Sample records for coatings dramatically improved

  1. Improved Lyman Ultraviolet Astronomy Capabilities through Enhanced Coatings

    NASA Technical Reports Server (NTRS)

    Quijada, Manuel A.; del Hoyo, Javier; Boris, David; Walton, Scott

    2017-01-01

    This paper will describe efforts at developing broadband mirror coatings with high performance that will extend from infrared wavelengths down to the Far-Ultraviolet (FUV) spectral region. These mirror coatings would be realized by passivating the surface of freshly made aluminum coatings with XeF2 gas in order to form a thin AlF$_3$ overcoat that will protect the aluminum from oxidation and, hence, realize the high-reflectance of this material down to its intrinsic cut-off wavelength of 90 nm. Improved reflective coatings for optics, particularly in the FUV region (90-120 nm), could yield dramatically more sensitive instruments and permit more instrument design freedom.

  2. Improved Mirror Coatings for Use in the Lyman Ultraviolet to Enhance Astronomical Instrument Capabilities

    NASA Technical Reports Server (NTRS)

    Quijada, Manuel A.; Del Hoyo, Javier; Boris, David R.; Walton, Scott

    2017-01-01

    This paper will describe efforts at developing broadband mirror coatings with high performance that will extend from infrared wavelengths down to the Far-Ultraviolet (FUV) spectral region. These mirror coatings would be realized by passivating the surface of freshly made aluminum coatings with XeF2 gas in order to form a thin AlF3 overcoat that will protect the aluminum from oxidation and, hence, realize the high-reflectance of this material down to its intrinsic cut-off wavelength of 90 nm. Improved reflective coatings for optics, particularly in the FUV region (90-120 nm), could yield dramatically more sensitive instruments and permit more instrument design freedom.

  3. Improved mirror coatings for use in the Lyman Ultraviolet to enhance astronomical instrument capabilities

    NASA Astrophysics Data System (ADS)

    Quijada, Manuel A.; del Hoyo, Javier; Boris, David R.; Walton, Scott G.

    2017-09-01

    This paper will describe efforts at developing broadband mirror coatings with high performance that will extend from infrared wavelengths down to the Far-Ultraviolet (FUV) spectral region. These mirror coatings would be realized by passivating the surface of freshly made aluminum coatings with fluorine ions in order to form a thin AlF3 overcoat that will protect the aluminum from oxidation and, hence, realize the high-reflectance of this material down to its intrinsic cut-off wavelength of 90 nm. Improved reflective coatings for optics, particularly in the FUV region (90-120 nm), could yield dramatically more sensitive instruments and permit more instrument design freedom.

  4. New generation of plasma-sprayed mullite coatings on silicon carbide

    NASA Technical Reports Server (NTRS)

    Lee, Kang N.; Miller, Robert A.; Jacobson, Nathan S.

    1995-01-01

    Mullite is promising as a protective coating for silicon-based ceramics in aggressive high-temperature environments. Conventionally plasma-sprayed mullite on SiC tends to crack and debond on thermal cycling. It is shown that this behavior is due to the presence of amorphous mullite in the conventionally sprayed mullite. Heating the SiC substrate during the plasma spraying eliminated the amorphous phase and produced coatings with dramatically improved properties. The new coating exhibits excellent adherence and crack resistance under thermal cycling between room temperature and 1000 to 1400 C. Preliminary tests showed good resistance to Na2CO3-induced hot corrosion.

  5. Ceramic composite separators coated with moisturized ZrO(2) nanoparticles for improving the electrochemical performance and thermal stability of lithium ion batteries.

    PubMed

    Kim, Ki Jae; Kwon, Hyuk Kwon; Park, Min-Sik; Yim, Taeeun; Yu, Ji-Sang; Kim, Young-Jun

    2014-05-28

    We introduce a ceramic composite separator prepared by coating moisturized ZrO2 nanoparticles with a poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-12wt%HFP) copolymer on a polyethylene separator. The effect of moisturized ZrO2 nanoparticles on the morphology and the microstructure of the polymeric coating layer is investigated. A large number of micropores formed around the embedded ZrO2 nanoparticles in the coating layer as a result of the phase inversion caused by the adsorbed moisture. The formation of micropores highly affects the ionic conductivity and electrolyte uptake of the ceramic composite separator and, by extension, the rate discharge properties of lithium ion batteries. In particular, thermal stability of the ceramic composite separators coated with the highly moisturized ZrO2 nanoparticles (a moisture content of 16 000 ppm) is dramatically improved without any degradation in electrochemical performance compared to the performance of pristine polyethylene separators.

  6. Interpretation of Mechanical and Thermal Properties of Heavy Duty Epoxy Based Floor Coating Doped by Nanosilica

    NASA Astrophysics Data System (ADS)

    Nikje, M. M. Alavi; Khanmohammadi, M.; Garmarudi, A. Bagheri

    Epoxy-nano silica composites were prepared using Bisphenol-A epoxy resin (Araldite® GY 6010) resin obtained from in situ polymerization or blending method. SiO2 nanoparticles were pretreated by a silan based coupling agent. Surface treated nano silica was dispersed excellently by mechanical and ultrasonic homogenizers. A dramatic increase in the interfacial area between fillers and polymer can significantly improve the properties of the epoxy coating product such as tensile, elongation, abrasion resistance, etc.

  7. Impact of Nanometer Graphite Addition on the Anti-deliquescence and Tribological Properties of Ni/MoS2 Lubricating Coating

    NASA Astrophysics Data System (ADS)

    Zhang, S.; Li, G. L.; Wang, H. D.; Xu, B. S.; Ma, G. Z.

    In order to improve the long-standing problem of MoS2 coating that lubrication performance drop dramatic after storage in humid air, using nano-composite electro brush plating technology and Ni/MoS2-C combination coating with thinness of 100 μm was succeed deposited on GCr15 substrate. Microstructure, surface morphology and elements of this composite coating were analyzed using SEM, XPS and TEM while phase structure was tested by XRD. The tribological properties of this composite coating were tested by MSTS-1; Test the preceding tribological properties of Ni/MoS2-C composite coatings to the pure Ni/MoS2 after different period storage at room temperature and 100% relative humidity atmosphere of 12 h, 24 h, and 48 h as well as the element of the chemical changes. Research shows that there is a small amount of MoS2 in pure MoS2 coatings behind a 12 hours storage in humid air became MoO3 and the tribological performance decreased significantly followed, in the same conditions composite coating with nanometer graphite addition get a preferably tribological properties while the hardness of this coating was improved by the nanometer graphite addition and combination plating showed a well duration tribological properties as a result.

  8. Effect of the Cold-Sprayed Aluminum Coating-Substrate Interface Morphology on Bond Strength for Aircraft Repair Application

    NASA Astrophysics Data System (ADS)

    Blochet, Quentin; Delloro, Francesco; N'Guyen, Franck; Jeulin, Dominique; Borit, François; Jeandin, Michel

    2017-04-01

    This article is dealing with the effects of surface preparation of the substrate on aluminum cold-sprayed coating bond strength. Different sets of AA2024-T3 specimens have been coated with pure Al 1050 feedstock powder, using a conventional cold spray coating technique. The sets were grit-blasted (GB) before coating. The study focuses on substrate surface topography evolution before coating and coating-substrate interface morphology after coating. To study coating adhesion by LASAT® technique for each set, specimens with and without preceding GB treatment were tested in load-controlled conditions. Then, several techniques were used to evaluate the effects of substrate surface treatment on the final coating mechanical properties. Irregularities induced by the GB treatment modify significantly the interface morphology. Results showed that particle anchoring was improved dramatically by the presence of craters. The substrate surface was characterized by numerous anchors. Numerical simulation results exhibited the increasing deformation of particle onto the grit-blasted surface. In addition, results showed a strong relationship between the coating-substrate bond strength on the deposited material and surface preparation.

  9. A facile method of fabricating mechanical durable anti-icing coatings based on CeO2 microparticles

    NASA Astrophysics Data System (ADS)

    Wang, Pengren; Peng, Chaoyi; Wu, Binrui; Yuan, Zhiqing; Yang, Fubiao; Zeng, Jingcheng

    2015-07-01

    Compromising between hydrophobicity and mechanical durability may be a feasible approach to fabricating usable anti-icing coatings. This work improves the contact angle of current commercial anti-icing coatings applied to wind turbine blades dramatically and keeps relatively high mechanical durability. CeO2 microparticles and diluent were mixed with fluorocarbon resin to fabricate high hydrophobic coatings on the glass fiber reinforced epoxy composite substrates. The proportion of CeO2 microparticles and diluent influences the contact angles significantly. The optimum mass ratio of fluorocarbon resin to CeO2 microparticles to diluent is 1:1.5:1, which leads to the highest contact angle close to 140°. The microscopy analysis shows that the CeO2 microparticles form nano/microscale hierarchical structure on the surface of the coatings.

  10. The osteogenic capacity of biomimetic hierarchical micropore/nanorod-patterned Sr-HA coatings with different interrod spacings.

    PubMed

    Zhou, Jianhong; Li, Bo; Han, Yong; Zhao, Lingzhou

    2016-07-01

    Advanced titanium based bone implant with fast established, rigid and stable osseointegration is stringently needed in clinic. Here the hierarchical micropore/nanorod-patterned strontium doped hydroxyapatite (Ca9Sr1(PO4)6(OH)2, Sr1-HA) coatings (MNRs) with different interrod spacings varying from about 300 to 33nm were developed. MNRs showed dramatically differential biological performance closely related to the interrod spacing. Compared to micropore/nanogranule-patterned Sr1-HA coating (MNG), MNRs with an interrod spacing of larger than 137nm resulted in inhibited in vitro mesenchymal stem cell functions and in vivo osseointegration, while those of smaller than 96nm gave rise to dramatically enhanced the biological effect, especially those of mean 67nm displayed the best effect. The differential biological effect of MNRs was related to their modulation on the focal adhesion mediated mechanotransduction. These results suggest that MNRs with a mean interrod spacing of 67nm may give rise to an advanced implant of improved clinical performance. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Plasma-sprayed titanium coating to polyetheretherketone improves the bone-implant interface.

    PubMed

    Walsh, William R; Bertollo, Nicky; Christou, Chrisopher; Schaffner, Dominik; Mobbs, Ralph J

    2015-05-01

    Rapid and stable fixation at the bone-implant interface would be regarded as one of the primary goals to achieve clinical efficacy, regardless of the surgical site. Although mechanical and physical properties of polyetheretherketone (PEEK) provide advantages for implant devices, the hydrophobic nature and the lack of direct bone contact remains a limitation. To examine the effects of a plasma-sprayed titanium coated PEEK on the mechanical and histologic properties at the bone-implant interface. A preclinical laboratory study. Polyetheretherketone and plasma-sprayed titanium coated PEEK implants (Ti-bond; Spinal Elements, Carlsbad, CA, USA) were placed in a line-to-line manner in cortical bone and in a press-fit manner in cancellous bone of adult sheep using an established ovine model. Shear strength was assessed in the cortical sites at 4 and 12 weeks, whereas histology was performed in cortical and cancellous sites at both time points. The titanium coating dramatically improved the shear strength at the bone-implant interface at 4 weeks and continued to improve with time compared with PEEK. Direct bone ongrowth in cancellous and cortical sites can be achieved using a plasma-sprayed titanium coating on PEEK. Direct bone to implant bonding can be achieved on PEEK in spite of its hydrophobic nature using a plasma-sprayed titanium coating. The plasma-sprayed titanium coating improved mechanical properties in the cortical sites and the histology in cortical and cancellous sites. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Preparing high-adhesion silver coating on APTMS modified polyethylene with excellent anti-bacterial performance

    NASA Astrophysics Data System (ADS)

    Li, Wenfei; Chen, Yunxiang; Wu, Song; Zhang, Jian; Wang, Hao; Zeng, Dawen; Xie, Changsheng

    2018-04-01

    Silver coating as a broad-spectrum antimicrobial agent was considered to alleviate the inflammation caused by intrauterine device (IUD) in endometrium. In this work, to avoid the damage of silver coating and ensure its antibacterial properties, 3-aminopropyltrimethoxysilane (APTMS) was introduced to modify the polyethylene (PE) substrate for the purpose of improving the adhesion of the silver coating. From the 90° peel test, it could be found that the adhesive strength of silver coating on the APTMS modified PE substrate was nearly 23 times stronger than the silver coating on substrate without surface modification. The dramatically enhanced adhesive strength could be attributed to the formation of continuous chemical bonds between the silver coatings and substrates after surface modification, which had been confirmed by the XPS. Moreover, the standard antibacterial test revealed that the silver coated samples against Staphylococcus aureus (S. aureus) exhibit excellent antibacterial efficacy. Considering the largely enhanced adhesion and the effective antibacterial property, it is reasonable to believe that the silver coating could be considered as a potential candidate for the antibacterial agent in IUD.

  13. Carbon quantum dots coated BiVO{sub 4} inverse opals for enhanced photoelectrochemical hydrogen generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nan, Feng; Shen, Mingrong; Fang, Liang, E-mail: zhkang@suda.edu.cn, E-mail: lfang@suda.edu.cn

    Carbon quantum dots (CQDs) coated BiVO{sub 4} inverse opal (io-BiVO{sub 4}) structure that shows dramatic improvement of photoelectrochemical hydrogen generation has been fabricated using electrodeposition with a template. The io-BiVO{sub 4} maximizes photon trapping through slow light effect, while maintaining adequate surface area for effective redox reactions. CQDs are then incorporated to the io-BiVO{sub 4} to further improve the photoconversion efficiency. Due to the strong visible light absorption property of CQDs and enhanced separation of the photoexcited electrons, the CQDs coated io-BiVO{sub 4} exhibit a maximum photo-to-hydrogen conversion efficiency of 0.35%, which is 6 times higher than that of themore » pure BiVO{sub 4} thin films. This work is a good example of designing composite photoelectrode by combining quantum dots and photonic crystal.« less

  14. Preparation and characterization of controlled-release fertilizers coated with marine polysaccharide derivatives

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Liu, Song; Qin, Yukun; Chen, Xiaolin; Xing, Rong'e.; Yu, Huahua; Li, Kecheng; Li, Pengcheng

    2017-09-01

    Encapsulation of water-soluble nitrogen fertilizers by membranes can be used to control the release of nutrients to maximize the fertilization effect and reduce environmental pollution. In this research, we formulated a new double-coated controlled-release fertilizer (CRF) by using food-grade microcrystalline wax (MW) and marine polysaccharide derivatives (calcium alginate and chitosan-glutaraldehyde copolymer). The pellets of water-soluble nitrogen fertilizer were coated with the marine polysaccharide derivatives and MW. A convenient and eco-friendly method was used to prepare the CRF. Scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) were used to characterize the morphology and composition of the products. The nitrogen-release properties were determined in water using UV-Vis spectrophotometry. The controlled-release properties of the fertilizer were improved dramatically after coating with MW and the marine polysaccharide derivatives. The results show that the double-coated CRFs can release nitrogen in a controlled manner, have excellent controlled-release features, and meet the European Standard for CRFs.

  15. Hydrophobization and antimicrobial activity of chitosan and paper-based packaging material.

    PubMed

    Bordenave, Nicolas; Grelier, Stephane; Coma, Veronique

    2010-01-11

    This study reports the elaboration of water-resistant, antimicrobial, chitosan and paper-based materials as environmentally friendly food packaging materials. Two types of papers were coated with chitosan-palmitic acid emulsions or with a blend of chitosan and O,O'-dipalmitoylchitosan (DPCT). Micromorphology studies showed that inclusion of hydrophobic compounds into the chitosan matrix was enhanced by grafting them onto chitosan and that this led to their penetration of the paper's core. Compared to chitosan-coated papers, the coating of chitosan-palmitic emulsion kept vapor-barrier properties unchanged (239 and 170 g.m(-2).d(-1) versus 241 and 161 g.m(-2).d(-1)), while the coating of chitosan-DPCT emulsion dramatically deteriorated them (441 and 442 g.m(-2).d(-1)). However, contact angle measurements (110-120 degrees after 1 min) and penetration dynamics analysis showed that both strategies improved liquid-water resistance of the materials. Kit-test showed that all hydrophobized chitosan-coated papers kept good grease barrier properties (degree of resistance 6-8/12). Finally, all chitosan-coated materials exhibited over 98% inhibition on Salmonella Typhimurium and Listeria monocytogenes .

  16. Oligovalent Fab display on M13 phage improved by directed evolution.

    PubMed

    Huovinen, Tuomas; Sanmark, Hanna; Ylä-Pelto, Jani; Vehniäinen, Markus; Lamminmäki, Urpo

    2010-03-01

    Efficient display of antibody on filamentous phage M13 coat is crucial for successful biopanning selections. We applied a directed evolution strategy to improve the oligovalent display of a poorly behaving Fab fragment fused to phage gene-3 for minor coat protein (g3p). The Fab displaying clones were enriched from a randomly mutated Fab gene library with polyclonal anti-mouse IgG antibodies. Contribution of each mutation to the improved phenotype of one selected mutant was studied. It was found out that two point mutations had significant contribution to the display efficiency of Fab clones superinfected with hyperphage. The most dramatic effect was connected to a start codon mutation, from AUG to GUG, of the PelB signal sequence preceding the heavy chain. The clone carrying this mutation, FabM(GUG), displayed Fab 19-fold better and yielded twofold higher phage titers than the original Fab.

  17. Wide-band 'black silicon' with atomic layer deposited NbN.

    PubMed

    Isakov, Kirill; Perros, Alexander Pyymaki; Shah, Ali; Lipsanen, Harri

    2018-08-17

    Antireflection surfaces are often utilized in optical components to reduce undesired reflection and increase absorption. We report on black silicon (b-Si) with dramatically enhanced absorption over a broad wavelength range (250-2500 nm) achieved by applying a 10-15 nm conformal coating of NbN with atomic layer deposition (ALD). The improvement is especially pronounced in the near infrared (NIR) range of 1100-2500 nm where absorption is increased by >90%. A significant increase of absorption is also observed over the ultraviolet range of 200-400 nm. Preceding NbN deposition with a nanostructured ALD Al 2 O 3 (n-Al 2 O 3 ) coating to enhance the NbN texture was also examined. Such texturing further improves absorption in the NIR, especially at longer wavelengths, strong absorption up to 4-5 μm wavelengths has been attested. For comparison, double side polished silicon and sapphire coated with 10 nm thick NbN exhibited absorption of only ∼55% in the NIR range of 1100-2500 nm. The results suggest a positive correlation between the surface area of NbN coating and optical absorption. Based on the wide-band absorption, the presented NbN-coated b-Si may be an attractive candidate for use in e.g. spectroscopic systems, infrared microbolometers.

  18. Shear lag sutures: Improved suture repair through the use of adhesives

    PubMed Central

    Linderman, Stephen W.; Kormpakis, Ioannis; Gelberman, Richard H.; Birman, Victor; Wegst, Ulrike G. K.; Genin, Guy M.; Thomopoulos, Stavros

    2015-01-01

    Suture materials and surgical knot tying techniques have improved dramatically since their first use over five millennia ago. However, the approach remains limited by the ability of the suture to transfer load to tissue at suture anchor points. Here, we predict that adhesive-coated sutures can improve mechanical load transfer beyond the range of performance of existing suture methods, thereby strengthening repairs and decreasing the risk of failure. The mechanical properties of suitable adhesives were identified using a shear lag model. Examination of the design space for an optimal adhesive demonstrated requirements for strong adhesion and low stiffness to maximize the strength of the adhesive-coated suture repair construct. To experimentally assess the model, we evaluated single strands of sutures coated with highly flexible cyanoacrylates (Loctite 4903 and 4902), cyanoacrylate (Loctite QuickTite Instant Adhesive Gel), rubber cement, rubber/gasket adhesive (1300 Scotch-Weld Neoprene High Performance Rubber & Gasket Adhesive), an albumin-glutaraldehyde adhesive (BioGlue), or poly(dopamine). As a clinically relevant proof-of-concept, cyanoacrylate-coated sutures were then used to perform a clinically relevant flexor digitorum tendon repair in cadaver tissue. The repair performed with adhesive-coated suture had significantly higher strength compared to the standard repair without adhesive. Notably, cyanoacrylate provides strong adhesion with high stiffness and brittle behavior, and is therefore not an ideal adhesive for enhancing suture repair. Nevertheless, the improvement in repair properties in a clinically relevant setting, even using a non-ideal adhesive, demonstrates the potential for the proposed approach to improve outcomes for treatments requiring suture fixation. Further study is necessary to develop a strongly adherent, compliant adhesive within the optimal design space described by the model. PMID:26022966

  19. Microstructure and corrosive wear resistance of plasma sprayed Ni-based coatings after TIG remelting

    NASA Astrophysics Data System (ADS)

    Tianshun, Dong; Xiukai, Zhou; Guolu, Li; Li, Liu; Ran, Wang

    2018-02-01

    Ni based coatings were prepared on steel substrate by means of plasma spraying, and were remelted by TIG (tungsten inert gas arc) method subsequently. The microstructure, microhardness, electrochemical corrosion and corrosive wear resistance under PH = 4, PH = 7 and PH = 10 conditions of the coatings before and after remelting were investigated. The results showed that the TIG remelting obviously reduced the defects and dramatically decreased the coating’s porosity from 7.2% to 0.4%. Metallurgical bonding between the remelted coating and substrate was achieved. Meanwhile, the phase compositions of as-sprayed coating were γ-Ni, Mn5Si2 and Cr2B, while the phase compositions of the remelting coating were Fe3Ni, Cr23C6, Cr2B and Mn5Si2. The microhardness of the coating decreased from 724 HV to 608 HV, but the fracture toughness enhanced from 2.80 MPa m1/2 to 197.3 MPa m1/2 after remelting. After corrosive wear test, the average wear weight loss and 3D morphology of wear scar of two coatings indicated that the wear resistance of the remelted coating was remarkably higher than that of as-sprayed coating. Therefore, TIG remelting treatment was a feasible method to improve the coating’s microstructure and enhance its corrosive wear resistance.

  20. Enhanced dissolution, stability and physicochemical characterization of ATRA/2-hydroxypropyl-β-cyclodextrin inclusion complex pellets prepared by fluid-bed coating technique.

    PubMed

    Chen, Zhongjian; Lu, Yi; Qi, Jianping; Wu, Wei

    2013-02-01

    The aim of this work was to prepare stable all-trans-retinoic acid (ATRA)/2-hydroxypropyl-β-cyclodextrin (HPCD) inclusion complex pellets with industrial feasible technology, the fluid-bed coating technique, using PVP K30 simultaneously as binder and reprecipitation retarder. The coating process was fluent with high coating efficiency. In vitro dissolution of the inclusion complex pellets in 5% w/v Cremopher EL solution was dramatically enhanced with no reprecipitation observed, and significantly improved stability against humidity (92.5% and 75% RH) and illumination (4500 lx ± 500 lx) was achieved by HPCD inclusion. Differential scanning calorimetry and powder X-ray diffractometry confirmed the absence of crystallinity of ATRA. Fourier transform-infrared spectrometry revealed interaction between ATRA and HPCD adding evidence on inclusion of ATRA moieties into HPCD cavities. Solid-state (13)C NMR spectrometry indicated possible inclusion of ATRA through the polyene chain, which was the main reason for the enhanced photostability. It is concluded that the fluid-bed coating technique has the potential use in the industrial preparation of ATRA/HPCD inclusion complex pellets.

  1. Electrochemically assisted localized etching of ZnO single crystals in water using a catalytically active Pt-coated atomic force microscopy probe

    NASA Astrophysics Data System (ADS)

    Shibata, Takayuki; Yamamoto, Kota; Sasano, Junji; Nagai, Moeto

    2017-09-01

    This paper presents a nanofabrication technique based on the electrochemically assisted chemical dissolution of zinc oxide (ZnO) single crystals in water at room temperature using a catalytically active Pt-coated atomic force microscopy (AFM) probe. Fabricated grooves featured depths and widths of several tens and several hundreds of nanometers, respectively. The material removal rate of ZnO was dramatically improved by controlling the formation of hydrogen ions (H+) on the surface of the catalytic Pt-coated probe via oxidation of H2O molecules; this reaction can be enhanced by applying a cathodic potential to an additional Pt-wire working electrode in a three-electrode configuration. Consequently, ZnO can be dissolved chemically in water as a soluble Zn2+ species via a reaction with H+ species present in high concentrations in the immediate vicinity of the AFM tip apex.

  2. Self Assembled Dipole Monolayers on CNTs: Effect on Transport and Charge Collection

    NASA Astrophysics Data System (ADS)

    Cook, Alexander; Lee, Bumsu; Kuznetsov, Alexander; Podzorov, Vitaly; Zakhidov, Anvar

    2010-03-01

    We propose a method of quickly and dramatically increasing the conductivity of carbon nanotubes via growth of a self assembled monolayer (SAM) of fluoroalkyl trichlorosilane dipoles following the method demonstrated with organic semiconductors in [1,2]. Growth of a SAM on carbon nanotubes results in a strong p-type doping which improves the conductivity by a factor of two or more. Additionally, this doping is nonvolatile and persists in high vacuum and inert atmospheres. Improvements to conductivity are most dramatic in the case of predominantly semi-conducting, single walled carbon nanotubes (SWCNT) due to the remarkable introduction of about 1.2e14 holes/sq. cm, but this method is also an effective means to improve metallic, multi-walled carbon nanotubes (MWCNT). We will demonstrate improvement of transport and charge collection properties of both SWCNTs and MWCNTs by these SAM coatings in FETs and also in organic photovoltaic solar cells and in OLEDs. [1] M. F. Calhoun et al. Nature Materials 7, 84 - 89 (2008). [2] C. Y. Kao et al. Adv. Func. Mater. 19, 1 (2009).

  3. Modeling and Tool Wear in Routing of CFRP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iliescu, D.; Fernandez, A.; Gutierrez-Orrantia, M. E.

    2011-01-17

    This paper presents the prediction and evaluation of feed force in routing of carbon composite material. In order to extend tool life and improve quality of the machined surface, a better understanding of uncoated and coated tool behaviors is required. This work describes (1) the optimization of the geometry of multiple teeth tools minimizing the tool wear and the feed force, (2) the optimization of tool coating and (3) the development of a phenomenological model between the feed force, the routing parameters and the tool wear. The experimental results indicate that the feed rate, the cutting speed and the toolmore » wear are the most significant factors affecting the feed force. In the case of multiple teeth tools, a particular geometry with 14 teeth right helix right cut and 11 teeth left helix right cut gives the best results. A thick AlTiN coating or a diamond coating can dramatically improve the tool life while minimizing the axial force, roughness and delamination. A wear model has then been developed based on an abrasive behavior of the tool. The model links the feed rate to the tool geometry parameters (tool diameter), to the process parameters (feed rate, cutting speed and depth of cut) and to the wear. The model presented has been verified by experimental tests.« less

  4. Facile synthesis of gold coated copper(II) hydroxide pine-needle-like micro/nanostructures for surface-enhanced Raman scattering

    NASA Astrophysics Data System (ADS)

    Long, Kailin; Du, Deyang; Luo, Xiaoguang; Zhao, Weiwei; Wu, Zhangting; Si, Lifang; Qiu, Teng

    2014-08-01

    This work reports a facile method to fabricate gold coated copper(II) hydroxide pine-needle-like micro/nanostructures for surface-enhanced Raman scattering (SERS) application. The effects of reaction parameters on the shape, size and surface morphology of the products are systematically investigated. The as-prepared 3D hierarchical structures have the advantage of a large surface area available for the formation of hot spots and the adsorption of target analytes, thus dramatically improving the Raman signals. The finite difference time domain calculations indicate that the pine-needle-like model pattern may demonstrate a high quality SERS property owing to the high density and abundant hot spot characteristic in closely spaced needle-like arms.

  5. Stability of an Electrodeposited Nanocrystalline Ni-Based Alloy Coating in Oil and Gas Wells with the Coexistence of H₂S and CO₂.

    PubMed

    Sui, Yiyong; Sun, Chong; Sun, Jianbo; Pu, Baolin; Ren, Wei; Zhao, Weimin

    2017-06-09

    The stability of an electrodeposited nanocrystalline Ni-based alloy coating in a H₂S/CO₂ environment was investigated by electrochemical measurements, weight loss method, and surface characterization. The results showed that both the cathodic and anodic processes of the Ni-based alloy coating were simultaneously suppressed, displaying a dramatic decrease of the corrosion current density. The corrosion of the Ni-based alloy coating was controlled by H₂S corrosion and showed general corrosion morphology under the test temperatures. The corrosion products, mainly consisting of Ni₃S₂, NiS, or Ni₃S₄, had excellent stability in acid solution. The corrosion rate decreased with the rise of temperature, while the adhesive force of the corrosion scale increased. With the rise of temperature, the deposited morphology and composition of corrosion products changed, the NiS content in the corrosion scale increased, and the stability and adhesive strength of the corrosion scale improved. The corrosion scale of the Ni-based alloy coating was stable, compact, had strong adhesion, and caused low weight loss, so the corrosion rates calculated by the weight loss method cannot reveal the actual oxidation rate of the coating. As the corrosion time was prolonged, the Ni-based coating was thinned while the corrosion scale thickened. The corrosion scale was closely combined with the coating, but cannot fully prevent the corrosive reactants from reaching the substrate.

  6. Conceptual design study of concentrator enhanced solar arrays for space applications. 2kW Si and GaAs systems at 1 AU

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The effect of concentration level on the specific power for a deployable, thin, gallium arsenide cell array in geosynchronous orbit for 10 years in conjunction with a two dimensional flat plate trough concentrator (V trough) and also with a multiple flat plate concentrator was investigated as well as the effects for a conventional silicon cell array on a rigid substrate. For application to a thin GaAs array at 1 AU for 10 years, the V trough produces a 19% benefit in specific power and a dramatic reduction in array area, while the multiple flat plate collector design is not only of no benefit, but is a considerable detriment. The benefit it achieves by reducing array area is duplicated by the 2D design. For the silicon array on a rigid substrate, improvement in performance due to a concentrator with ordinary mirror coating is quite small: 9% increase in specific power, and 13% reduction in array area. When the concentrator mirrors are coated with an improved cold mirror coating, somewhat more significant results are obtained: 31% specific power improvement; and 27% area reduction. In both cases, a 10 year exposure reduces BOL output by 23%.

  7. Tailoring nanocrystalline diamond coated on titanium for osteoblast adhesion.

    PubMed

    Pareta, Rajesh; Yang, Lei; Kothari, Abhishek; Sirinrath, Sirivisoot; Xiao, Xingcheng; Sheldon, Brian W; Webster, Thomas J

    2010-10-01

    Diamond coatings with superior chemical stability, antiwear, and cytocompatibility properties have been considered for lengthening the lifetime of metallic orthopedic implants for over a decade. In this study, an attempt to tailor the surface properties of diamond films on titanium to promote osteoblast (bone forming cell) adhesion was reported. The surface properties investigated here included the size of diamond surface features, topography, wettability, and surface chemistry, all of which were controlled during microwave plasma enhanced chemical-vapor-deposition (MPCVD) processes using CH4-Ar-H2 gas mixtures. The hardness and elastic modulus of the diamond films were also determined. H2 concentration in the plasma was altered to control the crystallinity, grain size, and topography of the diamond coatings, and specific plasma gases (O2 and NH3) were introduced to change the surface chemistry of the diamond coatings. To understand the impact of the altered surface properties on osteoblast responses, cell adhesion tests were performed on the various diamond-coated titanium. The results revealed that nanocrystalline diamond (grain sizes <100 nm) coated titanium dramatically increased surface hardness, and the introduction of O2 and NH3 during the MPCVD process promoted osteoblast adhesion on diamond and, thus, should be further studied for improving orthopedic applications. Copyright 2010 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2010.

  8. IFATS Collection: Adipose-Derived Stromal Cells Improve the Foreign Body Response

    PubMed Central

    Prichard, Heather L.; Reichert, William; Klitzman, Bruce

    2015-01-01

    Many implanted devices fail due to the formation of an avascular capsule surrounding the device. Additionally, fat has long been known to promote healing and vascularization. The goals of this study were to identify potential mechanisms of the provascular actions of adipose-derived stromal cells (ASCs) and to improve implant biocompatibility. First, adult ASCs and fibroblasts from rats were attached to polyurethane and polystyrene in vitro and their cytokine secretion profile was analyzed. Secretion of vascular endothelial growth factor (VEGF) from ASCs was 10 –70 times higher than fibroblasts after 3 and 6 days. Next, polyurethane, bare and with cellular coatings, was implanted subcutaneously in rats. The fibrous capsule surrounding bare polyurethane implants was 17%–32% thicker and the amount of collagen was 27% greater than the capsule surrounding ASC-coated implants. Finally, the microvessel density adjacent to ASC-coated polyurethane was approximately 50%–80% higher than bare polyurethane. In summary, ASCs attached to polyurethane have a dramatically increased VEGF production compared with fibroblasts in vitro, and these cells also produce an increased microvessel density in the surrounding tissue when implanted subcutaneously in rats. PMID:18436858

  9. Development of Scaffolds for Light Harvesting and Photocatalysis from the Coat Protein of Tobacco Mosaic Virus

    NASA Astrophysics Data System (ADS)

    Dedeo, Michel Toussaint

    The utility of a previously developed TMV-based light harvesting system has been dramatically expanded through the introduction of reactive handles for the site-specific modification of the interior and exterior surfaces. Further experiments to reengineer the coat protein have produced structures with unique, unexpected, and useful assembly properties that complement the newly available surface modifications. Energy transfer from chromophores in the RNA channel of self-assembled TMV structures to the exterior was made possible by conjugation of acceptor dyes and porphyrins to the N-terminus. By repositioning the N-terminus to the pore through circular permutation, this process was repeated to create structures that mimic the light harvesting 1 complex of photosynthetic bacteria. To study and improve upon natural photosynthesis, closely packed chromophore arrays and gold nanoparticles were tethered to the pore of stabilized TMV disks through introduction of a uniquely reactive lysine. Finally, a dimeric TMV coat protein was produced to control the distribution and arrangement of synthetic groups with synergistic activity.

  10. Amorphous TiO2 Shells: A Vital Elastic Buffering Layer on Silicon Nanoparticles for High-Performance and Safe Lithium Storage.

    PubMed

    Yang, Jianping; Wang, Yunxiao; Li, Wei; Wang, Lianjun; Fan, Yuchi; Jiang, Wan; Luo, Wei; Wang, Yang; Kong, Biao; Selomulya, Cordelia; Liu, Hua Kun; Dou, Shi Xue; Zhao, Dongyuan

    2017-12-01

    Smart surface coatings of silicon (Si) nanoparticles are shown to be good examples for dramatically improving the cyclability of lithium-ion batteries. Most coating materials, however, face significant challenges, including a low initial Coulombic efficiency, tedious processing, and safety assessment. In this study, a facile sol-gel strategy is demonstrated to synthesize commercial Si nanoparticles encapsulated by amorphous titanium oxide (TiO 2 ), with core-shell structures, which show greatly superior electrochemical performance and high-safety lithium storage. The amorphous TiO 2 shell (≈3 nm) shows elastic behavior during lithium discharging and charging processes, maintaining high structural integrity. Interestingly, it is found that the amorphous TiO 2 shells offer superior buffering properties compared to crystalline TiO 2 layers for unprecedented cycling stability. Moreover, accelerating rate calorimetry testing reveals that the TiO 2 -encapsulated Si nanoparticles are safer than conventional carbon-coated Si-based anodes. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Multifunction Sr, Co and F co-doped microporous coating on titanium of antibacterial, angiogenic and osteogenic activities

    PubMed Central

    Zhou, Jianhong; Zhao, Lingzhou

    2016-01-01

    Advanced multifunction titanium (Ti) based bone implant with antibacterial, angiogenic and osteogenic activities is stringently needed in clinic, which may be accomplished via incorporation of proper inorganic bioactive elements. In this work, microporous TiO2/calcium-phosphate coating on Ti doped with strontium, cobalt and fluorine (SCF-TiCP) was developed, which had a hierarchical micro/nano-structure with a microporous structure evenly covered with nano-grains. SCF-TiCP greatly inhibited the colonization and growth of both gram-positive and gram-negative bacteria. No cytotoxicity appeared for SCF-TiCP. Furthermore, SCF-TiCP stimulated the expression of key angiogenic factors in rat bone marrow stem cells (MSCs) and dramatically enhanced MSC osteogenic differentiation. The in vivo animal test displayed that SCF-TiCP induced more new bone and tighter implant/bone bonding. In conclusion, multifunction SCF-TiCP of antibacterial, angiogenic and osteogenic activities is a promising orthopedic and dental Ti implant coating for improved clinical performance. PMID:27353337

  12. Stability of an Electrodeposited Nanocrystalline Ni-Based Alloy Coating in Oil and Gas Wells with the Coexistence of H2S and CO2

    PubMed Central

    Sui, Yiyong; Sun, Chong; Sun, Jianbo; Pu, Baolin; Ren, Wei; Zhao, Weimin

    2017-01-01

    The stability of an electrodeposited nanocrystalline Ni-based alloy coating in a H2S/CO2 environment was investigated by electrochemical measurements, weight loss method, and surface characterization. The results showed that both the cathodic and anodic processes of the Ni-based alloy coating were simultaneously suppressed, displaying a dramatic decrease of the corrosion current density. The corrosion of the Ni-based alloy coating was controlled by H2S corrosion and showed general corrosion morphology under the test temperatures. The corrosion products, mainly consisting of Ni3S2, NiS, or Ni3S4, had excellent stability in acid solution. The corrosion rate decreased with the rise of temperature, while the adhesive force of the corrosion scale increased. With the rise of temperature, the deposited morphology and composition of corrosion products changed, the NiS content in the corrosion scale increased, and the stability and adhesive strength of the corrosion scale improved. The corrosion scale of the Ni-based alloy coating was stable, compact, had strong adhesion, and caused low weight loss, so the corrosion rates calculated by the weight loss method cannot reveal the actual oxidation rate of the coating. As the corrosion time was prolonged, the Ni-based coating was thinned while the corrosion scale thickened. The corrosion scale was closely combined with the coating, but cannot fully prevent the corrosive reactants from reaching the substrate. PMID:28772995

  13. Method and Process Development of Advanced Atmospheric Plasma Spraying for Thermal Barrier Coatings

    NASA Astrophysics Data System (ADS)

    Mihm, Sebastian; Duda, Thomas; Gruner, Heiko; Thomas, Georg; Dzur, Birger

    2012-06-01

    Over the last few years, global economic growth has triggered a dramatic increase in the demand for resources, resulting in steady rise in prices for energy and raw materials. In the gas turbine manufacturing sector, process optimizations of cost-intensive production steps involve a heightened potential of savings and form the basis for securing future competitive advantages in the market. In this context, the atmospheric plasma spraying (APS) process for thermal barrier coatings (TBC) has been optimized. A constraint for the optimization of the APS coating process is the use of the existing coating equipment. Furthermore, the current coating quality and characteristics must not change so as to avoid new qualification and testing. Using experience in APS and empirically gained data, the process optimization plan included the variation of e.g. the plasma gas composition and flow-rate, the electrical power, the arrangement and angle of the powder injectors in relation to the plasma jet, the grain size distribution of the spray powder and the plasma torch movement procedures such as spray distance, offset and iteration. In particular, plasma properties (enthalpy, velocity and temperature), powder injection conditions (injection point, injection speed, grain size and distribution) and the coating lamination (coating pattern and spraying distance) are examined. The optimized process and resulting coating were compared to the current situation using several diagnostic methods. The improved process significantly reduces costs and achieves the requirement of comparable coating quality. Furthermore, a contribution was made towards better comprehension of the APS of ceramics and the definition of a better method for future process developments.

  14. Extreme Activity of Drug Nanocrystals Coated with A Layer of Non-Covalent Polymers from Self-Assembled Boric Acid

    NASA Astrophysics Data System (ADS)

    Zhan, Honglei; Liang, Jun F.

    2016-12-01

    Non-covalent polymers have remarkable advantages over synthetic polymers for wide biomedical applications. In this study, non-covalent polymers from self-assembled boric acid were used as the capping reagent to replace synthetic polymers in drug crystallization. Under acidic pH, boric acid self-assembled on the surface of drug nanocrystals to form polymers with network-like structures held together by hydrogen bonds. Coating driven by boric acid self-assembly had negligible effects on drug crystallinity and structure but resulted in drug nanocrystals with excellent dispersion properties that aided in the formation of a more stable suspension. Boric acid coating improved drug stability dramatically by preventing drug molecules from undergoing water hydrolysis in a neutral environment. More importantly, the specific reactivity of orthoboric groups to diols in cell glycocalyx facilitated a rapid cross-membrane translocation of drug nanocrystals, leading to efficient intracellular drug delivery, especially on cancer cells with highly expressed sialic acids. Boric acid coated nanocrystals of camptothecin, an anticancer drug with poor aqueous solubility and stability, demonstrated extreme cytotoxic activity (IC50 < 5.0 μg/mL) to cancer cells compared to synthetic polymer coated CPT nanocrystals and free CPT. Surface coating using non-covalent polymers from self-assembled boric acid will have wide biomedical applications especially in biomaterials and drug delivery field.

  15. Extreme Activity of Drug Nanocrystals Coated with A Layer of Non-Covalent Polymers from Self-Assembled Boric Acid.

    PubMed

    Zhan, Honglei; Liang, Jun F

    2016-12-09

    Non-covalent polymers have remarkable advantages over synthetic polymers for wide biomedical applications. In this study, non-covalent polymers from self-assembled boric acid were used as the capping reagent to replace synthetic polymers in drug crystallization. Under acidic pH, boric acid self-assembled on the surface of drug nanocrystals to form polymers with network-like structures held together by hydrogen bonds. Coating driven by boric acid self-assembly had negligible effects on drug crystallinity and structure but resulted in drug nanocrystals with excellent dispersion properties that aided in the formation of a more stable suspension. Boric acid coating improved drug stability dramatically by preventing drug molecules from undergoing water hydrolysis in a neutral environment. More importantly, the specific reactivity of orthoboric groups to diols in cell glycocalyx facilitated a rapid cross-membrane translocation of drug nanocrystals, leading to efficient intracellular drug delivery, especially on cancer cells with highly expressed sialic acids. Boric acid coated nanocrystals of camptothecin, an anticancer drug with poor aqueous solubility and stability, demonstrated extreme cytotoxic activity (IC 50  < 5.0 μg/mL) to cancer cells compared to synthetic polymer coated CPT nanocrystals and free CPT. Surface coating using non-covalent polymers from self-assembled boric acid will have wide biomedical applications especially in biomaterials and drug delivery field.

  16. Extreme Activity of Drug Nanocrystals Coated with A Layer of Non-Covalent Polymers from Self-Assembled Boric Acid

    PubMed Central

    Zhan, Honglei; Liang, Jun F.

    2016-01-01

    Non-covalent polymers have remarkable advantages over synthetic polymers for wide biomedical applications. In this study, non-covalent polymers from self-assembled boric acid were used as the capping reagent to replace synthetic polymers in drug crystallization. Under acidic pH, boric acid self-assembled on the surface of drug nanocrystals to form polymers with network-like structures held together by hydrogen bonds. Coating driven by boric acid self-assembly had negligible effects on drug crystallinity and structure but resulted in drug nanocrystals with excellent dispersion properties that aided in the formation of a more stable suspension. Boric acid coating improved drug stability dramatically by preventing drug molecules from undergoing water hydrolysis in a neutral environment. More importantly, the specific reactivity of orthoboric groups to diols in cell glycocalyx facilitated a rapid cross-membrane translocation of drug nanocrystals, leading to efficient intracellular drug delivery, especially on cancer cells with highly expressed sialic acids. Boric acid coated nanocrystals of camptothecin, an anticancer drug with poor aqueous solubility and stability, demonstrated extreme cytotoxic activity (IC50 < 5.0 μg/mL) to cancer cells compared to synthetic polymer coated CPT nanocrystals and free CPT. Surface coating using non-covalent polymers from self-assembled boric acid will have wide biomedical applications especially in biomaterials and drug delivery field. PMID:27934922

  17. Modeling Oxidation Induced Stresses in Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Ferguson, B. L.; Freborg, A. M.; Petrus, G. J.; Brindley, William J.

    1998-01-01

    The use of thermal barrier coatings (TBC's) in gas turbines has increased dramatically in recent years, due mainly to the need for component protection from ever increasing service temperatures. Oxidation of the bond coat has been identified as an important contributing factor to spallation of the ceramic top coat during service. Additional variables found to influence TBC thermal cycle life include bond coat coefficient of thermal expansion, creep behavior of both the ceramic and bond coat layers, and modulus of elasticity. The purpose of this work was to characterize the effects of oxidation on the stress states within the TBC system, as well as to examine the interaction of oxidation with other factors affecting TBC life.

  18. Successful treatment of generalized refractory chronic periodontitis through discontinuation of waxed or coated dental floss use: A report of 4 cases.

    PubMed

    Kelekis-Cholakis, Anastasia; Perry, John B; Pfeffer, Lorraine; Millete, Amy

    2016-12-01

    Generalized refractory chronic periodontitis is a periodontal condition that is resistant to conventional therapy. Management of this condition often is frustrating to both the patient and the clinician. The authors present 4 cases of generalized refractory chronic periodontitis characterized by an inflammatory gingival response and progressive bone loss that did not respond to extensive periodontal treatments and regular periodontal care. Histologic examination of affected gingival tissue revealed an abundance of plasma cells, a feature seen in certain oral contact hypersensitivity reactions. The authors suspected that waxed or coated dental floss was the offending contactant, and its removal from the patients' oral hygiene regimens resulted in a dramatic improvement of the periodontal characteristics. In cases of periodontal disease as described in this report, dental practitioners should consider the possibility of a contact hypersensitivity reaction to waxed or coated dental floss, whereby the floss exacerbates the condition instead of assisting in its resolution. Copyright © 2016 American Dental Association. Published by Elsevier Inc. All rights reserved.

  19. High impact of in situ dextran coating on biocompatibility, stability and magnetic properties of iron oxide nanoparticles.

    PubMed

    Shaterabadi, Zhila; Nabiyouni, Gholamreza; Soleymani, Meysam

    2017-06-01

    Biocompatible ferrofluids based on dextran coated iron oxide nanoparticles were fabricated by conventional co-precipitation method. The experimental results show that the presence of dextran in reaction medium not only causes to the appearance of superparamagnetic behavior but also results in significant suppression in saturation magnetization of dextran coated samples. These results can be attributed to size reduction originated from the role of dextran as a surfactant. Moreover, weight ratio of dextran to magnetic nanoparticles has a remarkable influence on size and magnetic properties of nanoparticles, so that the sample prepared with a higher weight ratio of dextran to nanoparticles has the smaller size and saturation magnetization compare with the other samples. In addition, the ferrofluids containing such nanoparticles have an excellent stability at physiological pH for several months. Furthermore, the biocompatibility studies reveal that surface modification of nanoparticles by dextran dramatically decreases the cytotoxicity of bare nanoparticles and consequently improves their potential application for diagnostic and therapeutic purposes. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Marketing netcoatings for aquaculture.

    PubMed

    Martin, Robert J

    2014-10-17

    Unsustainable harvesting of natural fish stocks is driving an ever growing marine aquaculture industry. Part of the aquaculture support industry is net suppliers who provide producers with nets used in confining fish while they are grown to market size. Biofouling must be addressed in marine environments to ensure maximum product growth by maintaining water flow and waste removal through the nets. Biofouling is managed with copper and organic biocide based net coatings. The aquaculture industry provides a case study for business issues related to entry of improved fouling management technology into the marketplace. Several major hurdles hinder entry of improved novel technologies into the market. The first hurdle is due to the structure of business relationships. Net suppliers can actually cut their business profits dramatically by introducing improved technologies. A second major hurdle is financial costs of registration and demonstration of efficacy and quality product with a new technology. Costs of registration are prohibitive if only the net coatings market is involved. Demonstration of quality product requires collaboration and a team approach between formulators, net suppliers and farmers. An alternative solution is a vertically integrated business model in which the support business and product production business are part of the same company.

  1. Marketing Netcoatings for Aquaculture

    PubMed Central

    Martin, Robert J.

    2014-01-01

    Unsustainable harvesting of natural fish stocks is driving an ever growing marine aquaculture industry. Part of the aquaculture support industry is net suppliers who provide producers with nets used in confining fish while they are grown to market size. Biofouling must be addressed in marine environments to ensure maximum product growth by maintaining water flow and waste removal through the nets. Biofouling is managed with copper and organic biocide based net coatings. The aquaculture industry provides a case study for business issues related to entry of improved fouling management technology into the marketplace. Several major hurdles hinder entry of improved novel technologies into the market. The first hurdle is due to the structure of business relationships. Net suppliers can actually cut their business profits dramatically by introducing improved technologies. A second major hurdle is financial costs of registration and demonstration of efficacy and quality product with a new technology. Costs of registration are prohibitive if only the net coatings market is involved. Demonstration of quality product requires collaboration and a team approach between formulators, net suppliers and farmers. An alternative solution is a vertically integrated business model in which the support business and product production business are part of the same company. PMID:25329615

  2. Moisture plasticization for enteric Eudragit® L30D-55-coated pellets prior to compression into tablets.

    PubMed

    Rujivipat, Soravoot; Bodmeier, Roland

    2012-05-01

    Enteric polymers such as cellulose esters (cellulose acetate phthalate, hydroxypropylmethylcellulose acetate succinate) and methacrylic acid-acrylate copolymers (Eudragit® L100-55 and S100) are quite brittle in the dry state and thus not suitable as pellet coatings for compression into tablets. The objective of this study was to investigate the role of humidity treatment for moisture plasticization in order to successfully compress the enterically coated pellets. The mechanical properties of Eudragit® L100-55 improved dramatically, while the properties of the other enteric polymers showed only minor changes after storage at higher humidity. The significant increase in flexibility of the Eudragit® L film was caused by hydration/plasticization; its elongation value changed from approx. 3% in the dry state to approx. 140% at the higher storage humidity. Storage at 84% relative humidity resulted in comparable release profiles of compressed and uncompressed pellets. The glass transition temperature of Eudragit® L films decreased below the compression temperature (room temperature) at storage humidities between 75% and 84%. The glass transition relative humidity leading to a change from the glassy to the rubbery state was determined by dynamic vapor sorption (DVS) to be 76.8%. Moisture resulted in superior plasticization for Eudragit® L than the conventional plasticizer triethyl citrate. The improved compressibility of high humidity treated Eudragit® L-coated pellets was also shown with single pellet compression data as indicated by an increased crushing force and deformation. In conclusion, moisture plasticization was a highly effective tool to enable the successful compression of pellets coated with the brittle enteric polymer Eudragit® L. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Reliability of ultra-thin insulation coatings for long-term electrophysiological recordings

    NASA Astrophysics Data System (ADS)

    Hooker, S. A.

    2006-03-01

    Improved measurement of neural signals is needed for research into Alzheimer's, Parkinson's, epilepsy, strokes, and spinal cord injuries. At the heart of such instruments are microelectrodes that measure electrical signals in the body. Such electrodes must be small, stable, biocompatible, and robust. However, it is also important that they be easily implanted without causing substantial damage to surrounding tissue. Tissue damage can lead to the generation of immune responses that can interfere with the electrical measurement, preventing long-term recording. Recent advances in microfabrication and nanotechnology afford the opportunity to dramatically reduce the physical dimensions of recording electrodes, thereby minimizing insertion damage. However, one potential cause for concern is the reliability of the insulating coatings, applied to these ultra-fine-diameter wires to precisely control impedance. Such coatings are often polymeric and are applied everywhere but the sharpened tips of the wires, resulting in nominal impedances between 0.5 MOhms and 2.0 MOhms. However, during operation, the polymer degrades, changing the exposed area and the impedance. In this work, ultra-thin ceramic coatings were deposited as an alternative to polymer coatings. Processing conditions were varied to determine the effect of microstructure on measurement stability during two-electrode measurements in a standard buffer solution. Coatings were applied to seven different metals to determine any differences in performance due to the surface characteristics of the underlying wire. Sintering temperature and wire type had significant effects on coating degradation. Dielectric breakdown was also observed at relatively low voltages, indicating that test conditions must be carefully controlled to maximize reliability.

  4. Molecular Adsorber Coating

    NASA Technical Reports Server (NTRS)

    Straka, Sharon; Peters, Wanda; Hasegawa, Mark; Hedgeland, Randy; Petro, John; Novo-Gradac, Kevin; Wong, Alfred; Triolo, Jack; Miller, Cory

    2011-01-01

    A document discusses a zeolite-based sprayable molecular adsorber coating that has been developed to alleviate the size and weight issues of current ceramic puck-based technology, while providing a configuration that more projects can use to protect against degradation from outgassed materials within a spacecraft, particularly contamination-sensitive instruments. This coating system demonstrates five times the adsorption capacity of previously developed adsorber coating slurries. The molecular adsorber formulation was developed and refined, and a procedure for spray application was developed. Samples were spray-coated and tested for capacity, thermal optical/radiative properties, coating adhesion, and thermal cycling. Work performed during this study indicates that the molecular adsorber formulation can be applied to aluminum, stainless steel, or other metal substrates that can accept silicate-based coatings. The coating can also function as a thermal- control coating. This adsorber will dramatically reduce the mass and volume restrictions, and is less expensive than the currently used molecular adsorber puck design.

  5. Characteristics of laser clad α-Ti/TiC+(Ti,W)C1-x/Ti2SC+TiS composite coatings on TA2 titanium alloy

    NASA Astrophysics Data System (ADS)

    Zhai, Yong-Jie; Liu, Xiu-Bo; Qiao, Shi-Jie; Wang, Ming-Di; Lu, Xiao-Long; Wang, Yong-Guang; Chen, Yao; Ying, Li-Xia

    2017-03-01

    TiC reinforced Ti matrix composite coating with Ti2SC/TiS lubricant phases in-situ synthesized were prepared on TA2 titanium alloy by laser cladding with different powder mixtures: 40%Ti-19.5%TiC-40.5%WS2, 40%Ti-25.2%TiC-34.8%WS2, 40%Ti-29.4%TiC-30.6%WS2 (wt%). The phase compositions, microstructure, microhardness and tribological behaviors and wear mechanisms of coatings were investigated systematically. Results indicate that the main phase compositions of three coatings are all continuous matrix α-Ti, reinforced phases of (Ti,W)C1-x and TiC, lubricant phases of Ti2SC and TiS. The microhardness of the three different coatings are 927.1 HV0.5, 1007.5 HV0.5 and 1052.3 HV0.5, respectively. Compared with the TA2 titanium alloy (approximately 180 HV0.5), the microhardness of coatings have been improved dramatically. The coefficients of friction and the wear rates of those coatings are 0.41 and 30.98×10-5 mm3 N-1 m-1, 0.30 and 18.92×10-5 mm3 N-1 m-1, 0.34 and 15.98×10-5 mm3 N-1 m-1, respectively. Comparatively speaking, the coating fabricated with the powder mixtures of 40%Ti-25.2%TiC-34.8%WS2 presents superior friction reduction and anti-wear properties and the main wear mechanisms of that are slight plastic deformation and adhesive wear.

  6. Introducing a Semi-Coated Model to Investigate Antibacterial Effects of Biocompatible Polymers on Titanium Surfaces

    PubMed Central

    Winkel, Andreas; Dempwolf, Wibke; Gellermann, Eva; Sluszniak, Magdalena; Grade, Sebastian; Heuer, Wieland; Eisenburger, Michael; Menzel, Henning; Stiesch, Meike

    2015-01-01

    Peri-implant infections from bacterial biofilms on artificial surfaces are a common threat to all medical implants. They are a handicap for the patient and can lead to implant failure or even life-threatening complications. New implant surfaces have to be developed to reduce biofilm formation and to improve the long-term prognosis of medical implants. The aim of this study was (1) to develop a new method to test the antibacterial efficacy of implant surfaces by direct surface contact and (2) to elucidate whether an innovative antimicrobial copolymer coating of 4-vinyl-N-hexylpyridinium bromide and dimethyl(2-methacryloyloxyethyl) phosphonate (VP:DMMEP 30:70) on titanium is able to reduce the attachment of bacteria prevalent in peri-implant infections. With a new in vitro model with semi-coated titanium discs, we were able to show a dramatic reduction in the adhesion of various pathogenic bacteria (Streptococcus sanguinis, Escherichia coli, Staphylococcus aureus, Staphylococcus epidermidis), completely independently of effects caused by soluble materials. In contrast, soft tissue cells (human gingival or dermis fibroblasts) were less affected by the same coating, despite a moderate reduction in initial adhesion of gingival fibroblasts. These data confirm the hypothesis that VP:DMMEP 30:70 is a promising antibacterial copolymer that may be of use in several clinical applications. PMID:25690041

  7. Design study of an YBCO-coated beam screen for the super proton-proton collider bending magnets

    NASA Astrophysics Data System (ADS)

    Gan, Pingping; Zhu, Kun; Fu, Qi; Li, Haipeng; Lu, Yuanrong; Easton, Matt; Liu, Yudong; Tang, Jingyu; Xu, Qingjin

    2018-04-01

    In order to reduce the beam impedance and refrigeration power dramatically, we have designed a high temperature superconductor (HTS) coated beam screen to screen the cold chamber walls of the super proton-proton collider bending magnets from beam-induced heat loads. It employs an absorber, inspired by the future circular collider studies, to absorb the immense synchrotron radiation power of 12.8 W/m emitted from the 37.5 TeV proton beams. Such a structure has the advantage of decreasing the electron cloud effect and improving the beam vacuum. We have compared the critical magnetic field and current density and accessibility of two potential HTS materials for the beam screen, TlBa2Ca2Cu3O9-δ (Tl-1223) and Yttrium Barium Copper Oxide (YBCO) and finally chose YBCO for coating. The beam screen is tentatively designed to work at 55-70 K because of the limited development of the YBCO material. The thermal analysis with oxygen cooling fluid indicates that the YBCO conductor can maintain its superconductivity even if the synchrotron radiation hits the YBCO-coated surface and the mechanical analysis shows that the structure has the ability to resist the Lorenz force during magnet quenches.

  8. Corrosion resistance and cytocompatibility of biodegradable surgical magnesium alloy coated with hydrogenated amorphous silicon.

    PubMed

    Xin, Yunchang; Jiang, Jiang; Huo, Kaifu; Tang, Guoyi; Tian, Xiubo; Chu, Paul K

    2009-06-01

    The fast degradation rates in the physiological environment constitute the main limitation for the applications of surgical magnesium alloys as biodegradable hard-tissue implants. In this work, a stable and dense hydrogenated amorphous silicon coating (a-Si:H) with desirable bioactivity is deposited on AZ91 magnesium alloy using magnetron sputtering deposition. Raman spectroscopy and Fourier transform infrared spectroscopy reveal that the coating is mainly composed of hydrogenated amorphous silicon. The hardness of the coated alloy is enhanced significantly and the coating is quite hydrophilic as well. Potentiodynamic polarization results show that the corrosion resistance of the coated alloy is enhanced dramatically. In addition, the deterioration process of the coating in simulated body fluids is systematically investigated by open circuit potential evolution and electrochemical impedance spectroscopy. The cytocompatibility of the coated Mg is evaluated for the first time using hFOB1.19 cells and favorable biocompatibility is observed. 2008 Wiley Periodicals, Inc.

  9. Transparent Pullulan/Mica Nanocomposite Coatings with Outstanding Oxygen Barrier Properties

    PubMed Central

    Boyacı, Derya; Trabattoni, Silvia; Tavazzi, Silvia

    2017-01-01

    This study presents a new bionanocomposite coating on poly(ethylene terephthalate) (PET) made of pullulan and synthetic mica. Mica nanolayers have a very high aspect ratio (α), at levels much greater than that of conventional exfoliated clay layers (e.g., montmorillonite). A very small amount of mica (0.02 wt %, which is ϕ ≈ 0.00008) in pullulan coatings dramatically improved the oxygen barrier performance of the nanocomposite films under dry conditions, however, this performance was partly lost as the environmental relative humidity (RH) increased. This outcome was explained in terms of the perturbation of the spatial ordering of mica sheets within the main pullulan phase, because of RH fluctuations. This was confirmed by modelling of the experimental oxygen transmission rate (OTR) data according to Cussler’s model. The presence of the synthetic nanobuilding block (NBB) led to a decrease in both static and kinetic coefficients of friction, compared with neat PET (≈12% and 23%, respectively) and PET coated with unloaded pullulan (≈26% reduction in both coefficients). In spite of the presence of the filler, all of the coating formulations did not significantly impair the overall optical properties of the final material, which exhibited haze values below 3% and transmittance above 85%. The only exception to this was represented by the formulation with the highest loading of mica (1.5 wt %, which is ϕ ≈ 0.01). These findings revealed, for the first time, the potential of the NBB mica to produce nanocomposite coatings in combination with biopolymers for the generation of new functional features, such as transparent high oxygen barrier materials. PMID:28925951

  10. Investigation of the microstructure of Ni and B4C ceramic-metal mixtures obtained by cold spray coating and followed by laser cladding

    NASA Astrophysics Data System (ADS)

    Filippov, A. A.; Fomin, V. M.; Orishich, A. M.; Malikov, A. G.; Ryashin, N. S.; Golyshev, A. A.

    2017-10-01

    In the present work, a combined method is considered for the production of a metal-matrix composite coating based on Ni and B4C. The coating is created by consistently applied methods: cold spray and laser cladding. Main focus of this work aimed to microstructure of coatings, element content and morphology of laser tracks. At this stage, the authors focused on the interaction of the laser unit with the substance without affecting the layer-growing technology products. It is shown that coating has deformed particles of nickel and the significantly decreased content of ceramic particles B4C after cold spray. After laser cladding there are no boundaries between nickel and dramatically changes in ceramic particles.

  11. Effect of water presence on choline chloride-2urea ionic liquid and coating platings from the hydrated ionic liquid

    PubMed Central

    Du, Cuiling; Zhao, Binyuan; Chen, Xiao-Bo; Birbilis, Nick; Yang, Haiyan

    2016-01-01

    In the present study, hygroscopicity of the choline chloride-urea (ChCl-2Urea) ionic liquid (IL) was confirmed through Karl-Fisher titration examination, indicating that the water content in the hydrated ChCl-2Urea IL was exposure-time dependent and could be tailored by simple heating treatment. The impact of the absorbed water on the properties of ChCl-2Urea IL, including viscosity, electrical conductivity, electrochemical window and chemical structure was investigated. The results show that water was able to dramatically reduce the viscosity and improve the conductivity, however, a broad electrochemical window could be persisted when the water content was below ~6 wt.%. These characteristics were beneficial for producing dense and compact coatings. Nickel (Ni) coatings plating from hydrated ChCl-2Urea IL, which was selected as an example to show the effect of water on the electroplating, displayed that a compact and corrosion-resistant Ni coating was plated from ChCl-2Urea IL containing 6 wt.% water doped with 400 mg/L NA at a moderate temperature. As verified by FTIR analysis, the intrinsic reason could be ascribed that water was likely linked with urea through strong hydrogen bond so that the water decomposition was suppressed during plating. Present study may provide a reference to prepare some similar water-stable ILs for plating. PMID:27381851

  12. Effect of water presence on choline chloride-2urea ionic liquid and coating platings from the hydrated ionic liquid

    NASA Astrophysics Data System (ADS)

    Du, Cuiling; Zhao, Binyuan; Chen, Xiao-Bo; Birbilis, Nick; Yang, Haiyan

    2016-07-01

    In the present study, hygroscopicity of the choline chloride-urea (ChCl-2Urea) ionic liquid (IL) was confirmed through Karl-Fisher titration examination, indicating that the water content in the hydrated ChCl-2Urea IL was exposure-time dependent and could be tailored by simple heating treatment. The impact of the absorbed water on the properties of ChCl-2Urea IL, including viscosity, electrical conductivity, electrochemical window and chemical structure was investigated. The results show that water was able to dramatically reduce the viscosity and improve the conductivity, however, a broad electrochemical window could be persisted when the water content was below ~6 wt.%. These characteristics were beneficial for producing dense and compact coatings. Nickel (Ni) coatings plating from hydrated ChCl-2Urea IL, which was selected as an example to show the effect of water on the electroplating, displayed that a compact and corrosion-resistant Ni coating was plated from ChCl-2Urea IL containing 6 wt.% water doped with 400 mg/L NA at a moderate temperature. As verified by FTIR analysis, the intrinsic reason could be ascribed that water was likely linked with urea through strong hydrogen bond so that the water decomposition was suppressed during plating. Present study may provide a reference to prepare some similar water-stable ILs for plating.

  13. Pico-second laser materials interactions: mechanisms, material lifetime and performance optimization Ted Laurence(14-ERD-014)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laurence, Ted A.

    2016-12-14

    Laser-induced damage with ps pulse widths straddles the transition from intrinsic, multiphoton ionization- and avalanche ionization-based ablation with fs pulses to defectdominated, thermal-based damage with ns pulses. We investigated the morphology and scaling of damage for commonly used silica and hafnia coatings as well as fused silica. Using carefully calibrated laser-induced damage experiments, in situ imaging, and high-resolution optical microscopy, atomic force microscopy, and scanning electron microscopy, we showed that defects play an important role in laser-induced damage for pulse durations as short as 1 ps. Three damage morphologies were observed: standard material ablation, ultra-high density pits, and isolated absorbers.more » For 10 ps and longer, the isolated absorbers limited the damage performance of the coating materials. We showed that damage resulting from the isolated absorbers grows dramatically with subsequent pulses for sufficient fluences. For hafnia coatings, we used electric field modeling and experiments to show that isolated absorbers near the surface were affected by the chemical environment (vacuum vs. air) for pulses as short as 10 ps. Coupled with the silica results, these results suggested that improvements in the performance in the 10 -60 ps range have not reached fundamental limits. These findings motivate new efforts, including a new SI LDRD in improving the laser-damage performance of multi-layer dielectric coatings. A damage test facility for ps pulses was developed and automated, and was used for testing production optics for ARC. The resulting software was transferred to other laser test facilities for fs pulses and multiple wavelengths with 30 ps pulses. Additionally, the LDRD supported the retention and promotion of an important staff scientist in high-resolution dynamic microscopy and laser-damage testing.« less

  14. Programmed cell death during development of cowpea (Vigna unguiculata (L.) Walp.) seed coat.

    PubMed

    Lima, Nathália Bastos; Trindade, Fernanda Gomes; da Cunha, Maura; Oliveira, Antônia Elenir Amâncio; Topping, Jennifer; Lindsey, Keith; Fernandes, Kátia Valevski Sales

    2015-04-01

    The seed coat develops primarily from maternal tissues and comprises multiple cell layers at maturity, providing a metabolically dynamic interface between the developing embryo and the environment during embryogenesis, dormancy and germination of seeds. Seed coat development involves dramatic cellular changes, and the aim of this research was to investigate the role of programmed cell death (PCD) events during the development of seed coats of cowpea [Vigna unguiculata (L.) Walp.]. We demonstrate that cells of the developing cowpea seed coats undergo a programme of autolytic cell death, detected as cellular morphological changes in nuclei, mitochondria, chloroplasts and vacuoles, DNA fragmentation and oligonucleosome accumulation in the cytoplasm, and loss of membrane viability. We show for the first time that classes 6 and 8 caspase-like enzymes are active during seed coat development, and that these activities may be compartmentalized by translocation between vacuoles and cytoplasm during PCD events. © 2014 John Wiley & Sons Ltd.

  15. Electroless Cu/Ni Plating on Graphite Flake and the Effects to the Properties of Graphite Flake/Si/Al Hybrid Composites

    NASA Astrophysics Data System (ADS)

    Huang, Ying; Peng, Xuanyi; Yang, Yiwen; Wu, Haiwei; Sun, Xu; Han, Xiaopeng

    2018-03-01

    Proper process and parameter were investigated to coat Cu or Ni on graphite flake (Gf) by electroless plating. Microstructural characterization indicated that the Cu/Ni was coated on the Gf uniformly and comprehensively. Then aluminum matrix composites reinforced with Si and graphite were fabricated by a unique vacuum gas pressure infiltration. The thermal conductivity and mechanical properties of the composites, both with and without Cu or Ni coating layers on the graphite surface, have been studied. The obtained results indicated that the mechanical property of the Cu or Ni coated Gf/Si/Al composites dramatically increased, as compared with the non-coated Gf/Si/Al composite. In the meantime, Cu or Ni coated Gf proved to have better wettability and interfacial bonding with the aluminum matrix, which were expected to be a highly sustainable and dispersible reinforcement for metal matrix composites.

  16. Studies on improved integrated membrane-based chromatographic process for bioseparation

    NASA Astrophysics Data System (ADS)

    Xu, Yanke

    To improve protein separation and purification directly from a fermentation broth, a novel membrane filtration-cum-chromatography device configuration having a relatively impermeable coated zone near the hollow fiber module outlet has been developed. The integrated membrane filtration-cum-chromatography unit packed with chromatographic beads on the shell side of the hollow fiber unit enjoys the advantages of both membrane filtration and chromatography; it allows one to load the chromatographic media directly from the fermentation broth or lysate and separate the adsorbed proteins through the subsequent elution step in a cyclic process. Interfacial polymerization was carried out to coat the bottom section of the hollow fiber membrane while leaving the rest of the hollow fiber membrane unaffected. Myoglobin (Mb), bovine serum albumin (BSA) and a-lactalbumin (a-LA) were used as model proteins in binary mixtures. Separation behaviors of binary protein mixtures were studied in devices using either an ultrafiltration (UF) membrane or a microfiltration (MF) membrane. Experimental results show that the breakthrough time and the protein loading capacities were dramatically improved after coating in both UF and MF modules. For a synthetic yeast fermentation broth feed, the Mb and a-LA elution profiles for the four consecutive cyclic runs were almost superimposable. Due to the lower transmembrane flux in this device plus the periodical washing-elution during the chromatographic separation, fouling was not a problem as it is in conventional microfiltration. A mathematical model describing the hydrodynamic and protein loading behaviors of the integrated device using UF membrane with a coated zone was developed. The simulation results for the breakthrough agree well with the experimental breakthrough curves. The optimal length of the coated zone was obtained from the simulation. A theoretical analysis of the protein mass transfer was performed using a diffusion-convection model considering the feed-side concentration polarization and the permeate-side concentration gradient formed by the adsorption. The permeate-side adsorption can enhance the observed protein transmission through the membrane considerably at low permeate flux. But the enhancement effect can be neglected at higher permeate flux when convection dominates the total mass transfer process or the proteins are very highly rejected by the membrane.

  17. Facile and Low-Temperature Fabrication of Thermochromic Cr2O3/VO2 Smart Coatings: Enhanced Solar Modulation Ability, High Luminous Transmittance and UV-Shielding Function.

    PubMed

    Chang, Tianci; Cao, Xun; Li, Ning; Long, Shiwei; Gao, Xiang; Dedon, Liv R; Sun, Guangyao; Luo, Hongjie; Jin, Ping

    2017-08-09

    In the pursuit of energy efficient materials, vanadium dioxide (VO 2 ) based smart coatings have gained much attention in recent years. For smart window applications, VO 2 thin films should be fabricated at low temperature to reduce the cost in commercial fabrication and solve compatibility problems. Meanwhile, thermochromic performance with high luminous transmittance and solar modulation ability, as well as effective UV shielding function has become the most important developing strategy for ideal smart windows. In this work, facile Cr 2 O 3 /VO 2 bilayer coatings on quartz glasses were designed and fabricated by magnetron sputtering at low temperatures ranging from 250 to 350 °C as compared with typical high growth temperatures (>450 °C). The bottom Cr 2 O 3 layer not only provides a structural template for the growth of VO 2 (R), but also serves as an antireflection layer for improving the luminous transmittance. It was found that the deposition of Cr 2 O 3 layer resulted in a dramatic enhancement of the solar modulation ability (56.4%) and improvement of luminous transmittance (26.4%) when compared to single-layer VO 2 coating. According to optical measurements, the Cr 2 O 3 /VO 2 bilayer structure exhibits excellent optical performances with an enhanced solar modulation ability (ΔT sol = 12.2%) and a high luminous transmittance (T lum,lt = 46.0%), which makes a good balance between ΔT sol and T lum for smart windows applications. As for UV-shielding properties, more than 95.8% UV radiation (250-400 nm) can be blocked out by the Cr 2 O 3 /VO 2 structure. In addition, the visualized energy-efficient effect was modeled by heating a beaker of water using infrared imaging method with/without a Cr 2 O 3 /VO 2 coating glass.

  18. Fabrication of novel high performance ductile poly(lactic acid) nanofiber scaffold coated with poly(vinyl alcohol) for tissue engineering applications.

    PubMed

    Abdal-Hay, Abdalla; Hussein, Kamal Hany; Casettari, Luca; Khalil, Khalil Abdelrazek; Hamdy, Abdel Salam

    2016-03-01

    Poly(lactic acid) (PLA) nanofiber scaffold has received increasing interest as a promising material for potential application in the field of regenerative medicine. However, the low hydrophilicity and poor ductility restrict its practical application. Integration of hydrophilic elastic polymer onto the surface of the nanofiber scaffold may help to overcome the drawbacks of PLA material. Herein, we successfully optimized the parameters for in situ deposition of poly(vinyl alcohol), (PVA) onto post-electrospun PLA nanofibers using a simple hydrothermal approach. Our results showed that the average fiber diameter of coated nanofiber mat is about 1265±222 nm, which is remarkably higher than its pristine counterpart (650±180 nm). The hydrophilicity of PLA nanofiber scaffold coated with a PVA thin layer improved dramatically (36.11±1.5°) compared to that of pristine PLA (119.7±1.5°) scaffold. The mechanical testing showed that the PLA nanofiber scaffold could be converted from rigid to ductile with enhanced tensile strength, due to maximizing the hydrogen bond interaction during the heat treatment and in the presence of PVA. Cytocompatibility performance of the pristine and coated PLA fibers with PVA was observed through an in vitro experiment based on cell attachment and the MTT assay by EA.hy926 human endothelial cells. The cytocompatibility results showed that human cells induced more favorable attachment and proliferation behavior on hydrophilic PLA composite scaffold than that of pristine PLA. Hence, PVA coating resulted in an increase in initial human cell attachment and proliferation. We believe that the novel PVA-coated PLA nanofiber scaffold developed in this study, could be a promising high performance biomaterial in regeneration medicine. Copyright © 2015. Published by Elsevier B.V.

  19. MS212--A Homogeneous Sputtered Solid Lubricant Coating for Use to 800 C

    NASA Technical Reports Server (NTRS)

    Sliney, Harold E.; Waters, William J.; Soltis, Richard

    1997-01-01

    Composite coatings containing chromium carbide, stable fluorides and silver were prepared by magnetron sputtering. The microstructure of the coatings is very homogeneous compared to that of plasma sprayed and sintered versions of the same chemical composition. Friction and wear of MS212-coated and baseline uncoated aluminum and Inconel X-750 are compared. At room temperature, the friction and wear of coated aluminum is dramatically better compared to the baseline. The acceptable load is limited by deformation of the soft aluminum substrate. In the case of the nickel alloy, lower friction is observed for the coated alloy at all temperatures up to the maximum test temperature of 800 C. Pin wear factors for sliding against the coated alloy are lower than the baseline at room temperature and 350 C, and comparable to baseline wear at higher test temperatures. Low baseline wear at high temperatures is due to the lubricious nature of the natural oxides formed on nickel-chromium alloys in a hot, oxidizing atmosphere. No load limit was found for coated Inconel X-750 at loads up to five times the load limit for coated aluminum.

  20. Thermal barrier coating life prediction model development

    NASA Technical Reports Server (NTRS)

    Sheffler, K. D.; Demasi, J. T.

    1985-01-01

    A methodology was established to predict thermal barrier coating life in an environment simulative of that experienced by gas turbine airfoils. Specifically, work is being conducted to determine failure modes of thermal barrier coatings in the aircraft engine environment. Analytical studies coupled with appropriate physical and mechanical property determinations are being employed to derive coating life prediction model(s) on the important failure mode(s). An initial review of experimental and flight service components indicates that the predominant mode of TBC failure involves thermomechanical spallation of the ceramic coating layer. This ceramic spallation involves the formation of a dominant crack in the ceramic coating parallel to and closely adjacent to the metal-ceramic interface. Initial results from a laboratory test program designed to study the influence of various driving forces such as temperature, thermal cycle frequency, environment, and coating thickness, on ceramic coating spalling life suggest that bond coat oxidation damage at the metal-ceramic interface contributes significantly to thermomechanical cracking in the ceramic layer. Low cycle rate furnace testing in air and in argon clearly shows a dramatic increase of spalling life in the non-oxidizing environments.

  1. Enantiomers of Single-Wall Carbon Nanotubes Show Distinct Coating Displacement Kinetics.

    PubMed

    Zheng, Yu; Bachilo, Sergei M; Weisman, R Bruce

    2018-06-27

    It is known that specific oligomers of single-stranded DNA (ssDNA) can show remarkable selectivity when coating different structural species of single-wall carbon nanotubes (SWCNTs). We report that (ATT) 4 ssDNA coatings strongly distinguish between the two optical isomers of (7,5) SWCNTs. This causes resolvable shifts in their fluorescence spectra and differences of 2 orders of magnitude in the room temperature rates of coating displacement, as monitored through changes in nanotube fluorescence wavelength and intensity on exposure to sodium deoxycholate. During coating displacement, the enantiomer with high affinity for the ssDNA oligomer is deduced to form an intermediate hybrid that is not observed for the low affinity enantiomer. These results reveal that enantiomeric differences in SWCNTs complexed with ssDNA are more diverse and dramatic than previously recognized.

  2. Extracellular Control of Limb Regeneration

    NASA Astrophysics Data System (ADS)

    Calve, S.; Simon, H.-G.

    Adult newts possess the ability to completely regenerate organs and appendages. Immediately after limb loss, the extracellular matrix (ECM) undergoes dramatic changes that may provide mechanical and biochemical cues to guide the formation of the blastema, which is comprised of uncommitted stem-like cells that proliferate to replace the lost structure. Skeletal muscle is a known reservoir for blastema cells but the mechanism by which it contributes progenitor cells is still unclear. To create physiologically relevant culture conditions for the testing of primary newt muscle cells in vitro, the spatio-temporal distribution of ECM components and the mechanical properties of newt muscle were analyzed. Tenascin-C and hyaluronic acid (HA) were found to be dramatically upregulated in the amputated limb and were co-expressed around regenerating skeletal muscle. The transverse stiffness of muscle measured in situ was used as a guide to generate silicone-based substrates of physiological stiffness. Culturing newt muscle cells under different conditions revealed that the cells are sensitive to both matrix coating and substrate stiffness: Myoblasts on HA-coated soft substrates display a rounded morphology and become more elongated as the stiffness of the substrate increases. Coating of soft substrates with matrigel or fibronectin enhanced cell spreading and eventual cell fusion.

  3. Nanostructured LiMPO4 (M = Fe, Mn, Co, Ni) - carbon composites as cathode materials for Li-ion battery

    NASA Astrophysics Data System (ADS)

    Dimesso, L.; Spanheimer, C.; Nguyen, T. T. D.; Hausbrand, R.; Jaegermann, W.

    2012-10-01

    Nanostructured materials are considered to be strong candidates for fundamental advances in efficient storage and/or conversion. In nanostructured materials transport kinetics and surface processes play determining roles. This work describes recent developments in the synthesis and characterization of composites which consist of lithium metal phosphates (LiMPO4, M = Fe, Mn, Co, Ni) coated on nanostructured carbon supports (unordered nanofibers, foams). The composites have been prepared by coating the carbon structures in aqueous (or polyols) solutions containing lithium, metal ions and phosphates. After drying out, the composites have been thermally treated at different temperatures (between 600-780°C) for 5-12 hours under nitrogen. The formation of the olivine structured phase was confirmed by the X-ray diffraction analysis on powders prepared under very similar conditions. The surface investigation revealed the formation of an homogeneous coating of the olivine phase on the carbon structures. The electrochemical performance on the composites showed a dramatic improvement of the discharge specific capacity (measured at a discharge rate of C/25 and room temperature) compared to the prepared powders. The delivered values were 105 mAhg-1 for M = Fe, 100 mAhg-1 for M = Co, 70 mAhg-1 for M = Mn and 30 mAhg-1 for M = Ni respectively.

  4. Failure Analysis of Alumina Reinforced Aluminum Microtruss and Tube Composites

    NASA Astrophysics Data System (ADS)

    Chien, Hsueh Fen (Karen)

    The energy absorption capacity of cellular materials can be dramatically increased by applying a structural coating. This thesis examined the failure mechanisms of alumina reinforced 3003 aluminum alloy microtrusses and tubes. Alumina coatings were produced by hard anodizing and by plasma electrolytic oxidation (PEO). The relatively thin and discontinuous oxide coating at the hinge acted as a localized weak spot which triggered a chain reaction of failure, including oxide fracture, oxide spallation, oxide penetration to the aluminum core and severe local plastic deformation of the core. For the PEO microtrusses, delamination occurred within the oxide coating resulting in a global strut buckling failure mode. A new failure mode for the anodized tubes was observed: (i) axisymmetric folding of the aluminum core, (ii) longitudinal fracture, and (iii) alumina pulverization. Overall, the alumina coating enhanced the buckling resistance of the composites, while the aluminum core supported the oxide during the damage propagation.

  5. Use of hydrophilic polymer coatings for control of electroosmosis and protein adsorption

    NASA Technical Reports Server (NTRS)

    Harris, J. Milton

    1987-01-01

    The purpose of this project was to examine the utility of polyethylene glycol (PEG) and dextran coatings for control of electroosmosis and protein adsorption; electroosmosis is an important, deleterious process affecting electrophoretic separations, and protein adsorption is a factor which needs to be controlled during protein crystal growth to avoid multiple nucleation sites. Performance of the project required use of X-ray photoelectron spectroscopy to refine previously developed synthetic methods. The results of this spectroscopic examination are reported. Measurements of electroosmotic mobility of charged particles in appropriately coated capillaries reveals that a new, one-step route to coating capillaries gives a surface in which electroosmosis is dramatically reduced. Similarly, both PEG and dextran coatings were shown by protein adsorption measurements to be highly effective at reducing protein adsorption on solid surfaces. These results should have impact on future low-g electrophoretic and protein crystal growth experiments.

  6. Effect of hydrogen-switchable mirrors on the Casimir force.

    PubMed

    Iannuzzi, Davide; Lisanti, Mariangela; Capasso, Federico

    2004-03-23

    We present systematic measurements of the Casimir force between a gold-coated plate and a sphere coated with a hydrogen-switchable mirror. Hydrogen-switchable mirrors are shiny metals that can become transparent upon hydrogenation. Despite such a dramatic change of the optical properties of the sphere, we did not observe any significant decrease of the Casimir force after filling the experimental apparatus with hydrogen. This counterintuitive result can be explained by the Lifshitz theory that describes the Casimir attraction between metallic and dielectric materials.

  7. Effect of hydrogen-switchable mirrors on the Casimir force

    PubMed Central

    Iannuzzi, Davide; Lisanti, Mariangela; Capasso, Federico

    2004-01-01

    We present systematic measurements of the Casimir force between a gold-coated plate and a sphere coated with a hydrogen-switchable mirror. Hydrogen-switchable mirrors are shiny metals that can become transparent upon hydrogenation. Despite such a dramatic change of the optical properties of the sphere, we did not observe any significant decrease of the Casimir force after filling the experimental apparatus with hydrogen. This counterintuitive result can be explained by the Lifshitz theory that describes the Casimir attraction between metallic and dielectric materials. PMID:15024111

  8. Chemical vapor deposition of Ta{sub 2}O{sub 5} corrosion resistant coatings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graham, D.W.; Stinton, D.P.

    1992-12-31

    Silicon carbide and silicon nitride heat engine components are susceptible to hot corrosion by molten Na{sub 2}SO{sub 4} which forms from impurities present in fuel and the environment. Chemically vapor deposited Ta{sub 2}O{sub 5} coatings are being developed as a means to protect components from reaction with these salts and preserve their structural properties. Investigations to optimize the structure of the coating have revealed that the deposition conditions dramatically affect the coating morphology. Coatings deposited at high temperatures are typically columnar in structure; high concentrations of the reactant gases produce oxide powders on the substrate surface. Ta{sub 2}O{sub 5} depositedmore » at low temperatures consists of grains that are finer and have significantly less porosity than that formed at high temperatures. Samples of coatings which have been produced by CVD have successfully completed preliminary testing for resistance to corrosion by Na{sub 2}SO{sub 4}.« less

  9. Enhanced signal generation for use in the analysis of synthetic pyrethroids using chemical ionization tandem quadrupole ion trap mass spectrometry.

    PubMed

    Sichilongo, Kwenga

    2004-12-01

    Synthetic pyrethroids fragment extensively under electron ionization (EI) conditions to give low mass ions, most of them with the same m/z ratios. This fragmentation is primarily due to the labile ester linkage found in these compounds. In this research we established the best gas chromatography (GC) conditions in the EI mode that served as a benchmark in the development of a chemical ionization (CI) protocol for ten selected synthetic pyrethroids. Based on proton affinity data, several reagent gases were evaluated in the positive CI ionization mode. Methanol was found to produce higher average ion counts relative to the other gases evaluated, which led to the development of an optimized method consisting of selective ejection chemical ionization (SECI) and MS/MS. Standard stainless steel ion trap electrodes produced significant degradation of chromatographic performance on late eluting compounds, which was attributed to electrode surface chemistry. A dramatic improvement in signal-to-noise (S/N) ratios was observed when the chromatographically inert Silcosteel coated electrodes were used. The resulting method, that has significant S/N ratio improvements resulting from a combination of septum programmable injections (SPI), optimized CI and inert Silcosteel-coated electrodes, was used to determine instrument detection limits.

  10. Double-Layer Gadolinium Zirconate/Yttria-Stabilized Zirconia Thermal Barrier Coatings Deposited by the Solution Precursor Plasma Spray Process

    NASA Astrophysics Data System (ADS)

    Jiang, Chen; Jordan, Eric H.; Harris, Alan B.; Gell, Maurice; Roth, Jeffrey

    2015-08-01

    Advanced thermal barrier coatings (TBCs) with lower thermal conductivity, increased resistance to calcium-magnesium-aluminosilicate (CMAS), and improved high-temperature capability, compared to traditional yttria-stabilized zirconia (YSZ) TBCs, are essential to higher efficiency in next generation gas turbine engines. Double-layer rare-earth zirconate/YSZ TBCs are a promising solution. From a processing perspective, solution precursor plasma spray (SPPS) process with its unique and beneficial microstructural features can be an effective approach to obtaining the double-layer microstructure. Previously durable low-thermal-conductivity YSZ TBCs with optimized layered porosity, called the inter-pass boundaries (IPBs) were produced using the SPPS process. In this study, an SPPS gadolinium zirconate (GZO) protective surface layer was successfully added. These SPPS double-layer TBCs not only retained good cyclic durability and low thermal conductivity, but also demonstrated favorable phase stability and increased surface temperature capabilities. The CMAS resistance was evaluated with both accumulative and single applications of simulated CMAS in isothermal furnaces. The double-layer YSZ/GZO exhibited dramatic improvement in the single application, but not in the continuous one. In addition, to explore their potential application in integrated gasification combined cycle environments, double-layer TBCs were tested under high-temperature humidity and encouraging performance was recorded.

  11. A study of combined filtration and adsorption on nylon-based dye-affinity membranes: separation of recombinant L-alanine dehydrogenase from crude fermentation broth.

    PubMed

    Weissenborn, M; Hutter, B; Singh, M; Beeskow, T C; Anspach, F B

    1997-04-01

    Dextran, hydroxyethylcellulose (HEC), and poly(vinyl alcohol) PVA were covalently linked to bisoxirane-activated nylon membranes. Cibacron Blue F3G-A was immobilized on to these membranes to yield a dye-affinity membrane. The hydrodynamic permeability of affinity membranes was reduced to approximately 50% of that of the original Nylon membrane due to extension of polymer coils into flow-through pores. Adsorption of pre-purified human serum albumin (HSA) and malate dehydrogenase (MDH) displayed highest maximum binding capacities on HEC-coated dye-ligand-affinity membranes, ranging from (163 micrograms/cm2 for HSA to 316 micrograms/cm2 for MDH. The protein recovery of HSA was 100% on dextran-coated membranes compared with 70% on PVA-coated membranes, whereas almost 100% recovery was found for MDH, independent of the polymer. Application of crude supernatant from recombinant Escherichia coli yielded purification factors of 7.4, 8.9 and 11.2 for recombinant alanine dehydrogenase from Mycobacterium tuberculosis for HEC-, dextran- and PVA-coated membranes respectively. Dynamic capacities decreased remarkably to approximately 3 micrograms/cm2 due to co-adsorption of host proteins. The presence of cell debris caused only a slight decrease of purification factors, but a dramatic decrease of the permeability of affinity membranes due to development of a particle layer in front of the membranes. Although enzyme recoveries were up to 90% using cell-free supernatant, more than 50% of the product was lost due to polarization, concentration and rejection at particle layers when using crude homogenates. In order to further improve this integrated downstream process, sophisticated membrane techniques are required by which the formation of a filter cake is circumvented. Further refinement of polymer-coated membranes would not help one to avoid this problem.

  12. Modifying soil water status and improving stand establishment in a water repellent soil using surfactant coated seed.

    NASA Astrophysics Data System (ADS)

    Kostka, Stanley; Lampe, Mark; van Mondfrans, Jan; Madsen, Matthew; McMillan, Mica

    2015-04-01

    Surfactant seed coating (SSC) is a technology being developed cooperatively by scientists at the USDA, Agricultural Research Service and Aquatrols to improve stand establishment in water repellent soils, particularly under arid conditions. Early SSC studies have demonstrated that surfactant coatings can dramatically increase soil water content, turfgrass density, cover, and biomass for Kentucky bluegrass, tall fescue and perennial ryegrass sown in water repellent soils under greenhouse conditions. However, in these studies, surfactant loads were excessive (≥ 40 wt% of seed mass). The objective of the current study was to ascertain if a lower surfactant treatment level (10 wt%) would improve emergence and stand establishment in a severely water repellent sandy soil under field conditions. Research was conducted on a golf course near Utrecht, NL. At the time of planting water drop penetration time (WDPT) of the soil was approximately 300 s, indicating severe water repellency. Chewings fescue (Festuca rubra subsp. commutata) seed was treated with ASET-4001 surfactant at a loading rate of 10 wt% using two different proprietary coating procedures (US Patent Application 20100267554). The two different ASET-4001 coatings were compared against untreated seed in a randomized complete block design with four replicates. In order to maximize abiotic stresses, the only applied water came from rainfall. Assessments of stand establishment were made every 7-14 days for three months using a subjective visual assessment of percent grass cover and sward quality based on a 1-10 scale (where 10 is best). At six months post-sowing, 20 mm x 300 mm soil cores were randomly removed from each plot and soil wetting front depth measured. Improved emergence of the surfactant coated seeds over the untreated seeds began to appear 7 days after sowing. However, there were no differences between the two SSC treatments. Establishment was influenced by weather conditions. From mid-June to early July, ratings were similar between all treatments. However, with the onset of warmer more stressful growing conditions in mid-July, stand establishment ratings for the SSC treatments were higher than for the untreated control. From 16 July to 18 August, stand establishment ratings for the SSC treatments were between 9.1 and 9.8. In the untreated control plots, 16 July ratings were at 7.1 and dropped precipitously to 5.3 by 18 August. The visual differences between treatments suggested that rootzone water may be greater in the SSC treatments. Mean wetting front depths in cores collected from the SSC plots were at minimum 2x greater than untreated controls (200 mm vs 100 mm) confirming that SSC resulted in greater rootzone water distribution. SSC improved emergence and stand establishment of Chewings fescue and modified the soil wetting pattern in severely water repellent sand for at least six months. SSC may provide a sustainable strategy to improve turfgrass establishment under water stress conditions or when irrigation is limited.

  13. A Sacrificial Coating Strategy Toward Enhancement of Metal-Support Interaction for Ultrastable Au Nanocatalysts

    DOE PAGES

    Zhan, Wangcheng; He, Qian; Liu, Xiaofei; ...

    2016-11-22

    Supported gold (Au) nanocatalysts hold great promise for heterogeneous catalysis; however, their practical application is greatly hampered by poor thermodynamic stability. Herein, a general synthetic strategy is reported where discrete metal nanoparticles are made resistant to sintering, preserving their catalytic activities in high-temperature oxidation processes. Taking advantage of the unique coating chemistry of dopamine, sacrificial carbon layers are constructed on the material surface, stabilizing the supported catalyst. Upon annealing at high temperature under an inert atmosphere, the interactions between support and metal nanoparticle are dramatically enhanced, while the sacrificial carbon layers can be subsequently removed through oxidative calcination in air.more » Owing to the improved metal-support contact and strengthened electronic interactions, the resulting Au nanocatalysts are resistant to sintering and exhibit excellent durability for catalytic combustion of propylene at elevated temperatures. Moreover, the facile synthetic strategy can be extended to the stabilization of other supported catalysts on a broad range of supports, providing a general approach to enhancing the thermal stability and sintering resistance of supported nanocatalysts.« less

  14. Chitosan-based water-propelled micromotors with strong antibacterial activity.

    PubMed

    Delezuk, Jorge A M; Ramírez-Herrera, Doris E; Esteban-Fernández de Ávila, Berta; Wang, Joseph

    2017-02-09

    A rapid and efficient micromotor-based bacteria killing strategy is described. The new antibacterial approach couples the attractive antibacterial properties of chitosan with the efficient water-powered propulsion of magnesium (Mg) micromotors. These Janus micromotors consist of Mg microparticles coated with the biodegradable and biocompatible polymers poly(lactic-co-glycolic acid) (PLGA), alginate (Alg) and chitosan (Chi), with the latter responsible for the antibacterial properties of the micromotor. The distinct speed and efficiency advantages of the new micromotor-based environmentally friendly antibacterial approach have been demonstrated in various control experiments by treating drinking water contaminated with model Escherichia coli (E. coli) bacteria. The new dynamic antibacterial strategy offers dramatic improvements in the antibacterial efficiency, compared to static chitosan-coated microparticles (e.g., 27-fold enhancement), with a 96% killing efficiency within 10 min. Potential real-life applications of these chitosan-based micromotors for environmental remediation have been demonstrated by the efficient treatment of seawater and fresh water samples contaminated with unknown bacteria. Coupling the efficient water-driven propulsion of such biodegradable and biocompatible micromotors with the antibacterial properties of chitosan holds great considerable promise for advanced antimicrobial water treatment operation.

  15. Frequency dependence of viscous and viscoelastic dissipation in coated micro-cantilevers from noise measurement.

    PubMed

    Paolino, P; Bellon, L

    2009-10-07

    We measure the mechanical thermal noise of soft silicon atomic force microscope cantilevers. Using an interferometric setup, we obtain a resolution down to 10(-14) m Hz(-1/2) on a wide spectral range (3-10(5) Hz). The low frequency behavior depends dramatically on the presence of a reflective coating: almost flat spectra for uncoated cantilevers versus a 1/f like trend for coated ones. The addition of a viscoelastic term in models of the mechanical system can account for this observation. Use of Kramers-Kronig relations validate this approach with a complete determination of the response of the cantilever: a power law with a small coefficient is found for the frequency dependence of viscoelasticity due to the coating, whereas the viscous damping due to the surrounding atmosphere is accurately described by the Sader model.

  16. Biopharmaceutical evaluation of time-controlled press-coated tablets containing polymers to adjust drug release.

    PubMed

    Halsas, M; Ervasti, P; Veski, P; Jürjenson, H; Marvola, M

    1998-01-01

    This paper deals with press-coated modified release tablets in which the drug dose is situated in the core or is divided between the core and the coat. The coat contains polymer (sodium alginate or hydroxypropylmethyl cellulose, HPMC) to control drug release. The main objective was to investigate how the pharmacokinetic profile of the model drug could be modified by altering the proportion of the drug between the core and the coat. The effect of the amount of the polymer in the coat was also studied. Bioavailability tests were carried out on healthy volunteers. In the absorption curves of the tablets containing 50%, 67% and 80% of the drug in the core and 180 mg HPMC in the coat a bimodal profile was observed. No bimodal release pattern in the in vitro dissolution studies was found. If the whole dose was incorporated in the core the absorption curve has only one clear t(max) value at about 10 h. Doubling the amount of HPMC in the coat dramatically decreased drug absorption. It was concluded that, if a slightly reduced t(max)-value was required, the viscosity grade of HPMC used should be lowered.

  17. Damage resistant optics for a mega-joule solid-state laser

    NASA Astrophysics Data System (ADS)

    Campbell, J. H.; Rainer, F.; Kozlowski, M. R.; Wolfe, C. R.; Thomas, I.; Milanovich, F.

    1990-12-01

    Research on Inertial Confinement Fusion (ICF) has progressed rapidly in the past several years. As a consequence, LLNL is developing plans to upgrade the current 120 kJ solid state (Nd3+ phosphate glass) Nova laser to a 1.5 to 2 megajoule system with the goal of achieving fusion ignition. The design of the planned Nova Upgrade is briefly discussed. Because of recent improvements in the damage resistance of optical materials it is now technically and economically feasible to build a megajoule-class solid state laser. Specifically, the damage threshold of Nd(+3)-doped phosphate laser glass, multilayer dielectric coatings, and non-linear optical crystals (e.g., KDP) have been dramatically improved. These materials now meet the fluence requirements for a 1.5 to 2 MJ Nd(+3)-glass laser operating at 1054 and 351 nm and at a pulse length of 3 ns. The recent improvements in damage thresholds are reviewed; threshold data at both 1064 and 355 nm and the measured pulse length scaling are presented.

  18. Damage resistant optics for a megajoule solid state laser

    NASA Astrophysics Data System (ADS)

    Campbell, Jack H.; Rainer, Frank; Kozlowski, Mark R.; Wolfe, C. Robert; Thomas, Ian M.; Milanovich, Fred P.

    1991-06-01

    Research on Inertial Confinement Fusion (ICF) has progressed rapidly in the past several years. As a consequence LLNL is developing plans to upgrade the current 120 kJ solid state (Nd3-phosphate glass) Nova laser to a 1 . 5 to 2 megajoule system with the goal of achieving fusion ignition. The design of the planned Nova Upgrade is briefly discussed. Because of recent improvements in the damage resistance of optical materials it is now technically and economically feasible to build a megajoule-class solid state laser. Specifically the damage threshold of Nd3- doped phosphate laser glass muliilayer dielectric coatings and non-linear optical crystals (e. g. KDP) have been dramatically improved. These materials now meet the fluence requirements for a 1. 5-2 MJ Nd3-glass laser operating at 1054 and 351 nm and at a pulse length of 3 ns. The recent improvements in damage thresholds are reviewed threshold data at both 1064 and 355 nm and the measured pulse length scaling are presented. 1.

  19. Degradation of SOFCs in contact with E-brite.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cruse, T. A.; Krumpelt, M.; Ingram, B. J.

    The results presented in this report seem to raise concerns about the effects of chromium at lower temperature and higher current densities. However, we need to remember that these results were obtained withuncoated E-Brite and coated material would have two orders of magnitude lower formation rates of the oxyhydroxide. More importantly, the dramatic effects of the chromium precipitation at lower temperature point to the solution to the problem. We need more active cathodes. The results with the chromium doped manganite show already that the currently preferred cathode material can still be improved, and ferrites or mixed manganese/iron cathode would bemore » much less affected because of the higher oxide ion vacancy concentration and mobility.« less

  20. Dramatically improve the Safety Performance of Li ion Battery Separators and Reduce the Manufacturing Cost Using Ultraviolet Curing and High Precision Coating Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voelker, Gary; Arnold, John

    The objective of this project was to improve the safety of operation of Lithium ion batteries (LIB)and at the same time significantly reduce the manufacturing cost of LIB separators. The project was very successful in demonstrating the improved performance and reduced cost attributed to using UV curable binder and high speed printing technology to place a very thin and precisely controlled ceramic layer on the surface of base separators made of polyolefins such as Polyethylene, Polypropylene and combinations of the two as well as cellulosic base separators. The underlying need for this new technology is the recently identified potential ofmore » fire in large format Lithium ion batteries used in hybrid, plug-in hybrid and electric vehicles. The primary potential cause of battery fire is thermal runaway caused by several different electrical or mechanical mechanisms; such as, overcharge, puncture, overheating, compaction, and internal short circuit. During thermal runaway, the ideal separator prevents ion flow and continues to physically separate the anode from the cathode. If the temperature of the battery gets higher, the separator may melt and partially clog the pores and help prevent ion flows but it also can shrink which can result in physical contact of the electrodes and accelerate thermal run-away even further. Ceramic coated separators eliminate many of the problems related to the usage of traditional separators. The ceramic coating provides an electrically insulating layer that retains its physical integrity at high temperature, allows for more efficient thermal heat transfer, helps reduce thermal shrinkage, and inhibits dendrite growth that could create a potential short circuit. The use of Ultraviolet (UV) chemistry to bind fine ceramic particles on separators is a unique and innovative approach primarily because of the instant curing of the UV curable binder upon exposure to UV light. This significant reduction in drying/curing time significantly reduces the cost of a ceramic coating. Another innovation is high precision, high speed, printing techniques that can apply a unique pattern of ceramic particles on base separators. The pattern will maximize ionic conductivity and minimize ceramic coating weight and thickness, while retaining the benefits of increased puncture strength, reduced thermal shrinkage and no decomposition. This project has met all of its goals and has been successfully completed. This successful completion has enabled Miltec UV to take the final steps leading to the commercialization of an innovative technology that will result in ceramic coated separators that can be manufactured and sold from the US, with increased production capacity, reduced cost, and improved battery safety.« less

  1. Polycrystalline BiFeO{sub 3} thin film synthesized via sol-gel assisted spin coating technique for photosensitive application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bogle, K. A., E-mail: kashinath.bogle@gmail.com; Narwade, R. D.; Mahabole, M. P.

    2016-05-06

    We are reporting photosensitivity property of BiFeO{sub 3} thin film under optical illumination. The thin film used for photosensitivity work was fabricated via sol-gel assisted spin coating technique. I-V measurements on the Cu/BiFeO{sub 3}/Al structure under dark condition show a good rectifying property and show dramatic blue shit in threshold voltage under optical illumination. The microstructure, morphology and elemental analysis of the films were characterized by using XRD, UV-Vis, FTIR, SEM and EDS.

  2. Design of nanocoatings by in situ phosphatizing reagent catalyzed polysilsesquioxane for corrosion inhibition and adhesion promotion on metal alloys

    NASA Astrophysics Data System (ADS)

    Henderson, Kimberly B.

    When a metal reacts with oxygen and water, a redox reaction happens, which will cause corrosion. Current surface pretreatment for inhibiting corrosion on metal alloys is a phosphate conversion bath. The phosphate conversion bath will generate a phosphate-chromate layer to adhere strongly to a metal substrate. However, it is toxic and unfriendly to the environment. Our group proposed an innovative coating that contains a phosphate component (ISPR-In-situ Phosphatizing Reagent) within a protective coating. The ISPR coating will form a bound phosphate layer on the metal surface acting as the corrosion barrier and enhancing adhesion into the metal surface; moreover, it is low in cost and non-toxic. Within this dissertation, there are four projects that investigate design of ISPR nanocoatings for the use of corrosion inhibition and adhesion promotion. Surface modification and adjusting concentrations of materials with the different formulations are explored. The first project focuses on the adhesion enhancement of a coating created by modifying the surface of an aluminum panel. Secondly, the next project will discuss and present the use of three rare earth element formulations as a replacement for phosphate conversion coatings on magnesium alloy, AZ61. The third project is the design of a nanocoating by using heat dissipating materials to fill in small vacant spaces in the ISPR network coating on various metal alloys. The last project, studies the strategic selection of incorporating metal components into ISPR network by the reduction potential values on several different alloys. Many methods of analysis are used; SEM, TEM, ASTM B117, ASTM D1308, ASTM D3359, EIS, and thickness probe. It was found that the addition of ISPR in the nanocoatings dramatically improves the vitality of metal alloys and these results will be presented during this dissertation.

  3. Biomimetic component coating on 3D scaffolds using high bioactivity of mesoporous bioactive ceramics

    PubMed Central

    Yun, Hui-suk; Kim, Sang-Hyun; Khang, Dongwoo; Choi, Jungil; Kim, Hui-hoon; Kang, Minji

    2011-01-01

    Background Mesoporous bioactive glasses (MBGs) are very attractive materials for use in bone tissue regeneration because of their extraordinarily high bone-forming bioactivity in vitro. That is, MBGs may induce the rapid formation of hydroxy apatite (HA) in simulated body fluid (SBF), which is a major inorganic component of bone extracellular matrix (ECM) and comes with both good osteoconductivity and high affinity to adsorb proteins. Meanwhile, the high bioactivity of MBGs may lead to an abrupt initial local pH variation during the initial Ca ion-leaching from MBGs at the initial transplant stage, which may induce unexpected negative effects on using them in in vivo application. In this study we suggest a new way of using MBGs in bone tissue regeneration that can improve the strength and make up for the weakness of MBGs. We applied the outstanding bone-forming bioactivity of MBG to coat the main ECM components HA and collagen on the MBG-polycarplolactone (PCL) composite scaffolds for improving their function as bone scaffolds in tissue regeneration. This precoating process can also expect to reduce initial local pH variation of MBGs. Methods and materials The MBG-PCL scaffolds were immersed in the mixed solution of the collagen and SBF at 37°C for 24 hours. The coating of ECM components on the MBG-PCL scaffolds and the effect of ECM coating on in vitro cell behaviors were confirmed. Results The ECM components were fully coated on MBG-PCL scaffolds after immersing in SBF containing dilute collagen-I solution only for 24 hours due to the high bone-forming bioactivity of MBG. Both cell affinity and osteoconductivity of MBG-PCL scaffolds were dramatically enhanced by this precoating process. Conclusion The precoating process of ECM components on MBG-PCL scaffold using a high bioactivity of MBG was not only effective in enhancing the functionality of scaffolds but also effective in eliminating the unexpected side effect. The MBG-PCL scaffold-coated ECM components ideally satisfied the required conditions of scaffold in tissue engineering, including 3D well-interconnected pore structures with high porosity, good bioactivity, enhanced cell affinity, biocompatibility, osteoconductivity, and sufficient mechanical properties, and promise excellent potential application in the field of biomaterials. PMID:22072886

  4. Epsin deficiency impairs endocytosis by stalling the actin-dependent invagination of endocytic clathrin-coated pits

    PubMed Central

    Messa, Mirko; Fernández-Busnadiego, Rubén; Sun, Elizabeth Wen; Chen, Hong; Czapla, Heather; Wrasman, Kristie; Wu, Yumei; Ko, Genevieve; Ross, Theodora; Wendland, Beverly; De Camilli, Pietro

    2014-01-01

    Epsin is an evolutionarily conserved endocytic clathrin adaptor whose most critical function(s) in clathrin coat dynamics remain(s) elusive. To elucidate such function(s), we generated embryonic fibroblasts from conditional epsin triple KO mice. Triple KO cells displayed a dramatic cell division defect. Additionally, a robust impairment in clathrin-mediated endocytosis was observed, with an accumulation of early and U-shaped pits. This defect correlated with a perturbation of the coupling between the clathrin coat and the actin cytoskeleton, which we confirmed in a cell-free assay of endocytosis. Our results indicate that a key evolutionary conserved function of epsin, in addition to other roles that include, as we show here, a low affinity interaction with SNAREs, is to help generate the force that leads to invagination and then fission of clathrin-coated pits. DOI: http://dx.doi.org/10.7554/eLife.03311.001 PMID:25122462

  5. Bench-scale screening tests for a boiling sodium-potassium alloy solar receiver

    NASA Astrophysics Data System (ADS)

    Moreno, J. B.; Moss, T. A.

    1993-06-01

    Bench-scale tests were carried out in support of the design of a second-generation 75-kW(sub t) reflux pool-boiler solar receiver. The receiver will be made from Haynes Alloy 230 and will contain the sodium-potassium alloy NaK-78. The bench-scale tests used quartz lamp heated boilers to screen candidate boiling stabilization materials and methods at temperatures up to 750 degree C. Candidates that provided stable boiling were tested for hot-restart behavior. Poor stability was obtained with single 1/4-inch diameter patches of powdered metal hot press sintered onto the wetted side of the heat-input area. Laser-drilled and electric discharge machined cavities in the heated surface also performed poorly. Small additions of xenon, and heated-surface tilt out of the vertical, dramatically improved poor boiling stability; additions of helium or oxygen did not. The most stable boiling was obtained when the entire heat-input area was covered by a powdered-metal coating. The effect of heated-area size was assessed for one coating: at low incident fluxes, when even this coating performed poorly, increasing the heated-area size markedly improved boiling stability. Good hot-restart behavior was not observed with any candidate, although results were significantly better with added xenon in a boiler shortened from 3 to 2 feet. In addition to the screening tests, flash-radiography imaging of metal-vapor bubbles during boiling was attempted. Contrary to the Cole-Rohsenow correlation, these bubble-size estimates did not vary with pressure; instead they were constant, consistent with the only other alkali metal measurements, but about 1/2 their size.

  6. Formation of Nanosized Defective Lithium Peroxides through Si-Coated Carbon Nanotube Cathodes for High Energy Efficiency Li-O2 Batteries.

    PubMed

    Lin, Qi; Cui, Zhonghui; Sun, Jiyang; Huo, Hanyu; Chen, Cheng; Guo, Xiangxin

    2018-06-06

    The formation and decomposition of lithium peroxides (Li 2 O 2 ) during cycling is the key process for the reversible operation of lithium-oxygen batteries. The manipulation of such products from the large toroidal particles about hundreds of nanometers to the ones in the scale of tens of nanometers can improve the energy efficiency and the cycle life of the batteries. In this work, we carry out an in situ morphology tuning of Li 2 O 2 by virtue of the surface properties of the n-type Si-modified aligned carbon nanotube (CNT) cathodes. With the introduction of an n-type Si coating layer on the CNT surface, the morphology of Li 2 O 2 formed by discharge changes from large toroidal particles (∼300 nm) deposited on the pristine CNT cathodes to nanoparticles (10-20 nm) with poor crystallinity and plenty of lithium vacancies. Beneficial from such changes, the charge overpotential dramatically decreases to 0.55 V, with the charge plateau lying at 3.5 V even in the case of a high discharge capacity (3450 mA h g -1 ) being delivered, resulting in the high electrical energy efficiency approaching 80%. Such an improvement is attributed to the fact that the introduction of the n-type Si coating layer changes the surface properties of CNTs and guides the formation of nanosized amorphous-like lithium peroxides with plenty of defects. These results demonstrate that the cathode surface properties play an important role in the formation of products formed during the cycle, providing inspiration to design superior cathodes for the Li-O 2 cells.

  7. Optimal illusion and invisibility of multilayered anisotropic cylinders and spheres.

    PubMed

    Zhang, Lin; Shi, Yan; Liang, Chang-Hong

    2016-10-03

    In this paper, full-wave electromagnetic scattering theory is employed to investigate illusion and invisibility of inhomogeneous anisotropic cylinders and spheres. With the use of a shell designed according to Mie series theory for multiple piecewise anisotropic layers, radar cross section (RCS) of the coated inhomogeneous anisotropic object can be dramatically reduced or disguised as another object in the long-wavelength limit. With the suitable adjustment of the anisotropy parameters of the shell, optimal illusion and invisibility characteristics of the coated inhomogeneous anisotropic object can be achieved. Details of theoretical analysis and numerical examples are presented to validate the proposed methodology.

  8. Robust surface coating for a fast, facile fluorine-18 labeling of iron oxide nanoparticles for PET/MR dual-modality imaging

    DOE PAGES

    Sun, Ziyan; Cheng, Kai; Wu, Fengyu; ...

    2016-10-31

    Grafting a robust organic shell around inorganic nanoparticles can optimize their colloidal features to dramatically improve their physicochemical properties. Here, we have developed a polymer coating procedure for providing colloidal stability to the nanoparticles and, more importantly, for applying a fast, facile fluorine-18 labeling of iron oxide nanoparticles (IONPs) for positron emission tomography (PET)/magnetic resonance (MR) dual-modality imaging. The structure of the amphiphilic polymer is based on a backbone of polyacrylic acid, conjugated with multiple oleylamines to form a comb-like branched structure. The dense polymer shell provides high colloidal stability to the IONPs against harsh conditions such as high temperature,more » low pH value, and high ion strength. By incorporating a 1,4,7-triazacyclononane (NOTA) chelator to the comb-like amphiphilic polymer for the chelation of aluminum fluoride ions, we applied a one-step radiolabeling approach for a fast, facile radiofluorination of magnetic nanoparticles. The new strategy can significantly reduce the procedure time and radiation exposure. In conclusion, the PET/MR dual modality imaging was successfully achieved in living subjects by using 18F labeled magnetic nanoparticles.« less

  9. Robust surface coating for a fast, facile fluorine-18 labeling of iron oxide nanoparticles for PET/MR dual-modality imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Ziyan; Cheng, Kai; Wu, Fengyu

    Grafting a robust organic shell around inorganic nanoparticles can optimize their colloidal features to dramatically improve their physicochemical properties. Here, we have developed a polymer coating procedure for providing colloidal stability to the nanoparticles and, more importantly, for applying a fast, facile fluorine-18 labeling of iron oxide nanoparticles (IONPs) for positron emission tomography (PET)/magnetic resonance (MR) dual-modality imaging. The structure of the amphiphilic polymer is based on a backbone of polyacrylic acid, conjugated with multiple oleylamines to form a comb-like branched structure. The dense polymer shell provides high colloidal stability to the IONPs against harsh conditions such as high temperature,more » low pH value, and high ion strength. By incorporating a 1,4,7-triazacyclononane (NOTA) chelator to the comb-like amphiphilic polymer for the chelation of aluminum fluoride ions, we applied a one-step radiolabeling approach for a fast, facile radiofluorination of magnetic nanoparticles. The new strategy can significantly reduce the procedure time and radiation exposure. In conclusion, the PET/MR dual modality imaging was successfully achieved in living subjects by using 18F labeled magnetic nanoparticles.« less

  10. Identification of Albizia lebbeck seed coat chitin-binding vicilins (7S globulins) with high toxicity to the larvae of the bruchid Callosobruchus maculatus

    PubMed Central

    Souza, A.J.; Ferreira, A.T.S.; Perales, J.; Beghini, D.G.; Fernandes, K.V.S.; Xavier-Filho, J.; Venancio, T.M.; Oliveira, A.E.A.

    2011-01-01

    Seed coat is a specialized maternal tissue that interfaces the embryo and the external environment during embryogenesis, dormancy and germination. In addition, it is the first defensive barrier against penetration by pathogens and herbivores. Here we show that Albizia lebbeck seed coat dramatically compromises the oviposition, eclosion and development of the bruchid Callosobruchus maculatus. Dietary supplementation of bruchid larvae with A. lebbeck seed coat flour causes severe weight loss and reduces survival. By means of protein purification, mass spectrometry and bioinformatic analyses, we show that chitinbinding vicilins are the main source of A. lebbeck tegumental toxicity to C. maculatus. At concentrations as low as 0.1%, A. lebbeck vicilins reduce larval mass from 8.1 ± 1.7 (mass of control larvae) to 1.8 ± 0.5 mg, which corresponds to a decrease of 78%. Seed coat toxicity constitutes an efficient defense mechanism, hindering insect predation and preventing embryo damage. We hypothesize that A. lebbeck vicilins are good candidates for the genetic transformation of crop legumes to enhance resistance to bruchid predation. PMID:22267002

  11. Identification of Albizia lebbeck seed coat chitin-binding vicilins (7S globulins) with high toxicity to the larvae of the bruchid Callosobruchus maculatus.

    PubMed

    Souza, A J; Ferreira, A T S; Perales, J; Beghini, D G; Fernandes, K V S; Xavier-Filho, J; Venancio, T M; Oliveira, A E A

    2012-02-01

    Seed coat is a specialized maternal tissue that interfaces the embryo and the external environment during embryogenesis, dormancy and germination. In addition, it is the first defensive barrier against penetration by pathogens and herbivores. Here we show that Albizia lebbeck seed coat dramatically compromises the oviposition, eclosion and development of the bruchid Callosobruchus maculatus. Dietary supplementation of bruchid larvae with A. lebbeck seed coat flour causes severe weight loss and reduces survival. By means of protein purification, mass spectrometry and bioinformatic analyses, we show that chitin-binding vicilins are the main source of A. lebbeck tegumental toxicity to C. maculatus. At concentrations as low as 0.1%, A. lebbeck vicilins reduce larval mass from 8.1 ± 1.7 (mass of control larvae) to 1.8 ± 0.5 mg, which corresponds to a decrease of 78%. Seed coat toxicity constitutes an efficient defense mechanism, hindering insect predation and preventing embryo damage. We hypothesize that A. lebbeck vicilins are good candidates for the genetic transformation of crop legumes to enhance resistance to bruchid predation.

  12. Rapidly-Deposited Polydopamine Coating via High Temperature and Vigorous Stirring: Formation, Characterization and Biofunctional Evaluation

    PubMed Central

    Zhou, Ping; Deng, Yi; Lyu, Beier; Zhang, Ranran; Zhang, Hai; Ma, Hongwei; Lyu, Yalin; Wei, Shicheng

    2014-01-01

    Polydopamine (PDA) coating provides a promising approach for immobilization of biomolecules onto almost all kinds of solid substrates. However, the deposition kinetics of PDA coating as a function of temperature and reaction method is not well elucidated. Since dopamine self-polymerization usually takes a long time, therefore, rapid-formation of PDA film becomes imperative for surface modification of biomaterials and medical devices. In the present study, a practical method for preparation of rapidly-deposited PDA coating was developed using a uniquely designed device, and the kinetics of dopamine self-polymerization was investigated by QCM sensor system. It was found that high temperature and vigorous stirring could dramatically speed up the formation of PDA film on QCM chip surface. Surface characterization, BSA binding study, cell viability assay and antibacterial test demonstrates that the polydopamine coating after polymerization for 30 min by our approach exhibits similar properties to those of 24 h counterpart. The method has a great potential for rapid-deposition of polydopamine films to modify biomaterial surfaces. PMID:25415328

  13. Nanomechanical properties, wear resistance and in-vitro characterization of Ta2O5 nanotubes coating on biomedical grade Ti-6Al-4V.

    PubMed

    Sarraf, Masoud; Razak, Bushroa Abdul; Nasiri-Tabrizi, Bahman; Dabbagh, Ali; Kasim, Noor Hayaty Abu; Basirun, Wan Jefrey; Bin Sulaiman, Eshamsul

    2017-02-01

    Tantalum pentoxide nanotubes (Ta 2 O 5 NTs) can dramatically raise the biological functions of different kinds of cells, thus have promising applications in biomedical fields. In this study, Ta 2 O 5 NTs were prepared on biomedical grade Ti-6Al-4V alloy (Ti64) via physical vapor deposition (PVD) and a successive two-step anodization in H 2 SO 4 : HF (99:1)+5% EG electrolyte at a constant potential of 15V. To improve the adhesion of nanotubular array coating on Ti64, heat treatment was carried out at 450°C for 1h under atmospheric pressure with a heating/cooling rate of 1°Cmin - 1 . The surface topography and composition of the nanostructured coatings were examined by atomic force microscopy (AFM) and X-ray electron spectroscopy (XPS), to gather information about the corrosion behavior, wear resistance and bioactivity in simulated body fluids (SBF). From the nanoindentation experiments, the Young's modulus and hardness of the 5min anodized sample were ~ 135 and 6GPa, but increased to ~ 160 and 7.5GPa, respectively, after annealing at 450°C. It was shown that the corrosion resistance of Ti64 plates with nanotubular surface modification was higher than that of the bare substrate, where the 450°C annealed specimen revealed the highest corrosion protection efficiency (99%). Results from the SBF tests showed that a bone-like apatite layer was formed on nanotubular array coating, as early as the first day of immersion in simulated body fluid (SBF), indicating the importance of nanotubular configuration on the in-vitro bioactivity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Biocorrosion behavior and cell viability of adhesive polymer coated magnesium based alloys for medical implants

    NASA Astrophysics Data System (ADS)

    Abdal-hay, Abdalla; Dewidar, Montasser; Lim, Jae Kyoo

    2012-11-01

    The present study was ultimately aimed to design novel adhesive biodegradable polymer, poly(vinyl acetate) (PVAc), coatings onto Mg based alloys by the dip-coating technique in order to control the degradation rate and enhance the biocompatibility of magnesium alloys. The influence of various solvents on PVAc surface topography and their protection of Mg alloys were dramatically studied in vitro. Electrochemical polarization, degradation, and PVAc film cytocompatibility were also tested. Our results showed that the solvent had a significant effect on coating quality. PVAc/dichloromethane solution showed a porous structure and solution concentration could control the porous size. The coatings prepared using tetrahydrofuran and dimethylformamide solvents are exceptional in their ability to generate porous morphology even at low polymer concentration. In general, the corrosion performance appears to be different on different PVAc-solvent system. Immersion tests illustrated that the porous morphology on PVAc stabilized corrosion rates. A uniform corrosion attack in artificial simulation body fluid was also exhibited. The cytocompatibility of osteoblast cells (MC3T3) revealed high adherence, proliferation, and survival on the porous structure of PVAc coated Mg alloy, which was not observed for the uncoated samples. This novel PVAc coating is a promising candidate for biodegradable implant materials, which might widen the use of Mg based implants.

  15. Low-cost, highly transparent flexible low-e coating film to enable electrochromic windows with increased energy savings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berland, Brian; Hollingsworth, Russell

    Five Quads of energy are lost through windows annually in the U.S. Low-e coatings are increasingly employed to reduce the wasted energy. Most commonly, the low-e coating is an oxide material applied directly to the glass at high temperature. With over 100,000,000 existing homes, a retrofit product is crucial to achieve widespread energy savings. Low-e films, i.e. coatings on polymeric substrates, are now also available to meet this need. However, the traditional oxide materials and process is incompatible with low temperature plastics. Alternate high performing low-e films typically incorporate materials that limit visible transmission to 35% or less. Further, themore » cost is high. The objective of this award was to develop a retrofit, integrated low-e/electrochromic window film to dramatically reduce energy lost through windows. While field testing of state-of-the-art electrochromic (EC) windows show the energy savings are maximized if a low-e coating is used in conjunction with the EC, available low-e films have a low visible transmission (~70% or less) that limits the achievable clear state and therefore, appearance and energy savings potential. Comprehensive energy savings models were completed at Lawrence Berkeley National Lab (LBNL). A parametric approach was used to project energy usage for windows with a large range of low-e properties across all U.S. climate zones, without limiting the study to materials that had already been produced commercially or made in a lab. The model enables projection of energy savings for low-e films as well as integrated low-e/EC products. This project developed a novel low-e film, optimized for compatibility with EC windows, using low temperature, high deposition rate processes for the growth of low-e coatings on plastic films by microwave plasma enhanced chemical vapor deposition. Silica films with good density and optical properties were demonstrated at deposition rates as high as 130Å/sec. A simple bi-layer low-e stack of silica and a transparent conductive oxide demonstrated 90% visible transmission with high thermal infrared reflectivity characteristic of conventional low-e coatings. A slightly more complex stack provided high solar infrared reflection without sacrificing visible transmission or thermal infrared reflection. Successful completion of the effort produced a prototype integrated low-e, dynamic window film with characterized energy saving potential. Cost modeling for the passive bi-layer, low-e film projects a manufacturing cost of ~$0.50/ft2 for a plant with 10M ft2/yr capacity. The novel thin film processes developed here enable high deposition rate (low cost), optical quality oxide coatings at low temperatures. When combined with engineered materials, ITN’s coating will result in low-cost, low-e films that reflect a high degree of infrared radiation without substantially reducing the visible transmission. The resultant window film will improve the U-value and achieve SHGC improvements over bare glass. The new low-e coating will be particularly attractive when combined with an electrochromic film. Low-e coating design guided by energy savings modeling allows customization of the product for different climate zones.« less

  16. Ultralow protein adsorbing coatings from clickable PEG nanogel solutions: Benefits of attachment under salt-induced phase separation conditions and comparison with PEG/albumin nanogel coatings

    PubMed Central

    Donahoe, Casey D.; Cohen, Thomas L.; Li, Wenlu; Nguyen, Peter K.; Fortner, John D.; Mitra, Robi D.; Elbert, Donald L.

    2013-01-01

    Clickable nanogel solutions were synthesized by using the copper catalyzed azide/alkyne cycloaddition (CuAAC) to partially polymerize solutions of azide and alkyne functionalized poly(ethylene glycol) (PEG) monomers. Coatings were fabricated using a second click reaction: a UV thiol-yne attachment of the nanogel solutions to mercaptosilanated glass. Because the CuAAC reaction was effectively halted by the addition of a copper-chelator, we were able to prevent bulk gelation and limit the coating thickness to a single monolayer of nanogels in the absence of the solution reaction. This enabled the inclusion of kosmotropic salts, which caused the PEG to phase-separate and nearly double the nanogel packing density, as confirmed by Quartz Crystal Microbalance with Dissipation (QCM-D). Protein adsorption was analyzed by single molecule counting with total internal reflection fluorescence (TIRF) microscopy and cell adhesion assays. Coatings formed from the phase-separated clickable nanogel solutions attached with salt adsorbed significantly less fibrinogen than other 100% PEG coatings tested, as well as poly-L-lysine-g-PEG (PLL-g-PEG) coatings. However, PEG/albumin nanogel coatings still outperformed the best 100% PEG clickable nanogel coatings. Additional surface crosslinking of the clickable nanogel coating in the presence of copper further reduced levels of fibrinogen adsorption closer to those of PEG/albumin nanogel coatings. However, this step negatively impacted long-term resistance to cell adhesion and dramatically altered the morphology of the coating by atomic force microscopy (AFM). The main benefit of the click strategy is that the partially polymerized solutions are stable almost indefinitely, allowing attachment in the phase-separated state without danger of bulk gelation, and thus, producing the best performing 100% PEG coating that we have studied to date. PMID:23441808

  17. Electroless Plated Nanodiamond Coating for Stainless Steel Passivation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, D.; Korinko, P.; Spencer, W.

    Tritium gas sample bottles and manifold components require passivation surface treatments to minimize the interaction of the hydrogen isotopes with surface contamination on the stainless steel containment materials. This document summarizes the effort to evaluate electroless plated nanodiamond coatings as a passivation layer for stainless steel. In this work, we developed an electroless nanodiamond (ND)-copper (Cu) coating process to deposit ND on stainless steel parts with the diamond loadings of 0%, 25% and 50% v/v in a Cu matrix. The coated Conflat Flanged Vessel Assemblies (CFVAs) were evaluated on surface morphology, composition, ND distribution, residual hydrogen release, and surface reactivitymore » with deuterium. For as-received Cu and ND-Cu coated CFVAs, hydrogen off-gassing is rapid, and the off-gas rates of H 2 was one to two orders of magnitude higher than that for both untreated and electropolished stainless steel CFVAs, and hydrogen and deuterium reacted to form HD as well. These results indicated that residual H 2 was entrapped in the Cu and ND-Cu coated CFVAs during the coating process, and moisture was adsorbed on the surface, and ND and/or Cu might facilitate catalytic isotope exchange reaction for HD formation. However, hydrocarbons (i.e., CH 3) did not form, and did not appear to be an issue for the Cu and ND-Cu coated CFVAs. After vacuum heating, residual H 2 and adsorbed H 2O in the Cu and ND-Cu coated CFVAs were dramatically reduced. The H 2 off-gassing rate after the vacuum treatment of Cu and 50% ND-Cu coated CFVAs was on the level of 10 -14 l mbar/s cm 2, while H 2O off-gas rate was on the level of 10 -15 l mbar/s cm 2, consistent with the untreated or electropolished stainless steel CFVA, but the HD formation remained. The Restek EP bottle was used as a reference for this work. The Restek Electro-Polished (EP) bottle and their SilTek coated bottles tested under a different research project exhibited very little hydrogen off-gassing and unmeasurable HD formation. ND and Cu were initially chosen to develop improved passivation technology, because Cu has a lower permeability of hydrogen, and diamond is more inert than other materials under a hydrogen atmosphere. However, our tests demonstrated that even after an 8-18 day vacuum extraction heat treatment, the electroless plated Cu and ND-Cu coated stainless steel CFVAs exhibited H 2 off-gassing rates that were just comparable to those for the untreated or electropolished stainless steel CFVA, and the HD formation was still observed. Thus, the Restek Electro-Polished (EP) bottle outperformed the electroless plated Cu and ND-Cu coated stainless steel CFVAs, and the electroless plated nanodiamond coating is not promising as a surface passivation technology. However, the ND-Cu coating may be beneficial to another application in which catalyzing the H 2-D 2 exchange reaction is desired.« less

  18. Using Layer-by-Layer Coating and Nanocomposite Technologies to Improve the Barrier Properties of Polymeric Materials

    NASA Astrophysics Data System (ADS)

    Soltani, Iman

    Means for improving barrier properties of polymers against gases, particularly for promoting their applications as packaging materials, are divided into surface coating and embedding nanoparticles in the bulk of the polymeric membranes. In this research, we mainly investigated improvement in barrier properties of polymers against oxygen and carbon dioxide, through layer-by-layer (LBL) coating and bulk nanocomposite methods. Initially, we studied the morphology of layer-by-layer assemblies comprising alternating layers of polyelectrolyte (PE) and natural montmorillonite (MMT) platelets, where polyethyleneterephthalate ionomer was used as our proposed alternative PE, to be compared with already examined polyethyleneimine. For both investigated PEs, while microscopic images showed the formation of tortuous networks of galleries between subsequent layers of oriented clay platelets parallel to the substrate surface, x-ray diffractometry (XRD) traces pointed to the intercalation of PE layers between clay platelets. As a confirmation of forming tortuous networks between oriented and high aspect ratio clay platelets to increase the path length of diffusing gas species dramatically, LBL-coated polystyrene-based membranes demonstrated pronounced decreases in permeability of oxygen and carbon dioxide (e.g. about the scale of 500 times decrease in permeability, with only five cycles of bilayer deposition). Before LBL deposition, the surface of the hydrophobic polymeric substrate was pretreated with oxygen plasma to improve its interaction with the coating. In the next study, previously LBL-coated samples were melt pressed in a cyclic manner to embed and to crush the coating inside the polystyrene-based matrix, aiming the exfoliated polymer-clay nanocomposites. The morphological investigations by transmission electron microscopy (TEM) revealed the tortuous internal structure of crushed LBL assemblies' portions, mainly comprising swollen intercalated stacks of clay, as well as flocculated exfoliated tactoids of a few clay platelets, down to about 2nm thickness. Moreover, XRD traces confirmed this increase in intercalation and exfoliation of clay platelets. Following ahead, dynamic mechanical thermal analysis (DMA) revealed significant increases in the storage and loss moduli values for our PNCs over those of pristine polystyrenebased matrix, hypothesizing the occurrence of substantial interactions between clay and the polymeric matrix, induced by intervening effect of PE interlayers. Also, permeation experiments showed noticeable improvement in gas barrier properties of processed PNCs. Considering the low content of clay particles and their limited level of global dispersions throughout the matrix, it may theorize the significant efficiency of high aspect ratio and tortuous LBL assemblies portions, oriented (induced by cycling pressing into thin films) perpendicular to the permeants' path routes. Thus, it might act almost as scavenging hubs against transport of diffusing gases. Finally, using PVAc, as the matrix, with this novel two-step approach of preparing PNCs, showed relatively higher clay content, when prepared with similar coating conditions. Also, DMA and permeation experiments pointed to significant improvements in mechanical and gas barrier properties of the PNCs, prepared by only 25 times melt pressing steps. Additionally, XRD traces postulated occurrence of noticeable irregularities in the interdistance of clay platelets. So, it is conjectured that semi-hydrophilic PVAc matrix promotes stronger interactions with clay particles, compared with those of polystyrene-based PNCs. However, moderate global dispersion of clay throughout the matrix points to the insufficient efficiency of repetitive melt pressing procedure to apply intensive enough stresses on samples, in order to overcome internal cohesion in LBL assemblies, which established initial intercalation and exfoliation in the otherwise aggregately clustered natural clay platelets. In addition, it is postulated that possibly occurring slight thermal degradations induce adverse results on the dispersion level and aforementioned properties of PNCs, processed over extended times.

  19. Poly(3,4-ethylenedioxythiophene) (PEDOT) polymer coatings facilitate smaller neural recording electrodes

    NASA Astrophysics Data System (ADS)

    Ludwig, Kip A.; Langhals, Nicholas B.; Joseph, Mike D.; Richardson-Burns, Sarah M.; Hendricks, Jeffrey L.; Kipke, Daryl R.

    2011-02-01

    We investigated using poly(3,4-ethylenedioxythiophene) (PEDOT) to lower the impedance of small, gold recording electrodes with initial impedances outside of the effective recording range. Smaller electrode sites enable more densely packed arrays, increasing the number of input and output channels to and from the brain. Moreover, smaller electrode sizes promote smaller probe designs; decreasing the dimensions of the implanted probe has been demonstrated to decrease the inherent immune response, a known contributor to the failure of long-term implants. As expected, chronically implanted control electrodes were unable to record well-isolated unit activity, primarily as a result of a dramatically increased noise floor. Conversely, electrodes coated with PEDOT consistently recorded high-quality neural activity, and exhibited a much lower noise floor than controls. These results demonstrate that PEDOT coatings enable electrode designs 15 µm in diameter.

  20. The Effects of Substrate Material and Thermal Processing Atmosphere on the Strength of PS304: A High Temperature Solid Lubricant Coating

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher

    2002-01-01

    PS304, a plasma spray deposited solid lubricant coating developed for high temperature sliding contacts was deposited on nine different substrate metals, heat treated at 650C in either air or argon and subsequently tested for strength using a commercially available pull-off adhesion test. Some samples were examined metallographically to help elucidate and explain the results. As deposited coatings exhibit pull-off strengths typically between 16 and 20 MPa with failure occuring (cohesively) within the coating. Heat treatment in argon at 650 C results in a slight increase in coating (cohesive) strength of about 30 percent to 21 to 27 MPa. Heat treatment in air at 650 C results in a dramatic increase in strength to over 30 MPa, exceeding the strength of the epoxy used in the pull test. Cross section metallographic analyses show that no microstructural coating changes occur following the argon heat treatments, however, exposure to air at 650C gives rise to the formation of a second chromium-rich phase precipitate within the PS304 NiCr constituent which provides a strengthening effect and a slight (approximately 5 percent) coating thickness increase. Subsequent heat treatments do not result in any further coating changes. Based upon these studies, PS304 is a suitable coating for use on a wide variety of high temperature substrates and must be heat treated following deposition to enhance strength and ensure dimensional stability.

  1. Chemical surface deposition of ultra-thin semiconductors

    DOEpatents

    McCandless, Brian E.; Shafarman, William N.

    2003-03-25

    A chemical surface deposition process for forming an ultra-thin semiconducting film of Group IIB-VIA compounds onto a substrate. This process eliminates particulates formed by homogeneous reactions in bath, dramatically increases the utilization of Group IIB species, and results in the formation of a dense, adherent film for thin film solar cells. The process involves applying a pre-mixed liquid coating composition containing Group IIB and Group VIA ionic species onto a preheated substrate. Heat from the substrate causes a heterogeneous reaction between the Group IIB and VIA ionic species of the liquid coating composition, thus forming a solid reaction product film on the substrate surface.

  2. A Lithium Ion Highway by Surface Coordination Polymerization: In Situ Growth of Metal-Organic Framework Thin Layers on Metal Oxides for Exceptional Rate and Cycling Performance.

    PubMed

    Han, Yuzhen; Yu, Danni; Zhou, Junwen; Xu, Peiyu; Qi, Pengfei; Wang, Qianyou; Li, Siwu; Fu, Xiaotao; Gao, Xing; Jiang, Chenghao; Feng, Xiao; Wang, Bo

    2017-08-25

    A thin layer of a highly porous metal-organic framework material, ZIF-8, is fabricated uniformly on the surface of nanostructured transition metal oxides (ZnO nanoflakes and MnO 2 nanorods) to boost the transfer of lithium ions. The novel design and uniform microstructure of the MOF-coated TMOs (ZIF-8@TMOs) exhibit dramatically enhanced rate and cycling performance comparing to their pristine counterparts. The capacities of ZIF-8@ZnO (nanoflakes) and ZIF-8@MnO 2 (nanorods) are 28 % and 31 % higher that of the pristine ones at the same current density. The nanorods of ZIF-8@MnO 2 show a capacity of 1067 mAh g -1 after 500 cycles at 1 Ag -1 and without any fading. To further improve the conductivity and capacity, the ZIF-8-coated materials are pyrolyzed at 700 °C in an N 2 atmosphere (ZIF-8@TMO-700 N). After pyrolysis, a much higher capacity improvement is achieved: ZIF-8@ZnO-700 N and ZIF-8@MnO 2 -700 N have 54 % and 69 % capacity increases compared with the pristine TMOs, and at 1 Ag -1 , the capacity of ZIF-8@MnO 2 -700 N is 1060 mAh g -1 after cycling for 300 cycles. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Albumin nanoparticles coated with polysorbate 80 as a novel drug carrier for the delivery of antiretroviral drug—Efavirenz

    PubMed Central

    Jenita, Josephine Leno; Chocalingam, Vijaya; Wilson, Barnabas

    2014-01-01

    Purpose of the study: The antiretroviral therapy (ART) has dramatically improved human immunodeficiency virus (HIV)/acquired immunodeficiency syndrome (AIDS) treatment, prevention and also has been found to increase the lifespan of HIV/AIDS patients by providing durable control of the HIV replication in patients. Efavirenz is a non-nucleoside reverse transcriptase inhibitor of HIV-1. The purpose of this study is to formulate efavirenz-loaded bovine serum albumin nanoparticles to improve efavirenz delivery into various organs. Materials and Methods: Nanoparticles were prepared by desolvation technique and coated with polysorbate 80. Ethanol, glutaraldehyde, and mannitol were used as desolvating, cross linking agent, and cryoprotectant, respectively. Drug to polymer ratio was chosen at five levels from 1:2, 1:3, 1:4, 1:5, and 1:6 (by weight). The formulated nanoparticles were characterized for Fourier Transform Infrared (FT-IR) spectroscopy, differential scanning calorimetry (DSC) studies, entrapment efficiency, particle size, surface charge, surface morphology, in vitro drug release, release kinetics, stability studies, and biodistribution studies. Results and Major Conclusion: The particle size of the prepared formulations was found below 250nm with narrow size distribution, spherical in shape and showed good entrapment efficiency (45.62-72.49%). The in vitro drug release indicated biphasic release and its data were fitted to release kinetics models and release pattern was Fickian diffusion controlled release profile. The prepared nanoparticles increased efavirenz delivery into various organs by several fold in comparison with the free drug. PMID:25126528

  4. The role of nano-particles in the field of thermal spray coating technology

    NASA Astrophysics Data System (ADS)

    Siegmann, Stephan; Leparoux, Marc; Rohr, Lukas

    2005-06-01

    Nano-particles play not only a key role in recent research fields, but also in the public discussions about health and safety in nanotechnology. Nevertheless, the worldwide activities in nano-particles research increased dramatically during the last 5 to 10 years. There are different potential routes for the future production of nano-particles at large scale. The main directions envisaged are mechanical milling, wet chemical reactions or gas phase processes. Each of the processes has its specific advantages and limitations. Mechanical milling and wet chemical reactions are typically time intensive and batch processes, whereas gas phase productions by flames or plasma can be carried out continuously. Materials of interest are mainly oxide ceramics, carbides, nitrides, and pure metals. Nano-ceramics are interesting candidates for coating technologies due to expected higher coating toughness, better thermal shock and wear resistance. Especially embedded nano-carbides and-nitrides offer homogenously distributed hard phases, which enhance coatings hardness. Thermal spraying, a nearly 100 years old and world wide established coating technology, gets new possibilities thanks to optimized, nano-sized and/or nano-structured powders. Latest coating system developments like high velocity flame spraying (HVOF), cold gas deposition or liquid suspension spraying in combination with new powder qualities may open new applications and markets. This article gives an overview on the latest activities in nano-particle research and production in special relation to thermal spray coating technology.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Yang; Piper, Daniela M.; Gu, Meng

    Surface modification of silicon nanoparticle via molecular layer deposition (MLD) has been recently proved to be an effective way for dramatically enhancing the cyclic performance in lithium ion batteries. However, the fundamental mechanism as how this thin layer of coating function is not known, which is even complicated by the inevitable presence of native oxide of several nanometers on the silicon nanoparticle. Using in-situ TEM, we probed in detail the structural and chemical evolution of both uncoated and coated silicon particles upon cyclic lithiation/delithation. We discovered that upon initial lithiation, the native oxide layer converts to crystalline Li2O islands, whichmore » essentially increases the impedance on the particle, resulting in ineffective lithiation/delithiation, and therefore low coulombic efficiency. In contrast, the alucone MLD coated particles show extremely fast, thorough and highly reversible lithiation behaviors, which are clarified to be associated with the mechanical flexibility and fast Li+/e- conductivity of the alucone coating. Surprisingly, the alucone MLD coating process chemically changes the silicon surface, essentially removing the native oxide layer and therefore mitigates side reaction and detrimental effects of the native oxide. This study provides a vivid picture of how the MLD coating works to enhance the coulombic efficiency and preserve capacity and clarifies the role of the native oxide on silicon nanoparticles during cyclic lithiation and delithiation. More broadly, this work also demonstrated that the effect of the subtle chemical modification of the surface during the coating process may be of equal importance as the coating layer itself.« less

  6. Preparation, characterization and dynamical mechanical properties of dextran-coated iron oxide nanoparticles (DIONPs).

    PubMed

    Can, Hatice Kaplan; Kavlak, Serap; ParviziKhosroshahi, Shahed; Güner, Ali

    2018-03-01

    Dextran-coated iron oxide nanoparticles (DIONPs) with appropriate surface chemistry exhibit many interesting properties that can be exploited in a variety of biomedical applications such as magnetic resonance imaging (MRI) contrast enhancement, tissue repair, hyperthermia, drug delivery and in cell separation. This paper reports the experimental detail for preparation, characterization and investigation of thermal and dynamical mechanical characteristics of the dextran-coated Fe 3 O 4 magnetic nanoparticles. In our work, DIONPs were prepared in a 1:2 ratio of Fe(II) and Fe(III) salt in the HCl solution with NaOH at given temperature. The obtained dextran-coated iron-oxide nanoparticles structure-property correlation was characterized by spectroscopic methods; attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) and XRD. Coating dextran on the iron-oxide proof of important peaks can be seen from the ATR-FTIR. Dramatic crystallinity increment can be observed from the XRD pattern of the iron-oxide dextran nanoparticles. The thermal analysis was examined by differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA) and differential thermal analysis (DTA). Dynamical mechanical properties of dextran nanoparticles were analysed by dynamic mechanical analysis (DMA). Thermal stability of the iron oxide dextran nanoparticles is higher than that of the dextran.

  7. Brochosomal coats turn leafhopper (Insecta, Hemiptera, Cicadellidae) integument to superhydrophobic state

    PubMed Central

    Rakitov, Roman; Gorb, Stanislav N.

    2013-01-01

    Leafhoppers (Insecta, Hemiptera, Cicadellidae) actively coat their integuments with brochosomes, hollow proteinaceous spheres of usually 200–700 nm in diameter, with honeycombed walls. The coats have been previously suggested to act as a water-repellent and anti-adhesive protective barrier against the insect's own exudates. We estimated their wettability through contact angle (CA) measurements of water, diiodomethane, ethylene glycol and ethanol on detached wings of the leafhoppers Alnetoidia alneti, Athysanus argentarius and Cicadella viridis. Intact brochosome-coated integuments were repellent to all test liquids, except ethanol, and exhibited superhydrophobicity, with the average water CAs of 165–172°, and the apparent surface free energy (SFE) estimates not exceeding 0.74 mN m−1. By contrast, the integuments from which brochosomes were removed with a peeling technique using fluid polyvinylsiloxane displayed water CAs of only 103–129° and SFEs above 20 mN m−1. Observations of water-sprayed wings in a cryo-scanning electron microscope confirmed that brochosomal coats prevented water from contacting the integument. Their superhydrophobic properties appear to result from fractal roughness, which dramatically reduces the area of contact with high-surface-tension liquids, including, presumably, leafhopper exudates. PMID:23235705

  8. Electrophoresis experiment for space

    NASA Technical Reports Server (NTRS)

    Vanderhoff, J. W.; Micale, F. J.

    1976-01-01

    The Apollo 16 electrophoresis experiment was analyzed, demonstrating that the separation of the two different-size monodisperse latexes did indeed take place, but that the separation was obscured by the pronounced electroosmotic flow of the liquid medium. The results of this experiment, however, were dramatic since it is impossible to carry out a similar separation on earth. It can be stated unequivocally from this experiment that any electrophoretic separation will be enhanced under microgravity conditions. The only question is the degree of this enhancement, which can be expected to vary from one experimental technique to another. The low-electroosmotic-mobility coating (Z6040-MC) developed under this program was found to be suitable for a free-fluid electrophoretic separation such as the experiment designed for the ASTP flight. The problem with this coating, however, is that its permanency is limited because of the slow desorption of the methylcellulose from the coated surface.

  9. Spectroscopic ellipsometry investigation of the optical properties of graphene oxide dip-coated on magnetron sputtered gold thin films

    NASA Astrophysics Data System (ADS)

    Politano, Grazia Giuseppina; Vena, Carlo; Desiderio, Giovanni; Versace, Carlo

    2018-02-01

    Despite intensive investigations on graphene oxide-gold nanocomposites, the interaction of graphene oxide sheets with magnetron sputtered gold thin films has not been studied yet. The optical constants of graphene oxide thin films dip-coated on magnetron sputtered gold thin films were determined by spectroscopic ellipsometry in the [300-1000] wavelength range. Moreover, the morphologic properties of the samples were investigated by SEM analysis. Graphene oxide absorbs mainly in the ultraviolet region, but when it is dip-coated on magnetron sputtered gold thin films, its optical constants show dramatic changes, becoming absorbing in the visible region, with a peak of the extinction coefficient at 3.1 eV. Using magnetron sputtered gold thin films as a substrate for graphene oxide thin films could therefore be the key to enhance graphene oxide optical sheets' properties for several technological applications, preserving their oxygen content and avoiding the reduction process.

  10. Modelling of the luminescent properties of nanophosphor coatings with different porosity

    NASA Astrophysics Data System (ADS)

    Kubrin, R.; Graule, T.

    2016-10-01

    Coatings of Y2O3:Eu nanophosphor with the effective refractive index of 1.02 were obtained by flame aerosol deposition (FAD). High-pressure cold compaction decreased the layer porosity from 97.3 to 40 vol % and brought about dramatic changes in the photoluminescent performance. Modelling of interdependence between the quantum yield, decay time of luminescence, and porosity of the nanophosphor films required a few basic simplifying assumptions. We confirmed that the properties of porous nanostructured coatings are most appropriately described by the nanocrystal cavity model of the radiative decay. All known effective medium equations resulted in seemingly underestimated values of the effective refractive index. While the best fit was obtained with the linear permittivity mixing rule, the influence of further effects, previously not accounted for, could not be excluded. We discuss the peculiarities in optical response of nanophopshors and suggest the directions for future research.

  11. Studying Cancer Stem Cell Dynamics on PDMS Surfaces for Microfluidics Device Design

    PubMed Central

    Zhang, Weijia; Choi, Dong Soon; Nguyen, Yen H.; Chang, Jenny; Qin, Lidong

    2013-01-01

    This systematic study clarified a few interfacial aspects of cancer cell phenotypes on polydimethylsiloxane (PDMS) substrates and indicated that the cell phenotypic equilibrium greatly responds to cell-to-surface interactions. We demonstrated that coatings of fibronectin, bovine serum albumin (BSA), or collagen with or without oxygen-plasma treatments of the PDMS surfaces dramatically impacted the phenotypic equilibrium of breast cancer stem cells, while the variations of the PDMS elastic stiffness had much less such effects. Our results showed that the surface coatings of collagen and fibronectin on PDMS maintained breast cancer cell phenotypes to be nearly identical to the cultures on commercial polystyrene Petri dishes. The surface coating of BSA provided a weak cell-substrate adhesion that stimulated the increase in stem-cell-like subpopulation. Our observations may potentially guide surface modification approaches to obtain specific cell phenotypes. PMID:23900274

  12. Rheological and Thermal Properties of Bio-based Hyperbranched Polyesters

    NASA Astrophysics Data System (ADS)

    Bubeck, Robert; Dumitrascu, Adina; Zhang, Tracy; Smith, Patrick

    Hyperbranched poly(ester)s (HBPEs) of designed molecular structures and targeted molecular weight can be prepared from a variety of multi-functional acids and alcohols. These polymers find application in the areas of coatings and rheology modifiers for coatings. These functional polymers can be synthesized in variety of architectures, possessing either hydroxyl or carboxyl reactive end-groups suitable for the attachment of active entities. The rheological characteristics as related to variation in molecular structure were determined using cone and plate or couette geometries. Viscosities of the HBPEs were found to be near Newtonian. HB polymers permit the control of Tg that is not as readily attained with linear polymers. Accordingly, Tg and viscosity are affected little as a function of Mw but vary dramatically with the nature of the end-groups, are highly dependent on hydrogen bonding of the hydroxyl end groups, and decrease dramatically with the incorporation of aliphatic end-caps. The thermal properties and the degradation characteristics of the HBPEs were determined. Thermal degradation of the hydroxyl-terminal HBPEs is initiated by dehydrative ether formation (crosslinking) while decarboxylation is the initial decomposition event for the carboxyl-terminal polymers. Midland, MI Campus.

  13. [Chitosan-coated ophthalmic submicro emulsion for pilocarpine nitrate].

    PubMed

    Wei, Jun; He, Hong-Liang; Zheng, Chun-Li; Zhu, Jia-Bi

    2011-08-01

    The study is to design chitosan-coated pilocarpine nitrate submicro emulsion (CS-PN/SE) for the development of a novel mucoadhesive submicro emulsion, aiming to prolong the precorneal retention time and improve the ocular absorption. CS-PN/SE was fabricated in two steps: firstly, pilocarpine nitrate submicro emulsion (PN/SE) was prepared by high-speed shear with medium chain triglycerides (MCT) as oil phase and Tween 80 as the main emulsifier, and then incubated with chitosan (CS) acetic solution. The preparation process was optimized by central composite design-response surface methodology. Besides the particle size, zeta potential, entrapment efficiency and micromorphology were investigated, CS-PN/SE's precorneal residence properties and miotic effect were especially studied using New Zealand rabbits as the animal model. When CS-PN/SE was administered topically to rabbit eyes, the ocular clearance and the mean resident time (MRT) of pilocarpine nitrate were found to be dramatically improved (P < 0.05) compared with PN/SE and pilocarpine nitrate solution (PNs), since the K(CS-PN/SE) was declined to 0.006 4 +/- 0.000 3 min(-1) while MRT was prolonged up to 155.4 min. Pharmacodynamics results showed that the maximum miosis of CS-PN/SE was as high as 46.3%, while the miotic response lasted 480 min which is 255 min and 105 min longer than that of PNs and PN/SE, respectively. A larger area under the miotic percentage vs time curve (AUC) of CS-PN/SE was exhibited which is 1.6 folds and 1.2 folds as much as that of PNs and PN/SE, respectively (P < 0.05). Therefore, CS-PN/SE could enhance the duration of action and ocular bioavailability by improving the precorneal residence and ocular absorption significantly.

  14. Immobilization of hyaluronic acid on plasma-sprayed porous titanium coatings for improving biological properties.

    PubMed

    Ao, Haiyong; Xie, Youtao; Qin, An; Ji, Heng; Yang, Shengbing; Huang, Liping; Zheng, Xuebin; Tang, Tingting

    2014-01-01

    In the present study, hyaluronic acid (HyA) was covalently immobilized onto titanium coatings to improve their biological properties. Diffuse reflectance Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy were employed to characterize the HyA-modified titanium coating. HyA-modified titanium coatings possess better cell-material interaction, and human mesenchymal stem cells present good adhesive morphologies on the surface of TC-AAH. The results of subsequent cellular evaluation showed that the immobilization of HyA on titanium coatings could improve hMSC attachment, proliferation, and differentiation. In vivo evaluation of implants in rabbit femur condyle defect model showed improvements of early osseointegration and bone-to-implant contact of TC-AAH. In conclusion, immobilization of HyA could improve biological properties of titanium coatings.

  15. Improved stability and efficiency of perovskite solar cells with submicron flexible barrier films deposited in air

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rolston, Nicholas; Printz, Adam D.; Hilt, Florian

    Here in this paper, we report on submicron organosilicate barrier films produced rapidly in air by a scalable spray plasma process that improves both the stability and efficiency of perovskite solar cells. The plasma is at sufficiently low temperature to prevent damage to the underlying layers. Oxidizing species and heat from the plasma improve device performance by enhancing both interfacial contact and the conductivity of the hole transporting layer. The thickness of the barrier films is tunable and transparent over the entire visible spectrum. The morphology and density of the barrier are shown to improve with the addition of amore » fluorine-based precursor. Devices with submicron coatings exhibited significant improvements in stability, maintaining 92% of their initial power conversion efficiencies after more than 3000 h in dry heat (85 °C, 25% RH) while also being resistant to degradation under simulated operational conditions of continuous exposure to light, heat, and moisture. X-ray diffraction measurements performed while heating showed the barrier film dramatically slows the formation of PbI 2. The barrier films also are compatible with flexible devices, exhibiting no signs of cracking or delamination after 10000 bending cycles on a 127 μm substrate with a bending radius of 1 cm.« less

  16. Improved stability and efficiency of perovskite solar cells with submicron flexible barrier films deposited in air

    DOE PAGES

    Rolston, Nicholas; Printz, Adam D.; Hilt, Florian; ...

    2017-10-27

    Here in this paper, we report on submicron organosilicate barrier films produced rapidly in air by a scalable spray plasma process that improves both the stability and efficiency of perovskite solar cells. The plasma is at sufficiently low temperature to prevent damage to the underlying layers. Oxidizing species and heat from the plasma improve device performance by enhancing both interfacial contact and the conductivity of the hole transporting layer. The thickness of the barrier films is tunable and transparent over the entire visible spectrum. The morphology and density of the barrier are shown to improve with the addition of amore » fluorine-based precursor. Devices with submicron coatings exhibited significant improvements in stability, maintaining 92% of their initial power conversion efficiencies after more than 3000 h in dry heat (85 °C, 25% RH) while also being resistant to degradation under simulated operational conditions of continuous exposure to light, heat, and moisture. X-ray diffraction measurements performed while heating showed the barrier film dramatically slows the formation of PbI 2. The barrier films also are compatible with flexible devices, exhibiting no signs of cracking or delamination after 10000 bending cycles on a 127 μm substrate with a bending radius of 1 cm.« less

  17. Tracking delivery of a drug surrogate in the porcine heart using photoacoustic imaging and spectroscopy

    NASA Astrophysics Data System (ADS)

    Furdella, Kenneth J.; Witte, Russell S.; Vande Geest, Jonathan P.

    2017-04-01

    Although the drug-eluting stent (DES) has dramatically reduced the rate of coronary restenosis, it still occurs in up to 20% of patients with a DES. Monitoring drug delivery could be one way to decrease restenosis rates. We demonstrate real-time photoacoustic imaging and spectroscopy (PAIS) using a wavelength-tunable visible laser and clinical ultrasound scanner to track cardiac drug delivery. The photoacoustic signal was initially calibrated using porcine myocardial samples soaked with a known concentration of a drug surrogate (DiI). Next, an in situ coronary artery was perfused with DiI for 20 min and imaged to monitor dye transport in the tissue. Finally, a partially DiI-coated stent was inserted into the porcine brachiocephalic trunk for imaging. The photoacoustic signal was proportional to the DiI concentration between 2.4 and 120 μg/ml, and the dye was detected over 1.5 mm from the targeted coronary vessel. Photoacoustic imaging was also able to differentiate the DiI-coated portion of the stent from the uncoated region. These results suggest that PAIS can track drug delivery to cardiac tissue and detect drugs loaded onto a stent with sub-mm precision. Future work using PAIS may help improve DES design and reduce the probability of restenosis.

  18. A study on the electrical, optical, and physicochemical properties of poly(MMA-co-MAA)/ poly(3,4-ethylenedioxythiophene) hybrid thin films.

    PubMed

    Han, Yong-Hyeon; Kim, Hyeong Eun; Hwangbo, Kyung-Hee; Yim, Jin-Heong; Cho, Kuk Young

    2013-08-01

    Poly(3,4-ethylenedioxythiophene) (PEDOT) has good properties as a conductive polymer such as high conductivity, optical transmittance, and chemical stability, while offering relatively weak physicochemical properties. The main purpose of this paper is to improve physicochemical properties such as solvent resistance and pencil hardness of PEDOT. Carboxyl groups in the poly(MMA-co-MAA) polymer chains can effectively crosslink each other in the presence of aziridine, resulting in physicochemically robust PEDOT/poly(MMA-co-MAA) hybrid conductive films. The electrical conductivity, optical properties, and physicochemical properties of the hybrid conductive film were compared by varying the solid content and poly(MMA-co-MAA) portion in the coating precursor solution. From the results, the transparency and surface resistance of the hybrid film show a tendency to decrease with increasing solid content in the coating precursor. Moreover, solvent resistance and hardness were dramatically enhanced by hybridization of PEDOT and crosslinked poly(MMA-co-MAA) due to curing reactions between carboxyl groups. The chemical composition of 30 wt-% of poly(MMA-co-MAA) (MMA:MAA mole ratio 9:1) and 3 wt-% - 5 wt-% of aziridine yields the best physicochemical properties of poly(MMA-co-MAA)/PEDOT hybrid thin films.

  19. Advanced Low Conductivity Thermal Barrier Coatings: Performance and Future Directions (Invited paper)

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Miller, Robert A.

    2008-01-01

    Thermal barrier coatings will be more aggressively designed to protect gas turbine engine hot-section components in order to meet future engine higher fuel efficiency and lower emission goals. In this presentation, thermal barrier coating development considerations and performance will be emphasized. Advanced thermal barrier coatings have been developed using a multi-component defect clustering approach, and shown to have improved thermal stability and lower conductivity. The coating systems have been demonstrated for high temperature combustor applications. For thermal barrier coatings designed for turbine airfoil applications, further improved erosion and impact resistance are crucial for engine performance and durability. Erosion resistant thermal barrier coatings are being developed, with a current emphasis on the toughness improvements using a combined rare earth- and transition metal-oxide doping approach. The performance of the toughened thermal barrier coatings has been evaluated in burner rig and laser heat-flux rig simulated engine erosion and thermal gradient environments. The results have shown that the coating composition optimizations can effectively improve the erosion and impact resistance of the coating systems, while maintaining low thermal conductivity and cyclic durability. The erosion, impact and high heat-flux damage mechanisms of the thermal barrier coatings will also be described.

  20. Advanced Low Conductivity Thermal Barrier Coatings: Performance and Future Directions

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Miller, Robert A.

    2008-01-01

    Thermal barrier coatings will be more aggressively designed to protect gas turbine engine hot-section components in order to meet future engine higher fuel efficiency and lower emission goals. In this presentation, thermal barrier coating development considerations and performance will be emphasized. Advanced thermal barrier coatings have been developed using a multi-component defect clustering approach, and shown to have improved thermal stability and lower conductivity. The coating systems have been demonstrated for high temperature combustor applications. For thermal barrier coatings designed for turbine airfoil applications, further improved erosion and impact resistance are crucial for engine performance and durability. Erosion resistant thermal barrier coatings are being developed, with a current emphasis on the toughness improvements using a combined rare earth- and transition metal-oxide doping approach. The performance of the toughened thermal barrier coatings has been evaluated in burner rig and laser heat-flux rig simulated engine erosion and thermal gradient environments. The results have shown that the coating composition optimizations can effectively improve the erosion and impact resistance of the coating systems, while maintaining low thermal conductivity and cyclic durability. The erosion, impact and high heat-flux damage mechanisms of the thermal barrier coatings will also be described.

  1. Improved Photoresist Coating for Making CNT Field Emitters

    NASA Technical Reports Server (NTRS)

    Toda, Risaku; Manohara, Harish

    2009-01-01

    An improved photoresist-coating technique has been developed for use in the fabrication of carbon-nanotube- (CNT) based field emitters is described. The improved photoresist coating technique overcomes what, heretofore, has been a major difficulty in the fabrication process.

  2. Composite ceria-coated aerogels and methods of making the same

    DOEpatents

    Eyring, Edward M; Ernst, Richard D; Turpin, Gregory C; Dunn, Brian C

    2013-05-07

    Ceria-coated aerogels can include an aerogel support material having a stabilized ceria coating thereon. The ceria coating can be formed by solution or vapor deposition of alcogels or aerogels. Additional catalytic metal species can also be incorporated into the coating to form multi-metallic compounds having improved catalytic activity. Further, the ceria coated aerogels retain high surface areas at elevated temperatures. Thus, improvements in catalytic activity and thermal stability can be achieved using these ceria-coated composite aerogels.

  3. Microstructure and Antiwear Property of Laser Cladding Ni-Co Duplex Coating on Copper.

    PubMed

    Wang, Yiyong; Liang, Zhipeng; Zhang, Junwei; Ning, Zhe; Jin, Hui

    2016-07-28

    Ni-Co duplex coatings were cladded onto Cu to improve the antiwear properties of Cu products. Prior to laser cladding, n-Al₂O₃/Ni layers were introduced as interlayers between laser cladding coatings and Cu substrates to improve the laser absorptivity of these substrates and ensure defect-free laser cladding coatings. The structure and morphology of the coatings were characterized by scanning electron microscopy and optical microscopy, and the phases of the coatings were analyzed by X-ray diffraction. Their hardness was measured using a microhardness tester. Experimental results showed that defect-free composite coatings were obtained and that the coatings were metallurgically bonded to the substrates. The surface of the Ni-Co duplex coatings comprised a Co-based solid solution, Cr₇C₃, (Fe,Ni) 23 C₆, and other strengthening phases. The microhardness and wear resistance of the duplex coatings were significantly improved compared with the Cu substrates. The average microhardness of the cladded coatings was 845.6 HV, which was approximately 8.2 times greater than that of the Cu substrates (102.6 HV). The volume loss of the Cu substrates was approximately 7.5 times greater than that of the Ni-Co duplex coatings after 60 min of sliding wear testing. The high hardness of and lack of defects in the Ni-Co duplex coatings reduced the plastic deformation and adhesive wear of the Cu substrates, resulting in improved wear properties.

  4. Efficient perovskite light-emitting diodes featuring nanometre-sized crystallites

    NASA Astrophysics Data System (ADS)

    Xiao, Zhengguo; Kerner, Ross A.; Zhao, Lianfeng; Tran, Nhu L.; Lee, Kyung Min; Koh, Tae-Wook; Scholes, Gregory D.; Rand, Barry P.

    2017-01-01

    Organic-inorganic hybrid perovskite materials are emerging as highly attractive semiconductors for use in optoelectronics. In addition to their use in photovoltaics, perovskites are promising for realizing light-emitting diodes (LEDs) due to their high colour purity, low non-radiative recombination rates and tunable bandgap. Here, we report highly efficient perovskite LEDs enabled through the formation of self-assembled, nanometre-sized crystallites. Large-group ammonium halides added to the perovskite precursor solution act as a surfactant that dramatically constrains the growth of 3D perovskite grains during film forming, producing crystallites with dimensions as small as 10 nm and film roughness of less than 1 nm. Coating these nanometre-sized perovskite grains with longer-chain organic cations yields highly efficient emitters, resulting in LEDs that operate with external quantum efficiencies of 10.4% for the methylammonium lead iodide system and 9.3% for the methylammonium lead bromide system, with significantly improved shelf and operational stability.

  5. Multiwavelength laser light transmission of hollow optical fiber from the visible to the mid-infrared.

    PubMed

    Shi, Yi Wei; Ito, Kentaro; Matsuura, Yuji; Miyagi, Mitsunobu

    2005-11-01

    We report on low-loss multiwavelength laser delivery of hollow optical fiber in a wide wavelength region, from the visible to the infrared. Improved methods of liquid-phase coating were used to fabricate the hollow fiber with inner films of a silver and a cyclic olefin polymer (COP) layer. The surface roughness of the silver layer was reduced dramatically by pretreatment on the inner glass surface with an SnCl2 solution. The COP layer roughness was also decreased by using an ambient atmosphere of tetrahydrofuran (THF) solvent during the COP layer formation. Owing to the smooth surfaces, hollow fiber with optimum COP film thickness for CO2 laser light simultaneously yields low losses for a Er:YAG laser and a red pilot beam. The power durability of CO2 and Er:YAG lasers, as well as the loss properties for the pilot beam, is demonstrated.

  6. White butterflies as solar photovoltaic concentrators.

    PubMed

    Shanks, Katie; Senthilarasu, S; Ffrench-Constant, Richard H; Mallick, Tapas K

    2015-07-31

    Man's harvesting of photovoltaic energy requires the deployment of extensive arrays of solar panels. To improve both the gathering of thermal and photovoltaic energy from the sun we have examined the concept of biomimicry in white butterflies of the family Pieridae. We tested the hypothesis that the V-shaped posture of basking white butterflies mimics the V-trough concentrator which is designed to increase solar input to photovoltaic cells. These solar concentrators improve harvesting efficiency but are both heavy and bulky, severely limiting their deployment. Here, we show that the attachment of butterfly wings to a solar cell increases its output power by 42.3%, proving that the wings are indeed highly reflective. Importantly, and relative to current concentrators, the wings improve the power to weight ratio of the overall structure 17-fold, vastly expanding their potential application. Moreover, a single mono-layer of scale cells removed from the butterflies' wings maintained this high reflectivity showing that a single layer of scale cell-like structures can also form a useful coating. As predicted, the wings increased the temperature of the butterflies' thorax dramatically, showing that the V-shaped basking posture of white butterflies has indeed evolved to increase the temperature of their flight muscles prior to take-off.

  7. White butterflies as solar photovoltaic concentrators

    NASA Astrophysics Data System (ADS)

    Shanks, Katie; Senthilarasu, S.; Ffrench-Constant, Richard H.; Mallick, Tapas K.

    2015-07-01

    Man’s harvesting of photovoltaic energy requires the deployment of extensive arrays of solar panels. To improve both the gathering of thermal and photovoltaic energy from the sun we have examined the concept of biomimicry in white butterflies of the family Pieridae. We tested the hypothesis that the V-shaped posture of basking white butterflies mimics the V-trough concentrator which is designed to increase solar input to photovoltaic cells. These solar concentrators improve harvesting efficiency but are both heavy and bulky, severely limiting their deployment. Here, we show that the attachment of butterfly wings to a solar cell increases its output power by 42.3%, proving that the wings are indeed highly reflective. Importantly, and relative to current concentrators, the wings improve the power to weight ratio of the overall structure 17-fold, vastly expanding their potential application. Moreover, a single mono-layer of scale cells removed from the butterflies’ wings maintained this high reflectivity showing that a single layer of scale cell-like structures can also form a useful coating. As predicted, the wings increased the temperature of the butterflies’ thorax dramatically, showing that the V-shaped basking posture of white butterflies has indeed evolved to increase the temperature of their flight muscles prior to take-off.

  8. Coated foams, preparation, uses and articles

    DOEpatents

    Duchane, D.V.; Barthell, B.L.

    1982-10-21

    Hydrophobic cellular material is coated with a thin hydrophilic polymer skin which stretches tightly over the foam but which does not fill the cells of the foam, thus resulting in a polymer-coated foam structure having a smoothness which was not possible in the prior art. In particular, when the hydrophobic cellular material is a specially chosen hydrophobic polymer foam and is formed into arbitrarily chosen shapes prior to the coating with hydrophilic polymer, inertial confinement fusion (ICF) targets of arbitrary shapes can be produced by subsequently coating the shapes with metal or with any other suitable material. New articles of manufacture are produced, including improved ICF targets, improved integrated circuits, and improved solar reflectors and solar collectors. In the coating method, the cell size of the hydrophobic cellular material, the viscosity of the polymer solution used to coat, and the surface tension of the polymer solution used to coat are all very important to the coating.

  9. Thermal and Environmental Barrier Coatings for Advanced Propulsion Engine Systems

    NASA Technical Reports Server (NTRS)

    Zhu, Dong-Ming; Miller, Robert A.

    2004-01-01

    Ceramic thermal and environmental barrier coatings (TEBCs) are used in gas turbine engines to protect engine hot-section components in the harsh combustion environments, and extend component lifetimes. For future high performance engines, the development of advanced ceramic barrier coating systems will allow these coatings to be used to simultaneously increase engine operating temperature and reduce cooling requirements, thereby leading to significant improvements in engine power density and efficiency. In order to meet future engine performance and reliability requirements, the coating systems must be designed with increased high temperature stability, lower thermal conductivity, and improved thermal stress and erosion resistance. In this paper, ceramic coating design and testing considerations will be described for high temperature and high-heat-flux engine applications in hot corrosion and oxidation, erosion, and combustion water vapor environments. Further coating performance and life improvements will be expected by utilizing advanced coating architecture design, composition optimization, and improved processing techniques, in conjunction with modeling and design tools.

  10. Erosion resistance of arc-sprayed coatings to iron ore at 25 and 315 °C

    NASA Astrophysics Data System (ADS)

    Dallaire, S.; Levert, H.; Legoux, J.-G.

    2001-06-01

    Iron ore pellets are sintered and reduced in large continuous industrial oil-fired furnaces. From the furnace, powerful fans extract large volumes of hot gas. Being exposed to gas-borne iron ore particles and temperatures ranging between 125 and 328 °C, fan components are rapidly eroded. Extensive part repair or replacement is required for maintaining a profitable operation. The arc spraying technique has been suggested for repair provided it could produce erosion-resistant coatings. Conventional and cored wires (1.6 mm diameter) were arc sprayed using various spray parameters to produce 250 to 300 µm thick coatings. Arc-sprayed coatings and reference specimens were erosion tested at 25 and 315 °C and impact angles of 25 and 90° in a laboratory gas-blast erosion rig. This device was designed to impact materials with coarse (32 to 300 µm) iron ore particles at a speed of 100 m/s. The coating volume loss due to erosion was measured with a laser profilometer built by National Research Council Canada several years ago. Few arc-sprayed coatings exhibited erosion resistance comparable with structural steel at low impact angles. Erosion of arc-sprayed coatings and reference specimens dramatically increases at 315 °C for both 25° and 90° impact angles. Erosion-enhanced oxidation was found to be responsible for the increase in volume loss above room temperature. Though arc spraying can be appropriate for on-site repair, the development of more erosion-resistant coatings is required for intermediate temperatures.

  11. A comparative study of Cr-X-N (X=Zr, Si) coatings for the improvement of the low-speed torque efficiency of a hydraulic piston pump

    NASA Astrophysics Data System (ADS)

    Hong, Yeh-Sun; Lee, Sang-Yul

    2008-02-01

    The internal parts of hydraulic pumps operating at variable speed should be protected from insufficient lubrication. The axial piston type pumps employ a steel-base cylinder barrel rotating on a soft bronze valves plate with a slide contact, where the insufficient lubrication of these components can cause rapid wear of the valve plate and increase the friction loss. In this study, the cylinder barrel surface was deposited with CrZrN coatings, which were expected to improve the tribological contact with a valve plate under low-speed mixed lubrication conditions. Its effect on the improvement of the low-speed torque efficiency of a hydraulic piston pump was investigated and compared with that from the CrSiN coating. The coated cylinder barrels showed much lower friction coefficients and wear rates of the valve plates than the uncoated plasma-nitride one. In particular, the CrZrN coatings revealed better performance than the CrSiN coatings. By representing the improvement in the torque efficiency of the whole pump based upon the degree of the friction coefficient reduction, the CrZrN coatings exhibited approximately a 0.35% higher improvement at 300 bar and 100 rpm than CrSiN coatings. The possible failure modes of the coatings coated on the barrel were sugested and the microstructures of the coatings seemed to have a strong effect on the film failure mode.

  12. Abnormal crystal growth in CH 3NH 3PbI 3-xCl x using a multi-cycle solution coating process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Qingfeng; Yuan, Yongbo; Shao, Yuchuan

    2015-06-23

    Recently, the efficiency of organolead trihalide perovskite solar cells has improved greatly because of improved material qualities with longer carrier diffusion lengths. Mixing chlorine in the precursor for mixed halide films has been reported to dramatically enhance the diffusion lengths of mixed halide perovskite films, mainly as a result of a much longer carrier recombination lifetime. Here we report that adding Cl containing precursor for mixed halide perovskite formation can induce the abnormal grain growth behavior that yields well-oriented grains accompanied by the appearance of some very large size grains. The abnormal grain growth becomes prominent only after multi-cycle coatingmore » of MAI : MACl blend precursor. The large grain size is found mainly to contribute to a longer carrier charge recombination lifetime, and thus increases the device efficiency to 18.9%, but without significantly impacting the carrier transport property. As a result, the strong correlation identified between material process and morphology provides guidelines for future material optimization and device efficiency enhancement.« less

  13. Development of improved-durability plasma sprayed ceramic coatings for gas turbine engines

    NASA Technical Reports Server (NTRS)

    Sumner, I. E.; Ruckle, D. L.

    1980-01-01

    As part of a NASA program to reduce fuel consumption of current commercial aircraft engines, methods were investigated for improving the durability of plasma sprayed ceramic coatings for use on vane platforms in the JT9D turbofan engine. Increased durability concepts under evaluation include use of improved strain tolerant microstructures and control of the substrate temperature during coating application. Initial burner rig tests conducted at temperatures of 1010 C (1850 F) indicate that improvements in cyclic life greater than 20:1 over previous ceramic coating systems were achieved. Three plasma sprayed coating systems applied to first stage vane platforms in the high pressure turbine were subjected to a 100-cycle JT9D engine endurance test with only minor damage occurring to the coatings.

  14. Ceramic thermal barrier coatings for commercial gas turbine engines

    NASA Technical Reports Server (NTRS)

    Meier, Susan Manning; Gupta, Dinesh K.; Sheffler, Keith D.

    1991-01-01

    The paper provides an overview of the short history, current status, and future prospects of ceramic thermal barrier coatings for gas turbine engines. Particular attention is given to plasma-sprayed and electron beam-physical vapor deposited yttria-stabilized (7 wt pct Y2O3) zirconia systems. Recent advances include improvements in the spallation life of thermal barrier coatings, improved bond coat composition and spraying techniques, and improved component design. The discussion also covers field experience, life prediction modeling, and future directions in ceramic coatings in relation to gas turbine engine design.

  15. A systemic study on key parameters affecting nanocomposite coatings on magnesium substrates.

    PubMed

    Johnson, Ian; Wang, Sebo Michelle; Silken, Christine; Liu, Huinan

    2016-05-01

    Nanocomposite coatings offer multiple functions simultaneously to improve the interfacial properties of magnesium (Mg) alloys for skeletal implant applications, e.g., controlling the degradation rate of Mg substrates, improving bone cell functions, and providing drug delivery capability. However, the effective service time of nanocomposite coatings may be limited due to their early delamination from the Mg-based substrates. Therefore, the objective of this study was to address the delamination issue of nanocomposite coatings, improve the coating properties for reducing the degradation of Mg-based substrates, and thus improve their cytocompatibility with bone marrow derived mesenchymal stem cells (BMSCs). The surface conditions of the substrates, polymer component type of the nanocomposite coatings, and post-deposition processing are the key parameters that contribute to the efficacy of the nanocomposite coatings in regulating substrate degradation and bone cell responses. Specifically, the effects of metallic surface versus alkaline heat-treated hydroxide surface of the substrates on coating quality were investigated. For the nanocomposite coatings, nanophase hydroxyapatite (nHA) was dispersed in three types of biodegradable polymers, i.e., poly(lactic-co-glycolic acid) (PLGA), poly(l-lactic acid) (PLLA), or poly(caprolactone) (PCL) to determine which polymer component could provide integrated properties for slowest Mg degradation. The nanocomposite coatings with or without post-deposition processing, i.e., melting, annealing, were compared to determine which processing route improved the properties of the nanocomposite coatings most significantly. The results showed that optimizing the coating processes addressed the delamination issue. The melted then annealed nHA/PCL coating on the metallic Mg substrates showed the slowest degradation and the best coating adhesion, among all the combinations of conditions studied; and, it improved the adhesion density of BMSCs. This study elucidated the key parameters for optimizing nanocomposite coatings on Mg-based substrates for skeletal implant applications, and provided rational design guidelines for the nanocomposite coatings on Mg alloys for potential clinical translation of biodegradable Mg-based implants. This manuscript describes the systemic optimization of nanocomposite coatings to control the degradation and bioactivity of magnesium for skeletal implant applications. The key parameters influencing the integrity and functions of the nanocomposite coatings on magnesium were identified, guidelines for the optimization of the coatings were established, and the benefits of coating optimization were demonstrated through reduced magnesium degradation and increased bone marrow derived mesenchymal stem cell (BMSC) adhesion in vitro. The guidelines developed in this manuscript are valuable for the biometal field to improve the design of bioresorbable implants and devices, which will advance the clinical translation of magnesium-based implants. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  16. Improving oxidation resistance and thermal insulation of thermal barrier coatings by intense pulsed electron beam irradiation

    NASA Astrophysics Data System (ADS)

    Mei, Xianxiu; Liu, Xiaofei; Wang, Cunxia; Wang, Younian; Dong, Chuang

    2012-12-01

    In this paper, intense pulsed electron beam was used for the irradiation treatment of 6-8% Y2O3-stablized ZrO2 thermal barrier coating prepared by electron beam-physical vapor deposition to achieve the "sealing" of columnar crystals, thus improving their thermal insulation properties and high temperature oxidation resistance. The electron beam parameters used were: pulse duration 200 μs, electron voltage 15 kV, energy density 3, 5, 8, 15, 20 J/cm2, and pulsed numbers 30. 1050 °C cyclic oxidation and static oxidation experiments were used for the research on oxidation resistance of the coatings. When the energy density of the electron beam was larger than 8 J/cm2, ZrO2 ceramic coating surface was fully re-melted and became smooth, dense and shiny. The coating changed into a smooth polycrystalline structure, thus achieving the "sealing" effect of the columnar crystals. After irradiations with the energy density of 8-15 J/cm2, the thermally grown oxide coating thickness decreased significantly in comparison with non-irradiated coatings, showing that the re-melted coating improved the oxidation resistance of the coatings. The results of thermal diffusivity test by laser flash method showed that the thermal diffusion rate of the irradiated coating was lower than that of the coating without irradiation treatment, and the thermal insulation performance of irradiated coating was improved.

  17. Impact-Resistant Ceramic Coating

    NASA Technical Reports Server (NTRS)

    Wheeler, W. H.; Creedon, J. F.; Izu, Y. D.

    1986-01-01

    Refractory fibers more than double strength of coating. Impact strengths of ceramic coatings increase with increasing whisker content. Silicon carbide whiskers clearly produce largest increase, and improvement grows even more with high-temperature sintering. Coating also improves thermal and mechanical properties of electromagnetic components, mirrors, furnace linings, and ceramic parts of advanced internal-combustion engines.

  18. Microstructure and Antiwear Property of Laser Cladding Ni–Co Duplex Coating on Copper

    PubMed Central

    Wang, Yiyong; Liang, Zhipeng; Zhang, Junwei; Ning, Zhe; Jin, Hui

    2016-01-01

    Ni–Co duplex coatings were cladded onto Cu to improve the antiwear properties of Cu products. Prior to laser cladding, n-Al2O3/Ni layers were introduced as interlayers between laser cladding coatings and Cu substrates to improve the laser absorptivity of these substrates and ensure defect-free laser cladding coatings. The structure and morphology of the coatings were characterized by scanning electron microscopy and optical microscopy, and the phases of the coatings were analyzed by X-ray diffraction. Their hardness was measured using a microhardness tester. Experimental results showed that defect-free composite coatings were obtained and that the coatings were metallurgically bonded to the substrates. The surface of the Ni–Co duplex coatings comprised a Co-based solid solution, Cr7C3, (Fe,Ni)23C6, and other strengthening phases. The microhardness and wear resistance of the duplex coatings were significantly improved compared with the Cu substrates. The average microhardness of the cladded coatings was 845.6 HV, which was approximately 8.2 times greater than that of the Cu substrates (102.6 HV). The volume loss of the Cu substrates was approximately 7.5 times greater than that of the Ni–Co duplex coatings after 60 min of sliding wear testing. The high hardness of and lack of defects in the Ni–Co duplex coatings reduced the plastic deformation and adhesive wear of the Cu substrates, resulting in improved wear properties. PMID:28773755

  19. High velocity pulsed wire-arc spray

    NASA Technical Reports Server (NTRS)

    Kincaid, Russell W. (Inventor); Witherspoon, F. Douglas (Inventor); Massey, Dennis W. (Inventor)

    1999-01-01

    Wire arc spraying using repetitively pulsed, high temperature gas jets, usually referred to as plasma jets, and generated by capillary discharges, substantially increases the velocity of atomized and entrained molten droplets. The quality of coatings produced is improved by increasing the velocity with which coating particles impact the coated surface. The effectiveness of wire-arc spraying is improved by replacing the usual atomizing air stream with a rapidly pulsed high velocity plasma jet. Pulsed power provides higher coating particle velocities leading to improved coatings. 50 micron aluminum droplets with velocities of 1500 m/s are produced. Pulsed plasma jet spraying provides the means to coat the insides of pipes, tubes, and engine block cylinders with very high velocity droplet impact.

  20. Reducing the effects of X-ray pre-heat in double shell NIF capsules by over-coating the high Z shell

    NASA Astrophysics Data System (ADS)

    Wilson, Douglas; Milovich, J. L.; Daughton, W. S.; Loomis, E. N.; Sauppe, J. P.; Dodd, E. S.; Merritt, E. C.; Montgomery, D. S.; Renner, D. B.; Haines, B. M.; Cardenas, T.; Desjardins, T.; Palaniyappan, S.; Batha, S. H.

    2017-10-01

    Hohlraum generated X-rays will penetrate the ablator of a double shell capsule and be absorbed in the outer surface of the inner capsule. The ablative pressure this generates drives a shock into the central fuel, and a reflected shock that reaches the inner high-Z shell surface before the main shock even enters the fuel. With a beryllium over-coat preheat X-rays deposit just inside the beryllium/high z interface. The beryllium tamps the preheat expansion, eliminating ablation, and dramatically reducing pressure. The slow shock or pressure wave it generates is then overtaken by the main shock, avoiding an early shock in the fuel and increasing capsule yield.

  1. The Development of Erosion and Impact Resistant Turbine Airfoil Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Miller, Robert A.

    2007-01-01

    Thermal barrier coatings are used in gas turbine engines to protect engine hot-section components in the harsh combustion environments and extend component lifetimes. For thermal barrier coatings designed for turbine airfoil applications, further improved erosion and impact resistance are crucial for engine performance and durability. Advanced erosion resistant thermal barrier coatings are being developed, with a current emphasis on the toughness improvements using a combined rare earth- and transition metal-oxide doping approach. The performance of the doped thermal barrier coatings has been evaluated in burner rig and laser heat-flux rig simulated engine erosion and thermal gradient environments. The results have shown that the coating composition optimizations can effectively improve the erosion and impact resistance of the coating systems, while maintaining low thermal conductivity and cyclic durability. The erosion and impact damage mechanisms of the thermal barrier coatings will also be discussed.

  2. Electrophoretic deposition of double-layer HA/Al composite coating on NiTi.

    PubMed

    Karimi, Esmaeil; Khalil-Allafi, Jafar; Khalili, Vida

    2016-01-01

    In order to improve the bioactivity of NiTi alloys, which are being known as the suitable materials for biomedical applications, numerous NiTi disks were electrophoretically coated by hetero-coagulated hydroxyapatite/aluminum composite coatings in three main voltages from suspensions with different Al concentrations. In this paper, the amount of Ni ions release and bioactivity of prepared samples as well as bonding strength of the coating to substrate were investigated. The surface characterization of the coating by XRD, EDX, SEM, and FTIR showed that HA particles bonded by Al particles. It caused the formation of a free crack coating on NiTi disks. Moreover, the bonding strength of HA/Al coatings to NiTi substrate were improved by two times as compared to that of the pure HA coatings. Immersing of coated samples in SBF for 1 week showed that apatite formation ability was improved on HA/Al composite coating and Ni ions release from the surface of composite coating decreased. These results induce the appropriate bioactivity and biocompatibility of the deposited HA/Al composite coatings on NiTi disks. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Improving Erosion Resistance of Plasma-Sprayed Ceramic Coatings by Elevating the Deposition Temperature Based on the Critical Bonding Temperature

    NASA Astrophysics Data System (ADS)

    Yao, Shu-Wei; Yang, Guan-Jun; Li, Cheng-Xin; Li, Chang-Jiu

    2018-01-01

    Interlamellar bonding within plasma-sprayed coatings is one of the most important factors dominating the properties and performance of coatings. The interface bonding between lamellae significantly influences the erosion behavior of plasma-sprayed ceramic coatings. In this study, TiO2 and Al2O3 coatings with different microstructures were deposited at different deposition temperatures based on the critical bonding temperature concept. The erosion behavior of ceramic coatings was investigated. It was revealed that the coatings prepared at room temperature exhibit a typical lamellar structure with numerous unbonded interfaces, whereas the coatings deposited at the temperature above the critical bonding temperature present a dense structure with well-bonded interfaces. The erosion rate decreases sharply with the improvement of interlamellar bonding when the deposition temperature increases to the critical bonding temperature. In addition, the erosion mechanisms of ceramic coatings were examined. The unbonded interfaces in the conventional coatings act as pre-cracks accelerating the erosion of coatings. Thus, controlling interlamellar bonding formation based on the critical bonding temperature is an effective approach to improve the erosion resistance of plasma-sprayed ceramic coatings.

  4. Improving the tribological and corrosive properties of MoS2-based coatings by dual-doping and multilayer construction

    NASA Astrophysics Data System (ADS)

    Shang, Kedong; Zheng, Shaoxian; Ren, Siming; Pu, Jibin; He, Dongqing; Liu, Shuan

    2018-04-01

    The pure MoS2 coating always performs high friction coefficient and short service life when used in high humidity or after long-time storage in humid atmospheric environment. In this study, the MoS2/Pb-Ti composite and MoS2/Pb-Ti multilayer coatings are deposited to improve the corrosion resistance in 3.5 wt% NaCl solution and tribological performance in high humidity condition. The electrochemical impedance spectra and salt spray test shown that the MoS2/Pb-Ti composite and multilayer coatings can inhibit the permeation of oxygen and other corrosive elements, thus resulting a high corrosion resistance. Furthermore, compared with pure MoS2 coating, the tribological performance of the MoS2/Pb-Ti composite and multilayer coatings is also improved significantly owing to the high mechanical properties and compact structure. Moreover, the heterogenous interfaces in MoS2/Pb-Ti multilayer coating play an important role to improve the corrosion resistance and tribological performance of coatings. Overall, the dual-doping and multilayer construction are promising approaches to design the MoS2 coatings as the environmentally adaptive lubricants.

  5. Improved irradiation tolerance of reactive gas pulse sputtered TiN coatings with a hybrid architecture of multilayered and compositionally graded structures

    NASA Astrophysics Data System (ADS)

    Liang, Wei; Yang, Jijun; Zhang, Feifei; Lu, Chenyang; Wang, Lumin; Liao, Jiali; Yang, Yuanyou; Liu, Ning

    2018-04-01

    This study investigates the improved irradiation tolerance of reactive gas pulse (RGP) sputtered TiN coatings which has hybrid architecture of multilayered and compositionally graded structures. The multilayered RGP-TiN coating is composed of hexagonal close-packed Ti phase and face-centred cubic TiN phase sublayers, where the former sublayer has a compositionally graded structure and the latter one maintains constant stoichiometric atomic ratio of Ti:N. After 100 keV He ion irradiation, the RGP-TiN coating exhibits improved irradiation resistance compared with its single layered (SL) counterpart. The size and density of He bubbles are smaller in the RGP-TiN coating than in the SL-TiN coating. The irradiation-induced surface blistering of the coatings shows a similar tendency. Meanwhile, the irradiation hardening and adhesion strength of the RGP-TiN coatings were not greatly affected by He irradiation. Moreover, the irradiation damage tolerance of the coatings can be well tuned by changing the undulation period number of N2 gas flow rate. Detailed analysis suggested that this improved irradiation tolerance could be related to the combined contribution of the multilayered and compositionally graded structures.

  6. In-Service Evaluation of HVOF Coated Main Landing Gear on Navy P-3 Aircraft

    NASA Technical Reports Server (NTRS)

    Devereaux, jon L.; Forrest, Clint

    2008-01-01

    Due to the environmental and health concerns with Electroplated Hard Chrome (EHC), the Hard Chrome Alternatives Team (HCAT) has been working to provide an alternative wear coating for EHC. The US Navy selected Tungsten-Carbide Cobalt (WC- 17Co) High Velocity Oxy-Fuel (HVOF) thermal spray coating for this purpose and completed service evaluations on select aircraft components to support the HCAT charter in identifying an alternative wear coating for chrome plating. Other benefits of WC-Co thermal spray coatings over EHC are enhanced corrosion resistance, improved durability, and exceptional wear properties. As part of the HCAT charter and to evaluate HVOF coatings on operational Navy components, the P-3 aircraft was selected for a service evaluation to determine the coating durability as compared to chrome plating. In April 1999, a VP-30 P-3 aircraft was outfitted with a right-hand Main Landing Gear (MLG) shock strut coated with WCCo HYOF thermal spray applied to the piston barrel and four axle journals. The HVOF coating on the piston barrel and axle journals was applied by Southwest United Industries, Inc. This HVOF coated strut assembly has since completed 6,378 landings. Teardown analysis .for this WC-Co HVOF coated MLG asset is significant in assessing the durability of this wear coating in service relative to EHC and to substantiate Life Cycle Cost (LCC) data to support a retrograde transition from EHC to HVOF thermal spray coatings. Findings from this teardown analysis may also benefit future transitions to HVOF thermal spray coatings by identifying enhancements to finishing techniques, mating bearing and liner material improvements, improved seal materials, and improvements in HVOF coating selection.

  7. A bioplastic-based seed coating improves seedling growth and reduces production of coated seed dust. Journal of Crop Improvement

    USDA-ARS?s Scientific Manuscript database

    Although recently introduced, film-coating of agronomic seeds is now widely accepted in modern agriculture as an effective technology for protecting germinating seeds and seedlings. These experiments explored the possibility of using a bioplastic-based formulation to film-coat corn (maize) and cano...

  8. High-quality substrate for fluorescence enhancement using agarose-coated silica opal film.

    PubMed

    Xu, Ming; Li, Juan; Sun, Liguo; Zhao, Yuanjin; Xie, Zhuoying; Lv, Linli; Zhao, Xiangwei; Xiao, Pengfeng; Hu, Jing; Lv, Mei; Gu, Zhongze

    2010-08-01

    To improve the sensitivity of fluorescence detection in biochip, a new kind of substrates was developed by agarose coating on silica opal film. In this study, silica opal film was fabricated on glass substrate using the vertical deposition technique. It can provide stronger fluorescence signals and thus improve the detection sensitivity. After coating with agarose, the hybrid film could provide a 3D support for immobilizing sample. Comparing with agarose-coated glass substrate, the agarose-coated opal substrates could selectively enhance particular fluorescence signals with high sensitivity when the stop band of the silica opal film in the agarose-coated opal substrate overlapped the fluorescence emission wavelength. A DNA hybridization experiment demonstrated that fluorescence intensity of special type of agarose-coated opal substrates was about four times that of agarose-coated glass substrate. These results indicate that the optimized agarose-coated opal substrate can be used for improving the sensitivity of fluorescence detection with high quality and selectivity.

  9. Vacuum plasma coatings for turbine blades

    NASA Technical Reports Server (NTRS)

    Holmes, R. R.

    1985-01-01

    Turbine blades, vacuum plasma spray coated with NiCrAlY, CoCrAlY or NiCrAlY/Cr2O3, were evaluated and rated superior to standard space shuttle main engine (SSME) coated blades. Ratings were based primarily on 25 thermal cycles in the MSFC Burner Rig Tester, cycling between 1700 F (gaseous H2) and -423 F (liquid H2). These tests showed no spalling on blades with improved vacuum plasma coatings, while standard blades spalled. Thermal barrier coatings of ZrO2, while superior to standard coatings, lacked the overall performance desired. Fatigue and tensile specimens, machined from MAR-M-246(Hf) test bars identical to the blades were vacuum plasma spray coated, diffusion bond treated, and tested to qualify the vacuum plasma spray process for flight hardware testing and application. While NiCrAlY/Cr2O3 offers significant improvement over standard coatings in durability and thermal protection, studies continue with an objective to develop coatings offering even greater improvements.

  10. Characterization of surface modified polyester fabric.

    PubMed

    Joseph, Roy; Shelma, R; Rajeev, A; Muraleedharan, C V

    2009-12-01

    Woven polyethylene terephthalate (PET) fabric has been used in the construction of vascular grafts and sewing ring of prosthetic heart valves. In an effort to improve haemocompatibility and tissue response to PET fabric, a fluoropolymer, polyvinylidine fluoride (PVDF), was coated on PET fabric by dip coating technique. The coating was found to be uniform and no significant changes occurred on physical properties such as water permeability and burst strength. Cell culture cytotoxicity studies showed that coated PET was non-cytotoxic to L929 fibroblast cell lines. In vitro studies revealed that coating improved haemocompatibility of PET fabric material. Coating reduced platelet consumption of PET fabric by 50%. Upon surface modification leukocyte consumption of PET was reduced by 24%. About 60% reduction in partial thromboplastin time (PTT) observed when PET was coated with PVDF. Results of endothelial cell proliferation studies showed that surface coating did not have any substantial impact on cell proliferation. Overall results indicate that coating has potential to improve haemocompatibility of PET fabric without affecting its mechanical performance.

  11. Light Management in Flexible Glass by Wood Cellulose Coating

    PubMed Central

    Fang, Zhi-Qiang; Zhu, Hong-Li; Li, Yuan-Yuan; Liu, Zhen; Dai, Jia-Qi; Preston, Colin; Garner, Sean; Cimo, Pat; Chai, Xin-Sheng; Chen, Gang; Hu, Liang-Bing

    2014-01-01

    Ultra-thin flexible glass with high transparency is attractive for a broad range of display applications; however, substrates with low optical haze are not ideal for thin film solar cells, since most of the light will go through the semiconductor layer without scattering, and the length of light travelling path in the active layer is small. By simply depositing a layer of TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl radical)-oxidized wood fibers (TOWFs), we are able to tailor the optical properties of flexible glass dramatically from exhibiting low haze (<1%) to high haze (~56%) without compromising the total forward transmittance (~90%). The influence of the TOWFs morphology on the optical properties of TOWFs-coated flexible glass is investigated. As the average fiber length decreases, the transmission haze of TOWF-coated flexible glass illustrates a decreasing trend. Earth-abundant natural materials for transparent, hazy, and flexible glass have tremendous applicability in the fabrication of flexible optoelectronics with tunable light scattering effects by enabling inexpensive and large-scale processes. PMID:25068486

  12. Thermal barrier coating on high temperature industrial gas turbine engines

    NASA Technical Reports Server (NTRS)

    Carlson, N.; Stoner, B. L.

    1977-01-01

    The thermal barrier coating used was a yttria stabilized zirconia material with a NiCrAlY undercoat, and the base engine used to establish improvements was the P&WA FT50A-4 industrial gas turbine engine. The design benefits of thermal barrier coatings include simplified cooling schemes and the use of conventional alloys in the engine hot section. Cooling flow reductions and improved heating rates achieved with thermal barrier coating result in improved performance. Economic benefits include reduced power production costs and reduced fuel consumption. Over the 30,000 hour life of the thermal barrier coated parts, fuel savings equivalent to $5 million are projected and specific power (megawatts/mass of engine airflow) improvements on the order of 13% are estimated.

  13. Characterizing Sintered Nano-Hydroxyapatite Sol-Gel Coating Deposited on a Biomedical Ti-Zr-Nb Alloy

    NASA Astrophysics Data System (ADS)

    Jafari, Hassan; Hessam, Hamid; Shahri, Seyed Morteza Ghaffari; Assadian, Mahtab; Shairazifard, Shahin Hamtaie Pour; Idris, Mohd Hasbullah

    2016-03-01

    In this study, sol-gel dip-coating method was used to coat nano-hydroxyapatite on specimens of Ti-14Zr-13Nb alloy for orthopedic applications. The coated specimens were sintered at three different temperatures and time spans to evaluate the impact of sintering process on microstructure, mechanical, bio-corrosion, and bioactivity properties of the coating. Field-emission scanning electron microscopy and x-ray diffraction were used to analyze the coating microstructure. Coating adhesion and mechanical performance were also investigated by scratch testing. Besides, electrochemical corrosion and immersion tests were performed in simulated body fluid to examine the sintering effect on corrosion performance and bioactivity of the coatings, respectively. The evaluations of coated specimens displayed that sintering at elevated temperatures leads to higher surface integrity and improves crystallinity of the nano-hydroxyapatite to approximately 89% which brings about distinctively enhanced mechanical properties. Similarly, it improved the corrosion rate for about 17 times through sintering at 700 °C. Immersion test proved that the coating increased the bioactivity resulted from the dissolution of calcium phosphates into the corresponding environment. It is noticeable that sintering the dip-coated specimens in the nano-hydroxyapatite improves corrosion performance and maintains bioactive behaviors as well.

  14. Improvement of Interaction in a Composite Structure by Using a Sol-Gel Functional Coating on Carbon Fibers.

    PubMed

    Szczurek, Anna; Barcikowski, Michał; Leluk, Karol; Babiarczuk, Bartosz; Kaleta, Jerzy; Krzak, Justyna

    2017-08-25

    The modification of carbon fibers for improving adhesion between fibers and an epoxy resin in composite materials has become the focus of attention. In this work the carbon fiber coating process has been devised in a way preventing the stiffening and clumping of fibers. To improve interactions between coated fibers and a resin in composites, four types of silica coatings with different organic functional groups (3-aminopropyl-coating 1, 3-mercaptopropyl-coating 2, 2-(3,4-epoxycyclohexyl) ethyl-coating 3, methyl-coating 4) were obtained. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to distinguish the changes of a carbon fibers surface after coating deposition. The thickness of the obtained coatings, including the diversity of thickness, was determined by transmission electron microscopy (TEM). The increase in surface free energy (SFE) of modified fibers, including the distinction between the polar and dispersive parts, was examined by wettability measurements using a tensometric test. The developed coating preparation process allowed to cover fibers separately with nanoscale silica layers, which changed their morphology. The introduction of organic functional groups resulted in surface free energy changes, especially an increase in specific polar surface energy components.

  15. Improvement of Interaction in a Composite Structure by Using a Sol-Gel Functional Coating on Carbon Fibers

    PubMed Central

    Barcikowski, Michał; Leluk, Karol; Babiarczuk, Bartosz; Kaleta, Jerzy

    2017-01-01

    The modification of carbon fibers for improving adhesion between fibers and an epoxy resin in composite materials has become the focus of attention. In this work the carbon fiber coating process has been devised in a way preventing the stiffening and clumping of fibers. To improve interactions between coated fibers and a resin in composites, four types of silica coatings with different organic functional groups (3-aminopropyl–coating 1, 3-mercaptopropyl–coating 2, 2-(3,4-epoxycyclohexyl) ethyl–coating 3, methyl–coating 4) were obtained. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to distinguish the changes of a carbon fibers surface after coating deposition. The thickness of the obtained coatings, including the diversity of thickness, was determined by transmission electron microscopy (TEM). The increase in surface free energy (SFE) of modified fibers, including the distinction between the polar and dispersive parts, was examined by wettability measurements using a tensometric test. The developed coating preparation process allowed to cover fibers separately with nanoscale silica layers, which changed their morphology. The introduction of organic functional groups resulted in surface free energy changes, especially an increase in specific polar surface energy components. PMID:28841187

  16. The Addition of Graphene to Polymer Coatings for Improved Weathering

    DOE PAGES

    Nuraje, Nurxat; Khan, Shifath I.; Misak, Heath; ...

    2013-01-01

    Graphene nanoflakes in different weight percentages were added to polyurethane top coatings, and the coatings were evaluated relative to exposure to two different experimental conditions: one a QUV accelerated weathering cabinet, while the other a corrosion test carried out in a salt spray chamber. After the exposure tests, the surface morphology and chemical structure of the coatings were investigated via atomic force microscopy (AFM) and Fourier transform infrared (FTIR) imaging. Our results show that the addition of graphene does in fact improve the resistance of the coatings against ultraviolet (UV) degradation and corrosion. It is believed that this process willmore » improve the properties of the polyurethane top coating used in many industries against environmental factors.« less

  17. Coating Life Prediction

    NASA Technical Reports Server (NTRS)

    Nesbitt, J. A.; Gedwill, M. A.

    1984-01-01

    Hot-section gas-turbine components typically require some form of coating for oxidation and corrosion protection. Efficient use of coatings requires reliable and accurate predictions of the protective life of the coating. Currently engine inspections and component replacements are often made on a conservative basis. As a result, there is a constant need to improve and develop the life-prediction capability of metallic coatings for use in various service environments. The purpose of this present work is aimed at developing of an improved methodology for predicting metallic coating lives in an oxidizing environment and in a corrosive environment.

  18. Polymer brush coatings for DNA: fundamental polymer physics and nanofabrication applications

    NASA Astrophysics Data System (ADS)

    de Vries, Renko

    Recombinant DNA technology allows for the production of precisely defined self-assembling protein-based polymers. So far, the major applications for such protein-based polymers have been self-assembling hydrogels and micellar structures with biomedical application. Inspired by minimal models for the self-ssembly of rod-shaped viruses such as the tobacco mosaic virus, I have developed protein-polymers that co-assemble with DNA into rod-shaped virus-like particles, and protein-polymers that provide brush coatings around single DNA molecules. In this presentation I will focus on the latter, showing that on the one hand brush coated DNA is a rich model system for exploring the physics of bottle-brush polymers, while on the other hand brush coatings of DNA can also play an important practical role in nanofabrication. A key problem in the physics of bottle-brush polymers that I will address is the scale-dependence of bottle-brush elasticity. For long-wavelength thermal deformations probed by AFM imaging I will demonstrate that there is significant stiffening due to the brush coating, while for short wavelength thermal deformations probed by force spectroscopy, we find that stiffening due to the brush coating disappears completely. DNA brush coatings can also play an important practical role in nanofabrication by acting as a compatibilizer between chemically different building blocks. I will explore the example of DNA origami in combination with gold nanoparticles: while Mg2+ ions and high concentrations of monovalent salts are crucial for the stability of DNA origami, such solution conditions are typically incompatible with the colloidal stability of gold nanoparticles.I will show how DNA brush coatings can dramatically enhance the yield of formation of isolated DNA-gold nanoparticle composite nanostructures.

  19. High Temperature Alkali Corrosion of Dense SN4 Coated with CMZP and Mg-Doped A21TiO5 in Coal Gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. J. Brown; Nguyen Thierry

    1998-03-01

    Over the past twenty years silicon based ceramics have generated considerable enthusiasm in the scientific community. Of particular interest is Si3N4, one of the leading candidates of this family, for very demanding structural applications. Its properties are well known and include a high strength to weight ratio, a high chemical resistance, and excellent high temperature properties. However, it was reported in previous papers that the performances of Si3N4 were dramatically affected by hot alkali molten salts. In order to alleviate this phenomenon, it was suggested that certain oxide ceramics, which exhibit better resistance to the alkali corrosion, could be appliedmore » as protective coatings. Using the sol-gel process and dip coating technique, CMZP and Mg-doped Al2TiO5 thin films were deposited on Si3N4 substrates and exposure to a sodium containing atmosphere was carried out. During this reporting period, the emphasis was placed on investigating the microstrutural changes of coated and uncoated samples as well as on assessing their alkali corrosion resistance.« less

  20. Improved blend and tablet properties of fine pharmaceutical powders via dry particle coating.

    PubMed

    Huang, Zhonghui; Scicolone, James V; Han, Xi; Davé, Rajesh N

    2015-01-30

    The improvements in the flow and packing of fine pharmaceutical powder blends due to dry coating of micronized acetaminophen (mAPAP, ∼11μm), a model poorly flowing drug, are quantified. Poor flow and packing density of fine excipients (∼20μm) allowed testing the hypothesis that dry coating of cohesive API may counteract poor flow and packing of fine pharmaceutical powder blends. Further, fine excipients could improve compaction and reduce segregation tendency. It was found that flow function coefficient (FFC) and bulk density enhancements for 10%, 30%, and 60% (w/w), API loading blends with dry coated API are significantly higher than those without coated silica. At the highest API loading, for which coarser excipients were also used as reference, the flow and packing of dry coated mAPAP blends were significantly increased regardless of the excipient particle size, exceeding those of a well compacting excipient, Avicel 102. In addition, tensile strength of tablets with fine excipients was significantly higher, indicating improved compactibility. These results show for the first time that dry coating of fine, cohesive API powder leads to significantly improved flow and packing of high API loading blends consisting of fine excipients, while achieving improved tablet compactibility, suggesting suitability for direct compaction. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Environmental Barrier Coatings Having a YSZ Top Coat

    NASA Technical Reports Server (NTRS)

    Lee, Kang N.; Gray, Hugh (Technical Monitor)

    2002-01-01

    Environmental barrier coatings (EBCs) with a Si bond coat, a yttria-stabilized zirconia (YSZ) top coat, and various intermediate coats were investigated. EBCs were processed by atmospheric pressure plasma spraying. The EBC durability was determined by thermal cycling tests in water vapor at 1300 C and 1400 C, and in air at 1400 C and 1500 C. EBCs with a mullite (3Al2O3 (dot) 2SiO2) + BSAS (1 - xBaO (dot) xSrO (dot) Al2O3 (dot) 2SiO2) intermediate coat were more durable than EBCs with a mullite intermediate coat, while EBCs with a mullite/BSAS duplex intermediate coat resulted in inferior durability. The improvement with a mullite + BSAS intermediate coat was attributed to enhanced compliance of the intermediate coat due to the addition of a low modulus BSAS second phase. Mullite + BSAS/YSZ and BSAS/YSZ interfaces produced a low melting (less than 1400 C) reaction product, which is expected to degrade the EBC performance by increasing the thermal conductivity. EBCs with a mullite + BSAS / graded mullite + YSZ intermediate coat showed the best durability among the EBCs investigated in this study. This improvement was attributed to diffused CTE (Coefficient of Thermal Expansion) mismatch stress and improved chemical stability due to the compositionally graded mullite+YSZ layer.

  2. The effects of RE and Si on the microstructure and corrosion resistance of Zn-6Al-3Mg hot dip coating

    NASA Astrophysics Data System (ADS)

    Li, Shiwei; Gao, Bo; Yin, Shaohua; Tu, Ganfeng; Zhu, Guanglin; Sun, Shuchen; Zhu, Xiaoping

    2015-12-01

    The effects of Si and RE on the microstructure and corrosion resistance of Zn-6Al-3Mg coating (ZAM) have been investigated. Surface morphology observations of the coating and corrosion products reveal that the additions of Si and rare earth metals (RES) improve the microstructural homogeneity of ZAMSR coating and stability of corrosion products formed on ZAMSR coating. Moreover, only uniform corrosion occurs in ZAMSR coating during the corrosion test, while intergranular corrosion and pitting occur in ZAM. As a result, the corrosion resistance of ZAM coating is improved by the additions of Si and RES.

  3. Acid-enhanced conformation changes of yeast cytochrome c coated onto gold nanoparticles, a FT-IR spectroscopic analysis.

    PubMed

    Dong, Aichun; Brown, Corina; Bai, Shufeng; Dong, Jian

    2018-06-01

    Under conditions with or without linker molecules, the effects of acidic pH on the conformation of yeast iso-1-cytochrome c coated onto gold nanoparticles (AuNPs) in correlation with color changes of a Cyt c-coated AuNPs solution/suspension were examined by Fourier transform infrared (FT-IR) spectroscopy and correlated to color change. The results of detailed secondary structural analysis revealed that although the color changes coincide with acid-induced conformational changes in Cyt c coated onto AuNPs, the pH-related conformational unfolding of Cyt c coated onto AuNPs differed dramatically from that of its counterpart in solution. For Cyt c free in solution, the acid-induced unfolding did not occur until the pH was below 3.0, whereas for Cyt c coated onto AuNPs via C102 coordination near the C-terminal, a partial unfolding was observed even at near neutral pH which continuously intensified as pH decreased. Insertion of a short alkanethiol (3-mercaptoproprionic acid, 3-MPA) molecule between Cyt c and AuNP, which changes the interaction mode from a thiol coordination between Cyt c and AuNP to an electrostatic interaction between Cyt c and 3-MPA, which stabilized the conformation of Cyt c significantly, but did not prevent the acid-induced aggregation of Cyt c-3MPA-AuNPs. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. The Thickness Effect of the Functional Film for the Fabrication of Photovoltaic Module.

    PubMed

    Shan, Bowen; Kim, Jung Hyun; Choi, Wonseok

    2018-09-01

    In this study, a functional coating technology to improve the anti-fouling properties of the photo-voltaic module is introduced. The coating was applied on the cover glass, which is the same material as the photovoltaic module. After coating the cover glass once, twice, and three times in the horizontal and vertical directions respectively, the anti-fouling properties was tested according to the coating times and the thickness of the coating film. To ensure the durability of the coating film, the annealing process was performed for 1 hour at 200 °C in a furnace after coating. Finally, the photovoltaic module will be coated with the best coating method. Compared to uncoated modules, the coated photovoltaic modules showed significantly improved anti-fouling properties and also good performance in hardness and adhesion.

  5. Improved Dental Implant Drill Durability and Performance Using Heat and Wear Resistant Protective Coatings.

    PubMed

    Er, Nilay; Alkan, Alper; Ilday, Serim; Bengu, Erman

    2018-06-01

    The dental implant drilling procedure is an essential step for implant surgery, and frictional heat in bone during drilling is a key factor affecting the success of an implant. The aim of this study was to increase the dental implant drill lifetime and performance by using heat- and wear-resistant protective coatings to decrease the alveolar bone temperature caused by the dental implant drilling procedure. Commercially obtained stainless steel drills were coated with titanium aluminum nitride, diamond-like carbon, titanium boron nitride, and boron nitride coatings via magnetron-sputter deposition. Drilling was performed on bovine femoral cortical bone under the conditions mimicking clinical practice. Tests were performed under water-assisted cooling and under the conditions when no cooling was applied. Coated drill performances and durabilities were compared with those of three commonly used commercial drills with surfaces made from zirconia, black diamond. and stainless steel. Protective coatings with boron nitride, titanium boron nitride, and diamond-like carbon have significantly improved drill performance and durability. In particular, boron nitride-coated drills have performed within safe bone temperature limits for 50 drillings even when no cooling is applied. Titanium aluminium nitride coated drills did not show any improvement over commercially obtained stainless steel drills. Surface modification using heat- and wear-resistant coatings is an easy and highly effective way to improve implant drill performance and durability, which can improve the surgical procedure and the postsurgical healing period. The noteworthy success of different types of coatings is novel and likely to be applicable to various other medical systems.

  6. Synthesis of controlled polymeric cross-linked coatings via iniferter polymerisation in the presence of tetraethyl thiuram disulphide chain terminator.

    PubMed

    Bossi, A; Whitcombe, M J; Uludag, Y; Fowler, S; Chianella, I; Subrahmanyam, S; Sanchez, I; Piletsky, S A

    2010-05-15

    A "grafting from" approach has been used for controlled deposition of cross-linked polymers by living radical polymerisation. Borosilicate glass was modified with N,N-diethylaminodithiocarbamoylpropyl(trimethoxy)silane, in order to confine the iniferter reactive groups solely at its surface, then placed in solution with monomers and cross-linker. The polymerisation was initiated by UV irradiation. Formation of the cross-linked polymers was studied in terms of time course of the reaction, type of monomers incorporated and influence of oxygen. Grafted surfaces were characterised by AFM, FT-IR, ellipsometry and contact angle measurements. The ability to control the grafted layer improved dramatically when the chain terminator agent, N,N-N',N'-tetraethyl thiuram disulphide (TED) was added. Upon irradiation TED increases the concentration of passive capping radicals and decreases the possibility of recombination of active macro-radicals, thus prolonging their lifetime. In the absence of TED the thickness of produced coatings was below 10 nm. TED added at different concentrations assisted in the formation of grafted layers of 10-130 nm thickness. Iniferter chemistry in the presence of TED can be used for growing nanometre-scale polymer layers on solid supports. It constitutes a robust general platform for controlled grafting and offer a general solution to address the needs of surface derivatisation in sensors technology. 2010 Elsevier B.V. All rights reserved.

  7. Effects of Laser Re-melting on the Corrosion Properties of HVOF Coatings

    NASA Astrophysics Data System (ADS)

    Yilbas, B. S.; Toor, I. H.; Patel, F.; Baig, M. A.

    2013-05-01

    HVOF coating of Inconel 625 powder on carbon steel is carried out. Laser melting of the resulting coating is realized to improve coating structural integrity. Morphological and microstructural changes are examined in the coating prior and after laser treatment process using scanning electron microscopy, energy dispersive spectroscopy, and x-ray diffraction (XRD). The residual stress developed is measured on the surface vicinity of the laser-treated coating using the XRD technique. The corrosion resistance of the laser-treated and untreated coating surfaces is measured, incorporating the potentiodynamic tests in 0.5 M NaCl aqueous solution. It is found that laser treatment reduces the pores and produces cellular structures with different sizes and orientations in the coating. Laser-controlled melting improves the corrosion resistance of the coating surface.

  8. Development of Improved Rhenium Coatings for Fluorine Engine Thrust Chambers. [hydrazine-fluorine rocket engines

    NASA Technical Reports Server (NTRS)

    Barton, K. J.; Yurkewycz, R.; Harada, Y.; Daniels, I.

    1981-01-01

    Coating trials were undertaken to evaluate the application of rhenium to carbon-carbon composite sheet by plasma spraying. Optimum spray parameters and coating thickness were identified for production of coatings free from continuous defects and with adequate adherence to the substrate. A tungsten underlayer was not beneficial and possibly detracted from coating integrity. Stress calculations indicated that the proposed operating cycle of the rocket engine would not cause spalling of the rhenium coating. Calculations indicated that permeation of gases through the coating would not be significant during the expected life of the thrust chamber. The feasibility of applying rhenium coatings by laser melting was also studied. Poor wetting of the composite surface by the liquid rhenium precluded production of uniform coatings. Borate/carborate fluxes did not improve wetting characteristics.

  9. Improvement in the properties of plasma-sprayed metallic, alloy and ceramic coatings using dry-ice blasting

    NASA Astrophysics Data System (ADS)

    Dong, Shujuan; Song, Bo; Hansz, Bernard; Liao, Hanlin; Coddet, Christian

    2011-10-01

    Dry-ice blasting, as an environmental-friendly method, was introduced into atmospheric plasma spraying for improving properties of metallic, alloy and ceramic coatings. The deposited coatings were then compared with coatings plasma-sprayed using conventional air cooling in terms of microstructure, temperature, oxidation, porosity, residual stress and adhesion. It was found that a denser steel or CoNiCrAlY alloy coating with a lower content of oxide can be achieved with the application of dry-ice blasting during the plasma spraying. In addition, the adhesive strength of Al 2O 3 coating deposited with dry-ice blasting exceeded 60 MPa, which was nearly increased by 30% compared with that of the coating deposited with conventional air cooling. The improvement in properties of plasma-sprayed metallic, alloy and ceramic coatings caused by dry-ice blasting was attributed to the decrease of annulus-ringed disk like splats, the better cooling efficiency of dry-ice pellets and even the mechanical effect of dry-ice impact.

  10. Design and Performance Optimizations of Advanced Erosion-Resistant Low Conductivity Thermal Barrier Coatings for Rotorcraft Engines

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Miller, Robert A.; Kuczmarski, Maria A.

    2012-01-01

    Thermal barrier coatings will be more aggressively designed to protect gas turbine engine hot-section components in order to meet future rotorcraft engine higher fuel efficiency and lower emission goals. For thermal barrier coatings designed for rotorcraft turbine airfoil applications, further improved erosion and impact resistance are crucial for engine performance and durability, because the rotorcraft are often operated in the most severe sand erosive environments. Advanced low thermal conductivity and erosion-resistant thermal barrier coatings are being developed, with the current emphasis being placed on thermal barrier coating toughness improvements using multicomponent alloying and processing optimization approaches. The performance of the advanced thermal barrier coatings has been evaluated in a high temperature erosion burner rig and a laser heat-flux rig to simulate engine erosion and thermal gradient environments. The results have shown that the coating composition and architecture optimizations can effectively improve the erosion and impact resistance of the coating systems, while maintaining low thermal conductivity and cyclic oxidation durability

  11. Method of forming a continuous polymeric skin on a cellular foam material

    DOEpatents

    Duchane, David V.; Barthell, Barry L.

    1985-01-01

    Hydrophobic cellular material is coated with a thin hydrophilic polymer skin which stretches tightly over the outer surface of the foam but which does not fill the cells of the foam, thus resulting in a polymer-coated foam structure having a smoothness which was not possible in the prior art. In particular, when the hydrophobic cellular material is a specially chosen hydrophobic polymer foam and is formed into arbitrarily chosen shapes prior to the coating with hydrophilic polymer, inertial confinement fusion (ICF) targets of arbitrary shapes can be produced by subsequently coating the shapes with metal or with any other suitable material. New articles of manufacture are produced, including improved ICF targets, improved integrated circuits, and improved solar reflectors and solar collectors. In the coating method, the cell size of the hydrophobic cellular material, the viscosity of the polymer solution used to coat, and the surface tensin of the polymer solution used to coat are all very important to the coating.

  12. Effects of carboxymethyl cellulose incorporated with garlic essential oil composite coatings for improving quality of strawberries.

    PubMed

    Dong, Feng; Wang, Xiaolin

    2017-11-01

    The present study was aimed to determine the effects of carboxymethyl cellulose (CMC)/garlic essential oil (GEO) composite coatings in improving the quality of strawberries stored at 20°C and 35-40% RH. To find the effects of CMC/GEO composite coatings, strawberries were coated with CMC, CMC+GEO (1%), CMC+GEO (2%), CMC+GEO (3%) and stored, while the uncoated strawberries were taken as control during storing. The effectiveness of CMC/GEO composite coatings was evaluated by measuring their weight loss, decay percentage, ascorbic acid, total phenols, anthocyanins, titratable acidity, total soluble solids and sensory evaluation. After 6days of storage, CMC+GEO (2%) composite coatings was found very effective in decreasing the senescence and maintaining the nutritional contents of strawberries. Results of this study confirm that CMC/GEO composite coatings can be used to improve the quality of strawberries. Copyright © 2017. Published by Elsevier B.V.

  13. Human-like collagen protein-coated magnetic nanoparticles with high magnetic hyperthermia performance and improved biocompatibility

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoli; Zhang, Huan; Chang, Le; Yu, Baozhi; Liu, Qiuying; Wu, Jianpeng; Miao, Yuqing; Ma, Pei; Fan, Daidi; Fan, Haiming

    2015-01-01

    Human-like collagen (HLC)-coated monodispersed superparamagnetic Fe3O4 nanoparticles have been successfully prepared to investigate its effect on heat induction property and cell toxicity. After coating of HLC, the sample shows a faster rate of temperature increase under an alternating magnetic field although it has a reduced saturation magnetization. This is most probably a result of the effective heat conduction and good colloid stability due to the high charge of HLC on the surface. In addition, compared with Fe3O4 nanoparticles before coating with HLC, HLC-coated Fe3O4 nanoparticles do not induce notable cytotoxic effect at higher concentration which indicates that HLC-coated Fe3O4 nanoparticles has improved biocompatibility. Our results clearly show that Fe3O4 nanoparticles after coating with HLC not only possess effective heat induction for cancer treatment but also have improved biocompatibility for biomedicine applications.

  14. Plasma Electrolytic Oxidation (PEO) Coatings on an A356 Alloy for Improved Corrosion and Wear Resistance

    NASA Astrophysics Data System (ADS)

    Peng, Zhijing

    Plasma electrolytic oxidizing (PEO) is an advanced technique that has been used to deposit thick and hard ceramic coatings on aluminium (Al) alloys. This work was however to use the PEO process to produce thin ceramic oxide coatings on an A356 Al alloy for improving corrosion and wear resistance of the alloy. Effects of current density and treatment time on surface morphologies and thickness of the PEO coatings were investigated. The improvement of galvanic corrosion properties of the coated A356 alloy vs. steel and carbon fibre were evaluated in E85 fuel or NaCl environments. Tribological properties of the coatings were studied with comparison to the uncoated A356 substrate and other commercially-used engine bore materials. The research results indicated that the PEO coatings could have excellent tribological and corrosion properties for aluminium engine applications.

  15. Ultrasonic irradiation and its application for improving the corrosion resistance of phosphate coatings on aluminum alloys.

    PubMed

    Sheng, Minqi; Wang, Chao; Zhong, Qingdong; Wei, Yinyin; Wang, Yi

    2010-01-01

    In this paper, ultrasonic irradiation was utilized for improving the corrosion resistance of phosphate coatings on aluminum alloys. The chemical composition and morphology of the coatings were analyzed by X-ray diffraction analysis (XRD) and scanning electron microscopy (SEM). The effect of ultrasonic irradiation on the corrosion resistance of phosphate coatings was investigated by polarization curves and electrochemical impedance spectroscopy (EIS). Various effects of the addition of Nd(2)O(3) in phosphating bath on the performance of the coatings were also investigated. Results show that the composition of phosphate coating were Zn(3)(PO(4))(2).4H(2)O(hopeite) and Zn crystals. The phosphate coatings became denser with fewer microscopic holes by utilizing ultrasonic irradiation treatment. The addition of Nd(2)O(3) reduced the crystallinity of the coatings, with the additional result that the crystallites were increasingly nubby and spherical. The corrosion resistance of the coatings was also significantly improved by ultrasonic irradiation treatment; both the anodic and cathodic processes of corrosion taking place on the aluminum alloy substrate were suppressed consequently. In addition, the electrochemical impedance of the coatings was also increased by utilizing ultrasonic irradiation treatment compared with traditional treatment.

  16. Characteristics and Machining Performance of TiN and TiAlN Coatings on a Milling Cutter

    NASA Astrophysics Data System (ADS)

    Sarwar, Mohammed; Haider, Julfikar

    2011-01-01

    Titanium Nitride (TiN) coating deposited by Physical Vapour Deposition (PVD) or Chemical Vapour Deposition (CVD) techniques on cutting tools (single point or multipoint) has contributed towards the improvement of tool life, productivity and product quality [1]. Addition of Al in TiN coating (e.g., TiAlN or AlTiN) has further improved the coating properties required for machining applications [2, 3]. This work presents a comparative investigation on TiN and TiAlN coatings deposited on to a Powder Metallurgy High Speed Steel (PM HSS) milling cutter used for machining bimetal (M42+D6A) steel strips. PVD (Arc evaporation) technique was used to deposit the coatings after carefully preparing the cutting edges of the milling cutter. Microstructure, chemical composition, hardness and adhesion of the coatings have been characterised using different techniques. The incorporation of Al into TiN coating results in an improvement in hardness, wear resistance and cutting performance. Examination of the worn flank in the coated cutting edges revealed that abrasive and adhesive wear are the predominant failure mechanisms. Tool designers, coating suppliers and manufacturing engineers could benefit from the information provided.

  17. Evaluation of Production Version of the NASA Improved Inorganic-Organic Separator

    NASA Technical Reports Server (NTRS)

    Sheibley, D.

    1983-01-01

    The technology of an inorganic-organic (I/O) separator, which demonstrated improved flexibility, reduced cost, production feasibility and improved cycle life was developed. Substrates to replace asbestos and waterbased separator coatings to replace the solvent based coatings were investigated. An improved fuel cell grade asbestos sheet was developed and a large scale production capability for the solvent based I/O separator was demonstrated. A cellulose based substrate and a nonwoven polypropylene fiber substrate were evaluated as replacements for the asbestos. Both the cellulose and polypropylene substrates were coated with solvent based and water based coatings to produce a modified I/O separator. The solvent based coatings were modified to produce aqueous separator coatings with acceptable separator properties. A single ply fuel cell grade asbestos with a binder (BTA) was produced. It has shown to be an acceptable substrate for the solvent and water based separator coatings, an acceptable absorber for alkaline cells, and an acceptable matrix for alkaline fuel cells. The original solvent based separator (K19W1), using asbestos as a substrate, was prepared.

  18. Zinc phosphate conversion coatings

    DOEpatents

    Sugama, Toshifumi

    1997-01-01

    Zinc phosphate conversion coatings for producing metals which exhibit enhanced corrosion prevention characteristics are prepared by the addition of a transition-metal-compound promoter comprising a manganese, iron, cobalt, nickel, or copper compound and an electrolyte such as polyacrylic acid, polymethacrylic acid, polyitaconic acid and poly-L-glutamic acid to a phosphating solution. These coatings are further improved by the incorporation of Fe ions. Thermal treatment of zinc phosphate coatings to generate .alpha.-phase anhydrous zinc phosphate improves the corrosion prevention qualities of the resulting coated metal.

  19. Zinc phosphate conversion coatings

    DOEpatents

    Sugama, T.

    1997-02-18

    Zinc phosphate conversion coatings for producing metals which exhibit enhanced corrosion prevention characteristics are prepared by the addition of a transition-metal-compound promoter comprising a manganese, iron, cobalt, nickel, or copper compound and an electrolyte such as polyacrylic acid, polymethacrylic acid, polyitaconic acid and poly-L-glutamic acid to a phosphating solution. These coatings are further improved by the incorporation of Fe ions. Thermal treatment of zinc phosphate coatings to generate {alpha}-phase anhydrous zinc phosphate improves the corrosion prevention qualities of the resulting coated metal. 33 figs.

  20. Calcium phosphate coating on titanium using laser and plasma spray

    NASA Astrophysics Data System (ADS)

    Roy, Mangal

    Though calcium phosphate (CaP) coated implants are commercially available, its acceptance is still not wide spread due to challenges related to weaker interfacial bonding between metal and ceramic, and low crystallinity of hydroxyapatite (HA). The objectives of this research are to improve interfacial strength, crystallinity, phase purity and bioactivity of CaP coated metallic implants for orthopaedic applications. The rationale is that forming a diffuse and gradient metal-ceramic interface will improve the interfacial strength. Moreover, reducing CaP particles exposure to high temperature during coating preparation, can lead to improvement in both crystallinity and phase purity of CaP. In this study, laser engineered net shaping (LENS(TM)) was used to coat Ti metal with CaP. LENS(TM) processing enabled generation of Ti+TCP (tricalcium phosphate) composite coating with diffused interface, that also increased the coating hardness to 1049+/-112 Hv compared to a substrate hardness of 200+/-15 Hv. In vitro bone cell-material interaction studies confirmed the bioactivity of TCP coatings. Antimicrobial properties of the TCP coatings were improved by silver (Ag) electrodeposition. Along with LENS(TM), radio frequency induction plasma spray, equipped with supersonic plasma nozzle, was used to prepare HA coatings on Ti with improved crystallinity and phase purity. The coating was made of multigrain HA particles of ˜200 nm in size, which consisted of 15--20 nm HA grains. In vitro bone cell-material interaction and in vivo rat model studies confirmed the HA coatings to be bioactive. Furthermore, incorporation of Sr2+ improved bone cell of HA coatings interaction. A combination of LENS(TM) and plasma spray was used to fabricate a compositionally graded HA coatings on Ti where the microstructure varied from pure HA at the surface to pure Ti substrate with a diffused Ti+TCP composite region in between. The plasma spray system was used to synthesize spherical HA nano powder from HA sol, where the production rate was 20 g/h, which is only 16% of the total powder produced. The effects of Sr2+ and Mg2+ doping on bone cell-CaP interaction was further studied with osteoclast cells. Mg2+ doing was found to be an effective way of controlling osteoclast differentiation.

  1. Improved fire-resistant coatings

    NASA Technical Reports Server (NTRS)

    Hutt, J. B.; Stuart, J. W.

    1971-01-01

    Water-base coatings containing potassium silicate show improvement in areas of quick air-drying, crack, craze, and abrasion resistance, adherence, and leach resistance. Coatings are useful as thermal-barrier layers in furnaces, and as general purpose fire resistant surfaces where vapor impermeability is not a requirement.

  2. A dramatic, objective antiandrogen withdrawal response: case report and review of the literature.

    PubMed

    Lau, Yiu-Keung; Chadha, Manpreet K; Litwin, Alan; Trump, Donald L

    2008-11-05

    Antiandrogen withdrawal response is an increasingly recognized entity in patients with metastatic prostate cancer. To our knowledge, there have been no reports describing a durable radiologic improvement along with prostate-specific antigen (PSA) with discontinuation of the antiandrogen agent bicalutamide. We report a case in which a dramatic decline of serum PSA levels associated with a dramatic improvement in radiologic disease was achieved with bicalutamide discontinuation.

  3. Reduced chemical warfare agent sorption in polyurethane-painted surfaces via plasma-enhanced chemical vapor deposition of perfluoroalkanes.

    PubMed

    Gordon, Wesley O; Peterson, Gregory W; Durke, Erin M

    2015-04-01

    Perfluoralkalation via plasma chemical vapor deposition has been used to improve hydrophobicity of surfaces. We have investigated this technique to improve the resistance of commercial polyurethane coatings to chemicals, such as chemical warfare agents. The reported results indicate the surface treatment minimizes the spread of agent droplets and the sorption of agent into the coating. The improvement in resistance is likely due to reduction of the coating's surface free energy via fluorine incorporation, but may also have contributing effects from surface morphology changes. The data indicates that plasma-based surface modifications may have utility in improving chemical resistance of commercial coatings.

  4. Improved coating for silica fiber based ceramic Reusable Surface Insulation (CRSI)

    NASA Technical Reports Server (NTRS)

    Ormiston, T. J.

    1974-01-01

    A series of coatings was developed for the space shuttle type silica fiber insulation system and characterized for optical and physical properties. Reentry simulation tests were run using a radiant panel and also using a hypersonic plasma arc. The coatings produced had improved physical and optical properties as well as greater reuse capability over the GE version of the JSC-0042 coating.

  5. Lipoprotein lipase (LPL) strongly links native and oxidized low density lipoprotein particles to decorin-coated collagen. Roles for both dimeric and monomeric forms of LPL.

    PubMed

    Pentikäinen, M O; Oörni, K; Kovanen, P T

    2000-02-25

    Low density lipoprotein (LDL) and oxidized LDL are associated with collagen in the arterial intima, where the collagen is coated by the small proteoglycan decorin. When incubated in physiological ionic conditions, decorin-coated collagen bound only small amounts of native and oxidized LDL, the interaction being weak. When decorin-coated collagen was first allowed to bind lipoprotein lipase (LPL), binding of native and oxidized LDL increased dramatically (23- and 7-fold, respectively). This increase depended on strong interactions between LPL that was bound to the glycosaminoglycan chains of the collagen-bound decorin and native and oxidized LDL (kDa 12 and 5.9 nM, respectively). To distinguish between binding to monomeric (inactive) and dimeric (catalytically active) forms of LPL, affinity chromatography on heparin columns was conducted, which showed that native LDL bound to the monomeric LPL, whereas oxidized LDL, irrespective of the type of modification (Cu(2+), 2, 2'-azobis(2-amidinopropane)hydrochloride, hypochlorite, or soybean 15-lipoxygenase), bound preferably to dimeric LPL. However, catalytic activity of LPL was not required for binding to oxidized LDL. Finally, immunohistochemistry of atherosclerotic lesions of human coronary arteries revealed specific areas in which LDL, LPL, decorin, and collagen type I were present. The results suggest that LPL can retain LDL in atherosclerotic lesions along decorin-coated collagen fibers.

  6. Improved properties of fine active pharmaceutical ingredient powder blends and tablets at high drug loading via dry particle coating.

    PubMed

    Kunnath, Kuriakose; Huang, Zhonghui; Chen, Liang; Zheng, Kai; Davé, Rajesh

    2018-05-30

    It has been shown that dry coating cohesive active pharmaceutical ingredients (APIs) with nano-silica can improve packing and flow of their blends, facilitating high speed direct compression tableting. This paper examines the broader scope and generality of previous work by examining three fine APIs; micronized Acetaminophen (mAPAP), coarse Acetaminophen (cAPAP) and micronized Ibuprofen (mIBU), and considers dry coating with both hydrophobic or hydrophilic nano-silica to examine the effect not only on packing density and flow of their blends, but also dissolution and tensile strength of their tablets. The impact of the excipient size on blend and tablet properties are also investigated, indicating blend flow is most improved when matching API particle size with excipient particle size. In all cases where the API is dry coated, the blend packing and flow improve, so as to suggest such high drug loaded blends could enable direct compression. Using dry coated API along with finer excipients in blends lead to improved hardness of the corresponding tablets. Interestingly, dissolution profiles show dry coated API tablets generally have faster dissolution rates, regardless of silica hydrophilicity, suggesting API powder deagglomeration via nano-silica coating plays a crucial role. The most significant conclusion is that, although there are differences in properties of blends that depend on the API, hydrophobic or hydrophilic nano-silica coating, as well as large or fine excipients, in all cases, dry coating of APIs significantly improves the possibility of using the specific blend at high drug loading in direct compression tableting. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Effect of calcination temperature on the lithiation capacities of carbon-coated titania nanotubes synthesized by anodization

    NASA Astrophysics Data System (ADS)

    Seo, Min-Su; Lee, Hyukjae

    2012-06-01

    Carbon-coated titania nanotubes are synthesized via anodization in perchlorate containing electrolyte and subsequent hydrothermal reaction with glucose. Carbon coating improves the lithiation capacity of the titania nanotubes only when calcined at temperatures above 600°C, and the maximum capacity is ˜162 mAhg-1 at the 50th cycle from the titania nanotubes calcined at 700°C. The improved capacity of carbon-coated titania nanotubes is caused by the enhanced conductivity from the carbon. This is different from the role of the carbon coating in the hydrothermally prepared carbon-coated titania nanotubes, in which the coated carbon limits severe agglomeration.

  8. Temperature sensitive surfaces and methods of making same

    DOEpatents

    Liang, Liang [Richland, WA; Rieke, Peter C [Pasco, WA; Alford, Kentin L [Pasco, WA

    2002-09-10

    Poly-n-isopropylacrylamide surface coatings demonstrate the useful property of being able to switch charateristics depending upon temperature. More specifically, these coatings switch from being hydrophilic at low temperature to hydrophobic at high temperature. Research has been conducted for many years to better characterize and control the properties of temperature sensitive coatings. The present invention provides novel temperature sensitive coatings on articles and novel methods of making temperature sensitive coatings that are disposed on the surfaces of various articles. These novel coatings contain the reaction products of n-isopropylacrylamide and are characterized by their properties such as advancing contact angles. Numerous other characteristics such as coating thickness, surface roughness, and hydrophilic-to-hydrophobic transition temperatures are also described. The present invention includes articles having temperature-sensitve coatings with improved properties as well as improved methods for forming temperature sensitive coatings.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lan, Xiaodong; Wu, Hong, E-mail: wuhong927@126.com

    Metallic glass composite coatings Ti{sub 45}Cu{sub 41}Ni{sub 9}Zr{sub 5} and Ti{sub 45}Cu{sub 41}Ni{sub 6}Zr{sub 5}Sn{sub 3} (at.%) on a Ti-30Nb-5Ta-7Zr (wt.%) (TNTZ) alloy were prepared by laser cladding. The microstructures of the coatings were characterized by means of X-ray diffractometry (XRD), scanning electron microscopy (SEM) equipped with energy dispersive X-ray analyzer (EDXA), and transmission electron microscopy (TEM). Results indicated that the coatings have an amorphous structure embedded with a few nanocrystalline phases and dendrites. A partial substitution of Ni by Sn can improve the glass forming ability of Ti-base metallic glass system, and induce the formation of nano-sized Ni{sub 2}SnTimore » phase during the cyclic laser heating. The tribological behavior of both the substrate and the coatings was investigated in detail. A significant improvement in both the hardness and the wear resistance of the coatings was achieved with the addition of Sn. The relationship between the wear resistance and the microstructures of the coatings was discussed. - Highlights: •Ti-based metallic glass composite coatings were prepared by laser cladding. •The wear resistance is greatly improved by laser cladding of composite coatings. •Substitution of Ni by Sn increases GFA and wear resistance of the coatings. •A good balance of crystalline/amorphous phases improves the wear resistance. •Adhesive wear serves as the dominant wear mechanism of the composite coatings.« less

  10. Alkaline nanoparticle coatings improve resin bonding of 10-methacryloyloxydecyldihydrogenphosphate-conditioned zirconia.

    PubMed

    Qian, Mengke; Lu, Zhicen; Chen, Chen; Zhang, Huaiqin; Xie, Haifeng

    Creating an alkaline environment prior to 10-methacryloyloxydecyldihydrogenphosphate (MDP) conditioning improves the resin bonding of zirconia. The present study evaluated the effects of four alkaline coatings with different water solubilities and pH values on resin bonding of MDP-conditioned zirconia. Two alkaline nanoparticle coatings were studied in particular. Thermodynamics calculations were performed to evaluate the strengths of MDP-tetragonal phase zirconia chemical bonds at different pH values. Zirconia surfaces with and without alkaline coatings were characterized by scanning electron microscope (SEM)/energy dispersive spectrometer and Fourier transform infrared spectroscopy; alkaline coatings included NaOH, Ca(OH) 2 , nano-MgO, and nano-Zr(OH) 4 . A shear bond strength (SBS) test was performed to evaluate the effects of the four alkaline coatings on bonding; the alkaline coatings were applied to the surfaces prior to conditioning the zirconia with MDP-containing primers. Gibbs free energies of the MDP-tetragonal zirconia crystal model coordination reaction in different pH environments were -583.892 (NaOH), -569.048 [Ca(OH) 2 ], -547.393 (MgO), and -530.279 kJ/mol [Zr(OH) 4 ]. Thermodynamic calculations indicated that the alkaline coatings improved bonding in the following order: NaOH > Ca(OH) 2 > MgO > Zr(OH) 4 . Statistical analysis of SBS tests showed a different result. SBSs were significantly different in groups that had different alkaline coatings, but it was not influenced by different primers. All four alkaline coatings increased SBS compared to control groups. Of the four coatings, nano-Zr(OH) 4 and -MgO showed higher SBS. Therefore, preparing nano-Zr(OH) 4 or -MgO coatings prior to conditioning with MDP-containing primers may potentially improve resin bonding of zirconia in the clinic.

  11. Alkaline nanoparticle coatings improve resin bonding of 10-methacryloyloxydecyldihydrogenphosphate-conditioned zirconia

    PubMed Central

    Qian, Mengke; Lu, Zhicen; Chen, Chen; Zhang, Huaiqin; Xie, Haifeng

    2016-01-01

    Creating an alkaline environment prior to 10-methacryloyloxydecyldihydrogenphosphate (MDP) conditioning improves the resin bonding of zirconia. The present study evaluated the effects of four alkaline coatings with different water solubilities and pH values on resin bonding of MDP-conditioned zirconia. Two alkaline nanoparticle coatings were studied in particular. Thermodynamics calculations were performed to evaluate the strengths of MDP-tetragonal phase zirconia chemical bonds at different pH values. Zirconia surfaces with and without alkaline coatings were characterized by scanning electron microscope (SEM)/energy dispersive spectrometer and Fourier transform infrared spectroscopy; alkaline coatings included NaOH, Ca(OH)2, nano-MgO, and nano-Zr(OH)4. A shear bond strength (SBS) test was performed to evaluate the effects of the four alkaline coatings on bonding; the alkaline coatings were applied to the surfaces prior to conditioning the zirconia with MDP-containing primers. Gibbs free energies of the MDP-tetragonal zirconia crystal model coordination reaction in different pH environments were −583.892 (NaOH), −569.048 [Ca(OH)2], −547.393 (MgO), and −530.279 kJ/mol [Zr(OH)4]. Thermodynamic calculations indicated that the alkaline coatings improved bonding in the following order: NaOH > Ca(OH)2 > MgO > Zr(OH)4. Statistical analysis of SBS tests showed a different result. SBSs were significantly different in groups that had different alkaline coatings, but it was not influenced by different primers. All four alkaline coatings increased SBS compared to control groups. Of the four coatings, nano-Zr(OH)4 and -MgO showed higher SBS. Therefore, preparing nano-Zr(OH)4 or -MgO coatings prior to conditioning with MDP-containing primers may potentially improve resin bonding of zirconia in the clinic. PMID:27785013

  12. Solution processable mixed-solvent exfoliated MoS2 nanosheets for efficient and robust organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Liu, Chia-Wei; Wang, Chia; Liao, Chia-Wei; Golder, Jan; Tsai, Ming-Chih; Young, Hong-Tsu; Chen, Chin-Ti; Wu, Chih-I.

    2018-04-01

    We demonstrate the use of solution-processed molybdenum trioxide (MoO3) nanoparticle-decorated molybdenum disulfide (MoS2) nanosheets (MoS2/MoO3) as hole injection layer (HIL) in organic lighting diodes (OLEDs). The device performance is shown to be significantly improved by the introduction of such MoS2/MoO3 HIL without any post-ultraviolet-ozone treatment, and is shown to better the performance of devices fabricated using conventional poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) and MoO3 nanoparticle HILs. The MoS2/MoO3 nanosheets form a compact film, as smooth as PEDOT:PSS films and smoother than MoO3 nanoparticle films, when simply spin-coated on indium tin oxide substrates. The improvement in device efficiency can be attributed to the smooth surface of the nanostructured MoS2/MoO3 HIL and the excellent conductivity characteristics of the two-dimensional (2D) layered material (MoS2), which facilitate carrier transport in the device and reduce the sheet resistance. Moreover, the long-term stability of OLED devices that use such MoS2/MoO3 layers is shown to be improved dramatically compared with hygroscopic and acidic PEDOT:PSS-based devices.

  13. Novel ZnO:Al contacts to CdZnTe for X- and gamma-ray detectors

    PubMed Central

    Roy, U. N.; Mundle, R. M.; Camarda, G. S.; Cui, Y.; Gul, R.; Hossain, A.; Yang, G.; Pradhan, A. K.; James, R. B.

    2016-01-01

    CdZnTe (CZT) has made a significant impact as a material for room-temperature nuclear-radiation detectors due to its potential impact in applications related to nonproliferation, homeland security, medical imaging, and gamma-ray telescopes. In all such applications, common metals, such as gold, platinum and indium, have been used as electrodes for fabricating the detectors. Because of the large mismatch in the thermal-expansion coefficient between the metal contacts and CZT, the contacts can undergo stress and mechanical degradation, which is the main cause for device instability over the long term. Here, we report for the first time on our use of Al-doped ZnO as the preferred electrode for such detectors. The material was selected because of its better contact properties compared to those of the metals commonly used today. Comparisons were conducted for the detector properties using different contacts, and improvements in the performances of ZnO:Al-coated detectors are described in this paper. These studies show that Al:ZnO contacts to CZT radiation detectors offer the potential of becoming a transformative replacement for the common metallic contacts due to the dramatic improvements in the performance of detectors and improved long-term stability. PMID:27216387

  14. White butterflies as solar photovoltaic concentrators

    PubMed Central

    Shanks, Katie; Senthilarasu, S.; ffrench-Constant, Richard H.; Mallick, Tapas K.

    2015-01-01

    Man’s harvesting of photovoltaic energy requires the deployment of extensive arrays of solar panels. To improve both the gathering of thermal and photovoltaic energy from the sun we have examined the concept of biomimicry in white butterflies of the family Pieridae. We tested the hypothesis that the V-shaped posture of basking white butterflies mimics the V-trough concentrator which is designed to increase solar input to photovoltaic cells. These solar concentrators improve harvesting efficiency but are both heavy and bulky, severely limiting their deployment. Here, we show that the attachment of butterfly wings to a solar cell increases its output power by 42.3%, proving that the wings are indeed highly reflective. Importantly, and relative to current concentrators, the wings improve the power to weight ratio of the overall structure 17-fold, vastly expanding their potential application. Moreover, a single mono-layer of scale cells removed from the butterflies’ wings maintained this high reflectivity showing that a single layer of scale cell-like structures can also form a useful coating. As predicted, the wings increased the temperature of the butterflies’ thorax dramatically, showing that the V-shaped basking posture of white butterflies has indeed evolved to increase the temperature of their flight muscles prior to take-off. PMID:26227341

  15. Improved method of edge coating flat ribbon wire

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Method to coat the edges of flat ribbon wire is devised by using enamel with modified flow properties due to addition of 2 to 4 percent silicon. Conventional coating procedes several edge coatings to minimize oxidation and additional conventional coats are applied after edge coating to build up thickness.

  16. Design colloidal particle morphology and self-assembly for coating applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Shan; Van Dyk, Antony; Maurice, Alvin

    The progressive replacement of organic solvent-based coatings by waterborne latex polymer coatings has substantially renovated the coating industry, and generated huge environmental and health benefits. Today, on top of the continuing demand for higher performance and lower costs, the coating industry faces tighter regulation and higher sustainability standards. In addition, the new waterborne coatings have created unique opportunities and challenges in terms of fundamental understanding and research development. To address these challenges, polymer latex binders with diverse particle morphologies have been developed to improve coating performance. Furthermore, colloidal self-assembly has been utilized to help manufacturers make better paint with lessmore » cost. In this report, we review the recent progress in both fundamental study and industrial application in the context of developing new generation architectural coating materials. We introduce the basic concepts in coating materials and showcase several key technologies that have been implemented to improve coating performance. As a result, these technologies also represent the most important considerations in architectural coating design.« less

  17. Electrodeposition of Ni(OH)2 reinforced polyaniline coating for corrosion protection of 304 stainless steel

    NASA Astrophysics Data System (ADS)

    Jiang, Li; Syed, Junaid Ali; Gao, Yangzhi; Lu, Hongbin; Meng, Xiangkang

    2018-05-01

    In the present paper, polyaniline (PANI) coating was electropolymerized in the presence of phosphoric acid with subsequent deposition of Ni(OH)2 particles. The Ni(OH)2 reinforced PANI coating significantly enhances the corrosion resistance of 304 stainless steel (304SS) in comparison with the pristine PANI coating. The galvanostatically deposited Ni(OH)2 particles fill the pores of the pristine PANI coating and improves the coatings hydrophobicity which decreases the diffusion of aggressive media. Importantly, the Rp values of Ni(OH)2 reinforced PANI coating is much higher than that of pristine PANI coating and the Ni(OH)2 reinforced PANI coating presents a long-term anti-corrosive ability (360 h) in 3.5 wt% NaCl solution. The prolonged corrosion protection of Ni(OH)2 reinforced PANI coating is attributed to the improved physical barrier as well as the facile formation of passive oxide film that sustain the anodic protection of the coating.

  18. Design colloidal particle morphology and self-assembly for coating applications

    DOE PAGES

    Jiang, Shan; Van Dyk, Antony; Maurice, Alvin; ...

    2017-05-04

    The progressive replacement of organic solvent-based coatings by waterborne latex polymer coatings has substantially renovated the coating industry, and generated huge environmental and health benefits. Today, on top of the continuing demand for higher performance and lower costs, the coating industry faces tighter regulation and higher sustainability standards. In addition, the new waterborne coatings have created unique opportunities and challenges in terms of fundamental understanding and research development. To address these challenges, polymer latex binders with diverse particle morphologies have been developed to improve coating performance. Furthermore, colloidal self-assembly has been utilized to help manufacturers make better paint with lessmore » cost. In this report, we review the recent progress in both fundamental study and industrial application in the context of developing new generation architectural coating materials. We introduce the basic concepts in coating materials and showcase several key technologies that have been implemented to improve coating performance. As a result, these technologies also represent the most important considerations in architectural coating design.« less

  19. A dramatic, objective antiandrogen withdrawal response: case report and review of the literature

    PubMed Central

    Lau, Yiu-Keung; Chadha, Manpreet K; Litwin, Alan; Trump, Donald L

    2008-01-01

    Antiandrogen withdrawal response is an increasingly recognized entity in patients with metastatic prostate cancer. To our knowledge, there have been no reports describing a durable radiologic improvement along with prostate-specific antigen (PSA) with discontinuation of the antiandrogen agent bicalutamide. We report a case in which a dramatic decline of serum PSA levels associated with a dramatic improvement in radiologic disease was achieved with bicalutamide discontinuation. PMID:18986533

  20. Dramatic pretend play games uniquely improve emotional control in young children.

    PubMed

    Goldstein, Thalia R; Lerner, Matthew D

    2017-09-15

    Pretense is a naturally occurring, apparently universal activity for typically developing children. Yet its function and effects remain unclear. One theorized possibility is that pretense activities, such as dramatic pretend play games, are a possible causal path to improve children's emotional development. Social and emotional skills, particularly emotional control, are critically important for social development, as well as academic performance and later life success. However, the study of such approaches has been criticized for potential bias and lack of rigor, precluding the ability to make strong causal claims. We conducted a randomized, component control (dismantling) trial of dramatic pretend play games with a low-SES group of 4-year-old children (N = 97) to test whether such practice yields generalized improvements in multiple social and emotional outcomes. We found specific effects of dramatic play games only on emotional self-control. Results suggest that dramatic pretend play games involving physicalizing emotional states and traits, pretending to be animals and human characters, and engaging in pretend scenarios in a small group may improve children's emotional control. These findings have implications for the function of pretense and design of interventions to improve emotional control in typical and atypical populations. Further, they provide support for the unique role of dramatic pretend play games for young children, particularly those from low-income backgrounds. A video abstract of this article can be viewed at: https://youtu.be/2GVNcWKRHPk. © 2017 John Wiley & Sons Ltd.

  1. In-vitro biodegradation and corrosion-assisted cracking of a coated magnesium alloy in modified-simulated body fluid.

    PubMed

    Jafari, Sajjad; Singh Raman, R K

    2017-09-01

    A calcium phosphate coating was directly synthesized on AZ91D magnesium (Mg) alloy. Resistance of this coating to corrosion in a modified-simulated body fluid (m-SBF) was investigated by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). Mechanical properties of the bare and coated alloy were investigated using slow strain rate tensile (SSRT) and fatigue testing in air and m-SBF. Very little is reported in the literature on human-body-fluid-assisted cracking of Mg alloys, viz., resistance to corrosion fatigue (CF) and stress corrosion cracking (SCC). This study has a particular emphasis on the effect of bio-compatible coatings on mechanical and electrochemical degradations of Mg alloys for their applications as implants. The results suggest the coating to improve the general as well as pitting corrosion resistance of the alloy. The coating also provides visible improvement in resistance to SCC, but little improvement in CF resistance. This is explained on the basis of pitting behaviour in the presence and absence of the coating. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Hydroxyapatite/poly(epsilon-caprolactone) composite coatings on hydroxyapatite porous bone scaffold for drug delivery.

    PubMed

    Kim, Hae-Won; Knowles, Jonathan C; Kim, Hyoun-Ee

    2004-01-01

    Hydroxyapatite (HA) porous scaffold was coated with HA and polycaprolactone (PCL) composites, and antibiotic drug tetracycline hydrochloride was entrapped within the coating layer. The HA scaffold obtained by a polymeric reticulate method, possessed high porosity ( approximately 87%) and controlled pore size (150-200 microm). Such a well-developed porous structure facilitated usage in a drug delivery system due to its high surface area and blood circulation efficiency. The PCL polymer, as a coating component, was used to improve the brittleness and low strength of the HA scaffold, as well to effectively entrap the drug. To improve the osteoconductivity and bioactivity of the coating layer, HA powder was hybridized with PCL solution to make the HA-PCL composite coating. With alteration in the coating concentration and HA/PCL ratio, the morphology, mechanical properties, and biodegradation behavior were investigated. Increasing the concentration rendered the stems thicker and some pores to be clogged; as well increasing the HA/PCL ratio made the coating surface be rough due to the large amount of HA particles. However, for all concentrations and compositions, uniform coatings were formed, i.e., with the HA particles being dispersed homogeneously in the PCL sheet. With the composite coating, the mechanical properties, such as compressive strength and elastic modulus were improved by several orders of magnitude. These improvements were more significant with thicker coatings, while little difference was observed with the HA/PCL ratio. The in vitro biodegradation of the composite coatings in the phosphate buffered saline solution increased linearly with incubation time and the rate differed with the coating concentration and the HA/PCL ratio; the higher concentration and HA amount caused the increased biodegradation. At short period (<2 h), about 20-30% drug was released especially due to free drug at the coating surface. However, the release rate was sustained for prolonged periods and was highly dependent on the degree of coating dissolution, suggesting the possibility of a controlled drug release in the porous scaffold with HA+PCL coating.

  3. Behavior of an improved Zr fuel cladding with oxidation resistant coating under loss-of-coolant accident conditions

    NASA Astrophysics Data System (ADS)

    Park, Dong Jun; Kim, Hyun Gil; Jung, Yang Il; Park, Jung Hwan; Yang, Jae Ho; Koo, Yang Hyun

    2016-12-01

    This study investigates protective coatings for improving the high temperature oxidation resistance of Zr fuel claddings for light water nuclear reactors. FeCrAl alloy and Cr layers were deposited onto Zr plates and tubes using cold spraying. For the FeCrAl/Zr system, a Mo layer was introduced between the FeCrAl coating and the Zr matrix to prevent inter-diffusion at high temperatures. Both the FeCrAl and Cr coatings improved the oxidation resistance compared to that of the uncoated Zr alloy when exposed to a steam environment at 1200 °C. The ballooning behavior and mechanical properties of the coated cladding samples were studied under simulated loss-of-coolant accident conditions. The coated samples showed higher burst temperatures, lower circumferential strain, and smaller rupture openings compared to the uncoated Zr. Although 4-point bend tests of the coated samples showed a small increase in the maximum load, ring compression tests of a sectioned sample showed increased ductility.

  4. Exploration of alloy surface and slurry modification to improve oxidation life of fused silicide coated niobium alloys.

    NASA Technical Reports Server (NTRS)

    Levine, S. R.; Grisaffe, S. J.

    1972-01-01

    Edge and surface modification of niobium alloys prior to coating with Si-20Cr-20Fe and slurry composition modification were investigated to improve performance in a 1370 C, ambient pressure, slow-cycle test. The best coating obtained was Si-20Cr-20Mn with an average life of 63 cycles compared to 40 for Si-20Cr-20Fe on FS-85 (100 percent improvement in weight parity life). Edge beading extended the lives of Si-20Cr-20Fe coated Cb-752 and FS-85 to 57 and 41 cycles, respectively (50 and 20 percent improvements in weight parity life, respectively).

  5. Low Conductivity Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dong-Ming

    2005-01-01

    Thermal barrier coatings will be more aggressively designed to protect gas turbine engine hot-section components in order to meet future engine higher fuel efficiency and lower emission goals. In this presentation, thermal barrier coating development considerations and requirements will be discussed. An experimental approach is established to monitor in real time the thermal conductivity of the coating systems subjected to high-heat-flux, steady-state and cyclic temperature gradients. Advanced low conductivity thermal barrier coatings have also been developed using a multi-component defect clustering approach, and shown to have improved thermal stability. The durability and erosion resistance of low conductivity thermal barrier coatings have been improved utilizing advanced coating architecture design, composition optimization, in conjunction with more sophisticated modeling and design tools.

  6. Improvement of mechanical strength and osteogenic potential of calcium sulfate-based hydroxyapatite 3-dimensional printed scaffolds by ε-polycarbonate coating.

    PubMed

    Kim, Beom-Su; Yang, Sun-Sik; Park, Ho; Lee, Se-Hwan; Cho, Young-Sam; Lee, Jun

    2017-09-01

    Powder-based three-dimensional (3D) printing is an excellent method to fabricate complex-shaped scaffolds for tissue engineering. However, their lower mechanical strength restricts their application in bone tissue engineering. Here, we created a 3D-printed scaffold coated with a ε-polycaprolactone (PCL) polymer solution (5 and 10 w/v %) to improve the mechanical strength of the scaffold. The 3D scaffold was fabricated from calcium sulfate hemihydrate powder (CaSO 4 -1/2 H 2 O), transformed into hydroxyapatite (HAp) by treatment with a hydrothermal reaction in an NH 4 H 2 PO 4 solution. The surface properties and composition of the scaffold were evaluated using scanning electron microscopy and X-ray diffraction analysis. We demonstrated that the 3D scaffold coated with PCL had an improved mechanical modulus. Coating with 5 and 10% PCL increased the compressive strength significantly, by about 2-fold and 4-fold, respectively, compared with that of uncoated scaffolds. However, the porosity was reduced significantly by coating with 10% PCL. In vitro biological evaluation demonstrated that MG-63 cells adhered well and proliferated on the 3D scaffold coated with PCL, and the scaffold was not cytotoxic. In addition, alkaline phosphatase activity and real time polymerase chain reaction demonstrated that osteoblast differentiation also improved in the PCL-coated 3D scaffolds. These results indicated that PCL polymer coating could improve the compressive strength and biocompatibility of 3D HAp scaffolds for bone tissue engineering applications.

  7. A continuous silicon-coating facility

    NASA Technical Reports Server (NTRS)

    Butter, C.; Heaps, J. D.

    1979-01-01

    Automatic continuous silicon-coating facility is used to process 100 by 10 cm graphite-coated ceramic substrates for silicon solar cells. Process reduces contamination associated with conventional dip-coating processes, improving material service life.

  8. Ligand affinity of the 67-kD elastin/laminin binding protein is modulated by the protein's lectin domain: visualization of elastin/laminin-receptor complexes with gold-tagged ligands

    PubMed Central

    1991-01-01

    Video-enhanced microscopy was used to examine the interaction of elastin- or laminin-coated gold particles with elastin binding proteins on the surface of live cells. By visualizing the binding events in real time, it was possible to determine the specificity and avidity of ligand binding as well as to analyze the motion of the receptor-ligand complex in the plane of the plasma membrane. Although it was difficult to interpret the rates of binding and release rigorously because of the possibility for multiple interactions between particles and the cell surface, relative changes in binding have revealed important aspects of the regulation of affinity of ligand-receptor interaction in situ. Both elastin and laminin were found to compete for binding to the cell surface and lactose dramatically decreased the affinity of the receptor(s) for both elastin and laminin. These findings were supported by in vitro studies of the detergent-solubilized receptor. Further, immobilization of the ligand-receptor complexes through binding to the cytoskeleton dramatically decreased the ability of bound particles to leave the receptor. The changes in the kinetics of ligand-coated gold binding to living cells suggest that both laminin and elastin binding is inhibited by lactose and that attachment of receptor to the cytoskeleton increases its affinity for the ligand. PMID:1848864

  9. Enhanced Stability and Bioconjugation of Photo-cross-linked Polystyrene-Shell, Au-Core Nanoparticles

    PubMed Central

    Chen, Ying; Cho, Juhee; Young, Alexi; Taton, T. Andrew

    2008-01-01

    Encapsulating Au nanoparticles within a shell of photo-cross-linked block copolymer surfactant dramatically improves the physical and chemical stability of the nanoparticles, particularly when they are applied as bioconjugates. Photo-cross-linkable block copolymer amphiphiles [polystyrene-co-poly(4-vinyl benzophenone)]-block-poly(acrylic acid) [(PS-co-PVBP)-b-PAA] and [poly(styrene)-co-poly(4-vinyl benzophenone)]-block-poly(ethylene oxide) [(PS-co-PVBP)-b-PEO] were assembled around Au nanoparticles ranging from 12 nm to 108 nm in diameter. UV irradiation cross-linked the PVBP groups on the polymer to yield particles that withstood extremes of temperature, ionic strength, and chemical etching. Streptavidin was attached to [PS-co-PVBP]-b-PAA coated particles using the same noncovalent and covalent conjugation protocols used to bind biomolecules to divinylbenzene-crosslinked polystyrene microspheres. We expect that these particles will be useful as plasmonic, highly light-scattering and light-absorbing analogs to fluorescently labeled polystyrene nanospheres. PMID:17530871

  10. Extreme Light Management in Mesoporous Wood Cellulose Paper for Optoelectronics.

    PubMed

    Zhu, Hongli; Fang, Zhiqiang; Wang, Zhu; Dai, Jiaqi; Yao, Yonggang; Shen, Fei; Preston, Colin; Wu, Wenxin; Peng, Peng; Jang, Nathaniel; Yu, Qingkai; Yu, Zongfu; Hu, Liangbing

    2016-01-26

    Wood fibers possess natural unique hierarchical and mesoporous structures that enable a variety of new applications beyond their traditional use. We dramatically modulate the propagation of light through random network of wood fibers. A highly transparent and clear paper with transmittance >90% and haze <1.0% applicable for high-definition displays is achieved. By altering the morphology of the same wood fibers that form the paper, highly transparent and hazy paper targeted for other applications such as solar cell and antiglare coating with transmittance >90% and haze >90% is also achieved. A thorough investigation of the relation between the mesoporous structure and the optical properties in transparent paper was conducted, including full-spectrum optical simulations. We demonstrate commercially competitive multitouch touch screen with clear paper as a replacement for plastic substrates, which shows excellent process compatibility and comparable device performance for commercial applications. Transparent cellulose paper with tunable optical properties is an emerging photonic material that will realize a range of much improved flexible electronics, photonics, and optoelectronics.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhan, Wangcheng; He, Qian; Liu, Xiaofei

    Supported gold (Au) nanocatalysts hold great promise for heterogeneous catalysis; however, their practical application is greatly hampered by poor thermodynamic stability. Herein, a general synthetic strategy is reported where discrete metal nanoparticles are made resistant to sintering, preserving their catalytic activities in high-temperature oxidation processes. Taking advantage of the unique coating chemistry of dopamine, sacrificial carbon layers are constructed on the material surface, stabilizing the supported catalyst. Upon annealing at high temperature under an inert atmosphere, the interactions between support and metal nanoparticle are dramatically enhanced, while the sacrificial carbon layers can be subsequently removed through oxidative calcination in air.more » Owing to the improved metal-support contact and strengthened electronic interactions, the resulting Au nanocatalysts are resistant to sintering and exhibit excellent durability for catalytic combustion of propylene at elevated temperatures. Moreover, the facile synthetic strategy can be extended to the stabilization of other supported catalysts on a broad range of supports, providing a general approach to enhancing the thermal stability and sintering resistance of supported nanocatalysts.« less

  12. Ag@Ni core-shell nanowire network for robust transparent electrodes against oxidation and sulfurization.

    PubMed

    Eom, Hyeonjin; Lee, Jaemin; Pichitpajongkit, Aekachan; Amjadi, Morteza; Jeong, Jun-Ho; Lee, Eungsug; Lee, Jung-Yong; Park, Inkyu

    2014-10-29

    Silver nanowire (Ag NW) based transparent electrodes are inherently unstable to moist and chemically reactive environment. A remarkable stability improvement of the Ag NW network film against oxidizing and sulfurizing environment by local electrodeposition of Ni along Ag NWs is reported. The optical transmittance and electrical resistance of the Ni deposited Ag NW network film can be easily controlled by adjusting the morphology and thickness of the Ni shell layer. The electrical conductivity of the Ag NW network film is increased by the Ni coating via welding between Ag NWs as well as additional conductive area for the electron transport by electrodeposited Ni layer. Moreover, the chemical resistance of Ag NWs against oxidation and sulfurization can be dramatically enhanced by the Ni shell layer electrodeposited along the Ag NWs, which provides the physical barrier against chemical reaction and diffusion as well as the cathodic protection from galvanic corrosion. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Increasing magnetite contents of polymeric magnetic particles dramatically improves labeling of neural stem cell transplant populations.

    PubMed

    Adams, Christopher F; Rai, Ahmad; Sneddon, Gregor; Yiu, Humphrey H P; Polyak, Boris; Chari, Divya M

    2015-01-01

    Safe and efficient delivery of therapeutic cells to sites of injury/disease in the central nervous system is a key goal for the translation of clinical cell transplantation therapies. Recently, 'magnetic cell localization strategies' have emerged as a promising and safe approach for targeted delivery of magnetic particle (MP) labeled stem cells to pathology sites. For neuroregenerative applications, this approach is limited by the lack of available neurocompatible MPs, and low cell labeling achieved in neural stem/precursor populations. We demonstrate that high magnetite content, self-sedimenting polymeric MPs [unfunctionalized poly(lactic acid) coated, without a transfecting component] achieve efficient labeling (≥90%) of primary neural stem cells (NSCs)-a 'hard-to-label' transplant population of major clinical relevance. Our protocols showed high safety with respect to key stem cell regenerative parameters. Critically, labeled cells were effectively localized in an in vitro flow system by magnetic force highlighting the translational potential of the methods used. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Dielectric Coating Thermal Stabilization During GaAs-Based Laser Fabrication for Improved Device Yield

    DTIC Science & Technology

    2015-11-25

    1 Dielectric coating thermal stabilization during GaAs-based laser fabrication for improved device yield 1 Michael K. Connors a, c), Jamal...side contact metal, underlying SiO2 dielectric coating, and semiconductor surface. A thermal-anneal procedure developed for the fabrication of GaAs...slab coupled optical waveguide (SCOW) ridge waveguide devices stabilizes the SiO2 dielectric coating, by means of outgassing and stress reduction

  15. Improvement of corrosion resistance and antibacterial effect of NiTi orthopedic materials by chitosan and gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Ahmed, Rasha A.; Fadl-allah, Sahar A.; El-Bagoury, Nader; El-Rab, Sanaa M. F. Gad

    2014-02-01

    Biocomposite consists of gold nanoparticles (AuNPs) and a natural polymer as Chitosan (CS) was electrodeposited over NiTi alloy to improve biocompatibility, biostability, surface corrosion resistance and antibacterial effect for orthopedic implantation. The forming process and surface morphology of this biocomposite coats over NiTi alloy were studied. The results showed that the nm-scale gold particles were embedded in the composite forming compact, thick and smooth coat. Elemental analysis revealed significant less Ni ion release from the coated NiTi alloy compared with the uncoated one by 20 fold. Furthermore, the electrochemical corrosion measurements indicated that AuNPs/CS composite coat was effective for improving corrosion resistance in different immersion times and at all pH values, which suggests that the coated NiTi alloys have potential for orthopedic applications. Additionally, the efficiencies of the biocomposite coats for inhibiting bacterial growth indicate high antibacterial effect.

  16. 2D Heterostructure coatings of hBN-MoS2 layers for corrosion resistance

    NASA Astrophysics Data System (ADS)

    Vandana, Sajith; Kochat, Vidya; Lee, Jonghoon; Varshney, Vikas; Yazdi, Sadegh; Shen, Jianfeng; Kosolwattana, Suppanat; Vinod, Soumya; Vajtai, Robert; Roy, Ajit K.; Sekhar Tiwary, Chandra; Ajayan, P. M.

    2017-02-01

    Heterostructures of atomically thin 2D materials could have improved physical, mechanical and chemical properties as compared to its individual components. Here we report, the effect of heterostructure coatings of hBN and MoS2 on the corrosion behavior as compared to coatings employing the individual 2D layer compositions. The poor corrosion resistance of MoS2 (widely used as wear resistant coating) can be improved by incorporating hBN sheets. Depending on the atomic stacking of the 2D sheets, we can further engineer the corrosion resistance properties of these coatings. A detailed spectroscopy and microscopy analysis has been used to characterize the different combinations of layered coatings. Detailed DFT based calculation reveals that the effect on the electrical properties due to atomic stacking is one of the major reasons for the improvement seen in corrosion resistance.

  17. Tribological Behavior and Corrosion Resistance of Electroless Ni-B-W Coatings

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Arkadeb; Barman, Tapan Kumar; Sahoo, Prasanta

    The present study considers the tribological behavior and corrosion resistance of electroless Ni-B-W coatings deposited on AISI 1040 steel substrates. Coating is characterized using scanning electron microscopy, energy dispersive X-ray analysis and X-ray diffraction technique. In as-deposited condition, coatings are found to be amorphous. On heat treatment, precipitation of crystalline Ni (1 1 1) and its borides take place. For as-deposited coating, the microhardness is obtained as ˜759HV100 which increases to ˜1181HV100 and ˜1098HV100 when heat treated at 350∘C and 450∘C, respectively. Incorporation of W in Ni-B coating results in an increase of hardness by 89HV100 in as-deposited condition. Heat treatment also results in increase in crystallite size of Ni (1 1 1). Wear rate and coefficient of friction (COF) of the coatings are evaluated on a pin-on-disc setup under both dry and lubricated sliding conditions. Wear resistance is observed to improve on heat treatment with an increase in crystallite size while COF deteriorates. However, in as-deposited condition, wear rate and COF of Ni-B-W coatings improve by ˜5 and ˜3 times, respectively, compared with Ni-B coatings. Wear and friction performance of the coatings are enhanced under lubrication due to the columnar structure of the coatings that retain lubricants. Corrosion resistance of Ni-B-W coating in 3.5% NaCl solution gets improved on heat treatment.

  18. Design and Characterization of High-strength Bond Coats for Improved Thermal Barrier Coating Durability

    NASA Astrophysics Data System (ADS)

    Jorgensen, David John

    High pressure turbine blades in gas turbine engines rely on thermal barrier coating (TBC) systems for protection from the harsh combustion environment. These coating systems consist of a ceramic topcoat for thermal protection, a thermally grown oxide (TGO) for oxidation passivation, and an intermetallic bond coat to provide compatibility between the substrate and ceramic over-layers while supplying aluminum to sustain Al2O 3 scale growth. As turbine engines are pushed to higher operating temperatures in pursuit of better thermal efficiency, the strength of industry-standard bond coats limits the lifetime of these coating systems. Bond coat creep deformation during thermal cycling leads to a failure mechanism termed rumpling. The interlayer thermal expansion differences, combined with TGO-imposed growth stresses, lead to the development of periodic undulations in the bond coat. The ceramic topcoat has low out-of-plane compliance and thus detaches and spalls from the substrate, resulting in a loss of thermal protection and subsequent degradation of mechanical properties. New creep resistant Ni3Al bond coats were designed with improved high-temperature strength to inhibit this type of premature failure at elevated temperatures. These coatings resist rumpling deformation while maintaining compatibility with the other layers in the system. Characterization methods are developed to quantify rumpling and assess the TGO-bond coat interface toughness of experimental systems. Cyclic oxidation experiments at 1163 °C show that the Ni3Al bond coats do not experience rumpling but have faster oxide growth rates and are quicker to spall TGO than the (Pt,Ni)Al benchmark. However, the Ni 3Al coatings outperformed the benchmark by over threefold in TBC system life due to a higher resistance to rumpling (mechanical degradation) while maintaining adequate oxidation passivation. The Ni3Al coatings eventually grow spinel NiAl2O4 on top of the protective Al2O3 layer, which leads to the detachment of the ceramic topcoat. Furthermore, bilayer Ni3Al+NiAl architectures have been investigated to improve the oxidation performance of the monolithic Ni 3Al coatings while maintaining their high strength. These bilayer architectures are shown to improve the cyclic oxidation performance of the monolithic layers and increase the TBC system life. The design, characterization, and experimentation of these coatings is discussed and related to the development of high-strength coatings.

  19. Influence of Bi addition on the property of Ag-Bi nano-composite coatings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yuxin; Tay, See Leng; Zhou, Xiaowei

    Silver (Ag) coatings have been widely used in many industry areas due to their excellent conductivity. However, wider applications of Ag coatings have been hindered by their poor mechanical properties. In this research, to improve the mechanical performance, Ag-Bi nano-composite coatings were prepared by a novel ionic co-discharge method. A systematic study of the microstructure, mechanical properties, electrical conductivity and antibacterial behavior of the resulting coating was performed. The results indicated that after adding an appropriate amount of Bi containing solution into the Ag plating solution, Ag-Bi nanoparticles were in-situ formed and distributed uniformly throughout the coating matrix, resulting inmore » a significant improvement in the mechanical properties. The hardness of Ag-Bi coating was increased by 60% compared to that of the pure Ag coating. The corrosion resistance of Ag-Bi coatings was also enhanced. The Ag-Bi coatings prepared in the current study will find a broader application in electronics, jewelry, aerospace and other industries.« less

  20. Influence of Bi addition on the property of Ag-Bi nano-composite coatings

    DOE PAGES

    Wang, Yuxin; Tay, See Leng; Zhou, Xiaowei; ...

    2018-03-26

    Silver (Ag) coatings have been widely used in many industry areas due to their excellent conductivity. However, wider applications of Ag coatings have been hindered by their poor mechanical properties. In this research, to improve the mechanical performance, Ag-Bi nano-composite coatings were prepared by a novel ionic co-discharge method. A systematic study of the microstructure, mechanical properties, electrical conductivity and antibacterial behavior of the resulting coating was performed. The results indicated that after adding an appropriate amount of Bi containing solution into the Ag plating solution, Ag-Bi nanoparticles were in-situ formed and distributed uniformly throughout the coating matrix, resulting inmore » a significant improvement in the mechanical properties. The hardness of Ag-Bi coating was increased by 60% compared to that of the pure Ag coating. The corrosion resistance of Ag-Bi coatings was also enhanced. The Ag-Bi coatings prepared in the current study will find a broader application in electronics, jewelry, aerospace and other industries.« less

  1. Optical Coating for Improvement in Thermal Radiative Properties of Cu (In, Ga) Se2 Thin Film Solar Cells for Space Applications

    NASA Astrophysics Data System (ADS)

    Shimazaki, Kazunori; Kawakita, Shirou; Imaizumi, Mitsuru; Kuwajima, Saburou; Sakurai, Keiichiro; Matsubara, Koji; Niki, Sigeru

    2005-05-01

    Optical coating on Cu(In, Ga)Se2 thin film solar cells, which have high radiation tolerance, is investigated in order to improve their radiative properties for thermal balance in space. Due to low thermal emissivity, the temperature of the CIGS solar cell is expected to exceed the allowable limit if no coating is applied. Evaporated single-layer coating of silicon dioxide and additional over-layer coatings on the CIGS solar cells increase the emissivity from 0.18 to 0.75. The coating with the over-layer coatings realizes higher emissivity with less thickness than that of the single SiO2 coating. In addition, optical coatings reflecting UV rays and infrared radiation are designed and evaporated on the cells to control solar input. The developed optical coatings could give the CIGS solar cells appropriate thermal radiative properties for space applications without any degradations of the cell performance.

  2. A novel hydroxyapatite film coated with ionic silver via inositol hexaphosphate chelation prevents implant-associated infection

    NASA Astrophysics Data System (ADS)

    Funao, Haruki; Nagai, Shigenori; Sasaki, Aya; Hoshikawa, Tomoyuki; Tsuji, Takashi; Okada, Yasunori; Koyasu, Shigeo; Toyama, Yoshiaki; Nakamura, Masaya; Aizawa, Mamoru; Matsumoto, Morio; Ishii, Ken

    2016-03-01

    Various silver-coated implants have been developed to prevent implant-associated infections, and have shown dramatic effects in vitro. However, the in vivo results have been inconsistent. Recent in vitro studies showed that silver exerts antibacterial activity by mediating the generation of reactive oxygen species in the presence of oxygen. To maintain its antibacterial activity in vivo, the silver should remain in an ionic state and be stably bound to the implant surface. Here, we developed a novel bacteria-resistant hydroxyapatite film in which ionic silver is immobilized via inositol hexaphosphate chelation using a low-heat immersion process. This bacteria-resistant coating demonstrated significant antibacterial activity both in vitro and in vivo. In a murine bioluminescent osteomyelitis model, no bacteria were detectable 21 days after inoculation with S. aureus and placement of this implant. Serum interleukin-6 was elevated in the acute phase in this model, but it was significantly lower in the ionic-silver group than the control group on day 2. Serum C-reactive protein remained significantly higher in the control group than the ionic-silver group on day 14. Because this coating is produced by a low-heat immersion process, it can be applied to complex structures of various materials, to provide significant protection against implant-associated infections.

  3. Overview of thermal barrier coatings in diesel engines

    NASA Technical Reports Server (NTRS)

    Yonushonis, T. M.

    1995-01-01

    An understanding of delamination mechanisms in thermal barrier coatings has been developed for diesel applications through nondestructive evaluation, structural analysis modeling and engine evaluation of various thermal barrier coatings. This knowledge has resulted in improved thermal barrier coatings which survive abusive cyclic fatigue tests in high output diesel engines. Significant efforts are still required to improve the plasma spray processing capability and the economics for complex geometry diesel engine components. Data obtained from advanced diesel engines on the effect of thermal barrier coatings on engine fuel economy and emission has not been encouraging. Although the underlying metal component temperatures have been reduced through the use of thermal barrier coating, engine efficiency and emission trends have not been promising.

  4. Influence of plasma modification on hygienic properties of textile fabrics with nonporous membrane coating

    NASA Astrophysics Data System (ADS)

    Voznesensky, E. F.; Ibragimov, R. G.; Vishnevskaya, O. V.; Sisoev, V. A.; Lutfullina, G. G.; Tihonova, N. V.

    2017-11-01

    The work investigated the possibility of using plasma modification to improve the hygienic properties of textile materials with nonporous membrane coating to improve vapor-, air-permeability and water-resistant. Determined that, after plasma modification changes degree of supramolecular orderliness of the polymers nonporous membrane coating and the base fabric.

  5. Improvement in Microstructure Performance of the NiCrBSi Reinforced Coating on TA15 Titanium Alloy

    NASA Astrophysics Data System (ADS)

    Peng, Li

    2012-10-01

    This work is based on the dry sliding wear of NiCrBSi reinforced coating deposited on TA15 titanium alloy using the laser cladding technique, the parameters of which were such as to provide almost crack-free coatings with minimum dilution and very low porosity. SEM results indicated that a laser clad coating with metallurgical joint to the substrate was formed. Compared with TA15 substrate, an improvement of the micro-hardness and wear resistance was observed for this composite coating. Rare earth oxide Y2O3 was beneficial in producing of the amorphous phases in laser clad coating. With addition of Y2O3, more amorphous alloys were produced, which increased the micro-hardness and wear resistance of the coating.

  6. ZnO nanorod array polydimethylsiloxane composite solid phase micro-extraction fiber coating: fabrication and extraction capability.

    PubMed

    Wang, Dan; Wang, Qingtang; Zhang, Zhuomin; Chen, Guonan

    2012-01-21

    ZnO nanorod array coating is a novel kind of solid-phase microextraction (SPME) fiber coating which shows good extraction capability due to the nanostructure. To prepare the composite coating is a good way to improve the extraction capability. In this paper, the ZnO nanorod array polydimethylsiloxane (PDMS) composite SPME fiber coating has been prepared and its extraction capability for volatile organic compounds (VOCs) has been studied by headspace sampling the typical volatile mixed standard solution of benzene, toluene, ethylbenzene and xylene (BTEX). Improved detection limit and good linear ranges have been achieved for this composite SPME fiber coating. Also, it is found that the composite SPME fiber coating shows good extraction selectivity to the VOCs with alkane radicals.

  7. Effect of Nozzle Geometry on the Microstructure and Properties of HVAF-Sprayed WC-10Co4Cr and Cr3C2-25NiCr Coatings

    NASA Astrophysics Data System (ADS)

    Matikainen, V.; Koivuluoto, H.; Vuoristo, P.; Schubert, J.; Houdková, Š.

    2018-04-01

    Thermally sprayed hard metal coatings are the industrial standard solution for numerous demanding applications to improve wear resistance. In the aim of improving coating quality by utilising finer particle size distributions, several approaches have been studied to control the spray temperature. The most viable solution is to use the modern high velocity air-fuel (HVAF) spray process, which has already proven to produce high-quality coatings with dense structures. In HVAF spray process, the particle heating and acceleration can be efficiently controlled by changing the nozzle geometry. In this study, fine WC-10Co4Cr and Cr3C2-25NiCr powders were sprayed with three nozzle geometries to investigate their effect on the particle temperature, velocity and coating microstructure. The study demonstrates that the particle melting and resulting carbide dissolution can be efficiently controlled by changing the nozzle geometry from cylindrical to convergent-divergent. Moreover, the average particle velocity was increased from 780 to over 900 m/s. The increase in particle velocity significantly improved the coating structure and density. Further evaluation was carried out to resolve the effect of particle in-flight parameters on coating structure and cavitation erosion resistance, which was significantly improved in the case of WC-10Co4Cr coatings with the increasing average particle velocity.

  8. Improved electrochemical and thermal properties of nickel rich LiNi0.6Co0.2Mn0.2O2 cathode materials by SiO2 coating

    NASA Astrophysics Data System (ADS)

    Cho, Woosuk; Kim, Sang-Min; Song, Jun Ho; Yim, Taeeun; Woo, Sang-Gil; Lee, Ko-Woon; Kim, Jeom-Soo; Kim, Young-Jun

    2015-05-01

    A surface coating of SiO2 is applied to a Ni rich LiNi0.6Co0.2Mn0.2O2 cathode material in a bid to improve its electrochemical and thermal properties. A uniform coating is achieved through a wet process using nano-sized SiO2 powder, and though the coated electrode is found to exhibit a reduced rate capability, its cycle performance at a high temperature of 60 °C is greatly enhanced. The effect of this SiO2 coating is further investigated by electrochemical impedance spectroscopy, which confirms that it suppresses the growth of interfacial impedance during progressive cycles. The SiO2 coating also demonstrates good HF scavenging ability, producing a subsequent reduction in the degradation of the active core material. The thermal properties of LiNi0.6Co0.2Mn0.2O2 are also improved by the SiO2 coating due to a reduction in the direct contact between the electrode and electrolyte. On the basis of these results, SiO2 coating is considered a viable surface modification method for improving the electrochemical and thermal properties of LiNi0.6Co0.2Mn0.2O2.

  9. Ab initio study of the effects of thin CsI coatings on the work function of graphite cathodes

    NASA Astrophysics Data System (ADS)

    Vlahos, Vasilios; Booske, John H.; Morgan, Dane

    2007-10-01

    Cesium-iodide (CsI)-coated graphite cathodes are promising electron sources for high power microwave generators, but the mechanism driving the improved emission is not well understood. Therefore, an ab initio modeling investigation on the effects of thin CsI coatings on graphite has been carried out. It is demonstrated that the CsI coatings reduce the work function of the system significantly through a mechanism of induced dipoles. The results suggest that work function modification is a major contribution to the improved emission seen when CsI coatings are applied to C.

  10. Improved Mechanical Compatibility and Cytocompatibility of Ta/Ti Double-Layered Composite Coating

    NASA Astrophysics Data System (ADS)

    Ding, Ding; Xie, Youtao; Li, Kai; Huang, Liping; Zheng, Xuebin

    2017-08-01

    In order to improve the mechanical compatibility and cytocompatibility of titanium implants, a composite coating with double layers composed of tantalum and titanium was designed and prepared using plasma spraying technology. In the composite coating, the upper tantalum layer provides a good biocompatibility, and the sublayer of titanium with a porous structure ensures the low elastic modulus. Results show that the fabricated composite coating exhibits a relatively low elastic modulus of 26.7 GPa, which is close to the elastic modulus of human cortical bone. In vitro cytocompatibility evaluation of the composite coating shows that the human bone marrow stromal cells exhibit enhanced adhesion and spreading performance on the double-layered composite coating in comparison with the single-layered titanium coating. In order to eliminate the misgivings of chemical stability of the composite coating in clinical application, electrochemical corrosion of the coating was examined. The results obtained revealed a very weak galvanic corrosion between the tantalum and titanium in the composite coating, which would ensure the safety of the coating in vivo.

  11. Ytterbium coating of spherical Ni(OH) 2 cathode materials for Ni-MH batteries at elevated temperature

    NASA Astrophysics Data System (ADS)

    He, Xiangming; Wang, Li; Li, Wen; Jiang, Changyin; Wan, Chunrong

    The Yb/Co coated nickel hydroxides were prepared by precipitation of Yb(OH) 3 on the surface of spherical nickel hydroxide, followed by precipitation of Co(OH) 2 on its surface. The optimum coating content of ytterbium was around 2% (atomic concentration) to obtain high discharge capacity at 60 °C. It was shown that the discharge capacity of nickel hydroxide at high temperatures was improved by coating of ytterbium and cobalt hydroxide. The high temperature performances of the sealed AAA-sized Ni-MH batteries using Yb/Co coated nickel hydroxide as positive electrodes were carried out, showing much better than those using the un-coated and only Co(OH) 2 coated nickel hydroxide electrodes. The charge acceptance of the battery using 2% Yb and 2% Co coated nickel hydroxide reached 92% at 60 °C, where the charge acceptances for the un-coated and only cobalt coated ones were only 42 and 46%, respectively. It has shown that the Yb/Co coating is an effective way to improve the high temperature performance of nickel hydroxide for nickel-metal hydride batteries.

  12. Exploration of alloy surface and slurry modification to improve oxidation life of fused silicide coated niobium alloys

    NASA Technical Reports Server (NTRS)

    Levine, S. R.; Grisaffe, S. J.

    1972-01-01

    Edge and surface modifications of niobium alloys were investigated prior to coating with Si-20Cr-20Fe and slurry composition modification for performance in a 1370 C ambient pressure slow cycle test. The best coating obtained was Si-20Cr-20Mn with an average life of 63 cycles, compared to 40 for Si-20Cr-20Fe on FS-85 (100 percent improvement in weight parity life). Edge beading extended the lives of Si-20Cr-20Fe-coated Cb-752 and FS-85 to 57 and 41 cycles respectively (50 and 20 percent improvements in weight parity life respectively). W, Al2O3 and ZrO2(CaO) surface modifications altered coating crack frequency and microstructure and increased life somewhat.

  13. In-pile test results of U-silicide or U-nitride coated U-7Mo particle dispersion fuel in Al

    NASA Astrophysics Data System (ADS)

    Kim, Yeon Soo; Park, J. M.; Lee, K. H.; Yoo, B. O.; Ryu, H. J.; Ye, B.

    2014-11-01

    U-silicide or U-nitride coated U-Mo particle dispersion fuel in Al (U-Mo/Al) was in-pile tested to examine the effectiveness of the coating as a diffusion barrier between the U-7Mo fuel kernels and Al matrix. This paper reports the PIE data and analyses focusing on the effectiveness of the coating in terms of interaction layer (IL) growth and general fuel performance. The U-silicide coating showed considerable success, but it also provided evidence for additional improvement for coating process. The U-nitride coated specimen showed largely inefficient results in reducing IL growth. From the test, important observations were also made that can be utilized to improve U-Mo/Al fuel performance. The heating process for coating turned out to be beneficial to suppress fuel swelling. The use of larger fuel particles confirmed favorable effects on fuel performance.

  14. Mo doped DLC nanocomposite coatings with improved mechanical and blood compatibility properties

    NASA Astrophysics Data System (ADS)

    Tang, X. S.; Wang, H. J.; Feng, L.; Shao, L. X.; Zou, C. W.

    2014-08-01

    Mo (molybdenum) doped diamond like carbon (Mo-DLC) coatings with improved mechanical and blood compatibility properties were deposited by closed field unbalanced magnetron sputtering. The undoped and Mo-doped DLC coatings were analyzed by various characterization techniques such as Raman spectra, Atomic force microscopy, and temperature-dependent frictional wear testing. The results showed that the Mo-DLC coating with low Mo concentration was a effective protective coating with reduced residual stress and increased cohesive strength, and kept good wear resistance at the ambient temperature of 500 °C. The blood compatibility of Mo-DLC coatings was investigated by platelet adhesion. The results showed that the amount of thrombus on the Mo-DLC nanocomposite coatings was much less than that of thrombus on pyrolytic carbon films. The Mo-DLC nanocomposite coatings would be a new kind of promising materials applied to artificial heart valve and endovascula stent.

  15. Strain isolated ceramic coatings

    NASA Technical Reports Server (NTRS)

    Tolokan, R. P.; Brady, J. B.; Jarrabet, G. P.

    1985-01-01

    Plasma sprayed ceramic coatings are used in gas turbine engines to improve component temperature capability and cooling air efficiency. A compliant metal fiber strain isolator between a plasma sprayed ceramic coating and a metal substrate improves ceramic durability while allowing thicker coatings for better insulation. Development of strain isolated coatings has concentrated on design and fabrication of coatings and coating evaluation via thermal shock testing. In thermal shock testing, five types of failure are possible: buckling failure im compression on heat up, bimetal type failure, isothermal expansion mismatch failure, mudflat cracking during cool down, and long term fatigue. A primary failure mode for thermally cycled coatings is designated bimetal type failure. Bimetal failure is tensile failure in the ceramic near the ceramic-metal interface. One of the significant benefits of the strain isolator is an insulating layer protecting the metal substrate from heat deformation and thereby preventing bimetal type failure.

  16. Development of Advanced Low Conductivity Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dong-Ming; Miller, Robert A.

    2004-01-01

    Advanced multi-component, low conductivity oxide thermal barrier coatings have been developed using an approach that emphasizes real-time monitoring of thermal conductivity under conditions that are engine-like in terms of temperatures and heat fluxes. This is in contrast to the traditional approach where coatings are initially optimized in terms of furnace and burner rig durability with subsequent measurement in the as-processed or furnace-sintered condition. The present work establishes a laser high-heat-flux test as the basis for evaluating advanced plasma-sprayed and electron beam-physical vapor deposited (EB-PVD) thermal barrier coatings under the NASA Ultra-Efficient Engine Technology (UEET) Program. The candidate coating materials for this program are novel thermal barrier coatings that are found to have significantly reduced thermal conductivities and improved thermal stability due to an oxide-defect-cluster design. Critical issues for designing advanced low conductivity coatings with improved coating durability are also discussed.

  17. Development and Life Prediction of Erosion Resistant Turbine Low Conductivity Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Miller, Robert A.; Kuczmarski, Maria A.

    2010-01-01

    Future rotorcraft propulsion systems are required to operate under highly-loaded conditions and in harsh sand erosion environments, thereby imposing significant material design and durability issues. The incorporation of advanced thermal barrier coatings (TBC) in high pressure turbine systems enables engine designs with higher inlet temperatures, thus improving the engine efficiency, power density and reliability. The impact and erosion resistance of turbine thermal barrier coating systems are crucial to the turbine coating technology application, because a robust turbine blade TBC system is a prerequisite for fully utilizing the potential coating technology benefit in the rotorcraft propulsion. This paper describes the turbine blade TBC development in addressing the coating impact and erosion resistance. Advanced thermal barrier coating systems with improved performance have also been validated in laboratory simulated engine erosion and/or thermal gradient environments. A preliminary life prediction modeling approach to emphasize the turbine blade coating erosion is also presented.

  18. Pulsed Laser Deposition Processing of Improved Titanium Nitride Coatings for Implant Applications

    NASA Astrophysics Data System (ADS)

    Haywood, Talisha M.

    Recently surface coating technology has attracted considerable attention of researchers to develop novel coatings with enhanced functional properties such as hardness, biocompatibility, wear and corrosion resistance for medical devices and surgical tools. The materials currently being used for surgical implants include predominantly stainless steel (316L), cobalt chromium (Co-Cr), titanium and its alloys. Some of the limitations of these implants include improper mechanical properties, corrosion resistance, cytotoxicity and bonding with bone. One of the ways to improve the performance and biocompatibility of these implants is to coat their surfaces with biocompatible materials. Among the various coating materials, titanium nitride (TiN) shows excellent mechanical properties, corrosion resistance and low cytotoxicity. In the present work, a systematic study of pulsed laser ablation processing of TiN coatings was conducted. TiN thin film coatings were grown on commercially pure titanium (Ti) and stainless steel (316L) substrates at different substrate temperatures and different nitrogen partial pressures using the pulsed laser deposition (PLD) technique. Microstructural, surface, mechanical, chemical, corrosion and biological analysis techniques were applied to characterize the TiN thin film coatings. The PLD processed TiN thin film coatings showed improvements in mechanical strength, corrosion resistance and biocompatibility when compared to the bare substrates. The enhanced performance properties of the TiN thin film coatings were a result of the changing and varying of the deposition parameters.

  19. Effect of CeO₂ on Microstructure and Wear Resistance of TiC Bioinert Coatings on Ti6Al4V Alloy by Laser Cladding.

    PubMed

    Chen, Tao; Liu, Defu; Wu, Fan; Wang, Haojun

    2017-12-31

    To solve the lack of wear resistance of titanium alloys for use in biological applications, various prepared coatings on titanium alloys are often used as wear-resistant materials. In this paper, TiC bioinert coatings were fabricated on Ti6Al4V by laser cladding using mixed TiC and ZrO₂ powders as the basic pre-placed materials. A certain amount of CeO₂ powder was also added to the pre-placed powders to further improve the properties of the TiC coatings. The effects of CeO₂ additive on the phase constituents, microstructures and wear resistance of the TiC coatings were researched in detail. Although the effect of CeO₂ on the phase constituents of the coatings was slight, it had a significant effect on the microstructure and wear resistance of the coatings. The crystalline grains in the TiC coatings, observed by a scanning electron microscope (SEM), were refined due to the effect of the CeO₂. With the increase of CeO₂ additive content in the pre-placed powders, finer and more compact dendrites led to improvement of the micro-hardness and wear resistance of the TiC coatings. Also, 5 wt % content of CeO₂ additive in the pre-placed powders was the best choice for improving the wear properties of the TiC coatings.

  20. Effects of Coating Materials and Processing Conditions on Flow Enhancement of Cohesive Acetaminophen Powders by High-Shear Processing With Pharmaceutical Lubricants.

    PubMed

    Wei, Guoguang; Mangal, Sharad; Denman, John; Gengenbach, Thomas; Lee Bonar, Kevin; Khan, Rubayat I; Qu, Li; Li, Tonglei; Zhou, Qi Tony

    2017-10-01

    This study has investigated the surface coating efficiency and powder flow improvement of a model cohesive acetaminophen powder by high-shear processing with pharmaceutical lubricants through 2 common equipment, conical comil and high-shear mixer. Effects of coating materials and processing parameters on powder flow and surface coating coverage were evaluated. Both Carr's index and shear cell data indicated that processing with the lubricants using comil or high-shear mixer substantially improved the flow of the cohesive acetaminophen powder. Flow improvement was most pronounced for those processed with 1% wt/wt magnesium stearate, from "cohesive" for the V-blended sample to "easy flowing" for the optimally coated sample. Qualitative and quantitative characterizations demonstrated a greater degree of surface coverage for high-shear mixing compared with comilling; nevertheless, flow properties of the samples at the corresponding optimized conditions were comparable between 2 techniques. Scanning electron microscopy images demonstrated different coating mechanisms with magnesium stearate or l-leucine (magnesium stearate forms a coating layer and leucine coating increases surface roughness). Furthermore, surface coating with hydrophobic magnesium stearate did not retard the dissolution kinetics of acetaminophen. Future studies are warranted to evaluate tableting behavior of such dry-coated pharmaceutical powders. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  1. Overview of thermal barrier coatings in diesel engines

    NASA Technical Reports Server (NTRS)

    Yonushonis, Thomas M.

    1995-01-01

    An understanding of delamination mechanisms in thermal barrier coatings has been developed for diesel engine applications through rig tests, structural analysis modeling, nondestructive evaluation, and engine evaluation of various thermal barrier coatings. This knowledge has resulted in improved thermal barrier coatings which survive abusive cyclic fatigue tests in high output diesel engines. Although much conflicting literature now exists regarding the impact of thermal barrier coatings on engine performance and fuel consumption, the changes in fuel consumption appear to be less than a few percent and can be negative for state-of-the-art diesel engines. The ability of the thermal barrier coating to improve fuel economy tends to be dependent on a number of factors including the fuel injection system, combustion chamber design, and the initial engine fuel economy. Limited investigations on state-of-the-art diesel engines have indicated that the surface connected porosity and coating surface roughness may influence engine fuel economy. Current research efforts on thermal barrier coatings are primarily directed at reducing in-cylinder heat rejection, thermal fatigue protection of underlying metal surfaces and a possible reduction in diesel engine emissions. Significant efforts are still required to improve the plasma spray processing capability and the economics for complex geometry diesel engine components.

  2. Preparation and mechanism analysis of an environment-friendly maize seed coating agent.

    PubMed

    Zeng, Defang; Fan, Zhao; Tian, Xu; Wang, Wenjin; Zhou, Mingchun; Li, Haochuan

    2018-06-01

    Traditional seed coating agents often contain toxic ingredients, which contaminate the environment and threaten human health. This paper expounds a method of preparing a novel environment-friendly seed coating agent for maize and researches its mechanism of action. The natural polysaccharide polymer, which is the main active ingredient of this environment-friendly seed coating agent, has the characteristics of innocuity and harmlessness, and it can replace the toxic ingredients used in traditional seed coating agents. This environment-friendly seed coating agent for maize was mainly made up of the natural polysaccharide polymer and other additives. The field trials results showed that the control efficacy of Helminthosporium maydis came to 93.72%, the anti-feeding rate of cutworms came to 81.29%, and the maize yield was increased by 17.75%. Besides, the LD 50 value (half the lethal dose in rats) of this seed coating agent was 10 times higher than that of the traditional seed coating agents. This seed coating agent could improve the activity of plant protective enzymes (peroxidase, catalase and superoxidase dismutase) and increase the chlorophyll content. This seed coating agent has four characteristics of disease prevention, desinsectization, increasing yield and safety. Results of mechanism analyses showed that this seed coating agent could enhance disease control effectiveness by improving plant protective enzymes activity and increase maize yield by improving chlorophyll content. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  3. Multilayer composition coatings for cutting tools: formation and performance properties

    NASA Astrophysics Data System (ADS)

    Tabakov, Vladimir P.; Vereschaka, Anatoly S.; Vereschaka, Alexey A.

    2018-03-01

    The paper considers the concept of a multi-layer architecture of the coating in which each layer has a predetermined functionality. Latest generation of coatings with multi-layered architecture for cutting tools secure a dual nature of the coating, in which coatings should not only improve the mechanical and physical characteristics of the cutting tool material, but also reduce the thermo-mechanical effect on the cutting tool determining wear intensity. Here are presented the results of the development of combined methods of forming multi-layer coatings with improved properties. Combined method of forming coatings using a pulsed laser allowed reducing excessively high levels of compressive residual stress and increasing micro hardness of the multilayered coatings. The results in testing coated HSS tools showed that the use of additional pulse of laser processing increases tool life up to 3 times. Using filtered cathodic vacuum arc deposition for the generation of multilayer coatings based on TiAlN compound has increased the wear-resistance of carbide tools by 2 fold compared with tool life of cutting tool with commercial TiN coatings. The aim of this study was to develop an innovative methodological approach to the deposition of multilayer coatings for cutting tools with functional architectural selection, properties and parameters of the coating based on sound knowledge of coating failure in machining process.

  4. Photocatalytic activity of titania coatings synthesised by a combined laser/sol–gel technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adraider, Y.; Pang, Y.X., E-mail: F6098038@tees.ac.uk; Nabhani, F.

    2014-06-01

    Highlights: • Sol–gel method was used to prepare titania coatings. • Titania thin films were coated on substrate surface by dip coating. • Fibre laser was employed to irradiate the titania coated surfaces. • Photocatalytic efficiency of titania coatings was significantly improved after laser processing. - Abstract: Titania coatings were prepared using sol–gel method and then applied on the substrate surface by dip coating. Fibre laser (λ = 1064 nm) in continuous wave mode was used to irradiate the titania coated surfaces at different specific energies. The ATR-FTIR, XRD, SEM, EDS and contact angle measurement were employed to analyse surfacemore » morphology, phase composition and crystalline structure of laser-irradiated titania coatings, whilst the photocatalytic activity was evaluated by measuring the decomposition of methylene blue (MB) after exposure to the visible light for various illumination times. Results showed that the laser-irradiated titania coatings demonstrate significant different composition and microstructure in comparison with the as-coated from the same sol–gel titania. Photocatalytic efficiency of titania coatings was significantly improved after laser processing. The photocatalytic activity of laser-irradiated titania coatings was higher than that of the as-coated titania. The titania coating processed at laser specific energy of 6.5 J/mm{sup 2} exhibited the highest photocatalytic activity among all titania samples.« less

  5. Vacuum application of thermal barrier plasma coatings

    NASA Technical Reports Server (NTRS)

    Holmes, R. R.; Mckechnie, T. N.

    1988-01-01

    Coatings are presently applied to Space Shuttle Main Engine (SSME) turbine blades for protection against the harsh environment realized in the engine during lift off-to-orbit. High performance nickel, chromium, aluminum, and yttrium (NiCrAlY) alloy coatings, which are applied by atmospheric plasma spraying, crack and spall off because of the severe thermal shock experienced during start-up and shut-down of the engine. Ceramic coatings of yttria stabilized zirconia (ZrO2-Y2O3) were applied initially as a thermal barrier over coating to the NiCrAlY but were removed because of even greater spalling. Utilizing a vacuum plasma spraying process, bond coatings of NiCrAlY were applied in a low pressure atmosphere of argon/helium, producing significantly improved coating-to-blade bonding. The improved coatings showed no spalling after 40 MSFC burner rig thermal shock cycles, cycling between 1700 and -423 F. The current atmospheric plasma NiCrAlY coatings spalled during 25 test cycles. Subsequently, a process was developed for applying a durable thermal barrier coating of ZrO2-Y2O3 to the turbine blades of first stage high-pressure fuel turbopumps utilizing the vacuum plasma process. The improved thermal barrier coating has successfully passed 40 burner rig thermal shock cycles without spalling. Hot firing in an SSME turbine engine is scheduled for the blades. Tooling was installed in preparation for vacuum plasma spray coating other SSME hardware, e.g., the titanium main fuel valve housing (MFVH) and the fuel turbopump nozzle/stator.

  6. Innovations in coating technology.

    PubMed

    Behzadi, Sharareh S; Toegel, Stefan; Viernstein, Helmut

    2008-01-01

    Despite representing one of the oldest pharmaceutical techniques, coating of dosage forms is still frequently used in pharmaceutical manufacturing. The aims of coating range from simply masking the taste or odour of drugs to the sophisticated controlling of site and rate of drug release. The high expectations for different coating technologies have required great efforts regarding the development of reproducible and controllable production processes. Basically, improvements in coating methods have focused on particle movement, spraying systems, and air and energy transport. Thereby, homogeneous distribution of coating material and increased drying efficiency should be accomplished in order to achieve high end product quality. Moreover, given the claim of the FDA to design the end product quality already during the manufacturing process (Quality by Design), the development of analytical methods for the analysis, management and control of coating processes has attracted special attention during recent years. The present review focuses on recent patents claiming improvements in pharmaceutical coating technology and intends to first familiarize the reader with the available procedures and to subsequently explain the application of different analytical tools. Aiming to structure this comprehensive field, coating technologies are primarily divided into pan and fluidized bed coating methods. Regarding pan coating procedures, pans rotating around inclined, horizontal and vertical axes are reviewed separately. On the other hand, fluidized bed technologies are subdivided into those involving fluidized and spouted beds. Then, continuous processing techniques and improvements in spraying systems are discussed in dedicated chapters. Finally, currently used analytical methods for the understanding and management of coating processes are reviewed in detail in the last section of the review.

  7. Experimental and Numerical Study of the Effect of Gas-Shrouded Plasma Spraying on Cathode Coating of Alkaline Electrolysis Cells

    NASA Astrophysics Data System (ADS)

    Liu, T.; Reißner, R.; Schiller, G.; Ansar, A.

    2018-01-01

    The aim of this work is to improve the performance of electrodes prepared via atmospheric plasma spray by means of gas shrouding which is expected to apparently reduce the oxygen content of the plasma plume and subsequently improve the coating quality. Electrodes with dual-layer coating for alkaline water electrolysis were deposited on Ni-coated perforated substrates. Microstructure and morphology were studied by SEM. Element content was measured by EDS. Enthalpy probe was employed for measuring plasma temperature and velocity as well as the gas composition. For verifying and better understanding the shrouding effect numerical calculation was carried out according to the experimental settings. Electrochemical test was carried out to validate the shrouding effect. The results showed slight protecting effect of gas shrouding on plasma plume and the final coating. Over the dual-layer section, the measured oxygen fraction was 3.46 and 3.15% for the case without gas shrouding and with gas shrouding, respectively. With gas shrouding the coating exhibited similar element contents as the coating sprayed by VPS, while no obvious improvement was observed in the microstructure or the morphology. Evident electrochemical improvement was nevertheless achieved that with gas shrouding the electrode exhibited similar performance as that of the VPS-sprayed electrode.

  8. Dry coating of micronized API powders for improved dissolution of directly compacted tablets with high drug loading.

    PubMed

    Han, Xi; Ghoroi, Chinmay; Davé, Rajesh

    2013-02-14

    Motivated by our recent study showing improved flow and dissolution rate of the active pharmaceutical ingredient (API) powders (20 μm) produced via simultaneous micronization and surface modification through continuous fluid energy milling (FEM) process, the performance of blends and direct compacted tablets with high drug loading is examined. Performance of 50 μm API powders dry coated without micronization is also considered for comparison. Blends of micronized, non-micronized, dry coated or uncoated API powders at 30, 60 and 70% drug loading, are examined. The results show that the blends containing dry coated API powders, even micronized ones, have excellent flowability and high bulk density compared to the blends containing uncoated API, which are required for direct compaction. As the drug loading increases, the difference between dry coated and uncoated blends is more pronounced, as seen in the proposed bulk density-FFC phase map. Dry coating led to improved tablet compactibility profiles, corresponding with the improvements in blend compressibility. The most significant advantage is in tablet dissolution where for all drug loadings, the t(80) for the tablets with dry coated APIs was well under 5 min, indicating that this approach can produce nearly instant release direct compacted tablets at high drug loadings. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Improvement of the compressive strength of a cuttlefish bone-derived porous hydroxyapatite scaffold via polycaprolactone coating.

    PubMed

    Kim, Beom-Su; Kang, Hyo Jin; Lee, Jun

    2013-10-01

    Cuttlefish bones (CBs) have emerged as attractive biomaterials because of their porous structure and components that can be converted into hydroxyapatite (HAp) via a hydrothermal reaction. However, their brittleness and low strength restrict their application in bone tissue engineering. Therefore, to improve the compressive strength of the scaffold following hydrothermal conversion to a HAp form of CB (CB-HAp), the scaffold was coated using a polycaprolactone (PCL) polymer at various concentrations. In this study, raw CB was successfully converted into HAp via a hydrothermal reaction. We then evaluated their surface properties and composition by scanning electron microscopy and X-ray diffraction analysis. The CB-HAp coated with PCL showed improved compressive performance and retained a microporous structure. The compressive strength was significantly increased upon coating with 5 and 10% PCL, by 2.09- and 3.30-fold, respectively, as compared with uncoated CB-HAp. However, coating with 10% PCL resulted in a reduction in porosity. Furthermore, an in vitro biological evaluation demonstrated that MG-63 cells adhered well, proliferated and were able to be differentiated on the PCL-coated CB-HAp scaffold, which was noncytotoxic. These results suggest that a simple coating method is useful to improve the compressive strength of CB-HAp for bone tissue engineering applications. Copyright © 2013 Wiley Periodicals, Inc.

  10. Marine fouling release silicone/carbon nanotube nanocomposite coatings: on the importance of the nanotube dispersion state.

    PubMed

    Beigbeder, Alexandre; Mincheva, Rosica; Pettitt, Michala E; Callow, Maureen E; Callow, James A; Claes, Michael; Dubois, Philippe

    2010-05-01

    The present work reports on the influence of the dispersion quality of multiwall carbon nanotubes (MWCNTs) in a silicone matrix on the marine fouling-release performance of the resulting nanocomposite coatings. A first set of coatings filled with different nanofiller contents was prepared by the dilution of a silicone/MWCNTs masterbatch within a hydrosilylation-curing polydimethylsiloxane resin. The fouling-release properties of the nanocomposite coatings were studied through laboratory assays with the marine alga (seaweed) Ulva, a common fouling species. As reported previously (see Ref. [19]), the addition of a small (0.05%) amount of carbon nanotubes substantially improves the fouling-release properties of the silicone matrix. This paper shows that this improvement is dependent on the amount of filler, with a maximum obtained with 0.1 wt% of multiwall carbon nanotubes (MWCNTs). The method of dispersion of carbon nanotubes in the silicone matrix is also shown to significantly (p = 0.05) influence the fouling-release properties of the coatings. Dispersing 0.1% MWCNTs using the masterbatch approach yielded coatings with circa 40% improved fouling-release properties over those where MWCNTs were dispersed directly in the polymeric matrix. This improvement is directly related to the state of nanofiller dispersion within the cross-linked silicone coating.

  11. Multilayer thermal barrier coating systems

    DOEpatents

    Vance, Steven J.; Goedjen, John G.; Sabol, Stephen M.; Sloan, Kelly M.

    2000-01-01

    The present invention generally describes multilayer thermal barrier coating systems and methods of making the multilayer thermal barrier coating systems. The thermal barrier coating systems comprise a first ceramic layer, a second ceramic layer, a thermally grown oxide layer, a metallic bond coating layer and a substrate. The thermal barrier coating systems have improved high temperature thermal and chemical stability for use in gas turbine applications.

  12. Flame Spray Strain Gages with Improved Durability and Lifetimes

    NASA Technical Reports Server (NTRS)

    Fralick, Gustave (Technical Monitor); Gregory, Otto

    2003-01-01

    The focus of this APP research program was to improve the bond coats used in the fabrication of flame sprayed instrumentation. Typically. a bond coat is applied to a superalloy surface prior to the application of a thin dielectric coating onto which instrumentation is placed. After affixing the instrumentation, a much thicker ceramic topcoat is typically applied to protect the instrumentation from harsh environments. The fatigue life of NiCoCrAlY coated superalloys was extended beyond current state-of-the-art by relatively simple and cost effective means. Heat treatment in reduced oxygen partial pressures at 1750 to 1800 F effectively doubled the fatigue life of NiCoCrAlY coated substrates relative to as-sprayed substrates and when used in conjunction with platinum diffusion barriers yielded a four fold increase in the fatigue life of NiCoCrAlY coated substrates. Further improvements in the fatigue life of thermally sprayed coatings were made by employing intermediate coatings, which minimized thermal expansion differences between the bond coat and top coat. Combinatorial chemistry experiments yielded an optimum composition for an intermediate TCE matching coating that showed considerable promise in extending the fatigue life of thermal spray instrumentation. The intermediate coating had two functions: to reduce the surface roughness of the peaks and valleys associated with the as-sprayed NiCoCrAlY bond coat, and to produce a thin layer of a mixture of Al2O3 and NiCoCrAlY that exhibited an intermediate TCE. The optimal composition of the intermediate coating consisted of 60 wt% Al2O3 and 40 wt% NiCoCrAlY, as determined by energy dispersive analysis of x-rays (EDS). Intermediate coatings having this composition were prepared by physical vapor deposition and the resulting coating systems are being evaluated in our test facility.

  13. Improvement on the Fatigue Performance of 2024-T4 Alloy by Synergistic Coating Technology

    PubMed Central

    Wang, Xi-Shu; Guo, Xing-Wu; Li, Xu-Dong; Ge, Dong-Yun

    2014-01-01

    In this paper, rotating bending fatigue tests of 2024-T4 Al alloy with different oxide coatings were carried out. Compared to the uncoated and previously reported oxide coatings of aluminum alloys, the fatigue strength is able to be enhanced by using a novel oxide coating with sealing pore technology. These results indicate that the better the coating surface quality is, the more excellent the fatigue performance under rotating bending fatigue loading is. The improvement on the fatigue performance is mainly because the fatigue crack initiation and the early stage of fatigue crack growth at the coating layer can be delayed after PEO coating with pore sealing. Therefore, it is a so-called synergistic coating technology for various uses, including welding thermal cracks and filling micro-pores. The effects of different oxide coatings on surface hardness, compressive residual stress, morphology and fatigue fracture morphology are discussed. A critical compressive residual stress of about 95–100 MPa is proposed. PMID:28788634

  14. Sol-gel-derived hydroxyapatite-carbon nanotube/titania coatings on titanium substrates.

    PubMed

    Ji, Xiaoli; Lou, Weiwei; Wang, Qi; Ma, Jianfeng; Xu, Haihong; Bai, Qing; Liu, Chuantong; Liu, Jinsong

    2012-01-01

    In this paper, hydroxyapatite-carbon nanotube/titania (HA-CNT/TiO(2)) double layer coatings were successfully developed on titanium (Ti) substrates intended for biomedical applications. A TiO(2) coating was firstly developed by anodization to improve bonding between HA and Ti, and then the layer of HA and CNTs was coated on the surface by the sol-gel process to improve the biocompatibility and mechanical properties of Ti. The surfaces of double layer coatings were uniform and crack-free with a thickness of about 7 μm. The bonding strength of the HA-CNT/TiO(2) coating was higher than that of the pure HA and HA-CNT coatings. Additionally, in vitro cell experiments showed that CNTs promoted the adhesion of preosteoblasts on the HA-CNT/TiO(2) double layer coatings. These unique surfaces combined with the osteoconductive properties of HA exhibited the excellent mechanical properties of CNTs. Therefore, the developed HA-CNT/TiO(2) coatings on Ti substrates might be a promising material for bone replacement.

  15. Recent developments in high temperature coatings for gas turbine airfoils

    NASA Technical Reports Server (NTRS)

    Goward, G. W.

    1983-01-01

    The importance of coatings for hot section airfoils has increased with the drive for more cost-effective use of fuel in a wide variety of gas turbine engines. Minor additions of silicon have been found to appreciably increase the oxidation resistance of plasma-sprayed NiCoCrAlY coatings on a single crystal nickel-base superalloy. Increasing the chromium content of MCrAlY coatings substantially increases the resistance to acidic (Na2SO4-SO3) hot corrosion at temperatures of about 1300 F (704 C) but gives no significant improvement beyond contemporary coatings in the range of 1600 F (871 C). Surface enrichment of MCrAlY coatings with silicon also gives large increases in resistance to acidic hot corrosion in the 1300 F region. The resistance to the thermal stress-induced spalling of zirconia-based thermal barrier coatings has been improved by lowering coating stresses with segmented structures and by controlling the substrate temperature during coating fabrication.

  16. Characterization of Therapeutic Coatings on Medical Devices

    NASA Astrophysics Data System (ADS)

    Wormuth, Klaus

    Therapeutic coatings on medical devices such as catheters, guide wires, and stents improve biocompatibility by favorably altering the chemical nature of the device/tissue or device/blood interface. Such coatings often minimize tissue damage (reduce friction), decrease chances for blood clot formation (prevent platelet adsorption), and improve the healing response (deliver drugs). Confocal Raman microscopy provides valuable information about biomedical coatings by, for example, facilitating the measurement of the thickness and swelling of frictionreducing hydrogel coatings on catheters and by determining the distribution of drug within a polymer-based drug-eluting coatings on stents. This chapter explores the application of Raman microscopy to the imaging of thin coatings of cross-linked poly(vinyl pyrrolidone) gels, parylene films, mixtures of dexamethasone with various polymethacrylates, and mixtures of rapamycin with hydrolysable (biodegradable) poly(lactide-co-glycolide) polymers. Raman microscopy measures the thickness and swelling of coatings, reveals the degree of mixing of drug and polymer, senses the hydrolysis of biodegradable polymers, and determines the polymorphic forms of drug present within thin therapeutic coatings on medical devices.

  17. Protection of moisture-sensitive drugs with aqueous polymer coatings: importance of coating and curing conditions.

    PubMed

    Bley, O; Siepmann, J; Bodmeier, R

    2009-08-13

    The aim of this study was to better understand the importance of coating and curing conditions of moisture-protective polymer coatings. Tablets containing freeze-dried garlic powder were coated with aqueous solutions/dispersions of hydroxypropyl methylcellulose (HPMC), poly(vinyl alcohol), ethyl cellulose and poly(methacrylate-methylmethacrylates). The water content of the tablets during coating and during storage at different temperatures and relative humidities (RH) was determined gravimetrically. In addition, changes in the allicin (active ingredient in garlic powder) content were monitored. During the coating process, the water uptake was below 2.7% and no drug degradation was detectable. Thermally induced drug degradation occurred only at temperatures above the coating temperatures. Different polymer coatings effectively decreased the rate, but not the extent of water uptake during open storage at room temperature and 75% RH. Tablets coated with poly(vinyl alcohol) and poly(methacrylate-methylmethacrylates) showed the lowest moisture uptake rates (0.49 and 0.57%/d, respectively). Curing at elevated temperature after coating did not improve the moisture-protective ability of the polymeric films, but reduced the water content of the tablets. Drug stability was significantly improved with tablets coated with poly(vinyl alcohol) and poly(methacrylate-methylmethacrylates).

  18. Li3PO4 surface coating on Ni-rich LiNi0.6Co0.2Mn0.2O2 by a citric acid assisted sol-gel method: Improved thermal stability and high-voltage performance

    NASA Astrophysics Data System (ADS)

    Lee, Suk-Woo; Kim, Myeong-Seong; Jeong, Jun Hui; Kim, Dong-Hyun; Chung, Kyung Yoon; Roh, Kwang Chul; Kim, Kwang-Bum

    2017-08-01

    A surface coating of Li3PO4 was applied to a Ni-rich LiNi0.6Co0.2Mn0.2O2 (NCM) material to improve its thermal stability and electrochemical properties via a citric acid assisted sol-gel method. The addition of citric acid effectively suppressed the instant formation of Li3PO4 in solution, resulting in successful coating of the NCM surface. The improved thermal stability of NCM after Li3PO4 surface coating was demonstrated by differential scanning calorimetry (DSC) analysis and in situ time-resolved X-ray diffraction (TR-XRD). In particular, the TR-XRD results showed that the improved thermal stability after Li3PO4 surface coating originates from suppression of the phase transition of charged NCM at high temperatures. Furthermore, the charge-discharge tests demonstrated that Li3PO4-coated LiNi0.6Co0.2Mn0.2O2 (LP-NCM) has excellent electrochemical properties. LP-NCM exhibited a specific capacity of 192.7 mAh g-1, a capacity retention of 44.1% at 10 C, and a capacity retention of 79.7% after 100 cycles at a high cut-off voltage of 4.7 V; these values represent remarkably improved electrochemical properties compared with those of bare NCM. These improved thermal and electrochemical properties were mainly attributed to the improvement of the structural stability of the material and the suppression of the interface reaction between the cathode and the electrolyte owing to the Li3PO4 coating.

  19. The Use of Vitreous Enamel Coatings to Improve Bonding and Reduce Corrosion in Concrete Reinforcing Steel

    DTIC Science & Technology

    2009-02-01

    the Army, the Nation The Use of Vitreous Enamel Coatings to Improve Bonding and Reduce Corrosion in Concrete Reinforcing Steel Sean W. Morefield1...TITLE AND SUBTITLE The Use of Vitreous Enamel Coatings to Improve Bonding and Reduce Corrosion in Concrete Reinforcing Steel 5a. CONTRACT NUMBER...Concrete • Strategies to Prevent Corrosion • Alkali-resistant Vitreous Enamel Testing and Results • Ongoing Demonstration Work at CCAD • Summary U S

  20. Coatings on reflective mask substrates

    DOEpatents

    Tong, William Man-Wai; Taylor, John S.; Hector, Scott D.; Mangat, Pawitter J. S.; Stivers, Alan R.; Kofron, Patrick G.; Thompson, Matthew A.

    2002-01-01

    A process for creating a mask substrate involving depositing: 1) a coating on one or both sides of a low thermal expansion material EUVL mask substrate to improve defect inspection, surface finishing, and defect levels; and 2) a high dielectric coating, on the backside to facilitate electrostatic chucking and to correct for any bowing caused by the stress imbalance imparted by either other deposited coatings or the multilayer coating of the mask substrate. An film, such as TaSi, may be deposited on the front side and/or back of the low thermal expansion material before the material coating to balance the stress. The low thermal expansion material with a silicon overlayer and a silicon and/or other conductive underlayer enables improved defect inspection and stress balancing.

  1. Size-dependent surface phase change of lithium iron phosphate during carbon coating

    NASA Astrophysics Data System (ADS)

    Wang, Jiajun; Yang, Jinli; Tang, Yongji; Liu, Jian; Zhang, Yong; Liang, Guoxian; Gauthier, Michel; Karen Chen-Wiegart, Yu-Chen; Norouzi Banis, Mohammad; Li, Xifei; Li, Ruying; Wang, Jun; Sham, T. K.; Sun, Xueliang

    2014-03-01

    Carbon coating is a simple, effective and common technique for improving the conductivity of active materials in lithium ion batteries. However, carbon coating provides a strong reducing atmosphere and many factors remain unclear concerning the interface nature and underlying interaction mechanism that occurs between carbon and the active materials. Here, we present a size-dependent surface phase change occurring in lithium iron phosphate during the carbon coating process. Intriguingly, nanoscale particles exhibit an extremely high stability during the carbon coating process, whereas microscale particles display a direct visualization of surface phase changes occurring at the interface at elevated temperatures. Our findings provide a comprehensive understanding of the effect of particle size during carbon coating and the interface interaction that occurs on carbon-coated battery material—allowing for further improvement in materials synthesis and manufacturing processes for advanced battery materials.

  2. Metallized coatings for corrosion control of Naval ship structures and components

    NASA Technical Reports Server (NTRS)

    1983-01-01

    In attempting to improve corrosion control, the U.S. Navy has undertaken a program of coating corrosion-susceptible shipboard components with thermally sprayed aluminum. In this report the program is reviewed in depth, including examination of processes, process controls, the nature and properties of the coatings, nondestructive examination, and possible hazards to personnel. The performance of alternative metallic coating materials is also discussed. It is concluded that thermally sprayed aluminum can provide effective long-term protection against corrosion, thereby obviating the need for chipping of rust and repainting by ship personnel. Such coatings are providing excellent protection to below-deck components such as steam valves, but improvements are needed to realize the full potential of coatings for above-deck service. Several recommendations are made regarding processes, materials, and research and development aimed at upgrading further the performance of these coatings.

  3. Breather cloth for vacuum curing

    NASA Technical Reports Server (NTRS)

    Reed, M. W.

    1979-01-01

    Finely-woven nylon cloth that has been treated with Teflon improves vacuum adhesive bonding of coatings to substrates. Cloth is placed over coating; entire assembly, including substrate, coating, and cloth, is placed in plastic vacuum bag for curing. Cloth allows coating to "breathe" when bag is evacuated. Applications include bonding film coatings to solar concentrators and collectors.

  4. Stoichiometry and tribological behavior of thick Ta(N) coatings produced by direct current magnetron sputtering (DCMS)

    NASA Astrophysics Data System (ADS)

    Guo, Xiaotong; Niu, Yunsong; Chen, Minghui; Sun, Wenyao; Zhu, Shenglong; Wang, Fuhui

    2018-01-01

    Thick Ta(N) coating of 51 μm has been successfully obtained by DCMS technology. Ta(N) is a kind of distorted Ta matrix, which is inter-soluble with N-defect lattice structure, forming the disabled bcc structure. From the XRD and XPS investigations, the composition of Ta(N) coating is consisted of bcc-Ta and bcc-TaN0.06, while that of Ta coating mainly contains β-Ta phase. It can be concluded from wear test, nanoindentation test and SEM observations, wear resistance of Ta(N) coating is much better than that of Ta coating, due to its high hardness, H/E, H3/E2 value and low COF value. The wear mechanism of Ta coating is the compound fatigue and abrasive wear, while that of Ta(N) coating is transformed into adhesive wear mechanism. The secondary adhesion of the plastic deformation for the Ta(N) coating can reinforce the coated surface, to improve the load-bearing and anti-wear capacities, and thus improve the wear resistance.

  5. Chitosan/titanium dioxide nanocomposite coatings: Rheological behavior and surface application to cellulosic paper.

    PubMed

    Tang, Yanjun; Hu, Xiulan; Zhang, Xinqi; Guo, Daliang; Zhang, Junhua; Kong, Fangong

    2016-10-20

    Incorporation of nanofillers into a polymeric matrix has received much attention as a route to reinforced polymer nanocomposites. In the present work, an environmentally friendly chitosan (CTS)/titanium dioxide (TiO2) nanocomposite coating was designed/prepared and subsequently employed for imparting antibacterium and improved mechanical properties to cellulosic paper via surface coating. Effect of TiO2 nanoparticle loadings on the rheological behavior of nanocomposite coatings was investigated. Surface application of CTS/TiO2 nanocomposite coatings to cellulosic paper was performed, and the antibacterial activity and mechanical properties of surface-coated cellulosic paper were examined. Results showed that the increased TiO2 nanoparticle loadings decreased the viscosity and dynamic viscoelasticity of the as-prepared coatings, and improved the antibacterial activity and mechanical properties of surface-coated cellulosic paper. The optimum loading of TiO2 nanoparticles was identified at 10%. This work suggested that CTS/TiO2 nanocomposite coatings may have the potential to be used as a promising antibacterial protective coating for paper packaging. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Effect of Annealing Conditions on Properties of Sol-Gel Derived Al-Doped ZnO Thin Films

    NASA Astrophysics Data System (ADS)

    Gao, Mei-Zhen; Zhang, Feng; Liu, Jing; Sun, Hui-Na

    2009-08-01

    Transparent conductive Al-doped ZnO (AZO) thin films are prepared on normal glass substrates by the sol-gel spin coating method. The effects of drying conditions, annealing temperature and cooling rate on the structural, electrical and optical properties of AZO films are investigated by x-ray diffraction, scanning electron microscopy, the four-point probe method and UV-VIS spectrophotometry, respectively. The deposited films show a hexagonal wurtzite structure and high preferential c-axis orientation. As the drying temperature increases from 100°C to 300°C the resistivity of AZO films decreases dramatically. In contrast to the annealed films cooled in a furnace and in air, the resistivity of the annealed film which is cooled at -15°C is greatly reduced. Increasing the cooling rate dramatically increases the electrical conductivity of AZO films.

  7. Investigation to identify paint coatings resistive to microorganism growth

    NASA Technical Reports Server (NTRS)

    Cooper, C. W.; Kemp, H. T.

    1971-01-01

    All selected coatings contain nutrients that support microbial growth and survival. Incorporation of microbiocidal agents into coatings more susceptible to attack is recommended for improved inhibition of microorganism growth and for increased protection against deterioration of coatings by microorganisms.

  8. Stable White Coatings

    NASA Technical Reports Server (NTRS)

    Zerlaut, Gene A.; Gilligan, J. E.; Harada, Y.

    1965-01-01

    In a previous research program for the Jet Propulsion- Laboratory, extensive studies led to the development and specifications of three zinc oxide-pigmented thermal-control coatings. The principal objectives of this program are: improvement of the three paints (as engineering materials), determination of the validity of our accelerated space-simulation testing, and continuation of the zinc oxide photolysis studies begun in the preceding program. Specific tasks that are discussed include: improvement of potassium silicate coatings as engineering materials and elucidation of their storage and handling problems; improvement of methyl silicone coatings as engineering materials; studies of zinc oxide photolysis to establish reasons for the observed stability of zinc oxide; and determination of space-simulation parameters such as long-term stability (to 8000 ESH), effect of coating surface temperature on the rate of degradation, and validity of accelerated testing (by reciprocity and wavelength dependency studies).

  9. Microstructure and wear property of the Ti5Si3/TiC reinforced Co-based coatings fabricated by laser cladding on Ti-6Al-4V

    NASA Astrophysics Data System (ADS)

    Weng, Fei; Yu, Huijun; Liu, Jianli; Chen, Chuanzhong; Dai, Jingjie; Zhao, Zhihuan

    2017-07-01

    Ti5Si3/TiC reinforced Co-based composite coatings were fabricated on Ti-6Al-4V titanium alloy by laser cladding with Co42 and SiC mixture. Microstructure and wear property of the cladding coatings with different content of SiC were investigated. During the cladding process, the original SiC dissolved and reacted with Ti forming Ti5Si3 and TiC. The complex in situ formed phases were found beneficial to the improvement of the coating property. Results indicated that the microhardness of the composite coatings was enhanced to over 3 times the substrate. The wear resistance of the coatings also showed distinct improvement (18.4-57.4 times). More SiC gave rise to better wear resistance within certain limits. However, too much SiC (20 wt%) was not good for the further improvement of the wear property.

  10. Development of strain tolerant thermal barrier coating systems, tasks 1 - 3

    NASA Technical Reports Server (NTRS)

    Anderson, N. P.; Sheffler, K. D.

    1983-01-01

    Insulating ceramic thermal barrier coatings can reduce gas turbine airfoil metal temperatures as much as 170 C (about 300 F), providing fuel efficiency improvements greater than one percent and durability improvements of 2 to 3X. The objective was to increase the spalling resistance of zirconia based ceramic turbine coatings. To accomplish this, two baseline and 30 candidate duplex (layered MCrAlY/zirconia based ceramic) coatings were iteratively evaluated microstructurally and in four series of laboratory burner rig tests. This led to the selection of two candidate optimized 0.25 mm (0.010 inch) thick plasma sprayed partially stabilized zirconia ceramics containing six weight percent yttria and applied with two different sets of process parameters over a 0.13 mm (0.005 inch) thick low pressure chamber sprayed MCrAlY bond coat. Both of these coatings demonstrated at least 3X laboratory cyclic spalling life improvement over the baseline systems, as well as cyclic oxidation life equivalent to 15,000 commercial engine flight hours.

  11. Microstructures and Dry Sliding Wear Resistance of the Laser Ceramics Composite Coating on Pure Ti

    NASA Astrophysics Data System (ADS)

    Liu, Peng; Zhang, Yuanbin; Luo, Hui; Huo, Yushuang

    2012-06-01

    In this study, Al-Ti-Co was used to improve the surface performance of pure Ti. Laser cladding is an important surface modification technique, which can be used to improve the surface performance of pure Ti. Laser cladding of the Al-Ti-Co + TiB2 pre-placed powders on pure Ti can form ceramics reinforced the composite coating, which improved the wear resistance of the substrate. Characteristics of the composite coating were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), microhardness and wear tests. And the laser-cladded coating can also have major dilution from the substrate. Due to the action of the fine grain strengthening and the phase constituent, the wear resistance and microhardness of pure Ti surface were greatly improved.

  12. Improving the packing density of calcium phosphate coating on a magnesium alloy for enhanced degradation resistance.

    PubMed

    Kannan, M Bobby

    2013-05-01

    In this study, an attempt was made to improve the packing density of calcium phosphate (CaP) coating on a magnesium alloy by tailoring the coating solution for enhanced degradation resistance of the alloy for implant applications. An organic solvent, ethanol, was added to the coating solution to decrease the conductivity of the coating solution so that hydrogen bubble formation/bursting reduces during the CaP coating process. Experimental results confirmed that ethanol addition to the coating solution reduces the conductivity of the solution and also decreases the hydrogen evolution/bubble bursting. In vitro electrochemical experiments, that is, electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization showed that CaP coating produced in 30% (v/v) ethanol containing coating solution (3E) exhibits significantly higher degradation resistance (i.e., ~50% higher polarization resistance and ~60% lower corrosion current) than the aqueous solution coating. Scanning electron microscope (SEM) analysis of the coatings revealed that the packing of 3E coating was denser than that of aqueous coating, which can be attributed to the lower hydrogen evolution in the former than in the latter. Further increase in the ethanol content in the coating solution was not beneficial; in fact, the coating produced in 70% (v/v) ethanol containing solution (7E) showed degradation resistance much inferior to that of the aqueous coating, which is due to low thickness of 7E coating. Copyright © 2012 Wiley Periodicals, Inc.

  13. Dramatically Improve How and Where Academic Content Is Taught

    ERIC Educational Resources Information Center

    Hyslop, Alisha

    2007-01-01

    The fourth recommendation in ACTE's high school reform position statement is to dramatically improve how and where academic content is taught. Even as advanced academic course-taking and high school graduation requirements have increased, student achievement on national benchmarks has remained flat, and college remediation rates continue to…

  14. An assessment of lactobiopolymer-montmorillonite composites for dip coating applications on fresh strawberries.

    PubMed

    Junqueira-Gonçalves, Maria Paula; Salinas, Gonzalo E; Bruna, Julio E; Niranjan, Keshavan

    2017-04-01

    The use of biopolymer coatings appears as a good alternative to preserve highly perishable fruits, as well as the environment. Proteins generally produce films with good mechanical properties, although their highly hydrophilic nature limits the use in many applications. Nanoparticles, such as nanoclays, can play a critical role in improving barrier properties. The present study evaluated the effect of the addition of montmorillonite (MMT)-nanoparticles to a lacto-biopolymer coating, focusing on: (i) the morphological, thermal and barrier properties of the material and (ii) the shelf life of coated fresh strawberries. The addition of MMT improved the water vapor barrier property. Morphological and thermal analysis indicated a good interaction between the milk protein and the nanoclay, which was intercalated within the milk protein base (MPB) matrix, offering a more tortuous path to diffusing migrants. The MMT-MPB coating helped to significantly (P ≤ 0.05) reduce the weight loss, as well as oxygen uptake and the release of carbon dioxide, and improved the fruit firmness and reduced mould and yeast load compared to the uncoated fruits. The addition of MMT gave statistical difference (P ≤ 0.05) in terms of weight loss, subjective global appearance and purchase intention of coated fresh strawberries. The addition of nanofillers, such as MMT, into protein-based coating could improve its water vapour barrier and could affect, positively, some parameters of the shelf life of coated strawberries. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  15. Dramatic Developments in the Neurosciences Challenge Educators.

    ERIC Educational Resources Information Center

    Sylwester, Robert

    1986-01-01

    Recent dramatic developments in brain research and technology suggest that a comprehensive understanding of how the human brain works may soon be within reach. Just as the ability of the medical profession to treat patients improved dramatically with the advent of effective research skills and technology concerning the structure, biochemistry, and…

  16. An investigation of material properties and tribological performance of magnetron sputtered thin film coatings

    NASA Astrophysics Data System (ADS)

    Singh, Harpal

    This dissertation is divided into two categories based upon lubrication functionality and its application. The categories are: Dry film lubrication and Fluid film lubrication with thin film coatings. Thin film coatings examined in this work were deposited using closed field unbalanced magnetron sputtering and RF-DC coupled magnetron sputtering systems. In Dry/Solid film lubrication, the mechanical, structural and tribological properties of two Molybdenum disulphide (MoS2) based coatings are examined and evaluated. Among the two coatings, one coating is doped with Ti (Ti-MoS2) and the other is a combination of metal, lubricant and oxide (Sb2O3/Au - MoS2). These coatings are known to provide low friction in vacuum environments. The goal of this work was to evaluate friction and wear performance of MoS2 doped coatings in unidirectional and reciprocating sliding contact under different environmental conditions. Sliding contact results showed friction and wear dependence on temperature and humidity. The formation and removal of transfer films and the recrystallization and reorientation of basal layers on the steel counterface was observed as the mechanism for low friction. Structural analysis revealed a relationship between the microstructural properties and tribological performance. It was also observed that the addition of dopants (Ti, Au, Sb 2O3) improved the mechanical properties as compared to pure MoS2 coatings. Further, the rolling contact performance of the coatings was measured on a five ball on rod tribometer and a Thrust bearing tribometer under vacuum and air environments. The rolling contact experiments indicated that life of the rolling components depend on the amount of material present between the contacts. Fluid film lubrication with thin film coatings investigates the possibilities to improve the performance and durability of tribological components when oils and thin films are synergistically coupled. In this work, the ability of a Diamond Like Carbon coating to increase the durability of contacting surfaces under boundary lubrication were studied. The performance of highly hydrogenated Diamond Like Carbon (DLC) was evaluated in a mixed sliding and rolling contact. Experimental results show significant improvement in fatigue life of steel specimens after coating with a highly hydrogenated Diamond Like Carbon coating. The improved fatigue life is attributed to the coating microstructure and the mechanical properties.

  17. Improving the Fatigue Crack Propagation Resistance and Damage Tolerance of 2524-T3 Alloy with Amorphous Electroless Ni-P Coating

    NASA Astrophysics Data System (ADS)

    Chen, Lai; Zeng, Diping; Liu, Zhiyi; Bai, Song; Li, Junlin

    2018-02-01

    The surface microhardness, as well as the fatigue crack propagation (FCP) resistance of 2524-T3 alloy, is improved by producing a 20-μm-thick amorphous electroless Ni-12% P coating on its surface. Compared to the substrate, this deposited EN coating possesses higher strength properties and exhibits a greater ability of accommodating the plastic deformation at the fatigue crack tip, thereby remarkably improving the FCP resistance in near-threshold and early Paris regimes. Regardless of the similar FCP rates in Paris regime (Δ K ≥ 16.2 MPa m0.5), the coated sample exhibits extended Paris regime and enhanced damage tolerance.

  18. Effect of CeO2 on Microstructure and Wear Resistance of TiC Bioinert Coatings on Ti6Al4V Alloy by Laser Cladding

    PubMed Central

    Wang, Haojun

    2017-01-01

    To solve the lack of wear resistance of titanium alloys for use in biological applications, various prepared coatings on titanium alloys are often used as wear-resistant materials. In this paper, TiC bioinert coatings were fabricated on Ti6Al4V by laser cladding using mixed TiC and ZrO2 powders as the basic pre-placed materials. A certain amount of CeO2 powder was also added to the pre-placed powders to further improve the properties of the TiC coatings. The effects of CeO2 additive on the phase constituents, microstructures and wear resistance of the TiC coatings were researched in detail. Although the effect of CeO2 on the phase constituents of the coatings was slight, it had a significant effect on the microstructure and wear resistance of the coatings. The crystalline grains in the TiC coatings, observed by a scanning electron microscope (SEM), were refined due to the effect of the CeO2. With the increase of CeO2 additive content in the pre-placed powders, finer and more compact dendrites led to improvement of the micro-hardness and wear resistance of the TiC coatings. Also, 5 wt % content of CeO2 additive in the pre-placed powders was the best choice for improving the wear properties of the TiC coatings. PMID:29301218

  19. Effect of Nano-Si3N4 Additives and Plasma Treatment on the Dry Sliding Wear Behavior of Plasma Sprayed Al2O3-8YSZ Ceramic Coatings

    NASA Astrophysics Data System (ADS)

    Gou, Junfeng; Zhang, Jian; Zhang, Qiwen; Wang, You; Wang, Chaohui

    2017-04-01

    In this paper, the effect of nano-Si3N4 additives and plasma treatment on the wear behavior of Al2O3-8YSZ ceramic coatings was studied. Nano-Al2O3, nano-8YSZ (8 wt.% Y2O3-stabilized ZrO2) and nano-Si3N4 powders were used as raw materials to fabricate four types of sprayable feedstocks. Plasma treatment was used to improve the properties of the feedstocks. The surface morphologies of the ceramic coatings were observed. The mechanical properties of the ceramic coatings were measured. The dry sliding wear behavior of the Al2O3-8YSZ coatings with and without Si3N4 additives was studied. Nano-Si3N4 additives and plasma treatment can improve the morphologies of the coatings by prohibiting the initiation of micro-cracks and reducing the unmelted particles. The hardness and bonding strength of AZSP (Al2O3-18 wt.% 8YSZ-10 wt.% Si3N4-plasma treatment) coating increased by 79.2 and 44% compared to those of AZ (Al2O3-20 wt.% 8YSZ) coating. The porosity of AZSP coating decreased by 85.4% compared to that of AZ coating. The wear test results showed that the addition of nano-Si3N4 and plasma treatment could improve the wear resistance of Al2O3-8YSZ coatings.

  20. A study on microstructure and corrosion resistance of ZrO2-containing PEO coatings formed on AZ31 Mg alloy in phosphate-based electrolyte

    NASA Astrophysics Data System (ADS)

    Zhuang, J. J.; Guo, Y. Q.; Xiang, N.; Xiong, Y.; Hu, Q.; Song, R. G.

    2015-12-01

    ZrO2-containing ceramic coatings formed on the AZ31 Mg alloy were fabricated in an alkaline electrolyte containing sodium phosphate and potassium fluorozirconate (K2ZrF6) by plasma electrolytic oxidation (PEO). X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) techniques were used to study the phase structure and composition of the coatings. It is indicated that the coatings formed in the K2ZrF6-containing electrolyte were composed of MgO, MgF2 and t-ZrO2. Morphological investigation carried out by scanning electron microscopy (SEM) and stereoscopic microscopy, revealed that the uniformity of coatings increased and roughness of coatings decreased after the addition of K2ZrF6. Electrochemical investigation was achieved by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) test. The results showed that the PEO coating formed in K2ZrF6-containing electrolyte exhibited an improved corrosion resistance than that of the coating formed in K2ZrF6-free electrolyte. In addition, the polarization and EIS tests results both showed that the suitable concentration (2.5 g/l) of K2ZrF6 is of significant ability to improve the corrosion resistance of coatings. However, 5 g/l and 10 g/l K2ZrF6 has a negative effect on improving the corrosion resistance of PEO coatings compared with the coating formed in 2.5 g/l K2ZrF6-containing electrolyte.

  1. Wear and Adhesive Failure of Al2O3 Powder Coating Sprayed onto AISI H13 Tool Steel Substrate

    NASA Astrophysics Data System (ADS)

    Amanov, Auezhan; Pyun, Young-Sik

    2016-07-01

    In this study, an alumina (Al2O3) ceramic powder was sprayed onto an AISI H13 hot-work tool steel substrate that was subjected to sanding and ultrasonic nanocrystalline surface modification (UNSM) treatment processes. The significance of the UNSM technique on the adhesive failure of the Al2O3 coating and on the hardness of the substrate was investigated. The adhesive failure of the coating sprayed onto sanded and UNSM-treated substrates was investigated by a micro-scratch tester at an incremental load. It was found, based on the obtained results, that the coating sprayed onto the UNSM-treated substrate exhibited a better resistance to adhesive failure in comparison with that of the coating sprayed onto the sanded substrate. Dry friction and wear property of the coatings sprayed onto the sanded and UNSM-treated substrates were assessed by means of a ball-on-disk tribometer against an AISI 52100 steel ball. It was demonstrated that the UNSM technique controllably improved the adhesive failure of the Al2O3 coating, where the critical load was improved by about 31%. Thus, it is expected that the application of the UNSM technique to an AISI H13 tool steel substrate prior to coating may delay the adhesive failure and improve the sticking between the coating and the substrate thanks to the modified and hardened surface.

  2. Effect of Inhibitor Agents Addition on Corrosion Resistance Performance of Titania Sol-Gel Coatings Applied on 304 Stainless Steel

    NASA Astrophysics Data System (ADS)

    Shanaghi, Ali; Chu, Paul K.; Moradi, Hadi

    Hybrid organic-inorganic coatings are deposited on 304 stainless steel substrates by the sol-gel technique to improve the corrosion resistance. A titania-based nanostructured hybrid sol-gel coating is impregnated with three different microencapsulated healing agents (inhibitors) including cerium, Benzotriazole (BTA), and 8-Hydroxyquinoline (8H). Field-emission scanning electron microscopy (FE-SEM) and electrochemical impedance spectroscopy (EIS) are performed to investigate the barrier performance properties. The optimum conditions to achieve corrosion protective coatings for 304 stainless steel were determined. The Nyquist plots demonstrate that the activation time of the coating containing 8H as an organic healing agent shows improved behavior when compared to other coatings including cerium and BTA. Cerium as an inorganic healing agent is second and BTA is third and minimum. An increase in the impedance parameters such as resistance and capacitance as a function of immersion time is achieved in a 3.5wt.% NaCl solution by using healing agents such as BTA. Actually, over the course of immersion, the barrier performance behavior of the coatings changes and reduction of the impedance observed from the coatings containing Ce and 8H discloses deterioration of the protection system after immersion for 96h of immersion in the 3.5% NaCl solution. However, after 96h of immersion time, the concentration of chloride ions is high and causes increase in defects, micro cracks, hole on the surface of hybrid titania nanostructured coating containing Ce and 8H by destruction of coating, and also hybrid titania nanostructured coating containing BTA; BTA is released from coating to improve the resistance of passive film, which is created on the surface.

  3. In vitro mechanical integrity of hydroxyapatite coated magnesium alloy.

    PubMed

    Kannan, M Bobby; Orr, Lynnley

    2011-08-01

    The mechanical integrity of resorbable implants during service, especially in load bearing orthopaedic applications, is critical. The high degradation rate of resorbable magnesium and magnesium-based implants in body fluid may potentially cause premature in-service failure. In this study, a magnesium alloy (AZ91) was potentiostatically coated with hydroxyapatite at different cathodic voltages in an attempt to enhance the mechanical integrity. The mechanical integrity of the uncoated and hydroxyapatite coated alloys was evaluated after in vitro testing of the coated samples in simulated body fluid (SBF). The uncoated alloy showed 40% loss in the mechanical strength after five days exposure to SBF. However, the hydroxyapatite coated alloy exposed to SBF showed 20% improvement in the mechanical strength as compared to that of the uncoated alloy. The alloy coated potentiostatically at -2 V performed better than the -3 V coated alloy. The cross-sectional analysis of the coatings revealed relatively uniform coating thickness for the -2 V coated alloy, whereas the -3 V coated alloy exhibited areas of uneven coating. This can be attributed to the increase in hydrogen evolution on the alloy during -3 V coating as compared to -2 V coating. The scanning electron micrographs of the in vitro tested alloy revealed that hydroxyapatite coating significantly reduced the localized corrosion of the alloy, which is critical for better in-service mechanical integrity. Thus, the study suggests that the in vitro mechanical integrity of resorbable magnesium-based alloy can be improved by potentiostatic hydroxyapatite coating. © 2011 IOP Publishing Ltd

  4. Efficacy of antimicrobial pullulan-based coating to improve internal quality and shelf-life of chicken eggs during storage.

    PubMed

    Morsy, Mohamed K; Sharoba, Ashraf M; Khalaf, Hassan H; El-Tanahy, Hassan H; Cutter, Catherine N

    2015-05-01

    There has been a growing interest in the use of natural materials as a delivery mechanism for antimicrobials and coatings in foods. The aim of the present study was to evaluate the effectiveness of pullulan coatings to improve internal quality and shelf-life of fresh eggs during 10 wk of storage at 25 and 4 °C. Three treatments of eggs were evaluated as follows; non-coated (control; C), coated with pullulan (P), and coated with pullulan containing nisin (N). The effects of the pullulan coatings on microbiological qualities, physical properties, and freshness parameters were investigated and compared with non-coated eggs. For non-coated eggs, as storage time increased, yolk index, albumen index, and Haugh unit value decreased and weight loss increased. However, pullulan coatings (P or N) minimized weight loss (<1.5%) and preserved the albumen and yolk quality of eggs (with a final B grade) 3 wk longer than non-coated eggs at 25 °C. At 4 °C, both P- and N-coated eggs went from AA to A grade after 9 wk and maintained the grade for 10 wk (4 wk longer than that of non-coated eggs). This study is the first to demonstrate that pullulan coatings can preserve the internal quality, prolong the shelf-life, and minimize weight loss of fresh eggs. © 2015 Institute of Food Technologists®

  5. Electrochemical Corrosion and In Vitro Bioactivity of SiO2:ZrO2-Coated 316L Stainless Steel in Simulated Body Fluid

    NASA Astrophysics Data System (ADS)

    Srinivasan, A.; Rajendran, N.

    2015-08-01

    The effect of Si:Zr ratio on the in vitro bioactivity and electrochemical corrosion behavior of SiO2:ZrO2-mixed oxide-coated 316L stainless steel (SS) was evaluated in simulated body fluid (SBF) solution for 72, 120, and 168 h. Growth of Hydroxyapatite (HAp) was accelerated when Si content in the coating was increased. The Zr content in the coating improved the corrosion resistance of 316L SS rather than accelerating the HAp growth. When the Si:Zr ratio was 50:50, the coating exhibited significant improvement in corrosion resistance as well as HAp growth. The mechanism of HAp growth was proposed based on the change in surface zeta potential values of the coatings. Potentiodynamic polarization studies revealed about 10 and 5 times reduction in corrosion current density ( i corr) values for SiO2:ZrO2 (50:50)-coated 316L SS after 168 h of immersion compared to SiO2, ZrO2, and Si:Zr (70:30) coatings in SBF solutions thus confirming the superior corrosion resistance. The equivalent circuit parameters derived from electrochemical impedance spectroscopy studies further confirmed significant improvement in charge transfer resistance value even after 168 h of exposure.

  6. Resistance to Corrosion of Zirconia Coatings Deposited by Spray Pyrolysis in Nitrided Steel

    NASA Astrophysics Data System (ADS)

    Cubillos, G. I.; Olaya, J. J.; Bethencourt, M.; Cifredo, G.; Blanco, G.

    2013-10-01

    Coatings of zirconium oxide were deposited onto three types of stainless steel, AISI 316L, 2205, and tool steel AISI D2, using the ultrasonic spray pyrolysis method. The effect of the flux ratio on the process and its influence on the structure and morphology of the coatings were investigated. The coatings obtained, 600 nm thick, were characterized using x-ray diffraction, scanning electron microscopy, confocal microscopy, and atomic force microscopy. The resistance to corrosion of the coatings deposited over steel (not nitrided) and stainless steel nitrided (for 2 h at 823 K) in an ammonia atmosphere was evaluated. The zirconia coating enhances the stainless steel's resistance to corrosion, with the greatest increase in corrosion resistance being observed for tool steel. When the deposition is performed on previously nitrided stainless steel, the morphology of the surface improves and the coating is more homogeneous, which leads to an improved corrosion resistance.

  7. Polyurethane/poly(vinyl alcohol) hydrogel coating improves the cytocompatibility of neural electrodes

    PubMed Central

    Li, Mei; Zhou, Hai-han; Li, Tao; Li, Cheng-yan; Xia, Zhong-yuan; Duan, Yanwen Y.

    2015-01-01

    Neural electrodes, the core component of neural prostheses, are usually encapsulated in polydimethylsiloxane (PDMS). However, PDMS can generate a tissue response after implantation. Based on the physicochemical properties and excellent biocompatibility of polyurethane (PU) and poly(vinyl alcohol) (PVA) when used as coating materials, we synthesized PU/PVA hydrogel coatings and coated the surface of PDMS using plasma treatment, and the cytocompatibility to rat pheochromocytoma (PC12) cells was assessed. Protein adsorption tests indicated that the amount of protein adsorption onto the PDMS substrate was reduced by 92% after coating with the hydrogel. Moreover, the PC12 cells on the PU/PVA-coated PDMS showed higher cell density and longer and more numerous neurites than those on the uncoated PDMS. These results indicate that the PU/PVA hydrogel is cytocompatible and a promising coating material for neural electrodes to improve their biocompatibility. PMID:26889197

  8. Modification of implant material surface properties by means of oxide nano-structured coatings deposition

    NASA Astrophysics Data System (ADS)

    Safonov, Vladimir; Zykova, Anna; Smolik, Jerzy; Rogowska, Renata; Lukyanchenko, Vladimir; Kolesnikov, Dmitrii

    2014-08-01

    The deposition of functional coatings on the metal surface of artificial joints is an effective way of enhancing joint tribological characteristics. It is well-known that nanostructured oxide coatings have specific properties advantageous for future implant applications. In the present study, we measured the high hardness parameters, the adhesion strength and the low friction coefficient of the oxide magnetron sputtered coatings. The corrosion test results show that the oxide coating deposition had improved the corrosion resistance by a factor of ten for both stainless steel and titanium alloy substrates. Moreover, the hydrophilic nature of coated surfaces in comparison with the metal ones was investigated in the tensiometric tests. The surfaces with nanostructured oxide coatings demonstrated improved biocompatibility for in vitro and in vivo tests, attributed to the high dielectric constants and the high values of the surface free energy parameters.

  9. Structure and properties of polymer nanocomposite coatings applied by the HVOF process

    NASA Astrophysics Data System (ADS)

    Petrovicova, Elena

    1999-11-01

    A high velocity oxy-fuel (HVOF) combustion spray process was used to produce coatings from nylon 11 powders with average starting particle diameters of 30 and 60 gin. Silica and carbon black were used as nanosized reinforcements, and their nominal content was varied from 0 to 15 vol. %. Optimization of the HVOF processing parameters was based on an assessment of the degree of splatting of polymer particles, and was accomplished by varying the jet temperature (via the hydrogen/oxygen ratio). Gas mixtures with low hydrogen contents minimized polymer particle degradation. Analytical modeling of particle temperature profiles confirmed the effect of the gas velocity and temperature on the particle heating and resulting coating properties. The morphology of the polymer and the microstructure of the coatings depended on the reinforcement surface chemistry and the volume fraction of the reinforcement, as well as the initial nylon 11 particle size. Although all reinforced coatings had higher crystallinities than pure nylon 11 coatings, coatings produced from a smaller starting polymer particle size (30 mum) exhibited improved spatial distribution of the silica in the matrix and lower crystallinity. In addition, coatings produced from the smaller polymer particles had a higher density and lower porosity due to a higher degree of melting and splatting compared to coatings produced from larger particles (60 mum). Nanoreinforced coatings exhibited increased scratch and sliding wear resistance and improved mechanical and barrier properties. Improvements of up to 35% in scratch and 67% in wear resistance were obtained for coatings with nominal 15 vol. % contents of hydrophobic silica or carbon black, relative to nonreinforced coatings. Reinforcement of the polymer matrix resulted in increases of ca. 200% in the storage modulus both below and above the glass transition temperature. The increase in crystallinity seemed to further enhance the reinforcement provided by the nanoparticulates. Results also showed a decrease in the water vapor transmission rate through nanoreinforced coatings by up to 50% compared to pure polymer coatings. The aqueous permeability of coatings produced from 30 mum polymer particles was lower due to the decrease in porosity. Crystallinity seemed to have a strong influence on the mechanical properties, whereas permeability of thermally sprayed coatings was dominated by coating porosity.

  10. Performance improvement for solution-processed high-mobility ZnO thin-film transistors

    NASA Astrophysics Data System (ADS)

    Sha Li, Chen; Li, Yu Ning; Wu, Yi Liang; Ong, Beng S.; Loutfy, Rafik O.

    2008-06-01

    The fabrication technology of stable, non-toxic, transparent, high performance zinc oxide (ZnO) thin-film semiconductors via the solution process was investigated. Two methods, which were, respectively, annealing a spin-coated precursor solution and annealing a drop-coated precursor solution, were compared. The prepared ZnO thin-film semiconductor transistors have well-controlled, preferential crystal orientation and exhibit superior field-effect performance characteristics. But the ZnO thin-film transistor (TFT) fabricated by annealing a drop-coated precursor solution has a distinctly elevated linear mobility, which further approaches the saturated mobility, compared with that fabricated by annealing a spin-coated precursor solution. The performance of the solution-processed ZnO TFT was further improved when substituting the spin-coating process by the drop-coating process.

  11. Evaluation of Chitosan-Starch-Based Edible Coating To Improve the Shelf Life of Bod Ljong Cheese.

    PubMed

    Mei, Jun; Guo, Qizhen; Wu, Yan; Li, Yunfei

    2015-07-01

    The objective of this work was to evaluate the effectiveness of antimicrobial edible coatings to improve the quality of Bod ljong cheese throughout 25 days of storage. Coatings were prepared using chitosan, water chestnut starch, and glycerol as a base matrix, together with several combinations of antimicrobial substances: Cornus officinalis fruit extract (COFE), pine needle essential oil (PNEO), and nisin. Application of coating on cheese decreased water loss, lipid oxidation, changes in headspace gas composition, and color. Moreover, the edible coatings with COFE or PNEO had increased antimicrobial activity and did not permit growth of microorganisms. COFE and PNEO are manufactured from food-grade materials so they can be consumed as an integral part of the cheese, which represents a competitive advantage over nonedible coatings.

  12. Porosity and wear resistance of flame sprayed tungsten carbide coatings

    NASA Astrophysics Data System (ADS)

    Winarto, Winarto; Sofyan, Nofrijon; Rooscote, Didi

    2017-06-01

    Thermal-sprayed coatings offer practical and economical solutions for corrosion and wear protection of components or tools. To improve the coating properties, heat treatment such as preheat is applied. The selection of coating and substrate materials is a key factor in improving the quality of the coating morphology after the heat treatment. This paper presents the experimental results regarding the effect of preheat temperatures, i.e. 200°C, 300°C and 400°C, on porosity and wear resistance of tungsten carbide (WC) coating sprayed by flame thermal coating. The powders and coatings morphology were analyzed by a Field Emission Scanning Electron Microscope equipped with Energy Dispersive Spectrometry (FE-SEM/EDS), whereas the phase identification was performed by X-Ray diffraction technique (XRD). In order to evaluate the quality of the flame spray obtained coatings, the porosity, micro-hardness and wear rate of the specimens was determined. The results showed that WC coating gives a higher surface hardness from 1391 HVN up to 1541 HVN compared to that of the non-coating. Moreover, the wear rate increased from 0.072 mm3/min. to 0.082 mm3/min. when preheat temperature was increased. Preheat on H13 steel substrate can reduce the percentage of porosity level from 10.24 % to 3.94% on the thermal spray coatings.

  13. Development of improved high temperature coatings for IN-792 + HF

    NASA Technical Reports Server (NTRS)

    Profant, D. D.; Naik, S. K.

    1981-01-01

    The development for t-55 l712 engine of high temperature for integral turbine nozzles with improved thermal fatigue resistance without sacrificing oxidation/corrosion protection is discussed. The program evaluated to coating systems which comprised one baseline plasma spray coating (12% Al-NiCoCrALY), three aluminide coatings including the baseline aluminide (701), two CoNiCrAly (6% Al) + aluminide systems and four NiCoCrY + aluminide coating were evaluated. The two-step coating processes were investigated since it offered the advantage of tailoring the composition as well as properly coating surfaces of an integral or segmented nozzle. Cyclic burner rig thermal fatigue and oxidation/corrosion tests were used to evaluate the candidate coating systems. The plasma sprayed 12% Al-NiCoCrAlY was rated the best coating in thermal fatigue resistance and outperformed all coatings by a factor between 1.4 to 2.5 in cycles to crack initiation. However, this coatings is not applicable to integral or segmented nozzles due to the line of sight limitation of the plasma spray process. The 6% Al-CoNiCrAlY + Mod. 701 aluminide (32 w/o Al) was rated the best coating in oxidation/corrosion resistance and was rated the second best in thermal fatigue resistance.

  14. Development of an improved coating for polybenzimidazole foam. [for space shuttle heat shields

    NASA Technical Reports Server (NTRS)

    Neuner, G. J.; Delano, C. B.

    1976-01-01

    An improved coating system was developed for Polybenzimidazole (PBI) foam to provide coating stability, ruggedness, moisture resistance, and to satisfy optical property requirements (alpha sub (s/epsilon) or = 0.4 and epsilon 0.8) for the space shuttle. The effort was performed in five tasks: Task 1 to establish material and process specifications for the PBI foam, and material specifications for the coatings; Task 2 to identify and evaluate promising coatings; Task 3 to establish mechanical and thermophysical properties of the tile components; Task 4 to determine by systems analysis the potential weight trade-offs associated with a coated PBI TPS; and Task 5 to establish a preliminary quality assurance program. The coated PBI tile was, through screening tests, determined to satisfy the design objectives with a reduced system weight over the baseline shuttle silica LRSI TPS. The developed tile provides a thermally stable, extremely rugged, low thermal conductivity insulator with a well characterized optical coating.

  15. The improvement of wave-absorbing ability of silicon carbide fibers by depositing boron nitride coating

    NASA Astrophysics Data System (ADS)

    Ye, Fang; Zhang, Litong; Yin, Xiaowei; Liu, Yongsheng; Cheng, Laifei

    2013-04-01

    This work investigated electromagnetic wave (EMW) absorption and mechanical properties of silicon carbide (SiC) fibers with and without boron nitride (BN) coating by chemical vapor infiltration (CVI). The dielectric property and EM shielding effectiveness of SiC fiber bundles before and after being coated by BN were measured by wave guide method. The EM reflection coefficient of SiC fiber laminates with and without BN coating was determined by model calculation and NRL-arc method, respectively. Tensile properties of SiC fiber bundles with and without BN coating were tested at room temperature. Results show that SiC fibers with BN coating had a great improvement of EMW absorbing property because the composites achieved the impedance matching. BN with the low permittivity and dielectric loss contributed to the enhancive introduction and reduced reflection of EMW. The tensile strength and Weibull modulus of SiC fiber bundles coated by BN increased owing to the decrease of defects in SiC fibers and the protection of coating during loading.

  16. Improved alumina scale adhesion of electron beam physical vapor deposited Dy/Hf-doped β-NiAl coatings

    NASA Astrophysics Data System (ADS)

    Li, Dongqing; Guo, Hongbo; Peng, Hui; Gong, Shengkai; Xu, Huibin

    2013-10-01

    The cyclic oxidation behavior of Dy/Hf-doped β-NiAl coatings produced by electron beam physical vapor deposition (EB-PVD) was investigated. For the undoped NiAl coating, numerous voids were formed at the alumina scale/coating interface and large rumpling developed in the scale, leading to premature oxide spallation. The addition of Dy and Hf both improved scale adhesion and the alumina scale grown on the NiAl-Hf coating showed better adhesion than that on the NiAl-Dy coating, although the suppressing effect on interfacial void formation and the scale rumpling resistance were stronger in the NiAl-Dy coating. It is proposed that the segregation of Dy and Hf ions at the scale/coating interfaces not only prevent interfacial sulfur segregation but also may directly enhance interfacial adhesion by participating in bonding across the interfaces, and this strengthening effect is relatively stronger for Hf ionic segregation.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukhametkaliyev, T., E-mail: mtm91@mail.ru; Surmeneva, M., E-mail: feja-mari@yandex.ru; Surmenev, R., E-mail: rsurmenev@gmail.com

    A thin film of hydroxyapatite (HA) was deposited on AZ31 and Mg-Ca alloys by using radio frequency (RF) magnetron sputtering. The thickness of the HA coating was determined to be 750 nm. The phase composition, microstructure, and surface morphology of the HA coatings were investigated using X-ray diffraction and scanning electron microscopy. In vitro degradation behaviour of the HA coated alloys was evaluated in simulated body fluid (SBF) and 3.5wt.% NaCl solution using electrochemical method. The coatings homogeneously covered the entire surface of the substrates. The coating structure corresponded to a nanostructured HA. The ultrathin coating significantly improved the degradationmore » resistance of the alloy. Nanocrystalline HA coating significantly improved the corrosion resistance of the Mg-Ca and AZ31 magnesium alloys. The polarization resistance (Rp) of the coated Mg-Ca alloy was more than two-order of magnitude higher and the corrosion current density I{sub corr} reduced by ∼ 98% as compared to the base alloy.« less

  18. Layer-by-Layer Assembly of a Self-Healing Anticorrosion Coating on Magnesium Alloys.

    PubMed

    Fan, Fan; Zhou, Chunyu; Wang, Xu; Szpunar, Jerzy

    2015-12-16

    Fabrication of self-healing anticorrosion coatings has attracted attention as it has the ability to extend the service life and prevent the substrate from corrosive attack. However, a coating system with a rapid self-healing ability and an improved corrosion resistance is rarely reported. In this work, we developed a self-healing anticorrosion coating on a magnesium alloy (AZ31). The coating comprises a cerium-based conversion layer, a graphene oxide layer, and a branched poly(ethylene imine) (PEI)/poly(acrylic acid) (PAA) multilayer. We incorporated the graphene oxide as corrosion inhibitors and used the PEI/PAA multilayers to provide the self-healing ability to the coating systems. X-ray diffraction (XRD) and Raman spectroscopy were used to characterize the composition of the multilayers, and scanning electron microscopy (SEM) was used to analyze the surface morphology. The electrochemical impedance spectroscopy (EIS) results illustrate the improved corrosion resistance of the coating. The proposed coating also has a rapid self-healing ability in the presence of water.

  19. Effect of 2D WS2 Addition on Cold-Sprayed Aluminum Coating

    NASA Astrophysics Data System (ADS)

    Loganathan, Archana; Rengifo, Sara; Hernandez, Alexander Franco; Emirov, Yusuf; Zhang, Cheng; Boesl, Benjamin; Karthikeyan, Jeganathan; Agarwal, Arvind

    2017-10-01

    Tungsten disulfide (WS2) has excellent solid lubrication properties due to its 2D layered structure. This study focuses on depositing Al-2 wt.% WS2 composite coating by cold spray technique. The effect of WS2 addition on the microstructure, mechanical and tribological properties of the composite coatings is examined in the as-deposited and heat-treated conditions. After heat treatment, the coating density increased to 99% with improved intersplat bonding. The microhardness of the heat-treated Al-2 wt.% WS2 coating increased by 56% as compared to the as-sprayed coating. The wear resistance of heat-treated Al-2 wt.% WS2 coating improved by 75% with a synergistic reduction in the coefficient of friction (COF) by 51%. Transmission electron microscopy investigation reveals the presence of layered WS2 within aluminum splats with a strong interface. This study shows that cold spraying can be effectively used to integrate 2D layered WS2 as a solid lubricant in the metallic coatings.

  20. Advanced Thermal Barrier and Environmental Barrier Coating Development at NASA GRC

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Robinson, Craig

    2017-01-01

    This presentation summarizes NASA's advanced thermal barrier and environmental barrier coating systems, and the coating performance improvements that has recently been achieved and documented in laboratory simulated rig test conditions. One of the emphases has been placed on the toughness and impact resistance enhancements of the low conductivity, defect cluster thermal barrier coating systems. The advances in the next generation environmental barrier coatings for SiCSiC ceramic matrix composites have also been highlighted, particularly in the design of a new series of oxide-silicate composition systems to be integrated with next generation SiC-SiC turbine engine components for 2700F coating applications. Major technical barriers in developing the thermal and environmental barrier coating systems are also described. The performance and model validations in the rig simulated turbine combustion, heat flux, steam and calcium-magnesium-aluminosilicate (CMAS) environments have helped the current progress in improved temperature capability, environmental stability, and long-term fatigue-environment system durability of the advanced thermal and environmental barrier coating systems.

  1. Atomic Layer Deposition of Al2O3-Ga2O3 Alloy Coatings for Li[Ni0.5Mn0.3Co0.2]O2 Cathode to Improve Rate Performance in Li-Ion Battery.

    PubMed

    Laskar, Masihhur R; Jackson, David H K; Guan, Yingxin; Xu, Shenzhen; Fang, Shuyu; Dreibelbis, Mark; Mahanthappa, Mahesh K; Morgan, Dane; Hamers, Robert J; Kuech, Thomas F

    2016-04-27

    Metal oxide coatings can improve the electrochemical stability of cathodes and hence, their cycle-life in rechargeable batteries. However, such coatings often impose an additional electrical and ionic transport resistance to cathode surfaces leading to poor charge-discharge capacity at high C-rates. Here, a mixed oxide (Al2O3)1-x(Ga2O3)x alloy coating, prepared via atomic layer deposition (ALD), on Li[Ni0.5Mn0.3Co0.2]O2 (NMC) cathodes is developed that has increased electron conductivity and demonstrated an improved rate performance in comparison to uncoated NMC. A "co-pulsing" ALD technique was used which allows intimate and controlled ternary mixing of deposited film to obtain nanometer-thick mixed oxide coatings. Co-pulsing allows for independent control over film composition and thickness in contrast to separate sequential pulsing of the metal sources. (Al2O3)1-x(Ga2O3)x alloy coatings were demonstrated to improve the cycle life of the battery. Cycle tests show that increasing Al-content in alloy coatings increases capacity retention; whereas a mixture of compositions near (Al2O3)0.5(Ga2O3)0.5 was found to produce the optimal rate performance.

  2. Ceramic Coatings for Clad (The C 3 Project): Advanced Accident-Tolerant Ceramic Coatings for Zr-Alloy Cladding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sickafus, Kurt E.; Wirth, Brian; Miller, Larry

    The goal of this NEUP-IRP project is to develop a fuel concept based on an advanced ceramic coating for Zr-alloy cladding. The coated cladding must exhibit demonstrably improved performance compared to conventional Zr-alloy clad in the following respects: During normal service, the ceramic coating should decrease cladding oxidation and hydrogen pickup (the latter leads to hydriding and embrittlement). During a reactor transient (e.g., a loss of coolant accident), the ceramic coating must minimize or at least significantly delay oxidation of the Zr-alloy cladding, thus reducing the amount of hydrogen generated and the oxygen ingress into the cladding. The specific objectivesmore » of this project are as follows: To produce durable ceramic coatings on Zr-alloy clad using two possible routes: (i) MAX phase ceramic coatings or similar nitride or carbide coatings; and (ii) graded interface architecture (multilayer) ceramic coatings, using, for instance, an oxide such as yttria-stabilized zirconia (YSZ) as the outer protective layer. To characterize the structural and physical properties of the coated clad samples produced in 1. above, especially the corrosion properties under simulated normal and transient reactor operating conditions. To perform computational analyses to assess the effects of such coatings on fuel performance and reactor neutronics, and to perform fuel cycle analyses to assess the economic viability of modifying conventional Zr-alloy cladding with ceramic coatings. This project meets a number of the goals outlined in the NEUP-IRP call for proposals, including: Improve the fuel/cladding system through innovative designs (e.g. coatings/liners for zirconium-based cladding) Reduce or eliminate hydrogen generation Increase resistance to bulk steam oxidation Achievement of our goals and objectives, as defined above, will lead to safer light-water reactor (LWR) nuclear fuel assemblies, due to improved cladding properties and built-in accident resistance, as well as the possibilities for enhanced fuel/clad system performance and longevity.« less

  3. In Vitro Analysis of Electrophoretic Deposited Fluoridated Hydroxyapatite Coating on Micro-arc Oxidized AZ91 Magnesium Alloy for Biomaterials Applications

    NASA Astrophysics Data System (ADS)

    Razavi, Mehdi; Fathi, Mohammadhossein; Savabi, Omid; Vashaee, Daryoosh; Tayebi, Lobat

    2015-03-01

    Magnesium (Mg) alloys have been recently introduced as a biodegradable implant for orthopedic applications. However, their fast corrosion, low bioactivity, and mechanical integrity have limited their clinical applications. The main aim of this research was to improve such properties of the AZ91 Mg alloy through surface modifications. For this purpose, nanostructured fluoridated hydroxyapatite (FHA) was coated on AZ91 Mg alloy by micro-arc oxidation and electrophoretic deposition method. The coated alloy was characterized through scanning electron microscopy, transmission electron microscopy, X-ray diffraction, in vitro corrosion tests, mechanical tests, and cytocompatibility evaluation. The results confirmed the improvement of the corrosion resistance, in vitro bioactivity, mechanical integrity, and the cytocompatibility of the coated Mg alloy. Therefore, the nanostructured FHA coating can offer a promising way to improve the properties of the Mg alloy for orthopedic applications.

  4. Development of an Innovative Laser-Assisted Coating Process for Extending Lifetime of Metal Casting Dies. Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madhav Rao Gonvindaraju

    1999-10-18

    Die casting dies used in the metal casting industry fail due to thermal fatigue cracking accompanied by the presence of residual tensile stresses, corrosion, erosion and wear of die surfaces. This phase 1 SBIR Final Report summarize Karta Technologies research involving the development of an innovative laser coating technology for metal casting dies. The process involves depositing complex protective coatings of nanocrystalline powders of TiC followed by a laser shot peening. The results indicate a significant improvement in corrosion and erosion resistance in molten aluminum for H13 die casting die steels. The laser-coated samples also showed improved surface finish, amore » homogeneous and uniform coating mircrostructure. The technology developed in this research can have a significant impact on the casting industry by saving the material costs involved in replacing dies, reducing downtime and improving the quality.« less

  5. Future of IT, PT and superconductivity technology

    NASA Astrophysics Data System (ADS)

    Tanaka, Shoji

    2003-10-01

    Recently the Information Technology is developing very rapidly and the total traffic on the Internet is increasing dramatically. The numerous equipments connected to the Internet must be operated at very high-speed and the electricity consumed in the Internet is also increasing. Superconductivity devices of very high-speed and very low power consumption must be introduced. These superconducting devices will play very important roles in the future information society. Coated conductors will be used to generate extremely high magnetic fields of beyond 20 T at low temperatures. At the liquid nitrogen temperature they can find many applications in a wide range of Power Technology and other industries, since we have already large critical current and brilliant magnetic field dependences in some prototypes of coated conductors. It is becoming certain that the market for the superconductivity technology will be opened between the years of 2005 and 2010.

  6. Frictional behavior and adhesion of Ag and Au films applied to aluminum oxide by oxygen-ion assisted Screen Cage Ion Plating (SCIP)

    NASA Technical Reports Server (NTRS)

    Spalvins, Talivaldis; Sliney, Harold E.

    1994-01-01

    A modified dc-diode ion plating system, by utilizing a metallic screen cage as a cathode, is introduced for coating nonconductors such as ceramics. Screen cage ion plating (SCIP) is used to apply Ag and Au lubricating films on aluminum oxide surfaces. This process has excellent ability to coat around corners to produce three-dimensional coverage of the substrate. A dramatic increase in adhesion is achieved when plating is performed in a reactive 50 percent O2 - 50 percent Ar glow discharge compared to the adhesion when plating is performed in 100 percent Ar. The presence of oxygen ion assistance contributes to the excellent adhesion as measured in a pull-type adhesion tester. The Ag and Au film adhesion is significantly increased (less than 70MPa) and generally exceeds the cohesion of the substrate such that portions of the alumina are pulled out.

  7. State-of-the-art low-cost solar reflector materials

    NASA Astrophysics Data System (ADS)

    Kennedy, C.; Jorgensen, G.

    1994-11-01

    Solar thermal technologies generate power by concentrating sunlight with large mirrors. The National Renewable Energy Laboratory (NREL) is working with industrial partners to develop the optical reflector materials needed for the successful deployment of this technology. The reflector materials must be low in cost and maintain high specular reflectance for extended lifetimes in severe outdoor environments. Currently, the best candidate materials for solar mirrors are silver-coated low-iron glass and silvered polymer films. Polymer reflectors are lighter in weight, offer greater flexibility in system design, and have the potential for lower cost than glass mirrors. In parallel with collaborative activities, several innovative candidate reflector-material constructions were investigated at NREL. The low-cost material requirement necessitates manufacturing compatible with mass-production techniques. Future cooperative efforts with the web-coating industry offers the promise of exciting new alternative materials and the potential for dramatic cost savings in developing advanced solar reflector materials.

  8. Colorimetric detection of trace copper ions based on catalytic leaching of silver-coated gold nanoparticles.

    PubMed

    Lou, Tingting; Chen, Lingxin; Chen, Zhaopeng; Wang, Yunqing; Chen, Ling; Li, Jinhua

    2011-11-01

    A colorimetric, label-free, and nonaggregation-based silver coated gold nanoparticles (Ag/Au NPs) probe has been developed for detection of trace Cu(2+) in aqueous solution, based on the fact that Cu(2+) can accelerate the leaching rate of Ag/Au NPs by thiosulfate (S(2)O(3)(2-)). The leaching of Ag/Au NPs would lead to dramatic decrease in the surface plasmon resonance (SPR) absorption as the size of Ag/Au NPs decreased. This colorimetric strategy based on size-dependence of nanoparticles during their leaching process provided a highly sensitive (1.0 nM) and selective detection toward Cu(2+), with a wide linear detection range (5-800 nM) over nearly 3 orders of magnitude. The cost-effective probe allows rapid and sensitive detection of trace Cu(2+) ions in water samples, indicating its potential applicability for the determination of copper in real samples.

  9. Edible Active Coatings Based on Pectin, Pullulan, and Chitosan Increase Quality and Shelf Life of Strawberries (Fragaria ananassa).

    PubMed

    Treviño-Garza, Mayra Z; García, Santos; del Socorro Flores-González, Ma; Arévalo-Niño, Katiushka

    2015-08-01

    Edible active coatings (EACs) based on pectin, pullulan, and chitosan incorporated with sodium benzoate and potassium sorbate were employed to improve the quality and shelf life of strawberries. Fruits were washed, disinfected, coated by dipping, packed, and stored at 4 °C for 15 d. Application of EACs reduced (P < 0.05) weight loss and fruit softening and delayed alteration of color (redness) and total soluble solids content. In contrast, pH and titratable acidity were not affected (P > 0.05) throughout storage, and ascorbic acid content was maintained in pectin-EAC coated strawberries. Microbiological analyses showed that application of EACs reduced (P < 0.05) microbial growth (total aerobic counts, molds, and yeasts) on strawberries. Chitosan-EAC coated strawberries presented the best results in microbial growth assays. Sensory quality (color, flavor, texture, and acceptance) improved and decay rate decreased (P < 0.05) in pectin-EAC, pullulan-EAC, and chitosan-EAC coated strawberries. In conclusion, EACs based on polysaccharides improved the physicochemical, microbiological, and sensory characteristics, increasing the shelf life of strawberries from 6 (control) to 15 d (coated fruits). © 2015 Institute of Food Technologists®

  10. Tribology of nitrided-coated steel-a review

    NASA Astrophysics Data System (ADS)

    Bhaskar, Santosh V.; Kudal, Hari N.

    2017-01-01

    Surface engineering such as surface treatment, coating, and surface modification are employed to increase surface hardness, minimize adhesion, and hence, to reduce friction and improve resistance to wear. To have optimal tribological performance of Physical Vapor Deposition (PVD) hard coating to the substrate materials, pretreatment of the substrate materials is always advisable to avoid plastic deformation of the substrate, which may result in eventual coating failure. The surface treatment results in hardening of the substrate and increase in load support effect. Many approaches aim to improve the adhesion of the coatings onto the substrate and nitriding is the one of the best suitable options for the same. In addition to tribological properties, nitriding leads to improved corrosion resistance. Often corrosion resistance is better than that obtainable with other surface engineering processes such as hard-chrome and nickel plating. Ability of this layer to withstand thermal stresses gives stability which extends the surface life of tools and other components exposed to heat. Most importantly, the nitrogen picked-up by the diffusion layer increases the rotating-bending fatigue strength in components. The present article reviews mainly the tribological advancement of different nitrided-coated steels based on the types of coatings, structure, and the tribo-testing parameters, in recent years.

  11. Advanced Environmental Barrier Coating Development for SiC/SiC Ceramic Matrix Composites: NASA's Perspectives

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming

    2016-01-01

    This presentation reviews NASA environmental barrier coating (EBC) system development programs and the coating materials evolutions for protecting the SiC/SiC Ceramic Matrix Composites in order to meet the next generation engine performance requirements. The presentation focuses on several generations of NASA EBC systems, EBC-CMC component system technologies for SiC/SiC ceramic matrix composite combustors and turbine airfoils, highlighting the temperature capability and durability improvements in simulated engine high heat flux, high pressure, high velocity, and with mechanical creep and fatigue loading conditions. The current EBC development emphasis is placed on advanced NASA 2700F candidate environmental barrier coating systems for SiC/SiC CMCs, their performance benefits and design limitations in long-term operation and combustion environments. Major technical barriers in developing environmental barrier coating systems, the coating integrations with next generation CMCs having the improved environmental stability, erosion-impact resistance, and long-term fatigue-environment system durability performance are described. The research and development opportunities for advanced turbine airfoil environmental barrier coating systems by utilizing improved compositions, state-of-the-art processing methods, and simulated environment testing and durability modeling are discussed.

  12. Mussel-inspired chitosan-polyurethane coatings for improving the antifouling and antibacterial properties of polyethersulfone membranes.

    PubMed

    Wang, Rui; Song, Xin; Xiang, Tao; Liu, Qiang; Su, Baihai; Zhao, Weifeng; Zhao, Changsheng

    2017-07-15

    A straightforward mussel-inspired approach was proposed to construct chitosan-polyurethane coatings and load Ag nanoparticles (AgNPs) to endow polyethersulfone (PES) membranes with dual-antibacterial and antifouling properties. The macromolecule O-carboxymethyl chitosan (CMC) was directly reacted with catechol in the absence of carbodiimide chemistry to form the coating and load AgNPs via in situ reduction; while lysine (Lys) was used as a representative small molecule for comparison. Then, PEG-based polyurethane (PU) was used for constructing Lys-Ag-PU and CMC-Ag-PU composite coatings, which substantially improved the protein antifouling property of the membranes. Furthermore, the CMC-Ag-PU coating exhibited superior broad-spectrum antibacterial property towards E. coli and S. aureus than Lys-Ag-PU coating. Meanwhile, the CMC-Ag-PU coating showed sustained antifouling property against bacteria and could reload AgNPs to be regenerated as antibacterial and antifouling coating. This approach is believed to have potential to fabricate reusable antifouling and antibacterial coatings on materials surfaces for aquatic industries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Effect of Sputtering Current on the Comprehensive Properties of (Ti,Al)N Coating and High-Speed Steel Substrate

    NASA Astrophysics Data System (ADS)

    Su, Yongyao; Tian, Liangliang; Hu, Rong; Liu, Hongdong; Feng, Tong; Wang, Jinbiao

    2018-05-01

    To improve the practical property of (Ti,Al)N coating on a high-speed steel (HSS) substrate, a series of sputtering currents were used to obtain several (Ti,Al)N coatings using a magnetron sputtering equipment. The phase structure, morphology, and components of (Ti,Al)N coatings were characterized by x-ray diffraction, scanning electron microscopy, energy-dispersive x-ray spectroscopy, and x-ray photoelectron spectroscopy, respectively. The performance of (Ti,Al)N coatings, adhesion, hardness, and wear resistance was tested using a scratch tester, micro/nanohardness tester, and tribometer, respectively. Based on the structure-property relationships of (Ti,Al)N coatings, the results show that both the Al content and deposition temperature of (Ti,Al)N coatings increased with sputtering current. A high Al content helped to improve the performance of (Ti,Al)N coatings. However, the HSS substrate was softened during the high sputtering current treatment. Therefore, the optimum sputtering current was determined as 2.5 A that effectively increased the hardness and wear resistance of (Ti,Al)N coating.

  14. Space and time-resolved probing of heterogeneous catalysis reactions using lab-on-a-chip

    NASA Astrophysics Data System (ADS)

    Navin, Chelliah V.; Krishna, Katla Sai; Theegala, Chandra S.; Kumar, Challa S. S. R.

    2016-03-01

    Probing catalytic reactions on a catalyst surface in real time is a major challenge. Herein, we demonstrate the utility of a continuous flow millifluidic chip reactor coated with a nanostructured gold catalyst as an effective platform for in situ investigation of the kinetics of catalytic reactions by taking 5-(hydroxymethyl)furfural (HMF) to 2,5-furandicarboxylic acid (FDCA) conversion as a model reaction. The idea conceptualized in this paper can not only dramatically change the ability to probe the time-resolved kinetics of heterogeneous catalysis reactions but also used for investigating other chemical and biological catalytic processes, thereby making this a broad platform for probing reactions as they occur within continuous flow reactors.Probing catalytic reactions on a catalyst surface in real time is a major challenge. Herein, we demonstrate the utility of a continuous flow millifluidic chip reactor coated with a nanostructured gold catalyst as an effective platform for in situ investigation of the kinetics of catalytic reactions by taking 5-(hydroxymethyl)furfural (HMF) to 2,5-furandicarboxylic acid (FDCA) conversion as a model reaction. The idea conceptualized in this paper can not only dramatically change the ability to probe the time-resolved kinetics of heterogeneous catalysis reactions but also used for investigating other chemical and biological catalytic processes, thereby making this a broad platform for probing reactions as they occur within continuous flow reactors. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06752a

  15. Research into properties of wear resistant ceramic metal plasma coatings

    NASA Astrophysics Data System (ADS)

    Ivancivsky, V. V.; Skeeba, V. Yu; Zverev, E. A.; Vakhrushev, N. V.; Parts, K. A.

    2018-03-01

    The study considers one of the promising ways to improve the quality of wear resistant plasma ceramic coatings by implementing various powder mixtures. The authors present the study results of the nickel-ceramic and cobalt-ceramic coating properties and describe the specific character of the investigated coatings composition. The paper presents the results of the coating microhardness, chemical and adhesive strength studies. The authors conducted wear resistance tests of composite coatings in comparison with the plasma coatings of initial powder components.

  16. Acoustic emission and fatigue damage induced in plasma-sprayed hydroxyapatite coating layers.

    PubMed

    Laonapakul, Teerawat; Otsuka, Yuichi; Nimkerdphol, Achariya Rakngarm; Mutoh, Yoshiharu

    2012-04-01

    In order to improve the adhesive strength of hydroxyapatite (HAp) coatings, grit blasting with Al(2)O(3) powder and then wet blasting with HAp/Ti mixed powders was carried out on a commercially pure Ti (cp-Ti) substrate. Subsequently, an HAp/Ti bond coat layer and HAp top coat layer were deposited by plasma spraying. Fatigue tests of the HAp-coated specimens were carried out under four-point bending. Acoustic emission (AE) signals during the entire fatigue test were monitored to investigate the fatigue cracking behavior of the HAp-coated specimens. The HAp-coated specimens could survive up to 10(7) cycles without spallation of the HAp coating layers at the stress amplitude of 120 MPa. The HAp-coated specimens without HAp/Ti bond coat layer showed shorter fatigue life and easy crack nucleation compared to the HAp-coated specimens with HAp/Ti bond coat layer. The delamination and spallation of the HAp top coat with HAp/Ti bond coat on cp-Ti was not observed until the crack propagated into the cp-Ti during the final fracture stage of the fatigue cycle. Therefore, the HAp/Ti bond coat layer was found to greatly improve the fatigue damage resistance of the HAp coating layer. Three stages of the fatigue failure behavior of the HAp top coat with HAp/Ti bond coat on a cp-Ti substrate can be clearly estimated by the AE monitoring technique. These stages are cracks nucleating and propagating in the coating layer, cracks propagating in the substrate, and cracks propagating unstably to final fracture. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Bioactive bredigite coating with improved bonding strength, rapid apatite mineralization and excellent cytocompatibility.

    PubMed

    Yi, Deliang; Wu, Chengtie; Ma, Bing; Ji, Heng; Zheng, Xuebin; Chang, Jiang

    2014-05-01

    Previous studies have shown that bredigite (Ca7MgSi4O16) bioceramics possessed excellent biocompatibility, apatite-mineralization ability and mechanical properties. In this paper, the bredigite coating on Ti-6Al-4 V substrate was prepared by plasma spraying technique. The main compositions of the coating were bredigite crystal phase with small parts of amorphous phases. The bonding strength of the coating to Ti-6Al-4 V substrate reached 49.8 MPa, which was significantly higher than that of hydroxyapatite coating and other silicate-based bioceramic coatings prepared by same method. After immersed in simulated body fluid for 2 days, a distinct apatite layer was deposited on the surface of bredigite coating, indicating that the prepared bredigite coating has excellent apatite-mineralization ability. The prepared bredigite coating supported the attachment and proliferation of rabbit bone marrow stem cells. The proliferation level of bone marrow stem cells was significantly higher than that on the hydroxyapatite coating. Our further study showed that the released SiO4 (4-) and Mg(2+) ions from bredigite coating as well as the formed nano-apatite layer on the coating surface might mainly contribute to the improvement of cell proliferation. The results indicated that the bredigite coating may be applied on orthopedic implants due to its excellent bonding strength, apatite mineralization and cytocompatibility.

  18. Synthesis and properties of hydroxyapatite-containing coating on AZ31 magnesium alloy by micro-arc oxidation

    NASA Astrophysics Data System (ADS)

    Tang, Hui; Han, Yu; Wu, Tao; Tao, Wei; Jian, Xian; Wu, Yunfeng; Xu, Fangjun

    2017-04-01

    In this study, hydroxyapatite-containing coatings were prepared by microarc oxidation on AZ31 magnesium alloy surface to improve its biodegradation performance. Five applied voltages were chosen to prepare the MAO coatings. The results demonstrate that the number of micropores in the films increases but their dimensions decrease after higher voltage is applied. As the surface roughness of the MAO coatings increases with the applied voltage, the wettability of the coatings improves continuously. The MAO coatings were mainly composed of magnesium oxide (MgO) and hydroxyapatite. The amount of hydroxyapatite phase increased with increasing voltage that was applied. The bonding strength became slightly weaker after a higher voltage was applied. But the bonding strengths of all the coatings were consistently higher than 37 MPa, which met the requirement of implant biomaterials. All coatings exhibited higher corrosion resistances and lower hydrogen evolution rate than the bare AZ31 Mg substrate, implying that the degradation rate of the AZ31 Mg alloy was enhanced by the hydroxyapatite-containing coatings. The results indicate that the present treatment of applying hydroxyapatite-containing coatings is a promising technique for the degradable Mg-based biomaterials for orthopedic applications.

  19. Development and Performance Evaluations of HfO2-Si and Rare Earth-Si Based Environmental Barrier Bond Coat Systems for SiC/SiC Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming

    2014-01-01

    Ceramic environmental barrier coatings (EBC) and SiCSiC ceramic matrix composites (CMCs) will play a crucial role in future aircraft propulsion systems because of their ability to significantly increase engine operating temperatures, improve component durability, reduce engine weight and cooling requirements. Advanced EBC systems for SiCSiC CMC turbine and combustor hot section components are currently being developed to meet future turbine engine emission and performance goals. One of the significant material development challenges for the high temperature CMC components is to develop prime-reliant, high strength and high temperature capable environmental barrier coating bond coat systems, since the current silicon bond coat cannot meet the advanced EBC-CMC temperature and stability requirements. In this paper, advanced NASA HfO2-Si based EBC bond coat systems for SiCSiC CMC combustor and turbine airfoil applications are investigated. The coating design approach and stability requirements are specifically emphasized, with the development and implementation focusing on Plasma Sprayed (PS) and Electron Beam-Physic Vapor Deposited (EB-PVD) coating systems and the composition optimizations. High temperature properties of the HfO2-Si based bond coat systems, including the strength, fracture toughness, creep resistance, and oxidation resistance were evaluated in the temperature range of 1200 to 1500 C. Thermal gradient heat flux low cycle fatigue and furnace cyclic oxidation durability tests were also performed at temperatures up to 1500 C. The coating strength improvements, degradation and failure modes of the environmental barrier coating bond coat systems on SiCSiC CMCs tested in simulated stress-environment interactions are briefly discussed and supported by modeling. The performance enhancements of the HfO2-Si bond coat systems with rare earth element dopants and rare earth-silicon based bond coats are also highlighted. The advanced bond coat systems, when integrated with advanced EBC top coats, showed promise to achieve 1500 C temperature capability, helping enable next generation turbine engines with significantly improved engine component temperature capability and long-term durability.

  20. Unique visible-light-assisted field emission of tetrapod-shaped ZnO/reduced graphene-oxide core/coating nanocomposites

    PubMed Central

    Wu, Chaoxing; Kim, Tae Whan; Guo, Tailiang; Li, Fushan

    2016-01-01

    The electronic and the optoelectronic properties of graphene-based nanocomposites are controllable, making them promising for applications in diverse electronic devices. In this work, tetrapod-shaped zinc oxide (T-ZnO)/reduced graphene oxide (rGO) core/coating nanocomposites were synthesized by using a hydrothermal-assisted self-assemble method, and their optical, photoelectric, and field-emission properties were investigated. The ZnO, an ideal ultraviolet-light-sensitive semiconductor, was observed to have high sensitivity to visible light due to the rGO coating, and the mechanism of that sensitivity was investigated. We demonstrated for the first time that the field-emission properties of the T-ZnO/rGO core/coating nanocomposites could be dramatically enhanced under visible light by decreasing the turn-on field from 1.54 to 1.41 V/μm and by increasing the current density from 5 to 12 mA/cm2 at an electric field of 3.5 V/μm. The visible-light excitation induces an electron jump from oxygen vacancies on the surface of ZnO to the rGO layer, resulting in a decrease in the work function of the rGO and an increase in the emission current. Furthermore, a field-emission light-emitting diode with a self-enhanced effect was fabricated making full use of the photo-assisted field-emission process. PMID:27941822

  1. Loss of endocytic clathrin-coated pits upon acute depletion of phosphatidylinositol 4,5-bisphosphate.

    PubMed

    Zoncu, Roberto; Perera, Rushika M; Sebastian, Rafael; Nakatsu, Fubito; Chen, Hong; Balla, Tamas; Ayala, Guillermo; Toomre, Derek; De Camilli, Pietro V

    2007-03-06

    Phosphatidylinositol 4,5-bisphosphate [PI(4,5)P(2)], a phosphoinositide concentrated predominantly in the plasma membrane, binds endocytic clathrin adaptors, many of their accessory factors, and a variety of actin-regulatory proteins. Here we have used fluorescent fusion proteins and total internal reflection fluorescence microscopy to investigate the effect of acute PI(4,5)P(2) breakdown on the dynamics of endocytic clathrin-coated pit components and of the actin regulatory complex, Arp2/3. PI(4,5)P(2) breakdown was achieved by the inducible recruitment to the plasma membrane of an inositol 5-phosphatase module through the rapamycin/FRB/FKBP system or by treatment with ionomycin. PI(4,5)P(2) depletion resulted in a dramatic loss of clathrin puncta, which correlated with a massive dissociation of endocytic adaptors from the plasma membrane. Remaining clathrin spots at the cell surface had only weak fluorescence and were static over time. Dynamin and the p20 subunit of the Arp2/3 actin regulatory complex, which were concentrated at late-stage clathrin-coated pits and in lamellipodia, also dissociated from the plasma membrane, and these changes correlated with an arrest of motility at the cell edge. These findings demonstrate the critical importance of PI(4,5)P(2) in clathrin coat dynamics and Arp2/3-dependent actin regulation.

  2. The effect of a simple annealing heat treatment on the mechanical properties of cold-sprayed aluminum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hall, Aaron Christopher; Roemer, Timothy John; Hirschfeld, Deidre A.

    2004-11-01

    Cold spray, a new member of the thermal spray process family, can be used to prepare dense, thick metal coatings. It has tremendous potential as a spray-forming process. However, it is well known that significant cold work occurs during the cold spray deposition process. This cold work results in hard coatings but relatively brittle bulk deposits. This work investigates the mechanical properties of cold-sprayed aluminum and the effect of annealing on those properties. Cold spray coatings approximately 1 cm thick were prepared using three different feedstock powders: Valimet H-10; Valimet H-20; and Brodmann Flomaster. ASTM E8 tensile specimens were machinedmore » from these coatings and tested using standard tensile testing procedures. Each material was tested in two conditions: as-sprayed; and after a 300 C, 22 h air anneal. The as-sprayed material showed high ultimate strength and low ductility, with <1% elongation. The annealed samples showed a reduction in ultimate strength but a dramatic increase in ductility, with up to 10% elongation. The annealed samples exhibited mechanical properties that were similar to those of wrought 1100 H14 aluminum. Microstructural examination and fractography clearly showed a change in fracture mechanism between the as-sprayed and annealed materials. These results indicate good potential for cold spray as a bulk-forming process.« less

  3. The effect of a simple annealing heat treatement on the mechanical properties of cold-sprayed aluminium.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hall, Aaron Christopher; Roemer, Timothy John; Hirschfeld, Deidre A.

    2005-08-01

    Cold spray, a new member of the thermal spray process family, can be used to prepare dense, thick metal coatings. It has tremendous potential as a spray-forming process. However, it is well known that significant cold work occurs during the cold spray deposition process. This cold work results in hard coatings but relatively brittle bulk deposits. This work investigates the mechanical properties of cold-sprayed aluminum and the effect of annealing on those properties. Cold spray coatings approximately 1 cm thick were prepared using three different feedstock powders: Valimet H-10: Valimet H-20: and Brodmann Flomaster. ASTM E8 tensile specimens were machinedmore » from these coatings and tested using standard tensile testing procedures. Each material was tested in two conditions: as-sprayed; and after a 300 C, 22h air anneal. The as-sprayed material showed high ultimate strength and low ductility, with <1% elongation. The annealed samples showed a reduction in ultimate strength but a dramatic increase in ductility, with up to 10% elongation. The annealed samples exhibited mechanical properties that were similar to those of wrought 1100 H14 aluminum. Microstructural examination and fractography clearly showed a change in fracture mechanism between the as-sprayed and annealed materials. These results indicate good potential for cold spray as a bulkforming process.« less

  4. The Sla1 adaptor-clathrin interaction regulates coat formation and progression of endocytosis.

    PubMed

    Tolsma, Thomas O; Cuevas, Lena M; Di Pietro, Santiago M

    2018-06-01

    Clathrin-mediated endocytosis is a fundamental transport pathway that depends on numerous protein-protein interactions. Testing the importance of the adaptor protein-clathrin interaction for coat formation and progression of endocytosis in vivo has been difficult due to experimental constrains. Here, we addressed this question using the yeast clathrin adaptor Sla1, which is unique in showing a cargo endocytosis defect upon substitution of 3 amino acids in its clathrin-binding motif (sla1 AAA ) that disrupt clathrin binding. Live-cell imaging showed an impaired Sla1-clathrin interaction causes reduced clathrin levels but increased Sla1 levels at endocytic sites. Moreover, the rate of Sla1 recruitment was reduced indicating proper dynamics of both clathrin and Sla1 depend on their interaction. sla1 AAA cells showed a delay in progression through the various stages of endocytosis. The Arp2/3-dependent actin polymerization machinery was present for significantly longer time before actin polymerization ensued, revealing a link between coat formation and activation of actin polymerization. Ultimately, in sla1 AAA cells a larger than normal actin network was formed, dramatically higher levels of various machinery proteins other than clathrin were recruited, and the membrane profile of endocytic invaginations was longer. Thus, the Sla1-clathrin interaction is important for coat formation, regulation of endocytic progression and membrane bending. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Mobility-Enhancing Coatings for Vitreoretinal Surgical Devices: Hydrophilic and Enzymatic Coatings Investigated by Microrheology.

    PubMed

    Pokki, Juho; Parmar, Jemish; Ergeneman, Olgaç; Torun, Hamdi; Guerrero, Miguel; Pellicer, Eva; Sort, Jordi; Pané, Salvador; Nelson, Bradley J

    2015-10-07

    Ophthalmic wireless microrobots are proposed for minimally invasive vitreoretinal surgery. Devices in the vitreous experience nonlinear mobility as a result of the complex mechanical properties of the vitreous and its interaction with the devices. A microdevice that will minimize its interaction with the macromolecules of the vitreous (i.e., mainly hyaluronan (HA) and collagen) can be utilized for ophthalmic surgeries. Although a few studies on the interactions between the vitreous and microdevices exist, there is no literature on the influence of coatings on these interactions. This paper presents how coatings on devices affect mobility in the vitreous. Surgical catheters in the vasculature use hydrophilic polymer coatings that reduce biomolecular absorption and enhance mobility. In this work such polymers, polyvinylpyrrolidone (PVP), polyethylene glycol (PEG), and HA coatings were utilized, and their effects on mobility in the vitreous were characterized. Hydrophilic titanium dioxide (TiO2) coating was also developed and characterized. Collagenase and hyaluronidase enzymes were coated on probes' surfaces with a view to enhancing their mobility by enzymatic digestion of the collagen and HA of the vitreous, respectively. To model the human vitreous, ex vivo porcine vitreous and collagen were used. For studying the effects of hyaluronidase, the vitreous and HA were used. The hydrophilic and enzymatic coatings were characterized by oscillatory magnetic microrheology. The statistical significance of the mean relative displacements (i.e., mobility) of the coated probes with respect to control probes was assessed. All studied hydrophilic coatings improve mobility, except for HA which decreases mobility potentially due to bonding with vitreal macromolecules. TiO2 coating improves mobility in collagen by 28.3% and in the vitreous by 15.4%. PEG and PVP coatings improve mobility in collagen by 19.4 and by 39.6%, respectively, but their improvement in the vitreous is insignificant at a 95% confidence level (CL). HA coating affects mobility by reducing it in collagen by 35.6% (statistically significant) and in the vitreous by 16.8% (insignificant change at 95% CL). The coatings cause similar effects in collagen and in the vitreous. However, the effects are lower in the vitreous, which can be due to a lower concentration of collagen in the vitreous than in the prepared collagen samples. The coatings based on enzymatic activity increase mobility (i.e., >40% after 15 min experiments in the vitreous models) more than the hydrophilic coatings based on physicochemical interactions. However, the enzymes have time-dependent effects, and they dissolve from the probe surface with time. The presented results are useful for researchers and companies developing ophthalmic devices. They also pave the way to understanding how to adjust mobility of a microdevice in a complex fluid by choice of an appropriate coating.

  6. All-Glass Fiber Amplifier Pumped by Ultra-High Brightness Pumps

    DTIC Science & Technology

    2016-02-15

    coated triple-clad fibers, we are developing triple-clad Yb fiber with gold coating for improved thermal management. 2.1 Pump laser The two...amplifier results using gain fiber with metalized fiber coating . Keywords: Fiber laser , specialty fiber, pump laser , beam combining, fiber metal coating ... coating can exceed its long-term damage threshold. Such a concern obviously does not apply to a fiber with gold protective coating [14]. Thus in

  7. Controlling the Biomimetic Implant Interface: Modulating Antimicrobial Activity by Spacer Design

    NASA Astrophysics Data System (ADS)

    Wisdom, Cate; Vanoosten, Sarah Kay; Boone, Kyle W.; Khvostenko, Dmytro; Arnold, Paul M.; Snead, Malcolm L.; Tamerler, Candan

    2016-08-01

    Surgical site infection is a common cause of post-operative morbidity, often leading to implant loosening, ultimately requiring revision surgery, increased costs and worse surgical outcomes. Since implant failure starts at the implant surface, creating and controlling the bio-material interface will play a critical role in reducing infection while improving host cell-to-implant interaction. Here, we engineered a biomimetic interface based upon a chimeric peptide that incorporates a titanium binding peptide (TiBP) with an antimicrobial peptide (AMP) into a single molecule to direct binding to the implant surface and deliver an antimicrobial activity against S. mutans and S. epidermidis, two bacteria which are linked with clinical implant infections. To optimize antimicrobial activity, we investigated the design of the spacer domain separating the two functional domains of the chimeric peptide. Lengthening and changing the amino acid composition of the spacer resulted in an improvement of minimum inhibitory concentration by a three-fold against S. mutans. Surfaces coated with the chimeric peptide reduced dramatically the number of bacteria, with up to a nine-fold reduction for S. mutans and a 48-fold reduction for S. epidermidis. Ab initio predictions of antimicrobial activity based on structural features were confirmed. Host cell attachment and viability at the biomimetic interface were also improved compared to the untreated implant surface. Biomimetic interfaces formed with this chimeric peptide offer interminable potential by coupling antimicrobial and improved host cell responses to implantable titanium materials, and this peptide based approach can be extended to various biomaterials surfaces.

  8. Covalent bonding of YIGSR and RGD to PEDOT/PSS/MWCNT-COOH composite material to improve the neural interface.

    PubMed

    Wang, Kun; Tang, Rong-Yu; Zhao, Xiao-Bo; Li, Jun-Jie; Lang, Yi-Ran; Jiang, Xiao-Xia; Sun, Hong-Ji; Lin, Qiu-Xia; Wang, Chang-Yong

    2015-11-28

    The development of coating materials for neural interfaces has been a pursued to improve the electrical, mechanical and biological performances. For these goals, a bioactive coating was developed in this work featuring a poly(3,4-ethylenedioxythiophene) (PEDOT)/carbon nanotube (CNT) composite and covalently bonded YIGSR and RGD. Its biological effect and electrical characteristics were assessed in vivo on microwire arrays (MWA). The coated electrodes exhibited a significantly higher charge storage capacity (CSC) and lower electrochemical impedance at 1 kHz which are desired to improve the stimulating and recording performances, respectively. Acute neural recording experiments revealed that coated MWA possess a higher signal/noise ratio capturing spikes undetected by uncoated electrodes. Moreover, coated MWA possessed more active sites and single units, and the noise floor of coated electrodes was lower than that of uncoated electrodes. There is little information in the literature concerning the chronic performance of bioactively modified neural interfaces in vivo. Therefore in this work, chronic in vivo tests were conducted and the PEDOT/PSS/MWCNT-polypeptide coated arrays exhibited excellent performances with the highest mean maximal amplitude from day 4 to day 12 during which the acute response severely compromised the performance of the electrodes. In brief, we developed a simple method of covalently bonding YIGSR and RGD to a PEDOT/PSS/MWCNT-COOH composite improving both the biocompatibility and electrical performance of the neural interface. Our findings suggest that YIGSR and RGD modified PEDOT/PSS/MWCNT is a promising bioactivated composite coating for neural recording and stimulating.

  9. Process and design considerations for high-efficiency solar cells

    NASA Technical Reports Server (NTRS)

    Rohati, A.; Rai-Choudhury, P.

    1985-01-01

    This paper shows that oxide surface passivation coupled with optimum multilayer anti-reflective coating can provide approx. 3% (absolute) improvement in solar cell efficiency. Use of single-layer AR coating, without passivation, gives cell efficiencies in the range of 15 to 15.5% on high-quality, 4 ohm-cm as well as 0.1 to 0.2 ohm-cm float-zone silicon. Oxide surface passivation alone raises the cell efficiency to or = 17%. An optimum double-layer AR coating on oxide-passivated cells provides an additional approx. 5 to 10% improvement over a single-layer AR-coated cell, resulting in cell efficiencies in excess of 18%. Experimentally observed improvements are supported by model calculations and an approach to or = 20% efficient cells is discussed.

  10. The effects of nanostructured hydroxyapatite coating on the biodegradation and cytocompatibility of magnesium implants.

    PubMed

    Iskandar, Maria Emil; Aslani, Arash; Liu, Huinan

    2013-08-01

    Magnesium (Mg) alloys, a novel class of degradable, metallic biomaterials, have attracted growing interest as a promising alternative for medical implant and device applications due to their advantageous mechanical and biological properties. Although its biodegradability is an attractive property, rapid degradation of Mg in the physiological environments imposes a major obstacle that limits the translation of Mg-based implants to clinical applications. Therefore, the objective of this study was to develop a nanostructured hydroxyapatite (nHA) coating on polished Mg substrates to mediate the rapid degradation of Mg while improving its integration with bone tissue for orthopedic applications. The nHA coatings were deposited on polished Mg using the patented transonic particle acceleration (Spire Biomedical) process. Surface morphology, elemental compositions, and crystal structures were characterized using scanning electron microscopy, energy dispersive X-ray spectroscopy, and X-ray diffraction (XRD) analysis, respectively. The degradation of nHA-coated and non-coated Mg samples was investigated by incubating the samples in phosphate buffered saline and revised simulated body fluid, under standard cell culture conditions. Rat bone marrow stromal cells (BMSCs) were harvested and cultured with nHA-coated and non-coated Mg samples to determine cytocompatibility. The degradation results suggested that the nHA coatings decreased Mg degradation. Improved BMSC adhesion was observed on the surfaces of the nHA-coated and non-coated Mg samples, in comparison with the cells on the culture plate surrounding the Mg samples. In conclusion, nHA coatings showed promise for improving the biodegradation and cytocompatibility properties of Mg-based orthopedic implants and should be further studied. Copyright © 2013 Wiley Periodicals, Inc.

  11. Reducing bubbles in glass coatings improves electrical breakdown strength

    NASA Technical Reports Server (NTRS)

    Banks, B.

    1968-01-01

    Helium reduces bubbles in glass coatings of accelerator grids for ion thrustors. Fusing the coating in a helium atmosphere creates helium bubbles in the glass. In an argon atmosphere, entrapped helium diffuses out of the glass and the bubbles collapse. The resultant coating has a substantially enhanced electrical breakdown strength.

  12. Comprehensive process maps for synthesizing high density aluminum oxide-carbon nanotube coatings by plasma spraying for improved mechanical and wear properties

    NASA Astrophysics Data System (ADS)

    Keshri, Anup Kumar

    Plasma sprayed aluminum oxide ceramic coating is widely used due to its outstanding wear, corrosion, and thermal shock resistance. But porosity is the integral feature in the plasma sprayed coating which exponentially degrades its properties. In this study, process maps were developed to obtain Al2O3-CNT composite coatings with the highest density (i.e. lowest porosity) and improved mechanical and wear properties. Process map is defined as a set of relationships that correlates large number of plasma processing parameters to the coating properties. Carbon nanotubes (CNTs) were added as reinforcement to Al2O 3 coating to improve the fracture toughness and wear resistance. Two novel powder processing approaches viz spray drying and chemical vapor growth were adopted to disperse CNTs in Al2O3 powder. The degree of CNT dispersion via chemical vapor deposition (CVD) was superior to spray drying but CVD could not synthesize powder in large amount. Hence optimization of plasma processing parameters and process map development was limited to spray dried Al2O3 powder containing 0, 4 and 8 wt. % CNTs. An empirical model using Pareto diagram was developed to link plasma processing parameters with the porosity of coating. Splat morphology as a function of plasma processing parameter was also studied to understand its effect on mechanical properties. Addition of a mere 1.5 wt. % CNTs via CVD technique showed ˜27% and ˜24% increase in the elastic modulus and fracture toughness respectively. Improved toughness was attributed to combined effect of lower porosity and uniform dispersion of CNTs which promoted the toughening by CNT bridging, crack deflection and strong CNT/Al2O3 interface. Al2O 3-8 wt. % CNT coating synthesized using spray dried powder showed 73% improvement in the fracture toughness when porosity reduced from 4.7% to 3.0%. Wear resistance of all coatings at room and elevated temperatures (573 K, 873 K) showed improvement with CNT addition and decreased porosity. Such behavior was due to improved mechanical properties, protective film formation due to tribochemical reaction, and CNT bridging between the splats. Finally, process maps correlating porosity content, CNT content, mechanical properties, and wear properties were developed.

  13. Incorporation of Nicotine into Silicone Coatings for Marine Applications

    NASA Astrophysics Data System (ADS)

    Jaramillo, Sandy Tuyet

    PDMS-based marine coatings presently used are limited by their inability to mitigate microfouling which limits their application to high speed vessels. PDMS coatings are favored when viable, due to their foul release properties of macrofouling organisms. Natural products have been investigated for antifouling properties for potential use in these marine antifouling coatings but few have incorporated natural products into coatings or coating systems. The purpose of the research was to establish the corrosion inhibiting properties of nicotine and to incorporate nicotine, a biodegradable and readily available natural product, into a PDMS coating to demonstrate the use of a natural product in a coating for marine applications. The corrosion inhibiting properties of nicotine was examined using potentiodynamic polarization scans, material characterization techniques such as scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction, quartz crystal microbalance and electrochemical impedance spectroscopy. Nicotine was determined to be an anodic corrosion inhibitor for mild steel immersed in simulated seawater with the ability to precipitate a protective calcium carbonate film. Electrochemical impedance spectroscopy was used to evaluate the performance of the developed nicotine incorporated coatings on mild steel immersed in simulated seawater over 21 days of immersion. The coatings with 2 wt.% of nicotine incorporated in the coating with a ratio of 1:30 of additional platinum catalyst to nicotine exhibited the best performance for intact coatings. This coating had the most favorable balance of the amount of nicotine and platinum catalyst of all the coatings evaluated. Overall, all nicotine incorporated coatings had a performance improvement when compared to the control PDMS coating. Of the nicotine incorporated coatings that were tested with an artificial pin-hole defect, the 2PDMS coating also exhibited the best performance with significant improvement in the pore and polarization resistance.

  14. Adhesion and removal kinetics of Bacillus cereus biofilms on Ni-PTFE modified stainless steel.

    PubMed

    Huang, Kang; McLandsborough, Lynne A; Goddard, Julie M

    2016-01-01

    Biofilm control remains a challenge to food safety. A well-studied non-fouling coating involves codeposition of polytetrafluoroethylene (PTFE) during electroless plating. This coating has been reported to reduce foulant build-up during pasteurization, but opportunities remain in demonstrating its efficacy in inhibiting biofilm formation. Herein, the initial adhesion, biofilm formation, and removal kinetics of Bacillus cereus on Ni-PTFE-modified stainless steel (SS) are characterized. Coatings lowered the surface energy of SS and reduced biofilm formation by > 2 log CFU cm(-2). Characterization of the kinetics of biofilm removal during cleaning demonstrated improved cleanability on the Ni-PTFE coated steel. There was no evidence of biofilm after cleaning by either solution on the Ni-PTFE coated steel, whereas more than 3 log and 1 log CFU cm(-2) of bacteria remained on the native steel after cleaning with water and an alkaline cleaner, respectively. This work demonstrates the potential application of Ni-PTFE non-fouling coatings on SS to improve food safety by reducing biofilm formation and improving the cleaning efficiency of food processing equipment.

  15. Engineering M13 for phage display.

    PubMed

    Sidhu, S S

    2001-09-01

    Phage display is achieved by fusing polypeptide libraries to phage coat proteins. The resulting phage particles display the polypeptides on their surfaces and they also contain the encoding DNA. Library members with particular functions can be isolated with simple selections and polypeptide sequences can be decoded from the encapsulated DNA. The technology's success depends on the efficiency with which polypeptides can be displayed on the phage surface, and significant progress has been made in engineering M13 bacteriophage coat proteins as improved phage display platforms. Functional display has been achieved with all five M13 coat proteins, with both N- and C-terminal fusions. Also, coat protein mutants have been designed and selected to improve the efficiency of heterologous protein display, and in the extreme case, completely artificial coat proteins have been evolved specifically as display platforms. These studies demonstrate that the M13 phage coat is extremely malleable, and this property can be used to engineer the phage particle specifically for phage display. These improvements expand the utility of phage display as a powerful tool in modern biotechnology.

  16. Similarities and differences in coatings for magnesium-based stents and orthopaedic implants

    PubMed Central

    Ma, Jun; Thompson, Marc; Zhao, Nan; Zhu, Donghui

    2016-01-01

    Magnesium (Mg)-based biodegradable materials are promising candidates for the new generation of implantable medical devices, particularly cardiovascular stents and orthopaedic implants. Mg-based cardiovascular stents represent the most innovative stent technology to date. However, these products still do not fully meet clinical requirements with regards to fast degradation rates, late restenosis, and thrombosis. Thus various surface coatings have been introduced to protect Mg-based stents from rapid corrosion and to improve biocompatibility. Similarly, different coatings have been used for orthopaedic implants, e.g., plates and pins for bone fracture fixation or as an interference screw for tendon-bone or ligament-bone insertion, to improve biocompatibility and corrosion resistance. Metal coatings, nanoporous inorganic coatings and permanent polymers have been proved to enhance corrosion resistance; however, inflammation and foreign body reactions have also been reported. By contrast, biodegradable polymers are more biocompatible in general and are favoured over permanent materials. Drugs are also loaded with biodegradable polymers to improve their performance. The key similarities and differences in coatings for Mg-based stents and orthopaedic implants are summarized. PMID:27695671

  17. NASA Astrophysics Data System (ADS)

    Sampath, S.; Wayne, S. F.

    1994-09-01

    Thermally sprayed molybdenum coatings are used in a variety of industrial applications, such as auto-motive piston rings, aeroturbine engines, and paper and plastics processing machinery. Molybdenum ex-hibits excellent scuffing resistance under sliding contact conditions. However, plasma-sprayed molybde-num coatings are relatively soft and require dispersion strengthening (e.g., Mo2C) or addition of a second phase (e.g., NiCrBSi) to improve hardness, wear resistance, and thus coating performance. In this study, Mo-Mo2C composite powders were plasma sprayed onto mild steel substrates. Considerable decarburi-zation was observed during air plasma spraying—a beneficial condition because carbon acts as a sacrifi-cial getter for the oxygen, thereby reducing the oxide content in the coating. Finer powders showed a greater degree of decarburization due to the increased surface area; however, the starting carbide con-tent in the powder exerted very little influence on the extent of decarburization. The friction properties of Mo-Mo2C coatings were significantly improved compared to those of pure molybdenum under con-tinuous sliding contact conditions. It also was found that the abrasion resistance of the coatings improved with increasing carbide addition.

  18. Cold Spray Deposition of Ni and WC-Reinforced Ni Matrix Composite Coatings

    NASA Astrophysics Data System (ADS)

    Alidokht, S. A.; Vo, P.; Yue, S.; Chromik, R. R.

    2017-12-01

    Ni-WC composites are ideal protective coatings against wear and are often fabricated using laser cladding and thermal spray processes, but the high temperatures of these processes result in decarburization, which deteriorates the performance of the coating. Cold spray has the potential to deposit Ni-WC composite coatings and retain the composition of the initial WC feedstock. However, the insignificant plastic deformation of hard WC particles makes it difficult to build up a high WC content coating by cold spray. By using three different WC powder sizes, the effect of feedstock powder size on WC retention was tested. To improve WC retention, a WC/Ni composite powder in mixture with Ni was also sprayed. Microstructural characterization, including the deformed structure of Ni splats, retention, distribution, and fragmentation of WC, was performed by scanning electron microscopy. An improvement in WC retention was achieved using finer WC particles. Significant improvement in WC particles retention was achieved using WC/Ni composite powder, with the WC content in the coating being close to that of the feedstock.

  19. Low cost high temperature, duplex coating for superalloys

    NASA Technical Reports Server (NTRS)

    Young, S. G.; Deadmore, D. L.

    1981-01-01

    Duplex silicon-slurry/aluminide coating substantially improves high temperature resistance to oxidation and corrosion of nickel base alloys. Coating used in critical sections of power systems like turbojet engines extends their operating capabilities.

  20. Hydroxyapatite/poly(epsilon-caprolactone) double coating on magnesium for enhanced corrosion resistance and coating flexibility.

    PubMed

    Jo, Ji-Hoon; Li, Yuanlong; Kim, Sae-Mi; Kim, Hyoun-Ee; Koh, Young-Hag

    2013-11-01

    Hydroxyapatite was deposited on pure magnesium (Mg) with a flexible poly(ε-caprolactone) interlayer to reduce the corrosion rate of Mg and enhance coating flexibility. The poly(ε-caprolactone) interlayer was uniformly coated on Mg by a spraying method, followed by hydroxyapatite deposition on the poly(ε-caprolactone) using an aerosol deposition method. In scanning electron microscopy observations, inorganic/organic composite-like structure was observed between the hydroxyapatite and poly(ε-caprolactone) layers, resulting from the collisions of hydroxyapatite particles into the poly(ε-caprolactone) matrix at the initial stage of the aerosol deposition. The corrosion resistance of the coated Mg was examined using potentiodynamic polarization tests. The hydroxyapatite/poly(ε-caprolactone) double coating remarkably improved the corrosion resistance of Mg in Hank's solution. In the in vitro cell tests, the coated Mg showed better cell adhesion compared with the bare Mg due to the reduced corrosion rate and enhanced biocompatibility. The stability and flexibility of hydroxyapatite/poly(ε-caprolactone) double coating was investigated by scanning electron microscopy inspections after the coated Mg was deformed. The hydroxyapatite coating on the poly(ε-caprolactone) interlayer revealed enhanced coating stability and flexibility without cracking or delamination during bending and stretching compared with the hydroxyapatite single coating. These results demonstrated that the hydroxyapatite/poly(ε-caprolactone) double coating significantly improved the surface corrosion resistance of Mg and enhanced coating flexibility for use of Mg as a biodegradable implant.

  1. Candle Soot-Driven Performance Enhancement in Pyroelectric Energy Conversion

    NASA Astrophysics Data System (ADS)

    Azad, Puneet; Singh, V. P.; Vaish, Rahul

    2018-05-01

    We observed substantial enhancement in pyroelectric output with the help of candle soot coating on the surface of lead zirconate titanate (PZT). Candle soot of varying thicknesses was coated by directly exposing pyroelectric material to the candle flame. The open-circuit pyroelectric voltage and closed-circuit pyroelectric current were recorded while applying infrared heating across the uncoated and candle soot-coated samples for different heating and cooling cycles. In comparison to the uncoated sample, the maximum open-circuit voltage improves seven times for the candle soot-coated sample and electric current increases by eight times across a resistance of 10Å. Moreover, the harvested energy is enhanced by 50 times for candle soot-coated sample. Results indicate that candle soot coating is an effective and economic method to improve infrared sensing performance of pyroelectric materials.

  2. New chemical approach to obtain dense layer phosphate-based ionic conductor coating on negative electrode material surface: Synthesis way, outgassing and improvement of C-rate capability

    NASA Astrophysics Data System (ADS)

    Fleutot, Benoit; Davoisne, Carine; Gachot, Grégory; Cavalaglio, Sébastien; Grugeon, Sylvie; Viallet, Virginie

    2017-04-01

    Li4Ti5O12 (LTO) based batteries have severe gassing behavior during charge/discharge and storage process, due to interfacial reactions between active material and electrolyte solution. In the same time, the electronic and ionic conductivity of pristine LTO is very poor and induces the use of nanoparticles which increase the outgassing phenomena. The coating of LTO particles could be a solution. For this the LTO spinel particles are modified with ionic conductor Li3PO4 coating using a spray-drying method. For the first time a homogeneous thin dense layer phosphate based conductor is obtained without nanoparticles, as a thin film material. It is so possible to study the influence of ionic conductor deposited on the negative electrode material on performances by the controlled layer thickness. This coating was characterized by XRD, SEM, XPS and TEM. The electrochemical performance of Li3PO4 coated Li4Ti5O12 is improved at high C-rate by the surface modification (improvement of 30 mAh g-1 at 5 C-rate compared to pristine LTO for 5 nm of coating), inducing by a modification of surface energy. An optimum coating thickness was studied. This type of coating allows a significant decrease of outgassing phenomena due the conformal coating and opens the way to a great number of studies and new technologies.

  3. Sacrificial Protective Coating Materials that can be Regenerated In-Situ to Enable High Performance Membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malati, Peter; Ganguli, Rahul; Mehrotra, Vivek

    In the pulp and paper industry, weak black liquor concentration is carried out using energy intensive evaporators. Briefly, after wood digestion, water is evaporated to concentrate weak black liquor to the point where the black liquor can be burned in a recovery boiler, which ultimately leads to the recovery of digestion chemicals. Because it is less energy intensive than heat-driven separation, pressure-driven separation of water from black liquor using membranes could reduce the energy usage by 55 trillion Btu yr -1 and carbon dioxide emissions by more than 11 million metric tons CO 2 per year if the first twomore » evaporators are replaced. However, weak black liquor is a hot, corrosive, and highly fouling feed with organic molecules, colloids, and ions that clog membranes within hours of operation. We have shown that membrane-based concentration of weak black liquor is feasible, but only with our antifouling and anti-clogging technology that is based on a sacrificial Bio-inspired Living Skin concept. This concept is based on a conformal coating that is formed at the membrane surface and within the pores. Weak foulant adhesion dramatically decreases membrane fouling while the superhydrophilicity of the coating increases the water permeability. Moreover, the coating can be completely removed during backflushing, which removes foulants that may irreversibly adhere to the coating over long periods of time. The skin shedding completely regenerates the membrane surface and pores, restoring the original flux. This is followed by in-situ recoating, using the existing membrane plumbing and pumps, which essentially creates a brand new membrane surface.« less

  4. Beam tests of beampipe coatings for electron cloud mitigation in Fermilab Main Injector

    DOE PAGES

    Backfish, Michael; Eldred, Jeffrey; Tan, Cheng Yang; ...

    2015-10-26

    Electron cloud beam instabilities are an important consideration in virtually all high-energy particle accelerators and could pose a formidable challenge to forthcoming high-intensity accelerator upgrades. Dedicated tests have shown beampipe coatings dramatically reduce the density of electron cloud in particle accelerators. In this work, we evaluate the performance of titanium nitride, amorphous carbon, and diamond-like carbon as beampipe coatings for the mitigation of electron cloud in the Fermilab Main Injector. Altogether our tests represent 2700 ampere-hours of proton operation spanning five years. Three electron cloud detectors, retarding field analyzers, are installed in a straight section and allow a direct comparisonmore » between the electron flux in the coated and uncoated stainless steel beampipe. We characterize the electron flux as a function of intensity up to a maximum of 50 trillion protons per cycle. Each beampipe material conditions in response to electron bombardment from the electron cloud and we track the changes in these materials as a function of time and the number of absorbed electrons. Contamination from an unexpected vacuum leak revealed a potential vulnerability in the amorphous carbon beampipe coating. We measure the energy spectrum of electrons incident on the stainless steel, titanium nitride and amorphous carbon beampipes. We find the electron cloud signal is highly sensitive to stray magnetic fields and bunch-length over the Main Injector ramp cycle. In conclusion, we conduct a complete survey of the stray magnetic fields at the test station and compare the electron cloud signal to that in a field-free region.« less

  5. Improvement of electrochemical performance of nickel rich LiNi0.6Co0.2Mn0.2O2 cathode active material by ultrathin TiO2 coating.

    PubMed

    Qin, CanCan; Cao, JiaLi; Chen, Jun; Dai, GaoLe; Wu, TongFu; Chen, Yanbin; Tang, YueFeng; Li, AiDong; Chen, Yanfeng

    2016-06-21

    LiNi0.6Co0.2Mn0.2O2 cathode material has been surface-modified by coating with ultrathin TiO2via atomic layer deposition (ALD) technology to improve the electrochemical performance of LiNi0.6Co0.2Mn0.2O2 cathodes for lithium ion batteries. Within the cut-off voltage of 2.5-4.3 V, the coated sample delivers an initial discharge capacity of 187.7 mA h g(-1) at 0.1 C and with a capacity retention about 85.9% after 100 cycles at 1 C, which provides a significant improvement in terms of discharge capacity and cyclability, as compared with those of the bare one. Such enhanced electrochemical performance of the coated sample is ascribed to its high-quality ultrathin coating of amorphous TiO2, which can protect the active material from HF attack, withstand the dissolution of metal ions in the electrode and favor the lithium diffusion of oxide as proved by electrochemical impedance spectroscopy (EIS) tests. TiO2 coating via the ALD process provides a potential approach for battery factories to surface-modify Ni-rich electrode materials so as to realize improvements in electrochemical performance.

  6. Superhard self-lubricating AlMgB14 films for microelectromechanical devices

    NASA Astrophysics Data System (ADS)

    Tian, Y.; Bastawros, A. F.; Lo, C. C. H.; Constant, A. P.; Russell, A. M.; Cook, B. A.

    2003-10-01

    Performance and reliability of microelectromechanical system (MEMS) components can be enhanced dramatically through the incorporation of protective thin-film coatings. Current-generation MEMS devices prepared by the lithographie-galvanoformung-abformung (LIGA) technique employ transition metals such as Ni, Cu, Fe, or alloys thereof, and hence lack stability in oxidizing, corrosive, and/or high-temperature environments. Fabrication of a superhard self-lubricating coating based on a ternary boride compound AlMgB14 described in this letter has great potential in protective coating technology for LIGA microdevices. Nanoindentation tests show that the hardness of AlMgB14 films prepared by pulsed laser deposition ranges from 45 GPa to 51 GPa, when deposited at room temperature and 573 K, respectively. Extremely low friction coefficients of 0.04-0.05, which are thought to result from a self-lubricating effect, have also been confirmed by nanoscratch tests on the AlMgB14 films. Transmission electron microscopy studies show that the as-deposited films are amorphous, regardless of substrate temperature; however, analysis of Fourier transform infrared spectra suggests that the higher substrate temperature facilitates the formation of the B12 icosahedral framework, therefore leading to the higher hardness.

  7. High Temperature Alkali Corrosion of Dense SN4 Coated with CMZP and Mg-Doped A21TiO5 in Coal Gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. J. Brown; Nguyen Thierry

    1997-10-01

    Si3N4 heat exchangers used in industrial systems are usually operating in harsh environments. Not only is this structural material experiencing high temperatures, but it is also subjected to corrosive gases and condensed phases. Past studies have demonstrated that condensed phases severely attack Si3N4 and as a consequence, dramatically reduce its lifetime in industrial operating systems.1,2 Previous research conducted at Virginia Tech on low thermal expansion coefficient oxide ceramics,3,4,5 (Ca1-X,MgX)Zr4(PO4)6 (CMZP), and Mg-doped Al2TiO5, for structural application have shown that these two materials exhibited better resistance to alkaline corrosion than Si3N4. Thus, they were envisioned as good candidates for a protectivemore » coating on Si3N4 heat exchangers. As a result, the goal of the present work is to develop CMZP and Mg-doped Al2TiO5 protective thin films using the sol-gel process and the dip coating technique and to test their effectiveness in an alkali-containing atmosphere.« less

  8. Achieving Stable Radiation Pressure Acceleration of Heavy Ions via Successive Electron Replenishment from Ionization of a High-Z Material Coating

    NASA Astrophysics Data System (ADS)

    Qiao, Bin; Shen, X. F.; Zhang, H.; Kar, S.; Zhou, C. T.; Chang, H. X.; Borghesi, M.; He, X. T.

    2017-10-01

    Among various laser-driven acceleration schemes, radiation pressure acceleration (RPA) is regarded as one of the most promising schemes to obtain high-quality ion beams. Although RPA is very attractive in principle, it is difficult to be achieved experimentally. One of the most important reasons is the dramatic growth of the multi-dimensional Rayleigh-Taylor-like (RT) instabilities. In this talk, we report a novel method to achieve stable RPA of ions from laser-irradiated ultrathin foils, where a high-Z material coating in front is used. The coated high-Z material, acting as a moving electron repository, continuously replenishes the accelerating ion foil with comoving electrons in the light-sail acceleration stage due to its successive ionization under laser fields with Gaussian temporal profile. As a result, the detrimental effects such as electron loss induced by the RT and other instabilities are significantly offset and suppressed so that stable acceleration of ions are maintained. Supported by the NSAF, Grant No. U1630246; the NNSF China Grants No. 11575298; and the National Key Program of S&T Research and Development, Grant No. 2016YFA0401100.

  9. Nanorod diameter modulated osteogenic activity of hierarchical micropore/nanorod-patterned coatings via a Wnt/β-catenin pathway.

    PubMed

    Zhou, Jianhong; Zhao, Lingzhou; Li, Bo; Han, Yong

    2018-04-14

    Hierarchical micropore/nanorod-patterned strontium doped hydroxyapatite (Ca 9 Sr 1 (PO 4 ) 6 (OH) 2 , Sr 1 -HA) structures (MNRs) with different nanorod diameters of about 30, 70 and 150 nm were coated on titanium, to investigate the effect of nanorod diameter on osteogenesis and the involved mechanism. Compared to micropore/nanogranule-patterned Sr 1 -HA coating (MNG), MNRs gave rise to dramatically enhanced in vitro mesenchymal stem cell functions including osteogenic differentiation in the absence of osteogenic supplements and in vivo osseointegration related to the nanorod diameter with about 70 nm displaying the best effects. MNRs activated the cellular Wnt/β-catenin pathway by increasing the expression of Wnt3a and LRP6 and decreasing the expression of Wnt/β-catenin pathway antagonists (sFRP1, sFRP2, Dkk1 and Dkk2). The exogenous Wnt3a significantly enhanced the β-catenin signaling activation and cell differentiation on MNG, and the exogenous Dkk1 attenuated the enhancing effect of MNRs on them. The data demonstrate that MNRs favor osseointegration via a Wnt/β-catenin pathway. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Deposition of BN interphase coatings from B-trichloroborazine and its effects on the mechanical properties of SiC/SiC composites

    NASA Astrophysics Data System (ADS)

    Wu, Haitang; Chen, Mingwei; Wei, Xi; Ge, Min; Zhang, Weigang

    2010-12-01

    Boron nitride thin films were deposited on silicon carbide fibers by chemical vapor deposition at atmospheric pressure from the single source precursor B-trichloroborazine (Cl 3B 3N 3H 3, TCB). The film growth and structure, as a function of deposition temperature, hydrogen gas flow rate, and deposition time, were discussed. The deposition rate reaches a maximum at 1000 °C, then decreases with the increasing of temperature, and the apparent activation energy of the reaction is 127 kJ/mol. Above 1000 °C, gas-phase nucleation determines the deposition process. The deposited BN films were characterized by Raman spectroscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM). The effect of BN interphase on the mechanical properties of the unidirectional SiC fiber-reinforced SiC matrix (SiC/SiC) composites was also investigated. The results show that the flexural strength of SiC/SiC composites with and without coating is 276 MPa and 70 MPa, respectively, which indicates that BN interphase coating deposited from B-trichloroborazine precursor can effectively adjust the fiber/matrix interface, thus causing a dramatic increase in the mechanical properties of the composites.

  11. Toyota's tips drive dramatic ED improvements.

    PubMed

    2002-11-01

    The Toyota Motor Corp.'s key concepts of allowing workers to make changes, putting the customer first, and reducing waste can have a dramatic impact when implemented in emergency departments. Staff should be empowered to make changes to improve quality. A chain of events should be set in motion for each customer request. Identify and eliminate roadblocks that cause delays.

  12. Anti-Glare Filters

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Glare from CRT screens has been blamed for blurred vision, eyestrain, headaches, etc. Optical Coating Laboratory, Inc. (OCLI) manufactures a coating to reduce glare which was used to coat the windows on the Gemini and Apollo spacecraft. In addition, OCLI offers anti-glare filters (Glare Guard) utilizing the same thin film coating technology. The coating minimizes brightness, provides enhanced contrast and improves readability. The filters are OCLI's first consumer product.

  13. Hollow fiber optics with improved durability for high-peak-power pulses of Q-switched Nd:YAG lasers.

    PubMed

    Matsuura, Yuji; Tsuchiuchi, Akio; Noguchi, Hiroshi; Miyagi, Mitsunobu

    2007-03-10

    To improve the damage threshold of hollow optical waveguides for transmitting Q-switched Nd:YAG laser pulses, we optimize the metallization processes for the inner coating of fibers. For silver-coated hollow fiber as the base, second, and third Nd:YAG lasers, drying silver films at a moderate temperature and with inert gas flow is found to be effective. By using this drying process, the resistance to high-peak-power optical pulse radiation is drastically improved for fibers fabricated with and without the sensitizing process. The maximum peak power transmitted in the fiber is greater than 20 MW. To improve the energy threshold of aluminum-coated hollow fibers for the fourth and fifth harmonics of Nd:YAG lasers, a thin silver film is added between the aluminum film and the glass substrate to increase adhesion of the aluminum coating. By using this primer layer, the power threshold improves to 3 MW for the fourth harmonics of a Q-switched Nd:YAG laser light.

  14. Development and characterization of polymer-coated liposomes for vaginal delivery of sildenafil citrate.

    PubMed

    Refai, Hanan; Hassan, Doaa; Abdelmonem, Rehab

    2017-11-01

    Vaginal administration of sildenafil citrate has shown recently to develop efficiently the uterine lining with subsequent successful embryo implantation following in vitro fertilization. The aim of the present study was to develop sildenafil-loaded liposomes coated with bioadhesive polymers for enhanced vaginal retention and improved drug permeation. Three liposomal formulae were prepared by thin-film method using different phospholipid:cholesterol ratios. The optimal liposomal formulation was coated with bioadhesive polymers (chitosan and HPMC). A marked increase in liposomal size and zeta potential was observed for all coated liposomal formulations. HPMC-coated liposomes showed the greater bioadhesion and higher entrapment efficiency than chitosan-coated formulae. The in vitro release studies showed prolonged release of sildenafil from coated liposomes as compared to uncoated liposomes and sildenafil solution. Ex vivo permeation study revealed the enhanced permeation of coated relative to uncoated liposomes. Chitosan-coated formula demonstrated highest drug permeation and was thus selected for further investigations. Transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy (FTIR) confirmed the successful coating of the liposomes by chitosan. Histopathological in vivo testing proved the efficacy of chitosan-coated liposomes to improve blood flow to the vaginal endometrium and to increase endometrial thickness. Chitosan-coated liposomes can be considered as potential novel drug delivery system intended for the vaginal administration of sildenafil, which would prolong system's retention at the vaginal site and enhance the permeation of sildenafil to uterine blood circulation.

  15. Effects of graphene plates' adoption on the microstructure, mechanical properties, and in vivo biocompatibility of calcium silicate coating.

    PubMed

    Xie, Youtao; Li, Hongqin; Ding, Chuanxian; Zheng, Xuebin; Li, Kai

    2015-01-01

    Calcium silicate (CS) ceramic is a good coating candidate for biomedical implants to improve biocompatibility and accelerate early osseointegration. However, the poor fracture toughness and wear resistance of this ceramic material restricts the long-term performance of implants. In this study, graphene plates (GPs) were used as reinforcement to improve the mechanical properties of CS coating. Composite coating containing 1.5 weight % GPs was prepared by vacuum plasma spraying technology. The good survival of the GPs in the composite coating was demonstrated by Raman analysis, although the defects of the GPs were increased after plasma spraying. Effects of the GPs' adoption on the microstructure of the coating were studied by scanning electron microscopy and transmission electron microscopy. Results showed that the GPs were homogenously distributed in the CS grains interface or enwrapped on the particles, and exhibited good wetting behavior with the CS matrix. The wear properties of the composite coating were obviously enhanced by the reinforcement of GPs. The reinforcement mechanism was attributed to the enhanced micro-hardness and interfacial bonding of the particles in the coating. In vivo experiments demonstrated that the composite coating possessed similarly good biocompatibility compared to pure CS coating. The bone-implant contact ratio reached 84.3%±7.4% for GPs/CS coating and 79.6%±9.4% for CS coating after 3 months' implantation.

  16. Effects of graphene plates’ adoption on the microstructure, mechanical properties, and in vivo biocompatibility of calcium silicate coating

    PubMed Central

    Xie, Youtao; Li, Hongqin; Ding, Chuanxian; Zheng, Xuebin; Li, Kai

    2015-01-01

    Calcium silicate (CS) ceramic is a good coating candidate for biomedical implants to improve biocompatibility and accelerate early osseointegration. However, the poor fracture toughness and wear resistance of this ceramic material restricts the long-term performance of implants. In this study, graphene plates (GPs) were used as reinforcement to improve the mechanical properties of CS coating. Composite coating containing 1.5 weight % GPs was prepared by vacuum plasma spraying technology. The good survival of the GPs in the composite coating was demonstrated by Raman analysis, although the defects of the GPs were increased after plasma spraying. Effects of the GPs’ adoption on the microstructure of the coating were studied by scanning electron microscopy and transmission electron microscopy. Results showed that the GPs were homogenously distributed in the CS grains interface or enwrapped on the particles, and exhibited good wetting behavior with the CS matrix. The wear properties of the composite coating were obviously enhanced by the reinforcement of GPs. The reinforcement mechanism was attributed to the enhanced micro-hardness and interfacial bonding of the particles in the coating. In vivo experiments demonstrated that the composite coating possessed similarly good biocompatibility compared to pure CS coating. The bone-implant contact ratio reached 84.3%±7.4% for GPs/CS coating and 79.6%±9.4% for CS coating after 3 months’ implantation. PMID:26089662

  17. Oxygen plasma treatment and deposition of CN{sub x} on a fluorinated polymer matrix composite for improved erosion resistance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muratore, C.; Korenyi-Both, A.; Bultman, J. E.

    2007-07-15

    The use of polymer matrix composites in aerospace propulsion applications is currently limited by insufficient resistance to erosion by abrasive media. Erosion resistant coatings may provide necessary protection; however, adhesion to many high temperature polymer matrix composite (PMC) materials is poor. A low pressure oxygen plasma treatment process was developed to improve adhesion of CN{sub x} coatings to a carbon reinforced, fluorinated polymer matrix composite. Fullerene-like CN{sub x} was selected as an erosion resistant coating for its high hardness-to-elastic modulus ratio and elastic resilience which were expected to reduce erosion from media incident at different angles (normal or glancing) relativemore » to the surface. In situ x-ray photoelectron spectroscopy was used to evaluate the effect of the plasma treatment on surface chemistry, and electron microscopy was used to identify changes in the surface morphology of the PMC substrate after plasma exposure. The fluorine concentration at the surface was significantly reduced and the carbon fibers were exposed after plasma treatment. CN{sub x} coatings were then deposited on oxygen treated PMC substrates. Qualitative tests demonstrated that plasma treatment improved coating adhesion resulting in an erosion resistance improvement of a factor of 2 compared to untreated coated composite substrates. The combination of PMC pretreatment and coating with CN{sub x} reduced the erosion rate by an order of magnitude for normally incident particles.« less

  18. Enhanced UV light detection using a p-terphenyl wavelength shifter

    NASA Astrophysics Data System (ADS)

    Joosten, S.; Kaczanowicz, E.; Ungaro, M.; Rehfuss, M.; Johnston, K.; Meziani, Z.-E.

    2017-10-01

    UV-glass photomultiplier tubes (PMTs) have poor photon detection efficiency for wavelengths below 300 nm due to the opaqueness of the window material. Costly quartz PMTs could be used to enhance the efficiency below 300 nm. A less expensive solution that dramatically improves this efficiency is the application of a thin film of a p-terphenyl (PT) wavelength shifter on UV-glass PMTs. This improvement was quantified for Photonis XP4500B PMTs for wavelengths between 200 nm and 400 nm. The gain factor ranges up to 5 . 4 ± 0 . 5 at a wavelength of 215 nm, with a material load of 110 ± 10 μg /cm2 (894 nm). The wavelength shifter was found to be fully transparent for wavelengths greater than 300 nm. The resulting gain in detection efficiency, when used in a typical C̆erenkov counter, was estimated to be of the order of 40%. Consistent coating quality was assured by a rapid gain testing procedure using narrow-band UV LEDs. Based on these results, 200 Photonis XP4500B PMTs were treated with PT for the upgraded low-threshold C̆erenkov counter (LTCC) to be used in the CEBAF Large Acceptance Spectrometer upgraded detector (CLAS12) at the Thomas Jefferson National Accelerator Facility.

  19. Combinatorial library based engineering of Candida antarctica lipase A for enantioselective transacylation of sec-alcohols in organic solvent.

    PubMed

    Wikmark, Ylva; Svedendahl Humble, Maria; Bäckvall, Jan-E

    2015-03-27

    A method for determining lipase enantioselectivity in the transacylation of sec-alcohols in organic solvent was developed. The method was applied to a model library of Candida antarctica lipase A (CalA) variants for improved enantioselectivity (E values) in the kinetic resolution of 1-phenylethanol in isooctane. A focused combinatorial gene library simultaneously targeting seven positions in the enzyme active site was designed. Enzyme variants were immobilized on nickel-coated 96-well microtiter plates through a histidine tag (His6-tag), screened for transacylation of 1-phenylethanol in isooctane, and analyzed by GC. The highest enantioselectivity was shown by the double mutant Y93L/L367I. This enzyme variant gave an E value of 100 (R), which is a dramatic improvement on the wild-type CalA (E=3). This variant also showed high to excellent enantioselectivity for other secondary alcohols tested. © 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution Non-Commercial NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

  20. An oxidized liquid metal-based microfluidic platform for tunable electronic device applications.

    PubMed

    Li, Guangyong; Parmar, Mitesh; Lee, Dong-Weon

    2015-02-07

    Easy movement of oxidized Galinstan in microfluidic channels is a promising way for the wide application of the non-toxic liquid metal. In this paper, two different surface modification techniques (physical and chemical) are reported, which dramatically improve the non-wetting characteristics of oxidized Galinstan in the microfluidic channel. In the physical technique, normal paper textures are transferred to the inner wall of polydimethylsiloxane (PDMS) channels and four types of nanoparticles are then coated on the surface of the wall for further improvement of the non-wetting characteristics. Highest advancing angle of 167° and receding angle of 151° are achieved on the paper-textured PDMS with titanium oxide (TiO2) nanoparticles. In the chemical technique, three types of inorganic acids are employed to generate dual-scale structures on the PDMS surface. The inner wall surface treated with sulfuric acid (H2SO4) shows the highest contact angle of 167° and a low hysteresis of ~14° in the dynamic measurement. Creating, transporting, separating and merging of oxidized Galinstan droplets are successfully demonstrated in the fabricated PDMS microfluidic channels. After optimization of these modification techniques, the potential application of tunable capacitors and electronic filters is realized by using liquid metal-based microfluidic devices.

  1. Coatings Boost Solar-Cell Outputs

    NASA Technical Reports Server (NTRS)

    Rohatgi, Ajeet; Campbell, Robert B.; O'Keefe, T. W.; Rai-Choudbury, Posenjit; Hoffman, Richard A.

    1988-01-01

    Efficiencies increased by more-complete utilization of incident light. Electrical outputs of thin solar photovoltaic cells made of dendritic-web silicon increased by combination of front-surface, antireflective coatings and back-surface, reflective coatings. Improvements achieved recently through theoretical and experimental studies of ways to optimize coatings for particular wavelengths of incident light, cell thicknesses, and cell materials.

  2. NASA Glenn/AADC-Rolls Royce Collaborated to Measure Erosion Resistance on Coated Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; Sutter, James K.; Mondry, Richard; Ma, Kong; Horan, Dick; Naik, Subhash; Cupp, Randall

    2003-01-01

    Polymer matrix composites (PMCs) are increasingly used in aerospace and automotive applications because of their light weight and high strength-to-weight ratio relative to metals. However, a major drawback of PMCs is poor abrasion resistance, which restricts their use, especially at high temperatures. Simply applying a hard coating on PMCs to improve abrasion and erosion resistance is not effective since coating durability is short lived (ref. 1). Generally, PMCs have higher coefficients of thermal expansion than metallic or ceramic coatings have, and coating adhesion suffers because of poor interfacial adhesion strength. One technique commonly used to improve coating adhesion or durability is the use of bond coats that are interleaved between a coating and a substrate with vastly different coefficients of thermal expansion. An example of this remedy is the use of bondcoats for ceramic thermal barrier coatings on metallic turbine components (ref. 2). Prior collaborative research between the NASA Glenn Research Center and the Allison Advanced Development Company (AADC) demonstrated that bond coats sandwiched between PMCs and high-quality plasma-sprayed, erosion-resistant coatings substantially improved the erosion resistance of PMCs (ref. 3). One unresolved problem in this earlier collaboration was that there was no easy, accurate way to measure the coating erosion wear scar. Coating wear was determined by both profilometry and optical microscopy. Both techniques are time consuming. Wear measurement by optical microscopy requires sample destruction and does not provide a comprehensive measure of the entire wear volume. An even more subtle, yet critical, problem is that these erosion coatings contain two or more materials with different densities. Therefore, simply measuring specimen mass loss before and after erosion will not provide an accurate gauge for coating and/or substrate volume loss. By using a noncontact technique called scanning optical interferometry, which was recently developed at Glenn, researchers can accurately determine the wear performance of erosion-coated PMCs while preserving the sample. An example of this interferometry technique is shown in the preceding figure for an erosion-coated inlet guide vane from a Rolls Royce AE3007 regional gas turbine jet engine. Erosion was conducted with coated and uncoated PMC vanes, with the abrasive material moving at a velocity of 229 m/s at impingement angles of 20 and 90 degrees. The coatings for PMCs remarkably reduced the erosion volume loss by a factor of approximately 10. Currently, several erosion coatings for PMCs are being compared and downselected for engine testing at Rolls Royce.

  3. Hydroxyapatite coating on PEEK implants: biomechanical and histological study in a rabbit model

    PubMed Central

    Durham, John W.; Montelongo, Sergio A.; Ong, Joo L.; Guda, Teja; Allen, Matthew J.; Rabiei, Afsaneh

    2016-01-01

    A bioactive two-layer coating consisting of hydroxyapatite (HA) and yttria-stabilized zirconia (YSZ) was investigated on cylindrical polyether ether ketone (PEEK) implants using ion beam assisted deposition (IBAD). Post-deposition heat treatments via variable frequency microwave annealing with and without subsequent autoclaving were used to crystallize the as-deposited amorphous HA layer. Microstructural analysis, performed by TEM and EDS, showed that these methods were capable of crystallizing HA coating on PEEK. The in vivo response to cylindrical PEEK samples with and without coating was studied by implanting uncoated PEEK and coated PEEK implants in the lateral femoral condyle of 18 rabbits. Animals were studied in two groups 9 for observation at 6 or 18 weeks post surgery. MicroCT analysis, histology, and mechanical pull-out tests were performed to determine the effect of the coating on osseointegration. The heat-treated HA/YSZ coatings showed improved implant fixation as well as higher bone regeneration and bone-implant contact area compared to uncoated PEEK. The study offers a novel method to coat PEEK implants with improved osseointegration. PMID:27524073

  4. Development of Advanced Environmental Barrier Coatings for SiC/SiC Composites at NASA GRC: Prime-Reliant Design and Durability Perspectives

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming

    2017-01-01

    Environmental barrier coatings (EBCs) are considered technologically important because of the critical needs and their ability to effectively protect the turbine hot-section SiC/SiC ceramic matrix composite (CMC) components in harsh engine combustion environments. The development of NASA's advanced environmental barrier coatings have been aimed at significantly improved the coating system temperature capability, stability, erosion-impact, and CMAS resistance for SiC/SiC turbine airfoil and combustors component applications. The NASA environmental barrier coating developments have also emphasized thermo-mechanical creep and fatigue resistance in simulated engine heat flux and environments. Experimental results and models for advanced EBC systems will be presented to help establishing advanced EBC composition design methodologies, performance modeling and life predictions, for achieving prime-reliant, durable environmental coating systems for 2700-3000 F engine component applications. Major technical barriers in developing environmental barrier coating systems and the coating integration with next generation composites having further improved temperature capability, environmental stability, EBC-CMC fatigue-environment system durability will be discussed.

  5. Carbon foam/hydroxyapatite coating for carbon/carbon composites: Microstructure and biocompatibility

    NASA Astrophysics Data System (ADS)

    Zhang, Leilei; Li, Hejun; Li, Kezhi; Zhang, Shouyang; Lu, Jinhua; Li, Wei; Cao, Sheng; Wang, Bin

    2013-12-01

    To improve the surface biocompatibility of carbon/carbon composites, a carbon foam/hydroxyapatite coating was applied using a combination method of slurry procedure and ultrasound-assisted electrochemical deposition procedure. The morphology, microstructure and chemical composition of the coating were investigated by scanning electron microscopy, energy dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, Raman spectroscopy and X-ray diffraction. The biocompatibility of the carbon foam/hydroxyapatite coating was investigated by osteoblast-like MG63 cell culture tests. The results showed that the carbon foam could provide a large number of pores on the surface of carbon/carbon composites. The hydroxyapatite crystals could infiltrate into the pores and form the carbon foam/hydroxyapatite coating. The coating covered the carbon/carbon composites fully and uniformly with slice morphology. The cell response tests showed that the MG63 cells on carbon foam/hydroxyapatite coating had a better cell adhesion and cell proliferation than those on uncoated carbon/carbon composites. The carbon foam/hydroxyapatite coatings were cytocompatible and were beneficial to improve the biocompatibility. The approach presented here may be exploited for fabrication of carbon/carbon composite implant surfaces.

  6. Galvanic Liquid Applied Coating Development for Protection of Steel in Concrete

    NASA Technical Reports Server (NTRS)

    Curran, Joseph John; Curran, Jerry; MacDowell, Louis

    2004-01-01

    Corrosion of reinforcing steel in concrete is a major problem affecting NASA facilities at Kennedy Space Center (KSC), other government agencies, and the general public. Problems include damage to KSC launch support structures, transportation and marine infrastructures, as well as building structures. A galvanic liquid applied coating was developed at KSC in order to address this problem. The coating is a non-epoxy metal rich ethyl silicate liquid coating. The coating is applied as a liquid from initial stage to final stage. Preliminary data shows that this coating system exceeds the NACE 100 millivolt shift criterion. The remainder of the paper details the development of the coating system through the following phases: Phase I: Development of multiple formulations of the coating to achieve easy application characteristics, predictable galvanic activity, long-term protection, and minimum environmental impact. Phase II: Improvement of the formulations tested in Phase I including optimization of metallic loading as well as incorporation of humectants for continuous activation. Phase III: Application and testing of improved formulations on the test blocks. Phase IV: Incorporation of the final formulation upgrades onto large instrumented structures (slabs).

  7. Microstructure and high temperature oxidation resistance of Ti-Ni gradient coating on TA2 titanium alloy fabricated by laser cladding

    NASA Astrophysics Data System (ADS)

    Liu, Fencheng; Mao, Yuqing; Lin, Xin; Zhou, Baosheng; Qian, Tao

    2016-09-01

    To improve the high temperature oxidation resistance of TA2 titanium alloy, a gradient Ni-Ti coating was laser cladded on the surface of the TA2 titanium alloy substrate, and the microstructure and oxidation behavior of the laser cladded coating were investigated experimentally. The gradient coating with a thickness of about 420-490 μm contains two different layers, e.g. a bright layer with coarse equiaxed grain and a dark layer with fine and columnar dendrites, and a transition layer with a thickness of about 10 μm exists between the substrate and the cladded coating. NiTi, NiTi2 and Ni3Ti intermetallic compounds are the main constructive phases of the laser cladded coating. The appearance of these phases enhances the microhardness, and the dense structure of the coating improves its oxidation resistance. The solidification procedure of the gradient coating is analyzed and different kinds of solidification processes occur due to the heat dissipation during the laser cladding process.

  8. Hydroxyapatite coating on PEEK implants: Biomechanical and histological study in a rabbit model.

    PubMed

    Durham, John W; Montelongo, Sergio A; Ong, Joo L; Guda, Teja; Allen, Matthew J; Rabiei, Afsaneh

    2016-11-01

    A bioactive two-layer coating consisting of hydroxyapatite (HA) and yttria-stabilized zirconia (YSZ) was investigated on cylindrical polyetheretherketone (PEEK) implants using ion beam assisted deposition (IBAD). Post-deposition heat treatments via variable frequency microwave annealing with and without subsequent autoclaving were used to crystallize the as-deposited amorphous HA layer. Microstructural analysis, performed by TEM and EDS, showed that these methods were capable of crystallizing HA coating on PEEK. The in vivo response to cylindrical PEEK samples with and without coating was studied by implanting uncoated PEEK and coated PEEK implants in the lateral femoral condyle of 18 rabbits. Animals were studied in two groups of 9 for observation at 6 or 18weeks post surgery. Micro-CT analysis, histology, and mechanical pull-out tests were performed to determine the effect of the coating on osseointegration. The heat-treated HA/YSZ coatings showed improved implant fixation as well as higher bone regeneration and bone-implant contact area compared to uncoated PEEK. The study offers a novel method to coat PEEK implants with improved osseointegration. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. The Development of Environmental Barrier Coatings for SiCSiC Ceramic Matrix Composites: Challenges and Opportunities

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming

    2014-01-01

    Environmental barrier coatings (EBCs) and SiC/SiC ceramic matrix composites (CMCs) systems will play a crucial role in future turbine engines for hot-section component applications because of their ability to significantly increase engine operating temperatures, reduce engine weight and cooling requirements. The development of prime-reliant environmental barrier coatings is a key to enable the applications of the envisioned CMC components to help achieve next generation engine performance and durability goals. This paper will primarily address the performance requirements and design considerations of environmental barrier coatings for turbine engine applications. The emphasis is placed on current candidate environmental barrier coating systems for SiCSiC CMCs, their performance benefits and design limitations in long-term operation and combustion environments. Major technical barriers in developing advanced environmental barrier coating systems, the coating integrations with next generation CMC turbine components having improved environmental stability, cyclic durability and system performance will be described. The development trends for turbine environmental barrier coating systems by utilizing improved compositions, state-of-the-art processing methods, and simulated environment testing and durability modeling will be discussed.

  10. Surface modification of acetaminophen particles by atomic layer deposition.

    PubMed

    Kääriäinen, Tommi O; Kemell, Marianna; Vehkamäki, Marko; Kääriäinen, Marja-Leena; Correia, Alexandra; Santos, Hélder A; Bimbo, Luis M; Hirvonen, Jouni; Hoppu, Pekka; George, Steven M; Cameron, David C; Ritala, Mikko; Leskelä, Markku

    2017-06-15

    Active pharmaceutical ingredients (APIs) are predominantly organic solid powders. Due to their bulk properties many APIs require processing to improve pharmaceutical formulation and manufacturing in the preparation for various drug dosage forms. Improved powder flow and protection of the APIs are often anticipated characteristics in pharmaceutical manufacturing. In this work, we have modified acetaminophen particles with atomic layer deposition (ALD) by conformal nanometer scale coatings in a one-step coating process. According to the results, ALD, utilizing common chemistries for Al 2 O 3 , TiO 2 and ZnO, is shown to be a promising coating method for solid pharmaceutical powders. Acetaminophen does not undergo degradation during the ALD coating process and maintains its stable polymorphic structure. Acetaminophen with nanometer scale ALD coatings shows slowed drug release. ALD TiO 2 coated acetaminophen particles show cytocompatibility whereas those coated with thicker ZnO coatings exhibit the most cytotoxicity among the ALD materials under study when assessed in vitro by their effect on intestinal Caco-2 cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. “Combined Occlusion and Atropine Therapy” Versus “Augmented Part-Time Patching” in Children with Refractory/Residual Amblyopia: A Pilot Study

    PubMed Central

    Sachdeva, Virender; Mittal, Vaibhev; Gupta, Varun; Gunturu, Rekha; Kekunnaya, Ramesh; Chandrasekharan, Anjali; Chabblani, Preeti Patil; Rao, Harsha L.

    2016-01-01

    Purpose: To compare the efficacy of combined occlusion and atropine therapy (COAT) and augmented part-time patching for the treatment of unilateral refractory/residual amblyopia. Methodology: This retrospective study evaluated children between 4 and 11 years with refractory/residual amblyopia who were treated with either additional atropine (COAT group) or increased hours of patching (augmented group). Data were collected on improvement in best-corrected visual acuity (BCVA; logarithm of the minimum angle of resolution [logMAR] units) at each follow-up visit. Results: There were 19 children in the COAT group and 17 children in the augmented group. The baseline BCVA of the amblyopic eye was 0.79 ± 0.36 logMAR in the COAT group and 0.72 ± 0.26 logMAR in augmented group. Children were statistically significantly younger in the COAT group (6.4 ± 2.2 years) compared to the augmented group (8.6 ± 3.3 years, P = 0.02). The mean duration of follow-up was statistically significantly longer in the augmented group (20.2 COAT group; 13.9 months augmented group) (P = 0.03). Compliance was similar in both groups. LogMAR BCVA (adjusted for difference in age and baseline BCVA) was statistically significantly better in the COAT group (0.56 ± 0.04) compared to the augmented group (0.80 ± 0.04) at 3 months (P = 0.000); 6 months (COAT group, 0.50 ± 0.04 vs. augmented group, 0.74 ± 0.04; P = 0.04) and at 1 year (COAT group, 0.42 ± 0.04 vs. augmented group, 0.67 ± 0.04, P = 0.000). There was statistically significantly greater improvement in logMAR BCVA at 6 months in COAT group (0.26 ± 0.15) compared to the augmented group (0.02 ± 0.14), (P = 0.0002). Age, gender, pretreatment BCVA, duration of follow-up, or compliance to patching did not affect improvement in BCVA. Conclusions: COAT may result in greater improvement in BCVA than augmented part-time patching in children with unilateral residual/refractory amblyopia. PMID:27162453

  12. "Combined Occlusion and Atropine Therapy" Versus "Augmented Part-Time Patching" in Children with Refractory/Residual Amblyopia: A Pilot Study.

    PubMed

    Sachdeva, Virender; Mittal, Vaibhev; Gupta, Varun; Gunturu, Rekha; Kekunnaya, Ramesh; Chandrasekharan, Anjali; Chabblani, Preeti Patil; Rao, Harsha L

    2016-01-01

    To compare the efficacy of combined occlusion and atropine therapy (COAT) and augmented part-time patching for the treatment of unilateral refractory/residual amblyopia. This retrospective study evaluated children between 4 and 11 years with refractory/residual amblyopia who were treated with either additional atropine (COAT group) or increased hours of patching (augmented group). Data were collected on improvement in best-corrected visual acuity (BCVA; logarithm of the minimum angle of resolution [logMAR] units) at each follow-up visit. There were 19 children in the COAT group and 17 children in the augmented group. The baseline BCVA of the amblyopic eye was 0.79 ± 0.36 logMAR in the COAT group and 0.72 ± 0.26 logMAR in augmented group. Children were statistically significantly younger in the COAT group (6.4 ± 2.2 years) compared to the augmented group (8.6 ± 3.3 years, P = 0.02). The mean duration of follow-up was statistically significantly longer in the augmented group (20.2 COAT group; 13.9 months augmented group) (P = 0.03). Compliance was similar in both groups. LogMAR BCVA (adjusted for difference in age and baseline BCVA) was statistically significantly better in the COAT group (0.56 ± 0.04) compared to the augmented group (0.80 ± 0.04) at 3 months (P = 0.000); 6 months (COAT group, 0.50 ± 0.04 vs. augmented group, 0.74 ± 0.04; P = 0.04) and at 1 year (COAT group, 0.42 ± 0.04 vs. augmented group, 0.67 ± 0.04, P = 0.000). There was statistically significantly greater improvement in logMAR BCVA at 6 months in COAT group (0.26 ± 0.15) compared to the augmented group (0.02 ± 0.14), (P = 0.0002). Age, gender, pretreatment BCVA, duration of follow-up, or compliance to patching did not affect improvement in BCVA. COAT may result in greater improvement in BCVA than augmented part-time patching in children with unilateral residual/refractory amblyopia.

  13. Biocorrosion resistance of coated magnesium alloy by microarc oxidation in electrolyte containing zirconium and calcium salts

    NASA Astrophysics Data System (ADS)

    Wang, Ya-Ming; Guo, Jun-Wei; Wu, Yun-Feng; Liu, Yan; Cao, Jian-Yun; Zhou, Yu; Jia, De-Chang

    2014-09-01

    The key to use magnesium alloys as suitable biodegradable implants is how to adjust their degradation rates. We report a strategy to prepare biocompatible ceramic coating with improved biocorrosion resistance property on AZ91D alloy by microarc oxidation (MAO) in a silicate-K2ZrF6 solution with and without Ca(H2PO4)2 additives. The microstructure and biocorrosion of coatings were characterized by XRD and SEM, as well as electrochemical and immersion tests in simulated body fluid (SBF). The results show that the coatings are mainly composed of MgO, Mg2SiO4, m-ZrO2 phases, further Ca containing compounds involve the coating by Ca(H2PO4)2 addition in the silicate-K2ZrF6 solution. The corrosion resistance of coated AZ91D alloy is significantly improved compared with the bare one. After immersing in SBF for 28 d, the Si-Zr5-Ca0 coating indicates a best corrosion resistance performance.

  14. Scalable graphene coatings for enhanced condensation heat transfer.

    PubMed

    Preston, Daniel J; Mafra, Daniela L; Miljkovic, Nenad; Kong, Jing; Wang, Evelyn N

    2015-05-13

    Water vapor condensation is commonly observed in nature and routinely used as an effective means of transferring heat with dropwise condensation on nonwetting surfaces exhibiting heat transfer improvement compared to filmwise condensation on wetting surfaces. However, state-of-the-art techniques to promote dropwise condensation rely on functional hydrophobic coatings that either have challenges with chemical stability or are so thick that any potential heat transfer improvement is negated due to the added thermal resistance of the coating. In this work, we show the effectiveness of ultrathin scalable chemical vapor deposited (CVD) graphene coatings to promote dropwise condensation while offering robust chemical stability and maintaining low thermal resistance. Heat transfer enhancements of 4× were demonstrated compared to filmwise condensation, and the robustness of these CVD coatings was superior to typical hydrophobic monolayer coatings. Our results indicate that graphene is a promising surface coating to promote dropwise condensation of water in industrial conditions with the potential for scalable application via CVD.

  15. Alkaline battery, separator therefore

    NASA Technical Reports Server (NTRS)

    Schmidt, George F. (Inventor)

    1980-01-01

    An improved battery separator for alkaline battery cells has low resistance to electrolyte ion transfer and high resistance to electrode ion transfer. The separator is formed by applying an improved coating to an electrolyte absorber. The absorber, preferably, is a flexible, fibrous, and porous substrate that is resistant to strong alkali and oxidation. The coating composition includes an admixture of a polymeric binder, a hydrolyzable polymeric ester and inert fillers. The coating composition is substantially free of reactive fillers and plasticizers commonly employed as porosity promoting agents in separator coatings. When the separator is immersed in electrolyte, the polymeric ester of the film coating reacts with the electrolyte forming a salt and an alcohol. The alcohol goes into solution with the electrolyte while the salt imbibes electrolyte into the coating composition. When the salt is formed, it expands the polymeric chains of the binder to provide a film coating substantially permeable to electrolyte ion transfer but relatively impermeable to electrode ion transfer during use.

  16. Friction and wear properties of three hard refractory coatings applied by radiofrequency sputtering

    NASA Technical Reports Server (NTRS)

    Brainard, W. A.

    1977-01-01

    The adherence, friction, and wear properties of thin hard refractory compound coatings applied to 440C bearing steel by radiofrequency sputtering were investigated. Friction and wear tests were done with nonconforming pin on disk specimens. The compounds examined were chromium carbide, molybdenum silicide, and titanium carbide. The adherence, friction, and wear were markedly improved by the application of a bias voltage to the bearing steel substrate during coating deposition. Analysis by X-ray photoelectron spectroscopy indicated that the improvement may be due to a reduction in impurities in bias deposited coatings. A fivefold reduction in oxygen concentration in MoSi2 coating by biasing was noted. Chromium carbide was not effective as an antiwear coating. Molybdenum silicide provided some reduction in both friction and wear. Titanium carbide exhibited excellent friction and antiwear properties at light loads. Plastic flow and transfer of the coating material onto the pin specimen appears to be important in achieving low friction and wear.

  17. Zinc-oxide nanocoating for improvement of the antibacterial and frictional behavior of nickel-titanium alloy.

    PubMed

    Kachoei, Mojgan; Nourian, Azin; Divband, Baharak; Kachoei, Zahra; Shirazi, Sajjad

    2016-10-01

    To fabricate a friction-reducing and antibacterial coating with zinc oxide (ZnO) nanoparticles on nickel-titanium (NiTi) wire. NiTi orthodontic wires were coated with ZnO nanoparticles using the chemical deposition method. Characteristics of the coating as well as the physical, mechanical and antibacterial properties of the wires were investigated. A stable and well-adhered ZnO coating on the NiTi wires was obtained. The hardness and elastic modulus of the ZnO nanocoating were 2.3 ± 0.2 and 61.0 ± 3.6 GPa, respectively. The coated wires presented up to 21% reduction in the frictional forces and antibacterial activity against Streptococcus mutans. ZnO nanocoating significantly improved the surface quality of NiTi wires. The modulus of elasticity, unloading forces and austenite finish temperature were not significantly different after coating. This unique coating could be implemented into practice for safer and faster treatment to the benefit of both patient and clinician.

  18. RGDC Peptide-Induced Biomimetic Calcium Phosphate Coating Formed on AZ31 Magnesium Alloy

    PubMed Central

    Cao, Lin; Wang, Lina; Fan, Lingying; Xiao, Wenjun; Lin, Bingpeng; Xu, Yimeng; Liang, Jun; Cao, Baocheng

    2017-01-01

    Magnesium alloys as biodegradable metal implants have received a lot of interest in biomedical applications. However, magnesium alloys have extremely high corrosion rates a in physiological environment, which have limited their application in the orthopedic field. In this study, calcium phosphate compounds (Ca–P) coating was prepared by arginine–glycine–aspartic acid–cysteine (RGDC) peptide-induced mineralization in 1.5 simulated body fluid (SBF) to improve the corrosion resistance and biocompatibility of the AZ31 magnesium alloys. The adhesion of Ca–P coating to the AZ31 substrates was evaluated by a scratch test. Corrosion resistance and cytocompatibility of the Ca–P coating were investigated. The results showed that the RGDC could effectively promote the nucleation and crystallization of the Ca–P coating and the Ca–P coating had poor adhesion to the AZ31 substrates. The corrosion resistance and biocompatibility of the biomimetic Ca–P coating Mg alloys were greatly improved compared with that of the uncoated sample. PMID:28772717

  19. Durability and CMAS Resistance of Advanced Environmental Barrier Coatings Systems for SiC/SiC Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming

    2015-01-01

    Environmental barrier coatings (EBCs) and SiCSiC ceramic matrix composites (CMCs) systems will play a crucial role in next generation turbine engines for hot-section component applications because of their ability to significantly increase engine operating temperatures with improved efficiency, reduce engine weight and cooling requirements. This paper will emphasize advanced environmental barrier coating developments for SiCSiC turbine airfoil components, by using advanced coating compositions and processing, in conjunction with mechanical and environment testing and durability validations. The coating-CMC degradations and durability in the laboratory simulated engine fatigue-creep and complex operating environments are being addressed. The effects of Calcium-Magnesium-Alumino-Silicate (CMAS) from road sand or volcano-ash deposits on the degradation mechanisms of the environmental barrier coating systems will be discussed. The results help understand the advanced EBC-CMC system performance, aiming at the durability improvements of more robust, prime-reliant environmental barrier coatings for successful applications of the component technologies and lifing methodologies.

  20. LSP/MAO composite bio-coating on AZ80 magnesium alloy for biomedical application.

    PubMed

    Xiong, Ying; Hu, Qiang; Song, Renguo; Hu, Xiaxia

    2017-06-01

    A composite bio-coating was fabricated on AZ80 magnesium (Mg) alloy by using micro-arc oxidation (MAO) under the pretreatment of laser shock peening (LSP) in order to improve the bio-corrosion resistance and the mechanical integrity. LSP treatment could induce grain refinement and compressive residual stress field on the surface of material. MAO bio-coating was grown in alkaline electrolyte with hydroxyapatite (HA, Ca 10 (PO4) 6 (OH) 2 ) to improve the biological properties of the material. The microstructure, element and phase composition for untreated based material (BM) and treated samples (LSP layer, MAO bio-coating and LSP/MAO composite bio-coating) were investigated by transmission electron microscopy (TEM), scanning electron microscope (SEM), energy dispersion spectroscopy (EDS) and X-ray diffraction (XRD). Electrochemical tests and slow strain rate tensile (SSRT) tests were used to evaluate the corrosion resistance and the stress corrosion susceptibility in simulated body fluid (SBF). The results indicated that LSP/MAO composite bio-coating can not only improve the corrosion resistance of Mg alloy substrate evidently but also increase the mechanical properties in SBF compared to LSP layer and MAO bio-coating. Mg alloy treated by LSP/MAO composite technique should be better suited as biodegradable orthopedic implants. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Ultrasound-assisted powder-coating technique to improve content uniformity of low-dose solid dosage forms.

    PubMed

    Genina, Natalja; Räikkönen, Heikki; Antikainen, Osmo; Heinämäki, Jyrki; Yliruusi, Jouko

    2010-09-01

    An ultrasound-assisted powder-coating technique was used to produce a homogeneous powder formulation of a low-dose active pharmaceutical ingredient (API). The powdered particles of microcrystalline cellulose (MCC; Avicel® PH-200) were coated with a 4% m/V aqueous solution of riboflavin sodium phosphate, producing a uniform drug layer on the particle surfaces. It was possible to regulate the amount of API in the treated powder. The thickness of the API layer on the surface of the MCC particles increased near linearly as the number of coating cycles increased, allowing a precise control of the drug content. The tablets (n = 950) prepared from the coated powder showed significantly improved weight and content uniformity in comparison with the reference tablets compressed from a physical binary powder mixture. This was due to the coated formulation remaining uniform during the entire tabletting process, whereas the physical mixture of the powders was subject to segregation. In conclusion, the ultrasound-assisted technique presented here is an effective tool for homogeneous drug coating of powders of irregular particle shape and broad particle size distribution, improving content uniformity of low-dose API in tablets, and consequently, ensuring the safe delivery of a potent active substance to patients.

  2. Enriched aluminide coatings for dispersion strengthened nickel materials

    NASA Technical Reports Server (NTRS)

    Levinstein, M. A.

    1973-01-01

    Improved aluminide/barrier coating combinations for dispersion strengthened nickel materials were investigated. The barrier materials involved alloys with refractory metal content to limit interdiffusion between the coating and the substrate, thereby minimizing void formation. Improved aluminide coatings involved the dispersion of aluminum-rich compounds. Coatings were tested in argon at 1533 K (2300 F) for 100 hours and in cyclic oxidation at 1422 K (2100 F). Two coatings on TDNiCr completed 300 hours of oxidation testing, none on TDNi. Selected coating combinations were evaluated in Mach 1 burner rig testing using JP-4 fuel and air at 1422 K (2100 F) and 1477 K (2200 F) for 350 and 100 hours, respectively. Static oxidation in 1-hour cycles was conducted at 1533 K (2300 F) for 100 hours. For comparison purposes a physical vapor deposition (PVD) NiCrAlY coating was tested concurrently. Only the NiCrA1Y coating survived the 1477 K (2200 F)/100-hour burner rig test and 275 hours of the 350-hour 1422 K (2100 F) test. Elevated temperature exposure reduced room temperature tensile properties but had little effect on elevated temperature properties.

  3. Effect of Substrate Bias on Friction Coefficient, Adhesion Strength and Hardness of TiN-COATED Tool Steel

    NASA Astrophysics Data System (ADS)

    Hamzah, Esah; Ali, Mubarak; Toff, Mohd Radzi Hj. Mohd

    In the present study, TiN coatings have been deposited on D2 tool steel substrates by using cathodic arc physical vapor deposition technique. The objective of this research work is to determine the usefulness of TiN coatings in order to improve the micro-Vickers hardness and friction coefficient of TiN coating deposited on D2 tool steel, which is widely used in tooling applications. A Pin-on-Disc test was carried out to study the coefficient of friction versus sliding distance of TiN coating deposited at various substrate biases. The standard deviation parameter during tribo-test result showed that the coating deposited at substrate bias of -75 V was the most stable coating. A significant increase in micro-Vickers hardness was recorded, when substrate bias was reduced from -150 V to zero. Scratch tester was used to compare the critical loads for coatings deposited at different bias voltages and the adhesion achievable was demonstrated with relevance to the various modes, scratch macroscopic analysis, critical load, acoustic emission and penetration depth. A considerable improvement in TiN coatings was observed as a function of various substrate bias voltages.

  4. Failure Mechanisms of the Coating/Metal Interface in Waterborne Coatings: The Effect of Bonding

    PubMed Central

    Wan, Hongxia; Song, Dongdong; Li, Xiaogang; Zhang, Dawei; Gao, Jin; Du, Cuiwei

    2017-01-01

    Waterborne coating is the most popular type of coating, and improving its performance is a key point of research. Cathodic delamination is one of the major modes of failure for organic coatings. It refers to the weakening or loss of adhesion between the coating and substrate. Physical and chemical characteristics of coatings have been studied via scanning electron microscopy (SEM), atomic force microscopy (AFM), contact angle measurements, Fourier transform infrared spectroscopy (FTIR), and secondary ion mass spectrometry (SIMS). Early heterogeneous swelling at the metal-coating interface in non-defective coated metals was elucidated using frequency-dependent alternating-current scanning electrochemical microscopy. Two types of coatings (styrene-acrylic coating and terpolymer coating) were compared. The effects of thickness, surface roughness, and chemical bonding on cathodic delamination were investigated. PMID:28772757

  5. Composite impact strength improvement through a fiber/matrix interphase

    NASA Technical Reports Server (NTRS)

    Cavano, P. J.; Winters, W. E.

    1975-01-01

    Research was conducted to improve the impact strength and toughness of fiber/resin composites by means of a fiber coating interphase. Graphite fiber/epoxy resin composites were fabricated with four different fiber coating systems introduced in a matrix-fiber interphase. Two graphite fibers, a high strength and a high modulus type, were studied with the following coating systems: chemical vapor deposited boron, electroless nickel, a polyamide-imide resin and a thermoplastic polysulfone resin. Evaluation methods included the following tests: Izod, flexure, shear fracture toughness, longitudinal and transverse tensile, and transverse and longitudinal compression. No desirable changes could be effected with the high strength fiber, but significant improvements in impact performance were observed with the polyamide-imide resin coated high modulus fiber with no loss in composite modulus.

  6. Launch Pad Coatings for Smart Corrosion Control

    NASA Technical Reports Server (NTRS)

    Calle, Luz M.; Hintze, Paul E.; Bucherl, Cori N.; Li, Wenyan; Buhrow, Jerry W.; Curran, Jerome P.; Whitten, Mary C.

    2010-01-01

    Corrosion is the degradation of a material as a result of its interaction with the environment. The environment at the KSC launch pads has been documented by ASM International (formerly American Society for Metals) as the most corrosive in the US. The 70 tons of highly corrosive hydrochloric acid that are generated by the solid rocket boosters during a launch exacerbate the corrosiveness of the environment at the pads. Numerous failures at the pads are caused by the pitting of stainless steels, rebar corrosion, and the degradation of concrete. Corrosion control of launch pad structures relies on the use of coatings selected from the qualified products list (QPL) of the NASA Standard 5008A for Protective Coating of Carbon Steel, Stainless Steel, and Aluminum on Launch Structures, Facilities, and Ground Support Equipment. This standard was developed to establish uniform engineering practices and methods and to ensure the inclusion of essential criteria in the coating of ground support equipment (GSE) and facilities used by or for NASA. This standard is applicable to GSE and facilities that support space vehicle or payload programs or projects and to critical facilities at all NASA locations worldwide. Environmental regulation changes have dramatically reduced the production, handling, use, and availability of conventional protective coatings for application to KSC launch structures and ground support equipment. Current attrition rate of qualified KSC coatings will drastically limit the number of commercial off the shelf (COTS) products available for the Constellation Program (CxP) ground operations (GO). CxP GO identified corrosion detection and control technologies as a critical, initial capability technology need for ground processing of Ares I and Ares V to meet Constellation Architecture Requirements Document (CARD) CxP 70000 operability requirements for reduced ground processing complexity, streamlined integrated testing, and operations phase affordability. Researchers at NASA's Corrosion Technology Laboratory at KSC are developing a smart, environmentally friendly coating system for early corrosion detection, inhibition, and self healing of mechanical damage without external intervention. This smart coating will detect and respond actively to corrosion and mechanical damage such as abrasion and scratches, in a functional and predictable manner, and will be capable of adapting its properties dynamically. This coating is being developed using corrosion sensitive microcapsules that deliver the contents of their core (corrosion inhibiting compounds, corrosion indicators, and self healing agents) on demand when corrosion or mechanical damage to the coating occurs.

  7. Andreas Acrivos Dissertation Award: Onset of Dynamic Wetting Failure - The Mechanics of High-Speed Fluid Displacement

    NASA Astrophysics Data System (ADS)

    Vandre, Eric

    2014-11-01

    Dynamic wetting is crucial to processes where a liquid displaces another fluid along a solid surface, such as the deposition of a coating liquid onto a moving substrate. Dynamic wetting fails when process speed exceeds some critical value, leading to incomplete fluid displacement and transient phenomena that impact a variety of applications, such as microfluidic devices, oil-recovery systems, and splashing droplets. Liquid coating processes are particularly sensitive to wetting failure, which can induce air entrainment and other catastrophic coating defects. Despite the industrial incentives for careful control of wetting behavior, the hydrodynamic factors that influence the transition to wetting failure remain poorly understood from empirical and theoretical perspectives. This work investigates the fundamentals of wetting failure in a variety of systems that are relevant to industrial coating flows. A hydrodynamic model is developed where an advancing fluid displaces a receding fluid along a smooth, moving substrate. Numerical solutions predict the onset of wetting failure at a critical substrate speed, which coincides with a turning point in the steady-state solution path for a given set of system parameters. Flow-field analysis reveals a physical mechanism where wetting failure results when capillary forces can no longer support the pressure gradients necessary to steadily displace the receding fluid. Novel experimental systems are used to measure the substrate speeds and meniscus shapes associated with the onset of air entrainment during wetting failure. Using high-speed visualization techniques, air entrainment is identified by the elongation of triangular air films with system-dependent size. Air films become unstable to thickness perturbations and ultimately rupture, leading to the entrainment of air bubbles. Meniscus confinement in a narrow gap between the substrate and a stationary plate is shown to delay air entrainment to higher speeds for a variety of water/glycerol solutions. In addition, liquid pressurization (relative to ambient air) further postpones air entrainment when the meniscus is located near a sharp corner along the plate. Recorded critical speeds compare well to predictions from the model, supporting the hydrodynamic mechanism for the onset of wetting failure. Lastly, the industrial practice of curtain coating is investigated using the hydrodynamic model. Due to the complexity of this system, a new computational approach is developed combining a finite element method and lubrication theory in order to improve the efficiency of the numerical analysis. Results show that the onset of wetting failure varies strongly with the operating conditions of this system. In addition, stresses from the air flow dramatically affect the steady wetting behavior of curtain coating. Ultimately, these findings emphasize the important role of two-fluid displacement mechanics in high-speed wetting systems.

  8. Edible Coating Using a Chitosan-Based Colloid Incorporating Grapefruit Seed Extract for Cherry Tomato Safety and Preservation.

    PubMed

    Won, Jin Sung; Lee, Seung Jo; Park, Hyeon Hwa; Song, Kyung Bin; Min, Sea C

    2018-01-01

    Grapefruit seed extract (GSE)-containing chitosan-based coating was developed and applied to cherry tomatoes to protect them from Salmonella invasion and improve their storability. The coating colloids were produced by mixing a chitosan colloid (1% [w/w] chitosan) with GSE at various concentrations (0.5%, 0.7%, 1.0%, and 1.2% [w/w]) using high-shear mixing (10000 rpm, 2 min). Coatings with chitosan colloids containing GSE at 0.0%, 0.5%, 0.7%, and 1.0% (w/w) inactivated Salmonella on cherry tomatoes by 1.0 ± 0.3, 1.2 ± 0.3, 1.6 ± 0.1, and 2.0 ± 0.3 log CFU/cherry tomato, respectively. Coatings both with and without GSE (1.0%) effectively inhibited the growth of Salmonella and total mesophilic aerobes, reduced CO 2 generation, and retarded titratable acidity decrease during storage at 10 and 25 °C. The advantage of incorporating GSE in the formulation was demonstrated by delayed microorganism growth and reduced weight loss at 25 °C. The chitosan-GSE coating did not affect lycopene concentration, color, and sensory properties (P > 0.05). Chitosan-GSE coating shows potential for improving the microbiological safety and storability of cherry tomatoes, with stronger efficacy at 25 °C than that of chitosan coating without GSE. A novel chitosan coating containing grape fruit seed extract (GSE) improved the microbiological safety against Salmonella and storability of cherry tomatoes without altering their flavor, demonstrating its strong potential as an effective postharvest technology. Chitosan coating containing GSE might be preferable over chitosan coating without GSE for application to tomatoes that are stored at room temperature in that it more effectively inhibits microbial growth and weight loss than the coating without GSE at 25 °C. © 2017 Institute of Food Technologists®.

  9. Electrochemically assisted deposition of hydroxyapatite on Ti6Al4V substrates covered by CVD diamond films - Coating characterization and first cell biological results.

    PubMed

    Strąkowska, Paulina; Beutner, René; Gnyba, Marcin; Zielinski, Andrzej; Scharnweber, Dieter

    2016-02-01

    Although titanium and its alloys are widely used as implant material for orthopedic and dental applications they show only limited corrosion stability and osseointegration in different cases. The aim of the presented research was to develop and characterize a novel surface modification system from a thin diamond base layer and a hydroxyapatite (HAp) top coating deposited on the alloy Ti6Al4V widely used for implants in contact with bone. This coating system is expected to improve both the long-term corrosion behavior and the biocompatibility and bioactivity of respective surfaces. The diamond base films were obtained by Microwave Plasma Assisted Chemical Vapor Deposition (MW-PACVD); the HAp coatings were formed in aqueous solutions by electrochemically assisted deposition (ECAD) at varying polarization parameters. Scanning electron microscopy (SEM), Raman microscopy, and electrical conductivity measurements were applied to characterize the generated surface states; the calcium phosphate coatings were additionally chemically analyzed for their composition. The biological properties of the coating system were assessed using hMSC cells analyzing for cell adhesion, proliferation, and osteogenic differentiation. Varying MW-PACVD process conditions resulted in composite coatings containing microcrystalline diamond (MCD/Ti-C), nanocrystalline diamond (NCD), and boron-doped nanocrystalline diamond (B-NCD) with the NCD coatings being dense and homogeneous and the B-NCD coatings showing increased electrical conductivity. The ECAD process resulted in calcium phosphate coatings from stoichiometric and non-stoichiometric HAp. The deposition of HAp on the B-NCD films run at lower cathodic potentials and resulted both in the highest coating mass and the most homogenous appearance. Initial cell biological investigations showed an improved cell adhesion in the order B-NCD>HAp/B-NCD>uncoated substrate. Cell proliferation was improved for both investigated coatings whereas ALP expression was highest for the uncoated substrate. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Vitamin E-coated dialyzer membranes downregulate expression of monocyte adhesion and co-stimulatory molecules.

    PubMed

    Betjes, Michiel G H; Hoekstra, Franciska M E; Klepper, M; Postma, Saskia M; Vaessen, Leonard M B

    2004-01-01

    In patients on chronic hemodialysis leukocyte activation has been related to the impaired function of the immune system. In this study we investigated if the vitamin E-coated dialyzer membrane could reduce monocyte activation thereby improving cellular immunity. This hypothesis was tested in a prospective crossover trial in which 14 stable hemodialysis patients were switched from the baseline hemophane dialyzer to a vitamin E-coated and thereafter a polysulphone dialyzer membrane or vice versa. Monocyte MHC class I, CD54 and ICAM-1 expression was significantly downregulated when a vitamin E-coated or polysulphone dialyzer was used. The use of a vitamin E membrane specifically decreased monocyte CD40 and CD86 expression. Lectin induced T cell proliferation increased with the use of the vitamin E-coated membrane as compared to polysulphone and hemophane dialyzers. Vitamin E-coated dialyzers induced a less-activated phenotype of monocytes and may improve cellular immunity.

  11. Innovative Formulation Combining Al, Zr and Si Precursors to Obtain Anticorrosion Hybrid Sol-Gel Coating.

    PubMed

    Genet, Clément; Menu, Marie-Joëlle; Gavard, Olivier; Ansart, Florence; Gressier, Marie; Montpellaz, Robin

    2018-05-10

    The aim of our study is to improve the aluminium alloy corrosion resistance with Organic-Inorganic Hybrid (OIH) sol-gel coating. Coatings are obtained from unusual formulation with precursors mixing: glycidoxypropyltrimethoxysilane (GPTMS), zirconium (IV) propoxide (TPOZ) and aluminium tri-sec-butoxide (ASB). This formulation was characterized and compared with sol formulations GPTMS/TPOZ and GPTMS/ASB. In each formulation, a corrosion inhibitor, cerium (III) nitrate hexahydrate, is employed to improve the corrosion performance. Coatings obtained from sol based on GPTMS/TPOZ/ASB have good anti-corrosion performances with Natural Salt Spray (NSS) resistance of 500 h for a thickness lower than 4 µm. Contact angle measurement showed a coating hydrophobic behaviour. To understand these performances, nuclear magnetic resonance (NMR) analyses were performed, results make sol-gel coating condensation evident and are in very good agreement with previous results.

  12. Investigation of Al Coated Mg for Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Elmrabet, Nabila; Roe, Martin; Neate, Nigel; Grant, David M.; Brown, Paul D.

    The corrosion resistant properties of 1-2 μm thick Al coatings deposited by radio frequency magnetron sputtering on polished Mg surfaces, within Ar and Ar/H2 environments, have been appraised. The coatings were heat-treated at 300°C for 5 h to induce the formation of bioinert Al2O3, and samples were corroded within phosphate buffered saline solution at 37°C to mimic the biological environment. Both the as-deposited and heat-treated coatings were found to delay the onset of corrosion, but showed higher initial corrosion rates, once established, as compared with polished Mg surfaces. Slightly improved performance of the coatings was achieved through the addition of H2 to the system which acted to inhibit Al-Mg alloying and MgO formation. However, localized accelerated corrosion associated with substrate polishing damage emphasized the need for improved process control and coating uniformity.

  13. Enhanced performance of graphite anode materials by AlF3 coating for lithium-ion batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Fei; Xu, Wu; Choi, Daiwon

    2012-04-27

    In order to form the stable surface film and to further enhance the long-term cycling stability of the graphite anodes of lithium-ion batteries, the surface of graphite powders has been modified by AlF3 coating through chemical precipitation method. The AlF3-coated graphite shows no evident changes in the bulk structure and a thin AlF3-coating layer of about 2 nm thick is found to uniformly cover the graphite particles with 2 wt% AlF3 content. However, it delivers a higher initial discharge capacity and largely improved rate performances compared to the pristine graphite. Remarkably, AlF3 coated graphite demonstrated a much better cycle life.more » After 300 cycles, AlF3 coated graphite and uncoated graphite show capacity retention of 92% and 81%, respectively. XPS measurement shows that a more conductive solid electrode interface (SEI) layer was formed on AlF3 coated graphite as compared to uncoated graphite. SEM monograph also reveals that the AlF3-coated graphite particles have a much more stable surface morphology after long-term cycling. Therefore, the improved electrochemical performance of AlF3 coated graphite can be attributed to a more stable and conductive SEI formed on coated graphite anode during cycling process.« less

  14. Investigation of surface finishing of carbon based coated tools for dry deep drawing of aluminium alloys

    NASA Astrophysics Data System (ADS)

    Steiner, J.; Andreas, K.; Merklein, M.

    2016-11-01

    Global trends like growing environmental awareness and demand for resource efficiency motivate an abandonment of lubricants in metal forming. However, dry forming evokes increased friction and wear. Especially, dry deep drawing of aluminum alloys leads to intensive interaction between tool and workpiece due to its high adhesion tendency. One approach to improve the tribological behavior is the application of carbon based coatings. These coatings are characterized by high wear resistance. In order to investigate the potential of carbon based coatings for dry deep drawing, friction and wear behavior of different coating compositions are evaluated in strip drawing tests. This setup is used to model the tribological conditions in the flange area of deep drawing operations. The tribological behavior of tetrahedral amorphous (ta-C) and hydrogenated amorphous carbon coatings with and without tungsten modification (a-C:H:W, a-C:H) is investigated. The influence of tool topography is analyzed by applying different surface finishing. The results show reduced friction with decreased roughness for coated tools. Besides tool topography the coating type determines the tribological conditions. Smooth tools with ta-C and a-C:H coatings reveal low friction and prevent adhesive wear. In contrast, smooth a-C:H:W coated tools only lead to slight improvement compared to rough, uncoated specimen.

  15. Atomic Layer Deposition Al2O3 Coatings Significantly Improve Thermal, Chemical, and Mechanical Stability of Anodic TiO2 Nanotube Layers

    PubMed Central

    2017-01-01

    We report on a very significant enhancement of the thermal, chemical, and mechanical stability of self-organized TiO2 nanotubes layers, provided by thin Al2O3 coatings of different thicknesses prepared by atomic layer deposition (ALD). TiO2 nanotube layers coated with Al2O3 coatings exhibit significantly improved thermal stability as illustrated by the preservation of the nanotubular structure upon annealing treatment at high temperatures (870 °C). In addition, a high anatase content is preserved in the nanotube layers against expectation of the total rutile conversion at such a high temperature. Hardness of the resulting nanotube layers is investigated by nanoindentation measurements and shows strongly improved values compared to uncoated counterparts. Finally, it is demonstrated that Al2O3 coatings guarantee unprecedented chemical stability of TiO2 nanotube layers in harsh environments of concentrated H3PO4 solutions. PMID:28291942

  16. Ultra-Porous Nanoparticle Networks: A Biomimetic Coating Morphology for Enhanced Cellular Response and Infiltration

    PubMed Central

    Nasiri, Noushin; Ceramidas, Anthony; Mukherjee, Shayanti; Panneerselvan, Anitha; Nisbet, David R.; Tricoli, Antonio

    2016-01-01

    Orthopedic treatments are amongst the most common cause of surgery and are responsible for a large share of global healthcare expenditures. Engineering materials that can hasten bone integration will improve the quality of life of millions of patients per year and reduce associated medical costs. Here, we present a novel hierarchical biomimetic coating that mimics the inorganic constituent of mammalian bones with the aim of improving osseointegration of metallic implants. We exploit the thermally-driven self-organization of metastable core-shell nanoparticles during their aerosol self-assembly to rapidly fabricate robust, ultra-porous nanoparticle networks (UNN) of crystalline hydroxyapatite (HAp). Comparative analysis of the response of osteoblast cells to the ultra-porous nanostructured HAp surfaces and to the spin coated HAp surfaces revealed superior osseointegrative properties of the UNN coatings with significant cell and filopodia infiltration. This flexible synthesis approach for the engineering of UNN HAp coatings on titanium implants provides a platform technology to study the bone-implant interface for improved osseointegration and osteoconduction. PMID:27076035

  17. Porous cellulose diacetate-SiO2 composite coating on polyethylene separator for high-performance lithium-ion battery.

    PubMed

    Chen, Wenju; Shi, Liyi; Wang, Zhuyi; Zhu, Jiefang; Yang, Haijun; Mao, Xufeng; Chi, Mingming; Sun, Lining; Yuan, Shuai

    2016-08-20

    The developments of high-performance lithium ion battery are eager to the separators with high ionic conductivity and thermal stability. In this work, a new way to adjust the comprehensive properties of inorganic-organic composite separator was investigated. The cellulose diacetate (CDA)-SiO2 composite coating is beneficial for improving the electrolyte wettability and the thermal stability of separators. Interestingly, the pore structure of composite coating can be regulated by the weight ratio of SiO2 precursor tetraethoxysilane (TEOS) in the coating solution. The electronic performance of lithium ion batteries assembled with modified separators are improved compared with the pristine PE separator. When weight ratio of TEOS in the coating solution was 9.4%, the composite separator shows the best comprehensive performance. Compared with the pristine PE separator, its meltdown temperature and the break-elongation at elevated temperature increased. More importantly, the discharge capacity and the capacity retention improved significantly. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Experimental Study of the Microstructure and Micromechanical Properties of Laser Cladded Ni-based Amorphous Composite Coatings

    NASA Astrophysics Data System (ADS)

    Li, Ruifeng; Zheng, Qichi; Zhu, Yanyan; Li, Zhuguo; Feng, Kai; Liu, Chuan

    2018-01-01

    (Ni0.6Fe0.4)65B18Si10Nb4C3 amorphous composite coating was successfully fabricated on AISI 1045 steel substrate by using laser cladding process with coaxial powder feeding equipment. The microstructure and phase distribution of the coating were investigated by using x-ray diffraction, scanning electron microscopy and transmission electron microscope. The mechanical properties of the coating were examined by using microhardness testing and nanoindentation. The experimental results indicated that the volume fraction of amorphous phase increased with the decrease in laser cladding heat input, leading to an improvement of mean microhardness and nanohardness. NbC particles in a size ranging between 150 and 1650 nm were found embedding in the amorphous composite coatings in all situations. The presence of the NbC particles can contribute to an improvement of 96.7 HV in hardness on the basis of experimental results, while theoretical prediction suggests an improvement of 92.5 HV by using Orowan-Ashby equation.

  19. Microstructural Development in a Laser-Remelted Al-Zn-Si-Mg Coating.

    PubMed

    Godec, M; Podgornik, B; Nolan, D

    2017-11-23

    In the last five decades, there has been intense development in the field of Zn-Al galvanic coating modification. Recently, Mg was added to improve corrosion properties. Further improvements to the coating are possible with additional laser surface treatment. In this article, we focus on remelting the Al-Zn-Mg-Si layer, using a diode laser with a wide-beam format, concentrating on the microstructure development during extreme cooling rates. Laser remelting of the Al-Zn-Mg-Si coating and rapid self-quenching produces a finer grain size, and a microstructure that is substantially refined and homogenized with respect to the phase distribution. Using EBSD results, we are able to understand microstructure modification. The laser modified coating has some porosity and intergranular cracking which are difficult to avoid, however this does not seem to be detrimental to mechanical properties, such as ductility on bending. The newly developed technology has a high potential for improved corrosion performance due to highly refined microstructure.

  20. Effect of sandblasting intensity on microstructures and properties of pure titanium micro-arc oxidation coatings in an optimized composite technique

    NASA Astrophysics Data System (ADS)

    Wang, Hong-Yuan; Zhu, Rui-Fu; Lu, Yu-Peng; Xiao, Gui-Yong; He, Kun; Yuan, Y. F.; Ma, Xiao-Ni; Li, Ying

    2014-02-01

    Sandblasting is one of the most effective methods to modify a metal surface and improve its properties for application. Micro-arc oxidation (MAO) could produce a ceramic coating on a dental implant, facilitating cellular differentiation and osseocomposite on it. This study aims to deposit bioceramic Ca- and P-containing coatings on sandblasted commercially pure titanium by an optimum composite technique to improve the bioactive performance. The effect of sandblasting intensity on microstructures and properties of the implant coatings is examined, and the modified surfaces are characterized in terms of their topography, phase, chemical composition, mechanical properties and hydroxyapatite (HA)-inducing ability. The results show that a moderate sandblasting micromachines the substrate in favorable combination of rough and residual stresses; its MAO coating deposits nano-hydroxyapatite after immersion in simulated body fluid (SBF) for 5 days exhibiting better bioactivity. The further improvement of the implant surface performance is attributed to an optimized composite technique.

  1. In vitro degradation behavior and cytocompatibility of biodegradable AZ31 alloy with PEO/HT composite coating.

    PubMed

    Tian, Peng; Liu, Xuanyong; Ding, Chuanxian

    2015-04-01

    Biodegradable magnesium-based implants have attracted much attention recently in orthopedic applications because of their good mechanical properties and biocompatibility. However, their rapid degradation in vivo will not only reduce their mechanical strength, but also induce some side effects, such as local alkalization and gas cavity, which may lead to a failure of the implant. In this work, a hydroxyapatite (HA) layer was prepared on plasma electrolytic oxidization (PEO) coating by hydrothermal treatment (HT) to fabricate a PEO/HT composite coating on biodegradable AZ31 alloy. The in vitro degradation behaviors of all samples were evaluated in simulated body fluid (SBF) and their surface cytocompatibility was also investigated by evaluating the adhesion and proliferation of osteoblast cells (MC3T3-E1). The results showed that the HA layer consisted of a dense inner layer and a needle-like outer layer, which successfully sealed the PEO coating. The in vitro degradation tests showed that the PEO/HT composite coating improved the corrosion resistance of AZ31 alloy in SBF, presenting nearly no severe local alkalization and hydrogen evolution. The lasting corrosion resistance of the PEO/HT composite coating may attribute to the new hydroxyapatite formation during the degradation process. Moreover, compared with AZ31 alloy and PEO coating, PEO/HT composite coating was more suitable for cells adhesion and proliferation, indicating improved surface cytocompatibility. The results show that the PEO/HT composite coating is promising as protective coating on biodegradable magnesium-based implants to enhance their corrosion resistance as well as improve their surface cytocompatibility for orthopedic applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Formulation and coating of microneedles with inactivated influenza virus to improve vaccine stability and immunogenicity

    PubMed Central

    Kim, Yeu-Chun; Quan, Fu-Shi; Compans, Richard W.; Kang, Sang-Moo; Prausnitz, Mark R.

    2009-01-01

    Microneedle patches coated with solid-state influenza vaccine have been developed to improve vaccine efficacy and patient coverage. However, dip coating microneedles with influenza vaccine can reduce antigen activity. In this study, we sought to determine the experimental factors and mechanistic pathways by which inactivated influenza vaccine can lose activity, as well as develop and assess improved microneedle coating formulations that protect the antigen from activity loss. After coating microneedles using a standard vaccine formulation, antigenicity was reduced to just 2%, as measured by hemagglutination activity. The presence of carboxymethylcellulose, which was added to increase viscosity of the coating formulation, was shown to contribute to vaccine activity loss. After screening a panel of candidate stabilizers, the addition of trehalose to the coating formulation was shown to protect the antigen and retain 48–82% antigen activity for all three major strains of seasonal influenza: H1N1, H3N2 and B. Influenza vaccine coated in this way also exhibited thermal stability, such that activity loss was independent of temperature over the range of 4 – 37°C for 24 h. Dynamic light scattering measurements showed that antigen activity loss was associated with virus particle aggregation, and that stabilization using trehalose largely blocked this aggregation. Finally, microneedles using an optimized vaccine coating formulation were applied to the skin to vaccinate mice. Microneedle vaccination induced robust systemic and functional antibodies and provided complete protection against lethal challenge infection similar to conventional intramuscular injection. Overall, these results show that antigen activity loss during microneedle coating can be largely prevented through optimized formulation and that stabilized microneedle patches can be used for effective vaccination. PMID:19840825

  3. Applications of molecular self-assembly in tissue engineering

    NASA Astrophysics Data System (ADS)

    Harrington, Daniel Anton

    This thesis studied the application of three self-assembling molecular systems, as potential biomaterials for tissue engineering applications. Cholesteryl-(L-lactic acid)n molecules form thermotropic liquid crystals, which could be coated onto the inner and outer pores of biodegradable PLLA scaffolds, while retaining the lamellar order of the neat material. Primary bovine chondrocytes were cultured on these structures, demonstrating improved attachment and extended retention of phenotype on the C-LA-coated scaffolds. No difference in fibronectin adsorption to C-LA and PLLA surfaces was observed, suggesting a strong role for cholesterol in influencing cell phenotype. A family of peptide-amphiphiles, bearing the "RGD" adhesion sequence from fibronectin, was also assessed in the contexts of cartilage and bladder repair. These molecules self-assemble into one-dimensional fibers, with diameters of 6--8 nm, and lengths of 500 nm or greater. Chondrocytes were seeded and cultured on covalently-crosslinked PA gels and embedded within calcium-triggered PA gels. Cells became dormant over time, but remained viable, suggesting an inappropriate display of the adhesion sequence to cells. A family of "branched" PA molecules with lysine dendron headgroups was designed, in an effort to increase the spatial separation between molecules in the assembled state, and to theoretically improve epitope accessibility. These molecules coated reliably onto PGA fiber scaffolds, and dramatically increased the attachment of human bladder smooth muscle cells, possibly through better epitope display or electrostatic attraction. They also formed strong gels with several negatively-charged biologically-relevant macromolecules. In a third system, amphiphilic segmented dendrimers based on phenylene vinylene and L-lysine entered cells through an endocytic pathway with no discernible toxic effect on cell proliferation or morphology. These amphiphiles formed complex aggregates in aqueous solution, likely an equilibrium state of micelles (5--10 nm) and vesicles (25--35 nm). A pyrene analogue was shown to lyse cells, which correlated with the molecule's reduced propensity to form strong aggregates in aqueous solution. Other amino acid segments were substituted for L-lysine, and only those amphiphiles with basic residues were efficiently taken in by cells. For all three self-assembling systems, their nanoscale organization and their interaction with biological systems were directly related to the chemical nature of their constituent building blocks.

  4. Improving Survival and Promoting Respiratory Motor Function After Cervical Spinal Cord Injury

    DTIC Science & Technology

    2017-09-01

    ventilator in order to survive. Use of the ventilator severely limits the quality of life of those injured and dramatically increases the demand for health...care for cervical SCI patients so as to lead to an improved quality of life , better-quality health care management, and improved functional outcomes...mechanical ventilator in order to survive. Use of the ventilator severely limits the quality of life of those injured and dramatically increases the

  5. Metal coordination polymer derived mesoporous Co3O4 nanorods with uniform TiO2 coating as advanced anodes for lithium ion batteries.

    PubMed

    Geng, Hongbo; Ang, Huixiang; Ding, Xianguang; Tan, Huiteng; Guo, Guile; Qu, Genlong; Yang, Yonggang; Zheng, Junwei; Yan, Qingyu; Gu, Hongwei

    2016-02-07

    In this work, a one-dimensional Co3O4@TiO2 core-shell electrode material with superior electrochemical performance is fabricated by a convenient and controllable route. The approach involves two main steps: the homogeneous deposition of polydopamine and TiO2 layers in sequence on the cobalt coordination polymer and the thermal decomposition of the polymer matrix. The as-prepared electrode material can achieve excellent electrochemical properties and stability as an anode material for lithium ion batteries, such as a high specific capacity of 1279 mA h g(-1), good cycling stability (around 803 mA h g(-1) at a current density of 200 mA g(-1) after 100 cycles), and stable rate performance (around 520 mA h g(-1) at a current density of 1000 mA g(-1)). This dramatic electrochemical performance is mainly attributed to the excellent structural characteristics, which could improve the electrical conductivity and lithium ion mobility, as well as electrolyte permeability and architectural stability during cycling.

  6. New developments in ophthalmic coatings on plastic lenses

    NASA Astrophysics Data System (ADS)

    Eigenmann, H. P.; Lobsiger, W.; Suter, R.

    1998-02-01

    The origin of vision aids such as eyeglasses, magnifying glasses, telescopes and so forth lies in the distant past and cannot be dated with precision. However, such aids certainly came into use at different times in different cultures. Early portraits and other pictures prove to a certainty, however, that remarkable well-made spectacles were in use by the end of the Middle Ages. Glass was employed for optical lenses from the very beginning, and quality improved continuously with advances in glassmaking and polishing techniques. Starting around 1970, this continuing development received new impetus from the introduction of plastics as a new material for ophthalmic lenses. Rapid progress in plastics chemistry had epoch-making effects on lens technology, and today a wide variety of materials such as CR39, PMMA and polycarbonates, with refractive indices ranging from 1.52 to 1.65, are used for this purpose. Eyeglasses have long been important on other grounds than vision correction; people wear them as adornment, because they are fashionable, to express their personality, and for other reasons. This dramatic history shows no signs of coming to an end, and more innovations are definitely ahead.

  7. Improved photovoltaic cells and electrodes

    DOEpatents

    Skotheim, T.A.

    1983-06-29

    Improved photovoltaic cells and electrodes for use therein, particularly electrodes employing amorphous silicon or polyacetylene coating are produced by a process which includes filling pinholes or porous openings in the coatings by electrochemical oxidation of selected monomers to deposit insulating polymer in the openings.

  8. Electrospun Nanofiber-Coated Membrane Separators for Lithium-Ion Batteries

    NASA Astrophysics Data System (ADS)

    Lee, Hun

    Lithium-ion batteries are widely used as a power source for portable electronic devices and hybrid electric vehicles due to their excellent energy and power densities, long cycle life, and enhanced safety. A separator is considered to be the critical component in lithium-ion rechargeable batteries. The separator is placed between the positive and negative electrodes in order to prevent the physical contact of electrodes while allowing the transportation of ions. In most commercial lithium-ion batteries, polyolefin microporous membranes are commonly used as the separator due to their good chemical stability and high mechanical strength. However, some of their intrinsic natures, such as low electrolyte uptake, poor adhesion property to the electrodes, and low ionic conductivity, can still be improved to achieve higher performance of lithium-ion batteries. In order to improve these intrinsic properties, polyolefin microporous membranes can be coated with nanofibers by using electrospinning technique. Electrospinning is a simple and efficient method to prepare nanofibers which can absorb a significant amount of liquid electrolyte to achieve low internal resistance and battery performance. This research presents the preparation and investigation of composite membrane separators prepared by coating nanofibers onto polyolefin microporous membranes via electrospinning technique. Polyvinylidene fluoride polymers and copolymers were used for the preparation of electrospun nanofiber coatings because they have excellent electrochemical stability, good adhesion property, and high temperature resistance. The nanofiber coatings prepared by electrospinning form an interconnected and randomly orientated structure on the surface of the polyolefin microporous membranes. The size of the nanofibers is on a scale that does not interfere with the micropores in the membrane substrates. The resultant nanofiber-coated membranes have the potential to combine advantages of both the polyolefin separator membranes and the nanoscale fibrous polymer coatings. The polyolefin microporous membranes serve as the supporting substrate which provides the required mechanical strength for the assembling process of lithium-ion batteries. The electrospun nanofiber coatings improve the wettability of the composite membrane separators to the liquid electrolyte, which is desirable for the lithium-ion batteries with high kinetics and good cycling performance. The results show that the nanofiber-coated membranes have enhanced adhesion properties to the battery electrode which can help prevent the formation of undesirable gaps between the separators and electrodes during prolonged charge-discharge cycles, especially in large-format batteries. The improvement on adhesive properties of nanofiber-coated membranes was evaluated by peel test. Nanofiber coatings applied to polyolefin membrane substrates improve the adhesion of separator membranes to battery electrodes. Electrolyte uptakes, ionic conductivities and interfacial resistances of the nanofiber-coated membrane separators were studied by soaking the membrane separators with a liquid electrolyte solution of 1 M lithium hexafluorophosphate dissolved in ethylene carbonate/dimethylcarbonate/ethylmethyl carbonate (1:1:1 vol). The nanofiber coatings on the surface of the membrane substrates increase the electrolyte uptake capacity due to the high surface area and capillary effect of nanofibers. The nanofiber-coated membranes soaked in the liquid electrolyte solution exhibit high ionic conductivities and low interfacial resistances to the lithium electrode. The cells containing LiFePO 4 cathode and the nanofiber-coated membranes as the separator show high discharge specific capacities and good cycling stability at room temperature. The nanofiber coatings on the membrane substrates contribute to high ionic conductivity and good electrochemical performance in lithium-ion batteries. Therefore, these nanofiber-coated composite membranes can be directly used as novel battery separators for high performance of lithium-ion batteries. Coating polyolefin microporous membranes with electrospun nanofibers is a promising approach to obtain highperformance separators for advanced lithium-ion batteries.

  9. Recent Trends in Newly Developed Plasma-Sprayed and Sintered Coatings for Implant Applications

    NASA Astrophysics Data System (ADS)

    Bsat, Suzan; Speirs, Andrew; Huang, Xiao

    2016-08-01

    The current paper aims to review recent trends (2011 to 2015) in newly developed plasma-sprayed and sintered coatings for implant applications. Recent developments in plasma-sprayed and sintered coatings have focused on improving biological performance, bacterial growth resistance, and mechanical properties, predominantly of HA and glass ceramics. The majority of these improvements are attributed to the addition of dopants. To improve biological performance, trace elements, such as Zn and Mg, both of which are found in bone, were added to replicate the functions they provide for the skeletal system. Though bacterial growth resistance is traditionally improved by Ag dopant, the addition of new dopants such as CeO2 and Zn were explored as well. Great effort has also been made to improve coating adherence and reduce stresses by minimizing coefficient of thermal expansion mismatch between the coating and substrate through the addition of elements such as Zn and Mg or the inclusion of a buffer layer. For sintering process in particular, there was an emphasis on reducing sintering temperature through modification of 45S5 Bioglass. New plasma spray and sintering technologies aimed at reducing high-temperature exposure are briefly introduced as well. These include microplasma spray and spark plasma sintering.

  10. Improvement of reusable surface insulation material

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The results are presented of a program to improve the reusable surface insulation (RSI) system through the improvement of the LI-1500 material properties and the simplification of the RSI system. The improvements made include: 2500 F-capability RSI systems, water-impervious surface coatings, establishment of a high-emittance coating constituent, development of a secondary water-reduction system, and achievement of a lower density (9 pcf) RSI material.

  11. Electrochemical behavior of zinc particles with silica based coatings as anode material for zinc air batteries with improved discharge capacity

    NASA Astrophysics Data System (ADS)

    Schmid, M.; Willert-Porada, M.

    2017-05-01

    Silica coatings on zinc particles as anode material for alkaline zinc air batteries are expected to reduce early formation of irreversible ZnO passivation layers during discharge by controlling zinc dissolution and precipitation of supersaturated zincates, Zn(OH)42-. Zinc particles were coated with SiO2 (thickness: 15 nm) by chemical solution deposition and with Zn2SiO4 (thickness: 20 nm) by chemical vapor deposition. These coatings formed a Si(OH)4 gel in aqueous KOH and retarded hydrogen evolution by 40%. By treatment in aqueous KOH and drying afterwards, the silica coatings were changed into ZnO-K2O·SiO2 layers. In this work, the electrochemical performance of such coated zinc particles is investigated by different electrochemical methods in order to gain a deeper understanding of the mechanisms of the coatings, which reduce zinc passivation. In particular, zinc utilization and changes in internal resistance are investigated. Moreover, methods for determination of diffusion coefficients, charge carrier numbers and activation energies for electrochemical oxidation are determined. SiO2-coated zinc particles show improved discharge capacity (CVD-coated zinc: 69% zinc utilization, CSD-coated zinc: 62% zinc utilization) as compared to as-received zinc (57% zinc utilization) at C/20 rate, by reducing supersaturation of zincates. Additionally, KOH-modified SiO2-coated zinc particles enhance rechargeability after 100% depth-of-discharge.

  12. Molecular plasma deposition: biologically inspired nanohydroxyapatite coatings on anodized nanotubular titanium for improving osteoblast density

    PubMed Central

    Balasundaram, Ganesan; Storey, Daniel M; Webster, Thomas J

    2015-01-01

    In order to begin to prepare a novel orthopedic implant that mimics the natural bone environment, the objective of this in vitro study was to synthesize nanocrystalline hydroxyapatite (NHA) and coat it on titanium (Ti) using molecular plasma deposition (MPD). NHA was synthesized through a wet chemical process followed by a hydrothermal treatment. NHA and micron sized hydroxyapatite (MHA) were prepared by processing NHA coatings at 500°C and 900°C, respectively. The coatings were characterized before and after sintering using scanning electron microscopy, atomic force microscopy, and X-ray diffraction. The results revealed that the post-MPD heat treatment of up to 500°C effectively restored the structural and topographical integrity of NHA. In order to determine the in vitro biological responses of the MPD-coated surfaces, the attachment and spreading of osteoblasts (bone-forming cells) on the uncoated, NHA-coated, and MHA-coated anodized Ti were investigated. Most importantly, the NHA-coated substrates supported a larger number of adherent cells than the MHA-coated and uncoated substrates. The morphology of these cells was assessed by scanning electron microscopy and the observed shapes were different for each substrate type. The present results are the first reports using MPD in the framework of hydroxyapatite coatings on Ti to enhance osteoblast responses and encourage further studies on MPD-based hydroxyapatite coatings on Ti for improved orthopedic applications. PMID:25609958

  13. Bioinspired, roughness-induced, water and oil super-philic and super-phobic coatings prepared by adaptable layer-by-layer technique

    PubMed Central

    Brown, Philip S.; Bhushan, Bharat

    2015-01-01

    Coatings with specific surface wetting properties are of interest for anti-fouling, anti-fogging, anti-icing, self-cleaning, anti-smudge, and oil-water separation applications. Many previous bioinspired surfaces are of limited use due to a lack of mechanical durability. Here, a layer-by-layer technique is utilized to create coatings with four combinations of water and oil repellency and affinity. An adapted layer-by-layer approach is tailored to yield specific surface properties, resulting in a durable, functional coating. This technique provides necessary flexibility to improve substrate adhesion combined with desirable surface chemistry. Polyelectrolyte binder, SiO2 nanoparticles, and silane or fluorosurfactant layers are deposited, combining surface roughness and necessary chemistry to result in four different coatings: superhydrophilic/superoleophilic, superhydrophobic/superoleophilic, superhydrophobic/superoleophobic, and superhydrophilic/superoleophobic. The superoleophobic coatings display hexadecane contact angles >150° with tilt angles <5°, whilst the superhydrophobic coatings display water contact angles >160° with tilt angles <2°. One coating combines both oleophobic and hydrophobic properties, whilst others mix and match oil and water repellency and affinity. Coating durability was examined through the use of micro/macrowear experiments. These coatings display transparency acceptable for some applications. Fabrication via this novel combination of techniques results in durable, functional coatings displaying improved performance compared to existing work where either durability or functionality is compromised. PMID:26353971

  14. Characterization, optical properties and laser ablation behavior of epoxy resin coatings reinforced with high reflectivity ceramic particles

    NASA Astrophysics Data System (ADS)

    Li, Wenzhi; Kong, Jing; Wu, Taotao; Gao, Lihong; Ma, Zhuang; Liu, Yanbo; Wang, Fuchi; Wei, Chenghua; Wang, Lijun

    2018-04-01

    Thermal damage induced by high power energy, especially high power laser, significantly affects the lifetime and performance of equipment. High-reflectance coating/film has attracted considerable attention due to its good performance in the damage protection. Preparing a high-reflectance coating with high reaction endothermal enthalpy will effectively consume a large amount of incident energy and in turn protect the substrate from thermal damage. In this study, a low temperature process was used to prepare coatings onto substrate with complex shape and avoid thermal effect during molding. An advanced high reflection ceramic powder, La1‑xSrxTiO3+δ , was added in the epoxy adhesive matrix to improve the reflectivity of coating. The optical properties and laser ablation behaviors of coatings with different ceramic additive ratio of La1‑xSrxTiO3+δ and modified epoxy-La1‑xSrxTiO3+δ with ammonium polyphosphate coatings were investigated, respectively. We found that the reflectivity of coatings is extremely high due to mixed high-reflection La1‑xSrxTiO3+δ particles, up to 96% at 1070 nm, which can significantly improve the laser resistance. In addition, the ammonium polyphosphate modifies the residual carbon structure of epoxy resin from discontinuous fine particles structure to continuous and porous structure, which greatly enhances the thermal-insulation property of coating. Furthermore, the laser ablation threshold is improved obviously, which is from 800 W cm‑2 to 1000 W cm‑2.

  15. Environmental Barrier Coating Development for SiC/SiC Ceramic Matrix Composites: Recent Advances and Future Directions

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming

    2016-01-01

    This presentation briefly reviews the SiC/SiC major environmental and environment-fatigue degradations encountered in simulated turbine combustion environments, and thus NASA environmental barrier coating system evolution for protecting the SiC/SiC Ceramic Matrix Composites for meeting the engine performance requirements. The presentation will review several generations of NASA EBC materials systems, EBC-CMC component system technologies for SiC/SiC ceramic matrix composite combustors and turbine airfoils, highlighting the temperature capability and durability improvements in simulated engine high heat flux, high pressure, high velocity, and with mechanical creep and fatigue loading conditions. This paper will also focus on the performance requirements and design considerations of environmental barrier coatings for next generation turbine engine applications. The current development emphasis is placed on advanced NASA candidate environmental barrier coating systems for SiC/SiC CMCs, their performance benefits and design limitations in long-term operation and combustion environments. The efforts have been also directed to developing prime-reliant, self-healing 2700F EBC bond coat; and high stability, lower thermal conductivity, and durable EBC top coats. Major technical barriers in developing environmental barrier coating systems, the coating integrations with next generation CMCs having the improved environmental stability, erosion-impact resistance, and long-term fatigue-environment system durability performance will be described. The research and development opportunities for turbine engine environmental barrier coating systems by utilizing improved compositions, state-of-the-art processing methods, and simulated environment testing and durability modeling will be briefly discussed.

  16. Stability and magnetically induced heating behavior of lipid-coated Fe3O4 nanoparticles.

    PubMed

    Allam, Ayat A; Sadat, Md Ehsan; Potter, Sarah J; Mast, David B; Mohamed, Dina F; Habib, Fawzia S; Pauletti, Giovanni M

    2013-10-17

    Magnetic nanoparticles that are currently explored for various biomedical applications exhibit a high propensity to minimize total surface energy through aggregation. This study introduces a unique, thermoresponsive nanocomposite design demonstrating substantial colloidal stability of superparamagnetic Fe3O4 nanoparticles (SPIONs) due to a surface-immobilized lipid layer. Lipid coating was accomplished in different buffer systems, pH 7.4, using an equimolar mixture of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and l-α-dipalmitoylphosphatidyl glycerol (DPPG). Particle size and zeta potential were measured by dynamic laser light scattering. Heating behavior within an alternating magnetic field was compared between the commercial MFG-1000 magnetic field generator at 7 mT (1 MHz) and an experimental, laboratory-made magnetic hyperthermia system at 16.6 mT (13.7 MHz). The results revealed that product quality of lipid-coated SPIONs was significantly dependent on the colloidal stability of uncoated SPIONs during the coating process. Greatest stability was achieved at 0.02 mg/mL in citrate buffer (mean diameter = 80.0 ± 1.7 nm; zeta potential = -47.1 ± 2.6 mV). Surface immobilization of an equimolar DPPC/DPPG layer effectively reduced the impact of buffer components on particle aggregation. Most stable suspensions of lipid-coated nanoparticles were obtained at 0.02 mg/mL in citrate buffer (mean diameter = 179.3 ± 13.9 nm; zeta potential = -19.1 ± 2.3 mV). The configuration of the magnetic field generator significantly affected the heating properties of fabricated SPIONs. Heating rates of uncoated nanoparticles were substantially dependent on buffer composition but less influenced by particle concentration. In contrast, thermal behavior of lipid-coated nanoparticles within an alternating magnetic field was less influenced by suspension vehicle but dramatically more sensitive to particle concentration. These results underline the advantages of lipid-coated SPIONs on colloidal stability without compromising magnetically induced hyperthermia properties. Since phospholipids are biocompatible, these unique lipid-coated Fe3O4 nanoparticles offer exciting opportunities as thermoresponsive drug delivery carriers for targeted, stimulus-induced therapeutic interventions. PACS: 7550Mw; 7575Cd; 8185Qr.

  17. Stability and magnetically induced heating behavior of lipid-coated Fe3O4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Allam, Ayat A.; Sadat, Md Ehsan; Potter, Sarah J.; Mast, David B.; Mohamed, Dina F.; Habib, Fawzia S.; Pauletti, Giovanni M.

    2013-10-01

    Magnetic nanoparticles that are currently explored for various biomedical applications exhibit a high propensity to minimize total surface energy through aggregation. This study introduces a unique, thermoresponsive nanocomposite design demonstrating substantial colloidal stability of superparamagnetic Fe3O4 nanoparticles (SPIONs) due to a surface-immobilized lipid layer. Lipid coating was accomplished in different buffer systems, pH 7.4, using an equimolar mixture of 1,2-dipalmitoyl- sn-glycero-3-phosphocholine (DPPC) and l-α-dipalmitoylphosphatidyl glycerol (DPPG). Particle size and zeta potential were measured by dynamic laser light scattering. Heating behavior within an alternating magnetic field was compared between the commercial MFG-1000 magnetic field generator at 7 mT (1 MHz) and an experimental, laboratory-made magnetic hyperthermia system at 16.6 mT (13.7 MHz). The results revealed that product quality of lipid-coated SPIONs was significantly dependent on the colloidal stability of uncoated SPIONs during the coating process. Greatest stability was achieved at 0.02 mg/mL in citrate buffer (mean diameter = 80.0 ± 1.7 nm; zeta potential = -47.1 ± 2.6 mV). Surface immobilization of an equimolar DPPC/DPPG layer effectively reduced the impact of buffer components on particle aggregation. Most stable suspensions of lipid-coated nanoparticles were obtained at 0.02 mg/mL in citrate buffer (mean diameter = 179.3 ± 13.9 nm; zeta potential = -19.1 ± 2.3 mV). The configuration of the magnetic field generator significantly affected the heating properties of fabricated SPIONs. Heating rates of uncoated nanoparticles were substantially dependent on buffer composition but less influenced by particle concentration. In contrast, thermal behavior of lipid-coated nanoparticles within an alternating magnetic field was less influenced by suspension vehicle but dramatically more sensitive to particle concentration. These results underline the advantages of lipid-coated SPIONs on colloidal stability without compromising magnetically induced hyperthermia properties. Since phospholipids are biocompatible, these unique lipid-coated Fe3O4 nanoparticles offer exciting opportunities as thermoresponsive drug delivery carriers for targeted, stimulus-induced therapeutic interventions.

  18. Comparison of three different methods for effective introduction of platelet-rich plasma on PLGA woven mesh.

    PubMed

    Lee, Ji-Hye; Nam, Jinwoo; Kim, Hee Joong; Yoo, Jeong Joon

    2015-03-11

    For successful tissue regeneration, effective cell delivery to defect site is very important. Various types of polymer biomaterials have been developed and applied for effective cell delivery. PLGA (poly lactic-co-glycolic acid), a synthetic polymer, is a commercially available and FDA approved material. Platelet-rich plasma (PRP) is an autologous growth factor cocktail containing various growth factors including PDGF, TGFβ-1 and BMPs, and has shown positive effects on cell behaviors. We hypothesized that PRP pretreatment on PLGA mesh using different methods would cause different patterns of platelet adhesion and stages which would modulate cell adhesion and proliferation on the PLGA mesh. In this study, we pretreated PRP on PLGA using three different methods including simple dripping (SD), dynamic oscillation (DO) and centrifugation (CE), then observed the amount of adhered platelets and their activation stage distribution. The highest amount of platelets was observed on CE mesh and calcium treated CE mesh. Moreover, calcium addition after PRP coating triggered dramatic activation of platelets which showed large and flat morphologies of platelets with rich fibrin networks. Human chondrocytes (hCs) and human bone marrow stromal cells (hBMSCs) were next cultured on PRP-pretreated PLGA meshes using different preparation methods. CE mesh showed a significant increase in the initial cell adhesion of hCs and proliferation of hBMSCs compared with SD and DO meshes. The results demonstrated that the centrifugation method can be considered as a promising coating method to introduce PRP on PLGA polymeric material which could improve cell-material interaction using a simple method.

  19. Overlay metallic-cermet alloy coating systems

    NASA Technical Reports Server (NTRS)

    Gedwill, M. A.; Levine, S. R.; Glasgow, T. K. (Inventor)

    1984-01-01

    A substrate, such as a turbine blade, vane, or the like, which is subjected to high temperature use is coated with a base coating of an oxide dispersed, metallic alloy (cermet). A top coating of an oxidation, hot corrosion, erosion resistant alloy of nickel, cobalt, or iron is then deposited on the base coating. A heat treatment is used to improve the bonding. The base coating serves as an inhibitor to interdiffusion between the protective top coating and the substrate. Otherwise, the protective top coating would rapidly interact detrimentally with the substrate and degrade by spalling of the protective oxides formed on the outer surface at elevated temperatures.

  20. Polycrystalline Diamond Coating of Additively Manufactured Titanium for Biomedical Applications.

    PubMed

    Rifai, Aaqil; Tran, Nhiem; Lau, Desmond W; Elbourne, Aaron; Zhan, Hualin; Stacey, Alastair D; Mayes, Edwin L H; Sarker, Avik; Ivanova, Elena P; Crawford, Russell J; Tran, Phong A; Gibson, Brant C; Greentree, Andrew D; Pirogova, Elena; Fox, Kate

    2018-03-14

    Additive manufacturing using selective laser melted titanium (SLM-Ti) is used to create bespoke items across many diverse fields such as medicine, defense, and aerospace. Despite great progress in orthopedic implant applications, such as for "just in time" implants, significant challenges remain with regards to material osseointegration and the susceptibility to bacterial colonization on the implant. Here, we show that polycrystalline diamond coatings on these titanium samples can enhance biological scaffold interaction improving medical implant applicability. The highly conformable coating exhibited excellent bonding to the substrate. Relative to uncoated SLM-Ti, the diamond coated samples showed enhanced mammalian cell growth, enriched apatite deposition, and reduced microbial S. aureus activity. These results open new opportunities for novel coatings on SLM-Ti devices in general and especially show promise for improved biomedical implants.

  1. Cycle oxidation behavior and anti-oxidation mechanism of hot-dipped aluminum coating on TiBw/Ti6Al4V composites with network microstructure.

    PubMed

    Li, X T; Huang, L J; Wei, S L; An, Q; Cui, X P; Geng, L

    2018-04-10

    Controlled and compacted TiAl 3 coating was successfully fabricated on the network structured TiBw/Ti6Al4V composites by hot-dipping aluminum and subsequent interdiffusion treatment. The network structure of the composites was inherited to the TiAl 3 coating, which effectively reduces the thermal stress and avoids the cracks appeared in the coating. Moreover, TiB reinforcements could pin the TiAl 3 coating which can effectively improve the bonding strength between the coating and composite substrate. The cycle oxidation behavior of the network structured coating on 873 K, 973 K and 1073 K for 100 h were investigated. The results showed the coating can remarkably improve the high temperature oxidation resistance of the TiBw/Ti6Al4V composites. The network structure was also inherited to the Al 2 O 3 oxide scale, which effectively decreases the tendency of cracking even spalling about the oxide scale. Certainly, no crack was observed in the coating after long-term oxidation due to the division effect of network structured coating and pinning effect of TiB reinforcements. Interfacial reaction between the coating and the composite substrate occurred and a bilayer structure of TiAl/TiAl 2 formed next to the substrate after oxidation at 973 K and 1073 K. The anti-oxidation mechanism of the network structured coating was also discussed.

  2. Development of improved coating for advanced carbon-carbon components

    NASA Technical Reports Server (NTRS)

    Yamaki, Y. R.; Brown, J. J.

    1984-01-01

    Reaction sintered silicon nitride (RSSN) was studied as a substitute coating material on the carbon-carbon material (RCC) presently used as a heat shield on the space shuttle, and on advanced carbon-carbon (ACC), a later development. On RCC, RSSN showed potential in a 538 C (1000 F) screening test in which silicon carbide coated material exhibits its highest oxidation rate; RSSN afforded less protection to ACC because of a larger thermal expansion mismatch. Organosilicon densification and metallic silicon sealing methods were studied as means of further increasing the oxidation resistance of the coating, and some improvement was noted when these methods were employed.

  3. Microhardness and wear resistance of PEO-coated 5754 aluminum alloy

    NASA Astrophysics Data System (ADS)

    Vyaliy, I. E.; Egorkin, V. S.; Sinebryukhov, S. L.; Minaev, A. N.; Gnedenkov, S. V.

    2017-09-01

    We present results of the study aimed at assessing the effect of duty cycle (D) during plasma electrolytic oxidation (PEO) on protective properties of the coatings produced on 5754 aluminum alloy. It is shown that increasing the duty cycle of a microsecond current pulses leads to increased hardness and reduced abrasive wear of the PEO-layers, improving mechanical properties. The obtained data allowed confirming, that increasing the amount of energy consumed for coating growth leads to the formation of thicker PEO-layers with improved tribological properties. The effect of duty cycle during plasma electrolytic oxidation on protective properties of the produced coatings was assessed.

  4. The role of AlF3 coatings in improving electrochemical cycling of Li-enriched nickel-manganese oxide electrodes for Li-ion batteries.

    PubMed

    Sun, Yang-Kook; Lee, Min-Joon; Yoon, Chong S; Hassoun, Jusef; Amine, Khalil; Scrosati, Bruno

    2012-03-02

    A Li[Li(0.19)Ni(0.16)Co(0.08)Mn(0.57)]O(2) cathode was coated with AlF(3) on the surface. The AlF(3)-coating enhanced the overall electrochemical characteristics of the electrode while overcoming the typical shortcomings of lithium-enriched cathodes. This improvement was attributed to the transformation of the initial electrode layer to a spinel phase, induced by the Li chemical leaching effect of the AlF(3) coating layer. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Surface coating with Ca(OH)2 for improvement of the transport of nanoscale zero-valent iron (nZVI) in porous media.

    PubMed

    Wei, Cai-jie; Li, Xiao-yan

    2013-01-01

    A novel thermal deposition method was developed to coat Ca(OH)2 on the surface of nanoscale zero-valent iron (nZVI). The nZVI particles with the Ca(OH)2 coating layer, nZVI/Ca(OH)2, had a clear core-shell structure based on the transmission electron microscopy observations, and the Ca(OH)2 shell was identified as an amorphous phase. The Ca(OH)2 coating shell would not only function as an effective protection layer for nZVI but also improve the mobility of nZVI in porous media for its use in environmental decontamination. A 10% Ca/Fe mass ratio was found to result in a proper thickness of the Ca(OH)2 shell on the nZVI surface. Based on the filtration tests in sand columns, the Ca(OH)2-based surface coating could greatly improve the mobility and transport of nZVI particles in porous media. In addition, batch experiments were conducted to evaluate the reactivity of Ca(OH)2-coated nZVI particles for the reduction of Cr(VI) and its removal from water.

  6. Osteogenic Responses to Zirconia with Hydroxyapatite Coating by Aerosol Deposition

    PubMed Central

    Cho, Y.; Hong, J.; Ryoo, H.; Kim, D.; Park, J.

    2015-01-01

    Previously, we found that osteogenic responses to zirconia co-doped with niobium oxide (Nb2O5) or tantalum oxide (Ta2O5) are comparable with responses to titanium, which is widely used as a dental implant material. The present study aimed to evaluate the in vitro osteogenic potential of hydroxyapatite (HA)-coated zirconia by an aerosol deposition method for improved osseointegration. Surface analysis by scanning electron microscopy and x-ray diffraction proved that a thin as-deposited HA film on zirconia showed a shallow, regular, crater-like surface. Deposition of dense and uniform HA films was measured by SEM, and the contact angle test demonstrated improved wettability of the HA-coated surface. Confocal laser scanning microscopy indicated that MC3T3-E1 pre-osteoblast attachment did not differ notably between the titanium and zirconia surfaces; however, cells on the HA-coated zirconia exhibited a lower proliferation than those on the uncoated zirconia late in the culture. Nevertheless, ALP, alizarin red S staining, and bone marker gene expression analysis indicated good osteogenic responses on HA-coated zirconia. Our results suggest that HA-coating by aerosol deposition improves the quality of surface modification and is favorable to osteogenesis. PMID:25586588

  7. Thermodynamic assessment of adsorptive fouling with the membranes modified via layer-by-layer self-assembly technique.

    PubMed

    Shen, Liguo; Cui, Xia; Yu, Genying; Li, Fengquan; Li, Liang; Feng, Shushu; Lin, Hongjun; Chen, Jianrong

    2017-05-15

    In this study, polyvinylidene fluoride (PVDF) microfiltration membrane was coated by dipping the membrane alternatingly in solutions of the polyelectrolytes (poly-diallyldimethylammonium chloride (PDADMAC) and polystyrenesulfonate (PSS)) via layer-by-layer (LBL) self-assembly technique to improve the membrane antifouling ability. Filtration experiments showed that, sludge cake layer on the coated membrane could be more easily washed off, and moreover, the remained flux ratio (RFR) of the coated membrane was obviously improved as compared with the control membrane. Characterization of the membranes showed that a polyelectrolyte layer was successfully coated on the membrane surfaces, and the hydrophilicity, surface charge and surface morphology of the coated membrane were changed. Based on the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) approaches, quantification of interfacial interactions between foulants and membranes in three different scenarios was achieved. It was revealed that there existed a repulsive energy barrier when a particle foulant adhered to membrane surface, and the enhanced electrostatic double layer (EL) interaction and energy barrier should be responsible for the improved antifouling ability of the coated membrane. This study provided a combined solution to membrane modification and interaction energy evaluation related with membrane fouling simultaneously. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Improvement in wear and corrosion resistance of AISI 1020 steel by high velocity oxy-fuel spray coating containing Ni-Cr-B-Si-Fe-C

    NASA Astrophysics Data System (ADS)

    Prince, M.; Thanu, A. Justin; Gopalakrishnan, P.

    2012-04-01

    In this investigation, AISI 1020 low carbon steel has been selected as the base material. The Ni based super alloy powder NiCrBSiFeC was sprayed on the base material using high velocity oxy-fuel spraying (HVOF) technique. The thickness of the coating was approximately 0.5 mm (500 μm). The coating was characterized using optical microscopy, Vickers microhardness testing, X-ray diffraction technique and scanning electron microscopy. Dry sliding wear tests were carried out at 3 m/s sliding speed under the load of 10 N for 1000 m sliding distance at various temperatures i.e., 35° C, 250° C and 350° C. The corrosion test was carried out in 1 M copper chloride in acetic acid solution. The polarization studies were also conducted for both base material and coating. The improvement in microhardness from 1.72 GPa (175 HV0.05) to 10.54 GPa (1075 HV0.05) was observed. The coatings exhibited 3-6 times improved wear resistance as compared with base material. Also, the corrosion rate was reduced by 3.5 times due to the presence of coatings.

  9. Gold Coating

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Epner Technology Inc. responded to a need from Goddard Space Flight Center for the ultimate in electroplated reflectivity needed for the Mars Global Surveyor Mars Orbiter Laser Altimeter (MOLA). Made of beryllium, the MOLA mirror was coated by Epner Technology Laser Gold process, specially improved for the project. Improved Laser Gold- coated reflectors have found use in an epitaxial reactor built for a large semiconductor manufacturer as well as the waveguide in Braun-Thermoscan tympanic thermometer and lasing cavities in various surgical instruments.

  10. Comparative evaluation of different thermally modified wood samples finishing with UV-curable and waterborne coatings

    NASA Astrophysics Data System (ADS)

    Herrera, René; Muszyńska, Monika; Krystofiak, Tomasz; Labidi, Jalel

    2015-12-01

    Thermally modified wood has been developed as an industrial method to improve durability and dimensional stability of wood and thus extends the range of uses and service life of wood-based products. Despite the improvements gained by treatment, surface finishing using coatings prevents esthetical changes such as color degradation or occasional growth of mold adding protection in outdoor use and extending the service life of products. The wood finishing process was carried out with commercially available waterborne and UV-curable coatings on industrially modified at 192, 200, 212 °C and unmodified European ash (Fraxinus excelsior L.) wood, using an industrial rollers system and a laboratory brushing system. Changes caused by thermal treatment which could affect the surface finish were measured and compared with control samples, such as water uptake, wettability and acidity. Following the wood finishing, surface properties and esthetic changes were evaluated; as well as the coatings performance. Thermally modified wood presented improved adherence compared with unmodified wood with a significant improvement in samples modified at 212 °C, which also present the highest hardness when UV-cured. Finishes with UV-curing maintain the hydrophobic effect of thermally modified wood, whereas waterborne finishes increase the surface wettability. Thermal modification did not negatively influence on the elastic properties of the coated substrate and thus allows this material to be finished with different coating systems in the same conditions as unmodified wood.

  11. Does hydroxyapatite coating enhance ingrowth and improve longevity of a Zweymuller type stem? A double-blinded randomised RSA trial.

    PubMed

    Hoornenborg, Daniel; Sierevelt, Inger N; Spuijbroek, Joost A; Cheung, John; van der Vis, Harm M; Beimers, Lijkele; Haverkamp, Daniel

    2017-09-11

    An ongoing discussion is whether using a hydroxyapatite coating enhances the ingrowth and longevity of a femoral stem in total hip arthroplasty. The best way to predict speed of ingrowth and long-term outcome is by evaluating micromotion by radiostereometric analysis. To study the effect of hydroxyapatite (HA) coating on the migration of the SL-PLUS hip stem, we performed a prospective double blind randomised controlled trial comparing the early migration of the hydroxyapatite (HA)-coated SL-PLUS stem compared to the Standard (non-coated) SL-PLUS stem. 51 patients were randomly assigned to receive either an uncoated or a HA-coated femoral component during total hip replacement. RSA images were obtained direct postoperatively and at 6 weeks, 12 weeks, 6 months, 12 months and 24 months. HOOS scores were obtained preoperative and at final follow-up. RSA evaluation demonstrated significant migration up to 3 months postoperatively in both groups. After initial setting no significant migration was observed. There was no significant difference in migration between the HA-coated group and the uncoated group.Both Harris Hip Score (HHS) and HOOS domain scores (pain and ADL) significantly improved compared to baseline at 24 months after surgery in both treatment groups (p<0.001 for all comparisons). Improvement did not differ significantly between the 2 groups. At 2 years follow-up, the HA-coated and uncoated Zweymuller type, distal fitting stem do not show different migration patterns.

  12. Improved Thermal Cycling Durability of Thermal Barrier Coatings Manufactured by PS-PVD

    NASA Astrophysics Data System (ADS)

    Rezanka, S.; Mauer, G.; Vaßen, R.

    2014-01-01

    The plasma spray-physical vapor deposition (PS-PVD) process is a promising method to manufacture thermal barrier coatings (TBCs). It fills the gap between traditional thermal spray processes and electron beam physical vapor deposition (EB-PVD). The durability of PS-PVD manufactured columnar TBCs is strongly influenced by the compatibility of the metallic bondcoat (BC) and the ceramic TBC. Earlier investigations have shown that a smooth BC surface is beneficial for the durability during thermal cycling. Further improvements of the bonding between BC and TBC could be achieved by optimizing the formation of the thermally grown oxide (TGO) layer. In the present study, the parameters of pre-heating and deposition of the first coating layer were investigated in order to adjust the growth of the TGO. Finally, the durability of the PS-PVD coatings was improved while the main advantage of PS-PVD, i.e., much higher deposition rate in comparison to EB-PVD, could be maintained. For such coatings, improved thermal cycling lifetimes more than two times higher than conventionally sprayed TBCs, were measured in burner rigs at ~1250 °C/1050 °C surface/substrate exposure temperatures.

  13. Laser modification of thermally sprayed coatings

    NASA Astrophysics Data System (ADS)

    Uglov, A. A.; Fomin, A. D.; Naumkin, A. O.; Pekshev, P. Iu.; Smurov, I. Iu.

    1987-08-01

    Experimental results are reported on the modification of thermally sprayed coatings on steels and aluminum alloys using pulsed YAG and CW CO2 lasers. In particular, results obtained for self-fluxing Ni9CrBSi powders, ZRO2 ceramic, and titanium are examined. It is shown that the laser treatment of thermally sprayed coatings significantly improves their physicomechanical properties; it also makes it possible to obtain refractory coatings on low-melting substrates with good coating-substrate adhesion.

  14. Improvement of flow and bulk density of pharmaceutical powders using surface modification.

    PubMed

    Jallo, Laila J; Ghoroi, Chinmay; Gurumurthy, Lakxmi; Patel, Utsav; Davé, Rajesh N

    2012-02-28

    Improvement in flow and bulk density, the two most important properties that determine the ease with which pharmaceutical powders can be handled, stored and processed, is done through surface modification. A limited design of experiment was conducted to establish a standardized dry coating procedure that limits the extent of powder attrition, while providing the most consistent improvement in angle of repose (AOR). The magnetically assisted impaction coating (MAIC) was considered as a model dry-coater for pharmaceutical powders; ibuprofen, acetaminophen, and ascorbic acid. Dry coated drug powders were characterized by AOR, particle size as a function of dispersion pressure, particle size distribution, conditioned bulk density (CBD), Carr index (CI), flow function coefficient (FFC), cohesion coefficient using different instruments, including a shear cell in the Freeman FT4 powder rheometer, and Hansen flowability index. Substantial improvement was observed in all the measured properties after dry coating relative to the uncoated powders, such that each powder moved from a poorer to a better flow classification and showed improved dispersion. The material intrinsic property such as cohesion, plotted as a function of particle size, gave a trend similar to those of bulk flow properties, AOR and CI. Property improvement is also illustrated in a phase map of inverse cohesion (or FFC) as a function of bulk density, which also indicated a significant positive shift due to dry coating. It is hoped that such phase maps are useful in manufacturing decisions regarding the need for dry coating, which will allow moving from wet granulation to roller compaction or to direct compression based formulations. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. ENVIRONMENTALLY SAFE, NO VOC AUTOMOTIVE COATING - PHASE II

    EPA Science Inventory

    The EPA recognizes that volatile organic compounds (VOCs) must be eliminated from automotive coating formulations to improve worker safety and reduce environmental pollution. The phase I project resulted in the production of a polymer-based coating material that was clear, ...

  16. Scratch and wear behaviour of plasma sprayed nano ceramics bilayer Al2O3-13 wt%TiO2/hydroxyapatite coated on medical grade titanium substrates in SBF environment

    NASA Astrophysics Data System (ADS)

    Palanivelu, R.; Ruban Kumar, A.

    2014-10-01

    Among the various coating techniques, plasma spray coating is an efficient technique to protect the metal surface from the various surface problems like wear and corrosion. The aim of this present work is to design and produce a bilayer coating on the non- toxic commercially pure titanium (denoted as CP-Ti) implant substrate in order to improve the biocompatibility and surface properties. To achieve that, Al2O3-13 wt%TiO2 (AT13) and hydroxyapatite (HAP) were coated on CP-Ti implant substrate using plasma spray coating technique. Further, the coated substrates were subjected to various characterization techniques. The crystallite size of coated HAP and its morphological studies were carried out using X-ray diffractometer (XRD) and scanning electron microscopy (SEM) respectively. The wear test on the bilayer (AT13/HAP) coated CP-Ti implant surface was conducted using ball-on-disc tester under SBF environment at 37 °C, in order to determine the wear rate and the coefficient of friction. The adhesion strength of the bilayer coated surface was evaluated by micro scratch tester under the ramp load conditions with load range of 14-20 N. The above said studies were repeated on the single layer coated HAP and AT13 implant surfaces. The results reveal that the bilayer (AT13/HAP) coated CP-Ti surface has the improved wear rate, coefficient of friction in compared to single layer coated HAP and AT13 surfaces.

  17. Fracture toughness of esthetic dental coating systems by nanoindentation and FIB sectional analysis.

    PubMed

    Pecnik, Christina Martina; Courty, Diana; Muff, Daniel; Spolenak, Ralph

    2015-07-01

    Improving the esthetics of Ti-based dental implants is the last challenge remaining in the optimization process. The optical issues were recently solved by the application of highly and selectively reflective coatings on Ti implants. This work focuses on the mechanical durability of these esthetic ceramic based coating systems (with and without adhesion layers). The coating systems (Ti-ZrO2, Ti-Al-ZrO2, Ti-Ti-Al-ZrO2, Ti-Ag-ZrO2, Ti-Ti-Ag-ZrO2, Ti-Bragg and Ti-TiO2-Bragg) were subjected to nanoindentation experiments and examined using scanning electron microscopy and focused ion beam cross sectional analysis. Three coating systems contained adhesion layers (10nm of Ti or 60nm of TiO2 layers). The fracture toughness of selected samples was assessed applying two different models from literature, a classical for bulk materials and an energy-based model, which was further developed and adjusted. The ZrO2 based coating systems (total film thickness<200nm) followed a circumferential cracking behavior in contrast to Bragg coated samples (total film thickness around 1.5μm), which showed radial cracking emanating from the indent corners. For Ti-ZrO2 samples, a fracture toughness between 2.70 and 3.70MPam(1/2) was calculated using an energy-based model. The classical model was applied to Bragg coated samples and their fracture toughness ranged between 0.70 and 0.80MPam(1/2). Furthermore, coating systems containing an additional layer (Ti-Ti-Al-ZrO2, Ti-Ti-Ag-ZrO2 and Ti-TiO2-Bragg) showed an improved adhesion between the substrate and the coating. The addition of a Ti or TiO2 layer improved the adhesion between substrate and coating. The validity of the models for the assessment of the fracture toughness depended on the layer structure and fracture profile of the samples investigated here (classical model for thick coatings and energy-based model for thin coatings). Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Unconventional route to encapsulated ultrasmall gold nanoparticles for high-temperature catalysis.

    PubMed

    Zhang, Tingting; Zhao, Hongyu; He, Shengnan; Liu, Kai; Liu, Hongyang; Yin, Yadong; Gao, Chuanbo

    2014-07-22

    Ultrasmall gold nanoparticles (us-AuNPs, <3 nm) have been recently recognized as surprisingly active and extraordinarily effective green catalysts. Their stability against sintering during reactions, however, remains a serious issue for practical applications. Encapsulating such small nanoparticles in a layer of porous silica can dramatically enhance the stability, but it has been extremely difficult to achieve using conventional sol-gel coating methods due to the weak metal/oxide affinity. In this work, we address this challenge by developing an effective protocol for the synthesis of us-AuNP@SiO2 single-core/shell nanospheres. More specifically, we take an alternative route by starting with ultrasmall gold hydroxide nanoparticles, which have excellent affinity to silica, then carrying out controllable silica coating in reverse micelles, and finally converting gold hydroxide particles into well-protected us-AuNPs. With a single-core/shell configuration that prevents sintering of nearby us-AuNPs and amino group modification of the Au/SiO2 interface that provides additional coordinating interactions, the resulting us-AuNP@SiO2 nanospheres are highly stable at high temperatures and show high activity in catalytic CO oxidation reactions. A dramatic and continuous increase in the catalytic activity has been observed when the size of the us-AuNPs decreases from 2.3 to 1.5 nm, which reflects the intrinsic size effect of the Au nanoparticles on an inert support. The synthesis scheme described in this work is believed to be extendable to many other ultrasmall metal@oxide nanostructures for much broader catalytic applications.

  19. Preparation and corrosion resistance of magnesium phytic acid/hydroxyapatite composite coatings on biodegradable AZ31 magnesium alloy.

    PubMed

    Zhang, Min; Cai, Shu; Zhang, Feiyang; Xu, Guohua; Wang, Fengwu; Yu, Nian; Wu, Xiaodong

    2017-06-01

    In this work, a magnesium phytic acid/hydroxyapatite composite coating was successfully prepared on AZ31 magnesium alloy substrate by chemical conversion deposition technology with the aim of improving its corrosion resistance and bioactivity. The influence of hydroxyapatite (HA) content on the microstructure and corrosion resistance of the coatings was investigated. The results showed that with the increase of HA content in phytic acid solution, the cracks on the surface of the coatings gradually reduced, which subsequently improved the corrosion resistance of these coated magnesium alloy. Electrochemical measurements in simulated body fluid (SBF) revealed that the composite coating with 45 wt.% HA addition exhibited superior surface integrity and significantly improved corrosion resistance compared with the single phytic acid conversion coating. The results of the immersion test in SBF showed that the composite coating could provide more effective protection for magnesium alloy substrate than that of the single phytic acid coating and showed good bioactivity. Magnesium phytic acid/hydroxyapatite composite, with the desired bioactivity, can be synthesized through chemical conversion deposition technology as protective coatings for surface modification of the biodegradable magnesium alloy implants. The design idea of the new type of biomaterial is belong to the concept of "third generation biomaterial". Corrosion behavior and bioactivity of coated magnesium alloy are the key issues during implantation. In this study, preparation and corrosion behavior of magnesium phytic acid/hydroxyapatite composite coatings on magnesium alloy were studied. The basic findings and significance of this paper are as follows: 1. A novel environmentally friendly, homogenous and crack-free magnesium phytic acid/hydroxyapatite composite coating was fabricated on AZ31 magnesium alloy via chemical conversion deposition technology with the aim of enhancing its corrosion resistance and bioactivity. The chemical conversion coatings, which are formed through the reaction between the substrate and the environment, have attracted increasing attention owing to the relative low treatment temperature, favorable bonding to substrate and simple implementation process. 2. With the increasing of hydroxyapatite (HA) content, the crack width in the composite coatings and the thickness of the coatings exhibit obviously decreased. The reason is probably that when adding HA into the phytic acid solution, the amount of active hydroxyl groups in the phytic acid are reduced via forming the coordination bond between P-OH groups from phytic acid and P-OH groups from the surface of HA, thus decreasing the coating thickness and hydrogen formation, as well as avoiding coating cracking. 3. By adjusting the HA content to 45 wt.%, a dense and relatively smooth composite coating with ~1.4 μm thickness is obtained on magnesium alloy, and exhibits high corrosion resistance and good bioactivity when compared with the single phytic acid conversion coating.

  20. Coatings for Oxidation and Hot Corrosion Protection of Disk Alloys

    NASA Technical Reports Server (NTRS)

    Nesbitt, Jim; Gabb, Tim; Draper, Sue; Miller, Bob; Locci, Ivan; Sudbrack, Chantal

    2017-01-01

    Increasing temperatures in aero gas turbines is resulting in oxidation and hot corrosion attack of turbine disks. Since disks are sensitive to low cycle fatigue (LCF), any environmental attack, and especially hot corrosion pitting, can potentially seriously degrade the life of the disk. Application of metallic coatings are one means of protecting disk alloys from this environmental attack. However, simply the presence of a metallic coating, even without environmental exposure, can degrade the LCF life of a disk alloy. Therefore, coatings must be designed which are not only resistant to oxidation and corrosion attack, but must not significantly degrade the LCF life of the alloy. Three different Ni-Cr coating compositions (29, 35.5, 45wt. Cr) were applied at two thicknesses by Plasma Enhanced Magnetron Sputtering (PEMS) to two similar Ni-based disk alloys. One coating also received a thin ZrO2 overcoat. The coated samples were also given a short oxidation exposure in a low PO2 environment to encourage chromia scale formation. Without further environmental exposure, the LCF life of the coated samples, evaluated at 760C, was less than that of uncoated samples. Hence, application of the coating alone degraded the LCF life of the disk alloy. Since shot peening is commonly employed to improve LCF life, the effect of shot peening the coated and uncoated surface was also evaluated. For all cases, shot peening improved the LCF life of the coated samples. Coated and uncoated samples were shot peened and given environmental exposures consisting of 500 hrs of oxidation followed by 50 hrs of hot corrosion, both at 760C). The high-Cr coating showed the best LCF life after the environmental exposures. Results of the LCF testing and post-test characterization of the various coatings will be presented and future research directions discussed.

  1. Protease-degradable PEG-maleimide coating with on-demand release of IL-1Ra to improve tissue response to neural electrodes

    PubMed Central

    Gutowski, Stacie M.; Shoemaker, James T.; Templeman, Kellie L.; Wei, Yang; Latour, Robert A.; Bellamkonda, Ravi V.; LaPlaca, Michelle C.; García, Andrés J.

    2015-01-01

    Neural electrodes are an important part of brain-machine interface devices that can restore functionality to patients with sensory and movement disorders. Chronically implanted neural electrodes induce an unfavorable tissue response which includes inflammation, scar formation, and neuronal cell death, eventually causing loss of electrode function. We developed a poly(ethylene glycol) hydrogel coating for neural electrodes with non-fouling characteristics, incorporated an anti-inflammatory agent, and engineered a stimulus-responsive degradable portion for on-demand release of the anti-inflammatory agent in response to inflammatory stimuli. This coating reduces in vitro glial cell adhesion, cell spreading, and cytokine release compared to uncoated controls. We also analyzed the in vivo tissue response using immunohistochemistry and microarray qRT-PCR. Although no differences were observed among coated and uncoated electrodes for inflammatory cell markers, lower IgG penetration into the tissue around PEG+IL-1Ra coated electrodes indicates an improvement in blood-brain barrier integrity. Gene expression analysis showed higher expression of IL-6 and MMP-2 around PEG+IL-1Ra samples, as well as an increase in CNTF expression, an important marker for neuronal survival. Importantly, increased neuronal survival around coated electrodes compared to uncoated controls was observed. Collectively, these results indicate promising findings for an engineered coating to increase neuronal survival and improve tissue response around implanted neural electrodes. PMID:25617126

  2. Effects of alpha-zirconium phosphate on thermal degradation and flame retardancy of transparent intumescent fire protective coating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xing, Weiyi; Zhang, Ping; Song, Lei

    2014-01-01

    Graphical abstract: - Highlights: • A transparent intumescent fire protective coating was obtained by UV-cured technology. • OZrP could enhance the thermal stability and anti-oxidation of the coating. • OZrP could reduce the combustion properties of the coatings. - Abstract: Organophilic alpha-zirconium phosphate (OZrP) was used to improve the thermal and fire retardant behaviors of the phenyl di(acryloyloxyethyl)phosphate (PDHA)-triglycidyl isocyanurate acrylate (TGICA)-2-phenoxyethyl acrylate (PHEA) (PDHA-TGICA-PHEA) coating. The morphology of nanocomposite coating was characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The effect of OZrP on the flame retardancy, thermal stability, fireproofing time and char formation of the coatingsmore » was investigated by microscale combustion calorimeter (MCC), thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), laser Raman spectroscopy (LRS) and scanning electric microscope (SEM). The results showed that by adding OZrP, the peak heat release rate and total heat of combustion were significantly reduced. The highest improvement was achieved with 0.5 wt% OZrP. XPS analysis indicated that the performance of anti-oxidation of the coating was improved with the addition of OZrP, and SEM images showed that a good synergistic effect was obtained through a ceramic-like layer produced by OZrP covered on the surface of char.« less

  3. Tribological and Corrosion Properties of Coatings Produced by Plasma Electrolytic Oxidation on the ZA27 Alloy

    NASA Astrophysics Data System (ADS)

    Li, Guangyin; Mao, Yifan; Li, Zhijian; Wang, Linlin; DaCosta, Herbert

    2018-05-01

    In this paper, a continuous and dense coating was deposited on samples of the ZA27 alloy through the plasma electrolytic oxidation (PEO) process to improve its wear and corrosion performance. A nontoxic and environmentally friendly inorganic salt, Na2SiO3, is chosen as electrolytes with different concentrations. The effect of the concentration of Na2SiO3 aqueous solutions on the coating performances was investigated. The coatings with 3Al2O3·2SiO2 (mullite), Zn2SiO4 and Al2O3 (either crystal phase or with some amorphous SiO2 phases) were formed by the PEO processes. It was found that the coating thickness increased with the increase in electrolyte concentration. However, the wear and corrosion resistance performance of the coatings did not improve as the coating's thickness increased. This was due to the fact that the coating produced with electrolytes of 10 g/L has a porous structure with large pore size. Among all the samples, coating produced by 15 g/L Na2SiO3 has the best wear and corrosion resistance, which is attributed to its continuous and dense structure with thickness of about 47 μm.

  4. Characterization and tribology of PEG-like coatings on UHMWPE for total hip replacements.

    PubMed

    Kane, Sheryl R; Ashby, Paul D; Pruitt, Lisa A

    2010-03-15

    A crosslinked hydrogel coating similar to poly(ethylene glycol) (PEG) was covalently bonded to the surface of ultrahigh molecular weight polyethylene (UHMWPE) to improve the lubricity and wear resistance of the UHWMPE for use in total joint replacements. The chemistry, hydrophilicity, and protein adsorption resistance of the coatings were determined, and the wear behavior of the PEG-like coating was examined by two methods: pin-on-disk tribometry to evaluate macroscale behavior, and atomic force microscopy (AFM) to simulate asperity wear. As expected, the coating was found to be highly PEG-like, with approximately 83% ether content by x-ray photoelectron spectroscopy and more hydrophilic and resistant to protein adsorption than uncoated UHMWPE. Pin-on-disk testing showed that the PEG-like coating could survive 3 MPa of contact pressure, comparable to that experienced by total hip replacements. AFM nanoscratching experiments uncovered three damage mechanisms for the coatings: adhesion/microfracture, pure adhesion, and delamination. The latter two mechanisms appear to correlate well with wear patterns induced by pin-on-disk testing and evaluated by attenuated total reflection Fourier transform infrared spectroscopy mapping. Understanding the mechanisms by which the PEG-like coatings wear is critical for improving the behavior of subsequent generations of wear-resistant hydrogel coatings. (c) 2009 Wiley Periodicals, Inc.

  5. Nanosilica coating for bonding improvements to zirconia.

    PubMed

    Chen, Chen; Chen, Gang; Xie, Haifeng; Dai, Wenyong; Zhang, Feimin

    2013-01-01

    Resin bonding to zirconia cannot be established from standard methods that are currently utilized in conventional silica-based dental ceramics. The solution-gelatin (sol-gel) process is a well developed silica-coating technique used to modify the surface of nonsilica-based ceramics. Here, we use this technique to improve resin bonding to zirconia, which we compared to zirconia surfaces treated with alumina sandblasting and tribochemical silica coating. We used the shear bond strength test to examine the effect of the various coatings on the short-term resin bonding of zirconia. Furthermore, we employed field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, atomic force microscopy, and Fourier transform infrared spectroscopy to characterize the zirconia surfaces. Water-mist spraying was used to evaluate the durability of the coatings. To evaluate the biological safety of the experimental sol-gel silica coating, we conducted an in vitro Salmonella typhimurium reverse mutation assay (Ames mutagenicity test), cytotoxicity tests, and in vivo oral mucous membrane irritation tests. When compared to the conventional tribochemical silica coating, the experimental sol-gel silica coating provided the same shear bond strength, higher silicon contents, and better durability. Moreover, we observed no apparent mutagenicity, cytotoxicity, or irritation in this study. Therefore, the sol-gel technique represents a promising method for producing silica coatings on zirconia.

  6. Methods for making deposited films with improved microstructures

    DOEpatents

    Patten, James W.; Moss, Ronald W.; McClanahan, Edwin D.

    1982-01-01

    Methods for improving microstructures of line-of-sight deposited films are described. Columnar growth defects ordinarily produced by geometrical shadowing during deposition of such films are eliminated without resorting to post-deposition thermal or mechanical treatments. The native, as-deposited coating qualities, including homogeneity, fine grain size, and high coating-to-substrate adherence, can thus be retained. The preferred method includes the steps of emitting material from a source toward a substrate to deposit a coating non-uniformly on the substrate surface, removing a portion of the coating uniformly over the surface, again depositing material onto the surface, but from a different direction, and repeating the foregoing steps. The quality of line-of-sight deposited films such as those produced by sputtering, progressively deteriorates as the angle of incidence between the flux and the surface becomes increasingly acute. Depositing non-uniformly, so that the coating becomes progressively thinner as quality deteriorates, followed by uniformly removing some of the coating, such as by resputtering, eliminates the poor quality portions, leaving only high quality portions of the coating. Subsequently sputtering from a different direction applies a high quality coating to other regions of the surface. Such steps can be performed either simultaneously or sequentially to apply coatings of a uniformly high quality, closed microstructure to three-dimensional or larger planar surfaces.

  7. Deposited films with improved microstructures

    DOEpatents

    Patten, James W.; Moss, Ronald W.; McClanahan, Edwin D.

    1984-01-01

    Methods for improving microstructures of line-of-sight deposited films are described. Columnar growth defects ordinarily produced by geometrical shadowing during deposition of such films are eliminated without resorting to post-deposition thermal or mechanical treatments. The native, as-deposited coating qualities, including homogeneity, fine grain size, and high coating-to-substrate adherence, can thus be retained. The preferred method includes the steps of emitting material from a source toward a substrate to deposit a coating non-uniformly on the substrate surface, removing a portion of the coating uniformly over the surface, again depositing material onto the surface, but from a different direction, and repeating the foregoing steps. The quality of line-of-sight deposited films such as those produced by sputtering, progressively deteriorates as the angle of incidence between the flux and the surface becomes increasingly acute. Depositing non-uniformly, so that the coating becomes progressively thinner as quality deteriorates, followed by uniformly removing some of the coating, such as by resputtering, eliminates the poor quality portions, leaving only high quality portions of the coating. Subsequently sputtering from a different direction applies a high quality coating to other regions of the surface. Such steps can be performed either simultaneously or sequentially to apply coatings of a uniformly high quality, closed microstructure to three-dimensional or large planar surfaces.

  8. A Comparative Study on the Effect of MWCNT as Reinforcement on the Corrosion Parameters of Different Ni-W/MWCNTs Nanocomposite Coatings in Various Corrosive Media

    NASA Astrophysics Data System (ADS)

    Mohammadpour, Zahra; Zare, Hamid R.

    2018-07-01

    Nickel-tungsten multi-walled carbon nanotubes (Ni-W/MWCNTs) nanocomposite coatings were co-electrodeposited in the ammonium-free bath by means of constant direct current coulometry. The results indicate that the amount of MWCNTs incorporated into the nanocomposite coatings has a key role in the improvement of their microhardness and corrosion resistance. The corrosion behavior of the coatings was evaluated using potentiodynamic polarization and electrochemical impedance spectroscopy methods in three corrosive media of 3.5 wt% NaCl, 1.0 M NaOH, and 0.5 M H2SO4. The experimental data of the corrosion current density (jcorr), corrosion rate (CR), the polarization resistance (Rp), and microhardness indicate that the presence of MWCNTs in coatings improves the quality of those coatings. The surface morphology of the coatings and the elemental analysis data were obtained by scanning electron microscopy and energy dispersive X-ray microanalysis respectively. As the results showed, the coatings were uniform and crack-free in the presence of 5.3 wt% carbon. Also, a microhardness test revealed that the nanocomposite coating containing 5.3 wt% carbon obtained in an ammonium-free bath which provided the higher content of tungsten had the highest hardness value among others.

  9. A Comparative Study on the Effect of MWCNT as Reinforcement on the Corrosion Parameters of Different Ni-W/MWCNTs Nanocomposite Coatings in Various Corrosive Media

    NASA Astrophysics Data System (ADS)

    Mohammadpour, Zahra; Zare, Hamid R.

    2018-03-01

    Nickel-tungsten multi-walled carbon nanotubes (Ni-W/MWCNTs) nanocomposite coatings were co-electrodeposited in the ammonium-free bath by means of constant direct current coulometry. The results indicate that the amount of MWCNTs incorporated into the nanocomposite coatings has a key role in the improvement of their microhardness and corrosion resistance. The corrosion behavior of the coatings was evaluated using potentiodynamic polarization and electrochemical impedance spectroscopy methods in three corrosive media of 3.5 wt% NaCl, 1.0 M NaOH, and 0.5 M H2SO4. The experimental data of the corrosion current density (jcorr), corrosion rate (CR), the polarization resistance (Rp), and microhardness indicate that the presence of MWCNTs in coatings improves the quality of those coatings. The surface morphology of the coatings and the elemental analysis data were obtained by scanning electron microscopy and energy dispersive X-ray microanalysis respectively. As the results showed, the coatings were uniform and crack-free in the presence of 5.3 wt% carbon. Also, a microhardness test revealed that the nanocomposite coating containing 5.3 wt% carbon obtained in an ammonium-free bath which provided the higher content of tungsten had the highest hardness value among others.

  10. Study of the preparation of Cu-TiC composites by reaction of soluble Ti and ball-milled carbon coating TiC

    NASA Astrophysics Data System (ADS)

    Xu, Xuexia; Li, Wenbin; Wang, Yong; Dong, Guozhen; Jing, Shangqian; Wang, Qing; Feng, Yanting; Fan, Xiaoliang; Ding, Haimin

    2018-06-01

    In this work, Cu-TiC composites have been successfully prepared by reaction of soluble Ti and carbon coating TiC. Firstly, the ball milling of graphite and TiC mixtures is used to obtain the carbon coating TiC which has fine size and improved reaction activity. After adding the ball milled carbon coating TiC into Cu-Ti melts, the soluble Ti will easily react with the carbon coating to form TiC. This process will also improve the wettability between Cu melts and TiC core. As a result, besides the TiC prepared by reaction of soluble Ti and carbon coating, the ball milled TiC will also be brought into the melts. Some of these ball-milled TiC particles will go on being coated by the formed TiC from the reaction of Ti and the coating carbon and left behind in the composites. However, most of TiC core will be further reacted with the excessive Ti and be transformed into the newly formed TiC with different stoichiometry. The results indicate that it is a feasible method to synthesize TiC in Cu melts by reaction of soluble Ti and ball-milled carbon coating TiC.

  11. Tribological and Corrosion Properties of Coatings Produced by Plasma Electrolytic Oxidation on the ZA27 Alloy

    NASA Astrophysics Data System (ADS)

    Li, Guangyin; Mao, Yifan; Li, Zhijian; Wang, Linlin; DaCosta, Herbert

    2018-04-01

    In this paper, a continuous and dense coating was deposited on samples of the ZA27 alloy through the plasma electrolytic oxidation (PEO) process to improve its wear and corrosion performance. A nontoxic and environmentally friendly inorganic salt, Na2SiO3, is chosen as electrolytes with different concentrations. The effect of the concentration of Na2SiO3 aqueous solutions on the coating performances was investigated. The coatings with 3Al2O3·2SiO2 (mullite), Zn2SiO4 and Al2O3 (either crystal phase or with some amorphous SiO2 phases) were formed by the PEO processes. It was found that the coating thickness increased with the increase in electrolyte concentration. However, the wear and corrosion resistance performance of the coatings did not improve as the coating's thickness increased. This was due to the fact that the coating produced with electrolytes of 10 g/L has a porous structure with large pore size. Among all the samples, coating produced by 15 g/L Na2SiO3 has the best wear and corrosion resistance, which is attributed to its continuous and dense structure with thickness of about 47 μm.

  12. Nanosilica coating for bonding improvements to zirconia

    PubMed Central

    Chen, Chen; Chen, Gang; Xie, Haifeng; Dai, Wenyong; Zhang, Feimin

    2013-01-01

    Resin bonding to zirconia cannot be established from standard methods that are currently utilized in conventional silica-based dental ceramics. The solution–gelatin (sol–gel) process is a well developed silica-coating technique used to modify the surface of nonsilica-based ceramics. Here, we use this technique to improve resin bonding to zirconia, which we compared to zirconia surfaces treated with alumina sandblasting and tribochemical silica coating. We used the shear bond strength test to examine the effect of the various coatings on the short-term resin bonding of zirconia. Furthermore, we employed field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, atomic force microscopy, and Fourier transform infrared spectroscopy to characterize the zirconia surfaces. Water–mist spraying was used to evaluate the durability of the coatings. To evaluate the biological safety of the experimental sol–gel silica coating, we conducted an in vitro Salmonella typhimurium reverse mutation assay (Ames mutagenicity test), cytotoxicity tests, and in vivo oral mucous membrane irritation tests. When compared to the conventional tribochemical silica coating, the experimental sol–gel silica coating provided the same shear bond strength, higher silicon contents, and better durability. Moreover, we observed no apparent mutagenicity, cytotoxicity, or irritation in this study. Therefore, the sol–gel technique represents a promising method for producing silica coatings on zirconia. PMID:24179333

  13. Effect of the deposition temperature on corrosion resistance and biocompatibility of the hydroxyapatite coatings

    NASA Astrophysics Data System (ADS)

    Vladescu, A.; Braic, M.; Azem, F. Ak; Titorencu, I.; Braic, V.; Pruna, V.; Kiss, A.; Parau, A. C.; Birlik, I.

    2015-11-01

    Hydroxyapatite (HAP) ceramics belong to a class of calcium phosphate-based materials, which have been widely used as coatings on titanium medical implants in order to improve bone fixation and thus to increase the lifetime of the implant. In this study, HAP coatings were deposited from pure HAP targets on Ti6Al4V substrates using the radio-frequency magnetron sputtering technique at substrate temperatures ranging from 400 to 800 °C. The surface morphology and the crystallographic structure of the films were investigated by atomic force microscopy (AFM), scanning electron microscopy (SEM) and X-ray diffraction (XRD). The corrosion resistance of the coatings in saliva solution at 37 °C was evaluated by potentiodynamic polarization. Additionally, the human osteosarcoma cell line (MG-63) was used to test the biocompatibility of the coatings. The results showed that all of the coatings grown uniformly and that the increasing substrate temperature induced an increase in their crystallinity. Corrosion performance of the coatings was improved with the increase of the substrate temperature from 400 °C to 800 °C. Furthermore, all the coatings support the attachment and growth of the osteosarcoma cells with regard to the in vitro test findings.

  14. Enhanced corrosion resistance and hemocompatibility of biomedical NiTi alloy by atmospheric-pressure plasma polymerized fluorine-rich coating

    NASA Astrophysics Data System (ADS)

    Li, Penghui; Li, Limin; Wang, Wenhao; Jin, Weihong; Liu, Xiangmei; Yeung, Kelvin W. K.; Chu, Paul K.

    2014-04-01

    To improve the corrosion resistance and hemocompatibility of biomedical NiTi alloy, hydrophobic polymer coatings are deposited by plasma polymerization in the presence of a fluorine-containing precursor using an atmospheric-pressure plasma jet. This process takes place at a low temperature in air and can be used to deposit fluoropolymer films using organic compounds that cannot be achieved by conventional polymerization techniques. The composition and chemical states of the polymer coatings are characterized by fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). The corrosion behavior of the coated and bare NiTi samples is assessed and compared by polarization tests and electrochemical impedance spectroscopy (EIS) in physiological solutions including simulated body fluids (SBF) and Dulbecco's Modified Eagle's medium (DMEM). The corrosion resistance of the coated NiTi alloy is evidently improved. Protein adsorption and platelet adhesion tests reveal that the adsorption ratio of albumin to fibrinogen is increased and the number of adherent platelets on the coating is greatly reduced. The plasma polymerized coating renders NiTi better in vitro hemocompatibility and is promising as a protective and hemocompatible coating on cardiovascular implants.

  15. Use of Iba Techniques to Characterize High Velocity Thermal Spray Coatings

    NASA Astrophysics Data System (ADS)

    Trompetter, W.; Markwitz, A.; Hyland, M.

    Spray coatings are being used in an increasingly wide range of industries to improve the abrasive, erosive and sliding wear of machine components. Over the past decade industries have moved to the application of supersonic high velocity thermal spray techniques. These coating techniques produce superior coating quality in comparison to other traditional techniques such as plasma spraying. To date the knowledge of the bonding processes and the structure of the particles within thermal spray coatings is very subjective. The aim of this research is to improve our understanding of these materials through the use of IBA techniques in conjunction with other materials analysis techniques. Samples were prepared by spraying a widely used commercial NiCr powder onto substrates using a HVAF (high velocity air fuel) thermal spraying technique. Detailed analysis of the composition and structure of the power particles revealed two distinct types of particles. The majority was NiCr particles with a significant minority of particles composing of SiO2/CrO3. When the particles were investigated both as raw powder and in the sprayed coating, it was surprising to find that the composition of the coating meterial remained unchanged during the coating process despite the high velocity application.

  16. Morphology evaluation of ZrO2 dip coating on mild steel and its corrosion performance in NaOH solution

    NASA Astrophysics Data System (ADS)

    Anwar, M. A.; Kurniawan, T.; Asmara, Y. P.; Harun, W. S. W.; Oumar, A. N.; Nandyanto, A. B. D.

    2017-10-01

    In this work, the morphology of ZrO2 thin film from dip coating process on mild steel has been investigated. Mild steel was dip-coated on solution made of zirconium butoxide as a precursor, ethanol as solvent, acetylacetone as chelating agent and water for hydrolysis. Number of dipping was adjusted at 3, 5 and 7 times. The dipped sample then annealed at 350°C for two hours by adjusting the heating rate at 1°C/min respectively. The optical microscope showed that micro-cracks were observed on the surface of the coating with its concentration reduced as dipping sequence increased. The XRD result showed that annealing process can produce polycrystalline tetragonal-ZrO2. Meanwhile, SEM image showed that the thicknesses of the ZrO2 coatings were in between 400-600 nm. The corrosion resistance of uncoated and coated substrates was studied by polarization test through potentio-dynamic polarization curve at 1mV/s immersed in with 3.5% NaCl. The coating efficiency was improved as the number of layer dip coated increased, which showed improvement in corrosion protection.

  17. Topography, wetting, and corrosion responses of electrodeposited hydroxyapatite and fluoridated hydroxyapatite on magnesium.

    PubMed

    Assadian, Mahtab; Jafari, Hassan; Ghaffari Shahri, Seyed Morteza; Idris, Mohd Hasbullah; Almasi, Davood

    2016-08-12

    In this study, different types of calcium-phosphate phases were coated on NaOH pre-treated pure magnesium. The coating was applied by electrodeposition method in order to provide higher corrosion resistance and improve biocompatibility for magnesium. Thickness, surface morphology and topography of the coatings were analyzed using optical, scanning electron and atomic-force microscopies, respectively. Composition and chemical bonding, crystalline structures and wettability of the coatings were characterized using energy-dispersive and attenuated total reflectance-Fourier transform infrared spectroscopies, grazing incidence X-ray diffraction and contact angle measurement, respectively. Degradation behavior of the coated specimens was also investigated by potentiodynamic polarization and immersion tests. The experiments proved the presence of a porous coating dominated by dicalcium-phosphate dehydrate on the specimens. It was also verified that the developed hydroxyapatite was crystallized by alkali post-treatment. Addition of supplemental fluoride to the coating electrolyte resulted in stable and highly crystallized structures of fluoridated hydroxyapatite. The coatings were found effective to improve biocompatibility combined with corrosion resistance of the specimens. Noticeably, the fluoride supplemented layer was efficient in lowering corrosion rate and increasing surface roughness of the specimens compared to hydroxyapatite and dicalcium-phosphate dehydrates layers.

  18. Microstructure Evolution and Durability of Advanced Environmental Barrier Coating Systems for SiC/SiC Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Evans, Laura J.; McCue, Terry R.; Harder, Bryan

    2016-01-01

    Environmental barrier coated SiC-SiC ceramic matrix composites (CMCs) systems will play a crucial role in next generation turbine engines for hot-section component applications because of their ability to significantly increase engine operating temperatures with improved efficiency, reduce engine weight and cooling requirements. Advanced HfO2 and rare earth silicate environmental barrier coatings (EBCs), along with multicomponent hafnium and rare earth silicide EBC bond coats have been developed. The coating degradation mechanisms in the laboratory simulated engine thermal cycling, and fatigue-creep operating environments are also being investigated. This paper will focus on the microstructural and compositional evolutions of an advanced environmental barrier coating system on a SiC-SiC CMC substrate during the high temperature simulated durability tests, by using a Field Emission Gun Scanning Electron Microscopy, Energy Dispersive Spectroscopy (EDS) and Wavelength Dispersive Spectroscopy (WDS). The effects of Calcium-Magnesium-Alumino-Silicate (CMAS) from road sand or volcano-ash deposits on the degradation mechanisms of the environmental barrier coating systems will also be discussed. The detailed analysis results help understand the EBC-CMC system performance, aiming at the durability improvements to achieve more robust, prime-reliant environmental barrier coatings.

  19. Enhancing absorption in coated semiconductor nanowire/nanorod core-shell arrays using active host matrices

    NASA Astrophysics Data System (ADS)

    Jule, Leta; Dejene, Francis; Roro, Kittessa

    2016-12-01

    In the present work, we investigated theoretically and experimentally the interaction of radiation field phenomena interacting with arrays of nanowire/nanorod core-shell embedded in active host matrices. The optical properties of composites are explored including the case when the absorption of propagating wave by dissipative component is completely compensated by amplification in active (lasing) medium. On the basis of more elaborated modeling approach and extended effective medium theory, the effective polarizability and the refractive index of electromagnetic mode dispersion of the core-shell nanowire arrays are derived. ZnS(shell)-coated by sulphidation process on ZnO(shell) nanorod arrays grown on (100) silicon substrate by chemical bath deposition (CBD) has been used for theoretical comparison. Compared with the bare ZnO nanorods, ZnS-coated core/shell nanorods exhibit a strongly reduced ultraviolet (UV) emission and a dramatically enhanced deep level (DL) emission. Obviously, the UV and DL emission peaks are attributed to the emissions of ZnO nanorods within ZnO/ZnS core/shell nanorods. The reduction of UV emission after ZnS coating seems to agree with the charge separation mechanism of type-II band alignment that holes transfer from the core to shell, which would quench the UV emission to a certain extent. Our theoretical calculations and numerical simulation demonstrate that the use of active host (amplifying) medium to compensate absorption at metallic inclusions. Moreover the core-shell nanorod/nanowire arrays create the opportunity for broad band absorption and light harvesting applications.

  20. Preparation of Composite Coating on AZ91D Magnesium Alloy by Silica Sol-Micro Oxidation

    NASA Astrophysics Data System (ADS)

    Shao, Zhongcai; Zhang, Feifei; Zhao, Ruiqiang; Shen, Xiaoyi

    2016-03-01

    Composite coating was prepared on AZ91D magnesium alloy with a new method which combined silica sol with micro-arc oxidation (MAO). The MAO coating was prepared on the basis of MAO solution, and then coated by sol-gel process. The composite coating was obtained after second MAO treatment. Scanning electron microscopy coupled with X-ray diffraction (XRD), energy spectrum analysis and electrochemical testing was applied to characterize the properties of MAO coating and composite coating. The experimental test results indicated that the Si element derived from SiO2 gel particle embedded into the MAO coating by second MAO treatment. The surface of composite coating became dense and the holes were smaller with silica sol sealing process. The corrosion resistance of composite coating was improved than the MAO coating.

  1. Preventing Cracking of Anodized Coatings

    NASA Technical Reports Server (NTRS)

    He, Charles C.; Heslin, Thomas M.

    1995-01-01

    Anodized coatings have been used as optical and thermal surfaces in spacecraft. Particulate contamination from cracked coatings is a concern for many applications. The major cause for the cracking is the difference in the coefficient of thermal expansion between the oxide coatings and the aluminum substrate. The loss of water when the coating is exposed to a vacuum also could induce cracking of the coating. Hot-water sealing was identified as the major cause for the cracking of the coatings because of the large temperature change when the parts were immersed in boiling water and the water was absorbed in the coating. when the hot-water sealing process was eliminated, the cracking resistance of the anodized coatings was greatly improved. Also, it was found that dyed black coatings were more susceptible than clear coatings to cracking during thermo-vacuum cyclings.

  2. Hard and low friction nitride coatings and methods for forming the same

    DOEpatents

    Erdemir, Ali; Urgen, Mustafa; Cakir, Ali Fuat; Eryilmaz, Osman Levent; Kazmanli, Kursat; Keles, Ozgul

    2007-05-01

    An improved coating material possessing super-hard and low friction properties and a method for forming the same. The improved coating material includes the use of a noble metal or soft metal homogeneously distributed within a hard nitride material. The addition of small amounts of such metals into nitrides such as molybdenum nitride, titanium nitride, and chromium nitride results in as much as increasing of the hardness of the material as well as decreasing the friction coefficient and increasing the oxidation resistance.

  3. Process for diffusing metallic coatings into ceramics to improve their voltage withstanding capabilities

    DOEpatents

    Miller, H. Craig; Zuhr, Herbert F.

    1978-01-01

    The disclosure relates to a method for diffusing a coating of manganese powder and titanium powder into a ceramic to improve its voltage hold off withstanding capability. The powder coated ceramic is fired for from about 30 to about 90 minutes within about one atmosphere of wet hydrogen at a temperature within the range of from about 1450.degree. to about 1520.degree. C to cause the mixture to penetrate into the ceramic to a depth on the order of a millimeter.

  4. Coating processes for increasing the moisture resistance of polyurethane baffle material

    NASA Technical Reports Server (NTRS)

    Bilow, N.; Sawko, P.

    1974-01-01

    An investigation was conducted with the objective to improve the hydrolytic stability of reticulated polyurethane baffle material. This material is used in fuel tanks of aircraft and ground vehicles. The most commonly used foam of this type is hydrolytically unstable. Potential moisture barrier coatings which were evaluated include Parylene, epoxy-polysulfide, polyether based polyurethanes, polysulfides, polyolefin rubbers, and several other materials. Parylene coatings of at least 0.2 mil were found to provide the greatest improvement in hydrolytic stability.

  5. Laser-induced damage threshold measurements of optical dielectric coatings at lambda = 1.06 micron

    NASA Astrophysics Data System (ADS)

    Milev, I. Ia.; Dimov, S. S.; Terziev, D. V.; Iordanova, J. I.; Todorova, L. B.; Gelkova, A. B.

    1991-10-01

    The laser-induced damage thresholds for lambda = 1.06 micron of commercially available dielectric optical coatings, both antireflective and high reflectance, have been determined. The dependence of the optical coatings stability on design and selection of materials has been investigated. An improvement of the coatings durability by using nonquarterwave layers in addition to the basic design of the mirrors has been obtained. The choice of the coating materials is also discussed.

  6. Microstructure, mechanical and tribological characterization of CrN/DLC/Cr-DLC multilayer coating with improved adhesive wear resistance

    NASA Astrophysics Data System (ADS)

    Sui, Xudong; Liu, Jinyu; Zhang, Shuaituo; Yang, Jun; Hao, Junying

    2018-05-01

    Adhesive wear is one of the major reasons for the failure of components during various tribological application, especially for rubbing with viscous materials. This study presents CrN/DLC/Cr-DLC multilayer composite coatings prepared on a plasma enhanced chemical vapor deposition (PECVD) device with the close field unbalanced magnetron sputtering ion plating (CFUBMSIP) technique. SEM, XRD and Raman spectroscopy were used to determine the structure of multilayer coatings. It was found that the multilayer coatings are composed by the alternating CrN and DLC layers. Compared with the single CrN coatings, the friction coefficient of the CrN/DLC/Cr-DLC multilayer coating decreases about more than seven times after sliding a distance of 500 m. This helps to reduce the adhesive wear of multilayer coatings. Compared with the single CrN and DLC coating, the wear rate of the CrN/DLC/Cr-DLC multilayer coating is reduced by an order of magnitude to 7.10 × 10-17 (sliding with AISI 440C) and 2.64 × 10-17 (sliding with TC4) m3/(N m). The improved tribological performance of multilayer coatings mainly attributes to the introduction of lubricant DLC and hard support CrN layers, the enhancement of crack propagation inhibition, and the increment of elastic recovery value We (71.49%) by multilayer design method.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xiaoyu; Graduate University of Chinese Academy of Sciences, Beijing 100049; He, Junhui, E-mail: jhhe@mail.ipc.ac.cn

    Graphical abstract: High performance broadband antireflective and water-repellent coatings were fabricated on glass substrates, which can improve the short-circuit current of solar cells as much as 6.6% in comparison with glass substrates without the coatings. - Highlights: • Broadband anti-reflective and water-repellent coatings were fabricated. • Transmittance increased to 99.0%, significantly higher than that of commercial solar glasses. • The performance of standard solar cells with the AR coating was enhanced as much as 6.6%. - Abstract: High performance broadband antireflective (AR) and water-repellent coatings were fabricated on glass substrates by assembly of silica nanoparticles and polyelectrolytes via the layer-by-layermore » (LbL) assembly technique, followed by calcination and hydrophobic modification. A porous poly(diallyladimethylammonium chloride) (PDDA)/20 nm SiO{sub 2} nanoparticles (S-20) multilayer coating with AR property was prepared first. The maximum transmittance is as high as 99.0%, while that of the glass substrate is only 91.3%. After calcination and hydrophobic modification, the coating became water-repellent while maintaining the good AR property. Such water-repellent AR coatings can improve the short-circuit current of solar cells as much as 6.6% in comparison with glass substrates without the coatings. Scanning electron microscopy (SEM) was used to observe the morphology and thickness of coatings. Transmission spectra and reflection spectra were characterized by UV–vis spectrophotometer. The surface wettability was studied by a contact angle/interface system.« less

  8. Effect of Tricalcium Magnesium Silicate Coating on the Electrochemical and Biological Behavior of Ti-6Al-4V Alloys

    PubMed Central

    Hadipour, Mohammadreza; Nadernezhad, Ali; Aghaie, Ermia; Behnamian, Yashar; Abu Osman, Noor Azuan

    2015-01-01

    In the current study, a sol-gel-synthesized tricalcium magnesium silicate powder was coated on Ti-6Al-4V alloys using plasma spray method. Composition of feed powder was evaluated by X-ray diffraction technique before and after the coating process. Scanning electron microscopy and atomic force microscopy were used to study the morphology of coated substrates. The corrosion behaviors of bare and coated Ti-6Al-4V alloys were examined using potentiodynamic polarization test and electrochemical impedance spectroscopy in stimulated body fluids. Moreover, bare and coated Ti-6Al-4V alloys were characterized in vitro by culturing osteoblast and mesenchymal stem cells for several days. Results demonstrated a meaningful improvement in the corrosion resistance of Ti-6Al-4V alloys coated with tricalcium magnesium silicate compared with the bare counterparts, by showing a decrease in corrosion current density from 1.84 μA/cm2 to 0.31 μA/cm2. Furthermore, the coating substantially improved the bioactivity of Ti-6Al-4Valloys. Our study on corrosion behavior and biological response of Ti-6Al-4V alloy coated by tricalcium magnesium silicate proved that the coating has considerably enhanced safety and applicability of Ti-6Al-4V alloys, suggesting its potential use in permanent implants and artificial joints. PMID:26383641

  9. Further improvement of mechanical and tribological properties of Cr-doped diamond-like carbon nanocomposite coatings by N codoping

    NASA Astrophysics Data System (ADS)

    Zou, Changwei; Xie, Wei; Tang, Xiaoshan

    2016-11-01

    In this study, the effects of nitrogen codoping on the microstructure and mechanical properties of Cr-doped diamond-like carbon (DLC) nanocomposite coatings were investigated in detail. Compared with undoped DLC coatings, the Cr-DLC and N/Cr-DLC coatings showed higher root-mean-square (RMS) roughness values. However, from the X-ray photoelectron spectroscopy (XPS) and Raman results, the fraction of sp2 carbon bonds of N/Cr-DLC coatings increased with increasing N content, which indicated the graphitization of the coatings. The hardness and elastic modulus of N/Cr-DLC coatings with 1.8 at. % N were about 26.8 and 218 GPa, respectively. The observed hardness increase with N codoping was attributed to the incorporation of N in the C network along with the formation of CrC(N) nanoparticles, as confirmed from the transmission electron microscopy (TEM) results. The internal stress markedly decreased from 0.93 to 0.32 GPa as the N content increased from 0 to 10.3 at. %. Furthermore, N doping significantly improved the high-temperature dry friction behavior of DLC coatings. The friction coefficient of N/Cr-DLC coatings with 8.0 and 10.3 at. % N was kept at about 0.2 during the overall sliding test at 500 °C. These results showed that appropriate N doping could promote the mechanical and tribological properties of Cr-DLC nanocomposite coatings.

  10. Novel Bioactive Antimicrobial Lignin Containing Coatings on Titanium Obtained by Electrophoretic Deposition

    PubMed Central

    Erakovic, Sanja; Jankovic, Ana; Tsui, Gary C. P.; Tang, Chak-Yin; Miskovic-Stankovic, Vesna; Stevanovic, Tatjana

    2014-01-01

    Hydroxyapatite (HAP) is the most suitable biocompatible material for bone implant coatings; its brittleness, however, is a major obstacle, and the reason why research focuses on creating composites with biopolymers. Organosolv lignin (Lig) is used for the production of composite coatings, and these composites were examined in this study. Titanium substrate is a key biomedical material due to its well-known properties, but infections of the implantation site still impose a serious threat. One approach to prevent infection is to improve antimicrobial properties of the coating material. Silver doped hydroxyapatite (Ag/HAP) and HAP coatings on titanium were obtained by an electrophoretic deposition method in order to control deposited coating mass and morphology by varying applied voltage and deposition time. The effect of lignin on microstructure, morphology and thermal behavior of biocomposite coatings was investigated. The results showed that higher lignin concentrations protect the HAP lattice during sintering, improving coating stability. The corrosion stability was evaluated in simulated body fluid (SBF) at 37 °C. Newly formed plate-shaped carbonate-HAP was detected, indicating enhanced bioactive performance. The antimicrobial efficiency of Ag/HAP/Lig was confirmed by its higher reduction of bacteria Staphylococcus aureus TL (S. aureus TL) than of HAP/Lig coating. Cytotoxicity assay revealed that both coatings can be classified as non-toxic against healthy immunocompetent peripheral blood mononuclear cells (PBMC). PMID:25019343

  11. Novel bioactive antimicrobial lignin containing coatings on titanium obtained by electrophoretic deposition.

    PubMed

    Erakovic, Sanja; Jankovic, Ana; Tsui, Gary C P; Tang, Chak-Yin; Miskovic-Stankovic, Vesna; Stevanovic, Tatjana

    2014-07-11

    Hydroxyapatite (HAP) is the most suitable biocompatible material for bone implant coatings; its brittleness, however, is a major obstacle, and the reason why research focuses on creating composites with biopolymers. Organosolv lignin (Lig) is used for the production of composite coatings, and these composites were examined in this study. Titanium substrate is a key biomedical material due to its well-known properties, but infections of the implantation site still impose a serious threat. One approach to prevent infection is to improve antimicrobial properties of the coating material. Silver doped hydroxyapatite (Ag/HAP) and HAP coatings on titanium were obtained by an electrophoretic deposition method in order to control deposited coating mass and morphology by varying applied voltage and deposition time. The effect of lignin on microstructure, morphology and thermal behavior of biocomposite coatings was investigated. The results showed that higher lignin concentrations protect the HAP lattice during sintering, improving coating stability. The corrosion stability was evaluated in simulated body fluid (SBF) at 37 °C. Newly formed plate-shaped carbonate-HAP was detected, indicating enhanced bioactive performance. The antimicrobial efficiency of Ag/HAP/Lig was confirmed by its higher reduction of bacteria Staphylococcus aureus TL (S. aureus TL) than of HAP/Lig coating. Cytotoxicity assay revealed that both coatings can be classified as non-toxic against healthy immunocompetent peripheral blood mononuclear cells (PBMC).

  12. The Development of 2700-3000 F Environmental Barrier Coatings for SiC/SiC Ceramic Matrix Composites: Challenges and Opportunities

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming

    2015-01-01

    Environmental barrier coatings (EBCs) and SiCSiC ceramic matrix composites (CMCs) systems will play a crucial role in future turbine engines for hot-section component applications because of their ability to significantly increase engine operating temperatures, reduce engine weight and cooling requirements. The development of prime-reliant environmental barrier coatings is a key to enable the applications of the envisioned 2700-3000F EBC - CMC systems to help achieve next generation engine performance and durability goals. This paper will primarily address the performance requirements and design considerations of environmental barrier coatings for turbine engine applications. The emphasis is placed on current NASA candidate environmental barrier coating systems for SiCSiC CMCs, their performance benefits and design limitations in long-term operation and combustion environments. The efforts have been also directed to developing prime-reliant, self-healing 2700F EBC bond coat; and high stability, lower thermal conductivity, and durable EBC top coats. Major technical barriers in developing environmental barrier coating systems, the coating integrations with next generation CMCs having the improved environmental stability, cyclic durability, erosion-impact resistance, and long-term system performance will be described. The research and development opportunities for turbine engine environmental barrier coating systems by utilizing improved compositions, state-of-the-art processing methods, and simulated environment testing and durability modeling will be discussed.

  13. Comprehensive Genetic Analysis of Early Host Body Reactions to the Bioactive and Bio-Inert Porous Scaffolds

    PubMed Central

    Ehashi, Tomo; Takemura, Taro; Hanagata, Nobutaka; Minowa, Takashi; Kobayashi, Hisatoshi; Ishihara, Kazuhiko; Yamaoka, Tetsuji

    2014-01-01

    To design scaffolds for tissue regeneration, details of the host body reaction to the scaffolds must be studied. Host body reactions have been investigated mainly by immunohistological observations for a long time. Despite of recent dramatic development in genetic analysis technologies, genetically comprehensive changes in host body reactions are hardly studied. There is no information about host body reactions that can predict successful tissue regeneration in the future. In the present study, porous polyethylene scaffolds were coated with bioactive collagen or bio-inert poly(2-methacryloyloxyethyl phosphorylcholine-co-n-butyl methacrylate) (PMB) and were implanted subcutaneously and compared the host body reaction to those substrates by normalizing the result using control non-coat polyethylene scaffold. The comprehensive analyses of early host body reactions to the scaffolds were carried out using a DNA microarray assay. Within numerous genes which were expressed differently among these scaffolds, particular genes related to inflammation, wound healing, and angiogenesis were focused upon. Interleukin (IL)-1β and IL-10 are important cytokines in tissue responses to biomaterials because IL-1β promotes both inflammation and wound healing and IL-10 suppresses both of them. IL-1β was up-regulated in the collagen-coated scaffold. Collagen-specifically up-regulated genes contained both M1- and M2-macrophage-related genes. Marked vessel formation in the collagen-coated scaffold was occurred in accordance with the up-regulation of many angiogenesis-inducible factors. The DNA microarray assay provided global information regarding the host body reaction. Interestingly, several up-regulated genes were detected even on the very bio-inert PMB-coated surfaces and those genes include inflammation-suppressive and wound healing-suppressive IL-10, suggesting that not only active tissue response but also the inert response may relates to these genetic regulations. PMID:24454803

  14. Type I collagen-induced YAP nuclear expression promotes primary cilia growth and contributes to cell migration in confluent mouse embryo fibroblast 3T3-L1 cells.

    PubMed

    Xu, Qian; Liu, Xiaoling; Liu, Weiwei; Hayashi, Toshihiko; Yamato, Masayuki; Fujisaki, Hitomi; Hattori, Shunji; Tashiro, Shin-Ichi; Onodera, Satoshi; Ikejima, Takashi

    2018-05-30

    The extracellular matrix (ECM) is a major biomechanical environment for all cells in vivo, and tightly controls wound healing and cancer progression. Type I collagen (Col I) is the most abundant component in ECM and plays an essential role for cell motility control and migration beyond structural support. Our previous results showed that Col I increased the length of primary cilia and the expression of primary cilia-associated proteins in 3T3-L1 cells. The Hippo/YAP pathway serves as a major integrator of cell surface-mediated signals and regulates key processes for the development and maintenance of tissue functions. In this study, we investigated the role of Hippo/YAP signaling in primary cilia growth of cells cultured on Col I-coated plate, as well as the potential link between primary cilia and migration. At 2-day post-confluence, YAP localization in the nucleus was dramatically increased when the cells were cultured on Col I-coated plate, accompanied by cilia growth. YAP inhibitor verteporfin repressed the growth of primary cilia as well as the expressions of ciliogenesis-associated proteins in confluent 3T3-L1 cells cultured on Col I-coated plate. Moreover, knockdown of either YAP or IFT88, one of the ciliogenesis-associated proteins, reversed the migration of confluent 3T3-L1 cells promoted by Col I-coating. In conclusion, activation of YAP pathway by Col I-coating of culture plate for confluent 3T3-L1 cells is positively associated with the primary cilia growth, which eventually results in promoted migration.

  15. Thermal behavior and catalytic activity in naphthalene destruction of Ce-, Zr- and Mn-containing oxide layers on titanium

    NASA Astrophysics Data System (ADS)

    Vasilyeva, Marina S.; Rudnev, Vladimir S.; Wiedenmann, Florian; Wybornov, Svetlana; Yarovaya, Tatyana P.; Jiang, Xin

    2011-11-01

    The present paper is devoted to studies of the composition and surface structure, including those after annealing at high temperatures, and catalytic activity in the reaction of naphthalene destruction of Ce-, Zr- and Mn-containing oxide layers on titanium obtained by means of the plasma electrolytic oxidation (PEO) method. The composition and structure of the obtained systems were investigated using the methods of X-ray phase and energy dispersive analysis and scanning electron microscopy (SEM). It was demonstrated that Ce- and Zr- containing structures had relatively high thermal stability: their element and phase compositions and surface structure underwent virtually no changes after annealing in the temperature range 600-800 °C. Annealing of Ce- and Zr-containing coatings in the temperature range 850-900 °C resulted in substantial changes of their surface composition and structure: a relatively homogeneous and porous surface becomes coated by large pole-like crystals. The catalytic studies showed rather high activity of Ce- and Zr-containing coatings in the reaction of naphthalene destruction at temperatures up to 850 °C. Mn-containing structures of the type MnOx + SiO2 + TiO2/Ti have a well-developed surface coated by “nano-whiskers”. The phase composition and surface structure of manganese-containing layers changes dramatically in the course of thermal treatment. After annealing above 600 °C nano-whiskers vanish with formation of molten structures on the surface. The Mn-containing oxide systems demonstrated lower conversion degrees than the Ce- and Zr-containing coatings, which can be attributed to substantial surface modification and formation of molten manganese silicates at high temperatures.

  16. Preparing and Study the effects of Composite Coatings in Protection of Oil Pipes from the Risk of Corrosion that resulting from Associated water with Petroleum Products

    NASA Astrophysics Data System (ADS)

    – Sarraf, A. R. Al; Yaseen, M. A.

    2018-05-01

    In order to inhibit the metallic corrosion in the oil pipelines,the protection method with composite coating of unsaturated polyester and reinforced by Caolin at weight percentage (20%) was studied. Where, the work samples were classified into two groups according to internal composite coatings layers for all groups of these samples. The first group is nitrocellulose coating reinforced by nano and micro powder of Mgo, the second group is sodium silicate coating reinforced by nano powder of Mgo. The following weight percentages (0%, 1%, 3% and 5%) were adopted as reinforcement ratios for nano powders, as well as the weight percentages (0%, 3%, 5% and 7%) as reinforcement ratios for micro powders Tribology properties and Electrochemical Corrosion Resistance by Polarization method (Tafel) and Adhesion Strength were studied. The results showed an improvement in the corrosion resistance of protected steel by coatings compare with uncoated steel, as well as improvement in mechanical properties and adhesion strength of composite coatings.

  17. Carbon nanotube-coating accelerated cell adhesion and proliferation on poly (L-lactide)

    NASA Astrophysics Data System (ADS)

    Hirata, Eri; Akasaka, Tsukasa; Uo, Motohiro; Takita, Hiroko; Watari, Fumio; Yokoyama, Atsuro

    2012-12-01

    The surface of a polylactic acid (PLLA) was coated multiwalled carbon nanotubes (MWCNTs) in order to improve the surface properties. In addition, its surface characteristics and cell culturing properties were examined. Whole surface of PLLA was homogeneously covered by MWCNTs maintained a unique tubular structure. MWCNT-coated PLLA showed remarkable higher wettability than uncoated PLLA. Human osteosarcoma cell line (Saos2) adhered well on the CNT-coated PLLA whereas there are few cells attached on the uncoated PLLA at 2 h after seeding. The number of the cells on uncoated PLLA was still smaller than on the MWCNT-coated PLLA at 1 and 3 days. Moreover, The DNA content in the cells attached to the MWCNT-coated PLLA was significantly higher than that on the uncoated PLLA (p < 0.05) at 1 and 3 days. There was no significant difference between the scaffolds for ALP activity normalized by DNA content at both term (p > 0.1). Therefore MWCNT-coating on PLLA improved the surface wettability and initial cell attachment at early stage.

  18. Degradation of graphene coated copper in simulated proton exchange membrane fuel cell environment: Electrochemical impedance spectroscopy study

    NASA Astrophysics Data System (ADS)

    Ren, Y. J.; Anisur, M. R.; Qiu, W.; He, J. J.; Al-Saadi, S.; Singh Raman, R. K.

    2017-09-01

    Metallic materials are most suitable for bipolar plates of proton exchange membrane fuel cell (PEMFC) because they possess the required mechanical strength, durability, gas impermeability, acceptable cost and are suitable for mass production. However, metallic bipolar plates are prone to corrosion or they can passivate under PEMFC environment and interrupt the fuel cell operation. Therefore, it is highly attractive to develop corrosion resistance coating that is also highly conductive. Graphene fits these criteria. Graphene coating is developed on copper by chemical vapor deposition (CVD) with an aim to improving corrosion resistance of copper under PEMFC condition. The Raman Spectroscopy shows the graphene coating to be multilayered. The electrochemical degradation of graphene coated copper is investigated by electrochemical impedance spectroscopy (EIS) in 0.5 M H2SO4 solution at room temperature. After exposure to the electrolyte for up to 720 h, the charge transfer resistance (Rt) of the graphene coated copper is ∼3 times greater than that of the bare copper, indicating graphene coatings could improve the corrosion resistance of copper bipolar plates.

  19. Spin-coating: A new approach for improving dispersion of cellulose nanocrystals and mechanical properties of poly (lactic acid) composites.

    PubMed

    Shojaeiarani, Jamileh; Bajwa, Dilpreet S; Stark, Nicole M

    2018-06-15

    This study systematically evaluated the influence of masterbatch preparation techniques, solvent casting and spin-coating methods, on composite properties. Composites were manufactured by combining CNCs masterbatches and PLA resin using twin screw extruder followed by injection molding. Different microscopy techniques were used to investigate the dispersion of CNCs in masterbatches and composites. Thermal, thermomechanical, and mechanical properties of composites were evaluated. Scanning electron microscopy (SEM) images showed superior dispersion of CNCs in spin-coated masterbatches compared to solvent cast masterbatches. At lower CNCs concentrations, both SEM and optical microscope images confirmed more uniform CNCs dispersion in spin-coated composites than solvent cast samples. Degree of crystallinity of PLA exhibited a major enhancement by 147% and 380% in solvent cast and spin-coated composites, respectively. Spin-coated composites with lower CNCs concentration exhibited a noticeable improvement in mechanical properties. However, lower thermal characteristics in spin-coated composites were observed, which could be attributed to the residual solvents in masterbatches. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Microstructural Analysis and Transport Properties of Thermally Sprayed Multiple-Layer Ceramic Coatings

    NASA Astrophysics Data System (ADS)

    Wang, Hsin; Muralidharan, Govindarajan; Leonard, Donovan N.; Haynes, J. Allen; Porter, Wallace D.; England, Roger D.; Hays, Michael; Dwivedi, Gopal; Sampath, Sanjay

    2018-02-01

    Multilayer, graded ceramic/metal coatings were prepared by an air plasma spray method on Ti-6Al-4V, 4140 steel and graphite substrates. The coatings were designed to provide thermal barriers for diesel engine pistons to operate at higher temperatures with improved thermal efficiency and cleaner emissions. A systematic, progressive variation in the mixture of yttria-stabilized zirconia and bondcoat alloys (NiCoCrAlYHfSi) was designed to provide better thermal expansion match with the substrate and to improve thermal shock resistance and cycle life. Heat transfer through the layers was evaluated by a flash diffusivity technique based on a model of one-dimensional heat flow. The aging effect of the as-sprayed coatings was captured during diffusivity measurements, which included one heating and cooling cycle. The hysteresis of thermal diffusivity due to aging was not observed after 100-h annealing at 800 °C. The measurements of coatings on substrate and freestanding coatings allowed the influence of interface resistance to be evaluated. The microstructure of the multilayer coating was examined using scanning electron microscope and electron probe microanalysis.

  1. High Current Plasma Electrolytic Oxidation Coating Processes for Wear and Corrosion Prevention of Al 2024

    NASA Astrophysics Data System (ADS)

    Wang, Rui

    Plasma electrolytic oxidation (PEO) treatments have been used in the aerospace and automotive industries because the coating formed on light metals or alloys has great hardness, high wear, corrosion, and oxidation resistance, and a low friction coefficient that improves lifetime length and provide a higher surface quality. However, the PEO treatments that are presently used for industrial applications require a long period of time to confirm the quality of the coating. For this reason, the present study seeks to increase the current density of PEO treatments to improve their efficiency and explore the performance of the obtained coatings. It was found that for high current density (0.18A/cm2) PEO treatments, smaller ratio, such as 50% and 70%, is beneficial to obtaining a better performance coating. When compared with the coating of a "normal" (current density: 0.09A/cm2) PEO treatment, it had better wear resistance; however, for corrosion resistance, it had a lower performance than the coatings obtained by the "normal" current density PEO treatment which was attributed to the negative influence of porosity increase.

  2. Electrostatic coating technologies for food processing.

    PubMed

    Barringer, Sheryl A; Sumonsiri, Nutsuda

    2015-01-01

    The application of electrostatics in both powder and liquid coating can improve the quality of food, such as its appearance, aroma, taste, and shelf life. Coatings can be found most commonly in the snack food industry, as well as in confectionery, bakery, meat and cheese processing. In electrostatic powder coating, the most important factors influencing coating quality are powder particle size, density, flowability, charge, and resistivity, as well as the surface properties and characteristics of the target. The most important factors during electrostatic liquid coating, also known as electrohydrodynamic coating, include applied voltage and electrical resistivity and viscosity of the liquid. A good understanding of these factors is needed for the design of optimal coating systems for food processing.

  3. Space qualification of IR-reflecting coverslides for GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Meulenberg, Andrew

    1995-01-01

    Improvements to GaAs solar array performance, from the use on solar cell coverslides of several reflecting coatings that reject unusable portions of the solar spectrum, are quantified. Blue-red-rejection (BRR) coverslides provide both infrared reflection (IRR) and ultraviolet rejection (UVR). BRR coverslides were compared to conventional antireflection (AR) and ultraviolet (UV) coated coverslides. A 2% improvement in peak-power output, relative to that from Ar-coated coverslides, is seen for cells utilizing BRR coverslides with the widest bandpass. Coverslide BRR-filter bandpass width and covered-solar-cell short-circuit current is a function of incident light angle and the observed narrower-bandpass filters are more sensitive to change in angle from the normal than are wide-bandpass filters. The first long-term (3000 hours) UV testing of unirradiated and 1 MeV electron-irradiated GaAs solar cells, with multilayer-coated coverslides to reduce solar array operating temperature, has indicated that all multilayer coatings on coverslides and solar cells will experience degradation from the space environment (UV and/or electrons). Five types of coverslide coatings, designed for GaAs solar cells, were tested as part of a NASA-sponsored space-flight qualification for BRR, multi-layer-coated, coverslides. The reponse to the different radiations varied with the coatings. The extent of degradation and its consequences on the solar cell electrical characteristics depend upon the coatings and the radiation. In some cases, an improved optical coupling was observed during long-term UV exposure to the optical stack. The benefits of multi-layered solar cell optics may depend upon both the duration and the radiation environment of a mission.

  4. Some Properties of Composite Panels Made from Wood Flour and Recycled Polyethylene

    PubMed Central

    Ozdemir, Turgay; Mengeloglu, Fatih

    2008-01-01

    This study investigated the effect of board type (unmodified vs. MAPE modified) on the surface quality and thickness swelling-water absorption properties of recycled high density polyethylene (HDPE) based wood plastic composites. Additionally, two commercially available coatings (cellulosic coating and polyurethane lacquer coating) were also applied to composite surfaces and their adhesion strength, abrasion and scratch resistance, and gloss values were determined. This study showed that modification of the composites with MAPE coupling agent increased the surface smoothness and reduced the water absorption and thickness swelling of the panels. Abrasion resistance of the composites was also improved through MAPE modification. Regardless of board type, higher scratch resistance and gloss values were observed for polyurethane lacquer coated samples compared to those of cellulosic varnish coated ones. Improvement of adhesion strength was also seen on SEM micrographs. PMID:19330092

  5. Ion-Doped Silicate Bioceramic Coating of Ti-Based Implant

    PubMed Central

    Mohammadi, Hossein; Sepantafar, Mohammadmajid

    2016-01-01

    Titanium and its alloy are known as important load-bearing biomaterials. The major drawbacks of these metals are fibrous formation and low corrosion rate after implantation. The surface modification of biomedical implants through various methods such as plasma spray improves their osseointegration and clinical lifetime. Different materials have been already used as coatings on biomedical implant, including calcium phosphates and bioglass. However, these materials have been reported to have limited clinical success. The excellent bioactivity of calcium silicate (Ca-Si) has been also regarded as coating material. However, their high degradation rate and low mechanical strength limit their further coating application. Trace element modification of (Ca-Si) bioceramics is a promising method, which improves their mechanical strength and chemical stability. In this review, the potential of trace element-modified silicate coatings on better bone formation of titanium implant is investigated. PMID:26979401

  6. Plasma-sprayed self-lubricating coatings

    NASA Technical Reports Server (NTRS)

    Nakamura, H. H.; Logan, W. R.; Harada, Y.

    1982-01-01

    One of the most important criterion for acceptable commercial application of a multiple phase composition is uniformity and reproducibility. This means that the performance characteristics of the coat - e.g., its lubricating properties, bond strength to the substrate, and thermal properties - can be readily predicted to give a desired performance. The improvement of uniformity and reproducibility of the coats, the oxidation behavior at three temperature ranges, the effect of bond coat and the effect of preheat treatment as measured by adhesive strength tests, coating examination procedures, and physical property measurements were studied. The following modifications improved the uniformity and reproducibility: (1) changes and closer control in the particle size range of the raw materials used, (2) increasing the binder content from 3.2% to 4.1% (dried weight), and (3) analytical processing procedures using step by step checking to assure consistency.

  7. Composite hydrogen separation element and module

    DOEpatents

    Edlund, D.J.

    1996-03-12

    There are disclosed improvements in multicomponent composite metal membranes useful for the separation of hydrogen, the improvements comprising the provision of a flexible porous intermediate layer between a support layer and a nonporous hydrogen-permeable coating metal layer, and the provision of a textured coating metal layer. 15 figs.

  8. Improved high-temperature silicide coatings

    NASA Technical Reports Server (NTRS)

    Klopp, W. D.; Stephens, J. R.; Stetson, A. R.; Wimber, R. T.

    1969-01-01

    Special technique for applying silicide coatings to refractory metal alloys improves their high-temperature protective capability. Refractory metal powders mixed with a baked-out organic binder and sintered in a vacuum produces a porous alloy layer on the surface. Exposing the layer to hot silicon converts it to a silicide.

  9. Ni-Al films induced surface modification of La2Mg17 alloy leading to improved dehydrogenation properties

    NASA Astrophysics Data System (ADS)

    Zhang, Huaiwei; Fu, Li; Xuan, Weidong; Qin, Haiying; Ji, Zhenguo

    2018-05-01

    The effects of surface coating with Ni-Al nano-films to the hydrogenation properties of the La2Mg17 alloy are studied in the paper. The reversible hydrogen storage capacities, thermodynamics and kinetics process are all improved for the coating samples, and the comprehensive performances reach the best when the sputtering time is 5min with the film thickness 71.7 nm. The dehydrogenation temperature of the coating sample can be reduced to about 560K from above 720K comparing to the body alloy. The XPS analysis shows that the Ni-Al film coating layer can act as the catalyst in the dehydrogenation process.

  10. Development of black scattering coatings for space application (etude de traitements noirs diffusants pour application spatiale)

    NASA Astrophysics Data System (ADS)

    Mestreau-Garreau, Agnes; Pezant, Christian; Cousin, Bernard; Etcheto, Pierre; Otrio, Georges

    2017-11-01

    In the context of Research and Technology (R&T), studies have been performed on the coatings of vane edge in the 0.4 to 1 μm spectral range. The main purposes of the study were to improve the diffusing black coatings available on the market and to look for other diffusing black coatings. At the same time, we have also improved the machining technologies of vane edges. The characterisation (thermal tests, radiometric measurements, adhesion tests) of the most promising technologies has been carried out. The results have pointed out the stainless steel vanes with the edge obtained by polishing or by advanced grinding.

  11. Surface Modifications with Laser Synthesized Mo Modified Coating

    NASA Astrophysics Data System (ADS)

    Sun, Lu; Chen, Hao; Liu, Bo

    2013-01-01

    Mg-Cu-Al was first used to improve the surface performance of TA15 titanium alloys by means of laser cladding technique. The synthesis of hard composite coating on TA15 titanium alloy by laser cladding of Mg-Cu-Al-B4C/Mo pre-placed powders was investigated by means of scanning electron microscope, energy dispersive spectrometer and high resolution transmission electron microscope. Experimental results indicated that such composite coating mainly consisted of TiB2, TiB, TiC, Ti3Al and AlCuMg. Compared with TA15 alloy substrate, an improvement of wear resistance was observed for this composite coating due to the actions of fine grain, amorphous and hard phase strengthening.

  12. PROCEEDINGS: POLLUTION PREVENTION CONFERENCE ON LOW- AND NO-VOC COATING TECHNOLOGIES

    EPA Science Inventory

    The report documents a conference that provided a forum for the exchange of technical information on coating technologies. It focused on improved and emerging technologies that result in fewer volatile organic compound (VOC) and toxic air emissions than traditional coating emissi...

  13. Antibacterial properties and cytocompatibility of tantalum oxide coatings with different silver content

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Heng-Li; Chang, Yin-Yu, E-mail: yinyu@mail2000.com.tw; Chen, Hung-Jui

    Tantalum (Ta) oxides and their coatings have been proved to increase their applications in the biomedical fields by improving osseointegration and wear resistance. In this study, Ta oxide coatings containing different proportions of Ag are deposited on SS304 materials. A twin-gun magnetron sputtering system is used to deposit the tantalum oxide-Ag coating. In this study, Staphylococcus aureus, which exhibits physiological commensalism on the human skin, nares, and mucosal and oral areas, is chosen as the model for in vitro antibacterial analyses via a fluorescence staining method using Syto9. The cytocompatibility and adhesive morphology of human skin fibroblast cells (CCD-966SK) onmore » the coatings are also determined by using the microculture tetrazolium assay. This study shows that Ta{sub 2}O{sub 5} and Ta{sub 2}O{sub 5}-Ag coatings with 12.5 at. % of Ag exhibit improved antibacterial effects against S. aureus and have good skin fibroblast cell cellular biocompatibility.« less

  14. Cellulose nanomaterials emulsion coatings for controlling physiological activity, modifying surface morphology, and enhancing storability of postharvest bananas (Musa acuminate).

    PubMed

    Deng, Zilong; Jung, Jooyeoun; Simonsen, John; Zhao, Yanyun

    2017-10-01

    Cellulose nanomaterials (CNs)-incorporated emulsion coatings with improved moisture barrier, wettability and surface adhesion onto fruit surfaces were developed for controlling postharvest physiological activity and enhancing storability of bananas during ambient storage. Cellulose nanofiber (CNF)-based emulsion coating (CNFC: 0.3% CNF/1% oleic acid/1% sucrose ester fatty acid (w/w wet base)) had low contact angle, high spread coefficient onto banana surfaces, and lower surface tension (ST, 25.4mN/m) than the critical ST (35.2mN/m) of banana peels, and exhibited good wettability onto banana surfaces. CNFC coating delayed the ethylene biosynthesis pathway and reduced ethylene and CO 2 production, thus delaying fruit ripening. As the result, CNFC coating minimized chlorophyll degradation, weight loss, and firmness of bananas while ensuring the properly fruit ripening during 10d of ambient storage. This study demonstrated the effectiveness of CNF based emulsion coatings for improving the storability of postharvest bananas. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. The effect of hydrogen on B4C coatings fabrication in inductively coupled plasma torch

    NASA Astrophysics Data System (ADS)

    Guo, Q. J.; Zhao, P.; Li, L.; Zhou, Q. J.; Ni, G. H.; Meng, Y. D.

    2018-02-01

    Boron carbide (B4C) coatings are prepared by an RF inductively coupled plasma (ICP) torch with different amounts of hydrogen introduced into the sheath gas. The effects of the added hydrogen on the characteristics of the plasma are diagnosed by optical emission spectroscopy and high speed photography. The effects on the melting of B4C particles in the plasma are studied by scanning electron microscopy (SEM). The microstructure of the B4C coatings was determined with SEM imaging and x-ray diffraction analysis. The results show that adding hydrogen to the sheath gas leads to plasma contraction, which results in higher gas temperature of plasma. It also enhances B4C particles spheroidizing and improves the compactness of B4C coatings. Plasma processing does not change the main phase of boron carbide. The obtained results on B4C coatings on Cu substrates allows for improving the B4C coatings fabrication process.

  16. A biodegradable AZ91 magnesium alloy coated with a thin nanostructured hydroxyapatite for improving the corrosion resistance.

    PubMed

    Mukhametkaliyev, T M; Surmeneva, M A; Vladescu, A; Cotrut, C M; Braic, M; Dinu, M; Vranceanu, M D; Pana, I; Mueller, M; Surmenev, R A

    2017-06-01

    The main aim of this study was to investigate the properties of an AZ91 alloy coated with nanostructured hydroxyapatite (HA) prepared by radio frequency (RF) magnetron sputtering. The bioactivity and biomineralization of the AZ91 magnesium alloy coated with HA were investigated in simulated body fluid (SBF) via an in vitro test. Scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, and X-ray diffraction (XRD) analyses were performed. The samples were immersed in SBF to study the ability of the surface to promote the formation of an apatite layer as well as corrosion resistance and mass change of the HA-coated AZ91 alloy. Electrochemical tests were performed to estimate the corrosion behaviour of HA-coated and uncoated samples. The results revealed the capability of the HA coating to significantly improve the corrosion resistance of the uncoated AZ91 alloy. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Effect of organic additives on characteristics of carbon-coated LiCoPO4 synthesized by hydrothermal method

    NASA Astrophysics Data System (ADS)

    Maeyoshi, Yuta; Miyamoto, Shohei; Noda, Yusaku; Munakata, Hirokazu; Kanamura, Kiyoshi

    2017-01-01

    Carbon-coated LiCoPO4 particles are synthesized by one-pot hydrothermal process using three different organic additives (carboxymethylcellulose sodium salt (CMC), glucose, and ascorbic acid). The effect of the organic additives on particle size, morphology, nature of carbon coating, and electrochemical property of the resulting LiCoPO4 is investigated. CMC plays important roles to decrease the particle size and form well-covered carbon coating on the surface. Carbon-coated LiCoPO4 prepared using CMC delivers higher initial discharge capacity of 135 mA h g-1 at 0.1 C, and shows superior rate capability and cyclic performance than the other samples. The improved electrochemical characteristics are attributed to not only the fine particle which allows facile electronic and ionic transport, but also the high coverage of carbon coating which improves the electrical conductivity and prevents the irreversible reactions of the charged LiCoPO4 with electrolyte.

  18. Nanohardness, corrosion and protein adsorption properties of CuAlO2 films deposited on 316L stainless steel for biomedical applications

    NASA Astrophysics Data System (ADS)

    Chang, Shih-Hang; Chen, Jian-Zhang; Hsiao, Sou-Hui; Lin, Guan-Wei

    2014-01-01

    This study preliminarily assesses the biomedical applications of CuAlO2 coatings according to nanoindentation, electrochemical, and protein adsorption tests. Nanoindentation results revealed that the surface hardness of 316L stainless steel increased markedly after coating with CuAlO2 films. Electrochemical tests of corrosion potential, breakdown potential, and corrosion current density showed that the corrosion resistance properties of 316L stainless steel are considerably improved by CuAlO2 coatings. Bicinchoninic acid (BCA) protein assay results revealed that the protein adsorption behavior of 316L stainless steel did not exhibit notable differences with or without CuAlO2 coatings. A CuAlO2 coating of 100 nm thickness improved the surface nanohardness and corrosion resistance ability of 316L stainless steel. CuAlO2 is a potential candidate for biomaterial coating applications, particularly for surface modification of fine, delicate implants.

  19. Electroplating chromium on CVD SiC and SiCf-SiC advanced cladding via PyC compatibility coating

    NASA Astrophysics Data System (ADS)

    Ang, Caen; Kemery, Craig; Katoh, Yutai

    2018-05-01

    Electroplating Cr on SiC using a pyrolytic carbon (PyC) bond coat is demonstrated as an innovative concept for coating of advanced fuel cladding. The quantification of coating stress, SEM morphology, XRD phase analysis, and debonding test of the coating on CVD SiC and SiCf-SiC is shown. The residual tensile stress (by ASTM B975) of electroplated Cr is > 1 GPa prior to stress relaxation by microcracking. The stress can remove the PyC/Cr layer from SiC. Surface etching of ∼20 μm and roughening to Ra > 2 μm (by SEM observation) was necessary for successful adhesion. The debonding strength (by ASTM D4541) of the coating on SiC slightly improved from 3.6 ± 1.4 MPa to 5.9 ± 0.8 MPa after surface etching or machining. However, this improvement is limited due to the absence of an interphase, and integrated CVI processing may be required for further advancement.

  20. Improvement of transmission properties of visible pilot beam for polymer-coated silver hollow fibers with acrylic silicone resin as buffer layer for sturdy structure

    NASA Astrophysics Data System (ADS)

    Iwai, Katsumasa; Takaku, Hiroyuki; Miyagi, Mitsunobu; Shi, Yi-Wei; Zhu, Xiao-Song; Matsuura, Yuji

    2017-02-01

    Flexible hollow fibers with 530-μm-bore size were developed for infrared laser delivery. Sturdy hollow fibers were fabricated by liquid-phase coating techniques. A silica glass capillary is used as the substrate. Acrylic silicone resin is used as a buffer layer and the buffer layer is firstly coated on the inner surface of the capillary to protect the glass tube from chemical damages due to the following silver plating process. A silver layer was inner-plated by using the conventional silver mirror-plating technique. To improve adhesion of catalyst to the buffer layer, a surface conditioner has been introduced in the method of silver mirror-plating technique. We discuss improvement of transmission properties of sturdy polymer-coated silver hollow fibers for the Er:YAG laser and red pilot beam delivery.

Top