Sample records for coatings sam hpcrm

  1. High-Performance Corrosion-Resistant Materials: Iron-Based Amorphous-Metal Thermal-Spray Coatings: SAM HPCRM Program ? FY04 Annual Report ? Rev. 0 - DARPA DSO & DOE OCRWM Co-Sponsored Advanced Materials Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farmer, J; Haslam, J; Wong, F

    2007-09-19

    The multi-institutional High Performance Corrosion Resistant Materials (HPCRM) Team is cosponsored by the Defense Advanced Projects Agency (DARPA) Defense Science Office (DSO) and the Department of Energy (DOE) Office of Civilian Radioactive Waste Management (OCRWM), and has developed new corrosion-resistant, iron-based amorphous metals that can be applied as coatings with advanced thermal spray technology. Two compositions have corrosion resistance superior to wrought nickel-based Alloy C-22 (UNS No. N06022) in very aggressive environments, including concentrated calcium-chloride brines at elevated temperature. Corrosion costs the Department of Defense billions of dollars every year, with an immense quantity of material in various structures undergoingmore » corrosion. For example, in addition to fluid and seawater piping, ballast tanks, and propulsions systems, approximately 345 million square feet of structure aboard naval ships and crafts require costly corrosion control measures. The use of advanced corrosion-resistant materials to prevent the continuous degradation of this massive surface area would be extremely beneficial. The Fe-based corrosion-resistant, amorphous-metal coatings under development may prove of importance for applications on ships. Such coatings could be used as an 'integral drip shield' on spent fuel containers, as well as protective coatings that could be applied over welds, thereby preventing exposure to environments that might cause stress corrosion cracking. In the future, such new high-performance iron-based materials could be substituted for more-expensive nickel-based alloys, thereby enabling a reduction in the $58-billion life cycle cost for the long-term storage of the Nation's spent nuclear fuel by tens of percent.« less

  2. EFFECTS OF POLYCYCLIC AROMATIC HYDROCARBON OF SAM-COATED ELECTRODES USING FERRYICYANIDE AS THE REDOX INDICATOR

    EPA Science Inventory

    Electrochemical responses on self-assembled monolayer (SAM)-coated polycrystalline gold electrodes were investigated using cyclic voltammetry and square wave voltammetry with a three electrode system. Experimental results show potential in the application of pyrene-imprinted SAM...

  3. The optimal SAM surface functional group for producing a biomimetic HA coating on Ti.

    PubMed

    Liu, D P; Majewski, P; O'Neill, B K; Ngothai, Y; Colby, C B

    2006-06-15

    Commercial interest is growing in biomimetic methods that employ self assembled mono-layers (SAMs) to produce biocompatible HA coatings on Ti-based orthopedic implants. Recently, separate studies have considered HA formation for various SAM surface functional groups. However, these have often neglected to verify crystallinity of the HA coating, which is essential for optimal bioactivity. Furthermore, differing experimental and analytical methods make performance comparisons difficult. This article investigates and evaluates HA formation for four of the most promising surface functional groups: --OH, --SO(3)H, --PO(4)H(2) and --COOH. All of them successfully formed a HA coating at Ca/P ratios between 1.49 and 1.62. However, only the --SO(3)H and --COOH end groups produced a predominantly crystalline HA. Furthermore, the --COOH end group yielded the thickest layer and possessed crystalline characteristics very similar to that of the human bone. The --COOH end group appears to provide the optimal SAM surface interface for nucleation and growth of biomimetic crystalline HA. Intriguingly, this finding may lend support to explanations elsewhere of why human bone sialoprotein is such a potent nucleator of HA and is attributed to the protein's glutamic acid-rich sequences.

  4. Atomistic characterization of SAM coatings as gate insulators in Si-based FET devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gala, F.; Zollo, G.

    2014-06-19

    Many nano-material systems are currently under consideration as possible candidates for gate dielectric insulators in both metal-oxide-semiconductor (MOSFET) and organic (OFET) field-effect transistors. In this contribution, the possibility of employing self-assembled monolayers (SAMs) of hydroxylated octadecyltrichlorosilane (OTS) chains on a (111) Si substrate as gate dielectrics is discussed; in particular ab initio theoretical simulations have been employed to study the structural properties, work function modifications, and the insulating properties of OTS thin film coatings on Si substrates.

  5. Atomistic characterization of SAM coatings as gate insulators in Si-based FET devices

    NASA Astrophysics Data System (ADS)

    Gala, F.; Zollo, G.

    2014-06-01

    Many nano-material systems are currently under consideration as possible candidates for gate dielectric insulators in both metal-oxide-semiconductor (MOSFET) and organic (OFET) field-effect transistors. In this contribution, the possibility of employing self-assembled monolayers (SAMs) of hydroxylated octadecyltrichlorosilane (OTS) chains on a (111) Si substrate as gate dielectrics is discussed; in particular ab initio theoretical simulations have been employed to study the structural properties, work function modifications, and the insulating properties of OTS thin film coatings on Si substrates.

  6. Heterotypic Sam-Sam association between Odin-Sam1 and Arap3-Sam: binding affinity and structural insights.

    PubMed

    Mercurio, Flavia A; Marasco, Daniela; Pirone, Luciano; Scognamiglio, Pasqualina L; Pedone, Emilia M; Pellecchia, Maurizio; Leone, Marilisa

    2013-01-02

    Arap3 is a phosphatidylinositol 3 kinase effector protein that plays a role as GTPase activator (GAP) for Arf6 and RhoA. Arap3 contains a sterile alpha motif (Sam) domain that has high sequence homology with the Sam domain of the EphA2-receptor (EphA2-Sam). Both Arap3-Sam and EphA2-Sam are able to associate with the Sam domain of the lipid phosphatase Ship2 (Ship2-Sam). Recently, we reported a novel interaction between the first Sam domain of Odin (Odin-Sam1), a protein belonging to the ANKS (ANKyrin repeat and Sam domain containing) family, and EphA2-Sam. In our latest work, we applied NMR spectroscopy, surface plasmon resonance (SPR) and isothermal titration calorimetry (ITC) to characterize the association between Arap3-Sam and Odin-Sam1. We show that these two Sam domains interact with low micromolar affinity. Moreover, by means of molecular docking techniques, supported by NMR data, we demonstrate that Odin-Sam1 and Arap3-Sam might bind with a topology that is common to several Sam-Sam complexes. The revealed structural details form the basis for the design of potential peptide antagonists that could be used as chemical tools to investigate functional aspects related to heterotypic Arap3-Sam associations. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Engineering of Neuron Growth and Enhancing Cell-Chip Communication via Mixed SAMs.

    PubMed

    Markov, Aleksandr; Maybeck, Vanessa; Wolf, Nikolaus; Mayer, Dirk; Offenhäusser, Andreas; Wördenweber, Roger

    2018-06-06

    The interface between cells and inorganic surfaces represents one of the key elements for bioelectronics experiments and applications ranging from cell cultures and bioelectronics devices to medical implants. In the present paper, we describe a way to tailor the biocompatibility of substrates in terms of cell growth and to significantly improve cell-chip communication, and we also demonstrate the reusability of the substrates for cell experiments. All these improvements are achieved by coating the substrates or chips with a self-assembled monolayer (SAM) consisting of a mixture of organic molecules, (3-aminopropyl)-triethoxysilane and (3-glycidyloxypropyl)-trimethoxysilane. By varying the ratio of these molecules, we are able to tune the cell density and live/dead ratios of rat cortical neurons cultured directly on the mixed SAM as well as neurons cultured on protein-coated SAMs. Furthermore, the use of the SAM leads to a significant improvement in cell-chip communications. Action potential signals of up to 9.4 ± 0.6 mV (signal-to-noise ratio up to 47) are obtained for HL-1 cells on microelectrode arrays. Finally, we demonstrate that the SAMs facilitate a reusability of the samples for all cell experiments with little re-processing.

  8. Iron-Based Amorphous Coatings Produced by HVOF Thermal Spray Processing-Coating Structure and Properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beardsley, M B

    2008-03-26

    The feasibility to coat large SNF/HLW containers with a structurally amorphous material (SAM) was demonstrated on sub-scale models fabricated from Type 316L stainless steel. The sub-scale model were coated with SAM 1651 material using kerosene high velocity oxygen fuel (HVOF) torch to thicknesses ranging from 1 mm to 2 mm. The process parameters such as standoff distance, oxygen flow, and kerosene flow, were optimized in order to improve the corrosion properties of the coatings. Testing in an electrochemical cell and long-term exposure to a salt spray environment were used to guide the selection of process parameters.

  9. DOE-DARPA High-Performance Corrosion-Resistant Materials (HPCRM), Annual HPCRM Team Meeting & Technical Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farmer, J; Brown, B; Bayles, B

    The overall goal is to develop high-performance corrosion-resistant iron-based amorphous-metal coatings for prolonged trouble-free use in very aggressive environments: seawater & hot geothermal brines. The specific technical objectives are: (1) Synthesize Fe-based amorphous-metal coating with corrosion resistance comparable/superior to Ni-based Alloy C-22; (2) Establish processing parameter windows for applying and controlling coating attributes (porosity, density, bonding); (3) Assess possible cost savings through substitution of Fe-based material for more expensive Ni-based Alloy C-22; (4) Demonstrate practical fabrication processes; (5) Produce quality materials and data with complete traceability for nuclear applications; and (6) Develop, validate and calibrate computational models to enable lifemore » prediction and process design.« less

  10. Specific Eph receptor-cytoplasmic effector signaling mediated by SAM-SAM domain interactions.

    PubMed

    Wang, Yue; Shang, Yuan; Li, Jianchao; Chen, Weidi; Li, Gang; Wan, Jun; Liu, Wei; Zhang, Mingjie

    2018-05-11

    The Eph receptor tyrosine kinase (RTK) family is the largest subfamily of RTKs playing critical roles in many developmental processes such as tissue patterning, neurogenesis and neuronal circuit formation, angiogenesis, etc. How the 14 Eph proteins, via their highly similar cytoplasmic domains, can transmit diverse and sometimes opposite cellular signals upon engaging ephrins is a major unresolved question. Here we systematically investigated the bindings of each SAM domain of Eph receptors to the SAM domains from SHIP2 and Odin, and uncover a highly specific SAM-SAM interaction-mediated cytoplasmic Eph-effector binding pattern. Comparative X-ray crystallographic studies of several SAM-SAM heterodimer complexes, together with biochemical and cell biology experiments, not only revealed the exquisite specificity code governing Eph/effector interactions but also allowed us to identify SAMD5 as a new Eph binding partner. Finally, these Eph/effector SAM heterodimer structures can explain many Eph SAM mutations identified in patients suffering from cancers and other diseases. © 2018, Wang et al.

  11. SAM/SAH Analogs as Versatile Tools for SAM-Dependent Methyltransferases.

    PubMed

    Zhang, Jing; Zheng, Yujun George

    2016-03-18

    S-Adenosyl-L-methionine (SAM) is a sulfonium molecule with a structural hybrid of methionine and adenosine. As the second largest cofactor in the human body, its major function is to serve as methyl donor for SAM-dependent methyltransferases (MTases). The resultant transmethylation of biomolecules constitutes a significant biochemical mechanism in epigenetic regulation, cellular signaling, and metabolite degradation. Recently, numerous SAM analogs have been developed as synthetic cofactors to transfer the activated groups on MTase substrates for downstream ligation and identification. Meanwhile, new compounds built upon or derived from the SAM scaffold have been designed and tested as selective inhibitors for important MTase targets. Here, we summarized the recent development and application of SAM analogs as chemical biology tools for MTases.

  12. Control of hydroxyapatite coating by self-assembled monolayers on titanium and improvement of osteoblast adhesion.

    PubMed

    Shen, Juan; Qi, Yongcheng; Jin, Bo; Wang, Xiaoyan; Hu, Yamin; Jiang, Qiying

    2017-01-01

    Self-assembly technique was applied to introduce functional groups and form hydroxyl-, amine-, and carboxyl-terminal self-assembled monolayers (SAMs). The SAMs were grafted onto titanium substrates to obtain a molecularly smooth functional surface. Subsequent hydrothermal crystal growth formed homogeneous and crack-free crystalline hydroxyapatite (HA) coatings on these substrates. AFM and XPS were used to characterize the SAM surfaces, and XRD, SEM, and TEM were used to characterize the HA coatings. Results show that highly crystalline, dense, and oriented HA coatings can be formed on the OH-, NH 2 -, and COOH-SAM surfaces. The SAM surface with -COOH exhibited stronger nucleating ability than that with -OH and -NH 2 . The nucleation and growth processes of HA coatings were effectively controlled by varying reaction time, pH, and temperature. By using this method, highly crystalline, dense, and adherent HA coatings were obtained. In addition, in vitro cell evaluation demonstrated that HA coatings improved cell adhesion as compared with pristine titanium substrate. The proposed method is considerably effective in introducing the HA coatings on titanium surfaces for various biomedical applications and further usage in other industries. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 124-135, 2017. © 2015 Wiley Periodicals, Inc.

  13. Common themes and differences in SAM recognition among SAM riboswitches

    PubMed Central

    Price, Ian R.; Grigg, Jason C.; Ke, Ailong

    2014-01-01

    The recent discovery of short cis-acting RNA elements termed riboswitches has caused a paradigm shift in our understanding of genetic regulatory mechanisms. The three distinct superfamilies of S-adenosyl-L-methionine (SAM) riboswitches are the most commonly found riboswitch classes in nature. These RNAs represent three independent evolutionary solutions to achieve specific SAM recognition. This review summarizes research on 1) modes of gene regulatory mechanisms, 2) common themes and differences in ligand recognition, and 3) ligand-induced conformational dynamics among SAM riboswitch families. The body of work on the SAM riboswitch families constitutes a useful primer to the topic of gene regulatory RNAs as a whole. PMID:24863160

  14. Selective Plasma Deposition of Fluorocarbon Films on SAMs

    NASA Technical Reports Server (NTRS)

    Crain, Mark M., III; Walsh, Kevin M.; Cohn, Robert W.

    2006-01-01

    A dry plasma process has been demonstrated to be useful for the selective modification of self-assembled monolayers (SAMs) of alkanethiolates. These SAMs are used, during the fabrication of semiconductor electronic devices, as etch masks on gold layers that are destined to be patterned and incorporated into the devices. The selective modification involves the formation of fluorocarbon films that render the SAMs more effective in protecting the masked areas of the gold against etching by a potassium iodide (KI) solution. This modification can be utilized, not only in the fabrication of single electronic devices but also in the fabrication of integrated circuits, microelectromechanical systems, and circuit boards. In the steps that precede the dry plasma process, a silicon mold in the desired pattern is fabricated by standard photolithographic techniques. A stamp is then made by casting polydimethylsiloxane (commonly known as silicone rubber) in the mold. The stamp is coated with an alkanethiol solution, then the stamp is pressed on the gold layer of a device to be fabricated in order to deposit the alkanethiol to form an alkanethiolate SAM in the desired pattern (see figure). Next, the workpiece is exposed to a radio-frequency plasma generated from a mixture of CF4 and H2 gases. After this plasma treatment, the SAM is found to be modified, while the exposed areas of gold remain unchanged. This dry plasma process offers the potential for forming masks superior to those formed in a prior wet etching process. Among the advantages over the wet etching process are greater selectivity, fewer pin holes in the masks, and less nonuniformity of the masks. The fluorocarbon films formed in this way may also be useful as intermediate layers for subsequent fabrication steps and as dielectric layers to be incorporated into finished products.

  15. Tribological Effects on DNA Translocation in a Nanochannel Coated with a Self-Assembled Monolayer

    PubMed Central

    Luan, Binquan; Afzali, Ali; Harrer, Stefan; Peng, Hongbo; Waggoner, Philip; Polonsky, Stas; Stolovitzky, Gustavo; Martyna, Glenn

    2010-01-01

    A biomimetic nanochannel coated with a self-assembled monolayer (SAM) can be used for sensing and analyzing biomolecules. The interaction between a transported biomolecule and a SAM governs the mechanically or electrically driven motion of the molecule. To investigate the translocation dynamics of a biomolecule, we performed all-atom molecular dynamics simulations on a single-stranded DNA in a solid-state nanochannel coated with a SAM that consists of octane or octanol polymers. Simulation results demonstrate that the interaction between DNA and a hydrophobic or a hydrophilic SAM is effectively repulsive or adhesive, respectively, resulting in different translocation dynamics of DNA. Therefore, with proper designs of SAMs coated on a channel surface, it is possible to control the translocation dynamics of a biomolecule. This work also demonstrates that traditional tribology methods can be deployed to study a biological or bio-mimetic transport process. PMID:21128651

  16. Sam37 is crucial for formation of the mitochondrial TOM-SAM supercomplex, thereby promoting β-barrel biogenesis.

    PubMed

    Wenz, Lena-Sophie; Ellenrieder, Lars; Qiu, Jian; Bohnert, Maria; Zufall, Nicole; van der Laan, Martin; Pfanner, Nikolaus; Wiedemann, Nils; Becker, Thomas

    2015-09-28

    Biogenesis of mitochondrial β-barrel proteins requires two preprotein translocases, the general translocase of the outer membrane (TOM) and the sorting and assembly machinery (SAM). TOM and SAM form a supercomplex that promotes transfer of β-barrel precursors. The SAM core complex contains the channel protein Sam50, which cooperates with Sam35 in precursor recognition, and the peripheral membrane protein Sam37. The molecular function of Sam37 has been unknown. We report that Sam37 is crucial for formation of the TOM-SAM supercomplex. Sam37 interacts with the receptor domain of Tom22 on the cytosolic side of the mitochondrial outer membrane and links TOM and SAM complexes. Sam37 thus promotes efficient transfer of β-barrel precursors to the SAM complex. We conclude that Sam37 functions as a coupling factor of the translocase supercomplex of the mitochondrial outer membrane. © 2015 Wenz et al.

  17. Common themes and differences in SAM recognition among SAM riboswitches.

    PubMed

    Price, Ian R; Grigg, Jason C; Ke, Ailong

    2014-10-01

    The recent discovery of short cis-acting RNA elements termed riboswitches has caused a paradigm shift in our understanding of genetic regulatory mechanisms. The three distinct superfamilies of S-adenosyl-l-methionine (SAM) riboswitches are the most commonly found riboswitch classes in nature. These RNAs represent three independent evolutionary solutions to achieve specific SAM recognition. This review summarizes research on 1) modes of gene regulatory mechanisms, 2) common themes and differences in ligand recognition, and 3) ligand-induced conformational dynamics among SAM riboswitch families. The body of work on the SAM riboswitch families constitutes a useful primer to the topic of gene regulatory RNAs as a whole. This article is part of a Special Issue entitled: Riboswitches. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. SAM Companion Documents

    EPA Pesticide Factsheets

    SAM Companion Documents and Sample Collection Procedures provide information intended to complement the analytical methods listed in Selected Analytical Methods for Environmental Remediation and Recovery (SAM).

  19. SAM-VI RNAs selectively bind S-adenosylmethionine and exhibit similarities to SAM-III riboswitches.

    PubMed

    Mirihana Arachchilage, Gayan; Sherlock, Madeline E; Weinberg, Zasha; Breaker, Ronald R

    2018-03-04

    Five distinct riboswitch classes that regulate gene expression in response to the cofactor S-adenosylmethionine (SAM) or its metabolic breakdown product S-adenosylhomocysteine (SAH) have been reported previously. Collectively, these SAM- or SAH-sensing RNAs constitute the most abundant collection of riboswitches, and are found in nearly every major bacterial lineage. Here, we report a potential sixth member of this pervasive riboswitch family, called SAM-VI, which is predominantly found in Bifidobacterium species. SAM-VI aptamers selectively bind the cofactor SAM and strongly discriminate against SAH. The consensus sequence and structural model for SAM-VI share some features with the consensus model for the SAM-III riboswitch class, whose members are mainly found in lactic acid bacteria. However, there are sufficient differences between the two classes such that current bioinformatics methods separately cluster representatives of the two motifs. These findings highlight the abundance of RNA structures that can form to selectively recognize SAM, and showcase the ability of RNA to utilize diverse strategies to perform similar biological functions.

  20. SAM Photovoltaic Model Technical Reference

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilman, P.

    2015-05-27

    This manual describes the photovoltaic performance model in the System Advisor Model (SAM). The U.S. Department of Energy’s National Renewable Energy Laboratory maintains and distributes SAM, which is available as a free download from https://sam.nrel.gov. These descriptions are based on SAM 2015.1.30 (SSC 41).

  1. The SAM Suite

    NASA Image and Video Library

    2013-04-08

    This illustration shows the instruments and subsystems of the Sample Analysis at Mars SAM suite on the Curiosity Rover of NASA Mars Science Laboratory Project. SAM analyzes the gases in the Martian atmosphere.

  2. Expanding Radical SAM Chemistry by Using Radical Addition Reactions and SAM Analogues.

    PubMed

    Ji, Xinjian; Li, Yongzhen; Xie, Liqi; Lu, Haojie; Ding, Wei; Zhang, Qi

    2016-09-19

    Radical S-adenosyl-l-methionine (SAM) enzymes utilize a [4Fe-4S] cluster to bind SAM and reductively cleave its carbon-sulfur bond to produce a highly reactive 5'-deoxyadenosyl (dAdo) radical. In almost all cases, the dAdo radical abstracts a hydrogen atom from the substrates or from enzymes, thereby initiating a highly diverse array of reactions. Herein, we report a change of the dAdo radical-based chemistry from hydrogen abstraction to radical addition in the reaction of the radical SAM enzyme NosL. This change was achieved by using a substrate analogue containing an olefin moiety. We also showed that two SAM analogues containing different nucleoside functionalities initiate the radical-based reactions with high efficiencies. The radical adduct with the olefin produced in the reaction was found to undergo two divergent reactions, and the mechanistic insights into this process were investigated in detail. Our study demonstrates a promising strategy in expanding radical SAM chemistry, providing an effective way to access nucleoside-containing compounds by using radical SAM-dependent reactions. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Peptide Fragments of Odin-Sam1: Conformational Analysis and Interaction Studies with EphA2-Sam.

    PubMed

    Mercurio, Flavia A; Di Natale, Concetta; Pirone, Luciano; Scognamiglio, Pasqualina L; Marasco, Daniela; Pedone, Emilia M; Saviano, Michele; Leone, Marilisa

    2015-07-27

    Odin is a protein belonging to the ANKS family, and has two tandem Sam domains. The first, Odin-Sam1, binds to the Sam domain of the EphA2 receptor (EphA2-Sam); this interaction could be crucial for the regulation of receptor endocytosis and might have an impact on cancer. Odin-Sam1 associates with EphA2-Sam by adopting a "mid-loop/end-helix" model. In this study three peptide sequences, encompassing the mid-loop interacting portion of Odin-Sam1 and its C-terminal α5 helix, were designed. Their conformational properties were analyzed by CD and NMR. In addition, their abilities to interact with EphA2-Sam were investigated by SPR studies. The peptides adopt a predominantly disordered state in aqueous buffer, but a higher helical content is evident in the presence of the cosolvent trifluoroethanol. Dissociation constants towards EphA2-Sam were in the high micromolar range. The structural findings suggest further routes for the design of potential anti-cancer therapeutics as inhibitors of EphA2-Sam heterotypic interactions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Absence of molecular slip on ultraclean and SAM-coated surfaces

    NASA Astrophysics Data System (ADS)

    Pye, Justin; Wood, Clay; Burton, Justin

    2016-11-01

    The liquid/solid boundary condition is a complex problem that is becoming increasingly important for the development of nanoscale fluidic devices. Many groups have now measured slip near an interface at nanoscale dimensions using a variety of experimental techniques. In simple systems, large slip lengths are generally measured for non-wetting liquid/solid combinations, but many conflicting measurements and interpretations remain. We have developed a novel pseudo-differential technique using a quartz crystal microbalance (QCM) to measure slip lengths on various surfaces. A drop of one liquid is grown on the QCM in the presence of a second, ambient liquid. We have isolated any anomalous boundary effects such as interfacial slip by choosing two liquids which have identical bulk effects on the QCM frequency and dissipation in the presence of no-slip. Slip lengths are -less than 2 nm- for water (relative to undecane) on all surfaces measured, including plasma cleaned gold, SiO2, and two different self assembled monolayers (SAMs), regardless of contact angle. We also find that surface cleanliness is crucial to accurately measure slip lengths. Additionally, clean glass substrates appear to have a significant adsorbed water layer and SAM surfaces show excess dissipation, possibly associated with contact line motion. In addition to investigating other liquid pairs, future work will include extending this technique to surfaces with independently controllable chemistry and roughness, both of which are known to strongly affect interfacial hydrodynamics.

  5. SAM-based Cell Transfer to Photopatterned Hydrogels for Microengineering Vascular-Like Structures

    PubMed Central

    Sadr, Nasser; Zhu, Mojun; Osaki, Tatsuya; Kakegawa, Takahiro; Yang, Yunzhi; Moretti, Matteo; Fukuda, Junji; Khademhosseini, Ali

    2011-01-01

    A major challenge in tissue engineering is to reproduce the native 3D microvascular architecture fundamental for in vivo functions. Current approaches still lack a network of perfusable vessels with native 3D structural organization. Here we present a new method combining self-assembled monolayer (SAM)-based cell transfer and gelatin methacrylate hydrogel photopatterning techniques for microengineering vascular structures. Human umbilical vein cell (HUVEC) transfer from oligopeptide SAM-coated surfaces to the hydrogel revealed two SAM desorption mechanisms: photoinduced and electrochemically triggered. The former, occurs concomitantly to hydrogel photocrosslinking, and resulted in efficient (>97%) monolayer transfer. The latter, prompted by additional potential application, preserved cell morphology and maintained high transfer efficiency of VE-cadherin positive monolayers over longer culture periods. This approach was also applied to transfer HUVECs to 3D geometrically defined vascular-like structures in hydrogels, which were then maintained in perfusion culture for 15 days. As a step toward more complex constructs, a cell-laden hydrogel layer was photopatterned around the endothelialized channel to mimic the vascular smooth muscle structure of distal arterioles. This study shows that the coupling of the SAM-based cell transfer and hydrogel photocrosslinking could potentially open up new avenues in engineering more complex, vascularized tissue constructs for regenerative medicine and tissue engineering applications. PMID:21802723

  6. Characterization of self-assembled monolayers (SAMs) on silicon substrate comparative with polymer substrate for Escherichia coli O157:H7 detection

    NASA Astrophysics Data System (ADS)

    Moldovan, Carmen; Mihailescu, Carmen; Stan, Dana; Ruta, Lavinia; Iosub, Rodica; Gavrila, Raluca; Purica, Munizer; Vasilica, Schiopu

    2009-08-01

    This article presents the characterization of two substrates, silicon and polymer coated with gold, that are functionalized by mixed self-assembled monolayers (SAMs) in order to efficiently immobilize the anti- Escherichia coli O157:H7 polyclonal purified antibody. A biosurface functionalized by SAMs (self-assembled monolayers) technique has been developed. Immobilization of goat anti- E. coli O157:H7 antibody was performed by covalently bonding of thiolate mixed self-assembled monolayers (SAMs) realized on two substrates: polymer coated with gold and silicon coated with gold. The F(ab') 2 fragments of the antibodies have been used for eliminating nonspecific bindings between the Fc portions of antibodies and the Fc receptor on cells. The properties of the monolayers and the biofilm formatted with attached antibody molecules were analyzed at each step using infrared spectroscopy (FTIR-ATR), atomic force microscopy (AFM), scanning electron microscopy (SEM) and cyclic voltammetry (CV). In our study the gold-coated silicon substrates approach yielded the best results. These experimental results revealed the necessity to investigate each stage of the immobilization process taking into account in the same time the factors that influence the chemistry of the surface and the further interactions as well and also provide a solid basis for further studies aiming at elaborating sensitive and specific immunosensor or a microarray for the detection of E. coli O157:H7.

  7. Human polyhomeotic homolog 3 (PHC3) sterile alpha motif (SAM) linker allows open-ended polymerization of PHC3 SAM.

    PubMed

    Robinson, Angela K; Leal, Belinda Z; Nanyes, David R; Kaur, Yogeet; Ilangovan, Udayar; Schirf, Virgil; Hinck, Andrew P; Demeler, Borries; Kim, Chongwoo A

    2012-07-10

    Sterile alpha motifs (SAMs) are frequently found in eukaryotic genomes. An intriguing property of many SAMs is their ability to self-associate, forming an open-ended polymer structure whose formation has been shown to be essential for the function of the protein. What remains largely unresolved is how polymerization is controlled. Previously, we had determined that the stretch of unstructured residues N-terminal to the SAM of a Drosophila protein called polyhomeotic (Ph), a member of the polycomb group (PcG) of gene silencers, plays a key role in controlling Ph SAM polymerization. Ph SAM with its native linker created shorter polymers compared to Ph SAM attached to either a random linker or no linker. Here, we show that the SAM linker for the human Ph ortholog, polyhomeotic homolog 3 (PHC3), also controls PHC3 SAM polymerization but does so in the opposite fashion. PHC3 SAM with its native linker allows longer polymers to form compared to when attached to a random linker. Attaching the PHC3 SAM linker to Ph SAM also resulted in extending Ph SAM polymerization. Moreover, in the context of full-length Ph protein, replacing the SAM linker with PHC3 SAM linker, intended to create longer polymers, resulted in greater repressive ability for the chimera compared to wild-type Ph. These findings show that polymeric SAM linkers evolved to modulate a wide dynamic range of SAM polymerization abilities and suggest that rationally manipulating the function of SAM containing proteins through controlling their SAM polymerization may be possible.

  8. Crystal structures of the SAM-III/SMK riboswitch reveal the SAM-dependent translation inhibition mechanism

    PubMed Central

    Lu, Changrui; Smith, Angela M; Fuchs, Ryan T; Ding, Fang; Rajashankar, Kanagalaghatta; Henkin, Tina M; Ke, Ailong

    2011-01-01

    Three distinct classes of S-adenosyl-l-methionine (SAM)-responsive riboswitches have been identified that regulate bacterial gene expression at the levels of transcription attenuation or translation inhibition. The SMK box (SAM-III) translational riboswitch has been identified in the SAM synthetase gene in members of the Lactobacillales. Here we report the 2.2-Å crystal structure of the Enterococcus faecalis SMK box riboswitch. The Y-shaped riboswitch organizes its conserved nucleotides around a three-way junction for SAM recognition. The Shine-Dalgarno sequence, which is sequestered by base-pairing with the anti–Shine-Dalgarno sequence in response to SAM binding, also directly participates in SAM recognition. The riboswitch makes extensive interactions with the adenosine and sulfonium moieties of SAM but does not appear to recognize the tail of the methionine moiety. We captured a structural snapshot of the SMK box riboswitch sampling the near-cognate ligand S-adenosyl-l-homocysteine (SAH) in which SAH was found to adopt an alternative conformation and fails to make several key interactions. PMID:18806797

  9. The Sam-Sam interaction between Ship2 and the EphA2 receptor: design and analysis of peptide inhibitors.

    PubMed

    Mercurio, Flavia Anna; Di Natale, Concetta; Pirone, Luciano; Iannitti, Roberta; Marasco, Daniela; Pedone, Emilia Maria; Palumbo, Rosanna; Leone, Marilisa

    2017-12-12

    The lipid phosphatase Ship2 represents a drug discovery target for the treatment of different diseases, including cancer. Its C-terminal sterile alpha motif domain (Ship2-Sam) associates with the Sam domain from the EphA2 receptor (EphA2-Sam). This interaction is expected to mainly induce pro-oncogenic effects in cells therefore, inhibition of the Ship2-Sam/EphA2-Sam complex may represent an innovative route to discover anti-cancer therapeutics. In the present work, we designed and analyzed several peptide sequences encompassing the interaction interface of EphA2-Sam for Ship2-Sam. Peptide conformational analyses and interaction assays with Ship2-Sam conducted through diverse techniques (CD, NMR, SPR and MST), identified a positively charged penta-amino acid native motif in EphA2-Sam, that once repeated three times in tandem, binds Ship2-Sam. NMR experiments show that the peptide targets the negatively charged binding site of Ship2-Sam for EphA2-Sam. Preliminary in vitro cell-based assays indicate that -at 50 µM concentration- it induces necrosis of PC-3 prostate cancer cells with more cytotoxic effect on cancer cells than on normal dermal fibroblasts. This work represents a pioneering study that opens further opportunities for the development of inhibitors of the Ship2-Sam/EphA2-Sam complex for therapeutic applications.

  10. Expanding the Chemistry of the Class C Radical SAM Methyltransferase NosN by Using an Allyl Analogue of SAM.

    PubMed

    Ji, Xinjian; Mandalapu, Dhanaraju; Cheng, Jinduo; Ding, Wei; Zhang, Qi

    2018-03-30

    The radical S-adenosylmethionine (SAM) superfamily enzymes cleave SAM reductively to generate a highly reactive 5'-deoxyadenosyl (dAdo) radical, which initiates remarkably diverse reactions. Unlike most radical SAM enzymes, the class C radical SAM methyltransferase NosN binds two SAMs in the active site, using one SAM to produce a dAdo radical and the second as a methyl donor. Here, we report a mechanistic investigation of NosN in which an allyl analogue of SAM (allyl-SAM) was used. We show that NosN cleaves allyl-SAM efficiently and the resulting dAdo radical can be captured by the olefin moieties of allyl-SAM or 5'-allylthioadenosine (ATA), the latter being a derivative of allyl-SAM. Remarkably, we found that NosN produced two distinct sets of products in the presence and absence of the methyl acceptor substrate, thus suggesting substrate-triggered production of ATA from allyl-SAM. We also show that NosN produces S-adenosylhomocysteine from 5'-thioadenosine and homoserine lactone. These results support the idea that 5'-methylthioadenosine is the direct methyl donor in NosN reactions, and demonstrate great potential to modulate radical SAM enzymes for novel catalytic activities. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. SAMS-II Requirements and Operations

    NASA Technical Reports Server (NTRS)

    Wald, Lawrence W.

    1998-01-01

    The Space Acceleration Measurements System (SAMS) II is the primary instrument for the measurement, storage, and communication of the microgravity environment aboard the International Space Station (ISS). SAMS-II is being developed by the NASA Lewis Research Center Microgravity Science Division to primarily support the Office of Life and Microgravity Science and Applications (OLMSA) Microgravity Science and Applications Division (MSAD) payloads aboard the ISS. The SAMS-II is currently in the test and verification phase at NASA LeRC, prior to its first hardware delivery scheduled for July 1998. This paper will provide an overview of the SAMS-II instrument, including the system requirements and topology, physical and electrical characteristics, and the Concept of Operations for SAMS-II aboard the ISS.

  12. CSAM: Compressed SAM format.

    PubMed

    Cánovas, Rodrigo; Moffat, Alistair; Turpin, Andrew

    2016-12-15

    Next generation sequencing machines produce vast amounts of genomic data. For the data to be useful, it is essential that it can be stored and manipulated efficiently. This work responds to the combined challenge of compressing genomic data, while providing fast access to regions of interest, without necessitating decompression of whole files. We describe CSAM (Compressed SAM format), a compression approach offering lossless and lossy compression for SAM files. The structures and techniques proposed are suitable for representing SAM files, as well as supporting fast access to the compressed information. They generate more compact lossless representations than BAM, which is currently the preferred lossless compressed SAM-equivalent format; and are self-contained, that is, they do not depend on any external resources to compress or decompress SAM files. An implementation is available at https://github.com/rcanovas/libCSAM CONTACT: canovas-ba@lirmm.frSupplementary Information: Supplementary data is available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  13. SAM Theory Manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Rui

    The System Analysis Module (SAM) is an advanced and modern system analysis tool being developed at Argonne National Laboratory under the U.S. DOE Office of Nuclear Energy’s Nuclear Energy Advanced Modeling and Simulation (NEAMS) program. SAM development aims for advances in physical modeling, numerical methods, and software engineering to enhance its user experience and usability for reactor transient analyses. To facilitate the code development, SAM utilizes an object-oriented application framework (MOOSE), and its underlying meshing and finite-element library (libMesh) and linear and non-linear solvers (PETSc), to leverage modern advanced software environments and numerical methods. SAM focuses on modeling advanced reactormore » concepts such as SFRs (sodium fast reactors), LFRs (lead-cooled fast reactors), and FHRs (fluoride-salt-cooled high temperature reactors) or MSRs (molten salt reactors). These advanced concepts are distinguished from light-water reactors in their use of single-phase, low-pressure, high-temperature, and low Prandtl number (sodium and lead) coolants. As a new code development, the initial effort has been focused on modeling and simulation capabilities of heat transfer and single-phase fluid dynamics responses in Sodium-cooled Fast Reactor (SFR) systems. The system-level simulation capabilities of fluid flow and heat transfer in general engineering systems and typical SFRs have been verified and validated. This document provides the theoretical and technical basis of the code to help users understand the underlying physical models (such as governing equations, closure models, and component models), system modeling approaches, numerical discretization and solution methods, and the overall capabilities in SAM. As the code is still under ongoing development, this SAM Theory Manual will be updated periodically to keep it consistent with the state of the development.« less

  14. SAM-based cell transfer to photopatterned hydrogels for microengineering vascular-like structures.

    PubMed

    Sadr, Nasser; Zhu, Mojun; Osaki, Tatsuya; Kakegawa, Takahiro; Yang, Yunzhi; Moretti, Matteo; Fukuda, Junji; Khademhosseini, Ali

    2011-10-01

    A major challenge in tissue engineering is to reproduce the native 3D microvascular architecture fundamental for in vivo functions. Current approaches still lack a network of perfusable vessels with native 3D structural organization. Here we present a new method combining self-assembled monolayer (SAM)-based cell transfer and gelatin methacrylate hydrogel photopatterning techniques for microengineering vascular structures. Human umbilical vein cell (HUVEC) transfer from oligopeptide SAM-coated surfaces to the hydrogel revealed two SAM desorption mechanisms: photoinduced and electrochemically triggered. The former, occurs concomitantly to hydrogel photocrosslinking, and resulted in efficient (>97%) monolayer transfer. The latter, prompted by additional potential application, preserved cell morphology and maintained high transfer efficiency of VE-cadherin positive monolayers over longer culture periods. This approach was also applied to transfer HUVECs to 3D geometrically defined vascular-like structures in hydrogels, which were then maintained in perfusion culture for 15 days. As a step toward more complex constructs, a cell-laden hydrogel layer was photopatterned around the endothelialized channel to mimic the vascular smooth muscle structure of distal arterioles. This study shows that the coupling of the SAM-based cell transfer and hydrogel photocrosslinking could potentially open up new avenues in engineering more complex, vascularized tissue constructs for regenerative medicine and tissue engineering applications. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. SAM Photovoltaic Model Technical Reference 2016 Update

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilman, Paul; DiOrio, Nicholas A; Freeman, Janine M

    This manual describes the photovoltaic performance model in the System Advisor Model (SAM) software, Version 2016.3.14 Revision 4 (SSC Version 160). It is an update to the 2015 edition of the manual, which describes the photovoltaic model in SAM 2015.1.30 (SSC 41). This new edition includes corrections of errors in the 2015 edition and descriptions of new features introduced in SAM 2016.3.14, including: 3D shade calculator Battery storage model DC power optimizer loss inputs Snow loss model Plane-of-array irradiance input from weather file option Support for sub-hourly simulations Self-shading works with all four subarrays, and uses same algorithm for fixedmore » arrays and one-axis tracking Linear self-shading algorithm for thin-film modules Loss percentages replace derate factors. The photovoltaic performance model is one of the modules in the SAM Simulation Core (SSC), which is part of both SAM and the SAM SDK. SAM is a user-friedly desktop application for analysis of renewable energy projects. The SAM SDK (Software Development Kit) is for developers writing their own renewable energy analysis software based on SSC. This manual is written for users of both SAM and the SAM SDK wanting to learn more about the details of SAM's photovoltaic model.« less

  16. Crystal structures of the SAM-III/S[subscript MK] riboswitch reveal the SAM-dependent translation inhibition mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, C.; Smith, A.M.; Fuchs, R.T.

    2010-01-07

    Three distinct classes of S-adenosyl-L-methionine (SAM)-responsive riboswitches have been identified that regulate bacterial gene expression at the levels of transcription attenuation or translation inhibition. The SMK box (SAM-III) translational riboswitch has been identified in the SAM synthetase gene in members of the Lactobacillales. Here we report the 2.2-{angstrom} crystal structure of the Enterococcus faecalis SMK box riboswitch. The Y-shaped riboswitch organizes its conserved nucleotides around a three-way junction for SAM recognition. The Shine-Dalgarno sequence, which is sequestered by base-pairing with the anti-Shine-Dalgarno sequence in response to SAM binding, also directly participates in SAM recognition. The riboswitch makes extensive interactions withmore » the adenosine and sulfonium moieties of SAM but does not appear to recognize the tail of the methionine moiety. We captured a structural snapshot of the SMK box riboswitch sampling the near-cognate ligand S-adenosyl-L-homocysteine (SAH) in which SAH was found to adopt an alternative conformation and fails to make several key interactions.« less

  17. Redox Behavior of the S-Adenosylmethionine (SAM)-Binding Fe-S Cluster in Methylthiotransferase RimO, toward Understanding Dual SAM Activity.

    PubMed

    Molle, Thibaut; Moreau, Yohann; Clemancey, Martin; Forouhar, Farhad; Ravanat, Jean-Luc; Duraffourg, Nicolas; Fourmond, Vincent; Latour, Jean-Marc; Gambarelli, Serge; Mulliez, Etienne; Atta, Mohamed

    2016-10-18

    RimO, a radical-S-adenosylmethionine (SAM) enzyme, catalyzes the specific C 3 methylthiolation of the D89 residue in the ribosomal S 12 protein. Two intact iron-sulfur clusters and two SAM cofactors both are required for catalysis. By using electron paramagnetic resonance, Mössbauer spectroscopies, and site-directed mutagenesis, we show how two SAM molecules sequentially bind to the unique iron site of the radical-SAM cluster for two distinct chemical reactions in RimO. Our data establish that the two SAM molecules bind the radical-SAM cluster to the unique iron site, and spectroscopic evidence obtained under strongly reducing conditions supports a mechanism in which the first molecule of SAM causes the reoxidation of the reduced radical-SAM cluster, impeding reductive cleavage of SAM to occur and allowing SAM to methylate a HS - ligand bound to the additional cluster. Furthermore, by using density functional theory-based methods, we provide a description of the reaction mechanism that predicts the attack of the carbon radical substrate on the methylthio group attached to the additional [4Fe-4S] cluster.

  18. Evaluating SAMS in Hong Kong Schools.

    ERIC Educational Resources Information Center

    Kwok, Lam-for; Lau, Chi-kuen; Fung, Sun-wai

    1999-01-01

    Describes the School Administration and Management Systems (SAMS) that was developed to support elementary and secondary schools in Hong Kong in administrative and managerial tasks. Reports results of a survey that investigated the impact of SAMS, evaluated its effectiveness, and identified possible areas of improvement to SAMS operation.…

  19. SAM in a Nutshell.

    ERIC Educational Resources Information Center

    Givens, Larry R.

    2000-01-01

    Explains what the Association of Higher Education Facilities Officers' Strategic Assessment Model (SAM) is and how to use it to achieve organizational excellence through continuous improvement. Showing features of both the Malcolm Baldrige programs and the Balanced Scorecard, the SAM components are described along with an explanation of the four…

  20. Carbohydrate-protein interactions investigated on plastic chips statically coated with hydrophobically modified hydroxyethylcellulose.

    PubMed

    Dang, Fuquan; Maeda, Eiki; Osafune, Tomo; Nakajima, Kazuki; Kakehi, Kazuaki; Ishikawa, Mitsuru; Baba, Yoshinobu

    2009-12-15

    We developed a novel method for rapid screening of carbohydrate-protein interactions using poly(methyl methacrylate) (PMMA) channels statically coated with hydrophobically modified hydroxyethylcellulose (HM-HEC). We found that a self-assembled monolayer (SAM) of HM-HEC on a PMMA surface intact by water allows rapid and reproducible separations of glycan samples using a 20 mM phosphate without HM-HEC. The underlying mechanism for dynamic and static coatings on the PMMA surface is discussed. Simultaneous analysis of the molecular interaction between a complex mixture of carbohydrates from alpha1-acid glycoprotein and proteins has been successfully achieved in PMMA channels statically coated with a SAM of HM-HEC.

  1. Variable sequences outside the SAM-binding core critically influence the conformational dynamics of the SAM-III/SMK box riboswitch

    PubMed Central

    Lu, Changrui; Smith, Angela M; Ding, Fang; Chowdhury, Anirban; Henkin, Tina M; Ke, Ailong

    2012-01-01

    The SMK box (SAM-III) translational riboswitches were identified in S-adenosyl-L-methionine (SAM) synthetase metK genes in members of the Lactobacillales. This riboswitch switches between two alternative conformations in response to the intracellular SAM concentration and controls metK expression at the level of translation initiation. We previously reported the crystal structure of the SAM-bound SMK box riboswitch. In this study we combined SHAPE chemical probing with mutagenesis to probe the ligand-induced conformational switching mechanism. We revealed that while the majority of the apo SMK box RNA molecules exist in an alternatively base paired (ON) conformation, a subset of them pre-organize into a SAM-bound-like (READY) conformation, which upon SAM exposure is selectively stabilized into the SAM-bound (OFF) conformation through an induced-fit mechanism. Mutagenesis showed that the ON state is only slightly more stable than the READY state, as several single-nucleotide substitutions in a hypervariable region outside the SAM-binding core can alter the folding landscape to favor the READY state. Such SMK variants display a “constitutively-OFF” behavior both in vitro and in vivo. Time-resolved and temperature-dependent SHAPE analyses revealed adaptation of the SMK box RNA to its mesothermal working environment. The latter analysis revealed that the SAM-bound SMK box RNA follows a two-step folding/unfolding process. PMID:21549712

  2. SAM International Case Studies: DPV Analysis in Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCall, James D

    Presentation demonstrates the use of the System Advisor Model (SAM) in international analyses, specifically Mexico. Two analyses are discussed with relation to SAM modelling efforts: 1) Customer impacts from changes to net metering and billing agreements and 2) Potential benefits of PV for Mexican solar customers, the Mexican Treasury, and the environment. Along with the SAM analyses, integration of the International Utility Rate Database (I-URDB) with SAM and future international SAM work are discussed. Presentation was created for the International Solar Energy Society's (ISES) webinar titled 'International use of the NREL System Advisor Model (SAM) with case studies'.

  3. The SAM-responsive SMK box is a reversible riboswitch

    PubMed Central

    Smith, Angela M.; Fuchs, Ryan T.; Grundy, Frank J.; Henkin, Tina M.

    2010-01-01

    The SMK (SAM-III) box is an S-adenosylmethionine (SAM)-responsive riboswitch found in the 5′ untranslated region of metK genes, encoding SAM synthetase, in many members of the Lactobacillales. SAM binding causes a structural rearrangement in the RNA that sequesters the Shine-Dalgarno (SD) sequence by pairing with a complementary anti-SD (ASD) sequence; sequestration of the SD sequence inhibits binding of the 30S ribosomal subunit and prevents translation initiation. We observed a slight increase in the half-life of the metK transcript in vivo when Enterococcus faecalis cells were depleted for SAM, but no significant change in overall transcript abundance, consistent with the model that this riboswitch regulates at the level of translation initiation. The half-life of the SAM-SMK box RNA complex in vitro is shorter than that of the metK transcript in vivo, raising the possibility of reversible binding of SAM. We used a fluorescence assay to directly visualize reversible switching between the SAM-free and SAM-bound conformations. We propose that the SMK box riboswitch can make multiple SAM-dependent regulatory decisions during the lifetime of the transcript in vivo, acting as a reversible switch that allows the cell to respond rapidly to fluctuations in SAM pools by modulating expression of the SAM synthetase gene. PMID:21143313

  4. 78 FR 62627 - Sam Rayburn Dam Rate

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-22

    ..., Wholesale Rates for Hydro Power and Energy Sold to Sam Rayburn Dam Electric Cooperative, Inc. (Contract No... Schedule SRD-08, Wholesale Rates for Hydro Power and Energy Sold to Sam Rayburn Dam Electric Cooperative... ADMINISTRATION RATE SCHEDULE SRD-13 \\1\\ WHOLESALE RATES FOR HYDRO POWER AND ENERGY SOLD TO SAM RAYBURN DAM...

  5. SAM Team Celebrates Landing

    NASA Image and Video Library

    2012-11-30

    Who Should Be TIME's Person of the Year 2012? - The Mars Rover! VOTE here: ti.me/YxJU1i Caption - SAM Team celebrates a picture perfect landing! Pictured from left to rights: Mehdi Benna, Laurie Leshin, Chris Webster, Will Brinckerhoff, Paul Mahaffy, Pan Conrad, Florence Tan, and Jen Eigenbrode. Credit: NASA ----- The Curiosity rover bristles with multiple cameras and instruments, including Goddard's Sample Analysis at Mars (SAM) instrument suite. By looking for evidence of water, carbon, and other important building blocks of life in the Martian soil and atmosphere, SAM will help discover whether Mars ever had the potential to support life. Curiosity was delivered to Gale crater, a 96-mile-wide crater that contains a record of environmental changes in its sedimentary rock, in August 2012. Related links: www.nasa.gov/mission_pages/msl/index.html science.gsfc.nasa.gov/699/marsSAM.shtml mars.jpl.nasa.gov/msl/ NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  6. Multiple polymer architectures of human Polyhomeotic homolog 3 (PHC3) SAM

    PubMed Central

    Nanyes, David R.; Junco, Sarah E.; Taylor, Alexander B.; Robinson, Angela K.; Patterson, Nicolle L.; Shivarajpur, Ambika; Halloran, Jonathan; Hale, Seth M.; Kaur, Yogeet; Hart, P. John; Kim, Chongwoo A.

    2014-01-01

    The self-association of sterile alpha motifs (SAMs) into a helical polymer architecture is a critical functional component of many different and diverse array of proteins. For the Drosophila Polycomb group (PcG) protein Polyhomeotic (Ph), its SAM polymerization serves as the structural foundation to cluster multiple PcG complexes, helping to maintain a silenced chromatin state. Ph SAM shares 64% sequence identity with its human ortholog, PHC3 SAM, and both SAMs polymerize. However, in the context of their larger protein regions, PHC3 SAM forms longer polymers compared to Ph SAM. Motivated to establish the precise structural basis for the differences, if any, between Ph and PHC3 SAM, we determined the crystal structure of the PHC3 SAM polymer. PHC3 SAM utilizes the same SAM-SAM interaction as the Ph SAM six-fold repeat polymer. Yet, PHC3 SAM polymerizes utilizing just five SAMs per turn of the helical polymer rather than the typical six per turn observed for all SAM polymers reported to date. Structural analysis suggested that malleability of the PHC3 SAM would allow formation of not just the five-fold repeat structure but possibly others. Indeed, a second PHC3 SAM polymer in a different crystal form forms a six-fold repeat polymer. These results suggest that the polymers formed by PHC3 SAM, and likely others, are quite dynamic. The functional consequence of the variable PHC3 SAM polymers may be to create different chromatin architectures. PMID:25044168

  7. Structural basis for diversity in the SAM clan of riboswitches.

    PubMed

    Trausch, Jeremiah J; Xu, Zhenjiang; Edwards, Andrea L; Reyes, Francis E; Ross, Phillip E; Knight, Rob; Batey, Robert T

    2014-05-06

    In bacteria, sulfur metabolism is regulated in part by seven known families of riboswitches that bind S-adenosyl-l-methionine (SAM). Direct binding of SAM to these mRNA regulatory elements governs a downstream secondary structural switch that communicates with the transcriptional and/or translational expression machinery. The most widely distributed SAM-binding riboswitches belong to the SAM clan, comprising three families that share a common SAM-binding core but differ radically in their peripheral architecture. Although the structure of the SAM-I member of this clan has been extensively studied, how the alternative peripheral architecture of the other families supports the common SAM-binding core remains unknown. We have therefore solved the X-ray structure of a member of the SAM-I/IV family containing the alternative "PK-2" subdomain shared with the SAM-IV family. This structure reveals that this subdomain forms extensive interactions with the helix housing the SAM-binding pocket, including a highly unusual mode of helix packing in which two helices pack in a perpendicular fashion. Biochemical and genetic analysis of this RNA reveals that SAM binding induces many of these interactions, including stabilization of a pseudoknot that is part of the regulatory switch. Despite strong structural similarity between the cores of SAM-I and SAM-I/IV members, a phylogenetic analysis of sequences does not indicate that they derive from a common ancestor.

  8. Improving methionine and ATP availability by MET6 and SAM2 co-expression combined with sodium citrate feeding enhanced SAM accumulation in Saccharomyces cerevisiae.

    PubMed

    Chen, Hailong; Wang, Zhou; Wang, Zhilai; Dou, Jie; Zhou, Changlin

    2016-04-01

    S-adenosyl-L-methionine (SAM), biosynthesized from methionine and ATP, exhibited diverse pharmaceutical applications. To enhance SAM accumulation in S. cerevisiae CGMCC 2842 (wild type), improvement of methionine and ATP availability through MET6 and SAM2 co-expression combined with sodium citrate feeding was investigated here. Feeding 6 g/L methionine at 12 h into medium was found to increase SAM accumulation by 38 % in wild type strain. Based on this result, MET6, encoding methionine synthase, was overexpressed, which caused a 59 % increase of SAM. To redirect intracellular methionine into SAM, MET6 and SAM2 (encoding methionine adenosyltransferase) were co-expressed to obtain the recombinant strain YGSPM in which the SAM accumulation was 2.34-fold of wild type strain. The data obtained showed that co-expression of MET6 and SAM2 improved intracellular methionine availability and redirected the methionine to SAM biosynthesis. To elevate intracellular ATP levels, 6 g/L sodium citrate, used as an auxiliary energy substrate, was fed into the batch fermentation medium, and an additional 19 % increase of SAM was observed after sodium citrate addition. Meanwhile, it was found that addition of sodium citrate improved the isocitrate dehydrogenase activity which was associated with the intracellular ATP levels. The results demonstrated that addition of sodium citrate improved intracellular ATP levels which promoted conversion of methionine into SAM. This study presented a feasible approach with considerable potential for developing highly SAM-productive strains based on improving methionine and ATP availability.

  9. System Advisor Model, SAM 2014.1.14: General Description

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blair, Nate; Dobos, Aron P.; Freeman, Janine

    2014-02-01

    This document describes the capabilities of the U.S. Department of Energy and National Renewable Energy Laboratory's System Advisor Model (SAM), Version 2013.9.20, released on September 9, 2013. SAM is a computer model that calculates performance and financial metrics of renewable energy systems. Project developers, policy makers, equipment manufacturers, and researchers use graphs and tables of SAM results in the process of evaluating financial, technology, and incentive options for renewable energy projects. SAM simulates the performance of photovoltaic, concentrating solar power, solar water heating, wind, geothermal, biomass, and conventional power systems. The financial model can represent financial structures for projects thatmore » either buy and sell electricity at retail rates (residential and commercial) or sell electricity at a price determined in a power purchase agreement (utility). SAM's advanced simulation options facilitate parametric and sensitivity analyses, and statistical analysis capabilities are available for Monte Carlo simulation and weather variability (P50/P90) studies. SAM can also read input variables from Microsoft Excel worksheets. For software developers, the SAM software development kit (SDK) makes it possible to use SAM simulation modules in their applications written in C/C++, C#, Java, Python, and MATLAB. NREL provides both SAM and the SDK as free downloads at http://sam.nrel.gov. Technical support and more information about the software are available on the website.« less

  10. 4-Mercaptophenylboronic acid SAMs on gold: comparison with SAMs derived from thiophenol, 4-mercaptophenol, and 4-mercaptobenzoic acid.

    PubMed

    Barriet, David; Yam, Chi Ming; Shmakova, Olga E; Jamison, Andrew C; Lee, T Randall

    2007-08-14

    We report the formation and characterization of self-assembled monolayers (SAMs) derived from the adsorption of 4-mercaptophenylboronic acid (MPBA) on gold. For comparison, SAMs derived from the adsorption of thiophenol (TP), 4-mercaptophenol (MP), and 4-mercaptobenzoic acid (MBA) were also examined. The structure and properties of the SAMs were evaluated by ellipsometry, contact-angle goniometry, polarization-modulation infrared reflection-absorption spectroscopy (PM-IRRAS), and X-ray photoelectron spectroscopy (XPS). Specifically, ellipsometry was used to assess the formation of monolayer films, and contact angle measurements were used to determine the surface hydrophilicity and homogeneity. Separately, PM-IRRAS was used to evaluate the molecular composition and orientation as well as the intermolecular hydrogen bonding within the SAMs. Finally, XPS was used to evaluate the film composition and surface coverage (i.e., packing density), which was observed to increase in the following order: TP < MP < MPBA < MBA. A rationalization for the observed packing differences is presented. The XPS data indicate further that ultrahigh vacuum conditions induce the partial dehydration of MPBA SAMs with the concomitant formation of surface boronic anhydride species. Overall, the analytical data collectively show that the MPBA moieties in the SAMs exist in the acid form rather than the anhydride form under ambient laboratory conditions. Furthermore, stability studies find that MPBA SAMs are surprisingly labile in basic solution, where the terminal B-C bonds are cleaved by the attack of hydroxide ion and strongly basic amine nucleophiles. The unanticipated lability observed here should be considered by those wishing to use MPBA moieties in carbohydrate-sensing applications.

  11. The Improvement of SAM Accumulation by Integrating the Endogenous Methionine Adenosyltransferase Gene SAM2 in Genome of the Industrial Saccharomyces cerevisiae Strain.

    PubMed

    Zhao, Weijun; Shi, Feng; Hang, Baojian; Huang, Lei; Cai, Jin; Xu, Zhinan

    2016-03-01

    S-Adenosyl-L-methionine (SAM) plays important roles in trans-methylation, trans-sulfuration, and polyamine synthesis in all living cells, and it is also an effective cure for liver disease, depressive syndromes, and osteoarthritis. The increased demands of SAM in pharmaceuticals industry have aroused lots of attempts to improve its production. In this study, a multiple-copy integrative plasmid pYMIKP-SAM2 was introduced into the chromosome of wild-type Saccharomyces cerevisiae strain ZJU001 to construct the recombined strain R1-ZJU001. Further studies showed that the recombinant yeast exhibited higher enzymatic activity of methionine adenosyltransferase and improved its SAM biosynthesis. With a three-phase fed-batch strategy in 15-liter bench-top fermentor, 8.81 g/L SAM was achieved after 52 h cultivation of R1-ZJU001, about 27.1 % increase over its parent strain ZJU001, whereas the SAM content was also improved from 64.6 mg/g DCW to 91.0 mg/g DCW. Our results shall provide insights into the metabolic engineering of SAM pathway in yeast for improved productivity of SAM and subsequent industrial applications.

  12. Noncanonical Radical SAM Enzyme Chemistry Learned from Diphthamide Biosynthesis.

    PubMed

    Dong, Min; Zhang, Yugang; Lin, Hening

    2018-05-10

    Radical S-adenosylmethionine (SAM) enzymes are a superfamily of enzymes that use SAM and reduced [4Fe-4S] cluster to generate a 5'-deoxyadenosyl radical to catalyze numerous challenging reactions. We have reported a type of noncanonical radical SAM enzymes in the diphthamide biosynthesis pathway. These enzymes also use SAM and reduced [4Fe-4S] clusters, but generate a 3-amino-3-carboxypropyl (ACP) radical to modify the substrate protein, translation elongation factor 2. The regioselective cleavage of a different C-S bond of the sulfonium center of SAM in these enzymes comparing to canonical radical SAM enzymes is intriguing. Here, we highlight some recent findings in the mechanism of these types of enzymes, showing that the diphthamide biosynthetic radial SAM enzymes bound SAM with a distinct geometry. In this way, the unique iron of the [4Fe-4S] cluster in the enzyme can only attack the carbon on the ACP group to form an organometallic intermediate. The homolysis of the organometallic intermediate releases the ACP radical and generates the EF2 radial.

  13. Substation alarm multiplexing system (SAMS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ElBadaly, H.; Gaughan, J.; Ward, G.

    1996-03-01

    This paper describes an on going R&D project to develop, design, install, and assess the field performance of an advanced substation alarm system. SAMS provides a highly fault-tolerant system for the reporting of equipment alarms. SAMS separates and identifies each of the multiple alarm contacts, transmits an alarm condition over existing substation two-wire system, and displays the alarm source, and its associated technical information, on a touch-screen monitor inside the substation control room, and a remote central location and on a hand held terminal which may be carried anywhere within the substation. SAMS is currently installed at the Sherman Creekmore » substation in the Bronx for the purpose of a three month field evaluation.« less

  14. Immobilization of Protein A on SAMs for the elaboration of immunosensors.

    PubMed

    Briand, Elisabeth; Salmain, Michèle; Compère, Chantal; Pradier, Claire-Marie

    2006-12-01

    Binary mixtures of 11-mercaptoundecanoic acid (MUA) and other thiols of various lengths and terminal functions were chemisorbed on gold-coated surfaces via S-Au bonds to form mixed self-assembled monolayers (SAMs). Several values of the mole fraction of MUA in the thiol mixtures were tested and the structure and composition of the resulted thin films were characterized by X-ray photoelectron spectroscopy (XPS) and polarization modulation infrared reflection-absorption spectroscopy (PM-IRRAS). The results made it clear that co-adsorption of MUA with thiols of similar chain length led to well-ordered monolayers whereas the co-adsorption of MUA with shorter thiols yielded less crystalline-like thin films, but with more reactive carboxylic acid terminal groups. This criterion appeared decisive for efficient covalent binding of Staphylococcus aureus Protein A (PrA), a protein that displays high affinity for the constant fragment (Fc) of antibodies of the IgG type from various mammal species. The ability of immobilized Protein A to recognize and bind a model IgG appeared to be optimal for the mixed SAM of MUA and the short-chain, omega-hydroxythiol 6-mercaptohexanol in the proportion 1-3.

  15. Emerging themes in radical SAM chemistry

    PubMed Central

    Shisler, Krista A; Broderick, Joan B

    2014-01-01

    Enzymes in the radical SAM (RS) superfamily catalyze a wide variety of reactions through unique radical chemistry. The characteristic markers of the superfamily include a [4Fe–4S] cluster coordinated to the protein via a cysteine triad motif, typically CX3CX2C, with the fourth iron coordinated by S-adenosylmethionine (SAM). The SAM serves as a precursor for a 5′-deoxyadenosyl radical, the central intermediate in nearly all RS enzymes studied to date. The SAM-bound [4Fe–4S] cluster is located within a partial or full triosephosphate isomerase (TIM) barrel where the radical chemistry occurs protected from the surroundings. In addition to the TIM barrel and a RS [4Fe–4S] cluster, many members of the superfamily contain additional domains and/or additional Fe–S clusters. Recently characterized superfamily members are providing new examples of the remarkable range of reactions that can be catalyzed, as well as new structural and mechanistic insights into these fascinating reactions. PMID:23141873

  16. Structural Basis for Methyl Transfer by a Radical SAM Enzyme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boal, Amie K.; Grove, Tyler L.; McLaughlin, Monica I.

    2014-10-02

    The radical S-adenosyl-l-methionine (SAM) enzymes RlmN and Cfr methylate 23S ribosomal RNA, modifying the C2 or C8 position of adenosine 2503. The methyl groups are installed by a two-step sequence involving initial methylation of a conserved Cys residue (RlmN Cys{sup 355}) by SAM. Methyl transfer to the substrate requires reductive cleavage of a second equivalent of SAM. Crystal structures of RlmN and RlmN with SAM show that a single molecule of SAM coordinates the [4Fe-4S] cluster. Residue Cys{sup 355} is S-methylated and located proximal to the SAM methyl group, suggesting the SAM that is involved in the initial methyl transfermore » binds at the same site. Thus, RlmN accomplishes its complex reaction with structural economy, harnessing the two most important reactivities of SAM within a single site.« less

  17. Sam's progress with learning mathematics.

    PubMed

    Haslam, Lynne

    2007-07-01

    Sam is 18 years old and has Down syndrome. He achieved a grade in the standard assessment of mathematics (GCSE) at 16 years of age. This paper describes the part played in his success in school by the Kumon method of teaching mathematics, identifies the benefits of the small steps and lots of practice built in to the method and illustrates the way Sam applied his Kumon learning in school.

  18. Iron-Based Amorphous Metals: High-Performance Corrosion-Resistant Material Development

    NASA Astrophysics Data System (ADS)

    Farmer, Joseph; Choi, Jor-Shan; Saw, Cheng; Haslam, Jeffrey; Day, Dan; Hailey, Phillip; Lian, Tiangan; Rebak, Raul; Perepezko, John; Payer, Joe; Branagan, Daniel; Beardsley, Brad; D'Amato, Andy; Aprigliano, Lou

    2009-06-01

    An overview of the High-Performance Corrosion-Resistant Materials (HPCRM) Program, which was cosponsored by the Defense Advanced Research Projects Agency (DARPA) Defense Sciences Office (DSO) and the U.S. Department of Energy (DOE) Office of Civilian and Radioactive Waste Management (OCRWM), is discussed. Programmatic investigations have included a broad range of topics: alloy design and composition, materials synthesis, thermal stability, corrosion resistance, environmental cracking, mechanical properties, damage tolerance, radiation effects, and important potential applications. Amorphous alloys identified as SAM2X5 (Fe49.7Cr17.7Mn1.9Mo7.4W1.6B15.2C3.8Si2.4) and SAM1651 (Fe48Mo14Cr15Y2C15B6) have been produced as meltspun ribbons (MSRs), dropcast ingots, and thermal-spray coatings. Chromium (Cr), molybdenum (Mo), and tungsten (W) additions provided corrosion resistance, while boron (B) enabled glass formation. Earlier electrochemical studies of MSRs and ingots of these amorphous alloys demonstrated outstanding passive film stability. More recently, thermal-spray coatings of these amorphous alloys have been made and subjected to long-term salt-fog and immersion tests; good corrosion resistance has been observed during salt-fog testing. Corrosion rates were measured in situ with linear polarization, while the open-circuit corrosion potentials (OCPs) were simultaneously monitored; reasonably good performance was observed. The sensitivity of these measurements to electrolyte composition and temperature was determined. The high boron content of this particular amorphous metal makes this amorphous alloy an effective neutron absorber and suitable for criticality-control applications. In general, the corrosion resistance of such iron-based amorphous metals is maintained at operating temperatures up to the glass transition temperature. These materials are much harder than conventional stainless steel and Ni-based materials, and are proving to have excellent wear

  19. System Advisor Model, SAM 2011.12.2: General Description

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilman, P.; Dobos, A.

    2012-02-01

    This document describes the capabilities of the U.S. Department of Energy and National Renewable Energy Laboratory's System Advisor Model (SAM), Version 2011.12.2, released on December 2, 2011. SAM is software that models the cost and performance of renewable energy systems. Project developers, policy makers, equipment manufacturers, and researchers use graphs and tables of SAM results in the process of evaluating financial, technology, and incentive options for renewable energy projects. SAM simulates the performance of solar, wind, geothermal, biomass, and conventional power systems. The financial model can represent financing structures for projects that either buy and sell electricity at retail ratesmore » (residential and commercial) or sell electricity at a price determined in a power purchase agreement (utility). Advanced analysis options facilitate parametric, sensitivity, and statistical analyses, and allow for interfacing SAM with Microsoft Excel or with other computer programs. SAM is available as a free download at http://sam.nrel.gov. Technical support and more information about the software are available on the website.« less

  20. Sam Donaldson: Tips From a Cancer Survivor

    MedlinePlus

    ... Home Current Issue Past Issues Special Section Sam Donaldson: Tips From a Cancer Survivor Past Issues / Spring ... courtesy of ABC News For 40 years, Sam Donaldson has worked for ABC News, reporting from virtually ...

  1. Structural insights into SAM domain-mediated tankyrase oligomerization.

    PubMed

    DaRosa, Paul A; Ovchinnikov, Sergey; Xu, Wenqing; Klevit, Rachel E

    2016-09-01

    Tankyrase 1 (TNKS1; a.k.a. ARTD5) and tankyrase 2 (TNKS2; a.k.a ARTD6) are highly homologous poly(ADP-ribose) polymerases (PARPs) that function in a wide variety of cellular processes including Wnt signaling, Src signaling, Akt signaling, Glut4 vesicle translocation, telomere length regulation, and centriole and spindle pole maturation. Tankyrase proteins include a sterile alpha motif (SAM) domain that undergoes oligomerization in vitro and in vivo. However, the SAM domains of TNKS1 and TNKS2 have not been structurally characterized and the mode of oligomerization is not yet defined. Here we model the SAM domain-mediated oligomerization of tankyrase. The structural model, supported by mutagenesis and NMR analysis, demonstrates a helical, homotypic head-to-tail polymer that facilitates TNKS self-association. Furthermore, we show that TNKS1 and TNKS2 can form (TNKS1 SAM-TNKS2 SAM) hetero-oligomeric structures mediated by their SAM domains. Though wild-type tankyrase proteins have very low solubility, model-based mutations of the SAM oligomerization interface residues allowed us to obtain soluble TNKS proteins. These structural insights will be invaluable for the functional and biophysical characterization of TNKS1/2, including the role of TNKS oligomerization in protein poly(ADP-ribosyl)ation (PARylation) and PARylation-dependent ubiquitylation. © 2016 The Protein Society.

  2. SJ-3366 Sam Jin Pharmaceutical.

    PubMed

    Baba, Masanori

    2002-08-01

    Sam Jin is investigating SJ-3366, a non-nucleoside reverse transcriptase inhibitor (NNRTI), for the potential treatment of HIV infection [302450]. As well as acting as an NNRTI, SJ-3366 also interferes with HIV-1 entry via an intermediate target formed after virus-cell attachment [341146], [363900]. As of June 1998, Sam Jin had been awarded a patent for SJ-3366 in South Africa, with applications pending in 22 other countries [302450].

  3. Crystal structure of SAM-dependent methyltransferase from Pyrococcus horikoshii.

    PubMed

    Pampa, K J; Madan Kumar, S; Hema, M K; Kumara, Karthik; Naveen, S; Kunishima, Naoki; Lokanath, N K

    2017-12-01

    Methyltransferases (MTs) are enzymes involved in methylation that are needed to perform cellular processes such as biosynthesis, metabolism, gene expression, protein trafficking and signal transduction. The cofactor S-adenosyl-L-methionine (SAM) is used for catalysis by SAM-dependent methyltransferases (SAM-MTs). The crystal structure of Pyrococcus horikoshii SAM-MT was determined to a resolution of 2.1 Å using X-ray diffraction. The monomeric structure consists of a Rossmann-like fold (domain I) and a substrate-binding domain (domain II). The cofactor (SAM) molecule binds at the interface between adjacent subunits, presumably near to the active site(s) of the enzyme. The observed dimeric state might be important for the catalytic function of the enzyme.

  4. DNA adenine methylation of sams1 gene in symbiont-bearing Amoeba proteus.

    PubMed

    Jeon, Taeck J

    2008-10-01

    The expression of amoeba sams genes is switched from sams1 to sams2 when amoebae are infected with Legionella jeonii. To elucidate the mechanism for the inactivation of host sams1 gene by endosymbiotic bacteria, methylation states of the sams1 gene of D and xD amoebae was compared in this study. The sams1 gene of amoebae was methylated at an internal adenine residue of GATC site in symbiont-bearing xD amoebae but not in symbiont-free D amoebae, suggesting that the modification might have caused the inactivation of sams1 in xD amoebae. The sams1 gene of xD amoebae was inactivated at the transcriptional level. Analysis of DNA showed that adenine residues in L. jeonii sams were also methylated, implying that L. jeonii bacteria belong to a Dam methylase-positive strain. In addition, both SAM and Met appeared to act as negative regulators for the expression of sams1 whereas the expression of sams2 was not affected in amoebae.

  5. Interfacial Studies of Whisker and Coated Fiber Reinforced Ceramic Matrix Composites

    DTIC Science & Technology

    1990-05-31

    well as BN coated small diameter (ɘ.7jtm) ARCO whiskers. Tha carbon coated TWS- 400C whiskers were received as-coated from Textron, Inc., Lowell, MA...under negative pressure by means of a Nilfisk filtering system equipped with a Hepa filter. With the health hazards of small whiskers being of utmost...Both of these platelet types were analyzed in the scanning Auger multiprobe (SAM) and found to be very close to stoichiometric SiC with a small amount

  6. Characterization of sams genes of Amoeba proteus and the endosymbiotic X-bacteria.

    PubMed

    Jeon, Taeck J; Jeon, Kwang W

    2003-01-01

    As a result of harboring obligatory bacterial endosymbionts, the xD strain of Amoeba proteus no longer produces its own S-adenosylmethionine synthetase (SAMS). When symbiont-free D amoebae are infected with symbionts (X-bacteria), the amount of amoeba SAMS decreases to a negligible level within four weeks, but about 47% of the SAMS activity, which apparently comes from another source, is still detected. Complete nucleotide sequences of sams genes of D and xD amoebae are presented and show that there are no differences between the two. Long-established xD amoebae contain an intact sams gene and thus the loss of xD amoeba's SAMS is not due to the loss of the gene itself. The open reading frame of the amoeba's sams gene has 1,281 nucleotides, encoding SAMS of 426 amino acids with a mass of 48 kDa and pI of 6.5. The amino acid sequence of amoeba SAMS is longer than the SAMS of other organisms by having an extra internal stretch of 28 amino acids. The 5'-flanking region of amoeba sams contains consensus-binding sites for several transcription factors that are related to the regulation of sams genes in E. coli and yeast. The complete nucleotide sequence of the symbiont's sams gene is also presented. The open reading frame of X-bacteria sams is 1,146 nucleotides long, encoding SAMS of 381 amino acids with a mass of 41 kDa and pI of 6.0. The X-bacteria SAMS has 45% sequence identity with that of A. proteus.

  7. System Advisor Model (SAM) General Description (Version 2017.9.5)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freeman, Janine M; DiOrio, Nicholas A; Blair, Nathan J

    This document describes the capabilities of the System Advisor Model (SAM) developed and distributed by the U.S. Department of Energy's National Renewable Energy Laboratory. The document is for potential users and others wanting to learn about the model's capabilities. SAM is a techno-economic computer model that calculates performance and financial metrics of renewable energy projects. Project developers, policy makers, equipment manufacturers, and researchers use graphs and tables of SAM results in the process of evaluating financial, technology, and incentive options for renewable energy projects. SAM simulates the performance of photovoltaic, concentrating solar power, solar water heating, wind, geothermal, biomass, andmore » conventional power systems. The financial models are for projects that either buy and sell electricity at retail rates (residential and commercial) or sell electricity at a price determined in a power purchase agreement (PPA). SAM's simulation tools facilitate parametric and sensitivity analyses, Monte Carlo simulation and weather variability (P50/P90) studies. SAM can also read input variables from Microsoft Excel worksheets. For software developers, the SAM software development kit (SDK) makes it possible to use SAM simulation modules in their applications written in C/C plus plus, C sharp, Java, Python, MATLAB, and other languages. NREL provides both SAM and the SDK as free downloads at https://sam.nrel.gov. SAM is an open source project, so its source code is available to the public. Researchers can study the code to understand the model algorithms, and software programmers can contribute their own models and enhancements to the project. Technical support and more information about the software are available on the website.« less

  8. Auxiliary iron-sulfur cofactors in radical SAM enzymes.

    PubMed

    Lanz, Nicholas D; Booker, Squire J

    2015-06-01

    A vast number of enzymes are now known to belong to a superfamily known as radical SAM, which all contain a [4Fe-4S] cluster ligated by three cysteine residues. The remaining, unligated, iron ion of the cluster binds in contact with the α-amino and α-carboxylate groups of S-adenosyl-l-methionine (SAM). This binding mode facilitates inner-sphere electron transfer from the reduced form of the cluster into the sulfur atom of SAM, resulting in a reductive cleavage of SAM to methionine and a 5'-deoxyadenosyl radical. The 5'-deoxyadenosyl radical then abstracts a target substrate hydrogen atom, initiating a wide variety of radical-based transformations. A subset of radical SAM enzymes contains one or more additional iron-sulfur clusters that are required for the reactions they catalyze. However, outside of a subset of sulfur insertion reactions, very little is known about the roles of these additional clusters. This review will highlight the most recent advances in the identification and characterization of radical SAM enzymes that harbor auxiliary iron-sulfur clusters. This article is part of a Special Issue entitled: Fe/S proteins: Analysis, structure, function, biogenesis and diseases. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Structural insights into SAM domain‐mediated tankyrase oligomerization

    PubMed Central

    DaRosa, Paul A.; Ovchinnikov, Sergey

    2016-01-01

    Abstract Tankyrase 1 (TNKS1; a.k.a. ARTD5) and tankyrase 2 (TNKS2; a.k.a ARTD6) are highly homologous poly(ADP‐ribose) polymerases (PARPs) that function in a wide variety of cellular processes including Wnt signaling, Src signaling, Akt signaling, Glut4 vesicle translocation, telomere length regulation, and centriole and spindle pole maturation. Tankyrase proteins include a sterile alpha motif (SAM) domain that undergoes oligomerization in vitro and in vivo. However, the SAM domains of TNKS1 and TNKS2 have not been structurally characterized and the mode of oligomerization is not yet defined. Here we model the SAM domain‐mediated oligomerization of tankyrase. The structural model, supported by mutagenesis and NMR analysis, demonstrates a helical, homotypic head‐to‐tail polymer that facilitates TNKS self‐association. Furthermore, we show that TNKS1 and TNKS2 can form (TNKS1 SAM‐TNKS2 SAM) hetero‐oligomeric structures mediated by their SAM domains. Though wild‐type tankyrase proteins have very low solubility, model‐based mutations of the SAM oligomerization interface residues allowed us to obtain soluble TNKS proteins. These structural insights will be invaluable for the functional and biophysical characterization of TNKS1/2, including the role of TNKS oligomerization in protein poly(ADP‐ribosyl)ation (PARylation) and PARylation‐dependent ubiquitylation. PMID:27328430

  10. SAM 2 data user's guide

    NASA Technical Reports Server (NTRS)

    Chu, W. P.; Osborn, M. T.; Mcmaster, L. R.

    1988-01-01

    This document is intended to serve as a guide to the use of the data products from the Stratospheric Aerosol Measurement (SAM) 2 experiment for scientific investigations of polar stratospheric aerosols. Included is a detailed description of the Beta and Aerosol Number Density Archive Tape (BANAT), which is the SAM 2 data product containing the aerosol extinction data available for these investigations. Also included are brief descriptions of the instrument operation, data collection, processing and validation, and some of the scientific analyses conducted to date.

  11. SAM syndrome is characterized by extensive phenotypic heterogeneity.

    PubMed

    Taiber, Shahar; Samuelov, Liat; Mohamad, Janan; Cohen Barak, Eran; Sarig, Ofer; Shalev, Stavit Allon; Lestringant, Gilles; Sprecher, Eli

    2018-03-31

    Severe skin dermatitis, multiple allergies and metabolic wasting (SAM) syndrome is a rare life-threatening inherited condition caused by bi-allelic mutations in DSG1 encoding desmoglein 1. The disease was initially reported to manifest with severe erythroderma, failure to thrive, atopic manifestations, recurrent infections, hypotrichosis and palmoplantar keratoderma. We present 3 new cases of SAM syndrome in 2 families and review the cases published so far. Whole exome and direct sequencing were used to identify SAM syndrome-causing mutations. Consistent with previous data, SAM syndrome was found in all 3 patients to result from homozygous mutations in DSG1 predicted to result in premature termination of translation. In contrast, as compared with patients previously reported, the present cases were found to display a wide range of clinical presentations of variable degrees of severity. The present data emphasizes the fact that SAM syndrome is characterized by extensive phenotypic heterogeneity, suggesting the existence of potent modifier traits. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  12. The nuclear protein Sam68 is cleaved by the FMDV 3C protease redistributing Sam68 to the cytoplasm during FMDV infection of host cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawrence, Paul; Schafer, Elizabeth A.; Rieder, Elizabeth, E-mail: elizabeth.rieder@ars.usda.gov

    2012-03-30

    Picornavirus infection can lead to disruption of nuclear pore traffic, shut-off of cell translation machinery, and cleavage of proteins involved in cellular signal transduction and the innate response to infection. Here, we demonstrated that the FMDV 3C{sup pro} induced the cleavage of nuclear RNA-binding protein Sam68 C-terminus containing the nuclear localization sequence (NLS). Consequently, it stimulated the redistribution of Sam68 to the cytoplasm. The siRNA knockdown of Sam68 resulted in a 1000-fold reduction in viral titers, which prompted us to study the effect of Sam68 on FMDV post-entry events. Interestingly, Sam68 interacts with the internal ribosomal entry site within themore » 5 Prime non-translated region of the FMDV genome, and Sam68 knockdown decreased FMDV IRES-driven activity in vitro suggesting that it could modulate translation of the viral genome. The results uncover a novel role for Sam68 in the context of picornaviruses and the proteolysis of a new cellular target of the FMDV 3C{sup pro}.« less

  13. SAM Gcms Chromatography Performed at Mars : Elements of Interpretation

    NASA Astrophysics Data System (ADS)

    Szopa, C.; Coll, P. J.; Buch, A.; François, P.; Cabane, M.; Coscia, D.; Teinturier, S.; Navarro-Gonzalez, R.; Glavin, D. P.; Freissinet, C.; Mahaffy, P. R.

    2013-12-01

    The characterisation of the chemical and mineralogical composition of regolith samples collected with the Curiosity rover is a primary objective of the SAM experiment. These data should provide essential clues on the past habitability of Gale crater. Interpretation of the data collected after SAM pyrolysis evolved gas analysis (EGA) and gas chromatography mass spectrometry (GC-MS) experiments on the first soil samples collected by MSL at the Rocknest Aeolian Deposit in Gale Crater has been challenging due to the concomitant presence in the ovens of an oxychlorine phase present in the samples, and a derivatization agent coming from the SAM wet chemistry experiment (Glavin et al., 2013). Moreover, accurate identification and quantification, in the SAM EGA mode, of volatiles released from the heated sample, or generated by reactions occurring in the SAM pyrolysis oven, is also difficult for a few compounds due to evolution over similar temperature ranges and overlap of their MS signatures. Hence, the GC analyses, coupled with MS, enabled the separation and identification and quantification of most of the volatile compounds detected. These results can have been obtained through tests and calibration done with GC individual spare components and with the SAM testbed. This paper will present a view of the interpretation of the chromatograms obtained when analyzing the Rocknest and John Klein solid samples delivered to SAM, on sols 96 and 199 respectively, supported by laboratory calibrations.

  14. Coatings and Biodegradable and Bioasorbable Films

    DTIC Science & Technology

    2006-12-28

    linseed oil and soy oil VOMMs were designed and synthesized including linseed acrylate monomer (LiAM), soy acrylate monomer (SAM), soy amide acrylate...the plasticizing effects of vegetable oil macromonomers as incorporated into emulsion polymers for efficient almost zero VOC film formation and the...Environmentally friendly coatings, Topside Navy Haze Gray, Vegetable Oil Macromonomer, Low VOC, Biodegradable Food Packaging, Polyester-Polyurethanes

  15. Technical Manual for the SAM Physical Trough Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagner, M. J.; Gilman, P.

    2011-06-01

    NREL, in conjunction with Sandia National Lab and the U.S Department of Energy, developed the System Advisor Model (SAM) analysis tool for renewable energy system performance and economic analysis. This paper documents the technical background and engineering formulation for one of SAM's two parabolic trough system models in SAM. The Physical Trough model calculates performance relationships based on physical first principles where possible, allowing the modeler to predict electricity production for a wider range of component geometries than is possible in the Empirical Trough model. This document describes the major parabolic trough plant subsystems in detail including the solar field,more » power block, thermal storage, piping, auxiliary heating, and control systems. This model makes use of both existing subsystem performance modeling approaches, and new approaches developed specifically for SAM.« less

  16. Atomic-level insights into metabolite recognition and specificity of the SAM-II riboswitch

    PubMed Central

    Doshi, Urmi; Kelley, Jennifer M.; Hamelberg, Donald

    2012-01-01

    Although S-adenosylhomocysteine (SAH), a metabolic by-product of S-adenosylmethionine (SAM), differs from SAM only by a single methyl group and an overall positive charge, SAH binds the SAM-II riboswitch with more than 1000-fold less affinity than SAM. Using atomistic molecular dynamics simulations, we investigated the molecular basis of such high selectivity in ligand recognition by SAM-II riboswitch. The biosynthesis of SAM exclusively generates the (S,S) stereoisomer, and (S,S)-SAM can spontaneously convert to the (R,S) form. We, therefore, also examined the effects of (R,S)-SAM binding to SAM-II and its potential biological function. We find that the unfavorable loss in entropy in SAM-II binding is greater for (S,S)- and (R,S)-SAM than SAH, which is compensated by stabilizing electrostatic interactions with the riboswitch. The positively charged sulfonium moiety on SAM acts as the crucial anchor point responsible for the formation of key ionic interactions as it fits favorably in the negatively charged binding pocket. In contrast, SAH, with its lone pair of electrons on the sulfur, experiences repulsion in the binding pocket of SAM-II and is enthalpically destabilized. In the presence of SAH, similar to the unbound riboswitch, the pseudoknot structure of SAM-II is not completely formed, thus exposing the Shine-Dalgarno sequence. Unlike SAM, this may further facilitate ribosomal assembly and translation initiation. Our analysis of the conformational ensemble sampled by SAM-II in the absence of ligands and when bound to SAM or SAH reveals that ligand binding follows a combination of conformational selection and induced-fit mechanisms. PMID:22194311

  17. Atomic-level insights into metabolite recognition and specificity of the SAM-II riboswitch.

    PubMed

    Doshi, Urmi; Kelley, Jennifer M; Hamelberg, Donald

    2012-02-01

    Although S-adenosylhomocysteine (SAH), a metabolic by-product of S-adenosylmethionine (SAM), differs from SAM only by a single methyl group and an overall positive charge, SAH binds the SAM-II riboswitch with more than 1000-fold less affinity than SAM. Using atomistic molecular dynamics simulations, we investigated the molecular basis of such high selectivity in ligand recognition by SAM-II riboswitch. The biosynthesis of SAM exclusively generates the (S,S) stereoisomer, and (S,S)-SAM can spontaneously convert to the (R,S) form. We, therefore, also examined the effects of (R,S)-SAM binding to SAM-II and its potential biological function. We find that the unfavorable loss in entropy in SAM-II binding is greater for (S,S)- and (R,S)-SAM than SAH, which is compensated by stabilizing electrostatic interactions with the riboswitch. The positively charged sulfonium moiety on SAM acts as the crucial anchor point responsible for the formation of key ionic interactions as it fits favorably in the negatively charged binding pocket. In contrast, SAH, with its lone pair of electrons on the sulfur, experiences repulsion in the binding pocket of SAM-II and is enthalpically destabilized. In the presence of SAH, similar to the unbound riboswitch, the pseudoknot structure of SAM-II is not completely formed, thus exposing the Shine-Dalgarno sequence. Unlike SAM, this may further facilitate ribosomal assembly and translation initiation. Our analysis of the conformational ensemble sampled by SAM-II in the absence of ligands and when bound to SAM or SAH reveals that ligand binding follows a combination of conformational selection and induced-fit mechanisms.

  18. Tribological properties of self-assembled monolayers of catecholic imidazolium and the spin-coated films of ionic liquids.

    PubMed

    Liu, Jianxi; Li, Jinlong; Yu, Bo; Ma, Baodong; Zhu, Yangwen; Song, Xinwang; Cao, Xulong; Yang, Wu; Zhou, Feng

    2011-09-20

    A novel compound of an imidazolium type of ionic liquid (IL) containing a biomimetic catecholic functional group normally seen in mussel adhesive proteins was synthesized. The IL can be immobilized on a silicon surface and a variety of other engineering material surfaces via the catecholic anchor, allowing the tribological protection of these substrates for engineering applications. The surface wetting and adhesive properties and the tribological property of the synthesized self-assembled monolayers (SAMs) are successfully modulated by altering the counteranions. The chemical composition and wettability of the IL SAMs were characterized by means of X-ray photoelectron spectroscopy (XPS) and contact angle (CA) measurements. The adhesive and friction forces were measured with an atomic force microscope (AFM) on the nanometer scale. IL composite films were prepared by spin coating thin IL films on top of the SAMs. The macrotribological properties of these IL composite films were investigated with a pin-on-disk tribometer. The results indicate that the presence of IL SAMs on a surface can improve the wettability of spin-coated ionic liquids and thus the film quality and the tribological properties. These films registered a reduced friction coefficient and a significantly enhanced durability and load-carrying capacity. The tribological properties of the composite films are better than those of pure IL films because the presence of the monolayers improves the adhesion and compatibility of spin-coated IL films with substrates. © 2011 American Chemical Society

  19. Modulation of Conformational Equilibria in the S-Adenosylmethionine (SAM) II Riboswitch by SAM, Mg(2+), and Trimethylamine N-Oxide.

    PubMed

    McPhie, Peter; Brown, Patrick; Chen, Bin; Dayie, Theodore K; Minton, Allen P

    2016-09-13

    The dependence of the conformation of the S-adenosylmethionine (SAM) II riboswitch on the concentration of added Mg(2+) ions and SAM, individually and in mixtures, was monitored by circular dichroism (CD) spectroscopy and by measurement of the diffusion coefficient. The results are analyzed in the context of two complementary quantitative models, both of which are consistent with a single underlying physical model. Magnesium binding sites in the open state have an affinity on average higher than the affinity of those in the compact state, but formation of the compact state is accompanied by an increase in the number of binding sites. Consequently, at low Mg(2+) concentrations, Mg(2+) binds preferentially to the open state, favoring its formation, but at high concentrations, Mg(2+) binds preferentially to the compact state. The affinity of the riboswitch for SAM increases drastically with an increased level of binding of Mg(2+) to the compact pseudoknot conformation. The effect of increasing concentrations of trimethylamine N-oxide (TMAO), a well-studied molecular crowding agent, on the conformation of the riboswitch and its affinity for SAM were also monitored by CD spectroscopy and measurement of diffusion. In the absence of added Mg(2+), high concentrations of TMAO were found to induce a conformational change compatible with the formation of the pseudoknot form but have only a small effect on the affinity of the RNA for SAM.

  20. Information System through ANIS at CeSAM

    NASA Astrophysics Data System (ADS)

    Moreau, C.; Agneray, F.; Gimenez, S.

    2015-09-01

    ANIS (AstroNomical Information System) is a web generic tool developed at CeSAM to facilitate and standardize the implementation of astronomical data of various kinds through private and/or public dedicated Information Systems. The architecture of ANIS is composed of a database server which contains the project data, a web user interface template which provides high level services (search, extract and display imaging and spectroscopic data using a combination of criteria, an object list, a sql query module or a cone search interfaces), a framework composed of several packages, and a metadata database managed by a web administration entity. The process to implement a new ANIS instance at CeSAM is easy and fast : the scientific project has to submit data or a data secure access, the CeSAM team installs the new instance (web interface template and the metadata database), and the project administrator can configure the instance with the web ANIS-administration entity. Currently, the CeSAM offers through ANIS a web access to VO compliant Information Systems for different projects (HeDaM, HST-COSMOS, CFHTLS-ZPhots, ExoDAT,...).

  1. Summary Status of the Space Acceleration Measurement System (SAMS), September 1993

    NASA Technical Reports Server (NTRS)

    DeLombard, Richard

    1993-01-01

    The Space Acceleration Measurement System (SAMS) was developed to measure the microgravity acceleration environment to which NASA science payloads are exposed during microgravity science missions on the shuttle. Six flight units have been fabricated to date. The inaugural flight of a SAMS unit was on STS-40 in June 1991 as part of the flrst Spacelab Life Sciences mission. Since that time, SAMS has flown on six additional missions and gathered 18 gigabytes of data representing 68 days of microgravity environment. The SAMS units have been flown in the shuttle middeck and cargo bay, in the Spacelab module, and in the Spacehab module. This paper summarizes the missions and experiments which SAMS has supported. The quantity of data and the utilization of the SAMS data is described. Future activities are briefly described for the SAMS project and.the Microgravity Measurement and Analysis Project (MMAP) to support science experiments and scientists with microgravity environment measurement and analysis.

  2. Summary Status of the Space Acceleration Measurement System (SAMS), September 1993

    NASA Technical Reports Server (NTRS)

    DeLombard, Richard

    1994-01-01

    The Space Acceleration Measurement System (SAMS) was developed to measure the microgravity acceleration environment to which NASA science payloads are exposed during microgravity science missions on the shuttle. Six flight units have been fabricated to date. The inaugural flight of a SAMS unit was on STS-40 in June 1991 as part of the First Spacelab Life Sciences mission. Since that time, SAMS has flown on six additional missions and gathered eighteen gigabytes of data representing sixty-eight days of microgravity environment. The SAMS units have been flown in the shuttle middeck and cargo bay, in the Spacelab module, and in the Spacehab module. This paper summarizes the missions and experiments which SAMS has supported. The quantity of data and the utilization of the SAMS data is described. Future activities are briefly described for the SAMS project and the Microgravity Measurement and Analysis project (MMAP) to support science experiments and scientists with microgravity environment measurement and analysis.

  3. SAM 2 and SAGE data management and processing

    NASA Technical Reports Server (NTRS)

    Osborn, M. T.; Trepte, C. R.

    1987-01-01

    The data management and processing supplied by ST Systems Corporation (STX) for the Stratospheric Aerosol Measurement 2 (SAM 2) and Stratospheric Aerosol and Gas Experiment (SAGE) experiments for the years 1983 to 1986 are described. Included are discussions of data validation, documentation, and scientific analysis, as well as the archival schedule met by the operational reduction of SAM 2 and SAGE data. Work under this contract resulted in the archiving of the first seven years of SAM 2 data and all three years of SAGE data. A list of publications and presentations supported was also included.

  4. SAMS Acceleration Measurements on MIR

    NASA Technical Reports Server (NTRS)

    Moskowitz, Milton E.; Hrovat, Kenneth; Finkelstein, Robert; Reckart, Timothy

    1997-01-01

    During NASA Increment 3 (September 1996 to January 1997), about 5 gigabytes of acceleration data were collected by the Space Acceleration Measurement System (SAMS) onboard the Russian Space Station, Mir. The data were recorded on 11 optical disks and were returned to Earth on STS-81. During this time, SAMS data were collected in the Priroda module to support the following experiments: the Mir Structural Dynamics Experiment (MiSDE) and Binary Colloidal Alloy Tests (BCAT). This report points out some of the salient features of the microgravity environment to which these experiments were exposed. Also documented are mission events of interest such as the docked phase of STS-81 operations, a Progress engine burn, attitude control thruster operation, and crew exercise. Also included are a description of the Mir module orientations, and the panel notations within the modules. This report presents an overview of the SAMS acceleration measurements recorded by 10 Hz and 100 Hz sensor heads. Variations in the acceleration environment caused by unique activities such as crew exercise and life-support fans are presented. The analyses included herein complement those presented in previous mission summary reports published by the Principal Investigator Microgravity Services (PIMS) group.

  5. Sam, Brookhaven, and the Physical Review

    NASA Astrophysics Data System (ADS)

    Blume, Martin

    2010-03-01

    Sam Goudsmit came to Brookhaven National Laboratory in 1948, just after the first year of operation of the new institution, and after a year of his postwar appointment as Professor of Physics at Northwestern University. He was named an associate editor of the Physical Review at that time, under the then Managing Editor John T. Tate of the University of Minnesota. Tate had been Editor since 1926, and had presided over the growth of Physical Review to leadership of publication in the world of physics. Tate died in 1950, and after a search under an interim Editor Sam was, in 1951, named Managing Editor. In 1952 he became Chair of the Brookhaven Physics Department, founded Physical Review Letters, and served as department chair until 1960, when he stepped down but remained an Associate Chair. I will discuss my own interactions with Sam during this later period, when I learned of his many faceted talents and accomplishments.

  6. SAM-FS: LSC's New Solaris-Based Storage Management Product

    NASA Technical Reports Server (NTRS)

    Angell, Kent

    1996-01-01

    SAM-FS is a full featured hierarchical storage management (HSM) device that operates as a file system on Solaris-based machines. The SAM-FS file system provides the user with all of the standard UNIX system utilities and calls, and adds some new commands, i.e. archive, release, stage, sls, sfind, and a family of maintenance commands. The system also offers enhancements such as high performance virtual disk read and write, control of the disk through an extent array, and the ability to dynamically allocate block size. SAM-FS provides 'archive sets' which are groupings of data to be copied to secondary storage. In practice, as soon as a file is written to disk, SAM-FS will make copies onto secondary media. SAM-FS is a scalable storage management system. The system can manage millions of files per system, though this is limited today by the speed of UNIX and its utilities. In the future, a new search algorithm will be implemented that will remove logical and performance restrictions on the number of files managed.

  7. SAM-2 ground-truth plan: Correlative measurements for the Stratospheric Aerosol Measurement-2 (SAM 2) sensor on the Nimbus G satellite

    NASA Technical Reports Server (NTRS)

    Russell, P. B.; Mccormick, M. P.; Mcmaster, L. R.; Pepin, T. J.; Chu, W. P.; Swissler, T. J.

    1978-01-01

    The SAM-2 will fly aboard the Nimbus-G satellite for launch in the fall of 1978 and measure stratospheric vertical profiles of aerosol extinction in high latitude bands. The plan gives details of the location and times for the simultaneous satellite/correlative measurements for the nominal launch time, the rationale and choice of the correlative sensors, their characteristics and expected accuracies, and the conversion of their data to extinction profiles. The SAM-2 expected instrument performance and data inversion results are presented. Various atmospheric models representative of polar stratospheric aerosols are used in the SAM-2 and correlative sensor analyses.

  8. Emerging roles for Sam68 in adipogenesis and neuronal development.

    PubMed

    Vogel, Gillian; Richard, Stéphane

    2012-09-01

    Sam68, the Src-associated substrate during mitosis of 68 kDa, belongs to the large class of heteronuclear ribonucleoprotein particle K (hnRNP K) homology (KH) domain family of RNA-binding proteins. Sam68 contains a single KH domain harboring conserved N- and C-terminal sequences required for RNA binding and homodimerization. The KH domain is one of the most prevalent RNA binding domains that directly contacts single-stranded RNA. Sam68 has been implicated in numerous aspects of RNA metabolism including alternative splicing and polysomal recruitment of mRNAs. Studies in mice have revealed physiological roles linking Sam68 to osteoporosis, obesity, cancer, infertility and ataxia. Recent publications have greatly enhanced our understanding of Sam68 mechanism of action in addition to its cellular role. Herein, we will discuss the latest advances in the literature pertaining to obesity and neuronal development.

  9. Recent Updates to the System Advisor Model (SAM)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DiOrio, Nicholas A

    The System Advisor Model (SAM) is a mature suite of techno-economic models for many renewable energy technologies that can be downloaded for free as a desktop application or software development kit. SAM is used for system-level modeling, including generating performance pro the release of the code as an open source project on GitHub. Other additions that will be covered include the ability to download data directly into SAM from the National Solar Radiation Database (NSRDB) and up- dates to a user-interface macro that assists with PV system sizing. A brief update on SAM's battery model and its integration with themore » detailed photovoltaic model will also be discussed. Finally, an outline of planned work for the next year will be presented, including the addition of a bifacial model, support for multiple MPPT inputs for detailed inverter modeling, and the addition of a model for inverter thermal behavior.« less

  10. [German translation and validation of the Stress Appraisal Measure (SAM)].

    PubMed

    Delahaye, M; Stieglitz, R D; Graf, M; Keppler, C; Maes, J; Pflueger, M

    2015-05-01

    In the present study, the German-language version of the Stress Appraisal Measure (SAM) by Peacock and Wong was validated in a student population. SAM is a relatively short questionnaire (28 items) that evaluates a current, stress-triggering event. The theoretical background is provided by the stress model of Lazarus and Folkman. 85 students (age: 23; 59 female, 26 male) were exposed to two stress scenarios in order to test whether they were suited to provoke stress. A factor analysis was performed and the internal consistency of the seven SAM scales was determined. In addition, the convergent validity of SAM with State and Trait Anxiety Inventory (STAI), Coping Inventory for Stressful Situations (CISS) and specific emotion scales was investigated via Pearson's product-moment correlation. The two stress scenarios were suited to evoke stress. The factor structure and the internal consistency of the individual scales, as well as the convergent validity of SAM were replicated with minor limitations in the present German version. Some items (especially from the fifth factor) were only replicated partially. SAM can also be employed in the German language version. © Georg Thieme Verlag KG Stuttgart · New York.

  11. Discrimination between Closely Related Cellular Metabolites by the SAM-I Riboswitch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montange, R.; Mondragon, E; van Tyne, D

    2010-01-01

    The SAM-I riboswitch is a cis-acting element of genetic control found in bacterial mRNAs that specifically binds S-adenosylmethionine (SAM). We previously determined the 2.9-{angstrom} X-ray crystal structure of the effector-binding domain of this RNA element, revealing details of RNA-ligand recognition. To improve this structure, variations were made to the RNA sequence to alter lattice contacts, resulting in a 0.5-{angstrom} improvement in crystallographic resolution and allowing for a more accurate refinement of the crystallographic model. The basis for SAM specificity was addressed by a structural analysis of the RNA complexed to S-adenosylhomocysteine (SAH) and sinefungin and by measuring the affinity ofmore » SAM and SAH for a series of mutants using isothermal titration calorimetry. These data illustrate the importance of two universally conserved base pairs in the RNA that form electrostatic interactions with the positively charged sulfonium group of SAM, thereby providing a basis for discrimination between SAM and SAH.« less

  12. Probing the nature and resistance of the molecule-electrode contact in SAM-based junctions.

    PubMed

    Sangeeth, C S Suchand; Wan, Albert; Nijhuis, Christian A

    2015-07-28

    It is challenging to quantify the contact resistance and to determine the nature of the molecule-electrode contacts in molecular two-terminal junctions. Here we show that potentiodynamic and temperature dependent impedance measurements give insights into the nature of the SAM-electrode interface and other bottlenecks of charge transport (the capacitance of the SAM (C(SAM)) and the resistance of the SAM (R(SAM))), unlike DC methods, independently of each other. We found that the resistance of the top-electrode-SAM contact for junctions with the form of Ag(TS)-SC(n)//GaO(x)/EGaIn with n = 10, 12, 14, 16 or 18 is bias and temperature independent and hence Ohmic (non-rectifying) in nature, and is orders of magnitude smaller than R(SAM). The C(SAM) and R(SAM) are independent of the temperature, indicating that the mechanism of charge transport in these SAM-based junctions is coherent tunneling and the charge carrier trapping at the interfaces is negligible.

  13. Axial iron coordination and spin state change in a heme c upon electrostatic protein-SAM interaction.

    PubMed

    Di Rocco, Giulia; Ranieri, Antonio; Bortolotti, Carlo Augusto; Battistuzzi, Gianantonio; Bonifacio, Alois; Sergo, Valter; Borsari, Marco; Sola, Marco

    2013-08-28

    A bacterial di-heme cytochrome c binds electrostatically to a gold electrode surface coated with a negatively charged COOH-terminated SAM adopting a sort of 'perpendicular' orientation. Cyclic voltammetry, Resonance Raman and SERRS spectroscopies indicate that the high-potential C-terminal heme center proximal to the SAM's surface undergoes an adsorption-induced swapping of one axial His ligand with a water molecule, which is probably lost in the reduced form, and a low- to high-spin transition. This coordination change for a bis-His ligated heme center upon an electrostatically-driven molecular recognition is as yet unprecedented, as well as the resulting increase in reduction potential. We discuss it in comparison with the known methionine ligand lability in monoheme cytochromes c occurring upon interaction with charged molecular patches. One possible implication of this finding in biological ET is that mobile redox partners do not behave as rigid and invariant bodies, but in the ET complex are subjected to molecular changes and structural fluctuations that affect in a complex way the thermodynamics and the kinetics of the process.

  14. Other Resources Related to SAM

    EPA Pesticide Factsheets

    Learn more about websites and information related to EPA's Selected Analytical Methods for Environmental Remediation and Recovery (SAM), including key EPA collaborators, laboratories, and research centers.

  15. Radical-mediated enzymatic methylation: a tale of two SAMS.

    PubMed

    Zhang, Qi; van der Donk, Wilfred A; Liu, Wen

    2012-04-17

    Methylation is an essential and ubiquitous reaction that plays an important role in a wide range of biological processes. Most biological methylations use S-adenosylmethionine (SAM) as the methyl donor and proceed via an S(N)2 displacement mechanism. However, researchers have discovered an increasing number of methylations that involve radical chemistry. The enzymes known to catalyze these reactions all belong to the radical SAM superfamily. This family of enzymes utilizes a specialized [4Fe-4S] cluster for reductive cleavage of SAM to yield a highly reactive 5'-deoxyadenosyl (dAdo) radical. Radical chemistry is then imposed on a variety of organic substrates, leading to a diverse array of transformations. Until recently, researchers had not fully understood how these enzymes employ radical chemistry to mediate a methyl transfer reaction. Sequence analyses reveal that the currently identified radical SAM methyltransferases (RSMTs) can be grouped into three classes, which appear distinct in protein architecture and mechanism. Class A RSMTs mainly include the rRNA methyltransferases RlmN and Cfr from various origins. As exemplified by Escherichia coli RlmN, these proteins have a single canonical radical SAM core domain that includes an (βα)(6) partial barrel most similar to that of pyruvate formate lyase-activase. The exciting recent studies on RlmN and Cfr are beginning to provide insights into the intriguing chemistry of class A RSMTs. These enzymes utilize a methylene radical generated on a unique methylated cysteine residue. However, based on the variety of substrates used by the other classes of RSMTs, alternative mechanisms are likely to be discovered. Class B RSMTs contain a proposed N-terminal cobalamin binding domain in addition to a radical SAM domain at the C-terminus. This class of proteins methylates diverse substrates at inert sp(3) carbons, aromatic heterocycles, and phosphinates, possibly involving a cobalamin-mediated methyl transfer process. Class

  16. Activated Cdc42-associated kinase 1 (ACK1) binds the sterile α motif (SAM) domain of the adaptor SLP-76 and phosphorylates proximal tyrosines.

    PubMed

    Thaker, Youg R; Recino, Asha; Raab, Monika; Jabeen, Asma; Wallberg, Maja; Fernandez, Nelson; Rudd, Christopher E

    2017-04-14

    The adaptor protein Src homology 2 domain-containing leukocyte phosphoprotein of 76 kDa (SLP-76) plays a crucial role in T cell activation by linking antigen receptor (T cell receptor, TCR) signals to downstream pathways. At its N terminus, SLP-76 has three key tyrosines (Tyr-113, Tyr-128, and Tyr-145, "3Y") as well as a sterile α motif (SAM) domain whose function is unclear. We showed previously that the SAM domain has two binding regions that mediate dimer and oligomer formation. In this study, we have identified SAM domain-carrying non-receptor tyrosine kinase, activated Cdc42-associated tyrosine kinase 1 (ACK1; also known as Tnk2, tyrosine kinase non-receptor 2) as a novel binding partner of SLP-76. Co-precipitation, laser-scanning confocal microscopy, and in situ proximity analysis confirmed the binding of ACK1 to SLP-76. Further, the interaction was induced in response to the anti-TCR ligation and abrogated by the deletion of SLP-76 SAM domain (ΔSAM) or mutation of Tyr-113, Tyr-128, and Tyr-145 to phenylalanine (3Y3F). ACK1 induced phosphorylation of the SLP-76 N-terminal tyrosines (3Y) dependent on the SAM domain. Further, ACK1 promoted calcium flux and NFAT-AP1 promoter activity and decreased the motility of murine CD4 + primary T cells on ICAM-1-coated plates, an event reversed by a small molecule inhibitor of ACK1 (AIM-100). These findings identify ACK1 as a novel SLP-76-associated protein-tyrosine kinase that modulates early activation events in T cells. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Activated Cdc42-associated kinase 1 (ACK1) binds the sterile α motif (SAM) domain of the adaptor SLP-76 and phosphorylates proximal tyrosines

    PubMed Central

    Thaker, Youg R.; Recino, Asha; Raab, Monika; Jabeen, Asma; Wallberg, Maja; Fernandez, Nelson; Rudd, Christopher E.

    2017-01-01

    The adaptor protein Src homology 2 domain-containing leukocyte phosphoprotein of 76 kDa (SLP-76) plays a crucial role in T cell activation by linking antigen receptor (T cell receptor, TCR) signals to downstream pathways. At its N terminus, SLP-76 has three key tyrosines (Tyr-113, Tyr-128, and Tyr-145, “3Y”) as well as a sterile α motif (SAM) domain whose function is unclear. We showed previously that the SAM domain has two binding regions that mediate dimer and oligomer formation. In this study, we have identified SAM domain-carrying non-receptor tyrosine kinase, activated Cdc42-associated tyrosine kinase 1 (ACK1; also known as Tnk2, tyrosine kinase non-receptor 2) as a novel binding partner of SLP-76. Co-precipitation, laser-scanning confocal microscopy, and in situ proximity analysis confirmed the binding of ACK1 to SLP-76. Further, the interaction was induced in response to the anti-TCR ligation and abrogated by the deletion of SLP-76 SAM domain (ΔSAM) or mutation of Tyr-113, Tyr-128, and Tyr-145 to phenylalanine (3Y3F). ACK1 induced phosphorylation of the SLP-76 N-terminal tyrosines (3Y) dependent on the SAM domain. Further, ACK1 promoted calcium flux and NFAT-AP1 promoter activity and decreased the motility of murine CD4+ primary T cells on ICAM-1-coated plates, an event reversed by a small molecule inhibitor of ACK1 (AIM-100). These findings identify ACK1 as a novel SLP-76-associated protein-tyrosine kinase that modulates early activation events in T cells. PMID:28188290

  18. Sam2bam: High-Performance Framework for NGS Data Preprocessing Tools

    PubMed Central

    Cheng, Yinhe; Tzeng, Tzy-Hwa Kathy

    2016-01-01

    This paper introduces a high-throughput software tool framework called sam2bam that enables users to significantly speed up pre-processing for next-generation sequencing data. The sam2bam is especially efficient on single-node multi-core large-memory systems. It can reduce the runtime of data pre-processing in marking duplicate reads on a single node system by 156–186x compared with de facto standard tools. The sam2bam consists of parallel software components that can fully utilize multiple processors, available memory, high-bandwidth storage, and hardware compression accelerators, if available. The sam2bam provides file format conversion between well-known genome file formats, from SAM to BAM, as a basic feature. Additional features such as analyzing, filtering, and converting input data are provided by using plug-in tools, e.g., duplicate marking, which can be attached to sam2bam at runtime. We demonstrated that sam2bam could significantly reduce the runtime of next generation sequencing (NGS) data pre-processing from about two hours to about one minute for a whole-exome data set on a 16-core single-node system using up to 130 GB of memory. The sam2bam could reduce the runtime of NGS data pre-processing from about 20 hours to about nine minutes for a whole-genome sequencing data set on the same system using up to 711 GB of memory. PMID:27861637

  19. The radical SAM protein HemW is a heme chaperone.

    PubMed

    Haskamp, Vera; Karrie, Simone; Mingers, Toni; Barthels, Stefan; Alberge, François; Magalon, Axel; Müller, Katrin; Bill, Eckhard; Lubitz, Wolfgang; Kleeberg, Kirstin; Schweyen, Peter; Bröring, Martin; Jahn, Martina; Jahn, Dieter

    2018-02-16

    Radical S -adenosylmethionine (SAM) enzymes exist in organisms from all kingdoms of life, and all of these proteins generate an adenosyl radical via the homolytic cleavage of the S-C(5') bond of SAM. Of particular interest are radical SAM enzymes, such as heme chaperones, that insert heme into respiratory enzymes. For example, heme chaperones insert heme into target proteins but have been studied only for the formation of cytochrome c -type hemoproteins. Here, we report that a radical SAM protein, the heme chaperone HemW from bacteria, is required for the insertion of heme b into respiratory chain enzymes. As other radical SAM proteins, HemW contains three cysteines and one SAM coordinating an [4Fe-4S] cluster, and we observed one heme per subunit of HemW. We found that an intact iron-sulfur cluster was required for HemW dimerization and HemW-catalyzed heme transfer but not for stable heme binding. A bacterial two-hybrid system screen identified bacterioferritins and the heme-containing subunit NarI of the respiratory nitrate reductase NarGHI as proteins that interact with HemW. We also noted that the bacterioferritins potentially serve as heme donors for HemW. Of note, heme that was covalently bound to HemW was actively transferred to a heme-depleted, catalytically inactive nitrate reductase, restoring its nitrate-reducing enzyme activity. Finally, the human HemW orthologue radical SAM domain-containing 1 (RSAD1) stably bound heme. In conclusion, our findings indicate that the radical SAM protein family HemW/RSAD1 is a heme chaperone catalyzing the insertion of heme into hemoproteins. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Cooperation between Magnesium and Metabolite Controls Collapse of the SAM-I Riboswitch.

    PubMed

    Roy, Susmita; Onuchic, José N; Sanbonmatsu, Karissa Y

    2017-07-25

    The S-adenosylmethionine (SAM)-I riboswitch is a noncoding RNA that regulates the transcription termination process in response to metabolite (SAM) binding. The aptamer portion of the riboswitch may adopt an open or closed state depending on the presence of metabolite. Although the transition between the open and closed states is critical for the switching process, its atomistic details are not well understood. Using atomistic simulations, we calculate the effect of SAM and magnesium ions on the folding free energy landscape of the SAM-I riboswitch. These molecular simulation results are consistent with our previous wetlab experiments and aid in interpreting the SHAPE probing measurements. Here, molecular dynamics simulations explicitly identify target RNA motifs sensitive to magnesium ions and SAM. In the simulations, we observe that, whereas the metabolite mostly stabilizes the P1 and P3 helices, magnesium serves an important role in stabilizing a pseudoknot interaction between the P2 and P4 helices, even at high metabolite concentrations. The pseudoknot stabilization by magnesium, in combination with P1 stabilization by SAM, explains the requirement of both SAM and magnesium to form the fully collapsed metabolite-bound closed state of the SAM-I riboswitch. In the absence of SAM, frequent open-to-closed conformational transitions of the pseudoknot occur, akin to breathing. These pseudoknot fluctuations disrupt the binding site by facilitating fluctuations in the 5'-end of helix P1. Magnesium biases the landscape toward a collapsed state (preorganization) by coordinating pseudoknot and 5'-P1 fluctuations. The cooperation between SAM and magnesium in stabilizing important tertiary interactions elucidates their functional significance in transcription regulation. Published by Elsevier Inc.

  1. SAMS Acceleration Measurements on Mir from June to November 1995

    NASA Technical Reports Server (NTRS)

    DeLombard, Richard; Hrovat, Ken; Moskowitz, Milton; McPherson, Kevin

    1996-01-01

    The NASA Microgravity Science and Applications Division (MSAD) sponsors science experiments on a variety of microgravity carriers, including sounding rockets, drop towers, parabolic aircraft, and Orbiter missions. The MSAD sponsors the Space Acceleration Measurement System (SAMS) to support microgravity science experiments with acceleration measurements to characterize the microgravity environment to which the experiments were exposed. The Principal Investigator Microgravity Services project at the NASA Lewis Research Center supports principal investigators of microgravity experiments as they evaluate the effects of varying acceleration levels on their experiments. In 1993, a cooperative effort was started between the United States and Russia involving science utilization of the Russian Mir space station by scientists from the United States and Russia. MSAD is currently sponsoring science experiments participating in the Shuttle-Mir Science Program in cooperation with the Russians on the Mir space station. Included in the complement of MSAD experiments and equipment is a SAMS unit In a manner similar to Orbiter mission support, the SAMS unit supports science experiments from the U.S. and Russia by measuring the microgravity environment during experiment operations. The initial SAMS supported experiment was a Protein Crystal Growth (PCG) experiment from June to November 1995. SAMS data were obtained during the PCG operations on Mir in accordance with the PCG Principal Investigator's requirements. This report presents an overview of the SAMS data recorded to support this PCG experiment. The report contains plots of the SAMS 100 Hz sensor head data as an overview of the microgravity environment, including the STS-74 Shuttle-Mir docking.

  2. Practical aspects in the management of statin-associated muscle symptoms (SAMS).

    PubMed

    Laufs, Ulrich; Filipiak, Krysztof J; Gouni-Berthold, Ioanna; Catapano, Alberico L

    2017-04-01

    Statin-associated muscle symptoms (SAMS) frequently cause statin non-adherence, switching and discontinuation, contributing to adverse cardiovascular (CV) outcomes. Therefore, the management of SAMS is key in the effective treatment of patients with cardiovascular disease (CVD), through achievement of maximum-tolerated statin dosing and other practical aspects. The aim of this article is to provide practical, focused advice for healthcare professionals on the management of patients with SAMS. An expert working group combined current evidence, published guidelines and experiences surrounding a number of topics concerning SAMS to provide recommendations on how to best assess and manage this condition and reach the highest tolerated dose of statin for each individual patient. The group collaborated to provide guidance on definitions in the SAMS field, psychological issues, re-challenging and switching treatments, as well as interpretation of current guidelines and optimal treatment of SAMS in different patient populations. An algorithm was developed to guide the management of patients with SAMS. In addition, the expert working group considered some of the more complex scenarios in a series of frequently asked questions and suggested answers. The expert working group gave recommendations for healthcare professionals on the management of SAMS but highlighted the importance of tailoring the treatment approach to each individual patient. Evidence supporting the role of nutraceuticals and complementary therapies, such as vitamin D, was lacking, however the majority of the group favoured combination therapy with ezetimibe and the addition of PCSK9 inhibitors in high-risk patients. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Spatial Analysis and Modeling Systems (SAMS)

    NASA Technical Reports Server (NTRS)

    Vermillion, Charles; Chan, Paul; Hill, John; Jaske, Robert; Rochon, Gilbert; Stetina, Fran

    1991-01-01

    The objective is to develop a uniform environmental data gathering and distribution system to support (1) emergency management for environmental disasters, and (2) the calibration and validation of remotely sensed data. Initial activities will be to select a data test site and to demonstrate multi-discipline applications using simulated or satellite data in a non real-time mode. Rainfall and flooding are chosen as the testbeds for the SAMS concept because of the abundance of data and the availability of models. The capability to display and process GOES data and analyze GOES generated rain-rate maps will be integrated into SAMS.

  4. Validation of SAM 2 and SAGE satellite

    NASA Technical Reports Server (NTRS)

    Kent, G. S.; Wang, P.-H.; Farrukh, U. O.; Yue, G. K.

    1987-01-01

    Presented are the results of a validation study of data obtained by the Stratospheric Aerosol and Gas Experiment I (SAGE I) and Stratospheric Aerosol Measurement II (SAM II) satellite experiments. The study includes the entire SAGE I data set (February 1979 - November 1981) and the first four and one-half years of SAM II data (October 1978 - February 1983). These data sets have been validated by their use in the analysis of dynamical, physical and chemical processes in the stratosphere. They have been compared with other existing data sets and the SAGE I and SAM II data sets intercompared where possible. The study has shown the data to be of great value in the study of the climatological behavior of stratospheric aerosols and ozone. Several scientific publications and user-oriented data summaries have appeared as a result of the work carried out under this contract.

  5. Structure-guided discovery of the metabolite carboxy-SAM that modulates tRNA function.

    PubMed

    Kim, Jungwook; Xiao, Hui; Bonanno, Jeffrey B; Kalyanaraman, Chakrapani; Brown, Shoshana; Tang, Xiangying; Al-Obaidi, Nawar F; Patskovsky, Yury; Babbitt, Patricia C; Jacobson, Matthew P; Lee, Young-Sam; Almo, Steven C

    2013-06-06

    The identification of novel metabolites and the characterization of their biological functions are major challenges in biology. X-ray crystallography can reveal unanticipated ligands that persist through purification and crystallization. These adventitious protein-ligand complexes provide insights into new activities, pathways and regulatory mechanisms. We describe a new metabolite, carboxy-S-adenosyl-l-methionine (Cx-SAM), its biosynthetic pathway and its role in transfer RNA modification. The structure of CmoA, a member of the SAM-dependent methyltransferase superfamily, revealed a ligand consistent with Cx-SAM in the catalytic site. Mechanistic analyses showed an unprecedented role for prephenate as the carboxyl donor and the involvement of a unique ylide intermediate as the carboxyl acceptor in the CmoA-mediated conversion of SAM to Cx-SAM. A second member of the SAM-dependent methyltransferase superfamily, CmoB, recognizes Cx-SAM and acts as a carboxymethyltransferase to convert 5-hydroxyuridine into 5-oxyacetyl uridine at the wobble position of multiple tRNAs in Gram-negative bacteria, resulting in expanded codon-recognition properties. CmoA and CmoB represent the first documented synthase and transferase for Cx-SAM. These findings reveal new functional diversity in the SAM-dependent methyltransferase superfamily and expand the metabolic and biological contributions of SAM-based biochemistry. These discoveries highlight the value of structural genomics approaches in identifying ligands within the context of their physiologically relevant macromolecular binding partners, and in revealing their functions.

  6. Sample Analysis at Mars (SAM) Media Day

    NASA Image and Video Library

    2017-12-08

    On Saturday, November 26, NASA is scheduled to launch the Mars Science Laboratory (MSL) mission featuring Curiosity, the largest and most advanced rover ever sent to the Red Planet. The Curiosity rover bristles with multiple cameras and instruments, including Goddard's Sample Analysis at Mars (SAM) instrument suite. By looking for evidence of water, carbon, and other important building blocks of life in the Martian soil and atmosphere, SAM will help discover whether Mars ever had the potential to support life. Curiosity will be delivered to Gale crater, a 96-mile-wide crater that contains a record of environmental changes in its sedimentary rock, in August 2012. ----- NASA image November 18, 2010 The Sample Analysis at Mars (SAM) instrument is considered one of the most complicated instruments ever to land on the surface of another planet. Equipped with a gas chromatograph, a quadruple mass spectrometer, and a tunable laser spectrometer, SAM will carry out the initial search for organic compounds when the Mars Science Laboratory (MSL) rover lands in 2012. Credit: NASA/GSFC/Ed Campion NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  7. Structural analysis of a putative SAM-dependent methyltransferase, YtqB, from Bacillus subtilis.

    PubMed

    Park, Sun Cheol; Song, Wan Seok; Yoon, Sung-il

    2014-04-18

    S-adenosyl-L-methionine (SAM)-dependent methyltransferases (MTases) methylate diverse biological molecules using a SAM cofactor. The ytqB gene of Bacillus subtilis encodes a putative MTase and its biological function has never been characterized. To reveal the structural features and the cofactor binding mode of YtqB, we have determined the crystal structures of YtqB alone and in complex with its cofactor, SAM, at 1.9 Å and 2.2 Å resolutions, respectively. YtqB folds into a β-sheet sandwiched by two α-helical layers, and assembles into a dimeric form. Each YtqB monomer contains one SAM binding site, which shapes SAM into a slightly curved conformation and exposes the reactive methyl group of SAM potentially to a substrate. Our comparative structural analysis of YtqB and its homologues indicates that YtqB is a SAM-dependent class I MTase, and provides insights into the substrate binding site of YtqB. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. The vesicle protein SAM-4 regulates the processivity of synaptic vesicle transport.

    PubMed

    Zheng, Qun; Ahlawat, Shikha; Schaefer, Anneliese; Mahoney, Tim; Koushika, Sandhya P; Nonet, Michael L

    2014-10-01

    Axonal transport of synaptic vesicles (SVs) is a KIF1A/UNC-104 mediated process critical for synapse development and maintenance yet little is known of how SV transport is regulated. Using C. elegans as an in vivo model, we identified SAM-4 as a novel conserved vesicular component regulating SV transport. Processivity, but not velocity, of SV transport was reduced in sam-4 mutants. sam-4 displayed strong genetic interactions with mutations in the cargo binding but not the motor domain of unc-104. Gain-of-function mutations in the unc-104 motor domain, identified in this study, suppress the sam-4 defects by increasing processivity of the SV transport. Genetic analyses suggest that SAM-4, SYD-2/liprin-α and the KIF1A/UNC-104 motor function in the same pathway to regulate SV transport. Our data support a model in which the SV protein SAM-4 regulates the processivity of SV transport.

  9. The Vesicle Protein SAM-4 Regulates the Processivity of Synaptic Vesicle Transport

    PubMed Central

    Zheng, Qun; Ahlawat, Shikha; Schaefer, Anneliese; Mahoney, Tim; Koushika, Sandhya P.; Nonet, Michael L.

    2014-01-01

    Axonal transport of synaptic vesicles (SVs) is a KIF1A/UNC-104 mediated process critical for synapse development and maintenance yet little is known of how SV transport is regulated. Using C. elegans as an in vivo model, we identified SAM-4 as a novel conserved vesicular component regulating SV transport. Processivity, but not velocity, of SV transport was reduced in sam-4 mutants. sam-4 displayed strong genetic interactions with mutations in the cargo binding but not the motor domain of unc-104. Gain-of-function mutations in the unc-104 motor domain, identified in this study, suppress the sam-4 defects by increasing processivity of the SV transport. Genetic analyses suggest that SAM-4, SYD-2/liprin-α and the KIF1A/UNC-104 motor function in the same pathway to regulate SV transport. Our data support a model in which the SV protein SAM-4 regulates the processivity of SV transport. PMID:25329901

  10. Non-canonical active site architecture of the radical SAM thiamin pyrimidine synthase.

    PubMed

    Fenwick, Michael K; Mehta, Angad P; Zhang, Yang; Abdelwahed, Sameh H; Begley, Tadhg P; Ealick, Steven E

    2015-03-27

    Radical S-adenosylmethionine (SAM) enzymes use a [4Fe-4S] cluster to generate a 5'-deoxyadenosyl radical. Canonical radical SAM enzymes are characterized by a β-barrel-like fold and SAM anchors to the differentiated iron of the cluster, which is located near the amino terminus and within the β-barrel, through its amino and carboxylate groups. Here we show that ThiC, the thiamin pyrimidine synthase in plants and bacteria, contains a tethered cluster-binding domain at its carboxy terminus that moves in and out of the active site during catalysis. In contrast to canonical radical SAM enzymes, we predict that SAM anchors to an additional active site metal through its amino and carboxylate groups. Superimposition of the catalytic domains of ThiC and glutamate mutase shows that these two enzymes share similar active site architectures, thus providing strong evidence for an evolutionary link between the radical SAM and adenosylcobalamin-dependent enzyme superfamilies.

  11. Non-canonical active site architecture of the radical SAM thiamin pyrimidine synthase

    DOE PAGES

    Fenwick, Michael K.; Mehta, Angad P.; Zhang, Yang; ...

    2015-03-27

    Radical S-adenosylmethionine (SAM) enzymes use a [4Fe-4S] cluster to generate a 5'-deoxyadenosyl radical. Canonical radical SAM enzymes are characterized by a β-barrel-like fold and SAM anchors to the differentiated iron of the cluster, which is located near the amino terminus and within the β-barrel, through its amino and carboxylate groups. Here we show that ThiC, the thiamin pyrimidine synthase in plants and bacteria, contains a tethered cluster-binding domain at its carboxy terminus that moves in and out of the active site during catalysis. In contrast to canonical radical SAM enzymes, we predict that SAM anchors to an additional active sitemore » metal through its amino and carboxylate groups. Superimposition of the catalytic domains of ThiC and glutamate mutase shows that these two enzymes share similar active site architectures, thus providing strong evidence for an evolutionary link between the radical SAM and adenosylcobalamin-dependent enzyme superfamilies.« less

  12. A role of the SAM domain in EphA2 receptor activation.

    PubMed

    Shi, Xiaojun; Hapiak, Vera; Zheng, Ji; Muller-Greven, Jeannine; Bowman, Deanna; Lingerak, Ryan; Buck, Matthias; Wang, Bing-Cheng; Smith, Adam W

    2017-03-24

    Among the 20 subfamilies of protein receptor tyrosine kinases (RTKs), Eph receptors are unique in possessing a sterile alpha motif (SAM domain) at their C-terminal ends. However, the functions of SAM domains in Eph receptors remain elusive. Here we report on a combined cell biology and quantitative fluorescence study to investigate the role of the SAM domain in EphA2 function. We observed elevated tyrosine autophosphorylation levels upon deletion of the EphA2 SAM domain (EphA2ΔS) in DU145 and PC3 prostate cancer cells and a skin tumor cell line derived from EphA1/A2 knockout mice. These results suggest that SAM domain deletion induced constitutive activation of EphA2 kinase activity. In order to explain these effects, we applied fluorescence correlation spectroscopy to investigate the lateral molecular organization of EphA2. Our results indicate that SAM domain deletion (EphA2ΔS-GFP) increases oligomerization compared to the full length receptor (EphA2FL-GFP). Stimulation with ephrinA1, a ligand for EphA2, induced further oligomerization and activation of EphA2FL-GFP. The SAM domain deletion mutant, EphA2ΔS-GFP, also underwent further oligomerization upon ephrinA1 stimulation, but the oligomers were larger than those observed for EphA2FL-GFP. Based on these results, we conclude that the EphA2 SAM domain inhibits kinase activity by reducing receptor oligomerization.

  13. Selected Analytical Methods for Environmental Remediation and Recovery (SAM) - Home

    EPA Pesticide Factsheets

    The SAM Home page provides access to all information provided in EPA's Selected Analytical Methods for Environmental Remediation and Recovery (SAM), and includes a query function allowing users to search methods by analyte, sample type and instrumentation.

  14. The SAM domain inhibits EphA2 interactions in the plasma membrane.

    PubMed

    Singh, Deo R; Ahmed, Fozia; Paul, Michael D; Gedam, Manasee; Pasquale, Elena B; Hristova, Kalina

    2017-01-01

    All members of the Eph receptor family of tyrosine kinases contain a SAM domain near the C terminus, which has been proposed to play a role in receptor homotypic interactions and/or interactions with binding partners. The SAM domain of EphA2 is known to be important for receptor function, but its contribution to EphA2 lateral interactions in the plasma membrane has not been determined. Here we use a FRET-based approach to directly measure the effect of the SAM domain on the stability of EphA2 dimers on the cell surface in the absence of ligand binding. We also investigate the functional consequences of EphA2 SAM domain deletion. Surprisingly, we find that the EphA2 SAM domain inhibits receptor dimerization and decreases EphA2 tyrosine phosphorylation. This role is dramatically different from the role of the SAM domain of the related EphA3 receptor, which we previously found to stabilize EphA3 dimers and increase EphA3 tyrosine phosphorylation in cells in the absence of ligand. Thus, the EphA2 SAM domain likely contributes to a unique mode of EphA2 interaction that leads to distinct signaling outputs. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Motor coordination defects in mice deficient for the Sam68 RNA-binding protein.

    PubMed

    Lukong, Kiven E; Richard, Stéphane

    2008-06-03

    The role of RNA-binding proteins in the central nervous system and more specifically their role in motor coordination and learning are poorly understood. We previously reported that ablation of RNA-binding protein Sam68 in mice results in male sterility and delayed mammary gland development and protection against osteoporosis in females. Sam68 however is highly expressed in most regions of the brain especially the cerebellum and thus we investigated the cerebellar-related manifestations in Sam68-null mice. We analyzed the mice for motor function, sensory function, and learning and memory abilities. Herein, we report that Sam68-null mice have motor coordination defects as assessed by beam walking and rotorod performance. Forty-week-old Sam68-null mice (n=12) were compared to their wild-type littermates (n=12). The Sam68-null mice exhibited more hindpaw faults in beam walking tests and fell from the rotating drum at lower speeds and prematurely compared to the wild-type controls. The Sam68-null mice were, however, normal for forelimb strength, tail-hang reflex, balance test, grid walking, the Morris water task, recognition memory, visual discrimination, auditory stimulation and conditional taste aversion. Our findings support a role for Sam68 in the central nervous system in the regulation of motor coordination.

  16. 75 FR 4579 - Certificate of Alternative Compliance for the Tugboat MR SAM

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-28

    ... Compliance for the Tugboat MR SAM AGENCY: Coast Guard, DHS. ACTION: Notice. SUMMARY: The Coast Guard announces that a Certificate of Alternative Compliance was issued for the tugboat MR SAM as required by 33 U... Title 33, Code of Federal Regulations, Parts 81 and 89, has been issued for the tugboat MR SAM, O.N...

  17. Theodore Roosevelt Chloroforming Uncle Sam "In the Hopeless Ward".

    PubMed

    Drew, Benjamin A; Bause, George S

    2016-10-01

    In March of 1905 in Judge magazine, Louis Dalrymple published his political cartoon of Theodore Roosevelt chloroforming "Uncle Sam." Having sampled a host of Democratic remedies, the 125-year-old Sam can expect that Roosevelt's chloroform will either cure him with major Republican surgery or kill him with Osler-linked euthanasia. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. SSCR Automated Manager (SAM) release 1. 1 reference manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1988-10-01

    This manual provides instructions for using the SSCR Automated Manager (SAM) to manage System Software Change Records (SSCRs) online. SSCRs are forms required to document all system software changes for the Martin Marietta Energy Systems, Inc., Central computer systems. SAM, a program developed at Energy Systems, is accessed through IDMS/R (Integrated Database Management System) on an IBM system.

  19. Systematic biochemical characterization of the SAM domains in Eph receptor family from Mus Musculus.

    PubMed

    Wang, Yue; Li, Qingxia; Zheng, Yunhua; Li, Gang; Liu, Wei

    2016-05-13

    The Eph receptor family is the largest subfamily of receptor tyrosine kinases and well-known for their pivotal roles in axon guidance, synaptogenesis, artery/venous differentiation and tumorigenesis, etc. Activation of the Eph receptor needs multimerization of the receptors. The intracellular C-terminal SAM domain of Eph receptor was reported to mediate self-association of Eph receptors via the homo SAM-SAM interaction. In this study, we systematically expressed and purified the SAM domain proteins of all fourteen Eph receptors of Mus musculus in Escherichia coli. The FPLC (fast protein liquid chromatography) results showed the recombinant SAM domains were highly homogeneous. Using CD (circular dichroism) spectrometry, we found that the secondary structure of all the SAM domains was typically alpha helical folded and remarkably similar. The thermo-stability tests showed that they were quite stable in solution. SEC-MALS (size exclusion chromatography coupled with multiple angle light scattering) results illustrated 200 μM Eph SAM domains behaved as good monomers in the size-exclusion chromatography. More importantly, DLS (dynamic light scattering) results revealed the overwhelming majority of SAM domains was not multimerized in solution either at 200 μM or 2000 μM protein concentration, which indicating the SAM domain alone was not sufficient to mediate the polymerization of Eph receptor. In summary, our studies provided the systematic biochemical characterizations of the Eph receptor SAM domains and implied their roles in Eph receptor mediated signaling pathways. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. The Information System at CeSAM

    NASA Astrophysics Data System (ADS)

    Agneray, F.; Gimenez, S.; Moreau, C.; Roehlly, Y.

    2012-09-01

    Modern large observational programmes produce important amounts of data from various origins, and need high level quality control, fast data access via easy-to-use graphic interfaces, as well as possibility to cross-correlate informations coming from different observations. The Centre de donnéeS Astrophysique de Marseille (CeSAM) offer web access to VO compliant Information Systems to access data of different projects (VVDS, HeDAM, EXODAT, HST-COSMOS,…), including ancillary data obtained outside Laboratoire d'Astrophysique de Marseille (LAM) control. The CeSAM Information Systems provides download of catalogues and some additional services like: search, extract and display imaging and spectroscopic data by multi-criteria and Cone Search interfaces.

  1. On LAM's and SAM's for Halley's rotation

    NASA Technical Reports Server (NTRS)

    Peale, Stanton J.

    1992-01-01

    Non principal axis rotation for comet Halley is inferred from dual periodicities evident in the observations. The modes where the spin axis precesses around the axis of minimum moment of inertia (long axis mode or LAM) and where it precesses around the axis of maximum moment of inertia (short axis mode or SAM) are described from an inertial point of view. The currently favored LAM model for Halley's rotation state satisfies observational and dynamical constraints that apparently no SAM can satisfy. But it cannot reproduce the observed post perihelion brightening through seasonal illumination of localized sources on the nucleus, whereas a SAM can easily produce post or pre perihelion brightening by this mechanism. However, the likelihood of a LAM rotation for elongated nuclei of periodic comets such as Halley together with Halley's extreme post perihelion behavior far from the Sun suggest that Halley's post perihelion brightening may be due to effects other than seasonal illumination of localized sources, and therefore such brightening may not constrain its rotation state.

  2. Recent select Sample Analysis at Mars (SAM) Testbed analog results

    NASA Astrophysics Data System (ADS)

    Malespin, C.; McAdam, A.; Teinturier, S.; Eigenbrode, J. L.; Freissinet, C.; Knudson, C. A.; Lewis, J. M.; Millan, M.; Steele, A.; Stern, J. C.; Williams, A. J.

    2017-12-01

    The Sample Analysis at Mars (SAM) testbed (TB) is a high fidelity replica of the flight instrument currently onboard the Curiosity rover in Gale Crater, Mars1. The SAM testbed is housed in a Mars environment chamber at NASA Goddard Space Flight Center (GSFC), which can replicate both thermal and environmental conditions. The testbed is used to validate and test new experimental procedures before they are implemented on Mars, but it is also used to analyze analog samples which assists in the interpretation of results from the surface. Samples are heated using the same experimental protocol as on Mars to allow for direct comparison with Martian sampling conditions. Here we report preliminary results from select samples that were loaded into the SAM TB, including meteorites, an organically rich iron oxide, and a synthetic analog to the Martian Cumberland sample drilled by the rover at Yellowknife Bay. Each of these samples have been analyzed under SAM-like conditions using breadboard and lab instrument systems. By comparing the data from the lab systems and SAM TB, further insight on results from Mars can be gained. References: [1] Mahaffy, P. R., et al. (2013), Science, 341(6143), 263-266, doi:10.1126/science.1237966.

  3. Single-molecule FRET reveals the energy landscape of the full-length SAM-I riboswitch.

    PubMed

    Manz, Christoph; Kobitski, Andrei Yu; Samanta, Ayan; Keller, Bettina G; Jäschke, Andres; Nienhaus, G Ulrich

    2017-11-01

    S-adenosyl-L-methionine (SAM) ligand binding induces major structural changes in SAM-I riboswitches, through which gene expression is regulated via transcription termination. Little is known about the conformations and motions governing the function of the full-length Bacillus subtilis yitJ SAM-I riboswitch. Therefore, we have explored its conformational energy landscape as a function of Mg 2+ and SAM ligand concentrations using single-molecule Förster resonance energy transfer (smFRET) microscopy and hidden Markov modeling analysis. We resolved four conformational states both in the presence and the absence of SAM and determined their Mg 2+ -dependent fractional populations and conformational dynamics, including state lifetimes, interconversion rate coefficients and equilibration timescales. Riboswitches with terminator and antiterminator folds coexist, and SAM binding only gradually shifts the populations toward terminator states. We observed a pronounced acceleration of conformational transitions upon SAM binding, which may be crucial for off-switching during the brief decision window before expression of the downstream gene.

  4. Ablation of the Sam68 RNA Binding Protein Protects Mice from Age-Related Bone Loss

    PubMed Central

    Richard, Stéphane; Torabi, Nazi; Franco, Gladys Valverde; Tremblay, Guy A; Chen, Taiping; Vogel, Gillian; Morel, Mélanie; Cléroux, Patrick; Forget-Richard, Alexandre; Komarova, Svetlana; Tremblay, Michel L; Li, Wei; Li, Ailian; Gao, Yun Jing; Henderson, Janet E

    2005-01-01

    The Src substrate associated in mitosis of 68 kDa (Sam68) is a KH-type RNA binding protein that has been shown to regulate several aspects of RNA metabolism; however, its physiologic role has remained elusive. Herein we report the generation of Sam68-null mice by homologous recombination. Aged Sam68−/− mice preserved their bone mass, in sharp contrast with 12-month-old wild-type littermates in which bone mass was decreased up to approximately 75%. In fact, the bone volume of the 12-month-old Sam68−/− mice was virtually indistinguishable from that of 4-month-old wild-type or Sam68−/− mice. Sam68−/− bone marrow stromal cells had a differentiation advantage for the osteogenic pathway. Moreover, the knockdown of Sam68 using short hairpin RNA in the embryonic mesenchymal multipotential progenitor C3H10T1/2 cells resulted in more pronounced expression of the mature osteoblast marker osteocalcin when differentiation was induced with bone morphogenetic protein-2. Cultures of mouse embryo fibroblasts generated from Sam68+/+ and Sam68−/− littermates were induced to differentiate into adipocytes with culture medium containing pioglitazone and the Sam68−/− mouse embryo fibroblasts shown to have impaired adipocyte differentiation. Furthermore, in vivo it was shown that sections of bone from 12-month-old Sam68−/− mice had few marrow adipocytes compared with their age-matched wild-type littermate controls, which exhibited fatty bone marrow. Our findings identify endogenous Sam68 as a positive regulator of adipocyte differentiation and a negative regulator of osteoblast differentiation, which is consistent with Sam68 being a modulator of bone marrow mesenchymal cell differentiation, and hence bone metabolism, in aged mice. PMID:16362077

  5. Self-organizing map (SOM) of space acceleration measurement system (SAMS) data.

    PubMed

    Sinha, A; Smith, A D

    1999-01-01

    In this paper, space acceleration measurement system (SAMS) data have been classified using self-organizing map (SOM) networks without any supervision; i.e., no a priori knowledge is assumed regarding input patterns belonging to a certain class. Input patterns are created on the basis of power spectral densities of SAMS data. Results for SAMS data from STS-50 and STS-57 missions are presented. Following issues are discussed in details: impact of number of neurons, global ordering of SOM weight vectors, effectiveness of a SOM in data classification, and effects of shifting time windows in the generation of input patterns. The concept of 'cascade of SOM networks' is also developed and tested. It has been found that a SOM network can successfully classify SAMS data obtained during STS-50 and STS-57 missions.

  6. Self-organizing map (SOM) of space acceleration measurement system (SAMS) data

    NASA Technical Reports Server (NTRS)

    Sinha, A.; Smith, A. D.

    1999-01-01

    In this paper, space acceleration measurement system (SAMS) data have been classified using self-organizing map (SOM) networks without any supervision; i.e., no a priori knowledge is assumed regarding input patterns belonging to a certain class. Input patterns are created on the basis of power spectral densities of SAMS data. Results for SAMS data from STS-50 and STS-57 missions are presented. Following issues are discussed in details: impact of number of neurons, global ordering of SOM weight vectors, effectiveness of a SOM in data classification, and effects of shifting time windows in the generation of input patterns. The concept of 'cascade of SOM networks' is also developed and tested. It has been found that a SOM network can successfully classify SAMS data obtained during STS-50 and STS-57 missions.

  7. Surface adhesion and confinement variation of Staphylococcus aurius on SAM surfaces

    NASA Astrophysics Data System (ADS)

    Amroski, Alicia; Olsen, Morgan; Calabrese, Joseph; Senevirathne, Reshani; Senevirathne, Indrajith

    2012-02-01

    Controlled surface adhesion of non - pathogenic gram positive strain, Staphylococcus aureus is interesting as a model system due to possible development of respective biosensors for prevention and detection of the pathogenic strain methicillin resistant Staphylococcus aureus (MRSA) and further as a study for bio-machine interfacing. Self Assembled Monolayers (SAM) with engineered surfaces of linear thiols on Au(111) were used as the substrate. Sub cultured S. aureus were used for the analysis. The SAM layered surfaces were dipped in 2 -- 4 Log/ml S. aureus solution. Subsequent surface adhesion at different bacterial dilutions on surfaces will be discussed, and correlated with quantitative and qualitative adhesion properties of bacteria on the engineered SAM surfaces. The bacteria adhered SAM surfaces were investigated using intermittent contact, noncontact, lateral force and contact modes of Atomic Force Microscopy (AFM).

  8. SAM-Like Evolved Gas Analyses of Phyllosilicate Minerals and Applications to SAM Analyses of the Sheepbed Mudstone, Gale Crater, Mars

    NASA Technical Reports Server (NTRS)

    McAdam, A. C.; Franz, H. B.; Mahaffy, P. R.; Eigenbrode, J. L.; Stern, J. C.; Brunner, B.; Sutter, B.; Archer, P. D.; Ming , D. W.; Morris, R. V.; hide

    2014-01-01

    While in Yellowknife Bay, the Mars Science Laboratory Curiosity rover collected two drilled samples, John Klein (hereafter "JK") and Cumberland ("CB"), from the Sheepbed mudstone, as well as a scooped sample from the Rocknest aeolian bedform ("RN"). These samples were sieved by Curiosity's sample processing system and then several subsamples of these materials were delivered to the Sample Analysis at Mars (SAM) instrument suite and the CheMin X-ray diffraction/X-ray fluorescence instrument. CheMin provided the first in situ X-ray diffraction-based evidence of clay minerals on Mars, which are likely trioctahedral smectites (e.g., Fe-saponite) and comprise 20 wt% of the mudstone samples [1]. SAM's evolved gas analysis (EGA) mass spectrometry analyses of JK and CB subsamples, as well as RN subsamples, detected H2O, CO2, O2, H2, SO2, H2S, HCl, NO, OCS, CS2 and other trace gases evolved during pyrolysis. The identity of evolved gases and temperature( s) of evolution can augment mineral detection by CheMin and place constraints on trace volatile-bearing phases present below the CheMin detection limit or those phases difficult to characterize with XRD (e.g., X-ray amorphous phases). Here we will focus on the SAM H2O data, in the context of CheMin analyses, and comparisons to laboratory SAM-like analyses of several phyllosilicate minerals including smectites.

  9. SAM Works! A Systems Approach Model for Adult Education Programming.

    ERIC Educational Resources Information Center

    Murk, Peter J.; Wells, John H.

    The Systems Approach Model (SAM) is a dynamic approach to planning adult and continuing education that is intended to provide the flexibility, creativity, and meaningfulness necessary to meet the needs and interests of an ever-expanding and ever-aging student population. The SAM model consists of the following dynamically interrelated and…

  10. Identification of trans-acting factors regulating SamDC expression in Oryza sativa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Basu, Supratim, E-mail: supratim_genetics@yahoo.co.in; Division of Plant Biology, Bose Institute, Kolkata; Roychoudhury, Aryadeep

    2014-03-07

    Highlights: • Identification of cis elements responsible for SamDC expression by in silico analysis. • qPCR analysis of SamDC expression to abiotic and biotic stress treatments. • Detection of SamDC regulators using identified cis-elements as probe by EMSA. • Southwestern Blot analysis to predict the size of the trans-acting factors. - Abstract: Abiotic stress affects the growth and productivity of crop plants; to cope with the adverse environmental conditions, plants have developed efficient defense machinery comprising of antioxidants like phenolics and flavonoids, and osmolytes like polyamines. SamDC is a key enzyme in the polyamine biosynthesis pathway in plants. In ourmore » present communication we have done in silico analysis of the promoter region of SamDC to look for the presence of different cis-regulatory elements contributing to its expression. Based on the presence of different cis-regulatory elements we completed comparative analysis of SamDC gene expression in rice lamina of IR-29 and Nonabokra by qPCR in response to the abiotic stress treatments of salinity, drought, cold and the biotic stress treatments of ABA and light. Additionally, to explore the role of the cis-regulatory elements in regulating the expression of SamDC gene in plants we comparatively analyzed the binding of rice nuclear proteins prepared from IR-29 and Nonabokra undergoing various stress treatments. The intensity of the complex formed was low and inducible in IR-29 in contrast to Nonabokra. Southwestern blot analysis helped in predicting the size of the trans-acting factors binding to these cis-elements. To our knowledge this is the first report on the comprehensive analysis of SamDC gene expression in rice and identification of the trans-acting factors regulating its expression.« less

  11. MSL SAM-like Analyses of Hawaiian Altered Basaltic Materials: Implications for Analyses by the Mars Science Laboratory

    NASA Astrophysics Data System (ADS)

    McAdam, A.; Eigenbrode, J. L.; Young, K. E.; Bleacher, J. E.; Knudson, C. A.; Rogers, D.; Glotch, T. D.; Sutter, B.; Mahaffy, P. R.; Navarro-Gonzalez, R.; Downs, R. T.

    2015-12-01

    Samples of basaltic materials were collected during several traverses of the Kau Desert on the leeward side of the Kilauea Volcano, Hawaii, conducted by the Remote, In Situ, and Synchrotron Studies for Science and Exploration (RIS4E) team, a node of the Solar System Exploration and Research Virtual Institute (SSERVI) program. Some of these samples had been exposed to circumneutral to slightly acidic alteration conditions from exposure to fog/rain, and acidic fog/rain, while others had been exposed to more acidic conditions due to proximity to fumaroles. The samples consisted of basalts with coatings, sands and soils, and ash, and were collected using organically clean protocols to enable investigation of organic chemistry and organic-mineral associations, in addition to mineralogy. The Mars Science Laboratory (MSL) rover has analyzed basaltic materials inferred to have been altered under conditions ranging from circumneutral to acidic, but several aspects of the Sample Analysis at Mars (SAM) instrument suite results are still being investigated and analyses of relevant terrestrial analogs can play an important role in interpretation of the data. For example, all materials analyzed to date have a significant amorphous component. Comparisons of the mineralogy obtained with the MSL CheMin instrument and volatiles evolved during SAM analyses indicate that, by mass balance, some portion of the volatiles, such as SO2 and H2O, are likely associated with this component. Many of the RIS4E samples also have a significant amorphous component, and field x-ray diffraction (XRD) and x-ray fluorescence (XRF) data indicate differences in the chemistry of this material in samples exposed to different alteration conditions. Preliminary SAM-like analyses indicate that the amorphous materials in some of these samples evolve volatiles such as H2O and SO2 during heating. Here we will discuss these results, and others, obtained through SAM-like analyses of selected samples.

  12. Unanticipated coordination of tris buffer to the Radical SAM cluster of the RimO methylthiotransferase.

    PubMed

    Molle, Thibaut; Clémancey, Martin; Latour, Jean-Marc; Kathirvelu, Velavan; Sicoli, Giuseppe; Forouhar, Farhad; Mulliez, Etienne; Gambarelli, Serge; Atta, Mohamed

    2016-07-01

    Radical SAM enzymes generally contain a [4Fe-4S](2+/1+) (RS cluster) cluster bound to the protein via the three cysteines of a canonical motif CxxxCxxC. The non-cysteinyl iron is used to coordinate SAM via its amino-carboxylate moiety. The coordination-induced proximity between the cluster acting as an electron donor and the adenosyl-sulfonium bond of SAM allows for the homolytic cleavage of the latter leading to the formation of the reactive 5'-deoxyadenosyl radical used for substrate activation. Most of the structures of Radical SAM enzymes have been obtained in the presence of SAM, and therefore, little is known about the situation when SAM is not present. In this report, we show that RimO, a methylthiotransferase belonging to the radical SAM superfamily, binds a Tris molecule in the absence of SAM leading to specific spectroscopic signatures both in Mössbauer and pulsed EPR spectroscopies. These data provide a cautionary note for researchers who work with coordinative unsaturated iron sulfur clusters.

  13. RHESUS MONKEY - SAM - POSTFLIGHT - LITTLE JOE II (LJ-2) SPACECRAFT

    NASA Image and Video Library

    1963-10-23

    S63-19199 (4 Dec. 1959) --- Sam, the Rhesus monkey, and his handler after his ride in the Little Joe 2 (LJ-2) spacecraft. He is still encased in his contour couch. A U.S. Navy destroyer safely recovered Sam after he experienced three minutes of weightlessness during the flight. Photo credit: NASA

  14. The Sam Domain of EphA2 Receptor and its Relevance to Cancer: A Novel Challenge for Drug Discovery?

    PubMed

    Mercurio, Flavia A; Leone, Marilisa

    2016-01-01

    Eph receptors play important functions in developmental processes and diseases and among them EphA2 is well known for its controversial role in cancer. Drug discovery strategies are mainly centered on EphA2 extracellular ligand-binding domain however, the receptor also contains a largely unexplored cytosolic Sam (Sterile alpha motif) domain at the C-terminus. EphA2-Sam binds the Sam domain from the lipid phosphatase Ship2 and the first Sam domain of Odin. Sam-Sam interactions may be important to regulate ligand-induced receptor endocytosis and degradation i.e., processes that could be engaged against tumor malignancy. We critically analyzed literature related to a) Eph receptors with particular emphasis on EphA2 and its role in cancer, b) Sam domains, c) heterotypic Sam-Sam interactions involving EphA2-Sam. While literature data indicate that binding of EphA2-Sam to Ship2-Sam should largely generate pro-oncogenic effects in cancer cells, the correlation between EphA2- Sam/Odin-Sam1 complex and the disease is unclear. Recently a few linear peptides encompassing binding interfaces from either Ship2-Sam and Odin-Sam1 have been characterized but failed to efficiently block heterotypic Sam-Sam interactions involving EphA2-Sam due to the lack of a native like fold. Molecule antagonists of heterotypic EphA2-Sam associations could work as potential anticancer agents or be implemented as tools to further clarify receptor functions and eventually validate its role as a novel target in the field of anti-cancer drug discovery. Due to the failure of linear peptides there is a crucial need for novel approaches, based on cyclic or helical molecules, to target Sam-Sam interfaces.

  15. Enhancing Student Altruism Using Secure Attachment Messages (SAM) in Lecture

    ERIC Educational Resources Information Center

    Campbell, Kelly; Ramos, Stephany

    2017-01-01

    In this brief report, we examine whether students' (N = 230) willingness to help individuals in distress (altruism) would be augmented after viewing Secure Attachment Messages (SAM) during lecture in a college racism course. Students were presented with SAM in alternating weeks as part of the PowerPoint presentation slides. In each of the weeks,…

  16. Mechanistic studies of the radical SAM enzyme spore photoproduct lyase (SPL).

    PubMed

    Li, Lei

    2012-11-01

    Spore photoproduct lyase (SPL) repairs a special thymine dimer 5-thyminyl-5,6-dihydrothymine, which is commonly called spore photoproduct or SP at the bacterial early germination phase. SP is the exclusive DNA photo-damage product in bacterial endospores; its generation and swift repair by SPL are responsible for the spores' extremely high UV resistance. The early in vivo studies suggested that SPL utilizes a direct reversal strategy to repair the SP in the absence of light. The research in the past decade further established SPL as a radical SAM enzyme, which utilizes a tri-cysteine CXXXCXXC motif to harbor a [4Fe-4S] cluster. At the 1+ oxidation state, the cluster provides an electron to the S-adenosylmethionine (SAM), which binds to the cluster in a bidentate manner as the fourth and fifth ligands, to reductively cleave the CS bond associated with the sulfonium ion in SAM, generating a reactive 5'-deoxyadenosyl (5'-dA) radical. This 5'-dA radical abstracts the proR hydrogen atom from the C6 carbon of SP to initiate the repair process; the resulting SP radical subsequently fragments to generate a putative thymine methyl radical, which accepts a back-donated H atom to yield the repaired TpT. SAM is suggested to be regenerated at the end of each catalytic cycle; and only a catalytic amount of SAM is needed in the SPL reaction. The H atom source for the back donation step is suggested to be a cysteine residue (C141 in Bacillus subtilis SPL), and the H-atom transfer reaction leaves a thiyl radical behind on the protein. This thiyl radical thus must participate in the SAM regeneration process; however how the thiyl radical abstracts an H atom from the 5'-dA to regenerate SAM is unknown. This paper reviews and discusses the history and the latest progress in the mechanistic elucidation of SPL. Despite some recent breakthroughs, more questions are raised in the mechanistic understanding of this intriguing DNA repair enzyme. This article is part of a Special Issue

  17. An adaptor role for cytoplasmic Sam68 in modulating Src activity during cell polarization.

    PubMed

    Huot, Marc-Etienne; Brown, Claire M; Lamarche-Vane, Nathalie; Richard, Stéphane

    2009-04-01

    The Src-associated substrate during mitosis with a molecular mass of 68 kDa (Sam68) is predominantly nuclear and is known to associate with proteins containing the Src homology 3 (SH3) and SH2 domains. Although Sam68 is a Src substrate, little is known about the signaling pathway that link them. Src is known to be activated transiently after cell spreading, where it modulates the activity of small Rho GTPases. Herein we report that Sam68-deficient cells exhibit loss of cell polarity and cell migration. Interestingly, Sam68-deficient cells exhibited sustained Src activity after cell attachment, resulting in the constitutive tyrosine phosphorylation and activation of p190RhoGAP and its association with p120rasGAP. Consistently, we observed that Sam68-deficient cells exhibited deregulated RhoA and Rac1 activity. By using total internal reflection fluorescence microscopy, we observed Sam68 near the plasma membrane after cell attachment coinciding with phosphorylation of its C-terminal tyrosines and association with Csk. These findings show that Sam68 localizes near the plasma membrane during cell attachment and serves as an adaptor protein to modulate Src activity for proper signaling to small Rho GTPases.

  18. CD and NMR conformational studies of a peptide encompassing the Mid Loop interface of Ship2-Sam.

    PubMed

    Mercurio, Flavia A; Scognamiglio, Pasqualina L; Di Natale, Concetta; Marasco, Daniela; Pellecchia, Maurizio; Leone, Marilisa

    2014-11-01

    The lipid phosphatase Ship2 is a protein that intervenes in several diseases such as diabetes, cancer, neurodegeneration, and atherosclerosis. It is made up of a catalytic domain and several protein docking modules such as a C-terminal Sam (Sterile alpha motif) domain. The Sam domain of Ship2 (Ship2-Sam) binds to the Sam domains of the EphA2 receptor (EphA2-Sam) and the PI3K effector protein Arap3 (Arap3-Sam). These heterotypic Sam-Sam interactions occur through formation of dimers presenting the canonical "Mid Loop/End Helix" binding mode. The central region of Ship2-Sam, spanning the C-terminal end of α2, the α3 and α4 helices together with the α2α3 and α3α4 interhelical loops, forms the Mid Loop surface that is needed to bind partners Sam domains. A peptide encompassing most of the Ship2-Sam Mid Loop interface (Shiptide) capable of binding to both EphA2-Sam and Arap3-Sam, was previously identified. Here we investigated the conformational features of this peptide, through solution CD and NMR studies in different conditions. These studies reveal that the peptide is highly flexible in aqueous buffer, while it adopts a helical conformation in presence of 2,2,2-trifluoroethanol. The discovered structural insights and in particular the identification of a helical motif, may lead to the design of more constrained and possibly cell permeable Shiptide analogs that could work as efficient antagonists of Ship2-Sam heterotypic interactions and embrace therapeutic applications. © 2014 Wiley Periodicals, Inc.

  19. The SAMS: Smartphone Addiction Management System and verification.

    PubMed

    Lee, Heyoung; Ahn, Heejune; Choi, Samwook; Choi, Wanbok

    2014-01-01

    While the popularity of smartphones has given enormous convenience to our lives, their pathological use has created a new mental health concern among the community. Hence, intensive research is being conducted on the etiology and treatment of the condition. However, the traditional clinical approach based surveys and interviews has serious limitations: health professionals cannot perform continual assessment and intervention for the affected group and the subjectivity of assessment is questionable. To cope with these limitations, a comprehensive ICT (Information and Communications Technology) system called SAMS (Smartphone Addiction Management System) is developed for objective assessment and intervention. The SAMS system consists of an Android smartphone application and a web application server. The SAMS client monitors the user's application usage together with GPS location and Internet access location, and transmits the data to the SAMS server. The SAMS server stores the usage data and performs key statistical data analysis and usage intervention according to the clinicians' decision. To verify the reliability and efficacy of the developed system, a comparison study with survey-based screening with the K-SAS (Korean Smartphone Addiction Scale) as well as self-field trials is performed. The comparison study is done using usage data from 14 users who are 19 to 50 year old adults that left at least 1 week usage logs and completed the survey questionnaires. The field trial fully verified the accuracy of the time, location, and Internet access information in the usage measurement and the reliability of the system operation over more than 2 weeks. The comparison study showed that daily use count has a strong correlation with K-SAS scores, whereas daily use times do not strongly correlate for potentially addicted users. The correlation coefficients of count and times with total K-SAS score are CC = 0.62 and CC =0.07, respectively, and the t-test analysis for the

  20. Sam68 Allows Selective Targeting of Human Cancer Stem Cells.

    PubMed

    Benoit, Yannick D; Mitchell, Ryan R; Risueño, Ruth M; Orlando, Luca; Tanasijevic, Borko; Boyd, Allison L; Aslostovar, Lili; Salci, Kyle R; Shapovalova, Zoya; Russell, Jennifer; Eguchi, Masakatsu; Golubeva, Diana; Graham, Monica; Xenocostas, Anargyros; Trus, Michael R; Foley, Ronan; Leber, Brian; Collins, Tony J; Bhatia, Mickie

    2017-07-20

    Targeting of human cancer stem cells (CSCs) requires the identification of vulnerabilities unique to CSCs versus healthy resident stem cells (SCs). Unfortunately, dysregulated pathways that support transformed CSCs, such as Wnt/β-catenin signaling, are also critical regulators of healthy SCs. Using the ICG-001 and CWP family of small molecules, we reveal Sam68 as a previously unappreciated modulator of Wnt/β-catenin signaling within CSCs. Disruption of CBP-β-catenin interaction via ICG-001/CWP induces the formation of a Sam68-CBP complex in CSCs that alters Wnt signaling toward apoptosis and differentiation induction. Our study identifies Sam68 as a regulator of human CSC vulnerability. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  1. Teleconnection stationarity, variability and trends of the Southern Annular Mode (SAM) during the last millennium

    NASA Astrophysics Data System (ADS)

    Dätwyler, Christoph; Neukom, Raphael; Abram, Nerilie J.; Gallant, Ailie J. E.; Grosjean, Martin; Jacques-Coper, Martín; Karoly, David J.; Villalba, Ricardo

    2017-11-01

    The Southern Annular Mode (SAM) is the leading mode of atmospheric interannual variability in the Southern Hemisphere (SH) extra-tropics. Here, we assess the stationarity of SAM spatial correlations with instrumental and paleoclimate proxy data for the past millennium. The instrumental period shows that temporal non-stationarities in SAM teleconnections are not consistent across the SH land areas. This suggests that the influence of the SAM index is modulated by regional effects. However, within key-regions with good proxy data coverage (South America, Tasmania, New Zealand), teleconnections are mostly stationary over the instrumental period. Using different stationarity criteria for proxy record selection, we provide new austral summer and annual mean SAM index reconstructions over the last millennium. Our summer SAM reconstructions are very robust to changes in proxy record selection and the selection of the calibration period, particularly on the multi-decadal timescale. In contrast, the weaker performance and lower agreement in the annual mean SAM reconstructions point towards changing teleconnection patterns that may be particularly important outside the summer months. Our results clearly portend that the temporal stationarity of the proxy-climate relationships should be taken into account in the design of comprehensive regional and hemispherical climate reconstructions. The summer SAM reconstructions show no significant relationship to solar, greenhouse gas and volcanic forcing, with the exception of an extremely strong negative anomaly following the AD 1257 Samalas eruption. Furthermore, reconstructed pre-industrial summer SAM trends are very similar to trends obtained by model control simulations. We find that recent trends in the summer SAM lie outside the 5-95% range of pre-industrial natural variability.

  2. Benchmark Simulation of Natural Circulation Cooling System with Salt Working Fluid Using SAM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmed, K. K.; Scarlat, R. O.; Hu, R.

    Liquid salt-cooled reactors, such as the Fluoride Salt-Cooled High-Temperature Reactor (FHR), offer passive decay heat removal through natural circulation using Direct Reactor Auxiliary Cooling System (DRACS) loops. The behavior of such systems should be well-understood through performance analysis. The advanced system thermal-hydraulics tool System Analysis Module (SAM) from Argonne National Laboratory has been selected for this purpose. The work presented here is part of a larger study in which SAM modeling capabilities are being enhanced for the system analyses of FHR or Molten Salt Reactors (MSR). Liquid salt thermophysical properties have been implemented in SAM, as well as properties ofmore » Dowtherm A, which is used as a simulant fluid for scaled experiments, for future code validation studies. Additional physics modules to represent phenomena specific to salt-cooled reactors, such as freezing of coolant, are being implemented in SAM. This study presents a useful first benchmark for the applicability of SAM to liquid salt-cooled reactors: it provides steady-state and transient comparisons for a salt reactor system. A RELAP5-3D model of the Mark-1 Pebble-Bed FHR (Mk1 PB-FHR), and in particular its DRACS loop for emergency heat removal, provides steady state and transient results for flow rates and temperatures in the system that are used here for code-to-code comparison with SAM. The transient studied is a loss of forced circulation with SCRAM event. To the knowledge of the authors, this is the first application of SAM to FHR or any other molten salt reactors. While building these models in SAM, any gaps in the code’s capability to simulate such systems are identified and addressed immediately, or listed as future improvements to the code.« less

  3. Bringing a Chemical Laboratory Named Sam to Mars on the 2011 Curiosity Rover

    NASA Astrophysics Data System (ADS)

    Mahaffy, P. R.; Bleacher, L.; Jones, A.; Atreya, S. K.; Manning, H. L.; Cabane, M.; Webster, C. R.; Sam Team

    2010-12-01

    Introduction: An important goal of upcoming missions to Mars is to understand if life could have developed there. The task of the Sample Analysis at Mars (SAM) suite of instruments [1] and the other Curiosity investigations [2] is to move us steadily toward that goal with an assessment of the habitability of our neighboring planet through a series of chemical and geological measurements. SAM is designed to search for organic compounds and inorganic volatiles and measure isotope ratios. Other instruments on Curiosity will provide elemental analysis and identify minerals. SAM will analyze both atmospheric samples and gases evolved from powdered rocks that may have formed billions of years ago with Curiosity providing access to interesting sites scouted by orbiting cameras and spectrometers. SAM Instrument Suite: SAM’s instruments are a Quadrupole Mass Spectrometer (QMS), a 6-column Gas Chromatograph (GC), and a 2-channel Tunable Laser Spectrometer (TLS). SAM can identify organic compounds in Mars rocks to sub-ppb sensitivity and secure precise isotope ratios for C, H, and O in carbon dioxide and water and measure trace levels of methane and its carbon 13 isotope. The SAM gas processing system consists of valves, heaters, pressure sensors, gas scrubbers and getters, traps, and gas tanks used for calibration or combustion experiments [2]. A variety of calibrant compounds interior and exterior to SAM will allow the science and engineering teams to assess SAM’s performance. SAM has been calibrated and tested in a Mars-like environment. Keeping Educators and the Public Informed: The Education and Public Outreach (EPO) goals of the SAM team are to make this complex chemical laboratory and its data widely available to educators, students, and the public. Formal education activities include developing templates for professional development workshops for educators to teach them about SAM and Curiosity, incorporating data into Mars Student Data Teams, and writing articles

  4. Wind Technology Modeling Within the System Advisor Model (SAM) (Poster)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blair, N.; Dobos, A.; Ferguson, T.

    This poster provides detail for implementation and the underlying methodology for modeling wind power generation performance in the National Renewable Energy Laboratory's (NREL's) System Advisor Model (SAM). SAM's wind power model allows users to assess projects involving one or more large or small wind turbines with any of the detailed options for residential, commercial, or utility financing. The model requires information about the wind resource, wind turbine specifications, wind farm layout (if applicable), and costs, and provides analysis to compare the absolute or relative impact of these inputs. SAM is a system performance and economic model designed to facilitate analysismore » and decision-making for project developers, financers, policymakers, and energy researchers. The user pairs a generation technology with a financing option (residential, commercial, or utility) to calculate the cost of energy over the multi-year project period. Specifically, SAM calculates the value of projects which buy and sell power at retail rates for residential and commercial systems, and also for larger-scale projects which operate through a power purchase agreement (PPA) with a utility. The financial model captures complex financing and rate structures, taxes, and incentives.« less

  5. Alternative function for the mitochondrial SAM complex in biogenesis of alpha-helical TOM proteins.

    PubMed

    Stojanovski, Diana; Guiard, Bernard; Kozjak-Pavlovic, Vera; Pfanner, Nikolaus; Meisinger, Chris

    2007-12-03

    The mitochondrial outer membrane contains two preprotein translocases: the general translocase of outer membrane (TOM) and the beta-barrel-specific sorting and assembly machinery (SAM). TOM functions as the central entry gate for nuclear-encoded proteins. The channel-forming Tom40 is a beta-barrel protein, whereas all Tom receptors and small Tom proteins are membrane anchored by a transmembrane alpha-helical segment in their N- or C-terminal portion. Synthesis of Tom precursors takes place in the cytosol, and their import occurs via preexisting TOM complexes. The precursor of Tom40 is then transferred to SAM for membrane insertion and assembly. Unexpectedly, we find that the biogenesis of alpha-helical Tom proteins with a membrane anchor in the C-terminal portion is SAM dependent. Each SAM protein is necessary for efficient membrane integration of the receptor Tom22, whereas assembly of the small Tom proteins depends on Sam37. Thus, the substrate specificity of SAM is not restricted to beta-barrel proteins but also includes the majority of alpha-helical Tom proteins.

  6. A classification model of Hyperion image base on SAM combined decision tree

    NASA Astrophysics Data System (ADS)

    Wang, Zhenghai; Hu, Guangdao; Zhou, YongZhang; Liu, Xin

    2009-10-01

    Monitoring the Earth using imaging spectrometers has necessitated more accurate analyses and new applications to remote sensing. A very high dimensional input space requires an exponentially large amount of data to adequately and reliably represent the classes in that space. On the other hand, with increase in the input dimensionality the hypothesis space grows exponentially, which makes the classification performance highly unreliable. Traditional classification algorithms Classification of hyperspectral images is challenging. New algorithms have to be developed for hyperspectral data classification. The Spectral Angle Mapper (SAM) is a physically-based spectral classification that uses an ndimensional angle to match pixels to reference spectra. The algorithm determines the spectral similarity between two spectra by calculating the angle between the spectra, treating them as vectors in a space with dimensionality equal to the number of bands. The key and difficulty is that we should artificial defining the threshold of SAM. The classification precision depends on the rationality of the threshold of SAM. In order to resolve this problem, this paper proposes a new automatic classification model of remote sensing image using SAM combined with decision tree. It can automatic choose the appropriate threshold of SAM and improve the classify precision of SAM base on the analyze of field spectrum. The test area located in Heqing Yunnan was imaged by EO_1 Hyperion imaging spectrometer using 224 bands in visual and near infrared. The area included limestone areas, rock fields, soil and forests. The area was classified into four different vegetation and soil types. The results show that this method choose the appropriate threshold of SAM and eliminates the disturbance and influence of unwanted objects effectively, so as to improve the classification precision. Compared with the likelihood classification by field survey data, the classification precision of this model

  7. Quality Control Guidelines for SAM Chemical Methods

    EPA Pesticide Factsheets

    Learn more about quality control guidelines and recommendations for the analysis of samples using the chemistry methods listed in EPA's Selected Analytical Methods for Environmental Remediation and Recovery (SAM).

  8. Quality Control Guidelines for SAM Radiochemical Methods

    EPA Pesticide Factsheets

    Learn more about quality control guidelines and recommendations for the analysis of samples using the radiochemistry methods listed in EPA's Selected Analytical Methods for Environmental Remediation and Recovery (SAM).

  9. Quality Control Guidelines for SAM Biotoxin Methods

    EPA Pesticide Factsheets

    Learn more about quality control guidelines and recommendations for the analysis of samples using the pathogen methods listed in EPA's Selected Analytical Methods for Environmental Remediation and Recovery (SAM).

  10. Quality Control Guidelines for SAM Pathogen Methods

    EPA Pesticide Factsheets

    Learn more about quality control guidelines and recommendations for the analysis of samples using the biotoxin methods listed in EPA's Selected Analytical Methods for Environmental Remediation and Recovery (SAM).

  11. Standardized added metabolic activity (SAM): a partial volume independent marker of total lesion glycolysis in liver metastases.

    PubMed

    Mertens, Jeroen; Dobbeleir, André; Ham, Hamphrey; D'Asseler, Yves; Goethals, Ingeborg; Van de Wiele, Christophe

    2012-09-01

    The standardized added metabolic activity (SAM) is a new marker of total lesion glycolysis that avoids partial volume effect (PVE) and thresholding. SAM is calculated by drawing a volume of interest (VOI(1)) around the tumour and a larger VOI (VOI(2)) around VOI(1). Subtracting the background activity in VOI(2)-VOI(1) from VOI(1) yields SAM. If VOI(1) is set at a reasonable distance from the tumour, PVE are avoided. Phantom and initial clinical validation data are presented. Spheres of a Jaszczak phantom were filled with a 5.4, 3.64 and 2.0 times higher concentration relative to background activity and positron emission tomography (PET) data were acquired during 10 min. SAM of all spheres was expressed as a percentage of the expected value (the actual activity ratio minus 1). In 15 patients a 10-min list-mode acquisition PET study centred on their primary squamous cell carcinoma (PSCC) was performed and images of 1-10 min reconstructed. SAM1-9min values of PSCC were expressed as a percentage of SAM10min. Nineteen patients suffering from liver metastases treated with chemotherapy underwent PET/CT prior to (scan 1) and after 3-6 cycles of chemotherapy (scan 2). SAM and maximum standardized uptake values (SUV(max)) of the liver lesions on scan 1 (SAM1 and SUV(max)1) and the percentage reduction between both ΔSAM and ΔSUV(max) were related to Response Evaluation Criteria in Solid Tumors (RECIST) response. For the phantom acquisitions, the mean normalized SAM/sphere volume calculated was 94.9 % (SD 5.9 %) of the expected value. In the PSCC patients, the mean difference between SAM1min and SAM10min was only 4 % (SD 5 %). SUV(max)1min and SUV(max)10min proved to be not significantly different, but the variability was slightly larger than that of SAM (SD 6.4 %). SAM1 and ΔSAM values for responders versus non-responders were, respectively, 57 (SD 119) versus 297 (SD 625) for SAM1 (p = 0.2) and 99 % (SD 3 %) versus 32 % (SD 44 %) for ΔSAM (p = 0.001). SUV(max)1 and

  12. A molecular dynamics study on the adsorption of a mussel protein on two different films: Polymer film and a SAM

    NASA Astrophysics Data System (ADS)

    He, Cunxue; Zhang, Heng; Lin, Cunguo; Wang, Li; Yuan, Shiling

    2017-05-01

    The adhesion of marine life would produce a certain degree of corrosion effect on the hull surface. Shellfish organisms, such as barnacles and mussels, were always used to research the impediment of coating material to protein adsorption. In this work, the adsorbed behaviors of mussel protein on the PDMS and C7F16-SAM surfaces were explored by molecular dynamics (MD) simulations. Simulation results showed that protein was strongly adsorbed onto the hydrophobic surface, as reflected by the large interaction energy; while the adsorption onto the hydrophilic PDMS surface was weak due to two strongly adhered water layers.

  13. Conformational heterogeneity of the SAM-I riboswitch transcriptional ON state: a chaperone-like role for S-adenosyl methionine.

    PubMed

    Huang, Wei; Kim, Joohyun; Jha, Shantenu; Aboul-Ela, Fareed

    2012-05-18

    Riboswitches are promising targets for the design of novel antibiotics and engineering of portable genetic regulatory elements. There is evidence that variability in riboswitch properties allows tuning of expression for genes involved in different stages of biosynthetic pathways by mechanisms that are not currently understood. Here, we explore the mechanism for tuning of S-adenosyl methionine (SAM)-I riboswitch folding. Most SAM-I riboswitches function at the transcriptional level by sensing the cognate ligand SAM. SAM-I riboswitches orchestrate the biosynthetic pathways of cysteine, methionine, SAM, and so forth. We use base-pair probability predictions to examine the secondary-structure folding landscape of several SAM-I riboswitch sequences. We predict different folding behaviors for different SAM-I riboswitch sequences. We identify several "decoy" base-pairing interactions involving 5' riboswitch residues that can compete with the formation of a P1 helix, a component of the ligand-bound "transcription OFF" state, in the absence of SAM. We hypothesize that blockage of these interactions through SAM contacts contributes to stabilization of the OFF state in the presence of ligand. We also probe folding patterns for a SAM-I riboswitch RNA using constructs with different 3' truncation points experimentally. Folding was monitored through fluorescence, susceptibility to base-catalyzed cleavage, nuclear magnetic resonance, and indirectly through SAM binding. We identify key decision windows at which SAM can affect the folding pathway towards the OFF state. The presence of decoy conformations and differential sensitivities to SAM at different transcript lengths is crucial for SAM-I riboswitches to modulate gene expression in the context of global cellular metabolism. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Characterization of a S-adenosyl-l-methionine (SAM)-accumulating strain of Scheffersomyces stipitis.

    PubMed

    Križanović, Stela; Butorac, Ana; Mrvčić, Jasna; Krpan, Maja; Cindrić, Mario; Bačun-Družina, Višnja; Stanzer, Damir

    2015-06-01

    S-adenosyl-l-methionine (SAM) is an important molecule in the cellular metabolism of mammals. In this study, we examined several of the physiological characteristics of a SAM-accumulating strain of the yeast Scheffersomyces stipitis (M12), including SAM production, ergosterol content, and ethanol tolerance. S. stipitis M12 accumulated up to 52.48 mg SAM/g dry cell weight. Proteome analyses showed that the disruption of C-24 methylation in ergosterol biosynthesis, a step mediated by C-24 sterol methyltransferase (Erg6p), results in greater SAM accumulation by S. stipitis M12 compared to the wild-type strain. A comparative proteome-wide analysis identified 25 proteins that were differentially expressed by S. stipitis M12. These proteins are involved in ribosome biogenesis, translation, the stress response, ubiquitin-dependent catabolic processes, the cell cycle, ethanol tolerance, posttranslational modification, peroxisomal membrane stability, epigenetic regulation, the actin cytoskeleton and cell morphology, iron and copper homeostasis, cell signaling, and energy metabolism. Copyright© by the Spanish Society for Microbiology and Institute for Catalan Studies.

  15. Sam68 Is Required for DNA Damage Responses via Regulating Poly(ADP-ribosyl)ation

    PubMed Central

    Hodgson, Andrea; Wier, Eric M.; Wen, Matthew G.; Kamenyeva, Olena; Xia, Xue; Koo, Lily Y.

    2016-01-01

    The rapid and robust synthesis of polymers of adenosine diphosphate (ADP)-ribose (PAR) chains, primarily catalyzed by poly(ADP-ribose) polymerase 1 (PARP1), is crucial for cellular responses to DNA damage. However, the precise mechanisms through which PARP1 is activated and PAR is robustly synthesized are not fully understood. Here, we identified Src-associated substrate during mitosis of 68 kDa (Sam68) as a novel signaling molecule in DNA damage responses (DDRs). In the absence of Sam68, DNA damage-triggered PAR production and PAR-dependent DNA repair signaling were dramatically diminished. With serial cellular and biochemical assays, we demonstrated that Sam68 is recruited to and significantly overlaps with PARP1 at DNA lesions and that the interaction between Sam68 and PARP1 is crucial for DNA damage-initiated and PARP1-conferred PAR production. Utilizing cell lines and knockout mice, we illustrated that Sam68-deleted cells and animals are hypersensitive to genotoxicity caused by DNA-damaging agents. Together, our findings suggest that Sam68 plays a crucial role in DDR via regulating DNA damage-initiated PAR production. PMID:27635653

  16. Winning Attitude & Dedication to Physical Therapy Keep Sam Schmidt on Track

    ERIC Educational Resources Information Center

    Bosley, Nikki Prevenslik

    2006-01-01

    This article relates how Sam Schmidt returned to living a productive life after an accident left him with spinal cord injury. Schmidt was a former Indy Racing League driver who founded Sam Schmidt Motorsports after his accident in 2000. Schmidt's car hit the wall as he exited turn two during a practice session at Walt Disney World Speedway in…

  17. Characterization of the SAM domain of the PKD-related protein ANKS6 and its interaction with ANKS3.

    PubMed

    Leettola, Catherine N; Knight, Mary Jane; Cascio, Duilio; Hoffman, Sigrid; Bowie, James U

    2014-07-07

    Autosomal dominant polycystic kidney disease (ADPKD) is the most common genetic disorder leading to end-stage renal failure in humans. In the PKD/Mhm(cy/+) rat model of ADPKD, the point mutation R823W in the sterile alpha motif (SAM) domain of the protein ANKS6 is responsible for disease. SAM domains are known protein-protein interaction domains, capable of binding each other to form polymers and heterodimers. Despite its physiological importance, little is known about the function of ANKS6 and how the R823W point mutation leads to PKD. Recent work has revealed that ANKS6 interacts with a related protein called ANKS3. Both ANKS6 and ANKS3 have a similar domain structure, with ankyrin repeats at the N-terminus and a SAM domain at the C-terminus. The SAM domain of ANKS3 is identified as a direct binding partner of the ANKS6 SAM domain. We find that ANKS3-SAM polymerizes and ANKS6-SAM can bind to one end of the polymer. We present crystal structures of both the ANKS3-SAM polymer and the ANKS3-SAM/ANKS6-SAM complex, revealing the molecular details of their association. We also learn how the R823W mutation disrupts ANKS6 function by dramatically destabilizing the SAM domain such that the interaction with ANKS3-SAM is lost. ANKS3 is a direct interacting partner of ANKS6. By structurally and biochemically characterizing the interaction between the ANKS3 and ANKS6 SAM domains, our work provides a basis for future investigation of how the interaction between these proteins mediates kidney function.

  18. Characterization of the SAM domain of the PKD-related protein ANKS6 and its interaction with ANKS3

    PubMed Central

    2014-01-01

    Background Autosomal dominant polycystic kidney disease (ADPKD) is the most common genetic disorder leading to end-stage renal failure in humans. In the PKD/Mhm(cy/+) rat model of ADPKD, the point mutation R823W in the sterile alpha motif (SAM) domain of the protein ANKS6 is responsible for disease. SAM domains are known protein-protein interaction domains, capable of binding each other to form polymers and heterodimers. Despite its physiological importance, little is known about the function of ANKS6 and how the R823W point mutation leads to PKD. Recent work has revealed that ANKS6 interacts with a related protein called ANKS3. Both ANKS6 and ANKS3 have a similar domain structure, with ankyrin repeats at the N-terminus and a SAM domain at the C-terminus. Results The SAM domain of ANKS3 is identified as a direct binding partner of the ANKS6 SAM domain. We find that ANKS3-SAM polymerizes and ANKS6-SAM can bind to one end of the polymer. We present crystal structures of both the ANKS3-SAM polymer and the ANKS3-SAM/ANKS6-SAM complex, revealing the molecular details of their association. We also learn how the R823W mutation disrupts ANKS6 function by dramatically destabilizing the SAM domain such that the interaction with ANKS3-SAM is lost. Conclusions ANKS3 is a direct interacting partner of ANKS6. By structurally and biochemically characterizing the interaction between the ANKS3 and ANKS6 SAM domains, our work provides a basis for future investigation of how the interaction between these proteins mediates kidney function. PMID:24998259

  19. S-adenosyl methionine (SAM) attenuates the development of tolerance to analgesic activity of morphine in rats.

    PubMed

    Katyal, Jatinder; Kumar, Hemant; Joshi, Dinesh; Gupta, Yogendra Kumar

    2017-04-03

    Development of tolerance to analgesic effect, on chronic administration of morphine, limits its clinical usefulness in pain management. S-adenosyl methionine (SAM) used for arthritis and approved as a supplement in many countries including United States was evaluated for reducing morphine tolerance. Male 'Wistar' rats were used. The analgesic activity was determined using tail flick analgesiometer (Columbus Instruments, USA). Rats given morphine (7mg/kg), intraperitoneally (i.p.), once daily for 5days developed tolerance to analgesic effect. To evaluate the effect of SAM on morphine tolerance, SAM 800mg/kg was administered orally (p.o.), 45min prior to each dose of morphine. The analgesic activity of SAM and opioidergic component in its activity was also evaluated. Co-administration of morphine and SAM reversed morphine tolerance. SAM exhibited analgesic effect after repeated administration which was reversed by naloxone administration. Since safety of SAM on chronic use is documented it can be a good option in morphine tolerance. Role in drug addiction and withdrawal should also be evaluated. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Experimental and computational investigation of graphene/SAMs/n-Si Schottky diodes

    NASA Astrophysics Data System (ADS)

    Aydin, H.; Bacaksiz, C.; Yagmurcukardes, N.; Karakaya, C.; Mermer, O.; Can, M.; Senger, R. T.; Sahin, H.; Selamet, Y.

    2018-01-01

    We have investigated the effect of two different self-assembled monolayers (SAMs) on electrical characteristics of bilayer graphene (BLG)/n-Si Schottky diodes. Novel 4″bis(diphenylamino)-1, 1‧:3″-terphenyl-5‧ carboxylic acids (TPA) and 4,4-di-9H-carbazol-9-yl-1,1‧:3‧1‧-terphenyl-5‧ carboxylic acid (CAR) aromatic SAMs have been used to modify n-Si surfaces. Cyclic voltammetry (CV) and Kelvin probe force microscopy (KPFM) results have been evaluated to verify the modification of n-Si surface. The current-voltage (I-V) characteristics of bare and SAMs modified devices show rectification behaviour verifying a Schottky junction at the interface. The ideality factors (n) from ln(I)-V dependences were determined as 2.13, 1.96 and 2.07 for BLG/n-Si, BLG/TPA/n-Si and BLG/CAR/n-Si Schottky diodes, respectively. In addition, Schottky barrier height (SBH) and series resistance (Rs) of SAMs modified diodes were decreased compared to bare diode due to the formation of a compatible interface between graphene and Si as well as π-π interaction between aromatic SAMs and graphene. The CAR-based device exhibits better diode characteristic compared to the TPA-based device. Computational simulations show that the BLG/CAR system exhibits smaller energy-level-differences than the BLG/TPA, which supports the experimental findings of a lower Schottky barrier and series resistance in BLG/CAR diode.

  1. Sam's Progress with Learning Mathematics

    ERIC Educational Resources Information Center

    Haslam, Lynne

    2007-01-01

    Sam is 18 years old and has Down syndrome. He achieved a grade in the standard assessment of mathematics (GCSE) at 16 years of age. This paper describes the part played in his success in school by the Kumon method of teaching mathematics, identifies the benefits of the small steps and lots of practice built in to the method and illustrates the…

  2. ER residency of the ceramide phosphoethanolamine synthase SMSr relies on homotypic oligomerization mediated by its SAM domain.

    PubMed

    Cabukusta, Birol; Kol, Matthijs; Kneller, Laura; Hilderink, Angelika; Bickert, Andreas; Mina, John G M; Korneev, Sergei; Holthuis, Joost C M

    2017-01-25

    SMSr/SAMD8 is an ER-resident ceramide phosphoethanolamine synthase with a critical role in controlling ER ceramides and suppressing ceramide-induced apoptosis in cultured cells. SMSr-mediated ceramide homeostasis relies on the enzyme's catalytic activity as well as on its N-terminal sterile α-motif or SAM domain. Here we report that SMSr-SAM is structurally and functionally related to the SAM domain of diacylglycerol kinase DGKδ, a central regulator of lipid signaling at the plasma membrane. Native gel electrophoresis indicates that both SAM domains form homotypic oligomers. Chemical crosslinking studies show that SMSr self-associates into ER-resident trimers and hexamers that resemble the helical oligomers formed by DGKδ-SAM. Residues critical for DGKδ-SAM oligomerization are conserved in SMSr-SAM and their substitution causes a dissociation of SMSr oligomers as well as a partial redistribution of the enzyme to the Golgi. Conversely, treatment of cells with curcumin, a drug disrupting ceramide and Ca 2+ homeostasis in the ER, stabilizes SMSr oligomers and promotes retention of the enzyme in the ER. Our data provide first demonstration of a multi-pass membrane protein that undergoes homotypic oligomerization via its SAM domain and indicate that SAM-mediated self-assembly of SMSr is required for efficient retention of the enzyme in the ER.

  3. ER residency of the ceramide phosphoethanolamine synthase SMSr relies on homotypic oligomerization mediated by its SAM domain

    PubMed Central

    Cabukusta, Birol; Kol, Matthijs; Kneller, Laura; Hilderink, Angelika; Bickert, Andreas; Mina, John G. M.; Korneev, Sergei; Holthuis, Joost C. M.

    2017-01-01

    SMSr/SAMD8 is an ER-resident ceramide phosphoethanolamine synthase with a critical role in controlling ER ceramides and suppressing ceramide-induced apoptosis in cultured cells. SMSr-mediated ceramide homeostasis relies on the enzyme’s catalytic activity as well as on its N-terminal sterile α-motif or SAM domain. Here we report that SMSr-SAM is structurally and functionally related to the SAM domain of diacylglycerol kinase DGKδ, a central regulator of lipid signaling at the plasma membrane. Native gel electrophoresis indicates that both SAM domains form homotypic oligomers. Chemical crosslinking studies show that SMSr self-associates into ER-resident trimers and hexamers that resemble the helical oligomers formed by DGKδ-SAM. Residues critical for DGKδ-SAM oligomerization are conserved in SMSr-SAM and their substitution causes a dissociation of SMSr oligomers as well as a partial redistribution of the enzyme to the Golgi. Conversely, treatment of cells with curcumin, a drug disrupting ceramide and Ca2+ homeostasis in the ER, stabilizes SMSr oligomers and promotes retention of the enzyme in the ER. Our data provide first demonstration of a multi-pass membrane protein that undergoes homotypic oligomerization via its SAM domain and indicate that SAM-mediated self-assembly of SMSr is required for efficient retention of the enzyme in the ER. PMID:28120887

  4. Lowering SAM Instrument into Curiosity Mars Rover

    NASA Image and Video Library

    2011-01-18

    In this photograph, technicians and engineers inside a clean room at NASA Jet Propulsion Laboratory, Pasadena, Calif., position NASA Sample Analysis at Mars SAM above the mission Mars rover, Curiosity, for installing the instrument.

  5. Installing SAM Instrument into Curiosity Mars Rover

    NASA Image and Video Library

    2011-01-18

    In this photograph, technicians and engineers inside a clean room at NASA Jet Propulsion Laboratory, Pasadena, Calif., position NASA Sample Analysis at Mars SAM above the mission Mars rover, Curiosity, for installing the instrument.

  6. pH-Switchable Interaction of a Carboxybetaine Ester-Based SAM with DNA and Gold Nanoparticles.

    PubMed

    Filip, Jaroslav; Popelka, Anton; Bertok, Tomas; Holazova, Alena; Osicka, Josef; Kollar, Jozef; Ilcikova, Marketa; Tkac, Jan; Kasak, Peter

    2017-07-11

    We describe a self-assembled monolayer (SAM) on a gold surface with a carboxybetaine ester functionality to control the interaction between DNA and gold nanoparticles via pH. The negatively charged phosphate backbone of DNA interacts with and adsorbs to the positively charged carboxybetaine esters on the SAM. DNA release can be achieved by the hydrolysis of carboxybetaine ester (CBE) to a zwitterionic carboxybetaine state. Furthermore, the adsorption of negatively charged citrate-capped gold nanoparticles to a SAM-modified plain gold surface can be controlled by the pH. The SAM based on carboxybetaine ester allows for the homogeneous adsorption of particles, whereas the SAM after hydrolysis at high pH repels AuNP adsorption. The antifouling surface properties of the surface modified with carboxybetaine were investigated with protein samples.

  7. Radical SAM catalysis via an organometallic intermediate with an Fe-[5'-C]-deoxyadenosyl bond.

    PubMed

    Horitani, Masaki; Shisler, Krista; Broderick, William E; Hutcheson, Rachel U; Duschene, Kaitlin S; Marts, Amy R; Hoffman, Brian M; Broderick, Joan B

    2016-05-13

    Radical S-adenosylmethionine (SAM) enzymes use a [4Fe-4S] cluster to cleave SAM to initiate diverse radical reactions. These reactions are thought to involve the 5'-deoxyadenosyl radical intermediate, which has not yet been detected. We used rapid freeze-quenching to trap a catalytically competent intermediate in the reaction catalyzed by the radical SAM enzyme pyruvate formate-lyase activating enzyme. Characterization of the intermediate by electron paramagnetic resonance and (13)C, (57)Fe electron nuclear double-resonance spectroscopies reveals that it contains an organometallic center in which the 5' carbon of a SAM-derived deoxyadenosyl moiety forms a bond with the unique iron site of the [4Fe-4S] cluster. Discovery of this intermediate extends the list of enzymatic bioorganometallic centers to the radical SAM enzymes, the largest enzyme superfamily known, and reveals intriguing parallels to B12 radical enzymes. Copyright © 2016, American Association for the Advancement of Science.

  8. Ectopic shoot meristem generation in monocotyledonous rpk1 mutants is linked to SAM loss and altered seedling morphology.

    PubMed

    Fiesselmann, Birgit S; Luichtl, Miriam; Yang, Xiaomeng; Matthes, Michaela; Peis, Ottilie; Torres-Ruiz, Ramon A

    2015-07-07

    In dicot Arabidopsis thaliana embryos two cotyledons develop largely autonomously from the shoot apical meristem (SAM). Recessive mutations in the Arabidopsis receptor-like kinase RPK1 lead to monocotyledonous seedlings, with low (10 %) penetrance due to complex functional redundancy. In strong rpk1 alleles, about 10 % of these (i. e. 1 % of all homozygotes) did not develop a SAM. We wondered whether RPK1 might also control SAM gene expression and SAM generation in addition to its known stochastic impact on cell division and PINFORMED1 (PIN1) polarity in the epidermis. SAM-less seedlings developed a simple morphology with a straight and continuous hypocotyl-cotyledon structure lacking a recognizable epicotyl. According to rpk1's auxin-related PIN1 defect, the seedlings displayed defects in the vascular tissue. Surprisingly, SAM-less seedlings variably expressed essential SAM specific genes along the hypocotyl-cotyledon structure up into the cotyledon lamina. Few were even capable of developing an ectopic shoot meristem (eSM) on top of the cotyledon. The results highlight the developmental autonomy of the SAM vs. cotyledons and suggest that the primary rpk1 defect does not lie in the seedling's ability to express SAM genes or to develop a shoot meristem. Rather, rpk1's known defects in cell division and auxin homeostasis, by disturbed PIN1 polarity, impact on SAM and organ generation. In early embryo stages this failure generates a simplified monocotyledonous morphology. Once generated, this likely entails a loss of positional information that in turn affects the spatiotemporal development of the SAM. SAM-bearing and SAM-less monocotyledonous phenotypes show morphological similarities either to real monocots or to dicot species, which only develop one cotyledon. The specific cotyledon defect in rpk1 mutants thus sheds light upon the developmental implications of the transition from two cotyledons to one.

  9. Detection of Organics at Mars: How Wet Chemistry Onboard SAM Helps

    NASA Technical Reports Server (NTRS)

    Buch, A.; Freissinet, Caroline; Szopa, C.; Glavin, D.; Coll, P.; Cabane, M.; Eigenbrode, J.; Navarro-Gonzalez, R.; Coscia, D.; Teinturier, S.; hide

    2013-01-01

    For the first time in the history of space exploration, a mission of interest to astrobiology could be able to analyze refractory organic compounds in the soil of Mars. Wet chemistry experiment allow organic components to be altered in such a way that improves there detection either by releasing the compounds from sample matricies or by changing the chemical structure to be amenable to analytical conditions. The latter is particular important when polar compounds are present. Sample Analysis at Mars (SAM), on the Curiosity rover of the Mars Science Laboratory mission, has onboard two wet chemistry experiments: derivatization and thermochemolysis. Here we report on the nature of the MTBSTFA derivatization experiment on SAM, the detection of MTBSTFA in initial SAM results, and the implications of this detection.

  10. S-adenosyl-methionine (SAM) alters the transcriptome and methylome and specifically blocks growth and invasiveness of liver cancer cells.

    PubMed

    Wang, Yan; Sun, ZhongSheng; Szyf, Moshe

    2017-12-19

    S-adenosyl methionine (SAM) is a ubiquitous methyl donor that was reported to have chemo- protective activity against liver cancer, however the molecular footprint of SAM is unknown. We show here that SAM selectively inhibits growth, transformation and invasiveness of hepatocellular carcinoma cell lines but not normal primary liver cells. Analysis of the transcriptome of SAM treated and untreated liver cancer cell lines HepG2 and SKhep1 and primary liver cells reveals pathways involved in cancer and metastasis that are upregulated in cancer cells and are downregulated by SAM. Analysis of the methylome using bisulfite mapping of captured promoters and enhancers reveals that SAM hyper-methylates and downregulates genes in pathways of growth and metastasis that are upregulated in liver cancer cells. Depletion of two SAM downregulated genes STMN1 and TAF15 reduces cellular transformation and invasiveness, providing evidence that SAM targets are genes important for cancer growth and invasiveness. Taken together these data provide a molecular rationale for SAM as an anticancer agent.

  11. Carbon-sulfur bond-forming reaction catalysed by the radical SAM enzyme HydE.

    PubMed

    Rohac, Roman; Amara, Patricia; Benjdia, Alhosna; Martin, Lydie; Ruffié, Pauline; Favier, Adrien; Berteau, Olivier; Mouesca, Jean-Marie; Fontecilla-Camps, Juan C; Nicolet, Yvain

    2016-05-01

    Carbon-sulfur bond formation at aliphatic positions is a challenging reaction that is performed efficiently by radical S-adenosyl-L-methionine (SAM) enzymes. Here we report that 1,3-thiazolidines can act as ligands and substrates for the radical SAM enzyme HydE, which is involved in the assembly of the active site of [FeFe]-hydrogenase. Using X-ray crystallography, in vitro assays and NMR spectroscopy we identified a radical-based reaction mechanism that is best described as the formation of a C-centred radical that concomitantly attacks the sulfur atom of a thioether. To the best of our knowledge, this is the first example of a radical SAM enzyme that reacts directly on a sulfur atom instead of abstracting a hydrogen atom. Using theoretical calculations based on our high-resolution structures we followed the evolution of the electronic structure from SAM through to the formation of S-adenosyl-L-cysteine. Our results suggest that, at least in this case, the widely proposed and highly reactive 5'-deoxyadenosyl radical species that triggers the reaction in radical SAM enzymes is not an isolable intermediate.

  12. Carbon-sulfur bond-forming reaction catalysed by the radical SAM enzyme HydE

    NASA Astrophysics Data System (ADS)

    Rohac, Roman; Amara, Patricia; Benjdia, Alhosna; Martin, Lydie; Ruffié, Pauline; Favier, Adrien; Berteau, Olivier; Mouesca, Jean-Marie; Fontecilla-Camps, Juan C.; Nicolet, Yvain

    2016-05-01

    Carbon-sulfur bond formation at aliphatic positions is a challenging reaction that is performed efficiently by radical S-adenosyl-L-methionine (SAM) enzymes. Here we report that 1,3-thiazolidines can act as ligands and substrates for the radical SAM enzyme HydE, which is involved in the assembly of the active site of [FeFe]-hydrogenase. Using X-ray crystallography, in vitro assays and NMR spectroscopy we identified a radical-based reaction mechanism that is best described as the formation of a C-centred radical that concomitantly attacks the sulfur atom of a thioether. To the best of our knowledge, this is the first example of a radical SAM enzyme that reacts directly on a sulfur atom instead of abstracting a hydrogen atom. Using theoretical calculations based on our high-resolution structures we followed the evolution of the electronic structure from SAM through to the formation of S-adenosyl-L-cysteine. Our results suggest that, at least in this case, the widely proposed and highly reactive 5‧-deoxyadenosyl radical species that triggers the reaction in radical SAM enzymes is not an isolable intermediate.

  13. Celiac Disease in Children with Severe Acute Malnutrition (SAM): A Hospital Based Study.

    PubMed

    Beniwal, Neetu; Ameta, Gaurav; Chahar, Chandra Kumar

    2017-05-01

    To evaluate the prevalence and clinical features of Celiac disease among children with severe acute malnutrition (SAM). This prospective observational study was conducted in PBM Children Hospital, Bikaner from July 2012 through December 2013. All consecutively admitted children with SAM were recruited. All subjects were screened for Celiac disease by serological test for IgA-anti tissue Transglutaminase (IgA tTG) antibodies. All seropositive children underwent upper gastrointestinal endoscopy for small bowel biopsy for the confirmation. Clinical features of patients with and without celiac disease were compared. The sero-prevalence (IgA tTg positivity) of Celiac disease was found to be 15.38% while prevalence of biopsy confirmed Celiac disease was 14.42% among SAM children. Abdominal distension, diarrhea, anorexia, constipation, pain in abdomen, vitamin deficiencies, edema, clubbing and mouth ulcers were more common in patients of Celiac disease compared to patients without Celiac disease but the difference was statistically significant only for abdominal distension and pain abdomen. There is a high prevalence of Celiac disease in SAM. Screening for Celiac disease (especially in presence of pain abdomen and abdominal distension) should be an essential part of work-up in all children with SAM.

  14. Technoeconomic Modeling of Battery Energy Storage in SAM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DiOrio, Nicholas; Dobos, Aron; Janzou, Steven

    Detailed comprehensive lead-acid and lithium-ion battery models have been integrated with photovoltaic models in an effort to allow System Advisor Model (SAM) to offer the ability to predict the performance and economic benefit of behind the meter storage. In a system with storage, excess PV energy can be saved until later in the day when PV production has fallen, or until times of peak demand when it is more valuable. Complex dispatch strategies can be developed to leverage storage to reduce energy consumption or power demand based on the utility rate structure. This document describes the details of the batterymore » performance and economic models in SAM.« less

  15. Structural studies of viperin, an antiviral radical SAM enzyme.

    PubMed

    Fenwick, Michael K; Li, Yue; Cresswell, Peter; Modis, Yorgo; Ealick, Steven E

    2017-06-27

    Viperin is an IFN-inducible radical S -adenosylmethionine (SAM) enzyme that inhibits viral replication. We determined crystal structures of an anaerobically prepared fragment of mouse viperin (residues 45-362) complexed with S -adenosylhomocysteine (SAH) or 5'-deoxyadenosine (5'-dAdo) and l-methionine (l-Met). Viperin contains a partial (βα) 6 -barrel fold with a disordered N-terminal extension (residues 45-74) and a partially ordered C-terminal extension (residues 285-362) that bridges the partial barrel to form an overall closed barrel structure. Cys84, Cys88, and Cys91 located after the first β-strand bind a [4Fe-4S] cluster. The active site architecture of viperin with bound SAH (a SAM analog) or 5'-dAdo and l-Met (SAM cleavage products) is consistent with the canonical mechanism of 5'-deoxyadenosyl radical generation. The viperin structure, together with sequence alignments, suggests that vertebrate viperins are highly conserved and that fungi contain a viperin-like ortholog. Many bacteria and archaebacteria also express viperin-like enzymes with conserved active site residues. Structural alignments show that viperin is similar to several other radical SAM enzymes, including the molybdenum cofactor biosynthetic enzyme MoaA and the RNA methyltransferase RlmN, which methylates specific nucleotides in rRNA and tRNA. The viperin putative active site contains several conserved positively charged residues, and a portion of the active site shows structural similarity to the GTP-binding site of MoaA, suggesting that the viperin substrate may be a nucleoside triphosphate of some type.

  16. SAM-dependent enzyme-catalysed pericyclic reactions in natural product biosynthesis

    NASA Astrophysics Data System (ADS)

    Ohashi, Masao; Liu, Fang; Hai, Yang; Chen, Mengbin; Tang, Man-Cheng; Yang, Zhongyue; Sato, Michio; Watanabe, Kenji; Houk, K. N.; Tang, Yi

    2017-09-01

    Pericyclic reactions—which proceed in a concerted fashion through a cyclic transition state—are among the most powerful synthetic transformations used to make multiple regioselective and stereoselective carbon-carbon bonds. They have been widely applied to the synthesis of biologically active complex natural products containing contiguous stereogenic carbon centres. Despite the prominence of pericyclic reactions in total synthesis, only three naturally existing enzymatic examples (the intramolecular Diels-Alder reaction, and the Cope and the Claisen rearrangements) have been characterized. Here we report a versatile S-adenosyl-L-methionine (SAM)-dependent enzyme, LepI, that can catalyse stereoselective dehydration followed by three pericyclic transformations: intramolecular Diels-Alder and hetero-Diels-Alder reactions via a single ambimodal transition state, and a retro-Claisen rearrangement. Together, these transformations lead to the formation of the dihydropyran core of the fungal natural product, leporin. Combined in vitro enzymatic characterization and computational studies provide insight into how LepI regulates these bifurcating biosynthetic reaction pathways by using SAM as the cofactor. These pathways converge to the desired biosynthetic end product via the (SAM-dependent) retro-Claisen rearrangement catalysed by LepI. We expect that more pericyclic biosynthetic enzymatic transformations remain to be discovered in naturally occurring enzyme ‘toolboxes’. The new role of the versatile cofactor SAM is likely to be found in other examples of enzyme catalysis.

  17. SAMS Acceleration Measurements on Mir (NASA Increment 4)

    NASA Technical Reports Server (NTRS)

    DeLombard, Richard

    1998-01-01

    During NASA Increment 4 (January to May 1997), about 5 gigabytes of acceleration data were collected by the Space Acceleration Measurements System (SAMS) onboard the Russian Space Station, Mir. The data were recorded on 28 optical disks which were returned to Earth on STS-84. During this increment, SAMS data were collected in the Priroda module to support the Mir Structural Dynamics Experiment (MiSDE), the Binary Colloidal Alloy Tests (BCAT), Angular Liquid Bridge (ALB), Candle Flames in Microgravity (CFM), Diffusion Controlled Apparatus Module (DCAM), Enhanced Dynamic Load Sensors (EDLS), Forced Flow Flame Spreading Test (FFFr), Liquid Metal Diffusion (LMD), Protein Crystal Growth in Dewar (PCG/Dewar), Queen's University Experiments in Liquid Diffusion (QUELD), and Technical Evaluation of MIM (TEM). This report points out some of the salient features of the microgravity environment to which these experiments were exposed. Also documented are mission events of interest such as the docked phase of STS-84 operations, a Progress engine bum, Soyuz vehicle docking and undocking, and Progress vehicle docking. This report presents an overview of the SAMS acceleration measurements recorded by 10 Hz and 100 Hz sensor heads. The analyses included herein complement those presented in previous summary reports prepared by the Principal Investigator Microgravity Services (PIMS) group.

  18. Basis for ligand discrimination between ON and OFF state riboswitch conformations: the case of the SAM-I riboswitch.

    PubMed

    Boyapati, Vamsi Krishna; Huang, Wei; Spedale, Jessica; Aboul-Ela, Fareed

    2012-06-01

    Riboswitches are RNA elements that bind to effector ligands and control gene expression. Most consist of two domains. S-Adenosyl Methionine (SAM) binds the aptamer domain of the SAM-I riboswitch and induces conformational changes in the expression domain to form an intrinsic terminator (transcription OFF state). Without SAM the riboswitch forms the transcription ON state, allowing read-through transcription. The mechanistic link between the SAM/aptamer recognition event and subsequent secondary structure rearrangement by the riboswitch is unclear. We probed for those structural features of the Bacillus subtilis yitJ SAM-I riboswitch responsible for discrimination between the ON and OFF states by SAM. We designed SAM-I riboswitch RNA segments forming "hybrid" structures of the ON and OFF states. The choice of segment constrains the formation of a partial P1 helix, characteristic of the OFF state, together with a partial antiterminator (AT) helix, characteristic of the ON state. For most choices of P1 vs. AT helix lengths, SAM binds with micromolar affinity according to equilibrium dialysis. Mutational analysis and in-line probing confirm that the mode of SAM binding by hybrid structures is similar to that of the aptamer. Altogether, binding measurements and in-line probing are consistent with the hypothesis that when SAM is present, stacking interactions with the AT helix stabilize a partially formed P1 helix in the hybrids. Molecular modeling indicates that continuous stacking between the P1 and the AT helices is plausible with SAM bound. Our findings raise the possibility that conformational intermediates may play a role in ligand-induced aptamer folding.

  19. General Quality Control (QC) Guidelines for SAM Methods

    EPA Pesticide Factsheets

    Learn more about quality control guidelines and recommendations for the analysis of samples using the methods listed in EPA's Selected Analytical Methods for Environmental Remediation and Recovery (SAM).

  20. Tribology and hydrophobicity of a biocompatible GPTMS/PFPE coating on Ti6Al4V surfaces.

    PubMed

    Panjwani, Bharat; Sinha, Sujeet K

    2012-11-01

    Tribological properties of perfluoropolyether (PFPE) coated 3-glycidoxypropyltrimethoxy silane (GPTMS) SAMs (self-assembled monolayers) onto Ti6Al4V alloy substrate were studied using ball-on-disk experiments. GPTMS SAMs deposition onto a Ti6Al4V alloy surface was carried out using solution phase method. Ultra-thin layer of PFPE was dip-coated onto SAMs modified specimens. Tribological tests were carried out at 0.2 N normal load and rotational speed of 200 rpm using track radius of 2 mm. Wear track and counterface surface conditions were investigated using optical microscopy. PFPE modified specimens were baked at 150 °C for 1h to investigate the effect of thermal treatment on tribological properties. Surface characterization tests such as contact angle measurement, AFM morphology and X-ray photoelectron spectroscopy were carried out for differently modified specimens. PFPE overcoat meets the requirements of cytotoxicity test using the ISO 10993-5 elution method. PFPE top layer lowered the coefficient of friction and increased wear durability for different specimens (with and without GPTMS intermediate layer). PFPE overcoat onto GPTMS showed significant increase in the wear resistance compared with overcoat onto bare Ti6Al4V specimens. The observed improvement in the tribological properties can be attributed to the change in the interaction of PFPE molecules with the substrate surface due to the GPTMS intermediate layer. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. S-adenosyl-methionine (SAM) alters the transcriptome and methylome and specifically blocks growth and invasiveness of liver cancer cells

    PubMed Central

    Wang, Yan; Sun, ZhongSheng; Szyf, Moshe

    2017-01-01

    S-adenosyl methionine (SAM) is a ubiquitous methyl donor that was reported to have chemo- protective activity against liver cancer, however the molecular footprint of SAM is unknown. We show here that SAM selectively inhibits growth, transformation and invasiveness of hepatocellular carcinoma cell lines but not normal primary liver cells. Analysis of the transcriptome of SAM treated and untreated liver cancer cell lines HepG2 and SKhep1 and primary liver cells reveals pathways involved in cancer and metastasis that are upregulated in cancer cells and are downregulated by SAM. Analysis of the methylome using bisulfite mapping of captured promoters and enhancers reveals that SAM hyper-methylates and downregulates genes in pathways of growth and metastasis that are upregulated in liver cancer cells. Depletion of two SAM downregulated genes STMN1 and TAF15 reduces cellular transformation and invasiveness, providing evidence that SAM targets are genes important for cancer growth and invasiveness. Taken together these data provide a molecular rationale for SAM as an anticancer agent. PMID:29340097

  2. Data handling with SAM and art at the NO vA experiment

    DOE PAGES

    Aurisano, A.; Backhouse, C.; Davies, G. S.; ...

    2015-12-23

    During operations, NOvA produces between 5,000 and 7,000 raw files per day with peaks in excess of 12,000. These files must be processed in several stages to produce fully calibrated and reconstructed analysis files. In addition, many simulated neutrino interactions must be produced and processed through the same stages as data. To accommodate the large volume of data and Monte Carlo, production must be possible both on the Fermilab grid and on off-site farms, such as the ones accessible through the Open Science Grid. To handle the challenge of cataloging these files and to facilitate their off-line processing, we havemore » adopted the SAM system developed at Fermilab. SAM indexes files according to metadata, keeps track of each file's physical locations, provides dataset management facilities, and facilitates data transfer to off-site grids. To integrate SAM with Fermilab's art software framework and the NOvA production workflow, we have developed methods to embed metadata into our configuration files, art files, and standalone ROOT files. A module in the art framework propagates the embedded information from configuration files into art files, and from input art files to output art files, allowing us to maintain a complete processing history within our files. Embedding metadata in configuration files also allows configuration files indexed in SAM to be used as inputs to Monte Carlo production jobs. Further, SAM keeps track of the input files used to create each output file. Parentage information enables the construction of self-draining datasets which have become the primary production paradigm used at NOvA. In this study we will present an overview of SAM at NOvA and how it has transformed the file production framework used by the experiment.« less

  3. Basis for ligand discrimination between ON and OFF state riboswitch conformations: The case of the SAM-I riboswitch

    PubMed Central

    Boyapati, Vamsi Krishna; Huang, Wei; Spedale, Jessica; Aboul-ela, Fareed

    2012-01-01

    Riboswitches are RNA elements that bind to effector ligands and control gene expression. Most consist of two domains. S-Adenosyl Methionine (SAM) binds the aptamer domain of the SAM-I riboswitch and induces conformational changes in the expression domain to form an intrinsic terminator (transcription OFF state). Without SAM the riboswitch forms the transcription ON state, allowing read-through transcription. The mechanistic link between the SAM/aptamer recognition event and subsequent secondary structure rearrangement by the riboswitch is unclear. We probed for those structural features of the Bacillus subtilis yitJ SAM-I riboswitch responsible for discrimination between the ON and OFF states by SAM. We designed SAM-I riboswitch RNA segments forming “hybrid” structures of the ON and OFF states. The choice of segment constrains the formation of a partial P1 helix, characteristic of the OFF state, together with a partial antiterminator (AT) helix, characteristic of the ON state. For most choices of P1 vs. AT helix lengths, SAM binds with micromolar affinity according to equilibrium dialysis. Mutational analysis and in-line probing confirm that the mode of SAM binding by hybrid structures is similar to that of the aptamer. Altogether, binding measurements and in-line probing are consistent with the hypothesis that when SAM is present, stacking interactions with the AT helix stabilize a partially formed P1 helix in the hybrids. Molecular modeling indicates that continuous stacking between the P1 and the AT helices is plausible with SAM bound. Our findings raise the possibility that conformational intermediates may play a role in ligand-induced aptamer folding. PMID:22543867

  4. Safety and Waste Management for SAM Pathogen Methods

    EPA Pesticide Factsheets

    The General Safety and Waste Management page offers section-specific safety and waste management details for the pathogens included in EPA's Selected Analytical Methods for Environmental Remediation and Recovery (SAM).

  5. Safety and Waste Management for SAM Biotoxin Methods

    EPA Pesticide Factsheets

    The General Safety and Waste Management page offers section-specific safety and waste management details for the biotoxins included in EPA's Selected Analytical Methods for Environmental Remediation and Recovery (SAM).

  6. Denitrification of the polar winter stratosphere - Implications of SAM II cloud formation temperatures

    NASA Technical Reports Server (NTRS)

    Hamill, Patrick; Toon, O. B.

    1990-01-01

    The SAM II extinction profiles and the associated temperature profiles are used to determine the amount of denitrification of the winter polar stratospheres. Clear evidence of the denitrification process in the Antarctic data is seen. There are indications in the Arctic data that denitrification mechanisms may be at work there also. At the latitudes observed by the SAM II satellite system, denitrification begins before the formation of extensive ice clouds and may be due to sedimentation of nitric acid particles. However, the possibility of dinitrification by type II PSCs at latitudes not observed by SAM II cannot be excluded.

  7. Jeffries Matusita-Spectral Angle Mapper (JM-SAM) spectral matching for species level mapping at Bhitarkanika, Muthupet and Pichavaram mangroves

    NASA Astrophysics Data System (ADS)

    Padma, S.; Sanjeevi, S.

    2014-12-01

    This paper proposes a novel hyperspectral matching algorithm by integrating the stochastic Jeffries-Matusita measure (JM) and the deterministic Spectral Angle Mapper (SAM), to accurately map the species and the associated landcover types of the mangroves of east coast of India using hyperspectral satellite images. The JM-SAM algorithm signifies the combination of a qualitative distance measure (JM) and a quantitative angle measure (SAM). The spectral capabilities of both the measures are orthogonally projected using the tangent and sine functions to result in the combined algorithm. The developed JM-SAM algorithm is implemented to discriminate the mangrove species and the landcover classes of Pichavaram (Tamil Nadu), Muthupet (Tamil Nadu) and Bhitarkanika (Odisha) mangrove forests along the Eastern Indian coast using the Hyperion image dat asets that contain 242 bands. The developed algorithm is extended in a supervised framework for accurate classification of the Hyperion image. The pixel-level matching performance of the developed algorithm is assessed by the Relative Spectral Discriminatory Probability (RSDPB) and Relative Spectral Discriminatory Entropy (RSDE) measures. From the values of RSDPB and RSDE, it is inferred that hybrid JM-SAM matching measure results in improved discriminability of the mangrove species and the associated landcover types than the individual SAM and JM algorithms. This performance is reflected in the classification accuracies of species and landcover map of Pichavaram mangrove ecosystem. Thus, the JM-SAM (TAN) matching algorithm yielded an accuracy better than SAM and JM measures at an average difference of 13.49 %, 7.21 % respectively, followed by JM-SAM (SIN) at 12.06%, 5.78% respectively. Similarly, in the case of Muthupet, JM-SAM (TAN) yielded an increased accuracy than SAM and JM measures at an average difference of 12.5 %, 9.72 % respectively, followed by JM-SAM (SIN) at 8.34 %, 5.55% respectively. For Bhitarkanika, the combined

  8. Safety and Waste Management for SAM Chemistry Methods

    EPA Pesticide Factsheets

    The General Safety and Waste Management page offers section-specific safety and waste management details for the chemical analytes included in EPA's Selected Analytical Methods for Environmental Remediation and Recovery (SAM).

  9. Safety and Waste Management for SAM Radiochemical Methods

    EPA Pesticide Factsheets

    The General Safety and Waste Management page offers section-specific safety and waste management details for the radiochemical analytes included in EPA's Selected Analytical Methods for Environmental Remediation and Recovery (SAM).

  10. Targeting EphA2-Sam and Its Interactome: Design and Evaluation of Helical Peptides Enriched in Charged Residues.

    PubMed

    Mercurio, Flavia A; Marasco, Daniela; Di Natale, Concetta; Pirone, Luciano; Costantini, Susan; Pedone, Emilia M; Leone, Marilisa

    2016-11-17

    The EphA2 receptor controls diverse physiological and pathological conditions and its levels are often upregulated in cancer. Targeting receptor overexpression, through modulation of endocytosis and consequent degradation, appears to be an appealing strategy for attacking tumor malignancy. In this scenario, the Sam domain of EphA2 plays a pivotal role because it is the site where protein regulators of endocytosis and stability are recruited by means of heterotypic Sam-Sam interactions. Because EphA2-Sam heterotypic complexes are largely based on electrostatic contacts, we have investigated the possibility of attacking these interactions with helical peptides enriched in charged residues. Several peptide sequences with high predicted helical propensities were designed, and detailed conformational analyses were conducted by diverse techniques including NMR, CD, and molecular dynamics (MD) simulations. Interaction studies were also performed by NMR, surface plasmon resonance (SPR), and microscale thermophoresis (MST) and led to the identification of two peptides capable of binding to the first Sam domain of Odin. These molecules represent early candidates for the generation of efficient Sam domain binders and antagonists of Sam-Sam interactions involving EphA2. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Constraints on the Mineralogy of Gale Crater Mudstones from MSL SAM Evolved Water

    NASA Technical Reports Server (NTRS)

    McAdam, A. C.; Sutter, B.; Franz, H. B.; Hogancamp, J. V. (Clark); Knudson, C. A.; Andrejkovicova, S.; Archer, P. D.; Eigenbrode, J. L.; Ming, D. W.; Mahaffy, P. R.

    2017-01-01

    The Sample Analysis at Mars (SAM) and Chemistry and Mineralogy (CheMin) instruments on the Mars Science Laboratory (MSL) have analysed more than 150 micron fines from 14 sites at Gale Crater. Here we focus on the mudstone samples. Two were drilled from sites John Klein (JK) and Cumberland (CB) in the Sheepbed mudstone. Six were drilled from Murray Formation mudstone: Confidence Hills (CH), Mojave (MJ), Telegraph Peak (TP), Buckskin (BK), Oudam (OU), Marimba (MB). SAM's evolved gas analysis mass spectrometry (EGA-MS) detected H2O, CO2, O2, H2, SO2, H2S, HCl, NO, and other trace gases, including organic fragments. The identity and evolution temperature of evolved gases can support CheMin mineral detection and place constraints on trace volatile-bearing phases or phases difficult to characterize with X-ray diffraction (e.g., amorphous phases). Here we will focus on SAM H2O data and comparisons to SAM-like analyses of key reference materials.

  12. SAMS Acceleration Measurement on Mir From March to September 1996

    NASA Technical Reports Server (NTRS)

    Moskowitz, Milton E.; Hrovat, Ken; Truong, Duc; Reckart, Timothy

    1997-01-01

    During NASA Increment 2 (March to September 1996), over 15 gigabytes of acceleration data were collected by the Space Acceleration Measurement System (SAMS) onboard the Russian Space Station, Mir. The data were recorded on 55 optical disks and were returned to Earth on STS-79. During this time, SAMS data were collected in the Kristall and Kvant modules, and in the Priroda module to support the following experiments: the Queen's University Experiments in Liquid Diffusion (QUELD), the Technological Evaluation of the MIM (TEM), the Forced Flow Flame Spreading Test (FFFT), and Candle Flames in Microgravity (CFM). This report points out some of the salient features of the microgravity environment to which these experiments were exposed. Also documented are mission events of interest such as the docked phase of STS-76 operations, an extravehicular activity (EVA) to install and deploy solar panels on the Kvant module, a Progress engine burn to raise Mir's altitude, and an on-orbit SAMS calibration procedure. Also included are a description of the Mir module orientations, and the panel notations within the modules. This report presents an overview of the SAMS acceleration measurements recorded by 10 Hz and 100 Hz sensor heads. Variations in the acceleration environment caused by unique activities such as crew exercise and life-support fans are presented. The analyses included herein complement those presented in previous mission summary reports published by the Principal Investigator Microgravity Services (PIMS) group.

  13. SAM-Dependent Enzyme-Catalysed Pericyclic Reactions in Natural Product Biosynthesis

    PubMed Central

    Ohashi, Masao; Liu, Fang; Hai, Yang; Chen, Mengbin; Tang, Man-cheng; Yang, Zhongyue; Sato, Michio; Watanabe, Kenji; Houk, K. N.; Tang, Yi

    2017-01-01

    Pericyclic reactions are among the most powerful synthetic transformations to make multiple regioselective and stereoselective carbon-carbon bonds1. These reactions have been widely applied for the synthesis of biologically active complex natural products containing contiguous stereogenic carbon centers2–6. Despite the prominence of pericyclic reactions in total synthesis, only three naturally existing enzymatic examples, intramolecular Diels-Alder (IMDA) reaction7, Cope8 and Claisen rearrangements9, have been characterized. Here, we report the discovery of a S-adenosyl-L-methionine (SAM) dependent enzyme LepI that can catalyse stereoselective dehydration, bifurcating IMDA/hetero-DA (HDA) reactions via an ambimodal transition state, and a [3,3]-sigmatropic retro-Claisen rearrangement leading to the formation of dihydopyran core in the fungal natural product leporin10. Combined in vitro enzymatic characterization and computational studies provide evidence and mechanistic insight about how the O-methyltransferase-like protein LepI regulates the bifurcating biosynthetic reaction pathways (“direct” HDA and “byproduct recycle” IMDA/retro-Claisen reaction pathways) by utilizing SAM as the cofactor in order to converge to the desired biosynthetic end product. This work highlights that LepI is the first example of an enzyme catalysing a (SAM-dependent) retro-Claisen rearrangement. We suggest that more pericyclic biosynthetic enzymatic transformations are yet to be discovered in the intriguing enzyme toolboxes in Nature11, and propose an ever expanding role of the versatile cofactor SAM in enzyme catalysis. PMID:28902839

  14. Sum-frequency generation analyses of the structure of water at amphoteric SAM-liquid water interfaces.

    PubMed

    Nomura, Kouji; Nakaji-Hirabayashi, Tadashi; Gemmei-Ide, Makoto; Kitano, Hiromi; Noguchi, Hidenori; Uosaki, Kohei

    2014-09-01

    Surfaces of both a cover glass and the flat plane of a semi-cylindrical quartz prism were modified with a mixture of positively and negatively charged silane coupling reagents (3-aminopropyltriethoxysilane (APTES) and 3-(trihydroxysilyl)propylmethylphosphonate (THPMP), respectively). The glass surface modified with a self-assembled monolayer (SAM) prepared at a mixing ratio of APTES:THPMP=4:6 was electrically almost neutral and was resistant to non-specific adsorption of proteins, whereas fibroblasts gradually adhered to an amphoteric (mixed) SAM surface probably due to its stiffness, though the number of adhered cells was relatively small. Sum frequency generation (SFG) spectra indicated that total intensity of the OH stretching region (3000-3600cm(-1)) for the amphoteric SAM-modified quartz immersed in liquid water was smaller than those for the positively and negatively charged SAM-modified quartz prisms and a bare quartz prism in contact with liquid water. These results suggested that water molecules at the interface of water and an amphoteric SAM-modified quartz prism are not strongly oriented in comparison with those at the interface of a lopsidedly charged SAM-modified quartz prism and bare quartz. The importance of charge neutralization for the anti-biofouling properties of solid materials was strongly suggested. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. General Safety and Waste Management Related to SAM

    EPA Pesticide Factsheets

    The General Safety and Waste Management page offers section-specific safety and waste management details for chemicals, radiochemicals, pathogens, and biotoxins included in EPA's Selected Analytical Methods for Environmental Remediation and Recovery (SAM).

  16. Schematic of Sample Analysis at Mars SAM Instrument

    NASA Image and Video Library

    2011-01-18

    This schematic illustration for NASA Mars Science Laboratory Sample Analysis at Mars SAM instrument shows major components of the microwave-oven-size instrument, which will examine samples of Martian rocks, soil and atmosphere.

  17. Monovalent Cation Activation of the Radical SAM Enzyme Pyruvate Formate-Lyase Activating Enzyme.

    PubMed

    Shisler, Krista A; Hutcheson, Rachel U; Horitani, Masaki; Duschene, Kaitlin S; Crain, Adam V; Byer, Amanda S; Shepard, Eric M; Rasmussen, Ashley; Yang, Jian; Broderick, William E; Vey, Jessica L; Drennan, Catherine L; Hoffman, Brian M; Broderick, Joan B

    2017-08-30

    Pyruvate formate-lyase activating enzyme (PFL-AE) is a radical S-adenosyl-l-methionine (SAM) enzyme that installs a catalytically essential glycyl radical on pyruvate formate-lyase. We show that PFL-AE binds a catalytically essential monovalent cation at its active site, yet another parallel with B 12 enzymes, and we characterize this cation site by a combination of structural, biochemical, and spectroscopic approaches. Refinement of the PFL-AE crystal structure reveals Na + as the most likely ion present in the solved structures, and pulsed electron nuclear double resonance (ENDOR) demonstrates that the same cation site is occupied by 23 Na in the solution state of the as-isolated enzyme. A SAM carboxylate-oxygen is an M + ligand, and EPR and circular dichroism spectroscopies reveal that both the site occupancy and the identity of the cation perturb the electronic properties of the SAM-chelated iron-sulfur cluster. ENDOR studies of the PFL-AE/[ 13 C-methyl]-SAM complex show that the target sulfonium positioning varies with the cation, while the observation of an isotropic hyperfine coupling to the cation by ENDOR measurements establishes its intimate, SAM-mediated interaction with the cluster. This monovalent cation site controls enzyme activity: (i) PFL-AE in the absence of any simple monovalent cations has little-no activity; and (ii) among monocations, going down Group 1 of the periodic table from Li + to Cs + , PFL-AE activity sharply maximizes at K + , with NH 4 + closely matching the efficacy of K + . PFL-AE is thus a type I M + -activated enzyme whose M + controls reactivity by interactions with the cosubstrate, SAM, which is bound to the catalytic iron-sulfur cluster.

  18. The Impact of a Ligand Binding on Strand Migration in the SAM-I Riboswitch

    PubMed Central

    Huang, Wei; Kim, Joohyun; Jha, Shantenu; Aboul-ela, Fareed

    2013-01-01

    Riboswitches sense cellular concentrations of small molecules and use this information to adjust synthesis rates of related metabolites. Riboswitches include an aptamer domain to detect the ligand and an expression platform to control gene expression. Previous structural studies of riboswitches largely focused on aptamers, truncating the expression domain to suppress conformational switching. To link ligand/aptamer binding to conformational switching, we constructed models of an S-adenosyl methionine (SAM)-I riboswitch RNA segment incorporating elements of the expression platform, allowing formation of an antiterminator (AT) helix. Using Anton, a computer specially developed for long timescale Molecular Dynamics (MD), we simulated an extended (three microseconds) MD trajectory with SAM bound to a modeled riboswitch RNA segment. Remarkably, we observed a strand migration, converting three base pairs from an antiterminator (AT) helix, characteristic of the transcription ON state, to a P1 helix, characteristic of the OFF state. This conformational switching towards the OFF state is observed only in the presence of SAM. Among seven extended trajectories with three starting structures, the presence of SAM enhances the trend towards the OFF state for two out of three starting structures tested. Our simulation provides a visual demonstration of how a small molecule (<500 MW) binding to a limited surface can trigger a large scale conformational rearrangement in a 40 kDa RNA by perturbing the Free Energy Landscape. Such a mechanism can explain minimal requirements for SAM binding and transcription termination for SAM-I riboswitches previously reported experimentally. PMID:23704854

  19. The ALICE Glance Shift Accounting Management System (SAMS)

    NASA Astrophysics Data System (ADS)

    Martins Silva, H.; Abreu Da Silva, I.; Ronchetti, F.; Telesca, A.; Maidantchik, C.

    2015-12-01

    ALICE (A Large Ion Collider Experiment) is an experiment at the CERN LHC (Large Hadron Collider) studying the physics of strongly interacting matter and the quark-gluon plasma. The experiment operation requires a 24 hours a day and 7 days a week shift crew at the experimental site, composed by the ALICE collaboration members. Shift duties are calculated for each institute according to their correlated members. In order to ensure the full coverage of the experiment operation as well as its good quality, the ALICE Shift Accounting Management System (SAMS) is used to manage the shift bookings as well as the needed training. ALICE SAMS is the result of a joint effort between the Federal University of Rio de Janeiro (UFRJ) and the ALICE Collaboration. The Glance technology, developed by the UFRJ and the ATLAS experiment, sits at the basis of the system as an intermediate layer isolating the particularities of the databases. In this paper, we describe the ALICE SAMS development process and functionalities. The database has been modelled according to the collaboration needs and is fully integrated with the ALICE Collaboration repository to access members information and respectively roles and activities. Run, period and training coordinators can manage their subsystem operation and ensure an efficient personnel management. Members of the ALICE collaboration can book shifts and on-call according to pre-defined rights. ALICE SAMS features a user profile containing all the statistics and user contact information as well as the Institutes profile. Both the user and institute profiles are public (within the scope of the collaboration) and show the credit balance in real time. A shift calendar allows the Run Coordinator to plan data taking periods in terms of which subsystems shifts are enabled or disabled and on-call responsible people and slots. An overview display presents the shift crew present in the control room and allows the Run Coordination team to confirm the presence

  20. Structure-guided design of fluorescent S-adenosylmethionine analogs for a high-throughput screen to target SAM-I riboswitch RNAs.

    PubMed

    Hickey, Scott F; Hammond, Ming C

    2014-03-20

    Many classes of S-adenosylmethionine (SAM)-binding RNAs and proteins are of interest as potential drug targets in diverse therapeutic areas, from infectious diseases to cancer. In the former case, the SAM-I riboswitch is an attractive target because this structured RNA element is found only in bacterial mRNAs and regulates multiple genes in several human pathogens. Here, we describe the synthesis of stable and fluorescent analogs of SAM in which the fluorophore is introduced through a functionalizable linker to the ribose. A Cy5-labeled SAM analog was shown to bind several SAM-I riboswitches via in-line probing and fluorescence polarization assays, including one from Staphylococcus aureus that controls the expression of SAM synthetase in this organism. A fluorescent ligand displacement assay was developed and validated for high-throughput screening of compounds to target the SAM-I riboswitch class. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Stability of Phosphonic Self Assembled Monolayers (SAMs) on Cobalt Chromium (Co-Cr) Alloy under Oxidative conditions

    PubMed Central

    Bhure, Rahul; Abdel-Fattah, Tarek M.; Bonner, Carl; Hall, Felicia; Mahapatro, Anil

    2011-01-01

    Cobalt Chromium (Co-Cr) alloys has been widely used in the biomedical arena for cardiovascular, orthopedic and dental applications. Surface modification of the alloy allows us to tailor the interfacial properties to address critical challenges of Co-Cr alloy in medical applications. Self assembled monolayers (SAMs) of Octadecylphosphonic acid (ODPA) have been used to form thin films on the oxide layer of the Co-Cr alloy surface by solution deposition technique. The SAMs formed were investigated for their stability to oxidative conditions of ambient laboratory environment over periods of 1, 3, 7 and 14 days. The samples were then characterized for their stability using X-ray Photoelectron Spectroscopy (XPS), Atomic Force Microscopy (AFM) and Contact Angle Measurements. Detailed high energy XPS elemental scans confirmed the presence of the phosphonic monolayer after oxidative exposure which suggested that the SAMs were firmly attached to the oxide layer of Co-Cr alloy. AFM images gave topographical data of the surface and showed islands of SAMs on Co-Cr alloy surface, before and after SAM formation and also over the duration of the oxidative exposure. Contact angle measurements confirmed the hydrophobicity of the surface over 14 days. Thus the SAMs were found to be stable for the duration of the study. These SAMs could be subsequently tailored by modifying the terminal functional groups and could be used for various potential biomedical applications such as drug delivery, biocompatibility and tissue integration PMID:21603056

  2. Testing the validity, reliability and utility of the Self-Administration of Medication (SAM) tool in patients undergoing rehabilitation.

    PubMed

    Anderson, Jessica; Manias, Elizabeth; Kusljic, Snezana; Finch, Sue

    2014-01-01

    Determination of patients' ability to self-administer medications in the hospital has largely been determined using the subjective judgment of health professionals. To examine the validity, reliability and utility of the Self-Administration of Medication (SAM) tool as an objective means to determine patients' ability to self-administer in a rehabilitation unit of a public teaching hospital in Melbourne, Australia. To assess validity of the SAM tool, associations were examined between the total SAM tool score and of the patients' competence to self-administer from the perceptions of the tool administrator, patients and nurses. Validity also was determined from a principal component analysis. Pearson correlations were calculated for how SAM scores related to scores obtained from the Functional Independence Measure (FIM) and Barthel Score Index (BSI). To assess the SAM tool's reliability, a Cronbach's alpha coefficient was calculated. Utility of the SAM tool was evidenced by documenting its administration time. One hundred patients participated in this study. The SAM tool had a Cronbach's alpha coefficient of 0.75 and took a mean time of 5.36 min to complete. The capability to self-medicate section of the SAM tool had strong correlations with the FIM (r = 0.485) and BSI (r = 0.472) data, respectively, and the total SAM tool had moderate and strong correlations with the nurses' (r = 0.315) and tool administrator's (r = 0.632) perceptions of patients' ability to self-administer, respectively. Bland-Altman and ROC curve analyses showed poor agreement between the total SAM tool score and the nurses' perceptions. The SAM tool demonstrated acceptable overall internal consistency. It only requires a short time to be completed and is more objective than seeking out health professionals' perceptions. Additional research is needed to further validate this approach to determining patients' ability to self-medicate. Crown Copyright © 2014. Published by Elsevier Inc. All

  3. Lifting SAM Instrument for Installation into Mars Rover

    NASA Image and Video Library

    2011-01-18

    NASA Sample Analysis at Mars SAM instrument, largest of the 10 science instruments for NASA Mars Science Laboratory mission, will examine samples of Martian rocks, soil and atmosphere for information about chemicals that are important to life.

  4. Tropical Storm Sam, Eastern Indian Ocean

    NASA Image and Video Library

    1990-01-20

    STS032-80-036 (9-20 Jan. 1990) --- This oblique view of Tropical Storm Sam in the eastern Indian Ocean off the western coast of Australia was photographed with a 70mm camera by the astronauts. Tropical Storm Sam (known as Willy-Willy in Australia) was born in the eastern Indian Ocean near the islands of Timor and Sumba in Indonesia. The storm tracked southwestward attaining sustained winds in excess of 60 knots (70 miles per hour). Other than on Christmas Island and the Cocos (Keeling) Islands south of Java, and for strong swells along the western Australia coast, the storm had little impact on land areas. At the time this photograph was taken, the storm was beginning to dissipate in the south Indian Ocean. The eye of the storm is still visible near center, with the swirling bands of the storm propagating in a clockwise direction toward the center. Winds aloft have begun to shear the tops of thunderstorms associated with the storm, forming a high cirrus cloud cover over the center portions of the storm. This picture was used by the crew at their January 30, 1990 Post-Flight Press Conference (PFPC).

  5. Soft Ultraviolet (UV) Photopatterning and Metallization of Self-Assembled Monolayers (SAMs) Formed from the Lipoic Acid Ester of α-Hydroxy-1-acetylpyrene: The Generality of Acid-Catalyzed Removal of Thiol-on-Gold SAMs using Soft UV Light.

    PubMed

    Pukenas, Laurynas; Prompinit, Panida; Nishitha, Boda; Tate, Daniel J; Singh, N D Pradeep; Wälti, Christoph; Evans, Stephen D; Bushby, Richard J

    2017-05-31

    Under a layer of 0.1 M HCl in isopropanol, soft ultraviolet (UV) (365 nm) photolysis of the thiol-on-gold self-assembled monolayer (SAM) derived from the lipoic acid ester of α-hydroxy-1-acetylpyrene results in the expected removal of the acetylpyrene protecting group. When photolyzing through a mask, this can be used to produce a patterned surface and, at a controlled electrochemical potential, it is then possible to selectively and reversibly electrodeposit copper on the photolyzed regions. Rather surprisingly, under these photolysis conditions, there is not only the expected photodeprotection of the ester but also partial removal of the lipoic acid layer which has been formed. In further studies, it is shown that this type of acid-catalyzed photoremoval of SAM layers by soft UV is a rather general phenomenon and results in the partial removal of the thiol-on-gold SAM layers derived from other ω-thiolated carboxylic acids. However, this phenomenon is chain-length dependent. Under conditions in which there is a ∼60% reduction in the thickness of the SAM derived from dithiobutyric acid, the SAM derived from mercaptoundecanoic acid is almost unaffected. The process by which the shorter-chain SAM layers are partially removed is not fully understood because these compounds do not absorb significantly in the 365 nm region of the spectrum! Significantly, this study shows that acid catalysis photolysis of thiol-on-gold SAMs needs to be used with caution.

  6. The Combustion Experiment on the Sample Analysis at Mars (SAM) Instrument Suite on the Curiosity Rover

    NASA Technical Reports Server (NTRS)

    Stern, J. C.; Malespin, C. A.; Eigenbrode, J. L.; Graham, H. V.; Archer, P. D., Jr.; Brunner, A. E.; Freissinet, C.; Franz, H. B.; Fuentes, J.; Glavin, D. P.; hide

    2014-01-01

    The combustion experiment on the Sample Analysis at Mars (SAM) suite on Curiosity will heat a sample of Mars regolith in the presence of oxygen and measure composition of the evolved gases using quadrupole mass spectrometry (QMS) and tunable laser spectrometry (TLS). QMS will enable detection of combustion products such as CO, CO2, NO, and other oxidized species, while TLS will enable precise measurements of the abundance and carbon isotopic composition (delta(sup 13)C) of the evolved CO2 and hydrogen isotopic composition (deltaD) of H2O. SAM will perform a two-step combustion to isolate combustible materials below approx.550 C and above approx.550 C. The combustion experiment on SAM, if properly designed and executed, has the potential to answer multiple questions regarding the origins of volatiles seen thus far in SAM evolved gas analysis (EGA) on Mars. Constraints imposed by SAM and MSL time and power resources, as well as SAM consumables (oxygen gas), will limit the number of SAM combustion experiments, so it is imperative to design an experiment targeting the most pressing science questions. Low temperature combustion experiments will primarily target the quantification of carbon (and nitrogen) contributed by SAM wet chemistry reagants MTBSTFA (N-Methyl-N-tert-butyldimethylsilyltrifluoroacetamide) and DMF (Dimethylformamide), which have been identified in the background of blank and sample runs and may adsorb to the sample while the cup is in the Sample Manipulation System (SMS). In addition, differences between the sample and "blank" may yield information regarding abundance and delta(sup 13)C of bulk (both organic and inorganic) martian carbon. High temperature combustion experiments primarily aim to detect refractory organic matter, if present in Cumberland fines, as well as address the question of quantification and deltaD value of water evolution associated with hydroxyl hydrogen in clay minerals.

  7. Organosilane self-assembled layers (SAMs) and hybrid silicate magnesium-rich primers for the corrosion protection of aluminum alloy 2024 T3

    NASA Astrophysics Data System (ADS)

    Wang, Duhua

    Although current chromate coatings function very well in corrosion protection for aircraft alloys, such as aluminum alloy 2024 T3, the U.S. Environmental Protection Agency is planning to totally ban the use of chromates as coating materials in the next decade or so because of their extremely toxic effect. For this purpose, both self-assembled layers and silicate magnesium-rich primers were tested to provide the corrosion protection for aluminum alloy. The long-term goal of this research is to develop a coating system to replace the current chromate coating for aircraft corrosion protection. Aluminum alloy 2024 T3 substrates were modified with self-assembled monolayer or multilayer thin films from different alkylsilane compounds. Mono-functional silanes, such as octadecyltrichlorosilane (C18SiCl3), can form a mixed hydrophobic monolayer or multilayer thin film on the aluminum oxide surface to provide a barrier to water and other electrolytes, so the corrosion resistance of the SAMs modified surface was increased significantly. On the other hand, the bi-functional silane self-assembly could attach the aluminum surface through the silicon headgroup while using its functional tailgroup to chemically bond the polymer coating, thus improving the adhesion between the aluminum substrate and coating substantially, and seems to contribute more to corrosion protection of aluminum substrate. Organosilanes were also combined with tetraethyl orthosilicate (TEOS) in propel ratios to form a sol-gel binder to make silicate magnesium-rich primers. Analogue to the inorganic zinc-rich coatings, the silicate magnesium-rich primers also showed excellent adhesion and solvent resistance. The sacrificial magnesium pigments and the chemically inert silicate binder both contribute to the anti-corrosion properties. Future studies will be focused on the formula optimization for better toughness, chemical resistance and anticorrosion performance.

  8. Molten Salt Power Tower Cost Model for the System Advisor Model (SAM)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turchi, C. S.; Heath, G. A.

    2013-02-01

    This report describes a component-based cost model developed for molten-salt power tower solar power plants. The cost model was developed by the National Renewable Energy Laboratory (NREL), using data from several prior studies, including a contracted analysis from WorleyParsons Group, which is included herein as an Appendix. The WorleyParsons' analysis also estimated material composition and mass for the plant to facilitate a life cycle analysis of the molten salt power tower technology. Details of the life cycle assessment have been published elsewhere. The cost model provides a reference plant that interfaces with NREL's System Advisor Model or SAM. The referencemore » plant assumes a nominal 100-MWe (net) power tower running with a nitrate salt heat transfer fluid (HTF). Thermal energy storage is provided by direct storage of the HTF in a two-tank system. The design assumes dry-cooling. The model includes a spreadsheet that interfaces with SAM via the Excel Exchange option in SAM. The spreadsheet allows users to estimate the costs of different-size plants and to take into account changes in commodity prices. This report and the accompanying Excel spreadsheet can be downloaded at https://sam.nrel.gov/cost.« less

  9. The Growth-Suppressive Function of the Polycomb Group Protein Polyhomeotic Is Mediated by Polymerization of Its Sterile Alpha Motif (SAM) Domain*

    PubMed Central

    Robinson, Angela K.; Leal, Belinda Z.; Chadwell, Linda V.; Wang, Renjing; Ilangovan, Udayar; Kaur, Yogeet; Junco, Sarah E.; Schirf, Virgil; Osmulski, Pawel A.; Gaczynska, Maria; Hinck, Andrew P.; Demeler, Borries; McEwen, Donald G.; Kim, Chongwoo A.

    2012-01-01

    Polyhomeotic (Ph), a member of the Polycomb Group (PcG), is a gene silencer critical for proper development. We present a previously unrecognized way of controlling Ph function through modulation of its sterile alpha motif (SAM) polymerization leading to the identification of a novel target for tuning the activities of proteins. SAM domain containing proteins have been shown to require SAM polymerization for proper function. However, the role of the Ph SAM polymer in PcG-mediated gene silencing was uncertain. Here, we first show that Ph SAM polymerization is indeed required for its gene silencing function. Interestingly, the unstructured linker sequence N-terminal to Ph SAM can shorten the length of polymers compared with when Ph SAM is individually isolated. Substituting the native linker with a random, unstructured sequence (RLink) can still limit polymerization, but not as well as the native linker. Consequently, the increased polymeric Ph RLink exhibits better gene silencing ability. In the Drosophila wing disc, Ph RLink expression suppresses growth compared with no effect for wild-type Ph, and opposite to the overgrowth phenotype observed for polymer-deficient Ph mutants. These data provide the first demonstration that the inherent activity of a protein containing a polymeric SAM can be enhanced by increasing SAM polymerization. Because the SAM linker had not been previously considered important for the function of SAM-containing proteins, our finding opens numerous opportunities to manipulate linker sequences of hundreds of polymeric SAM proteins to regulate a diverse array of intracellular functions. PMID:22275371

  10. Roles of Salmonella typhimurium umuDC and samAB in UV mutagenesis and UV sensitivity.

    PubMed Central

    Nohmi, T; Yamada, M; Watanabe, M; Murayama, S Y; Sofuni, T

    1992-01-01

    Expression of the umuDC operon is required for UV mutagenesis and most chemical mutagenesis in Escherichia coli. The closely related species Salmonella typhimurium has two sets of umuDC-like operons; the samAB operon is located in a 60-MDa cryptic plasmid, while the S. typhimurium umuDC (umuDCST) operon resides in a chromosome. The roles of these two umuDC-like operons in UV mutagenesis and UV sensitivity of S. typhimurium were investigated. A pBR322-derived plasmid carrying the samAB operon more efficiently restored UV mutability to a umuD44 strain and a umuC122::Tn5 strain of E. coli than a plasmid carrying the umuDCST operon did. When the umuDCST operon was specifically deleted from the chromosome of S. typhimurium TA2659, the resulting strain was not UV mutable and was more sensitive to the killing effect of UV irradiation than the parent strain was. Curing of the 60-MDa cryptic plasmid carrying the samAB operon did not influence the UV mutability of strain TA2659 but did increase its resistance to UV killing. A pSC101-derived plasmid carrying the samAB operon did not restore UV mutability to a umuD44 strain of E. coli, whereas pBR322- or pBluescript-derived plasmids carrying the samAB operon efficiently did restore UV mutability. We concluded that the umuDCST operon plays a major role in UV mutagenesis in S. typhimurium and that the ability of the samAB operon to promote UV mutagenesis is strongly affected by gene dosage. Possible reasons for the poor ability of samAB to promote UV mutagenesis when it is present on low-copy-number plasmids are discussed. Images PMID:1400244

  11. Tandem SAM Domain Structure of Human Caskin1: A Presynaptic, Self-Assembling Scaffold for CASK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stafford, Ryan L.; Hinde, Elizabeth; Knight, Mary Jane

    2012-02-07

    The synaptic scaffolding proteins CASK and Caskin1 are part of the fibrous mesh of proteins that organize the active zones of neural synapses. CASK binds to a region of Caskin1 called the CASK interaction domain (CID). Adjacent to the CID, Caskin1 contains two tandem sterile a motif (SAM) domains. Many SAM domains form polymers so they are good candidates for forming the fibrous structures seen in the active zone. We show here that the SAM domains of Caskin1 form a new type of SAM helical polymer. The Caskin1 polymer interface exhibits a remarkable segregation of charged residues, resulting in amore » high sensitivity to ionic strength in vitro. The Caskin1 polymers can be decorated with CASK proteins, illustrating how these proteins may work together to organize the cytomatrix in active zones.« less

  12. Optimization of pentacene double floating gate memories based on charge injection regulated by SAM functionalization

    NASA Astrophysics Data System (ADS)

    Li, S.; Guérin, D.; Lenfant, S.; Lmimouni, K.

    2018-02-01

    Pentacene based double nano-floating gate memories (NFGM) by using gold nanoparticles (Au NPs) and reduced graphene oxide (rGO) sheets as charge trapping layers are prepared and demonstrated. Particularly, the NFGM chemically treated by 2,3,4,5,6-pentafluorobenzenethiol (PFBT) self-assembled monolayers (SAM) exhibits excellent memory performances, including high mobility of 0.23 cm2V-1s-1, the large memory window of 51 V, and the stable retention property more than 108 s. Comparing the performances of NFGM without treating with PFBT SAM, the improving performances of the memory devices by SAM modification are explained by the increase of charge injection, which could be further investigated by XPS and UPS. In particular, the results highlight the utility of SAM modulations and controlling of charge transport in the development of organic transistor memories.

  13. Bringing a Chemical Laboratory Named Sam to Mars on the 2011 Curiosity Rover

    NASA Technical Reports Server (NTRS)

    Mahaffy, P. R.; Bleacher, L.; Jones, A.; Conrad, P. G.; Cabane, M.; Webster, C. R.; Atreya, S. A.; Manning, H.

    2010-01-01

    An important goal of upcoming missions to Mars is to understand if life could have developed there. The task of the Sample Analysis at Mars (SAM) suite of instruments [1] and the other Curiosity investigations [2] is to move us steadily toward that goal with an assessment of the habitability of our neighboring planet through a series of chemical and geological measurements. SAM is designed to search for organic compounds and inorganic volatiles and measure isotope ratios. Other instruments on Curiosity will provide elemental analysis and identify minerals. SAM will analyze both atmospheric samples and gases evolved from powdered rocks that may have formed billions of years ago with Curiosity providing access to interesting sites scouted by orbiting cameras and spectrometers.

  14. A magnesium-induced triplex pre-organizes the SAM-II riboswitch

    PubMed Central

    Roy, Susmita; Lammert, Heiko; Dayie, T. Kwaku; Sanbonmatsu, Karissa Y.

    2017-01-01

    Our 13C- and 1H-chemical exchange saturation transfer (CEST) experiments previously revealed a dynamic exchange between partially closed and open conformations of the SAM-II riboswitch in the absence of ligand. Here, all-atom structure-based molecular simulations, with the electrostatic effects of Manning counter-ion condensation and explicit magnesium ions are employed to calculate the folding free energy landscape of the SAM-II riboswitch. We use this analysis to predict that magnesium ions remodel the landscape, shifting the equilibrium away from the extended, partially unfolded state towards a compact, pre-organized conformation that resembles the ligand-bound state. Our CEST and SAXS experiments, at different magnesium ion concentrations, quantitatively confirm our simulation results, demonstrating that magnesium ions induce collapse and pre-organization. Agreement between theory and experiment bolsters microscopic interpretation of our simulations, which shows that triplex formation between helix P2b and loop L1 is highly sensitive to magnesium and plays a key role in pre-organization. Pre-organization of the SAM-II riboswitch allows rapid detection of ligand with high selectivity, which is important for biological function. PMID:28248966

  15. Selection and Characteristics of Fermented Salted Seafood (jeotgal)-Originated Strains with Excellent S-adenosyl-L-methionine (SAM) Production and Probiotics Efficacy.

    PubMed

    Kim, Min-Jeong; Park, Sunhyun; Lee, Ran-Sook; Lim, Sang-Dong; Kim, Hyo Jin; Lee, Myung-Ki

    2014-01-01

    This study is executed to develop probiotics which produce S-adenosyl-L-methionine (SAM), a methyl group donor of the 5-methyltetrahydrofolate methylation reaction within the animal cell. SAM is an essential substance for the synthesis, activation, and metabolism of hormones, neurotransmitters, nucleic acids, phospholipids, and cell membranes of animals. The SAM is also known as a nutritional supplement to improve brain functions of the human. In this study, the SAM-producing strains are identified in 18 types of salted fish, and then, the strains with excellent SAM productions are being identified, with 1 strain in the Enterococcus genus and 9 strains in the Bacillus genus. Strains with a large amount of SAM production include the lactic acid bacteria such as En. faecium and En. durans, En. sanguinicola, as well as various strains in the Bacil-lus genus. The SAM-overproducing strains show antibacterial activities with certain harmful microbes in addition to the weak acid resistances and strong bile resistances, indicating characteristics of probiotics. It is possible that the jeotgal-originated beneficial strains with overproducing SAM can be commercially utilized in order to manufacture SAM enriched foods.

  16. Sam68 promotes Schwann cell proliferation by enhancing the PI3K/Akt pathway and acts on regeneration after sciatic nerve crush

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Weijie, E-mail: 459586768@qq.com; Liu, Yuxi, E-mail: 924013616@qq.com; Wang, Youhua, E-mail: wyouhua1516@163.com

    Sam68 (Src-associated in mitosis of 68 kD), a KH domain RNA-binding protein, is not only important in signaling transduction cascades, but crucial in a variety of cellular processes. Sam68 is reported to be involved in the phospoinositide3-kinase (PI3K) and nuclear factor-kappa B (NF-κB) signaling pathways, and it is closely associated with cell proliferation, RNA metabolism, and tumor progression. However, we know little about the role of Sam68 during peripheral nervous system injury and regeneration. In this study, we investigated the expression of Sam68 and its biological significances in sciatic nerve crush. Interestingly, we found Sam68 had a co-localization with S100 (Schwannmore » cell marker). Moreover, after crush, Sam68 had a spatiotemporal protein expression, which was in parallel with proliferation cell nuclear antigen (PCNA). In vitro, we also observed increased expression of Sam68 during the process of TNF-α-induced Schwann cell proliferation model. Besides, flow cytometry analyses, CCK-8, and EDU were all performed with the purpose of investigating the role of Sam68 in the regulation of Schwann cell proliferation. Even more importantly, we discovered that Sam68 could enhance the phosphorylation of Akt while LY294002 (a PI3K inhibitor) obviously reversed Sam68-induced cell proliferation. Finally, we detected the variance during regeneration progress through the rat walk footprint test. In summary, all these evidences demonstrated that Sam68 might participate in Schwann cell proliferation partially via PI3K/Akt pathway and also regulate regeneration after sciatic nerve crush. -- Highlights: •The dynamic changes and location of Sam68 after sciatic nerve crush. •Sam68 promoted Schwann cell proliferation via PI3K/Akt pathway. •Sam68 modulated functional recovery after sciatic nerve crush.« less

  17. Regulation of C. elegans presynaptic differentiation and neurite branching via a novel signaling pathway initiated by SAM-10

    PubMed Central

    Zheng, Qun; Schaefer, Anneliese M.; Nonet, Michael L.

    2011-01-01

    Little is known about transcriptional control of neurite branching or presynaptic differentiation, events that occur relatively late in neuronal development. Using the Caenorhabditis elegans mechanosensory circuit as an in vivo model, we show that SAM-10, an ortholog of mammalian single-stranded DNA-binding protein (SSDP), functions cell-autonomously in the nucleus to regulate synaptic differentiation, as well as positioning of, a single neurite branch. PLM mechanosensory neurons in sam-10 mutants exhibit abnormal placement of the neurite branch point, and defective synaptogenesis, characterized by an overextended synaptic varicosity, underdeveloped synaptic morphology and disrupted colocalization of active zone and synaptic vesicles. SAM-10 functions coordinately with Lim domain-binding protein 1 (LDB-1), demonstrated by our observations that: (1) mutations in either gene show similar defects in PLM neurons; and (2) LDB-1 is required for SAM-10 nuclear localization. SAM-10 regulates PLM synaptic differentiation by suppressing transcription of prk-2, which encodes an ortholog of the mammalian Pim kinase family. PRK-2-mediated activities of SAM-10 are specifically involved in PLM synaptic differentiation, but not other sam-10 phenotypes such as neurite branching. Thus, these data reveal a novel transcriptional signaling pathway that regulates neuronal specification of neurite branching and presynaptic differentiation. PMID:21115607

  18. Regulation of C. elegans presynaptic differentiation and neurite branching via a novel signaling pathway initiated by SAM-10.

    PubMed

    Zheng, Qun; Schaefer, Anneliese M; Nonet, Michael L

    2011-01-01

    Little is known about transcriptional control of neurite branching or presynaptic differentiation, events that occur relatively late in neuronal development. Using the Caenorhabditis elegans mechanosensory circuit as an in vivo model, we show that SAM-10, an ortholog of mammalian single-stranded DNA-binding protein (SSDP), functions cell-autonomously in the nucleus to regulate synaptic differentiation, as well as positioning of, a single neurite branch. PLM mechanosensory neurons in sam-10 mutants exhibit abnormal placement of the neurite branch point, and defective synaptogenesis, characterized by an overextended synaptic varicosity, underdeveloped synaptic morphology and disrupted colocalization of active zone and synaptic vesicles. SAM-10 functions coordinately with Lim domain-binding protein 1 (LDB-1), demonstrated by our observations that: (1) mutations in either gene show similar defects in PLM neurons; and (2) LDB-1 is required for SAM-10 nuclear localization. SAM-10 regulates PLM synaptic differentiation by suppressing transcription of prk-2, which encodes an ortholog of the mammalian Pim kinase family. PRK-2-mediated activities of SAM-10 are specifically involved in PLM synaptic differentiation, but not other sam-10 phenotypes such as neurite branching. Thus, these data reveal a novel transcriptional signaling pathway that regulates neuronal specification of neurite branching and presynaptic differentiation.

  19. cljam: a library for handling DNA sequence alignment/map (SAM) with parallel processing.

    PubMed

    Takeuchi, Toshiki; Yamada, Atsuo; Aoki, Takashi; Nishimura, Kunihiro

    2016-01-01

    Next-generation sequencing can determine DNA bases and the results of sequence alignments are generally stored in files in the Sequence Alignment/Map (SAM) format and the compressed binary version (BAM) of it. SAMtools is a typical tool for dealing with files in the SAM/BAM format. SAMtools has various functions, including detection of variants, visualization of alignments, indexing, extraction of parts of the data and loci, and conversion of file formats. It is written in C and can execute fast. However, SAMtools requires an additional implementation to be used in parallel with, for example, OpenMP (Open Multi-Processing) libraries. For the accumulation of next-generation sequencing data, a simple parallelization program, which can support cloud and PC cluster environments, is required. We have developed cljam using the Clojure programming language, which simplifies parallel programming, to handle SAM/BAM data. Cljam can run in a Java runtime environment (e.g., Windows, Linux, Mac OS X) with Clojure. Cljam can process and analyze SAM/BAM files in parallel and at high speed. The execution time with cljam is almost the same as with SAMtools. The cljam code is written in Clojure and has fewer lines than other similar tools.

  20. The U6 snRNA m6A Methyltransferase METTL16 Regulates SAM Synthetase Intron Retention.

    PubMed

    Pendleton, Kathryn E; Chen, Beibei; Liu, Kuanqing; Hunter, Olga V; Xie, Yang; Tu, Benjamin P; Conrad, Nicholas K

    2017-05-18

    Maintenance of proper levels of the methyl donor S-adenosylmethionine (SAM) is critical for a wide variety of biological processes. We demonstrate that the N 6 -adenosine methyltransferase METTL16 regulates expression of human MAT2A, which encodes the SAM synthetase expressed in most cells. Upon SAM depletion by methionine starvation, cells induce MAT2A expression by enhanced splicing of a retained intron. Induction requires METTL16 and its methylation substrate, a vertebrate conserved hairpin (hp1) in the MAT2A 3' UTR. Increasing METTL16 occupancy on the MAT2A 3' UTR is sufficient to induce efficient splicing. We propose that, under SAM-limiting conditions, METTL16 occupancy on hp1 increases due to inefficient enzymatic turnover, which promotes MAT2A splicing. We further show that METTL16 is the long-unknown methyltransferase for the U6 spliceosomal small nuclear RNA (snRNA). These observations suggest that the conserved U6 snRNA methyltransferase evolved an additional function in vertebrates to regulate SAM homeostasis. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Fast and slow responses of Southern Ocean sea surface temperature to SAM in coupled climate models

    NASA Astrophysics Data System (ADS)

    Kostov, Yavor; Marshall, John; Hausmann, Ute; Armour, Kyle C.; Ferreira, David; Holland, Marika M.

    2017-03-01

    We investigate how sea surface temperatures (SSTs) around Antarctica respond to the Southern Annular Mode (SAM) on multiple timescales. To that end we examine the relationship between SAM and SST within unperturbed preindustrial control simulations of coupled general circulation models (GCMs) included in the Climate Modeling Intercomparison Project phase 5 (CMIP5). We develop a technique to extract the response of the Southern Ocean SST (55°S-70°S) to a hypothetical step increase in the SAM index. We demonstrate that in many GCMs, the expected SST step response function is nonmonotonic in time. Following a shift to a positive SAM anomaly, an initial cooling regime can transition into surface warming around Antarctica. However, there are large differences across the CMIP5 ensemble. In some models the step response function never changes sign and cooling persists, while in other GCMs the SST anomaly crosses over from negative to positive values only 3 years after a step increase in the SAM. This intermodel diversity can be related to differences in the models' climatological thermal ocean stratification in the region of seasonal sea ice around Antarctica. Exploiting this relationship, we use observational data for the time-mean meridional and vertical temperature gradients to constrain the real Southern Ocean response to SAM on fast and slow timescales.

  2. Searching for Reduced Carbon on the Surface of Mars: The SAM Combustion Experiment

    NASA Technical Reports Server (NTRS)

    Stern, J. C.; Malespin, C. A.; Mahaffy, P. R.; Webster, C. R.; Eigenbrode, J. L.; Archer, P. D., Jr.; Brunner, A. E.; Freissinet, C.; Franz, H. B.; Glavin, D. P.; hide

    2014-01-01

    The search for reduced carbon has been a major focus of past and present missions to Mars. Thermal evolved gas analysis was used by the Viking and Phoenix landers and is currently in use by the Sample Analysis at Mars (SAM) instrument suite on the Mars Science Laboratory (MSL) to characterize volatiles evolved from solid samples, including those associated with reduced organic species. SAM has the additional capability to perform a combustion experiment, in which a sample of Mars regolith is heated in the presence of oxygen and the composition of the evolved gases is measured using quadrupole mass spectrometry (QMS) and tunable laser spectrometry (TLS) [1]. Organics detection on the Martian surface has been complicated by oxidation and destruction during heating by soil oxidants [2], including oxychlorine compounds, and terrestrial organics in the SAM background contributed by one of the SAM wet chemistry reagents MTBSTFA (N-Methyl-N-tertbutyldimethylsilyl- trifluoroacetamide) [3,4]. Thermal Evolved Gas Analysis (TEGA) results from Phoenix show a mid temperature CO2 release between 400 C - 680 C speculated to be carbonate, CO2 adsorbed to grains, or combustion of organics by soil oxidants [5]. Low temperature CO2 evolutions (approx. 200 C - 400 C) were also present at all three sites in Gale Crater where SAM Evolved Gas Analysis (EGA) was performed, and potential sources include combustion of terrestrial organics from SAM, as well as combustion and/or decarboxylation either indigenous martian or exogenous organic carbon [4,6]. By performing an experiment to intentionally combust all reduced materials in the sample, we hope to compare the bulk abundance of CO2 and other oxidized species evolved by combustion to that evolved during an EGA experiment to estimate how much CO2 could be contributed by reduced carbon sources. In addition, C, O, and H isotopic compositions of CO2 and H2O measured by TLS can contribute information regarding the potential sources of these

  3. CHF Enhancement by Vessel Coating for External Reactor Vessel Cooling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan-Bill Cheung; Joy L. Rempe

    2004-06-01

    In-vessel retention (IVR) is a key severe accident management (SAM) strategy that has been adopted by some operating nuclear power plants and advanced light water reactors (ALWRs). One viable means for IVR is the method of external reactor vessel cooling (ERVC) by flooding of the reactor cavity during a severe accident. As part of a joint Korean – United States International Nuclear Energy Research Initiative (K-INERI), an experimental study has been conducted to investigate the viability of using an appropriate vessel coating to enhance the critical heat flux (CHF) limits during ERVC. Toward this end, transient quenching and steady-state boilingmore » experiments were performed in the SBLB (Subscale Boundary Layer Boiling) facility at Penn State using test vessels with micro-porous aluminum coatings. Local boiling curves and CHF limits were obtained in these experiments. When compared to the corresponding data without coatings, substantial enhancement in the local CHF limits for the case with surface coatings was observed. Results of the steady state boiling experiments showed that micro-porous aluminum coatings were very durable. Even after many cycles of steady state boiling, the vessel coatings remained rather intact, with no apparent changes in color or structure. Moreover, the heat transfer performance of the coatings was found to be highly desirable with an appreciable CHF enhancement in all locations on the vessel outer surface but with very little effect of aging.« less

  4. SAM: speech-aware applications in medicine to support structured data entry.

    PubMed Central

    Wormek, A. K.; Ingenerf, J.; Orthner, H. F.

    1997-01-01

    In the last two years, improvement in speech recognition technology has directed the medical community's interest to porting and using such innovations in clinical systems. The acceptance of speech recognition systems in clinical domains increases with recognition speed, large medical vocabulary, high accuracy, continuous speech recognition, and speaker independence. Although some commercial speech engines approach these requirements, the greatest benefit can be achieved in adapting a speech recognizer to a specific medical application. The goals of our work are first, to develop a speech-aware core component which is able to establish connections to speech recognition engines of different vendors. This is realized in SAM. Second, with applications based on SAM we want to support the physician in his/her routine clinical care activities. Within the STAMP project (STAndardized Multimedia report generator in Pathology), we extend SAM by combining a structured data entry approach with speech recognition technology. Another speech-aware application in the field of Diabetes care is connected to a terminology server. The server delivers a controlled vocabulary which can be used for speech recognition. PMID:9357730

  5. Background of SAM atom-fraction profiles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ernst, Frank

    Atom-fraction profiles acquired by SAM (scanning Auger microprobe) have important applications, e.g. in the context of alloy surface engineering by infusion of carbon or nitrogen through the alloy surface. However, such profiles often exhibit an artifact in form of a background with a level that anti-correlates with the local atom fraction. This article presents a theory explaining this phenomenon as a consequence of the way in which random noise in the spectrum propagates into the discretized differentiated spectrum that is used for quantification. The resulting model of “energy channel statistics” leads to a useful semi-quantitative background reduction procedure, which ismore » validated by applying it to simulated data. Subsequently, the procedure is applied to an example of experimental SAM data. The analysis leads to conclusions regarding optimum experimental acquisition conditions. The proposed method of background reduction is based on general principles and should be useful for a broad variety of applications. - Highlights: • Atom-fraction–depth profiles of carbon measured by scanning Auger microprobe • Strong background, varies with local carbon concentration. • Needs correction e.g. for quantitative comparison with simulations • Quantitative theory explains background. • Provides background removal strategy and practical advice for acquisition.« less

  6. SAM68 is a physiological regulator of SMN2 splicing in spinal muscular atrophy

    PubMed Central

    Pagliarini, Vittoria; Pelosi, Laura; Bustamante, Maria Blaire; Nobili, Annalisa; Berardinelli, Maria Grazia; D’Amelio, Marcello; Musarò, Antonio

    2015-01-01

    Spinal muscular atrophy (SMA) is a neurodegenerative disease caused by loss of motor neurons in patients with null mutations in the SMN1 gene. The almost identical SMN2 gene is unable to compensate for this deficiency because of the skipping of exon 7 during pre–messenger RNA (mRNA) processing. Although several splicing factors can modulate SMN2 splicing in vitro, the physiological regulators of this disease-causing event are unknown. We found that knockout of the splicing factor SAM68 partially rescued body weight and viability of SMAΔ7 mice. Ablation of SAM68 function promoted SMN2 splicing and expression in SMAΔ7 mice, correlating with amelioration of SMA-related defects in motor neurons and skeletal muscles. Mechanistically, SAM68 binds to SMN2 pre-mRNA, favoring recruitment of the splicing repressor hnRNP A1 and interfering with that of U2AF65 at the 3′ splice site of exon 7. These findings identify SAM68 as the first physiological regulator of SMN2 splicing in an SMA mouse model. PMID:26438828

  7. Smart Anesthesia Manager™ (SAM)--a real-time decision support system for anesthesia care during surgery.

    PubMed

    Nair, Bala G; Newman, Shu-Fang; Peterson, Gene N; Schwid, Howard A

    2013-01-01

    Anesthesia information management systems (AIMS) are being increasingly used in the operating room to document anesthesia care. We developed a system, Smart Anesthesia Manager™ (SAM) that works in conjunction with an AIMS to provide clinical and billing decision support. SAM interrogates AIMS database in near real time, detects issues related to clinical care, billing and compliance, and material waste. Issues and the steps for their resolution are brought to the attention of the anesthesia provider in real time through "pop-up" messages overlaid on top of AIMS screens or text pages. SAM improved compliance to antibiotic initial dose and redose to 99.3 ± 0.7% and 83.9 ± 3.4% from 88.5 ± 1.4% and 62.5 ± 1.6%, respectively. Beta-blocker protocol compliance increased to 94.6 ± 3.5% from 60.5 ± 8.6%. Inadvertent gaps (>15 min) in blood pressure monitoring were reduced to 34 ± 30 min/1000 cases from 192 ± 58 min/1000 cases. Additional billing charge capture of invasive lines procedures worth $144,732 per year and 1,200 compliant records were achieved with SAM. SAM was also able to reduce wastage of inhalation anesthetic agents worth $120,168 per year.

  8. The Statin-Associated Muscle Symptom Clinical Index (SAMS-CI): Revision for Clinical Use, Content Validation, and Inter-rater Reliability.

    PubMed

    Rosenson, Robert S; Miller, Kate; Bayliss, Martha; Sanchez, Robert J; Baccara-Dinet, Marie T; Chibedi-De-Roche, Daniela; Taylor, Beth; Khan, Irfan; Manvelian, Garen; White, Michelle; Jacobson, Terry A

    2017-04-01

    The Statin-Associated Muscle Symptom Clinical Index (SAMS-CI) is a method for assessing the likelihood that a patient's muscle symptoms (e.g., myalgia or myopathy) were caused or worsened by statin use. The objectives of this study were to prepare the SAMS-CI for clinical use, estimate its inter-rater reliability, and collect feedback from physicians on its practical application. For content validity, we conducted structured in-depth interviews with its original authors as well as with a panel of independent physicians. Estimation of inter-rater reliability involved an analysis of 30 written clinical cases which were scored by a sample of physicians. A separate group of physicians provided feedback on the clinical use of the SAMS-CI and its potential utility in practice. Qualitative interviews with providers supported the content validity of the SAMS-CI. Feedback on the clinical use of the SAMS-CI included several perceived benefits (such as brevity, clear wording, and simple scoring process) and some possible concerns (workflow issues and applicability in primary care). The inter-rater reliability of the SAMS-CI was estimated to be 0.77 (confidence interval 0.66-0.85), indicating high concordance between raters. With additional provider feedback, a revised SAMS-CI instrument was created suitable for further testing, both in the clinical setting and in prospective validation studies. With standardized questions, vetted language, easily interpreted scores, and demonstrated reliability, the SAMS aims to estimate the likelihood that a patient's muscle symptoms were attributable to statins. The SAMS-CI may support better detection of statin-associated muscle symptoms in clinical practice, optimize treatment for patients experiencing muscle symptoms, and provide a useful tool for further clinical research.

  9. The transcription factor FBI-1 inhibits SAM68-mediated BCL-X alternative splicing and apoptosis.

    PubMed

    Bielli, Pamela; Busà, Roberta; Di Stasi, Savino M; Munoz, Manuel J; Botti, Flavia; Kornblihtt, Alberto R; Sette, Claudio

    2014-04-01

    Alternative splicing (AS) is tightly coupled to transcription for the majority of human genes. However, how these two processes are linked is not well understood. Here, we unveil a direct role for the transcription factor FBI-1 in the regulation of AS. FBI-1 interacts with the splicing factor SAM68 and reduces its binding to BCL-X mRNA. This, in turn, results in the selection of the proximal 5' splice site in BCL-X exon 2, thereby favoring the anti-apoptotic BCL-XL variant and counteracting SAM68-mediated apoptosis. Conversely, depletion of FBI-1, or expression of a SAM68 mutant lacking the FBI-1 binding region, restores the ability of SAM68 to induce BCL-XS splicing and apoptosis. FBI-1's role in splicing requires the activity of histone deacetylases, whose pharmacological inhibition recapitulates the effects of FBI-1 knockdown. Our study reveals an unexpected function for FBI-1 in splicing modulation with a direct impact on cell survival.

  10. The transcription factor FBI-1 inhibits SAM68-mediated BCL-X alternative splicing and apoptosis

    PubMed Central

    Bielli, Pamela; Busà, Roberta; Di Stasi, Savino M; Munoz, Manuel J; Botti, Flavia; Kornblihtt, Alberto R; Sette, Claudio

    2014-01-01

    Alternative splicing (AS) is tightly coupled to transcription for the majority of human genes. However, how these two processes are linked is not well understood. Here, we unveil a direct role for the transcription factor FBI-1 in the regulation of AS. FBI-1 interacts with the splicing factor SAM68 and reduces its binding to BCL-X mRNA. This, in turn, results in the selection of the proximal 5′ splice site in BCL-X exon 2, thereby favoring the anti-apoptotic BCL-XL variant and counteracting SAM68-mediated apoptosis. Conversely, depletion of FBI-1, or expression of a SAM68 mutant lacking the FBI-1 binding region, restores the ability of SAM68 to induce BCL-XS splicing and apoptosis. FBI-1's role in splicing requires the activity of histone deacetylases, whose pharmacological inhibition recapitulates the effects of FBI-1 knockdown. Our study reveals an unexpected function for FBI-1 in splicing modulation with a direct impact on cell survival. PMID:24514149

  11. Standardized added metabolic activity (SAM) IN ¹⁸F-FDG PET assessment of treatment response in colorectal liver metastases.

    PubMed

    Mertens, Jeroen; De Bruyne, S; Van Damme, N; Smeets, P; Ceelen, W; Troisi, R; Laurent, S; Geboes, K; Peeters, M; Goethals, I; Van de Wiele, C

    2013-08-01

    Standardized added metabolic activity (SAM) is a PET parameter for assessing the total metabolic load of malignant processes, avoiding partial volume effects and lesion segmentation. The potential role of this parameter in the assessment of response to chemotherapy and bevacizumab was tested in patients with metastatic colorectal cancer with potentially resectable liver metastases (mCRC). (18)F-FDG PET/CT was performed in 18 mCRC patients with liver metastases before treatment and after five cycles of FOLFOX/FOLFIRI and bevacizumab. Of the 18 patients, 16 subsequently underwent resection of liver metastases. Baseline and follow-up SUVmax, and SAM as well as reduction in SUVmax (∆SUVmax) and SAM (∆SAM) of all liver metastases were correlated with morphological response, and progression-free and overall survival (PFS and OS). A significant reduction in metabolic activity of the liver metastases was seen after chemotherapy with a median ∆SUVmax of 25.3% and ∆SAM of 94.5% (p = 0.033 and 0.003). Median baseline SUVmax and SAM values were significantly different between morphological responders and nonresponders (3.8 vs. 7.2, p = 0.021; and 34 vs. 211, p = 0.002, respectively), but neither baseline PET parameters nor morphological response was correlated with PFS or OS. Follow-up SUVmax and SAM as well as ∆SAM were found to be prognostic factors. The median PFS and OS in the patient group with a high follow-up SUVmax were 10.4 months and 32 months, compared to a median PFS of 14.7 months and a median OS which had not been reached in the group with a low follow-up SUVmax (p = 0.01 and 0.003, respectively). The patient group with a high follow-up SAM and a low ∆SAM had a median PFS and OS of 9.4 months and 32 months, whereas the other group had a median PFS of 14.7 months and a median OS which had not been reached (p = 0.002 for both PFS and OS). (18)F-FDG PET imaging is a useful tool to assess treatment response and predict clinical outcome in patients with m

  12. Raman mapping and in situ SERS spectroelectrochemical studies of 6-mercaptopurine SAMs on the gold electrode.

    PubMed

    Yang, Haifeng; Liu, Yanli; Liu, Zhimin; Yang, Yu; Jiang, Jianhui; Zhang, Zongrang; Shen, Guoli; Yu, Ruqin

    2005-02-24

    The self-assembled monolayers (SAMs) of 6-mercaptopurine (6MP) were formed at the roughened polycrystalline gold surfaces in acid and alkaline media. The time-dependent Raman mapping spectral analysis in conjunction with the quantum calculations for the vibrational modes using ab initio BLYP/6-31G method suggested that both of the resulted 6MP SAMs adopted the same adsorption mode through the S atom of pyrimidine moiety and the N7 atom of the imidazole moiety anchoring the gold surface in a vertical way. The in situ surface-enhanced Raman scattering spectroelectrochemical experiment was conducted to examine the stability of the SAMs at various bias potentials. It was found that the detaching process of the 6MP SAMs from the surface involved one electron reduction as the voltage was applied at ca. 0.7 V vs a standard calomel electrode.

  13. Orientation of 6-mercaptopurine SAMs at the silver electrode as studied by Raman mapping and in situ SERS.

    PubMed

    Chu, Hui; Yang, Haifeng; Huan, Shuangyan; Shen, Guoli; Yu, Ruqin

    2006-03-23

    Self-assembled monolayers (SAMs) of 6-mercaptopurine (6MP) on a silver electrode in acid and alkaline media were investigated by a combination protocol of the SERS technique with Raman mapping, and it was found that the adsorption mode of 6MP SAMs changed with the pH value of the environment. Quantum calculations for the vibrational mode were performed by the BLYP/6-31G method. 6MP was adsorbed on the silver electrode with a tilted orientation via S, N1, and N7 atoms in acid medium, while the SAMs adopted head-on adsorption modes with the S atom and the N1 atom anchoring the silver surface in alkaline medium. However, 6MP SAMs turned to the same upright orientation on the electrode through the S and N7 atoms when either acid or basic solution was removed. Stability of 6MP SAMs was observed by in situ SERS spectroelectrochemical measurements. The results reveal that the desorption potentials of 6MP SAMs formed under acid and alkaline conditions from the Ag electrode were at ca. -1.3 V and -1.6 V vs SCE, respectively.

  14. The SAM, not the electrodes, dominates charge transport in metal-monolayer//Ga2O3/gallium-indium eutectic junctions.

    PubMed

    Reus, William F; Thuo, Martin M; Shapiro, Nathan D; Nijhuis, Christian A; Whitesides, George M

    2012-06-26

    The liquid-metal eutectic of gallium and indium (EGaIn) is a useful electrode for making soft electrical contacts to self-assembled monolayers (SAMs). This electrode has, however, one feature whose effect on charge transport has been incompletely understood: a thin (approximately 0.7 nm) film-consisting primarily of Ga(2)O(3)-that covers its surface when in contact with air. SAMs that rectify current have been measured using this electrode in Ag(TS)-SAM//Ga(2)O(3)/EGaIn (where Ag(TS) = template-stripped Ag surface) junctions. This paper organizes evidence, both published and unpublished, showing that the molecular structure of the SAM (specifically, the presence of an accessible molecular orbital asymmetrically located within the SAM), not the difference between the electrodes or the characteristics of the Ga(2)O(3) film, causes the observed rectification. By examining and ruling out potential mechanisms of rectification that rely either on the Ga(2)O(3) film or on the asymmetry of the electrodes, this paper demonstrates that the structure of the SAM dominates charge transport through Ag(TS)-SAM//Ga(2)O(3)/EGaIn junctions, and that the electrical characteristics of the Ga(2)O(3) film have a negligible effect on these measurements.

  15. CE-SAM: a conversational interface for ISR mission support

    NASA Astrophysics Data System (ADS)

    Pizzocaro, Diego; Parizas, Christos; Preece, Alun; Braines, Dave; Mott, David; Bakdash, Jonathan Z.

    2013-05-01

    There is considerable interest in natural language conversational interfaces. These allow for complex user interactions with systems, such as fulfilling information requirements in dynamic environments, without requiring extensive training or a technical background (e.g. in formal query languages or schemas). To leverage the advantages of conversational interactions we propose CE-SAM (Controlled English Sensor Assignment to Missions), a system that guides users through refining and satisfying their information needs in the context of Intelligence, Surveillance, and Reconnaissance (ISR) operations. The rapidly-increasing availability of sensing assets and other information sources poses substantial challenges to effective ISR resource management. In a coalition context, the problem is even more complex, because assets may be "owned" by different partners. We show how CE-SAM allows a user to refine and relate their ISR information needs to pre-existing concepts in an ISR knowledge base, via conversational interaction implemented on a tablet device. The knowledge base is represented using Controlled English (CE) - a form of controlled natural language that is both human-readable and machine processable (i.e. can be used to implement automated reasoning). Users interact with the CE-SAM conversational interface using natural language, which the system converts to CE for feeding-back to the user for confirmation (e.g. to reduce misunderstanding). We show that this process not only allows users to access the assets that can support their mission needs, but also assists them in extending the CE knowledge base with new concepts.

  16. Characterization of the Candida albicans Amino Acid Permease Family: Gap2 Is the Only General Amino Acid Permease and Gap4 Is an S-Adenosylmethionine (SAM) Transporter Required for SAM-Induced Morphogenesis.

    PubMed

    Kraidlova, Lucie; Schrevens, Sanne; Tournu, Hélène; Van Zeebroeck, Griet; Sychrova, Hana; Van Dijck, Patrick

    2016-01-01

    Amino acids are key sources of nitrogen for growth of Candida albicans . In order to detect and take up these amino acids from a broad range of different and changing nitrogen sources inside the host, this fungus must be able to adapt via its expression of genes for amino acid uptake and further metabolism. We analyzed six C. albicans putative general amino acid permeases based on their homology to the Saccharomyces cerevisiae Gap1 general amino acid permease. We generated single- and multiple-deletion strains and found that, based on growth assays and transcriptional or posttranscriptional regulation, Gap2 is the functional orthologue to Sc Gap1, with broad substrate specificity. Expression analysis showed that expression of all GAP genes is under control of the Csy1 amino acid sensor, which is different from the situation in S. cerevisiae , where the expression of ScGAP1 is not regulated by Ssy1. We show that Gap4 is the functional orthologue of Sc Sam3, the only S -adenosylmethionine (SAM) transporter in S. cerevisiae , and we report that Gap4 is required for SAM-induced morphogenesis. IMPORTANCE Candida albicans is a commensal organism that can thrive in many niches in its human host. The environmental conditions at these different niches differ quite a bit, and this fungus must be able to sense these changes and adapt its metabolism to them. Apart from glucose and other sugars, the uptake of amino acids is very important. This is underscored by the fact that the C. albicans genome encodes 6 orthologues of the Saccharomyces. cerevisiae general amino acid permease Gap1 and many other amino acid transporters. In this work, we characterize these six permeases and we show that C. albicans Gap2 is the functional orthologue of Sc Gap1 and that C. albicans Gap4 is an orthologue of Sc Sam3, an S -adenosylmethionine (SAM) transporter. Furthermore, we show that Gap4 is required for SAM-induced morphogenesis, an important virulence factor of C. albicans .

  17. Evidence for S-adenosyl-L-methionine (SAM-e) for the treatment of major depressive disorder.

    PubMed

    Papakostas, George I

    2009-01-01

    Despite the increasingly large array of antidepressants available to treat major depressive disorder, patients continue to experience relatively modest response and remission rates. In addition, patients may experience adverse side effects from pharmacotherapy that not only hinder treatment compliance and adherence but, in some cases, may also contribute to increased disability, patient suffering, morbidity, and mortality. In order to enhance treatment efficacy and tolerability, patients and clinicians have become increasingly interested in nonpharmaceutical supplements for treating depression. One of the best-studied of these supplements is S-adenosyl-L-methionine (SAM-e), a naturally occurring molecule present in all living cells and a major methyl group donor in the human body. Controlled trials have found SAM-e to be more efficacious than placebo and equal in efficacy to the tricyclic antidepressants for treating major depressive disorder (MDD) when administered parenterally (either intravenously or intramuscularly). Less evidence supports the use of oral SAM-e, although some trials have demonstrated its efficacy as well. In addition, there is a paucity of evidence examining whether oral forms of SAM-e can be safe, well tolerated, and efficacious when used as adjunctive treatment for antidepressant nonresponders with MDD. Although preliminary data suggest SAM-e may be useful as an adjunctive therapy to antidepressants, controlled studies are needed to confirm or refute these preliminary findings. (c) Copyright 2009 Physicians Postgraduate Press, Inc.

  18. Effect of functional end groups of silane self assembled monolayer surfaces on apatite formation, fibronectin adsorption and osteoblast cell function

    PubMed Central

    Toworfe, G.K.; Bhattacharyya, S.; Composto, R.J.; Adams, C.S.; Shapiro, I.M.; Ducheyne, P.

    2008-01-01

    Bioactive glass (BG) can directly bond to living bone without fibrous tissue encapsulation. Key mechanistic steps of BG’s activity are attributed to calcium phosphate formation, surface hydroxylation and fibronectin (FN) adsorption. In the present study, self-assembled monolayers (SAMs) of alkanesilanes with different surface chemistry (OH, NH2, and COOH) were used as a model system to mimic BG’s surface activity. Calcium phosphate (Ca-P) was formed on SAMs by immersion in a solution which simulates the electrolyte content of physiological fluids. FN adsorption kinetics and monolayer coverage was determined on SAMs with or without Ca-P coating. The surface roughness was also examined on these substrates before and after FN adsorption. The effects of FN-adsorbed, Ca-P coated SAMs on the function of MC3T3-E1 were evaluated by cell growth, expression of alkaline phosphatase activity, and actin cytoskeleton formation. We demonstrate that, although the FN monolayer coverage and the rms roughness are similar on −OH and −COOH terminated SAMs with or without Ca-P coating, higher levels of ALP activity, more actin cytoskeleton formation and more cell growth are obtained on −OH and −COOH terminated SAMs with Ca-P coating. In addition, although the FN monolayer coverage is higher on Ca-P coated −NH2 terminated SAMs and SiOx surfaces, higher levels of ALP activity and more cell growth are obtained on Ca-P coated −OH and −COOH terminated SAMs. Thus with same Ca-P coatings, different surface functional groups have different effects on the function of osteoblastic cells. These findings represent new insights into the mechanism of bioactivity of BG and, thereby, may lead to designing superior constructs for bone grafting. PMID:19012271

  19. Parabolic Trough Collector Cost Update for the System Advisor Model (SAM)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurup, Parthiv; Turchi, Craig S.

    2015-11-01

    This report updates the baseline cost for parabolic trough solar fields in the United States within NREL's System Advisor Model (SAM). SAM, available at no cost at https://sam.nrel.gov/, is a performance and financial model designed to facilitate decision making for people involved in the renewable energy industry. SAM is the primary tool used by NREL and the U.S. Department of Energy (DOE) for estimating the performance and cost of concentrating solar power (CSP) technologies and projects. The study performed a bottom-up build and cost estimate for two state-of-the-art parabolic trough designs -- the SkyTrough and the Ultimate Trough. The SkyTroughmore » analysis estimated the potential installed cost for a solar field of 1500 SCAs as $170/m 2 +/- $6/m 2. The investigation found that SkyTrough installed costs were sensitive to factors such as raw aluminum alloy cost and production volume. For example, in the case of the SkyTrough, the installed cost would rise to nearly $210/m 2 if the aluminum alloy cost was $1.70/lb instead of $1.03/lb. Accordingly, one must be aware of fluctuations in the relevant commodities markets to track system cost over time. The estimated installed cost for the Ultimate Trough was only slightly higher at $178/m 2, which includes an assembly facility of $11.6 million amortized over the required production volume. Considering the size and overall cost of a 700 SCA Ultimate Trough solar field, two parallel production lines in a fully covered assembly facility, each with the specific torque box, module and mirror jigs, would be justified for a full CSP plant.« less

  20. Glial cell adhesion and protein adsorption on SAM coated semiconductor and glass surfaces of a microfluidic structure

    NASA Astrophysics Data System (ADS)

    Sasaki, Darryl Y.; Cox, Jimmy D.; Follstaedt, Susan C.; Curry, Mark S.; Skirboll, Steven K.; Gourley, Paul L.

    2001-05-01

    The development of microsystems that merge biological materials with microfabricated structures is highly dependent on the successful interfacial interactions between these innately incompatible materials. Surface passivation of semiconductor and glass surfaces with thin organic films can attenuate the adhesion of proteins and cells that lead to biofilm formation and biofouling of fluidic structures. We have examined the adhesion of glial cells and serum albumin proteins to microfabricated glass and semiconductor surfaces coated with self-assembled monolayers of octadecyltrimethoxysilane and N-(triethoxysilylpropyl)-O- polyethylene oxide urethane, to evaluate the biocompatibility and surface passivation those coatings provide.

  1. Generation of induced pluripotent stem cells (iPSCs) stably expressing CRISPR-based synergistic activation mediator (SAM).

    PubMed

    Xiong, Kai; Zhou, Yan; Hyttel, Poul; Bolund, Lars; Freude, Kristine Karla; Luo, Yonglun

    2016-11-01

    Human fibroblasts were engineered to express the CRISPR-based synergistic activation mediator (SAM) complex: dCas9-VP64 and MS2-P65-HSF1. Two induced pluripotent stem cells (iPSCs) clones expressing SAM were established by transducing these fibroblasts with lentivirus expressing OCT4, SOX2, KLF4 and C-MYC. We have validated that the reprogramming cassette is silenced in the SAM iPSC clones. Expression of pluripotency genes (OCT4, SOX2, LIN28A, NANOG, GDF3, SSEA4, and TRA-1-60), differentiation potential to all three germ layers, and normal karyotypes are validated. These SAM-iPSCs provide a novel, useful tool to investigate genetic regulation of stem cell proliferation and differentiation through CRISPR-mediated activation of endogenous genes. Copyright © 2016 Michael Boutros, German Cancer Research Center, Heidelberg, Germany. Published by Elsevier B.V. All rights reserved.

  2. Anisotropic In Situ-Coated AuNPs on Screen-Printed Carbon Surface for Enhanced Prostate-Specific Antigen Impedimetric Aptasensor

    NASA Astrophysics Data System (ADS)

    Do, Tram T. N.; Van Phi, Toan; Nguy, Tin Phan; Wagner, Patrick; Eersels, Kasper; Vestergaard, Mun'delanji C.; Truong, Lien T. N.

    2017-06-01

    An impedimetric aptasensor has been used to study the effect of charge transfer on the binding of prostate-specific antigen (PSA) to its aptamer. Full understanding of this mechanism will be beneficial to further improve its sensitivity for PSA detection in human semen at physiologically relevant concentrations. Bare gold electrodes (SPAuEs) and gold nanoparticles (AuNPs)-coated screen-printed carbon ink electrodes (AuNPs/SPCEs) were coated with aptamer solution at various concentrations and the sensor response to increasing PSA concentration in buffer solution examined. AuNPs were deposited onto carbon electrodes in 10 cycles. AuNPs/SPCEs were then coated with a self-assembled monolayer (SAM) of 16-mercaptohexadecanoic acid prior to aptamer immobilization at dose of 5 μg mL-1. The results indicate that anisotropic AuNPs/SPCEs outperform bare gold electrodes in terms of decreased amount of aptamer bunches as well as the number of intermediate PSA-aptamer complexes formed on the electrode surface. The key finding is that the fabricated aptasensor is sensitive enough [limit of detection (LoD) 1.95 ng mL-1] for early diagnosis of prostate cancer and displays linear response in the physiologically relevant concentration range (0 ng mL-1 to 10 ng mL-1), as shown by the calibration curve of the relative change in electron transfer resistance (Δ R CT) versus PSA concentration when aptamer/SAM/AuNPs/SPCEs were exposed to buffer containing PSA at different concentrations.

  3. The senescence-accelerated mouse prone-8 (SAM-P8) oxidative stress is associated with upregulation of renal NADPH oxidase system.

    PubMed

    Baltanás, Ana; Solesio, Maria E; Zalba, Guillermo; Galindo, María F; Fortuño, Ana; Jordán, Joaquín

    2013-12-01

    Herein, we investigate whether the NADPH oxidase might be playing a key role in the degree of oxidative stress in the senescence-accelerated mouse prone-8 (SAM-P8). To this end, the activity and expression of the NADPH oxidase, the ratio of glutathione and glutathione disulfides (GSH/GSSG), and the levels of malonyl dialdehyde (MDA) and nitrotyrosine (NT) were determined in renal tissue from SAM-P8 mice at the age of 1 and 6 months. The senescence-accelerated-resistant mouse (SAM-R1) was used as control. At the age of 1 month, NADPH oxidase activity and Nox2 protein expression were higher in SAM-P8 than in SAM-R1 mice. However, we found no differences in the GSH/GSSG ratio, MDA, NT, and Nox4 levels between both groups of animals. At the age of 6 months, SAM-R1 mice in comparison to SAM-P8 mice showed an increase in NADPH oxidase activity, which is associated with higher levels of NT and increased Nox4 and Nox2 expression levels. Furthermore, we found oxidative stress hallmarks including depletion in GSH/GSSG ratio and increase in MDA levels in the kidney of SAM-P8 mice. Finally, NADPH oxidase activity positively correlated with Nox2 expression in all the animals (r = 0.382, P < 0.05). Taken together, our data allow us to suggest that an increase in NADPH oxidase activity might be an early hallmark to predict future oxidative stress in renal tissue during the aging process that takes place in SAM-P8 mice.

  4. Consensus Statement National Consensus Workshop on Management of SAM Children through Medical Nutrition Therapy.

    PubMed

    Sachdev, H P S; Kapil, Umesh; Vir, Sheila

    2010-08-01

    Severe acute malnutrition (SAM) is an important preventable and treatable cause of morbidity and mortality in children below five years of age in India. The concerned stakeholders are not in agreement about the role of product based medical nutrition therapy in the management of this condition. In November 2009, a National Consensus Workshop was organized by the Department of Human Nutrition, All India Institute of Medical Sciences, New Delhi in collaboration with the Department of Pediatrics and Clinical Epidemiology, Sitaram Bhartia Institute of Science and Research, New Delhi, and the Sub-specialty Chapter on Nutrition, Indian Academy of Pediatrics. Presentations by eminent national and international scientists, the ensuing discussions, and opinions expressed by the participants provided the basic framework for drafting the consensus statement. The draft of the consensus statement was circulated to all the participants; it underwent two revisions after consideration of their comments. (i) Critically appraise the current global evidence on the utility of Medical Nutrition Therapy (MNT) for the management of SAM in under five children; (ii) Formulate a consensus amongst stakeholders regarding the need to introduce product based MNT for the management of SAM in under five children in India; (iii) Identify research priorities for MNT for the management of SAM in under five children in India; and (iv)Ascertain potential challenges for introducing product based MNT in India, if consensus opinion identifies such a need. Guidelines related to the role of MNT in management of children suffering from SAM are presented. Global and regional data document the effectiveness of MNT using ready-to-use therapeutic foods (RUTF) and locally formulated products. Adequate caution should be exercised to ensure that MNT for SAM does not interfere with measures for the holistic prevention of childhood undernutrition. Indian manufacture of RUTF is feasible, and can be scaled up. Product

  5. Nuclear Protein Sam68 Interacts with the Enterovirus 71 Internal Ribosome Entry Site and Positively Regulates Viral Protein Translation.

    PubMed

    Zhang, Hua; Song, Lei; Cong, Haolong; Tien, Po

    2015-10-01

    Enterovirus 71 (EV71) recruits various cellular factors to assist in the replication and translation of its genome. Identification of the host factors involved in the EV71 life cycle not only will enable a better understanding of the infection mechanism but also has the potential to be of use in the development of antiviral therapeutics. In this study, we demonstrated that the cellular factor 68-kDa Src-associated protein in mitosis (Sam68) acts as an internal ribosome entry site (IRES) trans-acting factor (ITAF) that binds specifically to the EV71 5' untranslated region (5'UTR). Interaction sites in both the viral IRES (stem-loops IV and V) and the heterogeneous nuclear ribonucleoprotein K homology (KH) domain of Sam68 protein were further mapped using an electrophoretic mobility shift assay (EMSA) and biotin RNA pulldown assay. More importantly, dual-luciferase (firefly) reporter analysis suggested that overexpression of Sam68 positively regulated IRES-dependent translation of virus proteins. In contrast, both IRES activity and viral protein translation significantly decreased in Sam68 knockdown cells compared with the negative-control cells treated with short hairpin RNA (shRNA). However, downregulation of Sam68 did not have a significant inhibitory effect on the accumulation of the EV71 genome. Moreover, Sam68 was redistributed from the nucleus to the cytoplasm and interacts with cellular factors, such as poly(rC)-binding protein 2 (PCBP2) and poly(A)-binding protein (PABP), during EV71 infection. The cytoplasmic relocalization of Sam68 in EV71-infected cells may be involved in the enhancement of EV71 IRES-mediated translation. Since Sam68 is known to be a RNA-binding protein, these results provide direct evidence that Sam68 is a novel ITAF that interacts with EV71 IRES and positively regulates viral protein translation. The nuclear protein Sam68 is found as an additional new host factor that interacts with the EV71 IRES during infection and could potentially

  6. A Response to Sam McKegney's "Strategies for Ethical Engagement: An Open Letter Concerning Non-Native Scholars of Native Literatures"

    ERIC Educational Resources Information Center

    Appleford, Rob

    2009-01-01

    This article presents the author's response to Sam McKegney's "Strategies for Ethical Engagement: An Open Letter Concerning Non-Native Scholars of Native Literatures." In his response to Sam's diagnosis of the malaise currently afflicting non-Aboriginal critics of this literature, the author attempts to consider the "cure" Sam offers (albeit…

  7. Evaluating the effectiveness of self-administration of medication (SAM) schemes in the hospital setting: a systematic review of the literature.

    PubMed

    Richardson, Suzanna J; Brooks, Hannah L; Bramley, George; Coleman, Jamie J

    2014-01-01

    Self-administration of medicines is believed to increase patients' understanding about their medication and to promote their independence and autonomy in the hospital setting. The effect of inpatient self-administration of medication (SAM) schemes on patients, staff and institutions is currently unclear. To systematically review the literature relating to the effect of SAM schemes on the following outcomes: patient knowledge, patient compliance/medication errors, success in self-administration, patient satisfaction, staff satisfaction, staff workload, and costs. Keyword and text word searches of online databases were performed between January and March 2013. Included articles described and evaluated inpatient SAM schemes. Case studies and anecdotal studies were excluded. 43 papers were included for final analysis. Due to the heterogeneity of results and unclear findings it was not possible to perform a quantitative synthesis of results. Participation in SAM schemes often led to increased knowledge about drugs and drug regimens, but not side effects. However, the effect of SAM schemes on patient compliance/medication errors was inconclusive. Patients and staff were highly satisfied with their involvement in SAM schemes. SAM schemes appear to provide some benefits (e.g. increased patient knowledge), but their effect on other outcomes (e.g. compliance) is unclear. Few studies of high methodological quality using validated outcome measures exist. Inconsistencies in both measuring and reporting outcomes across studies make it challenging to compare results and draw substantive conclusions about the effectiveness of SAM schemes.

  8. Initial SAM Calibration Gas Experiments on Mars: Quadrupole Mass Spectrometer Results and Implications

    NASA Technical Reports Server (NTRS)

    Franz, Heather B.; Trainer, Melissa G.; Malespin, Charles A.; Mahaffy, Paul R.; Atreya, Sushil K.; Becker, Richard H,; Benna, Mehdi; Conrad, Pamela G.; Eigenbrode, Jennifer L.; Freissinet, Caroline; hide

    2017-01-01

    The Sample Analysis at Mars (SAM) instrument suite of the Mars Science Laboratory (MSL) Curiosity rover is equipped to analyze both martian atmospheric gases and volatiles released by pyrolysis of solid surface materials, with target measurements including chemical and isotopic composition (Mahaffy et al., 2012). To facilitate assessment of instrument performance and validation of results obtained on Mars, SAM houses a calibration cell containing CO2, Ar, N2, Xe, and several fluorinated hydrocarbon compounds (Franz et al., 2014; Mahaffy et al., 2012). This report describes the first two experiments utilizing this calibration cell on Mars and gives results from analysis of data acquired with the SAM Quadrupole Mass Spectrometer (QMS). These data support the accuracy of isotope ratios obtained with the QMS (Conrad et al., 2016; Mahaffy et al., 2013) and provide ground-truth for reassessment of analytical constants required for atmospheric measurements, which were reported in previous contributions (Franz et al., 2015, 2014). The most significant implication of the QMS data involves reinterpretation of pre-launch contamination previously believed to affect only CO abundance measurements (Franz et al., 2015) to affect N2 abundances, as well. The corresponding adjustment to the N2 calibration constant presented here brings the atmospheric volume mixing ratios for Ar and N2 retrieved by SAM into closer agreement with those reported by the Viking mission (Owen et al., 1977; Oyama and Berdahl, 1977).

  9. Initial SAM calibration gas experiments on Mars: Quadrupole mass spectrometer results and implications

    NASA Astrophysics Data System (ADS)

    Franz, Heather B.; Trainer, Melissa G.; Malespin, Charles A.; Mahaffy, Paul R.; Atreya, Sushil K.; Becker, Richard H.; Benna, Mehdi; Conrad, Pamela G.; Eigenbrode, Jennifer L.; Freissinet, Caroline; Manning, Heidi L. K.; Prats, Benito D.; Raaen, Eric; Wong, Michael H.

    2017-04-01

    The Sample Analysis at Mars (SAM) instrument suite of the Mars Science Laboratory (MSL) Curiosity rover is equipped to analyze both martian atmospheric gases and volatiles released by pyrolysis of solid surface materials, with target measurements including chemical and isotopic composition (Mahaffy et al., 2012). To facilitate assessment of instrument performance and validation of results obtained on Mars, SAM houses a calibration cell containing CO2, Ar, N2, Xe, and several fluorinated hydrocarbon compounds (Franz et al., 2014; Mahaffy et al., 2012). This report describes the first two experiments utilizing this calibration cell on Mars and gives results from analysis of data acquired with the SAM Quadrupole Mass Spectrometer (QMS). These data support the accuracy of isotope ratios obtained with the QMS (Conrad et al., 2016; Mahaffy et al., 2013) and provide ground-truth for reassessment of analytical constants required for atmospheric measurements, which were reported in previous contributions (Franz et al., 2015, 2014). The most significant implication of the QMS data involves reinterpretation of pre-launch contamination previously believed to affect only CO abundance measurements (Franz et al., 2015) to affect N2 abundances, as well. The corresponding adjustment to the N2 calibration constant presented here brings the atmospheric volume mixing ratios for Ar and N2 retrieved by SAM into closer agreement with those reported by the Viking mission (Owen et al., 1977; Oyama and Berdahl, 1977).

  10. The History of the Austin College Building and Old Main at Sam Houston State University

    ERIC Educational Resources Information Center

    Singer, Erin; Shields, Samantha

    2017-01-01

    Austin Hall and Old Main serve as the heart of what is now Sam Houston State University. The buildings' rich histories help one to understand how Sam Houston State University and its proud teacher education heritage came to be. To begin with Austin Hall's story, the University's original building has a unique and interesting tale that journeys…

  11. The SAM domain of ANKS6 has different interacting partners and mutations can induce different cystic phenotypes.

    PubMed

    Bakey, Zeineb; Bihoreau, Marie-Thérèse; Piedagnel, Rémi; Delestré, Laure; Arnould, Catherine; de Villiers, Alexandre d'Hotman; Devuyst, Olivier; Hoffmann, Sigrid; Ronco, Pierre; Gauguier, Dominique; Lelongt, Brigitte

    2015-08-01

    The ankyrin repeat and sterile α motif (SAM) domain-containing six gene (Anks6) is a candidate for polycystic kidney disease (PKD). Originally identified in the PKD/Mhm(cy/+) rat model of PKD, the disease is caused by a mutation (R823W) in the SAM domain of the encoded protein. Recent studies support the etiological role of the ANKS6 SAM domain in human cystic diseases, but its function in kidney remains unknown. To investigate the role of ANKS6 in cyst formation, we screened an archive of N-ethyl-N-nitrosourea-treated mice and derived a strain carrying a missense mutation (I747N) within the SAM domain of ANKS6. This mutation is only six amino acids away from the PKD-causing mutation (R823W) in cy/+ rats. Evidence of renal cysts in these mice confirmed the crucial role of the SAM domain of ANKS6 in kidney function. Comparative phenotype analysis in cy/+ rats and our Anks6(I747N) mice further showed that the two models display noticeably different PKD phenotypes and that there is a defective interaction between ANKS6 with ANKS3 in the rat and between ANKS6 and BICC1 (bicaudal C homolog 1) in the mouse. Thus, our data demonstrate the importance of ANKS6 for kidney structure integrity and the essential mediating role of its SAM domain in the formation of protein complexes.

  12. A pilot study investigating the feasibility of symptom assessment manager (SAM), a Web-based real-time tool for monitoring challenging behaviors.

    PubMed

    Loi, Samantha M; Wanasinghage, Sangeeth; Goh, Anita; Lautenschlager, Nicola T; Darby, David G; Velakoulis, Dennis

    2018-04-01

    Improving and minimizing challenging behaviors seen in psychiatric conditions, including behavioral and psychological symptoms of dementia are important in the care of people with these conditions. Yet there is a lack of systematic evaluation of these as a part of routine clinical care. The Neuropsychiatric Inventory is a validated and reliable tool for rating the severity and disruptiveness of challenging behaviors. We report on the evaluation of a Web-based symptom assessment manager (SAM), designed to address the limitation of previous tools using some of the Neuropsychiatric Inventory functions, to monitor behaviors by staff caring for people with dementia and other psychiatric conditions in inpatient and residential care settings. The SAM was piloted in an 8-bed inpatient neuropsychiatry unit over 5 months. Eleven nurses and 4 clinicians were trained in usage of SAM. Primary outcomes were usage of SAM and perceived usability, utility, and acceptance of SAM. Secondary outcomes were the frequencies of documented behavior. Usage data were analyzed using chi-square and logistic regression analyses. The SAM was used for all admitted patients regardless of diagnosis, with a usage rate of 64% for nurses regularly employed in the unit. Staff provided positive feedback regarding the utility of SAM. The SAM appeared to offer individualized behavior assessment by providing a quick, structured, and standardized platform for assessing behavior in a real-world setting. Further research would involve trialing SAM with more staff in alternative settings such as in home or residential care settings. Copyright © 2017 John Wiley & Sons, Ltd.

  13. Curiosity's Sample Analysis at Mars (SAM) Investigation: Overview of Results from the First 120 Sols on Mars

    NASA Technical Reports Server (NTRS)

    Mahaffy, P. R.; Cabane, M.; Webster, C. R.; Archer, P. D.; Atreya, S. K.; Benna, M.; Brinckerhoff, W. B.; Brunner, A. E.; Buch, A.; Coll, P.; hide

    2013-01-01

    During the first 120 sols of Curiosity s landed mission on Mars (8/6/2012 to 12/7/2012) SAM sampled the atmosphere 9 times and an eolian bedform named Rocknest 4 times. The atmospheric experiments utilized SAM s quadrupole mass spectrometer (QMS) and tunable laser spectrometer (TLS) while the solid sample experiments also utilized the gas chromatograph (GC). Although a number of core experiments were pre-programmed and stored in EEProm, a high level SAM scripting language enabled the team to optimize experiments based on prior runs.

  14. Ligand-Induced Stabilization of a Duplex-like Architecture Is Crucial for the Switching Mechanism of the SAM-III Riboswitch.

    PubMed

    Suresh, Gorle; Srinivasan, Harini; Nanda, Shivani; Priyakumar, U Deva

    2016-06-21

    Riboswitches are structured RNA motifs that control gene expression by sensing the concentrations of specific metabolites and make up a promising new class of antibiotic targets. S-Adenosylmethionine (SAM)-III riboswitch, mainly found in lactic acid bacteria, is involved in regulating methionine and SAM biosynthetic pathways. SAM-III riboswitch regulates the gene expression by switching the translation process on and off with respect to the absence and presence of the SAM ligand, respectively. In this study, an attempt is made to understand the key conformational transitions involved in ligand binding using atomistic molecular dynamics (MD) simulations performed in an explicit solvent environment. G26 is found to recognize the SAM ligand by forming hydrogen bonds, whereas the absence of the ligand leads to opening of the binding pocket. Consistent with experimental results, the absence of the SAM ligand weakens the base pairing interactions between the nucleobases that are part of the Shine-Dalgarno (SD) and anti-Shine-Dalgarno (aSD) sequences, which in turn facilitates recognition of the SD sequence by ribosomes. Detailed analysis reveals that a duplex-like structure formed by nucleotides from different parts of the RNA and the adenine base of the ligand is crucial for the stability of the completely folded state in the presence of the ligand. Previous experimental studies have shown that the SAM-III riboswitch exists in equilibrium between the unfolded and partially folded states in the absence of the ligand, which completely folds upon binding of the ligand. Comparison of the results presented here to the available experimental data indicates the structures obtained using the MD simulations resemble the partially folded state. Thus, this study provides a detailed understanding of the fully and partially folded structures of the SAM-III riboswitch in the presence and absence of the ligand, respectively. This study hypothesizes a dual role for the SAM ligand

  15. Characterization of the near native conformational states of the SAM domain of Ste11 protein by NMR spectroscopy.

    PubMed

    Gupta, Sebanti; Bhattacharjya, Surajit

    2014-11-01

    The sterile alpha motif or SAM domain is one of the most frequently present protein interaction modules with diverse functional attributions. SAM domain of the Ste11 protein of budding yeast plays important roles in mitogen-activated protein kinase cascades. In the current study, urea-induced, at subdenaturing concentrations, structural, and dynamical changes in the Ste11 SAM domain have been investigated by nuclear magnetic resonance spectroscopy. Our study revealed that a number of residues from Helix 1 and Helix 5 of the Ste11 SAM domain display plausible alternate conformational states and largest chemical shift perturbations at low urea concentrations. Amide proton (H/D) exchange experiments indicated that Helix 1, loop, and Helix 5 become more susceptible to solvent exchange with increased concentrations of urea. Notably, Helix 1 and Helix 5 are directly involved in binding interactions of the Ste11 SAM domain. Our data further demonstrate that the existence of alternate conformational states around the regions involved in dimeric interactions in native or near native conditions. © 2014 Wiley Periodicals, Inc.

  16. Toposelective electrochemical desorption of thiol SAMs from neighboring polycrystalline gold surfaces.

    PubMed

    Tencer, Michal; Berini, Pierre

    2008-11-04

    We describe a method for the selective desorption of thiol self-assembled monolayers from gold surfaces having micrometer-scale separations on a substrate. In an electrolyte solution, the electrical resistance between the adjacent areas can be much lower than the resistance between a surface and the counter electrode. Also, both reductive and oxidative thiol desorption may occur. Therefore, the potentials of the surfaces must be independently controlled with a multichannel potentiostat and operating windows for a given thiol/electrolyte system must be established. In this study operating windows were established for 1-dodecanethiol-based SAMs in phosphate buffer, phosphate-buffered saline, and sodium hydroxide solution, and selective SAM removal was successfully performed in a four-electrode configuration.

  17. Updates to Selected Analytical Methods for Environmental Remediation and Recovery (SAM)

    EPA Pesticide Factsheets

    View information on the latest updates to methods included in EPA's Selected Analytical Methods for Environmental Remediation and Recovery (SAM), including the newest recommended methods and publications.

  18. 77 FR 67813 - Sam Rayburn Dam Project Power Rate

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-14

    ... period January 1, 2009, through September 30, 2012. However, the current rate schedule will expire...) prepared a 2012 Current Power Repayment Study using the existing Sam Rayburn Dam Project rate schedule and... because the current rate expires September 30, 2012. Southwestern will reevaluate the ability of the...

  19. Human Viperin Causes Radical SAM-Dependent Elongation of Escherichia coli, Hinting at Its Physiological Role.

    PubMed

    Nelp, Micah T; Young, Anthony P; Stepanski, Branden M; Bandarian, Vahe

    2017-08-01

    Viperin (virus inhibitory protein, endoplasmic reticulum-associated, interferon-inducible) is a widely distributed protein that is expressed in response to infection and causes antiviral effects against a broad spectrum of viruses. Viperin is a member of the radical S-adenosyl-l-methionine (SAM) superfamily of enzymes, which typically employ a 4Fe-4S cluster to reductively cleave SAM to initiate chemistry. Though the specific reaction catalyzed by viperin remains unknown, it has been shown that expression of viperin causes an increase in the fluidity of lipid membranes, which impedes the budding of nascent viral particles from the membrane inhibiting propagation of the infection. Herein, we show that expression of the human viperin homologue induces a dramatically elongated morphology of the host Escherichia coli cells. Mutation of an essential cysteine that coordinates the radical SAM cluster abrogates this effect. Thus, the native radical SAM activity of viperin is likely occurring in the host bacteria, indicating the elusive substrate is shared between both bacteria and humans, significantly narrowing the range of potential candidate substrates and providing a convenient bacterial platform from which future studies can occur.

  20. Human Cataract Mutations in EPHA2 SAM Domain Alter Receptor Stability and Function

    PubMed Central

    Park, Jeong Eun; Son, Alexander I.; Hua, Rui; Wang, Lianqing; Zhang, Xue; Zhou, Renping

    2012-01-01

    The cellular and molecular mechanisms underlying the pathogenesis of cataracts leading to visual impairment remain poorly understood. In recent studies, several mutations in the cytoplasmic sterile-α-motif (SAM) domain of human EPHA2 on chromosome 1p36 have been associated with hereditary cataracts in several families. Here, we have investigated how these SAM domain mutations affect EPHA2 activity. We showed that the SAM domain mutations dramatically destabilized the EPHA2 protein in a proteasome-dependent pathway, as evidenced by the increase of EPHA2 receptor levels in the presence of the proteasome inhibitor MG132. In addition, the expression of wild-type EPHA2 promoted the migration of the mouse lens epithelial αTN4-1 cells in the absence of ligand stimulation, whereas the mutants exhibited significantly reduced activity. In contrast, stimulation of EPHA2 with its ligand ephrin-A5 eradicates the enhancement of cell migration accompanied by Akt activation. Taken together, our studies suggest that the SAM domain of the EPHA2 protein plays critical roles in enhancing the stability of EPHA2 by modulating the proteasome-dependent process. Furthermore, activation of Akt switches EPHA2 from promoting to inhibiting cell migration upon ephrin-A5 binding. Our results provide the first report of multiple EPHA2 cataract mutations contributing to the destabilization of the receptor and causing the loss of cell migration activity. PMID:22570727

  1. Crystal Structure of Bicc1 SAM Polymer and Mapping of Interactions between the Ciliopathy-Associated Proteins Bicc1, ANKS3, and ANKS6.

    PubMed

    Rothé, Benjamin; Leettola, Catherine N; Leal-Esteban, Lucia; Cascio, Duilio; Fortier, Simon; Isenschmid, Manuela; Bowie, James U; Constam, Daniel B

    2018-02-06

    Head-to-tail polymers of sterile alpha motifs (SAM) can scaffold large macromolecular complexes. Several SAM-domain proteins that bind each other are mutated in patients with cystic kidneys or laterality defects, including the Ankyrin (ANK) and SAM domain-containing proteins ANKS6 and ANKS3, and the RNA-binding protein Bicc1. To address how their interactions are regulated, we first determined a high-resolution crystal structure of a Bicc1-SAM polymer, revealing a canonical SAM polymer with a high degree of flexibility in the subunit interface orientations. We further mapped interactions between full-length and distinct domains of Bicc1, ANKS3, and ANKS6. Neither ANKS3 nor ANKS6 alone formed macroscopic homopolymers in vivo. However, ANKS3 recruited ANKS6 to Bicc1, and the three proteins together cooperatively generated giant macromolecular complexes. Thus, the giant assemblies are shaped by SAM domains, their flanking sequences, and SAM-independent protein-protein and protein-mRNA interactions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Methyl donor S-adenosylmethionine (SAM) supplementation attenuates breast cancer growth, invasion, and metastasis in vivo; therapeutic and chemopreventive applications.

    PubMed

    Mahmood, Niaz; Cheishvili, David; Arakelian, Ani; Tanvir, Imrana; Khan, Haseeb Ahmed; Pépin, Anne-Sophie; Szyf, Moshe; Rabbani, Shafaat A

    2018-01-12

    DNA hypomethylation coordinately targets various signaling pathways involved in tumor growth and metastasis. At present, there are no approved therapeutic modalities that target hypomethylation. In this regard, we examined the therapeutic plausibility of using universal methyl group donor S-adenosylmethionine (SAM) to block breast cancer development, growth, and metastasis through a series of studies in vitro using two different human breast cancer cell lines (MDA-MB-231 and Hs578T) and in vivo using an MDA-MB-231 xenograft model of breast cancer. We found that SAM treatment caused a significant dose-dependent decrease in cell proliferation, invasion, migration, anchorage-independent growth and increased apoptosis in vitro . These results were recapitulated in vivo where oral administration of SAM reduced tumor volume and metastasis in green fluorescent protein (GFP)-tagged MDA-MB-231 xenograft model. Gene expression analyses validated the ability of SAM to decrease the expression of several key genes implicated in cancer progression and metastasis in both cell lines and breast tumor xenografts. SAM was found to be bioavailable in the serum of experimental animals as determined by enzyme-linked immunosorbent assay and no notable adverse side effects were seen including any change in animal behavior. The results of this study provide compelling evidence to evaluate the therapeutic potential of methylating agents like SAM in patients with breast cancer to reduce cancer-associated morbidity and mortality.

  3. Methyl donor S-adenosylmethionine (SAM) supplementation attenuates breast cancer growth, invasion, and metastasis in vivo; therapeutic and chemopreventive applications

    PubMed Central

    Mahmood, Niaz; Cheishvili, David; Arakelian, Ani; Tanvir, Imrana; Khan, Haseeb Ahmed; Pépin, Anne-Sophie; Szyf, Moshe; Rabbani, Shafaat A.

    2018-01-01

    DNA hypomethylation coordinately targets various signaling pathways involved in tumor growth and metastasis. At present, there are no approved therapeutic modalities that target hypomethylation. In this regard, we examined the therapeutic plausibility of using universal methyl group donor S-adenosylmethionine (SAM) to block breast cancer development, growth, and metastasis through a series of studies in vitro using two different human breast cancer cell lines (MDA-MB-231 and Hs578T) and in vivo using an MDA-MB-231 xenograft model of breast cancer. We found that SAM treatment caused a significant dose-dependent decrease in cell proliferation, invasion, migration, anchorage-independent growth and increased apoptosis in vitro. These results were recapitulated in vivo where oral administration of SAM reduced tumor volume and metastasis in green fluorescent protein (GFP)-tagged MDA-MB-231 xenograft model. Gene expression analyses validated the ability of SAM to decrease the expression of several key genes implicated in cancer progression and metastasis in both cell lines and breast tumor xenografts. SAM was found to be bioavailable in the serum of experimental animals as determined by enzyme-linked immunosorbent assay and no notable adverse side effects were seen including any change in animal behavior. The results of this study provide compelling evidence to evaluate the therapeutic potential of methylating agents like SAM in patients with breast cancer to reduce cancer-associated morbidity and mortality. PMID:29435170

  4. Evidence for Perchlorates and the Origin of Chlorinated Hydrocarbons Detected by SAM at the Rocknest Aeolian Deposit in Gale Crater

    NASA Technical Reports Server (NTRS)

    Glavin, Daniel P.; Freissinet, Caroline; Miller, Kristen E.; Eigenbrode, Jennifer L.; Brunner, Anna E.; Buch, Arnaud; Sutter, Brad; Archer, P. Douglas, Jr.; Atreya, Sushil K.; Brinckerhoff, William B.; hide

    2013-01-01

    A single scoop of the Rocknest aeolian deposit was sieved (less than 150 micrometers), and four separate sample portions, each with a mass of approximately 50 mg, were delivered to individual cups inside the Sample Analysis at Mars (SAM) instrument by the Mars Science Laboratory rover's sample acquisition system. The samples were analyzed separately by the SAM pyrolysis evolved gas and gas chromatograph mass spectrometer analysis modes. Several chlorinated hydrocarbons including chloromethane, dichloromethane, trichloromethane, a chloromethylpropene, and chlorobenzene were identified by SAM above background levels with abundances of approximately 0.01 to 2.3 nmol. The evolution of the chloromethanes observed during pyrolysis is coincident with the increase in O2 released from the Rocknest sample and the decomposition of a product of N-methyl-N-(tert-butyldimethylsilyl)-trifluoroacetamide (MTBSTFA), a chemical whose vapors were released from a derivatization cup inside SAM. The best candidate for the oxychlorine compounds in Rocknest is a hydrated calcium perchlorate (Ca(ClO4)2·nH2O), based on the temperature release of O2 that correlates with the release of the chlorinated hydrocarbons measured by SAM, although other chlorine-bearing phases are being considered. Laboratory analog experiments suggest that the reaction of Martian chlorine from perchlorate decomposition with terrestrial organic carbon from MTBSTFA during pyrolysis can explain the presence of three chloromethanes and a chloromethylpropene detected by SAM. Chlorobenzene may be attributed to reactions of Martian chlorine released during pyrolysis with terrestrial benzene or toluene derived from 2,6-diphenylphenylene oxide (Tenax) on the SAM hydrocarbon trap. At this time we do not have definitive evidence to support a nonterrestrial carbon source for these chlorinated hydrocarbons, nor do we exclude the possibility that future SAM analyses will reveal the presence of organic compounds native to the

  5. Social Activity Method (SAM): A Fractal Language for Mathematics

    ERIC Educational Resources Information Center

    Dowling, Paul

    2013-01-01

    In this paper I shall present and develop my organisational language, "social activity method" (SAM), and illustrate some of its applications. I shall introduce a new scheme for "modes of recontextualisation" that enables the analysis of the ways in which one activity--which might be school mathematics or social research or any…

  6. Carbon tax effects on the poor: a SAM-based approach

    NASA Astrophysics Data System (ADS)

    Chapa, Joana; Ortega, Araceli

    2017-09-01

    A SAM-based price model for Mexico is developed in order to assess the effects of the carbon tax, which was part of the fiscal reform approved in 2014. The model is formulated based on a social accounting matrix (SAM) that distinguishes households by the official poverty condition and geographical area. The main results are that the sector that includes coke, refined petroleum and nuclear fuel shows the highest price increase due to the direct impact of the carbon tax; in addition, air transport and inland transport are the most affected sectors, in an indirect manner, because both employ inputs from the former sector. Also, it is found that welfare diminishes more in the rural strata than in the urban one. In the urban area, the carbon tax is regressive: the negative impact of carbon tax on family welfare is greater on the poorest families.

  7. Unsupervised classification of Space Acceleration Measurement System (SAMS) data using ART2-A

    NASA Technical Reports Server (NTRS)

    Smith, A. D.; Sinha, A.

    1999-01-01

    The Space Acceleration Measurement System (SAMS) has been developed by NASA to monitor the microgravity acceleration environment aboard the space shuttle. The amount of data collected by a SAMS unit during a shuttle mission is in the several gigabytes range. Adaptive Resonance Theory 2-A (ART2-A), an unsupervised neural network, has been used to cluster these data and to develop cause and effect relationships among disturbances and the acceleration environment. Using input patterns formed on the basis of power spectral densities (psd), data collected from two missions, STS-050 and STS-057, have been clustered.

  8. Structural investigation of a C-terminal EphA2 receptor mutant: Does mutation affect the structure and interaction properties of the Sam domain?

    PubMed

    Mercurio, Flavia A; Costantini, Susan; Di Natale, Concetta; Pirone, Luciano; Guariniello, Stefano; Scognamiglio, Pasqualina L; Marasco, Daniela; Pedone, Emilia M; Leone, Marilisa

    2017-09-01

    Ephrin A2 receptor (EphA2) plays a key role in cancer, it is up-regulated in several types of tumors and the process of ligand-induced receptor endocytosis, followed by degradation, is considered as a potential path to diminish tumor malignancy. Protein modulators of this mechanism are recruited at the cytosolic Sterile alpha motif (Sam) domain of EphA2 (EphA2-Sam) through heterotypic Sam-Sam associations. These interactions engage the C-terminal helix of EphA2 and close loop regions (the so called End Helix side). In addition, several studies report on destabilizing mutations in EphA2 related to cataract formation and located in/or close to the Sam domain. Herein, we analyzed from a structural point of view, one of these mutants characterized by the insertion of a novel 39 residue long polypeptide at the C-terminus of EphA2-Sam. A 3D structural model was built by computational methods and revealed partial disorder in the acquired C-terminal tail and a few residues participating in an α-helix and two short β-strands. We investigated by CD and NMR studies the conformational properties in solution of two peptides encompassing the whole C-terminal tail and its predicted helical region, respectively. NMR binding experiments demonstrated that these peptides do not interact relevantly with either EphA2-Sam or its interactor Ship2-Sam. Molecular dynamics (MD) simulations further indicated that the EphA2 mutant could be represented only through a conformational ensemble and that the C-terminal tail should not largely wrap the EphA2-Sam End-Helix interface and affect binding to other Sam domains. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Effect of S-adenosyl-L-methionine (SAM), an allosteric activator of cystathionine-β-synthase (CBS) on colorectal cancer cell proliferation and bioenergetics in vitro.

    PubMed

    Módis, Katalin; Coletta, Ciro; Asimakopoulou, Antonia; Szczesny, Bartosz; Chao, Celia; Papapetropoulos, Andreas; Hellmich, Mark R; Szabo, Csaba

    2014-09-15

    Recent data show that colon cancer cells selectively overexpress cystathionine-β-synthase (CBS), which produces hydrogen sulfide (H2S), to maintain cellular bioenergetics, support tumor growth and stimulate angiogenesis and vasorelaxation in the tumor microenvironment. The purpose of the current study was to investigate the effect of the allosteric CBS activator S-adenosyl-L-methionine (SAM) on the proliferation and bioenergetics of the CBS-expressing colon cancer cell line HCT116. The non-transformed, non-tumorigenic colon epithelial cell line NCM356 was used as control. For assessment of cell proliferation, the xCELLigence system was used. Bioenergetic function was measured by Extracellular Flux Analysis. Experiments using human recombinant CBS or HCT116 homogenates complemented the cell-based studies. SAM markedly enhanced CBS-mediated H2S production in vitro, especially when a combination of cysteine and homocysteine was used as substrates. Addition of SAM (0.1-3 mM) to HCT116 cells induced a concentration-dependent increase H2S production. SAM exerted time- and concentration-dependent modulatory effects on cell proliferation. At 0.1-1 mM SAM increased HCT116 proliferation between 0 and 12 h, while the highest SAM concentration (3 mM) inhibited proliferation. Over a longer time period (12-24 h), only the lowest concentration of SAM used (0.1 mM) stimulated cell proliferation; higher SAM concentrations produced a concentration-dependent inhibition. The short-term stimulatory effects of SAM were attenuated by the CBS inhibitor aminooxyacetic acid (AOAA) or by stable silencing of CBS. In contrast, the inhibitory effects of SAM on cell proliferation was unaffected by CBS inhibition or CBS silencing. In contrast to HCT116 cells, the lower rate of proliferation of the low-CBS expressor NCM356 cells was unaffected by SAM. Short-term (1 h) exposure of HCT116 cells to SAM induced a concentration-dependent increase in oxygen consumption and bioenergetic function at 0

  10. A viral protein promotes host SAMS1 activity and ethylene production for the benefit of virus infection

    PubMed Central

    Wu, Jianguo; Wang, Yu; Ji, Shaoyi; Zhu, Shuyi; Wei, Chunhong; Zhang, Jinsong

    2017-01-01

    Ethylene plays critical roles in plant development and biotic stress response, but the mechanism of ethylene in host antiviral response remains unclear. Here, we report that Rice dwarf virus (RDV) triggers ethylene production by stimulating the activity of S-adenosyl-L-methionine synthetase (SAMS), a key component of the ethylene synthesis pathway, resulting in elevated susceptibility to RDV. RDV-encoded Pns11 protein specifically interacted with OsSAMS1 to enhance its enzymatic activity, leading to higher ethylene levels in both RDV-infected and Pns11-overexpressing rice. Consistent with a counter-defense role for ethylene, Pns11-overexpressing rice, as well as those overexpressing OsSAMS1, were substantially more susceptible to RDV infection, and a similar effect was observed in rice plants treated with an ethylene precursor. Conversely, OsSAMS1-knockout mutants, as well as an osein2 mutant defective in ethylene signaling, resisted RDV infection more robustly. Our findings uncover a novel mechanism which RDV manipulates ethylene biosynthesis in the host plants to achieve efficient infection. PMID:28994391

  11. A viral protein promotes host SAMS1 activity and ethylene production for the benefit of virus infection.

    PubMed

    Zhao, Shanshan; Hong, Wei; Wu, Jianguo; Wang, Yu; Ji, Shaoyi; Zhu, Shuyi; Wei, Chunhong; Zhang, Jinsong; Li, Yi

    2017-10-10

    Ethylene plays critical roles in plant development and biotic stress response, but the mechanism of ethylene in host antiviral response remains unclear. Here, we report that Rice dwarf virus (RDV) triggers ethylene production by stimulating the activity of S-adenosyl-L-methionine synthetase (SAMS), a key component of the ethylene synthesis pathway, resulting in elevated susceptibility to RDV. RDV-encoded Pns11 protein specifically interacted with OsSAMS1 to enhance its enzymatic activity, leading to higher ethylene levels in both RDV-infected and Pns11-overexpressing rice. Consistent with a counter-defense role for ethylene, Pns11-overexpressing rice, as well as those overexpressing OsSAMS1 , were substantially more susceptible to RDV infection, and a similar effect was observed in rice plants treated with an ethylene precursor. Conversely, OsSAMS1- knockout mutants, as well as an osein2 mutant defective in ethylene signaling, resisted RDV infection more robustly. Our findings uncover a novel mechanism which RDV manipulates ethylene biosynthesis in the host plants to achieve efficient infection.

  12. K-sam, an amplified gene in stomach cancer, is a member of the heparin-binding growth factor receptor genes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hattori, Yutaka; Odagiri, Hiroki; Nakatani, Hiroshi

    1990-08-01

    DNA fragments amplified in a stomach cancer-derived cell line, KATO-III, were previously identified by the in-gel DNA renaturation method, and a 0.2-kilobase-pair fragment of the amplified sequence was subsequently cloned. By genomic walking, a portion of the exon of the gene flanking this 0.2-kilobase-pair fragment was cloned, and the gene was designated as K-sam ({und K}ATO-III cell-derived {und s}tomach cancer {und am}plified gene). The K-sam cDNAs, corresponding to the 3.5-kilobase K-sam mRNA, were cloned from the KATO-III cells. Sequence analysis revealed that this gene coded for 682 amino acid residues that satisfied the characteristics of the receptor tyrosine kinase. Themore » K-sam gene had significant homologies with bek, FLG, and chicken basic fibroblast growth factor receptor gene. The K-sam gene was amplified in KATO-III cells with the major transcript of 3.5-kilobases in size. This gene was also expressed in some other stomach cancer cells, a small cell lung cancer, and germ cell tumors.« less

  13. An intact SAM-dependent methyltransferase fold is encoded by the human endothelin-converting enzyme-2 gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tempel, W.; Wu, H.; Dombrovsky, L.

    2010-08-17

    A recent survey of protein expression patterns in patients with Alzheimer's disease (AD) has identified ece2 (chromosome: 3; Locations: 3q27.1) as the most significantly downregulated gene within the tested group. ece2 encodes endothelin-converting enzyme ECE2, a metalloprotease with a role in neuropeptide processing. Deficiency in the highly homologous ECE1 has earlier been linked to increased levels of AD-related {beta}-amyloid peptide in mice, consistent with a role for ECE in the degradation of that peptide. Initially, ECE2 was presumed to resemble ECE1, in that it comprises a single transmembrane region of {approx}20 residues flanked by a small amino-terminal cytosolic segment andmore » a carboxy-terminal lumenar peptidase domain. The carboxy-terminal domain has significant sequence similarity to both neutral endopeptidase, for which an X-ray structure has been determined, and Kell blood group protein. After their initial discovery, multiple isoforms of ECE1 and ECE2 were discovered, generated by alternative splicing of multiple exons. The originally described ece2 transcript, RefSeq NM{_}174046, contains the amino-terminal cytosolic portion followed by the transmembrane region and peptidase domain (Fig. 1, isoform B). Another ece2 transcript, available from the Mammalian Gene Collection under MGC2408 (Fig. 1, isoform C), RefSeq accession NM{_}032331, is predicted to be translated into a 255 residue peptide with low but detectable sequence similarity to known S-adenosyl-L-methionine (SAM)-dependent methyltransferases (SAM-MTs), such as the hypothetical protein TT1324 from Thermus thermophilis, PDB code 2GS9, which shares 30% amino acid sequence identity with ECE2 over 138 residues of the sequence. Intriguingly, another 'elongated' ece2 transcript (Fig. 1, isoform A) (RefSeq NM{_}014693) contains an amino-terminal portion of the putative SAM-MT domain, the transmembrane domain, and the protease domain. This suggests the possibility for coexistence of the

  14. Selective in situ potential-assisted SAM formation on multi electrode arrays

    NASA Astrophysics Data System (ADS)

    Haag, Ann-Lauriene; Toader, Violeta; Lennox, R. Bruce; Grutter, Peter

    2016-11-01

    The selective modification of individual components in a biosensor array is challenging. To address this challenge, we present a generalizable approach to selectively modify and characterize individual gold surfaces in an array, in an in situ manner. This is achieved by taking advantage of the potential dependent adsorption/desorption of surface-modified organic molecules. Control of the applied potential of the individual sensors in an array where each acts as a working electrode provides differential derivatization of the sensor surfaces. To demonstrate this concept, two different self-assembled monolayer (SAM)-forming electrochemically addressable ω-ferrocenyl alkanethiols (C11) are chemisorbed onto independent but spatially adjacent gold electrodes. The ferrocene alkanethiol does not chemisorb onto the surface when the applied potential is cathodic relative to the adsorption potential and the electrode remains underivatized. However, applying potentials that are modestly positive relative to the adsorption potential leads to extensive coverage within 10 min. The resulting SAM remains in a stable state while held at potentials <200 mV above the adsorption potential. In this state, the chemisorbed SAM does not significantly desorb nor do new ferrocenylalkythiols adsorb. Using three set applied potentials provides for controlled submonolayer alkylthiol marker coverage of each independent gold electrode. These three applied potentials are dependent upon the specifics of the respective adsorbate. Characterization of the ferrocene-modified electrodes via cyclic voltammetry demonstrates that each specific ferrocene marker is exclusively adsorbed to the desired target electrode.

  15. Evidence for Perchlorates and the Origin of Chlorinated Hydrocarbons Detected by SAM at the Rocknest Aeolian Deposit in Gale Crater

    NASA Technical Reports Server (NTRS)

    Glavin, Daniel P.; Freissinet, Caroline; Miller, Kristen E.; Eigenbrode, Jennifer L.; Brunner, Anna E.; Buch, Arnaud; Sutter, Brad; Archer, P. Douglas, Jr.; Atreya, Sushil K.; Brinckerhoff, William B.; hide

    2013-01-01

    Four individual sample portions from a single scoop of the Rocknest aeolian deposit were sieved ( 150 m) and delivered to the Sample Analysis at Mars (SAM) instrument by the Mars Science Laboratory rover's sample acquisition system. The samples were analyzed separately by the SAM pyrolysis evolved gas and gas chromatography mass spectrometry analysis modes. Several chlorinated hydrocarbons including chloromethane, dichloromethane, trichloromethane, a chloromethylpropene, and chlorobenzene were identified by SAM above background levels with abundances of 0.01 to 2.3 nanomole.The evolution of the chloromethanes observed during pyrolysis is coincident with the increase in O2 released from the Rocknest sample and the decomposition of a product of N-methyl-N- (tert-butyldimethylsilyl)trifluoroacetamide (MTBSTFA), a chemical that leaked from a derivatization cup inside SAM.The best candidate for the oxychloride phase in Rocknest is a hydrated calcium perchlorate (Ca(ClO4)2nH2O), based on the temperature release of O2 that correlates with the release of the chlorinated species measured by SAM, although other chlorine bearing phases are being considered. Laboratory pyrolysis experiments suggest that reaction of martian chlorine with organic carbon from MTBSTFA can explain the presence of the chloromethanes and a chloromethylpropene also detected by SAM.However, we cannot exclude the possibility that traces of organic carbon of either martian or exogenous origin contributed to some of the chloromethanes measured by SAM. Although the alteration history and exposure age of the Rocknest deposit is unknown, it is possible that oxidative degradation of complex organic matter by ionizing radiation or other chemical processes in Rocknest has occurred.

  16. Delocalized versus localized excitations in the photoisomerization of azobenzene-functionalized alkanethiolate SAMs

    NASA Astrophysics Data System (ADS)

    Bronsch, Wibke; Moldt, Thomas; Boie, Larissa; Gahl, Cornelius; Weinelt, Martin

    2017-12-01

    Self-assembled monolayers of azobenzene-functionalized alkanethiolates form molecular ensembles with preferential orientation and significant excitonic coupling among the azobenzene chromophores. We have studied their optical switching with differential reflectance and two-photon-photoemission spectroscopy tuning the excitation wavelength through the excitonically broadened S2 absorption band. While the effective isomerization cross-section increases towards shorter wavelengths, the fraction of cis molecules in the photostationary state decreases. We attribute this observation to the absorption of the cis isomer in the SAM. The photoisomerization in the SAM thereby follows the behavior of non-interacting chromophores in solution, despite the formation of H-aggregates. Our study thus reveals that photoswitching occurs via localized excitations while strongly excitonically coupled, delocalized states do not contribute significantly.

  17. SAMS--a systems architecture for developing intelligent health information systems.

    PubMed

    Yılmaz, Özgün; Erdur, Rıza Cenk; Türksever, Mustafa

    2013-12-01

    In this paper, SAMS, a novel health information system architecture for developing intelligent health information systems is proposed and also some strategies for developing such systems are discussed. The systems fulfilling this architecture will be able to store electronic health records of the patients using OWL ontologies, share patient records among different hospitals and provide physicians expertise to assist them in making decisions. The system is intelligent because it is rule-based, makes use of rule-based reasoning and has the ability to learn and evolve itself. The learning capability is provided by extracting rules from previously given decisions by the physicians and then adding the extracted rules to the system. The proposed system is novel and original in all of these aspects. As a case study, a system is implemented conforming to SAMS architecture for use by dentists in the dental domain. The use of the developed system is described with a scenario. For evaluation, the developed dental information system will be used and tried by a group of dentists. The development of this system proves the applicability of SAMS architecture. By getting decision support from a system derived from this architecture, the cognitive gap between experienced and inexperienced physicians can be compensated. Thus, patient satisfaction can be achieved, inexperienced physicians are supported in decision making and the personnel can improve their knowledge. A physician can diagnose a case, which he/she has never diagnosed before, using this system. With the help of this system, it will be possible to store general domain knowledge in this system and the personnel's need to medical guideline documents will be reduced.

  18. Evolved Gas Analyses of the Murray Formation in Gale Crater, Mars: Results of the Curiosity Rover's Sample Analysis at Mars (SAM) Instrument

    NASA Technical Reports Server (NTRS)

    Sutter, B.; McAdam, A. C.; Rampe, E. B.; Thompson, L. M.; Ming, D. W.; Mahaffy, P. R.; Navarro-Gonzalez, R.; Stern, J. C.; Eigenbrode, J. L.; Archer, P. D.

    2017-01-01

    The Sample Analysis at Mars (SAM) instrument aboard the Mars Science Laboratory rover has analyzed 13 samples from Gale Crater. All SAM-evolved gas analyses have yielded a multitude of volatiles (e.g., H2O, SO2, H2S, CO2, CO, NO, O2, HCl) [1- 6]. The objectives of this work are to 1) Characterize recent evolved SO2, CO2, O2, and NO gas traces of the Murray formation mudstone, 2) Constrain sediment mineralogy/composition based on SAM evolved gas analysis (SAM-EGA), and 3) Discuss the implications of these results relative to understanding the geological history of Gale Crater.

  19. Integration, Validation, and Application of a PV Snow Coverage Model in SAM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freeman, Janine M.; Ryberg, David Severin

    2017-08-01

    Due to the increasing deployment of PV systems in snowy climates, there is significant interest in a method capable of estimating PV losses resulting from snow coverage that has been verified for a variety of system designs and locations. Many independent snow coverage models have been developed over the last 15 years; however, there has been very little effort verifying these models beyond the system designs and locations on which they were based. Moreover, major PV modeling software products have not yet incorporated any of these models into their workflows. In response to this deficiency, we have integrated the methodologymore » of the snow model developed in the paper by Marion et al. (2013) into the National Renewable Energy Laboratory's (NREL) System Advisor Model (SAM). In this work, we describe how the snow model is implemented in SAM and we discuss our demonstration of the model's effectiveness at reducing error in annual estimations for three PV arrays. Next, we use this new functionality in conjunction with a long term historical data set to estimate average snow losses across the United States for two typical PV system designs. The open availability of the snow loss estimation capability in SAM to the PV modeling community, coupled with our results of the nationwide study, will better equip the industry to accurately estimate PV energy production in areas affected by snowfall.« less

  20. AKT-dependent phosphorylation of the SAM domain induces oligomerization and activation of the scaffold protein CNK1.

    PubMed

    Fischer, Adrian; Weber, Wilfried; Warscheid, Bettina; Radziwill, Gerald

    2017-01-01

    Scaffold proteins are hubs for the coordination of intracellular signaling networks. The scaffold protein CNK1 promotes several signal transduction pathway. Here we demonstrate that sterile motif alpha (SAM) domain-dependent oligomerization of CNK1 stimulates CNK1-mediated signaling in growth factor-stimulated cells. We identified Ser22 located within the SAM domain as AKT-dependent phosphorylation site triggering CNK1 oligomerization. Oligomeric CNK1 increased the affinity for active AKT indicating a positive AKT feedback mechanism. A CNK1 mutant lacking the SAM domain and the phosphorylation-defective mutant CNK1 S22A antagonizes oligomerization and prevents CNK1-driven cell proliferation and matrix metalloproteinase 14 promoter activation. The phosphomimetic mutant CNK1 S22D constitutively oligomerizes and stimulates CNK1 downstream signaling. Searching the COSMIC database revealed Ser22 as putative target for oncogenic activation of CNK1. Like the phosphomimetic mutant CNK1 S22D , the oncogenic mutant CNK1 S22F forms clusters in serum-starved cells comparable to clusters of CNK1 in growth factor-stimulated cells. CNK1 clusters induced by activating Ser22 mutants correlate with enhanced cell invasion and binding to and activation of ADP ribosylation factor 1 associated with tumor formation. Mutational analysis indicate that EGF-triggered phosphorylation of Thr8 within the SAM domain prevents AKT binding and antagonizes CNK1-mediated AKT signaling. Our findings reveal SAM domain-dependent oligomerization by AKT as switch for CNK1 activation. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. The expression platform and the aptamer: cooperativity between Mg2+ and ligand in the SAM-I riboswitch

    PubMed Central

    Hennelly, Scott P.; Novikova, Irina V.; Sanbonmatsu, Karissa Y.

    2013-01-01

    Riboswitch operation involves the complex interplay between the aptamer domain and the expression platform. During transcription, these two domains compete against each other for shared sequence. In this study, we explore the cooperative effects of ligand binding and Magnesium interactions in the SAM-I riboswitch in the context of aptamer collapse and anti-terminator formation. Overall, our studies show the apo-aptamer acts as (i) a pre-organized aptamer competent to bind ligand and undergo structural collapse and (ii) a conformation that is more accessible to anti-terminator formation. We show that both Mg2+ ions and SAM are required for a collapse transition to occur. We then use competition between the aptamer and expression platform for shared sequence to characterize the stability of the collapsed aptamer. We find that SAM and Mg2+ interactions in the aptamer are highly cooperative in maintaining switch polarity (i.e. aptamer ‘off-state’ versus anti-terminator ‘on-state’). We further show that the aptamer off-state is preferentially stabilized by Mg2+ and similar divalent ions. Furthermore, the functional switching assay was used to select for phosphorothioate interference, and identifies potential magnesium chelation sites while characterizing their coordinated role with SAM in aptamer stabilization. In addition, we find that Mg2+ interactions with the apo-aptamer are required for the full formation of the anti-terminator structure, and that higher concentrations of Mg2+ (>4 mM) shift the equilibrium toward the anti-terminator on-state even in the presence of SAM. PMID:23258703

  2. Detection of Organic Constituents Including Chloromethylpropene in the Analyses of the ROCKNEST Drift by Sample Analysis at Mars (SAM)

    NASA Technical Reports Server (NTRS)

    Eigenbrode, J. L.; Glavin, D.; Coll, P.; Summons, R. E.; Mahaffy, P.; Archer, D.; Brunner, A.; Conrad, P.; Freissinet, C.; Martin, M.; hide

    2013-01-01

    key challenge in assessing the habitability of martian environments is the detection of organic matter - a requirement of all life as we know it. The Curiosity rover, which landed on August 6, 2012 in Gale Crater of Mars, includes the Sample Analysis at Mars (SAM) instrument suite capable of in situ analysis of gaseous organic components thermally evolved from sediment samples collected, sieved, and delivered by the MSL rover. On Sol 94, SAM received its first solid sample: scooped sediment from Rocknest that was sieved to <150 m particle size. Multiple 10-40 mg portions of the scoop #5 sample were delivered to SAM for analyses. Prior to their introduction, a blank (empty cup) analysis was performed. This blank served 1) to clean the analytical instrument of SAMinternal materials that accumulated in the gas processing system since integration into the rover, and 2) to characterize the background signatures of SAM. Both the blank and the Rocknest samples showed the presence of hydrocarbon components.

  3. Atmospheric modeling of Mars CH4 subsurface clathrates releases mimicking SAM and 2003 Earth-based detections

    NASA Astrophysics Data System (ADS)

    Pla-Garcia, Jorge

    2017-10-01

    The aim of this work is to establish the amount of mixing during all martian seasons to test whether CH4 releases inside or outside of Gale crater are consistent with MSL-SAM observations. Several modeling scenarios were configured, including instantaneous and steady releases, both inside and outside the crater. A simulation to mimic the 2003 Earth-based detections (Mumma et al. 2009 or M09) was also performed. In the instantaneous release inside Gale experiments, Ls270 was shown to be the faster mixing season when air within and outside the crater was well mixed: all tracer mass inside the crater is diluted after just 8 hours. The mixing of near surface crater air with the external environment in the rest of the year is potentially rapid but slower than Ls270. In the instantaneous release outside Gale (NW) experiment, in just 12 hours the CH4 that makes it to the MSL landing location is diluted by six orders of magnitude. The timescale of mixing in the model is on the order of 1 sol regardless of season. The duration of the CH4 peak observed by SAM is 100 sols. Therefore there is a steady release inside the crater, or there is a large magnitude steady release outside the crater. In the steady release Gale experiments, CH4 flux rate from ground is 1.8 kg m-2 s-1 (Gloesener et al. 2017) and it is not predictive. In these experiments, ~200 times lower CH4 values detected by SAM are modeled around MSL location. There are CH4 concentration variations of orders of magnitude depending on the hour, so timing of SAM measurements is important. With a larger (but further away) outside crater release area compared to inside, similar CH4 values around MSL are modeled, so distance to source is important. In the steady experiments mimicking M09 detection release area, only 12 times lower CH4 values detected by SAM are modeled around MSL. The highest value in the M09 modeled scenario (0.6 ppbv) is reached in Ls270. This value is the highest of all modeled experiments. With our

  4. Atmospheric modeling of Mars CH4 subsurface clathrates releases mimicking SAM and 2003 Earth-based detections

    NASA Astrophysics Data System (ADS)

    Pla-García, J.; Rafkin, S. C.

    2017-12-01

    The aim of this work is to establish the amount of mixing during all martian seasons to test whether CH4 releases inside or outside of Gale crater are consistent with MSL-SAM observations. Several modeling scenarios were configured, including instantaneous and steady releases, both inside and outside the crater. A simulation to mimic the 2003 Earth-based detections (Mumma et al. 2009 or M09) was also performed. In the instantaneous release inside Gale experiments, Ls270 was shown to be the faster mixing season when air within and outside the crater was well mixed: all tracer mass inside the crater is diluted after just 8 hours. The mixing of near surface crater air with the external environment in the rest of the year is potentially rapid but slower than Ls270.In the instantaneous release outside Gale (NW) experiment, in just 12 hours the CH4 that makes it to the MSL landing location is diluted by six orders of magnitude. The timescale of mixing in MRAMS experiments is on the order of 1 sol regardless of season. The duration of the CH4 peak observed by SAM is 100 sols. Therefore there is a steady release inside the crater, or there is a very large magnitude steady release outside the crater. In the steady release Gale experiments, CH4 flux rate from ground is 1.8 kg m-2 s-1 (derived from Gloesener et al. 2017 clathrates fluxes) and it is not predictive. In these experiments, 200 times lower CH4 values detected by SAM are modeled around MSL location. There are CH4 concentration variations of orders of magnitude depending on the hour, so timing of SAM measurements is important. With a larger (but further away) outside crater release area compared to inside, similar CH4 values around MSL are modeled, so distance to source is important. In the steady experiments mimicking M09 detection release area, only 12 times lower CH4 values detected by SAM are modeled around MSL. The highest value in the M09 modeled scenario (0.6 ppbv) is reached in Ls270. This value is the

  5. The first year: Development of a LANDSAT capability at Sam Houston State University

    NASA Technical Reports Server (NTRS)

    Bounds, J. H.

    1981-01-01

    Problems encountered in initiating a LANDSAT data processing capability at Sam Houston State University are discussed. Computer requirements, financing, and academic and administrative support are addressed.

  6. Treating Obsessive-Compulsive Disorder and Schizophrenia: The Case of Sam

    ERIC Educational Resources Information Center

    Peasley-Miklus, Catherine; Massie, Elise; Baslett, Gaston; Carmin, Cheryl

    2005-01-01

    This article describes the case of Sam, a 22-year-old male with obsessive-compulsive disorder (OCD) and schizophrenia. The patient's background, the development and characteristics of his OCD and schizophrenia, and the history of what became a rather complicated treatment are described. In addition, four problem areas of therapy are identified.

  7. The Seismic Aftershock Monitoring System (SAMS) for OSI - Experiences from IFE14

    NASA Astrophysics Data System (ADS)

    Gestermann, Nicolai; Sick, Benjamin; Häge, Martin; Blake, Thomas; Labak, Peter; Joswig, Manfred

    2016-04-01

    An on-site inspection (OSI) is the third of four elements of the verification regime of the Comprehensive Nuclear-Test-Ban Treaty (CTBT). The sole purpose of an OSI is to confirm whether a nuclear weapon test explosion or any other nuclear explosion has been carried out in violation of the treaty and to gather any facts which might assist in identifying any possible violator. It thus constitutes the final verification measure under the CTBT if all other available measures are not able to confirm the nature of a suspicious event. The Provisional Technical Secretariat (PTS) carried out the Integrated Field Exercise 2014 (IFE14) in the Dead Sea Area of Jordan from 3 November to 9. December 2014. It was a fictitious OSI whose aim was to test the inspection capabilities in an integrated manner. The technologies allowed during an OSI are listed in the Treaty. The aim of the Seismic Aftershock Monitoring System (SAMS) is to detect and localize aftershocks of low magnitudes of the triggering event or collapses of underground cavities. The locations of these events are expected in the vicinity of a possible previous explosion and help to narrow down the search area within an inspection area (IA) of an OSI. The success of SAMS depends on the main elements, hardware, software, deployment strategy, the search logic and not least the effective use of personnel. All elements of SAMS were tested and improved during the Built-Up Exercises (BUE) which took place in Austria and Hungary. IFE14 provided more realistic climatic and hazardous terrain conditions with limited resources. Significant variations in topography of the IA of IFE14 in the mountainous Dead Sea Area of Jordan led to considerable challenges which were not expected from experiences encountered during BUE. The SAMS uses mini arrays with an aperture of about 100 meters and with a total of 4 elements. The station network deployed during IFE14 and results of the data analysis will be presented. Possible aftershocks of

  8. SAMS Acceleration Measurements on Mir from May 1997 to June 1998 (NASA Increments 5, 6, and 7)

    NASA Technical Reports Server (NTRS)

    DeLombard, Richard

    1999-01-01

    During NASA Increments 5, 6, and 7 (May 1997 to June 1998), about eight gigabytes of acceleration data were collected by the Space Acceleration Measurement System (SAMS) onboard the Russian Space Station Mir. The data were recorded on twenty-seven optical disks which were returned to Earth on Orbiter missions STS-86, STS-89, and STS-91. During these increments, SAMS data were collected in the Priroda module to support various microgravity experiments. This report points out some of the salient features of the microgravity acceleration environment to which the experiments were exposed. This report presents an overview of the SAMS acceleration measurements recorded by 10 Hz and 100 Hz sensor heads. The analyses included herein complement those presented in previous Mir increment summary reports prepared by the Principal Investigator Microgravity Services project.

  9. Analysis of the interactions between host factor Sam68 and viral elements during foot-and-mouth disease virus infection

    USDA-ARS?s Scientific Manuscript database

    The nuclear protein Src-associated protein of 68 kDa in mitosis (Sam68) is known to bind RNA and be involved in cellular processes triggered in response to environmental stresses, including virus infection. Interestingly, Sam68, is a multi-functional protein implicated in the life cycle of retroviru...

  10. SAMS Acceleration Measurements on Mir From January to May 1997 (NASA Increment 4)

    NASA Technical Reports Server (NTRS)

    DeLombard, Richard

    1998-01-01

    During NASA Increment 4 (January to May 1997), about 5 gigabytes of acceleration data were collected by the Space Acceleration Measurements System (SAMS) onboard the Russian Space Station, Mir. The data were recorded on 28 optical disks which were returned to Earth on STS-84. During this increment, SAMS data were collected in the Priroda module to support the Mir Structural Dynamics Experiment (MiSDE), the Binary Colloidal Alloy Tests (BCAT), Angular Liquid Bridge (ALB), Candle Flames in Microgravity (CFM), Diffusion Controlled Apparatus Module (DCAM), Enhanced Dynamic Load Sensors (EDLS), Forced Flow Flame Spreading Test (FFFT), Liquid Metal Diffusion (LMD), Protein Crystal Growth in Dewar (PCG/Dewar), Queen's University Experiments in Liquid Diffusion (QUELD), and Technical Evaluation of MIM (TEM). This report points out some of the salient features of the microgravity environment to which these experiments were exposed. Also documented are mission events of interest such as the docked phase of STS-84 operations, a Progress engine burn, Soyuz vehicle docking and undocking, and Progress vehicle docking. This report presents an overview of the SAMS acceleration measurements recorded by 10 Hz and 100 Hz sensor heads. The analyses included herein complement those presented in previous summary reports prepared by the Principal Investigator Microgravity Services (PIMS) group.

  11. In vivo CH3(CH2)11SAu SAM electrodes in the beating heart: in situ analytical studies relevant to pacemakers and interstitial biosensors.

    PubMed

    Chou, Howard A; Zavitz, Daniel H; Ovadia, Marc

    2003-01-01

    To study in vivo modification of the SAM equivalent circuit when a highly ordered SAM is used as a bioelectrode, dodecanethiolate SAM-Au intramuscular electrodes were studied in living rat heart in a challenging in situ perfused rat model by impedance spectroscopy, cyclic voltammetry, and neutron activation analysis (NAA). The SAM layer experienced disintegration in vivo biological system, as NAA detected the presence of Au atoms that had leached into the surrounding living tissue. Therefore, the underlying Au surface became exposed during biological implant. Study by impedance spectroscopy, however, revealed perfect capacitive behavior for the SAM, similar to in vitro behavior. Electrodes showed a pure capacitive Nyquist plot with 86.1-89.4 degrees near-vertical line segments as the equivalent circuit locus, as for a parallel plate capacitor. Impedance magnitude varied linearly with 1/omega excluding diffusionally limited ionic charge transport. There was no diffusional conductive element Z(W infinity ) or spatially confined Warburg impedance Z(D). The effect of in vivo exposure of a highly ordered SAM is a 'sealing over' effect of new defects by the binding of proteinaceous or lipid species in the biological milieu, a fact of significance for SAM electrodes used either as pacemaker electrodes or as a platform for in vivo biosensors.

  12. Mutational analysis of residues in human arsenic (III) methyltransferase (hAS3MT) belonging to 5 Å around S-adenosylmethionine (SAM).

    PubMed

    Li, Xiangli; Geng, Zhirong; Chang, Jiayin; Song, Xiaoli; Wang, Zhilin

    2014-12-01

    The functions of residues 57-RY-58, G60, L77, 80-GSGR-83, I101, T104, 134-GY-135, N155, V157 and 160-LV-161 in human arsenic (III) methyltransferase (hAS3MT) 5 Å around S-adenosylmethionine (SAM) have not been studied. Herein, sixteen mutants were designed by substituting these residues with Ala. Mutants G60A, G80A, I101A, N155A and L160A were completely inactive. Only MMA was detected when mutants R57A, Y58A, G82A and T104A were used as the enzymes, which suggested that their catalytic activities were seriously impaired compared with that of wild type (WT). The catalytic capacities of other mutants were also lower than that of WT-hAS3MT. The KM(SAM) values of mutants were 1.9–8.7 times that of WT, suggesting their affinities to SAM were weakened. As evidenced by the experimental data herein, earlier literature and the model of hAS3MT-SAM, 57-RYYG-60, G78, G80, G82 and 155-NCV-157 interacted with the methionine of SAM, and 101-IDMT-104 and 135-YIE-137 were associated with the nucleotide adenosine of SAM. Since C156 and L160 were the common residues between 5 Å around SAM and 5 Å around As, and C156S and L160A were inactive, we proposed that C156 and L160 functioned in the methyl transfer process. G78, G80 and G82 belonging to the consensus GxGxG were located in a loop connecting the first β-strand and α-helix in the Rossmann fold core. Y59, N155, C156 and L160 oriented S(+)-CH(3) during its approach to the arsenic lone pair, and further activated methyl transfer. G78, D102, M103, T104, I136 and N155 formed hydrogen bonds with SAM.

  13. The SAM domains of Anks family proteins are critically involved in modulating the degradation of EphA receptors.

    PubMed

    Kim, Jieun; Lee, Haeryung; Kim, Yujin; Yoo, Sooyeon; Park, Eunjeong; Park, Soochul

    2010-04-01

    We recently reported that the phosphotyrosine-binding (PTB) domain of Anks family proteins binds to EphA8, thereby positively regulating EphA8-mediated signaling pathways. In the current study, we identified a potential role for the SAM domains of Anks family proteins in EphA signaling. We found that SAM domains of Anks family proteins directly bind to ubiquitin, suggesting that Anks proteins regulate the degradation of ubiquitinated EphA receptors. Consistent with the role of Cbl ubiquitin ligases in the degradation of Eph receptors, our results revealed that the ubiquitin ligase c-Cbl induced the ubiquitination and degradation of EphA8 upon ligand binding. Ubiquitinated EphA8 also bound to the SAM domains of Odin, a member of the Anks family proteins. More importantly, the overexpression of wild-type Odin protected EphA8 and EphA2 from undergoing degradation following ligand stimulation and promoted EphA-mediated inhibition of cell migration. In contrast, a SAM domain deletion mutant of Odin strongly impaired the function of endogenous Odin, suggesting that the mutant functions in a dominant-negative manner. An analysis of Odin-deficient primary embryonic fibroblasts indicated that Odin levels play a critical role in regulating the stability of EphA2 in response to ligand stimulation. Taken together, our studies suggest that the SAM domains of Anks family proteins play a pivotal role in enhancing the stability of EphA receptors by modulating the ubiquitination process.

  14. Even the Odd Numbers Help: Failure Modes of SAM-Based Tunnel Junctions Probed via Odd-Even Effects Revealed in Synchrotrons and Supercomputers.

    PubMed

    Thompson, Damien; Nijhuis, Christian A

    2016-10-18

    This Account describes a body of research in atomic level design, synthesis, physicochemical characterization, and macroscopic electrical testing of molecular devices made from ferrocene-functionalized alkanethiol molecules, which are molecular diodes, with the aim to identify, and resolve, the failure modes that cause leakage currents. The mismatch in size between the ferrocene headgroup and alkane rod makes waxlike highly dynamic self-assembled monolayers (SAMs) on coinage metals that show remarkable atomic-scale sensitivity in their electrical properties. Our results make clear that molecular tunnel junction devices provide an excellent testbed to probe the electronic and supramolecular structures of SAMs on inorganic substrates. Contacting these SAMs to a eutectic "EGaIn" alloy top-electrode, we designed highly stable long-lived molecular switches of the form electrode-SAM-electrode with robust rectification ratios of up to 3 orders of magnitude. The graphic that accompanies this conspectus displays a computed SAM packing structure, illustrating the lollipop shape of the molecules that gives dynamic SAM supramolecular structures and also the molecule-electrode van der Waals (vdW) contacts that must be controlled to form good SAM-based devices. In this Account, we first trace the evolution of SAM-based electronic devices and rationalize their operation using energy level diagrams. We describe the measurement of device properties using near edge X-ray absorption fine structure spectroscopy, cyclic voltammetry, and X-ray photoelectron spectroscopy complemented by molecular dynamics and electronic structure calculations together with large numbers of electrical measurements. We discuss how data obtained from these combined experimental/simulation codesign studies demonstrate control over the supramolecular and electronic structure of the devices, tuning odd-even effects to optimize inherent packing tendencies of the molecules in order to minimize leakage currents

  15. Interaction between Sam68 and Src family tyrosine kinases, Fyn and Lck, in T cell receptor signaling.

    PubMed

    Fusaki, N; Iwamatsu, A; Iwashima, M; Fujisawa, J i

    1997-03-07

    The Src family protein-tyrosine kinase, Fyn, is associated with the T cell receptor (TCR) and plays an important role in TCR-mediated signaling. We found that a human T cell leukemia virus type 1-infected T cell line, Hayai, overexpressed Fyn. To identify the molecules downstream of Fyn, we analyzed the tyrosine phosphorylation of cellular proteins in the cells. In Hayai, a 68-kDa protein was constitutively tyrosine-phosphorylated. The 68-kDa protein was coimmunoprecipitated with various signaling proteins such as phospholipase C gamma1, the phosphatidylinositol 3-kinase p85 subunit, Grb2, SHP-1, Cbl, and Jak3, implying that the protein might function as an adapter. Purification and microsequencing of this protein revealed that it was the RNA-binding protein, Sam68 (Src associated in mitosis, 68 kDa). Sam68 was associated with the Src homology 2 and 3 domains of Fyn and also those of another Src family kinase, Lck. CD3 cross-linking induced tyrosine phosphorylation of Sam68 in uninfected T cells. These data suggest that Sam68 participates in the signal transduction pathway downstream of TCR-coupled Src family kinases Fyn and Lck in lymphocytes, that is not only in the mitotic pathway downstream of c-Src in fibroblasts.

  16. Two Fe-S clusters catalyse sulfur insertion by Radical-SAM methylthiotransferases

    PubMed Central

    Forouhar, Farhad; Arragain, Simon; Atta, Mohamed; Gambarelli, Serge; Mouesca, Jean-Marie; Hussain, Munif; Xiao, Rong; Kieffer-Jaquinod, Sylvie; Seetharaman, Jayaraman; Acton, Thomas B.; Montelione, Gaetano T.

    2014-01-01

    How living organisms create carbon-sulfur bonds during biosynthesis of critical sulphur-containing compounds is still poorly understood. The methylthiotransferases MiaB and RimO catalyze sulfur insertion into tRNAs and ribosomal protein S12, respectively. Both belong to a sub-group of Radical-SAM enzymes that bear two [4Fe-4S] clusters. One cluster binds S-Adenosylmethionine and generates an Ado• radical via a well- established mechanism. However, the precise role of the second cluster is unclear. For some sulfur-inserting Radical-SAM enzymes, this cluster has been proposed to act as a sacrificial source of sulfur for the reaction. In this paper, we report parallel enzymological, spectroscopic and crystallographic investigations of RimO and MiaB, which provide the first evidence that these enzymes are true catalysts and support a new sulfation mechanism involving activation of an exogenous sulfur co-substrate at an exchangeable coordination site on the second cluster, which remains intact during the reaction. PMID:23542644

  17. Integration, Validation, and Application of a PV Snow Coverage Model in SAM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryberg, David; Freeman, Janine

    2015-09-01

    Due to the increasing deployment of PV systems in snowy climates, there is significant interest in a method capable of estimating PV losses resulting from snow coverage that has been verified for a wide variety of system designs and locations. A scattering of independent snow coverage models have been developed over the last 15 years; however, there has been very little effort spent on verifying these models beyond the system design and location on which they were based. Moreover, none of the major PV modeling software products have incorporated any of these models into their workflow. In response to thismore » deficiency, we have integrated the methodology of the snow model developed in the paper by Marion et al. [1] into the National Renewable Energy Laboratory's (NREL) System Advisor Model (SAM). In this work we describe how the snow model is implemented in SAM and discuss our demonstration of the model's effectiveness at reducing error in annual estimations for two PV arrays. Following this, we use this new functionality in conjunction with a long term historical dataset to estimate average snow losses across the United States for a typical PV system design. The open availability of the snow loss estimation capability in SAM to the PV modeling community, coupled with our results of the nation-wide study, will better equip the industry to accurately estimate PV energy production in areas affected by snowfall.« less

  18. Radical SAM Enzymes in the Biosynthesis of Ribosomally Synthesized and Post-translationally Modified Peptides (RiPPs).

    PubMed

    Benjdia, Alhosna; Balty, Clémence; Berteau, Olivier

    2017-01-01

    Ribosomally-synthesized and post-translationally modified peptides (RiPPs) are a large and diverse family of natural products. They possess interesting biological properties such as antibiotic or anticancer activities, making them attractive for therapeutic applications. In contrast to polyketides and non-ribosomal peptides, RiPPs derive from ribosomal peptides and are post-translationally modified by diverse enzyme families. Among them, the emerging superfamily of radical SAM enzymes has been shown to play a major role. These enzymes catalyze the formation of a wide range of post-translational modifications some of them having no counterparts in living systems or synthetic chemistry. The investigation of radical SAM enzymes has not only illuminated unprecedented strategies used by living systems to tailor peptides into complex natural products but has also allowed to uncover novel RiPP families. In this review, we summarize the current knowledge on radical SAM enzymes catalyzing RiPP post-translational modifications and discuss their mechanisms and growing importance notably in the context of the human microbiota.

  19. Structural basis of RNA recognition and dimerization by the STAR proteins T-STAR and Sam68

    PubMed Central

    Feracci, Mikael; Foot, Jaelle N.; Grellscheid, Sushma N.; Danilenko, Marina; Stehle, Ralf; Gonchar, Oksana; Kang, Hyun-Seo; Dalgliesh, Caroline; Meyer, N. Helge; Liu, Yilei; Lahat, Albert; Sattler, Michael; Eperon, Ian C.; Elliott, David J.; Dominguez, Cyril

    2016-01-01

    Sam68 and T-STAR are members of the STAR family of proteins that directly link signal transduction with post-transcriptional gene regulation. Sam68 controls the alternative splicing of many oncogenic proteins. T-STAR is a tissue-specific paralogue that regulates the alternative splicing of neuronal pre-mRNAs. STAR proteins differ from most splicing factors, in that they contain a single RNA-binding domain. Their specificity of RNA recognition is thought to arise from their property to homodimerize, but how dimerization influences their function remains unknown. Here, we establish at atomic resolution how T-STAR and Sam68 bind to RNA, revealing an unexpected mode of dimerization different from other members of the STAR family. We further demonstrate that this unique dimerization interface is crucial for their biological activity in splicing regulation, and suggest that the increased RNA affinity through dimer formation is a crucial parameter enabling these proteins to select their functional targets within the transcriptome. PMID:26758068

  20. Structural basis of RNA recognition and dimerization by the STAR proteins T-STAR and Sam68.

    PubMed

    Feracci, Mikael; Foot, Jaelle N; Grellscheid, Sushma N; Danilenko, Marina; Stehle, Ralf; Gonchar, Oksana; Kang, Hyun-Seo; Dalgliesh, Caroline; Meyer, N Helge; Liu, Yilei; Lahat, Albert; Sattler, Michael; Eperon, Ian C; Elliott, David J; Dominguez, Cyril

    2016-01-13

    Sam68 and T-STAR are members of the STAR family of proteins that directly link signal transduction with post-transcriptional gene regulation. Sam68 controls the alternative splicing of many oncogenic proteins. T-STAR is a tissue-specific paralogue that regulates the alternative splicing of neuronal pre-mRNAs. STAR proteins differ from most splicing factors, in that they contain a single RNA-binding domain. Their specificity of RNA recognition is thought to arise from their property to homodimerize, but how dimerization influences their function remains unknown. Here, we establish at atomic resolution how T-STAR and Sam68 bind to RNA, revealing an unexpected mode of dimerization different from other members of the STAR family. We further demonstrate that this unique dimerization interface is crucial for their biological activity in splicing regulation, and suggest that the increased RNA affinity through dimer formation is a crucial parameter enabling these proteins to select their functional targets within the transcriptome.

  1. A unifying view of the broad-spectrum antiviral activity of RSAD2 (viperin) based on its radical-SAM chemistry.

    PubMed

    Honarmand Ebrahimi, Kourosh

    2018-04-25

    RSAD2 (cig-5), also known as viperin (virus inhibitory protein, endoplasmic reticulum associated, interferon inducible), is a member of the radical S-adenosylmethionine (SAM) superfamily of enzymes. Since the discovery of this enzyme more than a decade ago, numerous studies have shown that it exhibits antiviral activity against a wide range of viruses. However, there is no clear picture demonstrating the mechanism by which RSAD2 restricts the replication process of different viruses, largely because there is no direct evidence describing its in vivo enzymatic activity. As a result, a multifunctionality model has emerged. According to this model the mechanism by which RSAD2 restricts replication of different viruses varies and in many cases is not dependent on the radical-SAM chemistry of RSAD2. If the radical-SAM activity of RSAD2 is not required for its antiviral function, the question worth asking is: why does the cellular defence mechanism induce the expression of the radical-SAM enzyme RSAD2, which is metabolically expensive due to the requirement for a [4Fe-4S] cluster and usage of SAM? Here, in contrast to the multifunctionality view, I put forward a unifying model. I postulate that the radical-SAM activity of RSAD2 modulates cellular metabolic pathways essential for viral replication and/or cell proliferation and survival. As a result, its catalytic activity restricts the replication of a wide range of viruses via a common cellular function. This view is based on recent discoveries hinting towards possible substrates of RSAD2, re-evaluation of previous studies regarding the antiviral activity of RSAD2, and accumulating evidence suggesting a role of human RSAD2 in the metabolic reprogramming of cells.

  2. Non-invasive vibrational SFG spectroscopy reveals that bacterial adhesion can alter the conformation of grafted "brush" chains on SAM.

    PubMed

    Bulard, Emilie; Guo, Ziang; Zheng, Wanquan; Dubost, Henri; Fontaine-Aupart, Marie-Pierre; Bellon-Fontaine, Marie-Noëlle; Herry, Jean-Marie; Briandet, Romain; Bourguignon, Bernard

    2011-04-19

    Understanding bacterial adhesion on a surface is a crucial step to design new materials with improved properties or to control biofilm formation and eradication. Sum Frequency Generation (SFG) vibrational spectroscopy has been employed to study in situ the conformational response of a self-assembled monolayer (SAM) of octadecanethiol (ODT) on a gold film to the adhesion of hydrophilic and hydrophobic ovococcoid model bacteria. The present work highlights vibrational SFG spectroscopy as a powerful and unique non-invasive biophysical technique to probe and control bacteria interaction with ordered surfaces. Indeed, the SFG vibrational spectral changes reveal different ODT SAM conformations in air and upon exposure to aqueous solution or bacterial adhesion. Furthermore, this effect depends on the bacterial cell surface properties. The SFG spectral modeling demonstrates that hydrophobic bacteria flatten the ODT SAM alkyl chain terminal part, whereas the hydrophilic ones raise this ODT SAM terminal part. Microorganism-induced alteration of grafted chains can thus affect the desired interfacial functionality, a result that should be considered for the design of new reactive materials. © 2011 American Chemical Society

  3. Detection and Quantification of Nitrogen Compounds in Martian Solid Samples by the Sample Analysis at Mars (SAM) Instrument Suite

    NASA Technical Reports Server (NTRS)

    Stern, Jennifer C.; Navarro-Gonzalez, Rafael; Freissinet, Caroline; McKay, Christopher P.; Archer, Paul Douglas; Buch, Arnaud; Eigenbrode, Jennifer L.; Franz, Heather; Glavin, Daniel Patrick; Ming, Douglas W/; hide

    2013-01-01

    The Sample Analysis at Mars (SAM) instrument suite on the Mars Science Laboratory (MSL) Curiosity Rover detected both reduced and oxidized nitrogen-bearing compounds during the pyrolysis of surface materials from three sites at Gale Crater. Preliminary detections of nitrogen species include NO, HCN, ClCN, CH3CN, and TFMA (trifluoro-Nmethyl-acetamide). On Earth, nitrogen is a crucial bio-element, and nitrogen availability controls productivity in many environments. Nitrogen has also recently been detected in the form of CN in inclusions in the Martian meteorite Tissint, and isotopically heavy nitrogen (delta N-15 approx +100per mille) has been measured during stepped combustion experiments in several SNC meteorites. The detection of nitrogen-bearing compounds in Martian regolith would have important implications for the habitability of ancient Mars. However, confirmation of indigenous Martian nitrogen bearing compounds will require ruling out their formation from the terrestrial derivatization reagents (e.g. N-methyl-N-tert-butyldimethylsilyl-trifluoroacetamide, MTBSTFA and dimethylformamide, DMF) carried for SAM's wet chemistry experiment that contribute to the SAM background. The nitrogen species we detect in the SAM solid sample analyses can also be produced during laboratory pyrolysis experiments where these reagents are heated in the presence of perchlorate, a compound that has also been identified by SAM in Mars solid samples. However, this does not preclude a Martian origin for some of these compounds, which are present in nanomolar concentrations in SAM evolved gas analyses. Analysis of SAM data and laboratory breadboard tests are underway to determine whether nitrogen species are present at higher concentrations than can be accounted for by maximum estimates of nitrogen contribution from MTBSTFA and DMF. In addition, methods are currently being developed to use GC Column 6, (functionally similar to a commercial Q-Bond column), to separate and identify

  4. Hydrometeor Data and Analytical-Theoretical Investigations Pertaining to the SAMS Rain Erosion Program of the 1972-73 Season at Wallops Island, Virginia - AFGL/SAMS Report Number 5

    DTIC Science & Technology

    1977-07-05

    Report No.5 1. INTRODUCTION The liquid-water-content values and other associated hydrometeorological information for the trajectories of the SAMS...Map Showin« Sitini; Locations of Rain ( Jauges and Oisdrometers Relative to the Missile Launch Pads 80 OltOftOMCTCR I |"fy/^n ^J^^^^^ 01 J I

  5. Combustion of organic matter in Mars analogs using SAM-like techniques

    NASA Astrophysics Data System (ADS)

    Stern, J. C.; McAdam, A.; Mahaffy, P. R.; Steele, A.

    2012-12-01

    The combustion experiment on the Sample Analysis at Mars (SAM) suite on Curiosity will heat a sample of Mars regolith in the presence of oxygen and measure the carbon isotopic composition (δ13C) of the evolved CO2 using the Tunable Laser Spectrometer (TLS). The degree to which the δ13C of the sample is representative of any organic carbon present depends on a) whether complete combustion has been achieved, and b) the simultaneous presence of inorganic, or mineralogical carbon in the sample, and our ability to quantify its contribution to the bulk δ13C. To optimize and characterize combustion of a variety of organic molecules in a range of rock matrices, combustion experiments simulating those to be performed on SAM were conducted at NASA Goddard. CO2 gas generated by heating Mars analogs in a SAM-like oven in the presence of oxygen on a laboratory breadboard was captured and analyzed via IRMS for δ13C. These values were compared to bulk and total organic carbon (TOC) abundance and δ13C values using commercial flash combustion EA- IRMS techniques to determine whether quantitative conversion of reduced carbon to CO2 was achieved. Factors contributing to incomplete combustion and isotopic fractionation include structural complexity of reduced organics, their thermal decomposition temperatures, and mineral-organic associations. An additional consideration must be made for unintentional combustion by oxidizing salts (perchlorates), which may partially or totally oxidize reduced organic compounds to CO2, depending on soil perchlorate concentration, sample matrix, and how refractory the organics are. Thus, to investigate the oxidizing potential of a salt known to exist on the Martian surface, laboratory breadboard experiments heating simple and complex organics in the presence of Mg perchlorate were performed using a SAM-like oven coupled to a Hiden Mass Spectrometer and gas collection manifold. Samples were heated in the absence and presence of Mg perchlorate to

  6. Response of Antarctic ice shelf melt to SAM trend and possible feedbacks with the ice-dynamics

    NASA Astrophysics Data System (ADS)

    Donat-Magnin, Marion; Jourdain, Nicolas C.; Gallée, Hubert; Spence, Paul; Cornford, Stephen L.; Le Sommer, Julien; Durand, Gaël

    2017-04-01

    The observed positive trend in the Southern Annular Mode (SAM) may warm the Southern Ocean sub-surface through decreased Ekman downward pumping. Subsequent change in ice-shelves melt has been suggested to trigger glacier acceleration in West Antarctica. Here we use a regional ocean model configuration of the Amundsen Sea that includes interactive ice-shelf cavities. Our results show that the inclusion of ice-shelves changes the ocean response to the projected SAM trend, i.e. it typically inhibits a part of the SAM-induced subsurface warming. Heat budget analysis has been used to propose responsible mechanisms. Regarding Thwaites and Pine Island, sub ice-shelf melt increases above 400m by approximately 40% for Thwaites and 10% for Pine Island and decreases by up to 10% below in response to ocean temperature changes driven by the projected SAM trend. The melt sensitivity to poleward shifting winds is nonetheless small compared to the sensitivity to an ice-sheet instability, i.e. to a projected change in the shape of ice-shelf cavities. For instance, the sub ice-shelf melt are doubled near the grounding line of some glaciers in response to the largest grounding line retreat projected for 2100. Large increase in basal melt close to the grounding line could largely impact instability and glacier acceleration. Our work suggests the need for including ice shelves into ocean models, and to couple ocean models to ice-sheet models in climate projections.

  7. Charge carrier transport and optical properties of SAM-induced conducting channel in organic semiconductors.

    NASA Astrophysics Data System (ADS)

    Podzorov, Vitaly

    2009-03-01

    Certain types of self-assembled monolayers (SAM) grown directly at the surface of organic semiconductors can induce a high surface conductivity in these materials [1]. For example, the conductivity induced by perfluorinated alkyl silanes in organic molecular crystals approaches 10 to -5 Siemens per square. The observed large electronic effect opens new opportunities for nanoscale surface functionalization of organic semiconductors and provides experimental access to the regime of high carrier density. Here, we will discuss temperature variable measurements of SAM-induced conductivity in several types of organic semiconductors. [1]. M. F. Calhoun, J. Sanchez, D. Olaya, M. E. Gershenson and V. Podzorov, ``Electronic functionalization of the surface of organic semiconductors with self-assembled monolayers'', Nature Mat. 7, 84 (2008).

  8. Major Volatiles from MSL SAM Evolved Gas Analyses: Yellowknife Bay Through Lower Mount Sharp

    NASA Technical Reports Server (NTRS)

    McAdam, A. C.; Archer, P. D., Jr.; Sutter, B.; Franz, H. B.; Eigenbrode, J. L.; Ming, D. W.; Morris, R. V.; Niles, P. B.; Stern, J. C.; Freissinet, C.; hide

    2015-01-01

    The Sample Analysis at Mars (SAM) and Chemistry and Mineralogy (CheMin) instruments on the Mars Science Laboratory (MSL) analysed several subsamples of <150 µm fines from five sites at Gale Crater. Three were in Yellowknife Bay: the Rocknest aeolian bedform ("RN") and drilled Sheepbed mudstone from sites John Klein ("JK") and Cumberland ("CB"). One was drilled from the Windjana ("WJ") site on a sandstone of the Kimberly formation investigated on route to Mount Sharp. Another was drilled from the Confidence Hills ("CH") site on a sandstone of the Murray Formation at the base of Mt. Sharp (Pahrump Hills). Outcrops are sedimentary rocks that are largely of fluvial or lacustrine origin, with minor aeolian deposits.. SAM's evolved gas analysis (EGA) mass spectrometry detected H2O, CO2, O2, H2, SO2, H2S, HCl, NO, and other trace gases, including organic fragments. The identity and evolution temperature (T) of evolved gases can support CheMin mineral detection and place constraints on trace volatile-bearing phases or phases difficult to characterize with XRD (e.g., X-ray amorphous phases). They can also give constraints on sample organic chemistry. Here, we discuss trends in major evolved volatiles from SAM EGA analyses to date.

  9. Methyl group balance in brain and liver: role of choline on increased S-adenosyl methionine (SAM) demand by chronic arsenic exposure.

    PubMed

    Ríos, Rosalva; Santoyo, Martha E; Cruz, Daniela; Delgado, Juan Manuel; Zarazúa, Sergio; Jiménez-Capdeville, María E

    2012-11-30

    Arsenic toxicity has been related to its interference with one carbon metabolism, where a high demand of S-adenosylmethionine (SAM) for arsenic methylation as well as a failure of its regeneration would compromise the availability of methyl groups for diverse cellular functions. Since exposed animals show disturbances of methylated products such as methylated arginines, myelin and axon membranes, this work investigates whether alterations of SAM, choline and phosphatidylcholine (PC) in the brain of arsenic exposed rats are associated with myelin alterations and myelin basic protein (MBP) immunoreactivity. Also these metabolites, morphologic and biochemical markers of methyl group alterations were analyzed in the liver, the main site of arsenic methylation. In adult, life-long arsenic exposed rats through drinking water (3 ppm), no changes of SAM, choline and PC concentrations where found in the brain, but SAM and PC were severely decreased in liver accompanied by a significant increase of choline. These results suggest that choline plays an important role as methyl donor in arsenic exposure, which could underlie hepatic affections observed when arsenic exposure is combined with other environmental factors. Also, important myelin and nerve fiber alterations, accompanied by a 75% decrease of MBP immunoreactivity were not associated with a SAM deficit in the brain. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  10. Thermal and Evolved Gas Analysis of Calcite Under Reduced Operating Pressures: Implications for the 2011 MSL Sample Analysis at Mars (SAM) Instrument

    NASA Technical Reports Server (NTRS)

    Lauer, H. V. Jr.; Ming, D. W.; Sutter, B.; Mahaffy, P. R.

    2010-01-01

    The Mars Science Laboratory (MSL) is scheduled for launch in 2011. The science objectives for MSL are to assess the past or present biological potential, to characterize the geology, and to investigate other planetary processes that influence habitability at the landing site. The Sample Analysis at Mars (SAM) is a key instrument on the MSL payload that will explore the potential habitability at the landing site [1]. In addition to searching for organic compounds, SAM will have the capability to characterized evolved gases as a function of increasing temperature and provide information on the mineralogy of volatile-bearing phases such as carbonates, sulfates, phyllosilicates, and Fe-oxyhydroxides. The operating conditions in SAM ovens will be maintained at 30 mb pressure with a He carrier gas flowing at 1 sccm. We have previously characterized the thermal and evolved gas behaviors of volatile-bearing species under reduced pressure conditions that simulated operating conditions of the Thermal and Evolved Gas Analyzer (TEGA) that was onboard the 2007 Mars Phoenix Scout Mission [e.g., 2-8]. TEGA ovens operated at 12 mb pressure with a N2 carrier gas flowing at 0.04 sccm. Another key difference between SAM and TEGA is that TEGA was able to perform differential scanning calorimetry whereas SAM only has a pyrolysis oven. The operating conditions for TEGA and SAM have several key parameter differences including operating pressure (12 vs 30 mb), carrier gas (N2 vs. He), and carrier gas flow rate (0.04 vs 1 sccm). The objectives of this study are to characterize the thermal and evolved gas analysis of calcite under SAM operating conditions and then compare it to calcite thermal and evolved gas analysis under TEGA operating conditions.

  11. Effect of Time and Deposition Method on Quality of Phosphonic Acid Modifier Self-Assembled Monolayers on Indium Zinc Oxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sang, Lingzi; Knesting, Kristina M.; Bulusu, Anuradha

    Phosphonic acid (PA) self-assembled monolayers (SAMs) are utilized at critical interfaces between transparent conductive oxides (TCO) and organic active layers in organic photovoltaic devices (OPVs). The effects of PA deposition method and time on the formation of close-packed, high-quality monolayers is investigated here for SAMs fabricated by solution deposition, micro-contact printing, and spray coating. The solution deposition isotherm for pentafluorinated benzylphosphonic acid (F5BnPA) on indium-doped zinc oxide (IZO) is studied using polarization modulation-infrared reflection-absorption spectroscopy (PM-IRRAS) at room temperature as a model PA/IZO system. Fast surface adsorption occurs within the first min; however, well-oriented high-quality SAMs are reached only aftermore » -48 h, presumably through a continual process of molecular adsorption/desorption and monolayer filling accompanied by molecular reorientation. Two other rapid, soak-free deposition techniques, micro-contact printing and spray coating, are also explored. SAM quality is compared for deposition of phenyl phosphonic acid (PPA), F13-octylphosphonic acid (F13OPA), and pentafluorinated benzyl phosphonic acid (F5BnPA) by solution deposition, micro-contact printing and spray coating using PM-IRRAS. In contrast to micro-contact printing and spray coating techniques, 48-168 h solution deposition at both room temperature and 70 degrees C result in contamination- and surface etch-free close-packed monolayers with good reproducibility. SAMs fabricated by micro-contact printing and spray coating are much less well ordered.« less

  12. SAM 2 Measurements of the Polar Stratospheric Aerosol, volume 2. April 1979 to October 1979

    NASA Technical Reports Server (NTRS)

    Mccormick, M. P.; Steele, H. M.; Hamill, P.

    1982-01-01

    The Stratospheric Aerosol Measurement (SAM) II sensor is abroad the Earth orbiting Nimbus 7 spacecraft proving extinction measurements of the Antarctic and Arctic stratospheric aerosol with a vertical resolution of 1 km. Representative examples and weekly averages of aerosol data and corresponding temperature profiles for the time and place of each SAM II measurement (April 29, 1979, to October 27, 1979) is presented. Contours of aerosol extinction as a function of altitude and longitude or time were plotted and weekly aerosol optical depths were calculated. Seasonal variations and variations in space (altitude and longitude) for both polar regions are easily seen. Typical values of aerosol extinction at the SAM II wavelength of 1.0 micron for the time priod were 1 to 3 x 10 to the -4th power km -1 in the main stratospheric aerosol layer. Optical depths for the stratosphere were about 0.002. Polar stratospheric clouds at altitudes between the tropopause and 20 km were observed during the Antarctic winter at various times and locations. A ready-to-use format containing a representative sample of the second 6 months of data to be used in atmospheric and climatic studies is presented.

  13. Evolved Gas Analyses of Sedimentary Materials in Gale Crater, Mars: Results of the Curiosity Rover's Sample Analysis at Mars (SAM) Instrument from Yellowknife Bay to the Stimson Formation

    NASA Technical Reports Server (NTRS)

    Sutter, B.; McAdam, A. C.; Rampe, E. B.; Ming, D. W.; Mahaffy, P. R.; Navarro-Gonzalez, R.; Stern, J. C.; Eigenbrode, J. L.; Archer, P. D.

    2016-01-01

    The Sample Analysis at Mars (SAM) instrument aboard the Mars Science Laboratory rover has analyzed 10 samples from Gale Crater. All SAM evolved gas analyses have yielded a multitude of volatiles (e.g, H2O, SO2, H2S, CO2, CO, NO, O2, HC1). The objectives of this work are to 1) Characterize the evolved H2O, SO2, CO2, and O2 gas traces of sediments analyzed by SAM through sol 1178, 2) Constrain sediment mineralogy/composition based on SAM evolved gas analysis (SAM-EGA), and 3) Discuss the implications of these results releative to understanding the geochemical history of Gale Crater.

  14. An analytical approach to air defense: cost, effectiveness and SWOT analysis of employing fighter aircraft and modern SAM systems

    NASA Astrophysics Data System (ADS)

    Kus, Orcun; Kocaman, Ibrahim; Topcu, Yucel; Karaca, Volkan

    2012-05-01

    The problem of defending a specific airspace is among the main issues a military commander to solve. Proper protection of own airspace is crucial for mission success at the battlefield. The military doctrines of most world armed forces involve two main options of defending the airspace. One of them is utilizing formations of fighter aircraft, which is a flexible choice. The second option is deploying modern SAM (Surface to Air Missile) systems, which is more expansive. On the other hand the decision makers are to cope with miscellaneous restrictions such as the budgeting problems. This study defines air defense concept according to modern air warfare doctrine. It considers an air defense scenario over an arbitrary airspace and compares the performance and cost-effectiveness of employing fighter aircraft and SAM systems. It also presents SWOT (Strenghts - Weakness - Opportunities - Threats) analyses of air defense by fighter aircraft and by modern SAMs and tries to point out whichever option is better. We conclude that deploying SAMs has important advantages over using fighter aircraft by means of interception capacity within a given time period and is cost-effective.

  15. The water quality of Sam Rayburn Reservoir, eastern Texas

    USGS Publications Warehouse

    Rawson, Jack; Lansford, Myra W.

    1971-01-01

    Results of periodic surveys indicate that dissolved-oxygen concentrations at three sites in the 19-mile reach of the Angelina River downstream from Sam Rayburn Dam were low in late summer and early fall after periods of summer stagnation in the reservoir. Moreover, the amount of reaeration that occurred in the reach was insignificant. During periods when the dissolved-oxygen deficiency was large, the concentrations of iron and manganese at each of the three sites increased greatly.

  16. Radical SAM Enzymes in the Biosynthesis of Ribosomally Synthesized and Post-translationally Modified Peptides (RiPPs)

    PubMed Central

    Benjdia, Alhosna; Balty, Clémence; Berteau, Olivier

    2017-01-01

    Ribosomally-synthesized and post-translationally modified peptides (RiPPs) are a large and diverse family of natural products. They possess interesting biological properties such as antibiotic or anticancer activities, making them attractive for therapeutic applications. In contrast to polyketides and non-ribosomal peptides, RiPPs derive from ribosomal peptides and are post-translationally modified by diverse enzyme families. Among them, the emerging superfamily of radical SAM enzymes has been shown to play a major role. These enzymes catalyze the formation of a wide range of post-translational modifications some of them having no counterparts in living systems or synthetic chemistry. The investigation of radical SAM enzymes has not only illuminated unprecedented strategies used by living systems to tailor peptides into complex natural products but has also allowed to uncover novel RiPP families. In this review, we summarize the current knowledge on radical SAM enzymes catalyzing RiPP post-translational modifications and discuss their mechanisms and growing importance notably in the context of the human microbiota. PMID:29167789

  17. Evidence for Smectite Clays from MSL SAM Analyses of Mudstone at Yellowknife Bay, Gale Crater, Mars

    NASA Astrophysics Data System (ADS)

    McAdam, A.; Franz, H.; Mahaffy, P. R.; Eigenbrode, J. L.; Stern, J. C.; Brunner, A.; Sutter, B.; Archer, P. D.; Ming, D. W.; Morris, R. V.; Atreya, S. K.; Team, M.

    2013-12-01

    Drilled samples of mudstone from the Sheepbed unit at Yellowknife Bay were analyzed by MSL instruments including the Sample Analysis at Mars (SAM) and Chemistry and Mineralogy (CheMin) instruments in MSL's Analytical Laboratory. CheMin analyses revealed the first in situ X-ray diffraction based evidence of clay minerals on Mars, which are likely trioctahedral smectites (e.g., saponite) and comprise ~20% of the mudstone sample (e.g., Bristow et al., this meeting). SAM analyses, which heated the mudstone samples to 1000oC and monitored volatiles evolved to perform in situ evolved gas analysis mass spectrometry (EGA-MS), resulted in a H2O trace exhibiting a wide evolution at temperatures <500oC, and an evolution peak at higher temperatures near ~750oC. The low temperature H2O evolution has many potential contributors, including adsorbed H2O, smectite interlayer H2O, and structural H2O/OH from bassanite and akaganeite (identified by CheMin) and H2O/OH from amorphous phases in the sample. The high temperature H2O is consistent with the evolution of H2O from the dehydroxylation of the smectite clay mineral. Comparison to EGA-MS data collected under SAM-like conditions on a variety of clay mineral reference materials indicate that a trioctahedral smectite, such as saponite, is most consistent with the high temperature H2O evolution observed. There may also be SAM EGA-MS evidence for a small high temperature H2O evolution from scoop samples from the Yellowknife Bay Rocknest sand shadow bedform. As in the mudstone samples, this evolution may indicate the detection of smectite clays, and the idea that minor clays may be present in Rocknest materials that could be expected to be at least partially derived from local sources is reasonable. But, because smectite clays were not definitively observed in CheMin analyses of Rocknest materials, they must be present at much lower abundances than the ~20% observed in the mudstone samples. This potential detection underscores the

  18. Evidence for Smectite Clays from MSL SAM Analyses of Mudstone at Yellowknife Bay, Gale Crater, Mars

    NASA Technical Reports Server (NTRS)

    McAdam, Amy; Franz, Heather; Mahaffy, Paul R.; Eigenbrode, Jennifer L.; Stern, Jennifer C.; Brunner, Anna; Archer, Paul Douglas; Ming, Douglas W.; Morris, Richard V.; Atreya, Sushil K.

    2013-01-01

    Drilled samples of mudstone from the Sheepbed unit at Yellowknife Bay were analyzed by MSL instruments including the Sample Analysis at Mars (SAM) and Chemistry and Mineralogy (CheMin) instruments in MSL's Analytical Laboratory. CheMin analyses revealed the first in situ X-ray diffraction based evidence of clay minerals on Mars, which are likely trioctahedral smectites (e.g., saponite) and comprise approx 20% of the mudstone sample (e.g., Bristow et al., this meeting). SAM analyses, which heated the mudstone samples to 1000 C and monitored volatiles evolved to perform in situ evolved gas analysis mass spectrometry (EGA-MS), resulted in a H2O trace exhibiting a wide evolution at temperatures < 500 C, and an evolution peak at higher temperatures near approx 750 C. The low temperature H2O evolution has many potential contributors, including adsorbed H2O, smectite interlayer H2O, and structural H2O/OH from bassanite and akaganeite (identified by CheMin) and H2O/OH from amorphous phases in the sample. The high temperature H2O is consistent with the evolution of H2O from the dehydroxylation of the smectite clay mineral. Comparison to EGA-MS data collected under SAM-like conditions on a variety of clay mineral reference materials indicate that a trioctahedral smectite, such as saponite, is most consistent with the high temperature H2O evolution observed. There may also be SAM EGA-MS evidence for a small high temperature H2O evolution from scoop samples from the Yellowknife Bay Rocknest sand shadow bedform. As in the mudstone samples, this evolution may indicate the detection of smectite clays, and the idea that minor clays may be present in Rocknest materials that could be expected to be at least partially derived from local sources is reasonable. But, because smectite clays were not definitively observed in CheMin analyses of Rocknest materials, they must be present at much lower abundances than the approx 20% observed in the mudstone samples. This potential detection

  19. Astronaut Sam Gemar works with Middeck O-Gravity Dynamics Experiment (MODE)

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Astronaut Charles D. (Sam) Gemar, mission specialist, works with the Middeck O-Gravity Dynamics Experiment (MODE) aboard the Earth-orbiting Space Shuttle Columbia. The reusable test facility is designed to study the nonlinear, gravity-dependent behavior of two types of space hardware - contained fluids and (as depicted here) large space structures - planned for future spacecraft.

  20. Combined Mössbauer spectroscopic, multi-edge X-ray absorption spectroscopic, and density functional theoretical study of the radical SAM enzyme spore photoproduct lyase.

    PubMed

    Silver, Sunshine C; Gardenghi, David J; Naik, Sunil G; Shepard, Eric M; Huynh, Boi Hanh; Szilagyi, Robert K; Broderick, Joan B

    2014-03-01

    Spore photoproduct lyase (SPL), a member of the radical S-adenosyl-L-methionine (SAM) superfamily, catalyzes the direct reversal of the spore photoproduct, a thymine dimer specific to bacterial spores, to two thymines. SPL requires SAM and a redox-active [4Fe-4S] cluster for catalysis. Mössbauer analysis of anaerobically purified SPL indicates the presence of a mixture of cluster states with the majority (40 %) as [2Fe-2S](2+) clusters and a smaller amount (15 %) as [4Fe-4S](2+) clusters. On reduction, the cluster content changes to primarily (60 %) [4Fe-4S](+). The speciation information from Mössbauer data allowed us to deconvolute iron and sulfur K-edge X-ray absorption spectra to uncover electronic (X-ray absorption near-edge structure, XANES) and geometric (extended X-ray absorption fine structure, EXAFS) structural features of the Fe-S clusters, and their interactions with SAM. The iron K-edge EXAFS data provide evidence for elongation of a [2Fe-2S] rhomb of the [4Fe-4S] cluster on binding SAM on the basis of an Fe···Fe scatterer at 3.0 Å. The XANES spectra of reduced SPL in the absence and presence of SAM overlay one another, indicating that SAM is not undergoing reductive cleavage. The X-ray absorption spectroscopy data for SPL samples and data for model complexes from the literature allowed the deconvolution of contributions from [2Fe-2S] and [4Fe-4S] clusters to the sulfur K-edge XANES spectra. The analysis of pre-edge features revealed electronic changes in the Fe-S clusters as a function of the presence of SAM. The spectroscopic findings were further corroborated by density functional theory calculations that provided insights into structural and electronic perturbations that can be correlated by considering the role of SAM as a catalyst or substrate.

  1. The effectiveness of treatment for Severe Acute Malnutrition (SAM) delivered by community health workers compared to a traditional facility based model.

    PubMed

    Alvarez Morán, J L; Alé, G B Franck; Charle, P; Sessions, N; Doumbia, S; Guerrero, S

    2018-03-27

    In most health systems, Community Health Workers (CHWs) identify and screen for severe acute malnutrition (SAM) in the community. This study aimed to investigate the potential of integrating SAM identification and treatment delivered by CHWs, in order to improve the coverage of SAM treatment services. This multicentre, randomised intervention study was conducted in Kita, Southwest Mali between February 2015 and February 2016. Treatment for uncomplicated SAM was provided in health facilities in the control area, and by Community Health Workers and health facilities in the intervention area. Clinical outcomes (cure, death and defaulter ratios), treatment coverage and quality of care were examined in both the control and intervention group. Six hundred ninety nine children were admitted to the intervention group and 235 children to the control group. The intervention group reported cure ratios of 94.2% compared to 88.6% in the control group (risk ratio 1.07 [95% CI 1.01; 1.13]). Defaulter ratios were twice as high in the control group compared to the intervention group (10.8% vs 4.5%; RR 0.42 [95% CI 0.25; 0.71]). Differences in mortality ratios were not statistically significant (0.9% in the intervention group compared to 0.8% in the control group). Coverage rates in December 2015 were 86.7% in intervention group compared to 41.6% in the control (p < 0.0001). With minimal training, CHWs are able to appropriately treat SAM in the community. Allowing CHWs to treat SAM reduces defaulter ratios without compromising treatment outcomes and can lead to improved access to treatment. Retrospectively registered in ISRCTN Register with ISRCTN33578874 on March 7th 2018.

  2. Detection of Reduced Nitrogen Compounds at Rocknest Using the Sample Analysis At Mars (SAM) Instrument on the Mars Science Laboratory (MSL)

    NASA Technical Reports Server (NTRS)

    Stern, J. C.; Steele, A.; Brunner, A.; Coll, P.; Eigenbrode, J.; Franz, H. B.; Freissinet, C.; Glavin, D.; Jones, J. H.; Navarro-Gonzalez, R.; hide

    2013-01-01

    The Sample Analysis at Mars (SAM) instrument suite on the Mars Science Laboratory (MSL) Curiosity Rover detected nitrogen-bearing compounds during the pyrolysis of Rocknest material at Gale Crater. Hydrogen cyanide and acetonitrile were identified by the quadrupole mass spectrometer (QMS) both in direct evolved gas analysis (EGA). SAM carried out four separate analyses from Rocknest Scoop 5. A significant low temperature release was present in Rocknest runs 1-4, while a smaller high temperature release was also seen in Rocknest runs 1-3. Here we evaluate whether these compounds are indigenous to Mars or a pyrolysis product resulting from known terrestrial materials that are part of the SAM derivatization.

  3. Development of the segment alignment maintenance system (SAMS) for the Hobby-Eberly Telescope

    NASA Astrophysics Data System (ADS)

    Booth, John A.; Adams, Mark T.; Ames, Gregory H.; Fowler, James R.; Montgomery, Edward E.; Rakoczy, John M.

    2000-07-01

    A sensing and control system for maintaining optical alignment of ninety-one 1-meter mirror segments forming the Hobby-Eberly Telescope (HET) primary mirror array is now under development. The Segment Alignment Maintenance System (SAMS) is designed to sense relative shear motion between each segment edge pair and calculated individual segment tip, tilt, and piston position errors. Error information is sent to the HET primary mirror control system, which corrects the physical position of each segment as often as once per minute. Development of SAMS is required to meet optical images quality specifications for the telescope. Segment misalignment over time is though to be due to thermal inhomogeneity within the steel mirror support truss. Challenging problems of sensor resolution, dynamic range, mechanical mounting, calibration, stability, robust algorithm development, and system integration must be overcome to achieve a successful operational solution.

  4. SLP-76 sterile α motif (SAM) and individual H5 α helix mediate oligomer formation for microclusters and T-cell activation.

    PubMed

    Liu, Hebin; Thaker, Youg Raj; Stagg, Loren; Schneider, Helga; Ladbury, John E; Rudd, Christopher E

    2013-10-11

    Despite the importance of the immune adaptor SLP-76 in T-cell immunity, it has been unclear whether SLP-76 directly self-associates to form higher order oligomers for T-cell activation. In this study, we show that SLP-76 self-associates in response to T-cell receptor ligation as mediated by the N-terminal sterile α motif (SAM) domain. SLP-76 co-precipitated alternately tagged SLP-76 in response to anti-CD3 ligation. Dynamic light scattering and fluorescent microscale thermophoresis of the isolated SAM domain (residues 1-78) revealed evidence of dimers and tetramers. Consistently, deletion of the SAM region eliminated SLP-76 co-precipitation of itself, concurrent with a loss of microcluster formation, nuclear factor of activated T-cells (NFAT) transcription, and interleukin-2 production in Jurkat or primary T-cells. Furthermore, the H5 α helix within the SAM domain contributed to self-association. Retention of H5 in the absence of H1-4 sufficed to support SLP-76 self-association with smaller microclusters that nevertheless enhanced anti-CD3-driven AP1/NFAT transcription and IL-2 production. By contrast, deletion of the H5 α helix impaired self-association and anti-CD3 induced AP1/NFAT transcription. Our data identified for the first time a role for the SAM domain in mediating SLP-76 self-association for T-cell function.

  5. Elp3 and RlmN: A tale of two mitochondrial tail-anchored radical SAM enzymes in Toxoplasma gondii.

    PubMed

    Padgett, Leah R; Lentini, Jenna M; Holmes, Michael J; Stilger, Krista L; Fu, Dragony; Sullivan, William J

    2018-01-01

    Radical S-adenosylmethionine (rSAM) enzymes use a 5'-deoxyadensyl 5'-radical to methylate a wide array of diverse substrates including proteins, lipids and nucleic acids. One such enzyme, Elongator protein-3 (TgElp3), is an essential protein in Toxoplasma gondii, a protozoan parasite that can cause life-threatening opportunistic disease. Unlike Elp3 homologues which are present in all domains of life, TgElp3 localizes to the outer mitochondrial membrane (OMM) via a tail-anchored trafficking mechanism in Toxoplasma. Intriguingly, we identified a second tail-anchored rSAM domain containing protein (TgRlmN) that also localizes to the OMM. The transmembrane domain (TMD) on Toxoplasma Elp3 and RlmN homologues is required for OMM localization and has not been seen beyond the chromalveolates. Both TgElp3 and TgRlmN contain the canonical rSAM amino acid sequence motif (CxxxCxxC) necessary to form the 4Fe-4S cluster required for tRNA modifications. In E. coli, RlmN is responsible for the 2-methlyadenosine (m2A) synthesis at purine 37 in tRNA while in S. cerevisiae, Elp3 is necessary for the formation of 5-methoxycarbonylmethyl-2-thiouridine (mcm5s2U) at the wobble tRNA position. To investigate why these two rSAM enzymes localize to the mitochondrion in Toxoplasma, and whether or not TgRlmN and TgElp3 possess tRNA methyltransferase activity, a series of mutational and biochemical studies were performed. Overexpression of either TgElp3 or TgRlmN resulted in a significant parasite replication defect, but overexpression was tolerated if either the TMD or rSAM domain was mutated. Furthermore, we show the first evidence that Toxoplasma tRNAGlu contains the mcm5s2U modification, which is the putative downstream product generated by TgElp3 activity.

  6. Isotopic Composition of Carbon Dioxide Released from Confidence Hills Sediment as Measured by the Sample Analysis at Mars (SAM) Quadrupole Mass Spectrometer

    NASA Technical Reports Server (NTRS)

    Franz, H. B.; Mahaffy, P. R.; Stern, J.; Archer, P., Jr.; Conrad, P.; Eigenbrode, J.; Freissinet, C.; Glavin, D.; Grotzinger, J. P.; Jones, J.; hide

    2015-01-01

    In October 2014, the Mars Science Laboratory (MSL) "Curiosity" rover drilled into the sediment at the base of Mount Sharp in a location namsed Cionfidence Hills (CH). CH marked the fifth sample pocessed by the Sample Analysis at Mars (SAM) instrument suite since Curiosity arrived in Gale Crater, with previous analyses performed at Rocknest (RN), John Klein (JK), Cumberland (CB), and Windjana (WJ). Evolved gas analysis (EGA) of all samples has indicated H2O as well as O-, C- and S-bearing phases in the samples, often at abundances that would be below the detection limit of the CheMin instrument. By examining the temperatures at which gases are evolved from samples, SAM EGA data can help provide clues to the mineralogy of volatile-bearing phases when their identities are unclear to CheMin. SAM may also detect gases evolved from amorphous material in solid samples, which is not suitable for analysis by CheMin. Finally, the isotopic composition of these gases may suggest possible formation scenarios and relationships between phases. We will discuss C isotope ratios of CO2 evolved from the CH sample as measured with SAM's quadrupole mass spectrometer (QMS) and draw comparisons to samples previously analyzed by SAM.

  7. The SAM framework: modeling the effects of management factors on human behavior in risk analysis.

    PubMed

    Murphy, D M; Paté-Cornell, M E

    1996-08-01

    Complex engineered systems, such as nuclear reactors and chemical plants, have the potential for catastrophic failure with disastrous consequences. In recent years, human and management factors have been recognized as frequent root causes of major failures in such systems. However, classical probabilistic risk analysis (PRA) techniques do not account for the underlying causes of these errors because they focus on the physical system and do not explicitly address the link between components' performance and organizational factors. This paper describes a general approach for addressing the human and management causes of system failure, called the SAM (System-Action-Management) framework. Beginning with a quantitative risk model of the physical system, SAM expands the scope of analysis to incorporate first the decisions and actions of individuals that affect the physical system. SAM then links management factors (incentives, training, policies and procedures, selection criteria, etc.) to those decisions and actions. The focus of this paper is on four quantitative models of action that describe this last relationship. These models address the formation of intentions for action and their execution as a function of the organizational environment. Intention formation is described by three alternative models: a rational model, a bounded rationality model, and a rule-based model. The execution of intentions is then modeled separately. These four models are designed to assess the probabilities of individual actions from the perspective of management, thus reflecting the uncertainties inherent to human behavior. The SAM framework is illustrated for a hypothetical case of hazardous materials transportation. This framework can be used as a tool to increase the safety and reliability of complex technical systems by modifying the organization, rather than, or in addition to, re-designing the physical system.

  8. Octadecyltrimethoxysilane functionalized ZnO nanorods as a novel coating for solid-phase microextraction with strong hydrophobic surface.

    PubMed

    Zeng, Jingbin; Liu, Haihong; Chen, Jinmei; Huang, Jianli; Yu, Jianfeng; Wang, Yiru; Chen, Xi

    2012-09-21

    In this paper, we have, for the first time, proposed an approach by combining self-assembled monolayers (SAMs) and nanomaterials (NMs) for the preparation of novel solid-phase microextraction (SPME) coatings. The self-assembly of octadecyltrimethoxysilane (OTMS) on the surface of ZnO nanorods (ZNRs) was selected as a model system to demonstrate the feasibility of this approach. The functionalization of OTMS on the surface of ZNRs was characterized and confirmed using scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). The OTMS-ZNRs coated fiber exhibited stronger hydrophobicity after functionalization, and its extraction efficiency for non-polar benzene homologues was increased by a factor of 1.5-3.6 when compared to a ZNRs fiber with almost identical thickness and façade. In contrast, the extraction efficiency of the OTMS-ZNRs coated fiber for polar aldehydes was 1.6-4.0-fold lower than that of the ZNRs coated fiber, further indicating its enhanced surface hydrophobicity. The OTMS-ZNRs coated fiber revealed a much higher capacity upon increasing the OTMS layer thickness to 5 μm, leading to a factor of 12.0-13.4 and 1.8-2.5 increase in extraction efficiency for the benzene homologues relative to a ZNRs coated fiber and a commercial PDMS fiber, respectively. The developed HS-SPME-GC method using the OTMS-ZNRs coated fiber was successfully applied to the determination of the benzene homologues in limnetic water samples with recovery ranging from 83 to 113% and relative standard deviations (RSDs) of less than 8%.

  9. Fast self-assembly of silver nanoparticle monolayer in hydrophobic environment and its application as SERS substrate

    NASA Astrophysics Data System (ADS)

    Leiterer, Christian; Zopf, David; Seise, Barbara; Jahn, Franka; Weber, Karina; Popp, Jürgen; Cialla-May, Dana; Fritzsche, Wolfgang

    2014-09-01

    We present a method which allows the straightforward wet-chemical synthesis of silver nanoparticles (AgNPs), hydrophobic coating assembling into monolayer, and their utilization as substrates for surface-enhanced Raman spectroscopy (SERS). In order to fabricate the SERS-active substrates, AgNPs were synthesized in water by chemical reduction of Ag+, coated with a hydrophobic shell (dodecanethiol), transferred to a non-polar solvent, and finally assembled through precipitation into a SERS-active self-assembled monolayer (SAM). Simple approaches for concentration and purification of the coated AgNPs are shown. The synthesized particles and SAMs were characterized by transmission electron microscopy, optical imaging, and spectroscopic measurements. This manuscript can be used as a do-it-yourself (DIY) tutorial which allows making SAMs from coated AgNPs (<15 nm) in every laboratory within less than 1 h and their utilization as potential low-cost SERS substrates (movie 1-4).

  10. Detection and Quantification of Nitrogen Compounds in the First Drilled Martian Solid Samples by the Sample Analysis at Mars (SAM) Instrument Suite on the Mars Science Laboratory (MSL)

    NASA Technical Reports Server (NTRS)

    Stern, Jennifer C.; Navarro-Gonzalez, Rafael; Freissinet, Caroline; McKay, Christopher P.; Archer, P. Douglas, Jr.; Buch, Arnaud; Coll, Patrice; Eigenbrode, Jennifer L.; Franz, Heather B.; Glavin, Daniel P.; hide

    2014-01-01

    The Sampl;e Analysis at Mars (sam) instrument suite on the Mars Science Laboratory (MSL) Curiosity Rover detected both reduced and oxidized nitrogen bearing compounds during the pyrolysis of surface materials from the three sites at Gale Crater. Preliminary detections of nitrogen species include No, HCN, ClCN, and TFMA ((trifluoro-N-methyl-acetamide), Confirmation of indigenous Martian nitrogen-bearing compounds requires quantifying N contribution from the terrestrial derivatization reagents carried for SAM's wet chemistry experiment that contribute to the SAM background. Nitrogen species detected in the SAM solid sample analyses can also be produced during laboratory pyrolysis experiments where these reagents are heated in the presence of perchlorate a compound that has also been identified by SAM in Mars solid samples.

  11. Astronaut Sam Gemar works with Middeck O-Gravity Dynamics Experiment (MODE)

    NASA Image and Video Library

    1994-03-04

    STS062-23-017 (4-18 March 1994) --- Astronaut Charles D. (Sam) Gemar, mission specialist, works with Middeck 0-Gravity Dynamics Experiment (MODE) aboard the earth-orbiting Space Shuttle Columbia. The reusable test facility is designed to study the nonlinear, gravity-dependent behavior of two types of space hardware -- contained fluids and (as depicted here) large space structures -- planned for future spacecraft.

  12. Searching for Reduced Carbon on the Surface of Mars: The SAM Combustion Experiment

    NASA Astrophysics Data System (ADS)

    Stern, J. C.; Malespin, C. A.; Mahaffy, P. R.; Webster, C. R.; Eigenbrode, J. L.; Archer, P. D.; Brunner, A. E.; Freissinet, C.; Franz, H. B.; Glavin, D. P.; Graham, H. V.; McAdam, A. C.; Ming, D. W.; Navarro-Gonzalez, R.; Niles, P. B.; Steele, A.; Sutter, B.; Trainer, M. G.; MSL Science Team

    2014-07-01

    The SAM Combustion Experiment combusts reduced materials in solid samples for oxidized species quantification and C and H isotopic analysis of CO2 and H2O, with the goal of understanding the inventory of organic carbon and history of water on Mars.

  13. Optical imaging beyond the diffraction limit by SNEM: effects of AFM tip modifications with thiol monolayers on imaging quality.

    PubMed

    Cumurcu, Aysegul; Diaz, Jordi; Lindsay, Ian D; de Beer, Sissi; Duvigneau, Joost; Schön, Peter; Julius Vancso, G

    2015-03-01

    Tip-enhanced nanoscale optical imaging techniques such as apertureless scanning near-field optical microscopy (a-SNOM) and scanning near-field ellipsometric microscopy (SNEM) applications can suffer from a steady degradation in performance due to adhesion of atmospheric contaminants to the metal coated tip. Here, we demonstrate that a self-assembled monolayer (SAM) of ethanethiol (EtSH) is an effective means of protecting gold-coated atomic force microscopy (AFM) probe tips from accumulation of surface contaminants during prolonged exposure to ambient air. The period over which they yield consistent and reproducible results for scanning near-field ellipsometric microscopy (SNEM) imaging is thus extended. SNEM optical images of a microphase separated polystyrene-block-poly (methylmethacrylate) (PS-b-PMMA) diblock copolymer film, which were captured with bare and SAM-protected gold-coated AFM probes, both immediately after coating and following five days of storage in ambient air, were compared. During this period the intensity of the optical signals from the untreated gold tip fell by 66%, while those from the SAM protected tip fell by 14%. Additionally, gold coated AFM probe tips were modified with various lengths of alkanethiols to measure the change in intensity variation in the optical images with SAM layer thickness. The experimental results were compared to point dipole model calculations. While a SAM of 1-dodecanethiol (DoSH) was found to strongly suppress field enhancement we find that it can be locally removed from the tip apex by deforming the molecules under load, restoring SNEM image contrast. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Wide Range Vacuum Pumps for the SAM Instrument on the MSL Curiosity Rover

    NASA Technical Reports Server (NTRS)

    Sorensen, Paul; Kline-Schoder, Robert; Farley, Rodger

    2014-01-01

    Creare Incorporated and NASA Goddard Space Flight Center developed and space qualified two wide range pumps (WRPs) that were included in the Sample Analysis at Mars (SAM) instrument. This instrument was subsequently integrated into the Mars Science Laboratory (MSL) "Curiosity Rover," launched aboard an Atlas V rocket in 2011, and landed on August 6, 2012, in the Gale Crater on Mars. The pumps have now operated for more than 18 months in the Gale Crater and have been evacuating the key components of the SAM instrument: a quadrupole mass spectrometer, a tunable laser spectrometer, and six gas chromatograph columns. In this paper, we describe the main design challenges and the ways in which they were solved. This includes the custom design of a miniaturized, high-speed motor to drive the turbo drag pump rotor, analysis of rotor dynamics for super critical operation, and bearing/lubricant design/selection.

  15. The Combustion Experiment on the Sample Analysis at Mars (SAM) Instrument Suite on the Curiosity Rover

    NASA Technical Reports Server (NTRS)

    Stern, J. C.; Malespin, C. A.; Eigenbrode, J.; Graham, H. V.; Archer, P. D.; Brunner, A.; Freissinet, C.; Franz, H. B.; Fuentes, J.; Glavin, D. P.; hide

    2014-01-01

    The combustion experiment on the Sample Analysis at Mars (SAM) suite on Curiosity will heat a sample of Mars regolith in the presence of oxygen and measure composition of the evolved gases using quadrupole mass spectrometry (QMS) and tunable laser spectrometry (TLS). QMS will enable detection of combustion products such as CO, CO2, NO, and other oxidized species, while TLS will enable precision measurements of the abundance and carbon isotopic composition (delta C-13) of the evolved CO2 and hydrogen isotopic composition (delta D) of H2O. SAM will perform a two-step combustion to isolate combustible materials below approx. 550 C and above approx. 550 C.

  16. Hierarchical Storage Management at the NASA Center for Computational Sciences: From UniTree to SAM-QFS

    NASA Technical Reports Server (NTRS)

    Salmon, Ellen; Tarshish, Adina; Palm, Nancy; Patel, Sanjay; Saletta, Marty; Vanderlan, Ed; Rouch, Mike; Burns, Lisa; Duffy, Daniel; Caine, Robert

    2004-01-01

    This paper presents the data management issues associated with a large center like the NCCS and how these issues are addressed. More specifically, the focus of this paper is on the recent transition from a legacy UniTree (Legato) system to a SAM-QFS (Sun) system. Therefore, this paper will describe the motivations, from both a hardware and software perspective, for migrating from one system to another. Coupled with the migration from UniTree into SAM-QFS, the complete mass storage environment was upgraded to provide high availability, redundancy, and enhanced performance. This paper will describe the resulting solution and lessons learned throughout the migration process.

  17. Influence of Oxychlorine Phases on the Pyrolysis of Organics Trapped in Jarosite and the Quest of Organics on Mars with the SAM Instrument Onboard Curiosity

    NASA Astrophysics Data System (ADS)

    Millan, M.; Lewis, J. M. T.; Eigenbrode, J. L.; Freissinet, C.; Szopa, C.; Buch, A.; McAdam, A.; Glavin, D. P.; Navarro-Gonzalez, R.; Johnson, S. S.; Mahaffy, P. R.

    2017-12-01

    The Curiosity rover is currently analyzing the base of Mt Sharp in Mars' Gale crater to find clues of habitability in the stratigraphic layers of rocks. One of its goal is the search of organic compounds thanks to the Sample Analysis at Mars (SAM) experiment. With this aim, SAM performs in situ molecular analysis of gases evolved from the heat of the solid samples collected by Curiosity. SAM uses a gas-chromatograph mass-spectrometer (GCMS), to detect/identify inorganics and organics present in the samples. During the pyrolysis, chemical reactions can occur between the gases thermally released from minerals and organic molecules SAM is looking for. Beyond the minerals involved, oxychlorines, likely spread at Mars' surface, liberate dioxygen and chlorine species, and sulfates release sulfur-bearing species. The detection of Cl- and S-bearing organics were attributed to reactions between oxychlorines, sulfates and organics. These last were proved to come from SAM instrument background and Mars indigenous organics, proving the presence of organics on Mars. However, the identification of their precursors is complex due to the chemical reactivity in the SAM ovens. Recent studies suggest compounds from various chemical families, as potential precursors of the chlorohydrocarbons detected on Mars, but considered limited parameters and mineralogy. Laboratory experiments have been performed to understand the influence of oxychlorines on organic matter incorporated in sulfates, during pyrolysis. To do so, organics from chemical families potentially present on Mars and synthetized in laboratory within jarosite, a ferric sulfate, were pyrolyzed in presence of oxychlorines. GCMS was used to identify the pyrolysis products and try to correlate them with the organo-chlorinated compounds detected by SAM. This helps discriminate their likely parent organics or chemical families. The work includes the investigation of sulfurized compounds generated from reactions between the organics

  18. Construct Validation of the Louisiana School Analysis Model (SAM) Instructional Staff Questionnaire

    ERIC Educational Resources Information Center

    Bray-Clark, Nikki; Bates, Reid

    2005-01-01

    The purpose of this study was to validate the Louisiana SAM Instructional Staff Questionnaire, a key component of the Louisiana School Analysis Model. The model was designed as a comprehensive evaluation tool for schools. Principle axis factoring with oblique rotation was used to uncover the underlying structure of the SISQ. (Contains 1 table.)

  19. SLP-76 Sterile α Motif (SAM) and Individual H5 α Helix Mediate Oligomer Formation for Microclusters and T-cell Activation*

    PubMed Central

    Liu, Hebin; Thaker, Youg Raj; Stagg, Loren; Schneider, Helga; Ladbury, John E.; Rudd, Christopher E.

    2013-01-01

    Despite the importance of the immune adaptor SLP-76 in T-cell immunity, it has been unclear whether SLP-76 directly self-associates to form higher order oligomers for T-cell activation. In this study, we show that SLP-76 self-associates in response to T-cell receptor ligation as mediated by the N-terminal sterile α motif (SAM) domain. SLP-76 co-precipitated alternately tagged SLP-76 in response to anti-CD3 ligation. Dynamic light scattering and fluorescent microscale thermophoresis of the isolated SAM domain (residues 1–78) revealed evidence of dimers and tetramers. Consistently, deletion of the SAM region eliminated SLP-76 co-precipitation of itself, concurrent with a loss of microcluster formation, nuclear factor of activated T-cells (NFAT) transcription, and interleukin-2 production in Jurkat or primary T-cells. Furthermore, the H5 α helix within the SAM domain contributed to self-association. Retention of H5 in the absence of H1–4 sufficed to support SLP-76 self-association with smaller microclusters that nevertheless enhanced anti-CD3-driven AP1/NFAT transcription and IL-2 production. By contrast, deletion of the H5 α helix impaired self-association and anti-CD3 induced AP1/NFAT transcription. Our data identified for the first time a role for the SAM domain in mediating SLP-76 self-association for T-cell function. PMID:23935094

  20. Detection and Quantification of Nitrogen Compounds in the First Drilled Martian Solid Samples by the Sample Analysis at Mars (SAM) Instrument Suite on the Mars Science Laboratory (MSL)

    NASA Technical Reports Server (NTRS)

    Stern, J. C.; Navarro-Gonzales, R.; Freissinet, C.; McKay, C. P.; Archer, P. D., Jr.; Buch, A.; Brunner, A. E.; Coll, P.; Eigenbrode, J. L.; Franz, H. B.; hide

    2014-01-01

    The Sample Analysis at Mars (SAM) instrument suite on the Mars Science Laboratory (MSL) Curiosity Rover detected both reduced and oxidized nitrogen-bearing compounds during the pyrolysis of surface materials at Yellowknife Bay in Gale Crater. Preliminary detections of nitrogen species include NO, HCN, ClCN, CH3CN, and TFMA (trifluoro-N-methyl-acetamide). Confirmation of indigenous Martian N-bearing compounds requires quantifying N contribution from the terrestrial derivatization reagents (e.g. N-methyl-N-tertbutyldimethylsilyltrifluoroacetamide, MTBSTFA and dimethylformamide, DMF) carried for SAM's wet chemistry experiment that contribute to the SAM background. Nitrogen species detected in the SAM solid sample analyses can also be produced during laboratory pyrolysis experiments where these reagents are heated in the presence of perchlorate, a compound that has also been identified by SAM in Mars solid samples.

  1. Inversion of solar extinction data from the Apollo-Soyuz Test Project Stratospheric Aerosol Measurement (ASTP/SAM) experiment

    NASA Technical Reports Server (NTRS)

    Pepin, T. J.

    1977-01-01

    The inversion methods are reported that have been used to determine the vertical profile of the extinction coefficient due to the stratospheric aerosols from data measured during the ASTP/SAM solar occultation experiment. Inversion methods include the onion skin peel technique and methods of solving the Fredholm equation for the problem subject to smoothing constraints. The latter of these approaches involves a double inversion scheme. Comparisons are made between the inverted results from the SAM experiment and near simultaneous measurements made by lidar and balloon born dustsonde. The results are used to demonstrate the assumptions required to perform the inversions for aerosols.

  2. Reactions Involving Calcium and Magnesium Sulfates as Potential Sources of Sulfur Dioxide During MSL SAM Evolved Gas Analyses

    NASA Technical Reports Server (NTRS)

    McAdam, A. C.; Knudson, C. A.; Sutter, B.; Franz, H. B.; Archer, P. D., Jr.; Eigenbrode, J. L.; Ming, D. W.; Morris, R. V.; Hurowitz, J. A.; Mahaffy, P. R.; hide

    2016-01-01

    The Sample Analysis at Mars (SAM) and Chemistry and Mineralogy (CheMin) instruments on the Mars Science Laboratory (MSL) have analyzed several subsamples of <150 micron fines from ten sites at Gale Crater. Three were in Yellowknife Bay: the Rocknest aeolian bedform (RN) and drilled Sheepbed mudstone from sites John Klein (JK) and Cumberland (CB). One was drilled from the Windjana (WJ) site on a sandstone of the Kimberly formation. Four were drilled from sites Confidence Hills (CH), Mojave (MJ), Telegraph Peak (TP) and Buckskin (BK) of the Murray Formation at the base of Mt. Sharp. Two were drilled from sandstones of the Stimson formation targeting relatively unaltered (Big Sky, BY) and then altered (Greenhorn, GH) material associated with a light colored fracture zone. CheMin analyses provided quantitative sample mineralogy. SAM's evolved gas analysis mass spectrometry (EGA-MS) detected H2O, CO2, O2, H2, SO2, H2S, HCl, NO, and other trace gases. This contribution will focus on evolved SO2. All samples evolved SO2 above 500 C. The shapes of the SO2 evolution traces with temperature vary between samples but most have at least two "peaks' within the wide high temperature evolution, from approx. 500-700 and approx. 700-860 C (Fig. 1). In many cases, the only sulfur minerals detected with CheMin were Ca sulfates (e.g., RN and GH), which should thermally decompose at temperatures above those obtainable by SAM (>860 C). Sulfides or Fe sulfates were detected by CheMin (e.g., CB, MJ, BK) and could contribute to the high temperature SO2 evolution, but in most cases they are not present in enough abundance to account for all of the SO2. This additional SO2 could be largely associated with x-ray amorphous material, which comprises a significant portion of all samples. It can also be attributed to trace S phases present below the CheMin detection limit, or to reactions which lower the temperatures of SO2 evolution from sulfates that are typically expected to thermally decompose

  3. Active Region Soft X-Ray Spectra as Observed Using Sounding Rocket Measurements from the Solar Aspect Monitor (SAM), - a Modified SDO/EVE Instrument

    NASA Astrophysics Data System (ADS)

    Wieman, S. R.; Didkovsky, L. V.; Woods, T. N.; Jones, A. R.; Caspi, A.; Warren, H. P.

    2015-12-01

    Observations of solar active regions (ARs) in the soft x-ray spectral range (0.5 to 3.0 nm) were made on sounding rocket flight NASA 36.290 using a modified Solar Aspect Monitor (SAM), a pinhole camera on the EUV Variability Experiment (EVE) sounding rocket instrument. The suite of EVE rocket instruments is designed for under-flight calibrations of the orbital EVE on SDO. While the sounding rocket EVE instrument is for the most part a duplicate of the EVE on SDO, the SAM channel on the rocket version was modified in 2012 to include a free-standing transmission grating so that it could provide spectrally resolved images of the solar disk with the best signal to noise ratio for the brightest features on it, such as ARs. Calibrations of the EVE sounding rocket instrument at the National Institute of Standards and Technology Synchrotron Ultraviolet Radiation Facility (NIST SURF) have provided a measurement of the SAM absolute spectral response function and a mapping of wavelength separation in the grating diffraction pattern. For solar observations, this spectral separation is on a similar scale to the spatial size of the AR on the CCD, so dispersed AR images associated with emission lines of similar wavelength tend to overlap. Furthermore, SAM shares a CCD detector with MEGS-A, a separate EVE spectrometer channel, and artifacts of the MEGS-A signal (a set of bright spectral lines) appear in the SAM images. For these reasons some processing and analysis of the solar images obtained by SAM must be performed in order to determine spectra of the observed ARs. We present a method for determining AR spectra from the SAM rocket images and report initial soft X-ray spectra for two of the major active regions (AR11877 and AR11875) observed on flight 36.290 on 21 October 2013 at about 18:30 UT. We also compare our results with concurrent measurements from other solar soft x-ray instrumentation.

  4. Resilience as positive coping appraisals: Testing the schematic appraisals model of suicide (SAMS).

    PubMed

    Johnson, J; Gooding, P A; Wood, A M; Tarrier, N

    2010-03-01

    The Schematic Appraisals Model of Suicide (SAMS) suggests that positive self-appraisals may be important for buffering suicidal thoughts and behaviours, potentially providing a key source of resilience. The current study aimed to explore whether positive self-appraisals buffered individuals from suicidality in the face of stressful life events. 78 participants who reported experiencing some degree of suicidality were recruited from a student population. They completed a battery of questionnaires including measures of suicidality, stressful life events and positive self-appraisals. Positive self-appraisals moderated the association between stressful life events and suicidality. For those reporting moderate or high levels of positive self-appraisals, raised incidence of stressful life events did not lead to increases in suicidality. These results support the SAMS framework, and suggest that positive self-appraisals may confer resilience to suicide. Positive self-appraisals may be a promising avenue for further resilience research, and an important area to target for suicide interventions. 2009 Elsevier Ltd. All rights reserved.

  5. C-C bond forming radical SAM enzymes involved in the construction of carbon skeletons of cofactors and natural products.

    PubMed

    Yokoyama, Kenichi; Lilla, Edward A

    2018-04-10

    Covering: up to the end of 2017C-C bond formations are frequently the key steps in cofactor and natural product biosynthesis. Historically, C-C bond formations were thought to proceed by two electron mechanisms, represented by Claisen condensation in fatty acids and polyketide biosynthesis. These types of mechanisms require activated substrates to create a nucleophile and an electrophile. More recently, increasing number of C-C bond formations catalyzed by radical SAM enzymes are being identified. These free radical mediated reactions can proceed between almost any sp3 and sp2 carbon centers, allowing introduction of C-C bonds at unconventional positions in metabolites. Therefore, free radical mediated C-C bond formations are frequently found in the construction of structurally unique and complex metabolites. This review discusses our current understanding of the functions and mechanisms of C-C bond forming radical SAM enzymes and highlights their important roles in the biosynthesis of structurally complex, naturally occurring organic molecules. Mechanistic consideration of C-C bond formation by radical SAM enzymes identifies the significance of three key mechanistic factors: radical initiation, acceptor substrate activation and radical quenching. Understanding the functions and mechanisms of these characteristic enzymes will be important not only in promoting our understanding of radical SAM enzymes, but also for understanding natural product and cofactor biosynthesis.

  6. Carbon and Sulfur Isotopic Composition of Yellowknife Bay Sediments: Measurements by the Sample Analysis at Mars (SAM) Quadrupole Mass Spectrometer

    NASA Technical Reports Server (NTRS)

    Franz, H. B.; Mahaffy, P. R.; Stern, J. C.; Eigenbrode, J. L.; Steele, A.; Ming, D. W.; McAdam, A. C.; Freissinet, C.; Glavin, D. P.; Archer, P. D.; hide

    2014-01-01

    Since landing at Gale Crater in Au-gust 2012, the Sample Analysis at Mars (SAM) instru-ment suite on the Mars Science Laboratory (MSL) “Curiosity” rover has analyzed solid samples from the martian regolith in three locations, beginning with a scoop of aeolian deposits from the Rocknest (RN) sand shadow. Curiosity subsequently traveled to Yellowknife Bay, where SAM analyzed samples from two separate holes drilled into the Sheepbed Mudstone, designated John Klein (JK) and Cumberland (CB). Evolved gas analysis (EGA) of all samples revealed the presence of H2O as well as O-, C- and S-bearing phas-es, in most cases at abundances below the detection limit of the CheMin instrument. In the absence of definitive mineralogical identification by CheMin, SAM EGA data can help provide clues to the mineralogy of volatile-bearing phases through examination of tem-peratures at which gases are evolved from solid sam-ples. In addition, the isotopic composition of these gas-es may be used to identify possible formation scenarios and relationships between phases. Here we report C and S isotope ratios for CO2 and SO2 evolved from the JK and CB mudstone samples as measured with SAM’s quadrupole mass spectrometer (QMS) and draw com-parisons to RN.

  7. MSL/SAM Measurements of Non Condensable Volatiles, Comparison with Viking Lander, and Implications for Seasonal Cycle

    NASA Astrophysics Data System (ADS)

    Atreya, Sushil; Squyres, Steve; Mahaffy, Paul; Leshin, Laurie; Franz, Heather; Trainer, Melissa; Wong, Michael; McKay, Christopher; Navarro-Gonzalez, Rafael; ScienceTeam, MarsScienceLab

    2013-04-01

    The first measurements of the composition of the Martian atmosphere above Gale Crater by the Sample Analysis at Mars (SAM) instrument on Curiosity Rover revealed that although the volume mixing ratios (vmr) of the gases are generally similar to those measured by the Viking Lander 2 (VL2) thirty five years ago [2], they are notably different for N2 and 40Ar [1]. SAM finds a vmr of 1.9% each for N2 and Ar, so that N2 is 30% lower while Ar is 21% greater than the corresponding VL2 values, resulting in a 40% lower N2/Ar ratio compared to the VL2 result. The Ar/N ratio is used to assess the degree of mixing between the Martian atmosphere and the internal gas component of Mars meteorites due to the shock of impact ejection [e.g. 3]. The above differences in N2 and 40Ar seem to result either from different instrument characteristics or time variable atmospheric phenomena or both. The VL2 data were taken during northern summer (48°N, Ls=135°), whereas the SAM measurements correspond to the beginning of spring season (4.5°S, Ls=182-190°). Previous observations by Mars Odyssey Gamma Ray Spectrometer over three years have shown that the Ar mixing ratio increased by a factor of 6 over the south polar region in the winter [4]. However, the data are controversial for the equatorial region, ranging from no seasonal change [4] to as much as a 35% change [5]. No significant change was seen between the equator (SAM) and the midlatitude northern summer (VL2), however [4]. Thus the difference between the SAM and VL2 Ar does not appear to be related to different seasons. On the other hand, the vmr's of non-condensable volatiles (NCV), N2, Ar and CO, at any latitude are expected to vary seasonally due to the annual, global CO2 cycle. Diurnal changes are not expected, considering the long lifetimes of NCV's that exceed the martian year [6]. In addition to Ar, seasonal changes have been recorded in CO from ground-based [7] and MRO/CRISM observations [8], but show a much smaller

  8. A nano-patterned self assembled monolayer (SAM) rutile titania cancer chip for rapid, low cost, highly sensitive, direct cancer analysis in MALDI-MS.

    PubMed

    Manikandan, M; Gopal, Judy; Hasan, Nazim; Wu, Hui-Fen

    2014-12-01

    We developed a cancer chip by nano-patterning a highly sensitive SAM titanium surface capable of capturing and sensing concentrations as low as 10 cancer cells/mL from the environment by Matrix Assisted Laser Desorption and Ionization Time of Flight Mass Spectrometry (MALDI-TOF MS). The current approach evades any form of pretreatment and sample preparation processes; it is time saving and does not require the (expensive) conventional MALDI target plate. The home made aluminium (Al) target holder cost, on which we loaded the cancer chips for MALDI-TOF MS analysis, is about 60 USD. While the conventional stainless steel MALDI target plate is more than 700 USD. The SAM surface was an effective platform leading to on-chip direct MALDI-MS detection of cancer cells. We compared the functionality of this chip with the unmodified titanium surfaces and thermally oxidized (TO) titanium surfaces. The lowest detectable concentration of the TO chip was 10(3) cells/mL, while the lowest detectable concentration of the control or unmodified titanium chips was 10(6) cells/mL. Compared to the control surface, the SAM cancer chip showed 100,000 times of enhanced sensitivity and compared with the TO chip, 1000 times of increased sensitivity. The high sensitivity of the SAM surfaces is attributed to the presence of the rutile SAM, surface roughness and surface wettability as confirmed by AFM, XRD, contact angle microscope and FE-SEM. This study opens a new avenue for the potent application of the SAM cancer chip for direct cancer diagnosis by MALDI-TOF MS in the near future. Copyright © 2014. Published by Elsevier B.V.

  9. Efficient degradation of sulfamethazine in simulated and real wastewater at slightly basic pH values using Co-SAM-SCS /H2O2 Fenton-like system.

    PubMed

    Cheng, Min; Zeng, Guangming; Huang, Danlian; Lai, Cui; Liu, Yang; Zhang, Chen; Wan, Jia; Hu, Liang; Zhou, Chengyun; Xiong, Weiping

    2018-07-01

    The presence of antibiotics in aquatic environments has attracted global concern. Fenton process is an attractive yet challenging method for antibiotics degradation, especially when such a reaction can be conducted at neutral pH values. In this study, a novel composite Fe/Co catalyst was synthesized via the modification of steel converter slag (SCS) by salicylic acid-methanol (SAM) and cobalt nitrate (Co(NO 3 ) 2 ). The catalysts were characterized by N 2 -Brunauer-Emmett-Teller (BET), X-ray diffraction (XRD), Fourier transform infrared (FT-IR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). The results indicated that the Co-SAM-SCS/H 2 O 2 Fenton-like system was very effective for sulfamethazine (SMZ) degradation at a wide pH range. At initial pH of 7.0, the degradation rate of SMZ in Co-SAM-SCS/H 2 O 2 system was 2.48, 3.20, 6.18, and 16.21 times of that in Fe-SAM-SCS/H 2 O 2 , SAM-SCS/H 2 O 2 , Co(NO 3 ) 2 /H 2 O 2 and SCS/H 2 O 2 system, respectively. The preliminary analysis suggested that high surface area of Co-SAM-SCS sample and synergistic effect between introduced Co and SAM-SCS are responsible for the efficient catalytic activity. During the degradation, three main intermediates were identified by high performance liquid chromatography-mass spectrometry (HPLC-MS) analysis. Based on this, a possible degradation pathway was proposed. The SEM images, XRD patterns and XPS spectra before and after the reactions demonstrate that the crystal and chemical structure of Co-SAM-SCS after five cycles are almost unchanged. Besides, the Co-SAM-SCS presented low iron and cobalt leaching (0.17 mg/L and 2.36 mg/L, respectively). The studied Fenton-like process also showed high degradation of SMZ in river water and municipal wastewater. The progress will bring valuable insights to develop high-performance heterogeneous Fenton-like catalysts for environmental remediation. Copyright © 2018

  10. In situ analysis of martian regolith with the SAM experiment during the first mars year of the MSL mission: Identification of organic molecules by gas chromatography from laboratory measurements

    NASA Astrophysics Data System (ADS)

    Millan, M.; Szopa, C.; Buch, A.; Coll, P.; Glavin, D. P.; Freissinet, C.; Navarro-Gonzalez, R.; François, P.; Coscia, D.; Bonnet, J. Y.; Teinturier, S.; Cabane, M.; Mahaffy, P. R.

    2016-09-01

    The Sample Analysis at Mars (SAM) instrument onboard the Curiosity rover, is specifically designed for in situ molecular and isotopic analyses of martian surface materials and atmosphere. It contributes to the Mars Science Laboratory (MSL) missions primary scientific goal to characterize the potential past, present or future habitability of Mars. In all of the analyses of solid samples delivered to SAM so far, chlorinated organic compounds have been detected above instrument background levels and identified by gas chromatography coupled to mass spectrometry (GC-MS) (Freissinet et al., 2015; Glavin et al., 2013). While some of these may originate from reactions between oxychlorines and terrestrial organic carbon present in the instrument background (Glavin et al., 2013), others have been demonstrated to originate from indigenous organic carbon present in samples (Freissinet et al., 2015). We present here laboratory calibrations that focused on the analyses performed with the MXT-CLP GC column (SAM GC-5 channel) used for nearly all of the GC-MS analyses of the martian soil samples carried out with SAM to date. Complementary to the mass spectrometric data, gas chromatography allows us to separate and identify the species analyzable in a nominal SAM-GC run time of about 21 min. To characterize the analytical capabilities of this channel within the SAM Flight Model (FM) operating conditions on Mars, and their implications on the detection of organic matter, it is required to perform laboratory experimental tests and calibrations on spare model components. This work assesses the SAM flight GC-5 column efficiency, confirms the identification of the molecules based on their retention time, and enables a better understanding of the behavior of the SAM injection trap (IT) and its release of organic molecules. This work will enable further optimization of the SAM-GC runs for additional samples to be analyzed during the MSL mission.

  11. In Situ Analysis of Martian Regolith with the SAM Experiment During the First Mars Year of the MSL Mission: Identification of Organic Molecules by Gas Chromatography from Laboratory Measurements

    NASA Technical Reports Server (NTRS)

    Millan, M.; Szopa, C.; Buch, A.; Coll, P.; Glavin, D. P.; Freissinet, C.; Navarro-Gonzalez, R.; Francois, P.; Coscia, D.; Bonnet, J. Y.; hide

    2016-01-01

    The Sample Analysis at Mars (SAM) instrument onboard the Curiosity rover, is specifically designed for in situ molecular and isotopic analyses of martian surface materials and atmosphere. It contributes to the Mars Science Laboratory (MSL) missions primary scientific goal to characterize the potential past, present or future habitability of Mars. In all of the analyses of solid samples delivered to SAM so far, chlorinated organic compounds have been detected above instrument background levels and identified by gas chromatography coupled to mass spectrometry (GC-MS) (Freissinet et al., 2015; Glavin et al., 2013). While some of these may originate from reactions between oxychlorines and terrestrial organic carbon present in the instrument background (Glavin et al., 2013), others have been demonstrated to originate from indigenous organic carbon present in samples (Freissinet et al., 2015). We present here laboratory calibrations that focused on the analyses performed with the MXT-CLP GC column (SAM GC-5 channel) used for nearly all of the GC-MS analyses of the martian soil samples carried out with SAM to date. Complementary to the mass spectrometric data, gas chromatography allows us to separate and identify the species analyzable in a nominal SAM-GC run time of about 21 min. To characterize the analytical capabilities of this channel within the SAM Flight Model (FM) operating conditions on Mars, and their implications on the detection of organic matter, it is required to perform laboratory experimental tests and calibrations on spare model components. This work assesses the SAM flight GC-5 column efficiency, confirms the identification of the molecules based on their retention time, and enables a better understanding of the behavior of the SAM injection trap (IT) and its release of organic molecules. This work will enable further optimization of the SAM-GC runs for additional samples to be analyzed during the MSL mission.

  12. Potential sources of artifacts and backgrounds generated by the sample preparation of the SAM experiment aboard the Curiosity Rover on Mars

    NASA Astrophysics Data System (ADS)

    Buch, Arnaud; Belmahdi, Imene; Szopa, Cyril; Freissinet, Caroline; Glavin, Daniel P.; Eigenbrode, Jennifer; Summons, Roger; Miller, Kristen; Coll, Patrice; cabane, Michel; Navarro-Gonzalez, Rafael; Stern, Jennifer; Coscia, David; Teinturier, Samuel; Bonnet, Jean-Yves; Dequaire, Tristan; Mahaffy, Paul; MSL Science Team

    2016-10-01

    Sample Analysis at Mars (SAM) is one of the instruments of the MSL mission. Three analytical devices are onboard SAM: the Tunable Laser Spectrometer (TLS), the Gas Chromatography (GC) and the Mass Spectrometer (MS). To adapt the nature of a sample to the analytical devices used on SAM, a sample preparation and gas processing system is implemented with (a) a pyrolysis system, (b) wet chemistry: MTBSTFA and TMAH (c) the hydrocarbon trap (silica beads, Tenax® TA and Carbosieve G) which is employed to concentrate volatiles released from the sample prior to GC-MS analysis [1].Volatile compounds and abundant chlorinated hydrocarbons have been detected with SAM when analyzing samples collected in several sites explored by Curiosity rover. Some volatile compounds (chlorinated and non-chlorinated) come from the degradation of the MTBSTFA under high temperature or by the reaction of Martian oxychlorine compounds (present in the samples) with terrestrial carbon coming from the derivatization agent (MTBSTFA) used in SAM [2,3]. But other chlorinated compounds do not follow this pathway. For example, Chlorobenzene has been detected by SAM but it cannot be formed by the reaction of MTBSTFA and perchlorates. Then, two other reaction pathways for chlorobenzene were therefore proposed: (1) reactions between the volatile thermal degradation products of perchlorates (e.g. O2, Cl2 and HCl) and Tenax® and (2) the interaction of perchlorates (T>200°C) with organic material from Mars's soil such as benzenecarboxylates. However, even if major part of the chlorobenzene detected has been identified as Martian origin [4] it is important to list all the potential byproducts able to be released from the Tenax®.Thus, this study inventory all the possible compounds which are originated from Tenax®, MTBSTFA and their interaction with perchlorate.References: [1] Buch, A. et al. (2009) J chrom. A, 43, 143-151. [2] Glavin, D., A. et al. (2013), LPSC. [3] Eigenbrode, J. et al. (2013), LPSC. [4

  13. Striped gold nanoparticles: New insights from molecular dynamics simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Velachi, Vasumathi, E-mail: vasuphy@gmail.com; Cordeiro, M. Natália D. S., E-mail: ncordeir@fc.up.pt; Bhandary, Debdip

    Recent simulations have improved our knowledge of the molecular-level structure and hydration properties of mixed self-assembled monolayers (SAMs) with equal and unequal alkyl thiols at three different arrangements, namely, random, patchy, and Janus. In our previous work [V. Vasumathi et al., J. Phys. Chem. C 119, 3199–3209 (2015)], we showed that the bending of longer thiols over shorter ones clearly depends on the thiols’ arrangements and chemical nature of their terminal groups. In addition, such a thiol bending revealed to have a strong impact on the structural and hydration properties of SAMs coated on gold nanoparticles (AuNPs). In this paper,more » we extend our previous atomistic simulation study to investigate the bending of longer thiols by increasing the stripe thickness of mixed SAMs of equal and unequal lengths coated on AuNPs. We study also the effect of stripe thickness on the structural morphology and hydration of the coated SAMs. Our results show that the structural and hydration properties of SAMs are affected by the stripe thickness for mixtures of alkyl thiols with unequal chain length but not for equal length. Hence, the stability of the stripe configuration depends on the alkyl’s chain length, the length difference between the thiol mixtures, and solvent properties.« less

  14. Mutation of the Salt Bridge-forming Residues in the ETV6-SAM Domain Interface Blocks ETV6-NTRK3-induced Cellular Transformation*

    PubMed Central

    Cetinbas, Naniye; Huang-Hobbs, Helen; Tognon, Cristina; Leprivier, Gabriel; An, Jianghong; McKinney, Steven; Bowden, Mary; Chow, Connie; Gleave, Martin; McIntosh, Lawrence P.; Sorensen, Poul H.

    2013-01-01

    The ETV6-NTRK3 (EN) chimeric oncogene is expressed in diverse tumor types. EN is generated by a t(12;15) translocation, which fuses the N-terminal SAM (sterile α-motif) domain of the ETV6 (or TEL) transcription factor to the C-terminal PTK (protein-tyrosine kinase) domain of the neurotrophin-3 receptor NTRK3. SAM domain-mediated polymerization of EN leads to constitutive activation of the PTK domain and constitutive signaling of the Ras-MAPK and PI3K-Akt pathways, which are essential for EN oncogenesis. Here we show through complementary biophysical and cellular biological techniques that mutation of Lys-99, which participates in a salt bridge at the SAM polymer interface, reduces self-association of the isolated SAM domain as well as high molecular mass complex formation of EN and abrogates the transformation activity of EN. We also show that mutation of Asp-101, the intermolecular salt bridge partner of Lys-99, similarly blocks transformation of NIH3T3 cells by EN, reduces EN tyrosine phosphorylation, inhibits Akt and Mek1/2 signaling downstream of EN, and abolishes tumor formation in nude mice. In contrast, mutations of Glu-100 and Arg-103, residues in the vicinity of the interdomain Lys-99–Asp-101 salt bridge, have little or no effect on these oncogenic characteristics of EN. Our results underscore the importance of specific electrostatic interactions for SAM polymerization and EN transformation. PMID:23798677

  15. Mutation of the salt bridge-forming residues in the ETV6-SAM domain interface blocks ETV6-NTRK3-induced cellular transformation.

    PubMed

    Cetinbas, Naniye; Huang-Hobbs, Helen; Tognon, Cristina; Leprivier, Gabriel; An, Jianghong; McKinney, Steven; Bowden, Mary; Chow, Connie; Gleave, Martin; McIntosh, Lawrence P; Sorensen, Poul H

    2013-09-27

    The ETV6-NTRK3 (EN) chimeric oncogene is expressed in diverse tumor types. EN is generated by a t(12;15) translocation, which fuses the N-terminal SAM (sterile α-motif) domain of the ETV6 (or TEL) transcription factor to the C-terminal PTK (protein-tyrosine kinase) domain of the neurotrophin-3 receptor NTRK3. SAM domain-mediated polymerization of EN leads to constitutive activation of the PTK domain and constitutive signaling of the Ras-MAPK and PI3K-Akt pathways, which are essential for EN oncogenesis. Here we show through complementary biophysical and cellular biological techniques that mutation of Lys-99, which participates in a salt bridge at the SAM polymer interface, reduces self-association of the isolated SAM domain as well as high molecular mass complex formation of EN and abrogates the transformation activity of EN. We also show that mutation of Asp-101, the intermolecular salt bridge partner of Lys-99, similarly blocks transformation of NIH3T3 cells by EN, reduces EN tyrosine phosphorylation, inhibits Akt and Mek1/2 signaling downstream of EN, and abolishes tumor formation in nude mice. In contrast, mutations of Glu-100 and Arg-103, residues in the vicinity of the interdomain Lys-99-Asp-101 salt bridge, have little or no effect on these oncogenic characteristics of EN. Our results underscore the importance of specific electrostatic interactions for SAM polymerization and EN transformation.

  16. A Study to Evaluate the Organization and the Operating Procedures of the Patient Assistance Function at Brooke Army Medical Center, Fort Sam Houston, Texas

    DTIC Science & Technology

    1979-08-01

    15 March 1979. 59Interview with Wendy L. Farace , Head Nurse, Obstetrics/Gynecology Clinic, Brooke Army Medical Center, Fort Sam Houston, Texas, 8...6 February 1979. Farace , Wendy L. Head Nurse, Obstetrica/Gynecology Clinic, Brooke Army Medical Center, Fort Sam Houston, Texas. Interview, 8 January

  17. Benchmark Simulations of the Thermal-Hydraulic Responses during EBR-II Inherent Safety Tests using SAM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Rui; Sumner, Tyler S.

    2016-04-17

    An advanced system analysis tool SAM is being developed for fast-running, improved-fidelity, and whole-plant transient analyses at Argonne National Laboratory under DOE-NE’s Nuclear Energy Advanced Modeling and Simulation (NEAMS) program. As an important part of code development, companion validation activities are being conducted to ensure the performance and validity of the SAM code. This paper presents the benchmark simulations of two EBR-II tests, SHRT-45R and BOP-302R, whose data are available through the support of DOE-NE’s Advanced Reactor Technology (ART) program. The code predictions of major primary coolant system parameter are compared with the test results. Additionally, the SAS4A/SASSYS-1 code simulationmore » results are also included for a code-to-code comparison.« less

  18. Astronaut Sam Gemar, wearing EMU, prepares for training in WETF

    NASA Image and Video Library

    1987-03-01

    S87-26630 (March 1987) --- Astronaut Charles D. (Sam) Gemar, wearing a training version of the Extravehicular Mobility Unit (EMU) space suit, prepares to be emersed in the 25-ft. deep waters of the Weightless Environment Training Facility (WET-F) at the Johnson Space Center (JSC). Once underwater, Gemar was able to achieve a neutrally buoyant state and to simulate the floating type activities of an astronaut in microgravity. Gemar began training as an astronaut candidate in the summer of 1985.

  19. 77 FR 13693 - Requested Administrative Waiver of the Coastwise Trade Laws: Vessel UNCLE SAM; Invitation for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-07

    ... UNCLE SAM is: Intended Commercial Use of Vessel: ``Sailing tours, day charters, and [[Page 13694.... Short sailing excursions generally lasting 2 hours.'' Geographic Region: ``Puerto Rico.'' The complete...

  20. [Research on identification of cabbages and weeds combining spectral imaging technology and SAM taxonomy].

    PubMed

    Zu, Qin; Zhang, Shui-fa; Cao, Yang; Zhao, Hui-yi; Dang, Chang-qing

    2015-02-01

    Weeds automatic identification is the key technique and also the bottleneck for implementation of variable spraying and precision pesticide. Therefore, accurate, rapid and non-destructive automatic identification of weeds has become a very important research direction for precision agriculture. Hyperspectral imaging system was used to capture the hyperspectral images of cabbage seedlings and five kinds of weeds such as pigweed, barnyard grass, goosegrass, crabgrass and setaria with the wavelength ranging from 1000 to 2500 nm. In ENVI, by utilizing the MNF rotation to implement the noise reduction and de-correlation of hyperspectral data and reduce the band dimensions from 256 to 11, and extracting the region of interest to get the spectral library as standard spectra, finally, using the SAM taxonomy to identify cabbages and weeds, the classification effect was good when the spectral angle threshold was set as 0. 1 radians. In HSI Analyzer, after selecting the training pixels to obtain the standard spectrum, the SAM taxonomy was used to distinguish weeds from cabbages. Furthermore, in order to measure the recognition accuracy of weeds quantificationally, the statistical data of the weeds and non-weeds were obtained by comparing the SAM classification image with the best classification effects to the manual classification image. The experimental results demonstrated that, when the parameters were set as 5-point smoothing, 0-order derivative and 7-degree spectral angle, the best classification result was acquired and the recognition rate of weeds, non-weeds and overall samples was 80%, 97.3% and 96.8% respectively. The method that combined the spectral imaging technology and the SAM taxonomy together took full advantage of fusion information of spectrum and image. By applying the spatial classification algorithms to establishing training sets for spectral identification, checking the similarity among spectral vectors in the pixel level, integrating the advantages of

  1. Rhesus Monkey - Miss Sam - Fiberglass Couch - Little Joe (LJ)-1B Flight - Prep

    NASA Image and Video Library

    1959-12-04

    B59-00828 (21 Jan. 1959) --- The test subject, a rhesus monkey named Miss Sam, is seen encased in a model of the Mercury fiberglass contour couch. She is being placed in a container for the Little Joe 1B suborbital test flight of the Mercury Capsule. Photo credit: NASA

  2. Making Time for Instructional Leadership. Volume 1: The Evolution of the SAM Process

    ERIC Educational Resources Information Center

    Goldring, Ellen; Grissom, Jason A.; Neumerski, Christine M.; Murphy, Joseph; Blissett, Richard; Porter, Andy

    2015-01-01

    This three-volume report describes the "SAM (School Administration Manager) process," an approach that about 700 schools around the nation are using to direct more of principals' time and effort to improve teaching and learning in classrooms. Research has shown that a principal's instructional leadership is second only to teaching among…

  3. Beam Damage of HS (CH2)15 COOH Terminated Self Assembled Monolayer (SAM) as Observed by X-Ray Photoelectron Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Engelhard, Mark H.; Tarasevich, Barbara J.; Baer, Donald R.

    2011-10-25

    XPS spectra of HS(CH{sub 2}){sub 15} COOH terminated a self assembled monolayer (SAM)sample was collected over a period of 242 minutes to determine specimen damage during long exposures to monochromatic Al Ka x-rays. For this COOH terminated SAM we measured the loss of oxygen as a function of time by rastering a focused 100 W, 100 um diameter x-ray beam over a 1.4 mm x 0.2 mm area of the sample.

  4. The Radical SAM enzyme NirJ catalyzes the removal of two propionate side chains during heme d1 biosynthesis.

    PubMed

    Boss, Linda; Oehme, Ramona; Billig, Susan; Birkemeyer, Claudia; Layer, Gunhild

    2017-12-01

    Heme d 1 is a modified tetrapyrrole playing an important role in denitrification by acting as the catalytically essential cofactor in the cytochrome cd 1 nitrite reductase of many denitrifying bacteria. In the course of heme d 1 biosynthesis, the two propionate side chains on pyrrole rings A and B of the intermediate 12,18-didecarboxysiroheme are removed from the tetrapyrrole macrocycle. In the final heme d 1 molecule, the propionate groups are replaced by two keto functions. Although it was speculated that the Radical S-adenosyl-l-methionine (SAM) enzyme NirJ might be responsible for the removal of the propionate groups and introduction of the keto functions, this has not been shown experimentally, so far. Here, we demonstrate that NirJ is a Radical SAM enzyme carrying two iron-sulfur clusters. While the N-terminal [4Fe-4S] cluster is essential for the initial SAM cleavage reaction, it is not required for substrate binding. NirJ tightly binds its substrate 12,18-didecarboxysiroheme and, thus, can be purified in complex with the substrate. By using the purified NirJ/substrate complex in an in vitro enzyme activity assay, we show that NirJ indeed catalyzes the removal of the two propionate side chains under simultaneous SAM cleavage. However, under the reaction conditions employed, no keto group formation is observed indicating that an additional cofactor or enzyme is needed for this reaction. © 2017 Federation of European Biochemical Societies.

  5. Influence of Oxychlorine Phases During the Pyrolysis of Organic Molecules: Implications for the Quest of Organics on Mars with the SAM Experiment Onboard the Curiosity Rover

    NASA Technical Reports Server (NTRS)

    Millan, M.; Szopa, C.; Buch, A.; Belmahdi, I.; Glavin, D. P.; Freissinet, C.; Eigenbrode, J. L.; Archer, P. D., Jr,; Sutter, B.; Mahaffy, P.

    2017-01-01

    One among the main objectives of the Sample Analysis at Mars (SAM) experiment is the in situ molecular analysis of gases evolving from solid samples heated up to approximately 850 degrees Centigrade, and collected by Curiosity on Mars surface/sub-surface in Gale crater. With this aim, SAM uses a gas-chromatograph coupled to a quadrupole mass spectrometer (GC-QMS) devoted to separate, detect and identify both volatile inorganic and organic compounds. SAM detected chlorinated organic molecules produced in evolved gas analysis (EGA) experiments. Several of these were also detected by the Viking experiments in 1976. SAM also detected oxychlorine compounds that were present at the Phoenix landing site. The oxychlorines may be prevelant over much of the martian surface. The C1 to C3 aliphatic chlorohydrocarbons (chloromethane and di- and trichloromethane) detected by SAM were attributed to reaction products occurring between the oxychlorines phases and the organic compounds coming from SAM instrument background. But SAM also showed the presence of a large excess of chlorobenzene and C2 to C4 dichloroalkanes among the volatile species released by the Cumberland sample of the Sheepbed mudstone. For the first time in the history of the Mars exploration, this proved the presence of Mars indigenous organic material at the Mars' surface. However, the identification of the precursor organic compounds of these chlorohydrocarbons is difficult due to the complexity of the reactions occurring during the sample pyrolysis. Laboratory pyrolysis experiments have demonstrated that oxychlorines phases such as perchlorates and chlorates, decomposed into dioxygen and volatile chlorine bearing molecules (HCl and/or Cl2) during the pyrolysis. These chemical species can then react with the organic molecules present in the martian solid samples through oxidation, chlorination and oxychlorination processes.

  6. Maturation of nitrogenase cofactor—the role of a class E radical SAM methyltransferase NifB

    PubMed Central

    Hu, Yilin; Ribbe, Markus W.

    2016-01-01

    Nitrogenase catalyzes the important reactions of N2-, CO- and CO2-reduction at its active cofactor site. Designated the M-cluster, this complex metallocofactor is assembled through the generation of a characteristic 8Fe-core prior to the insertion of Mo and homocitrate that completes the stoichiometry of the M-cluster. NifB catalyzes the critical step of radical SAM-dependent carbide insertion that occurs concomitant with the insertion a “9th” sulfur and the rearrangement/coupling of two 4Fe-clusters into a complete 8Fe-core of the M-cluster. Further categorization of a family of NifB proteins as a new class of radical SAM methyltransferases suggests a general function of these proteins in complex metallocofactor assembly and provides a new platform for unveiling unprecedented chemical reactions catalyzed by biological systems. PMID:26969410

  7. 15. (4"X5" image enlarged from 2 1/4" negative) Sam Fowler, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. (4"X5" image enlarged from 2 1/4" negative) Sam Fowler, Photographer, February 1998 VIEW OF GEORGIA DOT BRIDGE NO. 051-00025D-01986N (JAMES P. HOULIHAN BRIDGE) PIVOT PIER - Georgia DOT Bridge No. 051-00025D-01986N, US 17 & State Route 25 Spanning Savannah River, Port Wentworth, Chatham County, GA

  8. The SAM domain of mouse SAMHD1 is critical for its activation and regulation.

    PubMed

    Buzovetsky, Olga; Tang, Chenxiang; Knecht, Kirsten M; Antonucci, Jenna M; Wu, Li; Ji, Xiaoyun; Xiong, Yong

    2018-01-29

    Human SAMHD1 (hSAMHD1) is a retroviral restriction factor that blocks HIV-1 infection by depleting the cellular nucleotides required for viral reverse transcription. SAMHD1 is allosterically activated by nucleotides that induce assembly of the active tetramer. Although the catalytic core of hSAMHD1 has been studied extensively, previous structures have not captured the regulatory SAM domain. Here we report the crystal structure of full-length SAMHD1 by capturing mouse SAMHD1 (mSAMHD1) structures in three different nucleotide bound states. Although mSAMHD1 and hSAMHD1 are highly similar in sequence and function, we find that mSAMHD1 possesses a more complex nucleotide-induced activation process, highlighting the regulatory role of the SAM domain. Our results provide insights into the regulation of SAMHD1 activity, thereby facilitating the improvement of HIV mouse models and the development of new therapies for certain cancers and autoimmune diseases.

  9. miCLIP-MaPseq, a Substrate Identification Approach for Radical SAM RNA Methylating Enzymes.

    PubMed

    Stojković, Vanja; Chu, Tongyue; Therizols, Gabriel; Weinberg, David E; Fujimori, Danica Galonić

    2018-06-13

    Although present across bacteria, the large family of radical SAM RNA methylating enzymes is largely uncharacterized. Escherichia coli RlmN, the founding member of the family, methylates an adenosine in 23S rRNA and several tRNAs to yield 2-methyladenosine (m 2 A). However, varied RNA substrate specificity among RlmN enzymes, combined with the ability of certain family members to generate 8-methyladenosine (m 8 A), makes functional predictions across this family challenging. Here, we present a method for unbiased substrate identification that exploits highly efficient, mechanism-based cross-linking between the enzyme and its RNA substrates. Additionally, by determining that the thermostable group II intron reverse transcriptase introduces mismatches at the site of the cross-link, we have identified the precise positions of RNA modification using mismatch profiling. These results illustrate the capability of our method to define enzyme-substrate pairs and determine modification sites of the largely uncharacterized radical SAM RNA methylating enzyme family.

  10. Synergistic Effects of SAM and Selenium Compounds on Proliferation, Migration and Adhesion of HeLa Cells.

    PubMed

    Sun, Licui; Zhang, Jianxin; Yang, Qiu; Si, Yang; Liu, Yiqun; Wang, Qin; Han, Feng; Huang, Zhenwu

    2017-08-01

    To determine the antitumor activities and molecular mechanism of selenium compounds in HeLa cells. Western blotting was used to detect ERK and AKT activation in HeLa cells induced by selenium compounds selenomethionine (SeMet), methylselenocysteine (MeSeCys) and methylseleninic acids (MeSeA). Using MTT, wound-healing and Matrigel adhesion assays, the antitumor effects of SAM and selenium compounds were evaluated in HeLa cells. MeSeA inhibited ERK and AKT signaling pathways and suppressed the proliferation (p<0.05 vs. HeLa control), migration (p<0.05 vs. HeLa control) and adhesion (p<0.01 vs. HeLa control) of HeLa cells. MeSeCys and SeMet inhibited AKT signaling pathways and the migration (p<0.05 vs. HeLa control) and adhesion (p<0.01 vs. HeLa control) of HeLa cells. The synergistic action of MeSeA with SAM led to a statistically significant inhibition of proliferation, migration and adhesion of HeLa cells. MeSeA, MeSeCys and SeMet exert different antitumor activities by inhibiting ERK and AKT signaling pathways. The combination of MeSeA and SAM exhibited better antitumor effects compared to the other treatments. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  11. MSL SAM-Like Evolved Gas Analyses of Si-rich Amorphous Materials

    NASA Technical Reports Server (NTRS)

    McAdam, Amy; Knudson, Christine; Sutter, Brad; Andrejkovicova, Slavka; Archer, P. Douglas; Franz, Heather; Eigenbrode, Jennifer; Morris, Richard; Ming, Douglas; Sun, Vivian; hide

    2016-01-01

    Chemical and mineralogical analyses of several samples from Murray Formation mudstones and Stimson Formation sandstones by the Mars Science Laboratory (MSL) revealed the presence of Si-rich amorphous or poorly ordered materials. It is possible to identify the presence of high-SiO2 vs. lower SiO2 amorphous materials (e.g., basaltic glasses), based on the position of the resulting wide diffraction features in XRD patterns from the Chemistry and Mineralogy (CheMin) instrument, but it is not possible to distinguish between several candidate high-SiO2 amorphous materials such as opal-A or rhyolitic glass. In the Buckskin (BS) sample from the upper Murray Formation, and the Big Sky (BY) and Greenhorn (GH) samples from the Stimson Formation, analyses by the Sample Analysis at Mars (SAM) instrument showed very broad H2O evolutions during sample heating at temperatures >450-500degC which had not been observed from previous samples. BS also had a significant broad evolution <450-500degC. We have undertaken a laboratory study targeted at understanding if the data from SAM can be used to place constraints on the nature of the amorphous phases. SAM-like evolved gas analyses have been performed on several opal and rhyolitic glass samples. Opal-A samples exhibited wide <500degC H2O evolutions, with lesser H2O evolved above 500degC. H2O evolution traces from rhyolitic glasses varied, having either two broad H2O peaks, <300degC and >500degC, or a broad peak centered around 400degC. For samples that produced two evolutions, the lower temperature peak is more intense than the higher temperature peak, a trend also exhibited by opal-A. This trend is consistent with data from BS, but does not seem consistent with data from BY and GH which evolved most of their H2O >500degC. It may be that dehydration of opal-A and/or rhyolitic glass can result in some preferential loss of lower temperature H2O, to produce traces that more closely resemble BY and GH. This is currently under investigation

  12. The Search for Organic Compounds of Martian Origin in Gale Crater by the Sample Analysis at Mars (SAM) Instrument on Curiosity

    NASA Technical Reports Server (NTRS)

    Glavin, Daniel; Freissinet, Caroline; Mahaffy, Paul; Miller, Kristen; Eigenbrode, Jennifer; Summons, Roger; Archer, Douglas, Jr.; Brunner, Anna; Martin, Mildred; Buch, Arrnaud; hide

    2014-01-01

    One of the key objectives of the Mars Science Laboratory rover and the Sample Analysis at Mars (SAM) instrument suite is to determine the inventory of organic and inorganic volatiles in the atmosphere and surface regolith and rocks to help assess the habitability potential of Gale Crater. The SAM instrument on the Curiosity rover can detect volatile organic compounds thermally evolved from solid samples using a combination of evolved gas analysis (EGA) and gas chromatography mass spectrometry (GCMS) (Mahaffy et al. 2012). The first solid samples analyzed by SAM, a scoop of windblown dust and sand at Rocknest, revealed several chloromethanes and a C4-chlorinated hydrocarbon derived primarily from reactions between a martian oxychlorine phase (e.g. perchlorate) and terrestrial carbon from N-methyl-N-(tertbutyldimethylsilyl)- trifluoroacetamide (MTBSTFA) vapor present in the SAM instrument background (Glavin et al. 2013). After the analyses at Rocknest, Curiosity traveled to Yellowknife Bay and drilled two separate holes in a fluvio-lacustrine sediment (the Sheepbed unit) designated John Klein and Cumberland. Analyses of the drilled materials by both SAM and the CheMin X-Ray Diffraction instrument revealed a mudstone consisting of 20 wt% smectite clays (Ming et al. 2013; Vaniman et al. 2013), which on Earth are known to aid the concentration and preservation of organic matter. Oxychlorine compounds were also detected in the Sheepbed mudstone during pyrolysis; however, in contrast to Rocknest, much higher levels of chloromethanes were released from the Sheepbed materials, suggesting an additional, possibly martian source of organic carbon (Ming et al. 2013). In addition, elevated abundances of chlorobenzene and a more diverse suite of chlorinated alkanes including dichloropropane and dichlorobutane detected in Cumberland compared to Rocknest suggest that martian or meteoritic organic carbon sources may be preserved in the mudstone (Freissinet et al. 2013

  13. 16. (4'X5' image enlarged from 2 1/4' negative) Sam Fowler, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. (4'X5' image enlarged from 2 1/4' negative) Sam Fowler, Photographer, February 1998 VIEW OF GEORGIA DOT BRIDGE NO. 051-00025D-01986N (JAMES P. HOULIHAN BRIDGE). DETAIL OF TURN-SPAN MECHANISM. - Georgia DOT Bridge No. 051-00025D-01986N, US 17 & State Route 25 Spanning Savannah River, Port Wentworth, Chatham County, GA

  14. 17. (4"X5" image enlarged from 2 1/4" negative) Sam Fowler, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. (4"X5" image enlarged from 2 1/4" negative) Sam Fowler, Photographer, February 1998 VIEW OF GEORGIA DOT BRIDGE NO. 051-00025D-01986N (JAMES P. HOULIHAN BRIDGE) APPROACH SPAN FENDER - Georgia DOT Bridge No. 051-00025D-01986N, US 17 & State Route 25 Spanning Savannah River, Port Wentworth, Chatham County, GA

  15. Case Studies Comparing System Advisor Model (SAM) Results to Real Performance Data: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blair, N.; Dobos, A.; Sather, N.

    2012-06-01

    NREL has completed a series of detailed case studies comparing the simulations of the System Advisor Model (SAM) and measured performance data or published performance expectations. These case studies compare PV measured performance data with simulated performance data using appropriate weather data. The measured data sets were primarily taken from NREL onsite PV systems and weather monitoring stations.

  16. 13. (4'X5' image enlarged from 2 1/4' negative) Sam Fowler, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. (4'X5' image enlarged from 2 1/4' negative) Sam Fowler, Photographer, February 1998 VIEW OF GEORGIA DOT BRIDGE NO. 051-00025D-01986N (JAMES P. HOULIHAN BRIDGE) NORTH SIDE ELEVATION. - Georgia DOT Bridge No. 051-00025D-01986N, US 17 & State Route 25 Spanning Savannah River, Port Wentworth, Chatham County, GA

  17. 14. (4"X5" image enlarged from 2 1/4" negative) Sam Fowler, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. (4"X5" image enlarged from 2 1/4" negative) Sam Fowler, Photographer, February 1998 VIEW OF GEORGIA DOT BRIDGE NO. 051-00025D-01986N (JAMES P. HOULIHAN BRIDGE) TURN-SPAN AND LOCKING MECHANISM - Georgia DOT Bridge No. 051-00025D-01986N, US 17 & State Route 25 Spanning Savannah River, Port Wentworth, Chatham County, GA

  18. 12. (4'X5' image enlarged from 2 1/4' negative) Sam Fowler, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. (4'X5' image enlarged from 2 1/4' negative) Sam Fowler, Photographer, February 1998 VIEW OF GEORGIA DOT BRIDGE NO. 051-00025D-01986N (JAMES P. HOULIHAN BRIDGE) SOUTH SIDE ELEVATION. - Georgia DOT Bridge No. 051-00025D-01986N, US 17 & State Route 25 Spanning Savannah River, Port Wentworth, Chatham County, GA

  19. Astronaut Curtis Brown works with SAMS on Shuttle Atlantis middeck

    NASA Image and Video Library

    1994-11-14

    STS066-14-021 (3-14 Nov 1994) --- On the Space Shuttle Atlantis' mid-deck, astronaut Curtis L. Brown, Jr., pilot, works with the Space Acceleration Measurement System (SAMS), which is making its eleventh Shuttle flight. This system supports the Protein Crystal Growth (PCG) experiments onboard by collecting and recording data characterizing the microgravity environment in the Shuttle mid-deck. Brown joined four other NASA astronauts and a European Space Agency (ESA) astronaut for 11-days aboard Atlantis in support of the Atmospheric Laboratory for Applications and Science (ATLAS-3) mission.

  20. In situ analysis of Mars soil sample with the sam gcms instrumentation onboard Curiosity : interpretation and comparison of measurements done at Rocknest and Yelloknife bay sites

    NASA Astrophysics Data System (ADS)

    Szopa, Cyril; Coll, Patrice; Cabane, Michel; Coscia, David; Buch, Arnaud; Francois, Pascaline; Millan, Maeva; Teinturier, Sammy; Navarro-Gonzales, Rafael; Glavin, Daniel; Freissinet, Caro; Steele, Andrew; Eigenbrode, Jen; Mahaffy, Paul

    2014-05-01

    The characterisation of the chemical and mineralogical composition of regolith samples collected with the Curiosity rover is a primary objective of the SAM experiment. These data should provide essential clues on the past habitability of Gale crater. Amongst the SAM suite of instruments [1], SAM-GC (Gas Chromatograph) is devoted to identify and quantify volatiles evolved from the thermal (heating up to about 900°C)/chemical (derivatization procedure) treatment of any soil sample collected by the Curiosity rover. With the aim to search for potential organic molecules outgassed from the samples, a SAM-GC analytical channel composed of thermal-desorption injector and a MXT-CLP chromatographic column was chosen to achieve all the measurements done up today, as it was designed for the separation of a wide range of volatile organic molecules. Three solid samples have been analyzed with GCMS, one sand sample collected at the Rocknest site, and two rock samples (John Klein and Cumberland respectively) collected at the Yellowknife Bay site using the Curiosity driller. All the measurements were successful and they produced complex chromatograms with both detectors used for SAM GC, i.e. a thermal conductivity detector and the SAM quandrupole mass spectrometer. Their interpretation already revealed the presence of an oxychlorine phase present in the sample which is at the origin of chlorohydrocarbons clearly identified [2] but this represents only a fraction of the GCMS signal recorded [3,4]. This work presents a systematic comparison of the GCMS measurements done for the different samples collected, supported by reference data obtained in laboratory with different spare models of the gas chromatograph, with the aim to bring new elements of interpretation of the SAM measurements. References: [1] Mahaffy, P. et al. (2012) Space Sci Rev, 170, 401-478. [2] Glavin, D. et al. (2013), JGR. [3] Leshin L. et al. (2013), Science, [4] Ming D. et al. (2013), Science, 32, 64

  1. SAM-CAAM: A Concept for Acquiring Systematic Aircraft Measurements to Characterize Aerosol Air Masses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kahn, Ralph A.; Berkoff, Tim A.; Brock, Charles

    A modest operational program of systematic aircraft measurements can resolve key satellite aerosol data record limitations. Satellite observations provide frequent global aerosol amount maps but offer only loose aerosol property constraints needed for climate and air quality applications. In this paper, we define and illustrate the feasibility of flying an aircraft payload to measure key aerosol optical, microphysical, and chemical properties in situ. The flight program could characterize major aerosol airmass types statistically, at a level of detail unobtainable from space. It would 1) enhance satellite aerosol retrieval products with better climatology assumptions and 2) improve translation between satellite-retrieved opticalmore » properties and species-specific aerosol mass and size simulated in climate models to assess aerosol forcing, its anthropogenic components, and other environmental impacts. As such, Systematic Aircraft Measurements to Characterize Aerosol Air Masses (SAM-CAAM) could add value to data records representing several decades of aerosol observations from space; improve aerosol constraints on climate modeling; help interrelate remote sensing, in situ, and modeling aerosol-type definitions; and contribute to future satellite aerosol missions. Fifteen required variables are identified and four payload options of increasing ambition are defined to constrain these quantities. “Option C” could meet all the SAM-CAAM objectives with about 20 instruments, most of which have flown before, but never routinely several times per week, and never as a group. Aircraft integration and approaches to data handling, payload support, and logistical considerations for a long-term, operational mission are discussed. Finally, SAM-CAAM is feasible because, for most aerosol sources and specified seasons, particle properties tend to be repeatable, even if aerosol loading varies.« less

  2. SAM-CAAM: A Concept for Acquiring Systematic Aircraft Measurements to Characterize Aerosol Air Masses

    DOE PAGES

    Kahn, Ralph A.; Berkoff, Tim A.; Brock, Charles; ...

    2017-10-30

    A modest operational program of systematic aircraft measurements can resolve key satellite aerosol data record limitations. Satellite observations provide frequent global aerosol amount maps but offer only loose aerosol property constraints needed for climate and air quality applications. In this paper, we define and illustrate the feasibility of flying an aircraft payload to measure key aerosol optical, microphysical, and chemical properties in situ. The flight program could characterize major aerosol airmass types statistically, at a level of detail unobtainable from space. It would 1) enhance satellite aerosol retrieval products with better climatology assumptions and 2) improve translation between satellite-retrieved opticalmore » properties and species-specific aerosol mass and size simulated in climate models to assess aerosol forcing, its anthropogenic components, and other environmental impacts. As such, Systematic Aircraft Measurements to Characterize Aerosol Air Masses (SAM-CAAM) could add value to data records representing several decades of aerosol observations from space; improve aerosol constraints on climate modeling; help interrelate remote sensing, in situ, and modeling aerosol-type definitions; and contribute to future satellite aerosol missions. Fifteen required variables are identified and four payload options of increasing ambition are defined to constrain these quantities. “Option C” could meet all the SAM-CAAM objectives with about 20 instruments, most of which have flown before, but never routinely several times per week, and never as a group. Aircraft integration and approaches to data handling, payload support, and logistical considerations for a long-term, operational mission are discussed. Finally, SAM-CAAM is feasible because, for most aerosol sources and specified seasons, particle properties tend to be repeatable, even if aerosol loading varies.« less

  3. SAM-CAAM: A Concept for Acquiring Systematic Aircraft Measurements to Characterize Aerosol Air Masses.

    PubMed

    Kahn, Ralph A; Berkoff, Tim A; Brock, Charles; Chen, Gao; Ferrare, Richard A; Ghan, Steven; Hansico, Thomas F; Hegg, Dean A; Martins, J Vanderlei; McNaughton, Cameron S; Murphy, Daniel M; Ogren, John A; Penner, Joyce E; Pilewskie, Peter; Seinfeld, John H; Worsnop, Douglas R

    2017-10-01

    A modest operational program of systematic aircraft measurements can resolve key satellite-aerosol-data-record limitations. Satellite observations provide frequent, global aerosol-amount maps, but offer only loose aerosol property constraints needed for climate and air quality applications. We define and illustrate the feasibility of flying an aircraft payload to measure key aerosol optical, microphysical, and chemical properties in situ . The flight program could characterize major aerosol air-mass types statistically, at a level-of-detail unobtainable from space. It would: (1) enhance satellite aerosol retrieval products with better climatology assumptions, and (2) improve translation between satellite-retrieved optical properties and species-specific aerosol mass and size simulated in climate models to assess aerosol forcing, its anthropogenic components, and other environmental impacts. As such, Systematic Aircraft Measurements to Characterize Aerosol Air Masses (SAM-CAAM) could add value to data records representing several decades of aerosol observations from space, improve aerosol constraints on climate modeling , help interrelate remote-sensing, in situ, and modeling aerosol-type definitions , and contribute to future satellite aerosol missions. Fifteen Required Variables are identified, and four Payload Options of increasing ambition are defined, to constrain these quantities. "Option C" could meet all the SAM-CAAM objectives with about 20 instruments, most of which have flown before, but never routinely several times per week, and never as a group. Aircraft integration, and approaches to data handling, payload support, and logistical considerations for a long-term, operational mission are discussed. SAM-CAAM is feasible because, for most aerosol sources and specified seasons, particle properties tend to be repeatable , even if aerosol loading varies.

  4. Functional relationship between CABIT, SAM and 14-3-3 binding domains of GAREM1 that play a role in its subcellular localization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishino, Tasuku; Matsunaga, Ryota; Konishi, Hiroaki, E-mail: hkonishi@pu-hiroshima.ac.jp

    2015-08-21

    GAREM1 (Grb2-associated regulator of Erk/MAPK1) is an adaptor protein that is involved in the epidermal growth factor (EGF) pathway. The nuclear localization of GAREM1 depends on the nuclear localization sequence (NLS), which is located at the N-terminal CABIT (cysteine-containing, all in Themis) domain. Here, we identified 14-3-3ε as a GAREM-binding protein, and its binding site is closely located to the NLS. This 14-3-3 binding site was of the atypical type and independent of GAREM phosphorylation. Moreover, the binding of 14-3-3 had an effect on the nuclear localization of GAREM1. Unexpectedly, we observed that the CABIT domain had intramolecular association withmore » the C-terminal SAM (sterile alpha motif) domain. This association might be inhibited by binding of 14-3-3 at the CABIT domain. Our results demonstrate that the mechanism underlying the nuclear localization of GAREM1 depends on its NLS in the CABIT domain, which is controlled by the binding of 14-3-3 and the C-terminal SAM domain. We suggest that the interplay between 14-3-3, SAM domain and CABIT domain might be responsible for the distribution of GAREM1 in mammalian cells. - Highlights: • 14-3-3ε regulated the nuclear localization of GAREM1 as its binding partner. • The atypical 14-3-3 binding site of GAREM1 is located near the NLS in CABIT domain. • The CABIT domain had intramolecular association with the SAM domain in GAREM1. • Subcellular localization of GAREM1 is affected with its CABIT-SAM interaction.« less

  5. SAM II aerosol profile measurements, Poker Flat, Alaska; July 16-19, 1979

    NASA Technical Reports Server (NTRS)

    Mccormick, M. P.; Chu, W. P.; Mcmaster, L. R.; Grams, G. W.; Herman, B. M.; Pepin, T. J.; Russell, P. B.; Swissler, T. J.

    1981-01-01

    SAM II satellite measurements during the July 1979 Poker Flat mission, yielded an aerosol extinction coefficient of 0.0004/km at 1.0 micron wavelength, in the region of the stratospheric aerosol mixing ratio peak (12-16 km). The stratospheric aerosol optical depth for these data, calculated from the tropopause through 30 km, is approximately 0.001. These results are consistent with the average 1979 summertime values found throughout the Arctic.

  6. Why Nature Uses Radical SAM Enzymes so Widely: Electron Nuclear Double Resonance Studies of Lysine 2,3-Aminomutase Show the 5'-dAdo• "Free Radical" Is Never Free.

    PubMed

    Horitani, Masaki; Byer, Amanda S; Shisler, Krista A; Chandra, Tilak; Broderick, Joan B; Hoffman, Brian M

    2015-06-10

    Lysine 2,3-aminomutase (LAM) is a radical S-adenosyl-L-methionine (SAM) enzyme and, like other members of this superfamily, LAM utilizes radical-generating machinery comprising SAM anchored to the unique Fe of a [4Fe-4S] cluster via a classical five-membered N,O chelate ring. Catalysis is initiated by reductive cleavage of the SAM S-C5' bond, which creates the highly reactive 5'-deoxyadenosyl radical (5'-dAdo•), the same radical generated by homolytic Co-C bond cleavage in B12 radical enzymes. The SAM surrogate S-3',4'-anhydroadenosyl-L-methionine (anSAM) can replace SAM as a cofactor in the isomerization of L-α-lysine to L-β-lysine by LAM, via the stable allylic anhydroadenosyl radical (anAdo•). Here electron nuclear double resonance (ENDOR) spectroscopy of the anAdo• radical in the presence of (13)C, (2)H, and (15)N-labeled lysine completes the picture of how the active site of LAM from Clostridium subterminale SB4 "tames" the 5'-dAdo• radical, preventing it from carrying out harmful side reactions: this "free radical" in LAM is never free. The low steric demands of the radical-generating [4Fe-4S]/SAM construct allow the substrate target to bind adjacent to the S-C5' bond, thereby enabling the 5'-dAdo• radical created by cleavage of this bond to react with its partners by undergoing small motions, ∼0.6 Å toward the target and ∼1.5 Å overall, that are controlled by tight van der Waals contact with its partners. We suggest that the accessibility to substrate and ready control of the reactive C5' radical, with "van der Waals control" of small motions throughout the catalytic cycle, is common within the radical SAM enzyme superfamily and is a major reason why these enzymes are the preferred means of initiating radical reactions in nature.

  7. SAM Technical Review Committee Final Report: Summary and Key Recommendations from the Onsite TRC Meeting Held April 22-23, 2013

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blair, N.; Dobos, S.; Janzou, S.

    2013-08-01

    The System Advisor Model (SAM) is a broad and robust set of models and frameworks for analyzing both system performance and system financing. It does this across a range of technologies dominated by solar technologies including photovoltaics (PV) and concentrated solar power (CSP). The U.S. Department of Energy (DOE) Solar Energy Technology Program requested the SAM development team to review the photovoltaic performance modeling with the development community and specifically, with the independent engineering community. The report summarizes the major effort for this technical review committee (TRC).

  8. Sub-2 nm Thick Fluoroalkylsilane Self-Assembled Monolayer-Coated High Voltage Spinel Crystals as Promising Cathode Materials for Lithium Ion Batteries

    PubMed Central

    Zettsu, Nobuyuki; Kida, Satoru; Uchida, Shuhei; Teshima, Katsuya

    2016-01-01

    We demonstrate herein that an ultra-thin fluoroalkylsilane self-assembled monolayer coating can be used as a modifying agent at LiNi0.5Mn1.5O4−δcathode/electrolyte interfaces in 5V-class lithium-ion batteries. Bare LiNi0.5Mn1.5O4−δ cathode showed substantial capacity fading, with capacity dropping to 79% of the original capacity after 100 cycles at a rate of 1C, which was entirely due to dissolution of Mn3+ from the spinel lattice via oxidative decomposition of the organic electrolyte. Capacity retention was improved to 97% on coating ultra-thin FAS17-SAM onto the LiNi0.5Mn1.5O4 cathode surface. Such surface protection with highly ordered fluoroalkyl chains insulated the cathode from direct contact with the organic electrolyte and led to increased tolerance to HF. PMID:27553901

  9. 19. (4"X5" image enlarged from 2 1/4" negative) Sam Fowler, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. (4"X5" image enlarged from 2 1/4" negative) Sam Fowler, Photographer, February 1998 VIEW OF GEORGIA DOT BRIDGE NO. 051-00025D-01986N (JAMES P. HOULIHAN BRIDGE). NAVIGATIONAL LIGHT LOCATED ON TOP OF FENDER - Georgia DOT Bridge No. 051-00025D-01986N, US 17 & State Route 25 Spanning Savannah River, Port Wentworth, Chatham County, GA

  10. Metabolism of a 5HT6 antagonist, 2-methyl-1-(phenylsulfonyl)-4-(piperazin-1-yl)-1H-benzo[d]imidazole (SAM-760): impact of sulfonamide metabolism on diminution of a ketoconazole mediated clinical drug-drug interaction.

    PubMed

    Sawant-Basak, Aarti; Obach, R Scott; Doran, Angela C; Lockwood, Peter; Schildknegt, Klaas; Gao, Hongying; Mancuso, Jessica; Tse, Susanna; Comery, Tom

    2018-04-25

    SAM-760, (2-methyl-1-(phenylsulfonyl)-4-(piperazin-1-yl)-1H-benzo[d]imidazole), a 5HT 6 antagonist, was investigated in humans for the treatment of Alzheimer's dementia. In liver microsomes and recombinant CYP450 isozymes, SAM-760 was predominantly metabolized by CYP3A (~85%). Based on these observations and an expectation of 5-fold magnitude of interaction with moderate to strong CYP3A inhibitors, a clinical DDI study was performed. In presence of ketoconazole, mean C max and AUC 0-inf of SAM-760 showed only a modest increase by 30% and 38%, respectively. In vitro investigation of this unexpectedly low interaction was undertaken using [ 14 C]SAM-760. Radiometric profiling in human hepatocytes, confirmed all oxidative metabolites observed previously with unlabeled SAM-760; however the pre-dominant radiometric peak was an unexpected polar metabolite which was insensitive to pan-CYP inhibitor, 1-aminobenzotriazole. In human hepatocytes, radiometric integration attributed 43% of total metabolism of SAM-760 to this non-CYP pathway. Using an authentic standard, this predominant metabolite was confirmed as benzenesulfinic acid. Additional investigation revealed that the benzenesulfinic acid metabolite may be a novel, non-enzymatic, thiol mediated reductive cleavage of aryl sulfonamide group of SAM-760. We also determined the relative contribution of P450 to metabolism of SAM-760 in human hepatocytes, by following the rate of formation of oxidative metabolites in presence and absence of P450 isoform specific inhibitors. P450 mediated oxidative metabolism of SAM-760 was still primarily attributed to CYP3A (33%), with minor contributions from CYP isoforms 2C19 and 2D6. Thus, disposition of [ 14 C]SAM-760 in human hepatocytes via novel sulfonamide metabolism and CYP3A verified the lower than expected clinical DDI when SAM-760 was co-administered with ketoconazole. The American Society for Pharmacology and Experimental Therapeutics.

  11. Binding and Function of Phosphotyrosines of the Ephrin A2 (EphA2) Receptor Using Synthetic Sterile α Motif (SAM) Domains*

    PubMed Central

    Borthakur, Susmita; Lee, HyeongJu; Kim, SoonJeung; Wang, Bing-Cheng; Buck, Matthias

    2014-01-01

    The sterile α motif (SAM) domain of the ephrin receptor tyrosine kinase, EphA2, undergoes tyrosine phosphorylation, but the effect of phosphorylation on the structure and interactions of the receptor is unknown. Studies to address these questions have been hindered by the difficulty of obtaining site-specifically phosphorylated proteins in adequate amounts. Here, we describe the use of chemically synthesized and specifically modified domain-length peptides to study the behavior of phosphorylated EphA2 SAM domains. We show that tyrosine phosphorylation of any of the three tyrosines, Tyr921, Tyr930, and Tyr960, has a surprisingly small effect on the EphA2 SAM structure and stability. However, phosphorylation at Tyr921 and Tyr930 enables differential binding to the Src homology 2 domain of the adaptor protein Grb7, which we propose will lead to distinct functional outcomes. Setting up different signaling platforms defined by selective interactions with adaptor proteins thus adds another level of regulation to EphA2 signaling. PMID:24825902

  12. The Investigation of Perchlorate/Iron Phase Mixtures as A Possible Source of Oxygen Detected by the Sample Analysis at Mars (SAM) Instrument in Gale Crater, Mars

    NASA Technical Reports Server (NTRS)

    Sutter, B.; Heil, E.; Morris, R. V.; Archer, P. D.; Ming, D. W.; Niles, P. B.; Eigenbrode, J. L.; Franz, H.; Freissinet C.; Glavin, D. P.; hide

    2015-01-01

    The Sample Analysis at Mars (SAM) instrument onboard the Curiosity rover detected O2 and HCl gas releases from the Rocknest (RN) eolian bedform and the John Klein (JK) and Cumberland (CB) drill hole materials in Gale Crater. Chlorinated hydrocarbons have also been detected by the SAM quadrupole mass spectrometer (QMS) and gas chromatography/mass spectrometer (GCMS). These detections along with the detection of perchlorate (ClO4-) by the Mars Phoenix Lander's Wet Chemistry Laboratory (WCL) suggesting perchlorate is a possible candidate for evolved O2 and chlorine species. Laboratory thermal analysis of individual per-chlorates has yet to provide an unequivocal temperature match to the SAM O2 and HCl release data. These detections along with the detection of perchlorate (ClO4-) by the Mars Phoenix Lander's Wet Chemistry Laboratory suggested perchlorate is a possible candidate for evolved O2 and chlorine species. Laboratory thermal analysis of pure perchlorates has yet to provide an unequivocal temperature match to the SAM O2 and HCl release data. Analog laboratory analysis of iron mineralogy detected in Gale materials that was physically mixed with Ca- and Mg-perchlorate has been shown to catalyze lower O2 release temperatures and approach some SAM O2 release data. Instead of physical mixtures used in previous work, the work presented here utilized perchlorate solutions added to Fe phases. This technique allowed for perchlorate to come in closer contact with the Fe-phase and may more closely mimic Mars conditions where humidity can increase enough to cause deliquescence of the highly hygroscopic perchlorate phases. The objective of this work is to: 1) Utilize a laboratory SAM analog instrument to evaluate the O2 release temperatures from Mg- and Ca-perchlorates solutions applied to Fephases detetected in Gale Crate; and 2) Determine if perchlorate solutions can provide improved matches with the SAM O2 temperature release profiles.

  13. Thermal Reactivity of Organic Molecules in the Presence of Chlorates and Perchlorates and the Quest for Organics on Mars with the SAM Experiment Onboard the Curiostiy Rover

    NASA Astrophysics Data System (ADS)

    Szopa, Cyril; Millan, Maeva; Buch, Arnaud; Belmahdi, Imene; Coll, Patrice; Glavin, Daniel P.; Freissinet, Caroline; Eigenbrode, Jennifer; archer, doug; sutter, brad; Summons, Roger; Navarro-Gonzalez, Rafael; Mahaffy, Paul; cabane, Michel

    2016-10-01

    One of the main objectives of the Sample Analysis at Mars (SAM) experiment is the in situ molecular analysis of gases evolving from solid samples collected by Curiosity when they are heated up to ~850°C. With this aim SAM uses a gas-chromatograph coupled to a mass spectrometer (GC-MS) able to detect and identify both inorganic and organic molecules released by the samples.During the pyrolysis, chemical reactions occur between oxychlorines, probably homogeneously distributed at Mars's surface, and organic compounds SAM seeks for. This was confirmed by the first chlorohydrocarbons (chloromethane and di- and trichloromethane) detected by SAM that were entirely attributed to reaction products occurring between these oxychlorines and organics from instrument background. But SAM also detected in the Sheepbed mudstone of Gale crater, chloroalkanes produced by reaction between oxychlorines and Mars indigenous organics, proving for the first time the presence of organics in the soil of Mars. However, the identification of the molecules at the origin of these chloroalkanes is much more difficult due to the complexity of the reactivity occurring during the sample pyrolysis. If a first study has already been done recently with this aim, it was relatively limited in terms of parameters investigated.This is the reason why, we performed a systematic study in the laboratory to help understanding the influence of oxychlorines on organic matter during pyrolysis. With this aim, different organic compounds from various chemical families (e.g. amino and carboxylic acids) mixed with different perchlorates and chlorates, in concentrations compatible with the Mars soil from estimations done with SAM measurements, were pyrolyzed under SAM like conditions. The products of reaction were analyzed and identified by GC-MS in order to show a possible correlation between them and the parent molecule. Different parameters were tested for the pyrolysis to evaluate their potential influence on the

  14. Enhanced Thermal Transport of Surfaces with Superhydrophobic Coatings

    DTIC Science & Technology

    2015-07-01

    transport, superhydrophobic, jumping droplet, cooling, nanostructure, self - assembled monolayer 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF...modified from a hydrophilic chemistry (oxide) to a hydrophobic surface using a fluorinated (or protonated) self - assembled monolayer (SAM). Chemical...seconds and dried with filtered nitrogen. 2.3 SAM Deposition The final step involved the deposition of a self - assembled monolayer onto the silvered

  15. Self-assembled Monolayer Mediated Surface Environment Modification of Poly(vinylpyrrolidone)-Coated Hollow Au-Ag Nanoshells for Enhanced Loading of Hydrophobic Drug and Efficient Multimodal Therapy.

    PubMed

    Jang, Hongje; Kim, Dong-Eun; Min, Dal-Hee

    2015-06-17

    Hollow Au-Ag bimetallic nanoshell possessing hydrophobic interior space and hydrophilic exterior surface was prepared and its application as a chemo-thermo-gene therapeutic agent based on its high payload of multiple drugs having different water solubility was demonstrated. The multifunctional drug delivery system is based on the hydrophobic interior created by the self-assembled monolayer (SAM) of hexanethiol onto the inner surface of the hollow metallic nanoshells whereas the outer surface was mostly coated by hydrophilic biocompatible polymer. The nanoshells having surface environment modified by hexanethiol SAMs provided high capacity both for hydrophilic DNAzyme (Dz) to induce gene silencing and for hydrophobic SN38 (7-ethyl-10-hydroxycamptothecin), anticancer drug. The release of the loaded Dz and SN38 was independently triggered by an acidic environment and by photothermal temperature elevation upon irradiation, respectively. The chemo-thermo-gene multitherapy based on the present nanoshells having modified surface environment showed high efficacy in quantitative cell-based assays using Huh7 human liver cell containing hepatitis C viral NS3 gene replicon RNA.

  16. Carbon and Sulfur Isotopic Composition of Rocknest Soil as Determined with the Sample Analysis at Mars(SAM) Quadrupole Mass Spectrometer

    NASA Technical Reports Server (NTRS)

    Franz, H. B.; McAdam, C.; Stern, J. C.; Archer, P. D., Jr.; Sutter, B.; Grotzinger, J. P.; Jones, J. H.; Leshin, L. A.; Mahaffy, P. R.; Ming, D. W.; hide

    2013-01-01

    The Sample Analysis at Mars (SAM) instrument suite on the Mars Science Laboratory (MSL) Curiosity rover got its first taste of solid Mars in the form of loose, unconsolidated materials (soil) acquired from an aeolian bedform designated Rocknest. Evolved gas analysis (EGA) revealed the presence of H2O as well as O-, C- and S-bearing phases in these samples. CheMin did not detect crystalline phases containing these gaseous species but did detect the presence of X-ray amorphous materials. In the absence of definitive mineralogical identification by CheMin, SAM EGA data can provide clues to the nature and/or mineralogy of volatile-bearing phases through examination of temperatures at which gases are evolved from solid samples. In addition, the isotopic composition of these gases, particularly when multiple sources contribute to a given EGA curve, may be used to identify possible formation scenarios and relationships between phases. Here we report C and S isotope ratios for CO2 and SO2 evolved from Rocknest soil samples as measured with SAM's quadrupole mass spectrometer (QMS).

  17. Post-translational modification of ribosomally synthesized peptides by a radical SAM epimerase in Bacillus subtilis

    NASA Astrophysics Data System (ADS)

    Benjdia, Alhosna; Guillot, Alain; Ruffié, Pauline; Leprince, Jérôme; Berteau, Olivier

    2017-07-01

    Ribosomally synthesized peptides are built out of L-amino acids, whereas D-amino acids are generally the hallmark of non-ribosomal synthetic processes. Here we show that the model bacterium Bacillus subtilis is able to produce a novel type of ribosomally synthesized and post-translationally modified peptide that contains D-amino acids, and which we propose to call epipeptides. We demonstrate that a two [4Fe-4S]-cluster radical S-adenosyl-L-methionine (SAM) enzyme converts L-amino acids into their D-counterparts by catalysing Cα-hydrogen-atom abstraction and using a critical cysteine residue as the hydrogen-atom donor. Unexpectedly, these D-amino acid residues proved to be essential for the activity of a peptide that induces the expression of LiaRS, a major component of the bacterial cell envelope stress-response system. Present in B. subtilis and in several members of the human microbiome, these epipeptides and radical SAM epimerases broaden the landscape of peptidyl structures accessible to living organisms.

  18. Photosystem I assembly on chemically tailored SAM/ Au substrates for bio-hybrid device fabrication

    NASA Astrophysics Data System (ADS)

    Mukherjee, Dibyendu; Khomami, Bamin

    2011-03-01

    Photosystem I (PS I), a supra-molecular protein complex and a biological photodiode responsible for driving natural photosynthesis mechanism, charge separates upon exposure to light. Effective use of the photo-electrochemical activities of PS I for future bio-hybrid electronic devices requires controlled attachment of these proteins onto organic/ inorganic substrates. Our results indicate that various experimental parameters alter the surface topography of PS I deposited from colloidal aqueous buffer suspensions onto OH-terminated alkanethiolate SAM /Au substrates, thereby resulting in complex columnar structures that affect the electron capture pathway of PS I. Specifically, solution phase characterizations indicate that specific detergents used for PS I stabilization in buffer solutions drive the unique colloidal chemistry to tune protein-protein interactions and prevent aggregation, thereby allowing us to tailor the morphology of surface immobilized PS I. We present surface topographical, adsorption, and electrochemical characterizations of PSI /SAM/Au substrates to elucidate protein-surface attachment dynamics and its effect on the photo-activated electronic activities of surface immobilized PS I. Sustainable Energy Education and Research Center (SEERC).

  19. Sterols of Saccharomyces cerevisiae erg6 Knockout Mutant Expressing the Pneumocystis carinii S-Adenosylmethionine:Sterol C-24 Methyltransferase (SAM:SMT)

    PubMed Central

    Kaneshiro, Edna S.; Johnston, Laura Q.; Nkinin, Stephenson W.; Romero, Becky I.; Giner, José-Luis

    2014-01-01

    The AIDS-associated lung pathogen Pneumocystis is classified as a fungus although Pneumocystis has several distinct features such as the absence of ergosterol, the major sterol of most fungi. The P. carinii S-adenosylmethionine:sterol C24-methyltransferase (SAM:SMT) enzyme, coded by the erg6 gene, transfers either one or two methyl groups to the C-24 position of the sterol side chain producing both C28 and C29 24-alkylsterols in approximately the same proportions whereas most fungal SAM:SMT transfer only one methyl group to the side chain. The sterol compositions of wild type Sacchromyces cerevisiae, the erg6 knockout mutant (Δerg6), and Δerg6 expressing the P. carinii or the S. cerevisiae erg6 gene were analyzed by a variety of chromatographic and spectroscopic procedures to examine functional complementation in the yeast expression system. Detailed sterol analyses were obtained using high performance liquid chromatography (HPLC) and proton nuclear magnetic resonance spectroscopy (1H-NMR). The P. carinii SAM:SMT in the Δerg6 restored its ability to produce the C28 sterol ergosterol as the major sterol, and also resulted in low levels of C29 sterols. This indicates that while the P. carinii SAM:SMT in the yeast Δerg6 cells was able to transfer a second methyl group to the side chain, the action of Δ24(28)-sterol reductase (coded by the erg4 gene) in the yeast cells prevented the formation and accumulation of as many C29 sterols as that found in P. carinii. PMID:25230683

  20. Synergy of SAM and ChemCam instruments (Curiosity Rover) to Search for Organic Matter at Mars

    NASA Astrophysics Data System (ADS)

    Dequaire, T.; Coll, P.; Szopa, C.; Maurice, S.; Mangold, N.

    2014-07-01

    This work proposes to determine ChemCam capabilities to detect organic molecules in the martian rocks, by coupling LIBS and passive spectroscopy using the ChemCam testbed (IRAP) in order to select at best the samples analyzed by the SAM instrument.

  1. 18. (4"X5" image enlarged from 2 1/4" negative) Sam Fowler, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. (4"X5" image enlarged from 2 1/4" negative) Sam Fowler, Photographer, February 1998 VIEW OF GEORGIA DOT BRIDGE NO. 051-00025D-01986N (JAMES P. HOULIHAN BRIDGE) APPROACH SPAN FENDER. DOLPHIN LOCATED AT RIGHT. NAVIGATIONAL LIGHT LOCATED ON TOP OF FENDER - Georgia DOT Bridge No. 051-00025D-01986N, US 17 & State Route 25 Spanning Savannah River, Port Wentworth, Chatham County, GA

  2. Sam Goudsmit--His Physics and His Statesmanship

    NASA Astrophysics Data System (ADS)

    Bederson, Benjamin

    2010-03-01

    Sam Goudsmit was already a famous theoretical physicist in his thirties, mainly because of his co-discovery of electron spin with George Uhlenbeck while both were students of Paul Ehrenfest in Holland in 1925. He and Uhlenbeck continued their thriving careers at the University of Michigan. Goudsmit's style as a physicist was always to make as close a connection between theory and experiment as possible. Thus, for example, his development with his student Robert Bacher of the technique called ``fractional parentage'' used fruitfully in both atomic and nuclear physics to compute energy levels of unknown states in terms of know ones. He also delved deeply into problems related to determinations of nuclear spins and moments. Partly because of his service as scientific leader of the Alsos project at the end of WWII he became a leading statesman of science. I will describe some of his achievements both as a physicist and as a statesman, prior to his becoming Editor in Chief of the American Physical Society.

  3. ExoDat Information System at CeSAM

    NASA Astrophysics Data System (ADS)

    Agneray, F.; Moreau, C.; Chabaud, P.; Damiani, C.; Deleuil, M.

    2014-05-01

    CoRoT (Convection Rotation and planetary transits) is a space based mission led by French space agency (CNES) in association with French and international laboratories. One of CoRoT's goal is to detect exoplanets by the transit method. The Exoplanet Database (Exodat) is a VO compliant information system for the CoRoT exoplanet program. The main functions of ExoDat are to provide a source catalog for the observation fields and targets selection; to characterize the CoRoT targets (spectral type, variability , contamination...);and to support follow up programs. ExoDat is built using the AstroNomical Information System (ANIS) developed by the CeSAM (Centre de donneeS Astrophysique de Marseille). It offers download of observation catalogs and additional services like: search, extract and display data by using a combination of criteria, object list, and cone-search interfaces. Web services have been developed to provide easy access for user's softwares and pipelines.

  4. A Phase 2 clinical trial of PF-05212377 (SAM-760) in subjects with mild to moderate Alzheimer's disease with existing neuropsychiatric symptoms on a stable daily dose of donepezil.

    PubMed

    Fullerton, Terence; Binneman, Brendon; David, William; Delnomdedieu, Marielle; Kupiec, James; Lockwood, Peter; Mancuso, Jessica; Miceli, Jeffrey; Bell, Joanne

    2018-04-05

    Symptomatic benefits have been reported for 5-HT 6 receptor antagonists in Alzheimer's disease (AD) trials. SAM-760 is a potent and selective 5-HT 6 receptor antagonist that has demonstrated central 5-HT 6 receptor saturation in humans at a dose of 30 mg. This was a randomized, double-blind, placebo-controlled, parallel-group, multicenter trial evaluating the efficacy and safety of SAM-760 30 mg once daily (QD) for 12 weeks in subjects with AD on a stable regimen of donepezil 5 to 10 mg QD. The study included an interim analysis with stopping rules for futility or efficacy after 180 subjects completed the week 12 visit. Up to 342 subjects with AD (Mini-Mental State Examination (MMSE) score 10-24) and neuropsychiatric symptoms (Neuropsychiatric Inventory (NPI) total score ≥ 10) were to be enrolled if the study continued after the interim analysis. After a 4-week, single-blind, placebo run-in period, subjects entered the 12-week double-blind period and were randomized to either SAM-760 or placebo. The primary and key secondary efficacy endpoints were the change from baseline in Alzheimer's Disease Assessment Scale-cognitive subscale (ADAS-cog13) and NPI total scores. Mixed models for repeated measures were used to analyze the data. At the interim analysis, when 186 subjects had been randomized and 163 had completed the week 12 visit, the study met futility criteria and was stopped. The mean week 12 treatment difference was 0.70 points (P = 0.43) for ADAS-cog13 and 2.19 points (P = 0.20) for NPI score, both of which were numerically in favor of placebo. Other secondary endpoints did not demonstrate any significant benefit for SAM-760. In total, 46.2% of SAM-760 subjects reported adverse events (AE) versus 44.7% for placebo, and there were 5 (5.5%) serious AEs in the SAM-760 group versus 3 (3.2%) for placebo. There were two deaths, one prior to randomization and one in the SAM-760 group (due to a traffic accident during washout of active treatment). SAM-760 was

  5. Why Nature Uses Radical SAM Enzymes so Widely: Electron Nuclear Double Resonance Studies of Lysine 2,3-Aminomutase Show the 5′-dAdo• “Free Radical” Is Never Free

    PubMed Central

    Horitani, Masaki; Byer, Amanda S.; Shisler, Krista A.; Chandra, Tilak; Broderick, Joan B.; Hoffman, Brian M.

    2015-01-01

    Lysine 2,3-aminomutase (LAM) is a radical S-adenosyl-L-methionine (SAM) enzyme and, like other members of this superfamily, LAM utilizes radical-generating machinery comprising SAM anchored to the unique Fe of a [4Fe-4S] cluster via a classical five-membered N,O chelate ring. Catalysis is initiated by reductive cleavage of the SAM S–C5′ bond, which creates the highly reactive 5′-deoxyadenosyl radical (5′-dAdo•), the same radical generated by homolytic Co–C bond cleavage in B12 radical enzymes. The SAM surrogate S-3′,4′-anhydroadenosyl-L-methionine (anSAM) can replace SAM as a cofactor in the isomerization of L-α-lysine to L-β-lysine by LAM, via the stable allylic anhydroadenosyl radical (anAdo•). Here electron nuclear double resonance (ENDOR) spectroscopy of the anAdo• radical in the presence of 13C, 2H, and 15N-labeled lysine completes the picture of how the active site of LAM from Clostridium subterminale SB4 “tames” the 5′-dAdo• radical, preventing it from carrying out harmful side reactions: this “free radical” in LAM is never free. The low steric demands of the radical-generating [4Fe-4S]/SAM construct allow the substrate target to bind adjacent to the S–C5′ bond, thereby enabling the 5′-dAdo• radical created by cleavage of this bond to react with its partners by undergoing small motions, ~0.6 Å toward the target and ~1.5 Å overall, that are controlled by tight van der Waals contact with its partners. We suggest that the accessibility to substrate and ready control of the reactive C5′ radical, with “van der Waals control” of small motions throughout the catalytic cycle, is common within the radical SAM enzyme superfamily and is a major reason why these enzymes are the preferred means of initiating radical reactions in nature. PMID:25923449

  6. Structures of the peptide-modifying radical SAM enzyme SuiB elucidate the basis of substrate recognition.

    PubMed

    Davis, Katherine M; Schramma, Kelsey R; Hansen, William A; Bacik, John P; Khare, Sagar D; Seyedsayamdost, Mohammad R; Ando, Nozomi

    2017-09-26

    Posttranslational modification of ribosomally synthesized peptides provides an elegant means for the production of biologically active molecules known as RiPPs (ribosomally synthesized and posttranslationally modified peptides). Although the leader sequence of the precursor peptide is often required for turnover, the exact mode of recognition by the modifying enzymes remains unclear for many members of this class of natural products. Here, we have used X-ray crystallography and computational modeling to examine the role of the leader peptide in the biosynthesis of a homolog of streptide, a recently identified peptide natural product with an intramolecular lysine-tryptophan cross-link, which is installed by the radical S -adenosylmethionine (SAM) enzyme, StrB. We present crystal structures of SuiB, a close ortholog of StrB, in various forms, including apo SuiB, SAM-bound SuiB, and a complex of SuiB with SAM and its peptide substrate, SuiA. Although the N-terminal domain of SuiB adopts a typical RRE (RiPP recognition element) motif, which has been implicated in precursor peptide recognition, we observe binding of the leader peptide in the catalytic barrel rather than the N-terminal domain. Computational simulations support a mechanism in which the leader peptide guides posttranslational modification by positioning the cross-linking residues of the precursor peptide within the active site. Together the results shed light onto binding of the precursor peptide and the associated conformational changes needed for the formation of the unique carbon-carbon cross-link in the streptide family of natural products.

  7. Revision of middle Proterozoic Yellowjacket Formation, central Idaho, and revision of Cretaceous Slim Sam Formation, Elkhorn mountains area, Montana

    USGS Publications Warehouse

    Tysdal, Russell G.

    2000-01-01

    The Yellowjacket Formation is restricted to the strata originally assigned to it by Ross (1934). The Yellowjacket, the conformably overlying Hoodoo Quartzite, and succeeding unnamed argillaceous quartzite unit form a genetically related sequence that lies in a structural block delimited on the northeast by the Iron Lake fault. Directly northeast of the fault, strata currently assigned by others to the lower subunit of the Yellowjacket are correlated with the Apple Creek Formation in the Lemhi Range. Mapping in the western part of the Lemhi Range shows that the Apple Creek Formation lies depositionally above the Big Creek Formation and that no rocks of the Yellowjacket-Hoodoo unnamed unit stratigraphic sequence are present. In contrast, in the area of the Yellowjacket mapped by Ross (1934) and the area directly northeast of the Iron Lake Fault, the Big Creek Formation is absent, even though it is 2,700 m thick in the Lemhi Range. These data indicate that the Iron Lake Fault juxtaposed the Yellowjacket-Hoodoo-unnamed unit sequence against non-Yellowjacket strata to the northeast. The Upper Cretaceous Slim Sam Formation of the Elkhorn Mountains area is revised. Strata of the lower part are correlated with the regionally recognized marine Telegraph Creek Formation and the overlying marine to marginal marine Eagle Sandstone. Only lower strata of the Eagle are present in the study area and they are preserved discontinously. The nonmarine volcanic and volcaniclastic rocks of the upper part of the Slim Sam as originally defined retain the name Slim Sam Formation. These rocks, mainly of sedimentary origin, are genetically related to the Elkhorn Mountains Volcanics. The lower contact of the Slim Sam (restricted) is unconformable above the Eagle Sandstone or more commonly above the Telegraph Creek Formation. The upper contact is conformable with the Elkhorn Mountains Volcanics.

  8. 20. (4"X5" image enlarged from 2 1/4" negative) Sam Fowler, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. (4"X5" image enlarged from 2 1/4" negative) Sam Fowler, Photographer, February 1998 VIEW OF GEORGIA DOT BRIDGE NO. 051-00025D-01986N (JAMES P. HOULIHAN BRIDGE). DETAIL OF FENDER SYSTEM FOR TURN-SPAN PIVOT PIER. OPERATOR'S HOUSE LOCATED ON UPPER SECTION OF TRUSS - Georgia DOT Bridge No. 051-00025D-01986N, US 17 & State Route 25 Spanning Savannah River, Port Wentworth, Chatham County, GA

  9. Phosphonate-anchored monolayers for antibody binding to magnetic nanoparticles.

    PubMed

    Benbenishty-Shamir, Helly; Gilert, Roni; Gotman, Irena; Gutmanas, Elazar Y; Sukenik, Chaim N

    2011-10-04

    Targeted delivery of magnetic iron oxide nanoparticles (IONPs) to a specific tissue can be achieved by conjugation with particular biological ligands on an appropriately functionalized IONP surface. To take best advantage of the unique magnetic properties of IONPs and to maximize their blood half-life, thin, strongly bonded, functionalized coatings are required. The work reported herein demonstrates the successful application of phosphonate-anchored self-assembled monolayers (SAMs) as ultrathin coatings for such particles. It also describes a new chemical approach to the anchoring of antibodies on the surface of SAM-coated IONPs (using nucleophilic aromatic substitution). This anchoring strategy results in stable, nonhydrolyzable, covalent attachment and allows the reactivity of the particles toward antibody binding to be activated in situ, such that prior to the activation the modified surface is stable for long-term storage. While the SAMs do not have the well-packed crystallinity of other such monolayers, their structure was studied using smooth model substrates based on an iron oxide layer on a double-side polished silicon wafer. In this way, atomic force microscopy, ellipsometry, and contact angle goniometry (tools that could not be applied to the nanoparticles' surfaces) could contribute to the determination of their monomolecular thickness and uniformity. Finally, the successful conjugation of IgG antibodies to the SAM-coated IONPs such that the antibodies retain their biological activity is verified by their complexation to a secondary fluorescent antibody. © 2011 American Chemical Society

  10. Stool frequency recording in severe acute malnutrition ('StoolSAM'); an agreement study comparing maternal recall versus direct observation using diapers.

    PubMed

    Voskuijl, Wieger; Potani, Isabel; Bandsma, Robert; Baan, Anne; White, Sarah; Bourdon, Celine; Kerac, Marko

    2017-06-07

    Approximately 50% of the deaths of children under the age of 5 can be attributed to undernutrition, which also encompasses severe acute malnutrition (SAM). Diarrhoea is strongly associated with these deaths and is commonly diagnosed solely based on stool frequency and consistency obtained through maternal recall. This trial aims to determine whether this approach is equivalent to a 'directly observed method' in which a health care worker directly observed stool frequency using diapers in hospitalised children with complicated SAM. This study was conducted at 'Moyo' Nutritional Rehabilitation Unit, Queen Elizabeth Central Hospital, Malawi. Participants were children aged 5-59 months admitted with SAM. We compared 2 days of stool frequency data obtained with next-day maternal-recall versus a 'gold standard' in which a health care worker observed stool frequency every 2 h using diapers. After study completion, guardians were asked their preferred method and their level of education. We found poor agreement between maternal recall and the 'gold standard' of directly observed diapers. The sensitivity to detect diarrhoea based on maternal recall was poor, with only 75 and 56% of diarrhoea cases identified on days 1 and 2, respectively. However, the specificity was higher with more than 80% of children correctly classified as not having diarrhoea. On day 1, the mean stool frequency difference between the two methods was -0.17 (SD; 1.68) with limits of agreement (of stool frequency) of -3.55 and 3.20 and, similarly on day 2, the mean difference was -0.2 (SD; 1.59) with limits of agreement of -3.38 and 2.98. These limits extend beyond the pre-specified 'acceptable' limits of agreement (±1.5 stool per day) and indicate that the 2 methods are non-equivalent. The higher the stool frequency, the more discrepant the two methods were. Most primary care givers strongly preferred using diapers. This study shows lack of agreement between the assessment of stool frequency in SAM

  11. Review and standardization of cell phone exposure calculations using the SAM phantom and anatomically correct head models.

    PubMed

    Beard, Brian B; Kainz, Wolfgang

    2004-10-13

    We reviewed articles using computational RF dosimetry to compare the Specific Anthropomorphic Mannequin (SAM) to anatomically correct models of the human head. Published conclusions based on such comparisons have varied widely. We looked for reasons that might cause apparently similar comparisons to produce dissimilar results. We also looked at the information needed to adequately compare the results of computational RF dosimetry studies. We concluded studies were not comparable because of differences in definitions, models, and methodology. Therefore we propose a protocol, developed by an IEEE standards group, as an initial step in alleviating this problem. The protocol calls for a benchmark validation study comparing the SAM phantom to two anatomically correct models of the human head. It also establishes common definitions and reporting requirements that will increase the comparability of all computational RF dosimetry studies of the human head.

  12. Review and standardization of cell phone exposure calculations using the SAM phantom and anatomically correct head models

    PubMed Central

    Beard, Brian B; Kainz, Wolfgang

    2004-01-01

    We reviewed articles using computational RF dosimetry to compare the Specific Anthropomorphic Mannequin (SAM) to anatomically correct models of the human head. Published conclusions based on such comparisons have varied widely. We looked for reasons that might cause apparently similar comparisons to produce dissimilar results. We also looked at the information needed to adequately compare the results of computational RF dosimetry studies. We concluded studies were not comparable because of differences in definitions, models, and methodology. Therefore we propose a protocol, developed by an IEEE standards group, as an initial step in alleviating this problem. The protocol calls for a benchmark validation study comparing the SAM phantom to two anatomically correct models of the human head. It also establishes common definitions and reporting requirements that will increase the comparability of all computational RF dosimetry studies of the human head. PMID:15482601

  13. Fatty Acid Detection in Mars-Analogous Rock Samples with the TMAH Wet Chemistry Experiment on the Sample Analysis at Mars (SAM) Instrument

    NASA Astrophysics Data System (ADS)

    Williams, A. J.; Eigenbrode, J. L.; Wilhelm, M. B.; Johnson, S. S.; Craft, K.; O'Reilly, S.; Lewis, J. M. T.; Williams, R.; Summons, R. E.; Benison, K. C.; Mahaffy, P. R.

    2017-12-01

    The Curiosity rover is exploring sedimentary rock sequences in Gale Crater for evidence of habitability and searching for organic compounds using the Sample Analysis at Mars (SAM) instrument suite. SAM includes a gas chromatograph mass spectrometer (GC-MS) and pyrolysis ovens. SAM has the ability to perform wet chemistry experiments, one of which uses tetramethylammonium hydroxide (TMAH) thermochemolysis to liberate bound lipids, making them sufficiently volatile for detection by GC-MS. To determine the effectiveness of the SAM-like TMAH experiment on fatty acid methyl ester (FAME) biomarker identification, rock and sediment samples were collected from a variety of Mars analog environments including iron oxides from a modern mineral precipitate and older surface gossan at Iron Mountain, CA, as well as modern acid salt and neutral lake sediments with mixed iron oxides and clays from Western Australia; siliceous sinter from recently inactive and modern near-vent Icelandic hot springs deposits; modern carbonate ooids from The Bahamas, and organic-rich shale from Germany. Samples underwent pyrolysis with TMAH. Fatty acids were analyzed by pyro-GC-MS using a SAM-like heating ramp (35°C/min) as well as a 500°C flash on a Frontier pyrolyzer and Agilent GC-MS instrument. Results reveal that FAMEs were detectable with the TMAH experiment in nearly all samples. Low molecular weight (MW) C6:0-C10:0 FAMEs were present in all samples, medium MW C11:0-C18:2 FAMEs were present in select samples, and high MW (HMW) C20:0-C30:0 FAMEs were present in the shale sample. Many of these samples exhibited an even-over-odd carbon number preference, indicating biological production. These experiments demonstrate that TMAH thermochemolysis with SAM-like pyro-GC-MS is effective in fatty acid analysis from natural Mars-analog samples that vary in mineralogy, age, and microbial community input. HMW FAMEs are not detected in iron-dominated samples, and may not be detectable at low

  14. Insights into the catalysis of a lysine-tryptophan bond in bacterial peptides by a SPASM domain radical S-adenosylmethionine (SAM) peptide cyclase.

    PubMed

    Benjdia, Alhosna; Decamps, Laure; Guillot, Alain; Kubiak, Xavier; Ruffié, Pauline; Sandström, Corine; Berteau, Olivier

    2017-06-30

    Radical S -adenosylmethionine (SAM) enzymes are emerging as a major superfamily of biological catalysts involved in the biosynthesis of the broad family of bioactive peptides called ribosomally synthesized and post-translationally modified peptides (RiPPs). These enzymes have been shown to catalyze unconventional reactions, such as methyl transfer to electrophilic carbon atoms, sulfur to C α atom thioether bonds, or carbon-carbon bond formation. Recently, a novel radical SAM enzyme catalyzing the formation of a lysine-tryptophan bond has been identified in Streptococcus thermophilus , and a reaction mechanism has been proposed. By combining site-directed mutagenesis, biochemical assays, and spectroscopic analyses, we show here that this enzyme, belonging to the emerging family of SPASM domain radical SAM enzymes, likely contains three [4Fe-4S] clusters. Notably, our data support that the seven conserved cysteine residues, present within the SPASM domain, are critical for enzyme activity. In addition, we uncovered the minimum substrate requirements and demonstrate that KW cyclic peptides are more widespread than anticipated, notably in pathogenic bacteria. Finally, we show a strict specificity of the enzyme for lysine and tryptophan residues and the dependence of an eight-amino acid leader peptide for activity. Altogether, our study suggests novel mechanistic links among SPASM domain radical SAM enzymes and supports the involvement of non-cysteinyl ligands in the coordination of auxiliary clusters. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. A paradigm shift for radical SAM reactions: The organometallic intermediate Ω is central to catalysis.

    PubMed

    Byer, Amanda S; Yang, Hao; McDaniel, Elizabeth C; Kathiresan, Venkatesan; Impano, Stella; Pagnier, Adrien; Watts, Hope; Denler, Carly; Vagstad, Anna; Piel, Jörn; Duschene, Kaitlin S; Shepard, Eric M; Shields, Thomas P; Scott, Lincoln G; Lilla, Edward A; Yokoyama, Kenichi; Broderick, William E; Hoffman, Brian M; Broderick, Joan B

    2018-06-28

    Radical S-adenosyl-L-methionine (SAM) en-zymes comprise a vast superfamily catalyzing diverse reactions essential to all life through ho-molytic SAM cleavage to liberate the highly-reactive 5-deoxyadenosyl radical (5-dAdo•). Our recent observation of a catalytically compe-tent organometallic intermediate Ω that forms dur-ing reaction of the radical SAM (RS) enzyme py-ruvate formate-lyase activating-enzyme (PFL-AE) was therefore quite surprising, and led to the question of its broad relevance in the superfamily. We now show that Ω in PFL-AE forms as an in-termediate under a variety of mixing order condi-tions, suggesting it is central to catalysis in this enzyme. We further demonstrate that Ω forms in a suite of RS enzymes chosen to span the totality of superfamily reaction types, implicating Ω as essential in catalysis across the RS superfamily. Finally, EPR and electron nuclear double reso-nance spectroscopy establish that Ω involves an Fe-C5 bond between 5-dAdo• and the [4Fe-4S] cluster. An analogous organometallic bond is found in the well-known adenosylcobalamin (co-enzyme B12) cofactor used to initiate radical reac-tions via a 5'-dAdo• intermediate. Generation of a 5'-dAdo• intermediate via homolytic metal-carbon bond cleavage thus appears to be similar for Ω and coenzyme B12. However coenzyme B12 is involved in enzymes catalyzing of only a small number (~12) of distinct reactions, while the RS superfamily has more than 100,000 distinct se-quences and over 80 reaction types character-ized to date. The appearance of Ω across the RS superfamily therefore dramatically enlarges the sphere of bio-organometallic chemistry in Nature.

  16. Study of sintering behavior of vapor forms of 1-octanethiol coated copper nanoparticles for application to ink-jet printing technology.

    PubMed

    Kwon, Jinhyeong; Park, Shinyoung; Haque, Md Mominul; Kim, Young-Seok; Lee, Caroline Sunyong

    2012-04-01

    Sub-50 nm copper nanoparticles coated with sub-5 nm 1-octanethiol layer for oxidation inhibition were examined to confirm the 1-octanethiol removal temperature as the sub-50 nm copper nanoparticles are sintered. As a result, 1-octanethiol Self-Assembled Multi-layers (SAMs) on sub-50 nm copper nanoparticles were successfully removed before sintering of copper nanoparticles so that a high density of copper line could be obtained. Finally, the line resistivity was measured and compared to verify the effect of sintering in different atmospheres. As a result, electrical resistivity of the copper pattern sintered in hydrogen atmosphere was measured at 6.96 x 10(-6) ohm-cm whereas that of the copper pattern sintered in mixed gas atmosphere was measured at 2.62 x 10(-5) ohm-cm. Thus, sintering of copper patterns was successfully done to show low electrical resistivity values. Moreover, removal of 1-octanethiol coating after sintering process was confirmed using X-ray photoelectron spectroscopy (XPS) analysis. By showing no sulfur content, XPS results indicate that 1-octanethiol is completely removed. Therefore, the vapor form of 1-octanethiol coating layers can be safely used as an oxidation inhibition layer for low temperature sintering processes and ink-jet applications.

  17. HIGHWAY INFRASTRUCTURE FOCUS AREA NEXT-GENERATION INFRASTRUCTURE MATERIALS VOLUME I - TECHNICAL PROPOSAL & MANAGEMENTENHANCEMENT OF TRANSPORTATION INFRASTRUCTURE WITH IRON-BASED AMORPHOUS-METAL AND CERAMIC COATINGS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farmer, J C

    2007-12-04

    The infrastructure for transportation in the United States allows for a high level of mobility and freight activity for the current population of 300 million residents, and several million business establishments. According to a Department of Transportation study, more than 230 million motor vehicles, ships, airplanes, and railroads cars were used on 6.4 million kilometers (4 million miles) of highways, railroads, airports, and waterways in 1998. Pipelines and storage tanks were considered to be part of this deteriorating infrastructure. The annual direct cost of corrosion in the infrastructure category was estimated to be approximately $22.6 billion in 1998. There weremore » 583,000 bridges in the United States in 1998. Of this total, 200,000 bridges were steel, 235,000 were conventional reinforced concrete, 108,000 bridges were constructed using pre-stressed concrete, and the balance was made using other materials of construction. Approximately 15 percent of the bridges accounted for at this point in time were structurally deficient, primarily due to corrosion of steel and steel reinforcement. Iron-based amorphous metals, including SAM2X5 (Fe{sub 49.7}Cr{sub 17.7}Mn{sub 1.9}Mo{sub 7.4}W{sub 1.6}B{sub 15.2}C{sub 3.8}Si{sub 2.4}) and SAM1651 (Fe{sub 48}Mo{sub 14}Cr{sub 15}Y{sub 2}C{sub 15}B{sub 6}) have been developed, and have very good corrosion resistance. These materials have been prepared as a melt-spun ribbons, as well as gas atomized powders and thermal-spray coatings. During electrochemical testing in several environments, including seawater at 90 C, the passive film stabilities of these materials were found to be comparable to that of more expensive high-performance alloys, based on electrochemical measurements of the passive film breakdown potential and general corrosion rates. These materials also performed very well in standard salt fog tests. Chromium (Cr), molybdenum (Mo) and tungsten (W) provided corrosion resistance, and boron (B) enabled glass

  18. Statement of Facts for 1977 City-Wide Mock Trial Competitions. Walker Thomas v. Sam Nomad.

    ERIC Educational Resources Information Center

    National Inst. for Citizen Education in the Law, Washington, DC.

    Prepared by the District of Columbia Street Law Project for its annual city-wide mock trial competition, this instructional handout provides material for a civil case over an automobile accident. Walker Thomas is suing Sam Nomad for damages that resulted from a collision, for which both parties blame the other. The handout clarifies the laws and…

  19. Reducing Staphylococcus aureus biofilm formation on stainless steel 316L using functionalized self-assembled monolayers

    PubMed Central

    Kruszewski, Kristen M; Nistico, Laura; Longwell, Mark J; Hynes, Matthew J; Maurer, Joshua A

    2013-01-01

    Stainless steel 316L (SS316L) is a common material used in orthopedic implants. Bacterial colonization of the surface and subsequent biofilm development can lead to refractory infection of the implant. Since the greatest risk of infection occurs perioperatively, strategies that reduce bacterial adhesion during this time are important. As a strategy to limit bacterial adhesion and biofilm formation on SS316L, self-assembled monolayers (SAMs) were used to modify the SS316L surface. SAMs with long alkyl chains terminated with hydrophobic (-CH3) or hydrophilic (oligoethylene glycol) tail groups were used to form coatings and in an orthogonal approach, SAMs were used to immobilize gentamicin or vancomycin on SS316L for the first time to form an “active” antimicrobial coating to inhibit early biofilm development. Modified SS316L surfaces were characterized using surface infrared spectroscopy, contact angles, MALDI-TOF mass spectrometry and atomic force microscopy. The ability of SAM-modified SS316L to retard biofilm development by Staphylococcus aureus was functionally tested using confocal scanning laser microscopy with COMSTAT image analysis, scanning electron microscopy and colony forming unit analysis. Neither hydrophobic nor hydrophilic SAMs reduced biofilm development. However, gentamicin-linked and vancomycin-linked SAMs significantly reduced S. aureus biofilm formation for up to 24 and 48 hours, respectively. PMID:23498233

  20. Reducing Staphylococcus aureus biofilm formation on stainless steel 316L using functionalized self-assembled monolayers.

    PubMed

    Kruszewski, Kristen M; Nistico, Laura; Longwell, Mark J; Hynes, Matthew J; Maurer, Joshua A; Hall-Stoodley, Luanne; Gawalt, Ellen S

    2013-05-01

    Stainless steel 316L (SS316L) is a common material used in orthopedic implants. Bacterial colonization of the surface and subsequent biofilm development can lead to refractory infection of the implant. Since the greatest risk of infection occurs perioperatively, strategies that reduce bacterial adhesion during this time are important. As a strategy to limit bacterial adhesion and biofilm formation on SS316L, self-assembled monolayers (SAMs) were used to modify the SS316L surface. SAMs with long alkyl chains terminated with hydrophobic (-CH3) or hydrophilic (oligoethylene glycol) tail groups were used to form coatings and in an orthogonal approach, SAMs were used to immobilize gentamicin or vancomycin on SS316L for the first time to form an "active" antimicrobial coating to inhibit early biofilm development. Modified SS316L surfaces were characterized using surface infrared spectroscopy, contact angles, MALDI-TOF mass spectrometry and atomic force microscopy. The ability of SAM-modified SS316L to retard biofilm development by Staphylococcus aureus was functionally tested using confocal scanning laser microscopy with COMSTAT image analysis, scanning electron microscopy and colony forming unit analysis. Neither hydrophobic nor hydrophilic SAMs reduced biofilm development. However, gentamicin-linked and vancomycin-linked SAMs significantly reduced S. aureus biofilm formation for up to 24 and 48 h, respectively. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. S.A.M., the Italian Martian Simulation Chamber

    NASA Astrophysics Data System (ADS)

    Galletta, G.; Ferri, F.; Fanti, G.; D'Alessandro, M.; Bertoloni, G.; Pavarin, D.; Bettanini, C.; Cozza, P.; Pretto, P.; Bianchini, G.; Debei, S.

    2006-12-01

    The Martian Environment Simulator (SAM “Simulatore di Ambiente Marziano”) is a interdisciplinary project of Astrobiology done at University of Padua. The research is aimed to the study of the survival of the microorganisms exposed to the “extreme” planetary environment. The facility has been designed in order to simulate Mars’ environmental conditions in terms of atmospheric pressure, temperature cycles and UV radiation dose. The bacterial cells, contained into dedicated capsules, will be exposed to thermal cycles simulating diurnal and seasonal Martian cycles. The metabolism of the different biological samples will be analysed at different phases of the experiment, to study their survival and eventual activity of protein synthesis (mortality, mutations and capability of DNA reparing). We describe the experimental facility and provide the perspectives of the biological experiments we will perform in order to provide hints on the possibility of life on Mars either autochthonous or imported from Earth.

  2. Characterization and function of the 3-hydroxy-3-methylglutaryl-CoA reductase gene in Alisma orientale (Sam.) Juz. and its relationship with protostane triterpene production.

    PubMed

    Gu, Wei; Geng, Chao; Xue, Wenda; Wu, Qinan; Chao, Jianguo; Xu, Fei; Sun, Hongmei; Jiang, Ling; Han, Yun; Zhang, Shuangquan

    2015-12-01

    Protostane triterpenes from Alisma orientale (Sam.) Juz. have exhibited distinct pharmacological properties that are currently in high demand. 3-Hydroxy-3-methylglutaryl-CoA reductase (HMGR) is considered the first rate-limiting enzyme in isoprenoid biosynthesis via the mevalonic acid (MVA) pathway. In this study, we cloned a full-length cDNA of A. orientale (Sam.) Juz. HMGR (AoHMGR; 2252 bp; GenBank accession no. KP342318) with an open reading frame (ORF) of 1809 bp. The deduced protein sequence contained four conserved motifs and exhibited homology with HMGR proteins from other plants. We next expressed the cloned gene in Escherichia coli BL21 (Rosetta) cells, collected the expressed products, and incubated those with 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) to determine enzymatic activity. GC/MS analysis revealed that the products were able to catalyze HMG-CoA and NADPH to form MVA. The purified protein was used to immunize New Zealand rabbits and prepare an antibody against AoHMGR. Western blot results demonstrated that the antibodies specifically recognized AoHMGR protein in A. orientale (Sam.) Juz. We then established a rapid test to detect AoHMGR protein in the plant, and found the tuber to be the most AoHMGR protein-abundant organ in A. orientale (Sam.) Juz. Furthermore, we detected the expression level of AoHMGR and contents of the main active component, Alisol B 23-acetate, at different growth phases of A. orientale (Sam.) Juz. A significant positive correlation was identified, indicating that AoHMGR represents a key enzyme in the synthetic pathway of protostane triterpenes. Copyright © 2015. Published by Elsevier Masson SAS.

  3. The Investigation of Chlorates as a Possible Source of Oxygen and Chlorine Detected by the Sample Analysis at Mars (SAM) Instrument in Gale Crater, Mars

    NASA Technical Reports Server (NTRS)

    Sutter, B.; Archer, D. P.; Ming, D. W.; Niles, P. B.; Eigenbrode, J. L.; Franz, H.; Glavin, D. P.; McAdam, A. C.; Mahaffy, P; Stern, J. C.; hide

    2014-01-01

    The Sample Analysis at Mars (SAM) instrument onboard the Curiosity rover detect-ed O2 and HCl gas releases from the Rocknest (RN) eolian bedform and the John Klein (JK) and Cumberland (CB) drill hole materials in Gale Crater. Chlorinated hydrocarbons have also been detected by the SAM quadrupole mass spectrometer (QMS) and gas chromatography/mass spectrometer (GCMS). These detections along with the detection of perchlorate (ClO4-) by the Mars Phoenix Lander’s Wet Chemistry Laboratory (WCL) suggesting perchlorate is a possible candidate for evolved O2 and chlorine species. Laboratory thermal analysis of perchlorates has yet to provide an unequivocal temperature match to the SAM O2 and HCl release data. Iron mineralogy found in the Rocknest materials when mixed with Ca-perchlorate does cause O2 release temperatures to be closer match to the SAM O2 release data but more work is required in evaluating the catalytic effects of Fe mineralogy on perchlorate decomposition. Chlorates (ClO3-) are relevant Mars materials and potential O2 and Cl sources. The objective of this work is to evaluate the thermal decomposition of select chlorate (ClO3-) salts as possible sources of the O2 and HCl releases in the Gale Crater materials.

  4. Economic Analysis Case Studies of Battery Energy Storage with SAM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DiOrio, Nicholas; Dobos, Aron; Janzou, Steven

    2015-11-01

    Interest in energy storage has continued to increase as states like California have introduced mandates and subsidies to spur adoption. This energy storage includes customer sited behind-the-meter storage coupled with photovoltaics (PV). This paper presents case study results from California and Tennessee, which were performed to assess the economic benefit of customer-installed systems. Different dispatch strategies, including manual scheduling and automated peak-shaving were explored to determine ideal ways to use the storage system to increase the system value and mitigate demand charges. Incentives, complex electric tariffs, and site specific load and PV data were used to perform detailed analysis. Themore » analysis was performed using the free, publically available System Advisor Model (SAM) tool. We find that installation of photovoltaics with a lithium-ion battery system priced at $300/kWh in Los Angeles under a high demand charge utility rate structure and dispatched using perfect day-ahead forecasting yields a positive net-present value, while all other scenarios cost the customer more than the savings accrued. Different dispatch strategies, including manual scheduling and automated peak-shaving were explored to determine ideal ways to use the storage system to increase the system value and mitigate demand charges. Incentives, complex electric tariffs, and site specific load and PV data were used to perform detailed analysis. The analysis was performed using the free, publically available System Advisor Model (SAM) tool. We find that installation of photovoltaics with a lithium-ion battery system priced at $300/kWh in Los Angeles under a high demand charge utility rate structure and dispatched using perfect day-ahead forecasting yields a positive net-present value, while all other scenarios cost the customer more than the savings accrued.« less

  5. Possible Detection of Perchlorates by the Sample Analysis at Mars (SAM) Instrument: Comparison with Previous Missions

    NASA Technical Reports Server (NTRS)

    Navarro-Gonzalex, Rafael; Sutter, Brad; Archer, Doug; Ming, Doug; Eigenbrode, Jennifer; Franz, Heather; Glavin, Daniel; McAdam, Amy; Stern, Jennifer; McKay, Christopher; hide

    2013-01-01

    The first chemical analysis of soluble salts in the soil was carried out by the Phoenix Lander in the Martian Arctic [1]. Surprisingly, chlorine was present as magnesium or calcium perchlorate at 0.4 to 0.6 percent. Additional support for the identification of perchlorate came from the evolved gas analysis which detected the release of molecular oxygen at 350-550C [1]. When Mars-like soils from the Atacama Desert were spiked with magnesium perchlorate (1 percent) and heated using the Viking GC-MS protocol, nearly all the organics were combusted but a small amount was chlorinated, forming chloromethane and dichloromethane [2]. These chlorohydrocarbons were detected by the Viking GC-MS experiments when the Martian soil was analyzed but they were considered to be terrestrial contaminants [3]. Reinterpretation of the Viking results suggests <0.1 percent perchlorate and ppm levels of organic carbon at landing site 1 and 2 [2]. The suggestion of perchlorate in the Viking sites [2] has been challenged on the grounds that the detected compounds (CH3Cl and CH2Cl2) were carried from Earth [4]. Recently the Sample Analysis at Mars (SAM) instrument on board the Mars Science Laboratory (MSL) ran four samples from an aeolian bedform named Rocknest. The samples analyzed were portioned from the fifth scoop at this location. The samples were heated to 835C at 35C/min with a He flow. The SAM QMS detected a major oxygen release (300-500C) [5], coupled with the release of chlorinated hydrocarbons (chloromethane, dichloromethane, trichloromethane, and chloromethylpropene) detected both by SAM QMS and GC-MS derived from known Earth organic contaminants in the instrument [6]. Calcium perchlorate appears to be the best candidate for evolved O2 in the Rocknest samples at this time but other Cl species (e.g., chlorates) are possible and must be evaluated. The potential detection of perchlorates in Rocknest material adds weight to the argument that both Viking Landers measured signatures of

  6. Social activity method (SAM): A fractal language for mathematics

    NASA Astrophysics Data System (ADS)

    Dowling, Paul

    2013-09-01

    In this paper I shall present and develop my organisational language, social activity method (SAM), and illustrate some of its applications. I shall introduce a new scheme for modes of recontextualisation that enables the analysis of the ways in which one activity - which might be school mathematics or social research or any empirically observed regularity of practice - recontextualises the practice of another and I shall also present, deploy, and develop an existing scheme - domains of action - in an analysis of school mathematics examination papers and in the structuring of what I refer to as the esoteric domain. This domain is here conceived as a hybrid domain of, first, linguistic and extralinguistic resources that are unambiguously mathematical in terms of both expression and content and, second, pedagogic theory - often tacit - that enables the mathematical gaze onto other practices and so recontextualises them. A second and more general theme that runs through the paper is the claim that there is nothing that is beyond semiosis, that there is nothing to which we have direct access, unmediated by interpretation. This state of affairs has implications for mathematics education. Specifically, insofar as an individual's mathematical semiotic system is under continuous development - the curriculum never being graspable all at once - understanding - as a stable semiotic moment - of any aspect or object of mathematics is always localised to the individual and is at best transient, and the sequencing of such moments may well also be more individualised than consistent in some correspondence with the sequencing of the curriculum. This being the case, a concentration on understanding as a goal may well serve to inhibit the pragmatic acquisition and deployment of mathematical technologies, which should be the principal aim of mathematics teaching and learning. The paper is primarily concerned with mathematics education. SAM, however, is a language that is available for

  7. Exploration of the Habitability of Mars with the SAM Suite Investigation on the 2009 Mars Science Laboratory

    NASA Technical Reports Server (NTRS)

    Mahaffy, P. R.; Cabane, M.; Webster, C. R.

    2008-01-01

    The 2009 Mars Science Laboratory (MSL) with a substantially larger payload capability that any other Mars rover, to date, is designed to quantitatively assess a local region on Mars as a potential habitat for present or past life. Its goals are (1) to assess past or present biological potential of a target environment, (2) to characterize geology and geochemistry at the MSL landing site, and (3) to investigate planetary processes that influence habitability. The Sample Analysis at Mars (SAM) Suite, in its final stages of integration and test, enables a sensitive search for organic molecules and chemical and isotopic analysis of martian volatiles. MSL contact and remote surface and subsurface survey Instruments establish context for these measurements and facilitate sample identification and selection. The SAM instruments are a gas chromatograph (GC), a mass spectrometer (MS), and a tunable laser spectrometer (TLS). These together with supporting sample manipulation and gas processing devices are designed to analyze either the atmospheric composition or gases extracted from solid phase samples such as rocks and fines. For example, one of the core SAM experiment sequences heats a small powdered sample of a Mars rock or soil from ambient to -1300 K in a controlled manner while continuously monitoring evolved gases. This is followed by GCMS analysis of released organics. The general chemical survey is complemented by a specific search for molecular classes that may be relevant to life including atmospheric methane and its carbon isotope with the TLS and biomarkers with the GCMS.

  8. Highlight on the indigenous organic molecules detected on Mars by SAM and potential sources of artifacts and backgrounds generated by the sample preparation

    NASA Astrophysics Data System (ADS)

    Buch, A.; Belmahdi, I.; Szopa, C.; Freissinet, C.; Glavin, D. P.; Coll, P. J.; Cabane, M.; Millan, M.; Eigenbrode, J. L.; Navarro-Gonzalez, R.; Stern, J. C.; Pinnick, V. T.; Coscia, D.; Teinturier, S.; Stambouli, M.; Dequaire, T.; Mahaffy, P. R.

    2015-12-01

    Among the experiments which explore the martian soil aboard the Curiosity Rover, SAM experiment is mainly dedicated to the search for indigenous organic compounds. To reach its goals SAM can operate in different analysis modes: Pyrolysis-GC-MS and Pyrolysis-MS (EGA). In addition SAM includes wet chemistry experiments [1] to supports extraction of polar organic compounds from solid samples that improves their detection either by increasing the release of chemical species from solid sample matrices, or by changing their chemical structure to make compounds more amenable to gas chromatography mass spectrometry (GCMS). The two wet chemistry experimental capabilities of SAM provide alternatives to the nominal inert-thermal desorption/pyrolysis analytical protocol and are more aptly suited for polar components: MTBSTFA derivatization [2-3] and TMAH thermochemolysis [4-5]. Here we focus on the MTBSTFA derivatization experiment. In order to build a support used to help the interpretation of SAM results, we have investigated the artifacts and backgrounds sources generated by the all analysis process: Solid sample were heated up to approximately 840°C at a rate of 35°C/min under He flow. For GC analyses, the majority of the gas released was trapped on a hydrocarbon trap (Tenax®) over a specific temperature range. Adsorbed volatiles on the GC injection trap (IT) were then released into the GC column (CLP-MXT 30m x 0.25mm x 0.25μm) by rapidly heating the IT to 300°C. Then, in order better understand the part of compounds detected coming from internal reaction we have performed several lab experiments to mimic the SAM device: Among the sources of artifact, we test: (1) the thermal stability and the organic material released during the degradation of Tenax® and carbosieve, (2) the impact of MTBSTFA and a mixture of DMF and MTBSTFA on the adsorbent, (3) the reaction between the different adsorbents (Tenax® and Carbosieve) and calcium perchlorate and then (4) the sources

  9. Effect of the presence of chlorates and perchlorates on the pyrolysis of organic compounds: implications for measurements done with the SAM experiment onboard the Curiosity rover

    NASA Astrophysics Data System (ADS)

    Millan, Maeva; Szopa, Cyril; Buch, Arnaud; Belmahdi, Imène; Coll, Patrice; Glavin, Daniel P.; Freissinet, Caroline; Archer, Doug; Sutter, Brad; Summons, Roger E.; Navarro-Gonzalez, Rafael; Cabane, Michel; Mahaffy, Paul

    2016-04-01

    The Sample Analysis at Mars (SAM) experiment onboard the Curiosity rover of the Mars Science Laboratory mission is partly devoted to the in situ molecular analysis of gases evolving from solid samples collected on Mars surface/sub-surface. SAM has a gas-chromatograph coupled to a quadrupole mass spectrometer (GC-QMS) devoted to the separation and identification of organic and inorganic material [1]. Before proceeding to the GC-QMS analysis, the solid sample collected by Curiosity is subjected to a thermal treatment thanks to the pyrolysis oven to release the volatiles into the gas processing system. As the Viking landers in 1976 [2], SAM detected chlorohydrocarbons with the pyrolysis GC-QMS experiment [3,4]. The detection of perchlorates salts in soil at the Phoenix Landing site [6] suggests that these chlorohydrocarbons could come from the reaction of organics with oxychlorines. Oxychlorines indeed decomposed into molecular oxygen and volatile chlorine when heated and react with the organic matter in the samples by oxidation and/or chlorination processes. [3,5,7,8]. During SAM pyrolysis, samples are heated to 850°C. SAM detected C1 to C3 chloroalkanes, entirely attributed to reaction products occurring during the pyrolysis experiment between oxychlorines and organic carbon from instrument background [3] and chlorobenzene and C2 to C4 dichloroalkanes produced by reaction between Mars endogenous organics with oxychlorines [4]. To help understanding the influence of perchlorate and chlorate salts on organic matter during SAM pyrolysis, we systemically study the reaction products formed during pyrolysis of various organic compounds mixed with various perchlorates and chlorates. We selected organics from simple molecule forms as for instance PAHs and amino acids to complex material (>30 carbon atoms) such as kerogen. The perchlorate and chlorate salts are prepared at 1 wt % concentration in silica and mixed with the organics to study the potential qualitative and

  10. In Situ Analysis of Mars Soil and Rocks Sample with the Sam Gcms Instrumentation Onboard Curiosity : Interpretation and Comparison of Measurements Done during the First Martian Year of Curiosity on Mars

    NASA Astrophysics Data System (ADS)

    Szopa, C.; Coll, P. J.; Cabane, M.; Buch, A.; Coscia, D.; Millan, M.; Francois, P.; Belmahadi, I.; Teinturier, S.; Navarro-Gonzalez, R.; Glavin, D. P.; Freissinet, C.; Steele, A.; Eigenbrode, J. L.; Mahaffy, P. R.

    2014-12-01

    The characterisation of the chemical and mineralogical composition of solid surface samples collected with the Curiosity rover is a primary objective of the SAM experiment. These data should provide essential clues on the past habitability of Gale crater. Amongst the SAM suite of instruments [1], SAM-GC (Gas Chromatograph) is devoted to identify and quantify volatiles evolved from the thermal (heating up to about 900°C)/chemical (derivatization procedure) treatment of any soil sample collected by the Curiosity rover. With the aim to search for potential organic molecules outgassed from the samples, SAM-GC analytical channels composed of thermal-desorption injector, and a MXT-CLP or a MXT-Q chromatographic column was chosen to achieve all the measurements done up today, with the aim to separate of a wide range of volatile inorganic and organic molecules. Four solid samples have been analyzed with GCMS, one sand sample collected at the Rocknest site, two rock samples (John Klein and Cumberland respectively) collected at the Yellowknife Bay site using the Curiosity driller, and one rock sample collected at the Kimberly site. All the measurements were successful and they produced complex chromatograms with both detectors used for SAM GC, i.e. a thermal conductivity detector and the SAM quandrupole mass spectrometer. Their interpretation already revealed the presence of an oxychlorine phase present in the sample which is at the origin of chlorohydrocarbons clearly identified [2] but this represents only a fraction of the GCMS signal recorded [3,4]. This work presents a systematic comparison of the GCMS measurements done for the different samples collected, supported by reference data obtained in laboratory with different spare models of the gas chromatograph, with the aim to bring new elements of interpretation of the SAM measurements. References: [1] Mahaffy, P. et al. (2012) Space Sci Rev, 170, 401-478. [2] Glavin, D. et al. (2013), JGR. [3] Leshin L. et al. (2013

  11. PDS4 vs PDS3 - A Comparison of PDS Data for Two Mars Rovers - Existing Mars Curiosity Mission Mass Spectrometer (SAM) PDS3 Data vs Future ExoMars Rover Mass Spectrometer (MOMA) PDS4 Data

    NASA Astrophysics Data System (ADS)

    Lyness, E.; Franz, H. B.; Prats, B.

    2017-12-01

    The Sample Analysis at Mars (SAM) instrument is a suite of instruments on Mars aboard the Mars Science Laboratory rover. Centered on a mass spectrometer, SAM delivers its data to the PDS Atmosphere's node in PDS3 format. Over five years on Mars the process of operating SAM has evolved and extended significantly from the plan in place at the time the PDS3 delivery specification was written. For instance, SAM commonly receives double or even triple sample aliquots from the rover's drill. SAM also stores samples in spare cups for long periods of time for future analysis. These unanticipated operational changes mean that the PDS data deliveries are absent some valuable metadata without which the data can be confusing. The Mars Organic Molecule Analyzer (MOMA) instrument is another suite of instruments centered on a mass spectrometer bound for Mars. MOMA is part of the European ExoMars rover mission schedule to arrive on Mars in 2021. While SAM and MOMA differ in some important scientific ways - MOMA uses an linear ion trap compared to the SAM quadropole mass spectrometer and MOMA has a laser desorption experiment that SAM lacks - the data content from the PDS point of view is comparable. Both instruments produce data containing mass spectra acquired from solid samples collected on the surface of Mars. The MOMA PDS delivery will make use of PDS4 improvements to provide a metadata context to the data. The MOMA PDS4 specification makes few assumptions of the operational processes. Instead it provides a means for the MOMA operators to provide the important contextual metadata that was unanticipated during specification development. Further, the software tools being developed for instrument operators will provide a means for the operators to add this crucial metadata at the time it is best know - during operations.

  12. SAM 2 measurements of the polar stratospheric aerosol. Volume 9: October 1982 - April 1983

    NASA Technical Reports Server (NTRS)

    Mcmaster, L. R.; Powell, K. A.

    1991-01-01

    The Stratospheric Aerosol Measurement (SAM) II sensor aboard Nimbus 7 is providing 1.0 micron extinction measurements of Antarctic and Arctic stratospheric aerosols with a vertical resolution of 1 km. Representative examples and weekly averages including corresponding temperature profiles provided by NOAA for the time and place of each SAM II measurement are presented. Contours of aerosol extinction as a function of altitude and longitude or time are plotted, and aerosol optical depths are calculated for each week. Typical values of aerosol extinction and stratospheric optical depth in the Arctic are unusually large due to the presence of material from the El Chichon volcano eruption in the Spring of 1982. For example, the optical depth peaked at 0.068, more than 50 times background values. Typical values of aerosol extinction and stratospheric optical depth in the Antarctic varied considerably during this period due to the transport and arrival of the material from the El Chichon eruption. For example, the stratospheric optical depth varied from 0.002 in October 1982, to 0.021 in January 1983. Polar stratospheric clouds were observed during the Arctic winter, as expected. A representative sample is provided of the ninth 6-month period of data to be used in atmospheric and climatic studies.

  13. Orientational analysis of dodecanethiol and p-nitrothiophenol SAMs on metals with polarisation-dependent SFG spectroscopy.

    PubMed

    Cecchet, Francesca; Lis, Dan; Guthmuller, Julien; Champagne, Benoît; Caudano, Yves; Silien, Christophe; Mani, Alaa Addin; Thiry, Paul A; Peremans, André

    2010-02-22

    Polarisation-dependent sum frequency generation (SFG) spectroscopy is used to investigate the orientation of molecules on metallic surfaces. In particular, self-assembled monolayers (SAMs) of dodecanethiol (DDT) and of p-nitrothiophenol (p-NTP), grown on Pt and on Au, have been chosen as models to highlight the ability of combining ppp and ssp polarisations sets (representing the polarisation of the involved beams in the conventional order of SFG, Vis and IR beam) to infer orientational information at metallic interfaces. Indeed, using only the ppp set of data, as it is usually done for metallic surfaces, is not sufficient to determine the full molecular orientation. We show here that simply combining ppp and ssp polarisations enables both the tilt and rotation angles of methyl groups in DDT SAMs to be determined. Moreover, for p-NTP, while the SFG active vibrations detected with the ppp polarisation alone provide no orientational information, however, the combination with ssp spectra enables to retrieve the tilt angle of the p-NTP 1,4 axis. Though orientational information obtained by polarisation-dependent measurements has been extensively used at insulating interfaces, we report here their first application to metallic surfaces.

  14. Oxychlorine and Chloride/Ferrian Saponite Mixtures as a Possible Source of Hydrochloric Acid Detected by the Sample Analysis at Mars (SAM) Instrument in Gale Crater, Mars

    NASA Astrophysics Data System (ADS)

    Hogancamp, J. V.; Sutter, B.; Archer, D., Jr.; Ming, D. W.; Mahaffy, P. R.

    2017-12-01

    The Sample Analysis at Mars (SAM) instrument on board the Curiosity Rover has detected HCl gas releases from several analyzed Gale Crater sediments, which are attributed to the presence of perchlorates, chlorates, and/or chlorides in martian sediment. Previous SAM analog laboratory analyses found that most pure perchlorates and chlorates produced HCl at different temperatures than those observed in the SAM data. Subsequent studies examined the effects of perchlorate and chlorate mixtures with Gale Crater analog iron phases, which are known to catalyze oxychlorine decomposition. Several mixtures produced characteristic O2 releases at similar temperatures as Gale Crater materials, but most of these mixtures did not produce HCl releases comparable to those detected by the SAM instrument. Perchlorates, chlorates, and chlorides were mixed with Gale Crater analog ferrian saponite to understand evolved HCl detected by SAM. Evolved water from thermally decomposing saponite is hypothesized to react with residual chloride phases from oxychlorine decomposition to produce high temperature (>700°C) HCl. Mixtures of chlorates, perchlorates, or chlorides with ferrian saponite were heated to 1000 °C in a laboratory analog SAM instrument. Results demonstrated that all chlorate and perchlorate mixtures produce HCl releases below 1000 °C when mixed with ferrian saponite. Mixtures of chlorides with ferrian saponite produced no oxygen releases but did produce HCl releases with peaks below 1000 °C. Ferrian saponite/Mg-chlorate mixtures produced two HCl releases (347 and 820 °C) similar to the Cumberland drilled sample. Additionally, sodium chloride mixed with ferrian saponite produced no oxygen releases and an HCl release (767 °C) similar to the Quela drilled sample. The Marimba drilled sample, which also produced no oxychlorine-derived oxygen, produced a high temperature HCl release that may be the result of chloride(s) reacting with evolved water from thermally decomposing

  15. The Detection of Evolved Oxygen from the Rocknest Eolian Bedform Material by the Sample Analysis at Mars(SAM) instrument at the Mars Curiosity Landing Site

    NASA Technical Reports Server (NTRS)

    Sutter, B.; Archer, D.; Ming, D.; Eigenbrode, J. L.; Franz, H.; Glavin, D. P.; McAdam, A.; Mahaffy, P.; Stern, J.; Navarro-Gonzalex, R.; hide

    2013-01-01

    The Sample Analysis at Mars (SAM) instrument onboard the Curiosity rover detected an O2 gas release from the Rocknest eolain bedform (Fig. 1). The detection of perchlorate (ClO4-) by the Mars Phoenix Lander s Wet Chemistry Laboratory (WCL) [1] suggests that perchlorate is a possible candidate for evolved O2 release detected by SAM. The perchlorate would also serve as a source of chlorine in the chlorinated hydrocarbons detected by the SAM quadrupole mass spectrometer (QMS) and gas chromatography/mass spectrometer (GCMS) [2,3]. Chlorates (ClO3-) [4,5] and/or superoxides [6] may also be sources of evolved O2 from the Rocknest materials. The work objectives are to 1) evaluate the O2 release temperatures from Rocknest materials, 2) compare these O2 release temperatures with a series of perchlorates and chlorates, and 3) evaluate superoxide O2- sources and possible perchlorate interactions with other Rocknest phases during QMS analysis.

  16. HPA and SAM axis responses as correlates of self- vs parental ratings of anxiety in boys with an Autistic Disorder.

    PubMed

    Bitsika, Vicki; Sharpley, Christopher F; Sweeney, John A; McFarlane, James R

    2014-03-29

    Anxiety and Autistic Disorder (AD) are both neurological conditions and both disorders share some features that make it difficult to precisely allocate specific symptoms to each disorder. HPA and SAM axis activities have been conclusively associated with anxiety, and may provide a method of validating anxiety rating scale assessments given by parents and their children with AD about those children. Data from HPA axis (salivary cortisol) and SAM axis (salivary alpha amylase) responses were collected from a sample of 32 high-functioning boys (M age=11yr) with an Autistic Disorder (AD) and were compared with the boys' and their mothers' ratings of the boys' anxiety. There was a significant difference between the self-ratings given by the boys and ratings given about them by their mothers. Further, only the boys' self-ratings of their anxiety significantly predicted the HPA axis responses and neither were significantly related to SAM axis responses. Some boys showed cortisol responses which were similar to that previously reported in children who had suffered chronic and severe anxiety arising from stressful social interactions. As well as suggesting that some boys with an AD can provide valid self-assessments of their anxiety, these data also point to the presence of very high levels of chronic HPA-axis arousal and consequent chronic anxiety in these boys. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Effects of unconditional cash transfers on the outcome of treatment for severe acute malnutrition (SAM): a cluster-randomised trial in the Democratic Republic of the Congo.

    PubMed

    Grellety, Emmanuel; Babakazo, Pélagie; Bangana, Amina; Mwamba, Gustave; Lezama, Ines; Zagre, Noël Marie; Ategbo, Eric-Alain

    2017-04-26

    Cash transfer programs (CTPs) aim to strengthen financial security for vulnerable households. This potentially enables improvements in diet, hygiene, health service access and investment in food production or income generation. The effect of CTPs on the outcome of children already severely malnourished is not well delineated. The objective of this study was to test whether CTPs will improve the outcome of children treated for severe acute malnutrition (SAM) in the Democratic Republic of the Congo over 6 months. We conducted a cluster-randomised controlled trial in children with uncomplicated SAM who received treatment according to the national protocol and counselling with or without a cash supplement of US$40 monthly for 6 months. Analyses were by intention to treat. The hazard ratio of reaching full recovery from SAM was 35% higher in the intervention group than the control group (adjusted hazard ratio, 1.35, 95% confidence interval (CI) = 1.10 to 1.69, P = 0.007). The adjusted hazard ratios in the intervention group for relapse to moderate acute malnutrition (MAM) and SAM were 0.21 (95% CI = 0.11 to 0.41, P = 0.001) and 0.30 (95% CI = 0.16 to 0.58, P = 0.001) respectively. Non-response and defaulting were lower when the households received cash. All the nutritional outcomes in the intervention group were significantly better than those in the control group. After 6 months, 80% of cash-intervened children had re-gained their mid-upper arm circumference measurements and weight-for-height/length Z-scores and showed evidence of catch-up. Less than 40% of the control group had a fully successful outcome, with many deteriorating after discharge. There was a significant increase in diet diversity and food consumption scores for both groups from baseline; the increase was significantly greater in the intervention group than the control group. CTPs can increase recovery from SAM and decrease default, non-response and relapse rates during and

  18. Boron (B) deprivation increases plasma homocysteine and decreases liver S-adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH) in rats

    USDA-ARS?s Scientific Manuscript database

    The diverse effects of B deprivation suggest that B affects a biomolecule involved in a variety of biochemical reactions. An experiment was conducted to determine whether dietary B affects the liver concentration of SAM, a frequently used enzyme substrate, especially for methylation reactions that y...

  19. Detection of Nitric Oxide by the Sample Analysis at Mars (SAM) Instrument Implications for the Presence of Nitrates

    NASA Technical Reports Server (NTRS)

    Navarro-Gonzalez, R.; Stern, J.; Freissinet, C.; Franz, H. B.; Eigenbrode, J. L..; McKay, C. P.; Coll, P.; Sutter, B.; Archer, D.; McAdam, A.; hide

    2014-01-01

    One of the main goals of the Mars Science Laboratory is to determine whether the planet ever had environmental conditions able to support microbial life. Nitrogen is a fundamental element for life, and is present in structural (e.g., proteins), catalytic (e.g., enzymes and ribozymes), energy transfer (e.g., ATP) and information storage (RNA and DNA) biomolecules. Planetary models suggest that molecular nitrogen was abundant in the early Martian atmosphere, but was rapidly lost to space by photochemistry, sputtering impact erosion, and oxidized and deposited to the surface as nitrate. Nitrates are a fundamental source for nitrogen to terrestrial microorganisms. Therefore, the detection of nitrates in soils and rocks is important to assess the habitability of a Martian environment. SAM is capable of detecting nitrates by their thermal decomposition into nitric oxide, NO. Here we analyze the release of NO from soils and rocks examined by the SAM instrument at Gale crater, and discuss its origin.

  20. Sulphur-bearing Compounds Detected by MSL SAM Evolved Gas Analysis of Materials from Yellowknife Bay, Gale Crater, Mars

    NASA Technical Reports Server (NTRS)

    McAdam, A. C.; Franz, H. B.; Archer, P. D. Jr.; Sutter, B.; Eigenbrode, J. L.; Freissinet, C.; Atreya, S. K.; Bish, D. L.; Blake, D. F.; Brunner, A.; hide

    2014-01-01

    The Sample Analysis at Mars (SAM) and Chemistry and Mineralogy (CheMin) instruments on the Mars Science Laboratory (MSL) analysed several subsamples of sample fines (<150 µm) from three sites in Yellowknife Bay, an aeolian bedform termed Rocknest (hereafter "RN") and two samples drilled from the Sheepbed mudstone at sites named John Klein ("JK") and Cumberland ("CB"). SAM's evolved gas analysis (EGA) mass spectrometry detected H2O, CO2, O2, H2, SO2, H2S, HCl, NO, OCS, CS2 and other trace gases. The identity of evolved gases and temperature (T) of evolution can support mineral detection by CheMin and place constraints on trace volatile-bearing phases present below the CheMin detection limit or difficult to characterize with XRD (e.g., X-ray amorphous phases). Here, we focus on potential constraints on phases that evolved SO2, H2S, OCS, and CS2 during thermal analysis.

  1. Self-assembled monolayer of designed and synthesized triazinedithiolsilane molecule as interfacial adhesion enhancer for integrated circuit

    PubMed Central

    2011-01-01

    Self-assembled monolayer (SAM) with tunable surface chemistry and smooth surface provides an approach to adhesion improvement and suppressing deleterious chemical interactions. Here, we demonstrate the SAM comprising of designed and synthesized 6-(3-triethoxysilylpropyl)amino-1,3,5-triazine-2,4-dithiol molecule, which can enhance interfacial adhesion to inhibit copper diffusion used in device metallization. The formation of the triazinedithiolsilane SAM is confirmed by X-ray photoelectron spectroscopy. The adhesion strength between SAM-coated substrate and electroless deposition copper film was up to 13.8 MPa. The design strategy of triazinedithiolsilane molecule is expected to open up the possibilities for replacing traditional organosilane to be applied in microelectronic industry. PMID:21812994

  2. Informing Mexico's Distributed Generation Policy with System Advisor Model (SAM) Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aznar, Alexandra Y; Zinaman, Owen R; McCall, James D

    The Government of Mexico recognizes the potential for clean distributed generation (DG) to meaningfully contribute to Mexico's clean energy and emissions reduction goals. However, important questions remain about how to fairly value DG and foster inclusive and equitable market growth that is beneficial to investors, electricity ratepayers, electricity distributors, and society. The U.S. National Renewable Energy Laboratory (NREL) has partnered with power sector institutions and stakeholders in Mexico to provide timely analytical support and expertise to help inform policymaking processes on clean DG. This document describes two technical assistance interventions that used the System Advisor Model (SAM) to inform Mexico'smore » DG policymaking processes with a focus on rooftop solar regulation and policy.« less

  3. Controlled Thermal Expansion Coat for Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Brindley, William J. (Inventor); Miller, Robert A. (Inventor); Aikin, Beverly J. M. (Inventor)

    1999-01-01

    A improved thermal barrier coating and method for producing and applying such is disclosed herein. The thermal barrier coating includes a high temperature substrate, a first bond coat layer applied to the substrate of MCrAlX, and a second bond coat layer of MCrAlX with particles of a particulate dispersed throughout the MCrAlX and the preferred particulate is Al2O3. The particles of the particulate dispersed throughout the second bond coat layer preferably have a diameter of less then the height of the peaks of the second bond coat layer, or a diameter of less than 5 microns. The method of producing the second bond coat layer may either include the steps of mechanical alloying of particles throughout the second bond coat layer, attrition milling the particles of the particulate throughout the second bond coat layer, or using electrophoresis to disperse the particles throughout the second bond coat layer. In the preferred embodiment of the invention, the first bond coat layer is applied to the substrate, and then the second bond coat layer is thermally sprayed onto the first bond coat layer. Further, in a preferred embodiment of die invention, a ceramic insulating layer covers the second bond coat layer.

  4. Improving transmission efficiency of large sequence alignment/map (SAM) files.

    PubMed

    Sakib, Muhammad Nazmus; Tang, Jijun; Zheng, W Jim; Huang, Chin-Tser

    2011-01-01

    Research in bioinformatics primarily involves collection and analysis of a large volume of genomic data. Naturally, it demands efficient storage and transfer of this huge amount of data. In recent years, some research has been done to find efficient compression algorithms to reduce the size of various sequencing data. One way to improve the transmission time of large files is to apply a maximum lossless compression on them. In this paper, we present SAMZIP, a specialized encoding scheme, for sequence alignment data in SAM (Sequence Alignment/Map) format, which improves the compression ratio of existing compression tools available. In order to achieve this, we exploit the prior knowledge of the file format and specifications. Our experimental results show that our encoding scheme improves compression ratio, thereby reducing overall transmission time significantly.

  5. A Spatial Analysis and Modeling System (SAMS) for environment management

    NASA Technical Reports Server (NTRS)

    Stetina, Fran; Hill, John; Chan, Paul; Jaske, Robert; Rochon, Gilbert

    1993-01-01

    This is a proposal to develop a uniform global environmental data gathering and distribution system to support the calibration and validation of remotely sensed data. SAMS is based on an enhanced version of FEMA's Integrated Emergency Management Information Systems and the Department of Defense's Air land Battlefield Environment Software Systems. This system consists of state-of-the-art graphics and visualization techniques, simulation models, database management and expert systems for conducting environmental and disaster preparedness studies. This software package will be integrated into various Landsat and UNEP-GRID stations which are planned to become direct readout stations during the EOS (Earth Observing System) timeframe. This system would be implemented as a pilot program to support the Tropical Rainfall Measuring Mission (TRMM). This will be a joint NASA-FEMA-University-Industry project.

  6. A Spatial Analysis and Modeling System (SAMS) for environment management

    NASA Technical Reports Server (NTRS)

    Vermillion, Charles H.; Stetina, Fran; Hill, John; Chan, Paul; Jaske, Robert; Rochon, Gilbert

    1992-01-01

    This is a proposal to develop a uniform global environmental data gathering and distribution system to support the calibration and validation of remotely sensed data. SAMS is based on an enhanced version of FE MA's Integrated Emergency Management Information Systems and the Department of Defense's Air Land Battlefield Environment Software Systems. This system consists of state-of-the-art graphics and visualization techniques, simulation models, database management and expert systems for conducting environmental and disaster preparedness studies. This software package will be integrated into various Landsat and UNEP-GRID stations which are planned to become direct readout stations during the EOS timeframe. This system would be implemented as a pilot program to support the Tropical Rainfall Measuring Mission (TRMM). This will be a joint NASA-FEMA-University-Industry project.

  7. Potential Precursor Compounds for Chlorohydrocarbons Detected in Gale Crater, Mars, by the SAM Instrument Suite on the Curiosity Rover

    NASA Technical Reports Server (NTRS)

    Miller, Kristen E.; Eigenbrode, Jennifer L.; Freissinet, Caroline; Glavin, Daniel P.; Kotrc, Benjamin; Francois, Pascaline; Summons, Roger E.

    2016-01-01

    The detection of chlorinated organic compounds in near-surface sedimentary rocks by the Sample Analysis at Mars (SAM) instrument suite aboard the Mars Science Laboratory Curiosity rover represents an important step toward characterizing habitable environments on Mars. However, this discovery also raises questions about the identity and source of their precursor compounds and the processes by which they become chlorinated. Here we present the results of analog experiments, conducted under conditions similar to SAM gas chromatography-mass spectrometry analyses, in which we pyrolyzed potential precursor compounds in the presence of various Cl salts and Fe oxides that have been identified in Martian sediments. While chloromethanes could not be unambiguously identified, 1,2-dichloropropane (1,2-DCP), which is one of the chlorinated compounds identified in SAM data, is formed from the chlorination of aliphatic precursors. Additionally, propanol produced more 1,2-DCP than nonfunctionalized aliphatics such as propane or hexanes. Chlorinated benzenes ranging from chlorobenzene to hexachlorobenzene were identified in experiments with benzene carboxylic acids but not with benzene or toluene. Lastly, the distribution of chlorinated benzenes depended on both the substrate species and the nature and concentration of the Cl salt. Ca and Mg perchlorate, both of which release O2 in addition to Cl2 and HCl upon pyrolysis, formed less chlorobenzene relative to the sum of all chlorinated benzenes than in experiments with ferric chloride. FeCl3, a Lewis acid, catalyzes chlorination but does not aid combustion. Accordingly, both the precursor chemistry and sample mineralogy exert important controls on the distribution of chlorinated organics.

  8. Making Time for Instructional Leadership. Volume 2: The Feasibility of a Randomized Control Trial of the SAM Process

    ERIC Educational Resources Information Center

    Goldring, Ellen; Grissom, Jason A.; Neumerski, Christine M.; Murphy, Joseph; Blissett, Richard; Porter, Andy

    2015-01-01

    This three-volume report describes the "SAM (School Administration Manager) process," an approach that about 700 schools around the nation are using to direct more of principals' time and effort to improve teaching and learning in classrooms. Research has shown that a principal's instructional leadership is second only to teaching among…

  9. A Sophomore-to-Junior Mentoring Program that Works: The SAM Program at the University of Texas Pan American

    ERIC Educational Resources Information Center

    Reyes, Maria Elena

    2012-01-01

    In an effort to increase the retention rates of college sophomores in a Hispanic Serving Institution in south Texas, university administrators created and implemented a successful peer mentoring model, the Sophomore Academic Mentoring (SAM) Program. Results suggest that the program has contributed to an increase in retention for second year,…

  10. Effect of the Presence of Chlorates and Perchlorates on the Pyrolysis of Organic Compounds: Implications for Measurements Done with the SAM Experiment Onboard the Curiosity Rover

    NASA Technical Reports Server (NTRS)

    Millan, M.; Szopa, C.; Buch, A.; Belmahdi, I.; Coll, P.; Glavin, D. P.; Freissinet, C.; Archer, P. D., Jr.; Sutter, B.; Summons, R. E.; hide

    2016-01-01

    The Mars Science Laboratory (MSL) Curiosity Rover carries a suite of instruments, one of which is the Sample Analysis at Mars (SAM) experiment. SAM is devoted to the in situ molecular analysis of gases evolving from solid samples collected by Curiosity on Mars surface/sub-surface. Among its three analytical devices, SAM has a gaschromatograph coupled to a quadrupole mass spectrometer (GC-QMS). The GC-QMS is devoted to the separation and identification of organic and inorganic material. Before proceeding to the GC-QMS analysis, the solid sample collected by Curiosity is subjected to a thermal treatment thanks to the pyrolysis oven to release the volatiles into the gas processing system. Depending on the sample, a derivatization method by wet chemistry: MTBSTFA of TMAH can also be applied to analyze the most refractory compounds. The GC is able to separate the organic molecules which are then detected and identified by the QMS (Figure 1). For the second time after the Viking landers in 1976, SAM detected chlorinated organic compounds with the pyrolysis GC-QMS experiment. The detection of perchlorates salts (ClO4-) in soil at the Phoenix Landing site suggests that the chlorohydrocarbons detected could come from the reaction of organics with oxychlorines. Indeed, laboratory pyrolysis experiments have demonstrated that oxychlorines decomposed into molecular oxygen and volatile chlorine (HCl and/or Cl2) when heated which then react with the organic matter in the solid samples by oxidation and/or chlorination processes.

  11. Primordial argon isotope fractionation in the atmosphere of Mars measured by the SAM instrument on Curiosity and implications for atmospheric loss

    PubMed Central

    Atreya, Sushil K; Trainer, Melissa G; Franz, Heather B; Wong, Michael H; Manning, Heidi L K; Malespin, Charles A; Mahaffy, Paul R; Conrad, Pamela G; Brunner, Anna E; Leshin, Laurie A; Jones, John H; Webster, Christopher R; Owen, Tobias C; Pepin, Robert O; Navarro-González, R

    2013-01-01

    [1] The quadrupole mass spectrometer of the Sample Analysis at Mars (SAM) instrument on Curiosity rover has made the first high-precision measurement of the nonradiogenic argon isotope ratio in the atmosphere of Mars. The resulting value of 36Ar/38Ar = 4.2 ± 0.1 is highly significant for it provides excellent evidence that “Mars” meteorites are indeed of Martian origin, and it points to a significant loss of argon of at least 50% and perhaps as high as 85–95% from the atmosphere of Mars in the past 4 billion years. Taken together with the isotopic fractionations in N, C, H, and O measured by SAM, these results imply a substantial loss of atmosphere from Mars in the posthydrodynamic escape phase. PMID:25821261

  12. Influence of the solution pH in the 6-mercaptopurine self-assembled monolayer (6MP-SAM) on a Au(111) single-crystal electrode.

    PubMed

    Madueño, Rafael; García-Raya, Daniel; Viudez, Alfonso J; Sevilla, José M; Pineda, Teresa; Blázquez, Manuel

    2007-10-23

    Self-assembled monolayers (SAMs) of 6-mercaptopurine (6MP) have been prepared on a Au(111) single-crystal electrode by immersion of the metal surface in a 100 microM 6MP and 0.01 M HClO4 solution. The 6MP-SAM Au(111) single-crystal electrodes were transferred to the cell and allowed to equilibrate with the different aqueous working solutions before the electrochemical experiments. The influence of the solution pH was studied by cyclic voltammetry, double layer capacitance curves, and electrochemical impedance spectroscopy. The electrochemical behavior of the 6MP-SAM in acetic acid at pH 4 presents important differences in comparison to that obtained in 0.1 M KOH solutions. Cyclic voltammograms for the reductive desorption process in acid medium are broad and show some features that can be explained by a phase transition between a chemisorbed and a physisorbed state of the 6MP molecules. The low solubility of these molecules in acid medium could explain this phenomenon and the readsorption of the complete monolayer when the potential is scanned in the positive direction. The variation of the double-layer capacitance values in the potential range of monolayer stability with the pH suggests that the acid-base chemistry of the 6MP molecules is playing a role. This fact has been studied by following the variations of the electron-transfer rate constant of the highly charged redox probes as are Fe(CN)(6)-3/-4 and Ru(NH3)(6)+3/+2 as a function of solution pH. The apparent surface pKa value for the 6MP-SAM (pKa approximately 8) is explained by the total conversion of the different 6MP tautomers that exist in solution to the thiol species in the adsorbed state.

  13. Nanoparticle/Polymer Nanocomposite Bond Coat or Coating

    NASA Technical Reports Server (NTRS)

    Miller, Sandi G.

    2011-01-01

    This innovation addresses the problem of coatings (meant to reduce gas permeation) applied to polymer matrix composites spalling off in service due to incompatibility with the polymer matrix. A bond coat/coating has been created that uses chemically functionalized nanoparticles (either clay or graphene) to create a barrier film that bonds well to the matrix resin, and provides an outstanding barrier to gas permeation. There is interest in applying clay nanoparticles as a coating/bond coat to a polymer matrix composite. Often, nanoclays are chemically functionalized with an organic compound intended to facilitate dispersion of the clay in a matrix. That organic modifier generally degrades at the processing temperature of many high-temperature polymers, rendering the clay useless as a nano-additive to high-temperature polymers. However, this innovation includes the use of organic compounds compatible with hightemperature polymer matrix, and is suitable for nanoclay functionalization, the preparation of that clay into a coating/bondcoat for high-temperature polymers, the use of the clay as a coating for composites that do not have a hightemperature requirement, and a comparable approach to the preparation of graphene coatings/bond coats for polymer matrix composites.

  14. Sample Analysis at Mars (SAM) and Mars Organic Molecule Analyzer (MOMA) as Critical In Situ Investigation for Targeting Mars Returned Samples

    NASA Astrophysics Data System (ADS)

    Freissinet, C.; Glavin, D. P.; Mahaffy, P. R.; Szopa, C.; Buch, A.; Goesmann, F.; Goetz, W.; Raulin, F.; SAM Science Team; MOMA Science Team

    2018-04-01

    SAM (Curiosity) and MOMA (ExoMars) Mars instruments, seeking for organics and biosignatures, are essential to establish taphonomic windows of preservation of molecules, in order to target the most interesting samples to return from Mars.

  15. Length-dependent transport in molecular junctions based on SAMs of alkanethiols and alkanedithiols: effect of metal work function and applied bias on tunneling efficiency and contact resistance.

    PubMed

    Engelkes, Vincent B; Beebe, Jeremy M; Frisbie, C Daniel

    2004-11-03

    Nanoscopic tunnel junctions were formed by contacting Au-, Pt-, or Ag-coated atomic force microscopy (AFM) tips to self-assembled monolayers (SAMs) of alkanethiol or alkanedithiol molecules on polycrystalline Au, Pt, or Ag substrates. Current-voltage traces exhibited sigmoidal behavior and an exponential attenuation with molecular length, characteristic of nonresonant tunneling. The length-dependent decay parameter, beta, was found to be approximately 1.1 per carbon atom (C(-1)) or 0.88 A(-)(1) and was independent of applied bias (over a voltage range of +/-1.5 V) and electrode work function. In contrast, the contact resistance, R(0), extrapolated from resistance versus molecular length plots showed a notable decrease with both applied bias and increasing electrode work function. The doubly bound alkanedithiol junctions were observed to have a contact resistance approximately 1 to 2 orders of magnitude lower than the singly bound alkanethiol junctions. However, both alkanethiol and dithiol junctions exhibited the same length dependence (beta value). The resistance versus length data were also used to calculate transmission values for each type of contact (e.g., Au-S-C, Au/CH(3), etc.) and the transmission per C-C bond (T(C)(-)()(C)).

  16. The Investigation of Magnesium Perchlorate/Iron Phase-mineral Mixtures as a Possible Source of Oxygen and Chlorine Detected by the Sample Analysis at Mars (SAM) Instrument in Gale Crater, Mars

    NASA Technical Reports Server (NTRS)

    Sutter, B.; Heil, E.; Archer, P. D.; Ming, D. W.; Eigenbrode, J. L.; Franz, H. B.; Glavin, D. P.; McAdam, A. C.; Mahaffy, P. R.; Niles, P. B.; hide

    2014-01-01

    The Sample Analysis at Mars (SAM) instrument onboard the Curiosity rover detect-ed O2 and HCl gas releases from the Rocknest (RN) eolian bedform and the John Klein (JK) and Cumber-land (CB) drill hole materials in Gale Crater (Fig. 1) [1,2]. Chlorinated hydrocarbons have also been detect-ed by the SAM quadrupole mass spectrometer (QMS) and gas chromatography/mass spectrometer (GCMS) [1,2,3,4]. These detections along with the detection of perchlorate (ClO4(-)) by the Mars Phoenix Lander's Wet Chemistry Laboratory (WCL) [5] suggesting perchlo-rate is a possible candidate for evolved O2 and chlorine species. Laboratory thermal analysis of individual per-chlorates has yet to provide an unequivocal tempera-ture match to the SAM O2 and HCl release data [1,2]. Catalytic reactions of Fe phases in the Gale Crater ma-terial with perchlorates can potentially reduce the de-composition temperatures of these otherwise pure per-chlorate/chlorate phases [e.g., 6,7]. Iron mineralogy found in the Rocknest materials when mixed with Ca-perchlorate was found to cause O2 release temperatures to be closer match to the SAM O2 release data and enhance HCl gas releases. Exact matches to the SAM data has unfortnunately not been achieved with Ca-perchlorate-Fe-phase mixtures [8]. The effects of Fe-phases on magnesium perchlorate thermal decomposi-tion release of O2 and HCl have not been evaluated and may provide improved matches to the SAM O2 and HCl release data. This work will evaluate the thermal decomposition of magnesium perchlorate mixed with fayalite/magnetite phase and a Mauna Kea palagonite (HWMK 919). The objectives are to 1) summarize O2 and HCl releases from the Gale Crater materials, and 2) evaluate the O2 and HCl releases from the Mg-perchlorate + Fe phase mixtures to determine if Mg-perchlorate mixed with Fe-phases can explain the Gale Crater O2 and HCl releases.

  17. Chemical imaging of structured SAMs with a novel SFG microscope

    NASA Astrophysics Data System (ADS)

    Hoffmann, Dominik M. P.; Kuhnke, Klaus; Kern, Klaus

    2002-11-01

    We present a newly developed microscope for sum frequency generation (SFG) imaging of opaque and reflecting interfaces. The sample is viewed at an angle of 60° with respect to the surface normal in order to increase the collected SFG intensity. Our setup is designed to keep the whole field of view (FOV) in focus and to compensate for the distortion usually related to oblique imaging by means of a blazed grating. The separation of the SFG intensity and the reflected visible beam is accomplished by a suitable combination of spectral filters. The sum frequency microscope (SFM) is capable of in-situ chemically selective imaging by tuning the IR-beam to vibrational transitions of the respective molecules. The SFM is applied to imaging of structured self-assembled monolayers (SAM) of thiol molecules on a gold surface.

  18. LETTER TO THE EDITOR: Surface passivation of (100) InP by organic thiols and polyimide as characterized by steady-state photoluminescence

    NASA Astrophysics Data System (ADS)

    Schvartzman, M.; Sidorov, V.; Ritter, D.; Paz, Y.

    2001-10-01

    A method for the passivation of indium phosphide, based on thiolated organic self-assembled monolayers (SAMs) that form highly ordered, close-packed structures on the semiconductor surface, is presented. It is shown that the intensity of steady-state photoluminescence (PL) of n-type InP wafers covered with the thiolated SAMs increases significantly (as much as 14-fold) upon their covering with the monolayers. The ease with which one can tailor the outer functional groups of the SAMs provides a way to connect this new class of passivators with standard encapsulators, such as polyimide. Indeed, the PL intensity of SAM-coated InP wafers was not altered upon their overcoating with polyimide, despite the high curing temperature of the polymer (200 °C).

  19. "Extraordinary Understandings" of Composition at the University of Chicago: Frederick Champion Ward, Kenneth Burke, and Henry W. Sams

    ERIC Educational Resources Information Center

    Beasley, James P.

    2007-01-01

    While Richard Weaver, R. S. Crane, Richard McKeon, and Robert Streeter have been most identified with rhetoric at the University of Chicago and its institutional return in the 1950s, the archival record demonstrates that Frederick Champion Ward, dean of the undergraduate "College" from 1947 to 1954, and Henry W. Sams, director of English…

  20. Mars Atmospheric Composition, Isotope Ratios and Seasonal Variations: Overview and Updates of the SAM Measurements at Gale Crater

    NASA Technical Reports Server (NTRS)

    Niles, Paul

    2014-01-01

    We will summarize the in situ measurements of atmospheric composition and the isotopic ratios of D/H in water, C-13/C-12, O-18/O-16, O-17 / O-16, and C-13 O-18 / C-12 O-16 in carbon dioxide, and Ar-38 / Ar-36, Kr-x / Kr-84, and N-15 / N-14 made in the martian atmosphere at Gale Crater from the Curiosity Rover using the Sample Analysis at Mars (SAM)'s Quadrupole Mass Spectrometer (QMS) and Tunable Laser Spectrometer (TLS). With data over 700 sols since the Curiosity landing, we will discuss evidence and implications for changes on seasonal and other timescales. We will also present results for continued methane and methane enrichment experiments over this time period. Comparison between our measurements in the modern atmosphere and those of martian meteorites like ALH 84001 implies that the martian reservoirs of CO2 and H2O were largely established approximately 4 billion years ago, but that atmospheric loss or surface interaction may be still ongoing.

  1. Electrocurtain coating process for coating solar mirrors

    DOEpatents

    Kabagambe, Benjamin; Boyd, Donald W.; Buchanan, Michael J.; Kelly, Patrick; Kutilek, Luke A.; McCamy, James W.; McPheron, Douglas A.; Orosz, Gary R.; Limbacher, Raymond D.

    2013-10-15

    An electrically conductive protective coating or film is provided over the surface of a reflective coating of a solar mirror by flowing or directing a cation containing liquid and an anion containing liquid onto the conductive surface. The cation and the anion containing liquids are spaced from, and preferably out of contact with one another on the surface of the reflective coating as an electric current is moved through the anion containing liquid, the conductive surface between the liquids and the cation containing liquid to coat the conductive surface with the electrically conductive coating.

  2. Isolation and molecular characterization of two lectins from dwarf elder (Sambucus ebulus L.) blossoms related to the Sam n1 allergen.

    PubMed

    Jimenez, Pilar; Cabrero, Patricia; Basterrechea, José E; Tejero, Jesús; Cordoba-Diaz, Damian; Girbes, Tomas

    2013-10-14

    Sambucus species contain a number of lectins with and without antiribosomal activity. Here, we show that dwarf elder (Sambucus ebulus L.) blossoms express two D-galactose-binding lectins that were isolated and purified by affinity chromatography and gel filtration. These proteins, which we named ebulin blo (A-B toxin) and SELblo (B-B lectin)--blo from blossoms--were subjected to molecular characterization and analysis by MALDI-TOF mass spectrometry and tryptic peptide fingerprinting. Both lectins share a high degree of amino acid sequence homology with Sambucus lectins related to the Sam n1 allergen. Ebulin blo, but not SELblo, was highly toxic by nasal instillation to mice. Overall, our results suggested that both lectins would belong to an allergen family exemplified by Sam n1 and could trigger allergy responses. Furthermore, they raise a concern about ebulin blo toxicity.

  3. Isolation and Molecular Characterization of Two Lectins from Dwarf Elder (Sambucus ebulus L.) Blossoms Related to the Sam n1 Allergen

    PubMed Central

    Jimenez, Pilar; Cabrero, Patricia; Basterrechea, José E.; Tejero, Jesús; Cordoba-Diaz, Damian; Girbes, Tomas

    2013-01-01

    Sambucus species contain a number of lectins with and without antiribosomal activity. Here, we show that dwarf elder (Sambucus ebulus L.) blossoms express two d-galactose-binding lectins that were isolated and purified by affinity chromatography and gel filtration. These proteins, which we named ebulin blo (A-B toxin) and SELblo (B-B lectin)—blo from blossoms—were subjected to molecular characterization and analysis by MALDI-TOF mass spectrometry and tryptic peptide fingerprinting. Both lectins share a high degree of amino acid sequence homology with Sambucus lectins related to the Sam n1 allergen. Ebulin blo, but not SELblo, was highly toxic by nasal instillation to mice. Overall, our results suggested that both lectins would belong to an allergen family exemplified by Sam n1 and could trigger allergy responses. Furthermore, they raise a concern about ebulin blo toxicity. PMID:24129061

  4. Space Acceleration Measurement System (SAMS)/Orbital Acceleration Research Experiment (OARE)

    NASA Technical Reports Server (NTRS)

    Hakimzadeh, Roshanak

    1998-01-01

    The Life and Microgravity Spacelab (LMS) payload flew on the Orbiter Columbia on mission STS-78 from June 20th to July 7th, 1996. The LMS payload on STS-78 was dedicated to life sciences and microgravity experiments. Two accelerometer systems managed by the NASA Lewis Research Center (LERC) flew to support these experiments, namely the Orbital Acceleration Research Experiment (OARE) and the Space Acceleration Measurements System (SAMS). In addition, the Microgravity Measurement Assembly (NOAA), managed by the European Space Research and Technology Center (ESA/ESTEC), and sponsored by NASA, collected acceleration data in support of the experiments on-board the LMS mission. OARE downlinked real-time quasi-steady acceleration data, which was provided to the investigators. The SAMS recorded higher frequency data on-board for post-mission analysis. The MMA downlinked real-time quasi-steady as well as higher frequency acceleration data, which was provided to the investigators. The Principal Investigator Microgravity Services (PIMS) project at NASA LERC supports principal investigators of microgravity experiments as they evaluate the effects of varying acceleration levels on their experiments. A summary report was prepared by PIMS to furnish interested experiment investigators with a guide to evaluate the acceleration environment during STS-78, and as a means of identifying areas which require further study. The summary report provides an overview of the STS-78 mission, describes the accelerometer systems flown on this mission, discusses some specific analyses of the accelerometer data in relation to the various activities which occurred during the mission, and presents plots resulting from these analyses as a snapshot of the environment during the mission. Numerous activities occurred during the STS-78 mission that are of interest to the low-gravity community. Specific activities of interest during this mission were crew exercise, radiator deployment, Vernier Reaction

  5. Soil Moisture Monitoring Using GNSS-R Signals; First Experimental Results with the SAM Sensor

    NASA Astrophysics Data System (ADS)

    Egido, A.; Martin-Puig, C.; Felip, D.; Garcia, M.; Caparrini, M.; Farres, E.; Ruffini, G.

    2009-04-01

    is the most sensitive band to soil volumetric water content, i.e. soil moisture. Secondly, variations on thermal background do not contaminate GNSS-R signals as they do for other remote sensing techniques, such as radiometry. Finally, GNSS scatterometry from space has a potential higher spatial resolution than microwave radiometry, due to the highly stable carrier and code modulations of the incident signals which enables the use of Delay Doppler Mapping. However, in order to be able to obtain accurate SM estimates there are several effects that need to be taken into consideration. Some of those are mainly due to diffuse scattering effects over the soil surface, for instance effects due to surface roughness, vegetation canopy, and noise. This paper reviews the theoretical approach for SM retrieval using GNSS-R, and focuses on the description of the development of an innovative GNSS-R system for soil moisture retrieval (named SAM). The validation campaigns performed with the SAM sensor, together with the results obtained are presented in the paper, which is finalized with the conclusions achieved and the ideas for future work on GNSS-R based sensors. AKNOWLEDGEMENTS The authors would like to thank the European Space Agency for partially funding the SAM system development in the framework of the GSTP program, and Tragsatec for their collaboration in the acquisition of ground truth data and satellite imagery processing used for the SAM instrument validation. REFERENCES [1] A. Kavak, G. Xu, W.J. Vogel, GPS Multipath Fade Meassurements to Determine L-Band Ground Reflectivity Properties, University of Texas, Austin, 1998. [2] D. Masters, V. Zavorotny, S. Katzberg, W. Emery GPS Signal Scattering from Land for Moisture Content Determination IGARSS Proceedings, July 24-28, 2000.

  6. Dry coating, a novel coating technology for solid pharmaceutical dosage forms.

    PubMed

    Luo, Yanfeng; Zhu, Jesse; Ma, Yingliang; Zhang, Hui

    2008-06-24

    Dry coating is a coating technology for solid pharmaceutical dosage forms derived from powder coating of metals. In this technology, powdered coating materials are directly coated onto solid dosage forms without using any solvent, and then heated and cured to form a coat. As a result, this technology can overcome such disadvantages caused by solvents in conventional liquid coating as serious air pollution, high time- and energy-consumption and expensive operation cost encountered by liquid coating. Several dry coating technologies, including plasticizer-dry-coating, electrostatic-dry-coating, heat-dry-coating and plasticizer-electrostatic-heat-dry-coating have been developed and extensively reported. This mini-review summarized the fundamental principles and coating processes of various dry coating technologies, and thoroughly analyzed their advantages and disadvantages as well as commercialization potentials.

  7. Fluorocarbon Contamination from the Drill on the Mars Science Laboratory: Potential Science Impact on Detecting Martian Organics by Sample Analysis at Mars (SAM)

    NASA Technical Reports Server (NTRS)

    Eigenbrode, J. L.; McAdam, A.; Franz, H.; Freissinet, C.; Bower, H.; Floyd, M.; Conrad, P.; Mahaffy, P.; Feldman, J.; Hurowitz, J.; hide

    2013-01-01

    Polytetrafluoroethylene (PTFE or trade name: Teflon by Dupont Co.) has been detected in rocks drilled during terrestrial testing of the Mars Science Laboratory (MSL) drilling hardware. The PTFE in sediments is a wear product of the seals used in the Drill Bit Assemblies (DBAs). It is expected that the drill assembly on the MSL flight model will also shed Teflon particles into drilled samples. One of the primary goals of the Sample Analysis at Mars (SAM) instrument suite on MSL is to test for the presence of martian organics in samples. Complications introduced by the potential presence of PTFE in drilled samples to the SAM evolved gas analysis (EGA or pyrolysisquadrupole mass spectrometry, pyr-QMS) and pyrolysis- gas chromatography mass spectrometry (Pyr- GCMS) experiments was investigated.

  8. Active coatings technologies for tailorable military coating systems

    NASA Astrophysics Data System (ADS)

    Zunino, J. L., III

    2007-04-01

    The main objective of the U.S. Army's Active Coatings Technologies Program is to develop technologies that can be used in combination to tailor coatings for utilization on Army Materiel. The Active Coatings Technologies Program, ACT, is divided into several thrusts, including the Smart Coatings Materiel Program, Munitions Coatings Technologies, Active Sensor packages, Systems Health Monitoring, Novel Technology Development, as well as other advanced technologies. The goal of the ACT Program is to conduct research leading to the development of multiple coatings systems for use on various military platforms, incorporating unique properties such as self repair, selective removal, corrosion resistance, sensing, ability to modify coatings' physical properties, colorizing, and alerting logistics staff when tanks or weaponry require more extensive repair. A partnership between the U.S. Army Corrosion Office at Picatinny Arsenal, NJ along with researchers at the New Jersey Institute of Technology, NJ, Clemson University, SC, University of New Hampshire, NH, and University of Massachusetts (Lowell), MA, are developing the next generation of Smart Coatings Materiel via novel technologies such as nanotechnology, Micro-electromechanical Systems (MEMS), meta-materials, flexible electronics, electrochromics, electroluminescence, etc. This paper will provide the reader with an overview of the Active Coatings Technologies Program, including an update of the on-going Smart Coatings Materiel Program, its progress thus far, description of the prototype Smart Coatings Systems and research tasks as well as future nanotechnology concepts, and applications for the Department of Defense.

  9. Granular statistical mechanics - Building on the legacy of Sir Sam Edwards

    NASA Astrophysics Data System (ADS)

    Blumenfeld, Raphael

    When Sir Sam Edwards laid down the foundations for the statistical mechanics of jammed granular materials he opened a new field in soft condensed matter and many followed. In this presentation we review briefly the Edwards formalism and some of its less discussed consequences. We point out that the formalism is useful for other classes of systems - cellular and porous materials. A certain shortcoming of the original formalism is then discussed and a modification to overcome it is proposed. Finally, a derivation of an equation of state with the new formalism is presented; the equation of state is analogous to the PVT relation for thermal gases, relating the volume, the boundary stress and measures of the structural and stress fluctuations. NUDT, Changsha, China, Imperial College London, UK, Cambridge University, UK.

  10. Detecting Organic Compounds Released from Iron Oxidizing Bacteria using Sample Analysis at Mars (SAM)-like Instrument Protocols

    NASA Astrophysics Data System (ADS)

    Glavin, D. P.; Popa, R.; Martin, M. G.; Freissinet, C.; Fisk, M. R.; Dworkin, J. P.; Mahaffy, P. R.

    2012-12-01

    Mars is a planet of great interest for Astrobiology since its past environmental conditions are thought to have been favourable for the emergence life. At present, the Red Planet is extremely cold and dry and the surface is exposed to intense UV and ionizing radiation, conditions generally considered to be incompatible with life as we know it on Earth. It was proposed that the shallow subsurface of Mars, where temperatures can be above freezing and liquid water can exist on rock surfaces, could harbor chemolithoautotrophic bacteria such as the iron oxidizing microorganism Pseudomonas sp. HerB [Popa et al. 2012]. The Mars Science Laboratory (MSL) mission will provide the next opportunity to carry out in situ measurements for organic compounds of possible biological origin on Mars. One instrument onboard MSL, called the Sample Analysis at Mars (SAM) instrument suite, will carry out a broad and sensitive search for organic compounds in surface samples using either high temperature pyrolysis or chemical extraction followed by gas chromatography mass spectrometry [Mahaffy et al. 2012]. We present gas chromatograph mass spectrometer (GC/MS) data on crushed olivine rock powders that have been inoculated with Pseudomonas sp. HerB at different concentrations ranging from ~102 to 107 cells per gram. The inoculated olivine samples were heated under helium carrier gas flow at 500°C and the pyrolysis products concentrated using a SAM-like hydrocarbon trap set at -20°C followed by trap heating and analysis by GC/MS. In addition, the samples were also extracted using a low temperature "one-pot" chemical extraction technique using N-methyl, N-(tert-butyldimethylsilyl) trifluoroacetamide (MTBSTFA) as the silylating agent prior to GC/MS analysis [Stalport et al. 2012]. We identified several aldehydes, thiols, and alkene nitriles after pyrolysis GC/MS analysis of the bacteria that were not found in the olivine control samples that had not been inoculated with bacteria. The

  11. Flow coating apparatus and method of coating

    DOEpatents

    Hanumanthu, Ramasubrahmaniam; Neyman, Patrick; MacDonald, Niles; Brophy, Brenor; Kopczynski, Kevin; Nair, Wood

    2014-03-11

    Disclosed is a flow coating apparatus, comprising a slot that can dispense a coating material in an approximately uniform manner along a distribution blade that increases uniformity by means of surface tension and transfers the uniform flow of coating material onto an inclined substrate such as for example glass, solar panels, windows or part of an electronic display. Also disclosed is a method of flow coating a substrate using the apparatus such that the substrate is positioned correctly relative to the distribution blade, a pre-wetting step is completed where both the blade and substrate are completed wetted with a pre-wet solution prior to dispensing of the coating material onto the distribution blade from the slot and hence onto the substrate. Thereafter the substrate is removed from the distribution blade and allowed to dry, thereby forming a coating.

  12. Carbon Isotopic Composition of CO2, Evolved During Perchlorate-Induced Reactions in Mars Analog Materials: Interpreting SAM/MSL Rocknest Data

    NASA Technical Reports Server (NTRS)

    Stern, J. C.; McAdam, A. C.; Archer, P. D., Jr.; Bower, H.; Buch, A.; Eigenbrode, J.; Freissinet, C.; Franz, H. B.; Glavin, D.; Jones, J. H.; hide

    2013-01-01

    The Sample Analysis at Mars (SAM) Instrument Suite on the Mars Science Laboratory (MSL) Rover Curiosity made its first solid sample evolved gas analysis of unconsolidated material at aeolian bedform Rocknest in Gale Crater. The magnitude of O2 evolved in each run as well as the chlorinated hydrocarbons detected by SAM gas chromatograph/ mass spectrometer (GCMS) [1] suggest a chlorinated oxidant such as perchlorate in Rocknest materials [2]. Perchlorate induced combustion of organics present in the sample would contribute to the CO2 volatile inventory, possibly overlapping with CO2 from inorganic sources. The resulting carbon and oxygen isotopic composition of CO2 sent to the Tunable Laser Spectrometer (TLS) for analysis would represent mixed sources. This work was undertaken to better understand a) how well the carbon isotopic composition ( 13C) of CO2 from partially combusted products represents their source and b) how the 13C of combusted products can be deconvolved from other carbon sources such as thermal decomposition of carbonate.

  13. Environmental Barrier Coatings Having a YSZ Top Coat

    NASA Technical Reports Server (NTRS)

    Lee, Kang N.; Gray, Hugh (Technical Monitor)

    2002-01-01

    Environmental barrier coatings (EBCs) with a Si bond coat, a yttria-stabilized zirconia (YSZ) top coat, and various intermediate coats were investigated. EBCs were processed by atmospheric pressure plasma spraying. The EBC durability was determined by thermal cycling tests in water vapor at 1300 C and 1400 C, and in air at 1400 C and 1500 C. EBCs with a mullite (3Al2O3 (dot) 2SiO2) + BSAS (1 - xBaO (dot) xSrO (dot) Al2O3 (dot) 2SiO2) intermediate coat were more durable than EBCs with a mullite intermediate coat, while EBCs with a mullite/BSAS duplex intermediate coat resulted in inferior durability. The improvement with a mullite + BSAS intermediate coat was attributed to enhanced compliance of the intermediate coat due to the addition of a low modulus BSAS second phase. Mullite + BSAS/YSZ and BSAS/YSZ interfaces produced a low melting (less than 1400 C) reaction product, which is expected to degrade the EBC performance by increasing the thermal conductivity. EBCs with a mullite + BSAS / graded mullite + YSZ intermediate coat showed the best durability among the EBCs investigated in this study. This improvement was attributed to diffused CTE (Coefficient of Thermal Expansion) mismatch stress and improved chemical stability due to the compositionally graded mullite+YSZ layer.

  14. The Investigation of Chlorate/Iron-Phase Mixtures as a Possible Source of Oxygen and Chlorine Detected by the Sample Analysis at Mars (SAM) Instrument in Gale Crater, Mars

    NASA Technical Reports Server (NTRS)

    Clark, J.; Sutter, B.; Morris, R. V.; Archer, P. D.; Ming, D. W.; Niles, P.; Mahaffy, P.; Navarro-Gonzalez, R.

    2016-01-01

    The Sample Analysis at Mars (SAM) instrument on board the Curiosity Rover has detected oxygen and HCl gas releases from all analyzed Gale Crater sediments. The presence of perchlorate ClO4(sup-) and/or chlorates ClO3(sup-) are potential sources of the aforementioned O2 releases. The detections of O2 and HCl gas releases and chlorinated hydrocarbons by SAM coupled with the detection of perchlorates by Phoenix Lander's 2008 Wet Chemistry Laboratory all suggest that perchlorates, and possibly chorates, may be present in the Gale Crater sediments. Previous laboratory studies have attempted to replicate these O2 releases by heating perchlorates and chlorates in instruments operated similarly to those in the SAM instrument. Early studies found that pure perchlorates release O2 at temperatures higher than those observed in SAM data. Subsequently, studies were done to test the effects of mixing iron-phase minerals, analogous to those detected on Mars by ChemMin, with perchlorates. The iron in these minerals acts as a catalyst and causes O2 to be released from the perchlorate at a lower temperature. These studies found that perchlorate solutions mixed with either Hawaii palagonite or ferrihydrite produce O2 releases at temperatures similar to the Rocknest (RN) windblown deposit and the John Klein (JK) drill sample from the Sheepbed mudstone. The study also determined that perchlorate mixtures with magnetite, hematite, fayalite-magnetite, ilmentite, and pyrrhotite produce O2 releases at temperatures similar to the Confidence Hills (CH) drill sample from the Murray mudstone. Oxygen re-leases from pure chlorates were recently compared with the SAM data. Laboratory analyses determined that Ca-chlorate produces O2 and HCl peaks that are similar to those detected in RN and JK materials. Currently, no perchlorate/chlorate mixture with iron-phase minerals can explain the O2 releases from either the Cumberland (CB) drill sample from the Sheepbed mudstone or Windjana (WJ) drill

  15. Lotus Dust Mitigation Coating and Molecular Adsorber Coating

    NASA Technical Reports Server (NTRS)

    O'Connor, Kenneth M.; Abraham, Nithin S.

    2015-01-01

    NASA Goddard Space Flight Center has developed two unique coating formulations that will keep surfaces clean and sanitary and contain contaminants.The Lotus Dust Mitigation Coating, modeled after the self-cleaning, water-repellant lotus leaf, disallows buildup of dust, dirt, water, and more on surfaces. This coating, has been successfully tested on painted, aluminum, glass, silica, and some composite surfaces, could aid in keeping medical assets clean.The Molecular Adsorber Coating is a zeolite-based, sprayable molecular adsorber coating, designed to prevent outgassing in materials in vacuums. The coating works well to adsorb volatiles and contaminates in manufacturing and processing, such as in pharmaceutical production. The addition of a biocide would also aid in controlling bacteria levels.

  16. Efficient surface enhanced Raman scattering on confeito-like gold nanoparticle-adsorbed self-assembled monolayers.

    PubMed

    Chang, Chia-Chi; Imae, Toyoko; Chen, Liang-Yih; Ujihara, Masaki

    2015-12-28

    Confeito-like gold nanoparticles (AuNPs; average diameter = 80 nm) exhibiting a plasmon absorption band at 590 nm were adsorbed through immersion-adsorption on two self-assembled monolayers (SAMs) of 3-aminopropyltriethoxysilane (APTES-SAM) and polystyrene spheres coated with amine-terminated poly(amido amine) dendrimers (DEN/PS-SAM). The surface enhanced Raman scattering (SERS) effect on the SAM substrates was examined using the molecules of a probe dye, rhodamine 6G (R6G). The Raman scattering was strongly intensified on both substrates, but the enhancement factor (>10,000) of the AuNP/DEN/PS-SAM hierarchy substrate was 5-10 times higher than that of the AuNP/APTES-SAM substrate. This strong enhancement is attributed to the large surface area of the substrate and the presence of hot spots. Furthermore, analyzing the R6G concentration dependence of SERS suggested that the enhancement mechanism effectively excited the R6G molecules in the first layer on the hot spots and invoked the strong SERS effect. These results indicate that the SERS activity of confeito-like AuNPs on SAM substrates has high potential in molecular electronic devices and ultrasensitive analyses.

  17. A New Structural Form in the SAM/Metal-Dependent O;#8209;Methyltransferase Family: MycE from the Mycinamicin Biosynthetic Pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akey, David L.; Li, Shengying; Konwerski, Jamie R.

    2012-08-01

    O-linked methylation of sugar substituents is a common modification in the biosynthesis of many natural products and is catalyzed by multiple families of S-adenosyl-l-methionine (SAM or AdoMet)-dependent methyltransferases (MTs). Mycinamicins, potent antibiotics from Micromonospora griseorubida, can be methylated at two positions on a 6-deoxyallose substituent. The first methylation is catalyzed by MycE, a SAM- and metal-dependent MT. Crystal structures were determined for MycE bound to the product S-adenosyl-l-homocysteine (AdoHcy) and magnesium, both with and without the natural substrate mycinamicin VI. This represents the first structure of a natural product sugar MT in complex with its natural substrate. MycE is amore » tetramer of a two-domain polypeptide, comprising a C-terminal catalytic MT domain and an N-terminal auxiliary domain, which is important for quaternary assembly and for substrate binding. The symmetric MycE tetramer has a novel MT organization in which each of the four active sites is formed at the junction of three monomers within the tetramer. The active-site structure supports a mechanism in which a conserved histidine acts as a general base, and the metal ion helps to position the methyl acceptor and to stabilize a hydroxylate intermediate. A conserved tyrosine is suggested to support activity through interactions with the transferred methyl group from the SAM methyl donor. The structure of the free enzyme reveals a dramatic order-disorder transition in the active site relative to the S-adenosyl-L-homocysteine complexes, suggesting a mechanism for product/substrate exchange through concerted movement of five loops and the polypeptide C-terminus.« less

  18. Zircon-Based Ceramics Composite Coating for Environmental Barrier Coating

    NASA Astrophysics Data System (ADS)

    Suzuki, M.; Sodeoka, S.; Inoue, T.

    2008-09-01

    Studies on plasma spraying of zircon (ZrSiO4) have been carried out by the authors as one of the candidates for an environmental barrier coating (EBC) application, and had reported that substrate temperature is one of the most important factors to obtain crack-free and highly adhesive coating. In this study, several amounts of yttria were added to zircon powder, and the effect of the yttria addition on the structure and properties of the coatings were evaluated to improve the stability of the zircon coating structure at elevated temperature. The coatings obtained were composed of yttria-stabilized zirconia (YSZ), glassy silica, whereas the one prepared from monolithic zircon powder was composed of the metastable high temperature tetragonal phase of zirconia and glassy silica. After the heat treatment over 1200 °C, silica and zirconia formed zircon in all coatings. However, coatings with higher amounts of yttria exhibited lower amounts of zircon. This resulted in the less open porosity of the coating at elevated temperature. These yttria-added coatings also showed good adhesion even after the heat treatment, while monolithic zircon coating pealed off.

  19. Tablet coating by injection molding technology - Optimization of coating formulation attributes and coating process parameters.

    PubMed

    Desai, Parind M; Puri, Vibha; Brancazio, David; Halkude, Bhakti S; Hartman, Jeremy E; Wahane, Aniket V; Martinez, Alexander R; Jensen, Keith D; Harinath, Eranda; Braatz, Richard D; Chun, Jung-Hoon; Trout, Bernhardt L

    2018-01-01

    We developed and evaluated a solvent-free injection molding (IM) coating technology that could be suitable for continuous manufacturing via incorporation with IM tableting. Coating formulations (coating polymers and plasticizers) were prepared using hot-melt extrusion and screened via stress-strain analysis employing a universal testing machine. Selected coating formulations were studied for their melt flow characteristics. Tablets were coated using a vertical injection molding unit. Process parameters like softening temperature, injection pressure, and cooling temperature played a very important role in IM coating processing. IM coating employing polyethylene oxide (PEO) based formulations required sufficient room humidity (>30% RH) to avoid immediate cracks, whereas other formulations were insensitive to the room humidity. Tested formulations based on Eudrajit E PO and Kollicoat IR had unsuitable mechanical properties. Three coating formulations based on hydroxypropyl pea starch, PEO 1,000,000 and Opadry had favorable mechanical (<700MPa Young's modulus, >35% elongation, >95×10 4 J/m 3 toughness) and melt flow (>0.4g/min) characteristics, that rendered acceptable IM coats. These three formulations increased the dissolution time by 10, 15 and 35min, respectively (75% drug release), compared to the uncoated tablets (15min). Coated tablets stored in several environmental conditions remained stable to cracking for the evaluated 8-week time period. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Replacing -CH2CH2- with -CONH- does not significantly change rates of charge transport through Ag(TS)-SAM//Ga2O3/EGaIn junctions.

    PubMed

    Thuo, Martin M; Reus, William F; Simeone, Felice C; Kim, Choongik; Schulz, Michael D; Yoon, Hyo Jae; Whitesides, George M

    2012-07-04

    This paper describes physical-organic studies of charge transport by tunneling through self-assembled monolayers (SAMs), based on systematic variations of the structure of the molecules constituting the SAM. Replacing a -CH(2)CH(2)- group with a -CONH- group changes the dipole moment and polarizability of a portion of the molecule and has, in principle, the potential to change the rate of charge transport through the SAM. In practice, this substitution produces no significant change in the rate of charge transport across junctions of the structure Ag(TS)-S(CH(2))(m)X(CH(2))(n)H//Ga(2)O(3)/EGaIn (TS = template stripped, X = -CH(2)CH(2)- or -CONH-, and EGaIn = eutectic alloy of gallium and indium). Incorporation of the amide group does, however, increase the yields of working (non-shorting) junctions (when compared to n-alkanethiolates of the same length). These results suggest that synthetic schemes that combine a thiol group on one end of a molecule with a group, R, to be tested, on the other (e.g., HS~CONH~R) using an amide-based coupling provide practical routes to molecules useful in studies of molecular electronics.

  1. Aluminide coatings

    DOEpatents

    Henager, Jr; Charles, H [Kennewick, WA; Shin, Yongsoon [Richland, WA; Samuels, William D [Richland, WA

    2009-08-18

    Disclosed herein are aluminide coatings. In one embodiment coatings are used as a barrier coating to protect a metal substrate, such as a steel or a superalloy, from various chemical environments, including oxidizing, reducing and/or sulfidizing conditions. In addition, the disclosed coatings can be used, for example, to prevent the substantial diffusion of various elements, such as chromium, at elevated service temperatures. Related methods for preparing protective coatings on metal substrates are also described.

  2. Growth dynamics of L-cysteine SAMs on single-crystal gold surfaces: a metastable deexcitation spectroscopy study

    NASA Astrophysics Data System (ADS)

    Canepa, M.; Lavagnino, L.; Pasquali, L.; Moroni, R.; Bisio, F.; DeRenzi, V.; Terreni, S.; Mattera, L.

    2009-07-01

    We report on a metastable deexcitation spectroscopy investigation of the growth of L-cysteine layers deposited under UHV conditions on well-defined Au(110)- (1 × 2) and Au(111) surfaces. The interaction of He* with molecular orbitals gave rise to well-defined UPS-like Penning spectra which provided information on the SAM assembly dynamics and adsorption configurations. Penning spectra have been interpreted through comparison with molecular orbital DFT calculations of the free molecule and have been compared with XPS results of previous works. Regarding adsorption of first-layer molecules at room temperature (RT), two different growth regimes were observed. On Au(110), the absence of spectral features related to orbitals associated with SH groups indicated the formation of a compact SAM of thiolate molecules. On Au(111), the data demonstrated the simultaneous presence, since the early stages of growth, of strongly and weakly bound molecules, the latter showing intact SH groups. The different growth mode was tentatively assigned to the added rows of the reconstructed Au(110) surface which behave as extended defects effectively promoting the formation of the S-Au bond. The growth of the second molecular layer was instead observed to proceed similarly for both substrates. Second-layer molecules preferably adopt an adsorption configuration in which the SH group protrudes into the vacuum side.

  3. COATED ALLOYS

    DOEpatents

    Harman, C.G.; O'Bannon, L.S.

    1958-07-15

    A coating is described for iron group metals and alloys, that is particularly suitable for use with nickel containing alloys. The coating is glassy in nature and consists of a mixture containing an alkali metal oxide, strontium oxide, and silicon oxide. When the glass coated nickel base metal is"fired'' at less than the melting point of the coating, it appears the nlckel diffuses into the vitreous coating, thus providing a closely adherent and protective cladding.

  4. Optimisation and Characterisation of Anti-Fouling Ternary SAM Layers for Impedance-Based Aptasensors

    PubMed Central

    Miodek, Anna; Regan, Edward M.; Bhalla, Nikhil; Hopkins, Neal A.E.; Goodchild, Sarah A.; Estrela, Pedro

    2015-01-01

    An aptasensor with enhanced anti-fouling properties has been developed. As a case study, the aptasensor was designed with specificity for human thrombin. The sensing platform was developed on screen printed electrodes and is composed of a self-assembled monolayer made from a ternary mixture of 15-base thiolated DNA aptamers specific for human thrombin co-immobilised with 1,6-hexanedithiol (HDT) and further passivated with 1-mercapto-6-hexanol (MCH). HDT binds to the surface by two of its thiol groups forming alkyl chain bridges and this architecture protects from non-specific attachment of molecules to the electrode surface. Using Electrochemical Impedance Spectroscopy (EIS), the aptasensor is able to detect human thrombin as variations in charge transfer resistance (Rct) upon protein binding. After exposure to a high concentration of non-specific Bovine Serum Albumin (BSA) solution, no changes in the Rct value were observed, highlighting the bio-fouling resistance of the surface generated. In this paper, we present the optimisation and characterisation of the aptasensor based on the ternary self-assembled monolayer (SAM) layer. We show that anti-fouling properties depend on the type of gold surface used for biosensor construction, which was also confirmed by contact angle measurements. We further studied the ratio between aptamers and HDT, which can determine the specificity and selectivity of the sensing layer. We also report the influence of buffer pH and temperature used for incubation of electrodes with proteins on detection and anti-fouling properties. Finally, the stability of the aptasensor was studied by storage of modified electrodes for up to 28 days in different buffers and atmospheric conditions. Aptasensors based on ternary SAM layers are highly promising for clinical applications for detection of a range of proteins in real biological samples. PMID:26426017

  5. Optimisation and Characterisation of Anti-Fouling Ternary SAM Layers for Impedance-Based Aptasensors.

    PubMed

    Miodek, Anna; Regan, Edward M; Bhalla, Nikhil; Hopkins, Neal A E; Goodchild, Sarah A; Estrela, Pedro

    2015-09-29

    An aptasensor with enhanced anti-fouling properties has been developed. As a case study, the aptasensor was designed with specificity for human thrombin. The sensing platform was developed on screen printed electrodes and is composed of a self-assembled monolayer made from a ternary mixture of 15-base thiolated DNA aptamers specific for human thrombin co-immobilised with 1,6-hexanedithiol (HDT) and further passivated with 1-mercapto-6-hexanol (MCH). HDT binds to the surface by two of its thiol groups forming alkyl chain bridges and this architecture protects from non-specific attachment of molecules to the electrode surface. Using Electrochemical Impedance Spectroscopy (EIS), the aptasensor is able to detect human thrombin as variations in charge transfer resistance (Rct) upon protein binding. After exposure to a high concentration of non-specific Bovine Serum Albumin (BSA) solution, no changes in the Rct value were observed, highlighting the bio-fouling resistance of the surface generated. In this paper, we present the optimisation and characterisation of the aptasensor based on the ternary self-assembled monolayer (SAM) layer. We show that anti-fouling properties depend on the type of gold surface used for biosensor construction, which was also confirmed by contact angle measurements. We further studied the ratio between aptamers and HDT, which can determine the specificity and selectivity of the sensing layer. We also report the influence of buffer pH and temperature used for incubation of electrodes with proteins on detection and anti-fouling properties. Finally, the stability of the aptasensor was studied by storage of modified electrodes for up to 28 days in different buffers and atmospheric conditions. Aptasensors based on ternary SAM layers are highly promising for clinical applications for detection of a range of proteins in real biological samples.

  6. \\tLaboratory Environmental Sample Disposal Information Document - Companion to Standardized Analytical Methods for Environmental Restoration Following Homeland Security Events (SAM) – Revision 5.0

    EPA Pesticide Factsheets

    Document is intended to provide general guidelines for use byEPA and EPA-contracted laboratories when disposing of samples and associated analytical waste following use of the analytical methods listed in SAM.

  7. United States v. M/V Big Sam: preserving a niche for the federal common law of maritime tort of oil pollution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murway, A.

    1984-07-01

    When the M/V Big Sam tugboat struck an oil-carrying barge in 1975, the district court held that no tort action existed, and limited the government's claim for cleanup compensation to the Federal Water Pollution Control Act (FWPCA) and a potential yield of only $15,500. The author traces the foundations of the defendant's claim that Congress intended the FWPCA to be the government's exclusive means of recovery oil cleanup costs and, citing prior case law, discusses the arguments and applies the exclusivity test to the Fifth Circuit's decision in M/V Big Sam. She concludes that the courts viewed Congress' major goalsmore » under the FWPCA to be the elimination of oil pollution and the protection of the merchant marine from potentially uninsurable risks arising out of the nation's growing environmental consciousness. Although a potential threat to the shipping and insurance companies, the court limited its ruling to third-party vessels already protected from unlimited liability. 91 references.« less

  8. Photoinduced work function changes by isomerization of a densely packed azobenzene-based SAM on Au: a joint experimental and theoretical study.

    PubMed

    Crivillers, N; Liscio, A; Di Stasio, F; Van Dyck, C; Osella, S; Cornil, D; Mian, S; Lazzerini, G M; Fenwick, O; Orgiu, E; Reinders, F; Braun, S; Fahlman, M; Mayor, M; Cornil, J; Palermo, V; Cacialli, F; Samorì, P

    2011-08-28

    Responsive monolayers are key building blocks for future applications in organic and molecular electronics in particular because they hold potential for tuning the physico-chemical properties of interfaces, including their energetics. Here we study a photochromic SAM based on a conjugated azobenzene derivative and its influence on the gold work function (Φ(Au)) when chemisorbed on its surface. In particular we show that the Φ(Au) can be modulated with external stimuli by controlling the azobenzene trans/cis isomerization process. This phenomenon is characterized experimentally by four different techniques, kelvin probe, kelvin probe force microscopy, electroabsorption spectroscopy and ultraviolet photoelectron spectroscopy. The use of different techniques implies exposing the SAM to different measurement conditions and different preparation methods, which, remarkably, do not alter the observed work function change (Φ(trans)-Φ(cis)). Theoretical calculations provided a complementary insight crucial to attain a deeper knowledge on the origin of the work function photo-modulation.

  9. Comparisons of Computed Mobile Phone Induced SAR in the SAM Phantom to That in Anatomically Correct Models of the Human Head

    PubMed Central

    Beard, Brian B.; Kainz, Wolfgang; Onishi, Teruo; Iyama, Takahiro; Watanabe, Soichi; Fujiwara, Osamu; Wang, Jianqing; Bit-Babik, Giorgi; Faraone, Antonio; Wiart, Joe; Christ, Andreas; Kuster, Niels; Lee, Ae-Kyoung; Kroeze, Hugo; Siegbahn, Martin; Keshvari, Jafar; Abrishamkar, Houman; Simon, Winfried; Manteuffel, Dirk; Nikoloski, Neviana

    2018-01-01

    The specific absorption rates (SAR) determined computationally in the specific anthropomorphic mannequin (SAM) and anatomically correct models of the human head when exposed to a mobile phone model are compared as part of a study organized by IEEE Standards Coordinating Committee 34, SubCommittee 2, and Working Group 2, and carried out by an international task force comprising 14 government, academic, and industrial research institutions. The detailed study protocol defined the computational head and mobile phone models. The participants used different finite-difference time-domain software and independently positioned the mobile phone and head models in accordance with the protocol. The results show that when the pinna SAR is calculated separately from the head SAR, SAM produced a higher SAR in the head than the anatomically correct head models. Also the larger (adult) head produced a statistically significant higher peak SAR for both the 1- and 10-g averages than did the smaller (child) head for all conditions of frequency and position. PMID:29515260

  10. Comparisons of Computed Mobile Phone Induced SAR in the SAM Phantom to That in Anatomically Correct Models of the Human Head.

    PubMed

    Beard, Brian B; Kainz, Wolfgang; Onishi, Teruo; Iyama, Takahiro; Watanabe, Soichi; Fujiwara, Osamu; Wang, Jianqing; Bit-Babik, Giorgi; Faraone, Antonio; Wiart, Joe; Christ, Andreas; Kuster, Niels; Lee, Ae-Kyoung; Kroeze, Hugo; Siegbahn, Martin; Keshvari, Jafar; Abrishamkar, Houman; Simon, Winfried; Manteuffel, Dirk; Nikoloski, Neviana

    2006-06-05

    The specific absorption rates (SAR) determined computationally in the specific anthropomorphic mannequin (SAM) and anatomically correct models of the human head when exposed to a mobile phone model are compared as part of a study organized by IEEE Standards Coordinating Committee 34, SubCommittee 2, and Working Group 2, and carried out by an international task force comprising 14 government, academic, and industrial research institutions. The detailed study protocol defined the computational head and mobile phone models. The participants used different finite-difference time-domain software and independently positioned the mobile phone and head models in accordance with the protocol. The results show that when the pinna SAR is calculated separately from the head SAR, SAM produced a higher SAR in the head than the anatomically correct head models. Also the larger (adult) head produced a statistically significant higher peak SAR for both the 1- and 10-g averages than did the smaller (child) head for all conditions of frequency and position.

  11. Rheology of Coating Materials and Their Coating Characteristics

    NASA Astrophysics Data System (ADS)

    Grabsch, C.; Grüner, S.; Otto, F.; Sommer, K.

    2008-07-01

    Lots of particles used in the pharmaceutical and the food industry are coated to protect the core material. But almost no investigations about the coating material behavior do exist. In this study the focus was on the rheological material properties of fat based coating materials. Rotational shear experiments to determine the viscosity of a material were compared to oscillatory shear tests to get information about the vicoelastic behavior of the coating materials. At the liquid state the viscosity and the viscoelastic properties showed a good analogy. The viscoelastic properties of the solid coating materials yielded differences between materials that have the same properties at the liquid state.

  12. Method of Producing Controlled Thermal Expansion Coat for Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Brindley, William J. (Inventor); Miller, Robert A. (Inventor); Aikin, Beverly J. M. (Inventor)

    2000-01-01

    An improved thermal barrier coating and method for producing and applying such is disclosed herein. The thermal barrier coatings includes a high temperature substrate, a first bond coat layer applied to the substrate of MCrAlX and a second bond coat layer of MCrAlX with particles of a particulate dispersed throughout the MCrAlX and the preferred particulate is Al2O3. The particles of the particulate dispersed throughout the second bond coat layer preferably have a diameter of less then the height of the peaks of the second bond coat layer or a diameter of less than 5 micron. The method of producing the second bond coat layer may either include the steps of mechanical alloying of particles throughout the second bond coat layer, attrition milling the particles of the particulate throughout the second bond coat layer, or using electrophoresis to disperse the particles throughout the second bond coat layer. In the preferred embodiment of the invention the first bond coat layer is applied to the substrate. and then the second bond coat layer is thermally sprayed onto the first bond coat layer. Further, in a preferred embodiment of the invention a ceramic insulating layer covers the second bond coat layer.

  13. SAP Minutes No.2015-03 for FIFRA meeting held 9/15-17/2015. A set of scientific issues being considered by the Environmental Protection Agency regarding development of a spatial aquatic model(SAM)for pesticide risk assessment

    USDA-ARS?s Scientific Manuscript database

    On September 15-17th, 2014, the US Environmental Protection Agency convened a public meeting of the FIFRA Scientific Advisory Panel (SAP) to address scientific issues associated with the agency’s “Development of a Spatial Aquatic Model (SAM) for Pesticide Risk Assessment”. The goal of SAM is to impr...

  14. Corrosion resistant coating

    DOEpatents

    Wrobleski, D.A.; Benicewicz, B.C.; Thompson, K.G.; Bryan, C.J.

    1997-08-19

    A method of protecting a metal substrate from corrosion including coating a metal substrate of, e.g., steel, iron or aluminum, with a conductive polymer layer of, e.g., polyaniline, coating upon said metal substrate, and coating the conductive polymer-coated metal substrate with a layer of a topcoat upon the conductive polymer coating layer, is provided, together with the resultant coated article from said method.

  15. Corrosion resistant coating

    DOEpatents

    Wrobleski, Debra A.; Benicewicz, Brian C.; Thompson, Karen G.; Bryan, Coleman J.

    1997-01-01

    A method of protecting a metal substrate from corrosion including coating a metal substrate of, e.g., steel, iron or aluminum, with a conductive polymer layer of, e.g., polyaniline, coating upon said metal substrate, and coating the conductive polymer-coated metal substrate with a layer of a topcoat upon the conductive polymer coating layer, is provided, together with the resultant coated article from said method.

  16. One Year Report for SAMS and OARE on STS-73/USML-2. Experiment 36

    NASA Technical Reports Server (NTRS)

    Hakimzadeh, Roshanak

    1998-01-01

    The Second United States Microgravity Laboratory (USML-2) payload flew on the orbiter Columbia on mission STS-73 from October 20 to November 5, 1995. The USML-2 payload on STS-73 was dedicated to microgravity experiments. Two accelerometer systems managed by the NASA Lewis Research Center (LeRC) flew to support these experiments, namely the Orbital Acceleration Research Experiment (OARE) and the Space Acceleration Measurements System (SAMS). OARE downlinked real-time quasi-steady acceleration data, which were provided to the investigators. The SAMS recorded higher frequency data onboard for post-mission analysis. The Principal Investigator Microgravity Services (PIMS) project at NASA LeRC supports principal investigators of microgravity experiments as they evaluate the effects of varying acceleration levels on their experiments. A summary report was prepared by PIMS to furnish interested experiment investigators with a guide to evaluate the acceleration environment during STS-73, and as a means of identifying areas which require further study. The summary report provides an overview of the STS-73 mission, describes the accelerometer systems flown on this mission, discusses some specific analyses of the accelerometer data in relation to the various activities which occurred during the mission, and presents plots resulting from these analyses as a snapshot of the environment during the mission. Numerous activities occurred during the STS-73 mission that are of interest to the low-gravity community. Specific activities of interest during this mission were crew exercise, payload bay door motion, Glovebox fan operations, water dumps, Ku band antenna activity, orbital maneuvering system, and primary reaction control system firings, and attitude changes. The low-gravity environment related to these activities is discussed in the summary report.

  17. Molecular-dynamics simulations of self-assembled monolayers (SAM) on parallel computers

    NASA Astrophysics Data System (ADS)

    Vemparala, Satyavani

    The purpose of this dissertation is to investigate the properties of self-assembled monolayers, particularly alkanethiols and Poly (ethylene glycol) terminated alkanethiols. These simulations are based on realistic interatomic potentials and require scalable and portable multiresolution algorithms implemented on parallel computers. Large-scale molecular dynamics simulations of self-assembled alkanethiol monolayer systems have been carried out using an all-atom model involving a million atoms to investigate their structural properties as a function of temperature, lattice spacing and molecular chain-length. Results show that the alkanethiol chains tilt from the surface normal by a collective angle of 25° along next-nearest neighbor direction at 300K. At 350K the system transforms to a disordered phase characterized by small tilt angle, flexible tilt direction, and random distribution of backbone planes. With increasing lattice spacing, a, the tilt angle increases rapidly from a nearly zero value at a = 4.7A to as high as 34° at a = 5.3A at 300K. We also studied the effect of end groups on the tilt structure of SAM films. We characterized the system with respect to temperature, the alkane chain length, lattice spacing, and the length of the end group. We found that the gauche defects were predominant only in the tails, and the gauche defects increased with the temperature and number of EG units. Effect of electric field on the structure of poly (ethylene glycol) (PEG) terminated alkanethiol self assembled monolayer (SAM) on gold has been studied using parallel molecular dynamics method. An applied electric field triggers a conformational transition from all-trans to a mostly gauche conformation. The polarity of the electric field has a significant effect on the surface structure of PEG leading to a profound effect on the hydrophilicity of the surface. The electric field applied anti-parallel to the surface normal causes a reversible transition to an ordered state

  18. Pixelated coatings and advanced IR coatings

    NASA Astrophysics Data System (ADS)

    Pradal, Fabien; Portier, Benjamin; Oussalah, Meihdi; Leplan, Hervé

    2017-09-01

    Reosc developed pixelated infrared coatings on detector. Reosc manufactured thick pixelated multilayer stacks on IR-focal plane arrays for bi-spectral imaging systems, demonstrating high filter performance, low crosstalk, and no deterioration of the device sensitivities. More recently, a 5-pixel filter matrix was designed and fabricated. Recent developments in pixelated coatings, shows that high performance infrared filters can be coated directly on detector for multispectral imaging. Next generation space instrument can benefit from this technology to reduce their weight and consumptions.

  19. Detecting Organic Compounds Released from Iron Oxidizing Bacteria using Sample Analysis at Mars (SAM) Like Instrument Protocols

    NASA Technical Reports Server (NTRS)

    Glavin, D. P.; Popa, R.; Martin, M. G.; Freissinet, C.; Fisk, M. R.; Dworkin, J. P.; Mahaffy, P. R.

    2012-01-01

    Mars is a planet of great interest for Astrobiology since its past environmental conditions are thought to have been favourable for the emergence life. At present, the Red Planet is extremely cold and dry and the surface is exposed to intense UV and ionizing radiation, conditions generally considered to be incompatible with life as we know it on Earth. It was proposed that the shallow subsurface of Mars, where temperatures can be above freezing and liquid water can exist on rock surfaces, could harbor chemolithoautotrophic bacteria such as the iron oxidizing microorganism Pseudomonas sp. HerB. The Mars Science Laboratory (MSL) mission will provide the next opportunity to carry out in situ measurements for organic compounds of possible biological origin on Mars. One instrument onboard MSL, called the Sample Analysis at Mars (SAM) instrument suite, will carry out a broad and sensitive search for organic compounds in surface samples using either high temperature pyrolysis or chemical extraction followed by gas chromatography mass spectrometry. We present gas chromatograph mass spectrometer (GC/MS) data on crushed olivine rock powders that have been inoculated with Pseudomonas sp. HerB at different concentrations ranging from approx 10(exp 2) to 10(exp 7) cells per gram. The inoculated olivine samples were heated under helium carrier gas flow at 500 C and the pyrolysis products concentrated using a SAM-like hydrocarbon trap set at -20 C followed by trap heating and analysis by GC/Ms. In addition, the samples were also extracted using a low temperature "one-pot" chemical extraction technique using N-methyl, N-(tert-butyldimethylsilyl) trifluoroacetamide (MTBSTFA) as the silylating agent prior to GC/MS analysis. We identified several aldehydes, thiols, and alkene nitriles after pyrolysis GC/MS analysis of the bacteria that were not found in the olivine control samples that had not been inoculated with bacteria. The distribution of pyrolysis products extracted from the

  20. Progress Report on SAM Reduced-Order Model Development for Thermal Stratification and Mixing during Reactor Transients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, R.

    This report documents the initial progress on the reduced-order flow model developments in SAM for thermal stratification and mixing modeling. Two different modeling approaches are pursued. The first one is based on one-dimensional fluid equations with additional terms accounting for the thermal mixing from both flow circulations and turbulent mixing. The second approach is based on three-dimensional coarse-grid CFD approach, in which the full three-dimensional fluid conservation equations are modeled with closure models to account for the effects of turbulence.