bare and coated alloy 909 substrates by subjecting test materials to isothermal and thermal cycle testing. The microstructure of alloy 909 in the ST condition showed only the presence of blocky Laves phase. The Laves phase in this alloy is a well known for its grain pinning effect that prevents excessive grain growth. In the STA condition, the microstructure revealed the presence of fine gamma prime, intergranular and intragranular Laves phase and occasionally gamma prime precipitates orienting in a platelet form ready to transition into the epsilon phase. In the STOA condition, the microstructure consisted of Laves phase in inter and intragranular locations, and a copious amount of Widmanstatten type epsilon phase. Incoloy 909 was observed to form oxide scales in both isothermal and cyclic thermal exposures, the oxide scale consisted of distinct outer and inner scales in the micrographs. The comparison base alloy (alloyl 718) used in this study surprisingly did not show any visible presence of oxide scale after 1000 hour exposure at ˜700°C. Three coatings (CoNiCrAlY, 718 , and NiAl) were sprayed on alloy 909 and alloy 718 test coupons using the HVOF process to investigate the compatibility of the coatings with the substrate. The test results points out that

  16. Spectroscopic studies of trimetoxypropylsilane and bis(trimethoxysilyl)ethane sol-gel coatings on aluminum and copper

    NASA Astrophysics Data System (ADS)

    Li, Ying-Sing; Tran, Tuan; Xu, Yue; Vecchio, Nicolas E.

    2006-11-01

    Trimethoxypropylsilane (TMPS) and bis(trimethoxysilyl)ethane (BTMSE) were used as surface modifiers of metal vie the sol-gel process and dip coating. In addition to the single coating of Al, Cu and Sn, double treatments of Al were also conducted by combining coatings with these sol-gels in different sequences. Reflection and absorption infrared spectroscopy (RAIR) was employed to characterize and to trace the proceeding of the sol-gel process of the films. It was found that the silanol condensation occurs in the coating films on Al and the covalent linkage exists between the TMPS film and copper surface. From the assigned vibration modes, two conformers were identified in pure TMPS, TMPS sol-gel and coated film. A series of dip coating experiments with different concentrations of TMPS sol-gel was conducted, and the results from the collected RAIR spectra of the coated samples suggested that the coated Cu consistently has a better RAIR spectrum than that of the coated Al. The TMPS sol-gel appeared to have a better affinity to Cu than to Al. The temperature effect and the aging effect in the coating films were studied. X-ray photoelectronic spectroscopy (XPS) was employed to characterize the coated film, and the XPS data confirm the formation of the siloxane film from the silane coupling agents (SCA). Electrochemical impedance spectra (EIS) have been collected for bare Al and Cu, BTMSE sol-gel coated Al, and TMPS sol-gel coated Cu in 0.15 M NaCl solution. The corresponding electronic circuit parameters have been determined to match the experimental EIS data.

  17. Study on the Friction and Wear Behavior of a TA15 Alloy and Its Ni-SiC Composite Coating

    NASA Astrophysics Data System (ADS)

    Guo, Bao-hui; Wang, Zhen-ya; Li, Hai-long

    2016-05-01

    Ni-SiC composite coatings were prepared on TA15 alloy by composite electroplating technology. The friction and wear behavior of TA15 alloy, and the coating were comparatively studied at both room temperature and 600 °C using GCr15 as the counterparts. The results show that the obtained coating is relatively dense and compact, and possesses higher micro-hardness than TA15 alloy. The coating has significant friction reduction effect sliding at 600 °C, but has no obvious friction reduction effect sliding at room temperature. The coating possesses superior wear resistance than TA15 alloy, evidenced by its much lower mass losses than those of TA15 alloy sliding at both room temperature and 600 °C. The TA15 alloy and the coating showed different wear mechanisms under the given sliding conditions.

  18. In vivo comparative study of tissue reaction to bare and antimicrobial polymer coated transcutaneous implants.

    PubMed

    Calliess, Tilman; Bartsch, Ivonne; Haupt, Maike; Reebmann, Mattias; Schwarze, Michael; Stiesch, Meike; Pfaffenroth, Cornelia; Sluszniak, Magda; Dempwolf, Wibke; Menzel, Henning; Witte, Frank; Willbold, Elmar

    2016-04-01

    We coated transcutaneous implants made of titanium alloy Ti6Al4V with copolymer dimethyl (2-methacryloyloxy-ethyl) phosphonate and 4-vinylpyridine and investigated the tissue reaction with respect to its biocompatible and antimicrobial properties in vivo. We distinguished between clinically observable superficial inflammations and histologically detectable deep infections. The vinylpyridine moieties were transferred into cationic pyridinium groups by reaction with hexyl bromide. Thus polymers with both antimicrobial capacity and good biocompatibility were obtained. In a short-term study, we implanted specially designed bare or coated implants in hairless but immunocompetent mice and analyzed the tissue reaction histologically. No difference was found between bare and coated implants in the initial healing phase of up to 14 days; however, after 21 days the scar tissue formation was higher in the bare implant group. The degree of epithelial downgrowth was comparable in both groups at any time point. In a long-term study of up to 168 days, we analyzed resistance to infection. In the bare implant group, 7 of the 12 implantation sites became infected deep whereas in the coated implant group only two deep infections were observed. The other implantation sites showed only superficial signs of inflammation. These results generally accord with previous in-vitro studies.

  19. Studies on Nanostructure Aluminium Thin Film Coatings Deposited using DC magnetron Sputtering Process

    NASA Astrophysics Data System (ADS)

    Singh M, Muralidhar; G, Vijaya; MS, Krupashankara; Sridhara, B. K.; Shridhar, T. N.

    2016-09-01

    Nanostructured thin film metallic coatings has become an area of intense research particularly in applications related solar, sensor technologies and many other optical applications such as laser windows, mirrors and reflectors. Thin film metallic coatings were deposited using DC magnetron sputtering process. The deposition rate was varied to study its influence on optical behavior of Aluminum thin films at a different argon flow rate. Studies on the optical response of these nanostructure thin film coatings were characterized using UV-VIS-NIR spectrophotometer with integrating sphere in the wavelength range of (250-2500nm) and Surface morphology were carried out using atomic force microscope with roughness ranging from 2 to 20nm and thickness was measured using Dektak measuring instrument. The reflection behavior of aluminium coatings on polycarbonate substrates has been evaluated. UV-VIS-NIR Spectrophotometer analysis indicates higher reflectance of 96% for all the films in the wavelength range of 250 nm to 2500 nm. Nano indentation study revealed that there was a considerable change in hardness values of the films prepared at different conditions.

  20. Combined PIXE and SEM study of the behaviour of trace elements in gel formed around implant coated with bioactive glass

    NASA Astrophysics Data System (ADS)

    Oudadesse, H.; Irigaray, J. L.; Barbotteau, Y.; Brun, V.; Moretto, Ph.

    2002-05-01

    Bioactive glasses are used as coating biomaterials to facilitate anchorage of metallic prostheses implanted into the body. The aim of this work is to study the behavior of gel formed in contact with alloys and BVA and BVH bioactive glasses implanted. Cylinders of metallic implants composed by Ti, Al and V, are coated with bioactive glass. Three sheep were implanted for different time length: 3, 6 and 12 months in the femoral epiphysis. Results obtained with particle induced X-ray emission and scanning electron microscopy show that BVA coating induces a better contact between the metallic implant and bone. On the other hand, BVH coating prevents corrosion from the metallic implant.

  1. The study of crack resistance of TiAlN coatings under mechanical loading and thermal cycle testing

    SciTech Connect

    Akulinkin, Alexandr Shugurov, Artur Sergeev, Viktor; Panin, Alexey; Cheng, C.-H.

    2015-10-27

    The effect of preliminary ion bombardment of 321 stainless steel substrate on crack resistance of TiAlN coatings at uniaxial tension and thermal cycling is studied. The ion-beam treatment of the substrate is shown to substantially improve the adhesion strength of the coatings that prevents their delamination and spalling under uniaxial tension. The resistance to crack propagation and spalling by the thermal shock is higher in the TiAlN coating deposited onto the substrate subjected to Ti ion bombardment as compared to that in the TiAlN coating deposited onto the initial substrate.

  2. A comparative study of tribological behavior of plasma and D-gun sprayed coatings under different wear modes

    NASA Astrophysics Data System (ADS)

    Sundararajan, G.; Prasad, K. U. M.; Rao, D. S.; Joshi, S. V.

    1998-06-01

    In recent years, thermal sprayed protective coatings have gained widespread acceptance for a variety of industrial applications. A vast majority of these applications involve the use of thermal sprayed coatings to combat wear. While plasma spraying is the most versatile variant of all the thermal spray processes, the detonation gun (D-gun) coatings have been a novelty until recently because of their proprietary nature. The present study is aimed at comparing the tribological behavior of coatings deposited using the two above techniques by focusing on some popular coating materials that are widely adopted for wear resistant applications, namely, WC-12% Co, A12O3, and Cr3C2-MCr. To enable a comprehensive comparison of the above indicated thermal spray techniques as well as coating materials, the deposited coatings were extensively characterized employing microstructural evaluation, microhardness measurements, and XRD analysis for phase constitution. The behavior of these coatings under different wear modes was also evaluated by determining their tribological performance when subjected to solid particle erosion tests, rubber wheel sand abrasion tests, and pin-on-disk sliding wear tests. The results from the above tests are discussed here. It is evident that the D-gun sprayed coatings consistently exhibit denser microstructures and higher hardness values than their plasma sprayed counterparts. The D-gun coatings are also found to unfailingly exhibit superior tribological performance superior to the corresponding plasma sprayed coatings in all wear tests. Among all the coating materials studied, D-gun sprayed WC-12%Co, in general, yields the best performance under different modes of wear, whereas plasma sprayed Al2O3 shows least wear resistance to every wear mode.

  3. Synthesis of Carbon-Coated ZnO Composite and Varistor Properties Study

    NASA Astrophysics Data System (ADS)

    Sun, Wei-Jie; Liu, Jin-Ran; Yao, Da-Chuan; Chen, Yong; Wang, Mao-Hua

    2017-01-01

    In this article, monodisperse ZnO composite nanoparticles were successfully prepared by sol-gel mixed precursor method. Subsequently, carbon as the shell was homogeneously coated on the surface of the ZnO composite nanoparticles via a simple adsorption and calcination process. Microstructural studies of the as-obtained powders were carried out using the techniques of the x-ray powder diffraction, scanning electron microscopy, field emission scanning electron microscopy, transmission electron microscopy with energy dispersive x-ray spectroscopy, and Fourier transform infrared spectroscopy. The results show that the pink ZnO composite powders were fully coated by carbon. Based on the results, the effect of glucose content on the microstructure of the synthesized composites and the electrical properties of the ZnO varistors sintered in air at 1150°C for 2 h were also fully studied. As the amount of glucose increased, the thickness of carbon can be increased from 2.5 nm to 5 nm. In particular, the ZnO varistor fabricated with the appropriate thickness of the carbon coating (5 nm) leads to the superior electrical performance, with present high breakdown voltage (V b = 420 V/mm) and excellent nonlinear coefficient (α = 61.7), compared with the varistors obtained without carbon coating.

  4. Induction heating studies of dextran coated MgFe2O4 nanoparticles for magnetic hyperthermia.

    PubMed

    Khot, V M; Salunkhe, A B; Thorat, N D; Ningthoujam, R S; Pawar, S H

    2013-01-28

    MgFe(2)O(4) nanoparticles with sizes around 20 nm have been prepared by a combustion method and functionalized with dextran for their possible applications in magnetic particle hyperthermia. The induction heating study of these nanoparticles at different magnetic field amplitudes, from 6.7 kA m(-1) to 26.7 kA m(-1), showed self-heating temperature rise up to 50.25 °C and 73.32 °C (at 5 mg mL(-1) and 10 mg mL(-1) concentrations in water respectively) which was primarily thought to be due to hysteresis losses activated by an AC magnetic field. The dextran coated nanoparticles showed a maximum specific absorption rate (SAR) of about 85.57 W g(-1) at 26.7 kA m(-1) (265 kHz). Dextran coated nanoparticles at concentrations below 1.8 mg mL(-1) exhibit good viability above 86% on mice fibroblast L929 cells. The results suggest that combustion synthesized MgFe(2)O(4) nanoparticles coated with dextran can be used as potential heating agents in magnetic particle hyperthermia. Uncoated and dextran coated samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and vibrating sample magnetometry (VSM), Fourier transform infrared spectroscopy (FTIR), thermogravimetric-differential thermal analysis (TG-DTA) and zeta potential-DLS studies.

  5. Studies on exhaust emissions of catalytic coated spark ignition engine with adulterated gasoline.

    PubMed

    Muralikrishna, M V S; Kishor, K; Venkata Ramana Reddy, Ch

    2006-04-01

    Adulteration of automotive fuels, especially, gasoline with cheaper fuels is widespread throughout south Asia. Some adulterants decrease the performance and life of the engine and increase the emission of harmful pollutants causing environmental and health problems. The present investigation is carried out to study the exhaust emissions from a single cylinder spark ignition (SI) engine with kerosene blended gasoline with different versions of the engine, such as conventional engine and catalytic coated engine with different proportions of the kerosene ranging from 0% to 40% by volume in steps of 10% in the kerosene-gasoline blend. The catalytic coated engine used in the study has copper coating of thickness 400 microns on piston and inner surface of the cylinder head. The pollutants in the exhaust, carbon monoxide (CO) and unburnt hydrocarbons (UBHC) are measured with Netel Chromatograph CO and HC analyzer at peak load operation of the engine. The engine is provided with catalytic converter with sponge iron as a catalyst to control the pollutants from the exhaust of the engine. An air injection is also provided to the catalytic converter to further reduce the pollutants. The pollutants found to increase drastically with adulterated gasoline. Copper-coated engine with catalytic converter significantly reduced pollutants, when compared to conventional engine.

  6. Synthesis of Carbon-Coated ZnO Composite and Varistor Properties Study

    NASA Astrophysics Data System (ADS)

    Sun, Wei-Jie; Liu, Jin-Ran; Yao, Da-Chuan; Chen, Yong; Wang, Mao-Hua

    2017-03-01

    In this article, monodisperse ZnO composite nanoparticles were successfully prepared by sol-gel mixed precursor method. Subsequently, carbon as the shell was homogeneously coated on the surface of the ZnO composite nanoparticles via a simple adsorption and calcination process. Microstructural studies of the as-obtained powders were carried out using the techniques of the x-ray powder diffraction, scanning electron microscopy, field emission scanning electron microscopy, transmission electron microscopy with energy dispersive x-ray spectroscopy, and Fourier transform infrared spectroscopy. The results show that the pink ZnO composite powders were fully coated by carbon. Based on the results, the effect of glucose content on the microstructure of the synthesized composites and the electrical properties of the ZnO varistors sintered in air at 1150°C for 2 h were also fully studied. As the amount of glucose increased, the thickness of carbon can be increased from 2.5 nm to 5 nm. In particular, the ZnO varistor fabricated with the appropriate thickness of the carbon coating (5 nm) leads to the superior electrical performance, with present high breakdown voltage ( V b = 420 V/mm) and excellent nonlinear coefficient ( α = 61.7), compared with the varistors obtained without carbon coating.

  7. Experimental study of the effect of a passive porous coating on disturbances in a hypersonic boundary layer 2. Effect of the porous coating location

    NASA Astrophysics Data System (ADS)

    Lukashevich, S. V.; Morozov, S. O.; Shiplyuk, A. N.

    2016-09-01

    The effect of the location of a passive porous coating on natural disturbances in a hypersonic boundary layer is studied experimentally. The experiments are performed in the flow around a sharp cone aligned at a zero angle of attack with the free-stream Mach number M∞ = 5.8, stagnation temperature T 0 = 370 ± 5 K, and unit Reynolds numbers Re1∞ = 2.6 · 106, 4.6 · 106, 6.6 · 106, and 107 m-1. The wave characteristics of the boundary layer are calculated with the use of the linear stability theory for flow parameters corresponding to experimental values. A comparison of experimental and predicted results shows that the presence of a porous coating in the region where the second mode is unstable leads to reduction of its amplitude at the measurement point, whereas the presence of a porous coating in the region of second mode stability leads to enhancement of the amplitude.

  8. X-ray photoelectron spectroscopy study of the growth kinetics of biomimetically grown hydroxyapatite thin-film coatings

    NASA Astrophysics Data System (ADS)

    McLeod, K.; Kumar, S.; Dutta, N. K.; Smart, R. St. C.; Voelcker, N. H.; Anderson, G. I.

    2010-09-01

    Hydroxyapatite (HA) thin-film coatings grown biomimetically using simulated body fluid (SBF) are desirable for a range of applications such as improved fixation of fine- and complex-shaped orthopedic and dental implants, tissue engineering scaffolds and localized and sustained drug delivery. There is a dearth of knowledge on two key aspects of SBF-grown HA coatings: (i) the growth kinetics over short deposition periods, hours rather than weeks; and (ii) possible difference between the coatings deposited with and without periodic SBF replenishment. A study centred on these aspects is reported. X-ray photoelectron spectroscopy (XPS) has been used to study the growth kinetics of SBF-grown HA coatings for deposition periods ranging from 0.5 h to 21 days. The coatings were deposited with and without periodic replenishment of SBF. The XPS studies revealed that: (i) a continuous, stable HA coating fully covered the titanium substrate after a growth period of 13 h without SBF replenishment; (ii) thicker HA coatings about 1 μm in thickness resulted after a growth period of 21 days, both with and without SBF replenishment; and (iii) the Ca/P ratio at the surface of the HA coating was significantly lower than that in its bulk. No significant difference between HA grown with and without periodic replenishment of SBF was found. The coatings were determined to be carbonated, a characteristic desirable for improved implant fixation. The atomic force and scanning electron microscopies results suggested that heterogeneous nucleation and growth are the primary deposition mode for these coatings. Primary osteoblast cell studies demonstrated the biocompatibility of these coatings, i.e., osteoblast colony coverage of approximately 80%, similar to the control substrate (tissue culture polystyrene).

  9. A Comparative Study on Ni-Based Coatings Prepared by HVAF, HVOF, and APS Methods for Corrosion Protection Applications

    NASA Astrophysics Data System (ADS)

    Sadeghimeresht, E.; Markocsan, N.; Nylén, P.

    2016-12-01

    Selection of the thermal spray process is the most important step toward a proper coating solution for a given application as important coating characteristics such as adhesion and microstructure are highly dependent on it. In the present work, a process-microstructure-properties-performance correlation study was performed in order to figure out the main characteristics and corrosion performance of the coatings produced by different thermal spray techniques such as high-velocity air fuel (HVAF), high-velocity oxy fuel (HVOF), and atmospheric plasma spraying (APS). Previously optimized HVOF and APS process parameters were used to deposit Ni, NiCr, and NiAl coatings and compare with HVAF-sprayed coatings with randomly selected process parameters. As the HVAF process presented the best coating characteristics and corrosion behavior, few process parameters such as feed rate and standoff distance (SoD) were investigated to systematically optimize the HVAF coatings in terms of low porosity and high corrosion resistance. The Ni and NiAl coatings with lower porosity and better corrosion behavior were obtained at an average SoD of 300 mm and feed rate of 150 g/min. The NiCr coating sprayed at a SoD of 250 mm and feed rate of 75 g/min showed the highest corrosion resistance among all investigated samples.

  10. Surface properties of hard protective coatings studied by optical techniques

    NASA Astrophysics Data System (ADS)

    Jaglarz, Janusz; Wolska, N.; Mitura, K.; Duraj, R.; Marszalek, K. W.; El Kouari, Y.

    2016-06-01

    The paper describes optical study of SiC, C and NiC layers deposited on Si substrates by double beam ion sputtering (DBIS) method. The following optical methods: ellipsometry, bidirectional reflection distribution function (BRDF) and total integrated scattering (TIS) studies have been applied. The obtained results allowed us to determine the refractive indices, extinction coefficients and the roughness parameters of DBIS films. Also surface profiles of optical constants determined from scanning ellipsometric measurements have been presented. The power spectral density functions (PSD) of surface roughness for studied samples have been determined. The influence of the deposition technology on film topography has been discussed.

  11. Stainless steel surface biofunctionalization with PMMA-bioglass coatings: compositional, electrochemical corrosion studies and microbiological assay.

    PubMed

    Floroian, L; Samoila, C; Badea, M; Munteanu, D; Ristoscu, C; Sima, F; Negut, I; Chifiriuc, M C; Mihailescu, I N

    2015-06-01

    A solution is proposed to surpass the inconvenience caused by the corrosion of stainless steel implants in human body fluids by protection with thin films of bioactive glasses or with composite polymer-bioactive glass nanostructures. Our option was to apply thin film deposition by matrix-assisted pulsed laser evaporation (MAPLE) which, to the difference to other laser or plasma techniques insures the protection of a more delicate material (a polymer in our case) against degradation or irreversible damage. The coatings composition, modification and corrosion resistance were investigated by FTIR and electrochemical techniques, under conditions which simulate their biological interaction with the human body. Mechanical testing demonstrates the adhesion, durability and resistance to fracture of the coatings. The coatings biocompatibility was assessed by in vitro studies and by flow cytometry. Our results support the unrestricted usage of coated stainless steel as a cheap alternative for human implants manufacture. They will be more accessible for lower prices in comparison with the majority present day fabrication of implants using Ti or Ti alloys.

  12. Study of polyaniline coated CuFe2O4 nanoparticles and their application in biosensor

    NASA Astrophysics Data System (ADS)

    Sharma, Uma Shankar; Shah, Rashmi

    2016-05-01

    Polyaniline coated with nanoferrite particles has attractive application in enzyme less biosensor. In this paper, we have reported the synthesis of copper ferrite by Chemical Coprecipitation method and polymerization of polyaniline by oxidation method. The polyaniline-ferrite composite was characterized by different techniques such as XRD and VSM. The XRD pattern confirmed the presence of cubic phase and particles size in nano scale. The magnetic properties were studied by vibrating sample magnetometer (VSM) technique at room temperature. The higher values of saturation magnetization attributed to the cation distribution change from normal to spinel structure. Some Fe3+ ions drifted from octahedral site to tetrahedral site through the conversion of some Fe2+ ions to Fe3+ ions with super-exchange interactions and gives rise to saturation magnetization. The saturation magnetization of polyaniline coated CuFe2O4 using ammonium nitrate is much less than by polyaniline coated CuFe2O4 using ammonium peroxidisulphate. The saturation magnetization Ms of the nanocomposite is dependent on the volume fraction of the magnetic ferrite particles and on the contribution of the non-magnetic polyaniline coated layer. Polyaniline worked as an immobilization layer in the enzyme less biosensor because enzyme less biosensor is not affected by environmental factor.

  13. In vitro study of Streptococcus mutans adhesion on composite resin coated with three surface sealants

    PubMed Central

    Kim, Da Hye

    2017-01-01

    Objectives Although the coating of surface sealants to dental composite resin may potentially reduce bacterial adhesion, there seems to be little information regarding this issue. This preliminary in vitro study investigated the adhesion of Streptococcus mutans (S. mutans) on the dental composite resins coated with three commercial surface sealants. Materials and Methods Composite resin (Filtek Z250) discs (8 mm in diameter, 1 mm in thickness) were fabricated in a mold covered with a Mylar strip (control). In group PoGo, the surfaces were polished with PoGo. In groups PS, OG, and FP, the surfaces polished with PoGo were coated with the corresponding surface sealants (PermaSeal, PS; OptiGuard, OG; Fortify Plus, FP). The surfaces of the materials and S. mutans cells were characterized by various methods. S. mutans adhesion to the surfaces was quantitatively evaluated using flow cytometry (n = 9). Results Group OG achieved the lowest water contact angle among all groups tested (p < 0.001). The cell surface of S. mutans tested showed hydrophobic characteristics. Group PoGo exhibited the greatest bacterial adhesion among all groups tested (p < 0.001). The sealant-coated groups showed statistically similar (groups PS and FP, p > 0.05) or significantly lower (group OG, p < 0.001) bacterial adhesion when compared with the control group. Conclusions The application of the surface sealants significantly reduced S. mutans adhesion to the composite resin polished with the PoGo. PMID:28194363

  14. Atomic structure of a peptide coated gold nanocluster identified using theoretical and experimental studies.

    PubMed

    Wang, Hui; Li, Xu; Gao, Liang; Zhai, Jiao; Liu, Ru; Gao, Xueyun; Wang, Dongqi; Zhao, Lina

    2016-06-02

    Peptide coated gold nanoclusters (AuNCs) have a precise molecular formula and atomic structure, which are critical for their unique applications in targeting specific proteins either for protein analysis or drug design. To date, a study of the crystal structure of peptide coated AuNCs is absent primarily due to the difficulty of obtaining their crystalline phases in an experiment. Here we study a typical peptide coated AuNC (Au24Peptide8, Peptide = H2N-CCYKKKKQAGDV-COOH, Anal. Chem., 2015, 87, 2546) to figure out its atomic structure and electronic structure using a theoretical method for the first time. In this work, we identify the explicit configuration of the essential structure of Au24Peptide8, Au24(Cys-Cys)8, using density functional theory (DFT) computations and optical spectroscopic experiments, where Cys denotes cysteine without H bonded to S. As the first multidentate ligand binding AuNC, Au24(Cys-Cys)8 is characterized as a distorted Au13 core with Oh symmetry covered by two Au(Cys-Cys) and three Au3(Cys-Cys)2 staple motifs in its atomic structure. The most stable configuration of Au24(Cys-Cys)8 is confirmed by comparing its UV-vis absorption spectrum from time-dependent density-functional theory (TDDFT) calculations with optical absorption measurements, and these results are consistent with each other. Furthermore, we carry out frontier molecular orbital (FMO) calculations to elucidate that the electronic structure of Au24(Cys-Cys)8 is different from that of Au24(SR)20 as they have a different Au/S ratio, where SR represents alkylthiolate. Importantly, the different ligand coatings, Cys-Cys and SR, in Au24(Cys-Cys)8 and Au24(SR)20 cause the different Au/S ratios in the coated Au24. The reason is that the Au/S ratio is crucial in determining the size of the Au core of the ligand protected AuNC, and the size of the Au core corresponds to a specific electronic structure. By the adjustment of ligand coatings from alkylthiolate to peptide, the Au/S ratio

  15. Coating on silica plates — A fluorescence study

    NASA Astrophysics Data System (ADS)

    Hosotte-Darne, R.; Carré, M. C.; Viriot, M. L.; André, J. C.; Midoux, N.

    1996-01-01

    In order to study transfer at the liquid-solid interface in a turbulent flow, a new device based on fluorescence quenching of pyrene immobilized via spacer groups on a silica surface is investigated. First, the optimization of immobilization was studied, particularly the silylation step with 3-aminopropyltriethoxysilane (APTES) regarding three parameters: quantity of water which governs silane polymerization, presence or not of a catalytic reagent and nature of the surface. According to fluorescence measurements, the highest covalent coverage is observed for catalytic silylation with traces of water on pure silica surface. Secondly, to appreciate the constraints due to the turbulent water flow (hydrolysis and/or mechanical erosion) different modified surfaces were tested. The highest stability was observed with the silane polymerization.

  16. Study of flexural rigidity of weavable powder-coated towpreg

    NASA Technical Reports Server (NTRS)

    Hirt, Douglas E.; Marchello, Joseph M.; Baucom, Robert M.

    1990-01-01

    An effort has been made to weave powder-impregnated tow into a two-dimensional preform, controlling process variables to obtain high flexural rigidity in the warp direction and greater flexibility in the fill direction. The resulting prepregs have been consolidated into laminates with LaRC-TPI matrices. Complementary SEM and DSC studies have been performed to deepen understanding of the relationship between tow flexibility and heat treatment. Attention is also given to the oven temperature and residence time variables' effects on power/fiber fusion.

  17. A density functional theory study of the carbon-coating effects on lithium iron borate battery electrodes.

    PubMed

    Loftager, Simon; García-Lastra, Juan María; Vegge, Tejs

    2017-01-18

    Lithium iron borate (LiFeBO3) is a promising cathode material due to its high theoretical specific capacity, inexpensive components and small volume change during operation. Yet, challenges related to severe air- and moisture-induced degradation have prompted the utilization of a protective coating on the electrode which also improves the electronic conductivity. However, not much is known about the preferential geometries of the coating as well as how these coating-electrode interfaces influence the lithium diffusion between the coating and the electrode. Here, we therefore present a density functional theory (DFT) study of the anchoring configurations of carbon coating on the LiFeBO3 electrode and its implications on the interfacial lithium diffusion. Due to large barriers associated with Li-ion diffusion through a parallel-oriented pristine graphene coating on the FeBO3 and LiFeBO3 electrode surfaces, large structural defects in the graphene coating are required for fast Li-ion diffusion. However, such defects are expected to exist only in small concentrations due to their high formation energies. Alternative coating geometries were therefore investigated, and the configuration in which the coating layers were anchored normal to the electrode surface at B and O atoms was found to be most stable. Nudged elastic band (NEB) calculations of the lithium diffusion barriers across the interface between the optimally oriented coating layers and the electrode show no kinetic limitations for lithium extraction and insertion. Additionally, this graphite-coating configuration showed partial blocking of electrode-degrading species.

  18. Study of the stability coated and uncoated nanosilver colloid

    NASA Astrophysics Data System (ADS)

    Harsojo, Respitaningrum, Afrianto, Toto; Sosiati, Harini

    2013-09-01

    The stability of nanosilver colloids made using electrochemical process and chemical process were investigated. In the process using a DC generator cell, two silver electrodes under a DC voltage were used to generate the colloid. In the chemical process the colloid was made using the dilution of AgNO3 in deionized water with the addition of sodium citrate. To increase the stability to this colloid was added polyvinyl alcohol. The stability In those three colloids were investigated using UV-Vis spectrometer. The size of the nano Ag was measured using transmission electron microscope (TEM). The study reveals that within period of two weeks the trend toward a stable colloid is shown by colloid using DC generator. The addition of PVA may stabilize the unstable colloid made using the chemichal process and reduce the size particle to significantly smaller particle compared to the one made using DC generator cell. The condition of obtaining the stable nano colloid silver with smaller particle size was discussed.

  19. Study on the wear mechanism and tool life of coated gun drill

    NASA Astrophysics Data System (ADS)

    Wang, Yongguo; Yan, Xiangping; Chen, Xiaoguang; Sun, Changyu; Zhang, Xi

    2011-05-01

    A comprehensive investigation of the wear progress for solid carbide gun drill coated with TiAlN by machining steel S48CSiV at a cutting speed of 12.66m/s has been performed. Cutting torque was recorded and tool wear mechanism was studied. The surface morphology of the tool and the chip have been studied by using scanning electron microscopy (SEM) and energy dispersive spectrometer (EDS). Results show that cutting torque fluctuates between 3% and 5% when machining less than 130 pieces of crankshaft, but it will sharply increased to nearly 18% while machining 150 pieces of crankshaft because the coating is damaged and the wear becoming severity. The dominant wear mechanisms are adhesive wear and chemical dissolution wear.

  20. Study on the wear mechanism and tool life of coated gun drill

    NASA Astrophysics Data System (ADS)

    Wang, Yongguo; Yan, Xiangping; Chen, Xiaoguang; Sun, Changyu; Zhang, Xi

    2010-12-01

    A comprehensive investigation of the wear progress for solid carbide gun drill coated with TiAlN by machining steel S48CSiV at a cutting speed of 12.66m/s has been performed. Cutting torque was recorded and tool wear mechanism was studied. The surface morphology of the tool and the chip have been studied by using scanning electron microscopy (SEM) and energy dispersive spectrometer (EDS). Results show that cutting torque fluctuates between 3% and 5% when machining less than 130 pieces of crankshaft, but it will sharply increased to nearly 18% while machining 150 pieces of crankshaft because the coating is damaged and the wear becoming severity. The dominant wear mechanisms are adhesive wear and chemical dissolution wear.

  1. Parametric Studies Of Failure Mechanisms In Thermal Barrier Coatings During Thermal Cycling Using FEM

    NASA Astrophysics Data System (ADS)

    Srivathsa, B.; Das, D. K.

    2015-12-01

    Thermal barrier coatings (TBCs) are widely used on different hot components of gas turbine engines such as blades and vanes. Although, several mechanisms for the failure of the TBCs have been suggested, it is largely accepted that the durability of these coatings is primarily determined by the residual stresses that are developed during the thermal cycling. In the present study, the residual stress build-up in an electron beam physical vapour deposition (EB-PVD) based TBCs on a coupon during thermal cycling has been studied by varying three parameters such as the cooling rate, TBC thickness and substrate thickness. A two-dimensional thermomechanical generalized plane strain finite element simulations have been performed for thousand cycles. It was observed that these variations change the stress profile significantly and the stress severity factor increases non-linearly. Overall, the predictions of the model agree with reported experimental results and help in predicting the failure mechanisms.

  2. Atomic structure of a peptide coated gold nanocluster identified using theoretical and experimental studies

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Li, Xu; Gao, Liang; Zhai, Jiao; Liu, Ru; Gao, Xueyun; Wang, Dongqi; Zhao, Lina

    2016-06-01

    Peptide coated gold nanoclusters (AuNCs) have a precise molecular formula and atomic structure, which are critical for their unique applications in targeting specific proteins either for protein analysis or drug design. To date, a study of the crystal structure of peptide coated AuNCs is absent primarily due to the difficulty of obtaining their crystalline phases in an experiment. Here we study a typical peptide coated AuNC (Au24Peptide8, Peptide = H2N-CCYKKKKQAGDV-COOH, Anal. Chem., 2015, 87, 2546) to figure out its atomic structure and electronic structure using a theoretical method for the first time. In this work, we identify the explicit configuration of the essential structure of Au24Peptide8, Au24(Cys-Cys)8, using density functional theory (DFT) computations and optical spectroscopic experiments, where Cys denotes cysteine without H bonded to S. As the first multidentate ligand binding AuNC, Au24(Cys-Cys)8 is characterized as a distorted Au13 core with Oh symmetry covered by two Au(Cys-Cys) and three Au3(Cys-Cys)2 staple motifs in its atomic structure. The most stable configuration of Au24(Cys-Cys)8 is confirmed by comparing its UV-vis absorption spectrum from time-dependent density-functional theory (TDDFT) calculations with optical absorption measurements, and these results are consistent with each other. Furthermore, we carry out frontier molecular orbital (FMO) calculations to elucidate that the electronic structure of Au24(Cys-Cys)8 is different from that of Au24(SR)20 as they have a different Au/S ratio, where SR represents alkylthiolate. Importantly, the different ligand coatings, Cys-Cys and SR, in Au24(Cys-Cys)8 and Au24(SR)20 cause the different Au/S ratios in the coated Au24. The reason is that the Au/S ratio is crucial in determining the size of the Au core of the ligand protected AuNC, and the size of the Au core corresponds to a specific electronic structure. By the adjustment of ligand coatings from alkylthiolate to peptide, the Au/S ratio

  3. A study of Ni-5wt. pct Al coatings produced from different feedstock powder

    SciTech Connect

    Svantesson, J.; Wigren, J. )

    1992-03-01

    Ten different Ni-5 wt pct Al powders, three clad, one sintered, three water atomized, and three gas atomized, have been evaluated and plasma sprayed. The study focuses on how the manufacturing method, chemical composition, and particle size distribution of the powders affect the quality of the coating. Properties such as microstructure and mechanical behavior, as well as oxidation and corrosion resistance, are discussed. In conclusion, recommendations concerning the selection of powders for different applications are presented. 10 refs.

  4. Desert Research and Technology Studies Exposure of Lotus Coated Electrodynamic Shield Samples

    NASA Technical Reports Server (NTRS)

    Rodriquez, Marcello; Peters, Wanda C.; Straka, Sharon A.; Jones, Craig B.

    2011-01-01

    The Lotus dust mitigation coating and the electrodynamic shield (EDS) are two new technologies currently being developed by NASA as countermeasures for addressing dust accumulation for long-duration human space exploration. These combined technologies were chosen by the Habitation Demonstration Unit (HDU) program for desert dust exposure at the Desert Research and Technologies Studies (D-RaTS) test site in Arizona. Characterization of these samples was performed prior to, during and post D-RaTS exposure.

  5. An ecotoxicological study on tin- and bismuth-catalysed PDMS based coatings containing a surface-active polymer.

    PubMed

    Pretti, Carlo; Oliva, Matteo; Mennillo, Elvira; Barbaglia, Martina; Funel, Marco; Reddy Yasani, Bhaskar; Martinelli, Elisa; Galli, Giancarlo

    2013-12-01

    Novel films were prepared by condensation curing reaction of a poly(dimethyl siloxane) (PDMS) matrix with bismuth neodecanoate and dibutyltin diacetate catalysts. An ecotoxicological study was performed on the leachates of the coatings using the bacterium Vibrio fischeri, the unicellular alga Dunaliella tertiolecta, the crustacean Artemia salina and the fish Sparus aurata (larvae) as testing organisms. A copper-based self-polishing commercial paint was also tested as reference. The results showed that the tin-catalysed coatings and the copper paint were highly toxic against at least two of the four test organisms, whereas bismuth-catalysed coatings did not show any toxic effect. Moreover, the same biological assessment was also carried out on PDMS coatings containing a surface-active fluorinated polymer. The toxicity of the entire polymeric system resulted only from the tin catalyst used for the condensation curing reaction, as the bismuth catalysed coatings incorporating the surface-active polymer remained atoxic toward all the tested organisms.

  6. Phase transformation and wear studies of plasma sprayed yttria stabilized zirconia coatings containing various mol% of yttria

    SciTech Connect

    Aruna, S.T. Balaji, N.; Rajam, K.S.

    2011-07-15

    Plasma sprayable grade zirconia powders doped with various mol% of yttria (0, 2, 3, 4, 6, 8 and 12 mol%) were synthesized by a chemical co-precipitation route. The coprecipitation conditions were adjusted such that the powders possessed good flowability in the as calcined condition and thus avoiding the agglomeration step like spray drying. Identical plasma spray parameters were used for plasma spraying all the powders on stainless steel plates. The powders and plasma sprayed coatings were characterized by X-ray diffractometry, Scanning Electron Microscopy and Raman spectroscopy. Zirconia powders are susceptible to phase transformations when subjected to very high temperatures during plasma spraying and XRD is insensitive to the presence of some non crystalline phases and hence Raman spectroscopy was used as an important tool. The microstructure of the plasma sprayed coatings showed a bimodal distribution containing fully melted and unmelted zones. The microhardness and wear resistance of the plasma sprayed coatings were determined. Among the plasma sprayed coatings, 3 mol% yttria stabilized zirconia coating containing pure tetragonal zirconia showed the highest wear resistance. - Research Highlights: {yields} Preparation plasma sprayable YSZ powders without any agglomeration process and plasma spraying {yields} Phase transformation studies of plasma sprayed YSZ coatings by XRD and Raman spectroscopy {yields} Microstructure of the plasma sprayed coatings exhibited bimodal distribution {yields} Plasma sprayed 3 mol% YSZ coating exhibited the highest wear resistance {yields} Higher wear resistance is due to the higher fracture toughness of tetragonal 3 mol% YSZ phase.

  7. SEM and EDX studies of bioactive hydroxyapatite coatings on titanium implants.

    PubMed

    Ciobanu, Gabriela; Carja, Gabriela; Ciobanu, Octavian; Sandu, Ion; Sandu, Andrei

    2009-01-01

    This work presents a study on an alternative coating method based on biomimetic techniques which are designed to form a crystalline hydroxyapatite layer very similar to the process corresponding to the formation of natural bone. The HA formation on the surface of titanium alloy pretreated with NaOH solution is investigated. Two types of solutions such as supersaturated calcification solution (SCS) and modified SCS (M-SCS) were used to investigate bone-like apatite formation on alkali-treated titanium. The hydroxyapatite deposits are investigated by means of scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX). The data suggest that the method utilized in this work can be successfully applied to obtain deposition of uniform coatings of crystalline hydroxyapatite on titanium substrates.

  8. Study of Chromium-Frit-Type Coatings for High-Temperature Protection of Molybdenum

    NASA Technical Reports Server (NTRS)

    Moore, D G; Bolz, L H; Pitts, J W; Harrison, W N

    1951-01-01

    The achievement of more compact and efficient power plants for aircraft is dependent, among other factors, on the perfection of heat-resisting materials that are superior to those in current use. Molybdenum is one of the high-melting metals (melting point, 4750 F). It is fairly abundant and also can be worked into many of the shapes required in modern power plants. To permit its widespread use at elevated temperatures, however, some means must first be found to prevent its rapid oxidation. The application of a protective coating is one method that might be used to achieve this goal. In the present work, a number of chromium-frit-type coatings were studied. These were bonded to molybdenum specimens by firing in controlled atmospheres to temperatures in the range of 2400 to 2700 F.

  9. Insulin-coated gold nanoparticles: a plasmonic device for studying metal-protein interactions.

    PubMed

    Chanana, Munish; Correa-Duarte, Miguel A; Liz-Marzán, Luis M

    2011-09-19

    Insulin-capped gold nanoparticles (Au@insulin NPs) are highly sensitive towards pH and heavy metals, due to the protein coating. Au@insulin NPs aggregate and disaggregate reversibly with pH and in the presence of various heavy metal ions, which can be monitored through reversible changes in their optical properties. The sensitivity of the NPs towards different metal ions is dissimilar and depends on the coordinative properties of each specific metal ion, its valence number, concentration, and reaction time (kinetics), representing a simple tool for studying fundamental metal-protein interactions. Moreover, Au@insulin NPs are biocompatible and highly stable at high ionic strengths, due to their robust protein coating.

  10. In situ treatment of arsenic contaminated groundwater by aquifer iron coating: Experimental study.

    PubMed

    Xie, Xianjun; Wang, Yanxin; Pi, Kunfu; Liu, Chongxuan; Li, Junxia; Liu, Yaqing; Wang, Zhiqiang; Duan, Mengyu

    2015-09-15

    In situ arsenic removal from groundwater by an aquifer iron coating method has great potential to be a cost effective and simple groundwater remediation technology, especially in rural and remote areas where groundwater is used as the main water source for drinking. The in situ arsenic removal technology was first optimized by simulating arsenic removal in various quartz sand columns under anoxic conditions. The effectiveness was then evaluated in an actual high-arsenic groundwater environment. The arsenic removal mechanism by the coated iron oxide/hydroxide was investigated under different conditions using scanning electron microscopy (SEM)/X-ray absorption spectroscopy, electron probe microanalysis, and Fourier transformation infrared spectroscopy. Aquifer iron coating method was developed via a 4-step alternating injection of oxidant, iron salt and oxygen-free water. A continuous injection of 5.0 mmol/L FeSO4 and 2.5 mmol/L NaClO for 96 h can form a uniform goethite coating on the surface of quartz sand without causing clogging. At a flow rate of 7.2 mL/min of the injection reagents, arsenic (as Na2HAsO4) and tracer fluorescein sodium to pass through the iron-coated quartz sand column were approximately at 126 and 7 column pore volumes, respectively. The retardation factor of arsenic was 23.0, and the adsorption capacity was 0.11 mol As per mol Fe. In situ arsenic removal from groundwater in an aquifer was achieved by simultaneous injections of As(V) and Fe(II) reagents. Arsenic fixation resulted from a process of adsorption/co-precipitation with fine goethite particles by way of bidentate binuclear complexes. Therefore, the study results indicate that the high arsenic removal efficiency of the in situ aquifer iron coating technology likely resulted from the expanded specific surface area of the small goethite particles, which enhanced arsenic sorption capability and/or from co-precipitation of arsenic on the surface of goethite particles.

  11. Bacterial adhesion to protein-coated surfaces: An AFM and QCM-D study

    NASA Astrophysics Data System (ADS)

    Strauss, Joshua; Liu, Yatao; Camesano, Terri A.

    2009-09-01

    Bacterial adhesion to biomaterials, mineral surfaces, or other industrial surfaces is strongly controlled by the way bacteria interact with protein layers or organic matter and other biomolecules that coat the materials. Despite this knowledge, many studies of bacterial adhesion are performed under clean conditions, instead of in the presence of proteins or organic molecules. We chose fetal bovine serum (FBS) as a model protein, and prepared FBS films on quartz crystals. The thickness of the FBS layer was characterized using atomic force microscopy (AFM) imaging under liquid and quartz crystal microbalance with dissipation (QCM-D). Next, we characterized how the model biomaterial surface would interact with the nocosomial pathogen Staphylococcus epidermidis. An AFM probe was coated with S. epidermidis cells and used to probe a gold slide that had been coated with FBS or another protein, fibronectin (FN). These experiments show that AFM and QCM-D can be used in complementary ways to study the complex interactions between bacteria, proteins, and surfaces.

  12. Impact of polymer-coated silver nanoparticles on marine microbial communities: a microcosm study.

    PubMed

    Doiron, K; Pelletier, E; Lemarchand, K

    2012-11-15

    The use of silver nanoparticles (AgNPs) in consumer products is increasing drastically and their potential environmental impacts on aquatic organisms from bacterial communities to vertebrates are not well understood. This study reports on changes in marine bacterial richness using denaturing gradient gel electrophoresis (DGGE), and overall community abundance determined by flow cytometry in marine microcosms exposed to polymer-coated AgNPs (20±5 nm) and ionic silver (Ag(+)). Our study clearly demonstrated that at low concentrations (5 and 50 μg L(-1) total silver), un-aggregated polymer-coated AgNPs and dissolved Ag(+) contamination produced similar effects: a longer lag phase suggesting an adaptation period for microorganisms. As richness decreased in the treated samples, this longer lag phase could correspond to the selection of a fraction of the initial community that is insensitive to silver contamination. Polymer-coated AgNPs preserved their bactericidal properties even under the high ionic strength of estuarine waters.

  13. A study of TiN-coated metal-on-polymer bearing materials for hip prosthesis

    NASA Astrophysics Data System (ADS)

    Lee, Sung Bai; Choi, Jin Young; Park, Won Woong; Jeon, Jun Hong; Won, Sung Ok; Byun, Ji Young; Lim, Sang Ho; Han, Seung Hee

    2010-08-01

    The TiN-coated metal-on-polymer hip prosthetic pair has the potential to reduce wear debris of UHMWPE (ultra-high molecular weight polyethylene) and to prevent metallic-ion-induced cytotoxicity. However, high quality and adherent film is a key to the clinical success of hip prostheses. In this study, titanium nitride (TiN) films were deposited on stainless steel using plasma immersion ion implantation & deposition (PIII&D) technique to create high-quality film and an adherent interface. The chemical state and composition were analyzed by X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES) and energy dispersive spectroscopy (EDS). The mechanical properties of the films were characterized using a micro-hardness tester and a pin-on-disk wear tester, and an x-ray diffractometer (XRD) was used for a crystallographic analysis. The PIII&D-treated TiN films showed a stoichiometric and (200) preferred orientation and micro-hardness up to 150 % higher than untreated film. A TiN-coated specimen using the PIII&D process also showed less UHMWPE wear compared to untreated specimens. The volumetric wear rate of UHMWPE could be reduced by as much as 42 % compared to when Co-Cr alloy was used. The results of this study show that advanced TiN-coating via the PIII&D process is a viable means of reducing UHMWPE wear in the metal-on-polymer bearing couple.

  14. Study of two different thin film coating methods in transmission laser micro-joining of thin Ti-film coated glass and polyimide for biomedical applications.

    PubMed

    Sultana, T; Georgiev, G L; Baird, R J; Auner, G W; Newaz, G; Patwa, R; Herfurth, H J

    2009-07-01

    Biomedical devices and implants require precision joining for hermetic sealing which can be achieved with low power lasers. The effect of two different thin metal film coating methods was studied in transmission laser micro-joints of titanium-coated glass and polyimide. The coating methods were cathodic arc physical vapor deposition (CA-PVD) and electron beam evaporation (EB-PVD). Titanium-coated glass joined to polyimide film can have neural electrode application. The improvement of the joint quality will be essential for robust performance of the device. Low power fiber laser (wave length = 1100 nm) was used for transmission laser micro-joining of thin titanium (Ti) film (approximately 200 nm) coated Pyrex borosilicate 7740 glass wafer (0.5 mm thick) and polyimide (Imidex) film (0.2 mm thick). Ti film acts as the coupling agent in the joining process. The Ti film deposition rate in the CA-PVD was 5-10 A/s and in the EB-PVD 1.5 A/s. The laser joint strength was measured by a lap shear test, the Ti film surfaces were analyzed by atomic force microscopy (AFM) and the lap shear tested joints were analyzed by optical microscopy and scanning electron microscopy (SEM). The film properties and the failure modes of the joints were correlated to joint strength. The CA-PVD produced around 4 times stronger laser joints than EB-PVD. The adhesion of the Ti film on glass by CA-PVD is better than that of the EB-PVD method. This is likely to be due to a higher film deposition rate and consequently higher adhesion or sticking coefficient for the CA-PVD particles arriving on the substrate compared to that of the EB-PVD film. EB-PVD shows poor laser bonding properties due to the development of thermal hotspots which occurs from film decohesion.

  15. The Effect of Root Coating with Titanium on Prevention of Root Resorption in Avulsed Teeth: An Animal Study

    PubMed Central

    Heydari, Azar; Tahmasbi, Soodeh; Badiee, Mohammadreza; Izadi, SeyedSadra; Mashhadi Abbas, Fatemeh; Mokhtari, Sepideh

    2016-01-01

    Introduction: Tooth avulsion is a real dental emergency. If immediate replantation is not performed, the avulsed tooth may be lost due to inflammatory or replacement resorption. This animal study aimed to evaluate the bone response to the titanium coating of the root surface as an artificial barrier, and prevention of resorption of avulsed teeth. Methods and Materials: This experimental study was conducted on four male dogs. The dogs were randomly divided into two groups for assessment at two and eight weeks. Four teeth were extracted in each animal. The root surfaces of the test group were coated with a titanium layer using the Electron Beam Deposition system. After 24 h, replantation of the teeth was performed. Two animals were sacrificed after two weeks and the remaining dogs were killed after eight weeks. The presence of inflammation, inflammatory resorption, replacement resorption, periodontal regeneration, periapical granuloma and ankylosis were evaluated through histological analyses. Results: Inflammatory root resorption was not present in any tooth except one tooth in the coated group after eight weeks. Replacement resorption was noted just in three of the non-coated teeth after two weeks and two teeth after eight weeks. The McNemar's test revealed that the frequency of replacement resorption in the non-coated group was significantly higher than the coated group (P=0.031). Conclusion: Based on the results of this study, it seems that coating the root surfaces of avulsed teeth with titanium may control the replacement root resorption. PMID:27790261

  16. Inhibition of pyrite oxidation by surface coating: a long-term field study.

    PubMed

    Kang, Chan-Ung; Jeon, Byong-Hun; Park, Seong-Sook; Kang, Jin-Soo; Kim, Kang-Ho; Kim, Dong-Kwan; Choi, Ui-Kyu; Kim, Sun-Joon

    2016-10-01

    Pyrite and other iron sulfides are readily oxidized by dissolved oxygen in aqueous phase, producing acidity and Fe(2+), which causes significant environmental problems. Applications of surface coating agents (Na2SiO3 and KH2PO4) were conducted at Boeun (Chungbuk, South Korea) outcrop site, and their efficiencies to inhibit the oxidation of sulfide minerals were monitored for a long-term period (449 days). The rock sample showed positive Net Acid Production Potential (NAPP = 20.23) and low Net Acid Generation pH (NAGpH = 2.42) values, suggesting that the rock sample was categorized in the potential acid-forming group. For the monitored time period (449 days), field study results showed that the application of Na2SiO3 effectively inhibited the pyrite oxidation as compared to KH2PO4. Na2SiO3 as a surface coating agent maintained pH 5-6 and reduced oxidation of pyrite surface up to 99.95 and 97.70 % indicated by Fe(2+) and SO4 (2-) release, respectively. The scanning electron microscope and energy-dispersive X-ray spectrometer analysis indicated that the morphology of rock surface was completely changed attributable to formation of iron silicate coating. The experimental results suggested that the treatment with Na2SiO3 was highly effective and it might be applicable on field for inhibition of iron sulfide oxidation.

  17. Study of electroless Ni-W-P alloy coating on martensitic stainless steel

    NASA Astrophysics Data System (ADS)

    Nikitasari, Arini; Mabruri, Efendi

    2016-04-01

    Electroless nickel phospor (Ni-P) is widely used in many industries due to their corrosion and wear resistance, coating uniformity, and ability to coat non-conductive surfaces. The unique properties of tungsten such as high hardness, higher melting point, lower coefficient of linear thermal expansion, and high tensile strength have created a lot of interest in developing ternary Ni-W-P alloys. This article presents the study of electroless Ni-W-P alloys coating using acid or alkaline bath on martensitic stainless steel. Nickel sulfate and sodium tungstate were used as nickel and tungsten sources, respectively, and sodium hypophosphite was used as a reducing agent. Acid or alkaline bath refer to bath pH condition was adjusted by adding sulfuric acid. Martensitic stainless steel was immersed in Ni-W-P bath for 15, 30, and 60 minutes. The substrate of martensitic stainless steel was subjected to pre-treatment (polishing and cleaning) and activation prior to electroless plating. The plating characteristics were investigated for concentration ratio of nickel and hypophosphite (1:3), sodium tungstate concentration 0,1 M, immersion time (15 min, 30 min, 60 min), and bath condition (acid, alkaline). The electroless Ni-W-P plating was heat treated at 400°C for 1 hour. Deposits were characterized using scanning electron microscope (SEM) and corrosion measurement system (CMS).

  18. Cytotoxicity and fluorescence studies of silica-coated CdSe quantum dots for bioimaging applications

    NASA Astrophysics Data System (ADS)

    Vibin, Muthunayagam; Vinayakan, Ramachandran; John, Annie; Raji, Vijayamma; Rejiya, Chellappan S.; Vinesh, Naresh S.; Abraham, Annie

    2011-06-01

    The toxicological effects of silica-coated CdSe quantum dots (QDs) were investigated systematically on human cervical cancer cell line. Trioctylphosphine oxide capped CdSe QDs were synthesized and rendered water soluble by overcoating with silica, using aminopropyl silane as silica precursor. The cytotoxicity studies were conducted by exposing cells to freshly synthesized QDs as a function of time (0-72 h) and concentration up to micromolar level by Lactate dehydrogenase assay, MTT [3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide] assay, Neutral red cell viability assay, Trypan blue dye exclusion method and morphological examination of cells using phase contrast microscope. The in vitro analysis results showed that the silica-coated CdSe QDs were nontoxic even at higher loadings. Subsequently the in vivo fluorescence was also demonstrated by intravenous administration of the QDs in Swiss albino mice. The fluorescence images in the cryosections of tissues depicted strong luminescence property of silica-coated QDs under biological conditions. These results confirmed the role of these luminescent materials in biological labeling and imaging applications.

  19. In Vivo Study of Polyurethane-Coated Gianturco-Rosch Biliary Z-Stents

    SciTech Connect

    Severini, Aldo; Mantero, Sara; Tanzi, Maria Cristina; Cigada, Alberto; Addis, Flaminio; Cozzi, Guido; Salvetti, Monica; Andreola, Salvatore; Motta, Antonella; Regalia, Enrico; Pulvirenti, Andrea; De Pedri, Enrico; Doci, Roberto

    1999-11-15

    Purpose: Prototypes of Gianturco-Rosch Z-stents coated with polycarbonate urethane (PCU) were placed in the biliary tree of pigs, in order to test their biomechanical behavior, stability, and biocompatibility. Methods: The stents were surgically implanted in the common bile duct of three pairs of pigs, which were killed after 1, 3, and 6 months respectively. Explanted livers from pigs of the same race, age, and size were used to provide comparative data. The bile ducts were radiologically and histopathologically examined; the stents were processed and examined by scanning electron microscopy. Results: No complications occurred and the animals showed a normal weight gain. The main bile duct appeared radiologically and macroscopically dilated, but the stents proved to be in place. Histologically, the bile duct epithelium was destroyed, but neither hyperplastic nor inflammatory fibrotic reactions of the wall were evident. Both the metallic structure and the polymeric coating of the stents were intact. A layer of organic material with a maximum thickness of approximately 3 {mu}m was evident on the inner surface of the stents. Conclusion: The present in vivo study demonstrates the biocompatibility, efficacy, and stability of PCU-coated Gianturco-Rosch stents in the biliary environment.

  20. Fundamental study of spin-coating using in-situ analysis and simulation

    NASA Astrophysics Data System (ADS)

    Harumoto, Masahiko; Yoshida, Jun-ichi; Stokes, Harold; Tanaka, Yuji; Miyagi, Tadashi; Kaneyama, Koji; Pieczulewski, Charles; Asai, Masaya

    2015-03-01

    Spin coating has been used as a photoresist application method for many years, and consequently certain defects have been recognized through each resist generation; i-line, KrF, ArF, ArF immersion and, most recently, EUV. Last year we reported an in-situ analysis via high-speed video camera that proved to be useful for understanding defect formation such as non-uniformity spots within organic film coatings and post-develop water-mark defects. In this study, fingerprints known as `tiger stripes' around the wafer's edge were analyzed. This phenomenon, for example, is directly related to the wafer spin-speed and air-flow during the coat-processing. Utilizing a high-speed camera and 3D simulation, we reveal the mechanism of fingerprint generation for tiger stripe phenomena, confirm the mechanism with several different spin-speeds, and correlate these to defect inspection results. Furthermore, we will discuss the expansion to 450mmm wafers.

  1. Improved tensile and buckling behavior of defected carbon nanotubes utilizing boron nitride coating - A molecular dynamic study

    NASA Astrophysics Data System (ADS)

    Badjian, H.; Setoodeh, A. R.

    2017-02-01

    Synthesizing inorganic nanostructures such as boron nitride nanotubes (BNNTs) have led to immense studies due to their many interesting functional features such as piezoelectricity, high temperature resistance to oxygen, electrical insulation, high thermal conductivity and very long lengths as physical features. In order to utilize the superior properties of pristine and defected carbon nanotubes (CNTs), a hybrid nanotube is proposed in this study by forming BNNTs surface coating on the CNTs. The benefits of such coating on the tensile and buckling behavior of single-walled CNTs (SWCNTs) are illustrated through molecular dynamics (MD) simulations of the resulted nanostructures during the deformation. The AIREBO and Tersoff-Brenner potentials are employed to model the interatomic forces between the carbon and boron nitride atoms, respectively. The effects of chiral indices, aspect ratio, presence of mono-vacancy defects and coating dimension on coated/non-coated CNTs are examined. It is demonstrated that the coated defective CNTs exhibit remarkably enhanced ultimate strength, buckling load capacity and Young's modulus. The proposed coating not only enhances the mechanical properties of the resulted nanostructure, but also conceals it from few external factors impacting the behavior of the CNT such as humidity and high temperature.

  2. X-ray photoelectron and scanning Auger electron spectroscopy study of electrodeposited ZnCr coatings on steel.

    PubMed

    Itani, H; Duchoslav, J; Arndt, M; Steck, T; Gerdenitsch, J; Faderl, J; Preis, K; Winkler, W; Stifter, D

    2012-05-01

    Zn-Cr alloyed coatings electrochemically deposited are of high interest for leading steel manufacturing companies because of their novel properties and high corrosion resistance compared with conventional Zn coatings on steel. For tuning and optimizing the properties of the electrodeposited Zn-Cr coatings, a broad range of the deposition conditions must be studied. For this reason, two different types of material were investigated in this study, one with a low electrolyte temperature and one with an elevated electrolyte pH, compared with the standard values. Because different corrosion performance and delamination behaviour of the layers were observed for the two types, advanced surface analysis was conducted to understand the origin of this behaviour and to discover differences in the formation of the coatings. The topmost surface, the shallow subsurface region, and the whole bulk down to the coating-steel interface surface were analysed in detail by X-ray photoelectron spectroscopy (XPS) and high-resolution scanning Auger electron spectroscopy to determine the elemental and the chemical composition. For better understanding of the resulting layer structure, multiple reference samples and materials were measured and their Auger and XPS spectra were fitted to the experimental data. The results showed that one coating type is composed of metallic Zn and Cr, with oxide residing only on the surface and interface, whereas the other type contains significant amounts of Zn and Cr oxides throughout the whole coating thickness.

  3. PIT Coating Requirements Analysis

    SciTech Connect

    MINTEER, D.J.

    2000-10-20

    This study identifies the applicable requirements for procurement and installation of a coating intended for tank farm valve and pump pit interior surfaces. These requirements are intended to be incorporated into project specification documents and design media. This study also evaluates previously recommended coatings and identifies requirement-compliant coating products.

  4. Silica coatings in the Ka'u Desert, Hawaii, a Mars analog terrain: A micromorphological, spectral, chemical, and isotopic study

    NASA Astrophysics Data System (ADS)

    Chemtob, Steven M.; Jolliff, Bradley L.; Rossman, George R.; Eiler, John M.; Arvidson, Raymond E.

    2010-04-01

    High-silica materials have been observed on Mars, both from orbit by the CRISM spectrometer and in situ by the Spirit rover at Gusev Crater. These observations potentially imply a wet, geologically active Martian surface. To understand silica formation on Mars, it is useful to study analogous terrestrial silica deposits. We studied silica coatings that occur on the 1974 Kilauea flow in the Ka'u Desert, Hawaii. These coatings are typically composed of two layers: a ˜10 μm layer of amorphous silica, capped by a ˜1 μm layer of Fe-Ti oxide. The oxide coating is composed of ˜100 nm spherules, suggesting formation by chemical deposition. Raman spectroscopy indicates altered silica glass as the dominant phase in the silica coating and anatase and rutile as dominant phases in the Fe-Ti coating; jarosite also occurs within the coatings. Oxygen isotopic contents of the coatings were determined by secondary ion mass spectrometry (Cameca 7f and NanoSIMS). The measured values, δ18OFe-Ti = 14.6 ± 2.1‰, and δ18Osilica = 12.1 ± 2.2‰ (relative to SMOW), are enriched in 18O relative to the basalt substrate. The observations presented are consistent with a residual formation mechanism for the silica coating. Acid-sulfate solutions leached away divalent and trivalent cations, leaving a silica-enriched layer behind. Micrometer-scale dissolution and reprecipitation may have also occurred within the coatings. Chemical similarities between the Hawaiian samples and the high-silica deposits at Gusev suggest that the Martian deposits are the product of extended periods of similar acid-sulfate leaching.

  5. Study of Traverse Speed Effects on Residual Stress State and Cavitation Erosion Behavior of Arc-Sprayed Aluminum Bronze Coatings

    NASA Astrophysics Data System (ADS)

    Hauer, Michél; Henkel, Knuth Michael; Krebs, Sebastian; Kroemmer, Werner

    2017-01-01

    Within a research project regarding cavitation erosion-resistant coatings, arc spraying was used with different traverse speeds to influence heat transfer and the resulting residual stress state. The major reason for this study is the lack of knowledge concerning the influence of residual stress distribution on mechanical properties and coating adhesion, especially with respect to heterogeneous aluminum bronze alloys. The materials used for spray experiments were the highly cavitation erosion-resistant propeller alloys CuAl9Ni5Fe4Mn (Ni-Al-Bronze) and CuMn13Al8Fe3Ni2 (Mn-Al-Bronze). Analyses of cavitation erosion behavior were carried out to evaluate the suitability for use in marine environments. Further microstructural, chemical and mechanical analyses were realized to examine adhesive and cohesive coating properties. Residual stress distribution was measured by modified hole drilling method using electronic speckle pattern interferometry (ESPI). It was found that the highest traverse speed led to higher tensile residual stresses near the surface and less cavitation erosion resistance of the coatings. Moreover, high oxygen affinity of main alloying element aluminum was identified to severely influence the microstructures by the formation of large oxides and hence the coating properties. Overall, Mn-Al-Bronze coatings showed lower residual stresses, a more homogeneous pore and oxide distribution and less material loss by cavitation than Ni-Al-Bronze coatings.

  6. Study and Applications of Dynamic Resistance Profiles During Resistance Spot Welding of Coated Hot-Stamping Steels

    NASA Astrophysics Data System (ADS)

    Ighodaro, Osayande Lord-Rufus; Biro, Elliot; Zhou, Y. Norman

    2017-02-01

    This work compares the role of press hardened steel coating type (Al-Si and GA) on resistance spot welding by analyzing the dynamic resistance curves measured during the weld cycles of the respective materials. It was seen that the dynamic resistance profiles for GA- and Al-Si-coated steels are similar. But the GA specimens exhibited higher resistance than Al-Si-coated specimens in the as-received condition, while the Al-Si-coated specimens exhibited higher resistance after hot stamping. From the early stages of the dynamic resistance profiles, data were obtained and applied for computing the values of components of resistances associated with the different coatings since each coating exhibits characteristic value at the early stages. The results revealed that at the start of the welding cycle, the resistance of the electrode/sheet interface was significantly higher than that of the faying surface or the bulk resistance regardless of whether the steel was Al-Si- or GA-coated. The possible uses of these resistance values in studying welding current requirement and electrode tip life were discussed.

  7. Comparative study of the lubricant performance of Compritol 888 ATO either used by blending or by hot melt coating.

    PubMed

    Jannin, V; Bérard, V; N'Diaye, A; Andrès, C; Pourcelot, Y

    2003-08-27

    Compritol 888 ATO is used as a lubricant in oral solid dosage formulations. It can also be used as a hot melt coating agent sprayed onto a powder. In this study, we compare the lubricant performance of Compritol 888 ATO either used by classical blending or by hot melt coating onto Lactopress by compression tests. In physical mix, the Compritol concentration does not affect the compressibility. The same compressibility is obtained with lactose coated by 0.5 or 1% of Compritol, but a higher compressibility can be observed with 2 and 3%. Cohesiveness of lactose depends on the process: hot melt coating induces a decrease of tablet tensile strength. In terms of forces transmission during compression phase and axial ejection pressures, Compritol used by hot melt coating allows for a concentration of 0.5% to directly obtain the lubricant performance of 3% of Compritol used by blending. These results suggest that the hot melt coating process induces an homogeneous repartition of the lubricant on the lactose surface, contrary to classical blending procedure. Thus, lubrication by hot melt coating seems to be a very efficient procedure. It could be used specifically for large surface area particulate systems producing a lot of friction.

  8. [Feasibility study on an approach for identifying corn kernel varieties with seed coating agents via near infrared spectroscopy].

    PubMed

    Jia, Shi-Qiang; Guo, Ting-Ting; Liu, Zhe; Yan, Yan-Lu; An, Dong; Gu, Jian-Cheng; Li, Shao-ming; Zhang, Shao-Ming; Zhu, De-Hai

    2014-11-01

    It is generally accepted that near infrared reflectance spectroscopy (NIRS) can be used to identify variety authenticity of bare maize seeds. In practical, maize seeds are covered with seed coating agents. Therefore it's of huge significance to investigate the feasibility of identifying coated maize seeds by NIRS. This study employed NIRS to quickly determine the variety of coated maize seeds. Influence of seed coating agent on NIR spectra was discussed. The NIR spectra of coated maize seeds were obtained using an innovative method to avoid the impact of the seed coating agent. Coated seeds were cut open, and the sections were scanned by the spectrometer, so as to acquire the information of the seed itself. Then, support vector machine (SVM), soft independent modeling of class analogy (SIMCA), and biomimetic pattern recognition (BPR) was employed to establish the identification model for four maize varieties, and yield 93%, 95.8%, 98% average correct rate respectively. BPR model showed better performance than SVM and SIMCA models. The robustness of identification model was tested by seeds harvested from four regions and model showed good performance.

  9. [Establishment of Caco-2 cell monolayer model with collagen coating 6-well plates for study of traditional Chinese medicine prescription].

    PubMed

    Yang, Yan-Fang; Wu, Ni; Yang, Xiu-Wei

    2014-02-01

    Caco-2 cell monolayer model is widely utilized in drug absorption study and 12-well transwellTM plates were commonly used to study the absorption of different kinds of natural products. To establish a stable method for the study of traditional Chinese medicine prescription, 6-well plates were chosen because of the larger well volumes than 12-well plates. To study the impacts of collagen kinds, coating density as well as coating time on the cell culture, the transepithelial electrical resistance of Caco-2 cell monolayers grown on different collagen coating transwells was determined, and the permeations of propranolol and atenolol as standard markers were detected with HPLC. The results showed that the kinds of collagen, the different coating densities and coating time of rat tail collagen had no significant influences on the Caco-2 cell monolayer integrality and absorption capacity. 6-well plates coated with 2 micro g Scm-2 rat tail collagen for 1 hour were enough reliable and suitable for the study of traditional Chinese medicine prescription in vitro.

  10. Experimental study and effect of particulate interference on the microhardness, wear and microstructural properties of ternary doped coating

    NASA Astrophysics Data System (ADS)

    Fayomi, O. S. I.; Popoola, A. P. I.; Joseph, O. O.; Inegbenebor, A. O.; Olukanni, D. O.

    2016-07-01

    This paper studies effects of the composite particle infringement of ZnO/Cr2O3 on zinc rich ternary based coating. The corrosion-degradation property in 3.5% NaCl was investigatedusing polarization technique. The structural characteristics of the multilayer produce coatings were evaluated by scanning electron microscope (SEM) equipped with an energy dispersive spectrometer (EDS). The mechanical response of the coated samples was studied using a diamond base Dura -Scan) micro-hardness tester and a MTR-300 dry abrasive wear tester. The combined effect of the coatings gave highly-improved performance on microhardness, corrosion and wear damage. This also implies that protection of wind-energy structures in marine environments can be achieved by composite strengthening capacity.

  11. Parametric Study of Slurry-Erosion of Hydroturbine Steels with and without Detonation Gun Spray Coatings using Taguchi Technique

    NASA Astrophysics Data System (ADS)

    Grewal, Harpreet Singh; Bhandari, Sanjeev; Singh, Harpreet

    2012-09-01

    WC-Co-Cr coatings were deposited on some hydroturbine 13Cr4Ni and 16Cr5Ni steels by the detonation-gun spray process. An in-depth characterization of the as-sprayed coating was done using X-ray diffraction (XRD) and scanning electron microscopy (SEM)/energy-dispersive X-ray spectroscopy (EDS) techniques. Microhardness and porosity measurements were also made. The coating was found to have a typical splat-like morphology with some indications of unmelted carbide particles. The XRD results showed the presence of WC as the primary phase along with W2C and Co6W6C as secondary phases. Furthermore, the slurry erosion behavior of the coatings was investigated to ascertain the usefulness of the coatings to reduce the slurry erosion of the steels. The effect of four operating factors viz. the velocity, impact angle, concentration, and particle size on the slurry erosion of coated and bare steels has been studied using a high-speed jet-type test rig. The sand used as an erodent was collected from a power plant to replicate the actual turbine conditions. It has been observed that the given cermet coating can enhance the erosion resistance of the steel. Velocity was found to be the most significant factor affecting the erosion behavior of the coating, whereas it was the erodent particle size in the case of uncoated steel. As evidenced from the SEM images, the platelet mechanism of erosion seemed to be the prominent one, causing the removal of material from the surface of the steel, whereas for the coating, the formation and interlinking of cracks resulted in the removal of material.

  12. Study of influence of the fiber optic coatings parameters on optical acoustic sensitivity

    NASA Astrophysics Data System (ADS)

    Lavrov, V. S.; Kulikov, A. V.; Plotnikov, M. U.; Efimov, M. E.; Varzhel, S. V.

    2016-08-01

    The paper presents the optical fiber acoustic sensitivity dependence on the coating parameters and the thickness of coating layer. A comparison of data obtained from the theoretical research and experimental estimates of real samples sensitivity in air and water.

  13. Study of maghemite nanoparticles as prepared and coated with DMSA using Mössbauer spectroscopy with a high velocity resolution

    NASA Astrophysics Data System (ADS)

    Oshtrakh, M. I.; Ushakov, M. V.; Semionkin, V. A.; Lima, E. C. D.; Morais, P. C.

    2014-04-01

    Study of maghemite nanoparticles, native and coated with DMSA as magnetic fluid for biomedical applications, was carried out using Mössbauer spectroscopy with a high velocity resolution at 295 and 90 K. The obtained results demonstrated differences in Mössbauer hyperfine parameters for uncoated and DMSA-coated nanoparticles which were related to the interactions of DMSA molecules with Fe3+ ions on maghemite nanoparticle's surface.

  14. Comparative study of tube assembly in three-dimensional collagen matrix and on Matrigel coats.

    PubMed

    Montañez, Eloi; Casaroli-Marano, Ricardo P; Vilaró, Senén; Pagan, Roser

    2002-01-01

    This study compares phenotypic changes of human umbilical endothelial vein cells cultured in three-dimensional collagen matrixes in the presence of basic fibroblast growth factor or on Matrigel coats. Under both conditions, endothelial cells rapidly assembled into an irregular network of tubular structures with a high frequency of intercellular or lumen-like spaces. Tubular structures were characterized and compared by phase-contrast, confocal and electron microscopy. The dominant mechanism of lumen-like formation was highly model-dependent. Ultrastructural analyses of capillary-like structures and the mechanism of lumen-like formation indicated that the in vivo angiogenesis was better reproduced in the collagen model.

  15. [Implantation of collagen coated hydroxyapatite particles. A clinical-histological study in humans].

    PubMed

    Sanz, M; Bascones, A; Kessler, A; García Nuñez, J; Newman, M G; Robertson, M A; Carranza, F A

    1989-05-01

    In this study, histologic behaviour of collagen coated hydroxylapatite particles implanted in human periodontal osseous defects has been analyzed. This material was surgically implanted in four patients, and reentry and block biopsies were carried out 4 and 6 months later. The histologic results demonstrate that this material is well tolerated by surrounding tissues, not eliciting an inflammatory reaction. At four months, the hydroxylapatite particles appear encapsulated by a very cellular connective tissue and at 6 months are found in direct contact with osteoid and mature bone. This material acts as a filler material, being fully biocompatible and stimulating an osseoconductive reaction of the adjacent alveolar bone.

  16. Core-shell magnetic nanoparticles: a comparative study based on silica and polydopamine coating for magnetic bio-separation platforms.

    PubMed

    Sahin, Ferat; Turan, Eylem; Tumturk, Hayrettin; Demirel, Gokhan

    2012-12-07

    Core-shell magnetic nanoparticles (MNPs) offer tremendous opportunities in a large range of applications in biomedicine due to their superior magnetic properties, biocompatibility and suitability for modification. In most cases, these characteristic features are determined by their shell chemistry and morphology. Herein, we demonstrate a comparative study of silica and polydopamine (PDOP) coating onto MNP surfaces based on synthesis, characterization and usage in a bio-separation platform. It was found that monodispersed MNPs may be easily obtained on silica coating of varying shell thickness, whereas a continuous PDOP layer observed around the MNPs prevents the formation of the dispersed form. On the other hand, PDOP coated MNPs exhibited better superparamagnetic behavior and biological modification ability compared to the silica coated form.

  17. Volvo laboratory study of zinc-coated steel sheet-formability properties

    SciTech Connect

    Otterberg, R.

    1989-01-01

    An investigation of 14 different coatings has been carried out. The tendency towards crack formation in the coating during deep drawing and stretch forming was evaluated at different deformation depths. Coatings containing Ni and Fe were very brittle and cracked at small deformations, while pure Zn- and ZnAl-coatings were fairly ductile. The maximum depth before failure (cracks in the steel) during deep drawing was also measured. It was found that steel sheets with coatings containing Ni or Fe failed at much smaller depths than uncoated steel sheet.

  18. Silicon nitride films for the protective functional coating: blood compatibility and biomechanical property study.

    PubMed

    Shi, Zhifeng; Wang, Yingjun; Du, Chang; Huang, Nan; Wang, Lin; Ning, Chengyun

    2012-12-01

    Behaviors of silicon nitride films and their relation to blood compatibility and biomechanical have been interesting subjects to researchers. A systematic blood compatibility and biomechanical property investigation on the deposition of silicon-nitride films under varying N₂ and CF₄ flows was carried out by direct current unbalanced magnetron sputtering techniques. Significant role of surface property, chemical bonding state of silicon nitride film and blood compatibility, mechanical properties for the films were observed. The chemical bonding configurations, surface topography, contact angle and mechanical properties were characterized by means of X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and nano-indentation technique and CSEM pin-on-disk tribometer. Blood compatibility of the films was evaluated by platelet adhesion investigation. The results of the platelet adhesion tests shown that the effect of fluorine and nitrogen-doped revealed an intimate relationship between the ratio of polar component and dispersion component of the surface energy and its hemocompatibility. Si-N-O coating can be a great candidate for developing antithrombogenic surfaces in blood contacting materials. The chemical bonding state made an adjustment in microstructured surfaces, once in the totally wettable configuration, may improve the initial contact between platelet and biomedical materials, due to the appropriate ratio of dispersion component and polar component. To resist wear, biomedical components require coatings that are tough and hard, have low friction, and are bio-inert. The study suggests that by Si-N coating the metal surfaces could be a choice to prolong the life of the sliding pair Co-Cr-Mo alloy/UHMWPE implants.

  19. Genome Wide Association Study Identifies New Loci Associated with Undesired Coat Color Phenotypes in Saanen Goats

    PubMed Central

    Martin, Pauline Marie; Palhière, Isabelle; Ricard, Anne; Tosser-Klopp, Gwenola; Rupp, Rachel

    2016-01-01

    This paper reports a quantitative genetics and genomic analysis of undesirable coat color patterns in goats. Two undesirable coat colors have routinely been recorded for the past 15 years in French Saanen goats. One fifth of Saanen females have been phenotyped “pink” (8.0%) or “pink neck” (11.5%) and consequently have not been included in the breeding program as elite animals. Heritability of the binary “pink” and “pink neck” phenotype, estimated from 103,443 females was 0.26 for “pink” and 0.21 for “pink neck”. Genome wide association studies (using haplotypes or single SNPs) were implemented using a daughter design of 810 Saanen goats sired by 9 Artificial Insemination bucks genotyped with the goatSNP50 chip. A highly significant signal (-log10pvalue = 10.2) was associated with the “pink neck” phenotype on chromosome 11, suggesting the presence of a major gene. Highly significant signals for the “pink” phenotype were found on chromosomes 5 and 13 (-log10p values of 7.2 and, 7.7 respectively). The most significant SNP on chromosome 13 was in the ASIP gene region, well known for its association with coat color phenotypes. Nine significant signals were also found for both traits. The highest signal for each trait was detected by both single SNP and haplotype approaches, whereas the smaller signals were not consistently detected by the two methods. Altogether these results demonstrated a strong genetic control of the “pink” and “pink neck” phenotypes in French Saanen goats suggesting that SNP information could be used to identify and remove undesired colored animals from the breeding program. PMID:27030980

  20. Study on the oriented recrystallization of carbon-coated polyethylene oriented ultrathin films.

    PubMed

    Chang, Haibo; Guo, Qipeng; Shen, Deyan; Li, Lin; Qiu, Zhaobin; Wang, Feng; Yan, Shouke

    2010-10-21

    It is confirmed that a layer of vacuum-evaporated carbon on the surface of a preoriented ultrathin polymer film can lead to an oriented recrystallization of the polymer film. This has been attributed to a strong fixing effect of vacuum-evaporated carbon layer on the film surface of the polymer. To study the origin of the strong fixing effect of vacuum-evaporated carbon layer on the polymer films, the melting and recrystallization behaviors of the preoriented ultrathin PE film with a vacuum-evaporated carbon layer were studied by using atomic force microscopy, electron diffraction, Fourier transform infrared spectroscopy, and Raman spectroscopy. We found that there exists some extent of chain orientation of carbon-coated polyethylene (PE) preoriented ultrathin film above its melting temperature. These oriented PE chain sequences act as nucleation sites and induce the oriented recrystallization of preoriented PE film from melt. Raman spectroscopy results suggest that new carbon-carbon bonds between the carbon layer and the oriented PE film are created during the process of vacuum carbon evaporation. As a result, some of the PE chain stems are fixed to the coated carbon substrate via covalent bond. Such a bonding has retarded the relaxation of the PE chains at the spot and, therefore, preserves the original orientation of the PE stems at high temperature, which in turn derives the recrystallization of the PE chains in an oriented structure.

  1. Nonlinear optical studies of inorganic nanoparticles-polymer nanocomposite coatings fabricated by electron beam curing

    NASA Astrophysics Data System (ADS)

    Misra, Nilanjal; Rapolu, Mounika; Venugopal Rao, S.; Varshney, Lalit; Kumar, Virendra

    2016-05-01

    The optical nonlinearity of metal nanoparticles in dielectrics is of special interest because of their high polarizability and ultrafast response that can be utilized in potential device applications. In this study nanocomposite thin films containing in situ generated Ag nanoparticles dispersed in an aliphatic urethane acrylate (AUA) matrix were synthesized using electron beam curing technique, in presence of an optimized concentration of diluent Trimethylolpropanetriacrylate (TMPTA). The metal nanocomposite films were characterized using UV-visible spectrophotometry, transmission electron microscope (TEM) and field emission scanning electron microscope (FE-SEM) techniques. Ag nanoparticle impregnated films demonstrated an absorption peak at ∼420 nm whose intensity increased with increase in the Ag concentration. The optical limiting property of the coatings was tested using a nanosecond Nd-YAG laser operated at third harmonic wavelength of 355 nm. For a 25 ns pulse and 10 Hz cycle, Ag-polymer coatings showed good optical limiting property and the threshold fluence for optical limiting was found to be ∼3.8×10-2 J/cm2 while the transmission decreased to 82%. The nonlinear optical coefficients were also determined using the standard Z-scan technique with picosecond (∼2 ps, 1 kHz) and femtosecond (∼150 fs, 100 MHz) pulses. Open aperture Z-scan data clearly suggested two-photon absorption as the dominant nonlinear absorption mechanism. Our detailed studies suggest these composites are potential candidates for optical limiting applications.

  2. Scanning electron microscopic study of laser-induced morphologic changes of a coated enamel surface

    SciTech Connect

    Hess, J.A. )

    1990-01-01

    A low-energy Nd:YAG laser was used to irradiate extracted human teeth coated with a black energy-absorbent laser initiator in a study to determine the extent of the morphologic changes produced in the enamel surface. The laser initiator was applied to a cleaned enamel surface and irradiated at an energy output of 30 mJ or 75 mJ. Both energy levels produced morphologic changes of the surface. There was a sharp line of demarcation between the coated, irradiated area and the surrounding noncoated enamel surface. The scanning electron microscope view at the lower energy level showed that the surface had melted and reformed with numerous small, bubble-like inclusions. The 75 mJ energy level showed individual impact craters with shallow centers and raised edges containing numerous pores and large, bubble-like inclusions. Etching is a dental procedure in which an acid is normally used to remove a thin outer layer of the tooth structure. This is necessary to create a roughened, irregular surface in order to provide mechanical retention for dental restorative materials. The changes produced by the laser in this study suggest a simple, effective, and controlled method of etching the enamel surface of a tooth by altering its surface characteristics.

  3. An in vitro 3D model using collagen coated gelatin nanofibers for studying breast cancer metastasis.

    PubMed

    Janani, G; Pillai, Mamatha M; Selvakumar, R; Bhattacharyya, Amitava; Sabarinath, C

    2017-02-07

    The study of breast cancer metastasis is limited due to poor knowledge of molecular progression of breast tumor and varied heterogeneity. For a better understanding of tumor metastasis, a reliable 3D in vitro model bridging the gap between 2D cultures and in vivo animal model studies is essential. Our study is focused on two key points: (i) designing a 3D microenvironment for studying metastasis and (ii) simulating the metastasis milieu by inducing epithelial to mesenchymal transition (EMT) and mesenchymal to epithelial transition (MET). An electrospun gelatin nanofiber matrix (EGNF) was fabricated using electrospinning and further dip coated with different concentrations of collagen to obtain surface complexity and mechanical properties, similar to connective tissues. Nanofiber matrices were physically characterized by Fourier transform infrared spectroscopy (FTIR), atomic force microscopy (AFM), and field-emission scanning electron microscopy (FESEM). The FTIR, AFM, and FESEM results indicated the crosslinking and confirmed the presence of pores in the nanofiber matrices. Comparative studies on biocompatibility, cell attachment, and the proliferation of MCF-7 cells on EGNF and collagen coated gelatin nanofibrous matrix (CCGM) revealed higher cellular attachment and proliferation in CCGM. CCGM with human metastatic breast cancer cell line (MCF-7) was taken to study breast cancer metastasis using estrogen (induces EMT) and progesterone (induces MET) hormones for 24 h. Quantitative real-time PCR was used for quantifying the expression of metastasis related genes, and fluorescence microscopy for verifying the invasion of cells to the matrices. The expression of E-cadherin and matrix metalloproteinase 2 (MMP 2) confirmed the occurrence of EMT and MET. Live cell imaging and cellular attachment showed significant increase of cellular invasion in crosslinked 0.15% CCGM that serves as a suitable non-toxic, biocompatible, and affordable scaffold for studying breast cancer

  4. Flux pinning study of RE barium coper oxide coated conductors for high field magnet applications

    NASA Astrophysics Data System (ADS)

    Xu, Aixia

    REBa2Cu3O7-δ (REBCO, RE = rare earth) coated conductor (CC) holds great promise for high field magnet applications owing to its strong irreversibility field (Hirr), low electromagnetic anisotropy (γ2), and high critical current density (Jc). The work of this thesis is tightly related to the development of the funded 32 T, all-superconducting magnet project at the NHMFL. My concern is thus for understanding the optimizing of the working parameters of REBCO CC at low temperatures T, and very high magnetic fields H, focusing on how to enhance Ic and to reduce its angular dependence. Increasing the active cross-section is a direct and economical strategy to enhance the current-carrying capability for REBCO coated conductors. Unfortunately, the high Jc in thin REBCO layers is seldom sustained in thick layers because of difficulties of thick film growth control. In the presence of strong 3D (pin separation far less than film thickness) pins, a high and thickness-independent (Jc) should result. One of major tasks of this thesis is to explore what are the effective strong 3D pins that develop a high and thickness-independent Jc. High and weak thickness-dependent Jc at 77 K is obtained on most recent coated conductors, and BZO nanorods and RE2O 3 nanoparticles are identified as strong 3D pins contributing to this respectable Jc performance. At 77 K, we found that the strong pinning of BZO nanorods remains at least up to 9 T, whereas the strong pinning of RE2O3 nanoparticles gradually evolves to weak collective pinning as the irreversibility field is approached. The second principal part of this thesis concentrates on understanding and minimizing the angular dependence of Jc. Our study is based on the following procedure. First, we investigated the angular dependence of Jc (Jc(θ)) in the working condition of the future 32 T all-superconducting magnet, i.e. 4.2 K and high magnetic field up to 31 T. Our work shows that the low temperature Jc(θ) is Ginzburg-Landau-like at

  5. Ellipsometry study on gold-nanoparticle-coated gold thin film for biosensing application

    PubMed Central

    Moirangthem, Rakesh Singh; Chang, Yia-Chung; Wei, Pei-Kuen

    2011-01-01

    The amplified plasmonic response from various distributions of gold nanoparticles (AuNPs) coated on top of gold thin film was studied via ellipsometry under total internal reflection mode. The surface plasmon resonance dip can be tuned from the visible to near infrared by simply varying the AuNP concentration. Theoretical modeling based on effective medium theory with a multi-slice model has been employed to fit the experimental results. Additionally, this experimental tool has been further extended to study bio-molecular interactions with metal surfaces as well as in studying protein-protein interaction without any labeling. Hence, this technique could provide a non-destructive way of designing tunable label-free optical biosensors with very high sensitivity. PMID:21991549

  6. Optimization Studies on Compression Coated Floating-Pulsatile Drug Delivery of Bisoprolol

    PubMed Central

    Jagdale, Swati C.; Bari, Nilesh A.; Kuchekar, Bhanudas S.; Chabukswar, Aniruddha R.

    2013-01-01

    The purpose of the present work was to design and optimize compression coated floating pulsatile drug delivery systems of bisoprolol. Floating pulsatile concept was applied to increase the gastric residence of the dosage form having lag phase followed by a burst release. The prepared system consisted of two parts: a core tablet containing the active ingredient and an erodible outer shell with gas generating agent. The rapid release core tablet (RRCT) was prepared by using superdisintegrants with active ingredient. Press coating of optimized RRCT was done by polymer. A 32 full factorial design was used for optimization. The amount of Polyox WSR205 and Polyox WSR N12K was selected as independent variables. Lag period, drug release, and swelling index were selected as dependent variables. Floating pulsatile release formulation (FPRT) F13 at level 0 (55 mg) for Polyox WSR205 and level +1 (65 mg) for Polyox WSR N12K showed lag time of 4 h with >90% drug release. The data were statistically analyzed using ANOVA, and P < 0.05 was statistically significant. Release kinetics of the optimized formulation best fitted the zero order model. In vivo study confirms burst effect at 4 h in indicating the optimization of the dosage form. PMID:24367788

  7. Monodisperse polyvinylpyrrolidone-coated CoFe2O4 nanoparticles: Synthesis, characterization and cytotoxicity study

    NASA Astrophysics Data System (ADS)

    Wang, Guangshuo; Ma, Yingying; Mu, Jingbo; Zhang, Zhixiao; Zhang, Xiaoliang; Zhang, Lina; Che, Hongwei; Bai, Yongmei; Hou, Junxian; Xie, Hailong

    2016-03-01

    In this study, monodisperse cobalt ferrite (CoFe2O4) nanoparticles were prepared successfully with various additions of polyvinylpyrrolidone (PVP) by sonochemical method, in which PVP served as a stabilizer and dispersant. The effects and roles of PVP on the morphology, microstructure and magnetic properties of the obtained CoFe2O4 were investigated in detail by X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and superconducting quantum interference device (SQUID). It was found that PVP-coated CoFe2O4 showed relatively well dispersion with narrow size distribution. The field-dependent magnetization curves indicated superparamagnetic behavior of PVP-coated CoFe2O4 with moderate saturation magnetization and hydrophilic character at room temperature. More importantly, the in vitro cytotoxicity testing exhibited negligible cytotoxicity of as-prepared PVP-CoFe2O4 even at the concentration as high as 150 μg/mL after 24 h treatment. Considering the superparamagnetic properties, hydrophilic character and negligible cytotoxicity, the monodisperse CoFe2O4 nanoparticles hold great potential in a variety of biomedical applications.

  8. What happens with cow behavior when replacing concrete slatted floor by rubber coating: a case study.

    PubMed

    Platz, S; Ahrens, F; Bendel, J; Meyer, H H D; Erhard, M H

    2008-03-01

    An enhanced productive life cycle and improved animal welfare are aims pursued in dairy husbandry. This study assesses experimental observations on floor-associated behavior during the stepwise replacement of concrete slatted flooring by rubber mats. For this purpose, estrus (mounting) and hygiene behavior (licking while standing on 3 legs and caudal licking) within a herd of 50 loose-housed Brown Swiss dairy cows were analyzed by video observation before and after floor reconstruction. Still photographs and pedometers were used to asses step length and number of steps, representing walking behavior. Compared with the concrete floor surface, rubber coating led to an increase in step length (58 +/- 1 vs. 70 +/- 1 cm; n = 35) and in steps per day (4,226 +/- 450 vs. 5,611 +/- 495; mean +/- SEM; n = 9). Mounting was higher on the flooring covered with rubber mats (23 vs. 112). Collapsing or slipping during mounting only occurred on concrete slatted flooring (in 19 out of 23 mounting actions). Licking while standing on 3 legs and caudal licking increased up to 4-fold (105 vs. 511 observations). In conclusion, improvements were found in behavior when rubber-coated slatted floor surfaces were used in dairy cattle housing in transition from concrete flooring. Disorders in estrus and hygiene behavior were associated with the flooring of the barn and were relatively easy to investigate within the framework of farm welfare assessments.

  9. Electron microscopy structure study of laser-clad TiC-Ni particle-reinforced coating

    SciTech Connect

    Ouyang, J.H.; Li, X.; Lei, T.C.

    2000-04-01

    The microstructure of a laser-clad TiC-Ni particle-reinforced coating on 1045 steel was studied by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and ion microprobe mass spectroscopy (IMMS). The microstructural constituents of the clad layers (CLs) were analyzed to be TiC particles, {gamma}-Ni primary dendrites, and interdendritic eutectics of {gamma}{sub E}-Ni plus M{sub 23}(CB){sub 6} and M{sub 6}(CB) carboborides. Three growth mechanisms of the original TiC particles were found: (1) stepped lateral growth at the edges, (2) radiated and cylindrically coupled growth at the edges, and (3) bridging growth of the clustered particles. Ordered and modulated structures were found in the original TiC particles. In addition to the original TiC particles, fine TiC particles precipitated from the liquid phase and {gamma}-Ni solid solution during laser cladding. The microstructures of the bonding zones (BZs) were intimately associated with laser processing parameters. The BZs of the clad coatings can be categorized into three types according to the combination of the CL with heat-affected zone (HAZ): (1) straight interface combination, (2) zigzag connection, and (3) combination by partial melting of prior austenitic grain boundaries of the substrate. The microstructural evolution of the CLs was discussed. The formation and phase transformation models of the BZs were proposed.

  10. Decontamination Techniques and Fixative Coatings Evaluated in the Building 235-F Legacy Source Term Removal Study

    SciTech Connect

    WAYNE, FARRELL

    2005-04-21

    Savannah River Site Building 235-F was being considered for future plutonium storage and stabilization missions but the Defense Nuclear Facilities Safety Board (DNFSB) noted that large quantities of Plutonium-238 left in cells and gloveboxes from previous operations posed a potential hazard to both the existing and future workforce. This material resulted from the manufacture of Pu-238 heat sources used by the NASA space program to generate electricity for deep space exploration satellites. A multi-disciplinary team was assembled to propose a cost- effective solution to mitigate this legacy source term which would facilitate future DOE plutonium storage activities in 235-F. One aspect of this study involved an evaluation of commercially available radiological decontamination techniques to remove the legacy Pu-238 and fixative coatings that could stabilize any residual Pu-238 following decontamination activities. Four chemical methods were identified as most likely to meet decontamination objectives for this project and are discussed in detail. Short and long term fixatives will be reviewed with particular attention to the potential radiation damage caused by Pu-238, which has a high specific activity and would be expected to cause significant radiation damage to any coating applied. Encapsulants that were considered to mitigate the legacy Pu-238 will also be reviewed.

  11. [Studies on the analytical method for epichlorohydrin from internal can coatings].

    PubMed

    Ohno, Hiroyuki; Suzuki, Masako; Aoyama, Taiki; Mitani, Kazunori

    2003-12-01

    An improved migration test was developed for determination of trace amounts of epichlorohydrin from internal can coatings. Eight kinds of sample cans, coated mainly with epoxy resin, for foods and beverages were prepared, and both their bodies and lids were tested for migration as follows. A body was filled with n-pentane and soaked for 2 hours at 25 degrees C. A lid was soaked in n-pentane (2 mL/cm2) for 2 hours at 25 degrees C. The test solution was analyzed by GC-FID and GC/MS using two DB-WAX capillary columns with different inside diameters. The limits of quantitation were 0.05 microgram/mL by GC-FID and 0.02 microgram/mL by GC/MS with selected ion monitoring. Recoveries of spiked epichlorohydrin were 99.9-104.5% at the level of 0.05 microgram/mL and 0.5 microgram/mL, with high precision. In this study, no epichlorohydrin was found to have migrated from any of the bodies and lids.

  12. Study of Corrosion Resistance Improvement by Metallic Coating for Overhead Transmission Line Conductor

    NASA Astrophysics Data System (ADS)

    Isozaki, Masanori; Adachi, Kouichi; Hita, Takanori; Asano, Yuji

    Applying anti-corrosion grease and aluminum clad steel (AC) wires to ACSR has adopted as general methods to prevent overhead transmission line conductors and/or wires from corrosion. However, there are some cases that ineffectiveness of those means are reported on some transmission lines passing through acid atmosphere in the vicinity of a factory exhausting acid smoke. The feature of the corrosion caused by acid atmosphere is to show a higher speed in its progressing as well known. As means against such acid corrosion, application of high purity aluminum, selective removal of inter-metallic compound in aluminum and plastic coating wires has been reported before, and each has both of advantage and disadvantage actually. In the former letter, we reported the new type of anti-corrosion grease that shows an excellent property against acid atmosphere as well as in a salty circumstance. Here presents a new type of anti-corrosion technology of applying high corrosion resistance aluminum alloy or zinc coatings on each component wires of a conductor that we succeed in developing through a serial study of anti-corrosion methods on overhead transmission lines.

  13. Bioequivalence study of two risedronate sodium film-coated tablet formulations in healthy volunteers.

    PubMed

    Simanjuntak, R; Setiawati, E; Yunaidi, D A; Handayani, L R; Setiawati, A; Utami, B S; Rosa, T A; Sholeh, A B

    2014-03-01

    The present study was performed to compare the bioavailability of 2 risedronate sodium 35 mg film-coated tablet formulations (test formulation and reference formulation). Prior to the present study, in vitro comparative dissolution test has been conducted for test and reference formulations. Dissolution profiles shown that more than 85% of the drug is dissolved within 15 min at pH 1.2, pH 4.5, and pH 6.8.This study was a randomized, single-blind, 2-period, 2-sequence cross-over study which included 48 evaluable healthy adult male and female subjects under fasting condition. In each of the 2 study periods (separated by a washout of 3 weeks) a single dose of test or reference drug was administered. The pharmacokinetic parameters assessed in this study were cumulative urinary excretion from drug administration to 72 h (Ae72h) and maximum urine excretion rate (dAe/dtmax). These parameters were determined from urine concentrations of risedronate and urine volume. Urinary concentrations of the drug were determined by high performance liquid chromatographic method with UV detector.The geometric mean ratios (90% CI) of the test drug/reference drug for risedronate were 106.60% (92.34-123.07%) for Ae72h and 104.75% (88.86-123.47%) for dA/dtmax. The geometric mean ratios calculated for Ae72h and dA/dtmax of risedronate were within the bioequivalence range (80.00-125.00% for Ae72h and dA/dtmax). It was concluded that the 2 risedronate sodium film-coated tablets (test and reference drugs) were bioequivalent.

  14. Coating Development for GRCop-84 Liners for Reusable Launch Vehicles Aided by Modeling Studies

    NASA Technical Reports Server (NTRS)

    Raj, Sai V.; Ghosn, Louis J.

    2004-01-01

    The design of the next generation of reusable launch vehicles calls for using GRCop-84 copper alloy liners based on a composition invented at the NASA Glenn Research Center. Despite its considerable advantage over other copper alloys, it is expected that GRCop-84 will suffer from environmental degradation depending on the type of rocket fuels used and on thermomechanical fatigue. Applying protective coatings on GRCop-84 substrates can minimize or eliminate many of these problems and extend the operational life of the combustion liner. This could increase component reliability, shorten depot maintenance turnaround times, and lower operating costs. Therefore, Glenn is actively pursuing the development of advanced coatings technology for GRCop-84 liners. Technology is being developed in four major areas: (1) new metallic coating compositions, (2) application techniques, (3) test methods, and (4) life prediction design methodology using finite element analysis. The role of finite element analysis in guiding the coating effort is discussed in this report. Thermal analyses were performed at Glenn for different combinations of top- and bondcoat compositions to determine the temperature variation across the coated cross section with the thickness of the top coat. These calculations were conducted for simulated LH2/LO2 booster engine conditions assuming that the bond coat had a constant thickness of 50 m. The preceding graphs show the predicted temperatures at the outer surface of the top coat (hot wall), at the top-coat/bond-coat interface, at the bond-coat/GRCop-84 interface, and at the GRCop-84 cold wall as a function of top-coat thickness for Cu- 26(wt%)Cr top coat (top graph), Ni-17(wt%)Cr-6%Al-0.5%Y top coat and Cu-26%Cr bond coat, and NiAl top coat and Ni bond coat. In all cases, the temperature of the top coat at the hot wall increased with increasing top-coat thickness and with corresponding decreases in the temperatures at the two interfaces and the cold wall

  15. A comparative study of zinc, magnesium, strontium-incorporated hydroxyapatite-coated titanium implants for osseointegration of osteopenic rats.

    PubMed

    Tao, Zhou-Shan; Zhou, Wan-Shu; He, Xing-Wen; Liu, Wei; Bai, Bing-Li; Zhou, Qiang; Huang, Zheng-Liang; Tu, Kai-kai; Li, Hang; Sun, Tao; Lv, Yang-Xun; Cui, Wei; Yang, Lei

    2016-05-01

    Surface modification techniques have been applied to generate titanium implant surfaces that promote osseointegration for the implants in cementless arthroplasty. However, its effect is not sufficient for osteoporotic bone. Zinc (Zn), magnesium (Mg), and strontium (Sr) present a beneficial effect on bone growth, and positively affect bone regeneration. The aim of this study was to confirm the different effects of the fixation strength of Zn, Mg, Sr-substituted hydroxyapatite-coated (Zn-HA-coated, Mg-HA-coated, Sr-HA-coated) titanium implants via electrochemical deposition in the osteoporotic condition. Female Sprague-Dawley rats were used for this study. Twelve weeks after bilateral ovariectomy, all animals were randomly divided into four groups: group HA; group Zn-HA; group Mg-HA and group Sr-HA. Afterwards, all rats from groups HA, Zn-HA, Mg-HA and Sr-HA received implants with hydroxyapatite containing 0%, 10% Zn ions, 10% Mg ions, and 10% Sr ions. Implants were inserted bilaterally in all animals until death at 12 weeks. The bilateral femurs of rats were harvested for evaluation. All treatment groups increased new bone formation around the surface of titanium rods and push-out force; group Sr-HA showed the strongest effects on new bone formation and biomechanical strength. Additionally, there are significant differences in bone formation and push-out force was observed between groups Zn-HA and Mg-HA. This finding suggests that Zn, Mg, Sr-substituted hydroxyapatite coatings can improve implant osseointegration, and the 10% Sr coating exhibited the best properties for implant osseointegration among the tested coatings in osteoporosis rats.

  16. Experimental Study of Ceramic-Coated Tip Seals for Turbojet Engines.

    DTIC Science & Technology

    1985-01-01

    mized for plasma spray coating. There was no evidence of any significant oxidation or beta-phase ( NIAl ) depletion of the NiCoCrAIX bond coat. The 7...er 1000 cycles from flight idle to maximum power in a small turboshaftengine. LO The seals were fabricated by plasma spraying zirconia over a...as follows: (1) Short thermal cycles and the associated thermal stress were responsi- ble for failures of ceramic-coated rods subjected to a Mach 0.3

  17. An Integrated Study of a Novel Thermal Coating for Nb-Based High Temperature Alloy

    SciTech Connect

    Yang, Shizhong

    2015-01-31

    This report summarizes our recent works of ab initio density functional theory (DFT) method and molecular dynamics (MD) simulation on the interfaces between niobium substrate and coatings at atomic level. Potential oxidation barrier bond coat, Nb₂AlC and high entropy alloys, and top coat candidates were synthesized, characterized, and evaluated in our labs. The simulation methods, experimental validation techniques, achievements already reached, students and postdoc training, and future improvement are briefly introduced.

  18. Liquid uranium corrosion studies of protective yttria coatings on tantalum substrate

    NASA Astrophysics Data System (ADS)

    Alangi, Nagaraj; Mukherjee, Jaya; Anupama, P.; Verma, M. K.; Chakravarthy, Y.; Padmanabhan, P. V. A.; Das, A. K.; Gantayet, L. M.

    2011-03-01

    Yttrium oxide has excellent thermodynamic and thermal stability, and also exhibits superior resistance to attack by various reactive metals, glass and slag at high temperature. Coupons with yttrium oxide coating on tantalum substrate with out bond coat were tested for compatibility against liquid uranium at 1573 K up to 80 h in vacuum. Optical microscopy and SEM/EDS investigations were done to evaluate the micro structural features of the coating and the liquid uranium attack. Experimental results show that yttrium oxide coating exhibits excellent corrosion resistance against liquid uranium at 1573 K.

  19. Study of thermal and electrical parameters of workpieces during spray coating by electrolytic plasma jet

    NASA Astrophysics Data System (ADS)

    Khafizov, A. A.; Shakirov, Yu I.; Valiev, R. A.; Valiev, R. I.; Khafizova, G. M.

    2016-01-01

    In this paper the results are presented of thermal and electrical parameters of products in the system bottom layer - intermediate layer when applying protective coatings of ferromagnetic powder by plasma spray produced in an electric discharge with a liquid cathode, on steel samples. Temperature distribution and gradients in coating and intermediate coating were examined. Detailed descriptions of spray coating with ferromagnetic powder by plasma jet obtained in electrical discharge with liquid cathode and the apparatus for obtaining thereof is provided. Problem has been solved by using of Fourier analysis. Initial data for calculations is provided. Results of numerical analysis are provided as temporal functions of temperature in contiguity between coating and intermediate coating as well as temporal function of the value Q=q-φ where q is density of heat current directed to the free surface of intermediate coating, φ is density of heat current in contiguity between coating and intermediate coating. The analysis of data given shows that in the systems of contact heat exchange bottom layer-intermediate layer with close values of the thermophysical characteristics of constituting materials is observed a slow increase of the temperature of the contact as a function of time.

  20. A study of thermal spray coated surface with nano composite powder of CNT+WC14C0

    NASA Astrophysics Data System (ADS)

    Balan, K. N.; Valarmathi, T. N.; Nuttaki, Akhil; Sai Vivek Reddy, Arani; Sai Srinivas, Jammalamadaka K. M. K.; Nathanael, M. Antony

    2016-09-01

    Coatings obtained from thermal spray process are being developed for wide varieties of applications in aerospace and automotive industries. To enhance the wear resistance in the YAWING in wind mills, a new study is required to find out and analyze the surface properties of the surface of Yawing. In this study to enhance the surface properties, a new nano composite powder has been developed and coated on SS304. To synthesis of CNT+WC14Co, initially a binder material of 0.5% Poly Vinyl alcohol solution was prepared and made use as a binder between CNT and WC14Co particles. The synthesized nano composite powder is coated over SS304 samples as per Taguchi design of experiments by Detonation gun coating technique. The coated samples are undergone the tests of micro hardness and Surface roughness. It was found that a significant improvement in micro hardness and there is no significant improvement in surface finish. The best combination of input parameters is obtained through Taguchi method and untried combination's results also have been predicted through Taguchi method. Response surface methodology (RSM) is used to develop a mathematical model.

  1. Early healing of nanothickness bioceramic coatings on dental implants. An experimental study in dogs.

    PubMed

    Coelho, Paulo G; Cardaropoli, Giuseppe; Suzuki, Marcelo; Lemons, Jack E

    2009-02-01

    Thick bioceramic coatings like plasma sprayed hydroxyapatite have been shown to increase the overall tissue response and biomechanical fixation of dental implants. However, the presence and potential fracture of a bone-coating-metallic substrate interface at long times after implantation led these implants to fall from favor in clinical practice. The purpose of this study was to evaluate the biomechanical fixation and biological response of Ca- and P-based, 20-50 nm thickness bioceramic deposition on a previously alumina-blasted/acid-etched Ti-6Al-4V implant surface in a dog model. Cylindrical alumina-blasted/acid-etched (AB/AE) (Control, n = 16), and Nanothickness bioceramic coated AB/AE(Nano, n = 16) implant surfaces were surgically placed in dogs proximal tibia and remained for 2 and 4 weeks in vivo. Following euthanization, the implants-in-bone were mounted in epoxy and pullout at a 0.5 mm/min rate. Following mechanical testing, the specimens were decalcified and processed (Hematoxylin and Eosin) for standard transmitted light microscopy evaluation. Percent bone-to-implant contact (BIC) to the pulled out implant surface was determined through computer software. Statistical analyses were performed by one-way ANOVA at 95% level of significance and Tukey's post-hoc multiple comparisons. No significant differences in pullout force were observed (p > 0.88): 2W Control (212.08 +/- 42.96 N), 2W Nano (224.35 +/- 42.97 N), 4W Control (207.07 +/- 42.97 N), and 4W Nano (190.15 +/- 45.94 N). No significant differences in %BIC were observed (p > 0.94): 2W Control (72.66 +/- 8.51), 2W Nano (69.44 +/- 8.51), 4W Control (70.44 +/- 8.51), and 4W Nano (69.11 +/- 9.09). It is shown that 20-50 nm thickness bioceramic depositions onto previously alumina-blasted/acid-etched substrates did not improve the biomechanical fixation and the BIC at early implantation times, and studies concerning shorter and longer implantation times are recommended for confirmation or before a conclusion

  2. Spectroscopic studies of UV irradiated erythrosine B thin films prepared by spin coating technique.

    PubMed

    Zeyada, H M; El-Mallah, H M; Atwee, T; El-Damhogi, D G

    2017-05-15

    The spectroscopic studies of erythrosine B thin films manufactured by the spin coating technique have been presented. The spectra of infrared absorption allow characterization of vibrational modes for erythrosine B in powder form, pristine and UV irradiated thin films. The absorption spectra recorded in UV-vis-NIR for pristine films of erythrosine B display two main bands. UV irradiation on erythrosine B films decreased absorbance over the spectra. Indirect allowed transition with optical energy gap of 2.57eV is observed in pristine films. UV irradiation introduced structural defects and decreased optical band gap. Some of the optical absorption parameters and their relation to UV irradiation times, namely molar extinction coefficient (ε), electronic dipole strength (q(2)), and oscillator strength (f), of the principal optical transitions have also been evaluated.

  3. An electrochemical study of the corrosion behavior of primer coated 2219-T87 aluminum

    NASA Technical Reports Server (NTRS)

    Danford, M. D.; Higgins, R. H.

    1985-01-01

    The corrosion behavior for 2219-T87 aluminum coated with various primers, including those used for the external tank and solid rocket boosters of the Space Shuttle Transportation System, were investigated using electrochemical techniques. Corrosion potential time, polarization resistance time, electrical resistance time, and corrosion rate time measurements were all investigated. It was found that electrical resistance time and corrosion rate time measurement were most useful for studying the corrosion behavior of painted aluminum. Electrical resistance time determination give useful information concerning the porosity of paint films, while corrosion rate time curves give important information concerning overall corrosion rates and corrosion mechanisms. In general, the corrosion rate time curves all exhibited at least one peak during the 30 day test period, which was attributed, according to the proposed mechanisms, to the onset of the hydrogen evolution reaction and the beginning of destruction of the protective properties of the paint film.

  4. Coatings for directional eutectics

    NASA Technical Reports Server (NTRS)

    Rairden, J. R.; Jackson, M. R.

    1976-01-01

    Significant advances have been made in the development of an environmentally stable coating for a very high strength, directionally solidified eutectic alloy designated NiTaC-13. Three duplex (two-layer) coatings survived 3,000 hours on a cyclic oxidation test (1,100 C to 90 C). These coatings were fabricated by first depositing a layer of NiCrAl(Y) by vacuum evaporation from an electron beam heated source, followed by depositing an aluminizing overlayer. The alloy after exposure with these coatings was denuded of carbide fibers at the substrate/coating interface. It was demonstrated that TaC fiber denudation can be greatly retarded by applying a carbon-bearing coating. The coating was applied by thermal spraying followed by aluminization. Specimens coated with NiCrAlCY+Al survived over 2,000 hours in the cyclic oxidation test with essentially no TaC denudation. Coating ductility was studied for coated and heat-treated bars, and stress rupture life at 871 C and 1,100 C was determined for coated and cycled bars.

  5. A Study on the Cyclic Oxidation Behavior of Detonation-Gun-Sprayed Ni-5Al Coatings on Inconel-718 at 900 °C

    NASA Astrophysics Data System (ADS)

    Saladi, Sekar; Menghani, Jyoti; Prakash, Satya

    2014-12-01

    Cyclic oxidation behavior of detonation-gun-sprayed Ni-5Al coating on Inconel-718 is discussed in the present study. Oxidation studies were carried out on both bare and coated superalloy substrates in air at 900 °C for 100 cycles. The thermogravimetric technique was used to establish kinetics of oxidation. X-ray diffraction, FESEM/EDAX, and x-ray mapping techniques were used to analyze the oxidation products of bare and coated samples. The weight gain of bare superalloy was higher than the Ni-5Al-coated superalloy. Both bare and Ni-5Al-coated superalloys followed nearly parabolic oxidation behavior. The Ni-5Al coating was able to reduce the overall weight gain by 26.2% in comparison with bare superalloy in the given environment. The better oxidation resistance of Ni-5Al coating may be due the formation of protective oxides phases such as NiO, Al2O3, and NiAl2O4 on the oxidized coating and Cr2O3 at the coating-substrate interface. The Ni-5Al coatings obtained from detonation-gun-spraying process showed very little porosity and low surface roughness values.

  6. Study of Coating Growth Behavior During the Plasma Electrolytic Oxidation of Magnesium Alloy ZK60

    NASA Astrophysics Data System (ADS)

    Qiu, Zhaozhong; Wang, Rui; Zhang, Yushen; Qu, Yunfei; Wu, Xiaohong

    2015-04-01

    Plasma electrolytic oxidation technique was used to coat ZK60 magnesium alloy in a silicate-based electrolyte. Effects of oxidation time on the morphology, phase structure, and corrosion resistance of the resulting coatings were systematically investigated by scanning electron microscopy, energy-dispersive spectrometry, x-ray diffraction, x-ray photoelectron spectroscopy, and potentiodynamic polarization. The main components of the inner and the outer coating layers were MgO and Mg2SiO4, respectively. It was also found that the oxidation time has a significant impact on the corrosion resistance properties of the coatings. The coating obtained within the oxidation time of 360 s exhibited a corrosion current of 7.6 × 10-8 A/cm2 in 3.5 wt.% NaCl solution, which decreased significantly when comparing with the pristine magnesium alloy.

  7. Application of a silver coating on plastic biliary stents to prevent biofilm formation: an experimental study using electron microscopy

    PubMed Central

    Yamabe, Akane; Irisawa, Atsushi; Wada, Ikuo; Shibukawa, Goro; Fujisawa, Mariko; Sato, Ai; Igarashi, Ryo; Maki, Takumi; Hoshi, Koki

    2016-01-01

    Background and study aims: Biliary stent dysfunction is mainly caused by biliary sludge that forms as a result of bacterial adherence and subsequent biofilm formation on the inner surface of the stent. Silver ions arewell known to have excellent antimicrobial activity against a wide range of microorganisms. In this study, we designed and constructed silver-coated plastic stent (PS) and investigated whether the silver coating prevented bacterial adherence and biofilm formation through the use of electron microscopy. Material and methods: The polyurethane PS with/without silver coating were prepared in 6-inch segments. The silver-based antimicrobial agents were electrostatically applied onto the stent surface. The stents were then immersed for 5 weeks in infected human bile juice obtained from a patient with cholangitis, and electron microscopy was used to investigate the ability of the modified PS to prevent bacterial adherence and biofilm formation. Results: The bacterial flora did not change before and after immersion of stents in both the group with and without silver coating. Electron microscopic observation revealed meshwork-like structures around the bacteria, characteristic of biofilm-forming bacteria, in all stents from the control group (6/6, 100 %). On the other hand, a limited number of bacteria were observed in all stents in the silver-coated group, and no apparent biofilm formation was observed (0/6, 0 %). Conclusions: The significance of the findings from our study is the ability of silver-coated PS to prevent biofilm formation on the stent surface, which results in the prevention of stent occlusion. PMID:27747284

  8. Aluminide coatings

    SciTech Connect

    Henager, Jr; Charles, H; Shin, Yongsoon; Samuels, William D

    2009-08-18

    Disclosed herein are aluminide coatings. In one embodiment coatings are used as a barrier coating to protect a metal substrate, such as a steel or a superalloy, from various chemical environments, including oxidizing, reducing and/or sulfidizing conditions. In addition, the disclosed coatings can be used, for example, to prevent the substantial diffusion of various elements, such as chromium, at elevated service temperatures. Related methods for preparing protective coatings on metal substrates are also described.

  9. COATED ALLOYS

    DOEpatents

    Harman, C.G.; O'Bannon, L.S.

    1958-07-15

    A coating is described for iron group metals and alloys, that is particularly suitable for use with nickel containing alloys. The coating is glassy in nature and consists of a mixture containing an alkali metal oxide, strontium oxide, and silicon oxide. When the glass coated nickel base metal is"fired'' at less than the melting point of the coating, it appears the nlckel diffuses into the vitreous coating, thus providing a closely adherent and protective cladding.

  10. Bone Loss at Implant with Titanium Abutments Coated by Soda Lime Glass Containing Silver Nanoparticles: A Histological Study in the Dog

    PubMed Central

    Martinez, Arturo; Guitián, Francisco; López-Píriz, Roberto; Bartolomé, José F.; Cabal, Belén; Esteban-Tejeda, Leticia; Torrecillas, Ramón; Moya, José S.

    2014-01-01

    The aim of the present study was to evaluate bone loss at implants connected to abutments coated with a soda-lime glass containing silver nanoparticles, subjected to experimental peri-implantitis. Also the aging and erosion of the coating in mouth was studied. Five beagle dogs were used in the experiments. Three implants were placed in each mandible quadrant: in 2 of them, Glass/n-Ag coated abutments were connected to implant platform, 1 was covered with a Ti-mechanized abutment. Experimental peri-implantitis was induced in all implants after the submarginal placement of cotton ligatures, and three months after animals were euthanatized. Thickness and morphology of coating was studied in abutment cross-sections by SEM. Histology and histo-morphometric studies were carried on in undecalfied ground slides. After the induced peri-implantitis: 1.The abutment coating shown losing of thickness and cracking. 2. The histometry showed a significant less bone loss in the implants with glass/n-Ag coated abutments. A more symmetric cone of bone resorption was observed in the coated group. There were no significant differences in the peri-implantitis histological characteristics between both groups of implants. Within the limits of this in-vivo study, it could be affirmed that abutments coated with biocide soda-lime-glass-silver nanoparticles can reduce bone loss in experimental peri-implantitis. This achievement makes this coating a suggestive material to control peri-implantitis development and progression. PMID:24466292

  11. Deep UV to NIR Space Telescopes and Exoplanet Coronagraphs: A Trade Study on Throughput, Polarization, Mirror Coating Options and Requirements

    NASA Technical Reports Server (NTRS)

    Balasubramanian, Kunjithapatham; Shaklan, Stuart; Give'on, Amir; Cady, Eric; Marchen, Luis

    2011-01-01

    The NASA Exoplanet program and the Cosmic Origins program are exploring technical options to combine the visible to NIR performance requirements of a space coronagraph with the general astrophysics requirements of a space telescope covering the deep UV spectrum. Are there compatible options in terms of mirror coatings and telescope architecture to satisfy both goals? In this paper, we address some of the main concerns, particularly relating to polarization in the visible and throughput in the UV. Telescope architectures employing different coating options compatible with current technology are considered in this trade study.

  12. Polyelectrolyte multilayer film coating and stability at the surfaces of oral prosthesis base polymers: an in vitro and in vivo study.

    PubMed

    Etienne, O; Picart, C; Taddei, C; Keller, P; Hubsch, E; Schaaf, P; Voegel, J C; Haikel, Y; Ogier, J A; Egles, C

    2006-01-01

    A new type of coating involving a layer-by-layer technique has been recently reported. This coating is composed of a polyelectrolyte multilayer film that confers specific properties on surfaces to which it is applied. Here, we studied the applicability of such a technique to the coating of oral prostheses, by first testing the construction of polyelectrolyte multilayer films on several polymers used in oral prosthesis bases, and, subsequently, by studying the stability of these coatings in vitro, in human saliva, and in vivo in a rat model. We demonstrated that the multilayered films are able to coat the surfaces of all tested polymers completely, thus increasing their wettability. We also showed that saliva does not degrade the film after 7 days in vitro and after 4 days in vivo. Taken together, our results establish that the layer-by-layer technique is suitable for the coating of oral devices.

  13. X-ray Diffraction Studies of the Structure and Thermochemistry of Alkaline-Earth Oxide-Coated Thermionic Cathodes

    NASA Technical Reports Server (NTRS)

    Karikari, E. K.; Bassey, E.; Wintucky, Edwin G.

    1998-01-01

    NASA LeRC has a broad, active cathode technology development program in which both experimental and theoretical studies are being employed to further development of thermionic cathodes for use as electron sources in vacuum devices for communications and other space applications. One important type of thermionic cathode under development is the alkaline-earth oxide-coated (BaO, SrO, CaO) cathode. Significant improvements in the emission characteristics of this cathode have been obtained through modification of the chemical composition and morphology of the oxide coating, with the best result thus far coming from the addition of In2O3 and Sc2O3. Whereas the In2O3 produces a finer, more uniform particle structure, the exact chemical state and role of the Sc2O3 in the emission enhancement is unknown. The purpose of this cooperative agreement is to combine the studies of the surface chemistry and electron emission at NASA LeRC of chemically modified oxide coatings with a study of the thermochemistry and crystal structure using X-ray diffraction equipment and expertise at Clark Atlanta University (CAU). The study at CAU is intended to provide the description and understanding of the structure and thermochemistry needed for further improvement and optimization of the modified coatings. A description of the experimental procedure, preliminary X-ray diffraction test results, together with the design of an ultrahigh vacuum chamber necessary for high temperature thermochemistry studies will be presented.

  14. [FTIR spectra study on the swellbility and controlled-release mechanism of polyurethane coated urea].

    PubMed

    Wu, Shu; Ru, Tie-Jun; Wang, Jin-Ming

    2013-05-01

    The nutrient release experiment of polyurethane coated urea (PCU) was carried out in pure water at 25 degrees C. With the release of urea, the structural variation of polyurethane coating was investigated by Fourier transform infrared spectroscopy (FTIR), then a series of curves were collated and compared so as to better reflect the relation between diffusion rate of urea and coating structure. It was found that when the nutrient was released by 50% wt, new absorption peaks at 3 435, 3 342, 1 671, 1 621, 1 448 and 1 159 cm(-1) appear in the FTIR spectra of polyurethane coating, moreover, the height of these absorption peaks was increased gradually when the nutrient was released by 70% wt, more importantly, these new absorption peaks are consistent with the characteristic absorption peaks of urea fertilizer, the spectra of urea were mainly characterized by bands at 3 440, 3 346, 1 672, 1 621 and 1 461 cm(-1). The results show that the IR spectra variation was caused by the content of urea, existing in the polyurethane coating, and was increased gradually, The more the urea content, the greater the swelling degree of the polyurethane coating. The swelling of polyurethane coating leads to the pores size change, and release rate is increased, so the "S" pattern curve of the nitrogen accumulative release is formed.

  15. Nanoindentation Study of Phase-pure Highly Crystalline Hydroxyapatite Coatings Deposited by Microplasma Spraying

    PubMed Central

    Dey, Arjun; Mukhopadhyay, Anoop Kumar

    2015-01-01

    The present contribution has originated from a critical biomedical engineering issue e.g., loosening of metallic prostheses fixed with poly(methylmethylacrylate) (PMMA) bone cement especially in the case of hip joint replacement which ultimately forces the patient to undergo a revision surgery. Subsequently surgeons invented a cementless fixation technology introducing a bioactive hydroxyapatite (HAp) coating to the metallic implant surface. A wide variety of different coating methods have been developed to make the HAp coating on metallic implants more reliable; of which ultimately the plasma spraying method has been commercially accepted. However, the story was not yet finished at all, as many questions were raised regarding coating adherence, stability and bio-functionality in both in vitro and in vivo environments. Moreover, it has been now realized that the conventional high power plasma spraying (i.e. conventional atmospheric plasma spraying, CAPS) coating method creates many disadvantages in terms of phase impurity; reduced porosity limiting osseointegration and residual stresses which ultimately lead to inadequate mechanical properties and delamination of the coating. Further, poor crystallinity of HAp deposited by CAPS accelerates the rate of bioresorption, which may cause poor adhesion due to quick mass loss of HAp coatings. Therefore, in the present work a very recently developed method e.g., low power microplasma spraying method was utilized to coat HAp on SS316L substrates to minimize the aforementioned problems associated with commercial CAPS HAp coatings. Surgical grade SS316L has been chosen as the substrate material because it is more cost effective than Ti6Al4V and CoCrMo alloys. PMID:25893017

  16. Study on the behavior of atomic layer deposition coatings on a nickel substrate at high temperature.

    PubMed

    Heidary, Damoon Sohrabi Baba; Randall, Clive A

    2016-06-17

    Although many techniques have been applied to protect nickel (Ni) alloys from oxidation at intermediate and high temperatures, the potential of atomic layer deposition (ALD) coatings has not been fully explored. In this paper, the application of ALD coatings (HfO2, Al2O3, SnO2, and ZnO) on Ni foils has been evaluated by electrical characterization and transmission electron microscopy analyses in order to assess their merit to increase Ni oxidation resistance; particular consideration was given to preserving Ni electrical conductivity at high temperatures. The results suggested that as long as the temperature was below 850 °C, the ALD coatings provided a physical barrier between outside oxygen and Ni metal and hindered the oxygen diffusion. It was illustrated that the barrier power of ALD coatings depends on their robustness, thicknesses, and heating rate. Among the tested ALD coatings, Al2O3 showed the maximum protection below 900 °C. However, above that temperature, the ALD coatings dissolved in the Ni substrate. As a result, they could not offer any physical barrier. The dissolution of ALD coatings doped on the NiO film, formed on the top of the Ni foils. As found by the electron energy loss spectroscopy (EELS), this doping affected the electronic transport process, through manipulating the Ni(3+)/Ni(2+) ratio in the NiO films and the chance of polaron hopping. It was demonstrated that by using the ZnO coating, one would be able to decrease the electrical resistance of Ni foils by two orders of magnitude after exposure to 1020 °C for 4 min. In contrast, the Al2O3 coating increased the resistance of the uncoated foil by one order of magnitude, mainly due to the decrease in the ratio of Ni(3+)/Ni(2+).

  17. Study on the behavior of atomic layer deposition coatings on a nickel substrate at high temperature

    NASA Astrophysics Data System (ADS)

    Sohrabi Baba Heidary, Damoon; Randall, Clive A.

    2016-06-01

    Although many techniques have been applied to protect nickel (Ni) alloys from oxidation at intermediate and high temperatures, the potential of atomic layer deposition (ALD) coatings has not been fully explored. In this paper, the application of ALD coatings (HfO2, Al2O3, SnO2, and ZnO) on Ni foils has been evaluated by electrical characterization and transmission electron microscopy analyses in order to assess their merit to increase Ni oxidation resistance; particular consideration was given to preserving Ni electrical conductivity at high temperatures. The results suggested that as long as the temperature was below 850 °C, the ALD coatings provided a physical barrier between outside oxygen and Ni metal and hindered the oxygen diffusion. It was illustrated that the barrier power of ALD coatings depends on their robustness, thicknesses, and heating rate. Among the tested ALD coatings, Al2O3 showed the maximum protection below 900 °C. However, above that temperature, the ALD coatings dissolved in the Ni substrate. As a result, they could not offer any physical barrier. The dissolution of ALD coatings doped on the NiO film, formed on the top of the Ni foils. As found by the electron energy loss spectroscopy (EELS), this doping affected the electronic transport process, through manipulating the Ni3+/Ni2+ ratio in the NiO films and the chance of polaron hopping. It was demonstrated that by using the ZnO coating, one would be able to decrease the electrical resistance of Ni foils by two orders of magnitude after exposure to 1020 °C for 4 min. In contrast, the Al2O3 coating increased the resistance of the uncoated foil by one order of magnitude, mainly due to the decrease in the ratio of Ni3+/Ni2+.

  18. Silica coating and photocatalytic activities of ZnO nanoparticles: effect of operational parameters and kinetic study.

    PubMed

    Ismail, L F M; Emara, M M; El-Moselhy, M M; Maziad, N A; Hussein, O K

    2014-10-15

    Silica-coating ZnO nanoparticles were prepared using the hydrothermal method. The prepared nanoparticles were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and energy dispersive X-ray Spectroscopy (EDX). It was found that ultrafine core/shell structured silica-coating ZnO nanoparticles were successfully obtained. TEM analysis revealed a continuous and uniform silica coating layer of about 8nm in thickness on the surface of ZnO nanoparticles. The photocatalytic performance of silica-coating ZnO core/shell nanoparticles in methylene blue aqueous solution was investigated. The effects of some operational parameters such as pH value, nanocatalyst loading and initial MB concentration on the degradation efficiency were discussed. Kinetic parameters were experimentally determined and a pseudo-first-order kinetic was observed. Thus, the main advantage of the coating is the stability of the photocatalysts and the better performance in acidic or alkaline solutions. Compared to ZnO the maximum apparent rate constant is obtained at pH 8.5 (pH 11.5 in case of bare ZnO). Moreover, the Langmuir adsorption model was applied to describe the equilibrium isotherm at different MB concentration. The applicability of the Langmuir isotherm suggests monolayer coverage of the MB onto surface of silica-coating ZnO nanoparticles. The kinetics of the adsorption with respect to the initial dye concentration, were also investigated. The pseudo-first-order and second-order kinetic models were used and the rate constants were evaluated. The kinetic studies revealed that the pseudo-second-order kinetic model better represented the adsorption kinetics, suggesting that the adsorption process may be chemisorption.

  19. Reduction of VOC emissions from metal dip coating applications -- Canam Steel Corporation Point of Rocks, MD case study

    SciTech Connect

    Monfet, J.P.

    1997-12-31

    The reduction of VOC emissions from metal dip coating applications is not an environmental constraint, it is an economic opportunity. This case study shows how the industry can reap economic benefits from VOC reductions while improving air quality. The Canam Steel Corporation plant located in Point of Rocks, MD operates dip tanks for primer application on fabricated steel joists and joist girders. This process is presently subject to a regulation that limits the paint VOC content to 3.5 pounds per gallon of coating less water. As a result of the high paint viscosity associated with that regulation, the paint thickness of the dipped steel is thicker than the customers` specifications. Most of the VOC emissions can therefore be associated with the excess of paint applied to the products rather than to the required thickness of the coating. The higher paint usage rate has more than environmental consequences, it increases the cost of the applied coating. The project is to reduce the paint usage by controlling the viscosity of the coating in the tank. Experimental results as well as actual mass balance calculations show that using a higher VOC content paint would reduce the overall VOC emissions. The author explained the project to the Maryland Department of the Environment (MDE) Air and Radiation Management Administration. First, the MDE agreed to develop a new RACT determination for fabricated steel dipping operations. The new regulation would limit the amount of VOC than can be emitted to dip coat a ton of fabricated steel. Second, the MDE agreed to allow experimentation of the higher VOC content paint as a pilot project for the new regulation. This paper demonstrates the need for a RACT determination specific to fabricated steel dipping operations.

  20. Adsorption of naphthalene and ozone on atmospheric air/ice interfaces coated with surfactants: a molecular simulation study.

    PubMed

    Liyana-Arachchi, Thilanga P; Valsaraj, Kalliat T; Hung, Francisco R

    2012-03-15

    The adsorption of gas-phase naphthalene and ozone molecules onto air/ice interfaces coated with different surfactant species (1-octanol, 1-hexadecanol, or 1-octanal) was investigated using classical molecular dynamics (MD) simulations. Naphthalene and ozone exhibit a strong preference to be adsorbed at the surfactant-coated air/ice interfaces, as opposed to either being dissolved into the bulk of the quasi-liquid layer (QLL) or being incorporated into the ice crystals. The QLL becomes thinner when the air/ice interface is coated with surfactant molecules. The adsorption of both naphthalene and ozone onto surfactant-coated air/ice interfaces is enhanced when compared to bare air/ice interface. Both naphthalene and ozone tend to stay dissolved in the surfactant layer and close to the QLL, rather than adsorbing on top of the surfactant molecules and close to the air region of our systems. Surfactants prefer to orient at a tilted angle with respect to the air/ice interface; the angular distribution and the most preferred angle vary depending on the hydrophilic end group, the length of the hydrophobic tail, and the surfactant concentration at the air/ice interface. Naphthalene prefers to have a flat orientation on the surfactant coated air/ice interface, except at high concentrations of 1-hexadecanol at the air/ice interface; the angular distribution of naphthalene depends on the specific surfactant and its concentration at the air/ice interface. The dynamics of naphthalene molecules at the surfactant-coated air/ice interface slow down as compared to those observed at bare air/ice interfaces. The presence of surfactants does not seem to affect the self-association of naphthalene molecules at the air/ice interface, at least for the specific surfactants and the range of concentrations considered in this study.

  1. A comparative study of nano-scale coatings on gold electrodes for bioimpedance studies of breast cancer cells.

    PubMed

    Srinivasaraghavan, Vaishnavi; Strobl, Jeannine; Wang, Dong; Heflin, James R; Agah, Masoud

    2014-10-01

    The relative sensitivity of standard gold microelectrodes for electric cell-substrate impedance sensing was compared with that of gold microelectrodes coated with gold nanoparticles, carbon nanotubes, or electroplated gold to introduce nano-scale roughness on the surface of the electrodes. For biological solutions, the electroplated gold coated electrodes had significantly higher sensitivity to changes in conductivity than electrodes with other coatings. In contrast, the carbon nanotube coated electrodes displayed the highest sensitivity to MDA-MB-231 metastatic breast cancer cells. There was also a significant shift in the peak frequency of the cancer cell bioimpedance signal based on the type of electrode coating. The results indicate that nano-scale coatings which introduce varying degrees of surface roughness can be used to modulate the frequency dependent sensitivity of the electrodes and optimize electrode sensitivity for different bioimpedance sensing applications.

  2. Quantification of omeprazole degradation by enteric coating polymers: an UV-VIS spectroscopy study.

    PubMed

    Riedel, A; Leopold, C S

    2005-02-01

    The aim of this study was to investigate the degradation of the acid-labile proton-pump-inhibitor omeprazole in organic polymer solutions and aqueous dispersions of enteric coating polymers by UV spectroscopy. Furthermore, data were compared with those obtained in a previous HPLC study. For comparative purposes the cationic Eudragit RS 100 and the monomeric acid acetic acid were included in this study. The discolorations of degraded omeprazole solutions were analysed by VIS spectroscopy. UV-VIS spectra were recorded after preparation of the solutions and after 180 min of storage. The change of absorption was calculated as the difference of the absorption values at 305 nm. Degradation of omeprazole depends on the amount of acidic groups in the polymer structure. This decomposition manifests itself in a shifting of the absorption maximum to lower wavelengths and a decrease of absorption intensity. UV-VIS spectroscopy was used to determine the extent of degradation induced by enteric polymers. A good correlation of these results with previous HPLC data was found when excluding UV absorbing polymers. Nevertheless, values obtained by UV-VIS spectroscopy were always lower than those obtained by HPLC. For evaluation of the discoloration of degraded omeprazole solutions, VIS spectroscopy is a simple and fast method.

  3. Evaluation of bone loss in antibacterial coated dental implants: An experimental study in dogs.

    PubMed

    Godoy-Gallardo, Maria; Manzanares-Céspedes, Maria Cristina; Sevilla, Pablo; Nart, José; Manzanares, Norberto; Manero, José M; Gil, Francisco Javier; Boyd, Steven K; Rodríguez, Daniel

    2016-12-01

    The aim of this study was to evaluate the in vivo effect of antibacterial modified dental implants in the first stages of peri-implantitis. Thirty dental implants were inserted in the mandibular premolar sites of 5 beagle dogs. Sites were randomly assigned to Ti (untreated implants, 10units), Ti_Ag (silver electrodeposition treatment, 10units), and Ti_TSP (silanization treatment, 10units). Coated implants were characterized by scanning electron microscopy, interferometry and X-ray photoelectron spectroscopy. Two months after implant insertion, experimental peri-implantitis was initiated by ligature placement. Ligatures were removed 2months later, and plaque formation was allowed for 2 additional months. Clinical and radiographic analyses were performed during the study. Implant-tissue samples were prepared for micro computed tomography, backscattered scanning electron microscopy, histomorphometric and histological analyses and ion release measurements. X-ray, SEM and histology images showed that vertical bone resorption in treated implants was lower than in the control group (P<0.05). This effect is likely due to the capacity of the treatments to reduce bacteria colonization on the implant surface. Histological analysis suggested an increase of peri-implant bone formation on silanized implants. However, the short post-ligature period was not enough to detect differences in clinical parameters among implant groups. Within the limits of this study, antibacterial surface treatments have a positive effect against bone resorption induced by peri-implantitis.

  4. [Studies on organic protective coatings for anti-atomic oxygen effects by spectrum analysis].

    PubMed

    Zhang, Lei

    2004-11-01

    This paper describes organic protective coatings on space material for anti-AO effects and the experiments to assess properties of the coatings. Organic protection was analyzed after exposures to ground state fast atomic (AO) radiation in the atomic oxygen beam facility for ground simulation experiments. The tests results have been analyzed with advanced FTIR, XPS and SEM. The test indicated that epoxy, alkyd and urethane organic coatings were highly reactive to AO with a strong degradation and changed in morphology of the surface layer. It is evident that siloxane coatings have excellent properties for anti-AO effects. The erosion product has SiO2 left on the surface, thus providing protection from further attack by the energetic oxygen atoms.

  5. Nanoindentation study of electrodeposited Ag thin coating: An inverse calculation of anisotropic elastic-plastic properties

    SciTech Connect

    Cheng, Guang; Sun, Xin; Wang, Yuxin; Tay, See Leng; Gao, Wei

    2017-01-01

    A new inverse method was proposed to calculate the anisotropic elastic-plastic properties (flow stress) of thin electrodeposited Ag coating utilizing nanoindentation tests, previously reported inverse method for isotropic materials and three-dimensional (3-D) finite element analyses (FEA). Indentation depth was ~4% of coating thickness (~10 μm) to avoid substrate effect and different indentation responses were observed in the longitudinal (L) and the transverse (T) directions. The estimated elastic-plastic properties were obtained in the newly developed inverse method by matching the predicted indentation responses in the L and T directions with experimental measurements considering indentation size effect (ISE). The results were validated with tensile flow curves measured from free-standing (FS) Ag film. The current method can be utilized to characterize the anisotropic elastic-plastic properties of coatings and to provide the constitutive properties for coating performance evaluations.

  6. Experimental study of ceramic-coated tip seals for turbojet engines

    NASA Technical Reports Server (NTRS)

    Biesiadny, T. J.; Mcdonald, G.; Hendricks, R. C.; Klann, G. A.; Lassow, E. S.

    1985-01-01

    Ceramic gas-path seals were fabricated and successfully operated over 1000 cycles from flight idle to maximum power in a small turboshaft engine. The seals were fabricated by plasma spraying zirconia over a NiCoCrAlX bond coat on the Haynes 25 substrate. Coolant-side substrate temperatures and related engine parameters were recorded. Post-test inspection revealed mudflat surface cracking with penetration to the ceramic bond-coat interface.

  7. Ice formation on nitric acid coated dust particles: Laboratory and modeling studies

    SciTech Connect

    Kulkarni, Gourihar R.; Zhang, Kai; Zhao, Chun; Nandasiri, Manjula I.; Shutthanandan, V.; Liu, Xiaohong; Fast, Jerome D.; Berg, Larry K.

    2015-08-16

    Changes in the ice nucleation characteristics of atmospherically relevant mineral dust particles due to nitric acid coating are not well understood. Further, the atmospheric implications of dust coating on ice-cloud properties under different assumptions of primary ice nucleation mechanisms are unknown. We investigated ice nucleation ability of Arizona test dust, illite, K-feldspar and quartz as a function of temperature (-25 to -30°C) and relative humidity with respect to water (75 to 110%). Particles were size selected at 250 nm and transported (bare or coated) to the ice nucleation chamber to determine the fraction of particles nucleating ice at various temperature and water saturation conditions. All dust nucleated ice at water-subsaturated conditions, but the coated particles showed a reduction in their ice nucleation ability compared to bare particles. However, at water-supersaturated conditions, we observed that bare and coated particles had nearly similar ice nucleation characteristics. X-ray diffraction patterns indicated that structural properties of bare dust particles modified after acid treatment. We found that lattice parameters were slightly different, but crystallite sizes of the coated particles were reduced compared to bare particles. Next, single-column model results show that simulated ice crystal number concentrations mostly depends upon fraction of particles that are coated, primary ice nucleation mechanisms, and the competition between ice nucleation mechanisms to nucleate ice. In general, we observed that coating modify the ice-cloud properties and the picture of ice and mixed-phase cloud evolution is complex when different primary ice nucleation mechanisms are competing for fixed water vapor mass.

  8. Experimental study of the antithrombogenic behavior of Dacron vascular grafts coated with hydrophilic acrylic copolymers bearing salicylic acid residues.

    PubMed

    San Román, J; Buján, J; Bellón, J M; Gallardo, A; Escudero, M C; Jorge, E; de Haro, J; Alvarez, L; Castillo-Olivares, J L

    1996-09-01

    The objective of the present work was study of the behavior of active coatings of hydrophilic acrylic polymers bearing salicylic acid residues linked covalently to the macromolecular chains, after their application to woven and knitted Dacron vascular grafts. In vitro tests were carried out under dynamic flow conditions using equipment especially designed to reproduce physiologic conditions, to determine the retention of the coating using a saline solution. Ex vivo tests were carried out in an extracorporeal circuit using the dog as an animal model. The study of the deposition of platelets was followed by labeling of autologous platelets with 111In-oxine, as well as by analysis of the surfaces of the prostheses by scanning electron microscopy. An application of thin coatings of hydrophilic acrylic copolymers improves the antithrombogenicity of the vascular grafts with respect to the uncoated prosthesis. The presence of relatively small amounts of units bearing salicylic acid residues in the copolymer chains (5-20 wt %) gives good results when they are applied to woven and knitten Dacron meshes which have been quantified by analysis of the percentage of radiotracer on the surface of the vascular grafts tested in ex vivo experiments. The salicylic acid residues are released slowly to the medium by hydrolysis of the reversible covalent bonds of this compound to the acrylic macromolecular chains, which provides an additional antiaggregating effect for platelets. The polymeric coating forms a thin active film which improves the antithrombogenic properties of the surface of woven or knitted Dacron vascular grafts in ex vivo experiments.

  9. Surface Modifications of Titanium Implants by Multilayer Bioactive Coatings with Drug Delivery Potential: Antimicrobial, Biological, and Drug Release Studies

    NASA Astrophysics Data System (ADS)

    Ordikhani, Farideh; Zustiak, Silviya Petrova; Simchi, Abdolreza

    2016-04-01

    Recent strategies to locally deliver antimicrobial agents to combat implant-associated infections—one of the most common complications in orthopedic surgery—are gaining interest. However, achieving a controlled release profile over a desired time frame remains a challenge. In this study, we present an innovative multifactorial approach to combat infections which comprises a multilayer chitosan/bioactive glass/vancomycin nanocomposite coating with an osteoblastic potential and a drug delivery capacity. The bioactive drug-eluting coating was prepared on the surface of titanium foils by a multistep electrophoretic deposition technique. The adopted deposition strategy allowed for a high antibiotic loading of 1038.4 ± 40.2 µg/cm2. The nanocomposite coating exhibited a suppressed burst release with a prolonged sustained vancomycin release for up to 6 weeks. Importantly, the drug release profile was linear with respect to time, indicating a zero-order release kinetics. An in vitro bactericidal assay against Staphylococcus aureus confirmed that releasing the drug reduced the risk of bacterial infection. Excellent biocompatibility of the developed coating was also demonstrated by in vitro cell studies with a model MG-63 osteoblast cell line.

  10. Radiologic Evaluation of Bone Loss at Implants with Biocide Coated Titanium Abutments: A Study in the Dog

    PubMed Central

    López-Píriz, Roberto; Solá-Linares, Eva; Granizo, Juan J.; Díaz-Güemes, Idohia; Enciso, Silvia; Bartolomé, José F.; Cabal, Belén; Esteban-Tejeda, Leticia; Torrecillas, Ramón; Moya, José S.

    2012-01-01

    The objective of the present study is to evaluate bone loss at implant abutments coated with a soda-lime glass containing silver nanoparticles subjected to experimental peri-implantitis. Five beagle dogs were used in the experiments, 3 implants were installed in each quadrant of the mandibles. Glass/n-Ag coted abutments were connected to implant platform. Cotton floss ligatures were placed in a submarginal position around the abutment necks and the animals were subject to a diet which allowed plaque accumulation, and after 15 weeks the dogs were sacrificed. Radiographs of all implant sites were obtained at the beginning and at the end of the experimentally induced peri-implantitis. The radiographic examination indicated that significant amounts of additional bone loss occurred in implants without biocide coating, considering both absolute and relative values of bone loss. Percentages of additional bone loss observed in implants dressed with a biocide coated abutment were about 3 times lower (p<0.006 distal aspect; and p<0.031 at mesial aspect) than the control ones. Within the limits of the present study it seems promising the use of soda-lime glass/nAg coatings on abutments to prevent peri-implant diseases. PMID:23285206

  11. X-ray Fluorescence Spectroscopy Study of Coating Thickness and Base Metal Composition

    NASA Technical Reports Server (NTRS)

    Rolin, T. D.; Leszczuk, Y.

    2008-01-01

    For electrical, electronic, and electromechanical (EEE) parts to be approved for space use, they must be able to meet safety standards approved by NASA. A fast, reliable, and precise method is needed to make sure these standards are met. Many EEE parts are coated in gold (Au) and nickel (Ni), and the thickness coating is crucial to a part s performance. A nondestructive method that is efficient in measuring coating thickness is x-ray fluorescence (XRF) spectroscopy. The XRF spectrometer is a machine designed to measure layer thickness and composition of single or multilayered samples. By understanding the limitations in the collection of the data by this method, accurate composition and thickness measurements can be obtained for samples with Au and Ni coatings. To understand the limitations of data found, measurements were taken with the XRF spectrometer and compared to true values of standard reference materials (SRM) that were National Institute of Standards and Technology (NIST) traceable. For every sample, six different parameters were varied to understand measurement error: coating/substrate combination, number of layers, counting interval, collimator size, coating thickness, and test area location. Each measurement was taken in accordance with standards set by the American Society for Testing and Materials (ASTM) International Standard B 568.

  12. PCL-coated hydroxyapatite scaffold derived from cuttlefish bone: in vitro cell culture studies.

    PubMed

    Milovac, Dajana; Gamboa-Martínez, Tatiana C; Ivankovic, Marica; Gallego Ferrer, Gloria; Ivankovic, Hrvoje

    2014-09-01

    In the present study, we examined the potential of using highly porous poly(ε-caprolactone) (PCL)-coated hydroxyapatite (HAp) scaffold derived from cuttlefish bone for bone tissue engineering applications. The cell culture studies were performed in vitro with preosteoblastic MC3T3-E1 cells in static culture conditions. Comparisons were made with uncoated HAp scaffold. The attachment and spreading of preosteoblasts on scaffolds were observed by Live/Dead staining Kit. The cells grown on the HAp/PCL composite scaffold exhibited greater spreading than cells grown on the HAp scaffold. DNA quantification and scanning electron microscopy (SEM) confirmed a good proliferation of cells on the scaffolds. DNA content on the HAp/PCL scaffold was significantly higher compared to porous HAp scaffolds. The amount of collagen synthesis was determined using a hydroxyproline assay. The osteoblastic differentiation of the cells was evaluated by determining alkaline phosphatase (ALP) activity and collagen type I secretion. Furthermore, cell spreading and cell proliferation within scaffolds were observed using a fluorescence microscope.

  13. New Strategies and Methods to Study Interactions between Tobacco Mosaic Virus Coat Protein and Its Inhibitors

    PubMed Central

    Li, Xiangyang; Chen, Zhuo; Jin, Linhong; Hu, Deyu; Yang, Song

    2016-01-01

    Studies of the targets of anti-viral compounds are hot topics in the field of pesticide research. Various efficient anti-TMV (Tobacco Mosaic Virus) compounds, such as Ningnanmycin (NNM), Antofine (ATF), Dufulin (DFL) and Bingqingxiao (BQX) are available. However, the mechanisms of the action of these compounds on targets remain unclear. To further study the mechanism of the action of the anti-TMV inhibitors, the TMV coat protein (TMV CP) was expressed and self-assembled into four-layer aggregate disks in vitro, which could be reassembled into infectious virus particles with TMV RNA. The interactions between the anti-TMV compounds and the TMV CP disk were analyzed by size exclusion chromatography, isothermal titration calorimetry and native-polyacrylamide gel electrophoresis methods. The results revealed that assembly of the four-layer aggregate disk was inhibited by NNM; it changed the four-layer aggregate disk into trimers, and affected the regular assembly of TMV CP and TMV RNA. The four-layer aggregate disk of TMV CP was little inhibited by ATF, DFL and BQX. Our results provide original data, as well as new strategies and methods, for research on the mechanism of action of anti-viral drugs. PMID:26927077

  14. On the study of the mechanical properties of Mo-B-C coatings

    NASA Astrophysics Data System (ADS)

    Zábranský, Lukáš; Buršíková, Vilma; Souček, Pavel; Vašina, Petr; Buršík, Jiří

    2016-08-01

    Mo2BC thin films show a favourable combination of high stiffness, hardness and elastic modulus together with moderate ductility. In this study we focused on the comparison of mechanical properties of Mo-B-C thin films with different structures (nanocrystalline or amorphous). The thin films were deposited on steel, hard metal and silicon substrates using DC magnetron sputtering. The mechanical properties of Mo-B-C films were studied using indentation techniques under both quasistatic and dynamic conditions using a wide range of loads from 50 μN up to 1 N. The results showed that even amorphous Mo-B-C thin films had high hardness of 19.5 ± 0.5 GPa and elastic modulus of 276 ± 5 GPa. Their hardness is comparable with the common amorphous diamond-like carbon coatings. Moreover, their fracture toughness is significantly higher. The results of mechanical tests were correlated with microstructure observations carried out using scanning and transmission electron microscopy. The images of the deformed area under the residual indentation imprints showed no cracking even after high loads or after indentation with sharp cube corner indenter. Contribution to the topical issue "6th Central European Symposium on Plasma Chemistry (CESPC-6)", edited by Nicolas Gherardi, Ester Marotta and Cristina Paradisi

  15. Study on the endocytosis and the internalization mechanism of aminosilane-coated Fe3O4 nanoparticles in vitro.

    PubMed

    Ma, Yong-Jie; Gu, Hong-Chen

    2007-11-01

    In this study, the endocytosis and the internalization mechanism of aminosilane-coated Fe(3)O(4) nanoparticles into human lung cancer cell line SPC-A1 was studied compared with human lung cell line WI-38 in vitro. The particle endocytosis behavior was studied by using Transmission Electron Microscope (TEM) and Coupled Plasma-Atomic Emission Spectrometry (ICP-AES). It was found that aminosilane-coated Fe(3)O(4) nanoparticles could be greatly taken up by SPC-A1 human cancer cells (202 pg iron/cell) but not by WI-38 human lung cells (13 pg iron/cell). The particles could be retained in SPC-A1 cells over a number of generations in vitro. Different endocytosis was observed by TEM after SPC-A1 cells were treated with different temperature or with/without Cytochalasin B (Inhibitor of phagocytosis) at 37 degrees C. No nanoparticles were taken up by SPC-A1 after the endocytosis inhibited in low temperature. Restoring the endocytosis activity at 37 degrees C, the process of nanoparticles from coated pit to endosomes and lysosomes was observed by TEM. Endocytosis activity was effectively inhibited by the presence of Cytochalasin B at 37 degrees C, while a lot of nanoparticles were uptaken to the cytoplasm of SPC-A1 cells in the control group. Our results suggest that the process of endocytosis of aminosilane-coated Fe(3)O(4) nanoparticles can efficiently takes place in lung cancer cells and nanoparticles can be kept in cancer cells for generations. Phagocytosis may be involved in the internalization process of aminosilane-coated Fe(3)O(4) nanoparticles.

  16. Aircraft surface coatings

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A series of studies in which films and liquid spray-on materials were evaluated in the laboratory for transport aircraft external surface coatings are summarized. Elastomeric polyurethanes were found to best meet requirements. Two commercially available products, CAAPCO B-274 and Chemglaze M313, were subjected to further laboratory testing, airline service evaluations, and drag-measurement flight tests. It was found that these coatings were compatible with the severe operating environment of airlines and that coatings reduced airplane drag. An economic analysis indicated significant dollar benefits to airlines from application of the coatings.

  17. Stability study of ambroxol hydrochloride sustained release pellets coated with acrylic polymer.

    PubMed

    Kibria, Golam; Islam, K M Ariful; Jalil, Reza-Ul

    2009-01-01

    The aim of the present study is to perform stability study of ambroxol hydrochloride sustained release pellets stored in different storage conditions. The drug loaded beads were prepared by extrusion-spheronization technology then coated with ammonio methacrylate copolymer type A (Eudragit RL 30 D) and ammonio methacrylate copolymer type B (Eudragit RS 30 D) at a ratio of 2:3 (8% polymer by weight on dry basis) in fluid bed coater (Wurster column). Stability study of pellets was performed as capsule dosage form in aluminium-PVDC packaging mode at room temperature, 40 degrees C, 40 degrees C/75%RH & 30 degrees C/70%RH for three months. After one month the shape & size of the pellets was changed in all conditions. The color of the pellets remains unchanged up to the 2nd month in all conditions except at 40 degrees C/75%RH and in this case some pellets become brown. But after 3rd month, pellets become brownish in all conditions except at room temperature. At RT the color of pellets remains unchanged during the stability study. The mean drug content decreased gradually in all conditions. In acid media the initial drug release was 23% but after 1st month it was decreased to 13-15% in all conditions. In the buffer media (pH 6.8) the drug release was increased a little bit in all conditions except at 30 degrees C/70%RH with the passes of storage time. Stability studies at 30 degrees C/70%RH revealed consistent drug release (f(2)>50) throughout the stability period. The physical properties of pellets as well as the in vitro release profile of the drug was found to be a function of the different storage conditions as well as the physico-chemical nature of the polymers.

  18. Influence of White-Coat Hypertension on Left Ventricular Deformation 2- and 3-Dimensional Speckle Tracking Study.

    PubMed

    Tadic, Marijana; Cuspidi, Cesare; Ivanovic, Branislava; Ilic, Irena; Celic, Vera; Kocijancic, Vesna

    2016-03-01

    We sought to compare left ventricular deformation in subjects with white-coat hypertension to normotensive and sustained hypertensive patients. This cross-sectional study included 139 untreated subjects who underwent 24-hour ambulatory blood pressure monitoring and completed 2- and 3-dimensional examination. Two-dimensional left ventricular multilayer strain analysis was also performed. White-coat hypertension was diagnosed if clinical blood pressure was elevated and 24-hour blood pressure was normal. Our results showed that left ventricular longitudinal and circumferential strains gradually decreased from normotensive controls across subjects with white-coat hypertension to sustained hypertensive group. Two- and 3-dimensional left ventricular radial strain, as well as 3-dimensional area strain, was not different between groups. Two-dimensional left ventricular longitudinal and circumferential strains of subendocardial and mid-myocardial layers gradually decreased from normotensive control to sustained hypertensive group. Longitudinal and circumferential strains of subepicardial layer did not differ between the observed groups. We concluded that white-coat hypertension significantly affects left ventricular deformation assessed by 2-dimensional traditional strain, multilayer strain, and 3-dimensional strain.

  19. Mössbauer and Structural Studies of f.c.c. Fe-Ni-C-based PVD CAE Coatings

    NASA Astrophysics Data System (ADS)

    Nadutov, V. M.; Panarin, V. Ye.; Kosintsev, S. G.; Kramar, O. V.; Svystunov, Ye. O.; Volosevich, P. Yu.

    2008-10-01

    The physical vapor deposition by cathode arc evaporation (PVD CAE) technique in microdrops mode was applied for deposition of austenitic nanocrystalline coatings of the Fe-31.2%Ni-2%Co-0.002%Y and Fe-31.4%Ni-2%Co-0.72%C-0.001%Y alloys on Cu substrate. The Mössbauer spectroscopy, X-ray diffraction analysis, transmission electron microscopy and dilatometry have been used to study the structure, magnetic order and thermal expansion of coatings. The estimated coherently diffracting domains values (CDD) and the TEM data testify that austenitic structure in coatings is dispersed and the presence of carbon intensifies the dispersion process of structural elements. Mössbauer analysis has shown that PVD CAE process results in the decomposition of an austenitic solid solution on microareas enriched both in Ni and Co and in Fe, which leads to the formation of a specific magnetic order characterized by existence of the ferromagnetic low-moment (FM LM) and antiferomagnetic high-moment (AM HM) phases and provides stable Invar properties of a coating at the 110-400 K temperatures.

  20. NMR-based simulation studies of Pf1 coat protein in explicit membranes.

    PubMed

    Cheng, Xi; Jo, Sunhwan; Marassi, Francesca M; Im, Wonpil

    2013-08-06

    As time- and ensemble-averaged measures, NMR observables contain information about both protein structure and dynamics. This work represents a computational study to extract such information for membrane proteins from orientation-dependent NMR observables: solid-state NMR chemical shift anisotropy and dipolar coupling, and solution NMR residual dipolar coupling. We have performed NMR-restrained molecular dynamics simulations to refine the structure of the membrane-bound form of Pf1 coat protein in explicit lipid bilayers using the recently measured chemical shift anisotropy, dipolar coupling, and residual dipolar coupling data. From the simulations, we have characterized detailed protein-lipid interactions and explored the dynamics. All simulations are stable and the NMR restraints are well satisfied. The C-terminal transmembrane (TM) domain of Pf1 finds its optimal position in the membrane quickly (within 6 ns), illustrating efficient solvation of TM domains in explicit bilayer environments. Such rapid convergence also leads to well-converged interaction patterns between the TM helix and the membrane, which clearly show the interactions of interfacial membrane-anchoring residues with the lipids. For the N-terminal periplasmic helix of Pf1, we identify a stable, albeit dynamic, helix orientation parallel to the membrane surface that satisfies the amphiphatic nature of the helix in an explicit lipid bilayer. Such detailed information cannot be obtained solely from NMR observables. Therefore, the present simulations illustrate the usefulness of NMR-restrained MD refinement of membrane protein structure in explicit membranes.

  1. Effect of coat protein mutations in bacteriophage fd studied by sedimentation analysis

    PubMed Central

    Molina-Garcia, Antonio D.; Harding, Stephen E.; Diaz, F. Guillermo; de la Torre, Jose-Garcia; Rowitch, David; Perham, Richard N.

    1992-01-01

    (a) Bacteriophage fd is a filamentous virus that has previously been well characterized. (b) Earlier work using point mutagenesis indicated that a lysine residue at position 48 in the major coat protein plays a crucial role in interacting with the DNA and governing the assembly into an intact virion. (c) In this study the sedimentation properties (sedimentation velocity and equilibrium) of wild-type fd and two mutants substituted at lysine-48 (K48Q and K48A) were compared. (d) Both mutants are similar to each other [Mr ≃ (19.5 ± 1.5) × 106] but somewhat bigger than the wild-type [Mr ≃ (15.1 ± 1.5) × 106]. The value for the wild-type is consistent with earlier published values. (e) By combining these data with sedimentation coefficient data, it is possible to compare the contour lengths and relative flexibilities of the mutants with those of the wild-type virion. (f) The mutants are shown hydrodynamically to have larger contour lengths (as also observed by electron microscopy): the ∼20% difference in values obtained assuming rigid particle hydrodynamics with those obtained from electron microscopy is strongly suggestive of some difference in flexibility between the wild-type and mutants. ImagesFIGURE 1 PMID:19431854

  2. Study of acid diffusion behaves form PAG by using top coat method

    NASA Astrophysics Data System (ADS)

    Sekiguchi, Atsushi; Matsumoto, Yoko

    2014-03-01

    Our past research on measurements of simulation parameters for ArF resists focused on establishing methods for measuring the following parameters:[1]-[4] • Development parameters[1] • PEB parameters[2] • Dill's ABC parameters[3] • Quencher parameter[4] We entered these parameters into a lithography simulator and performed ArF resist simulations.We then explored ways to optimize the ArF resist material and process. This paper reports on our study of methods for measuring the diffusion length of acid generated from PAG during exposures. In our experiment, we applied a PAG-containing top coat (TC) material (second layer) to a PAG-free ArF resist (first layer), then performed the exposure and PEB processes. The acid generated in the TC during the exposure diffused into the ArF resist in the lower layer (first layer) when PEB was performed. The process of developing this sample removed the TC in the second layer and the parts of the first layer into which the acid had diffused.We obtained the acid diffusion length based on the quantity of film removed by the development. We calculated the acid diffusion coefficient after varying the exposure value and repeating the measurement. For this report, we also performed measurements to determine how differences in PAG anion size, amount of quencher additive, and PEB temperature affected the acid diffusion coefficient.We entered the measurements obtained into the PROLITH simulator and explored the effects of acid diffusion on pattern profile.

  3. Study of electrochemical performance of amorphous carbon-coated graphite for Li-ion battery

    NASA Astrophysics Data System (ADS)

    Rohman, Fadli; Azizah, Umi; Prihandoko, Bambang

    2017-03-01

    Electrochemical performance of graphite coated by amorphous carbon as anode material in the Li-ion battery has been studied with citric acid (labelled CA) as a carbon source with different composition. Citric acid as the amorphous carbon source was mixed with graphite in the ethanol solvent at 80°C using magnetic stirrer with the compositions CA: graphite 2:1, 1:1 and 1:3, respectively. The mixture of graphite and CA were dried at 350°C for 5 hours under Ar atmosphere to evaporate the solvent. This dried mixture was then sintered at 600°C under Ar atmosphere to form amorphous carbon layer on the surface of graphite. The crystal structure and morphology of the particles were characterized using XRD, SEM and TEM, respectively. Electrochemical properties of the samples have been evaluated by cyclic voltammetry and charge-discharge test using WBCS 3000. Cyclic voltammogram showed the working potential and redox reaction peak of the sample. Charge-discharge data was obtained to determine the specific capacity of the sample at 0.1C - 2C.

  4. Electrochemical Impedance Studies on Tribocorrosion Behavior of Plasma-Sprayed Al2O3 Coatings

    NASA Astrophysics Data System (ADS)

    Liu, Zhe; Chu, Zhenhua; Chen, Xueguang; Dong, Yanchun; Yang, Yong; Li, Yingzhen; Yan, Dianran

    2015-06-01

    In this paper, the tribocorrosion of plasma-sprayed Al2O3 coatings in simulated seawater was investigated by electrochemical impedance spectroscopy (EIS) technique, complemented by scanning electron microscopy to observe the morphology of the tribocorrosion attack. Base on EIS of plasma-sprayed Al2O3 coatings undergoing long-time immersion in simulated seawater, the corrosion process of Al2O3 coatings can be divided into the earlier stage of immersion (up to 20 h) and the later stage (beyond 20 h). Then, the wear tests were carried out on the surface of Al2O3 coating undergoing different times of immersion to investigate the influence of wear on corrosion at different stages. The coexistence of wear and corrosion condition had been created by a boron nitride grinding head rotating on the surface of coatings corroded in simulated seawater. The measured EIS and the values of the fitting circuit elements showed that wear accelerated corrosion at the later stage, meanwhile, corrosion accelerated wear with the immersion time increasing.

  5. Advanced study of thermal behaviour of CSZ comparing with the classic YSZ coating

    NASA Astrophysics Data System (ADS)

    Dragomirescu, A.; Constantin, N.; Ştefan, A.; Manoliu, V.; Truşcă, R.

    2017-01-01

    Thermal barrier coatings (TBC) are advanced materials typically applied to metal surfaces subjected to extreme temperatures to protect them and increase their lifetime. Ceria stabilized zirconia ceramic layer (CSZ) is increasingly used as an alternative improved as replace for classical TBC system - yttria stabilized zirconia - thanks to superior properties, including mechanical and high resistance to thermal corrosion. The paper describes the thermal shock testing of two types of thermal barrier coatings used to protect a nickel super alloy. For the experimental procedure, it was used plate samples from nickel super alloy with a bond coat and a ceramic top coat. The top coat was different: on some samples, it was used YSZ and on others CSZ. Ni based super alloys have good corrosion resistance in reducing environments action, but poor in oxidizing conditions. Extreme environments can lead to loss of material by oxidation / corrosion, along with decreased mechanical properties of the substrate due to damaging elements which diffuses into the substrate at high temperatures. Using laboratory equipment, the TBC systems were exposed repeatedly to extreme high temperatures for a short time and then cooled. After the thermal shock tests, the samples were morph-structured characterized using electronic microscopy to analyze the changes. The experimental results were compared to rank the TBC systems in order of performance.

  6. Inhibition of Tongue Coat and Dental Plaque Formation by Stabilized Chlorine Dioxide Vs Chlorhexidine Mouthrinse: A Randomized, Triple Blinded Study

    PubMed Central

    Kini, Vineet Vaman; Padhye, Ashvini

    2015-01-01

    Background Chlorine dioxide (ClO2) is an oxidizing agent with known bactericidal, viricidal and fungicidal properties. Its efficacy in reducing the halitosis has been established by previous literature. However, data evaluating its antiplaque property is scarce. Chlorhexidine (CHX) is considered as the gold standard and an effective adjunctive to mechanical plaque removal. However, it is associated with few reversible side effects. Therefore a study was conducted to assess the antiplaque property of ClO2 containing mouthrinse against CHX mouthrinse. Aims and Objectives To evaluate the efficacy of stabilized chlorine dioxide containing mouthrinse and CHX containing mouthrinse in inhibition of tongue coat accumulation and dental plaque formation using a four day plaque regrowth model clinically and microbiologically in a healthy dental cohort. Materials and Methods A Single Center, Randomized, Triple blinded, Microbiological clinical trial was conducted involving 25 healthy dental students volunteers (11 males, 14 females). Two commercially available mouthrinse: Mouthrinse A – Aqueous based ClO2 mouthrinse Freshchlor® and Mouthrinse B - Aqueous based 0.2% CHX mouthrinse Hexidine® were selected as the test products. Subjects were asked to rinse and gargle for 1 minute with the allocated mouthrinse under supervision after supragingival scaling, polishing and tongue coat removal. After four hours, smears were taken from the buccal mucosa and tooth surface. On the fifth day from baseline of four day non brushing plaque regrowth model the samples were again taken from buccal mucosa and tooth surface followed by recording of plaque scores by Rastogi Modification of Navy Plaque index, extent of tongue coat by Winkel’s tongue coating index and measuring tongue coat wet weight in grams. The samples collected were subjected to microbial analysis and the results were expressed as colony forming units (CFUs) per sample. Statistical Analysis The Data was analysed using SPSS

  7. Analytical study on the suitability of using bentonite coated gravel as a landfill liner material

    SciTech Connect

    Roberts, Anel A. Shimaoka, Takayuki

    2008-12-15

    This study investigates the feasibility of using bentonite coated gravel (BCG) as a liner material for waste landfills. BCG has proven to be a very effective capping material/method for the remediation of contaminated sediments in aquatic environments. The concept of BCG is similar to that of peanuts/almonds covered with chocolate; each aggregate particle has been covered with the clayey material. Laboratory tests were aimed at evaluating regulated and non-regulated factors for liner materials, i.e., permeability and strength. Tests included X-ray diffraction, methylene blue absorption, compaction, free swelling, permeability, 1D consolidation, triaxial compression and cone penetration. The compactive efforts used for this study were the reduced Proctor, standard Proctor, intermediate Proctor, modified Proctor and super modified Proctor. The compactive energy corresponding to each effort, respectively, is as follows: 355.5, 592.3, 1196.3, 2693.3, and 5386.4 kJ/m{sup 3}. Results revealed that even though aggregate content represents 70% of the weight of the material, hydraulic conductivities as low as 6 x 10{sup -10} cm/s can be achieved when proper compactive efforts are used. Compressibility is very low for this material even at low (or no) compactive efforts. Results also demonstrated how higher compactive efforts can lower the permeability of BCG; however, over-compaction creates fractures in the aggregate core of BCG that could increase permeability. Moreover, higher compactive efforts create higher swelling pressures that could compromise the performance of a barrier constructed using BCG. As a result of this study, moderate compactive efforts, i.e., intermediate Proctor or modified Proctor, are recommended for constructing a BCG barrier. Using moderate compactive efforts, very low hydraulic conductivities, good workability and good trafficability are easily attainable.

  8. Analytical study on the suitability of using bentonite coated gravel as a landfill liner material.

    PubMed

    Roberts, Anel A; Shimaoka, Takayuki

    2008-12-01

    This study investigates the feasibility of using bentonite coated gravel (BCG) as a liner material for waste landfills. BCG has proven to be a very effective capping material/method for the remediation of contaminated sediments in aquatic environments. The concept of BCG is similar to that of peanuts/almonds covered with chocolate; each aggregate particle has been covered with the clayey material. Laboratory tests were aimed at evaluating regulated and non-regulated factors for liner materials, i.e., permeability and strength. Tests included X-ray diffraction, methylene blue absorption, compaction, free swelling, permeability, 1D consolidation, triaxial compression and cone penetration. The compactive efforts used for this study were the reduced Proctor, standard Proctor, intermediate Proctor, modified Proctor and super modified Proctor. The compactive energy corresponding to each effort, respectively, is as follows: 355.5, 592.3, 1196.3, 2693.3, and 5386.4 kJ/m(3). Results revealed that even though aggregate content represents 70% of the weight of the material, hydraulic conductivities as low as 6 x 10(-10)cm/s can be achieved when proper compactive efforts are used. Compressibility is very low for this material even at low (or no) compactive efforts. Results also demonstrated how higher compactive efforts can lower the permeability of BCG; however, over-compaction creates fractures in the aggregate core of BCG that could increase permeability. Moreover, higher compactive efforts create higher swelling pressures that could compromise the performance of a barrier constructed using BCG. As a result of this study, moderate compactive efforts, i.e., intermediate Proctor or modified Proctor, are recommended for constructing a BCG barrier. Using moderate compactive efforts, very low hydraulic conductivities, good workability and good trafficability are easily attainable.

  9. Bioactivity and hemocompatibility study of amorphous hydrogenated carbon coatings produced by pulsed magnetron discharge.

    PubMed

    Lopez-Santos, C; Colaux, J L; Laloy, J; Fransolet, M; Mullier, F; Michiels, C; Dogné, J-M; Lucas, S

    2013-06-01

    Literature contains very few data about the potential biomedical application of amorphous hydrogenated carbon (a-C:H) thin films deposited by reactive pulsed magnetron discharge even so it is one of the most scalable plasma deposition technique. In this article, we show that such a C2H2 pulsed magnetron plasma produces high quality coating with good hemocompatibility and bioactive response: no effect on hemolysis and hemostasis were observed, and proliferation of various cell types such as endothelial, fibroblast, and osteoblast-like cells was not affected when the deposition conditions were varied. Cell growth on a-C:H coatings is proposed to take place by a two-step process: the initial cell contact is affected by the smooth topography of the a-C:H coatings, whereas the polymeric-like structure, together with a moderate hydrophilicity and a high hydrogen content, directs the posterior cell spreading while preserving the hemocompatible behavior.

  10. Comparative Study of Microstructure and Properties of Thermal Sprayed MCrAlY Bond Coatings

    NASA Astrophysics Data System (ADS)

    Inglima, Michael William

    A series of experiments were performed in order to observe certain process-property trends in thermally sprayed MCrAlY bond coatings for thermal barrier coating (TBC) applications in gas-turbine engines. Firstly, the basis of gas-turbine operation and design is discussed with a focus on the Brayton cycle and basic thermodynamic properties with respect to both the thermal and fuel efficiency of the turbine. The high-temperature environment inside the gas-turbine engine creates an extremely corrosive medium in which the engineering components must operate with sufficient operating life times. These engineering constraints, both thermal/fuel efficiency and operating life, pose a serious problem during long operation as well as thermal cycling of a civil aerospace engine. The concept of a thermal barrier coating is introduced along with how these coatings protect the internal engineering components, mostly in the hot-section of the turbine, and increase both the efficiency as well as the operating life of the components. The method used to create TBC's is then introduced being thermal spray processing along with standard operating procedures (SOP) used during coating deposition. The main focus of the experiments was to quantify the process-property trends seen during thermal spray processing of TBC's with respect to the adhesion and thermally grown oxide (TGO) layer, as well as how sensitive these properties are to changing variables during coating deposition. The design of experiment (DOE) method was used in order to have sufficient statistical process control over the output as well as a standard method for quantifying the results. A total of three DOE's were performed using two main types of thermal spray processes being high-velocity oxygen fuel (HVOF) and atmospheric plasma spray (APS), with a total of five different types of torches which are categorized by liquid-fuel, gas-fuel, and single cathode plasma. The variables used in the proceeding experiments were

  11. Surface studies on superhydrophobic and oleophobic polydimethylsiloxane-silica nanocomposite coating system

    NASA Astrophysics Data System (ADS)

    Basu, Bharathibai J.; Dinesh Kumar, V.; Anandan, C.

    2012-11-01

    Superhydrophobic and oleophobic polydimethylsiloxane (PDMS)-silica nanocomposite double layer coating was fabricated by applying a thin layer of low surface energy fluoroalkyl silane (FAS) as topcoat. The coatings exhibited WCA of 158-160° and stable oleophobic property with oil CA of 79°. The surface morphology was characterized by field emission scanning electron microscopy (FESEM) and surface chemical composition was determined by energy dispersive X-ray spectrometery (EDX) and X-ray photoelectron spectroscopy (XPS). FESEM images of the coatings showed micro-nano binary structure. The improved oleophobicity was attributed to the combined effect of low surface energy of FAS and roughness created by the random distribution of silica aggregates. This is a facile, cost-effective method to obtain superhydrophobic and oleophobic surfaces on larger area of various substrates.

  12. Study of coatings for improved fire and decay resistance of mine timbers

    NASA Technical Reports Server (NTRS)

    Baum, B.

    1977-01-01

    The purpose of this program was to find a fire- and rot-retardant polymer/fungicide reaction product for coating mine timbers. Fire-retardant polymers were screened as films and coatings on fir wood. Curable polyimide appeared to be flame retardant and evolved a minimum of fumes when exposed to a flame. Several organic and metal, low toxicity, fungicides were reacted with the polyimide in-situ on the wood. These coated samples were screened for fungus resistance. All formulations rated well - even the polyimide film without additives was fungicidal. The fir wood control itself resisted internal damage during the ten weeks of fungus exposure. A more severe test for fungus resistance will be required.

  13. Effect of resin coating on adhesion and microleakage of computer-aided design/computer-aided manufacturing fabricated all-ceramic crowns after occlusal loading: a laboratory study.

    PubMed

    Kitayama, Shuzo; Pilecki, Peter; Nasser, Nasser A; Bravis, Theodora; Wilson, Ron F; Nikaido, Toru; Tagami, Junji; Watson, Timothy F; Foxton, Richard M

    2009-08-01

    This study investigated the effect of resin coating and occlusal loading on adhesion and microleakage of all-ceramic crowns. Molars were prepared for an all-ceramic crown and were divided into two groups: non-coated (control) and resin-coated with Clearfil Tri-S Bond. Crowns were fabricated using CEREC 3 and cemented using Clearfil Esthetic Cement. After 24 h of storage in water, the restored teeth in each group were divided into two subgroups: unloaded, or loaded while stored in water. Mechanical loading was achieved with an axial force of 80 N at 2.5 cycles s(-1) for 250,000 cycles. After immersion in Rhodamine B, the specimens were sectioned and processed for microleakage evaluation by confocal microscopy, which was followed by further sectioning for microtensile bond testing. Loading had no significant effect on microleakage in either the resin-coated or non-resin-coated groups. Resin coating did not reduce the microleakage at the dentine interface but increased the microleakage at the enamel interface. All the beams fractured during slicing when non-coated and loaded. The bond strengths of non-coated and unloaded, resin-coated and unloaded, and resin-coated and loaded groups were 15.82 +/- 4.22, 15.17 +/- 5.24, and 12.97 +/- 5.82 MPa, respectively. Resin coating with Clearfil Tri-S Bond improved the bonding of resin cement to dentine for loaded specimens. However, it was not effective in reducing the microleakage, regardless of whether it was loaded or unloaded.

  14. TEM Studies of Carbon Coated LiFePO4 after Charge DischargeCycling

    SciTech Connect

    Gabrisch, H.; Wilcox, J.; Doeff, M.

    2006-11-30

    Carbon coating has proven to be a successful approach toimprove the rate capability of LiFePO4 used in rechargeable Li-ionbatteries. Investigations of the microstructure of carbon coated LiFePO4after charge discharge cycling shows that the carbon surface layerremains intact over 100 cycles. We find micro cracks in the cycledmaterial that extend parallel to low indexed lattice planes. Ourobservations differ from observations made by other authors. However thedifferences between the orientations of crack surfaces in both studiescan be reconciled considering the location of weak bonds in the unit celland specimen geometry as well as elastic stress fields ofdislocation.

  15. Delithiation kinetics study of carbon coated and carbon free LiFePO4

    NASA Astrophysics Data System (ADS)

    Lepage, D.; Sobh, F.; Kuss, C.; Liang, G.; Schougaard, S. B.

    2014-06-01

    A chemical oxidation method was employed to measure the kinetics of lithium release from LiFePO4 during oxidation. Similar to potential step measurements, the chemical method simplifies quantification compared to the common electrochemical techniques (PITT, GITT etc.). It was found that the overall release of lithium fits one dimensional diffusion kinetics, however, it is also shown that the mechanism must be more complex as the derived activation energy led to an unusually low attack rate of ∼108 Hz. A comparison of carbon coated/carbon free LiFePO4 samples indicated that the carbon coating has only a marginal effect on the delithiation kinetics.

  16. Experimental study of ceramic-coated tip seals for turbojet engines. Technical memo

    SciTech Connect

    Biesiadny, T.J.; Klann, G.A.; Lassow, E.S.; McHenry, M.; McDonald, G.

    1985-01-01

    Ceramic turbine-tip shrouds were experimentally evaluated in the operating environment of a small turboshaft engine under steady and transient conditions. Ceramic gas-path seals were fabricated and successfully operated over 1000 cycles from flight idle to maximum power in a small turboshaft engine. The seals were fabricated by plasma spraying zirconia over a NiCoCrAlX bond coat on the Haynes 25 substrate. Coolant-side substrate temperatures and related engine parameters were recorded. Post-test inspection revealed mud-flat surface cracking with penetration to the ceramic - bond-coat interface.

  17. Fabrication of silver-coated cobalt ferrite nanocomposite and the study of its antibacterial activity

    NASA Astrophysics Data System (ADS)

    Kooti, M.; Saiahi, S.; Motamedi, H.

    2013-05-01

    A new silver coated cobalt ferrite nanocomposite, Ag@CoFe2O4, was prepared by a two-step procedure. In the first step, cobalt ferrite nanoparticles were synthesized by a combustion method using glycine as a fuel. This ferrite was then coated with nanosilver via chemical reduction of Ag+ solution. The as-synthesized Ag@CoFe2O4 was characterized by X-ray diffraction, transmission electron microscopy, and vibrating sample magnetometer. The antibacterial activity of this composite was investigated against some Gram-positive and Gram-negative bacteria and compared with those of silver nanoparticles and some standard antibacterial drugs.

  18. Study of DNA coated nanoparticles as possible programmable self-assembly building blocks

    NASA Astrophysics Data System (ADS)

    Högberg, Björn; Helmersson, Jing; Holm, Svante; Olin, Håkan

    2006-05-01

    Nanoparticles coated with single stranded DNA have been shown to efficiently hybridize to targets of complementary DNA. This property might be used to implement programmable (or algorithmic) self-assembly to build nanoparticle structures. However, we argue that a DNA coated nanoparticle by itself cannot be used as a programmable self-assembly building block since it does not have directed bonds. A general scheme for assembling and purifying nanoparticle eight-mers with eight geometrically well-directed bonds is presented together with some preliminary experimental work.

  19. Coated microneedles for transdermal delivery

    PubMed Central

    Gill, Harvinder S.; Prausnitz, Mark R.

    2007-01-01

    Coated microneedles have been shown to deliver proteins and DNA into the skin in a minimally invasive manner. However, detailed studies examining coating methods and their breadth of applicability are lacking. This study’s goal was to develop a simple, versatile and controlled microneedle coating process to make uniform coatings on microneedles and establish the breadth of molecules and particles that can be coated onto microneedles. First, microneedles were fabricated from stainless steel sheets as single microneedles or arrays of microneedles. Next, a novel micron-scale dip-coating process and a GRAS coating formulation were designed to reliably produce uniform coatings on both individual and arrays of microneedles. This process was used to coat compounds including calcein, vitamin B, bovine serum albumin and plasmid DNA. Modified vaccinia virus and microparticles of 1 to 20 μm diameter were also coated. Coatings could be localized just to the needle shafts and formulated to dissolve within 20 s in porcine cadaver skin. Histological examination validated that microneedle coatings were delivered into the skin and did not wipe off during insertion. In conclusion, this study presents a simple, versatile, and controllable method to coat microneedles with proteins, DNA, viruses and microparticles for rapid delivery into the skin. PMID:17169459

  20. Silver Nanoparticle Coated Bioactive Glasses--Composites with Dex/CMC Hydrogels: Characterization, Solubility, and In Vitro Biological Studies.

    PubMed

    Wren, Anthony W; Hassanzadeh, Pegah; Placek, Lana M; Keenan, Timothy J; Coughlan, Aisling; Boutelle, Lydia R; Towler, Mark R

    2015-08-01

    Silver (Ag) coated bioactive glass particles (Ag-BG) were formulated and compared to uncoated controls (BG) in relation to glass characterization, solubility and microbiology. X-ray diffraction (XRD) confirmed a crystalline AgNP surface coating while ion release studies determined low Ag release (<2 mg/L). Cell culture studies presented increased cell viability (127 and 102%) with lower liquid extract (50 and 100 ml/ml) concentrations. Antibacterial testing of Ag-BG in E. coli, S. epidermidis and S. aureus significantly reduced bacterial cell viability by 60-90%. Composites of Ag-BG/CMC-Dex Hydrogels were formulated and characterized. Agar diffusion testing was conducted where Ag-BG/hydrogel composites produced the largest inhibition zones of 7 mm (E. coli), 5 mm (S. aureus) and 4 mm (S. epidermidis).

  1. Electrochemical studies and growth of apatite on molybdenum doped DLC coatings on titanium alloy β-21S

    NASA Astrophysics Data System (ADS)

    Anandan, C.; Mohan, L.; Babu, P. Dilli

    2014-03-01

    Titanium alloy β-21S (Ti-15Mo-3Nb-3Al-0.2Si) was coated with molybdenum doped DLC by Plasma-enhanced chemical vapor deposition and sputtering. XRD, XPS and Raman spectroscopy show that Mo is present in the form of carbide in the coating. XPS of samples immersed in Hanks' solution shows presence of calcium, phosphorous and oxygen in hydroxide/phosphate form on the substrate and Mo-doped DLC. Potentiodynamic polarization studies show that the corrosion resistance and passivation behavior of Mo-doped DLC is better than that of substrate. Electrochemical impedance spectroscopy (EIS) studies show that Mo-doped DLC samples behave like an ideal capacitor in Hanks' solution.

  2. Efficacy of nanoporous silica coatings on middle ear prostheses as a delivery system for antibiotics: an animal study in rabbits.

    PubMed

    Lensing, Rebecca; Bleich, André; Smoczek, Anna; Glage, Silke; Ehlert, Nina; Luessenhop, Tammo; Behrens, Peter; Müller, Peter Paul; Kietzmann, Manfred; Stieve, Martin

    2013-01-01

    Nanoporous silica layers are able to host molecules and release them over a certain period of time. These local drug delivery systems for antibiotics could be a new approach in the treatment of chronic otitis media. The aim of this study was to examine the efficacy of nanoporous silica coatings on middle ear prostheses as a delivery system for antibiotics in vivo. Pseudomonas aeruginosa was inoculated into the middle ear of rabbits to induce an otitis media. The control group received coated Bioverit®II implants without antibiotics. Coated prostheses with loaded ciprofloxacin were implanted into the middle ears of the study group. After 1 week, the rabbits were sacrificed. The clinical examination as well as the microbiological and histological examinations of organs and middle ear irrigation revealed clear differences between the two groups. P. aeruginosa was detected in every middle ear of the control group and was almost completely eliminated in the study group. Organ examinations revealed the presence of P. aeruginosa in the control group and a prevention of a bacterial spread in the study group. The nanoporous silica layer as antibiotic delivery system showed convincing efficacy in induced pseudomonal otitis media in the rabbit.

  3. Ligand receptor dynamics at streptavidin-coated particle surfaces: A flow cytometric and spectrofluorimetric study

    SciTech Connect

    Buranda, T. |; Jones, G.M.; Nolan, J.P.; Keij, J.; Lopez, G.P.; Sklar, L.A. |

    1999-04-29

    The authors have studied the binding of 5-((N-(5-(N-(6-(biotinoyl)amino)hexanoyl)amino)pentyl)thioureidyl)fluorescein (fluorescein biotin) to 6.2 {micro}m diameter, streptavidin-coated polystyrene beads using a combination of fluorimetric and flow cytometric methods. They have determined the average number of binding sites per bead, the extent of fluorescein quenching upon binding to the bead, and the association and dissociation kinetics. The authors estimate the site number to be {approx}1 million per bead. The binding of the fluorescein biotin ligand occurs in steps where the insertion of the biotin moiety into one receptor pocket is followed immediately by the capture of the fluorescein moiety by a neighboring binding pocket; fluorescence quenching is a consequence of this secondary binding. At high surface coverage, the dominant mechanism of quenching appears to be via the formation of nonfluorescent nearest-neighbor aggregates. At early times, the binding process is characterized by biphasic association and dissociation kinetics which are remarkably dependent on the initial concentration of the ligand. The rate constant for binding to the first receptor pocket of a streptavidin molecule is {approx}(1.3 {+-} 0.3) {times} 10{sup 7} 1{sup {minus}1} S{sup {minus}1}. The rate of binding of a second biotin may be reduced due to steric interference. The early time dissociative behavior is in sharp contrast to the typical stability associated with this system. The early time dissociative behavior is in sharp contrast to the typical stability associated with this system. The dissociation rate constant is as high as 0.05 s{sup {minus}1} shortly after binding, but decreases by 3 orders of magnitude after 3 h of binding. Potential sources for the time dependence of the dissociation rate constant are discussed.

  4. UV Coatings, Polarization, and Coronagraphy

    NASA Technical Reports Server (NTRS)

    Bolcar, Matthew R.; Quijada, Manuel; West, Garrett; Balasubramanian, Bala; Krist, John; Martin, Stefan; Sabatke, Derek

    2016-01-01

    Presenation for the Large UltraViolet Optical Infrared (LUVOIR) and Habitable Exoplanet Imager (HabEx) Science and Technology Definition Teams (STDT) on technical considerations regarding ultraviolet coatings, polarization, and coronagraphy. The presentations review the state-of-the-art in ultraviolet coatings, how those coatings generate polarization aberrations, and recent study results from both the LUVOIR and HabEx teams.

  5. Microstructural Study on Oxidation Resistance of Nonmodified and Platinum Modified Aluminide Coating

    NASA Astrophysics Data System (ADS)

    Zagula-Yavorska, Maryana; Sieniawski, Jan

    2014-03-01

    Platinum electroplating layers (3 and 7 μm thick) were deposited on the surface of the Inconel 713 LC, CMSX 4, and Inconel 625 Ni-base superalloys. Diffusion treatment at 1050°C for 2 h under argon atmosphere was performed after electroplating. Diffusion treated samples were aluminized according to the low activity CVD process at 1050°C for 8 h. The nonmodified aluminide coatings consist of NiAl phase. Platinum modification let to obtain the (Ni,Pt)Al phase in coatings. The coated samples were subjected to cyclic oxidation testing at 1100°C. It was discovered that increase of the platinum electroplating thickness from 3 to 7 μm provides the improvement of oxidation resistance of aluminide coatings. Increase of the platinum thickness causes decreases in weight change and decreases in parabolic constant during oxidation. The platinum provides the pure Al2O3 oxide formation, slow growth oxide layer, and delay the oxide spalling during heating-cooling thermal cycles.

  6. Antibiotic-coated pins for prevention of pin-tract infection: a rabbit study.

    PubMed

    Rahimnia, A R; Abbaspour, A; Rezaei, Yadollah; Khodadadi, A; Alizadeh, A M; Mohagheghi, M A; Semeyari, H; Imani Fooladi, A A; Izadi, M; Keshavarz, P; Yasui, N

    2013-08-01

    PURPOSE. To evaluate the efficacy of antibiotic-coated pins for prevention of pin tract infection in a rabbit model. METHODS. 10 rabbits were divided into 2 groups. A unilateral external fixator was applied to the tibia with 4 self-taping 1.8-mm pins. In the test group, pins were coated with hydroxyapatite and antibiotic. In the control group, pins were not coated. All pins were then placed in Staphylococcus aureus- containing media. At postoperative day 5, all 40 pin sites were subcutaneously inoculated with S aureus. The sites were clinically examined for signs of pin tract infection. Nine days later, a piece of soft tissue around the pin site was harvested for microbiologic examination. RESULTS. In the test group, all except one pin sites appeared clean and without clinical infection, and the culture media remained clear. In the control group, all pin sites showed evidence of clinical infection and yielded positive cultures, and the culture media became dark indicating growth of S aureus. CONCLUSION. Antibiotic-coated pins were effective in preventing pin tract infection.

  7. Lifetime studies of Mo/Si and Mo/Be multilayer coatings for extreme ultraviolet lithography

    NASA Astrophysics Data System (ADS)

    Wedowski, Marco; Bajt, Sasa; Folta, James A.; Gullikson, Eric M.; Kleineberg, Ulf; Klebanoff, Leonard E.; Malinowski, Michael E.; Clift, W. Miles

    1999-11-01

    Extreme Ultraviolet Lithography (EUVL) is a candidate for future application by the semiconductor industry in the production of sub-100 nm feature sizes in integrated circuits. Using multilayer reflective coatings optimized at wavelengths ranging from 11 to 14 nm, EUVL represents a potential successor to currently existing optical lithography techniques. In order to assess lifetimes of the multilayer coatings under realistic conditions, a series of radiation stability tests has been performed. In each run a dose of EUV radiation equivalent to several months of lithographic operation was applied to Mo/Si and Mo/Be multilayer coatings within a few days. Depending on the residual gas concentration in the vacuum environment, surface deposition of carbon during the exposure lead to losses in the multilayer reflectivity. However, in none of the experimental runs was structural damage within the bulk of the multilayers observed. Mo/Si multilayer coatings recovered their full original reflectivity after removal of the carbon layer by an ozone cleaning method. Auger depth profiling on Mo/Be multilayers indicate that carbon penetrated into the Be top layer during illumination with high doses of EUV radiation. Subsequent ozone cleaning fully removed the carbon, but revealed enhanced oxidation of the area illuminated, which led to an irreversible loss in reflectance on the order of 1%.

  8. A preliminary study on removal of AMD precipitate coatings on pebbles

    NASA Astrophysics Data System (ADS)

    Lee, W.; Min, K.; Lee, H.

    2011-12-01

    AMD(acid mine drainage) having a low pH and elevated concentrations of heavy metals affects environments as a major pollutant. In addition to AMD's water contamination, reddish brown precipitates from AMD spoil the watercourse scenery without suitable removal treatments. To examine the removal potentiality of ultrasonic cleaner, the pebble samples coated by reddish brown precipitates were collected at abandoned mine stream and scraped precipitate coatings were analyzed for their chemical compositions and mineralogy. Their average contents of Fe2O3, SO3, and Al2O3 were 84.3%, 6.13%, and 3.69%, respectively and goethite was the major constituent mineral. Laboratorial tests to remove precipitate coatings were performed in an ultrasonic cleaner with the frequency of 40kHz at 20 to 70oC for 10 to 60 minutes. Water and hydrochloric acid of 0.1M to 1M were used as a cleaning solvent and the ratio of solvent to precipitate coated pebbles was 5 in weight. In result, an ultrasonic cleaning treatment is expected to be applied successively in field and removal efficiency was increased as reaction time, temperature, and concentration of solvent rises.

  9. Towards lightweight nanocomposite coatings for corrosion inhibition: Graphene, carbon nanotubes, and nanostructured magnesium as case studies

    NASA Astrophysics Data System (ADS)

    Dennis, Robert Vincent, III

    The field of nanocomposites is a burgeoning area of research due to the interest in the remarkable properties which can be achieved through their use in a variety of applications, including corrosion resistant coatings. Lightweighting is of increasing importance in the world today due to the ever growing push towards energy efficiency and the green movement and in recent years there has been a vast amount of research performed in the area of developing lightweight nanocomposites for corrosion inhibition. Many new composite materials have been developed through the use of newly developed nanomaterials (including carbonaceous and metallic constituents) and their specialized incorporation in the coating matrix materials. We start with a general review on the development of hybrid nanostructured composites for corrosion protection of base metals from a sustainability perspective in Chapter 1. This review demonstrates the ever swelling requirements for a paradigm shift in the way that we protect metals against corrosion due to the costs and environmental concerns that exist with currently used technology. In Chapter 2, we delve into the much required understanding of graphene oxide and reduced graphene oxide through near-edge X-ray absorption fine structure (NEXAFS) spectroscopy measurements to elucidate information about the electronic structure upon incorporation of nitrogen within the structure. For successful integration of the carbonaceous nanomaterials into a composite coating, a full swath of knowledge is necessary. Within this work we have shown that upon chemical defunctionalization of graphene oxide to reduced graphene oxide by means of hydrazine treatment, nitrogen is incorporated into the structure in the form of a pyrazole ring. In Chapter 3, we demonstrate that by way of in situ polymerization, graphene and multiwalled carbon nanotubes can be incorporated within a polymer (polyetherimide, PEI) matrix. Two systems have been developed including graphene and

  10. Calcium aluminate coated and uncoated free form fabricated CoCr implants: a comparative study in rabbit.

    PubMed

    Palmquist, A; Jarmar, T; Hermansson, L; Emanuelsson, L; Taylor, A; Taylor, M; Engqvist, H; Thomsen, P

    2009-10-01

    The purpose of this study was to compare the integration in bone of uncoated free form fabricated cobalt chromium (CoCr) implants to the same implant with a calcium aluminate coating. The implants of cylindrical design with a pyramidal surface structure were press-fit into the limbs of New Zealand white rabbits. After 6 weeks, the rabbits were sacrificed, and samples were retrieved and embedded. Ground sections were subjected to histological analysis and histomorphometry. The section counter part was used for preparing an electron transparent transmission electron microscopy sample by focused ion beam milling. Calcium aluminate dip coating provided a significantly greater degree of bone contact than that of the native CoCr. The gibbsite hydrate formed in the hardening reaction of the calcium aluminate was found to be the exclusive crystalline phase material in direct contact with bone.

  11. SP2 Deployment at Boston College—Aerodyne-Led Coated Black Carbon Study (BC4) Final Campaign Summary

    SciTech Connect

    Onasch, T. B.; Sedlacek, A. J.

    2016-03-01

    The main objective of the Boston College-Aerodyne led laboratory study (BC4) was to measure the optical properties of black carbon (BC) particles from a diffusion flame directly and after being coated with secondary organic and inorganic material and to achieve optical closure with model predictions. The measurements of single particle BC mass and population mixing states provided by a single particle soot photometer (SP2) was central to achieving the laboratory-based study’s objective. Specifically, the DOE ARM SP2 instrument participated in the BC4 project to address the following scientific questions: 1. What is the mass-specific absorption coefficient as a function of secondary organic and inorganic material coatings? 2. What is the spread in the population mixing states within our carefully generated laboratory particles? 3. How does the SP2 instrument respond to well-characterized, internally mixed BC-containing particles?

  12. Morphology characterization and biocompatibility study of PLLA (Poly-L-Llactid-Acid) coating chitosan as stent for coronary heart disease

    NASA Astrophysics Data System (ADS)

    Widiyanti, Prihartini; Paramadini, Adanti W.; Jabbar, Hajria; Fatimah, Inas; Nisak, Fadila N. K.; Puspitasari, Rahma A.

    2016-03-01

    Cardiovascular disease is a global disease with high urgency. In the severe case of coronary heart disease while a blockage in the coronary arteries reach 75% or more, the patient required stent implantation. Stents are made of metal which has many limitations that can lead to blood clots and stent incompatibility toward the size of the blood vessels. There is a metal stent replacement solution that made from polymer material which is biocompatible. PLLA also has biocompatibility and good mechanical strength. PLLA stent will be coated with chitosan as a candidate for drug-coated stents which is able to work as a drug carrier. The aim of this study is to know the morphology information and biocompability status of PLLA coating chitosan as candidate of heart stent. Morphological results using SEM showed a smooth surface structure which reinforced clinical standard of stent material. Results of cytotoxicity test by MTT Assay method showed that the result of four samples in this experiment living cells is reached 90% which is non toxic and safe to use in the human body. %). The conclusion of this study is PLLA is polymer has potency to be used as stent material.

  13. Molecular Adsorber Coating

    NASA Technical Reports Server (NTRS)

    Straka, Sharon; Peters, Wanda; Hasegawa, Mark; Hedgeland, Randy; Petro, John; Novo-Gradac, Kevin; Wong, Alfred; Triolo, Jack; Miller, Cory

    2011-01-01

    A document discusses a zeolite-based sprayable molecular adsorber coating that has been developed to alleviate the size and weight issues of current ceramic puck-based technology, while providing a configuration that more projects can use to protect against degradation from outgassed materials within a spacecraft, particularly contamination-sensitive instruments. This coating system demonstrates five times the adsorption capacity of previously developed adsorber coating slurries. The molecular adsorber formulation was developed and refined, and a procedure for spray application was developed. Samples were spray-coated and tested for capacity, thermal optical/radiative properties, coating adhesion, and thermal cycling. Work performed during this study indicates that the molecular adsorber formulation can be applied to aluminum, stainless steel, or other metal substrates that can accept silicate-based coatings. The coating can also function as a thermal- control coating. This adsorber will dramatically reduce the mass and volume restrictions, and is less expensive than the currently used molecular adsorber puck design.

  14. A Study on the Oxidation Behavior of Nb Alloy (Nb-1 pct Zr-0.1 pct C) and Silicide-Coated Nb Alloys

    NASA Astrophysics Data System (ADS)

    Vishwanadh, B.; Naina, R. H.; Majumdar, S.; Tewari, R.; Dey, G. K.

    2013-05-01

    In the current work, silicide coatings were produced on the Nb alloy (Nb-1 pct Zr-0.1 pct C) using the halide activated pack cementation (HAPC) technique. Coating parameters (temperature and time) were optimized to produce a two-layer (Nb5Si3 and NbSi2) coating on the Nb alloy. Subsequently, the oxidation behavior of the Nb alloy (Nb-1 pct Zr-0.1 pct C) and silicide-coated Nb alloy was studied using thermogravimetric analysis (TGA) and isothermal weight gain oxidation experiments. Phase identification and morphological examinations were carried out using X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques. TGA showed that the Nb alloy started undergoing accelerated oxidation at and above 773 K (500 °C). Isothermal weight gain experiments carried out on the Nb alloy under air environment at 873 K (600 °C) up to a time period of 16 hours exhibited a linear growth rate law of oxidation. In the case of silicide-based coatings, TGA showed that oxidation resistance of silicide coatings was retained up to 1473 K (1200 °C). Isothermal weight gain experiments on the silicide coatings carried out at 1273 K (1000 °C) in air showed that initially up to 8 hours, the weight of the sample increased, and beyond 8 hours the weight of the sample remained constant. The oxide phases formed on the bare samples and on the coated samples during oxidation were found to be Nb2O5 and a mixture of SiO2 and Nb2O5 phases, respectively. SEM showed the formation of nonprotective oxide layer on the bare Nb alloy and a protective (adherent, nonporous) oxide layer on silicide-coated samples. The formation of protective SiO2 layer on the silicide-coated samples greatly improved the oxidation resistance at higher temperatures.

  15. A study on microstructure and corrosion resistance of ZrO2-containing PEO coatings formed on AZ31 Mg alloy in phosphate-based electrolyte

    NASA Astrophysics Data System (ADS)

    Zhuang, J. J.; Guo, Y. Q.; Xiang, N.; Xiong, Y.; Hu, Q.; Song, R. G.

    2015-12-01

    ZrO2-containing ceramic coatings formed on the AZ31 Mg alloy were fabricated in an alkaline electrolyte containing sodium phosphate and potassium fluorozirconate (K2ZrF6) by plasma electrolytic oxidation (PEO). X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) techniques were used to study the phase structure and composition of the coatings. It is indicated that the coatings formed in the K2ZrF6-containing electrolyte were composed of MgO, MgF2 and t-ZrO2. Morphological investigation carried out by scanning electron microscopy (SEM) and stereoscopic microscopy, revealed that the uniformity of coatings increased and roughness of coatings decreased after the addition of K2ZrF6. Electrochemical investigation was achieved by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) test. The results showed that the PEO coating formed in K2ZrF6-containing electrolyte exhibited an improved corrosion resistance than that of the coating formed in K2ZrF6-free electrolyte. In addition, the polarization and EIS tests results both showed that the suitable concentration (2.5 g/l) of K2ZrF6 is of significant ability to improve the corrosion resistance of coatings. However, 5 g/l and 10 g/l K2ZrF6 has a negative effect on improving the corrosion resistance of PEO coatings compared with the coating formed in 2.5 g/l K2ZrF6-containing electrolyte.

  16. Applications of advanced electrochemical techniques in the study of microbial fuel cells and corrosion protection by polymer coatings

    NASA Astrophysics Data System (ADS)

    Manohar, Aswin Karthik

    determined by the sum of the polarization resistance of the anode (Rap) and the cathode (Rcp), and therefore Rint depends on V. The ohmic contribution to the Rint was very small. It has been found that Rint decreased with decreasing cell voltage as the increasing current flow decreased R ap and Rcp. In the presence of MR-1, Rint was lower by a factor of about 100 than Rint of the MFC with buffer and lactate as anolyte. Additions of SS balls to the anode compartment produced a very large decrease of Rint. For the MFC containing SS balls in the anode compartment no significant further decrease of Rint could be observed when MR-1 was added to the anolyte. In Chapter 2, EIS has been used to determine the properties and stability of polymer coatings based on different chromate or chromate-free pretreatments and primers. Five sets of coated aluminum 2024 samples were exposed to 0.5N NaCl for a period of 31 days. Impedance spectra of the samples were measured during this period and the changes of the properties of the different coatings were studied as a function of time. From the analysis of the fit parameters of the impedance spectra, it was found that the corrosion protection of the coated samples depended on the type of primer used. The coating with the chromate based primer provided better corrosion protection than the coating with the chromate free primer. After 31 days of exposure, one sample from each set was scribed and exposed to 0.5N NaCl. The corrosion behavior of the scribed coatings was found to be dependent upon the type of pretreatment employed. The samples with the chromate conversion coating pretreatment showed better corrosion resistance in the scribed area than the samples that were treated by the trivalent chromium based method.

  17. The effect of honey-coated bandages compared with silver-coated bandages on treatment of malignant wounds-a randomized study.

    PubMed

    Lund-Nielsen, Betina; Adamsen, Lis; Kolmos, Hans Jørn; Rørth, Mikael; Tolver, Anders; Gottrup, Finn

    2011-11-01

    Malignant wounds (MWs) occur in 5-10% of all cancer patients. Malodor and exudation are the most common side effects. The aim was to determine the influence of honey-coated compared with silver-coated bandages on treatment of MWs. Patients were randomly selected to enter either group A (honey-coated bandages) or group B (silver-coated bandages). Parameters were the following: wound size, cleanliness, malodor, exudation, and wound pain. Digital photographs, visual analog scales (VAS), and wound morphology registration were used for measurement at baseline and following the 4-week intervention. Sixty-nine patients with MWs and advanced cancer, aged 47-90 (median 65.6), were included. No statistically significant difference was noted between the groups with respect to wound size, degree of cleanliness, exudation, malodor, and wound pain. There was a median decrease in wound size of 15 cm² and 8 cm² in group A and B, respectively (p = 0.63). Based on post-intervention pooled data from the groups, improvement was seen in 62% of the participants with respect to wound size and in 58% (n = 69) with respect to cleanliness. The VAS score for malodor (p = 0.007) and exudation (p < 0.0001) improved significantly post-intervention. Patients with reduced wound size had a median survival time of 387 days compared with 134 days in patients with no wound reduction (p = 0.003). The use of honey-coated and silver-coated bandages improved the outcome of MWs. No differences were found between the two regimens. Both types of bandages are recommended for use by patients with MWs containing tumor debris and necrosis.

  18. A comparative study of neurotoxic potential of synthesized polysaccharide-coated and native ferritin-based magnetic nanoparticles

    PubMed Central

    Borysov, Arseniy; Krisanova, Natalia; Chunihin, Olexander; Ostapchenko, Ludmila; Pozdnyakova, Nataliya; Borisova, Тatiana

    2014-01-01

    Aim To analyze the neurotoxic potential of synthesized magnetite nanoparticles coated by dextran, hydroxyethyl starch, oxidized hydroxyethyl starch, and chitosan, and magnetic nanoparticles combined with ferritin as a native protein. Methods The size of nanoparticles was analyzed using photon correlation spectroscopy, their effects on the conductance of planar lipid membrane by planar lipid bilayer technique, membrane potential and acidification of synaptic vesicles by spectrofluorimetry, and glutamate uptake and ambient level of glutamate in isolated rat brain nerve terminals (synaptosomes) by radiolabeled assay. Results Uncoated synthesized magnetite nanoparticles and nanoparticles coated by different polysaccharides had no significant effect on synaptic vesicle acidification, the initial velocity of L-[14C]glutamate uptake, ambient level of L-[14C]glutamate and the potential of the plasma membrane of synaptosomes, and conductance of planar lipid membrane. Native ferritin-based magnetic nanoparticles had no effect on the membrane potential but significantly reduced L-[14C]glutamate transport in synaptosomes and acidification of synaptic vesicles. Conclusions Our study indicates that synthesized magnetite nanoparticles in contrast to ferritin have no effects on the functional state and glutamate transport of nerve terminals, and so ferritin cannot be used as a prototype, analogue, or model of polysaccharide-coated magnetic nanoparticle in toxicity risk assessment and manipulation of nerve terminals by external magnetic fields. Still, the ability of ferritin to change the functional state of nerve terminals in combination with its magnetic properties suggests its biotechnological potential. PMID:24891278

  19. An in vitro study of mucoadhesion and biocompatibility of polymer coated liposomes on HT29-MTX mucus-producing cells.

    PubMed

    Adamczak, Małgorzata I; Hagesaether, Ellen; Smistad, Gro; Hiorth, Marianne

    2016-02-10

    Drug delivery to the oral cavity poses a significant challenge due to the short residence time of the formulations at the site of action. From this point of view, nanoparticulate drug delivery systems with ability to adhere to the oral mucosa are advantageous as they could increase the effectiveness of the therapy. Positively, negatively and neutrally charged liposomes were coated with four different types of polymers: alginate, low-ester pectin, chitosan and hydrophobically modified ethyl hydroxyethyl cellulose. The mucoadhesion was studied using a novel in vitro method allowing the liposomes to interact with a mucus-producing confluent HT29-MTX cell-line without applying any external force. MTT viability and paracellular permeability tests were conducted on the same cell-line. The alginate-coated liposomes achieved a high specific (genuine) mucin interaction, with a low potential of cell-irritation. The positively charged uncoated liposomes achieved the highest initial mucoadhesion, but also displayed a higher probability of cell-irritation. The chitosan-coated liposomes displayed the highest potential for long lasting mucoadhesion, but with the drawback of a higher general adhesion (tack) and a higher potential for irritating the cells.

  20. Magnesium-containing layered double hydroxides as orthopaedic implant coating materials--An in vitro and in vivo study.

    PubMed

    Weizbauer, Andreas; Kieke, Marc; Rahim, Muhammad Imran; Angrisani, Gian Luigi; Willbold, Elmar; Diekmann, Julia; Flörkemeier, Thilo; Windhagen, Henning; Müller, Peter Paul; Behrens, Peter; Budde, Stefan

    2016-04-01

    The total hip arthroplasty is one of the most common artificial joint replacement procedures. Several different surface coatings have been shown to improve implant fixation by facilitating bone ingrowth and consequently enhancing the longevity of uncemented orthopaedic hip prostheses. In the present study, two different layered double hydroxides (LDHs), Mg-Fe- and Mg-Al-LDH, were investigated as potential magnesium (Mg)-containing coating materials for orthopaedic applications in comparison to Mg hydroxide (Mg(OH)2). In vitro direct cell compatibility tests were carried out using the murine fibroblast cell line NIH 3T3 and the mouse osteosarcoma cell line MG 63. The host response of bone tissue was evaluated in in vivo experiments with nine rabbits. Two cylindrical pellets (3 × 3 mm) were implanted into each femoral condyle of the left hind leg. The samples were analyzed histologically and with μ-computed tomography (μ-CT) 6 weeks after surgery. An in vitro cytotoxicity test determined that more cells grew on the LDH pellets than on the Mg(OH)2-pellets. The pH value and the Mg(2+) content of the cell culture media were increased after incubation of the cells on the degradable samples. The in vivo tests demonstrated the formation of fibrous capsules around Mg(OH)2 and Mg-Fe-LDH. In contrast, the host response of the Mg-Al-LDH samples indicated that this Mg-containing biomaterial is a potential candidate for implant coating.

  1. Archaeometric study of black-coated pottery from Pompeii by different analytical techniques.

    PubMed

    Scarpelli, Roberta; Clark, Robin J H; De Francesco, Anna Maria

    2014-01-01

    Complementary spectroscopic methods were used to characterize ceramic body and black coating of fine pottery found at Pompeii (Italy). This has enabled us to investigate local productions and to clarify the technological changes over the 4th-1st centuries BC. Two different groups of ceramics were originally distinguished on the basis of macroscopic observations. Optical microscopy (OM), X-ray diffraction (XRD) and X-ray fluorescence (XRF) seem to indicate the usage of the same raw materials for the production of black-coated ceramics at Pompeii for about three centuries. Raman microscopy (RM) and micro-analysis (SEM/EDS) suggest different production treatments for both raw material processing and firing practice (duration of the reducing step and the cooling rate).

  2. Experimental study of CdCl(2):CuCl photochromic coatings.

    PubMed

    Marquez, H; Rincon, J M; Celaya, L E

    1990-09-01

    We present measurements of the spectral transmittance and photochromic response of CdCl(2):CuCl coatings. The coatings are also examined with the aid of electron micrographs. We explain the features observed in the spectral transmittance of darkened photochromic films, using a colloidal model obtained from the generalized Maxwell-Garnett theory. The colloidal model indicates the presence of ellipsoidal copper particles with a shape factor (minor axis/major axis) between 0.39 and 0.42 and mean ratios between 2.03 and 1.73 nm. The optical transmittance curve obtained in the faded state shows a peak near 280 nm attributed to Cu(+), and the curve in the darkened state shows two bands, a band located at 375 nm attributed to Cu(2+) and another at 600-610 nm assigned to colloidal copper particles.

  3. Functional insights from studies on the structure of the nuclear pore and coat protein complexes.

    PubMed

    Schwartz, Thomas

    2013-07-01

    The nuclear envelope (NE) is a specific extension of the endoplasmic reticulum (ER) that wraps around the nucleus and enables the spatial separation of gene transcription and protein translation, one of the signature features of eukaryotes. Rather than being completely closed, the double lipid bilayer of the NE is perforated at sites where the inner and outer nuclear membranes fuse, resulting in circular openings lined with sharply bent membranes. These openings are filled with nuclear pore complexes (NPCs), enormous protein assemblies that facilitate nuclear transport. The scaffold components of the NPC surprisingly share interesting similarities with elements of coat protein complexes, which have general implications for function and evolution of these membrane-coating complexes. Here I discuss, from a structural perspective, what these findings might teach us.

  4. Antireflection Coating of TiO2 Study and Deposition by the Screen Printing Method

    NASA Astrophysics Data System (ADS)

    Boukennous, Y.; Benyahia, B.; Charif, M. R.; Chikouche, A.

    1995-08-01

    We are developing the Screen Printing technique for depositing a single layer quarter wavelength thick antireflection coating of titanium dioxide on silicon substrate. The ink is composed by the titanium ethoxide as the organometallic compound, terpineol as the solvent and the octyphenoxy polyethoxy as the vehicle. It has been applied to 4 inch polished silicon wafers, dried then fired and characterized. The objective of our work was to control the deposition parameters and the ink viscosity to determine their effects on the layer properties. The thicknesses of the TiO2 films were measured by the stylus technique using a Profilometer. AES, RBS and X-Ray diffraction are used to analyse the layer and to determine its structure and composition according to firing temperatures. The reflection coefficient is measured as a function of the wavelength. As a result, we obtain TiO2 coating thicknesses between 600 and 800 Å and a minimum reflection near 600nm.

  5. Study of the effects of fuel vortex film cooling on high temperature coating durability

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A report on the effects of fuel vortex film cooling on high temperature coating durability is presented. The program evaluated candidate high temperature oxidation resistant reaction control system engine thrust chamber material. As a result of the evaluation, the current and future programs may be optimized from the materials standpoint. Engine firing data for the evaluation of one material system is generated. The subjects considered are: (1) screening of materials, (2) thrust chamber fabrication, (3) engine testing, and (4) analysis of the data.

  6. Study on the wetting behavior and theoretical models of polydimethylsiloxane/silica coating

    NASA Astrophysics Data System (ADS)

    Li, Kunquan; Zeng, Xingrong; Li, Hongqiang; Lai, Xuejun; Ye, Chaoxian; Xie, Hu

    2013-08-01

    The hydrophobic coatings were successfully fabricated through spraying via mixing the hydrophobic silica (SiO2) and the cross-linked polydimethylsiloxane (PDMS) which was cured by tetraethoxysilane (TEOS) under the catalysis of dibutyltin dilaurate (DBTDL). The effects of SiO2 content on the surface morphology and wettability, as well as the water at different temperatures on the hydrophobic behavior were investigated. When the mass ratio of SiO2 to PDMS-TEOS is 0.3, the micromorphology of coating shows random micro/nanostructure and the water contact angle (WCA) of the coating reaches 153.4° with a sliding angle (SA) lower than 5°. However, with the increase of temperature of water droplet over 50 °C, the WCA falls below 130.4° and the SA significantly increases to nearly 180°, which implies that the state of water droplet on superhydrophobic surface has changed from Cassie-Baxter (CB) model to Wenzel model. Meanwhile, on the basis of the variant WAC of water at different temperatures on the same surfaces, a revised model is proposed to explain the state of water droplet on the hydrophobic surface. Thus, the effective way to increase the WCA is to capture more air in the grooves. Finally, based on the models, the relationship between hydrophobicity and superhydrophobicity is explained.

  7. The experimental study of polyelectrolyte coatings suitability for encapsulation of cells.

    PubMed

    Granicka, L H; Antosiak-Iwańska, M; Godlewska, E; Hoser, G; Strawski, M; Szklarczyk, M; Dudziński, K

    2009-01-01

    Living cells encapsulated in polymeric shells are receiving increasing attention because of their possible biotechnological and biomedical applications. The aim of this work is to evaluate how different polyelectrolyte coatings, characterized by different numbers of polyelectrolyte layers and by different polyelectrolyte conformations, affect the viability of encapsulated biological material. We demonstrate the ability to individually encapsulate HL-60 cells as well as rat pancreatic islets within polymeric shells consisting of different PE layers using the layer-by-layer process. Coating of HL-60 cells allows for surviving and functioning of cells for all applied PE as well as for different numbers of layers. The islets encapsulated in applied polyelectrolytes exhibited the lower level of mitochondrial activity as compared to non-encapsulated islets. Nevertheless, encapsulated islets exhibited comparable absorbance values during the whole period of culture. Polyelectrolyte coating seems to be a promising way of allowing capsule void volume minimization in a model of encapsulated biological material for local production of biologically active substances.

  8. In vitro study of nanostructured diopside coating on Mg alloy orthopedic implants.

    PubMed

    Razavi, Mehdi; Fathi, Mohammadhossein; Savabi, Omid; Vashaee, Daryoosh; Tayebi, Lobat

    2014-08-01

    The high corrosion rate of Mg alloys has hindered their application in various areas, particularly for orthopedic applications. In order to decrease the corrosion rate and to improve the bioactivity, mechanical stability and cytocompatibility of the Mg alloy, nanostructured diopside (CaMgSi2O6) has been coated on AZ91 Mg alloy using a combined micro arc oxidation (MAO) and electrophoretic deposition (EPD) method. The crystalline structure, the morphology and the composition of the samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). Electrochemical corrosion test, immersion test, and compression test were used to evaluate the corrosion resistance, the in vitro bioactivity and the mechanical stability of the samples, respectively. The cytocompatibility of the samples was tested by the cell viability and the cell attachment of L-929 cells. The results confirmed that the diopside coating not only slows down the corrosion rate, but also enhances the in vitro bioactivity, mechanical stability and cytocompatibility of AZ91 Mg alloy. Therefore, Mg alloy coated with nanostructured diopside offers a promising approach for biodegradable bone implants.

  9. Study on the laser irradiation effects on coating reinforced glass fiber/resin composite material

    NASA Astrophysics Data System (ADS)

    Chen, Minsun; Jiang, Houman; Zhang, Tianyu; Zhang, Xiangyu

    2016-10-01

    Two kinds of anti-laser coating made of reflective / ablative resin, called reinforcement schemes of A and B, are applied to the glass fiber reinforced resin matrix composite plate. The anti-laser performance of these samples to the laser operated at the wavelength of 976nm is tested, under the case of a 0.3 Mach tangential airflow pass over the surface of the sample. The experimental results show that the laser damage threshold of the coating reinforced samples have increased more than 50% compared to the original sample, the reinforcement scheme B is better than A. The laser power density damage threshold of the coating reinforced samples to the near infrared laser is higher than 100W/cm2, under the irradiation time is 60 seconds. For the resin reinforced fiber samples, the removal process of the ablation residues has important effects on the perforation time of samples, when there is a strong airflow pass over the surface. The larger laser spot corresponding to the removal of the ablation residues is easier.

  10. Inhibition of pyrite oxidation by surface coating agents: Batch and field studies

    NASA Astrophysics Data System (ADS)

    Choi, Jaeyoung; Do Gee, Eun; Yun, Hyun-Shik; Ram Lee, Woo; Park, Young-Tae

    2013-04-01

    The potential of several surface coating agents to inhibit the oxidation of metal sulfide minerals from Young-Dong coal mine and the Il-Gwang gold mine was examined by conducting laboratory scale batch experiments and field tests. Powdered pyrite as a standard sulfide mineral and rock samples from two mine outcrops were mixed with six coating agents (KH2PO4, MgO and KMnO4 as chemical agents, and apatite, cement and manganite as mineral agents) and incubated with oxidizing agents (H2O2 or NaClO). For the observed time period (8 days), Young-Dong coal mine samples exhibited the least sulfate (SO42-) production in the presence of KMnO4 (16%) or cement (4%) while, for Il-Gwang mine samples, the least SO42- production was observed in presence of KH2PO4 (8%) or cement (2%) compared to control. Field-scale pilot tests at the Il-Gwang site also showed that addition of KH2PO4 decreased SO42- production from 200 to 13 mg L-1 and it also reduced Cu and Mn from 8 and 3 mg L-1, respectively to <0.05 mg L-1 (below ICP-OES detection limits). The experimental results suggested that the use of surface coating agents is a promising alternative for sulfide oxidation inhibition at acid mine drainage sites.

  11. Chemical and electrochemical study of fabrics coated with reduced graphene oxide

    NASA Astrophysics Data System (ADS)

    Molina, J.; Fernández, J.; del Río, A. I.; Bonastre, J.; Cases, F.

    2013-08-01

    Polyester fabrics coated with reduced graphene oxide (RGO) have been obtained and later characterized by means of chemical and electrochemical techniques. X-ray photoelectron spectroscopy showed a decrease of the oxygen content as well as an increase of the sp2 fraction after chemical reduction of graphene oxide (GO). The electrical conductivity was measured by electrochemical impedance spectroscopy (EIS) and showed a decrease of 5 orders of magnitude in the resistance (Ω) when GO was reduced to RGO. The phase angle also changed from 90° for PES-GO (capacitative behavior) to 0° for RGO coated fabrics (resistive behavior). In general an increase in the number of RGO layers produced an increase of the conductivity of the fabrics. EIS measurements in metal/sample/electrolyte configuration showed better electrocatalytic properties and faster diffusion rate for RGO specimens. Scanning electrochemical microscopy was employed to test the electroactivity of the different fabrics obtained. The sample coated with GO was not conductive since negative feedback was obtained. When GO was reduced to RGO the sample behaved like a conducting material since positive feedback was obtained. Approach curves indicated that the redox mediator had influence on the electrochemical response. The Fe(CN)63-/4- redox mediator produced a higher electrochemical response than Ru(NH3)63+/2+ one.

  12. Self-assembly of gold nanorods coated with phospholipids: a coarse-grained molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Wan, Mingwei; Li, Xiaoxu; Gao, Lianghui; Fang, Weihai

    2016-11-01

    The self-assembly of phospholipid-coated gold nanorods (GNRs) was investigated by coarse-grained molecular dynamics simulations. We predict that in addition to the formation of deformed vesicles encapsulating GNRs with diverse orientations, the lipid-coated GNRs can form a semi-ring attached to an excess vesicle phase, a branch with excess vesicle phase, a ring phase, a branch phase, a stack phase, and a vortex phase. The morphologies of the lipid-GNR complexes depend on the lipid/GNR molar ratio and the interaction strength between the nanorod surface and the lipid head groups. At given lipid-nanorod interactions, removing the lipid induces a phase transition from an isolated ring or branch phase to an aggregated vortex or stack phase and vice versa. As the lipid-coated GNRs transit from an isolated phase to an aggregated phase, the structure of the lipid at the nanorod surface converts from a bilayer state to a non-bilayer state.

  13. Preparation and experimental research into retrievable rapamycin- and heparin-coated vena cava filters: a pilot study.

    PubMed

    Zhao, Hui; Zhang, Fuxian; Liang, Gangzhu; Ye, Lin; Zhang, Huan; Niu, Luyuan; Cheng, Long; Zhang, Mingyi

    2016-04-01

    The use of retrievable vena cava filters (RVCFs) was once commonplace, but filter retrieval was often very difficult. Most unsuccessful retrieval was due to intimal hyperplasia of the inferior vena cava and in-filter thrombosis. This pilot study aimed to design a drug-eluting RVCF. The hypothesis was that coated drugs could be released continuously to inhibit vena intimal hyperplasia and thrombosis, and thus improve the retrieval rates of RVCFs. Various concentrations of polycaprolactone (PCL)/chloroform solution were made from a mixture of Rapamycin and Heparin according to the quality of PCL. The drug was coated onto the surface of the filters by a process of dipping. In vitro tests were performed to check stability and in vitro drug release. Animals receiving filter implantation were divided into 4 groups, the experimental intervention group (EI), experimental laparotomy group (EL), control intervention group (CI), and control laparotomy group (CL). Filters were retrieved by laparotomy in the EL and CL groups, and by interventional operation in the EI and CI groups at 10, 20 and 30 days after implantation. Pathological endothelia biopsies were performed with wood grain-eosin (HE) staining and immunohistochemical examination, with the proliferating cell nuclear antigen (PCNA) index, and the results were compared between the experimental and control groups. The weight of thrombus within the filters was also measured by scale and compared. The coating concentration that succeeded in completely covering the surface was 0.2 g/ml. There was better coverage by SEM at this concentration, and the coated drugs had no obvious loss after filter release. The drug release curves showed that the amount of Heparin released was more than 50 % at day 1; Rapamycin released little in the first few days, beginning in earnest at 20 to 30 days. The filters were easy to retrieve at 10 days for both groups, while neither could be retrieved at 30 days. However, at 20 days the filter in

  14. In situ treatment of arsenic contaminated groundwater by aquifer iron coating: Experimental Study

    SciTech Connect

    Xie, Xianjun; Wang, Yanxin; Pi, Kunfu; Liu, Chongxuan; Li, Junxia; Liu, Yaqing; Wang, Zhiqiang; Duan, Mengyu

    2015-09-15

    In situ arsenic removal from groundwater by an iron coating method has great potential to be a cost effective and simple groundwater remediation technique, especially in rural and remote areas where groundwater is used as the main source of drinking water. The in situ arsenic removal technique was first optimized by simulating arsenic removal in various quartz sand columns under anoxic conditions., Its effectiveness was then evaluated in an actual high-arsenic groundwater environment. The mechanism of arsenic removal by the iron coating was investigated under different conditions using scanning electron microscopy (SEM)/X-ray absorption spectroscopy, an electron microprobe, and Fourier transformation infrared spectroscopy. A 4-step alternative cycle aquifer iron coating method was developed. A continuous injection of 5 mmol/L FeSO4 and 2.5 mmol/L NaClO for 96 hours can create a uniform coating of crystalline goethite on the surface of quartz sand in the columns without causing clogging. At a flow rate of 0.45 cm/min of the injection reagents (vi), the time for arsenic (as Na2HAsO4) to pass through the iron-coated quartz sand column was approximately 35 hours, which was much longer than that for tracer fluorescein sodium (approximately 2 hours). The retardation factor of arsenic was 23, and its adsorption capacity was 0.11 mol As per mol Fe, leading to an excellent arsenic removal. In situ arsenic removal from groundwater in an aquifer was achieved by simultaneous injections of As (V) and Fe (II) reagents. When the arsenic content in the groundwater was 233 μg/L, the aqueous phase arsenic was completely removed with an arsenic adsorption of 0.05 mol As per mol Fe. Arsenic fixation resulted from a process of adsorption/co-precipitation, in which arsenic and iron likely formed the arsenic-bearing iron mineral phases with poor crystallinity by way of bidentate binuclear complexes. Thus, the high arsenic removal efficiency of the technique likely resulted from the

  15. Silicon-hydroxyapatite bioactive coatings (Si-HA) from diatomaceous earth and silica. Study of adhesion and proliferation of osteoblast-like cells.

    PubMed

    López-Alvarez, M; Solla, E L; González, P; Serra, J; León, B; Marques, A P; Reis, R L

    2009-05-01

    The aim of this study consisted on investigating the influence of silicon substituted hydroxyapatite (Si-HA) coatings over the human osteoblast-like cell line (SaOS-2) behaviour. Diatomaceous earth and silica, together with commercial hydroxyapatite were respectively the silicon and HA sources used to produce the Si-HA coatings. HA coatings with 0 wt% of silicon were used as control of the experiment. Pulsed laser deposition (PLD) was the selected technique to deposit the coatings. The Si-HA thin films were characterized by Fourier Transformed Infrared Spectroscopy (FTIR) demonstrating the efficient transfer of Si to the HA structure. The in vitro cell culture was established to assess the cell attachment, proliferation and osteoblastic activity respectively by, Scanning Electron Microscopy (SEM), DNA and alkaline phosphatase (ALP) quantification. The SEM analysis demonstrated a similar adhesion behaviour of the cells on the tested materials and the maintenance of the typical osteoblastic morphology along the time of culture. The Si-HA coatings did not evidence any type of cytotoxic behaviour when compared with HA coatings. Moreover, both the proliferation rate and osteoblastic activity results showed a slightly better performance on the Si-HA coatings from diatoms than on the Si-HA from silica.

  16. A Five-year Performance Study of Low VOC Coatings over Zinc Thermal Spray for the Protection of Carbon Steel at the Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Kolody, Mark R.; Curran, Jerome P.; Calle, Luz Marina

    2014-01-01

    The launch facilities at the Kennedy Space Center (KSC) are located approximately 1000 feet from the Atlantic Ocean where they are exposed to salt deposits, high humidity, high UV degradation, and acidic exhaust from solid rocket boosters. These assets are constructed from carbon steel, which requires a suitable coating to provide long-term protection to reduce corrosion and its associated costs. While currently used coating systems provide excellent corrosion control performance, they are subject to occupational, safety, and environmental regulations at the Federal and State levels that limit their use. Many contain high volatile organic compounds (VOCs), hazardous air pollutants, and other hazardous materials. Hazardous waste from coating operations include vacuum filters, zinc dust, hazardous paint related material, and solid paint. There are also worker safety issues such as exposure to solvents and isocyanates. To address these issues, top-coated thermal spray zinc coating systems were investigated as a promising environmentally friendly corrosion protection for carbon steel in an acidic launch environment. Additional benefits of the combined coating system include a long service life, cathodic protection to the substrate, no volatile contaminants, and high service temperatures. This paper reports the results of a performance based study to evaluate low VOC topcoats (for thermal spray zinc coatings) on carbon steel for use in a space launch environment.

  17. Study of mechanical properties and high temperature oxidation behavior of a novel cold-spray Ni-20Cr coating on boiler steels

    NASA Astrophysics Data System (ADS)

    Kaur, Narinder; Kumar, Manoj; Sharma, Sanjeev K.; Kim, Deuk Young; Kumar, S.; Chavan, N. M.; Joshi, S. V.; Singh, Narinder; Singh, Harpreet

    2015-02-01

    In the current investigation, high temperature oxidation behavior of a novel cold-spray Ni-20Cr nanostructured coating was studied. The nanocrystalline Ni-20Cr powder was synthesized by the investigators using ball milling, which was deposited on T22 and SA 516 steels by cold spraying. The crystallite size based upon Scherrer's formula for the developed coatings was found to be in nano-range for both the substrates. The accelerated oxidation testing was performed in a laboratory tube furnace at a temperature 900 °C under thermal cyclic conditions. Each cycle comprised heating for one hour at 900 °C followed by cooling for 20 min in ambient air. The kinetics of oxidation was established using weight change measurements for the bare and the coated steels. The oxidation products were characterized by X-ray Diffraction (XRD), Scanning Electron Microscopy/Energy Dispersive Spectroscopy (SEM/EDS) and X-ray mapping techniques. It was found from the results that the coating was successful in reducing the weight gain of SA213-T22 and SA 516-Grade 70 steel by 71% and 94%, respectively. This may be attributed to relatively denser structure, lower porosity and lower oxide content of the coating. Moreover, the developed nano-structured Ni-20Cr powder coating was found to perform better than its counterpart micron-sized Ni-20Cr powder coating, in terms of offering higher oxidation resistance and hardness.

  18. Potentiodynamic studies of Ni-P-TiO2 nano-composited coating on the mild steel deposited by electroless plating method

    NASA Astrophysics Data System (ADS)

    Uttam, Vibha; Duchaniya, R. K.

    2016-05-01

    Now a days, corrosion studies are important for reducing the wastage of metals. The importance of corrosion studies is two folds i.e. first is economic, including the reduction of material losses resulting from the wasting away or sudden failure of materials and second is conservation Electroless process is an autocatalytic reduction method in which metallic ions are reduced in the solution. Nanocomposite coatings of Ni-P-TiO2 on mild steel are deposited by varying volume of TiO2 nano-powder by electroless method from Ni-P plating bath containing Nickel Sulphate as a source of nickel ions, sodium hypophosphite as the reducing agent, lactic acid as a complexing agents and TiO2 nano powder. Electroless Ni-P-TiO2 coating have been widely used in the chemical process industries, mechanical industries, electronic industries and chloroalkali industries due to their excellent corrosion with mechanical properties. In the present work, deposition of Ni-P alloy coating and Ni-P-TiO2 nanocomposited coatings were done on the mild steel and corrosion properties were studied with Potentio-dynamic polarization measurements method in 3.5 wt% sodium chloride solution. It showed in the experiments that Ni-P-TiO2 nanocomposited coating has better corrosion resistance as comparedthan Ni-P alloy coating. Morphological studies were done by field emission scanning electron microscopy (FESEM), energy-dispersive analysis of X-ray (EDAX) and X-ray diffraction (XRD). These studies confirmed the deposition of Ni-P alloy coating and Ni-P-TiO2 nanocomposited coating.

  19. A study on structure and tribological properties of the electroerosion coating Mo-Ni-Cu, formed by the mixed method on copper

    NASA Astrophysics Data System (ADS)

    Romanov, D. A.; Goncharova, E. N.; Gromov, V. E.; Ivanov, Yu F.

    2016-09-01

    Multi-layered coating from immiscible components based on the system Mo-Ni-Cu was formed by the combined method of electro-explosive sputtering and subsequent irradiation by high-intensity pulse electron beam of submillisecond duration of influence on the surface of electrical copper contact (M00 grade of copper). The structure and phase composition studies of the applied coating as well as its mechanical and tribological properties are carried out.

  20. Regulatory Aspects of Coatings

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter gives a history of the development and uses of edible coating regulations, detailed chapters on coating caracteristics, determination of coating properties, methods for making coatings, and discription of coating film formers (polysaccharieds, lipids, resins, proteins). The chapter also...

  1. Silica-coated manganite and Mn-based ferrite nanoparticles: a comparative study focused on cytotoxicity

    NASA Astrophysics Data System (ADS)

    Kaman, Ondřej; Dědourková, Tereza; Koktan, Jakub; Kuličková, Jarmila; Maryško, Miroslav; Veverka, Pavel; Havelek, Radim; Královec, Karel; Turnovcová, Karolína; Jendelová, Pavla; Schröfel, Adam; Svoboda, Ladislav

    2016-04-01

    Magnetic oxide nanoparticles provide a fascinating tool for biological research and medicine, serving as contrast agents, magnetic carriers, and core materials of theranostic systems. Although the applications rely mostly on iron oxides, more complex oxides such as perovskite manganites may provide a much better magnetic performance. To assess the risk of their potential use, in vitro toxicity of manganite nanoparticles was thoroughly analysed and compared with another prospective system of Mn-Zn ferrite nanoparticles. Magnetic nanoparticles of La0.63Sr0.37MnO3 manganite were prepared by two distinct methods, namely the molten salt synthesis and the traditional sol-gel route, whereas nanoparticles of Mn0.61Zn0.42Fe1.97O4 ferrite, selected as a comparative material, were synthesized by a new procedure under hydrothermal conditions. Magnetic cores were coated with silica and, moreover, several samples of manganite nanoparticles with different thicknesses of silica shell were prepared. The size-fractionated and purified products were analysed using transmission electron microscopy, dynamic light scattering, measurement of the zeta-potential dependence on pH, IR spectroscopy, and SQUID magnetometry. The silica-coated products with accurately determined concentration by atomic absorption spectroscopy were subjected to a robust evaluation of their cytotoxicity by four different methods, including detailed analysis of the concentration dependence of toxicity, analysis of apoptosis, and experiments on three different cell lines. The results, comparing two manganese-containing systems, clearly indicated superior properties of the Mn-Zn ferrite, whose silica-coated nanoparticles show very limited toxic effects and thus constitute a promising material for bioapplications.

  2. [Study on the coated carbon PVC membrane selective electrode of aconitine].

    PubMed

    Lü, T; Si, X; Chen, B; Yin, G

    1990-09-01

    Coated carbon PVC membrane selective electrode of aconitine was prepared with the Aconitine-tetraphenylborate ion-associate complex as the electroactive material. The electrode showed a linear response to aconitine within the concentration range 1.0 x 10(-2) - 5.0 x 10(-5) mol/L. The limit of detection was 6.3 x 10(-6) mol/L and the slope of the electrode was 57.6 mV/decade. The authors established a basis and a method for the control of content limit of aconitine in Shen Fu Injection with this electrode.

  3. Biotin- and Glycoprotein-Coated Microspheres as Surrogates for Studying Filtration Removal of Cryptosporidium parvum in a Granular Limestone Aquifer Medium.

    PubMed

    Stevenson, M E; Blaschke, A P; Toze, S; Sidhu, J P S; Ahmed, W; van Driezum, I H; Sommer, R; Kirschner, A K T; Cervero-Aragó, S; Farnleitner, A H; Pang, L

    2015-07-01

    Members of the genus Cryptosporidium are waterborne protozoa of great health concern. Many studies have attempted to find appropriate surrogates for assessing Cryptosporidium filtration removal in porous media. In this study, we evaluated the filtration of Cryptosporidium parvum in granular limestone medium by the use of biotin- and glycoprotein-coated carboxylated polystyrene microspheres (CPMs) as surrogates. Column experiments were carried out with core material taken from a managed aquifer recharge site in Adelaide, Australia. For the experiments with injection of a single type of particle, we observed the total removal of the oocysts and glycoprotein-coated CPMs, a 4.6- to 6.3-log10 reduction of biotin-coated CPMs, and a 2.6-log10 reduction of unmodified CPMs. When two different types of particles were simultaneously injected, glycoprotein-coated CPMs showed a 5.3-log10 reduction, while the uncoated CPMs displayed a 3.7-log10 reduction, probably due to particle-particle interactions. Our results confirm that glycoprotein-coated CPMs are the most accurate surrogates for C. parvum; biotin-coated CPMs are slightly more conservative, while unmodified CPMs are markedly overly conservative for predicting C. parvum removal in granular limestone medium. The total removal of C. parvum observed in our study suggests that granular limestone medium is very effective for the filtration removal of C. parvum and could potentially be used for the pretreatment of drinking water and aquifer storage recovery of recycled water.

  4. Biotin- and Glycoprotein-Coated Microspheres as Surrogates for Studying Filtration Removal of Cryptosporidium parvum in a Granular Limestone Aquifer Medium

    PubMed Central

    Blaschke, A. P.; Toze, S.; Sidhu, J. P. S.; Ahmed, W.; van Driezum, I. H.; Sommer, R.; Kirschner, A. K. T.; Cervero-Aragó, S.; Farnleitner, A. H.; Pang, L.

    2015-01-01

    Members of the genus Cryptosporidium are waterborne protozoa of great health concern. Many studies have attempted to find appropriate surrogates for assessing Cryptosporidium filtration removal in porous media. In this study, we evaluated the filtration of Cryptosporidium parvum in granular limestone medium by the use of biotin- and glycoprotein-coated carboxylated polystyrene microspheres (CPMs) as surrogates. Column experiments were carried out with core material taken from a managed aquifer recharge site in Adelaide, Australia. For the experiments with injection of a single type of particle, we observed the total removal of the oocysts and glycoprotein-coated CPMs, a 4.6- to 6.3-log10 reduction of biotin-coated CPMs, and a 2.6-log10 reduction of unmodified CPMs. When two different types of particles were simultaneously injected, glycoprotein-coated CPMs showed a 5.3-log10 reduction, while the uncoated CPMs displayed a 3.7-log10 reduction, probably due to particle-particle interactions. Our results confirm that glycoprotein-coated CPMs are the most accurate surrogates for C. parvum; biotin-coated CPMs are slightly more conservative, while unmodified CPMs are markedly overly conservative for predicting C. parvum removal in granular limestone medium. The total removal of C. parvum observed in our study suggests that granular limestone medium is very effective for the filtration removal of C. parvum and could potentially be used for the pretreatment of drinking water and aquifer storage recovery of recycled water. PMID:25888174

  5. Slurry Erosion Performance Study of Detonation Gun-Sprayed WC-10Co-4Cr Coatings on CF8M Steel Under Hydro-Accelerated Conditions

    NASA Astrophysics Data System (ADS)

    Bhandari, Sanjeev; Singh, Harpreet; Kumar, Harmesh; Rastogi, Vikas

    2012-09-01

    In the current investigation, cermet coatings (WC-10Co-4Cr) were deposited on CF8M steel by detonation gun (D-gun) thermal spraying process. Subsequently, the slurry erosion behaviors of the coated and bare steels were investigated using a high-speed erosion test rig. Slurry collected from an actual hydro power plant was used as the abrasive media. Effects of concentration (ppm), average particle sizes and rotational speed on the slurry erosion behaviors of coated and bare steels under different experimental conditions were studied. The analysis of eroded samples was done using SEM and stylus profilometry. Signatures of microcutting, fracture of well-bonded WC grains, and fragmentations were observed on the eroded surface of WC-10Co-4Cr coating, while signatures of formation of plowing, lips, shearing of platelet, formation of crater, and micro-cutting were observed on the eroded surface of CF8M steel.

  6. Study of pharmaceutical coatings by means of NMR cryoporometry and SEM image analysis.

    PubMed

    Boissier, Catherine; Feidt, François; Nordstierna, Lars

    2012-07-01

    Nuclear magnetic resonance (NMR) cryoporometry and scanning electron microscopy (SEM) image analysis have been used to investigate the size and shape distribution of pores in pharmaceutical coatings. The coatings were made from a mixture of hydroxypropylcellulose (HPC) and ethylcellulose (EC). Upon solvent evaporation from a solution consisting of both the polymers, a solid polymer film is formed, which after removal of the water-soluble HPC consists of a skeleton of EC. A change in the amount of HPC enables modification of the water permeability through the films. By means of NMR cryoporometry, the presence of small pores (radius below 400 nm) was revealed with no significant change in the pore size distribution (PSD) as the HPC content in the films were changed. NMR cryoporometry showed the presence of channels of a characteristic 30-nm length scale in the films that contained more than 22% HPC. Below this threshold, the lack of interconnecting channels seems to prevent complete HPC dissolution and thereby the water permeability. SEM image analysis showed pore sizes that ranged from hundreds of nanometers up to few micrometers. Above the 22% threshold, further increase of HPC in the films resulted in an increased pore volume and wider PSD.

  7. Surface chemistry of coated lithium manganese nickel oxide thin film cathodes studied by XPS

    SciTech Connect

    Baggetto, Loic; Dudney, Nancy J; Veith, Gabriel M

    2013-01-01

    The effect of coating high voltage LiMn1.5Ni0.5O4 spinel cathode thin films with three metal oxide thin layers is discussed. The changes in surface chemistry of the electrodes are measured by X-ray photoelectron spectroscopy. ZnO is found to decompose during the first charge whereas Al2O3 and ZrO2 are stable for more than 100 cycles. ZrO2, however, importantly limits the available Li storage capacity of the electrochemical reaction due to poorer kinetics. Al2O3 offers the best results in term of capacity retention. Upon cycling, the evidence of a signal at 75.4 eV in the Al2p binding energy spectrum indicates the partial conversion of Al2O3 into Al2O2F2. Moreover, the continuous formation of PEO , esters and LixPOyFz compounds on the surface of the electrodes is found for all coating materials.

  8. Electrodeposition of platinum-iridium coatings and nanowires for neurostimulating applications: Fabrication, characterization and in-vivo retinal stimulation/recording. EIS studies of hexavalent and trivalent chromium based military coating systems

    NASA Astrophysics Data System (ADS)

    Petrossians, Artin

    The studies presented in this thesis are composed of two different projects demonstrated in two different parts. The first part of this thesis represents an electrochemical approach to possible improvements of the interface between an implantable device and biological tissue. The second part of this thesis represents electrochemical impedance spectroscopy (EIS) studies on the corrosion resistance behavior of different types of polymer coated Al2024 alloys. In the first part of this thesis, a broad range of investigations on the development of an efficient and reproducible electrochemical deposition method for fabrication of thin-film platinum-iridium alloys were performed. The developed method for production of dense films was then modified to produce very high surface area coatings with ultra-low electrochemical impedance characteristics. The high-surface area platinum-iridium coating was applied on microelectrode arrays for chronic in-vitro stimulation. Using the same method of producing dense films, platinum-iridium nanowires were fabricated using Anodized Aluminum Oxide (AAO) templates for hermetic packaging applications to be used in implantable microelectronics. The implantable microelectronics will be used to perform data reception and transmission management, power recovery, digital processing and analog output of stimulus current. Finally, in-vivo electrical stimulation tests were performed on an animal retina using high surface-area platinum-iridium coated single microelectrodes to verify the charge transfer characteristics of the coatings. In the second part of this thesis, three different sets of samples with different combinations of pretreatments, primers with the same type of topcoat were tested in 0.5 N NaCl for period of 30 days. The surface changes measured by EIS as a function of time were then analyzed. The analysis of the fit parameters of the impedance spectra showed that the different primers had the most effect on the corrosion protection

  9. Flow accelerated organic coating degradation

    NASA Astrophysics Data System (ADS)

    Zhou, Qixin

    Applying organic coatings is a common and the most cost effective way to protect metallic objects and structures from corrosion. Water entry into coating-metal interface is usually the main cause for the deterioration of organic coatings, which leads to coating delamination and underfilm corrosion. Recently, flowing fluids over sample surface have received attention due to their capability to accelerate material degradation. A plethora of works has focused on the flow induced metal corrosion, while few studies have investigated the flow accelerated organic coating degradation. Flowing fluids above coating surface affect corrosion by enhancing the water transport and abrading the surface due to fluid shear. Hence, it is of great importance to understand the influence of flowing fluids on the degradation of corrosion protective organic coatings. In this study, a pigmented marine coating and several clear coatings were exposed to the laminar flow and stationary immersion. The laminar flow was pressure driven and confined in a flow channel. A 3.5 wt% sodium chloride solution and pure water was employed as the working fluid with a variety of flow rates. The corrosion protective properties of organic coatings were monitored inline by Electrochemical Impedance Spectroscopy (EIS) measurement. Equivalent circuit models were employed to interpret the EIS spectra. The time evolution of coating resistance and capacitance obtained from the model was studied to demonstrate the coating degradation. Thickness, gloss, and other topography characterizations were conducted to facilitate the assessment of the corrosion. The working fluids were characterized by Fourier Transform Infrared Spectrometer (FTIR) and conductivity measurement. The influence of flow rate, fluid shear, fluid composition, and other effects in the coating degradation were investigated. We conclude that flowing fluid on the coating surface accelerates the transport of water, oxygen, and ions into the coating, as

  10. Microstructure studies of air-plasma-spray-deposited CoNiCrAlY coatings before and after thermal cyclic loading for high-temperature application

    NASA Astrophysics Data System (ADS)

    Kumar, Dipak; Pandey, K. N.; Das, Dipak Kumar

    2016-08-01

    In the present study, bond-coats for thermal barrier coatings were deposited via air plasma spraying (APS) techniques onto Inconel 800 and Hastelloy C-276 alloy substrates. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and atomic force microscopy (AFM) were used to investigate the phases and microstructure of the as-sprayed, APS-deposited CoNiCrAlY bond-coatings. The aim of this work was to study the suitability of the bond-coat materials for high temperature applications. Confirmation of nanoscale grains of the γ/γ'-phase was obtained by TEM, high-resolution TEM, and AFM. We concluded that these changes result from the plastic deformation of the bond-coat during the deposition, resulting in CoNiCrAlY bond-coatings with excellent thermal cyclic resistance suitable for use in high-temperature applications. Cyclic oxidative stability was observed to also depend on the underlying metallic alloy substrate.

  11. Early osseointegration of implants with cortex-like TiO2 coatings formed by micro-arc oxidation: A histomorphometric study in rabbits.

    PubMed

    Zhou, Hong-Zhi; Li, Ya-da; Liu, Lin; Chen, Xiao-Dong; Wang, Wei-Qiang; Ma, Guo-Wu; Su, Yu-Cheng; Qi, Min; Shi, Bin

    2017-02-01

    In our previous studies, a novel cortex-like TiO2 coating was prepared on Ti surface through micro-arc oxidation (MAO) by using sodium tetraborate as electrolyte, and the effects of the coating on cell attachment were testified. This study aimed to investigate the effects of this cortex-like MAO coating on osseointegration. A sand-blasting and acid-etching (SLA) coating that has been widely used in clinical practice served as control. Topographical and chemical characterizations were conducted by scanning electron microscopy, energy dispersive X-ray spectrometer, X-ray diffraction, contact angle meter, and step profiler. Results showed that the cortex-like coating had microslots and nanopores and it was superhydrophilic, whereas the SLA surface was hydrophobic. The roughness of MAO was similar to that of SLA. The MAO and SLA implants were implanted into the femoral condyles of New Zealand rabbits to evaluate their in-vivo performance through micro-CT, histological analysis, and fluorescent labeling at the bone-implant interface four weeks after surgery. The micro-CT showed that the bone volume ratio and mean trabecular thickness were similar between MAO and SLA groups four weeks after implantation. Histological analysis and fluorescent labeling showed no significant differences in the bone-implant contact between the MAO and SLA surfaces. It was suggested that with micro/nanostructure and superhydrophilicity, the cortex-like MAO coating causes excellent osseointegration, holding a promise of an application to implant modification.

  12. Theoretical Analysis and Experimental Study on the Coating Removal from Passenger-Vehicle Plastics for Recycling by Using Water Jet Technology

    NASA Astrophysics Data System (ADS)

    Zhang, Hongshen; Chen, Ming

    2015-11-01

    The recovery and utilization of automotive plastics are a global concern because of the increasing number of end-of-life vehicles. In-depth studies on technologies for the removal of coatings from automotive plastics can contribute to the high value-added levels of the recycling and utilization of automotive plastic. The liquid waste generated by removing chemical paint by using traditional methods is difficult to handle and readily produces secondary pollution. Therefore, new, clean, and highly efficient techniques of paint removal must be developed. In this article, a method of coating removal from passenger-vehicle plastics was generated based on high-pressure water jet technology to facilitate the recycling of these plastics. The established technology was theoretically analyzed, numerically simulated, and experimentally studied. The high-pressure water jet equipment for the removal of automotive-plastic coatings was constructed through research and testing, and the detailed experiments on coating removal rate were performed by using this equipment. The results showed that high-pressure water jet technology can effectively remove coatings on the surfaces of passenger-vehicle plastics. The research also revealed that the coating removal rate increased as jet pressure ( P) increased and then decreased when jet moving speed ( Vn) increased. The rate decreased as the distance from nozzle to work piece ( S nw ) and the nozzle angle ( Φ) increased. The mathematical model for the rate of removal of coatings from bumper surfaces by water jet was derived based on the experiment data and can effectively predict coating removal rate under different operating conditions.

  13. In vitro studies of heparin-coated magnetic nanoparticles for potential use in the treatment of neointimal hyperplasia

    NASA Astrophysics Data System (ADS)

    Hargett, Andrew

    Purpose: Though recent decades have developed a myriad of treatments in response to atherosclerosis, prevalence remains high and complications, especially restenosis, may occur. Restenosis following stents is often caused by excessive vascular smooth muscle cell (VSMCS) migration and proliferation into the intima, known as neointimal hyperplasia. The shear number of angioplasty and stent procedures throughout the world makes this a major concern of all endovascular surgery. Our lab has proposed the pairing of heparin and magnetic nanoparticles for targeted drug delivery to the stent location. Utilizing the high surface area of nanoparticles, we hope to deliver higher heparin dosing to inhibit VSMC proliferation without systemic effects. This study evaluates synthesis of these particles as well as preliminary in vitro controls on relevant cell lines found within the vasculature system. Materials and Methods: Heparin-coated iron oxide nanoparticles were synthesized and characterized according to size (TEM), hydrodynamic diameter (DLS), zeta potential, iron concentration, and heparin loading (DMMB assay). Assays were then performed using these particles as experimental conditions on VSMCs, Endothelial Cells (PECs), and Fibroblasts (3T3s) for determination of cell uptake (Prussian Blue, TEM), effects on proliferation (MTS assay), cytotoxicity (Live/Dead assay), and phenotype changes (immunofluorescent staining). Experimental conditions were assessed against control nanoparticles without heparin and raw heparin in solution for dosage effects. Results: Particles were successfully synthesized, loaded with heparin, and characterized to validate each step of synthesis. Proliferation and cytotoxicity cell assays determined heparin-coated nanoparticles to be more potent in effects at lower concentrations of heparin when compared to raw heparin in solution. Immunostaining of VSMCs demonstrated a relatively higher tendency towards nonproliferative phenotypes following

  14. Versatile Coating

    NASA Technical Reports Server (NTRS)

    1990-01-01

    A radome at Logan Airport and a large parabolic antenna at the Wang Building in Massachusetts are protected from weather, corrosion and ultraviolet radiation by a coating, specially designed for antennas and radomes, known as CRC Weathertite 6000. The CRC 6000 line that emerged from Boyd Coatings Research Co., Inc. is a solid dispersion of fluorocarbon polymer and polyurethane that yields a tough, durable film with superior ultraviolet resistance and the ability to repel water and ice over a long term. Additionally, it provides resistance to corrosion, abrasion, chemical attacks and impacts. Material can be used on a variety of substrates, such as fiberglass, wood, plastic and concrete in addition to steel and aluminum. In addition Boyd Coatings sees CRC 6000 applicability as an anti-icing system coated on the leading edge of aircraft wings.

  15. Protective Coating

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Inorganic Coatings, Inc.'s K-Zinc 531 protective coating is water-based non-toxic, non-flammable and has no organic emissions. High ratio silicate formula bonds to steel, and in 30 minutes, creates a very hard ceramic finish with superior adhesion and abrasion resistance. Improved technology allows application over a minimal commercial sandblast, fast drying in high humidity conditions and compatibility with both solvent and water-based topcoats. Coating is easy to apply and provides long term protection with a single application. Zinc rich coating with water-based potassium silicate binder offers cost advantages in materials, labor hours per application, and fewer applications over a given time span.

  16. Biocompatibility studies of low temperature nitrided and collagen-I coated AISI 316L austenitic stainless steel.

    PubMed

    Martinesi, M; Stio, M; Treves, C; Borgioli, F

    2013-06-01

    The biocompatibility of austenitic stainless steels can be improved by means of surface engineering techniques. In the present research it was investigated if low temperature nitrided AISI 316L austenitic stainless steel may be a suitable substrate for bioactive protein coating consisting of collagen-I. The biocompatibility of surface modified alloy was studied using as experimental model endothelial cells (human umbilical vein endothelial cells) in culture. Low temperature nitriding produces modified surface layers consisting mainly of S phase, the supersaturated interstitial solid solution of nitrogen in the austenite lattice, which allows to enhance surface microhardness and corrosion resistance in PBS solution. The nitriding treatment seems to promote the coating with collagen-I, without chemical coupling agents, in respect of the untreated alloy. For biocompatibility studies, proliferation, lactate dehydrogenase levels and secretion of two metalloproteinases (MMP-2 and MMP-9) were determined. Experimental results suggest that the collagen protection may be favourable for endothelial cell proliferation and for the control of MMP-2 release.

  17. Study of metallic powder behavior in very low pressure plasma spraying (VLPPS) — Application to the manufacturing of titanium–aluminum coatings

    SciTech Connect

    Vautherin, B.; Planche, M.-P.; Montavon, G.; Lapostolle, F.; Quet, A.; Bianchi, L.

    2015-08-28

    In this study, metallic materials made of aluminum and titanium were manufactured implementing very low pressure plasma spraying (VLPPS). Aluminum was selected at first as a demonstrative material due to its rather low vaporization enthalpy (i.e., 381.9 kJ·mol⁻¹). Developments were then carried out with titanium which exhibits a higher vaporization enthalpy (i.e., 563.6 kJ·mol⁻¹). Optical emission spectroscopy (OES) was implemented to analyze the behavior of each solid precursor (metallic powders) when it is injected into the plasma jet under very low pressure (i.e., in the 150 Pa range). Besides, aluminum, titanium and titanium–aluminum coatings were deposited in the same conditions implementing a stick-cathode plasma torch operated at 50 kW, maximum power. Coating phase compositions were identified by X-Ray Diffraction (XRD). Coating elementary compositions were quantified by Glow Discharge Optical Emission Spectroscopy (GDOES) and Energy Dispersive Spectroscopy (EDS) analyses. The coating structures were observed by Scanning Electron Microscopy (SEM). The coating void content was determined by Ultra-Small Angle X-ray Scattering (USAXS). The coatings exhibit a two-scale structure corresponding to condensed vapors (smaller scale) and solidified areas (larger scale). Titanium–aluminum sprayed coatings, with various Ti/Al atomic ratios, are constituted of three phases: metastable α-Ti, Al and metastable α₂-Ti₃Al. This latter is formed at elevated temperature in the plasma flow, before being condensed. Its rather small fraction, impeded by the rather small amount of vaporized Ti, does not allow modifying however the coating hardness.

  18. On the Prospects of Using Nanoindentation and Wear Test to Study the Mechanical Behavior of Fe-Based Metallic Glass Coating Reinforced by B4C Nanoparticles

    NASA Astrophysics Data System (ADS)

    Movahedi, Behrooz

    2017-01-01

    In this study, Fe-based metallic glass was served as the matrix in which various ratios of hard B4C nanoparticles as reinforcing agents were prepared using a high-energy mechanical milling. The feedstock nanocomposite powders were transferred to the coatings using a high-velocity oxygen fuel process. The results showed that the microstructure of the nanocomposite coating was divided into two regions, namely a full amorphous phase region and homogeneous dispersion of B4C nanoparticles with a scale of 10 to 50 nm in a residual amorphous matrix. As the B4C content is increased, the hardness of the composite coatings is increased too, but the fracture toughness begins to be decreased at the B4C content higher than 20 vol pct. The optimal mechanical properties are obtained with 15 vol pct B4C due to the suitable content and uniform distribution of nanoparticles. The addition of 15 vol pct B4C to the Fe-based metallic glass matrix reduced the friction coefficient from 0.49 to 0.28. The average specific wear rate of the nanocomposite coating (0.48 × 10-5 mm3 Nm-1) was much less than that for the single-phase amorphous coating (1.23 × 10-5 mm3Nm-1). Consequently, the changes in wear resistance between both coatings were attributed to the changes in the brittle to ductile transition by adding B4C reinforcing nanoparticles.

  19. On the Prospects of Using Nanoindentation and Wear Test to Study the Mechanical Behavior of Fe-Based Metallic Glass Coating Reinforced by B4C Nanoparticles

    NASA Astrophysics Data System (ADS)

    Movahedi, Behrooz

    2017-03-01

    In this study, Fe-based metallic glass was served as the matrix in which various ratios of hard B4C nanoparticles as reinforcing agents were prepared using a high-energy mechanical milling. The feedstock nanocomposite powders were transferred to the coatings using a high-velocity oxygen fuel process. The results showed that the microstructure of the nanocomposite coating was divided into two regions, namely a full amorphous phase region and homogeneous dispersion of B4C nanoparticles with a scale of 10 to 50 nm in a residual amorphous matrix. As the B4C content is increased, the hardness of the composite coatings is increased too, but the fracture toughness begins to be decreased at the B4C content higher than 20 vol pct. The optimal mechanical properties are obtained with 15 vol pct B4C due to the suitable content and uniform distribution of nanoparticles. The addition of 15 vol pct B4C to the Fe-based metallic glass matrix reduced the friction coefficient from 0.49 to 0.28. The average specific wear rate of the nanocomposite coating (0.48 × 10-5 mm3 Nm-1) was much less than that for the single-phase amorphous coating (1.23 × 10-5 mm3Nm-1). Consequently, the changes in wear resistance between both coatings were attributed to the changes in the brittle to ductile transition by adding B4C reinforcing nanoparticles.

  20. Studies on VOx thin films deposited over Si3N4 coated Si substrates

    NASA Astrophysics Data System (ADS)

    Raj, P. Deepak; Gupta, Sudha; Sridharan, M.

    2015-06-01

    Vanadium oxide (VOx) thin films were deposited on to the silicon nitride (Si3N4) coated silicon (Si) substrate using reactive direct current magnetron sputtering at different substrate temperatures (Ts). The deposited films were characterized for their structural, morphological, optical and electrical properties. The average grain size of the deposited films was in the range of 95 to 178 nm and the strain varied from 0.071 to 0.054 %. The optical bandgap values of the films were evaluated using UV-Vis spectroscopy and lies in the range of 2.46 to 3.88 eV. The temperature coefficient of resistance (TCR) for the film deposited at 125 °C was -1.23%/°C with the sheet resistivity of 2.7 Ω.cm.

  1. GISAXS study of Au-coated light-induced polymer gratings

    SciTech Connect

    Castro-Colin, M. Korolkov, D.; Yadavalli, N. S.; Mayorova, M.; Kentzinger, M.; Santer, S.

    2015-07-23

    Surface Relief Gratings (SRGs) are inscribed in the Au-coated azobenzene containing photosensitive polymer films on a glass substrate. The structures consist of micrometer-period sinusoidal patterns of sub-micron amplitudes, formed by photo-isomerization and molecular reorientation processes in the polymer film during exposure to the light interference pattern that drove the formation of a SRG; the precursor is a stack sequence of Au, polymer, and glass. The SRG structures were exposed in GISAXS geometry to high-intensity X-ray radiation from a liquid Ga source (0.134 nm). Scattered photons were registered by a 2D detector, and their intensity distribution enabled us to characterize the structures. Analysis of the 2D patterns yielded information about the pitch of the gratings as well as the thickness of the films forming the gratings. The GISAXS experiments were carried out at the Research Center Juelich.

  2. Studies on spin coated PANI/PMMA composite thin film: Effect of post-deposition heating

    NASA Astrophysics Data System (ADS)

    Yadav, J. B.; Patil, R. B.; Puri, R. K.; Puri, Vijaya

    2008-12-01

    Adhesion, structural and optical properties of spin coated PANI/PMMA composite thin films of different composition on glass substrate are reported. The effect of post-deposition heating for 100 °C, 125 °C and 150 °C is also reported. The adhesion of the film was found to increase from 712 ± 5 × 104 N/m 2 to 1602 ± 3 × 10 4 N/m 2 and refractive index decreased from 1.852 ± 0.005 to 1.650 ± 0.004 with increase in concentration of PMMA. Due to post-deposition heating adhesion, optical band gap increased but refractive index decreased.

  3. Environmental Barrier Coatings Having a YSZ Top Coat

    NASA Technical Reports Server (NTRS)

    Lee, Kang N.; Gray, Hugh (Technical Monitor)

    2002-01-01

    Environmental barrier coatings (EBCs) with a Si bond coat, a yttria-stabilized zirconia (YSZ) top coat, and various intermediate coats were investigated. EBCs were processed by atmospheric pressure plasma spraying. The EBC durability was determined by thermal cycling tests in water vapor at 1300 C and 1400 C, and in air at 1400 C and 1500 C. EBCs with a mullite (3Al2O3 (dot) 2SiO2) + BSAS (1 - xBaO (dot) xSrO (dot) Al2O3 (dot) 2SiO2) intermediate coat were more durable than EBCs with a mullite intermediate coat, while EBCs with a mullite/BSAS duplex intermediate coat resulted in inferior durability. The improvement with a mullite + BSAS intermediate coat was attributed to enhanced compliance of the intermediate coat due to the addition of a low modulus BSAS second phase. Mullite + BSAS/YSZ and BSAS/YSZ interfaces produced a low melting (less than 1400 C) reaction product, which is expected to degrade the EBC performance by increasing the thermal conductivity. EBCs with a mullite + BSAS / graded mullite + YSZ intermediate coat showed the best durability among the EBCs investigated in this study. This improvement was attributed to diffused CTE (Coefficient of Thermal Expansion) mismatch stress and improved chemical stability due to the compositionally graded mullite+YSZ layer.

  4. Hollow agarose microneedle with silver coating for intradermal surface-enhanced Raman measurements: a skin-mimicking phantom study

    NASA Astrophysics Data System (ADS)

    Yuen, Clement; Liu, Quan

    2015-06-01

    Human intradermal components contain important clinical information beneficial to the field of immunology and disease diagnosis. Although microneedles have shown great potential to act as probes to break the human skin barrier for the minimally invasive measurement of intradermal components, metal microneedles that include stainless steel could cause the following problems: (1) sharp waste production, and (2) contamination due to reuse of microneedles especially in developing regions. In this study, we fabricate agarose microneedles coated with a layer of silver (Ag) and demonstrate their use as a probe for the realization of intradermal surface-enhanced Raman scattering measurements in a set of skin-mimicking phantoms. The Ag-coated agarose microneedle quantifies a range of glucose concentrations from 5 to 150 mM inside the skin phantoms with a root-mean-square error of 5.1 mM within 10 s. The needle is found enlarged by 53.9% after another 6 min inside the phantom. The shape-changing capability of this agarose microneedle ensures that the reuse of these microneedles is impossible, thus avoiding sharp waste production and preventing needle contamination, which shows the great potential for safe and effective needle-based measurements.

  5. Drop-Coating Deposition Raman (DCDR) Spectroscopy as a Tool for Membrane Interaction Studies: Liposome-Porphyrin Complex.

    PubMed

    Kočišová, Eva; Procházka, Marek; Vaculčiaková, Lenka

    2015-08-01

    Drop-coating deposition Raman (DCDR) spectroscopy is based on the measurement of a sample that has been preconcentrated by being dried on a special hydrophobic plate. In addition to its higher sensitivity, the advantage of DCDR over the conventional Raman spectroscopy is the small sample volume needed, the lack of interference from solvents, and the capability of segregating any impurities present and separating components in more complex samples. In this study, DCDR spectroscopy was employed to investigate the complex of the cationic copper(II) 5,10,15,20-tetrakis(1-methyl-4-pyridyl) porphyrin (CuTMPyP) and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) liposomes. Drop-coating deposition Raman spectra were treated using factor analysis (FA), which led to the following conclusions: (i) the distribution of CuTMPyP in the complex is not homogenous, (ii) the DCDR technique segregates complexed and noncomplexed parts of the sample, (iii) the spectral changes caused by the drying process and by the interaction of CuTMPyP with the DPPC liposomes can be distinguished, and (iv) the porphyrin molecules interacting with DPPC affect both the order-disorder properties of the lipid chains and the lipid head.

  6. Migration studies of 3-chloro-1,2-propanediol (3-MCPD) in polyethylene extrusion-coated paperboard food packaging.

    PubMed

    Pace, Gregory V; Hartman, Thomas G

    2010-06-01

    The manufacturing process of paperboard food packaging can produce small quantities of 3-chloro-1,2-propanediol (3-MCPD or 3-monochloropropane-1,2-diol) when wet-strength resins containing epichlorohydrin are used. 3-MCPD is from the same family as 1,3-dichloro-2-propanol (1,3-DCP), which is known to cause cancer in animals. 3-MCPD has been found in acid hydrolyzed vegetable protein, Asian sauces and paperboard for food contact. In this investigation, we conducted extraction studies to measure 3-MCPD migration into food simulant solvents from the food contact side of polyethylene extrusion-coated paperboard beverage cartons and aqueous extractions of cut pieces from the entire paperboard. We demonstrate that 3-MCPD confirmed present at concentrations up to 9.9 mg kg(-1) within the paperboard matrix does not migrate through the polyethylene-coated food contact surface. The aqueous extraction of the entire paperboard and food contact side extractions with aqueous/acidic food simulants were performed using US Food and Drug Administration (FDA) and European Commission (EU) migration testing protocols. We also show that no significant amount of 3-MCPD migrates through the unskived edges on the inside seam of the paperboard structure. The methodology for the aqueous and migration cell extractions using GC-MS analyses was validated with a limit of quantification (LOQ) of 0.009 mg kg(-1) and a limit of detection (LOD) of 0.005 mg kg(-1).

  7. Hollow agarose microneedle with silver coating for intradermal surface-enhanced Raman measurements: a skin-mimicking phantom study.

    PubMed

    Yuen, Clement; Liu, Quan

    2015-06-01

    Human intradermal components contain important clinical information beneficial to the field of immunology and disease diagnosis. Although microneedles have shown great potential to act as probes to break the human skin barrier for the minimally invasive measurement of intradermal components, metal microneedles that include stainless steel could cause the following problems: (1) sharp waste production, and (2) contamination due to reuse of microneedles especially in developing regions. In this study, we fabricate agarose microneedles coated with a layer of silver (Ag) and demonstrate their use as a probe for the realization of intradermal surface enhanced Raman scattering measurements in a set of skin-mimicking phantoms. The Ag-coated agarose microneedle quantifies a range of glucose concentrations from 5 to 150 mM inside the skin phantoms with a root-mean-square error of 5.1 mM within 10 s. The needle is found enlarged by 53.9% after another 6 min inside the phantom. The shape-changing capability of this agarose microneedle ensures that there use of these microneedles is impossible, thus avoiding sharp waste production and preventing needle contamination,which shows the great potential for safe and effective needle-based measurements.

  8. Inhibiting the shuttle effect of Li-S battery with a graphene oxide coating separator: Performance improvement and mechanism study

    NASA Astrophysics Data System (ADS)

    Jiang, Yong; Chen, Fang; Gao, Yang; Wang, Yanyan; Wang, Shanshan; Gao, Qiang; Jiao, Zheng; Zhao, Bing; Chen, Zhiwen

    2017-02-01

    In this paper, graphene oxide (GO) is integrated on commercial polypropylene separator by tape casting method and sandwiched between a sulfur cathode and the separator as a shuttle inhibitor of the Li-S battery. The issues of lithium polysulfides dissolution and shuttle effect are inhibited distinctly, and significant improvements not only in the active material utilization but also in capacity retention are observed. What's more, the improvement mechanism is studied in detail. The results demonstrate that the sulfur and polysulfide species in separator and electrolyte for the cell with GO-coating separator are much less than that with the pristine separator. The GO membrane still maintains three-dimensional porous and flexible structure with a few lithium polysulfides and Li2S2/Li2S nanoparticles anchored on the surface and inter-layers of GO sheets after long cycles. And the active materials are significantly localized within the cathode structure after GO-coating. In addition, less sulfate species, lithium salts, polysulfides and other insoluble species are identified on the cathode and separator after long-term cycling.

  9. Characterisation of food contact non-stick coatings containing TiO2 nanoparticles and study of their possible release into food.

    PubMed

    Golja, Viviana; Dražić, Goran; Lorenzetti, Martina; Vidmar, Janja; Ščančar, Janez; Zalaznik, Maša; Kalin, Mitjan; Novak, Saša

    2017-03-01

    Novel nanoparticles containing non-stick coatings have been developed for food contact applications such as frying pans. Possible release of nanoparticles from such coatings into food is not known. In this paper, the characterisation of commercially available non-stick coatings was performed by use of FTIR, electron and optical microscopy, EDXS and XRD analysis. Characterisation revealed that the coatings contained micron- and nanosized rutile TiO2 particles, and quartz SiO2 embedded in a silicone polymer matrix. In order to estimate possible migration of TiO2 nanoparticles from coatings into food, migration tests into simulants (deionised water, 3% acetic acid and 5 g l(-1) citric acid) were performed (2 h at 100°C), and thermal and mechanical degradation of the matrix was studied. Simulants were analysed by ICP-MS after ultrafiltration and by microwave-assisted digestion. The concentration of titanium-containing particles that migrated into simulants was up to 861 µg l(-1) (147 µg dm(-)(2)). Titanium was present in simulants in ionic form as well. The presence of TiO2 nanoparticles in 3% acetic acid was confirmed by SEM-EDXS analysis. Thermal stability study (TG/DSC MS analysis) did not show degradation of the matrix under foreseeable conditions of use, but mechanical degradation studies (scratch and tribological testing) showed possible release (microgram quantities per punched sample) of titanium-containing nanoparticles. The matrix degradation results were confirmed by observations of the morphology of the same type of coatings actually used for food preparation. Dissolution from the surface and matrix degradation can both contribute to nanoparticles release from this type of non-stick food contact coatings.

  10. Modeling of Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Ferguson, B. L.; Petrus, G. J.; Krauss, T. M.

    1992-01-01

    The project examined the effectiveness of studying the creep behavior of thermal barrier coating system through the use of a general purpose, large strain finite element program, NIKE2D. Constitutive models implemented in this code were applied to simulate thermal-elastic and creep behavior. Four separate ceramic-bond coat interface geometries were examined in combination with a variety of constitutive models and material properties. The reason for focusing attention on the ceramic-bond coat interface is that prior studies have shown that cracking occurs in the ceramic near interface features which act as stress concentration points. The model conditions examined include: (1) two bond coat coefficient of thermal expansion curves; (2) the creep coefficient and creep exponent of the bond coat for steady state creep; (3) the interface geometry; and (4) the material model employed to represent the bond coat, ceramic, and superalloy base.

  11. DEVELOPMENT OF PROTECTIVE COATINGS FOR TANTALUM-BASE ALLOYS

    DTIC Science & Technology

    PHASE STUDIES, PHYSICAL PROPERTIES, REFRACTORY MATERIALS, SILICIDES , SILICON COATINGS , SILICON COMPOUNDS, TANTALUM, TENSILE PROPERTIES, TITANIUM COMPOUNDS, TUNGSTEN ALLOYS, VANADIUM ALLOYS, VAPOR PLATING, ZINC COATINGS ....TANTALUM ALLOYS, ALLOYS, ALUMINUM COATINGS , ALUMINUM COMPOUNDS, BORON COMPOUNDS, CERAMIC COATINGS , CHROMIUM COMPOUNDS, COATINGS , FLAME SPRAYING...HAFNIUM ALLOYS, HAFNIUM COMPOUNDS, HARDNESS, HEAT RESISTANT ALLOYS, INTERMETALLIC COMPOUNDS, METAMATHEMATICS, NIOBIUM ALLOYS, OSCILLOGRAPHS, OXIDES

  12. An investigation of the typical corrosion parameters used to test polymer electrolyte fuel cell bipolar plate coatings, with titanium nitride coated stainless steel as a case study

    NASA Astrophysics Data System (ADS)

    Orsi, A.; Kongstein, O. E.; Hamilton, P. J.; Oedegaard, A.; Svenum, I. H.; Cooke, K.

    2015-07-01

    Stainless steel bipolar plates (BPP) for polymer electrolyte membrane fuel cells (PEMFCs) have good manufacturability, durability and low costs, but inadequate corrosion resistance and elevated interfacial contact resistance (ICR) in the fuel cell environment. Thin film coatings of titanium nitride (TiN) of 1 μm in thickness, were deposited by means of physical vapour deposition (PVD) process on to stainless steel (SS) 316L substrates and were evaluated, in a series of tests, for their level of corrosion protection and ICR. In the ex-situ corrosion tests, variables such as applied potential, experimental duration and pH of the sulphate electrolyte at 80 °C were altered. The ICR values were found to increase after exposure to greater applied potentials and electrolytes of a higher pH. In terms of experimental duration, the ICR increased most rapidly at the beginning of each experiment. It was also found that the oxidation of TiN was accelerated after exposure to electrolytes of a higher pH. When coated BPPs were incorporated into an accelerated fuel cell test, the degradation of the fuel cell cathode resembled the plates that were tested at the highest anodic potential (1.4 VSHE).

  13. Electrochemical Study of Ni20Cr Coatings Applied by HVOF Process in ZnCl2-KCl at High Temperatures

    PubMed Central

    Porcayo-Calderón, J.; Sotelo-Mazón, O.; Casales-Diaz, M.; Ascencio-Gutierrez, J. A.; Salinas-Bravo, V. M.; Martinez-Gomez, L.

    2014-01-01

    Corrosion behavior of Ni20Cr coatings deposited by HVOF (high velocity oxygen-fuel) process was evaluated in ZnCl2-KCl (1 : 1 mole ratio) molten salts. Electrochemical techniques employed were potentiodynamic polarization curves, open circuit potential, and linear polarization resistance (LPR) measurements. Experimental conditions included static air and temperatures of 350, 400, and 450°C. 304-type SS was evaluated in the same conditions as the Ni20Cr coatings and it was used as a reference material to assess the coatings corrosion resistance. Coatings were evaluated as-deposited and with a grinded surface finished condition. Results showed that Ni20Cr coatings have a better corrosion performance than 304-type SS. Analysis showed that Ni content of the coatings improved its corrosion resistance, and the low corrosion resistance of 304 stainless steel was attributed to the low stability of Fe and Cr and their oxides in the corrosive media used. PMID:25210645

  14. A Study on Effects of Mechanical Stress and Cathodic Protection on Marine Coatings on Mild Steel in Artificial Seawater

    NASA Astrophysics Data System (ADS)

    Yang, Hong-Qi; Zhang, Qi; Tu, San-Shan; Li, Yi-Min; Wang, You; Huang, Yi

    2016-09-01

    In this work, the separate and combined effects of elastic stress and cathodic protection (CP) potential on barrier properties of two marine coating systems applied on Q235 steel plates in artificial seawater were investigated through measurements of electrochemical impedance spectra. The obtained results indicated that elastic stress could have a significant influence on coating barrier property, and the extent of this influence depends on both the magnitude and direction of elastic stress. Meanwhile, it was shown that the separate application of CP could also promote coating degradation, and for both coating systems, the more negative the applied CP potential, the more quickly and more seriously the coatings deteriorated. Furthermore, compared with the sample with only stress or CP, the results showed that the interaction between mechanical stress and CP could reduce their respective impact on coating barrier property, and the combined effect depends on the predominant factor.

  15. Diamond Coatings

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Advances in materials technology have demonstrated that it is possible to get the advantages of diamond in a number of applications without the cost penalty, by coating and chemically bonding an inexpensive substrate with a thin film of diamond-like carbon (DLC). Diamond films offer tremendous technical and economic potential in such advances as chemically inert protective coatings; machine tools and parts capable of resisting wear 10 times longer; ball bearings and metal cutting tools; a broad variety of optical instruments and systems; and consumer products. Among the American companies engaged in DLC commercialization is Diamonex, Inc., a diamond coating spinoff of Air Products and Chemicals, Inc. Along with its own proprietary technology for both polycrystalline diamond and DLC coatings, Diamonex is using, under an exclusive license, NASA technology for depositing DLC on a substrate. Diamonex is developing, and offering commercially, under the trade name Diamond Aegis, a line of polycrystalline diamond-coated products that can be custom tailored for optical, electronic and engineering applications. Diamonex's initial focus is on optical products and the first commercial product is expected in late 1990. Other target applications include electronic heat sink substrates, x-ray lithography masks, metal cutting tools and bearings.

  16. Wear studies on ZrO2-filled PEEK as coating bearing materials for artificial cervical discs of Ti6Al4V.

    PubMed

    Song, Jian; Liu, Yuhong; Liao, Zhenhua; Wang, Song; Tyagi, Rajnesh; Liu, Weiqiang

    2016-12-01

    Polyetheretherketone (PEEK) and its composite coatings are believed to be the potential candidates' bio-implant materials. However, these coatings have not yet been used on the surface of titanium-based orthopedics and joint products and very few investigations on the tribological characteristics could be found in the published literature till date. In this study, the wettabilities, composition and micro-hardness were characterized using contact angle measurement, scanning electron microscopy (SEM) and hardness tester. The tribological tests were conducted using a ball-on-disc contact pair under 25% newborn calf serum (NCS) lubricated condition. For comparison, bare Ti6Al4V was studied. The obtained results revealed that those PEEK/ZrO2 composite coatings could improve the tribological properties of Ti6Al4V significantly. Adhesive wear and mild abrasive wear might be the dominant wear and failure mechanisms for PEEK/ZrO2 composite coatings in NCS lubricated condition. After comprehensive evaluation in the present study, 5wt.% ZrO2 nanoparticles filled PEEK coating displayed the optimum tribological characteristics and could be taken as a potential candidate for the bearing material of artificial cervical disc.

  17. A study of the effects of curing and storage conditions on controlled release diphenhydramine HCl pellets coated with Eudragit NE30D.

    PubMed

    Lin, Angela Y; Muhammad, Nouman A; Pope, David; Augsburger, Larry L

    2003-08-01

    The objective of this study was to investigate the possible impacts of curing and storage conditions on dissolution of controlled release diphenhydramine HCl pellets coated with EUDRAGIT NE30D. The accumulative percentage of dissolved active drug was used as the response in three statistical experimental design studies: 32 full factorial, Box-Behnken and 2(3) designs. By only considering curing temperature and curing time, both factors were found to significantly affect the dissolution rate, but curing temperature had greater impact than curing time. When considering polymer coating level, curing temperature and curing time together, polymer coating level and curing temperature had important effects on dissolution rate, but curing time became insignificant among these three factors. The addition of the water-soluble additives hydroxypropyl methyl cellulose and mannitol made coating films less sensitive to curing, and there was little or no difference in their effect in the model studied. Lower levels of a water-insoluble additive (kaolin) had little impact on dissolution; however, when the level of water-insoluble additive increased, the coating film became more sensitive to curing, especially at the lower curing temperature of 30 degrees C.

  18. Studies on the Sliding Wear Performance of Plasma Spray Ni-20Cr and Ni3Al Coatings

    NASA Astrophysics Data System (ADS)

    Kaur, Maninder; Singh, Harpreet; Singh, Balraj; Singh, Bhupinder

    2010-01-01

    Two metallic powders namely Ni-20Cr and Ni3Al were coated on AISI 309 SS steel by shrouded plasma spray process. The wear behavior of the bare, Ni-20Cr and Ni3Al-coated AISI 309 SS steel was investigated according to ASTM Standard G99-03 on a Pin-on-Disc Wear Test Rig. The wear tests were carried out at normal loads of 30 and 50 N with a sliding velocity of 1 m/s. Cumulative wear rate and coefficient of friction (μ) were calculated for all the cases. The worn-out surfaces were then examined by scanning electron microscopy analysis. Both the as-sprayed coatings exhibited typical splat morphology. The XRD analysis indicated the formation of Ni phase for the Ni-20Cr coating and Ni3Al phase for the Ni3Al coating. It has been concluded that the plasma-sprayed Ni-20Cr and Ni3Al coatings can be useful to reduce the wear rate of AISI 309 SS steel. The coatings were found to be adherent to the substrate steel during the wear tests. The plasma-sprayed Ni3Al coating has been recommended as a better choice to reduce the wear of AISI 309 SS steel, in comparison with the Ni-20Cr coating.

  19. In vivo study of osteogenerating properties of calcium-phosphate coating on titanium alloy Ti-6Al-4V.

    PubMed

    Gnedenkov, Sergey V; Sinebryukhov, Sergey L; Puz, Artyom V; Egorkin, Vladimir S; Kostiv, Roman E

    2016-01-01

    The method of formation of bioactive calcium-phosphate coating on medical titanium alloy Ti-6Al-4V (3.5-5.3% V; 5.3-6.8% Al; balance -Ti) by plasma electrolytic oxidation (PEO) has been developed. Evaluation of osteogenerating properties of the coating at fractures of the shaft of the femur on Wistar line laboratory rats has been performed. It has been established that the calcium-phosphate PEO coating accelerates osteogenesis and promotes the formation of a pronounced periosteal callus in the fracture area. The presence of calcium phosphates in the PEO coating surface layer significantly accelerates the growth of bone tissue on the titanium surface.

  20. Comparative Study of Performance and Combustion Characteristics of Conventional and Low Heat Rejection (Mullite Coated) Diesel Engines

    NASA Astrophysics Data System (ADS)

    Patond, S. B.; Chaple, S. A.; Shrirao, P. N.; Shaikh, P. I.

    2013-06-01

    Tests were performed on a single cylinder, four stroke, direct injection, diesel engine whose piston crown, cylinder head and valves were coated with a 0.5 mm thickness of 3Al2O3·2SiO2 (mullite) (Al2O3 = 60%, SiO2 = 40%) over a 150 μm thickness of NiCrAlY bond coat. The working conditions for the conventional engine (without coating) and LHR (mullite coated) engine were kept exactly same to ensure a comparison between the two configurations of the engine. This paper is intended to emphasis on performance and combustion characteristics of conventional and LHR (Mullite coated) diesel engines under identical conditions. Tests were carried out at same operational constraints i.e. air-fuel ratio and engine speed conditions for both conventional engine (without coating) and LHR (mullite coated) engines. The results showed that, there was as much as 1.8 % increasing on brake power for LHR (mullite coated) engine compared to conventional engine (without coating) at full load The average decrease in brake specific fuel consumption in the LHR engine compared with the conventional engine was 1.76 % for full engine load. However, there was increasing on cylinder gas pressure and net heat release rate for LHR engine compared to conventional engine. Also the results revealed that, there was as much as 22% increasing on exhaust gas temperature for LHR engine compared to conventional engine at full engine load.

  1. Part II: crystalline fluorapatite-coated hydroxyapatite implant material: a dog study with histologic comparison of osteogenesis seen with FA-coated HA grafting material versus HA controls: potential bacteriostatic effect of fluoridated HA.

    PubMed

    Nordquist, William D; Okudera, Hajima; Kitamura, Yutaka; Kimoto, Kazunari; Okudera, Toshimitsu; Krutchkoff, David J

    2011-01-01

    Success of osteogenesis in bone graft procedures can be enhanced by inhibiting oral bacterial infections through the use of prophylactic bacteriostatic fluoride within the grafting environment. Ideally, the fluoride ion should be chemically sequestered and thus unavailable unless needed at times during the process of early infection. As fluoride within fluorapatite is tightly bound at neutral pH and becomes available only during acidic conditions, fluorapatite is an ideal store for the fluoride ion which becomes released for bacteriostasis only during an acidic environment found with incipient bacterial infection. The purpose of this investigation was to compare the histologic properties of new bone formed surrounding fluorapatite (FA)-coated microcrystalline hydroxyapatite (HA) grafting material with comparable bone formed following the use of control HA material (OsteoGen, Impladent, Ltd, Holliswood, NY). The results of histologic analysis within dog studies here showed no detectable difference in new bone following therapeutic grafting procedures using each of the above 2 mineral coatings.

  2. Nanostructured Coatings

    NASA Astrophysics Data System (ADS)

    Rivière, J.-P.

    In many branches of technology where surfaces are playing a growing role, the use of coatings is often the only way to provide surfaces with specific functional properties. For example, the austenitic stainless steels or titanium alloys exhibit poor resistance to wear and low hardness values, which limits the field of applications. The idea then is to develop new solutions which would improve the mechanical performance and durability of objects used in contact and subjected to mechanical forces in hostile gaseous or liquid environments. Hard coatings are generally much sought after to enhance the resistance to wear and corrosion. They are of particular importance because they constitute a class of protective coatings which is already widely used on an industrial scale to improve the hardness and lifetime of cutting tools.

  3. Protective Coatings

    NASA Technical Reports Server (NTRS)

    1980-01-01

    General Magnaplate Corporation's pharmaceutical machine is used in the industry for high speed pressing of pills and capsules. Machine is automatic system for molding glycerine suppositories. These machines are typical of many types of drug production and packaging equipment whose metal parts are treated with space spinoff coatings that promote general machine efficiency and contribute to compliance with stringent federal sanitation codes for pharmaceutical manufacture. Collectively known as "synergistic" coatings, these dry lubricants are bonded to a variety of metals to form an extremely hard slippery surface with long lasting self lubrication. The coatings offer multiple advantages; they cannot chip, peel or be rubbed off. They protect machine parts from corrosion and wear longer, lowering maintenance cost and reduce undesired heat caused by power-robbing friction.

  4. Hydrophilic coating of mitotane-loaded lipid nanoparticles: preliminary studies for mucosal adhesion.

    PubMed

    Severino, Patrícia; Souto, Eliana B; Pinho, Samantha C; Santana, Maria H A

    2013-01-01

    The aim of the present work was to load mitotane, an effective drug for adrenocortical carcinoma treatment, in solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC). The SLN and NLC were successfully prepared by high shear homogenization followed by hot high pressure homogenization. Formulations were composed of cetyl palmitate as the solid lipid for SLN, whereas for NLC PEGylated stearic acid was selected as solid lipid and medium chain triacylglycerols as the liquid lipid. Tween® 80 and Span® 85 were used as surfactants for all formulations. The particle size, zeta potential, polydispersity index (PI), encapsulation efficiency (EE), and loading capacity (LC) were evaluated. The SLN showed a mean particle size of 150 nm, PI of 0.20, and surface charge -10 mV, and the EE and LC could reach up to 92.26% and 0.92%, respectively. The NLC were obtained with a mean particle size of 250 nm, PI of 0.30, zeta potential -15 mV and 84.50% EE, and 0.84% LC, respectively. Hydrophilic coating of SLN with chitosan or benzalkonium chloride was effective in changing zeta potential from negative to positive values. The results suggest that mitotane was efficiently loaded in SLN and in NLC, being potential delivery systems for improving mitotane LC and controlled drug release.

  5. Micro energy-dispersive x-ray fluorescence spectrometry study of dentin coating with nanobiomaterials

    NASA Astrophysics Data System (ADS)

    Soares, Luís. Eduardo Silva; Nahorny, Sídnei; Marciano, Fernanda Roberta; Zanin, Hudson; Lobo, Anderson de Oliveira

    2015-06-01

    New biomaterials such as multi-walled carbon nanotubes oxide/graphene oxide (MWCNTO/GO), nanohydroxyapatite (nHAp) and combination of them together or not to acidulated phosphate fluoride gel (F) have been tested as protective coating before root dentin erosion. Fourteen bovine teeth were cleaned, polished, divided into two parts (n=28) and assigned to seven groups: (Control) - without previous surface treatment; F treatment; nHAp; MWCNTO/GO; F+nHAp; F+MWCNTO/GO and F+MWCNTO/GO/nHAp composites. Each sample had two sites of pre-treatments: acid etched area and an area without treatment. After the biomaterials application, the samples were submitted to six cycles (demineralization: orange juice, 10 min; remineralization: artificial saliva, 1 h). Micro energy-dispersive X-ray fluorescence spectrometry (μ-EDXRF) mapping area analyses were performed after erosive cycling on both sites (n=84). μ-EDXRF mappings showed that artificial saliva and MWCNTO/GO/nHAp/F composite treatments produced lower dentin demineralization than in the other groups. Exposed dentin tubules allowed better interaction of nanobiomaterials than in smear layer covered dentin. Association of fluoride with other biomaterials had a positive influence on acid etched dentin. MWCNTO/GO/nHAp/F composite treatment resulted in levels of demineralization similar to the control group.

  6. Simulation study of nanoparticle coating in a low pressure plasma reactor

    SciTech Connect

    Pourali, N.; Foroutan, G.

    2015-02-15

    A self-consistent combination of plasma fluid model, nanoparticle heating model, and surface deposition model is used to investigate the coating of nanosize particles by amorphous carbon layers in a low pressure plasma reactor. The numerical results show that, owing to the net heat release in the surface reactions, the particle temperature increases and its equilibrium value remains always 50 K above the background gas temperature. The deposition rate decreases with increasing of the particle temperature and the corresponding time scale is of the order of 10 ms. The deposition rate is also strongly affected by the change in plasma parameters. When the electron temperature is increased, the deposition rate first increases due to the enhanced ion and radical generation, shows a maximum and then declines as the particle temperature rises above the gas temperature. An enhancement in the background gas pressure and/or temperature leads to a reduction in the deposition rate, which can be explained in terms of the enhanced etching by atomic hydrogen and particle heating by the background gas.

  7. Gold Coating

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Epner Technology Inc. responded to a need from Goddard Space Flight Center for the ultimate in electroplated reflectivity needed for the Mars Global Surveyor Mars Orbiter Laser Altimeter (MOLA). Made of beryllium, the MOLA mirror was coated by Epner Technology Laser Gold process, specially improved for the project. Improved Laser Gold- coated reflectors have found use in an epitaxial reactor built for a large semiconductor manufacturer as well as the waveguide in Braun-Thermoscan tympanic thermometer and lasing cavities in various surgical instruments.

  8. In vitro study of drug-eluting stent coatings based on poly(L-lactide) incorporating cyclosporine A - drug release, polymer degradation and mechanical integrity.

    PubMed

    Sternberg, Katrin; Kramer, Sven; Nischan, Claudia; Grabow, Niels; Langer, Thomas; Hennighausen, Gerhard; Schmitz, Klaus-Peter

    2007-07-01

    In this study, absorbable polymer stent coatings for localized drug delivery based on poly(L-lactide) (PLLA) and cyclosporine A (CsA) were developed and tested in vitro. Metallic stents were coated with different compositions of PLLA/CsA (70/30, 60/40, 50/50% w/w) and beta-sterilized. The specimens were used to assess the drug release kinetics with HPLC. Sterilization influenced polymer degradation was measured with GPC. Mechanical integrity of the stent coatings was studied with SEM. The interconnection of the coated stents with a balloon-catheter was characterized by the measurement of stent dislodgment force. A migration assay was used to determine the inhibitory effect of the model drug CsA on smooth muscle cell (SMC) migration. The release of CsA was established over time periods up to 24 days in sodium chloride solution and in porcine blood plasma. An inhibition of SMC migration (max. 26-33%) was found for CsA concentrations of 4 x 10(-5) to 4 x 10(-7) mol/l. Marked molecular weight reduction (70-80%) of the PLLA matrix occurred after beta-sterilization. We also observed a substantial decrease of in vitro degradation time. The maintenance of the mechanical integrity of the polymer coating during crimping and dilation of the specimens could be verified, and a sufficient stent dislodgment force of 0.8-0.9 N was measured.

  9. Polyether ether ketone implants achieve increased bone fusion when coated with nano-sized hydroxyapatite: a histomorphometric study in rabbit bone.

    PubMed

    Johansson, Pär; Jimbo, Ryo; Naito, Yoshihito; Kjellin, Per; Currie, Fredrik; Wennerberg, Ann

    2016-01-01

    Polyether ether ketone (PEEK) possesses excellent mechanical properties similar to those of human bone and is considered the best alternative material other than titanium for orthopedic spine and trauma implants. However, the deficient osteogenic properties and the bioinertness of PEEK limit its fields of application. The aim of this study was to limit these drawbacks by coating the surface of PEEK with nano-scaled hydroxyapatite (HA) minerals. In the study, the biological response to PEEK, with and without HA coating, was investigated. Twenty-four screw-like and apically perforated implants in the rabbit femur were histologically evaluated at 3 weeks and 12 weeks after surgery. Twelve of the 24 implants were HA coated (test), and the remaining 12 served as uncoated PEEK controls. At 3 weeks and 12 weeks, the mean bone-implant contact was higher for test compared to control (P<0.05). The bone area inside the threads was comparable in the two groups, but the perforating hole showed more bone area for the HA-coated implants at both healing points (P<0.01). With these results, we conclude that nano-sized HA coating on PEEK implants significantly improved the osteogenic properties, and in a clinical situation this material composition may serve as an implant where a rapid bone fusion is essential.

  10. Polyether ether ketone implants achieve increased bone fusion when coated with nano-sized hydroxyapatite: a histomorphometric study in rabbit bone

    PubMed Central

    Johansson, Pär; Jimbo, Ryo; Naito, Yoshihito; Kjellin, Per; Currie, Fredrik; Wennerberg, Ann

    2016-01-01

    Polyether ether ketone (PEEK) possesses excellent mechanical properties similar to those of human bone and is considered the best alternative material other than titanium for orthopedic spine and trauma implants. However, the deficient osteogenic properties and the bioinertness of PEEK limit its fields of application. The aim of this study was to limit these drawbacks by coating the surface of PEEK with nano-scaled hydroxyapatite (HA) minerals. In the study, the biological response to PEEK, with and without HA coating, was investigated. Twenty-four screw-like and apically perforated implants in the rabbit femur were histologically evaluated at 3 weeks and 12 weeks after surgery. Twelve of the 24 implants were HA coated (test), and the remaining 12 served as uncoated PEEK controls. At 3 weeks and 12 weeks, the mean bone–implant contact was higher for test compared to control (P<0.05). The bone area inside the threads was comparable in the two groups, but the perforating hole showed more bone area for the HA-coated implants at both healing points (P<0.01). With these results, we conclude that nano-sized HA coating on PEEK implants significantly improved the osteogenic properties, and in a clinical situation this material composition may serve as an implant where a rapid bone fusion is essential. PMID:27103801

  11. The effect of hydroxyapatite coated screw in the lateral fragility fractures of the femur. A prospective randomized clinical study.

    PubMed

    Pesce, V; Maccagnano, G; Vicenti, G; Notarnicola, A; Moretti, L; Tafuri, S; Vanni, D; Salini, V; Moretti, B

    2014-01-01

    Due to a growing numbers of lateral fragility fractures of the femur and their high social costs the need to work out an effective strategy in order to find a better solution for these patients is warranted. From January 2010 to July 2011, we carried out a prospective randomized clinical study comparing the results of patients with femoral lateral fractures treated by nail and cephalic hydroxyapatite coated screws (study group including 27 patients) compared to the patients with the same fractures treated with nail and head standard screws (control group including 27 patients). We defined the two parts of the femoral neck as ROI 1 (under the head screw) and ROI 2 (above the femoral screw) on the AP view. The bone density of the two areas was calculated using DEXA at T0 (1st day post-surgery), at T1 (40th day post-surgery), at T2 (3 months later), at T3 (1 year later). The clinical-radiography evaluations were based on the Harris Hip Score (HHS), ADL test and x-ray views of the hip. As far as the bone mineral density average of ROI 1 and ROI 2 is concerned, we found a significant statistical increase at T1 and T3 in the study group, while it was not significant in the control group. We could account for this data through the higher mechanical stability of hydroxyapatite coated screws than standard screws. In fact, this material was responsible for improved implant osteointegration. Thanks to a 1 year follow-up we were able to demonstrate the implant utility associated with augmentation and the importance of densitometry exams such as easily repeatable and low cost diagnostics to prevent the onset of complications linked to screw loosening.

  12. Space stable thermal control coatings

    NASA Technical Reports Server (NTRS)

    Harada, Y.

    1982-01-01

    A specification quality zinc orthotitanate coating was developed. This silicate-bonded Zn2TiO4 coating is discussed. The effects of precursor chemistry, precursor mixing procedures, stoichiometry variations, and of different heat treatments on the physical and optical properties of Zn2TiO4 are investigated. Inorganic silicates are compared to organic silicone binder systems. The effects of pigment to binder ratio, water content, and of different curing procedures on the optical and physical properties of Zn2TiO4 potassium silicate coatings are also studied. Environmental tests were conducted to determine the UV vacuum stability of coatings for durations up to 5000 equivalent Sun hours.

  13. Nanomaterial Case Study: A Comparison of Multiwalled Carbon Nanotube and Decabromodiphenyl Ether Flame-Retardant Coatings Applied to Upholstery Textiles (Independent Peer Review Draft)

    EPA Science Inventory

    This Independent Peer Review Draft document presents a case study of multiwalled carbon nanotubes (MWCNTs); it focuses on the specific example of MWCNTs as used in flame-retardant coatings applied to upholstery textiles. This case study is organized around the comprehensive envir...

  14. Study of X-ray optics. [testing polished Kanigen coated beryllium mirror in X ray telescope on Skylark

    NASA Technical Reports Server (NTRS)

    Froechtenigt, J. F.

    1973-01-01

    The testing is reported of a polished Kanigen coated beryllium mirror in a soft X-ray telescope to be flown on a Skylark sounding rocket. This test involved inserting the telescope in a 220 foot long vacuum line and taking photographs of an X-ray resolution source. These photographs were then used to evaluate the performance of the telescope mirror as a function of distance from the focal plane and the angular distance off the telescope axis. A second test was made in which a point source was used to study the imaging characteristics by means of a pinhole and proportional counter placed in the telescope focal plane. A third test was conducted using a position sensitive detector. The efficiency and resolution was increased by polishing.

  15. Study on fabrication of TiO2 thin films by spin - coating and their optical properties

    NASA Astrophysics Data System (ADS)

    Zharvan, Vicran; Daniyati, Risqa; Nur Ichzan A., S.; Yudoyono, Gatut; Darminto

    2016-03-01

    Study on fabrication of TiO2 thin films and their optical properties in UV-VIS spectrum has been conducted. TiO2 nanopowders were prepared by co-precipitation method with varying mixing duration for 5, 10 and 25 hours using TiCl3 as precursor. The as-synthesized TiO2 phase is anatase having crystalline size of 14.25 nm, 13.75 nm and 12.62, respectively for the corresponding mixing duration. Thin films of TiO2 were fabricated by spin coating method and then checked by XRD diffractometer and UV-Vis Spectrophotometer to examine their structure and band gap energy. The prepared films also contain anatase phase of TiO2 with respective band gap of 3.70 eV, 3.74 eV and 3.76 eV, depending on the powders and their treatment.

  16. A comparative study of graphene-coated stainless steel fiber felt and carbon cloth as anodes in MFCs.

    PubMed

    Hou, Junxian; Liu, Zhongliang; Li, Yanxia; Yang, Siqi; Zhou, Yu

    2015-05-01

    This study investigated the stainless steel-based materials and their potential in microbial fuel cells (MFCs) anode application. Herein, AISI 316L stainless steel fiber felts (SSFFs) were used as anodes in MFCs and their performance was compared with the carbon cloth anode MFCs. The experimental results showed that the unmodified carbon cloth (CC) anode had a better performance than the unmodified SSFF anode. However, after coating a thin layer of graphene (GN) on SSFF and CC, the power density of the MFC equipped with the modified SSFF was 2,143 mW m(-2), much higher than that of the graphene-modified CC-MFC which was only 1,018 mW m(-2). The experimental results proved that the use of durable metallic backbones combined with a thin layer of carbon nanoparticles offers exciting opportunities in the advancement of MFC anode design.

  17. Ion Beam Sputtered Coatings of Bioglass

    NASA Technical Reports Server (NTRS)

    Hench, Larry L.; Wilson, J.; Ruzakowski, Patricia Henrietta Anne

    1982-01-01

    The ion beam sputtering technique available at the NASA-Lewis was used to apply coatings of bioglass to ceramic, metallic, and polymeric substrates. Experiments in vivo and in vitro described investigate these coatings. Some degree of substrate masking was obtained in all samples although stability and reactivity equivalent to bulk bioglass was not observed in all coated samples. Some degree of stability was seen in all coated samples that were reacted in vitro. Both metallic and ceramic substrates coated in this manner failed to show significantly improved coatings over those obtained with existing techniques. Implantation of the coated ceramic substrate samples in bone gave no definite bonding as seen with bulk glass; however, partial and patchy bonding was seen. Polymeric substrates in these studies showed promise of success. The coatings applied were sufficient to mask the underlying reactive test surface and tissue adhesion of collagen to bioglass was seen. Hydrophilic, hydrophobic, charged, and uncharged polymeric surfaces were successfully coated.

  18. One-step green synthesis and characterization of plant protein-coated mercuric oxide (HgO) nanoparticles: antimicrobial studies

    NASA Astrophysics Data System (ADS)

    Das, Amlan Kumar; Marwal, Avinash; Sain, Divya; Pareek, Vikram

    2015-03-01

    The present study demonstrates the bioreductive green synthesis of nanosized HgO using flower extracts of an ornamental plant Callistemon viminalis. The flower extracts of Callistemon viminalis seem to be environmentally friendly, so this protocol could be used for rapid production of HgO. Till date, there is no report of synthesis of nanoparticles using flower extract of Callistemon viminalis. Mercuric acetate was taken as the metal precursor in the present experiment. The flower extract was found to act as a reducing as well as a stabilizing agent. The phytochemicals present in the flower extract act as reducing agent which include proteins, saponins, phenolic compounds, phytosterols, and flavonoids. FT-IR spectroscopy confirmed that the extract had the ability to act as a reducing agent and stabilizer for HgO nanoparticles. The formation of the plant protein-coated HgO nanoparticles was first monitored using UV-Vis absorption spectroscopy. The UV-Vis spectroscopy revealed the formation of HgO nanoparticles by exhibiting the typical surface plasmon absorption maxima at 243 nm. The average particle size formed ranges from 2 to 4 nm. The dried form of synthesized nanoparticles was further characterized using TGA, XRD, TEM, and FTIR spectroscopy. FT-IR spectra of synthesized HgO nanoparticles were performed to identify the possible bio-molecules responsible for capping and stabilization of nanoparticles, which confirm the formation of plant protein-coated HgO nanoparticles that is further corroborated by TGA study. The optical band gap of HgO nanoparticle was measured to be 2.48 eV using cutoff wavelength which indicates that HgO nanoparticles can be used in metal oxide semiconductor-based photovoltaic cells. A possible core-shell structure of the HgO nanobiocomposite has been proposed.

  19. Uptake of gaseous formaldehyde onto soil surfaces: a coated-wall flow tube study

    NASA Astrophysics Data System (ADS)

    Li, Guo; Su, Hang; Li, Xin; Meusel, Hannah; Kuhn, Uwe; Pöschl, Ulrich; Shao, Min; Cheng, Yafang

    2015-04-01

    Gaseous formaldehyde (HCHO) is an important intermediate molecule and source of HO2 radicals. However, discrepancies exist between model simulated and observed HCHO concentrations, suggesting missing sources or sinks in the HCHO budget. Multiphase processes on the surface of soil and airborne soil-derived particles have been suggested as an important mechanism for the production/removal of atmospheric trace gases and aerosols. In this work, the uptake of gaseous HCHO on soil surfaces were investigated through coated-wall flow tube experiments with HCHO concentration ranging from 10 to 40 ppbv. The results show that the adsorption of HCHO occurred on soil surfaces, and the uptake coefficient dropped gradually (i.e., by a factor of 5 after 1 hour) as the reactive surface sites were consumed. The HCHO uptake coefficient was found to be affected by the relative humidity (RH), decreasing from (2.4 ± 0.5) × 10-4 at 0% RH to (3.0 ± 0.08) × 10-5 at 70% RH, due to competition of water molecule absorption on the soil surface. A release of HCHO from reacted soil was also detected by applying zero air, suggesting the nature of reversible physical absorption and the existence of an equilibrium at the soil-gas interface. It implies that soil could be either a source or a sink for HCHO, depending on the ambient HCHO concentration. We also develop a Matlab program to calculate the uptake coefficient under laminar flow conditions based on the Cooney-Kim-Davis method.

  20. X-ray specular reflection studies of silicon coated by organic monolayers (alkylsiloxanes)

    NASA Astrophysics Data System (ADS)

    Tidswell, I. M.; Ocko, B. M.; Pershan, P. S.; Wasserman, S. R.; Whitesides, G. M.; Axe, J. D.

    1990-01-01

    X-ray specular reflectivity has been used to characterize the structure of silicon-silicon-oxide surfaces coated with chemisorbed hydrocarbon monolayer films (alkylsiloxanes). Using synchrotron radiation the reflectivity was followed over 9 orders of magnitude, from grazing incidence to an incident angle of φ~=6.5°, or q=(4π/λ)sin(φ)=0.8 Å-1, allowing a spatial resolution of features approximately π/0.8~=4.0 Å along the surface normal. Analysis was performed by fitting the data to reflectivities calculated from models of the surface electron density and by calculating Patterson functions directly from the data. Although the measured reflectivities could be equally well described by different sets of model parameters, the electron densities calculated from these different parameters were remarkably alike. Inspection of the electron densities allowed identification of a layer of SiO2 (~=17-Å thick), a layer of head-group region where the alkylsiloxane adsorbs to the SiO2, and the hydrocarbon layer. Fitting the data also required that the various interfaces have different widths. The fact that the same local hydrocarbon density of 0.85 g/cm3 was observed for both fully formed and partially formed monolayers with alkane chains of varying length excluded a model in which the partially formed monolayer was made up of separated islands of well-formed monolayers. Measurements before and after chemical reaction of a monolayer in which the alkyl chain was terminated by an olefinic group demonstrated the ability to use x-ray reflectivity to characterize chemical changes. The effects of radiation damage on these types of measurements are described.

  1. Reactive transport of gentisic acid in a hematite-coated sand column: Experimental study and modeling

    NASA Astrophysics Data System (ADS)

    Hanna, K.; Rusch, B.; Lassabatere, L.; Hofmann, A.; Humbert, B.

    2010-06-01

    The adsorption of gentisic acid (GA) by hematite nano-particles was examined under static and dynamic conditions by conducting batch and column tests. To simulate natural sediments, the iron oxide was deposited on 10 μm quartz particles. The GA adsorption was described by a surface complexation model fitted to pH-adsorption curves with GA concentrations of 0.1-1 mM in a pH range of 3-10. The surface was described with one type of site ( tbnd FeOH°), while gentisic acid at the surface was described by two surface complexes ( tbnd FeLH 2°, log Kint = 8.9 and tbnd FeLH -, log Kint = -8.2). Modeling was conducted with PHREEQC-2 using the MINTEQ database. From a kinetic point of view, the intrinsic chemical reactions were likely to be the rate-limiting step of sorption (˜10 -3 s -1) while external and internal mass transfer rates (˜10 2 s -1) were much faster. Under flow through conditions (column), adsorption of GA to hematite-coated sand was about 7-times lower than under turbulent mixing (batch). This difference could not be explained by chemical adsorption kinetics as shown by test calculations run with HYDRUS-1D software. Surface complexation model simulations however successfully described the data when the surface area was adjusted, suggesting that under flow conditions the accessibility to the reactive surface sites was reduced. The exact mechanism responsible for the increased mobility of GA could not be determined but some parameters suggested that decreased external mass transfer between solution and surface may play a significant role under flow through conditions.

  2. Initial study of sediment antagonism and characteristics of silver nanoparticle-coated biliary stents in an experimental animal model

    PubMed Central

    Tian, Yigeng; Xia, Mingfeng; Zhang, Shuai; Fu, Zhen; Wen, Qingbin; Liu, Feng; Xu, Zongzhen; Li, Tao; Tian, Hu

    2016-01-01

    Objective Plastic biliary stents used to relieve obstructive jaundice are frequently blocked by sediment, resulting in loss of drainage. We prepared stents coated with silver nanoparticles (AgNPs) and compared their ability to resist sedimentation with Teflon stents in a beagle model of obstructive jaundice. Methods AgNP-coated Teflon biliary stents were prepared by chemical oxidation–reduction and evaluated in an obstructive jaundice model that was produced by ligation of common bile duct (CBD); animals were randomized to two equal groups for placement of AgNP-coated or Teflon control stents. Liver function and inflammatory index were found to be similar in the two groups, and the obstruction was relieved. Stents were removed 21 days after insertion and observed by scanning and transmission electron microscopy. The AgNP coating was analyzed by energy dispersive X-ray analysis (EDXA), and the composition of sediment was assayed by Fourier-transform infrared (FTIR) spectroscopy. Results Electron microscopy revealed a black, closely adherent AgNP stent coating, with thicknesses of 1.5–6 µm. Sediment thickness and density were greater on Teflon than on AgNP-coated stents. EDXA confirmed the stability and integrity of the AgNP coating before and after in vivo animal experimentation. FTIR spectroscopy identified stent sediment components including bilirubin, cholesterol, bile acid, protein, calcium, and other substances. Conclusion AgNP-coated biliary stents resisted sediment accumulation in this canine model of obstructive jaundice caused by ligation of the CBD. PMID:27217749

  3. Computational study of low-friction quasicrystalline coatings via simulations of thin film growth of hydrocarbons and rare gases

    NASA Astrophysics Data System (ADS)

    Setyawan, Wahyu

    Quasicrystalline compounds (QC) have been shown to have lower friction compared to other structures of the same constituents. The abscence of structural interlocking when two QC surfaces slide against one another yields the low friction. To use QC as low-friction coatings in combustion engines where hydrocarbon-based oil lubricant is commonly used, knowledge of how a film of lubricant forms on the coating is required. Any adsorbed films having non-quasicrystalline structure will reduce the self-lubricity of the coatings. In this manuscript, we report the results of simulations on thin films growth of selected hydrocarbons and rare gases on a decagonal Al73Ni10Co17 quasicrystal (d-AlNiCo). Grand canonical Monte Carlo method is used to perform the simulations. We develop a set of classical interatomic many-body potentials which are based on the embedded-atom method to study the adsorption processes for hydrocarbons. Methane, propane, hexane, octane, and benzene are simulated and show complete wetting and layered films. Methane monolayer forms a pentagonal order commensurate with the d-AlNiCo. Propane forms disordered monolayer. Hexane and octane adsorb in a close-packed manner consistent with their bulk structure. The results of hexane and octane are expected to represent those of longer alkanes which constitute typical lubricants. Benzene monolayer has pentagonal order at low temperatures which transforms into triangular lattice at high temperatures. The effects of size mismatch and relative strength of the competing interactions (adsorbate-substrate and between adsorbates) on the film growth and structure are systematically studied using rare gases with Lennard-Jones pair potentials. It is found that the relative strength of the interactions determines the growth mode, while the structure of the film is affected mostly by the size mismatch between adsorbate and substrate's characteristic length. On d-AlNiCo, xenon monolayer undergoes a first-order structural

  4. Study of low-Z coatings for jet under exposure to electrons, laser radiation and atomic hydrogen

    NASA Astrophysics Data System (ADS)

    Haasz, A. A.; Davis, J. W.; Auciello, O.; Stangeby, P. C.

    1986-02-01

    In an attempt to lower radiation losses due to metal plasma impurities in the JET fusion device, the use of low-Z wall coatings has been proposed (Si, TiC, SiC, TiO2, Al2O3 and MgAl2O4 on Inconel 600). Experimental results tained by exposing these samples to electron, laser radiation and atomic hydrogen impact are presented. The studies performed include measurements of (1) gases evolved due to low energy (3000 eV) electron bombardment, (2) inherent gas content in the near-surface region, and (3) retained deuterium subsequent to exposure to sub-eV D sup 0. Electron impact desorption rates for hydrogen and methane due to electron bombardment span the range 10 to the minus 1 power to 10 to the minus 3 power H2/e(-) and 10 to the minus 2 to 10 to the minus 4 power Ch4/e(-). Following normal system bakeout at 500 K for 24h, the major species released by laser heating were found to be H2 and CO, with levels up to approx. 7 x 10 to the 16th power H/sq cm and approx. 4 x 10 to the 16th power CO/sq cm. A similar concentration of argon was found for the TiC coating produced by sputter ion plating. Further heating of the samples to 800 to 900K for 1h resulted in a reduction of hydrogen and CO release levels by about an order of magnitude. Subsequent to the 800 to 900 K heating procedure, the samples were exposed to sub-eV D sup 0 atoms to fluences of approx. 2; x 10 to the 19th power D sup zero/sq cm, and deuterium retention levels were measured to be of the order of 10 to the 14th power - 10 to the 15th power D/sq cm for the various coatings. Implications of these results for JET's first-wall tritium inventory are discussed.

  5. Thermal stability of wurtzite Zr1-xAlxN coatings studied by in situ high-energy x-ray diffraction during annealing

    NASA Astrophysics Data System (ADS)

    Rogström, L.; Ghafoor, N.; Schroeder, J.; Schell, N.; Birch, J.; Ahlgren, M.; Odén, M.

    2015-07-01

    We study the thermal stability of wurtzite (w) structure ZrAlN coatings by a combination of in situ high-energy x-ray scattering techniques during annealing and electron microscopy. Wurtzite structure Zr1-xAlxN coatings with Al-contents from x = 0.46 to x = 0.71 were grown by cathodic arc evaporation. The stability of the w-ZrAlN phase depends on chemical composition where the higher Al-content coatings are more stable. The wurtzite ZrAlN phase was found to phase separate through spinodal decomposition, resulting in nanoscale compositional modulations, i.e., alternating Al-rich ZrAlN layers and Zr-rich ZrAlN layers, forming within the hexagonal lattice. The period of the compositional modulations varies between 1.7 and 2.5 nm and depends on the chemical composition of the coating where smaller periods form in the more unstable, high Zr-content coatings. In addition, Zr leaves the w-ZrAlN lattice to form cubic ZrN precipitates in the column boundaries.

  6. Ion-exchange voltammetry with nafion/poly(sodium 4-styrenesulfonate) mixed coatings on mercury film electrodes: characterization studies and application to the determination of trace metals.

    PubMed

    Rocha, Luciana S; Pinheiro, José Paulo; Carapuça, Helena M

    2006-09-12

    This work aimed to produce improved polymer coatings for the modification of thin mercury film electrodes (TMFEs). The goal is to obtain sensitive, reproducible, mechanically stable and antifouling devices suitable for the determination of trace metal cations in complex media. Therefore, novel mixed coatings of two sulfonated cation-exchange polymers of dissimilar characteristics-Nafion (NA) and poly(sodium 4-styrenesulfonate) (PSS)-were produced by solvent evaporation onto glassy carbon electrodes. The effect of the mass ratio (NA:PSS) on the film morphology was studied by scanning electron microscopy, revealing the formation of biphasic polymer systems, where PSS bead-shaped clusters appeared randomly dispersed into a uniform and compact NA environment. The permselectivity/ion-exchange features of the mixed films onto glassy carbon were evaluated using cathecol, urate, and dopamine. To allow trace metal analysis, thin mercury films were plated through the NA/PSS coatings, being the reproducibility and ion-exchange features of the mixed coatings-TMFE evaluated using lead ions. The best NA/PSS coating was found for the mass ratio of 5.3. Analytical performance of the NA/PSS-TMFE yielded a detection limit of 5.5 nM (3sigma), and the application of this modified electrode to an untreated polluted estuarine water sample produced significant improvements in the quality of the signal compared with that for a bare TMFE.

  7. Hydrogen and Wear Resistant Nanolaminate Coatings

    SciTech Connect

    2009-02-01

    This factsheet describes a study that will develop the concept of superhard coatings based on alternating nanoscale layers of sputter-deposited coatings with anticipated hydrogen compatibility and low friction coefficients.

  8. [Experimental studies of using polyester-coated materials of Polish production in surgical treatment of retinal detachment].

    PubMed

    Kmera-Muszyńska, M; Kecik, T; Pratnicki, A; Zajkowska, G; Wael, I

    1991-01-01

    The authors evaluated the tolerance of the rabbit eye to a new generation of polyester bands coated by polymethane polyester or by silicone. Investigations consisted on the application of episcleral implants made from polyester coated bands and--for comparison--of already well known polyester non-coated bands The eyes were removed on the 4th, 10th, 30th, 60th and 90th day after operation, macroscopically evaluated and fixed in formaline. The specimen were prepared from the spot of the applied implant together with a margin of surrounding tissues. Clinical observations, macroscopic evaluations as well as histopathological examinations showed a good tolerance of the silicone coated bands; it was discovered instead that the polyurethane coated bands are causing a more pronounced inflammatory reaction in the early postoperative period.

  9. Coating Microstructure-Property-Performance Issues

    SciTech Connect

    Terry C. Totemeier; Richard N. Wright

    2005-05-01

    Results of studies on the relationships between spray parameters and performance of thermally-sprayed intermetallic coatings for high-temperature oxidation and corrosion resistance are presented. Coating performance is being assessed by corrosion testing of free-standing coatings, thermal cycling of coating substrates, and coating ductility measurement. Coating corrosion resistance was measured in a simulated coal combustion gas environment (N2-CO-CO2-H2O-H2S) at temperatures from 500 to 800°C using thermo-gravimetric analysis (TGA). TGA testing was also performed on a typical ferritic-martensitic steel, austenitic stainless steel, and a wrought Fe3Al-based alloy for direct comparison to coating behavior. FeAl and Fe3Al coatings showed corrosion rates slightly greater than that of wrought Fe3Al, but markedly lower than the steels at all temperatures. The corrosion rates of the coatings were relatively independent of temperature. Thermal cycling was performed on coated 316SS and nickel alloy 600 substrates from room temperature to 800°C to assess the relative effects of coating microstructure, residual stress, and thermal expansion mismatch on coating cracking by thermal fatigue. Measurement of coating ductility was made by acoustic emission monitoring of coated 316SS tensile specimens during loading.

  10. Potentiodynamic study of Al-Mg alloy with superhydrophobic coating in photobiologically active/not active natural seawater.

    PubMed

    Benedetti, Alessandro; Cirisano, Francesca; Delucchi, Marina; Faimali, Marco; Ferrari, Michele

    2016-01-01

    Superhydrophobic coating technology is regarded as an attractive possibility for the protection of materials in a sea environment. DC techniques are a useful tool to characterize metals' behavior in seawater in the presence/absence of coatings and/or corrosion inhibitors. In this work, investigations concerning Al-5%Mg alloy with and without a sprayed superhydrophobic coating were carried out with potentiodynamic scans in photobiologically active and not active seawater (3 weeks of immersion). In not photobiologically active seawater, the presence of the superhydrophobic coating did not prevent pitting corrosion. With time, the coating underwent local exfoliations, but intact areas still preserved superhydrophobicity. In photobiologically active seawater, on samples without the superhydrophobic coating (controls) pitting was inhibited, probably due to the adsorption of organic compounds produced by the photobiological activity. After 3 weeks of immersion, the surface of the coating became hydrophilic due to diatom coverage. As suggested by intermediate observations, the surface below the diatom layer is suspected of having lost its superhydrophobicity due to early stages of biofouling processes (organic molecule adsorption and diatom attachment/gliding). Polarization curves also revealed that the metal below the coating underwent corrosion inhibiting phenomena as observed in controls, likely due to the permeation of organic molecules through the coating. Hence, the initial biofouling stages (days) occurring in photobiologically active seawater can both accelerate the loss of superhydrophobicity of coatings and promote corrosion inhibition on the underlying metal. Finally, time durability of superhydrophobic surfaces in real seawater still remains the main challenge for applications, where the early stages of immersion are demonstrated to be of crucial importance.

  11. Thermoplastic coating of carbon fibers

    NASA Technical Reports Server (NTRS)

    Edie, D. D.; Lickfield, G. C.; Allen, L. E.; Mccollum, J. R.

    1989-01-01

    A continuous powder coating system was developed for coating carbon fiber with LaRC-TPI (Langley Research Center-Thermoplastic Polyimide), a high-temperature thermoplastic polymide invented by NASA-Langley. The coating line developed used a pneumatic fiber spreader to separate the individual fibers. The polymer was applied within a recirculating powder coating chamber then melted using a combination of direct electrical resistance and convective heating to make it adhere to the fiber tow. The tension and speed of the line were controlled with a dancer arm and an electrically driven fiber wind-up and wind-off. The effects of heating during the coating process on the flexibility of the prepreg produced were investigated. The uniformity with which the fiber tow could be coated with polymer also was examined. Composite specimens were fabricated from the prepreg and tested to determine optimum process conditions. The study showed that a very uniform and flexible prepeg with up to 50 percent by volume polymer could be produced with this powder coating system. The coating line minimized powder loss and produced prepeg in lengths of up to 300 m. The fiber spreading was found to have a major effect on the coating uniformity and flexibility. Though test results showed low composite tensile strengths, analysis of fracture surfaces under scanning electron microscope indicated that fiber/matrix adhesion was adequate.

  12. Electron microscopic evaluation and fission product identification of irradiated TRISO coated particles from the AGR-1 experiment: A preliminary Study

    SciTech Connect

    I J van Rooyen; D E Janney; B D Miller; J L Riesterer; P A Demkowicz

    2012-10-01

    ABSTRACT Post-irradiation examination of coated particle fuel from the AGR-1 experiment is in progress at Idaho National Laboratory and Oak Ridge National Laboratory. In this presentation a brief summary of results from characterization of microstructures in the coating layers of selected irradiated fuel particles with burnup of 11.3% and 19.3% FIMA will be given. The main objective of the characterization were to study irradiation effects, fuel kernel porosity, layer debonding, layer degradation or corrosion, fission-product precipitation, grain sizes, and transport of fission products from the kernels across the TRISO layers. Characterization techniques such as scanning electron microscopy, transmission electron microscopy, energy dispersive spectroscopy, and wavelength dispersive spectroscopy were used. A new approach to microscopic quantification of fission-product precipitates is also briefly demonstrated. The characterization emphasized fission-product precipitates in the SiC-IPyC interface, SiC layer and the fuel-buffer interlayer, and provided significant new insights into mechanisms of fission-product transport. Although Pd-rich precipitates were identified at the SiC-IPyC interlayer, no significant SiC-layer thinning was observed for the particles investigated. Characterization of these precipitates highlighted the difficulty of measuring low concentration Ag in precipitates with significantly higher concentrations of contain Pd and U. Different approaches to resolving this problem are discussed. Possible microstructural differences between particles with high and low releases of Ag particles are also briefly discussed, and an initial hypothesis is provided to explain fission-product precipitate compositions and locations. No SiC phase transformations or debonding of the SiC-IPyC interlayer as a result of irradiation were observed. Lessons learned from the post-irradiation examination are described and future actions are recommended.

  13. Comparative study of chitosan- and PEG-coated lipid and PLGA nanoparticles as oral delivery systems for cannabinoids

    NASA Astrophysics Data System (ADS)

    Durán-Lobato, Matilde; Martín-Banderas, Lucía; Gonçalves, Lídia M. D.; Fernández-Arévalo, Mercedes; Almeida, Antonio J.

    2015-02-01

    The cannabinoid derivative 1-naphthalenyl[4-(pentyloxy)-1-naphthalenyl]methanone (CB13) has an important therapeutic potential as analgesic in chronic pain states that respond poorly to conventional drugs. However, the incidence of its mild-to-moderate and dose-dependent adverse effects, as well as its pharmacokinetic profile, actually holds back its use in humans. Thus, the use of a suitable carrier system for oral delivery of CB13 becomes an attractive strategy to develop a valuable therapy. Polymeric poly(lactic-co-glycolic) acid (PLGA) and lipid nanoparticles (LNPs) are widely studied delivery vehicles that improve the bioavailability of lipophilic compounds and present special interest in oral delivery. Their surface can be modified to improve the adhesion of particles to the oral mucosa and increase their circulation time in blood with additives such as chitosan (CS) and polyethylene glycol (PEG), which can be feasibly incorporated onto these particles in a post-production step. In this work, CS- and PEG-modified polymeric PLGA and LNPs were successfully obtained and comparatively evaluated under the same experimental conditions as oral carriers for CB13. All the formulations presented adequate blood compatibility and absence of cytotoxicity in Caco-2 cells. Coating with CS led to a higher interaction with Caco-2 cells and a limited uptake in THP1 cells, while coating with PEG led to a limited uptake in Caco-2 cells and strongly prevented THP1 cells uptake. The performance of each formulation is discussed as a comparison of the potential of these carriers as oral delivery systems of CB13.

  14. Synthesized magnetic nanoparticles coated zeolite for the adsorption of pharmaceutical compounds from aqueous solution using batch and column studies.

    PubMed

    Salem Attia, Tamer Mohamed; Hu, Xia Lin; Yin, Da Qiang

    2013-11-01

    The contamination of fresh water with pharmaceutical and personal care products (PPCPs) has risen during the last few years. The adsorption of some PPCPs namely, Diclofenac-Na, Naproxen, Gemfibrozil and Ibuprofen from aqueous solution has been studied, magnetic nanoparticles coated zeolite (MNCZ) has been used as the adsorbent. Batch adsorption experiment was conducted to study the influences of different adsorption parameters such as contact time, solution pH and PPCPs concentrations in order to optimize the reaction conditions. The removal was favored at low pH values. Thus, as pH turns from acidic to basic conditions these compounds were less efficiently removed. The initial concentration does not appear to exert a noticeable effect on the removal efficiency of the studied PPCPs at low concentrations, but it showed less removal efficiency during high concentration of PPCPs especially for Ibuprofen. The removal of Diclofenac-Na was independent on time, while the contact time was of significant effect on the adsorption of Naproxen, Gemfibrozil and Ibuprofen even though these compounds were removed up to 95% during 10 min using MNCZ. From the isotherm adsorption study, the adsorption of PPCPs studied on MNCZ was best fitted with Freundlich isotherm equation. Pseudo-second order model providing the best fit model with the experimental data. Column adsorption study was conducted to compare the removal efficiency of MNCZ with other processes used at drinking water treatment plants (DWTPs), MNCZ showed high removal efficiency (>99%) than other used processes at DWTPs.

  15. In vitro and in vivo study of sustained nitric oxide release coating using diazeniumdiolate-oped poly(vinyl chloride) matrix with poly(lactide-co-glycolide) additive.

    PubMed

    Handa, Hitesh; Brisbois, Elizabeth J; Major, Terry C; Refahiyat, Lahdan; Amoako, Kagya A; Annich, Gail M; Bartlett, Robert H; Meyerhoff, Mark E

    2013-08-07

    Nitric oxide (NO) is an endogenous vasodilator as well as natural inhibitor of platelet adhesion and activation that can be released from a NO donor species, such as diazeniumdiolated dibutylhexanediamine (DBHD/N2O2) within a polymer coating. In this study, various Food and Drug Administration approved poly(lactic-co-glycolic acid) (PLGA) species were evaluated as additives to promote a prolonged NO release from DBHD/N2O2 within a plasticized poly(vinyl chloride) (PVC) matrix. When using an ester-capped PLGA additive with a slow hydrolysis time, the resulting coatings continuously release between 7-18×10(-10) mol cm(-2) min(-1) NO for 14 d at 37°C in PBS buffer. The corresponding pH changes within the polymer films were visualized using pH sensitive indicators and are shown to correlate with the extended NO release pattern. The optimal combined diazeniumdiolate/PLGA-doped NO release (NOrel) PVC coating was evaluated in vitro and its effect on the hemodynamics was also studied within a 4 h in vivo extracorporeal circulation (ECC) rabbit model of thrombogenicity. Four out of 7 control circuits clotted within 3 h, whereas all the NOrel coated circuits were patent after 4 h. Platelet counts on the NOrel ECC were preserved (79 ± 11% compared to 54 ± 6% controls). The NOrel coatings showed a significant decrease in the thrombus area as compared to the controls. Results suggest that by using ester-capped PLGAs as additives to a conventional plasticized PVC material containing a lipophilic diazeniumdiolates, the NO release can be prolonged for up to 2 weeks by controlling the pH within the organic phase of the coating.

  16. Study on the Tribological Behaviors of Different PEEK Composite Coatings for Use as Artificial Cervical Disk Materials

    NASA Astrophysics Data System (ADS)

    Song, Jian; Liao, Zhenhua; Wang, Song; Liu, Yuhong; Liu, Weiqiang; Tyagi, Rajnesh

    2016-01-01

    Poly(ether-ether-ketone) (PEEK) is a type of biomaterial which may be used for modifying the surface of materials used in implants. Hence, in the present investigation, the potentiality of PEEK and its composites coatings has been explored for improving the friction and wear behavior of the Ti6Al4V to be used for cervical disks. The structural characteristics, micro-hardness, friction, and wear characteristics of PEEK/Al2O3 and PEEK/SiO2 composite coatings have been investigated and compared with pure PEEK coating and bare titanium alloy sample. According to the XRD analysis results, these coated samples were mainly orthorhombic crystalline form. The contact angle values of PEEK and its composite coatings were higher, while micro-hardness values of these samples decreased significantly. The thickness values of the three coated samples were all above 70 μm on average. The average friction coefficients with a counterface of ZrO2 ball decreased significantly, especially under NCS (newborn calf serum) lubricated condition. After comprehensive evaluation, the PEEK/Al2O3 coating demonstrated optimum tribological properties and could be applied as bearing materials for artificial cervical disk.

  17. [Study of blood compatibility on TiO2 coated biomedical Ni-Ti shape memory alloy].

    PubMed

    Gao, Shuchun; Zhai, Yuchun; Hu, Jinling

    2011-10-01

    We coated a thin TiO2 film on the surface of Ni-Ti shape memory alloy by activated sputter method in the present work. The blood platelet adherence and antithrombogenicity of the TiO2-coated Ni-Ti alloy were evaluated. The results showed that the platelets on the TiO2-coated Ni-Ti alloy were fewer than those on 316L stainless steel, and no agglomeration or distortion for the platelets on the coated alloy was found, which means less probability of blood coagulation for the alloy. The coagulation time on the coated Ni-Ti shape memory alloy was longer than that on the 316L. Compared with that on the 316L stainless steel, the TiO2 coated Ni-Ti shape memory alloy showed better blood compatibility, indicating that the Ni-Ti alloy with TiO2 coating is a kind of ideal biomedical materials with high clinical value.

  18. Case Study: Influence of Rough Hair Coats and Steroid Implants on the Performance and Physiology of Steers Grazing Endophyte-Infected Tall Fescue in the Summer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sixty-two steers were assigned to six, 3.0-ha pastures of toxic tall fescue to study the effects that implant progesterone and winter hair coat retention during the summer, a symptom of fescue toxicosis, has on weight gain and body heat dissapation. Either ten clipped or ten unclipped steers were ra...

  19. Seed coat removal improves Fe bioavailability in cooked lentils: studies using an in vitro digestion/Caco-2 cell culture model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study examined the range of Fe concentration and relative Fe bioavailability of 24 varieties of cooked lentils, as well as the impact of seed coat removal on lentil Fe nutritional quality. Relative Fe bioavailability was assessed by the in vitro/Caco-2 cell culture method. While Fe concentrat...

  20. Comprehensive Environmental Assessment Applied to Multiwalled Carbon Nanotube Flame-Retardant Coatings in Upholstery Textiles: A Case Study Presenting Priority Research Gaps for Future Risk Assessments (Final Report)

    EPA Science Inventory

    In September 2013, EPA announced the availability of the final report, Comprehensive Environmental Assessment Applied to Multiwalled Carbon Nanotube Flame-Retardant Coatings in Upholstery Textiles: A Case Study Presenting Priority Research Gaps for Future Risk Assessments...

  1. Hydrogen Permeation Resistant Coatings

    SciTech Connect

    KORINKO, PAUL; ADAMS, THAD; CREECH, GREGGORY

    2005-06-15

    As the National Hydrogen Economy continues to develop and evolve the need for structural materials that can resist hydrogen assisted degradation will become critical. To date austenitic stainless steel materials have been shown to be mildly susceptible to hydrogen attack which results in lower mechanical and fracture strengths. As a result, hydrogen permeation barrier coatings may be applied to these ferrous alloys to retard hydrogen ingress. Hydrogen is known to be very mobile in materials of construction. In this study, the permeation resistance of bare stainless steel samples and coated stainless steel samples was tested. The permeation resistance was measured using a modular permeation rig using a pressure rise technique. The coating microstructure and permeation results will be discussed in this document as will some additional testing.

  2. A study of cooling time reduction of interferometric cryogenic gravitational wave detectors using a high-emissivity coating

    SciTech Connect

    Sakakibara, Y.; Yamamoto, K.; Chen, D.; Tokoku, C.; Uchiyama, T.; Ohashi, M.; Kuroda, K.; Kimura, N.; Suzuki, T.; Koike, S.

    2014-01-29

    In interferometric cryogenic gravitational wave detectors, there are plans to cool mirrors and their suspension systems (payloads) in order to reduce thermal noise, that is, one of the fundamental noise sources. Because of the large payload masses (several hundred kg in total) and their thermal isolation, a cooling time of several months is required. Our calculation shows that a high-emissivity coating (e.g. a diamond-like carbon (DLC) coating) can reduce the cooling time effectively by enhancing radiation heat transfer. Here, we have experimentally verified the effect of the DLC coating on the reduction of the cooling time.

  3. Chemical Phase and Valence Studies of Plasma Sprayed Coatings: EDXRD and X-ray Absorption Spectroscopy (XAS) Results

    DTIC Science & Technology

    2010-06-01

    Versatile XAS micro-(NSLS)/nano(NSLS-II)- probe: local mapping of structure chemistry Rare Earth (RE) 4f -localized atomic, core states** Ce Problem and Ce-L3...powder • Ce3+ n-PS coating Ce4+O2 Ce 3+ !!!!!! PS Plasma Spray Chemical reduction of Ce Average Ce-O distance estimate Rare Earth continuum...local ligand coordination - structure EDXRD: plasma sprayed alumina-titania coatings (on Ti-6-4) • nATCZ → nano composite alumina-titania coating

  4. Preparation and characterization of multi-walled carbon nanotube/hydroxyapatite nanocomposite film dip coated on Ti-6Al-4V by sol-gel method for biomedical applications: an in vitro study.

    PubMed

    Abrishamchian, Alireza; Hooshmand, Tabassom; Mohammadi, Mohammadreza; Najafi, Farhood

    2013-05-01

    In the present research, the introduction of multi-walled carbon nanotubes (MWCNTs) into the hydroxyapatite (HA) matrix and dip coating of nanocomposite on titanium alloy (Ti-6Al-4V) plate was conducted in order to improve the performance of the HA-coated implant via the sol-gel method. The structural characterization and electron microscopy results confirmed well crystallized HA-MWCNT coating and homogenous dispersion of carbon nanotubes in the ceramic matrix at temperatures as low as 500 °C. The evaluation of the mechanical properties of HA and HA/MWCNT composite coatings with different weight percentages of MWCNTs showed that the addition of low concentrations of MWCNTs (0.5 and 1 wt.%) had improved effect on the mechanical properties of nanocomposite coatings. Moreover, this in vitro study ascertained the biocompatibility of the prepared sol-gel-derived HA/MWCNT composite coatings.

  5. COATING METHOD

    DOEpatents

    Townsend, R.G.

    1959-08-25

    A method is described for protectively coating beryllium metal by etching the metal in an acid bath, immersing the etched beryllium in a solution of sodium zincate for a brief period of time, immersing the beryllium in concentrated nitric acid, immersing the beryhlium in a second solution of sodium zincate, electroplating a thin layer of copper over the beryllium, and finally electroplating a layer of chromium over the copper layer.

  6. Novel Bio-functional Magnesium Coating on Porous Ti6Al4V Orthopaedic Implants: In vitro and In vivo Study

    PubMed Central

    Li, Xiaokang; Gao, Peng; Wan, Peng; Pei, Yifeng; Shi, Lei; Fan, Bo; Shen, Chao; Xiao, Xin; Yang, Ke; Guo, Zheng

    2017-01-01

    Titanium and its alloys with various porous structures are one of the most important metals used in orthopaedic implants due to favourable properties as replacement for hard tissues. However, surface modification is critical to improve the osteointegration of titanium and its alloys. In this study, a bioactive magnesium coating was successfully fabricated on porous Ti6Al4V by means of arc ion plating, which was proved with fine grain size and high film/substrate adhesion. The surface composition and morphology were characterized by X-ray diffraction and SEM equipped with energy dispersive spectroscopy. Furthermore, the in vitro study of cytotoxicity and proliferation of MC3T3-E1 cells showed that magnesium coated porous Ti6Al4V had suitable degradation and biocompatibility. Moreover, the in vivo studies including fluorescent labelling, micro-computed tomography analysis scan and Van-Gieson staining of histological sections indicated that magnesium coated porous Ti6Al4V could significantly promote bone regeneration in rabbit femoral condylar defects after implantation for 4 and 8 weeks, and has better osteogenesis and osteointegration than the bare porous Ti6Al4V. Therefore, it is expected that this bioactive magnesium coating on porous Ti6Al4V scaffolds with improved osteointegration and osteogenesis functions can be used for orthopedic applications. PMID:28102294

  7. A comparative parametric study of a catalytic plate methane reformer coated with segmented and continuous layers of combustion catalyst for hydrogen production

    NASA Astrophysics Data System (ADS)

    Mundhwa, Mayur; Parmar, Rajesh D.; Thurgood, Christopher P.

    2017-03-01

    A parametric comparison study is carried out between segmented and conventional continuous layer configurations of the coated combustion-catalyst to investigate their influence on the performance of methane steam reforming (MSR) for hydrogen production in a catalytic plate reactor (CPR). MSR is simulated on one side of a thin plate over a continuous layer of nickel-alumina catalyst by implementing an experimentally validated surface microkinetic model. Required thermal energy for the MSR reaction is supplied by simulating catalytic methane combustion (CMC) on the opposite side of the plate over segmented and continuous layer of a platinum-alumina catalyst by implementing power law rate model. The simulation results of both coating configurations of the combustion-catalyst are compared using the following parameters: (1) co-flow and counter-flow modes between CMC and MSR, (2) gas hourly space velocity and (3) reforming-catalyst thickness. The study explains why CPR designed with the segmented combustion-catalyst and co-flow mode shows superior performance not only in terms of high hydrogen production but also in terms of minimizing the maximum reactor plate temperature and thermal hot-spots. The study shows that the segmented coating requires 7% to 8% less combustion-side feed flow and 70% less combustion-catalyst to produce the required flow of hydrogen (29.80 mol/h) on the reforming-side to feed a 1 kW fuel-cell compared to the conventional continuous coating of the combustion-catalyst.

  8. Magnetic hyperthermia study in water based magnetic fluids containing TMAOH coated Fe3O4 using infrared thermography

    NASA Astrophysics Data System (ADS)

    Lahiri, B. B.; Ranoo, Surojit; Philip, John

    2017-01-01

    We study the alternating magnetic field induced heating of a water based ferrofluid containing tetramethyl ammonium hydroxide coated iron oxide nanoparticles using infrared thermography and compare the results obtained from the conventional fiber optic temperature sensor. Experiments are performed on ferrofluid samples of five different concentrations and under four different external field amplitudes at a fixed frequency. The temperature rise curves measured using both the infrared thermography and fiber optic sensor are found to be very similar up to a certain time interval, above which deviations are observed, which are attributed to the internal and external convection phenomena. A correction methodology is developed to account for the convection losses. The convection corrected specific absorption rate is found to be in good agreement with the values obtained from the conventional fiber optic temperature sensor, within a maximum error of ±3.4%. The highest specific absorption rate obtained in the present study is 135.98 (±4.6) W/gFe for a sample concentration of 3 wt.%, at an external field amplitude and a frequency of 63.0 kA m-1 and 126 kHz, respectively. The specific absorption rate is found to decrease with increasing sample concentration, due to the enhancement of dipolar interaction with increasing sample concentration due to agglomeration. This study validates the efficacy and universal applicability of IRT as an alternate, real time, non-contact and wide area temperature measurement methodology for magnetic fluid hyperthermia experiments without any sample contamination.

  9. Macrolide antibiotics removal using a circulating TiO2-coated paper photoreactor: parametric study and hydrodynamic flow characterization.

    PubMed

    Ounnar, Amel; Bouzaza, Abdelkrim; Favier, Lidia; Bentahar, Fatiha

    2016-01-01

    The present work investigates the photocatalytic degradation efficiency of biorecalcitrant macrolide antibiotics in a circulating tubular photoreactor. As target pollutants, spiramycin (SPM) and tylosin (TYL) were considered in this study. The photoreactor leads to the use of an immobilized titanium dioxide on non-woven paper under artificial UV-lamp irradiation. Maximum removal efficiency was achieved at the optimum conditions of natural pH, low pollutant concentration and a 0.35 L min(-1) flow rate. A Langmuir-Hinshelwood model was used to fit experimental results and the model constants were determined. Moreover, the total organic carbon analysis reveals that SPM and TYL mineralization is not complete. In addition, the study of the residence time distribution allowed us to investigate the flow regime of the reactor. Electrical energy consumption for photocatalytic degradation of macrolides using circulating TiO2-coated paper photoreactor was lower compared with some reported photoreactors used for the elimination of pharmaceutic compounds. A repetitive reuse of the immobilized catalyst was also studied in order to check its photoactivity performance.

  10. Tests of Zinc Rich Anticorrosion Coatings

    NASA Technical Reports Server (NTRS)

    Morrison, J. D.; Paton, W. J.; Rowe, A.

    1986-01-01

    Condition of zinc-rich anticorrosion coatings after 10 years of exposure discussed in status report, which follows up on 18-month study of anticorrosion coatings on steel started in 1971. Test panels with various coatings mounted on racks on beach and checked periodically. Of panels with inorganic zinc-rich coatings, only one slightly rusted. Panels were in such good condition they were returned to beach for more exposure.

  11. A solid-state nuclear magnetic resonance study of post-plasma reactions in organosilicone microwave plasma-enhanced chemical vapor deposition (PECVD) coatings.

    PubMed

    Hall, Colin J; Ponnusamy, Thirunavukkarasu; Murphy, Peter J; Lindberg, Mats; Antzutkin, Oleg N; Griesser, Hans J

    2014-06-11

    Plasma-polymerized organosilicone coatings can be used to impart abrasion resistance and barrier properties to plastic substrates such as polycarbonate. Coating rates suitable for industrial-scale deposition, up to 100 nm/s, can be achieved through the use of microwave plasma-enhanced chemical vapor deposition (PECVD), with optimal process vapors such as tetramethyldisiloxane (TMDSO) and oxygen. However, it has been found that under certain deposition conditions, such coatings are subject to post-plasma changes; crazing or cracking can occur anytime from days to months after deposition. To understand the cause of the crazing and its dependence on processing plasma parameters, the effects of post-plasma reactions on the chemical bonding structure of coatings deposited with varying TMDSO-to-O2 ratios was studied with (29)Si and (13)C solid-state magic angle spinning nuclear magnetic resonance (MAS NMR) using both single-pulse and cross-polarization techniques. The coatings showed complex chemical compositions significantly altered from the parent monomer. (29)Si MAS NMR spectra revealed four main groups of resonance lines, which correspond to four siloxane moieties (i.e., mono (M), di (D), tri (T), and quaternary (Q)) and how they are bound to oxygen. Quantitative measurements showed that the ratio of TMDSO to oxygen could shift the chemical structure of the coating from 39% to 55% in Q-type bonds and from 28% to 16% for D-type bonds. Post-plasma reactions were found to produce changes in relative intensities of (29)Si resonance lines. The NMR data were complemented by Fourier transform infrared (FTIR) spectroscopy. Together, these techniques have shown that the bonding environment of Si is drastically altered by varying the TMDSO-to-O2 ratio during PECVD, and that post-plasma reactions increase the cross-link density of the silicon-oxygen network. It appears that Si-H and Si-OH chemical groups are the most susceptible to post-plasma reactions. Coatings produced at a

  12. Study on lotus-type porous copper electroplated with a Ni coating on inner surface of pores

    NASA Astrophysics Data System (ADS)

    Du, Hao; Song, Guihong; Nakajima, Hideo; Zhao, Yanhui; Xiao, Jinquan; Xiong, Tianying

    2013-01-01

    Deposition of Ni coating on inner surface of pores was attempted by electroplating for lotus-type porous copper with pore size of 0.6 mm and pore length of 6 mm. The surface morphology, thickness, thickness distribution along the pore length, and phase composition of the coating were characterized. It is proven that the Ni coating with a polycrystalline structure can be deposited on the inner surface of the pores with length/diameter of 10 for lotus-type porous copper by agitating the electroplating solution properly during the process. It is indicated that the coating thickness distributes uniformly along the pore depth and is about 4-5 μm. Furthermore, the mechanical properties including vicker hardness, compressive yield strength and absorbed energy ability of the electroplated porous copper were evaluated. It is found that the mechanical properties are improved significantly after depositing the nickel coating inside pores of the lotus-type porous copper. Among them, 0.2% yield stress increases from 22.96 to 30.15 MPa, while absorbed energy per volume from 60.83 to 96.01 MJ/m3 when compressed to strain of 80%, which is attributed mainly to the Ni coating as an obstacle to dislocation slip during deformation and its strengthening effect for the higher strength, and the good adhesion to the pore wall of the porous copper.

  13. Rhenium-coated glass beads for intracolonic administration attenuate TNBS-induced colitis in mice: Proof-of-Concept Study.

    PubMed

    Siczek, Krzysztof; Zatorski, Hubert; Pawlak, Wojciech; Fichna, Jakub

    2015-01-01

    In search for novel effective treatments in inflammatory bowel diseases, a new strategy employing glass beads coated with rhenium nanolayer has been developed and validated in the mouse model of 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis. Briefly, mice were randomly divided into 5 experimental groups: control (vehicle alone, Group 1); control treated with rhenium-coated glass beads (Group 2); TNBS (Group 3); TNBS treated with rhenium-coated glass beads (Group 4); and TNBS treated with uncoated glass beads (Group 5). Mice from Group 2, 4 and 5 were treated with respective beads (once daily, 5 beads / animal, i.c.) between D3-D6 post-TNBS/vehicle and evaluation of colonic damage was performed on D7, based on macroscopic scoring and clinical parameters. Severe colonic inflammation developed in post-TNBS mice (Group 3) [P <0.001 vs. control (Group 1) for macroscopic score], which was significantly attenuated by treatment with rhenium-coated glass beads (Group 4) [P <0.01 vs. TNBS (Group 3), for macroscopic score]. Neither rhenium-coated glass beads had any effect in control animals (Group 2), nor uncoated glass beads influenced TNBS-induced colitis (Group 5). In conclusion, a novel and attractive strategy for the treatment of colonic inflammation has been proposed; therapy with rhenium-coated glass beads already proved effective in the mouse model of TNBS-induced colitis, now requires further characterization in clinical conditions.

  14. Crystal-Structure-Based Modeling Study of Temperature-Dependent Fracture Toughness for Brittle Coating Deposited on Ductile Substrate

    NASA Astrophysics Data System (ADS)

    Gu, Yichen; Chen, Kuiying; Liu, Rong; Yao, Matthew X.; Collier, Rachel

    2016-10-01

    The temperature-dependent fracture toughness of a brittle coating/ductile substrate system, WC-10Co4Cr deposited on 1018 low carbon steel, is evaluated at microscopic level using an indentation-based model in terms of the Arrhenius-type equation and rate-controlling theory. The formulation of the model utilizes the parameters of crystal structures of each phase in the coating material. The slip systems of hard hexagonal δ-WC phase and soft FCC α-Co phase are analyzed. The fracture toughness of the two-phase coating is obtained by integrating the fracture toughness of single δ-WC phase coating and that of single α-Co phase coating using either the basic mixture method or the unconstrained mixture method. The results suggest that the fracture toughness of WC-10Co4Cr coating/1018 low carbon steel substrate system may remain constant until the temperature reaches a critical value, about 200 K, and ranges from 2.16 to 10.82 {{MPa}}{{m}}^{1/2} , with temperature increasing from room temperature (298 K) to 1000 K.

  15. A study of TiB2/TiB gradient coating by laser cladding on titanium alloy

    NASA Astrophysics Data System (ADS)

    Lin, Yinghua; Lei, Yongping; Li, Xueqiao; Zhi, Xiaohui; Fu, Hanguang

    2016-07-01

    TiB2/TiB gradient coating has been fabricated by a laser cladding technique on the surface of a Ti-6Al-4V substrate using TiB2 powder as the cladding material. The microstructure and mechanical properties of the gradient coating were analyzed by SEM, EPMA, XRD, TEM and an instrument to measure hardness. With the increasing distance from the coating surface, the content of TiB2 particles gradually decreased, but the content of TiB short fibers gradually increased. Meanwhile, the micro-hardness and the elastic modulus of the TiB2/TiB coating showed a gradient decreasing trend, but the fracture toughness showed a gradient increasing trend. The fracture toughness of the TiB2/TiB coating between the center and the bottom was improved, primarily due to the debonding of TiB2 particles and the high fracture of TiB short fibers, and the fracture position of TiB short fiber can be moved to an adjacent position. However, the debonding of TiB2 particles was difficult to achieve at the surface of the TiB2/TiB coating.

  16. A role of OCRL in clathrin-coated pit dynamics and uncoating revealed by studies of Lowe syndrome cells

    PubMed Central

    Nández, Ramiro; Balkin, Daniel M; Messa, Mirko; Liang, Liang; Paradise, Summer; Czapla, Heather; Hein, Marco Y; Duncan, James S; Mann, Matthias; De Camilli, Pietro

    2014-01-01

    Mutations in the inositol 5-phosphatase OCRL cause Lowe syndrome and Dent's disease. Although OCRL, a direct clathrin interactor, is recruited to late-stage clathrin-coated pits, clinical manifestations have been primarily attributed to intracellular sorting defects. Here we show that OCRL loss in Lowe syndrome patient fibroblasts impacts clathrin-mediated endocytosis and results in an endocytic defect. These cells exhibit an accumulation of clathrin-coated vesicles and an increase in U-shaped clathrin-coated pits, which may result from sequestration of coat components on uncoated vesicles. Endocytic vesicles that fail to lose their coat nucleate the majority of the numerous actin comets present in patient cells. SNX9, an adaptor that couples late-stage endocytic coated pits to actin polymerization and which we found to bind OCRL directly, remains associated with such vesicles. These results indicate that OCRL acts as an uncoating factor and that defects in clathrin-mediated endocytosis likely contribute to pathology in patients with OCRL mutations. DOI: http://dx.doi.org/10.7554/eLife.02975.001 PMID:25107275

  17. Preliminary study of raw material for calcium silicate/PVA coating on Ti-6Al-4V alloy

    SciTech Connect

    Azam, Farah 'Atiqah bt Abdul; Shamsudin, Roslinda

    2015-09-25

    Calcium silicate bioceramic was prepared from the rice husk and limestone resources using the sol gel method. The preparations of CaSiO{sub 3} formulation were differ from the previous study due CaO/SiO{sub 2} amount with 45:55 ratio. X-Ray Fluorescence analysis was carried out to clarify the amount of SiO{sub 2} and CaO content in the limestone and rice husk ash. The high amount of CaO was found in the limestone with the percentages of 97.22%, whereby 89% of SiO{sub 2} content of the rice husk ash. Several milling time were studied to obtain the optimized milling ti me and speed in progress to obtain nano size particle. The particle size analysis result confirms that increase in milling time does not certainly reduce the size of particle. The addition of 0.05% polyvinyl alcohol as a binder did not change the phases or composition of calcium silicates after examined by X-Ray diffraction analysis which make it suitable to be used as a binder for calcium silicate coating without changing the chemical structure.

  18. Study on color-tunable phosphor-coated white light-emitting diodes with high S/P ratios

    NASA Astrophysics Data System (ADS)

    Guo, Ziquan; Shih, Tienmo; Xiao, Jingjing; Lu, Hongli; Lu, Yijun; Wu, Tingzhu; Lin, Yue; Gao, Yulin; Xiao, Hua; Chen, Zhong

    2016-03-01

    In this study, we have investigated the trade-off between the color rendering index (CRI, Ra) and the scotopic/photopic ratio (S/P) for color-tunable phosphor-coated white light-emitting diodes (LEDs) at two CRI limitations (Ra ≥ 70 and Ra ≥ 96). First, luminescent spectra measurements have been conducted to determine experimental results of Ra and S/P under various correlated color temperatures (CCTs). Then, a nonlinear programming method has been adopted for the optimization of Ra and S/P by varying spectral shapes through adjusting spectral parameters, such as peak wavelengths, full-width at half-maxima, and relative intensities. Therefore, polynomial curves of optimal S/P versus CCT at two Ra limitations have been discovered, enabling users to obtain optimal S/P under arbitrary CCTs within [2700 K, 6500 K]. In addition, a comparison study between the present work and our previous work has also been conducted at Ra = 70, and a fair agreement of optimal S/P has been observed.

  19. An integrated study on antimicrobial activity and ecotoxicity of quantum dots and quantum dots coated with the antimicrobial peptide indolicidin.

    PubMed

    Galdiero, Emilia; Siciliano, Antonietta; Maselli, Valeria; Gesuele, Renato; Guida, Marco; Fulgione, Domenico; Galdiero, Stefania; Lombardi, Lucia; Falanga, Annarita

    This study attempts to evaluate the antimicrobial activity and the ecotoxicity of quantum dots (QDs) alone and coated with indolicidin. To meet this objective, we tested the level of antimicrobial activity on Gram-positive and Gram-negative bacteria, and we designed an ecotoxicological battery of test systems and indicators able to detect different effects using a variety of end points. The antibacterial activity was analyzed against Staphylococcus aureus (ATCC 6538), Pseudomonas aeruginosa (ATCC 1025), Escherichia coli (ATCC 11229), and Klebsiella pneumoniae (ATCC 10031), and the results showed an improved germicidal action of QDs-Ind. Toxicity studies on Daphnia magna indicated a decrease in toxicity for QDs-Ind compared to QDs alone, lack of bioluminescence inhibition on Vibrio fisheri, and no mutations in Salmonella typhimurium TA 100. The comet assay and oxidative stress experiments performed on D. magna showed a genotoxic and an oxidative damage with a dose-response trend. Indolicidin retained its activity when bound to QDs. We observed an enhanced activity for QDs-Ind. The presence of indolicidin on the surface of QDs was able to decrease its QDs toxicity.

  20. Fabrication of a thin-layer solid optical tissue phantom by a spin-coating method: pilot study

    NASA Astrophysics Data System (ADS)

    Bae, Yunjin; Son, Taeyoon; Park, Jihoon; Jung, Byungjo

    2013-02-01

    Solid optical tissue phantoms (OTPs) have been widely used for many purposes. This study introduces a spin-coating method (SCM) to fabricate a thin-layer solid OTP (TSOTP) with epidermal thickness. TSOTPs are fabricated by controlling the spin speed (250 to 2500 rpm), absorber concentration (0.2% to 1.0%), and the number of layers. The results show that the thicknesses of the TSOTPs are homogeneous in the region of interest. The one-layer TSOTP achieves maximum and minimum thicknesses of 65±0.28 μm (250 rpm) and 5.1±0.17 μm (2500 rpm), respectively, decreasing exponentially as a function of the spin speed. The thicknesses of the multilayer TSOTPs increases as a function of the number of layers and are correlated strongly with the spin speed (R2≥0.95). The concentration of the OTP mixture does not directly affect the thickness of the TSOTP; however, the absorption coefficients exponentially increase as a function of absorber concentration (R2≥0.98). These results suggest that the SCM can be used to fabricate homogeneous TSOTPs with various thicknesses by controlling the spin speed and number of layers. Finally, a double-layer OTP that combines epidermal TSOTP and dermal OTP is manufactured as a preliminary study to investigate the practical feasibility of TSOTPs.

  1. Preliminary study of raw material for calcium silicate/PVA coating on Ti-6Al-4V alloy

    NASA Astrophysics Data System (ADS)

    Azam, Farah Atiqah bt Abdul; Shamsudin, Roslinda

    2015-09-01

    Calcium silicate bioceramic was prepared from the rice husk and limestone resources using the sol gel method. The preparations of CaSiO3 formulation were differ from the previous study due CaO/SiO2 amount with 45:55 ratio. X-Ray Fluorescence analysis was carried out to clarify the amount of SiO2 and CaO content in the limestone and rice husk ash. The high amount of CaO was found in the limestone with the percentages of 97.22%, whereby 89% of SiO2 content of the rice husk ash. Several milling time were studied to obtain the optimized milling ti me and speed in progress to obtain nano size particle. The particle size analysis result confirms that increase in milling time does not certainly reduce the size of particle. The addition of 0.05% polyvinyl alcohol as a binder did not change the phases or composition of calcium silicates after examined by X-Ray diffraction analysis which make it suitable to be used as a binder for calcium silicate coating without changing the chemical structure.

  2. An integrated study on antimicrobial activity and ecotoxicity of quantum dots and quantum dots coated with the antimicrobial peptide indolicidin

    PubMed Central

    Galdiero, Emilia; Siciliano, Antonietta; Maselli, Valeria; Gesuele, Renato; Guida, Marco; Fulgione, Domenico; Galdiero, Stefania; Lombardi, Lucia; Falanga, Annarita

    2016-01-01

    This study attempts to evaluate the antimicrobial activity and the ecotoxicity of quantum dots (QDs) alone and coated with indolicidin. To meet this objective, we tested the level of antimicrobial activity on Gram-positive and Gram-negative bacteria, and we designed an ecotoxicological battery of test systems and indicators able to detect different effects using a variety of end points. The antibacterial activity was analyzed against Staphylococcus aureus (ATCC 6538), Pseudomonas aeruginosa (ATCC 1025), Escherichia coli (ATCC 11229), and Klebsiella pneumoniae (ATCC 10031), and the results showed an improved germicidal action of QDs-Ind. Toxicity studies on Daphnia magna indicated a decrease in toxicity for QDs-Ind compared to QDs alone, lack of bioluminescence inhibition on Vibrio fisheri, and no mutations in Salmonella typhimurium TA 100. The comet assay and oxidative stress experiments performed on D. magna showed a genotoxic and an oxidative damage with a dose–response trend. Indolicidin retained its activity when bound to QDs. We observed an enhanced activity for QDs-Ind. The presence of indolicidin on the surface of QDs was able to decrease its QDs toxicity. PMID:27616887

  3. Fabrication of a thin-layer solid optical tissue phantom by a spin-coating method: pilot study.

    PubMed

    Bae, Yunjin; Son, Taeyoon; Park, Jihoon; Jung, Byungjo

    2013-02-01

    Solid optical tissue phantoms (OTPs) have been widely used for many purposes. This study introduces a spin-coating method (SCM) to fabricate a thin-layer solid OTP (TSOTP) with epidermal thickness. TSOTPs are fabricated by controlling the spin speed (250 to 2500 rpm), absorber concentration (0.2% to 1.0%), and the number of layers. The results show that the thicknesses of the TSOTPs are homogeneous in the region of interest. The one-layer TSOTP achieves maximum and minimum thicknesses of 65±0.28 μm (250 rpm) and 5.1±0.17 μm (2500 rpm), respectively, decreasing exponentially as a function of the spin speed. The thicknesses of the multilayer TSOTPs increases as a function of the number of layers and are correlated strongly with the spin speed (R2≥0.95). The concentration of the OTP mixture does not directly affect the thickness of the TSOTP; however, the absorption coefficients exponentially increase as a function of absorber concentration (R2≥0.98). These results suggest that the SCM can be used to fabricate homogeneous TSOTPs with various thicknesses by controlling the spin speed and number of layers. Finally, a double-layer OTP that combines epidermal TSOTP and dermal OTP is manufactured as a preliminary study to investigate the practical feasibility of TSOTPs.

  4. Corrosion and Wear Studies of Cr3C2NiCr-HVOF Coatings Sprayed on AA7050 T7 Under Cooling

    NASA Astrophysics Data System (ADS)

    Magnani, M.; Suegama, P. H.; Espallargas, N.; Fugivara, C. S.; Dosta, S.; Guilemany, J. M.; Benedetti, A. V.

    2009-09-01

    In this work, cermet coatings were prepared by high-velocity oxygen-fuel (HVOF) technique using a Diamalloy 3007 powder. The influence of the spray parameters on corrosion, friction, and abrasive wear resistance was studied. The samples were obtained using the standard conditions (253 L/min of oxygen and 375 L/min of compressed air), higher oxygen flux (341 L/min), and higher carrier gas flux (500 L/min). The coatings were characterized using scanning electron microscopy (SEM), and x-ray diffraction (XRD). X-ray diffraction and SEM studies showed well-bounded coating/substrate interface, pores, metallic matrix, chromium oxides, carbides, and carbides dissolution into the matrix. In comparison with the standard condition, the sample prepared using higher oxygen flux showed the highest carbide dissolution because of the high temperature achieved in the spray process. When the carrier gas flux was increased, the sample showed denser structure because of the higher particle velocity. The friction and abrasive wear resistance of the coatings were studied using rubber wheel and ball-on-disk tests. All samples showed similar sliding and abrasive behavior, and all of them showed better performance than the aluminum alloy. The electrochemical behavior was evaluated using open-circuit potential ( E OC) measurements, electrochemical impedance spectroscopy (EIS), and potentiodynamic polarization curves. The coating prepared with higher carrier gas flux showed the highest corrosion resistance in 3.5% NaCl solution and probably no pitting attack to the substrate occurred even after around 26 h of test. Tests performed for longer immersion times showed that the total impedance values significantly decreased (6 and 4 times) for samples sprayed using standard and higher oxygen flux, and no great change for sample sprayed using higher carrier gas flux was observed. The last sample presents a corrosion resistance around 200 times higher than the others.

  5. Thermal radiative properties: Coatings.

    NASA Technical Reports Server (NTRS)

    Touloukian, Y. S.; Dewitt, D. P.; Hernicz, R. S.

    1972-01-01

    This volume consists, for the most part, of a presentation of numerical data compiled over the years in a most comprehensive manner on coatings for all applications, in particular, thermal control. After a moderately detailed discussion of the theoretical nature of the thermal radiative properties of coatings, together with an overview of predictive procedures and recognized experimental techniques, extensive numerical data on the thermal radiative properties of pigmented, contact, and conversion coatings are presented. These data cover metallic and nonmetallic pigmented coatings, enamels, metallic and nonmetallic contact coatings, antireflection coatings, resin coatings, metallic black coatings, and anodized and oxidized conversion coatings.

  6. Pack cementation coatings for alloys

    SciTech Connect

    He, Yi-Rong; Zheng, Minhui; Rapp, R.A.

    1996-08-01

    The halide-activated pack cementation process was modified to produce a Ge-doped silicide diffusion coating on a Cr-Cr{sub 2}Nb alloy in a single processing step. The morphology and composition of the coating depended both on the composition of the pack and on the composition and microstructure of the substrate. Higher Ge content in the pack suppressed the formation of CrSi{sub 2} and reduced the growth kinetics of the coating. Ge was not homogeneously distributed in the coatings. In cyclic and isothermal oxidation in air at 700 and 1050{degrees}C, the Ge-doped silicide coating protected the Cr-Nb alloys from significant oxidation by the formation of a Ge-doped silica film. The codeposition and diffusion of aluminum and chromium into low alloy steel have been achieved using elemental Al and Cr powders and a two-step pack cementation process. Sequential process treatments at 925{degrees}C and 1150{degrees}C yield dense and uniform ferrite coatings, whose compositions are close to either Fe{sub 3}Al or else FeAl plus a lower Cr content, when processed under different conditions. The higher content of Al in the coatings was predicted by thermodynamic calculations of equilibrium in the gas phase. The effect of the particle size of the metal powders on the surface composition of the coating has been studied for various combinations of Al and Cr powders.

  7. Durable coatings for IR windows

    NASA Astrophysics Data System (ADS)

    Goldman, Lee M.; Jha, Santosh K.; Gunda, Nilesh; Cooke, Rick; Agarwal, Neeta; Sastri, Suri A.; Harker, Alan; Kirsch, Jim

    2005-05-01

    Durable coatings of silicon-carbon-oxy-nitride (a.k.a. SiCON) are being developed to protect high-speed missile windows from the environmental loads during flight. Originally developed at Rockwell Scientific Corporation (RSC) these coatings exhibited substantial promise, but were difficult to deposit. Under a DoD DARPA SBIR Phase I program, Surmet Corporation, working closely with RSC, is depositing these coatings using an innovative vacuum vapor deposition process. High rate of coating deposition and the ease of manipulating the process variables, make Surmet"s process suitable for the deposition of substantially thick films (up to 30 μm) with precisely controlled chemistry. Initial work has shown encouraging results, and the refinement of the coating and coating process is still underway. Coupons of SiN and SiCON coatings with varying thickness on a variety of substrates such as Si-wafer, ZnS and ALON were fabricated and used for the study. This paper will present and discuss the results of SiN and SiCON coatings deposition and characterization (physical, mechanical and optical properties) as a basis for evaluating their suitability for high speed missile windows application.

  8. A Study of Advanced Materials for Gas Turbine Coatings at Elevated Temperatures Using Selected Microstructures and Characteristic Environments for Syngas Combustion

    SciTech Connect

    Ravinder Diwan; Patrick Mensah; Guoqiang Li; Nalini Uppu; Strphen Akwaboa; Monica Silva; Ebubekir Beyazoglu; Ogad Agu; Naresh Polasa; Lawrence Bazille; Douglas Wolfe; Purush Sahoo

    2011-02-10

    Thermal barrier coatings (TBCs) that can be suitable for use in industrial gas turbine engines have been processed and compared with electron beam physical vapor deposition (EBPVD) microstructures for applications in advanced gas turbines that use coal-derived synthesis gas. Thermo-physical properties have been evaluated of the processed air plasma sprayed TBCs with standard APS-STD and vertically cracked APS-VC coatings samples up to 1300 C. Porosity of these selected coatings with related microstructural effects have been analyzed in this study. Wet and dry thermal cycling studies at 1125 C and spalling resistance thermal cycling studies to 1200 C have also been carried out. Type I and Type II hot corrosion tests were carried out to investigate the effects of microstructure variations and additions of alumina in YSZ top coats in multi-layered TBC structures. The thermal modeling of turbine blade has also been carried out that gives the capability to predict in-service performance temperature gradients. In addition to isothermal high temperature oxidation kinetics analysis in YSZ thermal barrier coatings of NiCoCrAlY bond coats with 0.25% Hf. This can affect the failure behavior depending on the control of the thermally grown oxide (TGO) growth at the interface. The TGO growth kinetics is seen to be parabolic and the activation energies correspond to interfacial growth kinetics that is controlled by the diffusion of O{sub 2} in Al{sub 2}O{sub 3}. The difference between oxidation behavior of the VC and STD structures are attributed to the effects of microstructure morphology and porosity on oxygen ingression into the zirconia and TGO layers. The isothermal oxidation resistance of the STD and VC microstructures is similar at temperatures up to 1200 C. However, the generally thicker TGO layer thicknesses and the slightly faster oxidation rates in the VC microstructures are attributed to the increased ingression of oxygen through the grain boundaries of the vertically

  9. Adhesion to Y-TZP ceramic: study of silica nanofilm coating on the surface of Y-TZP.

    PubMed

    Druck, Carolina Ceolin; Pozzobon, João Luiz; Callegari, Gustavo Luiz; Dorneles, Lucio Strazzabosco; Valandro, Luiz Felipe

    2015-01-01

    This study evaluated the influence of silica-based film coatings on the surface of yttrium-stabilized tetragonal zirconia polycrystal (Y-TZP), in particular on the durability of the bond strength between the ceramic and resin cement. Eighty Y-TZP (In-Ceram YZ, Vita) blocks (4 × 4 × 3 mm) were obtained and divided into four groups according to the surface treatments (n = 20): tribochemical silica coating (TBS; Cojet, 3M/ESPE), 5 nm SiO2 nanofilm and silanization (F-5), 500 nm SiO2 nanofilm and silanization (F-500), and 500 nm SiO2 nanofilm + hydrofluoric-acid-etching + silanization (F-500HF). Specimens of composite resin (3.25 mm in diameter and 3 mm in height) were cemented to Y-TZP blocks using resin cement (Relyx ARC). Half of the specimens from each group were tested 24 h after adhesion (B: baseline condition), and the other half were subjected to aging (A: storage for 90 days and 10,000 thermal cycles). The specimens were subjected to shear testing (SBS) (1 mm/min). After testing, the surfaces were analyzed with a stereomicroscope and scanning electron microscope. Micromorphologic and elemental chemical analyses of the treated Y-TZP surface were made by X-ray energy dispersive spectroscopy. Bond strength data were statistically analyzed by Kruskal-Wallis/Mann-Whitney tests (α = 0.05). The surface treatment showed significant differences for B (p = 0.0001) and A (p = 0.0000) conditions. In both storage conditions, TBS and F-5 groups promoted the significantly highest bond strength. Most of the specimens presented adhesive failure. The X-ray energy dispersive spectroscopy analysis depicted the highest peak of silica in the TBS, F-5, and F-500 groups. The adhesion to zirconia can be improved if the surface receives a 5 nm layer of SiO2 nanofilm or is subjected to sandblasting with silica particles, followed by silanization.

  10. Rocket thrust chamber thermal barrier coatings

    NASA Technical Reports Server (NTRS)

    Batakis, A. P.; Vogan, J. W.

    1985-01-01

    A research program was conducted to generate data and develop analytical techniques to predict the performance and reliability of ceramic thermal barrier coatings in high heat flux environments. A finite element model was used to analyze the thermomechanical behavior of coating systems in rocket thrust chambers. Candidate coating systems (using a copper substrate, NiCrAlY bond coat and ZrO2.8Y2O3 ceramic overcoat) were selected for detailed study based on photomicrographic evaluations of experimental test specimens. The effects of plasma spray application parameters on the material properties of these coatings were measured and the effects on coating performance evaluated using the finite element model. Coating design curves which define acceptable operating envelopes for seleted coating systems were constructed based on temperature and strain limitations. Spray gun power levels was found to have the most significant effect on coating structure. Three coating systems were selected for study using different power levels. Thermal conductivity, strain tolerance, density, and residual stress were measured for these coatings. Analyses indicated that extremely thin coatings ( 0.02 mm) are required to accommodate the high heat flux of a rocket thrust chamber and ensure structural integrity.

  11. Bioequivalence studies of film-coated tablet and chewable tablet generic formulations of montelukast in healthy volunteers.

    PubMed

    Cánovas, Mercedes; Arcabell, Marta; Martínez, Gemma; Canals, Mirela; Cabré, Francesc

    2011-01-01

    Two studies were conducted in order to assess the bioequivalence of montelukast (CAS 151767-02-1) 10 mg film-coated tablet (FCT) and 5 mg chewable tablet (CT) test formulations in comparison with the original brands. Under fasting conditions, healthy male and female volunteers received one 10 mg FCT or 5 mg CT orally as a single dose of a test or reference formulation. Both studies were designed as open-label, randomized, two-period, two-sequence, crossover studies with a 7-day washout interval. Plasma samples were collected up to 24 h after drug administration and montelukast levels were determined by a validated LC/ MS/MS method. Pharmacokinetic parameters were calculated using non-compartmental analysis and were statistically compared by analysis of variance for test and reference formulation. Bioequivalence between products was determined by calculating 90% confidence interval of the ratio test/reference of least-square means of logarithmically transformed Cmax and AUC0-t parameters. AUC0-infinity was also analysed to obtain additional information. The calculated 90% confidence intervals for the ratios of Cmax and AUC0-t parameters were 89.33-110.52 and 92.06-109.46, respectively, in the FCT study, and 91.58-101.86 and 92.15-98.83, respectively, in the CT study, which are all within the bioequivalence acceptance range of 80-125%. Based on the results, it can be concluded that the evaluated test FCT and CT formulations are bioequivalent to their respective reference formulation in terms of rate and extent of absorption.

  12. Studies on the effect of polymer coating on solution grown hygroscopic non-linear optical single crystal of L-lysine monohydrochloride.

    PubMed

    Rani, Neelam; Vijayan, N; Maurya, K K; Haranath, D; Saini, Parveen; Rathi, Brijesh; Wahab, M A; Bhagavanarayana, G

    2012-11-01

    Nonlinear optical single crystals are getting attention because of its enormous applications in the area of fiber optic communication and optical signal processing. In this article, we are reporting the single crystal growth of l-lysine monohydrochloride by slow evaporation solution growth technique, by using double distilled water as the solvent. We found that the grown single crystal is bulk in size and fairly transparent. But after a period of time, due to its hygroscopic nature, the transparency is completely vanished and became opaque. Then we have attempted to coat the poly methyl methacrylate (PMMA) polymer on the surface of l-lysine monohydrochloride (l-LMHCL) single crystal by dip coating method. This polymer coating is giving resistance to hygroscopic nature and also acting as thin protective covering layer without affecting the other properties. Then we have systematically studied the different properties of bare, polymer coated and hygroscopic l-LMCHL single crystals. Its crystalline perfection was examined by high resolution X-ray diffractometer and found major differences in crystalline quality. Its structural and optical behavior was assessed by powder X-ray diffraction, UV-vis and luminescence analyses.

  13. Program to study the oxidation of carbon-carbon composites and coatings on these materials. Final report, 15 July 1986-13 July 1989

    SciTech Connect

    Cullinan, J.; Schaeffer, J.; Gulbransen, E.A.; Meier, G.H.; Pettit, F.S.

    1989-09-30

    The oxidation of carbon-carbon composites and coatings on these composites in oxygen at temperatures between 300 to 1400 C was investigated. State-of-the art systems were characterized prior to the oxidation studies by using optical and scanning electron microscopy. It was determined that uncoated carbon-carbon composites cannot be used at temperatures above about 400 C for extended periods of time because of oxidation. Oxidation does occur at temperatures below 400 C but at very low rates. Boron has not been found to be an effective inhibitor for carbon-carbon oxidation. Water vapor increased the oxidation rate of these uncoated composites at temperatures below about 600 C. Oxidation products involving boron were removed from these composites at temperatures above 600 C when water vapor was present in the gas. Coatings were useful in protecting carbon-carbon composites from oxidation under isothermal test conditions, but these coatings failed under cyclic conditions. The factors leading to the failure of coatings on carbon-carbon composites are described.

  14. The perspective effects of various seed coating substances on rice seed variety Khao DAWK Mali 105 storability I: the case study of physiological properties.

    PubMed

    Thobunluepop, P; Pawelzik, E; Vearasilp, S

    2008-10-01

    This study aimed to evaluate the perspective changes of several physiological performances of rice seeds cv. KDML 105 which were coated with various seed coating substances [chemical fungicide, captan (CA) and biological coating polymers; chitosan-lignosulphonate polymer (CL) and eugenol incorporated into chitosan-lignosulphonate polymer (E + CL)] during storage (12 months). CA significantly increased seed moisture content and seed water activity through out the storage period. The qualities and viability of the seeds were seriously declined by this treatment. Moreover, CA inhibited the shoot and root development, seedling dry weight accumulation, delayed the seed germination and seedling growth rate. CA treated seeds were susceptible to stress conditions that declined the seed germination potential under cold, high moisture and temperature stress conditions. Nevertheless, CL and E + CL coating polymer could maintain seed storability, which significantly improved seed germination and seedling performances. These improvements were attributed to maintain the nutritive reserve and dehydrogenase activity in seeds. Moreover, the biological seed treatment stimulated the embryo growth and so speeding up the seedling emergence when compared untreated seeds.

  15. A parametric study of the factors affecting the fatigue strength of porous coated Ti-6A1-4V implant alloy.

    PubMed

    Kohn, D H; Ducheyne, P

    1990-11-01

    The high cycle fatigue strength of porous coated Ti-6A1-4V is approximately 75% less than the fatigue strength of uncoated Ti-6A1-4V. This study separates the effects of three parameters thought to be responsible for this reduction: interfacial geometry, microstructure, and surface alterations brought about by sintering. To achieve the goal of one parameter variations, hydrogen-alloying treatments, which refined the lamellar microstructure of beta-annealed and porous coated Ti-6A1-4V, were formulated. The fatigue strength of smooth-surfaced Ti-6A1-4V subjected to hydrogen-alloying treatments is 643-669 MPa, significantly greater than the fatigue strength of beta-annealed Ti-6A1-4V (497 MPa) and also greater than the fatigue strength of pre-annealed, equiaxed Ti-6A1-4V (590 MPa). The fatigue strength of porous coated Ti-6A1-4V, however, is independent of microstructure. This leads to the conclusion that the notch effect of the surface porosity does not allow the material to take advantage of the superior fatigue crack initiation resistance of a refined alpha-grain size. Thus, sinternecks acts as initiated microcracks and fatigue of porous coated Ti-6A1-4V is propagation controlled.

  16. Seed coat removal improves iron bioavailability in cooked lentils: studies using an in vitro digestion/Caco-2 cell culture model.

    PubMed

    DellaValle, Diane M; Vandenberg, Albert; Glahn, Raymond P

    2013-08-28

    In this study we examined the range of Fe concentration and relative Fe bioavailability of 24 varieties of cooked lentils, as well as the impact of seed coat removal on Fe nutritional as well as antinutrient properties. Relative Fe bioavailability was assessed by the in vitro/Caco-2 cell culture method. While the Fe concentration of the whole lentil was moderately high (72.8 ± 10.8 μg/g, n = 24), the relative Fe bioavailability was moderate (2.4 ± 1.0 ng of ferritin/mg of protein). Although removing the seed coat reduced the Fe concentration by an average of 16.4 ± 9.4 μg/g, the bioavailability was significantly improved (+5.3 ± 2.2 ng of ferritin/mg of protein; p < 0.001), and the phytic acid concentration was reduced by 7% (p = 0.04). Like most legume seeds, the lentil seed coat contains a range of polyphenols known to inhibit Fe bioavailability. Thus, along with breeding for high Fe concentration and bioavailability (i.e., biofortification), seed coat removal appears to be a practical way to improve Fe bioavailability of the lentil.

  17. Effect of recombinant human platelet-derived growth factor-BB-coated sutures on Achilles tendon healing in a rat model: A histological and biomechanical study

    PubMed Central

    Cummings, Stephen H; Grande, Daniel A; Hee, Christopher K; Kestler, Hans K; Roden, Colleen M; Shah, Neil V; Razzano, Pasquale; Dines, David M; Chahine, Nadeen O

    2012-01-01

    Purpose: Repairing tendon injuries with recombinant human platelet-derived growth factor-BB has potential for improving surgical outcomes. Augmentation of sutures, a critical component of surgical tendon repair, by coating with growth factors may provide a clinically useful therapeutic device for improving tendon repair. Therefore, the purpose of this study was to (a) coat Vicryl sutures with a defined dose of recombinant human platelet-derived growth factor-BB without additional coating excipients (e.g. gelatin), (b) quantify the recombinant human platelet-derived growth factor-BB released from the suture, and (c) use the recombinant human platelet-derived growth factor-BB-coated sutures to enhance tendon repair in a rat Achilles tendon transection model. Methods: Vicryl sutures were coated with 0, 0.3, 1.0, and 10.0 mg/mL concentrations of recombinant human platelet-derived growth factor-BB using a dip-coating process. In vitro release was quantified by an enzyme-linked immunosorbent assay. Acutely transected rat Achilles tendons were repaired using one of the four suture groups (n = 12 per group). Four weeks following repair, the tensile biomechanical and histological (i.e. collagen organization and angiogenesis) properties were determined. Results: A dose-dependent bolus release of recombinant human platelet-derived growth factor-BB occurred within the first hour in vitro, followed by a gradual release over 48 h. There was a significant increase in ultimate tensile strength (p < 0.01) in the two highest recombinant human platelet-derived growth factor-BB dose groups (1.9 ± 0.5 and 2.1 ± 0.5 MPa) relative to controls (1.0 ± 0.2 MPa). The modulus significantly increased (p = 0.031) with the highest recombinant human platelet-derived growth factor-BB dose group (7.2 ± 3.8 MPa) relative to all other groups (control: 3.5 ± 0.9 MPa). No significant differences were identified for the maximum load or stiffness. The histological collagen and angiogenesis scores

  18. Study on Thermochromic VO2 Films Grown on ZnO-Coated Glass Substrates for “Smart Windows”

    NASA Astrophysics Data System (ADS)

    Kato, Kazuhiro; Song, Pung Keun; Odaka, Hidehumi; Shigesato, Yuzo

    2003-10-01

    Vanadium dioxide (VO2) is one of the most attractive thermochromic materials, which show large changes in optical and electrical properties at the transition temperature (Tt) close to the atmospheric temperature (approximately 340 K). We already reported for VO2 deposition by rf magnetron sputtering using V2O3 or V2O5 targets that VO2 films thicker than 400 nm showed high thermochromic performance, whereas the VO2 films thinner than 200 nm did not show such performance because of their poor crystallinity and off-stoichiometry. In this study, very thin thermochromic VO2 films with thicknesses of about 50 nm were successfully deposited using highly < 001>-preferred oriented ZnO polycrystalline films as a buffer layer between the VO2 film and glass substrate (VO2/ZnO/glass) because of the heteroepitaxial growth of VO2 polycrystalline films. W-doped VO2 films were also deposited on the ZnO-coated glass substrates (ZnO/glass) by cosputtering. It was confirmed that W doping for thin VO2 films deposited on the ZnO/glass can decrease Tt systematically. Such very thin VO2 films should have high potential for application in “smart windows”.

  19. A metabolomic study on the responses of daphnia magna exposed to silver nitrate and coated silver nanoparticles.

    PubMed

    Li, LianZhen; Wu, Huifeng; Ji, Chenglong; van Gestel, Cornelis A M; Allen, Herbert E; Peijnenburg, Willie J G M

    2015-09-01

    We examined the short-term toxicity of AgNPs and AgNO3 to Daphnia magna at sublethal levels using (1)H NMR-based metabolomics. Two sizes of polyvinylpyrrolidone-coated AgNPs (10 and 40nm) were synthesized and characterized and their Ag(+) release was studied using centrifugal ultrafiltration and inductively coupled plasma mass spectrometry. Multivariate statistical analysis of the (1)H NMR spectra showed significant changes in the D. magna metabolic profiles following 48h exposure to both AgNP particle sizes and Ag(+) exposure. Most of the metabolic biomarkers for AgNP exposure, including 3-hydroxybutyrate, arginine, lysine and phosphocholine, were identical to those of the Ag(+)-exposed groups, suggesting that the dominant effects of both AgNPs were due to released Ag(+). The observed metabolic changes implied that the released Ag(+) induced disturbance in energy metabolism and oxidative stress, a proposed mechanism of AgNP toxicity. Elevated levels of lactate in all AgNP-treated but not in Ag(+)-treated groups provided evidence for Ag-NP enhanced anaerobic metabolism. These findings show that (1)H NMR-based metabolomics provides a sensitive measure of D. magna response to AgNPs and that further targeted assays are needed to elucidate mechanisms of action of nanoparticle-induced toxicity.

  20. Molecular Dynamics Study of Alkanethiolate Self-Assembled Monolayer Coated Gold Nanoparticle

    DTIC Science & Technology

    2007-06-01

    component of function results for the uncoated gold nanoparticle to the the Irving -Kirkwood (IK) pressure tensor. [321 The normal results for an...pp. 24-34, 1983. Studies." Langmuir , 4, pp. 546-558, 1988. 23. Shevade, A. V., J. Zhou, M. T. Zin, and S. Jiang. Phase 8. Rosenbaum, A.W, M.A. Freedman...Au(l 11): A Configurational-Bias Monte Carlo Assembled Monolayers of Varying Chain Length." Journal of Simulation Study. Langmuir 17, pp. 7566-7572

  1. Lab Coats versus Business Suits: A Study of Career Preferences among Indian Adolescents

    ERIC Educational Resources Information Center

    Thatchenkery, Sruthi; Koizumi, Naoru

    2010-01-01

    Purpose: This paper seeks to examine whether the primary factors motivating the career plans of high-achieving Indian adolescents vary between academic specializations. Particular attention is to be paid to differences between science and business students. Design/methodology/approach: The study surveyed approximately 2,700 secondary school…

  2. Stress and structure development in polymeric coatings

    NASA Astrophysics Data System (ADS)

    Vaessen, Diane Melissa

    2002-09-01

    temperature. Observations from infrared spectroscopy, scanning electron microscopy, camera imaging, and indentation were also studied to correlate coating properties to measured stresses. The results obtained in this thesis will lead to strategies for material selection, process optimization, and defect elimination in polymeric coatings.

  3. Experimental Study on the Machining of Inclined Holes for Thermal Barrier-Coated Nickel Superalloys by EDM

    NASA Astrophysics Data System (ADS)

    Zhang, Guowei; Guo, Yongfeng; Wang, Li

    2016-10-01

    Thermal barrier coatings (TBCs) are used to thermally insulate superalloy components from the hot gas streams in gas turbine engines. In this work, electrical discharge machining (EDM) was used to machine different inclined holes in TBC-coated nickel superalloys by integrating the inner-jet-liquid rotating electrode method and the assisting electrode method. The influences of the inclination angle (i.e., from 0° to 60°) and EDM parameters (i.e., peak current, pulse duration, duty factor and flushing pressure) on the machining time and electrode wear were investigated. The surface morphologies and elemental distribution were analyzed using a scanning electron microscope and an energy dispersive spectroscope. The results of the analysis showed that the 8YSZ ceramic coating is more prone to brittle fracture and cracking than the IN718 substrate and NiCoAlY bond coating, and pits and cracks become more pronounced as the inclination angle increases. The damage on the trailing edge is primarily caused by the thermal stress fracture, and the damage on the leading edge is mainly caused by thermal erosion. Using high-energy parameters, a delamination with dimensions of 28 μm (W) × 200 μm (L) occurs on the trailing edges of the coating/substrate interface.

  4. NICKEL COATED URANIUM ARTICLE

    DOEpatents

    Gray, A.G.

    1958-10-01

    Nickel coatings on uranium and various methods of obtaining such coatings are described. Specifically disclosed are such nickel or nickel alloy layers as barriers between uranium and aluminum- silicon, chromium, or copper coatings.

  5. Spectroelectrochemical Studies on Quinacridone by Using Poly(vinyl alcohol) Coating as Protection Layer

    PubMed Central

    Enengl, Sandra; Enengl, Christina; Stadler, Philipp; Neugebauer, Helmut; Sariciftci, Niyazi Serdar

    2015-01-01

    Spectroscopic measurements in the infrared range combined with electrochemistry are a powerful technique for investigation of organic semiconductors to track changes during oxidation and reduction (p- and n-doping) processes. For these measurements it is important that the studied material, mostly deposited as a thin film on an internal reflection element, does not dissolve during this characterization. In this study we introduce a technique that allows infrared spectroelectrochemical characterization of films of these materials for the first time. In many cases so far this has been impossible, due to solubility in the oxidized and/or reduced form. This novel technique is shown on thin films of quinacridone by adding a protection layer of poly(vinyl alcohol) (PVA). PMID:26013836

  6. Study of Aerospace Materials, Coatings, Adhesions and Processes. Aircraft Icing Processes. Volume 1.

    DTIC Science & Technology

    1984-09-14

    AP A160 413 STUDY OF AEROSPACE MATERIALS CATIS AD|SIOS A - PROCESSES AIRCRAFT IC.. (UI INSTITUbO NACIONAL DE TECNICA AEROESPACIAL MORID ISPAIN) E I...Approved for public release; distribution unlimited. Prepared for INSTITTTTO NACIONAL DE TECNICA AEROESPACIAL "Esteban Terradas". Torrejdn de Ardoz...ADDRESS il0. PROGRAM ELEMENT. PROJECT, TASKC Thstituto Naciorial Tecnica Aeroespacial Dto. Aerodindmica y Navegabilidad 2301 / D1 Torrejcn de Ardoz

  7. Boron nitride nanotubes coated with organic hydrophilic agents: stability and cytocompatibility studies.

    PubMed

    Ferreira, Tiago Hilário; Soares, Daniel Crístian Ferreira; Moreira, Luciana Mara Costa; da Silva, Paulo Roberto Ornelas; dos Santos, Raquel Gouvêa; de Sousa, Edésia Martins Barros

    2013-12-01

    In the present study, Boron Nitride Nanotubes (BNNTs) were synthesized and functionalized with organic hydrophilic agents constituted by glucosamine (GA), polyethylene glycol (PEG)1000, and chitosan (CH) forming new singular systems. Their size, distribution, and homogeneity were determined by photon correlation spectroscopy, while their surface charge was determined by laser Doppler anemometry. The morphology and structural organization were evaluated by Transmission Electron Microscopy. The functionalization was evaluated by Thermogravimetry analysis and Fourier Transformer Infrared Spectroscopy. The results showed that BNNTs were successfully obtained and functionalized, reaching a mean size and dispersity deemed adequate for in vitro studies. The in vitro stability tests also revealed a good adhesion of functionalized agents on BNNT surfaces. Finally, the in vitro cytocompatibility of functionalized BNNTs against MCR-5 cells was evaluated, and the results revealed that none of the different functionalization agents disturbed the propagation of normal cells up to the concentration of 50 μg/mL. Furthermore, in this concentration, no significantly chromosomal or morphologic alterations or increase in ROS (Reactive Oxygen Species) could be observed. Thus, findings from the present study reveal an important stability and cytocompatibility of functionalized BNNTs as new potential drugs or radioisotope nanocarriers to be applied in therapeutic procedures.

  8. Pancreatic enzyme supplementation as acid-resistant microspheres versus enteric-coated granules in cystic fibrosis. A double placebo-controlled cross-over study.

    PubMed

    Petersen, W; Heilmann, C; Garne, S

    1987-01-01

    In order to compare the efficacy of pancreatic enzyme supplementation as pH-sensitive enteric-coated microspheres Pancrease to that of conventional supplementation with enteric-coated Pancreatin in cystic fibrosis, a double blind cross-over study was conducted. Eleven patients under 12 years of age received each of the enzyme preparations for four weeks. Treatment efficacy was evaluated by means of a symptom score card recording stool frequency, consistency, colour, odour, abdominal cramps and appetite as well as a 3 days fat absorption test. Weight increments were recorded 3 months before the study when patients were on Pancreatin, and 3 months after the study when patients were on Pancrease. In eight of the patients fat absorption was improved on Pancrease, but the difference did not reach statistical significance. However, the patients experienced significantly less dyspeptic symptoms, decreased stool frequency, better appetite and increments in weight were significantly higher on Pancrease compared to Pancreatin.

  9. Mixed zirconia calcium phosphate coatings for dental implants: tailoring coating stability and bioactivity potential.

    PubMed

    Pardun, Karoline; Treccani, Laura; Volkmann, Eike; Streckbein, Philipp; Heiss, Christian; Li Destri, Giovanni; Marletta, Giovanni; Rezwan, Kurosch

    2015-03-01

    Enhanced coating stability and adhesion are essential for long-term success of orthopedic and dental implants. In this study, the effect of coating composition on mechanical, physico-chemical and biological properties of coated zirconia specimens is investigated. Zirconia discs and dental screw implants are coated using the wet powder spraying (WPS) technique. The coatings are obtained by mixing yttria-stabilized zirconia (TZ) and hydroxyapatite (HA) in various ratios while a pure HA coating served as reference material. Scanning electron microscopy (SEM) and optical profilometer analysis confirm a similar coating morphology and roughness for all studied coatings, whereas the coating stability can be tailored with composition and is probed by insertion and dissections experiments in bovine bone with coated zirconia screw implants. An increasing content of calcium phosphate (CP) resulted in a decrease of mechanical and chemical stability, while the bioactivity increased in simulated body fluid (SBF). In vitro experiments with human osteoblast cells (HOB) revealed that the cells grew well on all samples but are affected by dissolution behavior of the studied coatings. This work demonstrates the overall good mechanical strength, the excellent interfacial bonding and the bioactivity potential of coatings with higher TZ contents, which provide a highly interesting coating for dental implants.

  10. Improving cytocompatibility of Co28Cr6Mo by TiO2 coating: gene expression study in human endothelial cells.

    PubMed

    Tsaryk, R; Peters, K; Unger, R E; Feldmann, M; Hoffmann, B; Heidenau, F; Kirkpatrick, C J

    2013-09-06

    Cobalt-based materials are widely used for coronary stents, as well as bone and joint implants. However, their use is associated with high corrosion incidence. Titanium alloys, by contrast, are more biocompatible owing to the formation of a relatively inactive titanium oxide (TiO2) layer on their surface. This study was aimed at improving Co28Cr6Mo alloy cytocompatibility via sol-gel TiO2 coating to reduce metal corrosion and metal ion release. Owing to their role in inflammation and tissue remodelling around an implant, endothelial cells present a suitable in vitro model for testing the biological response to metallic materials. Primary human endothelial cells seeded on Co28Cr6Mo showed a stress phenotype with numerous F-actin fibres absent on TiO2-coated material. To investigate this effect at the gene expression level, cDNA microarray analysis of in total 1301 genes was performed. Compared with control cells, 247 genes were expressed differentially in the cells grown on Co28Cr6Mo, among them genes involved in proliferation, oxidative stress response and inflammation. TiO2 coating reduced the effects of Co28Cr6Mo on gene expression in endothelial cells, with only 34 genes being differentially expressed. Quantitative real-time polymerase chain reaction and protein analysis confirmed microarray data for selected genes. The effect of TiO2 coating can be, in part, attributed to the reduced release of Co(2+), because addition of CoCl2 resulted in similar cellular responses. TiO2 coating of cobalt-based materials, therefore, could be used in the production of cobalt-based devices for cardiovascular and skeletal applications to reduce the adverse effects of metal corrosion products and to improve the response of endothelial and other cell types.

  11. Improving cytocompatibility of Co28Cr6Mo by TiO2 coating: gene expression study in human endothelial cells

    PubMed Central

    Tsaryk, R.; Peters, K.; Unger, R. E.; Feldmann, M.; Hoffmann, B.; Heidenau, F.; Kirkpatrick, C. J.

    2013-01-01

    Cobalt-based materials are widely used for coronary stents, as well as bone and joint implants. However, their use is associated with high corrosion incidence. Titanium alloys, by contrast, are more biocompatible owing to the formation of a relatively inactive titanium oxide (TiO2) layer on their surface. This study was aimed at improving Co28Cr6Mo alloy cytocompatibility via sol–gel TiO2 coating to reduce metal corrosion and metal ion release. Owing to their role in inflammation and tissue remodelling around an implant, endothelial cells present a suitable in vitro model for testing the biological response to metallic materials. Primary human endothelial cells seeded on Co28Cr6Mo showed a stress phenotype with numerous F-actin fibres absent on TiO2-coated material. To investigate this effect at the gene expression level, cDNA microarray analysis of in total 1301 genes was performed. Compared with control cells, 247 genes were expressed differentially in the cells grown on Co28Cr6Mo, among them genes involved in proliferation, oxidative stress response and inflammation. TiO2 coating reduced the effects of Co28Cr6Mo on gene expression in endothelial cells, with only 34 genes being differentially expressed. Quantitative real-time polymerase chain reaction and protein analysis confirmed microarray data for selected genes. The effect of TiO2 coating can be, in part, attributed to the reduced release of Co2+, because addition of CoCl2 resulted in similar cellular responses. TiO2 coating of cobalt-based materials, therefore, could be used in the production of cobalt-based devices for cardiovascular and skeletal applications to reduce the adverse effects of metal corrosion products and to improve the response of endothelial and other cell types. PMID:23825117

  12. Scanning tunneling microscopy study and nanomanipulation of graphene-coated water on mica.

    PubMed

    He, Kevin T; Wood, Joshua D; Doidge, Gregory P; Pop, Eric; Lyding, Joseph W

    2012-06-13

    We study interfacial water trapped between a sheet of graphene and a muscovite (mica) surface using Raman spectroscopy and ultrahigh vacuum scanning tunneling microscopy (UHV-STM) at room temperature. We are able to image the graphene-water interface with atomic resolution, revealing a layered network of water trapped underneath the graphene. We identify water layer numbers with a carbon nanotube height reference. Under normal scanning conditions, the water structures remain stable. However, at greater electron energies, we are able to locally manipulate the water using the STM tip.

  13. Drinking water contaminants from epoxy resin-coated pipes: A field study.

    PubMed

    Rajasärkkä, Johanna; Pernica, Marek; Kuta, Jan; Lašňák, Jonáš; Šimek, Zdenĕk; Bláha, Luděk

    2016-10-15

    Rehabilitation of aged drinking water pipes is an extensive renovation and increasingly topical in many European cities. Spray-on-lining of drinking water pipes is an alternative cost-effective rehabilitation technology in which the insides of pipes are relined with organic polymer. A commonly used polymer is epoxy resin consisting of monomer bisphenol A (BPA). Leaching of BPA from epoxy lining to drinking water has been a concern among public and authorities. Currently epoxy lining is not recommended in some countries. BPA leaching has been demonstrated in laboratory studies but the behavior and ageing process of epoxy lining in situ is not well known. In this study 6 locations with different age epoxy linings of drinking water pipes done using two distinct technologies were studied. While bisphenol F, 4-n-nonylphenol, and 4-t-octylphenol were rarely found and in trace concentrations, BPA was detected in majority of samples. Pipes lined with the older technology (LSE) leached more BPA than those with more recent technology (DonPro): maxima in cold water were 0.25 μg/L and 10 ng/L, respectively. Incubation of water in pipes 8-10 h prior to sampling increased BPA concentration in cold water 1.1-43-fold. Hot water temperature caused even more BPA leaching - at maximum 23.5 μg/L. The influence of ageing of epoxy lining on BPA leaching on could be shown in case of LSE technology: locations with 8-9 years old lining leached 4-20-fold more BPA compared to a location with 2-year-old lining. Analysis of metals showed that epoxy lining can reduce especially iron concentration in water. No significant burden to water could be shown by the analyzed 72 volatile organic compounds, including epichlorhydrin, precursor used in epoxy resin. Estrogenicity was detected in water samples with the highest BPA loads. Comparable responses of two yeast bioreporters (estrogen receptor α and BPA-targeted) indicated that bisphenol-like compounds were the main cause of estrogenicity

  14. EXPERIMENTAL STUDY OF FACTORS CONTROLLING THE EFFECTIVENESS OF HIGH- TEMPERATURE PROTECTIVE COATINGS FOR TUNGSTEN

    DTIC Science & Technology

    Oxidation at elevated temperatures of Zr-Th, Zr-Y, Hf-Y, Hf-W, Hf-W- Re, Al-Cr-Sn, and Al-LaSn alloys, as well as ZrN, HfN and ZrN-ThN combinations...was studied in order to clarify specific aspects of the problem of protecting W against oxidation at high temperatures . Experimental results showed...that there was much less tendency for ZrO2, ThO2 and HfO2 scales to crack during growth at high than at low temperatures . Multiphased scales were more

  15. Corrosion resistant coating

    DOEpatents

    Wrobleski, Debra A.; Benicewicz, Brian C.; Thompson, Karen G.; Bryan, Coleman J.

    1997-01-01

    A method of protecting a metal substrate from corrosion including coating a metal substrate of, e.g., steel, iron or aluminum, with a conductive polymer layer of, e.g., polyaniline, coating upon said metal substrate, and coating the conductive polymer-coated metal substrate with a layer of a topcoat upon the conductive polymer coating layer, is provided, together with the resultant coated article from said method.

  16. Corrosion resistant coating

    DOEpatents

    Wrobleski, D.A.; Benicewicz, B.C.; Thompson, K.G.; Bryan, C.J.

    1997-08-19

    A method of protecting a metal substrate from corrosion including coating a metal substrate of, e.g., steel, iron or aluminum, with a conductive polymer layer of, e.g., polyaniline, coating upon said metal substrate, and coating the conductive polymer-coated metal substrate with a layer of a topcoat upon the conductive polymer coating layer, is provided, together with the resultant coated article from said method.

  17. Effect of Superalloy Substrate and Bond Coating on TBC Lifetime

    SciTech Connect

    Pint, Bruce A; Haynes, James A; Zhang, Ying

    2010-01-01

    Several different single-crystal superalloys were coated with different bond coatings to study the effect of composition on the cyclic oxidation lifetime of an yttria-stabilized zirconia (YSZ) top coating deposited by electron beam physical vapor deposition from a commercial source. Three different superalloys were coated with a 7 {micro}m Pt layer that was diffused into the surface prior to YSZ deposition. One of the superalloys, N5, was coated with a low activity, Pt-modified aluminide coating and Pt-diffusion coatings with 3 and 7 {micro}m of Pt. Three coatings of each type were furnace cycled to failure in 1 h cycles at 1150 C to assess average coating lifetime. The 7 {micro}m Pt diffusion coating on N5 had an average YSZ coating lifetime >50% higher than a Pt-modified aluminide coating on N5. Without a YSZ coating, the Pt-modified aluminide coating on N5 showed the typical surface deformation during cycling, however, the deformation was greatly reduced when constrained by the YSZ coating. The 3 {micro}m Pt diffusion coating had a similar average lifetime as the Pt-modified aluminide coating but a much wider scatter. The Pt diffusion bond coating on superalloy X4 containing Ti exhibited the shortest YSZ coating lifetime, this alloy-coating combination also showed the worst alumina scale adhesion without a YSZ coating. The third generation superalloy N6 exhibited the longest coating lifetime with a 7 {micro}m Pt diffusion coating.

  18. Effects of Ni-coating on ZnO nanowires: A Raman scattering study

    NASA Astrophysics Data System (ADS)

    Filippov, S.; Wang, X. J.; Devika, M.; Koteeswara Reddy, N.; Tu, C. W.; Chen, W. M.; Buyanova, I. A.

    2013-06-01

    Structural properties of ZnO/Ni core/shell nanowires (NWs) are studied in detail by means of Raman spectroscopy. It is shown that formation of the Ni shell leads to passivation of surface states responsible for the observed enhanced intensity of the A1(LO) Raman mode of the bare ZnO NWs. It also causes appearance of 490 cm-1 and 710 cm-1 modes that are attributed to local vibrational modes of a defect/impurity (or defects/impurities). This defect is concluded to be preferably formed in annealed ZnO/Ni NWs and is unlikely to contain a Ni atom, as the same Raman modes were also reported for the Ni-free ZnO nanostructures. From our resonant Raman studies, we also show that the ZnO/Ni core/shell NWs exhibit an enhanced Raman signal with a multiline structure involving A1(LO). This observation is attributed to combined effects of an enhanced Fröhlich interaction at the ZnO/Ni heterointerface and coupling of the scattered light with local surface plasmons excited in the Ni shell. The plasmonic effect is also suggested to allow detection of carbon-related species absorbed at the surface of a single ZnO/Ni NW, promising for applications of such structures as efficient nano-sized gas sensors.

  19. Bioequivalence studies of two different film-coated tablet formulations of valacyclovir of two different strengths in healthy volunteers.

    PubMed

    Neves, Rita; Almeida, Susana; Filipe, Augusto; Spinola, Ana Cristina Franco; Abolfathi, Zohreh; Lévesque, Ann; Ortuño, Jordi; Torns, Alex

    2010-01-01

    These studies were conducted in order to assess the bioequivalence of two film-coated formulations containing 250 mg and 1000 mg of valacyclovir (INN: valaciclovir; CAS 124832-26-4), which is the L-valyl ester and a pro-drug of the antiviral drug acyclovir (INN: aciclovir). In the study with valacyclovir 250 mg, 36 healthy subjects were enrolled in a randomized, single-dose, open-label, 2-way crossover study, with a washout period of 10 days. In the study with valacyclovir 1000 mg, 46 healthy subjects were enrolled in a randomized, single-dose, open-label, 2-way crossover study, with a washout period of 7 days. Plasma samples were collected up to 36 h postdose for both studies. Valacyclovir levels were determined by liquid chromatography with tandem mass detection (ie, the LC/MS/MS method) (lower limit of quantification: 0.50 ng/ mL for valacyclovir and 9.93 ng/mL for acyclovir for the 250 mg study and 1.00 ng/mL for valacyclovir and 20.00 ng/ mL for acyclovir for the 1000 mg study). Pharmacokinetic parameters used for bioequivalence assessment were the area under the concentration-time curve from time zero to time of last non-zero concentration (AUC(0-t)) and from time zero to infinity (AUC(0-inf) and maximum observed concentration (C(max)). These parameters were determined from the valacyclovir concentration data using non-compartmental analysis. In the tained by analysis of variance (ANOVA) for valacyclovir were 107.54-124.26% for C(max), 95.45-103.46% for AUC(0-Inf) and 95.53-103.63% for AUC(0-t) whereas for acyclovir the 90% confidence intervals obtained were 103.19-117.02% for C(max), 99.61-106.92% for AUC(0-Inf) and 99.58-106.94% for AUC(0-t). In the study with valacyclovir 1000 mg formulations, the 90% confidence intervals obtained for valacyclovir were 93.20-107.35% for C(max), 90.87-96.27% for AUC(0-inf) and 90.87-96.27% for AUC(0-t) whereas for acyclovir the 90% CIs obtained were 95.98-104.94% for C(max), 97.13-103.94% for AUC(0-inf) and 97

  20. A Study of Pack Aluminizing Process for NiCrAlY Coatings Using Response Surface Methodology

    NASA Astrophysics Data System (ADS)

    Gao, Feng; Huang, Xiao; Liu, Rong; Yang, Qi

    2014-01-01

    Aluminizing process is widely used to provide additional Al deposition onto superalloy surface for enhanced oxidation and corrosion resistance. In this research, an aluminizing process—pack cementation process, is used to deposit Al onto the surface of NiCrAlY coatings for increasing environmental protection. The experiment is designed using Box-Behnken approach, in which three parameters, the Al content, Ni content of the pack powder, and the temperature of the process, are selected as factors; and the thickness and Al/Ni ratio of the coatings are selected as responses. The effects of the factors on the responses are analyzed and modeled empirically. It is found that these empirical models correlate well with the results from additional sets of experiment. These models can be used to produce aluminized NiCrAlY coatings with specific thicknesses and Al/Ni ratios.

  1. Preliminary study of a solar selective coating system using black cobalt oxide for high temperature solar collectors

    NASA Technical Reports Server (NTRS)

    Mcdonald, G.

    1980-01-01

    Black cobalt oxide coatings (high solar absorptance layer) were deposited on thin layers of silver or gold (low emittance layer) which had been previously deposited on oxidized (diffusion barrier layer) stainless steel substrates. The reflectance properties of these coatings were measured at various thicknesses of cobalt for integrated values of the solar and infrared spectrum. The values of absorptance and emittance were calculated from the measured reflectance values, before and after exposure in air at 650 C for approximately 1000 hours. Absorptance and emittance were interdependent functions of the weight of cobalt oxide. Also, these cobalt oxide/noble metal/oxide diffusion barrier coatings have absorptances greater than 0.90 and emittances of approximately 0.20 even after about 1000 hours at 650 C.

  2. Mechanical durability of polymeric coatings studied by positron annihilation spectroscopy: correlation between cyclic loading and free volumes

    NASA Astrophysics Data System (ADS)

    Chen, H.; Peng, Q.; Huang, Y. Y.; Zhang, R.; Mallon, P. E.; Zhang, J.; Li, Y.; Wu, Y.; Richardson, J. R.; Sandreczki, T. C.; Jean, Y. C.; Suzuki, R.; Ohdaira, T.

    2002-06-01

    The mechanical durability of seven commercially polymeric coatings is investigated using slow positron beam techniques to monitor changes in sub-nanometer defects during the process of cyclic loading. Doppler broadened energy spectra and positron annihilation lifetime (PAL) measurements were performed as a function of the slow positron energy at different periods of cycling loading. The positron annihilation dada show that both S-defect parameter and o-positronium (Ps) lifetime decrease as the loading cycle increases. The results indicate a loss of free volumes due to the loss of mechanical durability by cyclic loading. A direct correlation between the loss of S-defect parameter and the period of loading cycle is observed. This is interpreted as that durability of polymeric coatings is controlled by the atomic level free volumes. It is shown that the slow positron beam is a very successful probe in detecting the very early stages of coating degradation due to mechanical processes.

  3. Photocatalytic degradation of an emerging pollutant by TiO2-coated glass rings: a kinetic study.

    PubMed

    Manassero, Agustina; Satuf, María Lucila; Alfano, Orlando Mario

    2016-05-24

    This work presents the photocatalytic degradation of the pharmaceutical drug clofibric acid in a fixed-bed reactor filled with TiO2-coated glass rings. Experiments were carried out under UV radiation. A kinetic model that takes into account radiation absorption by means of the local surface rate of photon absorption (LSRPA) has been developed. The LSRPA was obtained from the results of a radiation model. The Monte Carlo method was employed to solve the radiation model, where the interaction between photons and TiO2-coated rings was considered. Data from experiments carried out with rings with different numbers of catalyst coatings and different irradiation levels were used to estimate the parameters of the kinetic model. A satisfactory agreement was obtained between model simulations and experimental results.

  4. Pb deposition on I-coated Au(111). UHV-EC and EC-STM studies.

    PubMed

    Kim, Youn-Geun; Kim, Jay Yu; Thambidurai, Chandru; Stickney, John L

    2007-02-27

    This article concerns the growth of an atomic layer of Pb on the Au(111)( radical3 x radical3)R30 degrees -I structure. The importance of this study lies in the use of Pb underpotential deposition (UPD) as a sacrificial layer in surface-limited redox replacement (SLRR). SLRR reactions are being applied in the formation of metal nanofilms via electrochemical atomic layer deposition (ALD). Pb UPD is a surface-limited reaction, and if it is placed in a solution of ions of a more noble metal, redox replacement can occur, but limited by the amount of Pb present. Pb UPD is a candidate for use as a sacrificial layer for replacement by any more noble element. It has been used by this group for both Cu and Pt nanofilm formation using electrochemical ALD. The I atom layer was intended to facilitate electrochemical annealing during nanofilm growth. Two distinctly different Pb atomic layer structures are reported, studied using in situ scanning tunneling microscopy (STM) with an electrochemical flow cell and ultrahigh vacuum surface analysis combined directly with electrochemical reactions (UHV-EC). Starting with the initial Au(111)( radical3 x radical3)R30 degrees -I, 1/3 monolayer of I on the Au(111) surface, Pb deposition began at approximately 0.1 V. The first Pb UPD structure was observed just below -0.2 V and displayed a (2 x radical3)-rect unit cell, for a structure composed of 1/4 monolayer each of Pb and I. The I atoms fit in Pb 4-fold sites, on the Au(111) surface. The structure was present in domains rotated by 120 degrees. Deposition to -0.4 V resulted in complete loss of the I atoms and formation of a Pb monolayer on the Au(111), which produced a Moiré pattern, due to the Pb and Au lattice mismatch. These structures represent two well-defined starting points for the growth of nanofilms of other more noble elements. It is apparent from these studies that the adsorption of I- on Pb is weak, and it will rinse away. If Pb is used as a sacrificial metal in an

  5. Detection specificity studies of bacteriophage adhesin-coated long-period grating-based biosensor

    NASA Astrophysics Data System (ADS)

    Koba, Marcin; Śmietana, Mateusz; Brzozowska, Ewa; Górska, Sabina; Mikulic, Predrag; Cusano, Andrea; Bock, Wojtek J.

    2015-09-01

    In this work, we present a label-free detection specificity study of an optical fiber long-period grating (LPG) biosensor working near the dispersion turning point of higher order cladding modes. The LPG sensor functionalized with bacteriophage adhesin is tested with specific and non-specific bacteria dry weight. We show that such biosensor is able to selectively bind, thus recognize different bacteria. We use bacteria dry weights of E. coli B as positive test and E. coli K12 and Salmonella enterica as negative tests. The resonance wavelength shift induced by E. coli B reaches over 90 nm, while for E. coli K12 and Salmonella enterica approximately 40 and 20 nm, respectively.

  6. A Comparative Study on Graphene Oxide and Carbon Nanotube Reinforcement of PMMA-Siloxane-Silica Anticorrosive Coatings.

    PubMed

    Harb, Samarah V; Pulcinelli, Sandra H; Santilli, Celso V; Knowles, Kevin M; Hammer, Peter

    2016-06-29

    Carbon nanotubes (CNTs) and graphene oxide (GO) have been used to reinforce PMMA-siloxane-silica nanocomposites considered to be promising candidates for environmentally compliant anticorrosive coatings. The organic-inorganic hybrids were prepared by benzoyl peroxide (BPO)-induced polymerization of methyl methacrylate (MMA) covalently bonded through 3-(trimethoxysilyl)propyl methacrylate (MPTS) to silica domains formed by hydrolytic condensation of tetraethoxysilane (TEOS). Single-walled carbon nanotubes and graphene oxide nanosheets were dispersed by surfactant addition and in a water/ethanol solution, respectively. These were added to PMMA-siloxane-silica hybrids at a carbon (CNT or GO) to silicon (TEOS and MPTS) molar ratio of 0.05% in two different matrices, both prepared at BPO/MMA molar ratios of 0.01 and 0.05. Atomic force microscopy and scanning electron microscopy showed very smooth, homogeneous, and defect-free surfaces of approximately 3-7 μm thick coatings deposited onto A1020 carbon steel by dip coating. Mechanical testing and thermogravimetric analysis confirmed that both additives CNT and GO improved the scratch resistance, adhesion, wear resistance, and thermal stability of PMMA-siloxane-silica coatings. Results of electrochemical impedance spectroscopy in 3.5% NaCl solution, discussed in terms of equivalent circuits, showed that the reinforced hybrid coatings act as a very efficient anticorrosive barrier with an impedance modulus up to 1 GΩ cm(2), approximately 5 orders of magnitude higher than that of bare carbon steel. In the case of GO addition, the high corrosion resistance was maintained for more than 6 months in saline medium. These results suggest that both carbon nanostructures can be used as structural reinforcement agents, improving the thermal and mechanical resistance of high performance anticorrosive PMMA-siloxane-silica coatings and thus extending their application range to abrasive environments.

  7. [Study on discrimination of varieties of fire resistive coating for steel structure based on near-infrared spectroscopy].

    PubMed

    Xue, Gang; Song, Wen-qi; Li, Shu-chao

    2015-01-01

    In order to achieve the rapid identification of fire resistive coating for steel structure of different brands in circulating, a new method for the fast discrimination of varieties of fire resistive coating for steel structure by means of near infrared spectroscopy was proposed. The raster scanning near infrared spectroscopy instrument and near infrared diffuse reflectance spectroscopy were applied to collect the spectral curve of different brands of fire resistive coating for steel structure and the spectral data were preprocessed with standard normal variate transformation(standard normal variate transformation, SNV) and Norris second derivative. The principal component analysis (principal component analysis, PCA)was used to near infrared spectra for cluster analysis. The analysis results showed that the cumulate reliabilities of PC1 to PC5 were 99. 791%. The 3-dimentional plot was drawn with the scores of PC1, PC2 and PC3 X 10, which appeared to provide the best clustering of the varieties of fire resistive coating for steel structure. A total of 150 fire resistive coating samples were divided into calibration set and validation set randomly, the calibration set had 125 samples with 25 samples of each variety, and the validation set had 25 samples with 5 samples of each variety. According to the principal component scores of unknown samples, Mahalanobis distance values between each variety and unknown samples were calculated to realize the discrimination of different varieties. The qualitative analysis model for external verification of unknown samples is a 10% recognition ration. The results demonstrated that this identification method can be used as a rapid, accurate method to identify the classification of fire resistive coating for steel structure and provide technical reference for market regulation.

  8. The Chemistry of Coatings.

    ERIC Educational Resources Information Center

    Griffith, James R.

    1981-01-01

    The properties of natural and synthetic polymeric "coatings" are reviewed, including examples and uses of such coatings as cellulose nitrate lacquers (for automobile paints), polyethylene, and others. (JN)

  9. Improved bond coatings for use with thermal barrier coatings

    NASA Technical Reports Server (NTRS)

    Gedwill, M. A.

    1980-01-01

    The potential for improving the durability of thermal barrier coatings (TBC's) being developed for coal derived fuel fired gas turbines was studied. Furnace oxidation behavior of plasma deposited bond coatings was improved by increasing the thickness from 0.010 cm to 0.015 cm and by depositing the coatings at 20 kW with argon 3.5 vol % hydrogen arc gas rather than at 11 kW with argon. The most oxidation resistant plasma deposited bond coatings were Ni-14, 1Cr-13.4Al-0.10Zr, Ni-14.3Cr-14.4Al.0.16Y, and Ni-15.8Cr-12.8Al-0.36Y on B-1900 + Hf and Ni-30.9Cr-11.1Al-0.48Y on MAR-M-509. The oxidation resistant bond coatings improved TBC life when the coatings were deposited on the specimens supported on a nail bed fixture during coating.

  10. Frequency and determinants of white coat hypertension in mild to moderate hypertension: a primary care-based study. Monitorización Ambulatoria de la Presión Arterial (MAPA)-Area 5 Working Group.

    PubMed

    Martínez, M A; García-Puig, J; Martín, J C; Guallar-Castillón, P; Aguirre de Cárcer, A; Torre, A; Armada, E; Nevado, A; Madero, R S

    1999-03-01

    Most of the previous studies on white coat hypertension were performed in hypertension clinics or academic settings and included relatively small series of patients. Consequently, the prevalence of white coat hypertension in primary care settings and the clinical and epidemiologic characteristics of this subgroup of patients are not well known. We performed this study to estimate the frequency of white coat hypertension in a population of mildly to moderately hypertensive subjects attended in a primary care setting and to examine possible epidemiologic and clinical factors that may identify these patients. Patients included in the study underwent clinical interview, measurement of clinic blood pressure (BP) on three visits, determination of serum lipids, glucose, uric acid, and urinary albumin excretion, 24-h ambulatory BP monitoring, and M-mode and Doppler echocardiography. Patients were classified as white coat hypertensives if their daytime ambulatory BP were < 135/85 mm Hg. We studied 345 patients, 136 (39%) of whom were diagnosed with white coat hypertension. The frequency of white coat hypertension was inversely proportional to the severity of clinic BP values. The diagnosis of white coat hypertension was independently associated with female gender and low educational level. Left ventricular mass index and urinary albumin excretion were lower in the white-coat hypertensive group compared with the group with sustained hypertension. Our results show that a high proportion of patients with mild to moderate hypertension attended in a primary care setting have white coat hypertension. Some clinical characteristics may be helpful in the identification of this group of subjects. White coat hypertensives show less target-organ damage than sustained hypertensive patients.

  11. Study of Tribological Properties of MoS{sub 2}+Graphite Sputtered Composite Coatings under various Environment Pressures

    SciTech Connect

    Liu Yong; Luo Chongtai; Ye Zhuyu; Yang Jianqun; Yang Dezhuang

    2009-01-05

    MoS{sub 2}+Graphite composite coatings were synthesized onto 2024 aluminum alloy substrates by sputtering. The friction and wear test were performed at different environment pressures in vacuum using a ball-on-disk tribometer. The worn surface of the coating was examined by scanning electron microscopy (SEM). The results show that the friction coefficients and wear rate are increasing with increased environment pressure. A second surface layer was formed on the worn surface, that is harder than the original surface. The hardness of this second surface layer is decreased with increasing environment pressure.

  12. A bench-scale study on the removal and recovery of phosphate by hydrous zirconia-coated magnetite nanoparticles

    NASA Astrophysics Data System (ADS)

    Wang, Zhe; Fang, Wenkan; Xing, Mingchao; Wu, Deyi

    2017-02-01

    Owing to the easy magnetic separation from water for reuse, magnetic nanoparticles have drawn great interest as adsorbents. Herein hydrous zirconia-coated magnetite nanoparticles (Fe3O4@ZrO2) were created by a facile method and a bench-scale study was undertaken to evaluate its effectiveness and mechanism to remove phosphate at low concentrations. Results indicated that phosphate removal by Fe3O4@ZrO2 was fast (95% of phosphate removal within 10 min) and nearly complete removal could be achieved at the adsorbent dosage >0.6 g/L. In tap water or wastewater where competitive anions coexist, regulation of pH was found to be quite effective to augment the performance of phosphate removal. In pH-lowered adsorption systems, phosphate removal followed a good pattern similarly to pure water, i.e., a continuous high efficiency removal followed by a rapid saturation. Adsorption-desorption-regeneration studies showed that Fe3O4@ZrO2 could be repeatedly used for phosphate removal and adsorbed phosphate could be stripped for recovery. The fractionation of adsorbed phosphorus suggested that NaOH-P fraction was dominant. We also found that the adsorption reaction of phosphate with Fe3O4@ZrO2 shifted the isoelectric point of Fe3O4@ZrO2 from 9.0 to 3.0. FTIR measurements further showed the direct coordination of phosphate onto zirconium by replacement of hydroxyl groups. The formation of the monodentate (ZrO)PO2(OH) complex was proposed.

  13. SERS and DFT study of copper surfaces coated with corrosion inhibitor

    PubMed Central

    Muniz-Miranda, Francesco; Caporali, Stefano

    2014-01-01

    Summary Azole derivatives are common inhibitors of copper corrosion due to the chemical adsorption occurring on the metal surface that gives rise to a protective film. In particular, 1,2,4-triazole performs comparable to benzotriazole, which is much more widely used, but is by no means an environmentally friendly agent. In this study, we have analyzed the adsorption of 1,2,4-triazole on copper by taking advantage of the surface-enhanced Raman scattering (SERS) effect, which highlights the vibrational features of organic ligand monolayers adhering to rough surfaces of some metals such as gold, silver and copper. To ensure the necessary SERS activation, a roughening procedure was implemented on the copper substrates, resulting in nanoscale surface structures, as evidenced by microscopic investigation. To obtain sufficient information on the molecule–metal interaction and the formation of an anticorrosive thin film, the SERS spectra were interpreted with the aid of theoretical calculations based on the density functional theory (DFT) approach. PMID:25671144

  14. Study of Velocity and Materials on Tribocharging of Polymer Powders for Powder Coating Applications

    NASA Technical Reports Server (NTRS)

    Biris, Alex S.; Trigwell, Steve; Sims, Robert A.; Mazumder, Malay K.

    2005-01-01

    Electrostatic powder deposition is widely used in a plethora of industrial-applications ranging from the pharmaceutical and food.industries, to farm equipment and automotive applications. The disadvantages of this technique are possible back corona (pin-like formations) onset and the Faraday penetration limitation (when the powder does not penetrate in some recessed areas). A possible solution to overcome these problems is to use tribochargers to electrostatically charge the powder. Tribocharging, or contact charging while two materials are in contact, is related to the work function difference between the contacting materials and generates bipolarly charged particles. The generation of an ion-free powder cloud by tribocharging with high bipolar charge and an overall charge density of almost zero, provides a better coverage of the recessed areas. In this study, acrylic and epoxy powders were fluidized and charged by passing through stainless steel, copper, aluminum, and polycarbonate static mixers, respectively. The particle velocity was varied to determine its effect on the net charge-to-mass ratio (QIM) acquired by the powders. In general, the Q/M increases rapidly when the velocity was increased from 1.5 to 2.5 m/s, remaining almost constant for higher velocities. Charge separation experiments showed bipolar charging for all chargers.

  15. A study of neutron and gamma radiation effects on transmission of various types of glasses, optical coatings, cemented optics and fiber

    NASA Astrophysics Data System (ADS)

    Javed Akhtar, S. M.; Ashraf, Mohammad; Khan, Shaukat Hameed

    2007-08-01

    A study of radiation effects on various types of glasses, dielectric optical coatings, cemented optics and fiber was undertaken with a view to select them for extreme radiation environments. Samples were exposed to different radiation doses in the Pakistan Research Reactor-I (PARR-I) for neutron and Cobalt 60 source for gamma irradiation. Transmissions were measured before and after irradiation. The dielectric coatings were subjected to additional tests (adhesion, abrasion and humidity, etc.) as per MIL-M-13508C and MIL-C-675C. All 15 glasses studied showed varying amounts of transmission loss as expected, with negligible degradation for three types. Recovery of transmissions with time/ageing was also studied, with more or less complete recovery with temperature annealing. A faster bleaching of darkened/brown glasses was achieved by using UV lamps or UV laser. The dielectric coatings (HR, AR) and one of the two commercial optical cements showed excellent resistance to neutrons and gamma radiations, and could be good candidates for the fabrication and utilization of optical components in extreme radiation environments. The data allowed several Chinese glasses to be studied for the first time.

  16. A study of diamond synthesis by hot filament chemical vapor deposition on Nc coatings

    NASA Astrophysics Data System (ADS)

    Polini, R.; Kumashiro, S.; Jackson, M. J.; Amar, M.; Ahmed, W.; Sein, H.

    2006-04-01

    Deposition of diamond films onto various substrates can result in significant technological advantages in terms of functionality and improved life and performance of components. Diamond is hard, wear resistant, chemically inert, and biocompatible. It is considered to be the ideal material for surfaces of cutting tools and biomedical components. However, it is well known that diamond deposition onto technologically important substrates, such as co-cemented carbides and steels, is problematic due to carbon interaction with the substrate, low nucleation densities, and poor adhesion. Several papers previously published in the relevant literature have reported the application of interlayer materials such as metal nitrides and carbides to provide bonding between diamond and hostile substrates. In this study, the chemical vapor deposition (CVD) of polycrystalline diamond on TiN/SiN x nc (nc) interlayers deposited at relatively low temperatures has been investigated for the first time. The nc layers were deposited at 70 or 400 °C on Si substrates using a dual ion beam deposition system. The results showed that a preliminary seeding pretreatment with diamond suspension was necessary to achieve large diamond nucleation densities and that diamond nucleation was larger on nc films than on bare sc-Si subjected to the same pretreatment and CVD process parameters. TiN/SiN x layers synthesized at 70 or 400 °C underwent different nanostructure modifications during diamond CVD. The data also showed that TiN/SiN x films obtained at 400 °C are preferable in so far as their use as interlayers between hostile substrates and CVD diamond is concerned.

  17. PTA Versus Carbofilm-Coated Stents in Infrapopliteal Arteries: Pilot Study

    SciTech Connect

    Rand, T. Basile, A.; Cejna, M.; Fleischmann, D.; Funovics, M.; Gschwendtner, M.; Haumer, M.; Katzler, I. von; Kettenbach, J.; Lomoschitz, F.; Luft, C.; Minar, E.; Schneider, B.; Schoder, M.; Lammer, J.

    2006-02-15

    Purpose: To determine the primary success and short-term patency of stent application as a primary treatment modality for high-grade lesions of the infrapopliteal arteries compared with treatment with percutaneous transluminal angioplasty (PTA) in critical limb ischemia in a randomized prospective study. Methods: Endovascular therapy was performed on 95 lesions in 51 patients (mean age 72.0 years, range 47-80 years) who presented clinically with Fontaine stages III and IV. One patient underwent treatment in both limbs. After angiographic lesion identification, patients were randomized for treatment by PTA (53 lesions in 27 patients) or stent application (42 lesions in 24 patients). Follow-up by clinical investigation and conventional angiography or spiral CT angiography was performed in 37 patients (57 lesions) 6 to 12 months after the procedure, or when clinically indicated. Evaluation was performed by two observers, double-blinded, with thresholds for lesion restenosis of 50% and 70%. Statistical evaluation was performed on a lesion basis by Kaplan-Meier estimated probability rates, and log-rank and Wilcoxon tests. The primary endpoint was the angiographic patency rate of treated lesions. Results: The inter-reader agreement was high ({kappa} = 0.82). For the stent group the cumulative primary patency at 6 months was 83.7% at the 70% restenosis threshold, and 79.7% at the 50% restenosis threshold. For PTA, the primary patency at 6 months was 61.1% at the 70% restenosis threshold and 45.6% at the 50% restenosis threshold. Both results were statistically significant (p < 0.05). Conclusion: Infrapopliteal stent application is an effective treatment modality for high-grade lesions in chronic critical limb ischemia. Compared with PTA, higher patency rates can be expected after 6 months.

  18. A CFD-Based Study of the Feasibility of Adapting an Erosion Burner Rig for Examining the Effect of CMAS Deposition Corrosion on Environmental Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Miller, Robert A.; Kuczmarski, Maria A.

    2015-01-01

    Thermodynamic and computational fluid dynamics modeling has been conducted to examine the feasibility of adapting the NASA-Glenn erosion burner rigs for use in studies of corrosion of environmental barrier coatings by the deposition of molten CMAS. The effect of burner temperature, Mach number, particle preheat, duct heating, particle size, and particle phase (crystalline vs. glass) were analyzed. Detailed strategies for achieving complete melting of CMAS particles were developed, thereby greatly improving the probability of future successful experimental outcomes.

  19. Simulation of automotive wrist pin joint and tribological studies of tin coated Al-Si alloy, metal matrix composites and nitrogen ceramics under mixed lubrication

    NASA Astrophysics Data System (ADS)

    Wang, Qian

    Development of automotive engines with high power output demands the application of high strength materials with good tribological properties. Metal matrix composites (MMC's) and some nitrogen ceramics are of interest to replace some conventional materials in the piston/pin/connecting rod design. A simulation study has been developed to explore the possibility to employ MMC's as bearing materials and ceramics as journal materials, and to investigate the related wear mechanisms and the possible journal bearing failure mechanisms. Conventional tin coated Al-Si alloy (Al-Si/Sn) have been studied for the base line information. A mixed lubrication model for journal bearing with a soft coating has been developed and applied to the contact and temperature analysis of the Al-Si/Sn bearing. Experimental studies were performed to reveal the bearing friction and wear behavior. Tin coating exhibited great a advantage in friction reduction, however, it suffered significant wear through pitting and debonding. When the tin wore out, the Al-Si/steel contact experienced higher friction. A cast and P/M MMC's in the lubricated contact with case hardened steel and ceramic journals were studied experimentally. Without sufficient material removal in the conformal contact situation, MMC bearings in the MMC/steel pairs gained weight due to iron transfer and surface tribochemical reactions with the lubricant additives and contact failure occurred. However, the MMC/ceramic contacts demonstrated promising tribological behavior with low friction and high wear resistance, and should be considered for new journal bearing design. Ceramics are wear resistant. Ceramic surface roughness is very crucial when the journals are in contact with the tin coated bearings. In contact with MMC bearings, ceramic surface quality and fracture toughness seem to play some important roles in affecting the friction coefficient. The wear of silicon nitride and beta sialon (A) journals is pitting due to grain

  20. Target Organ Complications and Cardiovascular Events Associated with Masked Hypertension and White Coat Hypertension: Analysis from the Dallas Heart Study

    PubMed Central

    Tientcheu, Danielle; Ayers, Colby; Das, Sandeep R.; McGuire, Darren K.; de Lemos, James A.; Khera, Amit; Kaplan, Norman; Victor, Ronald; Vongpatanasin, Wanpen

    2015-01-01

    Background Multiple epidemiological studies from Europe and Asia have demonstrated increased cardiovascular risks associated with isolated elevation of home blood pressure (BP) or masked hypertension (MH). Previous studies have not addressed cardiovascular outcomes associated with MH and white coat hypertension (WCH) in the general population in the United States. Objectives The goal of this study was to determine hypertensive target organ damage and adverse cardiovascular outcomes associated with WCH (high clinic BP ≥140/90 mm Hg, normal home BP of <135/85 mm Hg), MH (high home BP ≥135/85 mm Hg, normal clinic BP <140/90 mm Hg), and sustained hypertension (SH, high home and clinic BP) in the Dallas Heart Study, a large, multiethnic probability-based population cohort. Methods We evaluated associations between WCH, MH, SH and aortic pulse wave velocity (APWV) by magnetic resonance imaging; urinary albumin to creatinine ratio (UACR); and cystatin C at study baseline. Then, associations between WCH and MH with incident cardiovascular outcomes (coronary heart disease, stroke, atrial fibrillation, heart failure, and cardiovascular death) over a median follow-up period of 9 years were assessed. Results The study cohort comprised 3,027 subjects (50% African Americans). The sample-weighted prevalence of WCH and MH were 3.3% and 17.8%, respectively. Both WCH and MH were independently associated with increased APWV, cystatin C, and UACR. Both WCH and MH were independently associated with higher cardiovascular events compared with the NT group, even after adjustment for traditional cardiovascular risk factors (adjusted HR: 2.09; 95% CI: 1.05 to 4.15 and adjusted HR: 2.03; 95% CI: 1.36 to 3.03, respectively). Conclusions In a multiethnic U.S. population, both WCH and MH were independently associated with increased aortic stiffness, renal injury, and incident cardiovascular events. Because MH is common and associated with an adverse cardiovascular profile, home BP

  1. Adsorption/desorption phenomena on pure and Teflon AF-coated titania surfaces studied by dynamic contact angle analysis.

    PubMed

    Rupp, F; Axmann, D; Ziegler, C; Geis-Gerstorfer, J

    2002-12-15

    As a result of inflammatory processes, plaque formation on dental titanium implants often leads to clinically pathogenic situations. This special biofilm formation on (bio)materials in contact with saliva is initiated by ionic and protein interactions. In this interfacial process, albumin becomes a main constituent of dental pellicle. Interfacial reactions change the surface characteristics. They determine the following steps of macromolecular adsorption and bacterial adhesion. This work focuses on the dynamic contact angle analysis (DCA), which is a tool for online measurements of dynamic changes of wettability without disturbing the interface during detection. Repeatability of the DCA method has been assessed according to the Bland and Altman method. The kinetics and equilibrium data of shifts in the wetting tension hysteresis indicate ionic influences at the titanium/bovine serum albumin (BSA) interface: the Ca-mediated increase of the BSA adsorption on titanium and the adsorption maximum at the isoelectric point (IEP) of BSA. Ti was surface modified by Teflon AF polymeric coatings. The result of the assessment gives reason to consider Teflon AF as a reference material for DCA repeatability studies. This surface modification caused drastic changes in the dynamic interfacial reactions. Shifts in the wetting tensions during DCA adsorption-desorption experiments clearly demonstrated the partially irreversible adsorption of BSA on Teflon AF. In contrast, reversible adsorption behavior was detected on pure Ti surfaces. These findings strengthen the hypothesis that the analysis of dynamic changes in wetting tension and wetting tension hysteresis is a sensitive analytical method for the detection of dynamic interfacial changes at biomaterial/biosystem interfaces during the initial steps of biofilm formation.

  2. A Study on the Efficiency Improvement of Dye-Sensitized Solar Cell (DSSC) by Repeated Dye Coating.

    PubMed

    Seo, Young Ho; Choi, Eun Chang; Hong, Byungyou

    2015-10-01

    Dye-sensitized solar cell (DSSC) is being extensively investigated as the next generation energy source. Despite of the attractive features like simple fabrication process and its economic efficiency, there are some problems such as low efficiency, long fabrication time and low long-term stability. Conventionally, the dye adsorption on TiO2 photo-electrode film needs long time in the solvent with low concentration of dye to get the high efficiency. In this work, the dye coating process was considerably shortened, albeit plenty of dye was used comparing with the conventional way. Our needs were met for the best result in our working environment and the relevant conditions to our work were obtained, which were the coating temperature of 70 °C, the dye concentration of 10 mM and the coating time of 3 min. And this coating process was successively repeated several times to maximize the dye adsorption and to improve the cell efficiency. Therefore, the efficiency increased by 13% in the proper condition.

  3. In situ delipidation of low-density lipoproteins in capillary electrochromatography yields apolipoprotein B-100-coated surfaces for interaction studies.

    PubMed

    D'Ulivo, Lucia; Chen, Jie; Meinander, Kristoffer; Oörni, Katariina; Kovanen, Petri T; Riekkola, Marja-Liisa

    2008-12-01

    An electrochromatographic method was developed for the in situ delipidation of intact low-density lipoprotein (LDL) particles immobilized on the inner wall of a 50-microm inner diameter silica capillary. In this method, the immobilized LDL particles were delipidated with nonionic surfactant Nonidet P-40 at pH 7.4 and 25 degrees C, resulting in an apolipoprotein B-100 (apoB-100)-coated capillary surface. The mobility of the electroosmotic flow marker dimethyl sulfoxide gave information about the surface charge, and the retention factors of beta-estradiol, testosterone, and progesterone were informative of the surface hydrophobicity. The calculated distribution coefficients of the steroids produced specific information about the affinity interactions of the steroids, with capillary surfaces coated either with intact LDL particles or with apoB-100. Delipidation with Nonidet P-40 resulted in a strong decrease in the hydrophobicity of the LDL coating. Atomic force microscopy images confirmed the loss of lipids from the LDL particles and the presence of apoB-100 protein coating. The in situ delipidation of LDL particles in capillaries represents a novel approach for the isolation of immobilized apoB-100 and for the determination of its pI value. The technique requires extremely low quantities of LDL particles, and it is simple and fast.

  4. Genome-wide association study and ancestral origins of the slick-hair coat in tropically adapted cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The slick hair coat (SLICK) is a dominantly inherited trait typically associated with tropically adapted cattle that are from Criollo descent through Spanish colonization of cattle into the New World. The trait is of interest relative to climate change, due to its association with improved thermo-t...

  5. Capillary electrophoresis with noncovalently bilayer-coated capillaries for stability study of allergenic proteins in simulated gastrointestinal fluids.

    PubMed

    Zheng, Chang; Liu, Youping; Zhou, Qiuhong; Di, Xin

    2010-10-15

    A novel noncovalently bilayer-coated capillary using cationic polymer polybrene (PB) and anionic polymer (sodium 4-styrenesulfonate) (PSS) as coatings was prepared. This PB-PSS coating showed good migration-time reproducibility for proteins and high stability in the range of pH 2-10 and in the presence of 1M NaOH, acetonitrile and methanol. Capillary electrophoresis with PB-PSS coated capillaries was successfully applied to quantitatively investigate the stability of bovine serum albumin, ovomucoid, β-lactoglobulin and lysozyme in simulated gastrointestinal fluids. β-lactoglobulin A and β-lactoglobulin B were both stable in simulated gastric fluid with degradation percentages of 34.3% and 17.2% after 60min of incubation, respectively. Bovine serum albumin, ovomucoid and lysozyme were stable in simulated intestinal fluid with degradation percentages of 17.7%, 23.4% and 22.8% after 60min of incubation, respectively. The superiority of the proposed method over sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and capillary electrophoresis with untreated fused silica capillaries was demonstrated and emphasized.

  6. A study of the formation and self-lubrication mechanisms of boric acid films on boric oxide coatings

    SciTech Connect

    Erdemir, A.; Fenske, G.R.; Erck, R.A.

    1990-01-01

    An investigation was made of the formation and self-lubrication mechanisms of boric acid films on boric oxide coatings prepared by vacuum evaporation. Measured friction coefficients of a steel ball sliding on a boric-oxide-coated-steel disk and a sapphire ball sliding on a boric-oxide-coated-alumina disk were 0.025 to 0.05 at steady state, depending on load and substrate material. This low friction was correlated with the formation of a lubricious boric acid film on boric oxide coatings exposed to open air. For the mechanism of self-lubrication, the layered-triclinic-crystal structure of boric acid was proposed. The atoms constituting each boric acid molecule are arrayed in closely packed and strongly bonded layers that are 0.318 nm apart and held together by weak forces, such as van der Waals. It is hypothesized that during sliding, these layers can align themselves parallel to the direction of relative motion, and once so aligned,, can slide over one another with relative ease to provide low friction. Structural and chemical findings were included to substantiate the proposed solid lubrication mechanism. 15 refs., 5 figs.

  7. In situ surface studies of conversion coatings for steel and aluminum. Final report, 15 April 1989-14 September 1992

    SciTech Connect

    White, H.W.; Mansfeld, F.; Bryant, P.

    1992-11-10

    The primary goals of the work were to develop mechanisms of corrosion protection for cerium based surface layers on aluminum alloys and on polyacrylic acid (PAA) complexed zinc phosphate conversion coatings on steel. Atomic force microscopy (AFM) using tunnel current control was developed and applied to several problems. The cerium based coatings on AI 6061-T6 are shown to consist of two principle components--a poorly ordered monohydrated aluminum oxide, and an insoluble cerium oxide which forms at areas concentrated with impurities and alloying elements. Electrochemical action during the surface modification process fosters the precipitation of cerium compounds which inhibit further attack. The addition of high molecular weight PAA to the phosphating bath can significantly improve both resistance to corrosion and top-coat adherence of zinc phosphate conversion coatings on steel. Raman spectra showed the compositions of both unmodified and PAA modified films to be zinc phosphate dihydrate. Single crystallite surfaces were imaged using AFM. The morphologies of the unmodified and modified films were in general quite similar, but subtle differences were apparent. Several other projects involving surface layers and adsorbates were carried out and are described.

  8. Comparative Evaluation of Fluoride Releasing Ability of Various Restorative Materials after the Application of Surface Coating Agents – An In-vitro Study

    PubMed Central

    Kishore, GVS; Sai-Sankar, AJ; Sridhar, M; Pranitha, Kakarla; Sai-Krishna, VS

    2016-01-01

    Introduction Fluoride plays a key role in prevention of dental caries and is also an essential element for oral health promotion both in children and adults. Aim The aim of the present study was to evaluate the effect of surface coating (petroleum jelly, G-Coat Plus) on the fluoride releasing property of conventional Glass Ionomer Cement (GIC) and Zirconomer. Materials and Methods A total of 30 disk shaped brass mold specimens (6±0.1mm in diameter and 2±0.1mm thickness) for each test group were fabricated with conventional GIC (Group A) and Zirconomer (Group B). These test groups were further divided into three subgroups of 10 each. The unprotected specimens act as control (Group A1 and B1), G-Coat Plus specimens as (Group A2 and B2) and for the remaining specimens petroleum jelly was applied (Group A3 and B3). Fluoride ion concentration was measured with a combination of fluoride ion specific electrode and ion analyzer for every 24 hours for 15 days. The data was statistically analyzed using Kruskal Wallis and Mann-Whitney U test. Results The Group B released significantly more fluoride than Group A. Among all the subgroups the greatest amount of fluoride was released from Group B1, in the first 24 hours followed by A1 and B2. The least was observed on 15th day with Group B3 and A3. Conclusion Both the tested materials (GIC and Zirconomer) used in the study exhibited fluoride release whether protected or unprotected with surface coating. Though there was a difference between the groups, the pattern of fluoride release was similar and continuous throughout the study period i.e., first the initial burst followed by sustained release. The results revealed Zirconomer released more fluoride and is comparable to conventional GIC. PMID:28209001

  9. Electrocurtain coating process for coating solar mirrors

    DOEpatents

    Kabagambe, Benjamin; Boyd, Donald W.; Buchanan, Michael J.; Kelly, Patrick; Kutilek, Luke A.; McCamy, James W.; McPheron, Douglas A.; Orosz, Gary R.; Limbacher, Raymond D.

    2013-10-15

    An electrically conductive protective coating or film is provided over the surface of a reflective coating of a solar mirror by flowing or directing a cation containing liquid and an anion containing liquid onto the conductive surface. The cation and the anion containing liquids are spaced from, and preferably out of contact with one another on the surface of the reflective coating as an electric current is moved through the anion containing liquid, the conductive surface between the liquids and the cation containing liquid to coat the conductive surface with the electrically conductive coating.

  10. Study of LiFeO 2 coated NiO as cathodes for MCFC by electrochemical impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Huang, Bo; Yu, Qing-chun; Wang, Hui-min; Chen, Gang; Hu, Ke-ao

    LiFeO 2 was coated on porous NiO cathode using a simple combustion process. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were employed in the cathode characterizations. The electrochemical behaviors of LiFeO 2 coated NiO cathode (LFO-NiO) were also evaluated in a molten 62 mol% Li 2CO 3 + 38 mol% K 2CO 3 eutectic at 650 °C under the standard cathode gas condition by electrochemical impedance spectroscopy (EIS). The impedance response of the NiO and LFO-NiO at different immersion time is characterized by the presence of depressed semicircles in the high frequency range changing over into the lines with the angle of which observed with the real axis differing 45° or 90° in the low frequency range. The experimental Nyquist plots can be well analyzed theoretically with a modified model based on the well known Randles-Ershler equivalent circuit model. In the new model, the double layer capacity ( Cd) is replaced by the parallel combination of Cd and b/ ω to take into consideration the non-uniform of electric field at the electrode/electrolyte interface owing to the roughness of electrode surface. The LFO-NiO showed a lower dissolution and a good catalytic efficiency close to the state-of-the-art NiO value. In the unit cell test, the performance of the cell composed of LiFeO 2 coated NiO cathode maintained more stable values than that of the cell composed of NiO cathode. Thus the cathode prepared with coating method to coat LiFeO 2 on the surface of NiO cathode is able to reduce the solubility of NiO to lengthen the lifetime of MCFC while maintaining the advantages of NiO cathode.

  11. Application of statistical experimental design to study the formulation variables influencing the coating process of lidocaine liposomes.

    PubMed

    González-Rodríguez, M L; Barros, L B; Palma, J; González-Rodríguez, P L; Rabasco, A M

    2007-06-07

    In this paper, we have used statistical experimental design to investigate the effect of several factors in coating process of lidocaine hydrochloride (LID) liposomes by a biodegradable polymer (chitosan, CH). These variables were the concentration of CH coating solution, the dripping rate of this solution on the liposome colloidal dispersion, the stirring rate, the time since the liposome production to the liposome coating and finally the amount of drug entrapped into liposomes. The selected response variables were drug encapsulation efficiency (EE, %), coating efficiency (CE, %) and zeta potential. Liposomes were obtained by thin-layer evaporation method. They were subsequently coated with CH according the experimental plan provided by a fractional factorial (2(5-1)) screening matrix. We have used spectroscopic methods to determine the zeta potential values. The EE (%) assay was carried out in dialysis bags and the brilliant red probe was used to determine CE (%) due to its property of forming molecular complexes with CH. The graphic analysis of the effects allowed the identification of the main formulation and technological factors by the analysis of the selected responses and permitted the determination of the proper level of these factors for the response improvement. Moreover, fractional design allowed quantifying the interactions between the factors, which will consider in next experiments. The results obtained pointed out that LID amount was the predominant factor that increased the drug entrapment capacity (EE). The CE (%) response was mainly affected by the concentration of the CH solution and the stirring rate, although all the interactions between the main factors have statistical significance.

  12. Adsorption study of a macro-RAFT agent onto SiO2-coated Gd2O3:Eu3+ nanorods: Requirements and limitations

    NASA Astrophysics Data System (ADS)

    Zou, Hua; Melro, Liliana; de Camargo Chaparro, Thaissa; de Souza Filho, Isnaldi Rodrigues; Ananias, Duarte; Bourgeat-Lami, Elodie; dos Santos, Amilton Martins; Barros-Timmons, Ana

    2017-02-01

    The use of a macromolecular RAFT (macro-RAFT) agent to encapsulate anisotropic nano-objects via emulsion polymerization is an emerging route to prepare polymer/inorganic colloidal nanocomposites. However, a number of requirements have to be fulfilled. This work aims at highlighting the effects of the preparative procedure and dispersion method on the amount of macro-RAFT agent adsorbed onto SiO2-coated Gd2O3:Eu3+ nanorods. The adsorption of macro-RAFT agent was studied using the depletion method with UV-vis spectrophotometry. Measurements were performed at a fixed concentration of nanorods and varying concentrations of the macro-RAFT agent in aqueous dispersion at room temperature. The adsorption isotherms showed that for the same initial macro-RAFT agent concentration, the highest adsorption capacity of the macro-RAFT agent on nanorods was usually achieved for non-calcined thin SiO2-coated nanorods under mild bath sonication.

  13. Hyperthermia mediated by dextran-coated La0.7Sr0.3MnO3 nanoparticles: in vivo studies

    PubMed Central

    Haghniaz, Reihaneh; Umrani, Rinku D; Paknikar, Kishore M

    2016-01-01

    Purpose The aim of this study was to evaluate radiofrequency-induced dextran-coated lanthanum strontium manganese oxide nanoparticles-mediated hyperthermia to be used for tumor regression in mice. Materials and methods Nanoparticles were injected intra-tumorally in melanoma-bearing C57BL/6J mice and were subjected to radiofrequency treatment. Results Hyperthermia treatment significantly inhibited tumor growth (~84%), increased survival (~50%), and reduced tumor proliferation in mice. Histopathological examination demonstrated immense cell death in treated tumors. DNA fragmentation, increased terminal deoxynucleotidyl transferase-dUTP nick end labeling signal, and elevated levels of caspase-3 and caspase-6 suggested apoptotic cell death. Enhanced catalase activity suggested reactive oxygen species-mediated cell death. Enhanced expression of heat shock proteins 70 and 90 in treated tumors suggested the possible development of “antitumor immunity”. Conclusion The dextran-coated lanthanum strontium manganese oxide-mediated hyperthermia can be used for the treatment of cancer. PMID:27175076

  14. Three-phase bone scan and indium white blood cell scintigraphy following porous coated hip arthroplasty: A prospective study of the prosthetic tip

    SciTech Connect

    Oswald, S.G.; Van Nostrand, D.; Savory, C.G.; Callaghan, J.J. )

    1989-08-01

    Although few reports address the use of three-phase bone scanning (TPBS) and {sup 111}In-labeled white blood cell (In-WBC) scintigraphy in hip arthroplasty utilizing a porous coated prosthesis, the literature suggests that scintigraphic patterns in the uncomplicated patient may differ from that seen in the cemented prosthesis. In an attempt to determine the scintigraphic natural history, 25 uncomplicated porous coated hip arthroplasties in 21 patients were prospectively studied with serial TPBS and In-WBC at approximately 7 days, and at 3, 6, 12, 18, and 24 mo postoperatively. This report deals with findings related to the prosthetic tip. Only one of 136 flow studies were abnormal and only two of 136 blood-pool images demonstrated focally increased activity. All 25 prostheses (120 of 143 scans) demonstrated increased uptake on the bone phase images. The area about the tip was divided into three segments; increased uptake at 24 mo was noted in the medial, distal, and lateral segments in 16%, 72%, and 56% of prostheses, respectively. Twenty of 25 prostheses (82 of 142 scans) showed uptake on In-WBC scintigraphy, being noted in 48% of prostheses at 24 mo. We conclude that scintigraphic patterns in the uncomplicated patient with a porous coated prosthesis appear to differ from patterns described in cemented prostheses.

  15. The acetabulum: A prospective study of three-phase bone and indium white blood cell scintigraphy following porous-coated hip arthroplasty

    SciTech Connect

    Oswald, S.G.; Van Nostrand, D.; Savory, C.G.; Anderson, J.H.; Callaghan, J.J. )

    1990-03-01

    Although few studies address the use of three-phase bone scanning (TPBS) and indium-111-labeled white blood cell scintigraphy ({sup 111}In-WBC) in hip arthroplasty utilizing a porous-coated prosthesis, the literature suggests that scintigraphic patterns in the uncomplicated patient may differ from that seen with the cemented prosthesis. In an attempt to determine the scintigraphic natural history, 25 uncomplicated porous-coated hip arthroplasties in 21 patients were prospectively studied with serial TPBS and {sup 111I}n-WBC at approximately 7 days, and 3, 6, 12, 18, and 24 mo postoperatively. This report deals with findings related to the acetabulum. All 25 prostheses (144 of 144 scans) demonstrated increased uptake on the bone-phase images. Although this activity decreased with time, 76% had persistent uptake at 24 mo. Twenty-three of 25 prostheses (126 of 140 scans) showed increased uptake on {sup 111}In-WBC scintigraphy, invariably decreasing with time, but with 37% having significant uptake at 24 mo. Scintigraphic patterns in the uncomplicated porous-coated hip arthroplasty patient appear to differ from patterns described in cemented prostheses.

  16. The perspective effects of various seed coating substances on rice seed variety Khao Dawk Mali 105 storability II: the case study of chemical and biochemical properties.

    PubMed

    Thobunluepop, P; Pan-in, W; Pawelzik, E; Vearasilp, S

    2009-04-01

    The aim of this study was to investigate the effects of seed coating substances; chemical fungicide (CA) and biological fungicide polymers [chitosan-lignosulphonate polymer (CL) and eugenol incorporated into chitosan-lignosulphonate polymer (E+CL)] on chemical and biochemical changes of rice seeds cv. KDML 105, which have been studied during storage for 12 months. CA significantly affected the rice seed chemical properties and the associated seed deterioration. After 12 months storage, protein content decreased accompanied by declined of lipid content, increased free fatty acids and activated lipoxygenase enzyme. In the case of biological fungicide coated seeds, the antioxidative scavenging enzymes were ascorbate peroxidase and superoxide dismutase and a high antioxidant activity protected them. Moreover, the sugar content was positive correlated with seed germination and vigor. The biological coated seeds were found to maintain high sugar contents inside the seeds, which resulted high seed storability significantly. In contrast, under fungicide stress (CA), those compounds were lost that directly affected seed vigor during storage.

  17. Black Molecular Adsorber Coatings for Spaceflight Applications

    NASA Technical Reports Server (NTRS)

    Abraham, Nithin Susan; Hasegawa, Mark Makoto; Straka, Sharon A.

    2014-01-01

    The molecular adsorber coating is a new technology that was developed to mitigate the risk of on-orbit molecular contamination on spaceflight missions. The application of this coating would be ideal near highly sensitive, interior surfaces and instruments that are negatively impacted by outgassed molecules from materials, such as plastics, adhesives, lubricants, epoxies, and other similar compounds. This current, sprayable paint technology is comprised of inorganic white materials made from highly porous zeolite. In addition to good adhesion performance, thermal stability, and adsorptive capability, the molecular adsorber coating offers favorable thermal control characteristics. However, low reflectivity properties, which are typically offered by black thermal control coatings, are desired for some spaceflight applications. For example, black coatings are used on interior surfaces, in particular, on instrument baffles for optical stray light control. Similarly, they are also used within light paths between optical systems, such as telescopes, to absorb light. Recent efforts have been made to transform the white molecular adsorber coating into a black coating with similar adsorptive properties. This result is achieved by optimizing the current formulation with black pigments, while still maintaining its adsorption capability for outgassing control. Different binder to pigment ratios, coating thicknesses, and spray application techniques were explored to develop a black version of the molecular adsorber coating. During the development process, coating performance and adsorption characteristics were studied. The preliminary work performed on black molecular adsorber coatings thus far is very promising. Continued development and testing is necessary for its use on future contamination sensitive spaceflight missions.

  18. Processing of fused silicide coatings for carbon-based materials

    NASA Technical Reports Server (NTRS)

    Smialek, J. L.

    1982-01-01

    The processing and oxidation resistance of fused Al-Si and Ni-Si slurry coatings on ATJ graphite was studied. Ni-Si coatings in the 70 to 90 percent Si range were successfully processed to melt, wet, and bond to the graphite. The molten coatings also infiltrated the porosity in graphite and reacted with it to form SiC in the coating. Cyclic oxidation at 1200 C showed that these coatings were not totally protective because of local attack of the substrate, due to the extreme thinness of the coatings in combination with coating cracks.

  19. Synthesis, characterization, in vitro and in vivo studies of dextrin-coated zinc-iron ferrite nanoparticles (Zn0.5Fe0.5Fe2O4) as contrast agent in MRI

    NASA Astrophysics Data System (ADS)

    Zare, T.; Lotfi, M.; Heli, H.; Azarpira, N.; Mehdizadeh, A. R.; Sattarahmady, N.; Abdollah-dizavandi, M. R.; Heidari, M.

    2015-09-01

    Iron oxide nanoparticles, such as ferrites, offer some attractive possibilities in biomedicine, especially in MRI applications. The objective of this study is to investigate the effectiveness of dextrin-coated zinc-iron ferrite nanoparticles (IFNPs) as an MRI contrast agent in in vivo and in vitro media. IFNPs were synthesized by an aqueous precipitation method in the presence of dextrin. An agarose phantom with different concentrations of dextrin-coated IFNPs was performed on a 1.5-T MRI. For in vivo MRI studies, implanted melanoma tumors in mice were immediately scanned after intra-tumoral injection of dextrin-coated IFNPs. Microscopic studies showed that the average diameter of dextrin-coated IFNPs was 12 ± 2.4 nm and the saturation magnetization for IFNPs was 31.5 emu g-1; r 1 and r 2 relaxivities of these ultrasmall superparamagnetic IFNPs in agarose phantom were obtained as 0.99 and 17.4 mmol L-1 s-1, respectively. The relaxivity measurements revealed that the dextrin-coated IFNPs can serve as a negative contrast agent. In vivo MRI showed that the dextrin-coated IFNPs can be used for tumor detection. The dextrin-coated IFNPs were suggested to be applied for lymph node and targeted imaging.

  20. Multi-layer coatings

    DOEpatents

    Maghsoodi, Sina; Brophy, Brenor L.; Abrams, Ze'ev R.; Gonsalves, Peter R.

    2016-06-28

    Disclosed herein are coating materials and methods for applying a top-layer coating that is durable, abrasion resistant, highly transparent, hydrophobic, low-friction, moisture-sealing, anti-soiling, and self-cleaning to an existing conventional high temperature anti-reflective coating. The top coat imparts superior durability performance and new properties to the under-laying conventional high temperature anti-reflective coating without reducing the anti-reflectiveness of the coating. Methods and data for optimizing the relative thickness of the under-layer high temperature anti-reflective coating and the top-layer thickness for optimizing optical performance are also disclosed.

  1. Thermal Conductivity of Coated Paper

    NASA Astrophysics Data System (ADS)

    Kerr, Lei L.; Pan, Yun-Long; Dinwiddie, Ralph B.; Wang, Hsin; Peterson, Robert C.

    2009-04-01

    In this article, a method for measuring the thermal conductivity of paper using a hot disk system is introduced. To the best of our knowledge, few publications are found discussing the thermal conductivity of a coated paper, although it is important to various forms of today’s digital printing where heat is used for imaging, as well as for toner fusing. This motivated an investigation of the thermal conductivity of paper coating. This study demonstrates that the thermal conductivity is affected by the coating mass and the changes in the thermal conductivity affect toner gloss and density. As the coating mass increases, the thermal conductivity increases. Both the toner gloss and density decrease as the thermal conductivity increases. The toner gloss appears to be more sensitive to the changes in the thermal conductivity.

  2. Nanocomposite multilayer optically variable coatings

    NASA Astrophysics Data System (ADS)

    Lu, Junxia; Lai, Zhenquan; Wei, Jiandong; Zhang, Huilin; Deng, Zhongsheng; Zhang, Qinyuan; Wang, Jue

    2000-11-01

    The optically variable coatings can prevent counterfeiting of value documents. The cost of these coatings deposited by physical technology is very high. The sol-gel technology has the feature of a relatively lower cost and can be used to produce thin films with low refractive. We studied the optically variable coatings by the nano-composite technology (i.e., compound method of sol-gel technology and physical technology). The degree of color shift of some film structures with the viewing angle, including PET (substrate)/Cr/SiO2/Al and PET(sub.)/Cr/resin/Al etc., was calculated according to the color perception of human eyes. And the coatings produced were measured with the spectrometer.

  3. Electrochemical studies on LiCoO 2 surface coated with Y 3Al 5O 12 for lithium-ion cells

    NASA Astrophysics Data System (ADS)

    Chen, Jin-Ming; Cho, Yung-Da; Hsiao, Chiao-Ling; Fey, George Ting-Kuo

    Synthesized yttrium aluminum garnet (YAG) sol was coated on the surface of the LiCoO 2 cathode particles by an in situ sol-gel process, followed by calcination at 923 K for 10 h in air. Based on XRD, TEM, and ESCA data, a compact YAG kernel with an average thickness of ∼20 nm was formed on the surface of the core LiCoO 2 particles, which ranged from ∼90 to 120 nm in size. The charge-discharge cycling studies for the coated materials suggest that 0.3 wt.% YAG-coated LiCoO 2 heated at 923 K for 10 h in air, delivered a discharge capacity of 167 mAh g -1 and a cycle stability of about 164 cycles with a fading rate of 0.2 mAh cycle -1 at a 0.2 C-rate between 2.75 and 4.40 V vs. Li/Li +. The differential capacity plots revealed that impedance growth was slower for YAG surface treated LiCoO 2, when cells were charged at 4.40 V. DSC results exemplified that the exothermic peak at ∼468 K corresponded to the release of much less oxygen and greater thermal-stability.

  4. Preliminary studies of biominerals-coated spinel LiMn2 O4 as a cathode material on electrochemical performances for Li-ion rechargeable batteries

    NASA Astrophysics Data System (ADS)

    Vediappan, Kumaran; Lee, Chang Woo

    2010-05-01

    Lithium manganese oxide (LiMn2O4) is an inexpensive and pollution-free cathode material for Li-ion rechargeable batteries. In this study, spinel LiMn2O4 cathode material was coated with biomineral powders by the mechano-chemical method. In the course of the material synthesis, citric acid and acryl amide were added to serve as a complexing agent and a gelling agent, respectively, followed by a calcination process at 700 °C for 6 h in a high-purity argon atmosphere. The spinel LiMn2O4 and biominerals-coated spinel LiMn2O4 cathode materials were, from diverse viewpoints, characterized by x-ray diffraction, field emission-scanning electron microscopy, Fourier transform infrared spectroscopy and the electrochemical cycling method to understand the mechanism of improvements in electrochemical performances. We suggest that the biominerals-coated spinel LiMn2O4 is a good candidate as a low cost and environmentally friendly cathode material showing the enlarged capacity characteristic of Li-ion rechargeable batteries.

  5. Ultrasound-promoted coating of MOF-5 on silk fiber and study of adsorptive removal and recovery of hazardous anionic dye "congo red".

    PubMed

    Khanjani, Somayeh; Morsali, Ali

    2014-07-01

    A metal-organic framework MOF-5 has been synthesized on silk fiber through electrostatic layer-by-layer assembly. The silk surface coating was formed via sequential dipping in an alternating bath of metal and ligand solutions at room temperature by direct mixing. SEM was used to investigate the growth of MOF-5 coating as materials for separation membrane due to their desirable properties in adsorptive removal of congo red (CR) from contaminated water. The adsorption capacity of MOF-5 is remarkable high in the liquid phase. The adsorption of CR at various concentration and contact time in spontaneous process were studied. The silk fibers containing MOF-5 open a wide field of possible applications, such as protection layers or membranes in pollution remediation wastewater and any effluent. Desorption of the dye can be carried out by using NaOH solution with more than about 50% recovery of congo red from MOF-5 coated on silk membrane filtration. In order to investigate the role of sonicating on the morphology of products, one of the reactions was performed with ultrasound irradiation and the crystal growth is completed more than other methods. The samples and adsorption of CR were characterized with SEM, powder X-ray diffraction (XRD) and UV-visible spectroscopy.

  6. On Techniques to Characterize and Correlate Grain Size, Grain Boundary Orientation and the Strength of the SiC Layer of TRISO Coated Particles: A Preliminary Study

    SciTech Connect

    I.J.van Rooyen; J.L. Dunzik Gougar; T. Trowbridge; Philip M van Rooyen

    2012-10-01

    The mechanical properties of the silicon carbide (SiC) layer of the TRi-ISOtropic (TRISO) coated particle (CP) for high temperature gas reactors (HTGR) are performance parameters that have not yet been standardized by the international HTR community. Presented in this paper are the results of characterizing coated particles to reveal the effect of annealing temperature (1000 to 2100°C) on the strength and grain size of unirradiated coated particles. This work was further expanded to include possible relationships between the grain size and strength values. The comparative results of two strength measurement techniques and grain size measured by the Lineal intercept method are included. Preliminary grain boundary characterization results determined by electron backscatter diffraction (EBSD) are included. These results are also important for future fission product transport studies, as grain boundary diffusion is identified as a possible mechanism by which 110mAg, one of the fission activation products, might be released through intact SiC layers. Temperature is a parameter known to influence the grain size of SiC and therefore it is important to investigate the effect of high temperature annealing on the SiC grain size. Recommendations and future work will also be briefly discussed.

  7. Composition-dependent structure of polycrystalline magnetron-sputtered V-Al-C-N hard coatings studied by XRD, XPS, XANES and EXAFS.

    PubMed

    Krause, Bärbel; Darma, Susan; Kaufholz, Marthe; Mangold, Stefan; Doyle, Stephen; Ulrich, Sven; Leiste, Harald; Stüber, Michael; Baumbach, Tilo

    2013-08-01

    V-Al-C-N hard coatings with high carbon content were deposited by reactive radio-frequency magnetron sputtering using an experimental combinatorial approach, deposition from a segmented sputter target. The composition-dependent coexisting phases within the coating were analysed using the complementary methods of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), X-ray absorption near-edge spectroscopy (XANES) and extended X-ray absorption fine-structure spectroscopy (EXAFS). For the analysis of the X-ray absorption near-edge spectra, a new approach for evaluation of the pre-edge peak was developed, taking into account the self-absorption effects in thin films. Within the studied composition range, a mixed face-centred cubic (V,Al)(C,N) phase coexisting with a C-C-containing phase was observed. No indication of hexagonal (V,Al)(N,C) was found. The example of V-Al-C-N demonstrates how important a combination of complementary methods is for the detection of coexisting phases in complex multi-element coatings.

  8. A Comparative Study of Cyclic Oxidation and Sulfates-Induced Hot Corrosion Behavior of Arc-Sprayed Ni-Cr-Ti Coatings at Moderate Temperatures

    NASA Astrophysics Data System (ADS)

    Guo, Wenmin; Wu, Yuping; Zhang, Jianfeng; Hong, Sheng; Chen, Liyan; Qin, Yujiao

    2015-06-01

    The cyclic oxidation and sulfates-induced hot corrosion behaviors of a Ni-43Cr-0.3Ti arc-sprayed coating at 550-750 °C were characterized and compared in this study. In general, all the oxidation and hot corrosion kinetic curves of the coating followed a parabolic law, i.e., the weight of the specimens showed a rapid growth initially and then reached the gradual state. However, the initial stage of the hot corrosion process was approximately two times longer than that of the oxidation process, indicating a longer preparation time required for the formation of a protective scale in the former process. At 650 °C, the parabolic rate constant for the hot corrosion was 7.2 × 10-12 g2/(cm4·s), approximately 1.7 times higher than that for the oxidation at the same temperature. The lower parabolic rate constant for the oxidation was mainly attributed to the formation of a protective oxide scale on the surface of corroded specimens, which was composed of a mixture of NiO, Cr2O3, and NiCr2O4. However, as the liquid molten salts emerged during the hot corrosion, these protective oxides would be dissolved and the coating was corrupted acceleratedly.

  9. Composition-dependent structure of polycrystalline magnetron-sputtered V–Al–C–N hard coatings studied by XRD, XPS, XANES and EXAFS

    PubMed Central

    Krause, Bärbel; Darma, Susan; Kaufholz, Marthe; Mangold, Stefan; Doyle, Stephen; Ulrich, Sven; Leiste, Harald; Stüber, Michael; Baumbach, Tilo

    2013-01-01

    V–Al–C–N hard coatings with high carbon content were deposited by reactive radio-frequency magnetron sputtering using an experimental combinatorial approach, deposition from a segmented sputter target. The composition-dependent coexisting phases within the coating were analysed using the complementary methods of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), X-ray absorption near-edge spectroscopy (XANES) and extended X-ray absorption fine-structure spectroscopy (EXAFS). For the analysis of the X-ray absorption near-edge spectra, a new approach for evaluation of the pre-edge peak was developed, taking into account the self-absorption effects in thin films. Within the studied composition range, a mixed face-centred cubic (V,Al)(C,N) phase coexisting with a C–C-containing phase was observed. No indication of hexagonal (V,Al)(N,C) was found. The example of V–Al–C–N demonstrates how important a combination of complementary methods is for the detection of coexisting phases in complex multi-element coatings. PMID:24046506

  10. Studying the Use of Photocatalytic Coatings to Increase Building/Structure Sustainability and Cleanliness at NASA Stennis Space Center

    NASA Technical Reports Server (NTRS)

    Underwood, Lauren

    2013-01-01

    TiO2 coated surfaces demonstrated both visually through photographic representation, and quantitatively, through reflectance measurements that they improved upon the current state of cleanliness upon the surfaces that they were applied to. TiO2 has the potential to both maintain and increase building s sustainability and the overall appearance of cleanliness TiO2 coated slides degraded soot under UV light compared to soot samples on plain uncoated slides under the same conditions Degradation of soot by photocatalysis was far more apparent than degradation of soot by UV light alone This demonstration provides the foundation for a laboratory model that could be used to simulate real world applications for photocatalytic materials Additional research is required to better understand the full potential of TiO2

  11. Systematic studies of the nucleation and growth of ultrananocrystalline diamond films on silicon substrates coated with a tungsten layer

    SciTech Connect

    Chu, Yueh-Chieh; Jiang, Gerald; Tu, Chia-Hao; Chang Chi; Liu, Chuan-pu; Ting, Jyh-Ming; Lee, Hsin-Li; Tzeng, Yonhua; Auciello, Orlando

    2012-06-15

    We report on effects of a tungsten layer deposited on silicon surface on the effectiveness for diamond nanoparticles to be seeded for the deposition of ultrananocrystalline diamond (UNCD). Rough tungsten surface and electrostatic forces between nanodiamond seeds and the tungsten surface layer help to improve the adhesion of nanodiamond seeds on the tungsten surface. The seeding density on tungsten coated silicon thus increases. Tungsten carbide is formed by reactions of the tungsten layer with carbon containing plasma species. It provides favorable (001) crystal planes for the nucleation of (111) crystal planes by Microwave Plasma Enhanced Chemical Vapor Deposition (MPECVD) in argon diluted methane plasma and further improves the density of diamond seeds/nuclei. UNCD films grown at different gas pressures on tungsten coated silicon which is pre-seeded by nanodiamond along with heteroepitaxially nucleated diamond nuclei were characterized by Raman scattering, field emission-scanning electron microscopy, and high resolution-transmission electron microscopy.

  12. Biomolecule-based antibacterial coating on a stainless steel surface: multilayer film build-up optimization and stability study.

    PubMed

    Vreuls, C; Zocchi, G; Vandegaart, H; Faure, E; Detrembleur, C; Duwez, Anne-Sophie; Martial, J; Van De Weerdt, C

    2012-01-01

    The goal of this paper was to establish the durability profile of antibacterial multilayer thin films under storage and usage conditions. Thin films were built on stainless steel (SS) by means of a layer-by-layer process alternating a negatively charged polyelectrolyte, polyacrylic acid, with a cationic antibacterial peptide, nisin. SS coupons coated with the antibacterial film were challenged under environmental and usage conditions likely to be encountered in real-world applications. The change in antibacterial activity elicited by the challenge was used as an indicator of multilayer film resistance. Antibacterial SS samples could be stored for several weeks at 4°C in ambient air and antibacterial films were resistant to dipping and mild wiping in water and neutral detergent. The multilayer coating showed some weaknesses, however, that need to be addressed.

  13. Hybrid Calcium Phosphate Coatings for Titanium Implants

    NASA Astrophysics Data System (ADS)

    Kharapudchenko, E.; Ignatov, V.; Ivanov, V.; Tverdokhlebov, S.

    2017-01-01

    Hybrid multilayer coatings were obtained on titanium substrates by the combination of two methods: the micro-arc oxidation in phosphoric acid solution with the addition of calcium compounds to high supersaturated state and RF magnetron sputtering of the target made of synthetic hydroxyapatite. 16 different groups of coatings were formed on titanium substrates and in vitro studies were conducted in accordance with ISO 23317 in the solution simulating body fluid. The studies using SEM, XRD of the coatings of the samples before and after exposure to SBF were performed. The features of morphology, chemical and phase composition of the studied coatings are shown.

  14. Studies on applicability of press-coated tablets using hydroxypropylcellulose (HPC) in the outer shell for timed-release preparations.

    PubMed

    Fukui, E; Uemura, K; Kobayashi, M

    2000-08-10

    Press-coated tablets, containing diltiazem hydrochloride (DIL) in the core tablet and coated with hydroxypropylcellulose (HPC) as the outer shell, were examined for applicability as timed-release tablets with a predetermined lag time and subsequent rapid drug release phase. Various types of press-coated tablets were prepared using a rotary tabletting machine and their DIL dissolution behavior was evaluated by the JP paddle method. The results indicated that tablets with the timed-release function could be prepared, and that the lag times were prolonged as the viscosity of HPC and the amount of the outer shell were increased. The lag times could be controlled widely by the above method, however, the compression load had little effect. Two different kinds of timed-release press-coated tablets that showed lag times of 3 and 6 h in the in vitro test (denoted PCT(L3) and PCT(L6), respectively) were administered to beagle dogs. DIL was first detected in the plasma more than 3 h after administration, and both tablets showed timed-release. The lag times showed a good agreement between the in vivo and in vitro tests in PCT(L3). However, the in vivo lag times were about 4 h in PCT(L6) and were much shorter than the in vitro lag time. The dissolution test was performed at different paddle rotation speeds, and good agreement was obtained between the in vivo and in vitro lag times at 150 rpm. This suggested that the effects of gastrointestinal peristalsis and contraction should also be taken into consideration for the further development of drug delivery systems.

  15. Formation of blade and slot die coated small molecule multilayers for OLED applications studied theoretically and by XPS depth profiling

    NASA Astrophysics Data System (ADS)

    Peters, Katharina; Raupp, Sebastian; Hummel, Helga; Bruns, Michael; Scharfer, Philip; Schabel, Wilhelm

    2016-06-01

    Slot die coaters especially designed for low material consumption and doctor blades were used to process small molecule solutions for organic light-emitting diodes (OLEDs). Optimum process parameters were developed for the large-scale coating techniques to generate stable single and multiple layers only a few nanometers thick. Achieving a multilayer architecture for solution-processed OLEDs is the most challenging step. X-ray photoelectron spectroscopy sputter depth profiling was performed to determine defined interfaces between coated organic layers. Commercially available small molecules NPB (N,N'-Di(1-naphthyl)-N,N'-diphenyl-(1,1'-biphenyl)-4,4'-diamine) and BAlq (Bis(8-hdroxy-2methylquinoline)-(4-phenylphenoxy)aluminum), originally developed for vacuum deposition, were used as hole, respectively electron transport material. Defined double-layers were processed with both scalable coating methods using the orthogonal solvent approach. The use of non-orthogonal solvents resulted in complete intermixing of the material. The results are explained by calculations of solubilities and simulating drying and diffusion kinetics of the small molecule solutions.

  16. Comparative study on the biodegradation and biocompatibility of silicate bioceramic coatings on biodegradable magnesium alloy as biodegradable biomaterial

    NASA Astrophysics Data System (ADS)

    Razavi, M.; Fathi, M. H.; Savabi, O.; Razavi, S. M.; Hashemibeni, B.; Yazdimamaghani, M.; Vashaee, D.; Tayebi, L.

    2014-03-01

    Many clinical cases as well as in vivo and in vitro assessments have demonstrated that magnesium alloys possess good biocompatibility. Unfortunately, magnesium and its alloys degrade too quickly in physiological media. In order to improve the biodegradation resistance and biocompatibility of a biodegradable magnesium alloy, we have prepared three types of coating include diopside (CaMgSi2O6), akermanite (Ca2MgSi2O6) and bredigite (Ca7MgSi4O16) coating on AZ91 magnesium alloy through a micro-arc oxidation (MAO) and electrophoretic deposition (EPD) method. In this research, the biodegradation and biocompatibility behavior of samples were evaluated in vitro and in vivo. The in vitro analysis was performed by cytocompatibility and MTT-assay and the in vivo test was conducted on the implantation of samples in the greater trochanter of adult rabbits. The results showed that diopside coating has the best bone regeneration and bredigite has the best biodegradation resistance compared to others.

  17. Bilayered (silica-chitosan) coatings for studying dye release in aqueous media: The role of chitosan properties.

    PubMed

    Dabóczi, Mátyás; Albert, Emőke; Agócs, Emil; Kabai-Faix, Márta; Hórvölgyi, Zoltán

    2016-01-20

    Chitosan and bilayered--Rhodamine 6G impregnated silica-chitosan--coatings (300-3000 nm thick) were prepared and investigated as a model for controlled drug release. Properties of native, ionically (sodium triphosphate) and covalently (glutaraldehyde) cross-linked layers of chitosan in contact with aqueous phase (modeling human blood pH of ca. 7.3) were investigated. The cross-linking was confirmed by attenuated total reflection (ATR) Fourier transform infrared (FTIR), energy-dispersive spectroscopy (EDS) and solid state (13)C nuclear magnetic resonance (NMR) spectroscopy. The evolution of advancing water contact angles as a function of time was measured, and from the results restricted mobility of polymer segments in the interfacial layer of cross-linked chitosan coatings were assumed. Spectroscopic ellipsometry measurements showed that covalent cross-linking leads to a lowered, while ionic cross-linking to an increased swelling degree of chitosan layers. Despite the swelling behavior both cross-linked chitosan layers showed significant retard effect on dye release from the bilayered coatings.

  18. Silver nanoparticles coated with natural polysaccharides as models to study AgNP aggregation kinetics using UV-Visible spectrophotometry upon discharge in complex environments.

    PubMed

    Lodeiro, Pablo; Achterberg, Eric P; Pampín, Joaquín; Affatati, Alice; El-Shahawi, Mohammed S

    2016-01-01

    This study provides quantitative information on the aggregation and dissolution behaviour of silver nanoparticles (AgNPs) upon discharge in fresh and sea waters, represented here as NaCl solutions of increasing ionic strength (up to 1M) and natural fjord waters. Natural polysaccharides, sodium alginate (ALG) and gum Arabic (GA), were used as coatings to stabilize the AgNPs and the compounds acted as models to study AgNP aggregation kinetics. The DLVO theory was used to quantitatively describe the interactions between the AgNPs. The stability of AgNPs was established using UV-Visible spectrophotometry, including unique information collected during the first seconds of the aggregaton process. Alginate coating resulted in a moderate stabilization of AgNPs in terms of critical coagulation concentration (~82mM NaCl) and a low dissolution of <10% total Ag in NaCl solutions up to 1M. Gum Arabic coated AgNPs were more strongly stabilized, with ~7-30% size increase up to 77mM NaCl, but only when the silver ion content initially present in solution was low (<10% total Ag). The ALG and GA coated AgNPs showed a strongly enhanced stability in natural fjord waters (ca. 5h required to reduce the area of the surface plasmon resonance band (SPRB) by two fold) compared with NaCl at an equivalent ionic strength (1-2min period for a two fold SPRB reduction). This is ascribed to a stabilizing effect from dissolved organic matter present in natural fjord waters. Interestingly, for AgNP-GA solutions with 40% of total silver present as unreacted silver ions in the NP stock solution, fast aggregation kinetics were observed in NaCl solutions (SPRB area was reduced by ca. 50% within 40-150min), with even more rapid removal in fjord waters, attributed to the high amount of silver-chloride charged species, that interact with the NP coating and/or organic matter and reduce the NPs stabilization.

  19. In vitro mechanical integrity of hydroxyapatite coated magnesium alloy.

    PubMed

    Kannan, M Bobby; Orr, Lynnley

    2011-08-01

    The mechanical integrity of resorbable implants during service, especially in load bearing orthopaedic applications, is critical. The high degradation rate of resorbable magnesium and magnesium-based implants in body fluid may potentially cause premature in-service failure. In this study, a magnesium alloy (AZ91) was potentiostatically coated with hydroxyapatite at different cathodic voltages in an attempt to enhance the mechanical integrity. The mechanical integrity of the uncoated and hydroxyapatite coated alloys was evaluated after in vitro testing of the coated samples in simulated body fluid (SBF). The uncoated alloy showed 40% loss in the mechanical strength after five days exposure to SBF. However, the hydroxyapatite coated alloy exposed to SBF showed 20% improvement in the mechanical strength as compared to that of the uncoated alloy. The alloy coated potentiostatically at -2 V performed better than the -3 V coated alloy. The cross-sectional analysis of the coatings revealed relatively uniform coating thickness for the -2 V coated alloy, whereas the -3 V coated alloy exhibited areas of uneven coating. This can be attributed to the increase in hydrogen evolution on the alloy during -3 V coating as compared to -2 V coating. The scanning electron micrographs of the in vitro tested alloy revealed that hydroxyapatite coating significantly reduced the localized corrosion of the alloy, which is critical for better in-service mechanical integrity. Thus, the study suggests that the in vitro mechanical integrity of resorbable magnesium-based alloy can be improved by potentiostatic hydroxyapatite coating.

  20. Flow coating apparatus and method of coating

    SciTech Connect

    Hanumanthu, Ramasubrahmaniam; Neyman, Patrick; MacDonald, Niles; Brophy, Brenor; Kopczynski, Kevin; Nair, Wood

    2014-03-11

    Disclosed is a flow coating apparatus, comprising a slot that can dispense a coating material in an approximately uniform manner along a distribution blade that increases uniformity by means of surface tension and transfers the uniform flow of coating material onto an inclined substrate such as for example glass, solar panels, windows or part of an electronic display. Also disclosed is a method of flow coating a substrate using the apparatus such that the substrate is positioned correctly relative to the distribution blade, a pre-wetting step is completed where both the blade and substrate are completed wetted with a pre-wet solution prior to dispensing of the coating material onto the distribution blade from the slot and hence onto the substrate. Thereafter the substrate is removed from the distribution blade and allowed to dry, thereby forming a coating.

  1. Apparatus for coating powders

    DOEpatents

    Makowiecki, Daniel M.; Kerns, John A.; Alford, Craig S.; McKernan, Mark A.

    2000-01-01

    A process and apparatus for coating small particles and fibers. The process involves agitation by vibrating or tumbling the particles or fibers to promote coating uniformly, removing adsorbed gases and static charges from the particles or fibers by an initial plasma cleaning, and coating the particles or fibers with one or more coatings, a first coating being an adhesion coating, and with subsequent coatings being deposited in-situ to prevent contamination at layer interfaces. The first coating is of an adhesion forming element (i.e. W, Zr, Re, Cr, Ti) of a 100-10,000 .ANG. thickness and the second coating or final coating of a multiple (0.1-10 microns) being Cu or Ag, for example for brazing processes, or other desired materials that defines the new surface related properties of the particles. An essential feature of the coating process is the capability to deposit in-situ without interruption to prevent the formation of a contaminated interface that could adversely affect the coating adhesion. The process may include screening of the material to be coated and either continuous or intermittent vibration to prevent agglomeration of the material to be coated.

  2. Graphene: corrosion-inhibiting coating.

    PubMed

    Prasai, Dhiraj; Tuberquia, Juan Carlos; Harl, Robert R; Jennings, G Kane; Rogers, Bridget R; Bolotin, Kirill I

    2012-02-28

    We report the use of atomically thin layers of graphene as a protective coating that inhibits corrosion of underlying metals. Here, we employ electrochemical methods to study the corrosion inhibition of copper and nickel by either growing graphene on these metals, or by mechanically transferring multilayer graphene onto them. Cyclic voltammetry measurements reveal that the graphene coating effectively suppresses metal oxidation and oxygen reduction. Electrochemical impedance spectroscopy measurements suggest that while graphene itself is not damaged, the metal under it is corroded at cracks in the graphene film. Finally, we use Tafel analysis to quantify the corrosion rates of samples with and without graphene coatings. These results indicate that copper films coated with graphene grown via chemical vapor deposition are corroded 7 times slower in an aerated Na(2)SO(4) solution as compared to the corrosion rate of bare copper. Tafel analysis reveals that nickel with a multilayer graphene film grown on it corrodes 20 times slower while nickel surfaces coated with four layers of mechanically transferred graphene corrode 4 times slower than bare nickel. These findings establish graphene as the thinnest known corrosion-protecting coating.

  3. Coating Layer Characterization of Laser Deposited AlSi Coating over Laser Weld Bead

    NASA Astrophysics Data System (ADS)

    Gu, Hongping; Van Gelder, Aldo

    Corrosion protection of steel components is an important topic in automotive industry. Laser beam welding makes a narrow weld bead, thus minimizing the damage to the original coating on the steel material. However, the weld bead loses its original coating and is vulnerable to corrosive attack. It was demonstrated in this study that laser beam generated AlSi coating is an effective way to apply a protective coating on the weld bead. Coatings with different thickness and topography have been deposited under different laser power and processing speed. The microstructure of the as-deposited coating and its evolution after heat treatment has been studied. EDS was employed to analyze the distribution of chemical compositions of the laser generated coatings. Several metallic compounds of Al and iron have been identified. It was found that the type of metallic compounds can be influenced by the laser processing parameters.

  4. Antimicrobial effect, frictional resistance, and surface roughness of stainless steel orthodontic brackets coated with nanofilms of silver and titanium oxide: A preliminary study.

    PubMed

    Ghasemi, Tania; Arash, Valiollah; Rabiee, Sayed Mahmood; Rajabnia, Ramazan; Pourzare, Amirhosein; Rakhshan, Vahid

    2017-02-09

    Nano-silver and nano-titanium oxide films can be coated over brackets in order to reduce bacterial aggregation and friction. However, their antimicrobial efficacy, surface roughness, and frictional resistance are not assessed before. Fifty-five stainless-steel brackets were divided into 5 groups of 11 brackets each: uncoated brackets, brackets coated with 60 µm silver, 100 µm silver, 60 µm titanium, and 100 µm titanium. Coating was performed using physical vapor deposition method. For friction test, three brackets from each group were randomly selected and tested. For scanning electron microscopy and atomic-force microscopy assessments, one and one brackets were selected from each group. For antibacterial assessment, six brackets were selected from each group. Of them, three were immediately subjected to direct contact with S. mutans. Colonies were counted 3, 6, 24, and 48 h of contact. The other three were stored in water for 3 months. Then were subjected to a similar direct contact test. Results pertaining to both subgroups were combined. Groups were compared statistically. Mean (SD) friction values of the groups 'control, silver-60, silver-100, titanium-60, and titanium-100' were 0.55 ± 0.14, 0.77 ± 0.08, 0.82 ± 0.11, 1.52 ± 0.24, and 1.57 ± 0.41 N, respectively (p = .0004, Kruskal-Wallis). Titanium frictions were significantly greater than control (p < .05), but silver groups were not (p > .05, Dunn). In the uncoated group, colony count increased exponentially within 48 h. The coated groups showed significant reductions in colony count (p < .05, two-way-repeated-measures ANOVA). In conclusions, all four explained coatings reduce surface roughness and bacterial growth. Nano-titanium films are not suitable for friction reduction. Nano-silver results were not conclusive and need future larger studies.

  5. Mesoporous titanium dioxide coating for metallic implants.

    PubMed

    Xia, Wei; Grandfield, Kathryn; Hoess, Andreas; Ballo, Ahmed; Cai, Yanling; Engqvist, Håkan

    2012-01-01

    A bioactive mesoporous titanium dioxide (MT) coating for surface drug delivery has been investigated to develop a multifunctional implant coating, offering quick bone bonding and biological stability. An evaporation induced self-assembly (EISA) method was used to prepare a mesoporous titanium dioxide coating of the anatase phase with BET surface area of 172 m(2)/g and average pore diameter of 4.3 nm. Adhesion tests using the scratch method and an in situ screw-in/screw-out technique confirm that the MT coating bonds tightly with the metallic substrate, even after removal from bone. Because of its high surface area, the bioactivity of the MT coating is much better than that of a dense TiO(2) coating of the same composition. Quick formation of hydroxyapatite (HA) in vitro can be related to enhance bonding with bone. The uptake of antibiotics by the MT coating reached 13.4 mg/cm(3) within a 24 h loading process. A sustained release behavior has been obtained with a weak initial burst. By using Cephalothin as a model drug, drug loaded MT coating exhibits a sufficient antibacterial effect on the material surface, and within millimeters from material surface, against E.coli. Additionally, the coated and drug loaded surfaces showed no cytotoxic effect on cell cultures of the osteoblastic cell line MG-63. In conclusion, this study describes a novel, biocompatiblemesoporous implant coating, which has the ability to induce HA formation and could be used as a surface drug-delivery system.

  6. Assessment of ceramic coatings for metal fuel melting crucible

    SciTech Connect

    Kim, Ki-Hwan; Song, Hoon; Kim, Jong-Hwan; Oh, Seok-Jin; Kim, Hyung-Tae; Lee, Chan-Bock

    2013-07-01

    The objective of this study is to develop a coating method and material for crucibles to prevent material interactions with the U-Zr/U-TRU-Zr fuels during the manufacturing of SFR fuels. Refractory coatings were applied to niobium substrates by vacuum plasma-spray coating method. Melt dipping tests conducted were the coated rods lowered into the fuel melt at 1600 C. degrees, and withdrawn and cooled outside the crucible in the inert atmosphere of the induction furnace. Melt dipping tests of the coated Nb rods indicated that plasma-sprayed Y{sub 2}O{sub 3} coating doesn't form significant reaction layer between fuel melt and coating layer. Melt dipping tests of the coated Nb rods showed that TiC, TaC, and Y{sub 2}O{sub 3} coatings exhibited the promising performance among other ceramic coatings. These materials could be promising candidate materials for the reusable melt crucible of metal fuel for SFR. In addition, in order to develop the vacuum plasma-spray coating method for re-usable crucible of metal fuel slugs to be overcome the issue of thermal expansion mismatch between coating material and crucible, various combinations of coating conditions were investigated to find the bonding effect on the substrate in pursuit of more effective ways to withstand the thermal stresses. It is observed that most coating methods maintained sound coating state in U-Zr melt. (authors)

  7. Protective Coats For Zinc-Rich Primers

    NASA Technical Reports Server (NTRS)

    Macdowell, Louis G, III

    1993-01-01

    Report describes tests of topcoats for inorganic zinc-rich primers on carbon steel. Topcoats intended to provide additional protection against corrosion in acidic, salty seacoast-air/rocket-engine-exhaust environment of Space Shuttle launch site. Tests focused on polyurethane topcoats on epoxy tie coats on primers. Part of study involved comparison between "high-build" coating materials and thin-film coating materials.

  8. Porosity determination of thermal barrier coatings

    NASA Technical Reports Server (NTRS)

    Van Roode, Mark; Beardsley, Brad

    1988-01-01

    Coating porosity is believed to be a critical factor for the thermal conductivity of thermal barrier coatings (TBCs). A number of different techniques have been used to determine the porosities of thermal barrier coatings for diesel applications as part of a NASA/DOE sponsored study. A comparison is made between methods based on water immersion, optical microscopy, eddy current thickness measurements, and Archimedes principle for TBC porosity determination.

  9. Graphene based anticorrosive coatings for Cr(VI) replacement.

    PubMed

    Aneja, Karanveer S; Bohm, Sivasambu; Khanna, A S; Bohm, H L Mallika

    2015-11-14

    Corrosion has been a perennial issue of concern for the steel industry. Chromate conversion coatings are well known pre-treatment coatings for steel but due to environmental concerns and legislations, their use has been restricted. The industrial community, pegged by these legislations, has been long demanding an economically viable and eco-friendly pre-treatment coating alternative, without having to compromise on the durability and corrosion performance of the overall coating system. The present study focuses on evaluation of graphene as an anticorrosive alternative to Cr(VI) based coatings. Graphene, produced by a high shear liquid exfoliation route, upon functionalisation, provides a conductive and nearly impermeable barrier coating. On electrochemical and coating performance evaluation of this coating system, a dramatic improvement in corrosion resistance is observed. The study confirms the environment friendly corrosion protection of steel using functionalised graphene coating.

  10. Graphene based anticorrosive coatings for Cr(vi) replacement

    NASA Astrophysics Data System (ADS)

    Aneja, Karanveer. S.; Bohm, Sivasambu; Khanna, A. S.; Bohm, H. L. Mallika

    2015-10-01

    Corrosion has been a perennial issue of concern for the steel industry. Chromate conversion coatings are well known pre-treatment coatings for steel but due to environmental concerns and legislations, their use has been restricted. The industrial community, pegged by these legislations, has been long demanding an economically viable and eco-friendly pre-treatment coating alternative, without having to compromise on the durability and corrosion performance of the overall coating system. The present study focuses on evaluation of graphene as an anticorrosive alternative to Cr(vi) based coatings. Graphene, produced by a high shear liquid exfoliation route, upon functionalisation, provides a conductive and nearly impermeable barrier coating. On electrochemical and coating performance evaluation of this coating system, a dramatic improvement in corrosion resistance is observed. The study confirms the environment friendly corrosion protection of steel using functionalised graphene coating.

  11. Advanced Coats' disease.

    PubMed Central

    Haik, B G

    1991-01-01

    Advanced Coats' disease and retinoblastoma can both present with the triad of a retinal detachment, the appearance of a subretinal mass, and dilated retinal vessels. Thus, even the most experienced observer may not be able to differentiate these entities on ophthalmoscopic findings alone. Coats' disease is the most common reason for which eyes are enucleated with the misdiagnosis of retinoblastoma. Ultrasonography is the auxiliary diagnostic test most easily incorporated into the clinical examination, and can be utilized repeatedly without biologic tissue hazard. Ultrasonically identifiable features allowing differentiation between Coats' disease and retinoblastoma include the topography and character of retinal detachment and presence or absence of subretinal calcifications. Ultrasonography is of lesser use in poorly calcified retinoblastoma and in detecting optic nerve or extraocular extension in heavily calcified retinoblastoma. CT is perhaps the single most valuable test because of its ability to: (a) delineate intraocular morphology, (b) quantify subretinal densities, (c) identify vascularities within the subretinal space through the use of contrast enhancement, and (d) detected associated orbital or intracranial abnormalities. Optimal computed tomographic studies, however, require multiple thin slices both before and after contrast introduction and expose the child to low levels of radiation if studies are repeated periodically. MR imaging is valuable for its multiplanar imaging capabilities, its superior contrast resolution, and its ability to provide insights into the biochemical structure and composition of tissues. It is limited in its ability to detect calcium, which is the mainstay of ultrasonic and CT differentiation. Aqueous LDH and isoenzyme levels were not valuable in distinguishing between Coats' disease and retinoblastoma. The value of aqueous NSE levels in the differentiation of advanced Coats' disease and exophytic retinoblastoma deserves

  12. Biodegradable nanocomposite coatings accelerate bone healing: In vivo evaluation

    PubMed Central

    Mehdikhani-Nahrkhalaji, Mehdi; Fathi, Mohammad Hossein; Mortazavi, Vajihesadat; Mousavi, Sayed Behrouz; Akhavan, Ali; Haghighat, Abbas; Hashemi-Beni, Batool; Razavi, Sayed Mohammad; Mashhadiabbas, Fatemeh

    2015-01-01

    Background: The aim of this study was to evaluate the interaction of bioactive and biodegradable poly (lactide-co-glycolide)/bioactive glass/hydroxyapatite (PBGHA) and poly (lactide-co-glycolide)/bioactive glass (PBG) nanocomposite coatings with bone. Materials and Methods: Sol-gel derived 58S bioactive glass nanoparticles, 50/50 wt% poly (lactic acid)/poly (glycolic acid) and hydroxyapatite nanoparticles were used to prepare the coatings. The nanocomposite coatings were characterized by scanning electron microscopy, X-ray diffraction and atomic force microscopy. Mechanical stability of the prepared nanocomposite coatings was studied during intramedullary implantation of coated Kirschner wires (K-wires) into rabbit tibia. Titanium mini-screws coated with nanocomposite coatings and without coating were implanted intramedullary in rabbit tibia. Bone tissue interaction with the prepared nanocomposite coatings was evaluated 30 and 60 days after surgery. The non-parametric paired Friedman and Kruskal-Wallis tests were used to compare the samples. For all tests, the level of significance was P < 0.05. Results: The results showed that nanocomposite coatings remained stable on the K-wires with a minimum of 96% of the original coating mass. Tissue around the coated implants showed no adverse reactions to the coatings. Woven and trabecular bone formation were observed around the coated samples with a minimum inflammatory reaction. PBG nanocomposite coating induced more rapid bone healing than PBGHA nanocomposite coating and titanium without coating (P < 0.05). Conclusion: It was concluded that PBG nanocomposite coating provides an ideal surface for bone formation and it could be used as a candidate for coating dental and orthopedic implants. PMID:25709681

  13. Active coatings for SiC particles to reduce the degradation by liquid aluminium during processing of aluminium matrix composites: study of interfacial reactions.

    PubMed

    Ureña, A.; Rodrigo, P.; Baldonedo, J. L.; Gil, L.

    2001-02-01

    The application of a surface coating on SiC particles is studied as an alternative means of solving problems of reactivity between SiC reinforcements and molten aluminium and problems of low wetting which limit the application of casting routes for fabrication of Al-SiCp composites. The selected active barrier was a ceramic composed of SiO2, which was generated by controlled oxidation of the SiC particles. The coating behaves as an active barrier, preventing a direct reaction between molten aluminium and SiC to form Al4C3 as the main degradation product. At the same time, the SiO2 provokes other interfacial reactions, which are responsible for an improvement in wetting behaviour. Composites were prepared by mixing and compacting SiC particles with Al powders followed by melting in a vacuum furnace, and varying the residence time. Transmission electron microscopy (TEM), high resolution electron microscopy (HREM) and field emission TEM were employed as the main characterization techniques to study the interfacial reactions occurring between the barrier and the molten aluminium. These studies showed that the SiO2 coating behaves as an active barrier which reacts with the molten Al to form a glassy phase Al-Si-O. This compound underwent partial crystallization during the composite manufacture to form mullite. The formation of an outer crystalline layer, composed mainly of Al2O3, was also detected. Participation of other secondary interface reactions inside the active barrier was also identified by HREM techniques.

  14. Mechanism and kinetics of apatite formation on nanocrystalline TiO2 coatings: a quartz crystal microbalance study.

    PubMed

    Yang, Zhengpeng; Si, Shihui; Zeng, Xiaoming; Zhang, Chunjing; Dai, Hongjuan

    2008-05-01

    Apatite (Ca5(PO4)3OH) has long been considered as an excellent biomaterial to promote bone repairs and implant. Apatite formation induced by negatively charged nanocrystalline TiO2 coatings soaked in simulated body fluid (SBF) was investigated using in situ quartz crystal microbalance (QCM), scanning electron microscopy (SEM), Fourier-transformed infrared spectroscopy (FTIR), X-ray diffraction (XRD) and energy-dispersive X-ray spectroscopy (EDX) techniques, and factors affecting its formation such as pH, size of TiO2 particles and thickness of TiO2 coatings, were discussed in detail. Two different stages were clearly observed in the process of apatite precipitation, indicating two different kinetic processes. At the first stage, the calcium ions in SBF were initially attracted to the negatively charged TiO2 surface, and then the calcium titanate formed at the interface combined with phosphate ions, consequently forming apatite nuclei. After the nucleation, the calcium ions, phosphate ions and other minor ions (i.e. CO3(2-) and Mg2+) in supersaturated SBF deposited spontaneously on the original apatite coatings to form apatite precipitates. In terms of the in situ frequency shifts, the growth-rate constants of apatite (K1 and K2) were estimated, respectively, at two different stages, and the results were (1.96+/-0.14)x10(-3)s(-1) and (1.28+/-0.10)x10(-4)s(-1), respectively, in 1.5 SBF solution. It was found that the reaction rate at the first stage is obviously higher than that at the second stage.

  15. Observations of flux motion in niobium films. [study of magnetic field trapped in superconducting coatings of gyroscope rotor

    NASA Technical Reports Server (NTRS)

    Xiao, Y. M.; Keiser, G. M.

    1991-01-01

    A magnetic field trapped in a superconducting sphere was examined at temperatures from 4.6 K to 5.5 K. The sphere was the rotor of a precision gyroscope and was made of fused quartz and coated with a sputtered niobium film. The rotor diameter was 3.8 cm. The film thickness was 2.5 microns. The tests were carried out at an ambient magnetic field of about 1 mG. Unexpected instability of the trapped field was observed. The experimental results and possible explanations are presented.

  16. Comparative Study on Ejection Phenomena of Droplets from Electro-Hydrodynamic Jet by Hydrophobic and Hydrophilic Coatings of Nozzles

    NASA Astrophysics Data System (ADS)

    Yong-Jae Kim,; Jaeyong Choi,; Sang Uk Son,; Sukhan Lee,; Xuan Hung Nguyen,; Vu Dat Nguyen,; Doyoung Byun,; Han Seo Ko,

    2010-06-01

    An electro-hydrodynamic (EHD) jet from an electrostatic inkjet head shows advantages in printing microsize patterns because it can generate submicron droplets and can use highly viscous inks. Since the basic principle of the EHD jet is to form a droplet from the apex of a meniscus at the end of a nozzle, the stable ejection of the droplet greatly depends on the shape of the meniscus, which is affected by surface characteristics of the nozzle, electric potential, and ink properties. Hence, experiments have been performed using nozzles with hydrophobic and hydrophilic coatings to investigate the droplet ejection.

  17. Assessment of Runoff Toxicity from Coated Surfaces

    EPA Science Inventory

    Presented in this paper are results from a field and laboratory study of the potential runoff toxicity from coated surfaces. The study results qualified and quantified the types and concentrations of pollutants in runoff from surfaces sealed with a variety of products. Coatings a...

  18. Electromagnetic properties of material coated surfaces

    NASA Technical Reports Server (NTRS)

    Beard, L.; Berrie, J.; Burkholder, R.; Dominek, A.; Walton, E.; Wang, N.

    1989-01-01

    The electromagnetic properties of material coated conducting surfaces were investigated. The coating geometries consist of uniform layers over a planar surface, irregularly shaped formations near edges and randomly positioned, electrically small, irregularly shaped formations over a surface. Techniques to measure the scattered field and constitutive parameters from these geometries were studied. The significance of the scattered field from these geometries warrants further study.

  19. The self-healing composite anticorrosion coating

    NASA Astrophysics Data System (ADS)

    Yang, Zhao; Wei, Zhang; Le-ping, Liao; Hong-mei, Wang; Wu-jun, Li

    Self-healing coatings, which autonomically repair and prevent corrosion of the underlying substrate, are of particular interest for the researchers. In the article, effectiveness of epoxy resin filled microcapsules was investigated for healing of cracks generated in coatings. Microcapsules were prepared by in situ polymerization of urea-formaldehyde resin to form shell over epoxy resindroplets. Characteristics of these capsules were studied by scanning electron microscope (SEM), thermo gravimetric analyzer (TGA) and particle size analyzer. The model system of self-healing antisepsis coating consists of an epoxy resin matrix, 10 wt% microencapsulated healing agent, 2wt% catalyst solution. The self-healing function of this coating system is evaluated through corrosion testing of damaged and healed coated steel samples compared to control samples. Electrochemical testing provides further evidence of passivation of the substrate by self-healing coatings.

  20. Laser cladding of bioactive glass coatings.

    PubMed

    Comesaña, R; Quintero, F; Lusquiños, F; Pascual, M J; Boutinguiza, M; Durán, A; Pou, J

    2010-03-01

    Laser cladding by powder injection has been used to produce bioactive glass coatings on titanium alloy (Ti6Al4V) substrates. Bioactive glass compositions alternative to 45S5 Bioglass were demonstrated to exhibit a gradual wetting angle-temperature evolution and therefore a more homogeneous deposition of the coating over the substrate was achieved. Among the different compositions studied, the S520 bioactive glass showed smoother wetting angle-temperature behavior and was successfully used as precursor material to produce bioactive coatings. Coatings processed using a Nd:YAG laser presented calcium silicate crystallization at the surface, with a uniform composition along the coating cross-section, and no significant dilution of the titanium alloy was observed. These coatings maintain similar bioactivity to that of the precursor material as demonstrated by immersion in simulated body fluid.