Science.gov

Sample records for coatings superficial hardening

  1. Zinc coated sheet steel for press hardening

    NASA Astrophysics Data System (ADS)

    Ghanbari, Zahra N.

    Galvanized steels are of interest to enhance corrosion resistance of press-hardened steels, but concerns related to liquid metal embrittlement have been raised. The objective of this study was to assess the soak time and temperature conditions relevant to the hot-stamping process during which Zn penetration did or did not occur in galvanized 22MnB5 press-hardening steel. A GleebleRTM 3500 was used to heat treat samples using hold times and temperatures similar to those used in industrial hot-stamping. Deformation at both elevated temperature and room temperature were conducted to assess the coating and substrate behavior related to forming (at high temperature) and service (at room temperature). The extent of alloying between the coating and substrate was assessed on undeformed samples heat treated under similar conditions to the deformed samples. The coating transitioned from an α + Gamma1 composition to an α (bcc Fe-Zn) phase with increased soak time. This transition likely corresponded to a decrease in availability of Zn-rich liquid in the coating during elevated temperature deformation. Penetration of Zn into the substrate sheet in the undeformed condition was not observed for any of the processing conditions examined. The number and depth of cracks in the coating and substrate steel was also measured in the hot-ductility samples. The number of cracks appeared to increase, while the depth of cracks appeared to decrease, with increasing soak time and increasing soak temperature. The crack depth appeared to be minimized in the sample soaked at the highest soak temperature (900 °C) for intermediate and extended soak times (300 s or 600 s). Zn penetration into the substrate steel was observed in the hot-ductility samples soaked at each hold temperature for the shortest soak time (10 s) before being deformed at elevated temperature. Reduction of area and elongation measurements showed that the coated sample soaked at the highest temperature and longest soak time

  2. Ammonia hardening of porous silica antireflective coatings

    NASA Astrophysics Data System (ADS)

    Belleville, Philippe F.; Floch, Herve G.

    1994-10-01

    The adhesion of sol-gel antireflective porous silica coatings on vitreous optical substrates has been dramatically improved by exposure to ammonia vapors or a dip in basic solutions. The approximately 70 to 270-nm thick coatings consisted of monolayers of spherical, 20-nm diameter amorphous silica particles deposited from ethanolic colloidal suspensions by conventional liquid coating techniques. Although, the as-deposited coatings had only low adhesion and were easily damaged when cleaned by standard drag-wiping procedures, coatings exposed over 5 hours to ammonia vapors passed both adhesive-tape and moderate abrasive- resistance tests. The increase in strength was accompanied by a roughly 20% shrinkage of the original coating thickness but the antireflective properties were retained. Our explanation of this chemical effect is a base-catalyzed phenomenon leading to surface silanol condensation and hydrogen-bonding of neighbor silica particles. In addition, since this basic treatment enhanced the laser damage resistance, such strengthened antireflective coatings have been successfully evaluated on flashlamps used on Phebus, Europe's most powerful laser. This allows an increase of the laser-disk pumping efficiency.

  3. Effective mineral coatings for hardening the surface of metallic materials

    NASA Astrophysics Data System (ADS)

    Kislov, S. V.; Kislov, V. G.; Skazochkin, A. V.; Bondarenko, G. G.; Tikhonov, A. N.

    2015-07-01

    The structural changes that occur in the surface and surface layers of steel 20Kh13 and titanium alloy PT-3V (Russian designation) samples after each stage of hardening due to a formed mineral surface layer are studied by optical microscopy, transmission electron microscopy, and scanning electron microscopy. Electric spark alloying, pressing, and ultrasonic processing are used to reach the effect of volume compression of the base metal and the mineral in the plastic deformation zone. As a result, applied mineral particles concentrate in preliminarily created microvoids in a thin surface layer. The surface layer thus modified acquires a high hardness and wear resistance. Durometry shows that the hardness of the processed sample surfaces increases more than twofold. Therefore, the developed technology of creating a mineral coating can be used to increase the tribological properties of the surfaces of the parts, units, and mechanisms of turbine, pump, and mining equipment, which undergo intense wear during operation.

  4. Structural characterisation of oxygen diffusion hardened alpha-tantalum PVD-coatings on titanium.

    PubMed

    Hertl, C; Koll, L; Schmitz, T; Werner, E; Gbureck, U

    2014-08-01

    Titanium substrates were coated with tantalum layers of 5 μm thickness using physical vapour deposition (PVD). The tantalum layers showed a (110)-preferred orientation. The coated samples were hardened by oxygen diffusion. Using X-ray diffraction the crystallographic structure of the tantalum coatings was characterised, comparing untreated and diffusion hardened specimen conditions. Oxygen depth profiles were determined by glow discharge spectrometry. The hardening effect of the heat treatment was examined by Vickers microhardness testing. The increase of surface hardness caused by oxygen diffusion was at least 50%.

  5. Microstructural Evolution of the 55 Wt Pct Al-Zn Coating During Press Hardening

    NASA Astrophysics Data System (ADS)

    Lee, Chang Wook; De Cooman, Bruno Charles

    2014-09-01

    Press hardening is increasingly being used to produce ultra-high strength steel parts for passenger cars. Al-Si, Zn, and Zn-alloy coatings have been used to provide corrosion protection to press hardening steel grades. The use of coatings has drawbacks such as coating delamination or liquid metal-induced embrittlement. In the present work, the microstructural evolution of Al-Zn coating during press hardening was studied. The 55 wt pct Al-Zn coating can in principle provide both Al barrier protection and Zn cathodic protection to press hardened steel. During the heat treatment associated with the press hardening, the 55 wt pct Al-Zn alloy coating is converted to an intermetallic surface layer of Fe2Al5 and a FeAl intermetallic diffusion layer. The Zn is separated from both intermetallic compounds and accumulates at grain boundaries and at the surface. This Zn separation process is beneficial in terms of providing cathodic protection to Al-Zn coated press hardening steel.

  6. Physical processes and modeling of plasma deposition and hardening of coatings-switched electrical parameters

    NASA Astrophysics Data System (ADS)

    Kadyrmetov, A. M.; Sharifullin, S. N.

    2016-11-01

    This paper presents the results of simulation of plasma deposition and hardening of coatings in modulating the electrical parameters. Mathematical models are based on physical models of gas-dynamic mechanisms more dynamic and thermal processes of the plasma jet. As an example the modeling of dynamic processes of heterogeneous plasma jet, modulated current pulses indirect arc plasma torch.

  7. Press-hardening of zinc coated steel - characterization of a new material for a new process

    NASA Astrophysics Data System (ADS)

    Kurz, T.; Larour, P.; Lackner, J.; Steck, T.; Jesner, G.

    2016-11-01

    Press-hardening of zinc-coated PHS has been limited to the indirect process until a pre-cooling step was introduced before the hot forming to prevent liquid metal embrittlement. Even though that's only a minor change in the process itself it does not only eliminate LME, but increases also the demands on the base material especially in terms of hardenability or phase transformations at temperatures below 700 °C in general. This paper deals with the characterization of a modified zinc-coated material for press-hardening with pre-cooling that assures a robust process. The pre-cooling step itself and especially the transfer of the blank in the hot-forming die is more demanding than the standard 22MnB5 can stand to ensure full hardenability. Therefore the transformation behavior of the modified material is shown in CCT and TTT diagrams. Of the same importance are the changed hot forming temperature and flow curves for material at lower temperatures than typically used in direct hot forming. The resulting mechanical properties after hardening from tensile testing and bending tests are shown in detail. Finally some results from side impact crash tests and correlations of the findings with mechanical properties such as fracture elongation, tensile strength, VDA238 bending angle at maximum force as well as postuniform bending slope are given as well. Fracture elongation is shown to be of little help for damage prediction in side impact crash. Tensile strength and VDA bending properties enable however some accurate prediction of the PHS final damage behavior in bending dominated side impact load case.

  8. Drug-coated balloons are replacing the need for nitinol stents in the superficial femoral artery.

    PubMed

    Kitrou, Panagiotis; Karnabatidis, Dimitrios; Katsanos, Konstantinos

    2016-08-01

    Amassed evidence from several randomized controlled trials and high quality meta-analyses clearly support the primary use of paclitaxel-coated balloons (PCB) in the superficial femoral artery over traditional plain balloon angioplasty or primary bare nitinol stenting with significantly lower vascular restenosis, less need for repeat procedures, improved quality of life and potential cost savings for the healthcare system. Stents may be reserved for bail-out in case of a suboptimal dilatation result, and for selected more complex lesions, or in case of critical limb ischemia in order to eliminate vessel recoil and maximize immediate hemodynamic gain. Debulking atherectomy remains unproven, but holds a lot of promise in particular in combination with PCBs, in order to improve compliance of the vessel wall by plaque removal, allow for a better angioplasty result and optimize drug transfer and bioavailability. The present overview summarizes and discusses current evidence about femoropopliteal PCB angioplasty compared to the historical standard of plain old balloon angioplasty and bare nitinol stents. Available evidence is appraised in the context of clinically meaningful results, relevant unresolved issues are highlighted, and future trends are discussed.

  9. Microstructure and tribological properties of low-friction composite MoS2(Ti,W) coating on the oxygen hardened Ti-6Al-4V alloy

    NASA Astrophysics Data System (ADS)

    Moskalewicz, Tomasz; Zimowski, Sławomir; Wendler, Bogdan; Nolbrzak, Piotr; Czyrska-Filemonowicz, Aleksandra

    2014-03-01

    Duplex surface treatment, which combines the oxygen diffusion hardening with a deposition of low friction MoS2(Ti,W) coating, was applied to improve the Ti-6Al-4V alloy load bearing capacity and tribological properties. The coating (3.1 μm thick) was deposited on the oxygen hardened alloy by magnetron sputtering. Microstructure characterisation was performed by scanning- and transmission electron microscopy methods, as well as X-ray diffractometry. The results of micro/nanostructural analyses performed by high-resolution transmission electron microscopy showed that the coatings are composed of MoS2 nanoclusters embedded in an amorphous matrix. Some Ti α, W, and Ti2S nanocrystals were also found in the coating microstructure. The wear resistance and friction coefficient of the hardened oxygen, as well as the coated alloy, was investigated at room temperature (RT), 300 °C, and 350 °C. The presence of the MoS2(Ti,W) coating decreases the friction coefficient from 0.85 for the oxygen hardened alloy to 0.15 (at RT) and 0.09 (at 300 °C and 350 °C) for the coated one. The coating essentially increases the wear resistance of the alloy at RT and 300 °C. It was found that the wear resistance of the coated alloy decreased significantly during the wear test performed at 350 °C.

  10. Microstructural characterisation of nanocomposite nc-MeC/a-C coatings on oxygen hardened Ti-6Al-4V alloy

    SciTech Connect

    Moskalewicz, T.; Wendler, B.; Czyrska-Filemonowicz, A.

    2010-10-15

    Nanocomposite coatings are novel, important systems composed of two or more nanocrystalline, or nanocrystalline and amorphous, phases. Such coatings offer a possibility of tailoring the coating microstructure and achieving new improved properties of coated materials. In this work a duplex surface treatment, consisting of an oxygen diffusion treatment and deposition of low friction nanocomposite nc-MeC/a-C (Me = transition metal, Ti, W or Cr) coatings, was applied for improvement of the Ti-6Al-4V alloy properties. The coatings composed of nanocrystallites of transition metal carbides (TiC or Cr{sub x}C{sub y} or WC) embedded in hydrogen-free amorphous carbon (a-C) matrix were deposited onto the surface of an oxygen hardened Ti-6Al-4 V alloy substrate by means of a simple DC magnetron sputtering. A nano/microstructure of the substrate material and coatings has been examined by scanning- and transmission electron microscopy complemented with the results of X-ray diffraction analyses. It was found that the nanocomposite coatings are composed of different carbide nanocrystals (with sizes of a few nanometres) embedded in an amorphous carbon matrix. The results of qualitative and quantitative analyses of the nanocrystalline phase in the coatings with use of high-resolution transmission electron microscopy combined with image analysis are given in the paper. An effect of the nano/microstructure parameters of the coated alloy onto its micro-mechanical (nanohardness and Young's modulus) and tribological properties (wear resistance and friction coefficient) is discussed in the paper.

  11. Creation of Vapor/Gas Impermeable Coatings for CB Hardening of Existing Structures

    DTIC Science & Technology

    2013-04-05

    coated with Contract # W911NF-06-C-0167, POLYMERight, Inc., Final Report Page 26 • Pretreatment : Chemical Film IAW MIL-DTL-5541, Type I...polished metal, glossy paints and smooth rubber surfaces without any pretreatment . However, the removal of the coating from the autimotive tires and...rough metal (including nuts, bolt heads, welding joints, etc. could require the same type of pretreatment as the old CARC paint, i.e. light spray of

  12. Effect of Superficially Applied Y2O3 Coating on High-Temperature Corrosion Behavior of Ni-Base Superalloys

    NASA Astrophysics Data System (ADS)

    Goyal, Gitanjaly; Singh, Harpreet; Singh, Surindra; Prakash, Satya

    2011-11-01

    Inhibitors and oxide additives have been investigated with varying success to control high-temperature corrosion. Effect of Y2O3 on high-temperature corrosion of Superni 718 and Superni 601 superalloys was investigated in the Na2SO4-60 pct V2O5 environment at 1173 K (900 °C) for 50 cycles. Y2O3 was applied as a coating on the surfaces of the specimens. Superni 601 was found to have better corrosion resistance in comparison with Superni 718 in the Na2SO4-60 pct V2O5 environment. The Y2O3 superficial coating was successful in decreasing the reaction rate for both the superalloys. In the oxide scale of the alloy Superni 601, Y and V were observed to coexist, thereby indicating the formation of a protective YVO4 phase. There was a distinct presence of a protective Cr2O3-rich layer just above the substrate/scale interface in the alloy. Whereas Cr2O3 was present with Fe and Ni in the scale of Superni 718. Y2O3 seemed to be contributing to better adhesion of the scale, as comparatively lesser spalling was noticed in the presence of Y2O3.

  13. [Superficial angiomyxoma].

    PubMed

    Rodríguez-Vázquez, María; García-Arpa, Mónica; Delgado, Margarita; Cortina, Pilar; Vera, Elena; Romero, Guillermo

    2005-06-01

    Superficial angiomyxomas are clinically variable, infrequent, benign skin lesions. They are usually located on the trunk, but can also appear on the lower limbs, head and neck. They are diagnosed histologically, and are characterized by the fact that they are poorly delimited, multinodular tumors, and by the presence of interstitial myxoid material with scanty cellularity. Treatment is through surgery, and local recurrence is possible. An associated Carney's complex must always be ruled out with superficial angiomyxoma. We present the case of a woman with a solitary, fast-growing superficial angiomyxoma.

  14. Synthesis and optimization of wide pore superficially porous particles by a one-step coating process for separation of proteins and monoclonal antibodies.

    PubMed

    Chen, Wu; Jiang, Kunqiang; Mack, Anne; Sachok, Bo; Zhu, Xin; Barber, William E; Wang, Xiaoli

    2015-10-02

    Superficially porous particles (SPPs) with pore size ranging from 90Å to 120Å have been a great success for the fast separation of small molecules over totally porous particles in recent years. However, for the separation of large biomolecules such as proteins, particles with large pore size (e.g. ≥ 300Å) are needed to allow unrestricted diffusion inside the pores. One early example is the commercial wide pore (300Å) SPPs in 5μm size introduced in 2001. More recently, wide pore SPPs (200Å and 400Å) in smaller particle sizes (3.5-3.6μm) have been developed to meet the need of increasing interest in doing faster analysis of larger therapeutic molecules by biopharmaceutical companies. Those SSPs in the market are mostly synthesized by the laborious layer-by-layer (LBL) method. A one step coating approach would be highly advantageous, offering potential benefits on process time, easier quality control, materials cost, and process simplicity for facile scale-up. A unique one-step coating process for the synthesis of SPPs called the "coacervation method" was developed by Chen and Wei as an improved and optimized process, and has been successfully applied to synthesis of a commercial product, Poroshell 120 particles, for small molecule separation. In this report, we would like to report on the most recent development of the one step coating coacervation method for the synthesis of a series of wide pore SPPs of different particle size, pore size, and shell thickness. The one step coating coacervation method was proven to be a universal method to synthesize SPPs of any particle size and pore size. The effects of pore size (300Å vs. 450Å), shell thickness (0.25μm vs. 0.50μm), and particle size (2.7μm and 3.5μm) on the separation of large proteins, intact and fragmented monoclonal antibodies (mAbs) were studied. Van Deemter studies using proteins were also conducted to compare the mass transfer properties of these particles. It was found that the larger pore

  15. DISPERSION HARDENING OF URANIUM METAL

    DOEpatents

    Arbiter, W.

    1963-01-15

    A method of hardening U metal involves the forming of a fine dispersion of UO/sub 2/. This method consists of first hydriding the U to form a finely divided powder and then exposing the powder to a very dilute O gas in an inert atmosphere under such pressure and temperature conditions as to cause a thin oxide film to coat each particle of the U hydride, The oxide skin prevents agglomeration of the particles as the remaining H is removed, thus preserving the small particle size. The oxide skin coatings remain as an oxide dispersion. The resulting product may be workhardened to improve its physical characteristics. (AEC)

  16. Hardening of the arteries

    MedlinePlus

    Atherosclerosis; Arteriosclerosis; Plaque buildup - arteries; Hyperlipidemia - atherosclerosis; Cholesterol - atherosclerosis ... cause of heart attack and stroke. High blood cholesterol levels can cause hardening of the arteries at ...

  17. Steels with controlled hardenability for induction hardening

    NASA Astrophysics Data System (ADS)

    Shepelyakovskii, K. Z.

    1980-07-01

    Steels of the CH and LH type developed in the Soviet Union permit the use of a new method of induction hardening — bulk-surface hardening — and efficient utilization of the high-strength conditions (σb = 230-250 kgf/mm2). These steels make it possible to improve the structural strength, operating characteristics, service life, and reliability of critical heavily loaded machine parts. At the same time, CH steels make it possible to reduce by a factor of 2-3 the quantity of alloying elements, reduce the electrical energy for heat treatment, and completely exclude the cost of quenching oil for heat treatment in automatic equipment with high labor productivity, while retaining good working conditions. All this leads to substantial savings in production and operation. For example, when transmission gears (cylindrical and conical) are manufactured from LH steels the annual savings amount to more than 700,000 rubles at two automobile plants. Machine parts of CH steels — half axles and bearings in railway cars —have saved respectively six and four million rubles annually. The introduction of controlled-hardenability steels for induction hardening is a necessary condition for technological progress in machine construction and metallurgy.

  18. Surface hardening of titanium alloys with melting depth controlled by heat sink

    DOEpatents

    Oden, Laurance L.; Turner, Paul C.

    1995-01-01

    A process for forming a hard surface coating on titanium alloys includes providing a piece of material containing titanium having at least a portion of one surface to be hardened. The piece having a portion of a surface to be hardened is contacted on the backside by a suitable heat sink such that the melting depth of said surface to be hardened may be controlled. A hardening material is then deposited as a slurry. Alternate methods of deposition include flame, arc, or plasma spraying, electrodeposition, vapor deposition, or any other deposition method known by those skilled in the art. The surface to be hardened is then selectively melted to the desired depth, dependent on the desired coating thickness, such that a molten pool is formed of the piece surface and the deposited hardening material. Upon cooling a hardened surface is formed.

  19. Hardening: Australian for Transformation

    DTIC Science & Technology

    2004-01-01

    ADF towards homeland defense. For further details, see Jeffrey Grey. A Military History of Australia. Melbourne, Australia, Cambridge University...is a simplified explanation of the hardene d force structure proposed by FLW. The hardened concept encompasses other aspects that enhance Army...standardized with three rifle companies. A 196 Leahy “ A Land Force for the Future: The Australian Army in the Early 21st Century.” 2003: 19. 197 See Monk, Paul

  20. Coatings.

    ERIC Educational Resources Information Center

    Anderson, Dennis G.

    1989-01-01

    This review covers analytical techniques applicable to the examination of coatings, raw materials, and substrates upon which coatings are placed. Techniques include chemical and electrochemical methods, chromatography, spectroscopy, thermal analysis, microscopy, and miscellaneous techniques. (MVL)

  1. 42. INTERIOR VIEW OF THE NAIL HARDENER USED TO HARDEN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    42. INTERIOR VIEW OF THE NAIL HARDENER USED TO HARDEN AND TEMPER THE NAILS; WEST TUBES IN FOREGRPUND AND DRAWBACK TUBE IN THE CENTER - LaBelle Iron Works, Thirtieth & Wood Streets, Wheeling, Ohio County, WV

  2. Pulsed laser surface hardening of ferrous alloys.

    SciTech Connect

    Xu, Z.; Reed, C. B.; Leong, K. H.; Hunter, B. V.

    1999-09-30

    A high power pulsed Nd:YAG laser and special optics were used to produce surface hardening on 1045 steel and gray cast iron by varying the process parameters. Unlike CO{sub 2} lasers, where absorptive coatings are required, the higher absorptivity of ferrous alloys at the Nd:YAG laser wavelength eliminates the necessity of applying a coating before processing. Metallurgical analysis of the treated tracks showed that very fine and hard martensitic microstructure (1045 steel) or inhomogeneous martensite (gray cast iron) were obtained without surface melting, giving maximum hardness of HRC 61 and HRC 40 for 1045 steel and gray cast iron respectively. The corresponding maximum case depths for both alloys at the above hardness are 0.6 mm. Gray cast iron was more difficult to harden without surface melting because of its lower melting temperature and a significantly longer time-at-temperature required to diffuse carbon atoms from the graphite flakes into the austenite matrix during laser heating. The thermal distortion was characterized in term of flatness changes after surface hardening.

  3. RHOBOT: Radiation hardened robotics

    SciTech Connect

    Bennett, P.C.; Posey, L.D.

    1997-10-01

    A survey of robotic applications in radioactive environments has been conducted, and analysis of robotic system components and their response to the varying types and strengths of radiation has been completed. Two specific robotic systems for accident recovery and nuclear fuel movement have been analyzed in detail for radiation hardness. Finally, a general design approach for radiation-hardened robotics systems has been developed and is presented. This report completes this project which was funded under the Laboratory Directed Research and Development program.

  4. Precipitation hardening austenitic superalloys

    DOEpatents

    Korenko, Michael K.

    1985-01-01

    Precipitation hardening, austenitic type superalloys are described. These alloys contain 0.5 to 1.5 weight percent silicon in combination with about 0.05 to 0.5 weight percent of a post irradiation ductility enhancing agent selected from the group of hafnium, yttrium, lanthanum and scandium, alone or in combination with each other. In addition, when hafnium or yttrium are selected, reductions in irradiation induced swelling have been noted.

  5. Nuclear effects hardened shelters

    NASA Astrophysics Data System (ADS)

    Lindke, Paul

    1990-11-01

    The Houston Fearless 76 Government Projects Group has been actively engaged for more than twenty-five years as a sub-contractor and currently as a prime contractor in the design, manufacture, repair and logistics support of custom mobile ground stations and their equipment accommodations. Other associated products include environmental control units (ECU's), mobilizers for shelters and a variety of mobile power generation units (MPU's). Since 1984, Houston Fearless 76 has designed and manufactured four 8' x 8' x 22' nuclear hardened mobile shelters. These shelters were designed to contain electronic data processing/reduction equipment. One shelter is currently being operated by the Air Force as a Defense Intelligence Agency (DIA) approved and certified Special Corrpartmented Information Facility (SCIF). During the development and manufacturing process of the shelters, we received continual technical assistance and design concept evaluations from Science Applications International Corporation (SAIC) Operations Analysis and Logistics Engineering Division and the Nondestructive Inspection Lab at McClellan AFB. SAIC was originally employed by the Air Force to design the nuclear hardening specifications applied to these shelters. The specific levels of hardening to which the shelters were designed are classified and will not be mentioned during this presentation.

  6. Precipitation, strength and work hardening of age hardened aluminium alloys

    NASA Astrophysics Data System (ADS)

    Ryen, Ø.; Holmedal, B.; Marthinsen, K.; Furu, T.

    2015-08-01

    The strength and work hardening of age hardened AA6063 and AA6082 alloys have been investigated in terms of a detailed characterization of precipitate and dislocation structures obtained by TEM and SEM. Tensile and compression tests were performed at as quenched, peak aged and severely aged conditions. A strong work hardening in the as quenched condition was found, similar to AlMg alloys with twice as much alloying elements in solid solution. It was found that the initial work hardening rate and the critical failure strain are both smallest at the peak aged condition. During large deformations the needle-shaped precipitates are sheared uniformly by dislocations altering their <001> orientations, which indicates extensive cross slip. In the overaged condition the early initial work hardening is larger than at the peak aged condition, but followed by a weak linear work hardening, apparently directly entering stage IV at a low strain. Cracked, needle-shaped precipitates were seen at larger strains.

  7. Superficial chemical peels.

    PubMed

    Zakopoulou, N; Kontochristopoulos, G

    2006-09-01

    Superficial chemical peeling (SCP) involves the application of a peeling agent to the skin, resulting in destruction of part or all of the epidermis. SCP is mainly recommended for facial rejuvenation, photoaging and superficial rhytides, pigmentary dyschromias and acne. It can be used on all Fitzpatrick skin types, no sedation is needed, and the desquamation is usually well accepted. Overpeel and complications are very rare. The most commonly used SCP agents are glycolic acid 20-70%, trichloroacetic acid 10-35%, Jessner's solution, salicylic acid, pyruvic acid, resorcinol 30-50% preparations, and solid carbon dioxide. The careful selection of patients is critical for the outcome of a SCP and contraindications must be seriously considered. The peel procedure is generally common for all SCP agents but a good knowledge of the specific characters of each agent is of great importance in order to decide which to use for each individual patient.

  8. Common Superficial Bursitis.

    PubMed

    Khodaee, Morteza

    2017-02-15

    Superficial bursitis most often occurs in the olecranon and prepatellar bursae. Less common locations are the superficial infrapatellar and subcutaneous (superficial) calcaneal bursae. Chronic microtrauma (e.g., kneeling on the prepatellar bursa) is the most common cause of superficial bursitis. Other causes include acute trauma/hemorrhage, inflammatory disorders such as gout or rheumatoid arthritis, and infection (septic bursitis). Diagnosis is usually based on clinical presentation, with a particular focus on signs of septic bursitis. Ultrasonography can help distinguish bursitis from cellulitis. Blood testing (white blood cell count, inflammatory markers) and magnetic resonance imaging can help distinguish infectious from noninfectious causes. If infection is suspected, bursal aspiration should be performed and fluid examined using Gram stain, crystal analysis, glucose measurement, blood cell count, and culture. Management depends on the type of bursitis. Acute traumatic/hemorrhagic bursitis is treated conservatively with ice, elevation, rest, and analgesics; aspiration may shorten the duration of symptoms. Chronic microtraumatic bursitis should be treated conservatively, and the underlying cause addressed. Bursal aspiration of microtraumatic bursitis is generally not recommended because of the risk of iatrogenic septic bursitis. Although intrabursal corticosteroid injections are sometimes used to treat microtraumatic bursitis, high-quality evidence demonstrating any benefit is unavailable. Chronic inflammatory bursitis (e.g., gout, rheumatoid arthritis) is treated by addressing the underlying condition, and intrabursal corticosteroid injections are often used. For septic bursitis, antibiotics effective against Staphylococcus aureus are generally the initial treatment, with surgery reserved for bursitis not responsive to antibiotics or for recurrent cases. Outpatient antibiotics may be considered in those who are not acutely ill; patients who are acutely ill

  9. Practical aspects of systems hardening

    SciTech Connect

    Shepherd, W.J.

    1989-01-01

    Applications of hardening technology in a practical system require a balance between the factors governing affordability, producibility, and survivability of the finished design. Without careful consideration of the top-level system operating constraints, a design engineer may find himself with a survivable but overweight, unproductive, expensive design. This paper explores some lessons learned in applying hardening techniques to several laser communications programs and is intended as an introductory guide to novice designers faced with the task of hardening a space system.

  10. Industrial Hardening Demonstration.

    DTIC Science & Technology

    1980-09-01

    less severe conditions than thermal cracking (850’ - 950°F and 10 to 20 psi). Zeolitic or molecular sieve- base catalysts are used. Catalytic reforming...with Potential Industrial Hardening A-1 Participants B Post-Attack Petroleum Refining (and Production) B-1 from Crude Oil V List of Figures Number Page...the Key Worker Shelter 116 viii B-1 Proportions of the Products Obtained by Distillation B-2 of Six Crude Oils B-2 Generalized Flow Chart of the

  11. Superficial veterinary mycoses.

    PubMed

    Bond, Ross

    2010-03-04

    Dermatophytes are significant pathogens in animal health due to their zoonotic potential, the economic consequences of infection in farm animal and fur production systems, and the distressing lesions they cause in small domestic pets. Malassezia spp are normal commensal and occasional pathogens of the skin of many veterinary species. Malassezia pachydermatis is a very common cause of otitis and pruritic dermatitis in dogs but is of less importance in other veterinary species. Dermatophytosis, and Malassezia otitis and dermatitis, represent the superficial mycoses of greatest significance in companion and farm animal health. Although the dermatophytes and Malassezia spp both exist in the stratum corneum of mammalian skin, there are important differences in the epidemiology, pathogenesis, and clinical consequences of infection. Dermatophytes are significant due to their zoonotic potential, the economic consequences of infection in farm animal and fur production systems, and the concern for owners of pets with inflammatory skin disease that is sometimes severe. Malassezia spp are normal commensals and occasional pathogens of the skin for many veterinary species, and M pachydermatis is a very common cause of otitis and pruritic dermatitis in dogs. This chapter will focus on the epidemiologic, clinical, diagnostic, and therapeutic aspects of dermatophytosis and Malassezia dermatitis in veterinary species. There are generally only sporadic reports of other superficial mycoses, such as candidiasis, piedra, and Rhodotorula dermatitis in veterinary medicine, and these are not included here.

  12. Superficial fungal infections.

    PubMed

    Schwartz, Robert A

    Superficial fungal infections arise from a pathogen that is restricted to the stratum corneum, with little or no tissue reaction. In this Seminar, three types of infection will be covered: tinea versicolor, piedra, and tinea nigra. Tinea versicolor is common worldwide and is caused by Malassezia spp, which are human saprophytes that sometimes switch from yeast to pathogenic mycelial form. Malassezia furfur, Malassezia globosa, and Malassezia sympodialis are most closely linked to tinea versicolor. White and black piedra are both common in tropical regions of the world; white piedra is also endemic in temperate climates. Black piedra is caused by Piedraia hortae; white piedra is due to pathogenic species of the Trichosporon genus. Tinea nigra is also common in tropical areas and has been confused with melanoma.

  13. System-Level Radiation Hardening

    NASA Technical Reports Server (NTRS)

    Ladbury, Ray

    2014-01-01

    Although system-level radiation hardening can enable the use of high-performance components and enhance the capabilities of a spacecraft, hardening techniques can be costly and can compromise the very performance designers sought from the high-performance components. Moreover, such techniques often result in a complicated design, especially if several complex commercial microcircuits are used, each posing its own hardening challenges. The latter risk is particularly acute for Commercial-Off-The-Shelf components since high-performance parts (e.g. double-data-rate synchronous dynamic random access memories - DDR SDRAMs) may require other high-performance commercial parts (e.g. processors) to support their operation. For these reasons, it is essential that system-level radiation hardening be a coordinated effort, from setting requirements through testing up to and including validation.

  14. Nanoscale characterization of the biomechanical hardening of bovine zona pellucida.

    PubMed

    Boccaccio, Antonio; Frassanito, Maria Cristina; Lamberti, Luciano; Brunelli, Roberto; Maulucci, Giuseppe; Monaci, Maurizio; Papi, Massimiliano; Pappalettere, Carmine; Parasassi, Tiziana; Sylla, Lakamy; Ursini, Fulvio; De Spirito, Marco

    2012-11-07

    The zona pellucida (ZP) is an extracellular membrane surrounding mammalian oocytes. The so-called zona hardening plays a key role in fertilization process, as it blocks polyspermy, which may also be caused by an increase in the mechanical stiffness of the ZP membrane. However, structural reorganization mechanisms leading to ZP's biomechanical hardening are not fully understood yet. Furthermore, a correct estimate of the elastic properties of the ZP is still lacking. Therefore, the aim of the present study was to investigate the biomechanical behaviour of ZP membranes extracted from mature and fertilized bovine oocytes to better understand the mechanisms involved in the structural reorganization of the ZP that may lead to the biomechanical hardening of the ZP. For that purpose, a hybrid procedure is developed by combining atomic force microscopy nanoindentation measurements, nonlinear finite element analysis and nonlinear optimization. The proposed approach allows us to determine the biomechanical properties of the ZP more realistically than the classical analysis based on Hertz's contact theory, as it accounts for the nonlinearity of finite indentation process, hyperelastic behaviour and material heterogeneity. Experimental results show the presence of significant biomechanical hardening induced by the fertilization process. By comparing various hyperelastic constitutive models, it is found that the Arruda-Boyce eight-chain model best describes the biomechanical response of the ZP. Fertilization leads to an increase in the degree of heterogeneity of membrane elastic properties. The Young modulus changes sharply within a superficial layer whose thickness is related to the characteristic distance between cross-links in the ZP filamentous network. These findings support the hypothesis that biomechanical hardening of bovine ZP is caused by an increase in the number of inter-filaments cross-links whose density should be higher in the ZP inner side.

  15. Case hardenability at high carbon levels

    SciTech Connect

    Walton, H.W.

    1995-02-01

    Loss of hardenability in the case was thought to be responsible for a lower than specified hardness found on a large carburized bushing. Pseudo Jominy testing on several high hardenability carburizing grades confirmed that hardenability fade was present at carbon levels above 0.65% and particularly for those steels containing molybdenum. Analysis of previous work provided a formula for calculating Jominy hardenability at various carbon levels. Again the results confirmed that the loss of hardenability was more severe in steels containing molybdenum.

  16. HARDENING FROG POINTS BY EXPLOSIVE ENERGY,

    DTIC Science & Technology

    Experiments were made to determine the most efficient method of strain hardening railroad frog points in order to increase their fatigue resistance...Mechanical strain hardening with rolls 40 mm in diameter under a load of 8 tons produced in standard frogs cast from G13L high-manganese steel (AISI...Hadfield steel) a work-hardened surface layer 3-5 mm thick with a hardness of 340 HB. In other experiments, the frogs were hardened by exploding a

  17. Precipitation hardening in aluminum alloy 6022

    SciTech Connect

    Miao, W.F.; Laughlin, D.E.

    1999-03-05

    Although the precipitation process in Al-Mg-Si alloys has been extensively studied, the understanding of the hardening process is still incomplete, since any change in composition, processing and aging practices, etc., could affect the precipitation hardening behavior. In this paper, hardness measurements, differential scanning calorimetry and transmission electron microscopy have been utilized to study the precipitation hardening behavior in aluminum alloy 6022.

  18. Superficial carcinoma of the stomach.

    PubMed Central

    Machado, G; Davies, J D; Tudway, A J; Salmon, P R; Read, A E

    1976-01-01

    Nine cases of superficial gastric carcinoma have been detected with upper gastrointestinal endoscopy in Bristol in the past two years. This contrasted with only six cases found from postoperative gastrectomy specimens examined in the previous eight years. It is often difficult to distinguish a superficial carcinoma from a benign ulcer, and endoscopic diagnosis is effective only if multiple biopsy specimens are taken. Endoscopy should also be repeated and multiple specimens taken until the lesion has healed; even malignant ulcers may heal, and any healed area that is depressed with interrupted mucosal folds should be suspected of malignancy. The endoscopic and histological appearances, the age of the patients, and the clinical behaviour of the disease resembled descriptions of the disease, principally from Japan. Superficial gastric carcinoma is probably under-diagnosed in Britain. PMID:1276819

  19. Superficial ulnar artery perforator flap.

    PubMed

    Schonauer, Fabrizio; Marlino, Sergio; Turrà, Francesco; Graziano, Pasquale; Dell'Aversana Orabona, Giovanni

    2014-09-01

    Superficial ulnar artery is a rare finding but shows significant surgical implications. Its thinness and pliability make this flap an excellent solution for soft tissue reconstruction, especially in the head and neck region. We hereby report a successful free superficial ulnar artery perforator forearm flap transfer for tongue reconstruction. A 64-year-old man presenting with a squamous cell carcinoma of the left tongue underwent a wide resection of the tumor, left radical neck dissection, and reconstruction of the tongue and the left tonsillar pillar with the mentioned flap. No complications were observed postoperatively. The flap survived completely; no recurrence at 6 months of follow-up was detected. Superficial ulnar artery perforator flap has shown to be a safe alternative to other free tissue flaps in specific forearm anatomic conditions.

  20. Surface Fatigue Resistance with Induction Hardening

    NASA Technical Reports Server (NTRS)

    Townsend, Dennis; Turza, Alan; Chapman, Mike

    1996-01-01

    Induction hardening has been used for some years to harden the surface and improve the strength and service life of gears and other components. Many applications that employ induction hardening require a relatively long time to finish the hardening process and controlling the hardness of the surface layer and its depth often was a problem. Other surface hardening methods, ie., carbonizing, take a very long time and tend to cause deformations of the toothing, whose elimination requires supplementary finishing work. In double-frequency induction hardening, one uses a low frequency for the preheating of the toothed wheel and a much higher frequency for the purpose of rapidly heating the surface by way of surface hardening.

  1. Scintillation-Hardened GPS Receiver

    NASA Technical Reports Server (NTRS)

    Stephens, Donald R.

    2015-01-01

    CommLargo, Inc., has developed a scintillation-hardened Global Positioning System (GPS) receiver that improves reliability for low-orbit missions and complies with NASA's Space Telecommunications Radio System (STRS) architecture standards. A software-defined radio (SDR) implementation allows a single hardware element to function as either a conventional radio or as a GPS receiver, providing backup and redundancy for platforms such as the International Space Station (ISS) and high-value remote sensing platforms. The innovation's flexible SDR implementation reduces cost, weight, and power requirements. Scintillation hardening improves mission reliability and variability. In Phase I, CommLargo refactored an open-source GPS software package with Kalman filter-based tracking loops to improve performance during scintillation and also demonstrated improved navigation during a geomagnetic storm. In Phase II, the company generated a new field-programmable gate array (FPGA)-based GPS waveform to demonstrate on NASA's Space Communication and Navigation (SCaN) test bed.

  2. Design and characterisation of a new duplex surface system based on S-phase hardening and carbon-based coating for ASTM F1537 Co-Cr-Mo alloy

    NASA Astrophysics Data System (ADS)

    Luo, Xia; Li, Xiaoying

    2014-02-01

    Co-Cr-Mo alloys are one of the most widely used metallic biomaterials for metal-on-metal joint prostheses. However, concerns over increased revision rates mainly due to nano-sized wear debris have been raised. This study was aimed at enhancing the friction, wear and load-bearing properties of Co-Cr-Mo alloys by developing a new duplex surface system combining super hard and wear-resistant S-phase layer with self-lubricating, low-friction carbon-based coating. To this end, ASTM

  3. Diamond films for laser hardening

    NASA Technical Reports Server (NTRS)

    Albin, S.; Watkins, L.; Ravi, K.; Yokota, S.

    1989-01-01

    Laser-damage experiments were performed on free-standing polycrystalline diamond films prepared by plasma-enhanced CVD. The high laser-induced stress resistance found for this material makes it useful for thin-film coatings for laser optics. Results for diamond-coated silicon substrates demonstrate the enhanced damage threshold imparted by diamond thin-film coatings to materials susceptible to laser damage.

  4. Superficial acral fibromyxoma: an overview.

    PubMed

    Ashby-Richardson, Harty; Rogers, Gary S; Stadecker, Miguel J

    2011-08-01

    Superficial acral fibromyxoma is a rare, slow-growing soft tissue tumor, which is commonly located in the periungual and subungual regions of the fingers and toes in adults. To date, fewer than 50 cases have been reported worldwide. Microscopic examination reveals a moderately circumscribed, nonencapsulated tumor situated in the dermis, which may also extend into the subcutis. The neoplasm consists of a moderately cellular proliferation of stellate and spindle-shaped fibroblast-like cells embedded in a myxocollagenous stroma. Mast cells are easily identified throughout this lesion. Multinucleated stromal cells may also be present, but nuclear atypia and mitotic figures are rare. The tumor shows immunoreactivity for CD34, epithelial membrane antigen, CD99, and less frequently, CD10. Superficial acral fibromyxoma has a benign behavior but may persist or recur if inadequately excised. Therefore, complete excision and close follow-up are advised.

  5. Energy-Efficient Thermomagnetic and Induction Hardening

    SciTech Connect

    2009-02-01

    This factsheet describes a research project that will develop and test a hybrid thermomagnetic and induction hardening technology to replace conventional heat treatment processes in forging applications.

  6. COSMIC-RAY HELIUM HARDENING

    SciTech Connect

    Ohira, Yutaka; Ioka, Kunihito

    2011-03-01

    Recent observations by the CREAM and ATIC-2 experiments suggest that (1) the spectrum of cosmic-ray (CR) helium is harder than that of CR protons below the knee energy, 10{sup 15}eV, and (2) all CR spectra become hard at {approx}>10{sup 11}eV nucleon{sup -1}. We propose a new idea, that higher energy CRs are generated in a more helium-rich region, to explain the hardening without introducing different sources for CR helium. The helium-to-proton ratio at {approx}100 TeV exceeds the Big Bang abundance Y = 0.25 by several times, and the different spectrum is not reproduced within the diffusive shock acceleration theory. We argue that CRs are produced in a chemically enriched region, such as a superbubble, and the outward-decreasing abundance naturally leads to the hard spectrum of CR helium if CRs escape from the supernova remnant shock in an energy-dependent way. We provide a simple analytical spectrum that also fits well the hardening due to the decreasing Mach number in the hot superbubble with {approx}10{sup 6} K. Our model predicts hard and concave spectra for heavier CR elements.

  7. Helical tomotherapy superficial dose measurements

    SciTech Connect

    Ramsey, Chester R.; Seibert, Rebecca M.; Robison, Benjamin; Mitchell, Martha

    2007-08-15

    Helical tomotherapy is a treatment technique that is delivered from a 6 MV fan beam that traces a helical path while the couch moves linearly into the bore. In order to increase the treatment delivery dose rate, helical tomotherapy systems do not have a flattening filter. As such, the dose distributions near the surface of the patient may be considerably different from other forms of intensity-modulated delivery. The purpose of this study was to measure the dose distributions near the surface for helical tomotherapy plans with a varying separation between the target volume and the surface of an anthropomorphic phantom. A hypothetical planning target volume (PTV) was defined on an anthropomorphic head phantom to simulate a 2.0 Gy per fraction IMRT parotid-sparing head and neck treatment of the upper neck nodes. A total of six target volumes were created with 0, 1, 2, 3, 4, and 5 mm of separation between the surface of the phantom and the outer edge of the PTV. Superficial doses were measured for each of the treatment deliveries using film placed in the head phantom and thermoluminescent dosimeters (TLDs) placed on the phantom's surface underneath an immobilization mask. In the 0 mm test case where the PTV extends to the phantom surface, the mean TLD dose was 1.73{+-}0.10 Gy (or 86.6{+-}5.1% of the prescribed dose). The measured superficial dose decreases to 1.23{+-}0.10 Gy (61.5{+-}5.1% of the prescribed dose) for a PTV-surface separation of 5 mm. The doses measured by the TLDs indicated that the tomotherapy treatment planning system overestimates superficial doses by 8.9{+-}3.2%. The radiographic film dose for the 0 mm test case was 1.73{+-}0.07 Gy, as compared to the calculated dose of 1.78{+-}0.05 Gy. Given the results of the TLD and film measurements, the superficial calculated doses are overestimated between 3% and 13%. Without the use of bolus, tumor volumes that extend to the surface may be underdosed. As such, it is recommended that bolus be added for these

  8. Superficial angiomyxoma of the skin

    PubMed Central

    Abarzúa-Araya, Alvaro; Lallas, Aimillios; Piana, Simonetta; Longo, Caterina; Moscarella, Elvira; Argenziano, Giuseppe

    2016-01-01

    Superficial angiomyxomas (SA) of the skin are rare benign cutaneous tumors of soft tissue composed of prominent myxoid matrix and numerous blood vessels. SA are more common in males [1] and they are usually located on the trunk but can also appear on the lower limbs, head, neck and genitalia [2,3]. Treatment is surgical, the total excision is curative, but local recurrence is possible [4]. Herein we present a 72-year-old patient with a history of melanoma in situ, with a new lesion on the lower back. PMID:27648383

  9. Improved hardening theory for cyclic plasticity.

    NASA Technical Reports Server (NTRS)

    Vos, R. G.; Armstrong, W. H.

    1973-01-01

    A temperature-dependent version of a combined hardening theory, including isotropic and kinematic hardening, is presented within the framework of recent plasticity formulations. This theory has been found to be especially useful in finite-element analysis of aerospace vehicle engines under conditions of large plastic strain and low-cycle fatigue.

  10. Vapor deposition of hardened niobium

    DOEpatents

    Blocher, Jr., John M.; Veigel, Neil D.; Landrigan, Richard B.

    1983-04-19

    A method of coating ceramic nuclear fuel particles containing a major amount of an actinide ceramic in which the particles are placed in a fluidized bed maintained at ca. 800.degree. to ca. 900.degree. C., and niobium pentachloride vapor and carbon tetrachloride vapor are led into the bed, whereby niobium metal is deposited on the particles and carbon is deposited interstitially within the niobium. Coating apparatus used in the method is also disclosed.

  11. Pseudoaneurysm of the superficial temporal artery.

    PubMed

    Nemade, S S; Eiman, M; Blondet, R; Beber, C; Nanes, M; Kirton, O C; Trainor, L D; Silverman, M A

    1996-08-01

    Ours is the first report of pseudoaneurysm of the superficial temporal in a 90-year-old woman. Although falls with associated head and scalp injuries in the geriatric population are common, pseudoaneurysm of the superficial temporal artery is rarely reported, probably due to the generally protected course of the superficial temporal artery across the skull. Clinicians' familiarity with this entity is important for early diagnosis and intervention.

  12. Superficial versus deep dry needling.

    PubMed

    Baldry, Peter

    2002-08-01

    Ninety percent of my patients with myofascial trigger point (MTrP) pain have this alone and are treated with superficial dry needling. Approximately 10% have concomitant MTrP pain and nerve root compression pain. These are treated with deep dry needling. SUPERFICIAL DRY NEEDLING (SDN): The activated and sensitised nociceptors of a MTrP cause it to be so exquisitely tender that firm pressure applied to it gives rise to a flexion withdrawal reflex (jump sign) and in some cases the utterance of an expletive (shout sign). The optimum strength of SDN at a MTrP site is the minimum necessary to abolish these two reactions. With respect to this patients are divided into strong, average and weak responders. The responsiveness of each individual is determined by trial and error. It is my practice to insert a needle (0.3mm x 30mm) into the tissues immediately overlying the MTrP to a depth of 5-10 mm and to leave it in situ long enough for the two reactions to be abolished. For an average reactor this is about 30secs. For a weak reactor it is several minutes. And for a strong reactor the insertion of the needle and its immediate withdrawal is all that is required. Following treatment muscle stretching exercises should be carried out, and any steps taken to eliminate factors that might lead to the reactivation of the MTrPs. DEEP DRY NEEDLING (DDN): This in my practice is only used either when primary MTrP activity causes shortening of muscle sufficient enough to bring about compression of nerve roots. Or when there is nerve compression pain usually from spondylosis or disc prolapse and the secondary development of MTrP activity. Unlike SDN, DDN is a painful procedure and one which gives rise to much post-treatment soreness.

  13. Method of Hardening Glass-Reinforced Plastics,

    DTIC Science & Technology

    1988-02-09

    373 NETHOD OF HARDENING GLASS -REINFORCED PLASTICS (U) 1/i FOREIGN TECHNOLOGY DIV idRIGHT-PATTERSON NFS ON V F DOLGIKH ET AL 89 FEB 88 FTD-ID(RS)T-M49...FTD-ID(RS)T-0049-88 9 February 1988 MICROFICHE NR: FTD-tES-C-00219 METHOD OF HARDENING GLASS -REINFORCED PLASTICS By: V.F. Dolgikh, S.L. Roginskiy, et...translation were extracted from the best quality copy available. If 1 11i METHOD OF HARDENING GLASS -REINFORCED PLASTICS V. F. Dolgikh, S. L. Roginskiy, E. L

  14. Cyclic hardening mechanisms in Nimonic 80A

    NASA Technical Reports Server (NTRS)

    Lerch, B. A.; Gerold, V.

    1987-01-01

    A nickel base superalloy was fatigued under constant plastic strain range control. The hardening response was investigated as a function of plastic strain range and particle size of the gamma prime phase. Hardening was found to be a function of the slip band spacing. Numerous measurements of the slip band spacing and other statistical data on the slip band structures were obtained. Interactions between intersecting slip systems were shown to influence hardening. A Petch-Hall model was found to describe best this relationship between the response stress and the slip band spacing.

  15. Fatigue hardening in niobium single crystals.

    NASA Technical Reports Server (NTRS)

    Doner, M.; Diprimio, J. C.; Salkovitz, E. I.

    1973-01-01

    Nb single crystals of various orientations were cyclically deformed in tension-compression under strain control. At low strain amplitudes all crystals oriented for single slip and some oriented for multiple slip showed a two stage hardening. When present, the first stage was characterized with almost no cyclic work hardening. The rate of hardening in the second stage increased with strain amplitude and the amount of secondary slip. In crystals oriented for single slip kink bands developed on their side faces during rapid hardening stage which resulted in considerable amount of asterism in Laue spots. A cyclic stress-strain curve independent of prior history was found to exist which was also independent of crystal orientation. Furthermore, this curve differed only slightly from that of polycrystalline Nb obtained from data in literature.

  16. Extraordinary strain hardening by gradient structure.

    PubMed

    Wu, XiaoLei; Jiang, Ping; Chen, Liu; Yuan, Fuping; Zhu, Yuntian T

    2014-05-20

    Gradient structures have evolved over millions of years through natural selection and optimization in many biological systems such as bones and plant stems, where the structures change gradually from the surface to interior. The advantage of gradient structures is their maximization of physical and mechanical performance while minimizing material cost. Here we report that the gradient structure in engineering materials such as metals renders a unique extra strain hardening, which leads to high ductility. The grain-size gradient under uniaxial tension induces a macroscopic strain gradient and converts the applied uniaxial stress to multiaxial stresses due to the evolution of incompatible deformation along the gradient depth. Thereby the accumulation and interaction of dislocations are promoted, resulting in an extra strain hardening and an obvious strain hardening rate up-turn. Such extraordinary strain hardening, which is inherent to gradient structures and does not exist in homogeneous materials, provides a hitherto unknown strategy to develop strong and ductile materials by architecting heterogeneous nanostructures.

  17. Alloy solution hardening with solute pairs

    DOEpatents

    Mitchell, John W.

    1976-08-24

    Solution hardened alloys are formed by using at least two solutes which form associated solute pairs in the solvent metal lattice. Copper containing equal atomic percentages of aluminum and palladium is an example.

  18. Process for hardening the surface of polymers

    DOEpatents

    Mansur, L.K.; Lee, E.H.

    1992-07-14

    Hard surfaced polymers and the method for making them is generally described. Polymers are subjected to simultaneous multiple ion beam bombardment, that results in a hardening of the surface and improved wear resistance. 1 figure.

  19. Process for hardening the surface of polymers

    DOEpatents

    Mansur, Louis K.; Lee, Eal H.

    1992-01-01

    Hard surfaced polymers and the method for making them is generally described. Polymers are subjected to simultaneous multiple ion beam bombardment, that results in a hardening of the surface and improved wear resistance.

  20. 7 CFR 58.641 - Hardening and storage.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Hardening and storage. 58.641 Section 58.641... Procedures § 58.641 Hardening and storage. Immediately after the semifrozen product is placed in its intended container it shall be placed in a hardening tunnel or hardening room to continue the freezing process....

  1. 7 CFR 58.641 - Hardening and storage.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Hardening and storage. 58.641 Section 58.641... Procedures § 58.641 Hardening and storage. Immediately after the semifrozen product is placed in its intended container it shall be placed in a hardening tunnel or hardening room to continue the freezing process....

  2. 7 CFR 58.641 - Hardening and storage.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Hardening and storage. 58.641 Section 58.641... Procedures § 58.641 Hardening and storage. Immediately after the semifrozen product is placed in its intended container it shall be placed in a hardening tunnel or hardening room to continue the freezing process....

  3. 7 CFR 58.641 - Hardening and storage.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Hardening and storage. 58.641 Section 58.641... Procedures § 58.641 Hardening and storage. Immediately after the semifrozen product is placed in its intended container it shall be placed in a hardening tunnel or hardening room to continue the freezing process....

  4. 7 CFR 58.641 - Hardening and storage.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Hardening and storage. 58.641 Section 58.641... Procedures § 58.641 Hardening and storage. Immediately after the semifrozen product is placed in its intended container it shall be placed in a hardening tunnel or hardening room to continue the freezing process....

  5. [Beam hardening correction method for X-ray computed tomography based on subsection beam hardening curves].

    PubMed

    Huang, Kui-dong; Zhang, Ding-hua

    2009-09-01

    After researching the forming principle of X-ray beam hardening and analyzing the usual methods of beam hardening correction, a beam hardening correction model was established, in which the independent variable was the projection gray, and so the computing difficulties in beam hardening correction can be reduced. By considering the advantage and disadvantage of fitting beam hardening curve to polynomial, a new expression method of the subsection beam hardening curves based on polynomial was proposed. In the method, the beam hardening data were fitted firstly to a polynomial curve which traverses the coordinate origin, then whether the got polynomial curve surged in the fore-part or back-part of the fitting range was judged based on the polynomial curvature change. If the polynomial fitting curve surged, the power function curve was applied to replace the surging parts of the polynomial curve, and the C1 continuity was ensured at the joints of the segment curves. The experimental results of computed tomography (CT) simulation show that the method is well stable in the beam hardening correction for the ideal CT images and CT images with added noises, and can mostly remove the beam hardening artifact at the same time.

  6. Decline in Radiation Hardened Microcircuit Infrastructure

    NASA Technical Reports Server (NTRS)

    LaBel, Kenneth A.

    2015-01-01

    Two areas of radiation hardened microcircuit infrastructure will be discussed: 1) The availability and performance of radiation hardened microcircuits, and, and 2) The access to radiation test facilities primarily for proton single event effects (SEE) testing. Other areas not discussed, but are a concern include: The challenge for maintaining radiation effects tool access for assurance purposes, and, the access to radiation test facilities primarily for heavy ion single event effects (SEE) testing. Status and implications will be discussed for each area.

  7. Properties and Commercial Application of Manual Plasma Hardening

    NASA Astrophysics Data System (ADS)

    Korotkov, V. A.

    2016-11-01

    A new method and a device for plasma hardening of various parts are considered. Installation of the new device does not require too much investment (the active mechanical productions are appropriate for its accommodation) and special choice of personnel (welders train to use it without difficulty). Plasma hardening does not deform and worsen the smoothness of the surface, which makes it possible to employ many hardened parts without finishing mechanical treatment required after bulk or induction hardening. The hardened layer (about 1 mm) produced by plasma hardening exhibits better wear resistance than after bulk hardening with tempering, which prolongs the service life of the parts.

  8. On shakedown analysis in hardening plasticity

    NASA Astrophysics Data System (ADS)

    Nguyen, Quoc-Son

    2003-01-01

    The extension of classical shakedown theorems for hardening plasticity is interesting from both theoretical and practical aspects of the theory of plasticity. This problem has been much discussed in the literature. In particular, the model of generalized standard materials gives a convenient framework to derive appropriate results for common models of plasticity with strain-hardening. This paper gives a comprehensive presentation of the subject, in particular, on general results which can be obtained in this framework. The extension of the static shakedown theorem to hardening plasticity is presented at first. It leads by min-max duality to the definition of dual static and kinematic safety coefficients in hardening plasticity. Dual static and kinematic approaches are discussed for common models of isotropic hardening of limited or unlimited kinematic hardening. The kinematic approach also suggests for these models the introduction of a relaxed kinematic coefficient following a method due to Koiter. Some models for soils such as the Cam-clay model are discussed in the same spirit for applications in geomechanics. In particular, new appropriate results concerning the variational expressions of the dual kinematic coefficients are obtained.

  9. Cochlear implantation in superficial siderosis.

    PubMed

    Kim, Chong-Sun; Song, Jae-Jun; Park, Min-Hyun; Kim, Young Ho; Koo, Ja-Won

    2006-08-01

    Superficial siderosis (SS) of the central nervous system has been thought to be a rare condition that generates progressive hearing loss, ataxia, pyramidal signs, and dementia. The main cause of hearing loss by SS is thought to be neuronal. Because there is no histopathologic report of the human temporal bone in SS, there is a debate about the possibility of cochlear involvement. We present a 25-year-old man who was investigated for bilateral progressive sensorineural hearing loss and vestibular failure after head trauma. On brain MRI, SS of the central nervous system was detected. Distortion product otoacoustic emission (DPOAE) and auditory brainstem response (ABR) showed no response on both sides. However, integrity of the eighth nerve was proved by the electrical ABR test on the right side and the patient benefited significantly from cochlear implantation. The sensorineural hearing loss in SS seems to be related to cochlear damage as well as neuronal damage. So, cochlear implantation would be a hearing rehabilitation modality for the sensorineural hearing loss caused by SS.

  10. Sclerotherapy of Intraoral Superficial Hemangioma

    PubMed Central

    Perjuci, Feriall; Gashi, Ali; Agani, Zana; Ahmedi, Jehona

    2016-01-01

    Hemangioma is the clinical term for a benign vascular neoplasm due to proliferation of the endothelial lining of blood vessels. Their most frequent location is the body skin and oral mucosa. One of the treatment modalities for hemangiomas is intralesional injection of sclerosing agents which cause the damage of blood vessels followed by their obliteration. The objective of the study was to describe the facility of application and evaluate the efficiency of sclerotherapy with aethoxysklerol 1%. Method. The case presented with intraoral submucosal hemangioma of the cheek was treated by intralesional injection of aethoxysklerol 3% diluted in water for injections at a 4 : 1 ratio (0.75%) at the first appointment and 3 : 1 (1%) at the second appointment. The effect of sclerotherapy was evaluated on the following visits in time intervals of two weeks. Results. The hemangioma disappeared without complications after the second injection of aethoxysklerol 1%. The successful results of the study were comparable to the data of literature with variations according to the used sclerosant agent, its concentration, the number of injections, and the intervals between each session. Conclusion. Since sclerotherapy is a very effective, inexpensive, and easy-to-apply treatment, it should be the treatment of choice, especially for intraoral superficial hemangiomas. PMID:27994889

  11. The secondary hardening phenomenon in strain-hardened MP35N alloy

    SciTech Connect

    Asgari, S.; El-Danaf, E.; Shaji, E.; Kalidindi, S.R.; Doherty, R.D.

    1998-10-09

    Mechanical testing and microscopy techniques were used to investigate the influence of aging on the structure and strengthening of MP35N alloy. It was confirmed that aging the deformed material at 600 C for 4 h provided additional strengthening, here referred to as secondary hardening, in addition to the primary strain hardening. The secondary hardening phenomenon was shown to be distinctly different from typical age hardening processes in that it only occurred in material deformed beyond a certain cold work level. At moderate strains, aging caused a shift in the entire stress-strain curve of the annealed material to higher stresses while at high strains, it produced shear localization and limited work softening. The secondary hardening increment was also found to be grain size dependent. The magnitude of the secondary hardening appeared to be controlled by the flow stress in the strain hardened material. A model is proposed to explain the observations and is supported by direct experimental evidence. The model is based on formation of h.c.p. nuclei through the Suzuki mechanism, that is segregation of solute atoms to stacking faults, on aging the strain hardened material. The h.c.p. precipitates appear to thicken only in the presence of high dislocation density produced by prior cold work.

  12. Anomalous superficial ulnar artery based flap

    PubMed Central

    Ramani, C. V.; Kundagulwar, Girish K.; Prabha, Yadav S.; Dushyanth, Jaiswal

    2014-01-01

    Upper limb shows a large number of arterial variations. This case report describes the presence of additional superficial ulnar artery which was used to raise a pedicle flap to cover an arm defect thus avoided using the main vessel of the forearm - radial or ulnar artery. Vascular anomalies occurring in the arm and forearm tend to increase the likelihood of damaging the superficial anomalous arteries during surgery. Superficial ulnar or radial arteries have been described to originate from the upper third of the brachial artery; here we report the origin of the anomalous superficial ulnar artery originating from the brachial artery at the level of elbow with the concomitant presence of normal deep radial and ulnar arteries. PMID:24987217

  13. Complex-shaped hardened parts fatigue limit prediction according to the witness sample study results

    NASA Astrophysics Data System (ADS)

    Surgutanova, Yu N.; Mikushev, N. N.; Surgutanov, N. A.; Kiselev, P. E.; Shlyapnikov, P. A.; Meshcheryakova, A. A.

    2016-11-01

    The aim of this study is to investigate the possibility of assessment of the effect of preparatory surface plastic deformation by hydraulic shot blasting on the fatigue strength of cylindrical parts of different diameters (10-40 mm) of D16T alloy with circular notches of semicircular section, based on measurements of residual stress (initial deformations) of a witness sample. The residual stresses of smooth parts were used to calculate the residual stresses of parts with stress raisers. These were used to predict the increment of these parts fatigue limit caused by hardening hydraulic shot blasting. It was found that the highest compressive residual stresses in the smooth parts obtained through calculations differ from the observed values not more than by 7%, and in notched parts by 8%. Using the criterion of mean integral residual stresses, we calculate the increments of the fatigue limit of parts due to superficial hardening. The discrepancy between the experimental and calculated increment values of the fatigue limit of hardened parts with raisers does not exceed 17%.

  14. On Analytical Solutions to Beam-Hardening

    NASA Astrophysics Data System (ADS)

    Rigaud, G.

    2017-01-01

    When polychromatic X-rays propagate through a material, for instance in computerized tomography (CT), low energy photons are more attenuated resulting in a "harder" beam. The beam-hardening phenomenon breaks the monochromatic radiation model based on the Radon transform giving rise to artifacts in CT reconstructions to the detriment of visual inspection and automated segmentation algorithms. We propose first a simplified analytic representation for the beam-hardening. Besides providing a general understanding of the phenomenon, this model proposes to invert the beam-hardening effect for homogeneous objects leading to classical monochromatic data. For heterogeneous objects, no analytical reconstruction of the density can be derived without more prior information. However, the beam-hardening is shown to be a smooth operation on the data and thus to preserve the encoding of the singularities of the attenuation map within the data. A microlocal analysis encourages the use of contour extraction methods to solve partially the beam-hardening effect even for heterogeneous objects. The application of both methods, exact analytical solution for homogeneous objects and feature extraction for heterogeneous ones, on real data demonstrates their relevancy and efficiency.

  15. Improved manufacturing techniques for RF and laser hardening of missile domes. Phase I. Technical report

    SciTech Connect

    Pawlewicz, W.T.; Mann, I.B.; Martin, P.M.; Hays, D.D.; Graybeal, A.G.

    1982-07-01

    This report summarizes key results and accomplishements during the first year of a Manufacturing Methods and Technology project to adapt an existing Pacific Northwest Laboratory (PNL) optical coating capability developed for high-power fusion-laser applications to the case of rf and laser hardening of plastic missile domes used by the US Army (MICOM). The primary objective of the first year's work was to demonstrate rf hardening of Hellfire and Copperhead 1.06-micron missile domes by use of transparent conductive Indium Tin Oxide (ITO) coatings. The project thus involved adaptation of a coating material and process developed for flat glass components used in fusion lasers to the case of hemispherical or conical heat-sensitive plastic domes used on laser-guided missiles. Specific ITO coating property goals were an electrical sheet resistance of 10 Ohms/square, a coated-dome transmission of 80% or more at 1.06 micron wavelength (compared to 90% for a bare dome), and good adhesion. The sheet resistance goal of 10 Ohms/square was expected to result in an rf attenuation of 30 dB at the frequencies of importance.

  16. Phenomenological modeling of hardening and thermal recovery in metals

    NASA Technical Reports Server (NTRS)

    Chan, K. S.; Lindholm, U. S.; Bodner, S. R.

    1988-01-01

    Modeling of hardening and thermal recovery in metals is considered within the context of unified elastic-viscoplastic theories. Specifically, the choices of internal variables and hardening measures, and the resulting hardening response obtained by incorporating saturation-type evolution equations into two general forms of the flow law are examined. Based on the analytical considerations, a procedure for delineating directional and isotropic hardening from uniaxial hardening data has been developed for the Bodner-Partom model and applied to a nickel-base superalloy, B1900 + Hf. Predictions based on the directional hardening properties deduced from the monotonic loading data are shown to be in good agreement with results of cyclic tests.

  17. Modeling of Irradiation Hardening of Polycrystalline Materials

    SciTech Connect

    Li, Dongsheng; Zbib, Hussein M.; Garmestani, Hamid; Sun, Xin; Khaleel, Mohammad A.

    2011-09-14

    High energy particle irradiation of structural polycrystalline materials usually produces irradiation hardening and embrittlement. The development of predict capability for the influence of irradiation on mechanical behavior is very important in materials design for next generation reactors. In this work a multiscale approach was implemented to predict irradiation hardening of body centered cubic (bcc) alpha-iron. The effect of defect density, texture and grain boundary was investigated. In the microscale, dislocation dynamics models were used to predict the critical resolved shear stress from the evolution of local dislocation and defects. In the macroscale, a viscoplastic self-consistent model was applied to predict the irradiation hardening in samples with changes in texture and grain boundary. This multiscale modeling can guide performance evaluation of structural materials used in next generation nuclear reactors.

  18. An Anisotropic Hardening Model for Springback Prediction

    SciTech Connect

    Zeng, Danielle; Xia, Z. Cedric

    2005-08-05

    As more Advanced High-Strength Steels (AHSS) are heavily used for automotive body structures and closures panels, accurate springback prediction for these components becomes more challenging because of their rapid hardening characteristics and ability to sustain even higher stresses. In this paper, a modified Mroz hardening model is proposed to capture realistic Bauschinger effect at reverse loading, such as when material passes through die radii or drawbead during sheet metal forming process. This model accounts for material anisotropic yield surface and nonlinear isotropic/kinematic hardening behavior. Material tension/compression test data are used to accurately represent Bauschinger effect. The effectiveness of the model is demonstrated by comparison of numerical and experimental springback results for a DP600 straight U-channel test.

  19. Radiation Hardened Electronics for Space Environments (RHESE)

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.; Adams, James H.; Frazier, Donald O.; Patrick, Marshall C.; Watson, Michael D.; Johnson, Michael A.; Cressler, John D.; Kolawa, Elizabeth A.

    2007-01-01

    Radiation Environmental Modeling is crucial to proper predictive modeling and electronic response to the radiation environment. When compared to on-orbit data, CREME96 has been shown to be inaccurate in predicting the radiation environment. The NEDD bases much of its radiation environment data on CREME96 output. Close coordination and partnership with DoD radiation-hardened efforts will result in leveraged - not duplicated or independently developed - technology capabilities of: a) Radiation-hardened, reconfigurable FPGA-based electronics; and b) High Performance Processors (NOT duplication or independent development).

  20. Thermoelastic constitutive equations for chemically hardening materials

    NASA Technical Reports Server (NTRS)

    Shaffer, B. W.; Levitsky, M.

    1974-01-01

    Thermoelastic constitutive equations are derived for a material undergoing solidification or hardening as the result of a chemical reaction. The derivation is based upon a two component model whose composition is determined by the degree of hardening, and makes use of strain-energy considerations. Constitutive equations take the form of stress rate-strain rate relations, in which the coefficients are time-dependent functions of the composition. Specific results are developed for the case of a material of constant bulk modulus which undergoes a transition from an initial liquidlike state into an isotropic elastic solid. Potential applications are discussed.

  1. 'Work-Hardenable' Ductile Bulk Metallic Glass

    SciTech Connect

    Das, Jayanta; Eckert, Juergen; Tang Meibo; Wang Weihua; Kim, Ki Buem; Baier, Falko; Theissmann, Ralf

    2005-05-27

    Usually, monolithic bulk metallic glasses undergo inhomogeneous plastic deformation and exhibit poor ductility (<1%) at room temperature. We present a new class of bulk metallic glass, which exhibits high strength of up to 2265 MPa together with extensive 'work hardening' and large ductility of 18%. Significant increase in the flow stress was observed during deformation. The 'work-hardening' capability and ductility of this class of metallic glass is attributed to a unique structure correlated with atomic-scale inhomogeneity, leading to an inherent capability of extensive shear band formation, interactions, and multiplication of shear bands.

  2. Strain hardening in bent copper foils

    NASA Astrophysics Data System (ADS)

    Hayashi, Ichiro; Sato, Masumi; Kuroda, Mitsutoshi

    2011-09-01

    A series of systematic tensile and microbend tests were conducted on copper foil specimens with different thicknesses. The specimens were made of a copper foil having almost unidirectional crystal orientations that was considered to be nearly single-crystal. In order to investigate the effects of slip system interactions, two different crystal orientations relative to the tensile direction were considered in the tests: one is close to coplanar double-slip orientation, and the other is close to the ideal cube orientation (the tensile direction nearly coincides to [0 0 1]) that yields multi-planar multi-slip deformation. We extended the microbend test method to include the reversal of bending, and we attempted to divide the total amount of strain-hardening into isotropic and kinematic hardening components. In the tensile tests, no systematic tendency of size dependence was observed. In the microbend tests, size-dependent kinematic hardening behavior was observed for both the crystal orientations, while size dependence of isotropic hardening was observed only for the multi-planar multi-slip case. We introduce an extended crystal plasticity model that accounts for the effects of the geometrically necessary dislocations (GNDs), which correspond to the spatial gradients of crystallographic slips. Through numerical simulations performed using the model, the origin of the size-dependent behavior observed in the microbend tests is discussed.

  3. SEU hardening of CMOS memory circuit

    NASA Technical Reports Server (NTRS)

    Whitaker, S.; Canaris, J.; Liu, K.

    1990-01-01

    This paper reports a design technique to harden CMOS memory circuits against Single Event Upset (SEU) in the space environment. A RAM cell and Flip Flop design are presented to demonstrate the method. The Flip Flop was used in the control circuitry for a Reed Solomon encoder designed for the Space Station.

  4. [Microstructural changes in hardened beans (Phaseolus vulgaris)].

    PubMed

    Mujica, Maria Virginia; Granito, Marisela; Soto, Naudy

    2015-06-01

    (Phaseolus vulgaris). The hardening of Phaseolus vulgaris beans stored at high temperature and high relative humidity is one of the main constraints for consumption. The objective of this research was to evaluate by scanning electron microscopy, structural changes in cotyledons and testa of the hardened beans. The freshly harvested grains were stored for twelve months under two conditions: 5 ° C-34% RH and 37 ° C-75% RH, in order to promote hardening. The stored raw and cooked grains were lyophilized and fractured. The sections of testa and cotyledons were observed in an electron microscope JSM-6390. After twelve months, grains stored at 37 ° C-75% RH increased their hardness by 503%, whereas there were no significant changes in grains stored at 5 ° C-34% RH. At the microstructural level, the cotyledons of the raw grains show clear differences in appearance of the cell wall, into the intercellular space size and texture matrix protein. There were also differences in compaction of palisade and sub-epidermal layer in the testa of raw grains. After cooking, cotyledon cells of the soft grains were well separated while these ofhard grains were seldom separated. In conclusion, the found differences in hard and soft grains showed a significant participation of both structures, cotyledons and testa, in the grains hardening.

  5. 'Fire hardening' spear wood does slightly harden it, but makes it much weaker and more brittle.

    PubMed

    Ennos, Antony Roland; Chan, Tak Lok

    2016-05-01

    It is usually assumed that 'fire hardening' the tips of spears, as practised by hunter-gatherers and early Homo spp., makes them harder and better suited for hunting. This suggestion was tested by subjecting coppiced poles of hazel to a fire-hardening process and comparing their mechanical properties to those of naturally seasoned poles. A Shore D hardness test showed that fire treatment slightly increased the hardness of the wood, but flexural and impact tests showed that it reduced the strength and work of fracture by 30% and 36%, respectively. These results suggest that though potentially slightly sharper and more durable, fire-hardened tips would actually be more likely to break off when used, as may have been the case with the earliest known wooden tool, the Clacton spear. Fire might first have been used to help sharpen the tips of spears, and fire-hardening would have been a mostly negative side effect, not its primary purpose.

  6. 7 CFR 58.622 - Hardening and storage rooms.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Hardening and storage rooms. 58.622 Section 58.622 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards....622 Hardening and storage rooms. Hardening and storage rooms for frozen desserts shall be...

  7. 7 CFR 58.622 - Hardening and storage rooms.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Hardening and storage rooms. 58.622 Section 58.622 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards....622 Hardening and storage rooms. Hardening and storage rooms for frozen desserts shall be...

  8. 7 CFR 58.622 - Hardening and storage rooms.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Hardening and storage rooms. 58.622 Section 58.622 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards....622 Hardening and storage rooms. Hardening and storage rooms for frozen desserts shall be...

  9. 7 CFR 58.622 - Hardening and storage rooms.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Hardening and storage rooms. 58.622 Section 58.622 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards....622 Hardening and storage rooms. Hardening and storage rooms for frozen desserts shall be...

  10. 7 CFR 58.622 - Hardening and storage rooms.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Hardening and storage rooms. 58.622 Section 58.622 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards....622 Hardening and storage rooms. Hardening and storage rooms for frozen desserts shall be...

  11. Treatment of superficial mycoses: review - part II*

    PubMed Central

    Dias, Maria Fernanda Reis Gavazzoni; Bernardes-Filho, Fred; Quaresma-Santos, Maria Victória Pinto; Amorim, Adriana Gutstein da Fonseca; Schechtman, Regina Casz; Azulay, David Rubem

    2013-01-01

    Superficial fungal infections of the hair, skin and nails are a major cause of morbidity in the world. Choosing the right treatment is not always simple because of the possibility of drug interactions and side effects. The first part of the article discusses the main treatments for superficial mycoses - keratophytoses, dermatophytosis, candidiasis, with a practical approach to the most commonly-used topical and systemic drugs , referring also to their dosage and duration of use. Promising new, antifungal therapeutic alternatives are also highlighted, as well as available options on the Brazilian and world markets. PMID:24474103

  12. Extraction site preservation using an in-situ hardening alloplastic bone graft substitute.

    PubMed

    Leventis, Minas D; Fairbairn, Peter; Horowitz, Robert A

    2014-01-01

    This case report highlights the use of an in-situ hardening alloplastic bone grafting material composed of beta-tricalcium phosphate (β-TCP) granules coated with poly(lactic-co-glycolic acid) (PLGA) to preserve the dimensions and architecture of the alveolar ridge after atraumatic extraction. This material provided a stable scaffold that, although left uncovered, deterred the ingrowth of unwanted soft tissue, allowing newly formed keratinized soft tissue to proliferate over the healing grafted socket and gradually cover the site. At re-entry after 4 months adequate newly formed bone was observed, allowing for the correct positional placement of an implant. The results of this case suggest that an in-situ hardening alloplastic grafting material can be successfully utilized with minimally invasive procedures to preserve the bone and the soft-tissue profile of the alveolar ridge for future implant rehabilitation.

  13. Tribotechnical characteristics of titanium diboride electrospark coatings

    SciTech Connect

    Polotai, V.V.; Chiplik, V.N.; Egorov, F.F.; Podchernyaeva, I.A.; Verkhoturov, A.D.

    1985-10-01

    The most important characteristics of electrospark coatings are wear resistance and coefficient of friction. However, information on the tribotechnical properties of electrospark coatings is extremely limited in the literature, in part due to methodological difficulties caused by the insignificant thickness of electrospark coatings, as a rule, 40-60 mum and less. In this work a study was made of the tribotechnical characteristics of 45 steel after electroerosion hardening with TiB2-Mo alloys with a volume share of molybdenum in the original charge of 5, 10, 20, 30 and 50%. For comparison, specimens with coatings of the standard sintered carbides VK6 and T15K6 were also tested.

  14. Structural heredity influence upon principles of strain wave hardening

    NASA Astrophysics Data System (ADS)

    Kiricheck, A. V.; Barinov, S. V.; Yashin, A. V.

    2017-02-01

    It was established experimentally that by penetration of a strain wave through material hardened not only the technological modes of processing, but also a technological heredity - the direction of the fibers of the original macrostructure have an influence upon the diagram of microhardness. By penetration of the strain wave along fibers, the degree of hardening the material is less, however, a product is hardened throughout its entire section mainly along fibers. In the direction of the strain waves across fibers of the original structure of material, the degree of material hardening is much higher, the depth of the hardened layer with the degree of hardening not less than 50% makes at least 3 mm. It was found that under certain conditions the strain wave can completely change the original structure of the material. Thus, a heterogeneously hardened structure characterized by the interchange of harder and more viscous areas is formed, which is beneficial for assurance of high operational properties of material.

  15. The superficial white matter in Alzheimer's disease.

    PubMed

    Phillips, Owen R; Joshi, Shantanu H; Piras, Fabrizio; Orfei, Maria Donata; Iorio, Mariangela; Narr, Katherine L; Shattuck, David W; Caltagirone, Carlo; Spalletta, Gianfranco; Di Paola, Margherita

    2016-04-01

    White matter abnormalities have been shown in the large deep fibers of Alzheimer's disease patients. However, the late myelinating superficial white matter comprised of intracortical myelin and short-range association fibers has not received much attention. To investigate this area, we extracted a surface corresponding to the superficial white matter beneath the cortex and then applied a cortical pattern-matching approach which allowed us to register and subsequently sample diffusivity along thousands of points at the interface between the gray matter and white matter in 44 patients with Alzheimer's disease (Age: 71.02 ± 5.84, 16M/28F) and 47 healthy controls (Age 69.23 ± 4.45, 19M/28F). In patients we found an overall increase in the axial and radial diffusivity across most of the superficial white matter (P < 0.001) with increases in diffusivity of more than 20% in the bilateral parahippocampal regions and the temporal and frontal lobes. Furthermore, diffusivity correlated with the cognitive deficits measured by the Mini-Mental State Examination scores (P < 0.001). The superficial white matter has a unique microstructure and is critical for the integration of multimodal information during brain maturation and aging. Here we show that there are major abnormalities in patients and the deterioration of these fibers relates to clinical symptoms in Alzheimer's disease.

  16. Metabolomic Change Precedes Apple Superficial Scald Symptoms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Metabolic profiling of 621 metabolites was employed to characterize metabolomic changes associated with ‘Granny Smith’ apple superficial scald development following 1-MCP or DPA treatment. Partial least squares-discriminant analyses were used to link metabolites with scald, postharvest treatments, ...

  17. Intumescent coatings containing 4,4'-dinitrosulfanilide

    NASA Technical Reports Server (NTRS)

    Sawko, P. M.; Riccitiello, S. R. (Inventor)

    1977-01-01

    A coating which is stable to the environment and to exposure to water, and which intumesces at a favorable temperature was developed. The composition comprises a mixture of 4, 4 prime dinitrousulfanilide as the intumescent agent in a polymer binder mixture of a chlorinated polyolefin, a bisphenol A epoxy resin, and a rubber-like amine hardener.

  18. Plasma hardening of railway wheel surface

    NASA Astrophysics Data System (ADS)

    Isakaev, E. Kh.; Ivanov, P. P.; Tyuftyaev, A. S.; Paristyi, I. L.; Troitsky, A. A.; Yablonsky, A. E.; Filippov, G. A.

    1998-10-01

    A computer-controlled plasma technology was developed for the treatment of rolling stock wheels, providing the thermal hardening of tread and flange working surfaces. As a result of the plasma treatment the surface hardness of the wheel grows from 255 up to 420-450 HB. Herewith, the wear capability of the wheel metal grows 2-3 times and its resistance to the weariness-driven destruction grows 1.5 times due to the pecularities of the structural state of the steel, arising out of the thermal impact and of the alloying of the steel with nitrogen during the plasma treatment. Installation of several plants based on this technology in engine houses allowed to carry out a full scale experiment in order to assess the running characteristics of treated wheel sets in comparison with plain ones. Wheel life between mounting and truing or dismounting doubles due to plasma hardening.

  19. Cyclic hardening in bundled actin networks.

    PubMed

    Schmoller, K M; Fernández, P; Arevalo, R C; Blair, D L; Bausch, A R

    2010-01-01

    Nonlinear deformations can irreversibly alter the mechanical properties of materials. Most soft materials, such as rubber and living tissues, display pronounced softening when cyclically deformed. Here we show that, in contrast, reconstituted networks of crosslinked, bundled actin filaments harden when subject to cyclical shear. As a consequence, they exhibit a mechano-memory where a significant stress barrier is generated at the maximum of the cyclic shear strain. This unique response is crucially determined by the network architecture: at lower crosslinker concentrations networks do not harden, but soften showing the classic Mullins effect known from rubber-like materials. By simultaneously performing macrorheology and confocal microscopy, we show that cyclic shearing results in structural reorganization of the network constituents such that the maximum applied strain is encoded into the network architecture.

  20. Radiation-hardened transistor and integrated circuit

    DOEpatents

    Ma, Kwok K.

    2007-11-20

    A composite transistor is disclosed for use in radiation hardening a CMOS IC formed on an SOI or bulk semiconductor substrate. The composite transistor has a circuit transistor and a blocking transistor connected in series with a common gate connection. A body terminal of the blocking transistor is connected only to a source terminal thereof, and to no other connection point. The blocking transistor acts to prevent a single-event transient (SET) occurring in the circuit transistor from being coupled outside the composite transistor. Similarly, when a SET occurs in the blocking transistor, the circuit transistor prevents the SET from being coupled outside the composite transistor. N-type and P-type composite transistors can be used for each and every transistor in the CMOS IC to radiation harden the IC, and can be used to form inverters and transmission gates which are the building blocks of CMOS ICs.

  1. Superficial urothelial cancer in the prostatic urethra.

    PubMed

    Kirkali, Ziya; Canda, A Erdem

    2006-02-28

    Transitional cell carcinoma (TCC) is a multifocal disease of the urinary tract that can also involve the prostatic urethra (PU). The exact incidence of superficial involvement of the PU in patients with bladder TCC is not well known. Bladder TCC may involve the prostate in 12-40% of the patients and the degree of involvement can include urethral mucosa, ducts, acini, and stroma of the gland, which has been shown to affect the outcome. Risk factors for superficial urothelial cancer in the PU are high-grade, multifocal bladder TCC and presence of carcinoma in situ (CIS) in the bladder. While visible tumors are easy to detect and resect, controversy still exists regarding the optimal technique to identify prostatic involvement by TCC. Prostatic urethral sampling by a transurethral resection biopsy or a cold-cup biopsy, particularly in the high-risk group of bladder cancer patients, has been recommended for detecting prostatic urethral involvement. Management of superficial prostatic involvement by TCC is also unclear. Currently, there is increasing recognition of the value of conservative treatment options with intravesical agents when there is superficial involvement of the PU. Particularly, intravesical bacillus Calmette-Guèrin (BCG) seems to be an effective treatment alternative in the management of superficial involvement of the PU by TCC. Close follow-up by cystoscopy and PU biopsy at 3-month intervals, particularly in intermediate and high-risk patients who respond to intravesical therapy and in whom cystectomy is appropriate, is recommended in order to detect persistent tumor, recurrences, or progression.

  2. [Superficial venous thrombosis. A state of art].

    PubMed

    Sándor, Tamás

    2017-01-01

    For a long time superficial thrombophlebitis has been thought to be a rather benign condition. Recently, when duplex ultrasound technique is used for the diagnosis more and more often, the disease is proved to be more dangerous than anticipated. Thrombosis propagates to the deep veins in 6-44% and pulmonary embolism was observed on the patients in 1,5-33%. We can calculate venous thromboembolic complications on every fourth patient. Diagnosis is clinical, but duplex ultrasound examination is mandatory, for estimation of the thrombus extent, for exclusion of the deep venous thrombosis and for follow up. Both legs should be checked with ultrasound, because simultaneous deep venous thrombosis can develop on the contralateral limb. Two different forms can be distinguished: superficial venous thrombosis with, or without varicose veins. In cases of spontaneous, non varicous form, especially when the process is migrating or recurrent, a careful clinical examination is necessery for exclusion of malignant diseases and thrombophilia. The treatment options are summarised on the basis of recent international consensus statements. The American and German guidelines are similar. Compression and mobilisation are cornerstones of the therapy. For a short segment thrombosis non steroidal antiinflammatory drugs are effective. For longer segments low molecular-weight heparins are preferred. Information on the effect of the novel oral anticoagulants for the therapy is lacking but they may appear to be effective in the future for this indication. When thrombus is close to the sapheno-femoral or sapheno-popliteal junction crossectomy (high ligation), or low molecular-weight heparin in therapeutic doses are indicated. The term superficial thrombophlebitis should be discouraged, because inflammation and infection is not the primary pathology. It should be called correctly superficial venous thrombosis in order to avoid the unnecessary administration of antibiotics and the misconception

  3. Hologram formation in hardened dichromated gelatin films.

    PubMed

    Lin, L H

    1969-05-01

    Hardened gelatin films sensitized with ammonium dichromate can be utilized to record high quality holograms. The maximum diffraction efficiency of the hologram approaches 90%. The light scattering from the hologram is so low that under ordinary light the hologram plate appears almost indistinguishable from a clear glass plate. Either a transmission or a reflection hologram can be recorded. Linear recording range of light amplitude is large. A practical method of preparing and processing the film is described, and the exposure characteristics are presented.

  4. Dislocation Multi-junctions and Strain Hardening

    SciTech Connect

    Bulatov, V; Hsiung, L; Tang, M; Arsenlis, A; Bartelt, M; Cai, W; Florando, J; Hiratani, M; Rhee, M; Hommes, G; Pierce, T; Diaz de la Rubia, T

    2006-06-20

    At the microscopic scale, the strength of a crystal derives from the motion, multiplication and interaction of distinctive line defects--dislocations. First theorized in 1934 to explain low magnitudes of crystal strength observed experimentally, the existence of dislocations was confirmed only two decades later. Much of the research in dislocation physics has since focused on dislocation interactions and their role in strain hardening: a common phenomenon in which continued deformation increases a crystal's strength. The existing theory relates strain hardening to pair-wise dislocation reactions in which two intersecting dislocations form junctions tying dislocations together. Here we report that interactions among three dislocations result in the formation of unusual elements of dislocation network topology, termed hereafter multi-junctions. The existence of multi-junctions is first predicted by Dislocation Dynamics (DD) and atomistic simulations and then confirmed by the transmission electron microscopy (TEM) experiments in single crystal molybdenum. In large-scale Dislocation Dynamics simulations, multi-junctions present very strong, nearly indestructible, obstacles to dislocation motion and furnish new sources for dislocation multiplication thereby playing an essential role in the evolution of dislocation microstructure and strength of deforming crystals. Simulation analyses conclude that multi-junctions are responsible for the strong orientation dependence of strain hardening in BCC crystals.

  5. Dislocation multi-junctions and strain hardening.

    PubMed

    Bulatov, Vasily V; Hsiung, Luke L; Tang, Meijie; Arsenlis, Athanasios; Bartelt, Maria C; Cai, Wei; Florando, Jeff N; Hiratani, Masato; Rhee, Moon; Hommes, Gregg; Pierce, Tim G; de la Rubia, Tomas Diaz

    2006-04-27

    At the microscopic scale, the strength of a crystal derives from the motion, multiplication and interaction of distinctive line defects called dislocations. First proposed theoretically in 1934 (refs 1-3) to explain low magnitudes of crystal strength observed experimentally, the existence of dislocations was confirmed two decades later. Much of the research in dislocation physics has since focused on dislocation interactions and their role in strain hardening, a common phenomenon in which continued deformation increases a crystal's strength. The existing theory relates strain hardening to pair-wise dislocation reactions in which two intersecting dislocations form junctions that tie the dislocations together. Here we report that interactions among three dislocations result in the formation of unusual elements of dislocation network topology, termed 'multi-junctions'. We first predict the existence of multi-junctions using dislocation dynamics and atomistic simulations and then confirm their existence by transmission electron microscopy experiments in single-crystal molybdenum. In large-scale dislocation dynamics simulations, multi-junctions present very strong, nearly indestructible, obstacles to dislocation motion and furnish new sources for dislocation multiplication, thereby playing an essential role in the evolution of dislocation microstructure and strength of deforming crystals. Simulation analyses conclude that multi-junctions are responsible for the strong orientation dependence of strain hardening in body-centred cubic crystals.

  6. Strain Hardening in Bidisperse Polymer Glasses

    NASA Astrophysics Data System (ADS)

    Robbins, Mark O.; Hoy, Robert S.

    2009-03-01

    The connections between glassy and rubbery strain hardening have been a matter of great controversy in recent years. Recent experiments and our earlier simulations have suggested that the hardening modulus GR is proportional to the entanglement density in glasses, as it is to the crosslink density in rubbers. In this work we present more extensive studies of strain hardening in bidisperse glasses and its relation to microscopic conformational changes. The mixtures contain chains of very different lengths but equivalent chemistry. GR does not scale simply with the entanglement density. Instead it obeys a simple mixing rule, with GR equal to the volume fraction weighted average of the moduli of the two pure components. As in recent studies of monodisperse systems (R. S. Hoy and M. O. Robbins, Phys. Rev. Lett. 99, 117801 (2007)), the stress is directly correlated to the degree of chain orientation. Chains of a given length undergo almost the same degree of alignment in pure systems and mixtures, explaining why the simple mixing rule applies. The connection to recent analytic theories by K. Chen and K. S. Schweizer (PRL, in press) will be discussed.

  7. Stage IV work hardening in cubic metals

    SciTech Connect

    Rollett, A.D.; Kocks, U.F.; Doherty, R.D.

    1986-01-01

    The work hardening of fcc metals at large strains is discussed with reference to the linear stress-strain behavior often observed at large strains and known as Stage IV. The experimental evidence shows that Stage IV is a work hardening phenomenon that is found quite generally, even in pure fcc metals subjected to homogeneous deformation. A simple model for Stage IV in pure metals is presented, based on the accumulation of dislocation debris. Experiments are described for large strain torsion tests on four aluminum alloys. The level and extent of Stage IV scaled with the saturation stress that would represent the end of Stage III in the absence of a Stage IV. Reversing the torsion after large prestrains produced transient reductions in the work hardening. The strain rate sensitivity was also measured before and during the transient and found not to vary significantly. The microstructure observed at large strains in an Mg alloy suggest that Stage IV can occur in the absence of microband formation. Previous proposals for the cause of Stage IV are reviewed and found to be not supported by recent experimental data.

  8. Empirical beam hardening correction (EBHC) for CT

    SciTech Connect

    Kyriakou, Yiannis; Meyer, Esther; Prell, Daniel; Kachelriess, Marc

    2010-10-15

    Purpose: Due to x-ray beam polychromaticity and scattered radiation, attenuation measurements tend to be underestimated. Cupping and beam hardening artifacts become apparent in the reconstructed CT images. If only one material such as water, for example, is present, these artifacts can be reduced by precorrecting the rawdata. Higher order beam hardening artifacts, as they result when a mixture of materials such as water and bone, or water and bone and iodine is present, require an iterative beam hardening correction where the image is segmented into different materials and those are forward projected to obtain new rawdata. Typically, the forward projection must correctly model the beam polychromaticity and account for all physical effects, including the energy dependence of the assumed materials in the patient, the detector response, and others. We propose a new algorithm that does not require any knowledge about spectra or attenuation coefficients and that does not need to be calibrated. The proposed method corrects beam hardening in single energy CT data. Methods: The only a priori knowledge entering EBHC is the segmentation of the object into different materials. Materials other than water are segmented from the original image, e.g., by using simple thresholding. Then, a (monochromatic) forward projection of these other materials is performed. The measured rawdata and the forward projected material-specific rawdata are monomially combined (e.g., multiplied or squared) and reconstructed to yield a set of correction volumes. These are then linearly combined and added to the original volume. The combination weights are determined to maximize the flatness of the new and corrected volume. EBHC is evaluated using data acquired with a modern cone-beam dual-source spiral CT scanner (Somatom Definition Flash, Siemens Healthcare, Forchheim, Germany), with a modern dual-source micro-CT scanner (TomoScope Synergy Twin, CT Imaging GmbH, Erlangen, Germany), and with a modern

  9. Assessment of bart fire-hardening programs. Final report may-sep 82

    SciTech Connect

    Hathaway, W.T.; Litant, I.

    1982-09-01

    This report presents the results of an assessment of the Bay Area Rapid Transit District (BART) vehicle fire hardening. The report assesses the overall effort to improve the fire safety of the current BART vehicles through the removal of prospective ignition sources, the substitution of more fire-resistant materials, the addition of a special fire-resistant coating on the under surface of the vehicle floor, and the placement of fire stops at strategic places in the walls and ceilings. Specifically, this assessment responds to ten concerns on these improvements that were expressed by the California Public Utilities Commission.

  10. Photodynamic therapy: superficial and interstitial illumination

    NASA Astrophysics Data System (ADS)

    Svanberg, Katarina; Bendsoe, Niels; Axelsson, Johan; Andersson-Engels, Stefan; Svanberg, Sune

    2010-07-01

    Photodynamic therapy (PDT) is reviewed using the treatment of skin tumors as an example of superficial lesions and prostate cancer as an example of deep-lying lesions requiring interstitial intervention. These two applications are among the most commonly studied in oncological PDT, and illustrate well the different challenges facing the two modalities of PDT-superficial and interstitial. They thus serve as good examples to illustrate the entire field of PDT in oncology. PDT is discussed based on the Lund University group's over 20 yr of experience in the field. In particular, the interplay between optical diagnostics and dosimetry and the delivery of the therapeutic light dose are highlighted. An interactive multiple-fiber interstitial procedure to deliver the required therapeutic dose based on the assessment of light fluence rate and sensitizer concentration and oxygen level throughout the tumor is presented.

  11. Superficial siderosis: A rare occurrence in children

    PubMed Central

    Jadhav, Trupti M.; Hegde, Anaita U.

    2012-01-01

    Superficial siderosis of the central nervous system results from deposition of hemosiderin in the subpial layers of the brain and spinal cord. Patients usually present after 40 years of age with progressive ataxia and sensorineural hearing impairment. We present the case of a twelve-year-old boy who had a surgery of the posterior fossa at the age of two years and then developed recurrent headaches, instability of gait, and hearing deficit at around ten years of age. Clinical examination revealed progressive ataxia and mild sensorineural hearing loss. He also had infrequent seizures with mild electroencephalographic abnormality. His serial magnetic resonance imaging (MRIs) showed a progressive deposition of hemosiderin in the cerebellar folia and around the brainstem, confirming a diagnosis of superficial siderosis. This case report draws attention to this rare condition, usually seen in adults, even though rarely it can be seen in children as a chronic sequela of surgery of the posterior fossa. PMID:23560013

  12. What factors control superficial lava dome explosivity?

    PubMed Central

    Boudon, Georges; Balcone-Boissard, Hélène; Villemant, Benoît; Morgan, Daniel J.

    2015-01-01

    Dome-forming eruption is a frequent eruptive style and a major hazard on numerous volcanoes worldwide. Lava domes are built by slow extrusion of degassed, viscous magma and may be destroyed by gravitational collapse or explosion. The triggering of lava dome explosions is poorly understood: here we propose a new model of superficial lava-dome explosivity based upon a textural and geochemical study (vesicularity, microcrystallinity, cristobalite distribution, residual water contents, crystal transit times) of clasts produced by key eruptions. Superficial explosion of a growing lava dome may be promoted through porosity reduction caused by both vesicle flattening due to gas escape and syn-eruptive cristobalite precipitation. Both processes generate an impermeable and rigid carapace allowing overpressurisation of the inner parts of the lava dome by the rapid input of vesiculated magma batches. The relative thickness of the cristobalite-rich carapace is an inverse function of the external lava dome surface area. Explosive activity is thus more likely to occur at the onset of lava dome extrusion, in agreement with observations, as the likelihood of superficial lava dome explosions depends inversely on lava dome volume. This new result is of interest for the whole volcanological community and for risk management. PMID:26420069

  13. What factors control superficial lava dome explosivity?

    NASA Astrophysics Data System (ADS)

    Boudon, Georges; Balcone-Boissard, Hélène; Villemant, Benoît; Morgan, Daniel J.

    2015-09-01

    Dome-forming eruption is a frequent eruptive style and a major hazard on numerous volcanoes worldwide. Lava domes are built by slow extrusion of degassed, viscous magma and may be destroyed by gravitational collapse or explosion. The triggering of lava dome explosions is poorly understood: here we propose a new model of superficial lava-dome explosivity based upon a textural and geochemical study (vesicularity, microcrystallinity, cristobalite distribution, residual water contents, crystal transit times) of clasts produced by key eruptions. Superficial explosion of a growing lava dome may be promoted through porosity reduction caused by both vesicle flattening due to gas escape and syn-eruptive cristobalite precipitation. Both processes generate an impermeable and rigid carapace allowing overpressurisation of the inner parts of the lava dome by the rapid input of vesiculated magma batches. The relative thickness of the cristobalite-rich carapace is an inverse function of the external lava dome surface area. Explosive activity is thus more likely to occur at the onset of lava dome extrusion, in agreement with observations, as the likelihood of superficial lava dome explosions depends inversely on lava dome volume. This new result is of interest for the whole volcanological community and for risk management.

  14. Constitutive modelling of evolving flow anisotropy including distortional hardening

    SciTech Connect

    Pietryga, Michael P.; Vladimirov, Ivaylo N.; Reese, Stefanie

    2011-05-04

    The paper presents a new constitutive model for anisotropic metal plasticity that takes into account the expansion or contraction (isotropic hardening), translation (kinematic hardening) and change of shape (distortional hardening) of the yield surface. The experimentally observed region of high curvature ('nose') on the yield surface in the loading direction and flattened shape in the reverse loading direction are modelled here by means of the concept of directional distortional hardening. The modelling of directional distortional hardening is accomplished by means of an evolving fourth-order tensor. The applicability of the model is illustrated by fitting experimental subsequent yield surfaces at finite plastic deformation. Comparisons with test data for aluminium low and high work hardening alloys display a good agreement between the simulation results and the experimental data.

  15. Radiation-hardened nonvolatile MNOS RAM

    SciTech Connect

    Wrobel, T.F.; Dodson, W.H.; Hash, G.L.; Jones, R.V.; Nasby, R.D.; Olson, R.J.

    1983-01-01

    A radiation hardened nonvolatile MNOS RAM is being developed at Sandia National Laboratories. The memory organization is 128 x 8 bits and utilizes two p-channel MNOS transistors per memory cell. The peripheral circuitry is constructed with CMOS metal gate and is processed with standard Sandia rad-hard processing techniques. The devices have memory retention after a dose-rate exposure of 1E12 rad(Si)/s, are functional after total dose exposure of 1E6 rad(Si), and are dose-rate upset resistant to levels of 7E8 rad(Si)/s.

  16. A radiation hardened nonvolatile MNOS RAM

    NASA Astrophysics Data System (ADS)

    Wrobel, T. F.; Dodson, W. H.; Hash, G. L.; Jones, R. V.; Nasby, R. D.; Olson, R. J.

    1983-12-01

    A radiation hardened nonvolatile MNOS RAM (SA2998) is being developed at Sandia National Laboratories. The memory organization is 128 x 8 bits and utilizes two p-channel MNOS transistors per memory cell. The peripheral circuitry is constructed with CMOS metal gate and is processed with standard Sandia rad-hard processing techniques. The device requires +10 V and +25 V for operation. The devices have memory retention after a dose-rate exposure of 1E12 rad(Si)/s, are functional after total dose exposure of 1E6 rad(Si), and are dose-rate upset resistant to levels of 7E8 rad(Si)/s.

  17. Strain hardening of steel EP836

    SciTech Connect

    Lyadskaya, A.A.; Lappa, R.M.; Spuskanyuk, V.Z.

    1986-03-01

    The authors investigate the effect of different combinations of cold hydraulic pressing and heat treatment on the physical and mechanical properties of steel EP836 (03N17K10V10MT), containing 0.03% C, 16-17% Ni, 10-11.5% Co, 9.5-11.5% W, 1% Ti, 1% Mo, and 0.15% A1. Deformation of the unaged steel resulted in insignificant hardening without a decrease in plasticity; this agrees with the results of investigations of other steels of this class.

  18. Enabling Strain Hardening Simulations with Dislocation Dynamics

    SciTech Connect

    Arsenlis, A; Cai, W

    2006-12-20

    Numerical algorithms for discrete dislocation dynamics simulations are investigated for the purpose of enabling strain hardening simulations of single crystals on massively parallel computers. The algorithms investigated include the /(N) calculation of forces, the equations of motion, time integration, adaptive mesh refinement, the treatment of dislocation core reactions, and the dynamic distribution of work on parallel computers. A simulation integrating all of these algorithmic elements using the Parallel Dislocation Simulator (ParaDiS) code is performed to understand their behavior in concert, and evaluate the overall numerical performance of dislocation dynamics simulations and their ability to accumulate percents of plastic strain.

  19. Expecting the Unexpected: Radiation Hardened Software

    NASA Technical Reports Server (NTRS)

    Penix, John; Mehlitz, Peter C.

    2005-01-01

    Radiation induced Single Event Effects (SEEs) are a serious problem for spacecraft flight software, potentially leading to a complete loss of mission. Conventional risk mitigation has been focused on hardware, leading to slow, expensive and outdated on-board computing devices, increased power consumption and launch mass. Our approach is to look at SEEs from a software perspective, and to explicitly design flight software so that it can detect and correct the majority of SEES. Radiation hardened flight software will reduce the significant residual residual risk for critical missions and flight phases, and enable more use of inexpensive and fast COTS hardware.

  20. Technology Developments in Radiation-Hardened Electronics for Space Environments

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.; Howell, Joe T.

    2008-01-01

    The Radiation Hardened Electronics for Space Environments (RHESE) project consists of a series of tasks designed to develop and mature a broad spectrum of radiation hardened and low temperature electronics technologies. Three approaches are being taken to address radiation hardening: improved material hardness, design techniques to improve radiation tolerance, and software methods to improve radiation tolerance. Within these approaches various technology products are being addressed including Field Programmable Gate Arrays (FPGA), Field Programmable Analog Arrays (FPAA), MEMS, Serial Processors, Reconfigurable Processors, and Parallel Processors. In addition to radiation hardening, low temperature extremes are addressed with a focus on material and design approaches. System level applications for the RHESE technology products are discussed.

  1. Beam hardening and partial beam hardening of the bowtie filter: Effects on dosimetric applications in CT

    NASA Astrophysics Data System (ADS)

    Lopez-Rendon, X.; Zhang, G.; Bosmans, H.; Oyen, R.; Zanca, F.

    2014-03-01

    Purpose: To estimate the consequences on dosimetric applications when a CT bowtie filter is modeled by means of full beam hardening versus partial beam hardening. Method: A model of source and filtration for a CT scanner as developed by Turner et. al. [1] was implemented. Specific exposures were measured with the stationary CT X-ray tube in order to assess the equivalent thickness of Al of the bowtie filter as a function of the fan angle. Using these thicknesses, the primary beam attenuation factors were calculated from the energy dependent photon mass attenuation coefficients and used to include beam hardening in the spectrum. This was compared to a potentially less computationally intensive approach, which accounts only partially for beam hardening, by giving the photon spectrum a global (energy independent) fan angle specific weighting factor. Percentage differences between the two methods were quantified by calculating the dose in air after passing several water equivalent thicknesses representative for patients having different BMI. Specifically, the maximum water equivalent thickness of the lateral and anterior-posterior dimension and of the corresponding (half) effective diameter were assessed. Results: The largest percentage differences were found for the thickest part of the bowtie filter and they increased with patient size. For a normal size patient they ranged from 5.5% at half effective diameter to 16.1% for the lateral dimension; for the most obese patient they ranged from 7.7% to 19.3%, respectively. For a complete simulation of one rotation of the x-ray tube, the proposed method was 12% faster than the complete simulation of the bowtie filter. Conclusion: The need for simulating the beam hardening of the bow tie filter in Monte Carlo platforms for CT dosimetry will depend on the required accuracy.

  2. CID25: radiation hardened color video camera

    NASA Astrophysics Data System (ADS)

    Baiko, D. A.; Bhaskaran, S. K.; Czebiniak, S. W.

    2006-02-01

    The charge injection device, CID25, is presented. The CID25 is a color video imager. The imager is compliant with the NTSC interlaced TV standard. It has 484 by 710 displayable pixels and is capable of producing 30 frames-per-second color video. The CID25 is equipped with the preamplifier-per-pixel technology combined with parallel row processing to achieve high conversion gain and low noise bandwidth. The on-chip correlated double sampling circuitry serves to reduce the low frequency noise components. The CID25 is operated by a camera system consisting of two parts, the head assembly and the camera control unit (CCU). The head assembly and the CCU can be separated by up to 150 meter long cable. The CID25 imager and the head portion of the camera are radiation hardened. They can produce color video with insignificant SNR degradation out to at least 2.85 Mrad of total dose of Co 60 γ-radiation. This represents the first in industry radiation hardened color video system, based on a semiconductor photo-detector that has an adequate sensitivity for room light operation.

  3. Hardened Client Platforms for Secure Internet Banking

    NASA Astrophysics Data System (ADS)

    Ronchi, C.; Zakhidov, S.

    We review the security of e-banking platforms with particular attention to the exploitable attack vectors of three main attack categories: Man-in-the-Middle, Man-in-the-PC and Man-in-the-Browser. It will be shown that the most serious threats come from combination attacks capable of hacking any transaction without the need to control the authentication process. Using this approach, the security of any authentication system can be bypassed, including those using SecureID Tokens, OTP Tokens, Biometric Sensors and Smart Cards. We will describe and compare two recently proposed e-banking platforms, the ZTIC and the USPD, both of which are based on the use of dedicated client devices, but with diverging approaches with respect to the need of hardening the Web client application. It will be shown that the use of a Hardened Browser (or H-Browser) component is critical to force attackers to employ complex and expensive techniques and to reduce the strength and variety of social engineering attacks down to physiological fraud levels.

  4. Radiation-hardened 16K-bit MNOS EAROM

    SciTech Connect

    Knoll, M.G.; Dellin, T.A.; Jones, R.V.

    1983-01-01

    A radiation-hardened silicon-gate CMOS/NMNOS 16K-bit EAROM has been designed, fabricated, and evaluated. This memory has been designed to be used as a ROM replacement in radiation-hardened microprocessor-based systems.

  5. Radiation-Hardened Electronics for Space Environments (RHESE)

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.; Adams, James H.; Patrick, Marshall C.; Johnson, Michael; Cressler, John D.

    2008-01-01

    This conference poster explores NASA's Radiation-Hardened Electronics for Space Environments project. This project aims to advance the state of the art in high performance, radiation-hardened electronics that enable the long-term, reliable operation of a spacecraft in extreme radiation and temperature of space and the lunar surface.

  6. Certification of hardened surface layers by magnetic and electromagnetic methods

    NASA Astrophysics Data System (ADS)

    Mitropol'skaya, S. Yu.

    2013-07-01

    The possibilities of certification of hardened surface layers by measurement of coercive force, eddy current inspection and analysis of the field dependence of differential magnetic permeability μ d ( H) are considered. The advantages of analysis of the pattern of peaks on the μ d ( H) dependence for estimating the state of surface-hardened steels subjected to subsequent force loading are shown.

  7. Radiation-Hardened Electronics for the Space Environment

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.; Watson, Michael D.

    2007-01-01

    RHESE covers a broad range of technology areas and products. - Radiation Hardened Electronics - High Performance Processing - Reconfigurable Computing - Radiation Environmental Effects Modeling - Low Temperature Radiation Hardened Electronics. RHESE has aligned with currently defined customer needs. RHESE is leveraging/advancing SOA space electronics, not duplicating. - Awareness of radiation-related activities through out government and industry allow advancement rather than duplication of capabilities.

  8. The hardening phenomenon in irritant contact dermatitis: an interpretative update.

    PubMed

    Watkins, Shannon A; Maibach, Howard I

    2009-03-01

    Irritant contact dermatitis (ICD) is common and poses a significant problem in high-risk populations. In most cases, ICD resolves despite continued exposure in a process known as 'hardening', allowing individuals to continue with their work. Those who cannot clear ICD develop chronic ICD, which is a significant source of emotional, physical, and financial distress for affected individuals. While hardening is well known among labourers and clinicians, its mechanism remains to be elucidated. Much can be learned from the study of self-healing processes like the hardening phenomenon. This overview briefly documents the pathogenesis of ICD, focuses on the latest advances pertaining to the hardening phenomenon in ICD, and then highlights potential avenues of productive research. A better understanding of the 'hardening' process in the skin will hopefully lead to advances for the treatment of ICD.

  9. New analytical approach for neutron beam-hardening correction.

    PubMed

    Hachouf, N; Kharfi, F; Hachouf, M; Boucenna, A

    2016-01-01

    In neutron imaging, the beam-hardening effect has a significant effect on quantitative and qualitative image interpretation. This study aims to propose a linearization method for beam-hardening correction. The proposed method is based on a new analytical approach establishing the attenuation coefficient as a function of neutron energy. Spectrum energy shift due to beam hardening is studied on the basis of Monte Carlo N-Particle (MCNP) simulated data and the analytical data. Good agreement between MCNP and analytical values has been found. Indeed, the beam-hardening effect is well supported in the proposed method. A correction procedure is developed to correct the errors of beam-hardening effect in neutron transmission, and therefore for projection data correction. The effectiveness of this procedure is determined by its application in correcting reconstructed images.

  10. Mapping superficial lymphatic territories in the rabbit.

    PubMed

    Soto-Miranda, Miguel A; Suami, Hiroo; Chang, David W

    2013-06-01

    Little is known about the anatomy of the lymphatic system in the rabbit with regard to relationships between the lymphatic vessel and lymph node. According to our previous studies in human cadavers and canines, the superficial lymphatic system could be divided into lymphatic territories. The aim of this study was to completely map the superficial lymphatic system in the rabbit. We used our microinjection technique and histological analysis for dissecting studies and recently developed indocyanine green (ICG) fluorescent lymphography for demonstrating dynamic lymph flow in living rabbits. Real-time ICG fluorescent lymphography was performed in two living New Zealand White rabbits, and direct dye microinjection of the lymphatic vessels was performed in eight dead rabbits. To assess the relationships between the vascular and lymphatic systems in rabbits, we performed radiocontrast injection into arteries in two dead rabbits prior to the lymphatic injection. The ICG fluorescent lymphography revealed eight lymphatic territories in the preauricular, submandibular, root of the lateral neck, axillary, lumbar, inguinal, root of the tail, and popliteal regions. We injected blue acrylic dye into every lymphatic vessel 0.1 mm in diameter or larger. We then dissected and chased the stained lymphatic vessels proximally until the vessels connected to the first tier lymph node. This procedure was repeated throughout the body until all the relationships between the lymphatic vessels and lymph nodes were defined. The lymphatic system of the rabbit could be defined as eight lymphatic territories, each with its own lymphatic vessels and lymph node.

  11. Precipitation hardening in 350 grade maraging steel

    SciTech Connect

    Viswanathan, U.K. . Radiometallurgy Div.); Dey, G.K. . Metallurgy Division); Asundi, M.K. )

    1993-11-01

    Evolution of microstructure in 350 grade commercial maraging steel has been examined. In the earlier stages of aging, the strengthening phases are formed by the heterogeneous precipitation, and these phases have been identified as intermetallic compounds of the Ni[sub 3] (Ti, Mo) and Fe[sub 2]Mo types. The kinetics of precipitation are studied in terms of the activation energy by carrying out isothermal hardness measurements of aged material. The mechanical properties in the peak-aged and overaged conditions were evaluated and the flow behavior examined. The overaging behavior of the steel has been studied and the formation of austenite of different morphologies identified. The crystallography of the austenite has been examined in detail. From the microstructural examination of peak-aged and deformed samples, it could be inferred that the dislocation-precipitate interaction is by precipitate shearing. Increased work hardening of the material in the overaged condition was suggestive of looping of precipitates by dislocations.

  12. Keystroke Dynamics-Based Credential Hardening Systems

    NASA Astrophysics Data System (ADS)

    Bartlow, Nick; Cukic, Bojan

    abstract Keystroke dynamics are becoming a well-known method for strengthening username- and password-based credential sets. The familiarity and ease of use of these traditional authentication schemes combined with the increased trustworthiness associated with biometrics makes them prime candidates for application in many web-based scenarios. Our keystroke dynamics system uses Breiman’s random forests algorithm to classify keystroke input sequences as genuine or imposter. The system is capable of operating at various points on a traditional ROC curve depending on application-specific security needs. As a username/password authentication scheme, our approach decreases the system penetration rate associated with compromised passwords up to 99.15%. Beyond presenting results demonstrating the credential hardening effect of our scheme, we look into the notion that a user’s familiarity to components of a credential set can non-trivially impact error rates.

  13. Jerky loads on surface-hardened gears

    NASA Technical Reports Server (NTRS)

    Rettig, H.; Wirth, X.

    1978-01-01

    Damage occurs again and again in practice in the form of transmissions with surface hardened gears which break after a very long operating time (explained by seldom occurring jerky loads). Gear drives are frequently exposed to jerky stresses which are greater than their fatigue limit. These stresses are considered in gear calculations, first, by shock factors when the transmission is to be designed as high endurance with regard to overloads and, second, in the form of operating ratios when the design is to be time enduring with regard to overloads. The size of the operating ratio depends not only on torque characteristics, drive and processing machine, but also on the material and heat treatment.

  14. Studies of a laser/nuclear thermal-hardened body armor. Final report, 31 Jan 91-30 Sep 91

    SciTech Connect

    Misconi, N.Y.; Caldarella, G.J.; Roach, J.F.

    1992-08-01

    The problem of laser/nuclear hardening of body armors and other applications, such as rigid wall, etc, has been investigated in this study. Earlier results from studies of hardening against space systems, which were supported by the Air Force Office of Scientific Research (AFOSR) and carried out by the Principal Investigator during 1984 to 1989 are summarized. The concepts of particle layer and photon multiple scattering inside the layers were utilized in developing a laser shield to protect against laser weapons in the 0.22 to 2.4 micrometer region of the spectrum. Protection against the threats from C02 laser weapons are addressed, and the development of a protective shield is detailed. It is now possible to apply a coating that will protect against laser/nuclear threats and reduction of solar loads for 0.22 to 16 micrometers of the spectrum. Applications are expected for rigid walls (Army containers), human body armor, thermal jackets for military hardware, etc. Finally, a mathematical model was created to help predict how the laser hardening material will behave under specific constraints that have not yet been tested in the laboratory. Also, this model can be used to extrapolate the performance of similar materials/coatings in the mid- to far-infrared wavelengths and also predict the broadband performance.

  15. Finite deformation analysis of crack tip fields in plastically compressible hardening-softening-hardening solids

    NASA Astrophysics Data System (ADS)

    Khan, D.; Singh, S.; Needleman, A.

    2016-11-01

    Crack tip fields are calculated under plane strain small scale yielding conditions. The material is characterized by a finite strain elastic-viscoplastic constitutive relation with various hardening-softening-hardening hardness functions. Both plastically compressible and plastically incompressible solids are considered. Displacements corresponding to the isotropic linear elastic mode I crack field are prescribed on a remote boundary. The initial crack is taken to be a semi-circular notch and symmetry about the crack plane is imposed. Plastic compressibility is found to give an increased crack opening displacement for a given value of the applied loading. The plastic zone size and shape are found to depend on the plastic compressibility, but not much on whether material softening occurs near the crack tip. On the other hand, the near crack tip stress and deformation fields depend sensitively on whether or not material softening occurs. The combination of plastic compressibility and softening (or softening-hardening) has a particularly strong effect on the near crack tip stress and deformation fields.

  16. Finite deformation analysis of crack tip fields in plastically compressible hardening-softening-hardening solids

    NASA Astrophysics Data System (ADS)

    Khan, D.; Singh, S.; Needleman, A.

    2017-02-01

    Crack tip fields are calculated under plane strain small scale yielding conditions. The material is characterized by a finite strain elastic-viscoplastic constitutive relation with various hardening-softening-hardening hardness functions. Both plastically compressible and plastically incompressible solids are considered. Displacements corresponding to the isotropic linear elastic mode I crack field are prescribed on a remote boundary. The initial crack is taken to be a semi-circular notch and symmetry about the crack plane is imposed. Plastic compressibility is found to give an increased crack opening displacement for a given value of the applied loading. The plastic zone size and shape are found to depend on the plastic compressibility, but not much on whether material softening occurs near the crack tip. On the other hand, the near crack tip stress and deformation fields depend sensitively on whether or not material softening occurs. The combination of plastic compressibility and softening (or softening-hardening) has a particularly strong effect on the near crack tip stress and deformation fields.

  17. Pedal Presentation of Superficial Acral FibromyxomaA Case Report.

    PubMed

    Lenz, Robin; Kafka, Rene; Jules, Kevin; Bakotic, Bradley W

    2017-01-01

    Superficial acral fibromyxoma is a benign and slow-growing solitary soft-tissue neoplasm. Since being described in 2001, more than 100 cases of superficial acral fibromyxoma on the foot have been reported worldwide, none of which have been reported in the podiatric medical literature. Only nine cases of superficial acral fibromyxoma have been reported with presentation on the plantar heel. We report an unusual case of a 47-year-old Jamaican woman with a painful, erythematous nodule on her right heel that was diagnosed as superficial acral fibromyxoma.

  18. Porosity and mechanically optimized PLGA based in situ hardening systems.

    PubMed

    Schloegl, W; Marschall, V; Witting, M Y; Volkmer, E; Drosse, I; Leicht, U; Schieker, M; Wiggenhorn, M; Schaubhut, F; Zahler, S; Friess, W

    2012-11-01

    Goal of the present study was to develop and to characterize in situ-hardening, porous PLGA-based systems for their future application as bone grafting materials. Therefore, we investigated the precipitation behavior of formulations containing PLGA and a water-miscible solvent, DMSO, PEG 400, and NMP. To increase porosity, a pore forming agent (NaCMC) was added and to enhance mechanical properties of the system, an inorganic filler (α-TCP) was incorporated. The behavior upon contact with water and the influence of the prior addition of aqueous media on the morphology of the corresponding hardened implants were investigated. We proved cell-compatibility by live/dead assays for the hardened porous polymer/ceramic-composite scaffolds. The IsHS formulations can therefore be used to manufacture hardened scaffolds ex vivo by using molds with the desired shape and size. Cells were further successfully incorporated into the IsHS by precultivating the cells on the α-TCP-powder prior to their admixing to the formulation. However, cell viability could not be maintained due to toxicity of the tested solvents. But, the results demonstrate that in vivo cells should well penetrate, adhere, and proliferate in the hardened scaffolds. Consequently, we consider the in situ hardening system being an excellent candidate as a filling material for non-weight-bearing orthopedic indications, as the resulting properties of the hardened implant fulfill indication-specific needs like mechanical stability, elasticity, and porosity.

  19. An extended crystal plasticity model for latent hardening in polycrystals

    NASA Astrophysics Data System (ADS)

    Bargmann, Swantje; Svendsen, Bob; Ekh, Magnus

    2011-12-01

    In this contribution, a computational approach to modeling size-dependent self- and latent hardening in polycrystals is presented. Latent hardening is the hardening of inactive slip systems due to active slip systems. We focus attention on the investigation of glide system interaction, latent hardening and excess dislocation development. In particular, latent hardening results in a transition to patchy slip as a first indication and expression of the development of dislocation microstructures. To this end, following Nye (Acta Metall 1:153-162, 1953), Kondo (in Proceedings of the second Japan national congress for applied mechanics. Science Council of Japan, Tokyo, pp. 41-47, 1953), and many others, local deformation incompatibility in the material is adopted as a measure of the density of geometrically necessary dislocations. Their development results in additional energy being stored in the material, leading to additional kinematic-like hardening effects. A large-deformation model for latent hardening is introduced. This approach is based on direct exploitation of the dissipation principle to derive all field relations and (sufficient) forms of the constitutive relations as based on the free energy density and dissipation potential. The numerical implementation is done via a dual-mixed finite element method. A numerical example for polycrystals is presented.

  20. Metabolomic change precedes apple superficial scald symptoms.

    PubMed

    Rudell, David R; Mattheis, James P; Hertog, Maarten L A T M

    2009-09-23

    Untargeted metabolic profiling was employed to characterize metabolomic changes associated with 'Granny Smith' apple superficial scald development following 1-MCP or DPA treatment. Partial least-squares discriminant analyses were used to link metabolites with scald, postharvest treatments, and storage duration. Models revealed metabolomic differentiation between untreated controls and fruit treated with DPA or 1-MCP within 1 week following storage initiation. Metabolic divergence between controls and DPA-treated fruit after 4 weeks of storage preceded scald symptom development by 2 months. alpha-Farnesene oxidation products with known associations to scald, including conjugated trienols, 6-methyl-5-hepten-2-one, and 6-methyl-5-hepten-2-ol, were associated with presymptomatic as well as scalded control fruit. Likewise, a large group of putative triterpenoids with mass spectral features similar to those of ursolic acid and beta-sitosterol were associated with control fruit and scald. Results demonstrate that extensive metabolomic changes associated with scald precede actual symptom development.

  1. Cylindrical shell buckling through strain hardening

    SciTech Connect

    Bandyopadhyay, K.; Xu, J.; Shteyngart, S.; Gupta, D.

    1995-04-01

    Recently, the authors published results of plastic buckling analysis of cylindrical shells. Ideal elastic-plastic material behavior was used for the analysis. Subsequently, the buckling analysis program was continued with the realistic stress-strain relationship of a stainless steel alloy which does not exhibit a clear yield point. The plastic buckling analysis was carried out through the initial stages of strain hardening for various internal pressure values. The computer program BOSOR5 was used for this purpose. Results were compared with those obtained from the idealized elastic-plastic relationship using the offset stress level at 0.2% strain as the yield stress. For moderate hoop stress values, the realistic stress-grain case shows a slight reduction of the buckling strength. But, a substantial gain in the buckling strength is observed as the hoop stress approaches the yield strength. Most importantly, the shell retains a residual strength to carry a small amount of axial compressive load even when the hoop stress has exceeded the offset yield strength.

  2. Cyber situational awareness and differential hardening

    NASA Astrophysics Data System (ADS)

    Dwivedi, Anurag; Tebben, Dan

    2012-06-01

    The advent of cyber threats has created a need for a new network planning, design, architecture, operations, control, situational awareness, management, and maintenance paradigms. Primary considerations include the ability to assess cyber attack resiliency of the network, and rapidly detect, isolate, and operate during deliberate simultaneous attacks against the network nodes and links. Legacy network planning relied on automatic protection of a network in the event of a single fault or a very few simultaneous faults in mesh networks, but in the future it must be augmented to include improved network resiliency and vulnerability awareness to cyber attacks. Ability to design a resilient network requires the development of methods to define, and quantify the network resiliency to attacks, and to be able to develop new optimization strategies for maintaining operations in the midst of these newly emerging cyber threats. Ways to quantify resiliency, and its use in visualizing cyber vulnerability awareness and in identifying node or link criticality, are presented in the current work, as well as a methodology of differential network hardening based on the criticality profile of cyber network components.

  3. Weldable, age hardenable, austenitic stainless steel

    DOEpatents

    Brooks, J.A.; Krenzer, R.W.

    1975-07-22

    An age hardenable, austenitic stainless steel having superior weldability properties as well as resistance to degradation of properties in a hydrogen atmosphere is described. It has a composition of from about 24.0 to about 34.0 weight percent (w/o) nickel, from about 13.5 to about 16.0 w/o chromium, from about 1.9 to about 2.3 w/o titanium, from about 1.0 to about 1.5 w/ o molybdenum, from about 0.01 to about 0.05 w/o carbon, from about 0 to about 0.25 w/o manganese, from about 0 to about 0.01 w/o phosphorous and preferably about 0.005 w/o maximum, from about 0 to about 0.010 w/o sulfur and preferably about 0.005 w/o maximum, from about 0 to about 0.25 w/o silicon, from about 0.1 to about 0.35 w/o aluminum, from about 0.10 to about 0.50 w/o vanadium, from about 0 to about 0.0015 w/o boron, and the balance essentially iron. (auth)

  4. Design concepts for hardened communications structures

    NASA Astrophysics Data System (ADS)

    Flathau, William J.; Smith, William G.

    1990-03-01

    An important component of any hardened command and control structure is the antenna system that provides communication with the outside world. Two types of antennae were considered; i.e., the whip type and the directional. The whip type is for short range communication and the directional is for use primarily with satellites. In the super high frequency range, the use of directional antennae having parabolic dishes greater than 8 feet in diameter are common. In the very extra high frequency range, dishes that are 2 to 3 feet in diameter are used. The whip type antenna should extend up to, say, 60 feet in the air. Based on this background, a family of structures was designed that can protect whip and directional antennae from the blast and shock effects from a 1-MT device for ground surface overpressure ranging from 15,000 to 500 psi. As the antennae, transmitters, receivers, power supplies, and lifting mechanisms will be located within such structures, appropriate shock spectra plots were developed to determine if the fragility level of pertinent equipment will be exceeded and for use in designing shock isolation systems. Button up periods of 1 and 4 weeks were considered.

  5. Open Source Radiation Hardened by Design Technology

    NASA Technical Reports Server (NTRS)

    Shuler, Robert

    2016-01-01

    The proposed technology allows use of the latest microcircuit technology with lowest power and fastest speed, with minimal delay and engineering costs, through new Radiation Hardened by Design (RHBD) techniques that do not require extensive process characterization, technique evaluation and re-design at each Moore's Law generation. The separation of critical node groups is explicitly parameterized so it can be increased as microcircuit technologies shrink. The technology will be open access to radiation tolerant circuit vendors. INNOVATION: This technology would enhance computation intensive applications such as autonomy, robotics, advanced sensor and tracking processes, as well as low power applications such as wireless sensor networks. OUTCOME / RESULTS: 1) Simulation analysis indicates feasibility. 2)Compact voting latch 65 nanometer test chip designed and submitted for fabrication -7/2016. INFUSION FOR SPACE / EARTH: This technology may be used in any digital integrated circuit in which a high level of resistance to Single Event Upsets is desired, and has the greatest benefit outside low earth orbit where cosmic rays are numerous.

  6. Radiation-induced segregation, hardening, and IASCC

    SciTech Connect

    Eason, E.D.; Nelson, E.E.

    1995-12-31

    Intergranular cracking has been discovered after extended radiation exposure in several boiling water reactor (BWR) internal components made of austenitic stainless steel and nickel-based alloys. There are fewer field observations of intergranular cracking in pressurized water reactors (PWR), but failures have occurred in bolts, springs, and fuel cladding. There is concern for other PWR components, some of which will receive greater radiation doses than BWR components during the plant lifetime. This paper presents the results of an investigation on the connection between radiation induced segregation, hardening and irradiation-assisted stress corrosion cracking (IASCC). A data base was developed containing the available data on austenitic stainless steel where the grain boundary composition was measured by Field Emission Gun-Scanning Transmission Election Microscopy (FEG-STEM), the stress corrosion susceptibility was measured by constant extension rate tests (CERT) in light water reactor environments, some estimate of irradiated strength was available and the irradiation was conducted in a power reactor. The data base was analyzed using advanced data analysis techniques, including tree-structured pattern recognition and transformation analysis codes. The most sensitive variables and optimal modeling forms were identified using these techniques, then preliminary models were calibrated using nonlinear least squares. The results suggest that more than one mechanism causes IASCC.

  7. Radiation-hardened microwave communications system

    SciTech Connect

    Smith, S.F.; Crutcher, R.I.; Vandermolen, R.I. )

    1990-01-01

    The consolidated fuel reprocessing program (CFRP) at the Oak Ridge National Laboratory (ORNL) has been developing signal transmission techniques and equipment to improve the efficiency of remote handling operations for nuclear applications. These efforts have been largely directed toward the goals of (a) remotely controlling bilateral force-reflecting servomanipulators for dexterous manipulation-based operations in remote maintenance tasks and (b) providing television viewing of the work site. In September 1987, developmental microwave transceiving hardware operating with dish antennas was demonstrated in the advanced integrated maintenance system (AIMS) facility at ORNL, successfully implementing both high-quality one-way television transmissions and simultaneous bidirectional digital control data transmissions with very low error rates. Initial test results based on digital transmission at a 1.0-Mbaud data rate indicated that the error rates of the microwave system were comparable to those of a hardwired system. During these test intervals, complex manipulator operations were performed, and the AIMS transporter was moved repeatedly without adverse effects on data integrity. Results of these tests have been factored into subsequent phases of the development program, with an ultimate goal of designing a fully radiation-hardened microwave signal transmission system for use in nuclear facilities.

  8. Work hardening and work conditioning interventions: do they affect disability?

    PubMed

    Lechner, D E

    1994-05-01

    The purpose of this article is to review the research on the effectiveness of work hardening and work conditioning programs. Twelve studies of work hardening and work conditioning programs in the United States and abroad were reviewed. One study produced convincing evidence in a randomized study that a work conditioning program was useful in producing a higher percentage of return to work and an earlier return to work in a group of patients off work for at least 2 months. Another study demonstrated that a work hardening program increased the rate of return to work by 52% in patients off work for greater than 4 months. Most of the other studies reviewed suggested positive results, but more carefully documented, randomized, and controlled studies are needed to support the efficacy of these programs and to determine the optimum and most cost-effective work hardening and work conditioning interventions.

  9. Possible correlation between work-hardening and fatigue-failure

    NASA Technical Reports Server (NTRS)

    Kettunen, P. O.; Kocks, U. F.

    1969-01-01

    Conceptual theory proposes that cyclic hardening due to non-uniform strain and stress amplitudes during testing, especially during the initial application of stress to a specimen, may correlate positively with the ultimate strength of the specimen under test.

  10. Microscopic Origin of Strain Hardening in Methane Hydrate.

    PubMed

    Jia, Jihui; Liang, Yunfeng; Tsuji, Takeshi; Murata, Sumihiko; Matsuoka, Toshifumi

    2016-03-24

    It has been reported for a long time that methane hydrate presents strain hardening, whereas the strength of normal ice weakens with increasing strain after an ultimate strength. However, the microscopic origin of these differences is not known. Here, we investigated the mechanical characteristics of methane hydrate and normal ice by compressive deformation test using molecular dynamics simulations. It is shown that methane hydrate exhibits strain hardening only if the hydrate is confined to a certain finite cross-sectional area that is normal to the compression direction. For normal ice, it does not present strain hardening under the same conditions. We show that hydrate guest methane molecules exhibit no long-distance diffusion when confined to a finite-size area. They appear to serve as non-deformable units that prevent hydrate structure failure, and thus are responsible for the strain-hardening phenomenon.

  11. Stress corrosion cracking evaluation of precipitation-hardening stainless steel

    NASA Technical Reports Server (NTRS)

    Humphries, T. S.; Nelson, E. E.

    1970-01-01

    Accelerated test program results show which precipitation hardening stainless steels are resistant to stress corrosion cracking. In certain cases stress corrosion susceptibility was found to be associated with the process procedure.

  12. Computed tomographic beam-hardening artefacts: mathematical characterization and analysis.

    PubMed

    Park, Hyoung Suk; Chung, Yong Eun; Seo, Jin Keun

    2015-06-13

    This paper presents a mathematical characterization and analysis of beam-hardening artefacts in X-ray computed tomography (CT). In the field of dental and medical radiography, metal artefact reduction in CT is becoming increasingly important as artificial prostheses and metallic implants become more widespread in ageing populations. Metal artefacts are mainly caused by the beam-hardening of polychromatic X-ray photon beams, which causes mismatch between the actual sinogram data and the data model being the Radon transform of the unknown attenuation distribution in the CT reconstruction algorithm. We investigate the beam-hardening factor through a mathematical analysis of the discrepancy between the data and the Radon transform of the attenuation distribution at a fixed energy level. Separation of cupping artefacts from beam-hardening artefacts allows causes and effects of streaking artefacts to be analysed. Various computer simulations and experiments are performed to support our mathematical analysis.

  13. Microscopic Origin of Strain Hardening in Methane Hydrate

    PubMed Central

    Jia, Jihui; Liang, Yunfeng; Tsuji, Takeshi; Murata, Sumihiko; Matsuoka, Toshifumi

    2016-01-01

    It has been reported for a long time that methane hydrate presents strain hardening, whereas the strength of normal ice weakens with increasing strain after an ultimate strength. However, the microscopic origin of these differences is not known. Here, we investigated the mechanical characteristics of methane hydrate and normal ice by compressive deformation test using molecular dynamics simulations. It is shown that methane hydrate exhibits strain hardening only if the hydrate is confined to a certain finite cross-sectional area that is normal to the compression direction. For normal ice, it does not present strain hardening under the same conditions. We show that hydrate guest methane molecules exhibit no long-distance diffusion when confined to a finite-size area. They appear to serve as non-deformable units that prevent hydrate structure failure, and thus are responsible for the strain-hardening phenomenon. PMID:27009239

  14. Feasibility of Underwater Friction Stir Welding of Hardenable Alloy Steel

    DTIC Science & Technology

    2010-12-01

    bead-on-plate FSW traverses, approximately 64 inches (1.6 m) in total length, on 0.25 inch (6.4 mm) thick plates of a hardenable alloy steel . The...base plate. Based on preliminary findings, FSW of hardenable alloy steel is a feasible process and should be further researched and refined. 15...v ABSTRACT The objective of this thesis is to determine whether friction stir welding ( FSW ) is a feasible welding process for steels in an

  15. Analytical considerations of beam hardening in medical accelerator photon spectra.

    PubMed

    Kleinschmidt, C

    1999-09-01

    Beam hardening is a well-known phenomenon for therapeutic accelerator beams passing through matter in narrow beam geometry. This study assesses quantitatively the magnitude of beam hardening of therapeutic beams in water. A formal concept of beam hardening is proposed which is based on the decrease of the mean attenuation coefficient with depth. On the basis of this concept calculations of beam hardening effects are easily performed by means of a commercial spreadsheet program. Published accelerator spectra and the tabulated values of attenuation coefficients serve as input for these calculations. It is shown that the mean attenuation coefficient starts at depth zero with an almost linear decrease and then slowly levels off to a limit value. A similar behavior is found for the beam hardening coefficient. A physically reasonable, semianalytical model is given which fits the data better than previously published functions. The energy dependence of the initial attenuation coefficient is evaluated and shown. It fits well to published experimental data. The initial beam hardening coefficient, however, shows no energy dependence. Its mean value (eta0) approximately 0.006 cm(-1)) is also in close agreement to the measured data.

  16. A study of latent hardening behavior in aluminum single crystals

    SciTech Connect

    Wang Mingzhang; Lin Shi; Li Chenghua; Xiao Jimei; Wang Zhongguang

    1996-11-15

    In order to obtain a better understanding or a complete description of plastic properties of polycrystals, especially in polycrystal modelling viewpoint, investigations on latent hardening behavior of single crystals have been performed in a great number. Recently, however, Wu et al. have pointed out that the definition of the yield stress of latent system using the conventional back extrapolation is ambiguous in terms of determining the latent hardening moduli because the initial rapid work-hardening of the transient zone is neglected. They proposed a more precise measure of the yield stress of latent system based on the decrease of the tangent modulus from the linear elastic modulus, and showed that the latent hardening, which would not plus the initial work-hardening of the transient zone, is actually lower than that obtained from the backward extrapolation. Thus, in their opinion, it is considered that the hardening behavior of latent system (such as the directionality, the effects of relative orientation and prestrain) need be newly or further studied in detail. Single crystals of aluminum have been grown with high purity to investigate this behavior.

  17. Extracting material response from simple mechanical tests on hardening-softening-hardening viscoplastic solids

    NASA Astrophysics Data System (ADS)

    Mohan, Nisha

    Compliant foams are usually characterized by a wide range of desirable mechanical properties. These properties include viscoelasticity at different temperatures, energy absorption, recoverability under cyclic loading, impact resistance, and thermal, electrical, acoustic and radiation-resistance. Some foams contain nano-sized features and are used in small-scale devices. This implies that the characteristic dimensions of foams span multiple length scales, rendering modeling their mechanical properties difficult. Continuum mechanics-based models capture some salient experimental features like the linear elastic regime, followed by non-linear plateau stress regime. However, they lack mesostructural physical details. This makes them incapable of accurately predicting local peaks in stress and strain distributions, which significantly affect the deformation paths. Atomistic methods are capable of capturing the physical origins of deformation at smaller scales, but suffer from impractical computational intensity. Capturing deformation at the so-called meso-scale, which is capable of describing the phenomenon at a continuum level, but with some physical insights, requires developing new theoretical approaches. A fundamental question that motivates the modeling of foams is `how to extract the intrinsic material response from simple mechanical test data, such as stress vs. strain response?' A 3D model was developed to simulate the mechanical response of foam-type materials. The novelty of this model includes unique features such as the hardening-softening-hardening material response, strain rate-dependence, and plastically compressible solids with plastic non-normality. Suggestive links from atomistic simulations of foams were borrowed to formulate a physically informed hardening material input function. Motivated by a model that qualitatively captured the response of foam-type vertically aligned carbon nanotube (VACNT) pillars under uniaxial compression [2011,"Analysis of

  18. High-Performance, Radiation-Hardened Electronics for Space Environments

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.; Watson, Michael D.; Frazier, Donald O.; Adams, James H.; Johnson, Michael A.; Kolawa, Elizabeth A.

    2007-01-01

    The Radiation Hardened Electronics for Space Environments (RHESE) project endeavors to advance the current state-of-the-art in high-performance, radiation-hardened electronics and processors, ensuring successful performance of space systems required to operate within extreme radiation and temperature environments. Because RHESE is a project within the Exploration Technology Development Program (ETDP), RHESE's primary customers will be the human and robotic missions being developed by NASA's Exploration Systems Mission Directorate (ESMD) in partial fulfillment of the Vision for Space Exploration. Benefits are also anticipated for NASA's science missions to planetary and deep-space destinations. As a technology development effort, RHESE provides a broad-scoped, full spectrum of approaches to environmentally harden space electronics, including new materials, advanced design processes, reconfigurable hardware techniques, and software modeling of the radiation environment. The RHESE sub-project tasks are: SelfReconfigurable Electronics for Extreme Environments, Radiation Effects Predictive Modeling, Radiation Hardened Memory, Single Event Effects (SEE) Immune Reconfigurable Field Programmable Gate Array (FPGA) (SIRF), Radiation Hardening by Software, Radiation Hardened High Performance Processors (HPP), Reconfigurable Computing, Low Temperature Tolerant MEMS by Design, and Silicon-Germanium (SiGe) Integrated Electronics for Extreme Environments. These nine sub-project tasks are managed by technical leads as located across five different NASA field centers, including Ames Research Center, Goddard Space Flight Center, the Jet Propulsion Laboratory, Langley Research Center, and Marshall Space Flight Center. The overall RHESE integrated project management responsibility resides with NASA's Marshall Space Flight Center (MSFC). Initial technology development emphasis within RHESE focuses on the hardening of Field Programmable Gate Arrays (FPGA)s and Field Programmable Analog

  19. Aluminide coatings

    SciTech Connect

    Henager, Jr; Charles, H; Shin, Yongsoon; Samuels, William D

    2009-08-18

    Disclosed herein are aluminide coatings. In one embodiment coatings are used as a barrier coating to protect a metal substrate, such as a steel or a superalloy, from various chemical environments, including oxidizing, reducing and/or sulfidizing conditions. In addition, the disclosed coatings can be used, for example, to prevent the substantial diffusion of various elements, such as chromium, at elevated service temperatures. Related methods for preparing protective coatings on metal substrates are also described.

  20. COATED ALLOYS

    DOEpatents

    Harman, C.G.; O'Bannon, L.S.

    1958-07-15

    A coating is described for iron group metals and alloys, that is particularly suitable for use with nickel containing alloys. The coating is glassy in nature and consists of a mixture containing an alkali metal oxide, strontium oxide, and silicon oxide. When the glass coated nickel base metal is"fired'' at less than the melting point of the coating, it appears the nlckel diffuses into the vitreous coating, thus providing a closely adherent and protective cladding.

  1. Superficial Fibromatosis Mimicking Glomus Tumor of the Second Toe

    PubMed Central

    Jo, Hyang Jeong; Kim, Gang Deuk; Kim, Yeung Jin; Choi, Deok Hwa; Park, Jae In

    2015-01-01

    Various types of tumor can occur in the subungual space, including glomus tumors, subungual exostosis, hemangioma, epidermal cysts, and malignant tumors. While fibromatosis can occur at various sites throughout the body, it is very rarely seen in the toe. Here, we are the first to report a case of superficial fibromatosis mimicking a glomus tumor in the subungual space of the second toe. The presentation of this condition shows the possibility of encountering uncommon superficial fibromatosis in the distal phalanx of the toe, and suggests that superficial fibromatosis should be included in the differential diagnosis of a glomus tumor in the toe. PMID:26330970

  2. Process design of press hardening with gradient material property influence

    SciTech Connect

    Neugebauer, R.; Schieck, F.; Rautenstrauch, A.

    2011-05-04

    Press hardening is currently used in the production of automotive structures that require very high strength and controlled deformation during crash tests. Press hardening can achieve significant reductions of sheet thickness at constant strength and is therefore a promising technology for the production of lightweight and energy-efficient automobiles. The manganese-boron steel 22MnB5 have been implemented in sheet press hardening owing to their excellent hot formability, high hardenability, and good temperability even at low cooling rates. However, press-hardened components have shown poor ductility and cracking at relatively small strains. A possible solution to this problem is a selective increase of steel sheet ductility by press hardening process design in areas where the component is required to deform plastically during crash tests. To this end, process designers require information about microstructure and mechanical properties as a function of the wide spectrum of cooling rates and sequences and austenitizing treatment conditions that can be encountered in production environments. In the present work, a Continuous Cooling Transformation (CCT) diagram with corresponding material properties of sheet steel 22MnB5 was determined for a wide spectrum of cooling rates. Heating and cooling programs were conducted in a quenching dilatometer. Motivated by the importance of residual elasticity in crash test performance, this property was measured using a micro-bending test and the results were integrated into the CCT diagrams to complement the hardness testing results. This information is essential for the process design of press hardening of sheet components with gradient material properties.

  3. Improved wound healing in blue LED treated superficial abrasions

    NASA Astrophysics Data System (ADS)

    Rossi, Francesca; Tatini, Francesca; Pini, Roberto; Bacci, Stefano; De Siena, Gaetano; Cicchi, Riccardo; Pavone, Francesco; Alfieri, Domenico

    2013-06-01

    A blue-LED photocoagulator device was designed in order to induce a selective photocoagulation effect in superficial bleeding. An in vivo study in rat back skin evidenced an improved healing process in the LED treated abrasions.

  4. Solute hardening and softening effects in B2 nickel aluminides

    SciTech Connect

    Pike, L.M.; Liu, C.T.; Anderson, I.M.; Chang, Y.A.

    1998-11-01

    The effect of substitutional solute additions including Fe, Mn, and Pd on the hardness of B2-ordered NiAl alloys was investigated. The solid solution hardening behavior of intermetallics is more complex than that of typical metallic solid solutions because of complications arising from the site preference of the solute as well as the effects of the solute on the concentrations of other point defects, e.g., vacancies and anti-site defects. For this reason, care was taken to experimentally establish solute site preferences and point defect concentrations in the NiAl alloys before analyzing the hardness data. By taking these factors into account it was possible to rationalize the observed unusual hardening effects. Three distinct categories of solid solution hardening behavior were encountered. The first was hardening by the solute addition itself. This was observed in the case of Pd additions to Al-poor NiAl. However, when fe or Mn is added to Al-poor NiAl a second category is observed; these elements are seen to soften the material. The third category of behavior is observed when Fe is added to NiAl with a constant Al concentration of 50 at. %. In this case it is vacancies, rather than solute atoms, which harden the material.

  5. Computer modelling of age hardening for cast aluminium alloys

    NASA Astrophysics Data System (ADS)

    Wu, Linda; Ferguson, W. George

    2009-08-01

    Age hardening, or precipitation hardening, is one of the most widely adopted techniques for strengthening of aluminium alloys. Although various age hardening models have been developed for aluminium alloys, from the large volume of literature reviewed, it appears that the bulk of the research has been concentrated on wrought aluminium alloys, only a few of the established precipitation models have been applied to the casting aluminium alloys. In the present work, there are two modelling methods that have been developed and applied to the casting aluminium alloys A356 and A357. One is based on the Shercliff-Ashby methodology to produce a process model, by which we mean a mathematical relationship between process variables (alloy composition, ageing temperature and time) and material properties (yield strength or hardness) through microstructure evolution (precipitate radius, volume fraction). The other method is based on the Kampmann and Wagner Numerical (KWN) model which deals with concomitant nucleation, growth and coarsening and is thus capable of predicting the full evolution of the particle size distribution and then a strength model is used to evaluate the resulting change in hardness or yield strength at room temperature by taking into account contributions from lattice resistance, solid solution hardening and precipitation hardening.

  6. Mechanical properties of V-4Cr-4Ti alloy after first-wall coating with tungsten

    NASA Astrophysics Data System (ADS)

    Nagasaka, Takuya; Muroga, Takeo; Watanabe, Hideo; Kasada, Ryuta; Iwata, Noriyuki; Kimura, Akihiko

    2011-10-01

    A first-wall coating was fabricated with tungsten on a reference V-4Cr-4Ti alloy (NIFS-HEAT-2, NH2) substrate by a vacuum plasma spray (VPS) process and brazing (BR). The hardness, fracture stress, and elastic modulus of tungsten (W) coating applied by the vacuum plasma spray process (VPS-W) were lower than the tungsten used for brazing (BR-W). The low mass density and defects of VPS-W are thought to be responsible for the degradation of the strength. The NH2 substrate indicated hardening and embrittlement produced by the W coating and some post-coating heat treatment (PCHT). Hardening and embrittlement by a VPS coating can be recovered by removing hydrogen from the NH2 substrate in a vacuum by annealing at 673 K. Oxygen transfer from the W coating to the NH2 substrate was indicated above 1173 K but did not induce embrittlement of the substrate. Hardening by the BR process can be recovered by PCHT at 1273 K, but embrittlement was not improved. The mechanisms of the hardening and embrittlement are discussed based on a microstructural analysis.

  7. Altered Superficial White Matter on Tractography MRI in Alzheimer's Disease

    PubMed Central

    Reginold, William; Luedke, Angela C.; Itorralba, Justine; Fernandez-Ruiz, Juan; Islam, Omar; Garcia, Angeles

    2016-01-01

    Background/Aims Superficial white matter provides extensive cortico-cortical connections. This tractography study aimed to assess the diffusion characteristics of superficial white matter tracts in Alzheimer's disease. Methods Diffusion tensor 3T magnetic resonance imaging scans were acquired in 24 controls and 16 participants with Alzheimer's disease. Neuropsychological test scores were available in some participants. Tractography was performed by the Fiber Assignment by Continuous Tracking (FACT) method. The superficial white matter was manually segmented and divided into frontal, parietal, temporal and occipital lobes. The mean diffusivity (MD), radial diffusivity (RD), axial diffusivity (AxD) and fractional anisotropy (FA) of these tracts were compared between controls and participants with Alzheimer's disease and correlated with available cognitive tests while adjusting for age and white matter hyperintensity volume. Results Alzheimer's disease was associated with increased MD (p = 0.0011), increased RD (p = 0.0019) and increased AxD (p = 0.0017) in temporal superficial white matter. In controls, superficial white matter was associated with the performance on the Montreal Cognitive Assessment, Stroop and Trail Making Test B tests, whereas in Alzheimer's disease patients, it was not associated with the performance on cognitive tests. Conclusion Temporal lobe superficial white matter appears to be disrupted in Alzheimer's disease. PMID:27489557

  8. Branching structure and strain hardening of branched metallocene polyethylenes

    SciTech Connect

    Torres, Enrique; Li, Si-Wan; Costeux, Stéphane; Dealy, John M.

    2015-09-15

    There have been a number of studies of a series of branched metallocene polyethylenes (BMPs) made in a solution, continuous stirred tank reactor (CSTR) polymerization. The materials studied vary in branching level in a systematic way, and the most highly branched members of the series exhibit mild strain hardening. An outstanding question is which types of branched molecules are responsible for strain hardening in extension. This question is explored here by use of polymerization and rheological models along with new data on the extensional flow behavior of the most highly branched members of the set. After reviewing all that is known about the effects of various branching structures in homogeneous polymers and comparing this with the structures predicted to be present in BMPs, it is concluded that in spite of their very low concentration, treelike molecules with branch-on-branch structure provide a large number of deeply buried inner segments that are essential for strain hardening in these polymers.

  9. Secondary hardening steel having improved combination of hardness and toughness

    DOEpatents

    Parker, Earl R.; Zackay, Victor F.; Bhat, Manjeshwar S.; Garrison, Jr., Warren M.

    1979-01-01

    A secondary hardening alloy steel composition consisting essentially of about 0.25-0.5% carbon, about 0.5-1.0% manganese, about 1.5-3.0% nickel, about 0-1.0% chromium, about 1.75-2.5% molybdenum, about 0-0.4% vanadium, and an additive selected from about 1-3% aluminum and a combination of at least about 1% aluminum and at least about 1% silicon for a combined Al+Si content of about 2-4%, the balance being iron and impurity elements. The present steel composition has the following characteristics: it exhibits a flat tempering response, it is hardenable upon tempering to a Rockwell C hardness of at least 50, and it has an improved combination of hardness vs. toughness properties after tempering in the secondary hardening range. A method of preparation is also described.

  10. Ion-irradiation-induced hardening in Inconel 718

    NASA Astrophysics Data System (ADS)

    Hunn, J. D.; Lee, E. H.; Byun, T. S.; Mansur, L. K.

    2001-07-01

    Inconel 718 is a material under consideration for areas in the target region of the spallation neutron source (SNS), now under construction at Oak Ridge National Laboratory (ORNL) in the US. In these positions, displacement damage from protons and neutrons will affect the mechanical properties. In addition, significant amounts of helium and hydrogen will build up in the material due to transmutation reactions. Nanoindentation measurements of solution-annealed (SA) Inconel 718 specimens, implanted with Fe-, He-, and H-ions to simulate SNS target radiation conditions, have shown that hardening occurs due to ion-induced displacement damage as well as due to the build-up of helium bubbles in the irradiated layer. Precipitation-hardened (PH) Inconel 718 also exhibited hardening by helium build-up but showed softening as a function of displacement damage due to dissolution of the γ ' and γ″ precipitates.

  11. Kinematic Hardening: Characterization, Modeling and Impact on Springback Prediction

    SciTech Connect

    Alves, J. L.; Bouvier, S.; Jomaa, M.; Billardon, R.

    2007-05-17

    The constitutive modeling of the materials' mechanical behavior, usually carried out using a phenomenological constitutive model, i.e., a yield criterion associated to the isotropic and kinematic hardening laws, is of paramount importance in the FEM simulation of the sheet metal forming processes, as well as in the springback prediction. Among others, the kinematic behavior of the yield surface plays an essential role, since it is indispensable to describe the Bauschinger effect, i.e., the materials' answer to the multiple tension-compression cycles to which material points are submitted during the forming process. Several laws are usually used to model and describe the kinematic hardening, namely: a) the Prager's law, which describes a linear evolution of the kinematic hardening with the plastic strain rate tensor b) the Frederick-Armstrong non-linear kinematic hardening, basically a non-linear law with saturation; and c) a more advanced physically-based law, similar to the previous one but sensitive to the strain path changes. In the present paper a mixed kinematic hardening law (linear + non-linear behavior) is proposed and its implementation into a static fully-implicit FE code is described. The material parameters identification for sheet metals using different strategies, and the classical Bauschinger loading tests (i.e. in-plane forward and reverse monotonic loading), are addressed, and their impact on springback prediction evaluated. Some numerical results concerning the springback prediction of the Numisheet'05 Benchmark no. 3 are briefly presented to emphasize the importance of a correct modeling and identification of the kinematic hardening behavior.

  12. Determination of Anisotropic Hardening of Sheet Metals by Shear Tests

    SciTech Connect

    Schikorra, Marco; Brosius, Alexander; Kleiner, Matthias

    2005-08-05

    With regard to the increasing necessity of accurate material data determination for the prediction of springback, a material testing equipment has been developed and set up for the measurement of material hardening within cyclic loading. One reason for inaccurate springback predictions can be seen in a missing consideration of load reversal effects in a realistic material model description. Due to bending and unbending while the material is drawn from the flange over a radius of a deep drawing tool, a hardening takes place which leads to an expanding or shifting of the elastic area and yield locus known as isotropic, kinematic, or combined hardening. Since springback is mainly influenced by the actual stress state and a correct distinction between elastic and elastic-plastic regions, an accurate prediction of these stress and strain components is basically required to simulate springback accurately, too. The presented testing method deals with shearing of sheet metal specimens in one or more load cycles to analyze the change of yield point and yield curve. The experimental set up is presented and discussed and the results are shown for different materials such as aluminum A199.5, stainless steel X5CrNi18.10, dual phase steel DP600, and copper Cu99.99. To guarantee a wide experimental range, different sheet thicknesses were used additionally. Simulations using the finite element method were carried out to compare the measured results with calculated results from different yield criterions and different hardening laws mentioned above. It was possible to show that commonly used standard material hardening laws like isotropic and kinematic hardening laws often do not lead to accurate stress state predictions when load reversals occur. The work shows the range of occurring differences and strategies to obtain to a more reliable prediction.

  13. Why semiconductors must be hardened when used in space

    SciTech Connect

    Winokur, P. S.

    2000-01-04

    The natural space radiation environment presents a great challenge to present and future satellite systems with significant assets in space. Defining requirements for such systems demands knowledge about the space radiation environment and its effects on electronics and optoelectronics technologies, as well as suitable risk assessment of the uncertainties involved. For mission of high radiation levels, radiation-hardened integrated circuits will be required to preform critical mission functions. The most successful systems in space will be those that are best able to blend standard commercial electronics with custom radiation-hardened electronics in a mix that is suitable for the system of interest.

  14. Atomistic mechanisms of cyclic hardening in metallic glass

    NASA Astrophysics Data System (ADS)

    Deng, Chuang; Schuh, Christopher A.

    2012-06-01

    Molecular dynamics with an embedded-atom method potential is used to simulate the nanoindentation of Cu63.5Zr36.5 metallic glasses. In particular, the effects of cyclic loading within the nominal elastic range on the overall strength and plasticity of metallic glass are studied. The simulated results are in line with the characteristics of experimentally observed hardening effects. In addition, analysis based on local von Mises strain suggests that the hardening is induced by confined microplasticity and stiffening in regions of the originally preferred yielding path, requiring a higher applied load to trigger a secondary one.

  15. Strain hardening in polymer glasses: limitations of network models.

    PubMed

    Hoy, Robert S; Robbins, Mark O

    2007-09-14

    Simulations are used to examine the microscopic origins of strain hardening in polymer glasses. While traditional entropic network models can be fit to the total stress, their underlying assumptions are inconsistent with simulation results. There is a substantial energetic contribution to the stress that rises rapidly as segments between entanglements are pulled taut. The thermal component of stress is less sensitive to entanglements, mostly irreversible, and directly related to the rate of local plastic rearrangements. Entangled and unentangled chains show the same strain hardening when plotted against the microscopic chain orientation rather than the macroscopic strain.

  16. Statistical thermodynamics of strain hardening in polycrystalline solids.

    PubMed

    Langer, J S

    2015-09-01

    This paper starts with a systematic rederivation of the statistical thermodynamic equations of motion for dislocation-mediated plasticity proposed in 2010 by Langer, Bouchbinder, and Lookman [Acta Mat. 58, 3718 (2010)ACMAFD1359-645410.1016/j.actamat.2010.03.009]. It then uses that theory to explain the anomalous rate-hardening behavior reported in 1988 by Follansbee and Kocks and to explore the relation between hardening rate and grain size reported in 1995 by Meyers et al. A central theme is the need for physics-based, nonequilibrium analyses in developing predictive theories of the strength of polycrystalline materials.

  17. Method and apparatus for welding precipitation hardenable materials

    DOEpatents

    Murray, Jr., Holt; Harris, Ian D.; Ratka, John O.; Spiegelberg, William D.

    1994-01-01

    A method for welding together members consisting of precipitation age hardened materials includes the steps of selecting a weld filler material that has substantially the same composition as the materials being joined, and an age hardening characteristic temperature age threshold below that of the aging kinetic temperature range of the materials being joined, whereby after welding the members together, the resulting weld and heat affected zone (HAZ) are heat treated at a temperature below that of the kinetic temperature range of the materials joined, for obtaining substantially the same mechanical characteristics for the weld and HAZ, as for the parent material of the members joined.

  18. Method and apparatus for welding precipitation hardenable materials

    DOEpatents

    Murray, H. Jr.; Harris, I.D.; Ratka, J.O.; Spiegelberg, W.D.

    1994-06-28

    A method for welding together members consisting of precipitation age hardened materials includes the steps of selecting a weld filler material that has substantially the same composition as the materials being joined, and an age hardening characteristic temperature age threshold below that of the aging kinetic temperature range of the materials being joined, whereby after welding the members together, the resulting weld and heat affected zone (HAZ) are heat treated at a temperature below that of the kinetic temperature range of the materials joined, for obtaining substantially the same mechanical characteristics for the weld and HAZ, as for the parent material of the members joined. 5 figures.

  19. Impact of Scaled Technology on Radiation Testing and Hardening

    NASA Technical Reports Server (NTRS)

    LaBel, Kenneth A.; Cohn, Lewis M.

    2005-01-01

    This presentation gives a brief overview of some of the radiation challenges facing emerging scaled digital technologies with implications on using consumer grade electronics and next generation hardening schemes. Commercial semiconductor manufacturers are recognizing some of these issues as issues for terrestrial performance. Looking at means of dealing with soft errors. The thinned oxide has indicated improved TID tolerance of commercial products hardened by "serendipity" which does not guarantee hardness or say if the trend will continue. This presentation also focuses one reliability implications of thinned oxides.

  20. Temperature influence on water transport in hardened cement pastes

    SciTech Connect

    Drouet, Emeline; Poyet, Stéphane; Torrenti, Jean-Michel

    2015-10-15

    Describing water transport in concrete is an important issue for the durability assessment of radioactive waste management reinforced concrete structures. Due to the waste thermal output such structures would be submitted to moderate temperatures (up to 80 °C). We have then studied the influence of temperature on water transport within hardened cement pastes of four different formulations. Using a simplified approach (describing only the permeation of liquid water) we characterized the properties needed to describe water transport (up to 80 °C) using dedicated experiments. For each hardened cement paste the results are presented and discussed.

  1. Precipitation hardening of a novel aluminum matrix composite

    SciTech Connect

    Suarez, Oscar Marcelo

    2002-09-15

    Deterioration of properties in cast aluminum matrix composites (AMCs) due to matrix/reinforcement chemical reactions is absent when AlB{sub 2} particles are used as reinforcements. This communication reports the fabrication of a heat-treatable AMC reinforced with borides. Final hardness values can be adjusted by solution and precipitation, which harden the composite. Evolution of the microstructure is concisely presented as observed by secondary electron microscopy. Precipitation hardening of the aluminum matrix, observed by microhardness measurements, has been corroborated by differential thermal analysis.

  2. Statistical thermodynamics of strain hardening in polycrystalline solids

    DOE PAGES

    Langer, James S.

    2015-09-18

    This paper starts with a systematic rederivation of the statistical thermodynamic equations of motion for dislocation-mediated plasticity proposed in 2010 by Langer, Bouchbinder, and Lookman. The paper then uses that theory to explain the anomalous rate-hardening behavior reported in 1988 by Follansbee and Kocks and to explore the relation between hardening rate and grain size reported in 1995 by Meyers et al. A central theme is the need for physics-based, nonequilibrium analyses in developing predictive theories of the strength of polycrystalline materials.

  3. Strain Hardening in Polymer Glasses: Limitations of Network Models

    NASA Astrophysics Data System (ADS)

    Hoy, Robert S.; Robbins, Mark O.

    2007-09-01

    Simulations are used to examine the microscopic origins of strain hardening in polymer glasses. While traditional entropic network models can be fit to the total stress, their underlying assumptions are inconsistent with simulation results. There is a substantial energetic contribution to the stress that rises rapidly as segments between entanglements are pulled taut. The thermal component of stress is less sensitive to entanglements, mostly irreversible, and directly related to the rate of local plastic rearrangements. Entangled and unentangled chains show the same strain hardening when plotted against the microscopic chain orientation rather than the macroscopic strain.

  4. Investigation of the structure and properties of boron-containing coatings obtained by electron-beam treatment

    SciTech Connect

    Krivezhenko, Dina S. Drobyaz, Ekaterina A. Bataev, Ivan A. Chuchkova, Lyubov V.

    2015-10-27

    An investigation of surface-hardened materials obtained by cladding with an electron beam injected into the air atmosphere was carried out. Structural investigations of coatings revealed that an increase in boron carbide concentration in a saturating mixture contributed to a rise of a volume fraction of iron borides in coatings. The maximum hardened depth reached 2 mm. Hardened layers were characterized by the formation of heterogeneous structure which consisted of iron borides and titanium carbides distributed uniformly in the eutectic matrix. Areas of titanium boride conglomerations were detected. It was found that an increase in the boron carbide content led to an enhancement in hardness of the investigated materials. Friction testing against loosely fixed abrasive particles showed that electron-beam cladding of powder mixtures containing boron carbides, titanium, and iron in air atmosphere allowed enhancing a resistance of materials hardened in two times.

  5. Defect Detection in Composite Coatings by Computational Simulation Aided Thermography

    NASA Astrophysics Data System (ADS)

    Almeida, R. M.; Souza, M. P. V.; Rebello, J. M. A.

    2010-02-01

    Thermography is based on the measurement of superficial temperature distribution of an object inspected subjected to tension, normally thermal heat. This measurement is performed with a thermographic camera that detects the infrared radiation emitted by every object. In this work thermograph was simulated by COMSOL software for optimize experimental parameters in composite material coatings inspection.

  6. Biochemical composition of the superficial layer of articular cartilage.

    PubMed

    Crockett, R; Grubelnik, A; Roos, S; Dora, C; Born, W; Troxler, H

    2007-09-15

    To gain more information on the mechanism of lubrication in articular joints, the superficial layer of bovine articular cartilage was mechanically removed in a sheet of ice that formed on freezing the cartilage. Freeze-dried samples contained low concentrations of chondroitin sulphate and protein. Analysis of the protein by SDS PAGE showed that the composition of the sample was comparable to that of synovial fluid (SF). Attenuated total reflection infrared (ATR-IR) spectroscopy of the dried residue indicated that the sample contained mostly hyaluronan. Moreover, ATR-IR spectroscopy of the upper layer of the superficial layer, adsorbed onto silicon, showed the presence of phospholipids. A gel could be formed by mixing hyaluronan and phosphatidylcholine in water with mechanical properties similar to those of the superficial layer on cartilage. Much like the superficial layer of natural cartilage, the surface of this gel became hydrophobic on drying out. Thus, it is proposed that the superficial layer forms from hyaluronan and phospholipids, which associate by hydrophobic interactions between the alkyl chains of the phospholipids and the hydrophobic faces of the disaccharide units in hyaluronan. This layer is permeable to material from the SF and the cartilage, as shown by the presence of SF proteins and chondroitin sulphate. As the cartilage dries out after removal from the joint, the phospholipids migrate towards the surface of the superficial layer to reduce the surface tension. It is also proposed that the highly efficient lubrication in articular joints can, at least in part, be attributed to the ability of the superficial layer to adsorb and hold water on the cartilage surface, thus creating a highly viscous boundary protection.

  7. Superficial cooling inhibits force loss in damaged muscle.

    PubMed

    Kinugasa, R; Kuchiki, K; Tono, T; Horii, A

    2008-09-01

    The purpose of the study was to determine the effect of muscle damage with and without superficial cooling on force and neural activation of the triceps surae muscles. Seven men performed maximal plantarflexion contractions with and without superficial cooling over the medial gastrocnemius, before, immediate after, and 2 days after transcutaneous electrical stimulation for the medial gastrocnemius, respectively. Transcutaneous electrical stimulation was used to induce muscle damage. The normalized value, which was expressed as percentages of the corresponding relative values obtained before transcutaneous electrical stimulation to after transcutaneous electrical stimulation, of peak torque and integrated electromyogram for the soleus were significantly greater with than without superficial cooling. There was a significant correlation in normalized integrated electromyogram between the medial gastrocnemius and soleus. We conclude that superficial cooling appears to have reduced the magnitude of force loss during maximal voluntary contraction following damage to one of the muscles and the synergistic muscle activation may have contributed to the better force maintenance. The implications of this study are that TES enables more selective damage of muscle than standard protocols, and that superficial cooling over a damaged muscle may have an important role in the acute treatment of muscle injuries.

  8. Hardening digital systems with distributed functionality: robust networks

    NASA Astrophysics Data System (ADS)

    Vaskova, Anna; Portela-Garcia, Marta; Garcia-Valderas, Mario; López-Ongil, Celia; Portilla, Jorge; Valverde, Juan; de la Torre, Eduardo; Riesgo, Teresa

    2013-05-01

    Collaborative hardening and hardware redundancy are nowadays the most interesting solutions in terms of fault tolerance achieved and low extra cost imposed to the project budget. Thanks to the powerful and cheap digital devices that are available in the market, extra processing capabilities can be used for redundant tasks, not only in early data processing (sensed data) but also in routing and interfacing1

  9. Total dose performance of radiation hardened voltage regulators and references

    NASA Technical Reports Server (NTRS)

    McClure, S.; Gorelick, J.; Pease, R.; Rax, B.; Ladbury, R.

    2001-01-01

    Total dose test of commercially available radiation hardened bipolar voltage regulators and references show reduced sensitivity to dose rate and varying sensitivity to bias under pressure. Behavior of critical parameters in different dose rate and bias conditions is compared and the impact to hardness assurance methodology is discussed.

  10. A radiation-hardened 16/32-bit microprocessor

    SciTech Connect

    Hass, K.J.; Treece, R.K.; Giddings, A.E.

    1989-01-01

    A radiation-hardened 16/32-bit microprocessor has been fabricated and tested. Our initial evaluation has demonstrated that it is functional after a total gamma dose of 5Mrad(Si) and is immune to SEU from Krypton ions. 3 refs., 2 figs.

  11. Strain hardening of polymer glasses: entanglements, energetics, and plasticity.

    PubMed

    Hoy, Robert S; Robbins, Mark O

    2008-03-01

    Simulations are used to examine the microscopic origins of strain hardening in polymer glasses. While stress-strain curves for a wide range of temperature can be fit to the functional form predicted by entropic network models, many other results are fundamentally inconsistent with the physical picture underlying these models. Stresses are too large to be entropic and have the wrong trend with temperature. The most dramatic hardening at large strains reflects increases in energy as chains are pulled taut between entanglements rather than a change in entropy. A weak entropic stress is only observed in shape recovery of deformed samples when heated above the glass transition. While short chains do not form an entangled network, they exhibit partial shape recovery, orientation, and strain hardening. Stresses for all chain lengths collapse when plotted against a microscopic measure of chain stretching rather than the macroscopic stretch. The thermal contribution to the stress is directly proportional to the rate of plasticity as measured by breaking and reforming of interchain bonds. These observations suggest that the correct microscopic theory of strain hardening should be based on glassy state physics rather than rubber elasticity.

  12. BUSFET - A Novel Radiation-Hardened SOI Transistor

    SciTech Connect

    Dodd, P.E.; Draper, B.L.; Schwank, J.R.; Shaneyfelt, M.R.

    1999-02-04

    A partially-depleted SOI transistor structure has been designed that does not require the use of specially-processed hardened buried oxides for total-dose hardness and maintains the intrinsic SEU and dose rate hardness advantages of SOI technology.

  13. 49. INTERIOR VIEW OF HARDENER AREA SHOWING GAUGE THAT MEASURES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    49. INTERIOR VIEW OF HARDENER AREA SHOWING GAUGE THAT MEASURES HARDNESS, THE NAIL MUST BREAK IN THE CENTER RANGE OF THE CURVED BAR TO HAVE THE CORRECT HARDNESS (THE NAIL WILL BREAK TOO EASILY IF TOO HARD AND WILL BEND TOO MUCH IF TOO SOFT) - LaBelle Iron Works, Thirtieth & Wood Streets, Wheeling, Ohio County, WV

  14. Iterative Beam Hardening Correction for Multi-Material Objects.

    PubMed

    Zhao, Yunsong; Li, Mengfei

    2015-01-01

    In this paper, we propose an iterative beam hardening correction method that is applicable for the case with multiple materials. By assuming that the materials composing scanned object are known and that they are distinguishable by their linear attenuation coefficients at some given energy, the beam hardening correction problem is converted into a nonlinear system problem, which is then solved iteratively. The reconstructed image is the distribution of linear attenuation coefficient of the scanned object at a given energy. So there are no beam hardening artifacts in the image theoretically. The proposed iterative scheme combines an accurate polychromatic forward projection with a linearized backprojection. Both forward projection and backprojection have high degree of parallelism, and are suitable for acceleration on parallel systems. Numerical experiments with both simulated data and real data verifies the validity of the proposed method. The beam hardening artifacts are alleviated effectively. In addition, the proposed method has a good tolerance on the error of the estimated x-ray spectrum.

  15. Surface hardening of parts from ferrite-pearlite gray iron

    NASA Astrophysics Data System (ADS)

    Gurevich, Yu. G.; Ovsyannikov, V. E.; Marfitsyn, V. V.; Frolov, V. A.

    2011-10-01

    The possibility of a simple method of chromizing of parts from ferrite-pearlite gray iron is studied theoretically and proved experimentally. A process for diffusion chromizing of parts from this iron is suggested. When followed by surface hardening the process yields a high-hardness surface layer with abrasive strength comparable to that of white chromium cast iron.

  16. Hardening by twin boundary during nanoindentation in nanocrystals.

    PubMed

    Qu, Shaoxing; Zhou, Haofei

    2010-08-20

    The atomistic deformation processes of nanocrystals embedded with nanoscale twin boundaries during nanoindentation are studied by molecular dynamics simulations. Load-displacement curves are obtained and the hardening mechanisms associated with the nanoscale twin boundaries are revealed. Johnson's theoretical indentation model is adopted to estimate the elastic stage of the nanoindentation. In addition, twin boundary-mediated dislocation nucleation is observed and analyzed.

  17. Beam hardening correction for sparse-view CT reconstruction

    NASA Astrophysics Data System (ADS)

    Liu, Wenlei; Rong, Junyan; Gao, Peng; Liao, Qimei; Lu, HongBing

    2015-03-01

    Beam hardening, which is caused by spectrum polychromatism of the X-ray beam, may result in various artifacts in the reconstructed image and degrade image quality. The artifacts would be further aggravated for the sparse-view reconstruction due to insufficient sampling data. Considering the advantages of the total-variation (TV) minimization in CT reconstruction with sparse-view data, in this paper, we propose a beam hardening correction method for sparse-view CT reconstruction based on Brabant's modeling. In this correction model for beam hardening, the attenuation coefficient of each voxel at the effective energy is modeled and estimated linearly, and can be applied in an iterative framework, such as simultaneous algebraic reconstruction technique (SART). By integrating the correction model into the forward projector of the algebraic reconstruction technique (ART), the TV minimization can recover images when only a limited number of projections are available. The proposed method does not need prior information about the beam spectrum. Preliminary validation using Monte Carlo simulations indicates that the proposed method can provide better reconstructed images from sparse-view projection data, with effective suppression of artifacts caused by beam hardening. With appropriate modeling of other degrading effects such as photon scattering, the proposed framework may provide a new way for low-dose CT imaging.

  18. High-Temperature Solid Lubricant Coating

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher; Edmonds, Brian J.

    2010-01-01

    NASA PS400 is a solid lubricant coating invented for high-temperature tribological applications. This plasma-sprayed coating is a variant of the previously patented PS304 coating, and has been formulated to provide higher density, smoother surface finish, and better dimensional stability. This innovation is a new composite material that provides a means to reduce friction and wear in mechanical components. PS400 is a blend of a nickel-molybdenum binder, chrome oxide hardener, silver lubricant, and barium fluoride/calcium fluoride eutectic lubricant that can either be sprayed or deposited by other means, such as powder metallurgy. The resulting composite material is then finished by grinding and polishing to produce a smooth, self-lubricating surface.

  19. Linear Friction Welding Process Model for Carpenter Custom 465 Precipitation-Hardened Martensitic Stainless Steel

    DTIC Science & Technology

    2014-04-11

    Carpenter Custom 465 precipitation-hardened martensitic stainless steel to develop a linear friction welding (LFW) process model for this material...Model for Carpenter Custom 465 Precipitation-Hardened Martensitic Stainless Steel The views, opinions and/or findings contained in this report are...Carpenter Custom 465 precipitation-hardened martensiticstainless steel , linear friction welding, process modeling REPORT DOCUMENTATION PAGE 11

  20. Engineering superficial zone features in tissue engineered cartilage.

    PubMed

    Chen, Tony; Hilton, Matthew J; Brown, Edward B; Zuscik, Michael J; Awad, Hani A

    2013-05-01

    A major challenge in cartilage tissue engineering is the need to recreate the native tissue's anisotropic extracellular matrix structure. This anisotropy has important mechanical and biological consequences and could be crucial for integrative repair. Here, we report that hydrodynamic conditions that mimic the motion-induced flow fields in between the articular surfaces in the synovial joint induce the formation of a distinct superficial layer in tissue engineered cartilage hydrogels, with enhanced production of cartilage matrix proteoglycan and Type II collagen. Moreover, the flow stimulation at the surface induces the production of the surface zone protein Proteoglycan 4 (aka PRG4 or lubricin). Analysis of second harmonic generation signature of collagen in this superficial layer reveals a highly aligned fibrillar matrix that resembles the alignment pattern in native tissue's surface zone, suggesting that mimicking synovial fluid flow at the cartilage surface in hydrodynamic bioreactors could be key to creating engineered cartilage with superficial zone features.

  1. Rationale of subdermal superficial liposuction related to the anatomy of subcutaneous fat and the superficial fascial system.

    PubMed

    Gasperoni, C; Salgarello, M

    1995-01-01

    The liposuction technique has changed greatly over the years. In 1989, the authors presented subdermal superficial liposuction which treats the superficial fat layer and yields better skin retraction. With this technique the surgeon can treat thin adipose layers to obtain better results in more cases than the traditional liposuction technique. The technique can be used in cases with difficult skin adjustment and in secondary cases when "deep only" liposuction has been performed and there were residual adiposities. Subdermal superficial liposuction evolved so that one could obtain good skin retraction by performing massive liposuction of all the fat layers. The authors named this technique MALL (Massive All Layer Liposuction). The technique is applied in body areas where the fat layer is very thick and stretches the skin because of its volume and weight such as in the abdomen, posterior arms, and internal surface of the upper third of the thighs. MALL liposuction drastically reduces the indications for abdominoplasty and inner thigh and arm dermolipectomies. Knowledge of the anatomy of the subcutaneous fat and the superficial fascial system allows one to explain the subdermal superficial liposuction from an anatomical point of view, to perform a more rational and effective procedure, and to differentiate the technique depending on the area of the body.

  2. Nitinol Self-Expanding Stents for the Superficial Femoral Artery.

    PubMed

    Nathan, Ashwin; Kobayashi, Taisei; Giri, Jay

    2017-04-01

    The superficial femoral artery is a complex artery subject to a unique set of biomechanical loading conditions in its course through the leg. Plain balloon angioplasty and balloon-expandable stents had unacceptably high rates of restenosis, necessitating target vessel revascularization. Nitinol alloy is well suited to provide the strength and flexibility needed of stents to withstand the external forces posed by the environment of the superficial femoral artery. Advances in stent technology with the addition of a slow-releasing antiproliferative agent and changes in scaffold design have shown promise in reducing the rates of stent fracture and in-stent restenosis.

  3. Update on therapy for superficial mycoses: review article part I*

    PubMed Central

    Dias, Maria Fernanda Reis Gavazzoni; Quaresma-Santos, Maria Victória Pinto; Bernardes-Filho, Fred; Amorim, Adriana Gutstein da Fonseca; Schechtman, Regina Casz; Azulay, David Rubem

    2013-01-01

    Superficial fungal infections of the hair, skin and nails are a major cause of morbidity in the world. Choosing the right treatment is not always simple because of the possibility of drug interactions and side effects. The first part of the article discusses the main treatments for superficial mycoses - keratophytoses, dermatophytosis, candidiasis, with a practical approach to the most commonly-used topical and systemic drugs , referring also to their dosage and duration of use. Promising new, antifungal therapeutic alternatives are also highlighted, as well as available options on the Brazilian and world markets. PMID:24173183

  4. Pigmented basal cell carcinoma mimicking a superficial spreading melanoma.

    PubMed

    Hasbún Acuña, Paula; Cullen Aravena, Roberto; Maturana Donaire, César; Ares Mora, Raúl; Porras Kusmanic, Ninoska

    2016-12-20

    Basal cell carcinoma is the most common form of skin cancer, especially in elderly people. Pigmented basal cell carcinoma is a rare subtype and has been described in the literature as a nodular and hyperpigmented lesion; rarely, it can appear as an extensive pigmented plate, which may be clinically indistinguishable from superficial spreading melanoma and Bowen disease. Dermatoscopy has a high sensitivity in the diagnosis of basal cell carcinoma. When Menzies criteria are used; however, the final diagnosis is made by histopathology. The objective of the present report is to analyze the case of a patient with pigmented basal cell carcinoma simulating a superficial spreading melanoma.

  5. Cyclic testing of porcelain laminiate veneers on superficial enamel and dentin: Pressed vs. conventional layered porcelain

    NASA Astrophysics Data System (ADS)

    Tawde, Shweta

    Statement of Problem: Clinicians are inclined towards more aggressive teeth preparations to accommodate the thickness of the veneering material. The principle of conservative tooth preparation is compromised. Purpose: By using a conservative approach to treatment with porcelain veneers, long-lasting, esthetic and functional results may be achieved. Sacrificing as little tooth structure as possible and conserving the supporting tissues will facilitate prospective patients. Materials and Methods: Forty extracted human maxillary and mandibular canines were selected. The teeth were divided into one of two groups (pressable and stackable) and further subdivided according to tooth substrate (all-enamel or mixed enamel-dentin exposure). Twenty canine teeth were allotted to the pressable veneer group and 20 were allotted to the stackable veneer group. Of the 20 teeth in the pressable group, all were pressed with a lithium disilicate ceramic system (IPS e.max Press), 10 with labial tooth reduction of 0.3-0.5 mm maintaining superficial enamel (PEN) and the remaining 10 teeth with labial veneer reduction of 0.8-1.0 mm exposing superficial dentin (PDN). Of the 20 teeth in the stackable group, all were stacked/ layered with conventional feldspathic porcelain (Fortune; Williams/ Ivoclar); with labial veneer reduction of 0.3-0.5 mm maintaining superficial enamel (SEN) and the remaining 10 teeth with labial veneer reduction of 0.8-1.0 mm exposing superficial dentin (SDN). Silicon putty matrix was fabricated prior to teeth preparation to estimate the teeth reduction. The prepared facial reduction was limited to the incisal edge. No incisal or palatal/lingual reduction was performed. Impressions of the prepared teeth were taken in medium/light-bodied PVS. Master casts were made in Resin Rock. The stackable group specimens were made with fabricating refractory dies and after following the recommended steps of laboratory procedure, stackable veneers were processed. The pressable group

  6. Hydroxyapatite coatings.

    PubMed

    Lacefield, W R

    1988-01-01

    Four coating techniques were evaluated to determine which is most suitable for producing a dense, highly adherent coating onto metallic and ceramic implant materials. Two of the selected coating methods have serious limitations for use in this particular application, and did not meet the specified criteria for satisfactory coating as defined in the initial stages of the study. For example, the dip coating-sintering technique was judged to be unsatisfactory because of the adverse effect of the high-temperature sintering cycle on the mechanical properties of the metallic substrate materials. These materials could not be used in load-bearing applications because of the excessive grain growth and loss of the wrought structure of both the commercially pure Ti and Ti-6Al-4V substrates, and the loss of ductility in the cast Co-Cr-Mo alloy. Another area of concern was that bond strength between the HA coating and the substrate was not high enough to insure that interfacial failure would not occur during the lifetime of the implant. The immersion-coating technique, in which the metal substrate is immersed into the molten ceramic, was shown in a previous study to be the best method of coating a bioreactive glass onto a Co-Cr-Mo implant. Heating HA above its melting temperature, however, caused undesired compositional and structural changes, and upon solidification very limited adherence between the modified ceramic and substrate material occurred under the conditions of this study. The HIP technique, in which the Ti powder substrate and the HA powder coating are sintered together in a high-pressure autoclave, shows great promise for the fabrication of high-quality composite implants. Initial studies have indicated that high-density Ti substrates with a small grain size that are well bonded to a dense HA coating can be produced under optimum conditions. Sintering and densification additives, such as SiO2 powder, do not appear to be necessary. The main drawback to this

  7. Strain Hardening and Size Effect in Five-fold Twinned Ag Nanowires.

    PubMed

    Narayanan, Sankar; Cheng, Guangming; Zeng, Zhi; Zhu, Yong; Zhu, Ting

    2015-06-10

    Metallic nanowires usually exhibit ultrahigh strength but low tensile ductility owing to their limited strain hardening capability. Here we study the unique strain hardening behavior of the five-fold twinned Ag nanowires by nanomechanical testing and atomistic modeling. In situ tensile tests within a scanning electron microscope revealed strong strain hardening behavior of the five-fold twinned Ag nanowires. Molecular dynamics simulations showed that such strain hardening was critically controlled by twin boundaries and pre-existing defects. Strain hardening was size dependent; thinner nanowires achieved more hardening and higher ductility. The size-dependent strain hardening was found to be caused by the obstruction of surface-nucleated dislocations by twin boundaries. Our work provides mechanistic insights into enhancing the tensile ductility of metallic nanostructures by engineering the internal interfaces and defects.

  8. Designing energy dissipation properties via thermal spray coatings

    SciTech Connect

    Brake, Matthew R. W.; Hall, Aaron Christopher; Madison, Jonathan D.

    2016-12-14

    The coefficient of restitution is a measure of energy dissipation in a system across impact events. Often, the dissipative qualities of a pair of impacting components are neglected during the design phase. This research looks at the effect of applying a thin layer of metallic coating, using thermal spray technologies, to significantly alter the dissipative properties of a system. We studied the dissipative properties across multiple impacts in order to assess the effects of work hardening, the change in microstructure, and the change in surface topography. The results of the experiments indicate that any work hardening-like effects are likely attributable to the crushing of asperities, and the permanent changes in the dissipative properties of the system, as measured by the coefficient of restitution, are attributable to the microstructure formed by the thermal spray coating. Furthermore, the microstructure appears to be robust across impact events of moderate energy levels, exhibiting negligible changes across multiple impact events.

  9. Aquarius: Tour de la salinidad superficial del mar

    NASA Video Gallery

    Recorrido narrado de la información sobre la salinidad superficial de los océanos recogida por el instrumento Aquarius de la NASA durante su primer año de funcionamiento. Algunas de las caracte...

  10. Volumetric Modulated Arc Therapy (VMAT) Treatment Planning for Superficial Tumors

    SciTech Connect

    Zacarias, Albert S.; Brown, Mellonie F.; Mills, Michael D.

    2010-10-01

    The physician's planning objective is often a uniform dose distribution throughout the planning target volume (PTV), including superficial PTVs on or near the surface of a patient's body. Varian's Eclipse treatment planning system uses a progressive resolution optimizer (PRO), version 8.2.23, for RapidArc dynamic multileaf collimator volumetric modulated arc therapy planning. Because the PRO is a fast optimizer, optimization convergence errors (OCEs) produce dose nonuniformity in the superficial area of the PTV. We present a postsurgical cranial case demonstrating the recursive method our clinic uses to produce RapidArc treatment plans. The initial RapidArc treatment plan generated using one 360{sup o} arc resulted in substantial dose nonuniformity in the superficial section of the PTV. We demonstrate the use of multiple arcs to produce improved dose uniformity in this region. We also compare the results of this superficial dose compensation method to the results of a recursive method of dose correction that we developed in-house to correct optimization convergence errors in static intensity-modulated radiation therapy treatment plans. The results show that up to 4 arcs may be necessary to provide uniform dose to the surface of the PTV with the current version of the PRO.

  11. A Brief Discussion of Radiation Hardening of CMOS Microelectronics

    SciTech Connect

    Myers, D.R.

    1998-12-18

    Commercial microchips work well in their intended environments. However, generic microchips will not fimction correctly if exposed to sufficient amounts of ionizing radiation, the kind that satellites encounter in outer space. Modern CMOS circuits must overcome three specific concerns from ionizing radiation: total-dose, single-event, and dose-rate effects. Minority-carrier devices such as bipolar transistors, optical receivers, and solar cells must also deal with recombination-generation centers caused by displacement damage, which are not major concerns for majority-carrier CMOS devices. There are ways to make the chips themselves more resistant to radiation. This extra protection, called radiation hardening, has been called both a science and an art. Radiation hardening requires both changing the designs of the chips and altering the ways that the chips are manufactured.

  12. An energy-based beam hardening model in tomography.

    PubMed

    Van de Casteele, E; Van Dyck, D; Sijbers, J; Raman, E

    2002-12-07

    As a consequence of the polychromatic x-ray source, used in micro-computer tomography (microCT) and in medical CT, the attenuation is no longer a linear function of absorber thickness. If this nonlinear beam hardening effect is not compensated, the reconstructed images will be corrupted by cupping artefacts. In this paper, a bimodal energy model for the detected energy spectrum is presented, which can be used for reduction of artefacts caused by beam hardening in well-specified conditions. Based on the combination of the spectrum of the source and the detector efficiency, the assumption is made that there are two dominant energies which can describe the system. The validity of the proposed model is examined by fitting the model to the experimental datapoints obtained on a microtomograph for different materials and source voltages.

  13. Transformation hardening of steel sheet for automotive applications

    NASA Astrophysics Data System (ADS)

    Takechi, H.

    2008-12-01

    Among high-strength steels, transformation hardening steels such as dual-phase (DP) steel and transformation-induced plasticity (TRIP) steel offer a superior relationship between tensile strength (TS) and elongation (El) on a commercial scale. As demand has grown for lighter-weight automobiles, so also has the demand for higher TS, lower yield ratio, and higher hole expansion ratio grown. Recently DP steel has been developed with precipitation hardening and grain refining by TiC. A new TRIP steel composed of 5Mn-2Si and control-rolled with niobium addition suggests the formation of retained austenite ( γ R ) as much as 30% and TS × El = 3,000 kgf/mm2·%.

  14. Hardening electronic devices against very high total dose radiation environments

    NASA Technical Reports Server (NTRS)

    Buchanan, B.; Shedd, W.; Roosild, S.; Dolan, R.

    1972-01-01

    The possibilities and limitations of hardening silicon semiconductor devices to the high neutron and gamma radiation levels and greater than 10 to the eighth power rads required for the NERVA nuclear engine development are discussed. A comparison is made of the high dose neutron and gamma hardening potential of bipolar, metal insulator semiconductors and junction field effect transistors. Experimental data is presented on device degradation for the high neutron and gamma doses. Previous data and comparisons indicate that the JFET is much more immune to the combined neutron displacement and gamma ionizing effects than other transistor types. Experimental evidence is also presented which indicates that p channel MOS devices may be able to meet the requirements.

  15. Segmentation-free empirical beam hardening correction for CT

    SciTech Connect

    Schüller, Sören; Sawall, Stefan; Stannigel, Kai; Hülsbusch, Markus; Ulrici, Johannes; Hell, Erich; Kachelrieß, Marc

    2015-02-15

    Purpose: The polychromatic nature of the x-ray beams and their effects on the reconstructed image are often disregarded during standard image reconstruction. This leads to cupping and beam hardening artifacts inside the reconstructed volume. To correct for a general cupping, methods like water precorrection exist. They correct the hardening of the spectrum during the penetration of the measured object only for the major tissue class. In contrast, more complex artifacts like streaks between dense objects need other techniques of correction. If using only the information of one single energy scan, there are two types of corrections. The first one is a physical approach. Thereby, artifacts can be reproduced and corrected within the original reconstruction by using assumptions in a polychromatic forward projector. These assumptions could be the used spectrum, the detector response, the physical attenuation and scatter properties of the intersected materials. A second method is an empirical approach, which does not rely on much prior knowledge. This so-called empirical beam hardening correction (EBHC) and the previously mentioned physical-based technique are both relying on a segmentation of the present tissues inside the patient. The difficulty thereby is that beam hardening by itself, scatter, and other effects, which diminish the image quality also disturb the correct tissue classification and thereby reduce the accuracy of the two known classes of correction techniques. The herein proposed method works similar to the empirical beam hardening correction but does not require a tissue segmentation and therefore shows improvements on image data, which are highly degraded by noise and artifacts. Furthermore, the new algorithm is designed in a way that no additional calibration or parameter fitting is needed. Methods: To overcome the segmentation of tissues, the authors propose a histogram deformation of their primary reconstructed CT image. This step is essential for the

  16. ORIGIN OF THE COSMIC-RAY SPECTRAL HARDENING

    SciTech Connect

    Tomassetti, Nicola

    2012-06-10

    Recent data from ATIC, CREAM, and PAMELA indicate that the cosmic-ray energy spectra of protons and nuclei exhibit a remarkable hardening at energies above 100 GeV nucleon{sup -1}. We propose that the hardening is an interstellar propagation effect that originates from a spatial change of the cosmic-ray transport properties in different regions of the Galaxy. The key hypothesis is that the diffusion coefficient is not separable into energy and space variables as usually assumed. Under this scenario, we can reproduce the observational data well. Our model has several implications for cosmic-ray acceleration/propagation physics and can be tested by ongoing experiments such as the Alpha Magnetic Spectrometer or Fermi-LAT.

  17. Stress and Distortion Evolution During Induction Case Hardening of Tube

    NASA Astrophysics Data System (ADS)

    Nemkov, Valentin; Goldstein, Robert; Jackowski, John; Ferguson, Lynn; Li, Zhichao

    2013-07-01

    Simulation of stresses during heat treatment relates usually to furnace heating. Induction heating provides a very different evolution of temperature in the part and therefore different stresses. This may be positive for service properties or negative, reducing component strength or even causing cracks. A method of coupled simulation between electromagnetic, thermal, structural, stress, and deformation phenomena during induction tube hardening is described. Commercial software package ELTA is used to calculate the power density distribution in the load resulting from the induction heating process. The program DANTE is used to predict temperature distribution, phase transformations, stress state, and deformation during heating and quenching. Analyses of stress and deformation evolution were made on a simple case of induction hardening of external (1st case) and internal (2nd case) surfaces of a thick-walled tubular body.

  18. Variation in Formation of Superficial Palmar Arches with Clinical Implications

    PubMed Central

    Vatsalaswamy, P.; Bahetee, B.H.

    2014-01-01

    Background: Knowledge of the variations in the arterial supply of hand has reached a point of practical importance with the advent of microvascular surgery for revascularization, replantation and composite tissue transfers. Arterial supply of hand is derived from two anastomotic arches, formed between two main arteries of forearm i.e. radial, ulnar and their branches, in the palm. Objective: The superficial palmar arch shows variation in formation at the radial side. In the present study we have recorded its data which would help in its clinical and surgical implications. Material and Methods: In the present study we have studied the formation of superficial palmar arches and their variations in 100 cadaveric hands at Dr. D . Y. Patil Medical College, Pune and B.J. Government Medical College, Pune, India. Result and Conclusion: According to Adachi’s classification the most predominant pattern obseved was of Ulnar type arch (66%). According to Coleman and Anson classification 82% showed complete (Group I) superficial palmar arches and a very low incidence (18%) of incomplete arches (Group II). This suggests that collateral circulation is present in majority of cases. This would result in least number of complications considering radial artery harvesting for coronary bypass. Sub-classification of arches according to Coleman and Anson 1961 indicates that the predominant type in the present study was of Group I (Type B) which is formed entirely by Ulnar Artery (56%). Median artery and ulnar artery forming an incomplete superficial arch under Group II (Type C) having an incidence of 4% was recorded. Thus in such cases radial artery harvesting for coronary artery bypass may prove to be less fatal. This study is an effort to provide data about the formation of superficial palmar arches which has been a centre of attraction for most of the surgical procedures and injuries of the hand. PMID:24959427

  19. Major Superficial White Matter Abnormalities in Huntington's Disease

    PubMed Central

    Phillips, Owen R.; Joshi, Shantanu H.; Squitieri, Ferdinando; Sanchez-Castaneda, Cristina; Narr, Katherine; Shattuck, David W.; Caltagirone, Carlo; Sabatini, Umberto; Di Paola, Margherita

    2016-01-01

    Background: The late myelinating superficial white matter at the juncture of the cortical gray and white matter comprising the intracortical myelin and short-range association fibers has not received attention in Huntington's disease. It is an area of the brain that is late myelinating and is sensitive to both normal aging and neurodegenerative disease effects. Therefore, it may be sensitive to Huntington's disease processes. Methods: Structural MRI data from 25 Pre-symptomatic subjects, 24 Huntington's disease patients and 49 healthy controls was run through a cortical pattern-matching program. The surface corresponding to the white matter directly below the cortical gray matter was then extracted. Individual subject's Diffusion Tensor Imaging (DTI) data was aligned to their structural MRI data. Diffusivity values along the white matter surface were then sampled at each vertex point. DTI measures with high spatial resolution across the superficial white matter surface were then analyzed with the General Linear Model to test for the effects of disease. Results: There was an overall increase in the axial and radial diffusivity across much of the superficial white matter (p < 0.001) in Pre-symptomatic subjects compared to controls. In Huntington's disease patients increased diffusivity covered essentially the whole brain (p < 0.001). Changes are correlated with genotype (CAG repeat number) and disease burden (p < 0.001). Conclusions: This study showed broad abnormalities in superficial white matter even before symptoms are present in Huntington's disease. Since, the superficial white matter has a unique microstructure and function these abnormalities suggest it plays an important role in the disease. PMID:27242403

  20. Sequential circuit design for radiation hardened multiple voltage integrated circuits

    SciTech Connect

    Clark, Lawrence T.; McIver, III, John K.

    2009-11-24

    The present invention includes a radiation hardened sequential circuit, such as a bistable circuit, flip-flop or other suitable design that presents substantial immunity to ionizing radiation while simultaneously maintaining a low operating voltage. In one embodiment, the circuit includes a plurality of logic elements that operate on relatively low voltage, and a master and slave latches each having storage elements that operate on a relatively high voltage.

  1. Elastic constant versus temperature behavior of three hardened maraging steels

    NASA Technical Reports Server (NTRS)

    Ledbetter, H. M.; Austin, M. W.

    1985-01-01

    Elastic constants of three maraging steels were determined by measuring ultrasonic velocities. Annealed steels show slightly lower bulk moduli and considerably lower shear moduli than hardened steels. All the elastic constants (Young's modulus, shear modulus, bulk modulus and Poisson's ratio) show regular temperature behavior between 76 and 400 K. Young's modulus and the shear modulus increase with increasing yield strength, but the bulk modulus and Poisson's ratio are relatively unchanged. Elastic anisotropy is quite small.

  2. Stress Analysis for Kinematic Hardening in Finite-Deformation Plasticity.

    DTIC Science & Technology

    1981-12-01

    field, straight lines defined by material points remain straight and the square block is deformed into a sequence of parallelograms . The line of...Contract N00014-81-K-0660 DEPARTMENT STRESS ANALYSIS FOR KINEMATIC HARDENING OF IN FINITE- DEFORMATION PLASTICITY MECHANICAL ENGINEERING By E. H. Lee, R, L...Finite- Deformation Plasticity E. H. Lee and R. L. Mallett, Rensselaer Polytechnic Institute and Stanford University, and T. B. Wertheimer, MARC Analysis

  3. Reduction of metal artifacts: beam hardening and photon starvation effects

    NASA Astrophysics Data System (ADS)

    Yadava, Girijesh K.; Pal, Debashish; Hsieh, Jiang

    2014-03-01

    The presence of metal-artifacts in CT imaging can obscure relevant anatomy and interfere with disease diagnosis. The cause and occurrence of metal-artifacts are primarily due to beam hardening, scatter, partial volume and photon starvation; however, the contribution to the artifacts from each of them depends on the type of hardware. A comparison of CT images obtained with different metallic hardware in various applications, along with acquisition and reconstruction parameters, helps understand methods for reducing or overcoming such artifacts. In this work, a metal beam hardening correction (BHC) and a projection-completion based metal artifact reduction (MAR) algorithms were developed, and applied on phantom and clinical CT scans with various metallic implants. Stainless-steel and Titanium were used to model and correct for metal beam hardening effect. In the MAR algorithm, the corrupted projection samples are replaced by the combination of original projections and in-painted data obtained by forward projecting a prior image. The data included spine fixation screws, hip-implants, dental-filling, and body extremity fixations, covering range of clinically used metal implants. Comparison of BHC and MAR on different metallic implants was used to characterize dominant source of the artifacts, and conceivable methods to overcome those. Results of the study indicate that beam hardening could be a dominant source of artifact in many spine and extremity fixations, whereas dental and hip implants could be dominant source of photon starvation. The BHC algorithm could significantly improve image quality in CT scans with metallic screws, whereas MAR algorithm could alleviate artifacts in hip-implants and dentalfillings.

  4. Blast response of a hardened Army ISO shelter

    SciTech Connect

    Milligan, R.W.; Lush, A.; Crenshaw, W.L.

    1982-09-01

    A prototype shelter was designed to withstand a blast loading corresponding to a 10.0 psi (68.9 kPa) incident overpressure. The hardened shelter was then constructed, instrumented and subjected to a simulated nuclear blast loading. Test results demonstrated that a design featuring shear stiffened sandwich panels with aluminum face materials could withstand a nominal 10.0 psi incident shock loading.

  5. Structure and Hardness of Cast Iron after Surface Hardening

    NASA Astrophysics Data System (ADS)

    Safonov, E. N.

    2005-09-01

    Special features of structure formation in the heat-affected zone of roll-foundry iron with flaked or globular graphite due to surface heat treatment by direct electric (plasma) arc are considered. The influence of the parameters of the process on the composition, structure, and properties of the hardened zone is studied. Treatment modes ensuring a structure with enhanced hardness and wear resistance in the surface layer of iron are determined.

  6. Hardening of commercial CMOS PROMs with polysilicon fusible links

    NASA Technical Reports Server (NTRS)

    Newman, W. H.; Rauchfuss, J. E.

    1985-01-01

    The method by which a commercial 4K CMOS PROM with polysilicon fuses was hardened and the feasibility of applying this method to a 16K PROM are presented. A description of the process and the necessary minor modifications to the original layout are given. The PROM circuit and discrete device characteristics over radiation to 1000K rad-Si are summarized. The dose rate sensitivity of the 4K PROMs is also presented.

  7. Control technology for surface treatment of materials using induction hardening

    SciTech Connect

    Kelley, J.B.; Skocypec, R.D.

    1997-04-01

    In the industrial and automotive industries, induction case hardening is widely used to provide enhanced strength, wear resistance, and toughness in components made from medium and high carbon steels. The process uses significantly less energy than competing batch process, is environmentally benign, and is a very flexible in-line manufacturing process. As such, it can directly contribute to improved component reliability, and the manufacture of high-performance lightweight parts. However, induction hardening is not as widely used as it could be. Input material and unexplained process variations produce significant variation in product case depth and quality. This necessitates frequent inspection of product quality by destructive examination, creates higher than desired scrap rates, and causes de-rating of load stress sensitive components. In addition, process and tooling development are experience-based activities, accomplished by trial and error. This inhibits the use of induction hardening for new applications, and the resultant increase in energy efficiency in the industrial sectors. In FY96, a Cooperative Research and Development Agreement under the auspices of the Technology Transfer Initiative and the Partnership for a New Generation of Vehicles was completed. A multidisciplinary team from Sandia National Labs and Delphi Saginaw Steering Systems investigated the induction hardening by conducting research in the areas of process characterization, computational modeling, materials characterization, and high speed data acquisition and controller development. The goal was to demonstrate the feasibility of closed-loop control for a specific material, geometry, and process. Delphi Steering estimated annual savings of $2-3 million per year due to reduced scrap losses, inspection costs, and machine down time if reliable closed-loop control could be achieved. A factor of five improvement in process precision was demonstrated and is now operational on the factory floor.

  8. Variations in the Bainite Hardenability of ASTM A723 Steel

    DTIC Science & Technology

    1987-05-01

    REFERENCES 10 TABLES I. CHEMICAL ANALYSIS OF SAMPLES FROM ESR , CONVENTIONALLY REFINED, 5 AND CALCIUM TREATED STEELS II. COMPARISON OF LABORATORY...balnite formation is detected in the ESR refined sample. However, our survey of A723 steels from a number of suppliers who employ various refining tech...hardenability steels that we have analyzed have nickel concentrations near two percent. The ESR sample is typical of alloys that we classify as high

  9. Work-hardening and effective viscosity in solid beryllium

    SciTech Connect

    Steinberg, D.; Breithaupt, D.; Honodel, C.

    1985-06-01

    Results from Hopkinson split-bar, plate-impact, and cylinder deceleration experiments on beryllium are compared with hydrodynamic computer code simulations. By substantially increasing the beryllium work-hardening in the Steinberg-Guinan constitutive model, excellent agreement between the experiments and the calculations is achieved. A model to estimate effective viscosity is also proposed and the resultant calculations are in reasonable agreement with those derived from another model advanced by Asay, Chhabildas and Wise. 12 refs., 5 figs.

  10. Multi-material linearization beam hardening correction for computed tomography.

    PubMed

    Lifton, J J

    2017-03-03

    Since beam hardening causes cupping and streaking artifacts in computed tomographic images, the presence of such artifacts can impair both qualitative and quantitative analysis of the reconstructed data. When the scanned object is composed of a single material, it is possible to correct beam hardening artifacts using the linearization method. However, for multi-material objects, an iterative segmentation-based correction algorithm is needed, which is not only computationally expensive, but may also fail if the initial segmentation result is poor. In this study, a new multi-material linearization beam hardening correction method was proposed and evaluated. The new method is fast and implemented in the same manner as a mono-material linearization. The correction takes approximately 0.02 seconds per projection. Although facing a potential disadvantage of requiring attenuation measurements of one of the object's constituent materials, applying the new method has demonstrated its capability for a multi-material workpiece with substantial reduction in both cupping and streaking artifacts. For example, the study showed that the absolute cupping artefacts in steel, titanium and aluminum spheres were reduced from 22%, 20% and 20% to 5%, 1% and 0%, respectively.

  11. Description of full-range strain hardening behavior of steels.

    PubMed

    Li, Tao; Zheng, Jinyang; Chen, Zhiwei

    2016-01-01

    Mathematical expression describing plastic behavior of steels allows the execution of parametric studies for many purposes. Various formulas have been developed to characterize stress strain curves of steels. However, most of those formulas failed to describe accurately the strain hardening behavior of steels in the full range which shows various distinct stages. For this purpose, a new formula is developed based on the well-known Ramberg-Osgood formula to describe the full range strain hardening behavior of steels. Test results of all the six types of steels show a three-stage strain hardening behavior. The proposed formula can describe such behavior accurately in the full range using a single expression. The parameters of the formula can be obtained directly and easily through linear regression analysis. Excellent agreements with the test data are observed for all the steels tested. Furthermore, other formulas such as Ludwigson formula, Gardner formula, UGent formula are also applied for comparison. Finally, the proposed formula is considered to have wide suitability and high accuracy for all the steels tested.

  12. Simulation of Stress and Strain for Induction-Hardening Applications

    NASA Astrophysics Data System (ADS)

    Ivanov, Dmitry; Markegård, Leif; Asperheim, John Inge; Kristoffersen, Hans

    2013-11-01

    The possibility to manage stress and strain in hardened parts might be beneficial for a number of induction-hardening applications. The most important of these benefits are the improvement of fatigue strength, avoidance of cracks, and minimization of distortion. An appropriate and powerful way to take the stress and strain into account during the development of a process is to make use of computer simulations. In-house developed and commercial software packages have been coupled to incorporate the electromagnetic task into the calculations. The simulations have been performed followed by analysis of the results. The influences of two different values of quenching intensity, strength of initial material structure, strength of austenite, surface power density-frequency-time combination, and workpiece diameter on the residual stress are studied. The influence of quenching intensity is confirmed by the series of experiments representing the external hardening of a cylinder with eight variations of quenching intensity. Measured by x-rays, the values of surface tangential stress are used as a dataset for verification of the model being used for analyses.

  13. Regulatory Aspects of Coatings

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter gives a history of the development and uses of edible coating regulations, detailed chapters on coating caracteristics, determination of coating properties, methods for making coatings, and discription of coating film formers (polysaccharieds, lipids, resins, proteins). The chapter also...

  14. Performance of radiation hardening techniques under voltage and temperature variations

    NASA Astrophysics Data System (ADS)

    Veeravalli, Varadan Savulimedu; Steininger, Andreas

    The effectiveness of the techniques to mitigate radiation particle hits in digital CMOS circuits has been mainly studied under a given set of environmental conditions. This paper will explicitly analyze, how the performance of two selected radiation hardening techniques, namely transistor sizing and stack separation, varies with temperature and supply voltage. Our target is an inverter circuit in UMC90 bulk CMOS technology, instances of which have been hardened against charges of 300fC and 450fC using either of the two techniques under investigation. In a Spice simulation we apply particle hits to these circuits through double-exponential current pulses of the respective charge. We study the effect of these pulses in a temperature range from - 55 C to +175 C and a supply voltage of 0.65 to 1.2V (nominal 1V) at the output of a (unhardened) buffer that has been connected as a load. For the hardening by sizing we observe proper operation in the range from 1.2V to 900mV, while for lower supply we observe full swing pulses of increasing magnitude when the respective maximum charge is applied. The influence of temperature turns out to be minor. For the stack separation approach the observation is similar, however, the circuit starts glitching only at 750mV. Our study allows the following conclusions: (i) The effectiveness of the hardening approaches strongly depends on the supply voltage, and moderately on temperature. (ii) As expected, low voltage and high temperature represent the worst case for rad-hard sizing. Stack separation, on the other hand, unexpectedly shows a stronger and more complicated temperature dependence. (ii) For voltages below approx. 90% of nominal the hardening by sizing fails, when designed for nominal voltage and room temperature. The approach can be enhanced to survive this worst case by increasing the sizing factor further by more than 3 times. (iv) The stack separation only fails for voltages below approx. 75% of nominal, but there is n

  15. Demonstration of a combined filter to improve the field uniformity of a 90 kV superficial X-ray therapy machine for different treatment field sizes.

    PubMed

    Meyer, J; Mills, J A

    1997-02-01

    The field uniformity of a superficial X-ray machine operating at 90 kV, 10 mA and filtered with a 1.1 mm aluminium beam hardening filter was investigated at a depth of 1 cm below the surface. Uniformity measurements were carried out using films and a densitometer to detect the relative absorbed dose across the field. Film dosimetry was assessed by comparison with ionization chamber dosimetry in a water tank. The original flat hardening aluminium filter was replaced by a combined, profiled filter to improve the uniformity across field sizes 20 cm, 5 cm and 2 cm diameter as well as hardening the beam. Flatness of the beam profile was improved for the 20 cm field size from +/-7.5% to +/-1.3% across the anode/cathode direction and from +/-7.9% to +/-4.7% in the anode/cathode direction. For the 5 cm field size the improvement was from +/-4% to +/-3% and from +/-5.3% to +/-3.6% and for 2 cm field size from +/-3.4% to +/-2.8% and from 10.5% to +/-9.7% in the same directions, respectively. Beam quality measurements were made and the original half-value-layer was reduced from 2.21 +/- 0.09 mm to 2.07 +/- 0.09 mm. The project demonstrated that it was possible to build a filter capable of flattening the beam profile for different sized applicators without significantly changing the penetrating ability of the beam.

  16. Versatile Coating

    NASA Technical Reports Server (NTRS)

    1990-01-01

    A radome at Logan Airport and a large parabolic antenna at the Wang Building in Massachusetts are protected from weather, corrosion and ultraviolet radiation by a coating, specially designed for antennas and radomes, known as CRC Weathertite 6000. The CRC 6000 line that emerged from Boyd Coatings Research Co., Inc. is a solid dispersion of fluorocarbon polymer and polyurethane that yields a tough, durable film with superior ultraviolet resistance and the ability to repel water and ice over a long term. Additionally, it provides resistance to corrosion, abrasion, chemical attacks and impacts. Material can be used on a variety of substrates, such as fiberglass, wood, plastic and concrete in addition to steel and aluminum. In addition Boyd Coatings sees CRC 6000 applicability as an anti-icing system coated on the leading edge of aircraft wings.

  17. Protective Coating

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Inorganic Coatings, Inc.'s K-Zinc 531 protective coating is water-based non-toxic, non-flammable and has no organic emissions. High ratio silicate formula bonds to steel, and in 30 minutes, creates a very hard ceramic finish with superior adhesion and abrasion resistance. Improved technology allows application over a minimal commercial sandblast, fast drying in high humidity conditions and compatibility with both solvent and water-based topcoats. Coating is easy to apply and provides long term protection with a single application. Zinc rich coating with water-based potassium silicate binder offers cost advantages in materials, labor hours per application, and fewer applications over a given time span.

  18. Effects of superficial gas velocity on process dynamics in bioreactors

    NASA Astrophysics Data System (ADS)

    Devi, T. T.; Kumar, B.

    2014-06-01

    Present work analyzes the flow hydrodynamics and mass transfer mechanisms in double Rushton and CD-6 impeller on wide range (0.0075-0.25 m/s) of superficial gas velocity ( v g) in a gas-liquid phase bioreactor by employing computational fluid dynamics (CFD) technique. The volume averaged velocity magnitude and dissipation rate are found higher with increasing superficial gas velocity. Higher relative power draw ( P g/ P 0) is predicted in CD-6 than the Rushton impeller but no significant difference in volume averaged mass transfer coefficient ( k L a) observed between these two types of impeller. The ratio of power draw with mass transfer coefficient has been found higher in CD-6 impeller (25-50 %) than the Rushton impeller.

  19. A vapour-permeable film dressing used on superficial wounds.

    PubMed

    Meuleneire, Frans

    2014-08-12

    Films are an extremely versatile dressing type that can be effectively used in the treatment of many superficial wounds, such as skin grafts, surgical wounds and superficial burns; they provide an optimal moist environment to promote healing, act as a barrier to bacteria, and afford protection from urine and faecal contamination. Unfortunately, many film dressings are difficult to handle and use traditional adhesives, which can cause trauma to the wound and surrounding skin, as well as increased wound pain at dressing removal. Mepitel® Film is a new, easy-to-use wound dressing designed with Safetac® technology that helps to minimise dressing-related trauma and pain and assist undisturbed wound healing. This article presents case studies that examine Mepitel Film's use on a variety of wounds, and reviews the findings of research that was undertaken to evaluate the benefits of using this recently developed dressing.

  20. Intimal sarcoma of the superficial femoral artery with osteosarcomatous differentiation.

    PubMed

    Ebaugh, James L; Yuan, Minsheng; Hu, Jeffery; Chen, Ahchean; Raffetto, Joseph D

    2011-05-01

    Sarcomas of the large vessels usually present centrally in the aorta, pulmonary artery, and inferior vena cava. Peripheral arterial sarcomas are exceptionally rare. They have been reported in the iliac and common or profunda femoral arteries, and are frequently undifferentiated. In this study, we describe a differentiated intimal sarcoma of the superficial femoral artery with abundant osteosarcoma within the specimen. Before knowing the diagnosis, treatment was for a presumed pseudoaneurysm using excision and bypass. Postoperatively, the patient received palliative radiation therapy. The tumor's location and histopathology are unique. A differentiated intimal sarcoma has never been reported in the superficial femoral artery, and it represents the second peripheral arterial intimal sarcoma reported with osteosarcomatous differentiation.

  1. Hyperthermic treatment of superficial tumors in cats and dogs.

    PubMed

    Grier, R L; Brewer, W G; Theilen, G H

    1980-08-01

    Local current field radiofrequency hyperthermia was applied to 33 superficial tumors in 11 cats and 5 dogs. Squamous cell carcinoma (SCC) in the cat was the most frequent tumor treated. Of 19 SCC in cats, 13 (68%) were reduced completely, combining complete and partial tumor reduction, there was an 89% favorable response to hyperthermia for SCC. A small number of other tumors such as fibrosarcoma in the cat and perianal tumors in the dog were favorably responsive. Local current field hyperthermia (50 C for 30 sec) resulted in destruction of tumor tissue as well as normal tissue. However, tissue destruction did not extend more than 2 or 3 mm from the electrodes. Ulcerative superficial tumors exposed to air rapidly reduced in size, and a dry eschar that developed fell off at 17 to 25 days.

  2. Embedding of Cortical Representations by the Superficial Patch System

    PubMed Central

    Da Costa, Nuno M. A.; Girardin, Cyrille C.; Naaman, Shmuel; Omer, David B.; Ruesch, Elisha; Grinvald, Amiram; Douglas, Rodney J.

    2011-01-01

    Pyramidal cells in layers 2 and 3 of the neocortex of many species collectively form a clustered system of lateral axonal projections (the superficial patch system—Lund JS, Angelucci A, Bressloff PC. 2003. Anatomical substrates for functional columns in macaque monkey primary visual cortex. Cereb Cortex. 13:15–24. or daisy architecture—Douglas RJ, Martin KAC. 2004. Neuronal circuits of the neocortex. Annu Rev Neurosci. 27:419–451.), but the function performed by this general feature of the cortical architecture remains obscure. By comparing the spatial configuration of labeled patches with the configuration of responses to drifting grating stimuli, we found the spatial organizations both of the patch system and of the cortical response to be highly conserved between cat and monkey primary visual cortex. More importantly, the configuration of the superficial patch system is directly reflected in the arrangement of function across monkey primary visual cortex. Our results indicate a close relationship between the structure of the superficial patch system and cortical responses encoding a single value across the surface of visual cortex (self-consistent states). This relationship is consistent with the spontaneous emergence of orientation response–like activity patterns during ongoing cortical activity (Kenet T, Bibitchkov D, Tsodyks M, Grinvald A, Arieli A. 2003. Spontaneously emerging cortical representations of visual attributes. Nature. 425:954–956.). We conclude that the superficial patch system is the physical encoding of self-consistent cortical states, and that a set of concurrently labeled patches participate in a network of mutually consistent representations of cortical input. PMID:21383233

  3. Measurement of the angle of superficial tension by images

    NASA Astrophysics Data System (ADS)

    Yanez M., Javier; Alonso R., Sergio

    2006-02-01

    When a liquid is deposited on a surface, this one form a certain angle with respect to the surface, where depending on its value, it will conclude that so hard it is his adhesion with the surface. By means of the analysis of images we looked for to measure this angle of superficial tension. In order to make this measurement, we propose a technique by means of projective transformations and one method of regression to estimation parameters to conic fitting.

  4. Cervical Spinal Meningeal Melanocytoma Presenting as Intracranial Superficial Siderosis

    PubMed Central

    Srirama Jayamma, Savitha; Sud, Seema; Buxi, TBS; Madan, VS; Goyal, Ashish; Dhawan, Shashi

    2015-01-01

    Meningeal melanocytoma is a rare pigmented tumor of the leptomeningeal melanocytes. This rare entity results in diagnostic difficulty in imaging unless clinical and histopathology correlation is performed. In this case report, we describe a case of meningeal melanocytoma of the cervical region presenting with superficial siderosis. Extensive neuroradiological examination is necessary to locate the source of the bleeding in such patients. Usually, the patient will be cured by the complete surgical excision of the lesion. PMID:26770862

  5. Method for increasing the rate of compressive strength gain in hardenable mixtures containing fly ash

    DOEpatents

    Liskowitz, John W.; Wecharatana, Methi; Jaturapitakkul, Chai; Cerkanowicz, deceased, Anthony E.

    1997-01-01

    The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention provides a method for increasing the rate of strength gain of a hardenable mixture containing fly ash by exposing the fly ash to an aqueous slurry of calcium oxide (lime) prior to its incorporation into the hardenable mixture. The invention further relates to such hardenable mixtures, e.g., concrete and mortar, that contain fly ash pre-reacted with calcium oxide. In particular, the fly ash is added to a slurry of calcium oxide in water, prior to incorporating the fly ash in a hardenable mixture. The hardenable mixture may be concrete or mortar. In a specific embodiment, mortar containing fly ash treated by exposure to an aqueous lime slurry are prepared and tested for compressive strength at early time points.

  6. Method for increasing the rate of compressive strength gain in hardenable mixtures containing fly ash

    DOEpatents

    Liskowitz, J.W.; Wecharatana, M.; Jaturapitakkul, C.; Cerkanowicz, A.E.

    1997-10-28

    The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention provides a method for increasing the rate of strength gain of a hardenable mixture containing fly ash by exposing the fly ash to an aqueous slurry of calcium oxide (lime) prior to its incorporation into the hardenable mixture. The invention further relates to such hardenable mixtures, e.g., concrete and mortar, that contain fly ash pre-reacted with calcium oxide. In particular, the fly ash is added to a slurry of calcium oxide in water, prior to incorporating the fly ash in a hardenable mixture. The hardenable mixture may be concrete or mortar. In a specific embodiment, mortar containing fly ash treated by exposure to an aqueous lime slurry are prepared and tested for compressive strength at early time points. 2 figs.

  7. Effect of Scanning Beam for Superficial Dose in Proton Therapy.

    PubMed

    Moskvin, Vadim P; Estabrook, Neil C; Cheng, Chee-Wai; Das, Indra J; Johnstone, Peter A S

    2015-10-01

    Proton beam delivery technology is under development to minimize the scanning spot size for uniform dose to target, but it is also known that the superficial dose could be as high as the dose at Bragg peak for narrow and small proton beams. The objective of this study is to explore the characteristics of dose distribution at shallow depths using Monte Carlo simulation with the FLUKA code for uniform scanning (US) and discrete spot scanning (DSS) proton beams. The results show that the superficial dose for DSS is relatively high compared to US. Additionally, DSS delivers a highly heterogeneous dose to the irradiated surface for comparable doses at Bragg peak. Our simulation shows that the superficial dose can become as high as the Bragg peak when the diameter of the proton beam is reduced. This may compromise the advantage of proton beam therapy for sparing normal tissue, making skin dose a limiting factor for the clinical use of DSS. Finally, the clinical advantage of DSS may not be essential for treating uniform dose across a large target, as in craniospinal irradiation (CSI).

  8. Management of superficial basal cell carcinoma: focus on imiquimod

    PubMed Central

    Raasch, Beverly

    2009-01-01

    Superficial basal cell carcinoma comprise up to 25% of all histological sub-types. They are more likely to occur on younger persons and females and although generally more common on the trunk, also occur frequently on the exposed areas of the head and neck especially in areas of high sun exposure. In the last decade, new treatment options such as topical applications that modify the immune response have been trialed for effectiveness in treating these lesions. Imiquimod 5% cream has been shown to stimulate the innate and cell mediated immune system. The short-term success of imiquimod 5% cream in randomized controlled trials comparing different treatment regimes and dosing as a treatment for small superficial basal cell carcinoma (BCC) not on the face or neck is in the range of 82% for 5 times per week application. A high proportion of participants with good response rates to topical treatment (58%–92%) experience local side effects such as itching and burning, less commonly erosion and ulceration, but the proportion of participants ceasing treatment has not been high. To date one long-term study indicates a treatment success rate of 78%–81% and that initial response is a predictor of long-term outcome. Recurrences tend to occur within the first year after treatment. Future research will compare this preparation to the gold standard treatment for superficial BCC – surgical excision. PMID:21436969

  9. Glans-preserving surgery for superficial penile cancer.

    PubMed

    Li, Pengchao; Song, Ninghong; Yin, Changjun; Zhang, Wei; Li, Jie; Hua, Lixin; Wang, Zengjun; Cheng, Gong

    2012-01-01

    In this study, we investigated the safety and feasibility of glans-preserving surgery for superficial penile squamous cell carcinoma. Young patients with penile primary tumors exhibiting favorable histologic features were best suited for organ-sparing procedures, enabling them to avoid sexual disturbances. The study included 12 patients, 38-53 years of age (median age 46 years), with superficial lesions involving the glans penis, coronary sulcus, or shaft skin. After clinical staging and grading, those patients were offered a glans-preserving procedure to preserve the normal appearance and functional integrity of the glans penis. Of the 12 patients referred, the tumors were TaG1 in 4 patients, TaG2 in 3, TisG1 in 1, TisG2 in 1, T1G1 in 2, and T1G2 in 1. All patients returned to normal sexual activity 1 month postoperatively. Sexual function and sexual satisfaction were well maintained after surgery. The cosmetic results were considered satisfying/very satisfying by 83% (10 of 12 patients). Follow-up data were available on 12 patients at a mean follow-up of 62.5 months. Only 1 patient had recurrence 6 months after surgery, which was managed by a second glans-preserving surgery without recurrence. With careful patient selection and vigilant follow-up, anatomically suitable superficial penile cancer can be offered this glans-preserving surgery, while preserving function of the penis wherever possible.

  10. The Effect of Ferric Chloride on Superficial Bleeding

    PubMed Central

    Nouri, Saeed; Sharif, Mohammad Reza; Sahba, Sare

    2015-01-01

    Background: Controlling superficial bleeding, despite all the progress in surgical science, is still a challenge in some settings. Objectives: This study assesses the hemostatic effects of ferric chloride and compares it with the standard method (suturing technique) to control superficial bleeding. Materials and Methods: In this animal model study, 60 male Wistar rats were used. An incision, 2 cm long and 0.5 cm deep was made on rat skin and the hemostasis time was recorded using ferric chloride at different concentrations (5%, 10%, 15%, 25%, and 50%) and then using a control (i.e. control of bleeding by suturing). The skin tissue was examined for pathological changes. Finally, the obtained data were entered into SPSS (ver. 16) and analyzed using Kruskal-Wallis test, Mann-Whitney, Kolmogorov-Smirnov, and Wilcoxon signed ranks test. Results: The hemostasis time for the ferric chloride concentration group was significantly less than for the control group (P < 0.001). Conclusions: Ferric chloride may be an effective hemostatic agent to control superficial bleeding in rats. PMID:25825694

  11. Dose assessment of 2% chlorhexidine acetate for canine superficial pyoderma.

    PubMed

    Murayama, Nobuo; Terada, Yuri; Okuaki, Mio; Nagata, Masahiko

    2011-10-01

    The dose of 2% chlorhexidine acetate (2CA; Nolvasan(®) Surgical Scrub; Fort Dodge Animal Health, Fort Dodge, IA, USA) for canine superficial pyoderma was evaluated. The first trial compared three doses (group 1, 57 mL/m(2) body surface area; group 2, 29 mL/m(2) body surface area; and group 3, 19 mL/m(2) body surface area) in a randomized, double-blind, controlled fashion. Twenty-seven dogs with superficial pyoderma were treated with 2CA at the allocated doses every 2 days for 1 week. The owners and investigators subjectively evaluated the dogs, and investigators scored skin lesions, including erythema, papules/pustules, alopecia and scales, on a 0-4 scale. There were no significant differences in response between the treatment groups. The second trial established a practical dose-measuring method for 2CA. Sixty-eight owners were asked to apply 2CA on their palm in an amount corresponding to a Japanese ¥500 coin, 26.5 mm in diameter. This yielded an average dose of 0.90±0.40 mL. Mathematically, the doses used in groups 1, 2 and 3 can be represented as one coin per approximately one-, two- and three-hand-sized lesions, respectively. The results therefore suggest that owners instructed to apply one coin of the product per two-hand-sized areas of superficial pyoderma would use the range of doses evaluated in this trial.

  12. Variations in the superficial palmar arch of the hand.

    PubMed

    Bataineh, Ziad M; Habbal, Omar; Moqattash, Satei T

    2009-01-01

    Variations in the pattern of the hand blood supply are frequently encountered. Awareness and identification of such variations is crucial during hand surgery. Thirty formaline fixed hands of male and female cadavers were dissected. All arteries contributing to the superficial palmar arch (SPA) of the hand were verified. In addition to the frequently encountered types of SPA, three very rare cases were described. In the first case, the superficial branch of the radial artery passed superficial to the thenar muscles with a diameter larger than that of the ulnar artery. In addition to the common palmar digital artery to the second web space, it gave the princeps pollicis and radialis indicis arteries. In the second case, the SPA was formed by the ulnar artery and was completed by a small branch from the deep branch of the radial artery. The palmar digital artery to the ulnar side of the fifth finger and the common palmar digital artery to the fourth web space arose from a common trunk. In the third case, incomplete SPA was formed by the median artery which only gave the princeps pollicis and radialis indicis arteries, while the ulnar artery supplied the rest of the hand except the ulnar side of the third finger and the second web space which were supplied by the deep palmar arch. Therefore, sound knowledge of the pattern of the blood supply of the hand by various techniques is crucial to avoid possible complications during hand surgery.

  13. MALL liposuction: the natural evolution of subdermal superficial liposuction.

    PubMed

    Gasperoni, C; Salgarello, M

    1994-01-01

    Subdermal superficial liposuction, first presented by the authors at the ISAPS Congress at Zurich in 1989, is performed with thin three-hole Mercedes cannulas (diameter ranges from 1.8 to 2 mm) to treat small and secondary adiposities and to allow better skin retraction. Suction of the subdermal layer of fat reduces the thickness and consistency of the superficial fat and enhances the possibility of skin retraction. In cases where there is a large adiposity of the abdomen, arms, or inner thighs, there is a conspicuous volume of fat whose weight tends to overstretch and to carry the overlying skin downward. In these cases we need to reduce the large fat volume to permit effective skin retraction. Therefore, we apply the principles of traditional liposuction with those of subdermal superficial liposuction to aspirate large amounts of fat from all the adipose layers. We call this technique Massive All Layer Liposuction (MALL). The amount of skin shrinkage after this "defatting" procedure is remarkable and the clinical results are very good. The MALL technique can be applied to other areas as well. In our experience this new liposuction technique has dramatically reduced the indications of abdominoplasties and dermolipectomies of inner thighs and arms.

  14. Nucleic acid separations using superficially porous silica particles.

    PubMed

    Close, Elizabeth D; Nwokeoji, Alison O; Milton, Dafydd; Cook, Ken; Hindocha, Darsha M; Hook, Elliot C; Wood, Helen; Dickman, Mark J

    2016-04-01

    Ion pair reverse-phase liquid chromatography has been widely employed for nucleic acid separations. A wide range of alternative stationary phases have been utilised in conjunction with ion pair reverse-phase chromatography, including totally porous particles, non-porous particles, macroporous particles and monolithic stationary phases. In this study we have utilised superficially porous silica particles in conjunction with ion pair reverse-phase liquid chromatography for the analysis of nucleic acids. We have investigated a range of different pore-sizes and phases for the analysis of a diverse range of nucleic acids including oligonucleotides, oligoribonucleotides, phosphorothioate oligonucleotides and high molecular weight dsDNA and RNA. The pore size of the superficially porous silica particles was shown to significantly affect the resolution of the nucleic acids. Optimum separations of small oligonucleotides such as those generated in RNase mapping experiments were obtained with 80Å pore sizes and can readily be interfaced with mass spectrometry analysis. Improved resolution of larger oligonucleotides (>19mers) was observed with pore sizes of 150Å. The optimum resolution for larger dsDNA/RNA molecules was achieved using superficially porous silica particles with pore sizes of 400Å. Furthermore, we have utilised 150Å pore size solid-core particles to separate typical impurities of a fully phosphorothioated oligonucleotide, which are often generated in the synthesis of this important class of therapeutic oligonucleotide.

  15. Calcium transport in the rabbit superficial proximal convoluted tubule

    SciTech Connect

    Ng, R.C.; Rouse, D.; Suki, W.N.

    1984-09-01

    Calcium transport was studied in isolated S2 segments of rabbit superficial proximal convoluted tubules. 45Ca was added to the perfusate for measurement of lumen-to-bath flux (JlbCa), to the bath for bath-to-lumen flux (JblCa), and to both perfusate and bath for net flux (JnetCa). In these studies, the perfusate consisted of an equilibrium solution that was designed to minimize water flux or electrochemical potential differences (PD). Under these conditions, JlbCa (9.1 +/- 1.0 peq/mm X min) was not different from JblCa (7.3 +/- 1.3 peq/mm X min), and JnetCa was not different from zero, which suggests that calcium transport in the superficial proximal convoluted tubule is due primarily to passive transport. The efflux coefficient was 9.5 +/- 1.2 X 10(-5) cm/s, which was not significantly different from the influx coefficient, 7.0 +/- 1.3 X 10(-5) cm/s. When the PD was made positive or negative with use of different perfusates, net calcium absorption or secretion was demonstrated, respectively, which supports a major role for passive transport. These results indicate that in the superficial proximal convoluted tubule of the rabbit, passive driving forces are the major determinants of calcium transport.

  16. A theoretical design of a flattening filter to improve field uniformity of a superficial therapeutic X-ray beam.

    PubMed

    al-Ghorabie, F H

    2000-03-01

    A Monte Carlo model has been developed using the MCNP code to aid the design of a flattening filter, to improve field uniformity of a superficial x-ray machine. The machine is operating at 90 kV and filtered with a 1.1 mm aluminium filter. In the theoretical simulation the original flat filter was replaced by a varying thickness filter to improve the uniformity across field sizes 20, 5 and 2 cm diameter as well as hardening the beam. Simulation results showed that flatness of the beam profile was improved for the 20 cm field size from +/- 7.3% to +/- 1.1% across the anode/cathode direction and from +/- 7.7% to +/- 3.2% in the anode/cathode direction. For the 5 cm field size the improvement was from +/- 4.6% to +/- 3.1% and from +/- 5.5% to +/- 3.4%, and for the 2 cm field size from +/- 3.1% to +/- 2.4% and from +/- 10.2% to +/- 9.5%, in the same directions, respectively. Beam quality simulations were made and the original half-value layer was reduced from 2.21 +/- 0.09 mm aluminium to 2.04 +/- 0.09 mm aluminium. The study demonstrated that it was possible to build a filter capable of flattening the beam profile for different sized applicators without significantly changing the penetrating ability of the beam.

  17. Management of superficial vein thrombosis and thrombophlebitis: status and expert opinion document.

    PubMed

    Cesarone, M R; Belcaro, G; Agus, G; Georgiev, M; Errichi, B M; Marinucci, R; Errichi, S; Filippini, A; Pellegrini, L; Ledda, A; Vinciguerra, G; Ricci, A; Cipollone, G; Lania, M; Gizzi, G; Ippolito, E; Bavera, P; Fano, F; Dugall, M; Adovasio, R; Gallione, L; Del Boccio, G; Cornelli, U; Steigerwalt, R; Acerbi, G; Cacchio, M; Di Renzo, A; Hosoi, M; Stuard, S; Corsi, M; Di Ciano, L; Simeone, E; Collevecchio, G; Grossi, M G; Di Giambattista, F; Carestia, F; Zukowski, A

    2007-01-01

    Superficial vein thrombosis is characterized by clotting of superficial veins (ie, following direct trauma) with minimal inflammatory components. Superficial thrombophlebitis is a minimally thrombotic process of superficial veins associated with inflammatory changes and/or infection. Treatments generally include analgesics, elastic compression, anti-inflammatory agents, exercise and ambulation, and, in some cases, local or systemic anticoagulants. It is better to avoid bed rest and reduced mobility. Topical analgesia with nonsteroidal, anti-inflammatory creams applied locally to the superficial vein thrombosis/superficial thrombophlebitis area controls symptoms. Hirudoid cream (heparinoid) shortens the duration of signs/symptoms. Locally acting anticoagulants/antithrombotics (Viatromb, Lipohep, spray Na-heparin) have positive effects on pain and on the reduction in thrombus size. Intravenous catheters should be changed every 24 to 48 hours (depending on venous flow and clinical parameters) to prevent superficial vein thrombosis/superficial thrombophlebitis and removed in case of events. Low molecular weight heparin prophylaxis and nitroglycerin patches distal to peripheral lines may reduce the incidence of superficial vein thrombosis/superficial thrombophlebitis in patients with vein catheters. In case of superficial vein thrombosis/superficial thrombophlebitis, vein lines should be removed. In neoplastic diseases and hematological disorders, anticoagulants may be necessary. Exercise reduces pain and the possibility of deep vein thrombosis. Only in cases in which pain is very severe is bed rest necessary. Deep vein thrombosis prophylaxis should be established in patients with reduced mobility. Antibiotics usually do not have a place in superficial vein thrombosis/superficial thrombophlebitis unless there are documented infections. Prevention of superficial vein thrombosis should be considered on the basis of patient's history and clinical evaluation.

  18. Multi-MGy Radiation Hardened Camera for Nuclear Facilities

    SciTech Connect

    Girard, Sylvain; Boukenter, Aziz; Ouerdane, Youcef; Goiffon, Vincent; Corbiere, Franck; Rolando, Sebastien; Molina, Romain; Estribeau, Magali; Avon, Barbara; Magnan, Pierre; Paillet, Philippe; Duhamel, Olivier; Gaillardin, Marc; Raine, Melanie

    2015-07-01

    There is an increasing interest in developing cameras for surveillance systems to monitor nuclear facilities or nuclear waste storages. Particularly, for today's and the next generation of nuclear facilities increasing safety requirements consecutive to Fukushima Daiichi's disaster have to be considered. For some applications, radiation tolerance needs to overcome doses in the MGy(SiO{sub 2}) range whereas the most tolerant commercial or prototypes products based on solid state image sensors withstand doses up to few kGy. The objective of this work is to present the radiation hardening strategy developed by our research groups to enhance the tolerance to ionizing radiations of the various subparts of these imaging systems by working simultaneously at the component and system design levels. Developing radiation-hardened camera implies to combine several radiation-hardening strategies. In our case, we decided not to use the simplest one, the shielding approach. This approach is efficient but limits the camera miniaturization and is not compatible with its future integration in remote-handling or robotic systems. Then, the hardening-by-component strategy appears mandatory to avoid the failure of one of the camera subparts at doses lower than the MGy. Concerning the image sensor itself, the used technology is a CMOS Image Sensor (CIS) designed by ISAE team with custom pixel designs used to mitigate the total ionizing dose (TID) effects that occur well below the MGy range in classical image sensors (e.g. Charge Coupled Devices (CCD), Charge Injection Devices (CID) and classical Active Pixel Sensors (APS)), such as the complete loss of functionality, the dark current increase and the gain drop. We'll present at the conference a comparative study between these radiation-hardened pixel radiation responses with respect to conventional ones, demonstrating the efficiency of the choices made. The targeted strategy to develop the complete radiation hard camera electronics will

  19. [The effect of daily exposure to low hardening temperature on plant vital activity].

    PubMed

    Markovskaia, E F; Sysoeva, M I; Sherudilo, E G

    2008-01-01

    Phenomenological responses of plants to daily short-term exposure to low hardening temperature was studied under chamber and field conditions. Experiments were carried out on cucumber (Cucumis sativus L.), barley (Hordeum vulgare L.), marigolds (Tagetes L.), and petunia (Petunia x hybrida) plants. The obtained data demonstrated a similar pattern of response in all studied plant species to different variants of exposure to low hardening temperature. The main features of plant response to daily short-term exposure to low hardening temperature include: a higher rate of increase in cold tolerance (cf. two- or threefold increase relative to constant low hardening temperature) that peaked on day 5 (cf. day 2 at constant low hardening temperature) and was maintained for 2 weeks (cf. 3-4 days at constant low hardening temperature); a simultaneous increase in heat tolerance (cf. twofold relative to constant low hardening temperature) maintained over a long period (cf. only in the beginning of the exposure to constant low hardening temperature); a sharp drop in the subsequent cold tolerance after plant incubation in the dark (cf. a very low decrease in cold tolerance following the exposure to constant low hardening temperature); a combination of high cold tolerance and high photochemical activity of the photosynthetic apparatus (cf. a low non-photochemical quenching at constant low hardening temperature); and the capacity to rapidly increase cold tolerance in response to repeated short-term exposures to low hardening temperature in plants grown outdoors (cf. a gradual increase after repeated exposure to constant low hardening temperature). Possible methods underlying the plant response to daily short-term exposure to low temperature are proposed.

  20. Development of a Pressure-Dependent Constitutive Model with Combined Multilinear Kinematic and Isotropic Hardening

    NASA Technical Reports Server (NTRS)

    Allen Phillip A.; Wilson, Christopher D.

    2003-01-01

    The development of a pressure-dependent constitutive model with combined multilinear kinematic and isotropic hardening is presented. The constitutive model is developed using the ABAQUS user material subroutine (UMAT). First the pressure-dependent plasticity model is derived. Following this, the combined bilinear and combined multilinear hardening equations are developed for von Mises plasticity theory. The hardening rule equations are then modified to include pressure dependency. The method for implementing the new constitutive model into ABAQUS is given.

  1. Surface hardening of steel by laser and electron beam. (Latest citations from METADEX). Published Search

    SciTech Connect

    Not Available

    1994-09-01

    The bibliography contains citations concerning electron beam hardening of steels and alloys. Among the materials surface hardened are carbon and alloy steels, aircraft spur gears, nitrocarburized steel, turbine blades, titanium-carbon steel, titanium, and rolling bearings. Effect of transformation plasticity on residual stress fields in laser surface hardening treatment is also examined. (Contains a minimum of 93 citations and includes a subject term index and title list.)

  2. Surface hardening of steel by laser and electron beam. (Latest citations from Metadex). Published Search

    SciTech Connect

    1996-08-01

    The bibliography contains citations concerning electron beam hardening of steels and alloys. Among the materials surface hardened are carbon and alloy steels, aircraft spur gears, nitrocarburized steel, turbine blades, titanium-carbon steel, titanium, and rolling bearings. Effect of transformation plasticity on residual stress fields in laser surface hardening treatment is also examined.(Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  3. A Combined Isotropic-Kinematic Hardening Model for Large Deformation Metal Plasticity

    DTIC Science & Technology

    1988-12-01

    713C and Waspaloy, ASME Series D, 87, p. 275. 1965 WILSON, D.V., Reversible Work Hardening in Alloys of Cubic Metals, Acta Metallurgica, 13, pp. 807-814...Sum m ary ............................................................ 32 3. Micromodeling of a Particle-Hardened Alloy Using the Finite Element M...in a particle hardened alloy is presented. A finite element model was used to model the effects of the particle-matrix interaction. The results

  4. Case depth verification of hardened samples with Barkhausen noise sweeps

    NASA Astrophysics Data System (ADS)

    Santa-aho, Suvi; Hakanen, Merja; Sorsa, Aki; Vippola, Minnamari; Leiviskä, Kauko; Lepistö, Toivo

    2014-02-01

    An interesting topic of recent Barkhausen noise (BN) method studies is the application of the method to case depth evaluation of hardened components. The utilization of BN method for this purpose is based on the difference in the magnetic properties between the hardened case and the soft core. Thus, the detection of case depth with BN can be achieved. The measurements typically have been carried out by using low magnetizing frequencies which have deeper penetration to the ferromagnetic samples than the conventional BN measurement. However, the penetration depth is limited due to eddy current damping of the signal. We introduce here a newly found sweep measurement concept for the case depth evaluation. In this study sweep measurements were carried out with various magnetizing frequencies and magnetizing voltages to detect the effect of different frequency and voltage and their correspondence to the actual case depth values verified from destructive characterization. Also a BN measurement device that has an implemented sweep analysis option was utilised. The samples were either induction or case-hardened samples and sample geometry contained both rod samples and gear axle samples with different case depth values. Samples were also further characterized with Xray diffraction to study the residual stress state of the surface. The detailed data processing revealed that also other calculated features than the maximum slope division of the 1st derivative of the BN signal could hold the information about the case depth value of the samples. The sweep method was able to arrange the axles into correct order according to the case depth value even though the axles were used.

  5. Organoapatites: materials for artificial bone. II. Hardening reactions and properties.

    PubMed

    Stupp, S I; Mejicano, G C; Hanson, J A

    1993-03-01

    This article reports on chemical reactions and the properties they generated in artificial bone materials termed "organoapatites." These materials are synthesized using methodology we reported in the previous article of this series. Two different processes were studied here for the transition from organoapatite particles to implants suitable for the restoration of the skeletal system. One process involved the hardening of powder compacts by beams of blue light derived from a lamp or a laser and the other involved pressure-induced interdiffusion of polymers. In both cases, the hardening reaction involved the formation of a polyion complex between two polyelectrolytes. In the photo-induced reaction an anionic electrolyte polymerizes to form the coulombic network and in the pressure-induced one, pressure forms the complex by interdiffusion of two polyions. Model reactions were studied using various polycations. Based on these results the organoapatite selected for the study was that containing dispersed poly(L-lysine) and sodium acrylate as the anionic monomer. The organomineral particles can be pressed at room temperature into objects of great physical integrity and hydrolytic stability relative to anorganic controls. The remarkable fact about these objects is that intimate molecular dispersion of only 2-3% by weight organic material provides integrity to the mineral network in an aqueous medium and also doubles its tensile strength. This integrity is essentially nonexistent in "anorganic" samples prepared by the same methodology used in organoapatite synthesis. The improvement in properties was most effectively produced by molecular bridges formed by photopolymerization. The photopolymerization leads to the "hardening" of pellets prepared by pressing of organoapatite powders. The reaction was found to be more facile in the microstructure of the organomineral, and it is potentially useful in the surgical application of organoapatites as artificial bone.

  6. BUSFET - A Novel Radiation-Hardened SOI Transistor

    SciTech Connect

    Schwank, J.R.; Shaneyfelt, M.R.; Draper, B.L.; Dodd, P.E.

    1999-07-20

    The total-dose hardness of SOI technology is limited by radiation-induced charge trapping in gate, field, and SOI buried oxides. Charge trapping in the buried oxide can lead to back-channel leakage and makes hardening SOI transistors more challenging than hardening bulk-silicon transistors. Two avenues for hardening the back-channel are (1) to use specially prepared SOI buried oxides that reduce the net amount of trapped positive charge or (2) to design transistors that are less sensitive to the effects of trapped charge in the buried oxide. In this work, we propose a new partially-depleted SOI transistor structure that we call the BUSFET--Body Under Source FET. The BUSFET utilizes a shallow source and a deep drain. As a result, the silicon depletion region at the back channel caused by radiation-induced charge trapping in the buried oxide does not form a conducting path between source and drain. Thus, the BUSFET structure design can significantly reduce radiation-induced back-channel leakage without using specially prepared buried oxides. Total dose hardness is achieved without degrading the intrinsic SEU and dose rate hardness of SOI technology. The effectiveness of the BUSFET structure for reducing total-dose back-channel leakage depends on several variables, including the top silicon film thickness and doping concentration and the depth of the source. 3-D simulations show that for a doping concentration of 10{sup 18} cm{sup {minus}3} and a source depth of 90 nm, a silicon film thickness of 180 nm is sufficient to almost completely eliminate radiation-induced back-channel leakage. However, for a doping concentration of 3x10{sup 17} cm{sup {minus}3}, a thicker silicon film (300 nm) must be used.

  7. Bulk-hardened magnets based on Y2Co17

    NASA Astrophysics Data System (ADS)

    Gabay, A. M.; Zhang, Y.; Hadjipanayis, G. C.

    2001-07-01

    Bulk magnetic hardening of cast Y2Co17-based alloys was systematically studied for different compositions and heat treatments. Additions of Cu and Zr, Hf, or Ti to the Y-Co were found to be essential for developing coercivity. The performance of Y-Co-Cu-Zr magnets can be significantly improved by partial Pr and Fe substitutions for Y and Co, respectively. Anisotropic (Y0.8Pr0.2)11.5Zr2.75Co56.75Fe14Cu15 powders with intrinsic coercivity of 7.8 kOe and energy product of 14.4 MG Oe were obtained after annealing at 900 °C for 15 min and cooling to 200 °C at the rate of 4 °C/min. We also explored the effects of some other rare earths (La, Nd, Gd) and transition metals (Mn, Ni) on the magnetic properties of the Y-Co-Cu-Zr magnets. The phases present and the microstructure were analyzed with x-ray diffraction, thermomagnetic analysis, and transmission electron microscopy. The cellular/lamellar microstructure of the bulk-hardened alloys is similar to that of Sm-Co-Cu-Zr magnets. Among the most noticeable distinctions in the Y-Co-Cu-Zr alloys are a smaller average size of 2:17 cells and a variety of Zr-rich phases, like Zr2Co11 and Zr6Co23. Although the Y2Co17 phase is known to have an "easy-plane" anisotropy, the x-ray diffraction experiments with magnetically oriented powders suggest that in the bulk-hardened Y-Co-Cu-Zr and Y-Co-Cu-Fe-Zr magnets the 2:17 phase has uniaxial anisotropy.

  8. Case depth verification of hardened samples with Barkhausen noise sweeps

    SciTech Connect

    Santa-aho, Suvi; Vippola, Minnamari; Lepistö, Toivo; Hakanen, Merja; Sorsa, Aki; Leiviskä, Kauko

    2014-02-18

    An interesting topic of recent Barkhausen noise (BN) method studies is the application of the method to case depth evaluation of hardened components. The utilization of BN method for this purpose is based on the difference in the magnetic properties between the hardened case and the soft core. Thus, the detection of case depth with BN can be achieved. The measurements typically have been carried out by using low magnetizing frequencies which have deeper penetration to the ferromagnetic samples than the conventional BN measurement. However, the penetration depth is limited due to eddy current damping of the signal. We introduce here a newly found sweep measurement concept for the case depth evaluation. In this study sweep measurements were carried out with various magnetizing frequencies and magnetizing voltages to detect the effect of different frequency and voltage and their correspondence to the actual case depth values verified from destructive characterization. Also a BN measurement device that has an implemented sweep analysis option was utilised. The samples were either induction or case-hardened samples and sample geometry contained both rod samples and gear axle samples with different case depth values. Samples were also further characterized with Xray diffraction to study the residual stress state of the surface. The detailed data processing revealed that also other calculated features than the maximum slope division of the 1st derivative of the BN signal could hold the information about the case depth value of the samples. The sweep method was able to arrange the axles into correct order according to the case depth value even though the axles were used.

  9. Hardening communication ports for survival in electrical overstress environments

    NASA Technical Reports Server (NTRS)

    Clark, O. Melville

    1991-01-01

    Greater attention is being focused on the protection of data I/O ports since both experience and lab tests have shown that components at these locations are extremely vulnerable to electrical overstress (EOS) in the form of transient voltages. Lightning and electrostatic discharge (ESD) are the major contributors to these failures; however, these losses can be prevented. Hardening against transient voltages at both the board level and system level has a proven record of improving reliability by orders of magnitude. The EOS threats, typical failure modes, and transient voltage mitigation techniques are reviewed. Case histories are also reviewed.

  10. Ductility and work hardening in nano-sized metallic glasses

    SciTech Connect

    Chen, D. Z.; Gu, X. W.; An, Q.; Goddard, W. A.; Greer, J. R.

    2015-02-09

    In-situ nano-tensile experiments on 70 nm-diameter free-standing electroplated NiP metallic glass nanostructures reveal tensile true strains of ∼18%, an amount comparable to compositionally identical 100 nm-diameter focused ion beam samples and ∼3 times greater than 100 nm-diameter electroplated samples. Simultaneous in-situ observations and stress-strain data during post-elastic deformation reveal necking and work hardening, features uncharacteristic for metallic glasses. The evolution of free volume within molecular dynamics-simulated samples suggests a free surface-mediated relaxation mechanism in nano-sized metallic glasses.

  11. Substorm effects in auroral spectra. [electron spectrum hardening

    NASA Technical Reports Server (NTRS)

    Eather, R. H.; Mende, S. B.

    1973-01-01

    A substorm time parameter is defined and used to order a large body of photometric data obtained on aircraft expeditions at high latitudes. The statistical analysis demonstrates hardening of the electron spectrum at the time of substorm, and it is consistent with the accepted picture of poleward expansion of aurora at the time of substorm and curvature drift of substorm-injected electrons. These features are not evident from a similar analysis in terms of magnetic time. We conclude that the substorm time concept is a useful ordering parameter for auroral data.

  12. Approximating the dynamic response of strain-hardening structures

    SciTech Connect

    Youngdahl, C.K.

    1991-01-01

    A mode approximation method is being developed to predict the dynamic plastic deformation of strain-hardening structures. A mode shape having time-dependent coefficients is based on quasi-static deformation profiles. Two stress fields are associated with the modal shape, one satisfying the dynamic relations and the other satisfying the constitutive equations. The application of suitable matching conditions results in a set of simultaneous differential and algebraic equations for the amplitude coefficients and plastic region size. Using the example of a simply supported beam, the effect of varying the number of matching conditions on the accuracy of the solution is presented. 5 refs., 7 figs.

  13. The effect of niobium on the hardenability of microalloyed austenite

    NASA Astrophysics Data System (ADS)

    Fossaert, C.; Rees, G.; Maurickx, T.; Bhadeshia, H. K. D. H.

    1995-01-01

    The powerful effect that varying the extent of niobium-carbide dissolution has on the “hardenability” of microalloyed austenite is demonstrated using dilatometric measurement of the critical cooling rate required to from microstructures containing >95 Pct martensite. The results can be rationalized on the hypothesis that the hardenability of austenite is enhanced by niobium in solid solution, possibly by its segregation to austenite grain boundaries, but is decreased by precipitation of niobium-carbide particles. This effect appears analogous to that of boron in steels and is found to be independent of variations in the austenite grain size.

  14. Structural influences on the work hardening behavior of aluminum

    SciTech Connect

    Chu, David

    1994-12-01

    Effects of various grain and subgrain morphologies on low temperature work hardening of pure Al is studied using tensile tests. Plotting the work hardening rate as a function of true stress, the work hardening is separable into two distinct regimes. Both regimes are approximated by a line θ = θ0 - K2σ, where θ0 is theoretical work hardening rate at zero stress and K2 is related to dynamic recovery rate. The first or early deformation regime exhibits greater values of θ0 and K2 and can extend up to the first 10% strain of tensile deformation. This early deformation regime is contingent on the existence of a pre-existent dislocation substructure from previous straining. The θ0 and K2 associated with the early deformation regime are dependent on the strength and orientation of the pre-existent dislocation substructure relative to the new strain path. At high enough temperatures, this pre-existent dislocation substructure is annealed out, resulting in the near elimination of the early deformation regime. In comparison, the latter regime is dominated by the initial grain and/or subgrain morphology and exhibit lower values of θ0 and K2. The actual value of K2 in the latter regime is strongly dependent on the existence of a subgrain morphology. Recrystallized or well-annealed microstructures exhibit greater values of K2 than microstructures that remain partially or fully unrecrystallized. The higher K2 value is indicative of a more rapid dynamic recovery rate and a greater degree of strain relaxation. The ability to achieve a more relaxed state produces a low-energy cellular dislocation substructure upon deformation. The introduction of subgrains hinders the evolution of a low-energy dislocation cell network, giving way to a more random distribution of the dislocation density.

  15. Stochastic Analysis of Facilities Hardened Against Conventional Weapons Effects

    DTIC Science & Technology

    1994-05-01

    called FAST Ill was completed which modeled various elements of the hardened or strategic systems failure problem (Rowan, 1977). Failure Analysis by...later date. If the system is modeled as a general beamn the equation of motion of the system can be written as m + pAv,, = q.(xt) (3.5) where the comma...3.6 into equation 3.5 rermsm: (1 -AdM,= + Ao~v,= + pAv,,, = q,,(xt) (3.7) The term q.xt) represents the load model input to the system . The hystertc

  16. Development of a Flexible Laser Hardening & Machining Center and Proof of Concept on C-45 Steel

    NASA Astrophysics Data System (ADS)

    Bouquet, Jan; Van Camp, Dries; Vanhove, Hans; Clijsters, Stijn; Amirahmad, Mohammadi; Lauwers, Bert

    The production of hardened precision parts is conventionally done in 3 steps. Rough machining of a workpiece in soft stage is followed by a hardening step, usually a batch process, and finalized by a hard machining finishing step. To omit the inevitable time delay and loss of accuracy because of part re-clamping, these steps should be incorporated within one flexible machining center. This paper describes the development of this machining center which allowsmachining and laser hardening in one setup, followed by a proof of concept for hardening C45 steel on this setup.

  17. Hardening mechanisms in a dynamic strain aging alloy, Hastelloy X, during isothermal and thermomechanical cyclic deformation

    NASA Technical Reports Server (NTRS)

    Miner, R. V.; Castelli, M. G.

    1992-01-01

    The relative contributions of the hardening mechanisms in Hastelloy X during cyclic deformation were investigated by conducting isothermal cyclic deformation tests within a total strain range of +/-0.3 pct and at several temperatures and strain rates, and thermomechanical tests within several different temperature limits. The results of the TEM examinations and special constant structure tests showed that the precipitation on dislocations of Cr23C6 contributed to hardening, but only after sufficient time above 500 C. Solute drag alone produced very considerable cyclic hardening. Heat dislocation densities, peaking around 10 exp 11 per sq cm, were found to develop at temperatures producing the greatest cyclic hardening.

  18. Consequences of heat hardening on a field fitness component in Drosophila depend on environmental temperature.

    PubMed

    Loeschcke, Volker; Hoffmann, Ary A

    2007-02-01

    Heat hardening increases thermal resistance to more extreme temperatures in the laboratory. However, heat hardening also has negative consequences, and the net benefit of hardening has not been evaluated in the field. We tested short-term heat hardening effects on the likelihood of Drosophila melanogaster to be caught at different temperatures at baits in field sites without natural resources. We predicted that hardened flies should be more frequently caught at the baits at high but not low temperatures. Under cool conditions, flies hardened at 36 degrees C, and to a lesser extent at 34 degrees C, were less frequently caught at baits than nonhardened flies a few hours after release, indicating a negative effect of hardening. In later captures, negative effects tended to disappear, particularly in males. Under warm conditions, there was an overall balance of negative and positive effects, though with a different temporal resolution. Under very hot conditions, when capture rates were low, there was a large benefit of hardening at 36 degrees C and 34 degrees C but not 33 degrees C. Finally, based on climatic records, the overall benefit of hardening in D. melanogaster is discussed as an evolved response to high temperatures occasionally experienced by organisms at some locations.

  19. Clinical superficial Raman probe aimed for epithelial tumor detection: Phantom model results

    PubMed Central

    Agenant, Michelle; Grimbergen, Matthijs; Draga, Ronald; Marple, Eric; Bosch, Ruud; van Swol, Christiaan

    2014-01-01

    Abstract: A novel clinical Raman probe for sampling superficial tissue to improve in vivo detection of epithelial malignancies is compared to a non-superficial probe regarding depth response function and signal-to-noise ratio. Depth response measurements were performed in a phantom tissue model consisting of a polyethylene terephthalate disc in an 20%-Intralipid® solution. Sampling ranges of 0-200 and 0-300 μm were obtained for the superficial and non-superficial probe, respectively. The mean signal-to-noise ratio of the superficial probe increased by a factor of 2 compared with the non-superficial probe. This newly developed superficial Raman probe is expected to improve epithelial cancer detection in vivo. PMID:24761301

  20. Diamond Coatings

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Advances in materials technology have demonstrated that it is possible to get the advantages of diamond in a number of applications without the cost penalty, by coating and chemically bonding an inexpensive substrate with a thin film of diamond-like carbon (DLC). Diamond films offer tremendous technical and economic potential in such advances as chemically inert protective coatings; machine tools and parts capable of resisting wear 10 times longer; ball bearings and metal cutting tools; a broad variety of optical instruments and systems; and consumer products. Among the American companies engaged in DLC commercialization is Diamonex, Inc., a diamond coating spinoff of Air Products and Chemicals, Inc. Along with its own proprietary technology for both polycrystalline diamond and DLC coatings, Diamonex is using, under an exclusive license, NASA technology for depositing DLC on a substrate. Diamonex is developing, and offering commercially, under the trade name Diamond Aegis, a line of polycrystalline diamond-coated products that can be custom tailored for optical, electronic and engineering applications. Diamonex's initial focus is on optical products and the first commercial product is expected in late 1990. Other target applications include electronic heat sink substrates, x-ray lithography masks, metal cutting tools and bearings.

  1. The hardness, adhesion, and wear resistance of coatings developed for cobalt-base alloys

    SciTech Connect

    Cockeram, B.V.; Wilson, W.L.

    2000-05-01

    One potential approach for reducing the level of nuclear plant radiation exposure that results from activated cobalt wear debris is the use of a wear resistant coating. However, large differences in stiffness between a coating/substrate can result in high interfacial stresses that produce coating de-adhesion when a coated substrate is subjected to high stress wear contact. Scratch adhesion and indentation tests have been used to identify four promising coating processes [1,2]: (1) the use of a thin Cr-nitride coating with a hard and less-stiff interlayer, (2) the use of a thick, multilayered Cr-nitride coating with graded layers, (3) use of the duplex approach, or nitriding to harden the material subsurface followed by application of a multilayered Cr-nitride coating, and (4) application of nitriding alone. The processing, characterization, and adhesion of these coating systems are discussed. The wear resistance and performance has been evaluated using laboratory pin-on-disc, 4-ball, and high stress rolling contact tests. Based on the results of these tests, the best coating candidate from the high-stress rolling contact wear test was the thin duplex coating, which consists of ion nitriding followed deposition of a thin Cr-nitride coating, while the thin Cr-nitride coating exhibited the best results in the 4-ball wear test.

  2. Nanostructured Coatings

    NASA Astrophysics Data System (ADS)

    Rivière, J.-P.

    In many branches of technology where surfaces are playing a growing role, the use of coatings is often the only way to provide surfaces with specific functional properties. For example, the austenitic stainless steels or titanium alloys exhibit poor resistance to wear and low hardness values, which limits the field of applications. The idea then is to develop new solutions which would improve the mechanical performance and durability of objects used in contact and subjected to mechanical forces in hostile gaseous or liquid environments. Hard coatings are generally much sought after to enhance the resistance to wear and corrosion. They are of particular importance because they constitute a class of protective coatings which is already widely used on an industrial scale to improve the hardness and lifetime of cutting tools.

  3. Protective Coatings

    NASA Technical Reports Server (NTRS)

    1980-01-01

    General Magnaplate Corporation's pharmaceutical machine is used in the industry for high speed pressing of pills and capsules. Machine is automatic system for molding glycerine suppositories. These machines are typical of many types of drug production and packaging equipment whose metal parts are treated with space spinoff coatings that promote general machine efficiency and contribute to compliance with stringent federal sanitation codes for pharmaceutical manufacture. Collectively known as "synergistic" coatings, these dry lubricants are bonded to a variety of metals to form an extremely hard slippery surface with long lasting self lubrication. The coatings offer multiple advantages; they cannot chip, peel or be rubbed off. They protect machine parts from corrosion and wear longer, lowering maintenance cost and reduce undesired heat caused by power-robbing friction.

  4. Improvement of the wear resistance of electroplated Au-Ni coatings by Zr ion bombardment of Ni-B sublayer

    SciTech Connect

    Lyazgin, Alexander Shugurov, Artur Sergeev, Viktor Neufeld, Vasily; Panin, Alexey; Shesterikov, Evgeny

    2015-10-27

    The effect of bombardment of the Ni-B sublayer by Zr ion beams on the surface morphology and tribomechanical properties of Au-Ni coatings was investigated. It was found that the treatment has no significant effect on the surface roughness and grain size of the Au-Ni coatings, while it provides essential reducing of their friction coefficient and improvement of wear resistance. It is shown that increased wear resistance of these coatings was caused by their strain hardening resulted from localization of plastic strain. The optimal Zr fluence were determined that provide the maximum reduction of linear wear of the coatings.

  5. Effect of a hard sublayer on contact interaction and wear behavior of electrodeposited gold-based coatings

    SciTech Connect

    Lyazgin, Alexander O. E-mail: shugurov@ispms.tsc.ru Shugurov, Artur R. E-mail: shugurov@ispms.tsc.ru Panin, Alexey V. E-mail: shugurov@ispms.tsc.ru; Shesterikov, Evgeniy V.

    2014-11-14

    The mechanical properties and wear of electroplated Au–Ni coatings deposited on beryllium bronze substrates with Ni or Ni–B intermediate layers were investigated. It was revealed that the sublayer material has no significant effect on the hardness and the elastic modulus of the coatings. At the same time, the harder sublayer favors localization of plastic deformation and, thus, strain hardening of coatings in the course of tribological tests. The Ni–B sublayer was shown to provide significant wear reduction of Au–Ni coatings as compared with the Ni sublayer.

  6. [Study of mutagenicity of epoxy resin hardeners by fluctuation test].

    PubMed

    Hayashi, K; Koike, N; Mashizu, N; Mozawa, K; Sakaba, H; Shimizu, H

    1987-11-01

    Mutagenicity of nine epoxy resin hardeners was examined by a fluctuation test modified by Gatehouse. The test was performed by using Salmonella typhimurium TA98 with a metabolic activation system. In our laboratory, the results of the fluctuation test were compared with the results obtained by the previously mentioned Ames preincubation method. Six out of nine epoxy resin hardeners showed mutagenic activity in both the fluctuation test and Ames preincubation method, but one out of the nine was negative in both test systems. Two out of the nine were positive by either of the two testing systems. The fluctuation test is disadvantageous in that it is marginally slower and requires slightly more labor than the Ames test and furthermore it is difficult to increase the amount of microsome because of background interference. These disadvantages, however, are somewhat offset by the advantages that small organs such as urinary bladder can be used instead of liver cells and that a small amount of microsome can be employed for metabolic activation. This test is also suitable for testing aqueous samples containing low levels of mutagen.

  7. Quantifying characters: polygenist anthropologists and the hardening of heredity.

    PubMed

    Hume, Brad D

    2008-01-01

    Scholars studying the history of heredity suggest that during the 19th-century biologists and anthropologists viewed characteristics as a collection of blended qualities passed on from the parents. Many argued that those characteristics could be very much affected by environmental circumstances, which scholars call the inheritance of acquired characteristics or "soft" heredity. According to these accounts, Gregor Mendel reconceived heredity--seeing distinct hereditary units that remain unchanged by the environment. This resulted in particular traits that breed true in succeeding generations, or "hard" heredity. The author argues that polygenist anthropology (an argument that humanity consisted of many species) and anthropometry in general should be seen as a hardening of heredity. Using a debate between Philadelphia anthropologist and physician, Samuel G. Morton, and Charleston naturalist and reverend, John Bachman, as a springboard, the author contends that polygenist anthropologists hardened heredity by conceiving of durable traits that might reappear even after a race has been eliminated. Polygenists saw anthropometry (the measurement of humans) as one method of quantifying hereditary qualities. These statistical ranges were ostensibly characteristics that bred true and that defined racial groups. Further, Morton's interest in hybridity and racial mixing demonstrates that the polygenists focused as much on the transmission and recognition of "amalgamations" of characters as they did on racial categories themselves. The author suggests that seeing race science as the study of heritable, statistical characteristics rather than broad categories helps explain why "race" is such a persistent cultural phenomenon.

  8. Folding and faulting of strain-hardening sedimentary rocks

    USGS Publications Warehouse

    Johnson, A.M.

    1980-01-01

    The question of whether single- or multi-layers of sedimentary rocks will fault or fold when subjected to layer-parallel shortening is investigated by means of the theory of elastic-plastic, strain-hardening materials, which should closely describe the properties of sedimentary rocks at high levels in the Earth's crust. The most attractive feature of the theory is that folding and faulting, intimately related in nature, are different responses of the same idealized material to different conditions. When single-layers of sedimentary rock behave much as strain-hardening materials they are unlikely to fold, rather they tend to fault, because contrasts in elasticity and strength properties of sedimentary rocks are low. Amplifications of folds in such materials are negligible whether contacts between layer and media are bonded or free to slip for single layers of dolomite, limestone, sandstone, or siltstone in media of shale. Multilayers of these same rocks fault rather than fold if contacts are bonded, but they fold readily if contacts between layers are frictionless, or have low yield strengths, for example due to high pore-water pressure. Faults may accompany the folds, occurring where compression is increased in cores of folds. Where there is predominant reverse faulting in sedimentary sequences, there probably were few structural units. ?? 1980.

  9. DISCREPANT HARDENING OBSERVED IN COSMIC-RAY ELEMENTAL SPECTRA

    SciTech Connect

    Ahn, H. S.; Ganel, O.; Han, J. H.; Kim, K. C.; Lee, M. H.; Lutz, L.; Malinin, A.; Allison, P.; Beatty, J. J.; Bagliesi, M. G.; Bigongiari, G.; Maestro, P.; Marrocchesi, P. S.; Childers, J. T.; DuVernois, M. A.; Conklin, N. B.; Coutu, S.; Mognet, S. I.; Jeon, J. A.; Minnick, S.

    2010-05-01

    The balloon-borne Cosmic Ray Energetics And Mass experiment launched five times from Antarctica has achieved a cumulative flight duration of about 156 days above 99.5% of the atmosphere. The instrument is configured with complementary and redundant particle detectors designed to extend direct measurements of cosmic-ray composition to the highest energies practical with balloon flights. All elements from protons to iron nuclei are separated with excellent charge resolution. Here, we report results from the first two flights of {approx}70 days, which indicate hardening of the elemental spectra above {approx}200 GeV/nucleon and a spectral difference between the two most abundant species, protons and helium nuclei. These results challenge the view that cosmic-ray spectra are simple power laws below the so-called knee at {approx}10{sup 15} eV. This discrepant hardening may result from a relatively nearby source, or it could represent spectral concavity caused by interactions of cosmic rays with the accelerating shock. Other possible explanations should also be investigated.

  10. A radiation-hardened, computer for satellite applications

    SciTech Connect

    Gaona, J.I. Jr.

    1996-08-01

    This paper describes high reliability radiation hardened computers built by Sandia for application aboard DOE satellite programs requiring 32 bit processing. The computers highlight a radiation hardened (10 kGy(Si)) R3000 executing up to 10 million reduced instruction set instructions (RISC) per second (MIPS), a dual purpose module control bus used for real-time default and power management which allows for extended mission operation on as little as 1.2 watts, and a local area network capable of 480 Mbits/s. The central processing unit (CPU) is the NASA Goddard R3000 nicknamed the ``Mongoose or Mongoose 1``. The Sandia Satellite Computer (SSC) uses Rational`s Ada compiler, debugger, operating system kernel, and enhanced floating point emulation library targeted at the Mongoose. The SSC gives Sandia the capability of processing complex types of spacecraft attitude determination and control algorithms and of modifying programmed control laws via ground command. And in general, SSC offers end users the ability to process data onboard the spacecraft that would normally have been sent to the ground which allows reconsideration of traditional space-grounded partitioning options.

  11. Dislocation Starvation and Exhaustion Hardening in Mo-alloy Nanofibers

    SciTech Connect

    Chisholm, Claire; Bei, Hongbin; Lowry, M. B.; Oh, Jason; Asif, S.A. Syed; Warren, O.; Shan, Zhiwei; George, Easo P; Minor, Andrew

    2012-01-01

    The evolution of defects in Mo alloy nanofibers with initial dislocation densities ranging from 0 to 1.6 1014 m2 were studied using an in situ push-to-pull device in conjunction with a nanoindenter in a transmission electron microscope. Digital image correlation was used to determine stress and strain in local areas of deformation. When they had no initial dislocations the Mo alloy nanofibers suffered sudden catastrophic elongation following elastic deformation to ultrahigh stresses. At the other extreme fibers with a high dislocation density underwent sustained homogeneous deformation after yielding at much lower stresses. Between these two extremes nanofibers with intermediate dislocation densities demonstrated a clear exhaustion hardening behavior, where the progressive exhaustion of dislocations and dislocation sources increases the stress required to drive plasticity. This is consistent with the idea that mechanical size effects ( smaller is stronger ) are due to the fact that nanostructures usually have fewer defects that can operate at lower stresses. By monitoring the evolution of stress locally we find that exhaustion hardening causes the stress in the nanofibers to surpass the critical stress predicted for self-multiplication, supporting a plasticity mechanism that has been hypothesized to account for the rapid strain softening observed in nanoscale bcc materials at high stresses.

  12. Irradiation hardening of pure tungsten exposed to neutron irradiation

    DOE PAGES

    Hu, Xunxiang; Koyanagi, Takaaki; Fukuda, Makoto; ...

    2016-08-26

    In this paper, pure tungsten samples have been neutron irradiated in HFIR at 90–850 °C to 0.03–2.2 dpa. A dispersed barrier hardening model informed by the available microstructure data has been used to predict the hardness. Comparison of the model predictions and the measured Vickers hardness reveals the dominant hardening contribution at various irradiation conditions. For tungsten samples irradiated in HFIR, the results indicate that voids and dislocation loops contributed to the hardness increase in the low dose region (<0.3 dpa), while the formation of intermetallic second phase precipitation, resulting from transmutation, dominates the radiation-induced strengthening beginning with a relativelymore » modest dose (>0.6 dpa). Finally, the precipitate contribution is most pronounced for the HFIR irradiations, whereas the radiation-induced defect cluster microstructure can rationalize the entirety of the hardness increase observed in tungsten irradiated in the fast neutron spectrum of Joyo and the mixed neutron spectrum of JMTR.« less

  13. Irradiation hardening of pure tungsten exposed to neutron irradiation

    SciTech Connect

    Hu, Xunxiang; Koyanagi, Takaaki; Fukuda, Makoto; Kumar, N. A. P. Kiran; Snead, Lance L.; Wirth, Brian D.; Katoh, Yutai

    2016-08-26

    In this paper, pure tungsten samples have been neutron irradiated in HFIR at 90–850 °C to 0.03–2.2 dpa. A dispersed barrier hardening model informed by the available microstructure data has been used to predict the hardness. Comparison of the model predictions and the measured Vickers hardness reveals the dominant hardening contribution at various irradiation conditions. For tungsten samples irradiated in HFIR, the results indicate that voids and dislocation loops contributed to the hardness increase in the low dose region (<0.3 dpa), while the formation of intermetallic second phase precipitation, resulting from transmutation, dominates the radiation-induced strengthening beginning with a relatively modest dose (>0.6 dpa). Finally, the precipitate contribution is most pronounced for the HFIR irradiations, whereas the radiation-induced defect cluster microstructure can rationalize the entirety of the hardness increase observed in tungsten irradiated in the fast neutron spectrum of Joyo and the mixed neutron spectrum of JMTR.

  14. idRHa+ProMod - Rail Hardening Control System

    NASA Astrophysics Data System (ADS)

    Ferro, L.

    2016-03-01

    idRHa+ProMod is the process control system developed by Primetals Technologies to foresee the thermo-mechanical evolution and micro-structural composition of rail steels subjected to slack quenching into idRHa+ Rail Hardening equipments in a simulation environment. This tool can be used both off-line or in-line, giving the user the chance to test and study the best cooling strategies or letting the automatic control system free to adjust the proper cooling recipe. Optimization criteria have been tailored in order to determine the best cooling conditions according to the metallurgical requirements imposed by the main rail standards and also taking into account the elastoplastic bending phenomena occurring during all stages of the head hardening process. The computational core of idRHa+ProMod is a thermal finite element procedure coupled with special algorithms developed to work out the main thermo-physical properties of steel, to predict the non-isothermal austenite decomposition into all the relevant phases and subsequently to evaluate the amount of latent heat of transformation released, the compound thermal expansion coefficient and the amount of plastic deformation in the material. Air mist and air blades boundary conditions have been carefully investigated by means of pilot plant tests aimed to study the jet impingement on rail surfaces and the cooling efficiency at all working conditions. Heat transfer coefficients have been further checked and adjusted directly on field during commissioning. idRHa+ is a trademark of Primetals Technologies Italy Srl

  15. Gold Coating

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Epner Technology Inc. responded to a need from Goddard Space Flight Center for the ultimate in electroplated reflectivity needed for the Mars Global Surveyor Mars Orbiter Laser Altimeter (MOLA). Made of beryllium, the MOLA mirror was coated by Epner Technology Laser Gold process, specially improved for the project. Improved Laser Gold- coated reflectors have found use in an epitaxial reactor built for a large semiconductor manufacturer as well as the waveguide in Braun-Thermoscan tympanic thermometer and lasing cavities in various surgical instruments.

  16. Functional Compartmentalization of the Human Superficial Masseter Muscle

    PubMed Central

    Guzmán-Venegas, Rodrigo A.; Biotti Picand, Jorge L.; de la Rosa, Francisco J. Berral

    2015-01-01

    Some muscles have demonstrated a differential recruitment of their motor units in relation to their location and the nature of the motor task performed; this involves functional compartmentalization. There is little evidence that demonstrates the presence of a compartmentalization of the superficial masseter muscle during biting. The aim of this study was to describe the topographic distribution of the activity of the superficial masseter (SM) muscle’s motor units using high-density surface electromyography (EMGs) at different bite force levels. Twenty healthy natural dentate participants (men: 4; women: 16; age 20±2 years; mass: 60±12 kg, height: 163±7 cm) were selected from 316 volunteers and included in this study. Using a gnathodynamometer, bites from 20 to 100% maximum voluntary bite force (MVBF) were randomly requested. Using a two-dimensional grid (four columns, six electrodes) located on the dominant SM, EMGs in the anterior, middle-anterior, middle-posterior and posterior portions were simultaneously recorded. In bite ranges from 20 to 60% MVBF, the EMG activity was higher in the anterior than in the posterior portion (p-value = 0.001).The center of mass of the EMG activity was displaced towards the posterior part when bite force increased (p-value = 0.001). The topographic distribution of EMGs was more homogeneous at high levels of MVBF (p-value = 0.001). The results of this study show that the superficial masseter is organized into three functional compartments: an anterior, a middle and a posterior compartment. However, this compartmentalization is only seen at low levels of bite force (20–60% MVBF). PMID:25692977

  17. Functional compartmentalization of the human superficial masseter muscle.

    PubMed

    Guzmán-Venegas, Rodrigo A; Biotti Picand, Jorge L; de la Rosa, Francisco J Berral

    2015-01-01

    Some muscles have demonstrated a differential recruitment of their motor units in relation to their location and the nature of the motor task performed; this involves functional compartmentalization. There is little evidence that demonstrates the presence of a compartmentalization of the superficial masseter muscle during biting. The aim of this study was to describe the topographic distribution of the activity of the superficial masseter (SM) muscle's motor units using high-density surface electromyography (EMGs) at different bite force levels. Twenty healthy natural dentate participants (men: 4; women: 16; age 20±2 years; mass: 60±12 kg, height: 163±7 cm) were selected from 316 volunteers and included in this study. Using a gnathodynamometer, bites from 20 to 100% maximum voluntary bite force (MVBF) were randomly requested. Using a two-dimensional grid (four columns, six electrodes) located on the dominant SM, EMGs in the anterior, middle-anterior, middle-posterior and posterior portions were simultaneously recorded. In bite ranges from 20 to 60% MVBF, the EMG activity was higher in the anterior than in the posterior portion (p-value = 0.001).The center of mass of the EMG activity was displaced towards the posterior part when bite force increased (p-value = 0.001). The topographic distribution of EMGs was more homogeneous at high levels of MVBF (p-value = 0.001). The results of this study show that the superficial masseter is organized into three functional compartments: an anterior, a middle and a posterior compartment. However, this compartmentalization is only seen at low levels of bite force (20-60% MVBF).

  18. Endoscopic mucosectomy: an alternative treatment for superficial esophageal cancer.

    PubMed

    Lambert, R

    2000-01-01

    Recent trends in the management of superficial esophageal cancer consist of improved detection, pretherapeutic staging and reliable criteria for curative endoscopic therapy. The endoscopic treatment is legitimate when the cancer is at an early stage, intra-epithelial or microinvasive (m1 or m2) and N0. Submucosal cancer should not be treated with a curative intent by endotherapy. Concerning squamous cell cancer, the oriental and occidental pathologists include high-grade dysplasia in the same group as intramucosal cancer. The distinction is however maintained for adenocarcinoma in the Barrett's esophagus. Indications of endoscopic rather than surgical treatment rely on: (1) the small size of the tumor (not more than 2 cm in diameter); (2) the endoscopic morphology in the type 0 of the Japanese classification with the flat subtypes IIa and IIb rather than type IIc--there is high risk of submucosal invasion for the polypoid (type I) or ulcerated superficial cancer (type III); and (3) the endoscopic ultrasound staging, with confirmed integrity of the hyperechoic submucosal layer. The high-frequency (20 MHz) miniprobe is preferred to the standard (7.5 MHz) instrument. The elective procedure for tumor eradication is endoscopic mucosectomy. The technique is associated with a 6.8% risk of severe complications (hemorrhage or perforation) and a recurrence rate of 3%-7%. The 5-year survival rate is similar to that of surgery (over 80%). In the small group of patients with superficial esophageal cancer (less than 10% of the disease) endoscopic treatment may now be proposed in about 30% of cases, surgery is preferred for submucosal cancer and for neoplasia with a large surface. Areas of high-grade dysplasia in the Barrett's esophagus offer a new and increasing sector of indications. The concurrent endoscopic procedure of destruction--photodynamic therapy--is preferred for the destruction of lesions with poorly delineated limits.

  19. Estudio del comportamiento tribologico y de las interacciones de superficie de nuevos nanofluidos ionicos

    NASA Astrophysics Data System (ADS)

    Espinosa Rodriguez, Tulia

    tribocorrosion processes. The formation of a coating layer on magnesium alloys from phosphonate imidazolium ionic liquids by immersion and by chronoamperometry has been described. The new coatings reduce the abrasive wear in the magnesium-aluminium alloy but they are not effective in the magnesium-zinc alloy, which prevent the formation of continuous coatings. Los liquidos ionicos son sales liquidas a temperatura ambiente o bajas temperaturas que presentan excelentes propiedades fisico-quimicas. En el presente trabajo se estudian como lubricantes en problemas tribologicos complejos como la lubricacion de metales contra si mismos, el desarrollo de lubricantes base agua y de nuevas superficies autolubricadas. Cuando no es posible reducir la friccion y desgaste mediante lubricacion, como en las aleaciones de magnesio, los liquidos ionicos se han estudiado como precursores de recubrimientos protectores. Se han determinado las interacciones superficiales y los procesos de corrosion sobre cobre y sobre acero con diferentes liquidos ionicos proticos y aproticos para desarrollar nuevos lubricantes y aditivos. En el contacto cobre/cobre, excepto el liquido ionico protico derivado del oleato, todos los liquidos ionicos estudiados presentan mejor comportamiento tribologico que el lubricante comercial Polialfaolefina 6. En el contacto acero/zafiro, los nuevos liquidos ionicos proticos son buenos lubricantes cuando se utilizan en estado puro, y, como aditivos en agua, generan peliculas adsorbidas sobre la superficie del metal reduciendo la friccion y el desgaste tras la evaporacion del agua. Para evitar el periodo de alta friccion inicial en presencia de agua, se han generado peliculas superficiales de liquido ionico sobre el acero en condiciones estaticas. El mejor comportamiento lubricante tanto en el contacto cobre/cobre como en el contacto acero/zafiro se obtiene para el liquido ionico protico derivado del anion adipato, con dos grupos carboxilicos. Las interacciones de los grupos

  20. Deposition of Functional Coatings Based on Intermetallic Systems TiAl on the Steel Surface by Vacuum Arc Plasma

    NASA Astrophysics Data System (ADS)

    Budilov, V.; Vardanyan, E.; Ramazanov, K.

    2015-11-01

    Laws governing the formation of intermetallic phase by sequential deposition of nano-sized layers coatings from vacuum arc plasma were studied. Mathematical modeling process of deposition by vacuum arc plasma was performed. In order to identify the structural and phase composition of coatings and to explain their physical and chemical behaviour XRD studies were carried out. Production tests of the hardened punching tools were performed.

  1. An improved MRI guided ultrasound system for superficial tumor hyperthermia

    NASA Astrophysics Data System (ADS)

    Zhu, Mengyuan; Shen, Guofeng; Su, Zhiqiang; Chen, Sheng; Wu, Hao

    2017-03-01

    Among many methods in tumor treatment, ultrasound hyperthermia is characterized by non-invasiveness, and it has been proven very effective for clinical treatment. But the problem of monitoring temperature limits its development. MRI-based temperature mapping techniques are safe compared with invasive methods and have been applied to detect temperature changes for a variety of applications. Among these techniques, the proton resonance frequency (PRF) method is relatively advanced. With a temperature measuring experiment and experiment conducted on tumors inside rabbit legs, the effectiveness of PRF method has been proved. This paper is to introduce an MRI guided ultrasound superficial tumor hyperthermia instrument based on PRF method.

  2. An anatomical investigation of the superficial and deep palmar arches.

    PubMed

    Singh, Sadhna; Lazarus, Lelika; De Gama, Brenda Zola; Satyapal, Kapil Sewsaran

    2016-09-26

    The superficial and deep palmar arches provide the dominant vascular supply to the hand. The superficial palmar arch (SPA) is considered to be highly variable and can be classified as either complete or incomplete. The simplest definition states that the anastomosis between the vessels contributing to the arch represent a complete arch while an incomplete arch is described as having an absence of anastomosis between the vessels contributing to it. This study aimed to describe the anatomical landmarks, formation and branching patterns of the SPA and DPA. In this study, the SPA and deep palmar arch (DPA) were dissected in 50 specimens (n=100 adult hands), respectively. A complete SPA was observed in 92% of specimens and classified into three types. In Type A (44%), the SPA was formed by the anastomosis of the superficial palmar branch of the radial artery with the ulnar artery. Type B (46%) was formed by the ulnar artery alone and Type C (2%) was formed by anastomosis of the ulnar artery with the superficial palmar branch of the radial artery and the persistent median artery. An incomplete SPA was observed in 8% of the specimens and divided into three types formed by the radial and ulnar arteries. The DPA was divided into five types viz. Type G (72%), where the DPA was formed by anastomosis of the deep palmar branch of the radial artery (DPBRA) with the deep branch of the ulnar artery (DBUA). Type H (12%), was formed by anastomosis of the DPBRA, the DBUA and the interosseous artery. Type I (8%), was formed by the anastomosis of the DPBRA with the superior and inferior deep branch of the ulnar artery. Type J (4%), the deep ulnar artery had two branches whereby either one branch anastomosed with the DPBRA to form the DPA. Type K (4%), the DBUA exhibited two deep branches with one branch anastomosing with the DPBRA to complete the DPA. The interosseous artery anastomosed with either the DPA or the additional deep branch of the ulnar artery. Knowledge of the variability

  3. Current concepts in systemic and topical therapy for superficial mycoses.

    PubMed

    Millikan, Larry E

    2010-03-04

    There presently exists a wide selection of choices in the treatment of superficial mycoses. The main categories of broad-spectrum agents are the allylamines and imidazoles, which have been tried and proven over more than 2 decades of usage with good safety. Nystatin and griseofulvin have even longer experience of about 5 decades but have niche usage for yeasts and dermatophytes, respectively. Although no new therapeutic groups have appeared, extensive development of vehicles and delivery systems has enhanced therapeutic results and increased patient compliance.

  4. Surface Coating of Tungsten Carbide by Electric Exploding of Contact

    SciTech Connect

    Grigoryev, Evgeny G.

    2011-01-17

    Electric exploding of a tungsten carbide--cobalt material near-by high-speed steel surface forms on it a hardening coating. The essential structure properties of the formed coatings are determined by parameters of contact exploding electrode at the pulse current amplitude from above 106 A/cm2 and duration less than 10-4 s. The metallographic investigations of coating structures were done by microscope 'Neophot-24'. They have shown that the contact electric exploding caused the transfer of tungsten carbide and cobalt on the surface of high-speed steel. The breakdown of tungsten carbide--cobalt material took place during electrical exploding. The hardening layers of tungsten carbide and pure nanocrystalline tungsten have been formed upon the surface of high-speed steel as a result of electric exploding. Crystalline grains of tungsten have an almost spherical form and their characteristic size less than 400 nanometers. Micro hardness of the coating layers and high-speed steel structures was measured.

  5. Continuous Hardening During Isothermal Aging at 723 K (450 °C) of a Precipitation Hardening Stainless Steel

    NASA Astrophysics Data System (ADS)

    Celada-Casero, Carola; Chao, Jesús; Urones-Garrote, Esteban; San Martin, David

    2016-11-01

    The isothermal aging behavior of a cold-rolled precipitation hardening stainless steel has been studied at 723 K (450 °C) for holding times up to 72 hours. The precipitation hardening has been investigated using microhardness Vickers (Hv), thermoelectric power (TEP) measurements, and tensile testing. Microhardness compared to TEP measurements is more sensitive to detect the initial stages of aging. Two precipitation regimes have been observed: the first one related to the formation of Cu-clusters for aging times below 1 hour and a second one associated with formation of Ni-rich precipitates. The results show that the material exhibits an outstanding continuous age strengthening response over the aging time investigated, reaching a hardness of 710 ± 4 HV1 and an ultimate tensile strength ( σ UTS) of 2.65 ± 0.02 GPa after 72 hours. Engineering stress-plastic strain curves reveal that the strength increases and the ductility decreases as the aging time increases. However, after prolonged holding times (24-72 hours) and, although small, a rise in both the strength and the total elongation is observed. The precipitation kinetics can be well predicted over the entire range of aging times by the Johnson-Mehl-Avrami-Kolmogorov (JMAK) equation. Finally, a reliable linear hardness-yield strength correlation has been found, which enables a rapid evaluation of the strength from bulk hardness measurements.

  6. The Effect of Hardenability Variation on Phase Transformation of Spiral Bevel Gear in Quenching Process

    NASA Astrophysics Data System (ADS)

    Zhang, Yingtao; Shi, Wankai; Yang, Lin; Gu, Zhifei; Li, Zhichao

    2016-07-01

    The hardenability of gear steel is dependent on the composition of alloying elements and is one of important criteria to assess process of phase transformation. The variation of hardenability has to be considered in control of the microstructures and distortion during gear quenching. In this paper, the quantitative effect of hardenability has been investigated on phase transformations of spiral bevel gears in die quenching. The hardenability deviation of 22CrMoH steel was assessed by using Jominy test. The dilatometry experiments were conducted to build phase transformation kinetic models for steels with low and high hardenability, respectively. The complete die quenching process of spiral bevel gear was modeled to reveal the significant difference on microstructures and temperature history with variation of hardenability. The final microstructures of the gear are martensite in surface layer after quenching process. There are bainite inside the gear tooth and the mixture of bainite and ferrite inside gear for the gear with low hardenability. The microstructure is bainite inside the gear with high hardenability.

  7. Some new results on irradiation characteristics of synthetic quartz crystals and their application to radiation hardening

    NASA Technical Reports Server (NTRS)

    Bahadur, H.; Parshad, R.

    1983-01-01

    The paper reports some new results on irradiation characteristics of synthetic quartz crystals and their application to radiation hardening. The present results show how the frequency shift in quartz crystals can be influenced by heat processing prior to irradiation and how this procedure can lead to radiation hardening for obtaining precise frequencies and time intervals from quartz oscillators in space.

  8. The effects of x-ray beam hardening on detective quantum efficiency and radiation dose.

    PubMed

    Wong, Molly Donovan; Wu, Xizeng; Liu, Hong

    2011-01-01

    The goal of this preliminary study was to investigate the effects of x-ray beam hardening on the detective quantum efficiency (DQE) and the radiation dose of an inline x-ray imaging system. The ability to decrease the risk of harmful radiation to the patient without compromising the detection capability would more effectively balance the tradeoff between image quality and radiation dose, and therefore benefit the fields of diagnostic x-ray imaging, especially mammography. The DQE and the average glandular dose were both calculated under the same experimental conditions for a range of beam hardening levels, corresponding to no added beam hardening and two thicknesses each of Rhodium (Rh) and Molybdenum (Mo) filters. The dose calculation results demonstrate a reduction of 15% to 24% for the range of beam hardening levels. The comparison of all quantities comprising the DQE exhibit very close correlation between the results obtained without added beam hardening to the results corresponding to the range of beam hardening levels. For the specific experimental conditions utilized in this preliminary study, the results are an indication that the use of beam hardening holds the potential to reduce the radiation dose without decreasing the performance of the system. Future studies will seek to apply this method in a clinical environment and perform a comprehensive image quality evaluation, in an effort to further evaluate the potential of beam hardening to balance the tradeoff between dose and image quality.

  9. Experimental study of self-compacted concrete in hardened state

    NASA Astrophysics Data System (ADS)

    Parra Costa, Carlos Jose

    The main aim of this work is to investigate the hardened behaviour of Self-Compacting Concrete (SCC). Self compacting Concrete is a special concrete that can flow in its gravity and fill in the formwork alone to its self-weight, passing through the bars and congested sections without the need of any internal or external vibration, while maintaining adequate homogeneity. SCC avoids most of the materials defects due to bleeding or segregation. With regard to its composition, SCC consists of the same components as traditional vibrated concrete (TC), but in different proportions. Thus, the high amount of superplasticizer and high powder content have to taken into account. The high workability of SCC does not allow to use traditional methods for measuring the fresh state properties, so new tests has developed (slump-flow, V-funnel, L-box, and others). The properties of the hardened SCC, which depend on the mix design, should be different from traditional concrete. In order to study the possible modifications of SCC hardened state properties, a review of the bibliography was done. The state of art was focused on the mechanical behaviour (compressive strength, tension strength and elastic modulus), on bond strength of reinforcement steel, and on material durability. The experimental program consisted in the production of two types of concretes: Self-Compacting Concrete and Traditional Concrete. Four different dosages was made with three different water/cement ratio and two strength types of Portland cement, in order to cover the ordinary strength used in construction. Based on this study it can be concluded that compressive strength of SCC and TC are similar (the differences are lesser than 10%), whereas the tensile strength of TC are up to 18% higher. The values of elastic modulus of both concrete are similar. On the other hand, in the ultimate state the bond strength of SCC and TC is similar, although SCC shows higher bond stiffness in the serviceability state (initial

  10. Development of wear-resistant coatings for cobalt-base alloys

    SciTech Connect

    Cockeram, B.V.

    1999-03-01

    The costs and hazards resulting from nuclear plant radiation exposure with activated cobalt wear debris could potentially be reduced by covering the cobalt-base materials with a wear resistant coating. However, the hardnesses of many cobalt-base wear alloys are significantly lower than conventional PVD hard coatings, and mechanical support of the hard coating is a concern. Four approaches have been taken to minimize the hardness differences between the substrate and PVD hard coating: (1) use a thin Cr-nitride hard coating with layers that are graded with respect to hardness, (2) use a thicker, multilayered coating (Cr-nitride or Zr-nitride) with graded layers, (3) use nitriding to harden the alloy subsurface followed by application of a multilayered coating of Cr-nitride, and (4) use of nitriding alone. Since little work has been done on application of PVD hard coatings to cobalt-base alloys, some details on process development and characterization of the coatings is presented. Scratch testing was used to evaluate the adhesion of the different coatings. A bench-top rolling contact test was used to evaluate the wear resistance of the coatings. The test results are discussed, and the more desirable coating approaches are identified.

  11. A fast beam hardening correction method incorporated in a filtered back-projection based MAP algorithm

    NASA Astrophysics Data System (ADS)

    Luo, Shouhua; Wu, Huazhen; Sun, Yi; Li, Jing; Li, Guang; Gu, Ning

    2017-03-01

    The beam hardening effect can induce strong artifacts in CT images, which result in severely deteriorated image quality with incorrect intensities (CT numbers). This paper develops an effective and efficient beam hardening correction algorithm incorporated in a filtered back-projection based maximum a posteriori (BHC-FMAP). In the proposed algorithm, the beam hardening effect is modeled and incorporated into the forward-projection of the MAP to suppress beam hardening induced artifacts, and the image update process is performed by Feldkamp–Davis–Kress method based back-projection to speed up the convergence. The proposed BHC-FMAP approach does not require information about the beam spectrum or the material properties, or any additional segmentation operation. The proposed method was qualitatively and quantitatively evaluated using both phantom and animal projection data. The experimental results demonstrate that the BHC-FMAP method can efficiently provide a good correction of beam hardening induced artefacts.

  12. A fast beam hardening correction method incorporated in a filtered back-projection based MAP algorithm.

    PubMed

    Luo, Shouhua; Wu, Huazhen; Sun, Yi; Li, Jing; Li, Guang; Gu, Ning

    2017-03-07

    The beam hardening effect can induce strong artifacts in CT images, which result in severely deteriorated image quality with incorrect intensities (CT numbers). This paper develops an effective and efficient beam hardening correction algorithm incorporated in a filtered back-projection based maximum a posteriori (BHC-FMAP). In the proposed algorithm, the beam hardening effect is modeled and incorporated into the forward-projection of the MAP to suppress beam hardening induced artifacts, and the image update process is performed by Feldkamp-Davis-Kress method based back-projection to speed up the convergence. The proposed BHC-FMAP approach does not require information about the beam spectrum or the material properties, or any additional segmentation operation. The proposed method was qualitatively and quantitatively evaluated using both phantom and animal projection data. The experimental results demonstrate that the BHC-FMAP method can efficiently provide a good correction of beam hardening induced artefacts.

  13. New distortional hardening model capable of predicting eight ears for textured aluminum sheet

    SciTech Connect

    Yoon, J. H.; Cazacu, O.; Yoon, J. W.; Dick, R. E.

    2011-05-04

    The effects of the anisotropy evolution and of the directionality in hardening on the predictions of the earing profile of a strongly textured aluminum alloy are investigated using a new distortional hardening model that incorporates multiple hardening curves corresponding to uniaxial tension along several orientations with respect to the rolling direction, and to biaxial tension. Yielding is described using a form of CPB06ex2 yield function (Plunkett et al. (2008)) which is tailored for metals with no tension-compression asymmetry. It is shown that even if directional hardening and its evolution are neglected, this yield function predicts a cup with eight ears as was observed experimentally. However, directional hardening can be of considerable importance for improved accuracy in prediction of the non-uniformity of the cup height profile.

  14. Surface coating for prevention of crust formation

    DOEpatents

    Kronberg, James W.

    1994-01-01

    A flexible surface coating which promotes the removal of deposits as they reach the surface by preventing adhesion and crust formation. Flexible layers are attached to each side of a flexible mesh substrate comprising of a plurality of zones composed of one or more neighboring cells, each zone having a different compressibility than its adjacent zones. The substrate is composed of a mesh made of strands and open cells. The cells may be filled with foam. Studs or bearings may also be positioned in the cells to increase the variation in compressibility and thus the degree of flexing of the coating. Surface loading produces varying amounts of compression from point to point causing the coating to flex as deposits reach it, breaking up any hardening deposits before a continuous crust forms. Preferably one or more additional layers are also used, such as an outer layer of a non-stick material such as TEFLON, which may be pigmented, and an inner, adhesive layer to facilitate applying the coating to a surface.

  15. Intraneural Ganglion in Superficial Radial Nerve Mimics de Quervain Tenosynovitis

    PubMed Central

    Haller, Justin M.; Potter, Michael Q.; Sinclair, Micah; Hutchinson, Douglas T.

    2014-01-01

    Background Intraneural ganglions in peripheral nerves of the upper extremity are extremely rare and poorly understood. Case Description We report a patient with symptoms consistent with de Quervain tenosynovitis who was found to have an intraneural ganglion in the superficial radial nerve. The ganglion did not communicate with the wrist joint. We removed the intraneural ganglion, and the patient's symptoms resolved. At her 6-month postoperative follow-up, she remained asymptomatic. Literature Review: There is only one case report of intraneural ganglion in the superficial radial nerve. In that case, the patient had symptoms consistent with nerve irritation, including radiating pain and paresthesias. In contrast to that previous report, the patient in the current case had only localized pain, no paresthesias, and a physical exam consistent with de Quervain tenosynovitis. Clinical Relevance This case demonstrates that an intraneural ganglion cyst can mimic the symptoms of de Quervain tenosynovitis without the more usual presentation of painful paresthesias. PMID:25364639

  16. Superficially located enlarged lymphoid follicles characterise nodular gastritis.

    PubMed

    Okamura, Takuma; Sakai, Yasuhiro; Hoshino, Hitomi; Iwaya, Yugo; Tanaka, Eiji; Kobayashi, Motohiro

    2015-01-01

    Nodular gastritis is a form of chronic Helicobacter pylori gastritis affecting the gastric antrum and characterised endoscopically by the presence of small nodular lesions resembling gooseflesh. It is generally accepted that hyperplasia of lymphoid follicles histologically characterises nodular gastritis; however, quantitative analysis in support of this hypothesis has not been reported. Our goal was to determine whether nodular gastritis is characterised by lymphoid follicle hyperplasia.The number, size, and location of lymphoid follicles in nodular gastritis were determined and those properties compared to samples of atrophic gastritis. The percentages of high endothelial venule (HEV)-like vessels were also evaluated.The number of lymphoid follicles was comparable between nodular and atrophic gastritis; however, follicle size in nodular gastritis was significantly greater than that seen in atrophic gastritis. Moreover, lymphoid follicles in nodular gastritis were positioned more superficially than were those in atrophic gastritis. The percentage of MECA-79 HEV-like vessels was greater in areas with gooseflesh-like lesions in nodular versus atrophic gastritis.Superficially located hyperplastic lymphoid follicles characterise nodular gastritis, and these follicles correspond to gooseflesh-like nodular lesions observed endoscopically. These observations suggest that MECA-79 HEV-like vessels could play at least a partial role in the pathogenesis of nodular gastritis.

  17. Superficial vimentin mediates DENV-2 infection of vascular endothelial cells

    PubMed Central

    Yang, Jie; Zou, Lingyun; Yang, Yi; Yuan, Jizhen; Hu, Zhen; Liu, Hui; Peng, Huagang; Shang, Weilong; Zhang, Xiaopeng; Zhu, Junmin; Rao, Xiancai

    2016-01-01

    Damage to vascular endothelial cells (VECs) is a critical hallmark of hemorrhagic diseases caused by dengue virus (DENV). However, the precise molecular event involved in DENV binding and infection of VECs has yet to be clarified. In this study, vimentin (55 kDa) was identified to be involved in DENV-2 adsorption into VECs. This protein is located on the surface of VECs and interacts with DENV-2 envelope protein domain III (EDIII). The expression level of the superficial vimentin on VECs was not affected by viral infection or siRNA interference, indicating that the protein exists in a particular mode. Furthermore, the rod domain of the vimentin protein mainly functions in DENV-2 adsorption into VECs. Molecular docking results predicted several residues in vimentin rod and DENV EDIII; these residues may be responsible for cell–virus interactions. We propose that the superficial vimentin could be a novel molecule involved in DENV binding and infection of VECs. DENV EDIII directly interacts with the rod domain of vimentin on the VEC surface and thus mediates the infection. PMID:27910934

  18. Superficial vimentin mediates DENV-2 infection of vascular endothelial cells.

    PubMed

    Yang, Jie; Zou, Lingyun; Yang, Yi; Yuan, Jizhen; Hu, Zhen; Liu, Hui; Peng, Huagang; Shang, Weilong; Zhang, Xiaopeng; Zhu, Junmin; Rao, Xiancai

    2016-12-02

    Damage to vascular endothelial cells (VECs) is a critical hallmark of hemorrhagic diseases caused by dengue virus (DENV). However, the precise molecular event involved in DENV binding and infection of VECs has yet to be clarified. In this study, vimentin (55 kDa) was identified to be involved in DENV-2 adsorption into VECs. This protein is located on the surface of VECs and interacts with DENV-2 envelope protein domain III (EDIII). The expression level of the superficial vimentin on VECs was not affected by viral infection or siRNA interference, indicating that the protein exists in a particular mode. Furthermore, the rod domain of the vimentin protein mainly functions in DENV-2 adsorption into VECs. Molecular docking results predicted several residues in vimentin rod and DENV EDIII; these residues may be responsible for cell-virus interactions. We propose that the superficial vimentin could be a novel molecule involved in DENV binding and infection of VECs. DENV EDIII directly interacts with the rod domain of vimentin on the VEC surface and thus mediates the infection.

  19. The role of shielding in superficial X-ray therapy.

    PubMed

    Medvedevas, N; Adliene, D; Laurikaitiene, J; Andrejaitis, A

    2011-09-01

    Superficial X-ray therapy is applicable in the kilovoltage range for the treatment of the cancer. Pb shielding is used to protect radiation-sensitive organs since the doses are high, however the question about shielding efficiency is still open. The role of shielding was investigated in this work based on the results of dose measurements performed using a set of pencil dosemeters and thermoluminescent dosimetries. According to the measured angular dose distributions on the phantom surface during X-ray irradiation, the area near the applicator exposed to the waste irradiation was evaluated and Pb shielding of a corresponding size was chosen. It has been shown that the dose in the area of interest decreases non-linearly, however high shielding efficiency (~90 %) remains almost stable in the whole area. No significant contribution of secondary scattered photons from Pb has been observed. The role of Pb shielding in superficial X-ray therapy is discussed on the basis of the obtained results.

  20. Suction based mechanical characterization of superficial facial soft tissues.

    PubMed

    Weickenmeier, J; Jabareen, M; Mazza, E

    2015-12-16

    The present study is aimed at a combined experimental and numerical investigation of the mechanical response of superficial facial tissues. Suction based experiments provide the location, time, and history dependent behavior of skin and SMAS (superficial musculoaponeurotic system) by means of Cutometer and Aspiration measurements. The suction method is particularly suitable for in vivo, multi-axial testing of soft biological tissue including a high repeatability in subsequent tests. The campaign comprises three measurement sites in the face, i.e. jaw, parotid, and forehead, using two different loading profiles (instantaneous loading and a linearly increasing and decreasing loading curve), multiple loading magnitudes, and cyclic loading cases to quantify history dependent behavior. In an inverse finite element analysis based on anatomically detailed models an optimized set of material parameters for the implementation of an elastic-viscoplastic material model was determined, yielding an initial shear modulus of 2.32kPa for skin and 0.05kPa for SMAS, respectively. Apex displacements at maximum instantaneous and linear loading showed significant location specificity with variations of up to 18% with respect to the facial average response while observing variations in repeated measurements in the same location of less than 12%. In summary, the proposed parameter sets for skin and SMAS are shown to provide remarkable agreement between the experimentally observed and numerically predicted tissue response under all loading conditions considered in the present study, including cyclic tests.

  1. Mycological Considerations in the Topical Treatment of Superficial Fungal Infections.

    PubMed

    Rosen, Ted

    2016-02-01

    Trichophyton rubrum remains the most common pathogenic dermatophyte in the United States, Europe, and industrialized Asia, although other species are predminant elsewhere. Candida albicans is the most common pathogenic yeast, with other species occasionally encountered. Just a few of the 14 described species of Malassezia cause pityriasis versicolor worldwide. FDA approval does not always accurately reflect the potential utility of any given topical antifungal agent. Azole, hydroxypyridone, and allylamine agents are beneficial in the management of dermatophytosis; however, the allylamines may lead to faster symptom resolution and a higher degree of sustained response. Although in actual clinical use the allylamines have all shown some activity against superficial cutaneous candidiasis and pityriasis versicolor, the azole agents remain drugs of choice. Ciclopirox is an excellent broad-spectrum antifungal agent. Optimal topical therapy for superficial fungal infections cannot yet be reliably based upon in-vitro laboratory determination of sensitivity. Inherent antibacterial and anti-inflammatory properties possessed by some antifungal agents may be exploited for clinical purposes. Candida species may be azole-insensitive due to efflux pumps or an altered target enzyme. So-called "antifungal resistance" of dermatophyets is actually due to poor patient adherence (either in dosing or treatment duration), or to reinfection.

  2. Effect of substrate preheating temperature and coating thickness on residual stress in plasma sprayed hydroxyapatite coating

    NASA Astrophysics Data System (ADS)

    Tang, Dapei

    2015-07-01

    A thermal-mechanical coupling model was developed based on thermal-elastic- plastic theory according the special process of plasma spraying Hydroxyapatite (HA) coating upon Ti-6Al-4V substrate. On the one hand, the classical Fourier transient heat conduction equation was modified by introducing the effect item of deformation on temperature, on the other hand, the Johnson-Cook model, suitable for high temperature and high strain rate conditions, was used as constitutive equation after considering temperature softening effect, strain hardening effect and strain rate reinforcement effect. Based on the above coupling model, the residual stress field within the HA coating was simulated by using finite element method (FEM). Meanwhile, the substrate preheating temperature and coating thickness on the influence of residual stress components were calculated, respectively. The failure modes of coating were also preliminary analyzed. In addition, in order to verify the reliability of calculation, the material removal measurement technique was applied to determine the residual stress of HA coating near the interface. Some important conclusions are obtained.

  3. Development of a Press-Hardened Steel Suitable for Thin Slab Direct Rolling Processing

    NASA Astrophysics Data System (ADS)

    Lee, Jewoong; De Cooman, Bruno C.

    2015-01-01

    The thin slab casting and direct rolling process is a hot-rolled strip production method which has maintained commercial quality steel grades as a major material in many industrial applications due to its low processing cost. Few innovative products have however been developed specifically for production by thin slab direct rolling. Press hardening or hot press forming steel grades which are now widely used to produce structural automotive steel parts requiring ultra-high strength and formability may however offer an opportunity for thin slab direct rolling-specific ultra-high strength products. In this work, a newly designed press hardening steel grade developed specifically for thin slab direct rolling processing is presented. The press hardening steel has a high nitrogen content compared with press hardening steel grades produced by conventional steelmaking routes. Boron and titanium which are key alloying additions in conventional press hardening steel such as the 22MnB5 press hardening steel grade are not utilized. Cr is added in the press hardening steel to obtain the required hardenability. The properties of the new thin slab direct rolling-specific 22MnCrN5 press hardening steel grade are reviewed. The evolution of the microstructure and mechanical properties with increasing amounts of Cr additions from 0.6 to 1.4 wt pct and the effect of the cooling rate during die-quenching were studied by means of laboratory simulations. The selection of the optimum chemical composition range for the thin slab direct rolling-specific 22MnCrN5 steel in press hardening heat treatment conditions is discussed.

  4. Minimally Invasive Alveolar Ridge Preservation Utilizing an In Situ Hardening β-Tricalcium Phosphate Bone Substitute: A Multicenter Case Series

    PubMed Central

    Leventis, Minas D.; Fairbairn, Peter; Kakar, Ashish; Leventis, Angelos D.; Margaritis, Vasileios; Lückerath, Walter; Horowitz, Robert A.; Rao, Bappanadu H.; Lindner, Annette; Nagursky, Heiner

    2016-01-01

    Ridge preservation measures, which include the filling of extraction sockets with bone substitutes, have been shown to reduce ridge resorption, while methods that do not require primary soft tissue closure minimize patient morbidity and decrease surgical time and cost. In a case series of 10 patients requiring single extraction, in situ hardening beta-tricalcium phosphate (β-TCP) granules coated with poly(lactic-co-glycolic acid) (PLGA) were utilized as a grafting material that does not necessitate primary wound closure. After 4 months, clinical observations revealed excellent soft tissue healing without loss of attached gingiva in all cases. At reentry for implant placement, bone core biopsies were obtained and primary implant stability was measured by final seating torque and resonance frequency analysis. Histological and histomorphometrical analysis revealed pronounced bone regeneration (24.4 ± 7.9% new bone) in parallel to the resorption of the grafting material (12.9 ± 7.7% graft material) while high levels of primary implant stability were recorded. Within the limits of this case series, the results suggest that β-TCP coated with polylactide can support new bone formation at postextraction sockets, while the properties of the material improve the handling and produce a stable and porous bone substitute scaffold in situ, facilitating the application of noninvasive surgical techniques. PMID:27190516

  5. Gamma prime hardened nickel-iron based superalloy

    DOEpatents

    Korenko, Michael K.

    1978-01-01

    A low swelling, gamma prime hardened nickel-iron base superalloy useful for fast reactor duct and cladding applications is described having from about 7.0 to about 10.5 weight percent (wt%) chromium, from about 24 to about 35 wt% nickel, from about 1.7 to about 2.5 wt% titanium, from about 0.3 to about 1.0 wt% aluminum, from about 2.0 to about 3.3 wt% molybdenum, from about 0.05 to about 1.0 wt% silicon, from about 0.03 to about 0.06 wt% carbon, a maximum of about 2 wt% manganese, and the balance iron.

  6. Pr-Zr-Co precipitation-hardened magnet

    NASA Astrophysics Data System (ADS)

    Gabay, A. M.; Zhang, Yong; Hadjipanayis, G. C.

    2000-06-01

    Hard magnetic properties have been found in homogenized and subsequently aged Pr-Zr-Co alloys. Transmission electron microscopy reveals a microstructure consisting of a Pr2(Co, Zr)17 matrix with (Pr, Zr)Co5 precipitates formed after aging the homogenized alloys with the (Pr, Zr)Co5+δ structure. This microstructure is similar to that of the Sm-Co-Cu-Zr precipitation-hardened magnets. However, unlike Sm2Co17, the easy magnetization direction (EMD) of Pr2Co17 lies in a basal plane. The coexistence of the 2:17 matrix phase with EMD∥(001) and the 1:5 cell-boundary phase with EMD∥[001] results in unusual alignment effects. Anisotropic Pr11.5Zr4Co85 powders with coercivity of 4.1 kOe and energy product of 7.2 MGOe were obtained.

  7. Topographies of plasma-hardened surfaces of poly(dimethylsiloxane)

    SciTech Connect

    Goerrn, Patrick; Wagner, Sigurd

    2010-11-15

    We studied the formation of surface layers hardened by plasma-enhanced oxidation of the silicone elastomer poly(dimethylsiloxane). We explored the largest parameter space surveyed to date. The surface layers may wrinkle, crack, or both, under conditions that at times are controlled by design, but more often have been discovered by trial-and-error. We find four distinct topographies: flat/wrinkled/cracked/cracked and wrinkled. Each topography is clearly separated in the space of plasma dose versus plasma pressure. We analyzed wrinkle amplitude and wavelength by atomic force microscopy in the tapping mode. From these dimensions we calculated the elastic modulus and thickness of the hard surface layer, and inferred a graded hardness, by employing a modified theoretical model. Our main result is the identification of the parameters under which the technologically important pure wrinkled, crack-free topography is obtained.

  8. Theoretical Study of the Oxidation Behavior of Precipitation Hardening Steel

    SciTech Connect

    Pistofidis, N.; Vourlias, G.; Chrissafis, K.; Psyllaki, P.

    2010-01-21

    The oxidation of precipitation hardening (PH) steels is a rather unexplored area. In the present work an attempt is made is made to estimate the kinetics of a PH steel. For this purpose specimens of the material under examination were isothermally heated at 850, 900 and 950 deg. C for 15 hr. Kinetics was based on TGA results. During heating a thick scale is formed on the substrate surface, which is composed by different oxides. The layer close to the substrate is compact and as a result it impedes corrosion. The mathematical analysis of the collected data shows that the change of the mass of the substrate per unit area versus time is described by a parabolic law.

  9. Identifying Vulnerabilities and Hardening Attack Graphs for Networked Systems

    SciTech Connect

    Saha, Sudip; Vullinati, Anil K.; Halappanavar, Mahantesh; Chatterjee, Samrat

    2016-09-15

    We investigate efficient security control methods for protecting against vulnerabilities in networked systems. A large number of interdependent vulnerabilities typically exist in the computing nodes of a cyber-system; as vulnerabilities get exploited, starting from low level ones, they open up the doors to more critical vulnerabilities. These cannot be understood just by a topological analysis of the network, and we use the attack graph abstraction of Dewri et al. to study these problems. In contrast to earlier approaches based on heuristics and evolutionary algorithms, we study rigorous methods for quantifying the inherent vulnerability and hardening cost for the system. We develop algorithms with provable approximation guarantees, and evaluate them for real and synthetic attack graphs.

  10. Hydrogen effects on the age hardening behavior of 2024 aluminum

    NASA Technical Reports Server (NTRS)

    Wagner, J. A.; Louthan, M. R., Jr.; Sisson, R. D., Jr.

    1986-01-01

    It has been found that the fatigue crack growth rate in aluminum alloys increases significantly in the presence of moisture. This phenomenon along with a moisture effect observed in another context has been attributed to 'embrittlement' of the aluminum by absorbed hydrogen generated by the reaction of moisture with freshly exposed aluminum. A description is given of a number of age hardening experiments involving 2024 aluminum. These experiments show that a mechanism related to the segregation of absorbed hydrogen to the coherent theta-double-prime interfaces may account for the observed reduction in fatigue life. It is pointed out that this segregation promotes a loss of coherency in the hydrogen rich region at a fatigue crack tip. Subsequently, the loss of coherency causes local softening and reduces fatigue life.

  11. Protection performance evaluation regarding imaging sensors hardened against laser dazzling

    NASA Astrophysics Data System (ADS)

    Ritt, Gunnar; Koerber, Michael; Forster, Daniel; Eberle, Bernd

    2015-05-01

    Electro-optical imaging sensors are widely distributed and used for many different purposes, including civil security and military operations. However, laser irradiation can easily disturb their operational capability. Thus, an adequate protection mechanism for electro-optical sensors against dazzling and damaging is highly desirable. Different protection technologies exist now, but none of them satisfies the operational requirements without any constraints. In order to evaluate the performance of various laser protection measures, we present two different approaches based on triangle orientation discrimination on the one hand and structural similarity on the other hand. For both approaches, image analysis algorithms are applied to images taken of a standard test scene with triangular test patterns which is superimposed by dazzling laser light of various irradiance levels. The evaluation methods are applied to three different sensors: a standard complementary metal oxide semiconductor camera, a high dynamic range camera with a nonlinear response curve, and a sensor hardened against laser dazzling.

  12. Hardening by annealing and softening by deformation in nanostructured metals.

    PubMed

    Huang, Xiaoxu; Hansen, Niels; Tsuji, Nobuhiro

    2006-04-14

    We observe that a nanostructured metal can be hardened by annealing and softened when subsequently deformed, which is in contrast to the typical behavior of a metal. Microstructural investigation points to an effect of the structural scale on fundamental mechanisms of dislocation-dislocation and dislocation-interface reactions, such that heat treatment reduces the generation and interaction of dislocations, leading to an increase in strength and a reduction in ductility. A subsequent deformation step may restore the dislocation structure and facilitate the yielding process when the metal is stressed. As a consequence, the strength decreases and the ductility increases. These observations suggest that for materials such as the nanostructured aluminum studied here, deformation should be used as an optimizing procedure instead of annealing.

  13. Method of forming a hardened surface on a substrate

    DOEpatents

    Branagan, Daniel J.

    2010-08-31

    The invention includes a method of producing a hard metallic material by forming a mixture containing at least 55% iron and at least one of B, C, Si and P. The mixture is formed into an alloy and cooled to form a metallic material having a hardness of greater than about 9.2 GPa. The invention includes a method of forming a wire by combining a metal strip and a powder. The metal strip and the powder are rolled to form a wire containing at least 55% iron and from two to seven additional elements including at least one of C, Si and B. The invention also includes a method of forming a hardened surface on a substrate by processing a solid mass to form a powder, applying the powder to a surface to form a layer containing metallic glass, and converting the glass to a crystalline material having a nanocrystalline grain size.

  14. Characterization and hardening of concrete with ultrasonic testing.

    PubMed

    del Río, L M; Jiménez, A; López, F; Rosa, F J; Rufo, M M; Paniagua, J M

    2004-04-01

    In this study, we describe a technique which can be used to characterize some relevant properties of 26 cylindrical samples (15 x 30 cm2) of concrete. The characterization has been performed, according to Spanish regulations in force, by some destructive and ultrasound-based techniques using frequencies of 40 kHz. Samples were manufactured using different water/cement ratios (w/c), ranging from 0.48 to 0.80, in order to simulate different values of compressive strength at each sample. We have correlated the propagation velocity v of ultrasonic waves through the samples to compressive strength R values. As some other authors remark, there exists an exponential relationship between the two above parameters. We have found that a highly linear relationship is present between R and w/c concentration at the samples. Nevertheless, when the same linear model is adopted to describe the relationship between v and w/c, the value of r decreases significantly. Thus, we have performed a multiple regression analysis which takes into account the impact of different concrete constituents (water, cement, sand, etc.) on ultrasound propagation speed. One of the most relevant practical issues addressed in our study is the estimation of the hardening curve of concrete, which can be used to quantify the viability of applying the proposed method in a real scenario. Subsequently, we also show a detailed analysis of the temporal evolution of v and R through 61 days, beginning at the date where the samples were manufactured. After analyzing both parameters separately, a double reciprocal relationship is deduced. Using the above parameters, we develop an NDE-based model which can be used to estimate hardening time of concrete samples.

  15. Radiation Effects and Hardening Techniques for Spacecraft Microelectronics

    NASA Astrophysics Data System (ADS)

    Gambles, J. W.; Maki, G. K.

    2002-01-01

    The natural radiation from the Van Allen belts, solar flares, and cosmic rays found outside of the protection of the earth's atmosphere can produce deleterious effects on microelectronics used in space systems. Historically civil space agencies and the commercial satellite industry have been able to utilize components produced in special radiation hardened fabrication process foundries that were developed during the 1970s and 1980s under sponsorship of the Departments of Defense (DoD) and Energy (DoE). In the post--cold war world the DoD and DoE push to advance the rad--hard processes has waned. Today the available rad--hard components lag two-plus technology node generations behind state- of-the-art commercial technologies. As a result space craft designers face a large performance gap when trying to utilize available rad--hard components. Compounding the performance gap problems, rad--hard components are becoming increasingly harder to get. Faced with the economic pitfalls associated with low demand versus the ever increasing investment required for integrated circuit manufacturing equipment most sources of rad--hard parts have simply exited this market in recent years, leaving only two domestic US suppliers of digital rad--hard components. This paper summarizes the radiation induced mechanisms that can cause digital microelectronics to fail in space, techniques that can be applied to mitigate these failure mechanisms, and ground based testing used to validate radiation hardness/tolerance. The radiation hardening techniques can be broken down into two classes, Hardness By Process (HBP) and Hardness By Design (HBD). Fortunately many HBD techniques can be applied to commercial fabrication processes providing space craft designer with radiation tolerant Application Specific Integrated Circuits (ASICs) that can bridge the performance gap between the special HBP foundries and the commercial state-of-the-art performance.

  16. Low-temperature tolerance and cold hardening of cacti

    SciTech Connect

    Nobel, P.S.

    1982-12-01

    Reduced uptake by the chlorenchyma cells of cacti of a stain (neutral red) was used as an indicator of low-temperature damage resulting from cooling stems in the laboratory. Necrosis set in a few degrees below the temperature at which the fraction of cells accumulating stain was reduced by 50%. Coryphantha vivipara, Opuntia polyacantha, and Pediocactus simpsonii, which range to over 300 m altitude in southern Wyoming, were quite cold tolerant. Relationships among tissue cold sensitivity, morphological features which protect the stems from low temperatures, and the occurrence of species in progressively colder regions were investigated. Differences in tissue cold sensitivity accounted for the approx. = 600 m higher elevational limit of Coryphantha vivipara var. rosea compared to the morphologically similar var. deserti in southern Nevada. In contrast, morphological differences alone could adequately explain the relative northern limits of the columnar cacti Carnegiea gigantea vs Stenocereus gummosus and the barrel cacti Ferocactus acanthodes vs. F. wislizenii in the southwestern United States, as previously indicated using a computer model. Cold hardening in response to decreasing day/night air temperatures was observed for 10 species. A decrease from 50/sup 0//40/sup 0/ to 10/sup 0//0/sup 0/ lowered by 4/sup 0/ the temperature at which the fraction of the chlorenchyma cells taking up stain was reduced 50% for both D. rhodacantha and T. candicans, with a half-time for the shift of approx. = 3 d. The tolerance of subzero temperatures and the ability to cold harden allow cacti to range into regions with considerable wintertime freezing.

  17. The growth and structure of thin oxide films on nickel superficially modified with ceria and cerium

    NASA Astrophysics Data System (ADS)

    Czerwinski, Franciszek

    A small addition of elements with a high affinity to oxygen can have a profound effect on the high temperature oxidation behaviour of many metals and alloys. In order to explain the improvement in oxidation resistance, the research was conducted using Ni-NiO as a model system of cation-diffusing oxides, and Ce as a typical reactive element. Three essential techniques were employed to modify the surface of Ni with Ce and CeO2: ion implantation, sol-gel technology, and reactive sputtering. The improvement of Ni oxidation resistance was assessed by oxygen uptake measurements mainly during the early stages but also for long-term exposures at temperatures between 873 and 1073 K in pure oxygen, both at low and atmospheric pressures. The variety of oxides produced were examined in detail by several advanced techniques including Rutherford backscattering spectrometry, Auger electron spectroscopy, secondary ion-mass spectrometry, transmission- and scanning-transmission electron microscopy equipped with electron and x-ray analyzers, atomic force microscopy, infrared spectroscopy, and x-ray diffraction techniques. In order to provide direct evidence regarding the mechanism of oxide growth, a sequential oxidation using oxygen isotopes 16O2/18O2 was conducted. After conversion to the form of ceramic coating, superficially applied CeO2 sol-gel significantly reduced the Ni oxidation rate as well as changing the NiO morphology and internal microstructure. The extent of the effect depended on coating thickness, size of CeO2 particles, substrate surface finishing and preoxidation before coating. Under optimum conditions, the reduction in the Ni oxidation rate achieved by sol-gel, reactive sputtering, and ion implantation, was similar. It was found that Ni oxidation resistance is controlled by a well-defined NiO sublayer that is composed of randomly-oriented NiO grains and CeO2 particles. Moreover, in this sublayer, the Ce4+ ions segregate to the NiO grain boundaries. At high

  18. Myxoid stroma and delicate vasculature of a superficial angiomyxoma give rise to the red planet sign.

    PubMed

    Green, Margaret; Logemann, Nichola; Sulit, Daryl J

    2014-09-16

    Superficial angiomyxomas are uncommon benign mesenchymal tumors. They often recur locally if partially removed. This case report demonstrates not only the characteristic pathological findings of a superficial angiomyxoma in a 33- year-old man, but also shows a unique dermatoscopic image, which in our estimation resembles a celestial red planet such as the blood moon seen during a lunar eclipse. We propose to call this the "red planet" sign for a superficial angiomyxoma on dermoscopic examination.

  19. 78 FR 57418 - Compliance With Order EA-13-109, Order Modifying Licenses With Regard to Reliable Hardened...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-18

    ... COMMISSION Compliance With Order EA-13-109, Order Modifying Licenses With Regard to Reliable Hardened... Licenses with Regard to Reliable Hardened Containment Vents Capable of Operation under Severe Accident...-109, ``Order Modifying Licenses with Regard to Reliable Hardened Containment Vents Capable...

  20. Inhibition of environmental fatigue crack propagation in age-hardenable aluminum alloys

    NASA Astrophysics Data System (ADS)

    Warner, Jenifer S.

    Li strengthening precipitates in the c rack wake leading to Cu enrichment. Crack surface Cu will increase wake cathodic reaction kinetics and reduce crack tip acidification to stabilize the native Al passive film. Al-Zn-Mg-Cu alloys in the under and peak aged condition, including 7075-T651, are not capable of self inhibition due to the fact that MgZn2 is the predominant anodic precipitate and does not offer a Cu enrichment mechanism. The impact of this study stems from establishing: (1) atmospheric exposures producing electrolyte droplets do not promote EFCP more than classic full immersion and water vapor environments, at least for the loading conditions examined; (2) self healing of EFCP is possible in age-hardenable Al alloys through release of ions, from a surface coating or the alloy itself, which promote passivity; (3) a Mo or molybdate bearing coating should provide a vehicle for strong inhibition of EFCP by controlled release of MoO42-; and (4) the transport of inhibiting ions to a growing crack tip and subsequent inhibition of EFCP is possible under atmospheric conditions.

  1. COATING METHOD

    DOEpatents

    Townsend, R.G.

    1959-08-25

    A method is described for protectively coating beryllium metal by etching the metal in an acid bath, immersing the etched beryllium in a solution of sodium zincate for a brief period of time, immersing the beryllium in concentrated nitric acid, immersing the beryhlium in a second solution of sodium zincate, electroplating a thin layer of copper over the beryllium, and finally electroplating a layer of chromium over the copper layer.

  2. On the Superficial Gas Velocity in Deep Gas-Solid Fluidized Beds

    SciTech Connect

    Li, Tingwen; Grace, John; Shadle, Lawrence; Guenther, Chris

    2011-11-15

    The superficial gas velocity is one of the key parameters used to determine the flow hydrodynamics in gas–solids fluidized beds. However, the superficial velocity varies with height in practice, and there is no consistent basis for its specification. Different approaches to determine the superficial gas velocity in a deep gas–solids system are shown to cause difficulties in developing models and in comparing predictions with experimental results. In addition, the reference conditions for superficial gas velocity are important in modeling of deep gas–solids systems where there is a considerable pressure drop.

  3. Superficial aponeurosis of human gastrocnemius is elongated during contraction: implications for modeling muscle-tendon unit.

    PubMed

    Muramatsu, Tadashi; Muraoka, Tetsuro; Kawakami, Yasuo; Fukunaga, Tetsuo

    2002-02-01

    Two questions were addressed in this study: (1) how much strain of the superficial aponeurosis of the human medial gastrocnemius muscle (MG) was obtained during voluntary isometric contractions in vivo, (2) whether there existed inhomogeneity of the strain along the superficial aponeurosis. Seven male subjects, whose knees were extended and ankles were flexed at right angle, performed isometric plantar flexion while elongation of superficial aponeurosis of MG was determined from the movements of the intersections made by the superficial aponeurosis and fascicles using ultrasonography. The strain of the superficial aponeurosis at the maximum voluntary contraction, estimated from the elongation and length data, was 5.6+/-1.2%. There was no significant difference in strain between the proximal and distal parts of the superficial aponeurosis. Based on the present result and that of our previous study for the same subjects (J. Appl. Physiol 90 (2001) 1671), a model was formulated for a contracting uni-pennate muscle-tendon unit. This model, which could be applied to isometric contractions at other angles and therefore of wide use, showed that similar strain between superficial and deep aponeuroses of MG contributed to homogeneous fascicle length change within MG during contractions. These findings would contribute to clarifying the functions of the superficial aponeurosis and the effects of the superficial aponeurosis elongation on the whole muscle behavior.

  4. [The working environment control of anhydride hardeners from an epoxy resin system].

    PubMed

    Matsumoto, Naomi; Yokota, Kozo; Johyama, Yasushi; Takakura, Toshiyuki

    2003-07-01

    Epoxy resins are widely used in adhesives, coatings, materials for molds and composites, and encapsulation. Acid anhydrides such as methyltetrahydrophthalic anhydride are being used as curing agents for epoxy resins. The anhydride hardeners are well-known industrial inhalant allergens, inducing predominantly type I allergies. In the electronic components industry, these substances have been consumed in large quantities. Therefore, safe use in the industry demands control of the levels of exposure causing allergic diseases in the workshop. We conducted a prospective survey of two electronics plants to clarify how to control the atmospheric level of the anhydrides in the work environment. Measurements of the levels of the anhydrides in air started according to the Working Environment Measurement Standards (Ministry of Labour Notification No. 46, 1976) in April 2000, along with improvements in the work environment. A value of 40 micrograms/m3 was adopted as the administrative control level to judge the propriety of the working environment control. A total of 2 unit work areas in both plants belonged to Control Class III. The exposure originated from manual loading, casting, uncured hot resins, and leaks in an impregnating-machine or curing ovens. In order to achieve the working environment control, complete enclosure of the source, installation of local exhaust ventilation, and improvement or maintenance of the local exhaust ventilation system were performed on the basis of the results of the working environment measurement, with the result that the work environment was improved (Control Class I). It became evident that these measures were effective just like other noxious substances.

  5. What factors control the superficial lava dome explosivity?

    NASA Astrophysics Data System (ADS)

    Boudon, Georges; Balcone-Boissard, Hélène; Villemant, Benoit; Morgan, Daniel J.

    2015-04-01

    Dome-forming eruption is a frequent eruptive style; lava domes result from intermittent, slow extrusion of viscous lava. Most dome-forming eruptions produce highly microcrystallized and highly- to almost totally-degassed magmas which have a low explosive potential. During lava dome growth, recurrent collapses of unstable parts are the main destructive process of the lava dome, generating concentrated pyroclastic density currents (C-PDC) channelized in valleys. These C-PDC have a high, but localized, damage potential that largely depends on the collapsed volume. Sometimes, a dilute ash cloud surge develops at the top of the concentrated flow with an increased destructive effect because it may overflow ridges and affect larger areas. In some cases, large lava dome collapses can induce a depressurization of the magma within the conduit, leading to vulcanian explosions. By contrast, violent, laterally directed, explosions may occur at the base of a growing lava dome: this activity generates dilute and turbulent, highly-destructive, pyroclastic density currents (D-PDC), with a high velocity and propagation poorly dependent on the topography. Numerous studies on lava dome behaviors exist, but the triggering of lava dome explosions is poorly understood. Here, seven dome-forming eruptions are investigated: in the Lesser Antilles arc: Montagne Pelée, Martinique (1902-1905, 1929-1932 and 650 y. BP eruptions), Soufrière Hills, Montserrat; in Guatemala, Santiaguito (1929 eruption); in La Chaîne des Puys, France (Puy de Dome and Puy Chopine eruptions). We propose a new model of superficial lava-dome explosivity based upon a textural and geochemical study (vesicularity, microcrystallinity, cristobalite distribution, residual water contents, crystal transit times) of clasts produced by these key eruptions. Superficial explosion of a growing lava dome may be promoted through porosity reduction caused by both vesicle flattening due to gas escape and syn-eruptive cristobalite

  6. Tradeoffs in Flight Design Upset Mitigation in State of the Art FPGAs: Hardened by Design vs. Design Level Hardening

    NASA Technical Reports Server (NTRS)

    Swift, Gary M.; Roosta, Ramin

    2004-01-01

    This presentation compares and contrasts the effectiveness and the system/designer impacts of the two main approaches to upset hardening: the Actel approach (RTSX-S and RTAX-S) of low-level (inside each flip-flop) triplication and the Xilinx approach (Virtex and Virtex2) of design-level triplication of both functional blocks and voters. The effectiveness of these approaches is compared using measurements made in conjunction with each of the FPGAs' manufacturer: for Actel, published data [1] and for Xilinx, recent results from the Xilinx SEE Test Consortium (note that the author is an active and founding member). The impacts involve Actel advantages in the areas of transistor-utilization efficiency and minimizing designer involvement in the triplication while the Xilinx advantages relate to the ability to custom tailor upset hardness and the flexibility of re-configurability. Additionally, there are currently clear Xilinx advantages in available features such as the number of I/O's, logic cells, and RAM blocks as well as speed. However, the advantage of the Actel anti-fuses for configuration over the Xilinx SRAM cells is that the latter need additional functionality and external circuitry (PROMs and, at least a watchdog timer) for configuration and configuration scrubbing. Further, although effectively mitigated if done correctly, the proton upset-ability of the Xilinx FPGAs is a concern in severe proton-rich environments. Ultimately, both manufacturers' upset hardening is limited by SEFI (single-event functional interrupt) rates where it appears the Actel results are better although the Xilinx Virtex2-family result of about one SEFI in 65 device-years in solar-min GCR (the more intense part of the galactic cosmic-ray background) should be acceptable to most missions

  7. Secondary hardening and fracture behavior in alloy steels containing Mo, W, and Cr

    NASA Astrophysics Data System (ADS)

    Kwon, H.; Lee, K. B.; Yang, H. R.; Lee, J. B.; Kim, Y. S.

    1997-03-01

    In 4Mo, 6W, 2Mo3W, 2Mo2Cr, and 3W2Cr alloy steels, which cointain alloying elements, such as Mo, W and Cr, contributing to the secondary hardening by forming M2C type carbide, the secondary hardening and fracture behavior were studied. Molybdenum had a strong effect on secondary hardening, while W had a very weak effect on it but delayed the overaging. The MoW steel exhibited both moderately strong hardening and considerable resistance to overaging. On the other hand, the secondary hardening effect was diminished by the Cr addition, because the cementite of M3C type was stabilized at higher temperatures and the formation of M2C carbides was thus inhibited. Although the Cr addition had no merit in the secondary hardening itself, it eliminated the secondary hardening embrittlement (SHE). This was observed as a severe intergranular embrittlement due to the impurity segregation for the Mo and MoW steels and as a decrease in upper shelf energy for W steel, even in the overaged condition.

  8. Brief carbon dioxide exposure blocks heat hardening but not cold acclimation in Drosophila melanogaster.

    PubMed

    Milton, Claire C; Partridge, Linda

    2008-01-01

    Carbon dioxide is a commonly used anaesthetic in Drosophila research. While any detrimental effects of CO2 exposure on behaviour or traits are largely unknown, a recent study observed significant effects of CO2 exposure on rapid cold hardening and chill-coma recovery in Drosophila melanogaster. In this study we investigated the effect of a brief CO2 exposure on heat hardening and cold acclimation in D. melanogaster, measuring heat knockdown and chill-coma recovery times of flies exposed to CO2 for 1 min after hardening or acclimation. CO2 anaesthesia had a significant negative effect on heat hardening, with heat knockdown rates in hardened flies completely reduced to those of controls after CO2 exposure. Chill-coma recovery rates also significantly increased in acclimated flies that were exposed to CO2, although not to the same extent seen in the heat populations. CO2 exposure had no impact on heat knockdown rates of control flies, while there was a significant negative effect of the anaesthetic on chill-coma recovery rates of control flies. In light of these results, we suggest that CO2 should not be used after hardening in heat resistance assays due to the complete reversal of the heat hardening process upon exposure to CO2.

  9. Identification of potential oviductal factors responsible for zona pellucida hardening and monospermy during fertilization in mammals.

    PubMed

    Mondéjar, Irene; Martínez-Martínez, Irene; Avilés, Manuel; Coy, Pilar

    2013-09-01

    Oviduct fluid increases the time required for digestion of the zona pellucida (ZP) by proteolytic enzymes (ZP hardening). This effect has been associated with levels of monospermy after in vitro fertilization (IVF) in the pig and cow, but the possible existence of a directly proportional relationship between hardening and monospermy remains unknown. To investigate whether variations in hardening of different oviductal fluids (OFs) are correlated with variations in levels of monospermy after IVF, porcine oocytes were incubated with three batches of OFs known to produce different ZP hardening effects (3, 7, and 25 min); after IVF, monospermy levels were 0%, 14.58% ± 5.14%, and 35.14% ± 7.95%, respectively. These results could partially explain the lack of polyspermy found during in vivo fertilization in pigs (with a hardened oviductal ZP) compared with levels found during IVF (with no hardened ZP). Using the bovine model, OF was fractionated by heparin affinity chromatography, and the hardening effect on the ZP was tested for each fraction obtained from a linear gradient of sodium chloride concentration. The highest effect was obtained with the fraction eluted with 0.4 M sodium chloride. Fractions with high-level or low-level effects were processed by on-chip electrophoresis and high-performance liquid chromatography-tandem mass spectrometry. A list of potential proteins responsible for this effect includes OVGP1 and members of the HSP and PDI families.

  10. Investigation on microstructural evolution and hardening mechanism in dilute Zrsbnd Nb binary alloys

    NASA Astrophysics Data System (ADS)

    Yang, H. L.; Matsukawa, Y.; Kano, S.; Duan, Z. G.; Murakami, K.; Abe, H.

    2016-12-01

    In this study, the microstructural changes induced by doping of Nb in Zr were investigated by the combined utilization of electron backscatter diffraction and electron transmission microscopy techniques, followed by the correlated hardening mechanism being elucidated based on the obtained microstructural parameters. Microstructural characterization results revealed that microstructural changes caused by doping of Nb in Zr were mainly embodied via two aspects: reducing the matrix α-Zr grain size and increasing the amount of β-Nb particles. β-phase stabilizing effect, dragging effect and pinning effect introduced and enhanced by Nb addition, worked together to significantly reduce the grain size in Zr-Nb alloys. β-Nb particles were firstly observed in Zr0.5Nb specimen with the fairly low number density of ∼2.0 × 1018/m3, then this value explosively increased to ∼3.3 × 1020/m3 for Zr2Nb specimen. In addition, hardness was increased with an increase in the Nb content. The hardening contributions from solid solution hardening, grain boundary hardening and precipitation hardening were quantitatively estimated as per the obtained microstructural parameters. Results inferred that solid solution hardening contributed the majority when the Nb atoms were solid dissolved (≤0.5 wt%), whereas the precipitation hardening surpassed any other factors when the β-Nb particles were steadily precipitated (≥1 wt%).

  11. Analysis of Obstacle Hardening Models Using Dislocation Dynamics: Application to Irradiation-Induced Defects

    NASA Astrophysics Data System (ADS)

    Sobie, Cameron; Bertin, Nicolas; Capolungo, Laurent

    2015-08-01

    Irradiation hardening in -iron represents a critical factor in nuclear reactor design and lifetime prediction. The dispersed barrier hardening, Friedel Kroupa Hirsch (FKH), and Bacon Kocks Scattergood (BKS) models have been proposed to predict hardening caused by dislocation obstacles in metals, but the limits of their applicability have never been investigated for varying defect types, sizes, and densities. In this work, dislocation dynamics calculations of irradiation-induced obstacle hardening in the athermal case were compared to these models for voids, self-interstitial atom (SIA) loops, and a combination of the two types. The BKS model was found to accurately predict hardening due to voids, whereas the FKH model was superior for SIA loops. For both loops and voids, the hardening from a normal distribution of defects was compared to that from the mean size, and was shown to have no statistically significant dependence on the distribution. A mean size approach was also shown to be valid for an asymmetric distribution of voids. A non-linear superposition principle was shown to predict the hardening from the simultaneous presence of voids and SIA loops.

  12. Effects of solute elements on irradiation hardening and microstructural evolution in low alloy steels

    NASA Astrophysics Data System (ADS)

    Fujii, Katsuhiko; Ohkubo, Tadakatsu; Fukuya, Koji

    2011-10-01

    The effects of the elements Mn, Ni, Si and Cu on irradiation hardening and microstructural evolution in low alloy steels were investigated in ion irradiation experiments using five kinds of alloys prepared by removing Mn, Ni and Si from, and adding 0.05 wt.%Cu to, the base alloy (Fe-1.5Mn-0.5Ni-0.25Si). The alloy without Mn showed less hardening and the alloys without Ni or Si showed more hardening. The addition of Cu had hardly any influence on hardening. These facts indicated that Mn enhanced hardening and that Ni and Si had some synergetic effects. The formation of solute clusters was not confirmed by atom probe (AP) analysis, whereas small dislocation loops were identified by TEM observation. The difference in hardening between the alloys with and without Mn was qualitatively consistent with loop formation. However, microstructural components that were not detected by the AP and TEM were assumed to explain the hardening level quantitatively.

  13. Dermoscopy of Pigmented Bowen's Disease Mimicking Early Superficial Spreading Melanoma

    PubMed Central

    Hayashi, Yuka; Tanaka, Masaru; Suzaki, Reiko; Mori, Nuiko; Konohana, Izumi

    2009-01-01

    A 89-year-old Japanese woman presented at our clinic because of a several months’ history of an asymptomatic gradually enlarging pigmented skin lesion on the dorsum of the left foot. Physical examination revealed a single hyperpigmented oval macule of 5 mm with a rough surface. The color of the lesion was dark brown to light brown. Dermoscopic examination demonstrated atypical pigment network with small dotted vessels. Irregular streaks were also partially noted at the periphery. We suspected superficial spreading melanoma and performed an excision. The histologic features were consistent with a diagnosis of pigmented Bowen's disease. We could not completely account for dermoscopic aspects from the pathological findings of hematoxylin and eosin-stained specimens; therefore, specimens were stained with Fontana-Masson stain. It clearly demonstrated the distribution of melanin in the epidermis. We concluded that atypical network was due to an uneven melanin deposition in the variably thickened epidermal rete ridges. PMID:20652107

  14. [Acute superficial thrombophlebitis--modern diagnosis and therapy].

    PubMed

    Marković, M D; Lotina, S I; Davidović, L B; Vojnović, B R; Kostić, D M; Cinara, I S; Svetković, S D

    1997-01-01

    Acute superficial thrombophlebitis of the lower extremities is one of the most common vascular diseases affecting the population. Although it is generally considered as a benign disease, it can be extended to the deep venous system and pulmonary embolism. We examined 50 patients (22 males and 28 females), mean age 52.5 years. These patients were surgically treated due to acute superficial thrombophlebitis of the lower limbs that affected great saphenous vein above the knee. The diagnosis was made by palpable subcutaneous cords in the course of great saphenous vein or its tributaries in association with tenderness, erythema and oedema. Of these 50 patients, 26 were examined by duplex ultrasonography before the operation. In 20 patients duplex scanning confirmed that the process was greater than we supposed after clinical examination (77%) and in 6 patients there were no differences (23%) (Figures 1 and 2). The operation included crossectomy, ligation and resection of the proximal part of the great saphenous vein. Intraoperative findings in 38 patients showed that the level of the phlebitic process was higher than the clinical level (76%). There was no difference in 12 patients (24%). Deep vein thrombosis and pulmonary embolism were noted in 14 patients (28%) (Tables 1 and 2). Both complications were found in two patients, and 12 had one of these complications. Generally, there were 12 patients with deep venous thrombosis and 4 patients with pulmonary embolism. Only in one patient deep venous thrombosis appeared postoperatively, while all other complications occurred before surgical intervention (Scheme 1 and Table 3). The most common risk factor was the presence of varicose veins (86%). Obesity, age over 60 years, cigarette smoking are listed in decreasing order of frequency. Patients under 60 years were more likely to have complications while older patients usually followed a benign clinical course (Tables 4 and 5). There was no intrahospital mortality. Average

  15. CD34 negative superficial acral fibromyxoma: A rare case report

    PubMed Central

    Robati, Reza M.; Dadkhahfar, Sahar; Rakhshan, Azadeh

    2017-01-01

    Superficial acral fibromyxoma (SAF) is a slow growing soft tissue tumor that mainly appears in the acral areas. Here, we report a case of a SAF with distinctive immunophenotype charachteristics. An 18-year-old female was referred to our clinic with the complaint of painless subungual nodule of great toe for a few months. The diagnosis of SAF was made according to histopathology and immunohistochemical (IHC) study, however, the IHC assessment showed positive staining with vimentin, focal reaction with smooth muscle actin, negative reaction with CD34, and positive staining pattern with CD99. These IHC findings are unusual for SAF. This reported case of SAF supports the fact that, although CD34 expression is characteristic for SAF, it is not always present. PMID:28217473

  16. Transient Superficial Peroneal Nerve Palsy After Anterior Cruciate Ligament Reconstruction

    PubMed Central

    2016-01-01

    A 19-year-old male subject was diagnosed with medial meniscal, lateral meniscal and anterior cruciate ligament (ACL) tear. The symptoms did not subside after 4 months of physical therapy, and he underwent arthroscopic partial medial and lateral meniscectomy and ACL reconstruction. Immediately after the patient woke up from general anesthesia, he started experience loss of sensation in the area of superficial peroneal nerve with inverted dorsiflexion of foot and ankle. Instantly, the bandage and knee brace was removed and a diagnosis of compartment syndrome was ruled out. After eight hours, post-operatively, the patient started receiving physiotherapy. He complained of numbness and tingling in the same area. After 24 h, post-operatively, the patient started to regain dorsiflexion and eversion gradually. Two days after the surgery, the patient exhibited complete recovery of neurological status. PMID:27478579

  17. Work Hardening Behavior of 1020 Steel During Cold-Beating Simulation

    NASA Astrophysics Data System (ADS)

    CUI, Fengkui; LING, Yuanfei; XUE, Jinxue; LIU, Jia; LIU, Yuhui; LI, Yan

    2017-03-01

    The present research of cold-beating formation mainly focused on roller design and manufacture, kinematics, constitutive relation, metal flow law, thermo-mechanical coupling, surface micro-topography and microstructure evolution. However, the research on surface quality and performance of workpieces in the process of cold-beating is rare. Cold-beating simulation experiment of 1020 steel is conducted at room temperature and strain rates ranging from 2000 to 4000 s-1 base on the law of plastic forming. According to the experimental data, the model of strain hardening of 1020 steel is established, Scanning Electron Microscopy(SEM) is conducted, the mechanism of the work hardening of 1020 steel is clarified by analyzing microstructure variation of 1020 steel. It is found that the strain rate hardening effect of 1020 steel is stronger than the softening effect induced by increasing temperatures, the process of simulation cold-beating cause the grain shape of 1020 steel significant change and microstructure elongate significantly to form a fibrous tissue parallel to the direction of deformation, the higher strain rate, the more obvious grain refinement and the more hardening effect. Additionally, the change law of the work hardening rate is investigated, the relationship between dislocation density and strain, the relationship between work hardening rate and dislocation density is obtained. Results show that the change trend of the work hardening rate of 1020 steel is divided into two stages, the work hardening rate decreases dramatically in the first stage and slowly decreases in the second stage, finally tending toward zero. Dislocation density increases with increasing strain and strain rate, work hardening rate decreases with increasing dislocation density. The research results provide the basis for solving the problem of improving the surface quality and performance of workpieces under cold-beating formation of 1020 steel.

  18. Effects of Ce additions on the age hardening response of Mg–Zn alloys

    SciTech Connect

    Langelier, Brian Esmaeili, Shahrzad

    2015-03-15

    The effects of Ce additions on the precipitation hardening behaviour of Mg–Zn are examined for a series of alloys, with Ce additions at both alloying and microalloying levels. The alloys are artificially aged, and studied using hardness measurement and X-ray diffraction, as well as optical and transmission electron microscopy. It is found that the age-hardening effect is driven by the formation of fine precipitates, the number density of which is related to the Zn content of the alloy. Conversely, the Ce content is found to slightly reduce hardening. When the alloy content of Ce is high, large secondary phase particles containing both Ce and Zn are present, and remain stable during solutionizing. These particles effectively reduce the amount of Zn available as solute for precipitation, and thereby reduce hardening. Combining hardness results with thermodynamic analysis of alloy solute levels also suggests that Ce can have a negative effect on hardening when present as solutes at the onset of ageing. This effect is confirmed by designing a pre-ageing heat treatment to preferentially remove Ce solutes, which is found to restore the hardening capability of an Mg–Zn–Ce alloy to the level of the Ce-free alloy. - Highlights: • The effects of Ce additions on precipitation in Mg–Zn alloys are examined. • Additions of Ce to Mg–Zn slightly reduce the age-hardening response. • Ce-rich secondary phase particles deplete the matrix of Zn solute. • Hardening is also decreased when Ce is present in solution. • Pre-ageing to preferentially precipitate out Ce restores hardening capabilities.

  19. Excimer laser superficial keratectomy for proud nebulae in keratoconus.

    PubMed

    Moodaley, L; Liu, C; Woodward, E G; O'Brart, D; Muir, M K; Buckley, R

    1994-06-01

    Contact lens intolerance in keratoconus may be due to the formation of a proud nebula at or near the apex of the cone. Excimer laser superficial keratectomy was performed as an outpatients with proud nebulae as treatment patients with proud nebulae as treatment for their contact lens intolerance. The mean period of contact lens wear before the development of intolerance was 13.4 years (range 2 to 27 years). Following the development of intolerance, three patients abandoned contact lens wear in the affected eye while the remainder experienced a reduction in comfortable wearing time (mean = 3.75 hours; range: 0-14 hours). All patients had good potential Snellen visual acuity with a contact lens of 6/9 (nine eyes) and 6/12 (one eye). The proud nebulae were directly ablated with a 193 nm ArF excimer laser using a 1 mm diameter beam. Between 100-150 pulses were sufficient to ablate the raised area. Patients experienced no pain during the procedure and reported minimal discomfort postoperatively. In all cases flattening of the proud nebulae was achieved. Seven patients were able to resume regular contact lens wear (mean wearing time = 10.17 hours; range 8 to 16 hours). In three patients, resumption of contact lens wear was unsuccessful because of cone steepness. All patients achieved postoperative Snellen visual acuity of 6/12 or better with a contact lens. Four patients experienced a loss of one line in Snellen acuity. The mean follow up period was 8.3 months (range 2 to 17 months). Excimer laser superficial keratectomy is a useful technique for the treatment of contact lens intolerance caused by proud nebulae in patients with keratoconus. Penetrating keratoplasty is thus avoided.

  20. Thermal radiative properties: Coatings.

    NASA Technical Reports Server (NTRS)

    Touloukian, Y. S.; Dewitt, D. P.; Hernicz, R. S.

    1972-01-01

    This volume consists, for the most part, of a presentation of numerical data compiled over the years in a most comprehensive manner on coatings for all applications, in particular, thermal control. After a moderately detailed discussion of the theoretical nature of the thermal radiative properties of coatings, together with an overview of predictive procedures and recognized experimental techniques, extensive numerical data on the thermal radiative properties of pigmented, contact, and conversion coatings are presented. These data cover metallic and nonmetallic pigmented coatings, enamels, metallic and nonmetallic contact coatings, antireflection coatings, resin coatings, metallic black coatings, and anodized and oxidized conversion coatings.

  1. Experimental insight into the cyclic softening/hardening behavior of austenitic stainless steel using ultrasonic higher harmonics

    NASA Astrophysics Data System (ADS)

    Zhang, Jianfeng; Xuan, Fu-zhen; Xiang, Yanxun; Zhao, Peng

    2014-11-01

    The correlation of cyclic hardening/softening behavior of 304 stainless steel (SS) was investigated using nonlinear ultrasonic wave technique. Results reveal that primary hardening leads to the increase of acoustic nonlinearity, while secondary hardening causes the reverse tendency. This distinct phenomenon is governed by two competitive mechanisms: in the primary-hardening stage, the ascended acoustic nonlinearity is related to the increase of planar dislocation structures. While in the second-hardening stage, the decrease of acoustic nonlinearity is partly caused by the development of cell structures. In addition, the deformation-induced martensitic transformation also contributes to the increase of acoustic nonlinearity under higher stress amplitudes.

  2. Age-hardening of grid alloys and its effect on battery manufacturing processes

    NASA Astrophysics Data System (ADS)

    Gillian, Warren F.; Rice, David M.

    The age-hardening behaviour of three generic classes of lead—antimony grid alloys commonly used in the lead/acid battery manufacturing industry were studied. The effects on age-hardening behaviour of several heat treatments devised to simulate downstream processing of battery grids in the manufacturing process were investigated together with the effect of varying cooling rate following casting. Rapid cooling (water quenching) resulted in a general acceleration and enhancement of the age-hardening behaviour of all alloys, whilst heat treatment following casting generally gave rise to a reduction in peak hardness.

  3. Local hardening evaluation of carbon steels by using frequency sweeping excitation and spectrogram method

    NASA Astrophysics Data System (ADS)

    Tsuchida, Yuji; Kudo, Yuki; Enokizono, Masato

    2017-02-01

    This paper presents our proposed frequency sweeping excitation and spectrogram method (FSES method) by a magnetic sensor for non-destructive testing of hardened low carbon steels. This method can evaluate the magnetic properties of low carbon steels which were changed after induction heating treatment. It was examined by our proposed method that the degrees of yield strength of low carbon steels were varied depending on hardened conditions. Moreover, it was made clear that the maximum magnetic field strength, Hmax, derived from the measured B-H loops was very sensitive to the hardening if the surface of the samples were flat.

  4. Developments in Radiation-Hardened Electronics Applicable to the Vision for Space Exploration

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.; Frazier, Donald O.; Patrick , Marshall C.; Watson, Michael D.; Johnson, Michael A.; Cressler, John D.; Kolawa, Elizabeth A.

    2007-01-01

    The Radiation Hardened Electronics for Space Exploration (RHESE) project develops the advanced technologies required to produce radiation hardened electronics, processors, and devices in support of the anticipated requirements of NASA's Constellation program. Methods of protecting and hardening electronics against the encountered space environment are discussed. Critical stages of a spaceflight mission that are vulnerable to radiation-induced interruptions or failures are identified. Solutions to mitigating the risk of radiation events are proposed through the infusion of RHESE technology products and deliverables into the Constellation program's spacecraft designs.

  5. Hardening/finishing treatment of compressor blades using a machine with planetary container motion

    NASA Astrophysics Data System (ADS)

    Shpatakovskii, A. F.

    A process for the hardening and finishing of high-pressure compressor blades for aircraft powerplants is described whereby the blades are placed in containers that move along a planetary path in a hardening medium consisting of steel balls. The extent of surface hardening, surface roughness, and residual stresses are determined for specimens of U8A steel and blades of EP718VD alloy treated under different conditions. The efficiency of the treatment in terms of increased blade durability and productivity is estimated.

  6. Non Radiation Hardened Microprocessors in Spaced Based Remote Sensing Systems

    NASA Technical Reports Server (NTRS)

    Decoursey, Robert J.; Estes, Robert F.; Melton, Ryan

    2006-01-01

    The CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) mission is a comprehensive suite of active and passive sensors including a 20Hz 230mj Nd:YAG lidar, a visible wavelength Earth-looking camera and an imaging infrared radiometer. CALIPSO flies in formation with the Earth Observing System Post-Meridian (EOS PM) train, provides continuous, near-simultaneous measurements and is a planned 3 year mission. CALIPSO was launched into a 98 degree sun synchronous Earth orbit in April of 2006 to study clouds and aerosols and acquires over 5 gigabytes of data every 24 hours. The ground track of one CALIPSO orbit as well as high and low intensity South Atlantic Anomaly outlines is shown. CALIPSO passes through the SAA several times each day. Spaced based remote sensing systems that include multiple instruments and/or instruments such as lidar generate large volumes of data and require robust real-time hardware and software mechanisms and high throughput processors. Due to onboard storage restrictions and telemetry downlink limitations these systems must pre-process and reduce the data before sending it to the ground. This onboard processing and realtime requirement load may mean that newer more powerful processors are needed even though acceptable radiation-hardened versions have not yet been released. CALIPSO's single board computer payload controller processor is actually a set of four (4) voting non-radiation hardened COTS Power PC 603r's built on a single width VME card by General Dynamics Advanced Information Systems (GDAIS). Significant radiation concerns for CALIPSO and other Low Earth Orbit (LEO) satellites include the South Atlantic Anomaly (SAA), the north and south poles and strong solar events. Over much of South America and extending into the South Atlantic Ocean the Van Allen radiation belts dip to just 200-800km and spacecraft entering this area are subjected to high energy protons and experience higher than normal Single Event Upset

  7. Superhard Nanocrystalline Homometallic Stainless Steel on Steel for Seamless Coatings

    NASA Technical Reports Server (NTRS)

    Tobin, Eric J.; Hafley, R. (Technical Monitor)

    2002-01-01

    The objective of this work is to deposit nanocrystalline stainless steel onto steel substrates (homometallic) for enhanced wear and corrosion resistance. Homometallic coatings provide superior adhesion, and it has been shown that ultrafine-grained materials exhibit the increased hardness and decreased permeability desired for protective coatings. Nanocrystals will be produced by controlling nucleation and growth and use of an ion beam during deposition by e-beam evaporation or sputtering. Phase I is depositing 31 6L nanocrystalline stainless steel onto 31 6L stainless steel substrates. These coatings exhibit hardnesses comparable to those normally obtained for ceramic coatings such ZrO2, and possess the superior adhesion of seamless, homometallic coatings. Hardening the surface with a similar material also enhances adhesion, by avoiding problems associated with thermal and lattice mismatch. So far we have deposited nanocrystalline homometallic 316L stainless steel coatings by varying the ions and the current density of the ion beams. For all deposition conditions we have produced smooth, uniform, superhard coatings. All coatings exhibit hardness of at least 200% harder than that of bulk materials. Our measurements indicate that there is a direct relationship between nanohardness and the current density of the ion beam. Stress measurements indicate that stress in the films is increasingly proportional to current density of the ion beam. TEM, XPS, and XRD results indicate that the coated layers consist of FCC structure nanocrystallites with a dimension of about 10 to 20 nm. The Ni and Mo concentration of these coating are lower than those of bulk 316L but the concentration of Cr is higher.

  8. NINJA: a noninvasive framework for internal computer security hardening

    NASA Astrophysics Data System (ADS)

    Allen, Thomas G.; Thomson, Steve

    2004-07-01

    Vulnerabilities are a growing problem in both the commercial and government sector. The latest vulnerability information compiled by CERT/CC, for the year ending Dec. 31, 2002 reported 4129 vulnerabilities representing a 100% increase over the 2001 [1] (the 2003 report has not been published at the time of this writing). It doesn"t take long to realize that the growth rate of vulnerabilities greatly exceeds the rate at which the vulnerabilities can be fixed. It also doesn"t take long to realize that our nation"s networks are growing less secure at an accelerating rate. As organizations become aware of vulnerabilities they may initiate efforts to resolve them, but quickly realize that the size of the remediation project is greater than their current resources can handle. In addition, many IT tools that suggest solutions to the problems in reality only address "some" of the vulnerabilities leaving the organization unsecured and back to square one in searching for solutions. This paper proposes an auditing framework called NINJA (acronym for Network Investigation Notification Joint Architecture) for noninvasive daily scanning/auditing based on common security vulnerabilities that repeatedly occur in a network environment. This framework is used for performing regular audits in order to harden an organizations security infrastructure. The framework is based on the results obtained by the Network Security Assessment Team (NSAT) which emulates adversarial computer network operations for US Air Force organizations. Auditing is the most time consuming factor involved in securing an organization's network infrastructure. The framework discussed in this paper uses existing scripting technologies to maintain a security hardened system at a defined level of performance as specified by the computer security audit team. Mobile agents which were under development at the time of this writing are used at a minimum to improve the noninvasiveness of our scans. In general, noninvasive

  9. Influence of grain structure and solute composition on the work hardening behavior of aluminium at cryogenic temperatures

    SciTech Connect

    Chu, D.; Morris, J.W. Jr.

    1993-07-01

    An unrecrystallized structure is found to significantly improve the work hardening characteristics by lowering the work hardening rate during early stages of deformation. This is in contrast to a recrystallized structure, which requires a higher work hardening rate to accommodate the greater degree of multiple slip necessary to maintain strain compatibility between the more randomly oriented grains. The stronger texture associated with the unrecrystallized structure allows deformation to occur more efficiently. Addition of magnesium also improves work hardening by increasing overall level of the work hardening rate. The improved characteristics of the work hardening behavior result in a parallel increase in both the strength and ductility at cryogenic temperatures. These findings are positive since they suggest a method by which improvements in the work hardening behavior and subsequent mechanical properties may be obtained through practical modifications of the microstructure and composition.

  10. Trifurcation of superficial brachial artery: a rare case with its clinico-embryological implications.

    PubMed

    Gupta, N; Anshu, A; Dada, R

    2014-01-01

    Literatures on vasculature of upper limbs are crammed with reports of distinctly deviant version of normally prevalent vessels having modified origins, altered branching and odd courses. A unique anatomical variation in vascular pattern was observed during routine dissection of right upper limb in gross anatomy laboratory, AIIMS, New Delhi, India. The brachial artery was placed superficial to median nerve in the arm and therefore it was called superficial brachial artery. In the cubital fossa, 2.8 cm distal to intercondylar line of elbow joint, this superficial brachial artery terminated by trifurcation into radial, common interosseous and ulnar branches. Strikingly the ulnar branch, after its origin ran superficially over the median nerve and epitrochlear superficial flexor group of muscles of forearm in succession for the initial third of its course in the forearm, consequently it was addressed as superficial ulnar artery. The existence of superficial brachial artery in place of normal brachial artery, its termination by trifurcation into radial, common interosseous and superficial ulnar arteries with remarkably different courses, leads to confusing disposition of structures in the arm, cubital fossa and in the forearm and collectively makes this myriad of anatomical variations even rarer. The clinico-embryological revelations for combination of these unconventional observations, apprises and guides the specialized medical personnel attempting blind and invasive procedures in brachium and ante-brachium. This case report depicts the anatomical perspective and clinical implications on confronting a rare variant vasculature architecture pattern of upper limb.

  11. Importance of colonoscopy in patients undergoing endoscopic resection for superficial esophageal squamous cell carcinoma

    PubMed Central

    Tominaga, Kei; Doyama, Hisashi; Nakanishi, Hiroyoshi; Yoshida, Naohiro; Takeda, Yasuhito; Ota, Ryosuke; Tsuji, Kunihiro; Matsunaga, Kazuhiro; Tsuji, Shigetsugu; Takemura, Kenichi; Yamada, Shinya; Katayanagi, Kazuyoshi; Kurumaya, Hiroshi

    2016-01-01

    Background The aim of the study was to clarify the frequency of colorectal neoplasm (CRN) complicating superficial esophageal squamous cell carcinoma (ESCC) and the need for colonoscopy. Methods We retrospectively reviewed 101 patients who had undergone initial endoscopic resection (ER) for superficial ESCC. Control group participants were age- and sex-matched asymptomatic subjects screened at our hospital over the same period of time. Advanced adenoma was defined as an adenoma ≥10 mm, with villous features, or high-grade dysplasia. Advanced CRN referred to advanced adenoma or cancer. We measured the incidence of advanced CRN in superficial ESCC and controls, and we compared the characteristics of superficial ESCC patients with and without advanced CRN. Results In the superficial ESCC group, advanced CRNs were found in 17 patients (16.8%). A history of smoking alone was found to be a significant risk factor of advanced CRN [odds ratio 6.02 (95% CI 1.30-27.8), P=0.005]. Conclusion The frequency of synchronous advanced CRN is high in superficial ESCC patients subjected to ER. Colonoscopy should be highly considered for most patients who undergo ER for superficial ESCC with a history of smoking, and is recommended even in superficial ESCC patients. PMID:27366032

  12. Structure and wear resistance of R6M5 steel based coatings

    NASA Astrophysics Data System (ADS)

    Gnyusov, S. F.; Ignatov, A. A.; Durakov, V. G.

    2010-08-01

    Features of the structure of R6M5 steel based coatings obtained by multiscan electron-beam fusion of a hardening composition in vacuum have been studied. It is established that the carbide subsystem of the hardened layer is characterized by a multimodal distribution of carbide particles with d 1 = 3.8 μm, d 2 = 0.65 μm, and d 3 < 0.25 μm. The volume fraction of M6C secondary carbide and retained matrix austenite can be controlled within broad limits by varying thermal parameters of the electron-beam fusion. An increase in the retained austenite fraction in the coating leads to improved wear resistance due to the γ → α' marten-site transformation during friction and the presence of dispersed secondary carbides inside the matrix grains.

  13. NICKEL COATED URANIUM ARTICLE

    DOEpatents

    Gray, A.G.

    1958-10-01

    Nickel coatings on uranium and various methods of obtaining such coatings are described. Specifically disclosed are such nickel or nickel alloy layers as barriers between uranium and aluminum- silicon, chromium, or copper coatings.

  14. Switchable hardening of a ferromagnet at fixed temperature

    PubMed Central

    Silevitch, D. M.; Aeppli, G.; Rosenbaum, T. F.

    2010-01-01

    The intended use of a magnetic material, from information storage to power conversion, depends crucially on its domain structure, traditionally crafted during materials synthesis. By contrast, we show that an external magnetic field, applied transverse to the preferred magnetization of a model disordered uniaxial ferromagnet, is an isothermal regulator of domain pinning. At elevated temperatures, near the transition into the paramagnet, modest transverse fields increase the pinning, stabilize the domain structure, and harden the magnet, until a point where the field induces quantum tunneling of the domain walls and softens the magnet. At low temperatures, tunneling completely dominates the domain dynamics and provides an interpretation of the quantum phase transition in highly disordered magnets as a localization/delocalization transition for domain walls. While the energy scales of the rare earth ferromagnet studied here restrict the effects to cryogenic temperatures, the principles discovered are general and should be applicable to existing classes of highly anisotropic ferromagnets with ordering at room temperature or above. PMID:20133728

  15. Spectroscopic investigation of Ni speciation in hardened cement paste.

    PubMed

    Vespa, M; Dähn, R; Grolimund, D; Wieland, E; Scheidegger, A M

    2006-04-01

    Cement-based materials play an important role in multi-barrier concepts developed worldwide for the safe disposal of hazardous and radioactive wastes. Cement is used to condition and stabilize the waste materials and to construct the engineered barrier systems (container, backfill, and liner materials) of repositories for radioactive waste. In this study, Ni uptake by hardened cement paste has been investigated with the aim of improving our understanding of the immobilization process of heavy metals in cement on the molecular level. X-ray absorption spectroscopy (XAS) coupled with diffuse reflectance spectroscopy (DRS) techniques were used to determine the local environment of Ni in cement systems. The Ni-doped samples were prepared at two different water/cement ratios (0.4, 1.3) and different hydration times (1 hour to 1 year) using a sulfate-resisting Portland cement. The metal loadings and the metal salts added to the system were varied (50 up to 5000 mg/kg; NO3(-), SO4(2-), Cl-). The XAS study showed that for all investigated systems Ni(ll) is predominantly immobilized in a layered double hydroxide (LDH) phase, which was corroborated by DRS measurements. Only a minor extent of Ni(ll) precipitates as Ni-hydroxides (alpha-Ni(OH)2 and beta-Ni(OH)2). This finding suggests that Ni-Al LDH, rather than Ni-hydroxides, is the solubility-limiting phase in the Ni-doped cement system.

  16. Hardening by bubbles in He-implanted Ni

    SciTech Connect

    Knapp, J. A.; Follstaedt, D. M.; Myers, S. M.

    2008-01-01

    Detailed finite-element modeling of nanoindentation data is used to obtain the mechanical properties of Ni implanted with 1-10 at. % He. The mechanical properties of this material elucidate the fundamental materials science of dislocation pinning by nanometer-size gas bubbles and also have implications for radiation damage of materials. Cross-section transmission electron microscopy showed that implantation of 1-5 at. % He at room temperature or at 200 deg. C produced a highly damaged layer extending to a depth of 700-800 nm and containing a fine dispersion of He bubbles with diameters of 1.1{+-}0.2 nm. Implantation at 500 deg. C enlarged the bubble sizes. By fitting the nanoindentation data with a finite-element model that includes the responses of both the implanted layer and the unimplanted substrate in the deformation, the Ni(He) layers are shown to have hardnesses as much as approximately seven times that of untreated Ni, up to 8.3{+-}0.6 GPa. Examination of the dependence of yield strength on He concentration, bubble size, and bubble density reveals that an Orowan hardening mechanism is likely to be in operation, indicating that the bubbles pin dislocation motion as strongly as hard second-phase precipitates do. This strong pinning of dislocations by bubbles is also supported by our numerical simulations, which show that substantial applied shear stress is required to move a dislocation through an empty cavity.

  17. Stress corrosion cracking evaluation of martensitic precipitation hardening stainless steels

    NASA Technical Reports Server (NTRS)

    Humphries, T. S.; Nelson, E. E.

    1980-01-01

    The resistance of the martensitic precipitation hardening stainless steels PH13-8Mo, 15-5PH, and 17-4PH to stress corrosion cracking was investigated. Round tensile and c-ring type specimens taken from several heats of the three alloys were stressed up to 100 percent of their yield strengths and exposed to alternate immersion in salt water, to salt spray, and to a seacoast environment. The results indicate that 15-5PH is highly resistant to stress corrosion cracking in conditions H1000 and H1050 and is moderately resistant in condition H900. The stress corrosion cracking resistance of PH13-8Mo and 17-4PH stainless steels in conditions H1000 and H1050 was sensitive to mill heats and ranged from low to high among the several heats included in the tests. Based on a comparison with data from seacoast environmental tests, it is apparent that alternate immersion in 3.5 percent salt water is not a suitable medium for accelerated stress corrosion testing of these pH stainless steels.

  18. Surface hardening of two cast irons by friction stir processing

    NASA Astrophysics Data System (ADS)

    Fujii, Hidetoshi; Yamaguchi, Yasufumi; Kikuchi, Toshifumi; Kiguchi, Shoji; Nogi, Kiyoshi

    2009-05-01

    The Friction Stir Processing (FSP) was applied to the surface hardening of cast irons. Flake graphite cast iron (FC300) and nodular graphite cast iron (FCD700) were used to investigate the validity of this method. The matrices of the FC300 and FC700 cast irons are pearlite. The rotary tool is a 25mm diameter cylindrical tool, and the travelling speed was varied between 50 and 150mm/min in order to control the heat input at the constant rotation speed of 900rpm. As a result, it has been clarified that a Vickers hardness of about 700HV is obtained for both cast irons. It is considered that a very fine martensite structure is formed because the FSP generates the heat very locally, and a very high cooling rate is constantly obtained. When a tool without an umbo (probe) is used, the domain in which graphite is crushed and striated is minimized. This leads to obtaining a much harder sample. The hardness change depends on the size of the martensite, which can be controlled by the process conditions, such as the tool traveling speed and the load. Based on these results, it was clarified that the FSP has many advantages for cast irons, such as a higher hardness and lower distortion. As a result, no post surface heat treatment and no post machining are required to obtain the required hardness, while these processes are generally required when using the traditional methods.

  19. Magnetic hardening of Fe30Co70 nanowires.

    PubMed

    Viñas, Sara Liébana; Salikhov, Ruslan; Bran, Cristina; Palmero, Ester M; Vazquez, Manuel; Arvan, Behnaz; Yao, Xiang; Toson, Peter; Fidler, Josef; Spasova, Marina; Wiedwald, Ulf; Farle, Michael

    2015-10-16

    3d transition metal-based magnetic nanowires (NWs) are currently considered as potential candidates for alternative rare-earth-free alloys as novel permanent magnets. Here, we report on the magnetic hardening of Fe30Co70 nanowires in anodic aluminium oxide templates with diameters of 20 nm and 40 nm (length 6 μm and 7.5 μm, respectively) by means of magnetic pinning at the tips of the NWs. We observe that a 3-4 nm naturally formed ferrimagnetic FeCo oxide layer covering the tip of the FeCo NW increases the coercive field by 20%, indicating that domain wall nucleation starts at the tip of the magnetic NW. Ferromagnetic resonance (FMR) measurements were used to quantify the magnetic uniaxial anisotropy energy of the samples. Micromagnetic simulations support our experimental findings, showing that the increase of the coercive field can be achieved by controlling domain wall nucleation using magnetic materials with antiferromagnetic exchange coupling, i.e. antiferromagnets or ferrimagnets, as a capping layer at the nanowire tips.

  20. The structural dependence of work hardening in low carbon steels

    SciTech Connect

    Johnson, P.E.

    1991-12-01

    The influence of the dislocation cell structure on the work hardening behavior of low carbon steel sheets was investigated. Specimens were prestrained at low temperature to suppress cell formation and their subsequent behavior was compared with results of isothermal reference tests. It was found that the extent of cell development has little or no influence on the plastic behavior at room temperature and below. Interrupted temperature, tensile-shear tests demonstrated further that the transient behavior induced by loading path changes is also not strongly associated with the cell walls. In-situ straining studies indicate that the factor controlling the flow stress at room temperature is the limited mobility of screw dislocations moving the cell interiors, and not dislocation interactions with the cell walls. The unique properties of a/2<111> screw dislocations are known to dominate low temperature deformation behavior in bcc metals. The current work indicates that these dislocations may still control the flow stress at intermediate temperatures, even in the presence of a developed cell structure.

  1. Waste tyre rubberized concrete: properties at fresh and hardened state.

    PubMed

    Aiello, M A; Leuzzi, F

    2010-01-01

    The main objective of this paper is to investigate the properties of various concrete mixtures at fresh and hardened state, obtained by a partial substitution of coarse and fine aggregate with different volume percentages of waste tyres rubber particles, having the same dimensions of the replaced aggregate. Workability, unit weight, compressive and flexural strength and post-cracking behaviour were evaluated and a comparison of the results for the different rubcrete mixtures were proposed in order to define the better mix proportions in terms of mechanical properties of the rubberized concrete. Results showed in this paper were also compared to data reported in literature. Moreover, a preliminary geometrical, physical and mechanical characterization on scrap tyre rubber shreds was made. The rubberized concrete mixtures showed lower unit weight compared to plain concrete and good workability. The results of compressive and flexural tests indicated a larger reduction of mechanical properties of rubcrete when replacing coarse aggregate rather than fine aggregate. On the other hand, the post-cracking behaviour of rubberized concrete was positively affected by the substitution of coarse aggregate with rubber shreds, showing a good energy absorption and ductility indexes in the range observed for fibrous concrete, as suggested by standard (ASTM C1018-97, 1997).

  2. A Radiation Hardened by Design CMOS ASIC for Thermopile Readouts

    NASA Technical Reports Server (NTRS)

    Quilligan, G.; Aslam, S.; DuMonthier, J.

    2012-01-01

    A radiation hardened by design (RHBD) mixed-signal application specific integrated circuit (ASIC) has been designed for a thermopile readout for operation in the harsh Jovian orbital environment. The multi-channel digitizer (MCD) ASIC includes 18 low noise amplifier channels which have tunable gain/filtering coefficients, a 16-bit sigma-delta analog-digital converter (SDADC) and an on-chip controller. The 18 channels, SDADC and controller were designed to operate with immunity to single event latchup (SEL) and to at least 10 Mrad total ionizing dose (TID). The ASIC also contains a radiation tolerant 16-bit 20 MHz Nyquist ADC for general purpose instrumentation digitizer needs. The ASIC is currently undergoing fabrication in a commercial 180 nm CMOS process. Although this ASIC was designed specifically for the harsh radiation environment of the NASA led JEO mission it is suitable for integration into instrumentation payloads 011 the ESA JUICE mission where the radiation hardness requirements are slightly less stringent.

  3. Radiation Hardened, Modulator ASIC for High Data Rate Communications

    NASA Technical Reports Server (NTRS)

    McCallister, Ron; Putnam, Robert; Andro, Monty; Fujikawa, Gene

    2000-01-01

    Satellite-based telecommunication services are challenged by the need to generate down-link power levels adequate to support high quality (BER approx. equals 10(exp 12)) links required for modem broadband data services. Bandwidth-efficient Nyquist signaling, using low values of excess bandwidth (alpha), can exhibit large peak-to-average-power ratio (PAPR) values. High PAPR values necessitate high-power amplifier (HPA) backoff greater than the PAPR, resulting in unacceptably low HPA efficiency. Given the high cost of on-board prime power, this inefficiency represents both an economical burden, and a constraint on the rates and quality of data services supportable from satellite platforms. Constant-envelope signals offer improved power-efficiency, but only by imposing a severe bandwidth-efficiency penalty. This paper describes a radiation- hardened modulator which can improve satellite-based broadband data services by combining the bandwidth-efficiency of low-alpha Nyquist signals with high power-efficiency (negligible HPA backoff).

  4. A radiation-hardened SOI-based FPGA

    NASA Astrophysics Data System (ADS)

    Xiaowei, Han; Lihua, Wu; Yan, Zhao; Yan, Li; Qianli, Zhang; Liang, Chen; Guoquan, Zhang; Jianzhong, Li; Bo, Yang; Jiantou, Gao; Jian, Wang; Ming, Li; Guizhai, Liu; Feng, Zhang; Xufeng, Guo; Chen, Stanley L.; Zhongli, Liu; Fang, Yu; Kai, Zhao

    2011-07-01

    A radiation-hardened SRAM-based field programmable gate array VS1000 is designed and fabricated with a 0.5 μm partial-depletion silicon-on-insulator logic process at the CETC 58th Institute. The new logic cell (LC), with a multi-mode based on 3-input look-up-table (LUT), increases logic density about 12% compared to a traditional 4-input LUT The logic block (LB), consisting of 2 LCs, can be used in two functional modes: LUT mode and distributed read access memory mode. The hierarchical routing channel block and switch block can significantly improve the flexibility and routability of the routing resource. The VS1000 uses a CQFP208 package and contains 392 reconfigurable LCs, 112 reconfigurable user I/Os and IEEE 1149.1 compatible with boundary-scan logic for testing and programming. The function test results indicate that the hardware and software cooperate successfully and the VS1000 works correctly. Moreover, the radiation test results indicate that the VS1000 chip has total dose tolerance of 100 krad(Si), a dose rate survivability of 1.5 × 1011 rad(Si)/s and a neutron fluence immunity of 1 × 1014 n/cm2.

  5. Grain Size Hardening Effects in Mg-Gd Solid Solutions

    NASA Astrophysics Data System (ADS)

    Nagarajan, Devarajan; Cáceres, Carlos H.; Griffiths, John R.

    2016-11-01

    Pure Mg and alloys with 0.4, 1.3, and 3.8 at. pct Gd were cast with grain sizes between 700 and 35 µm and tested in tension and compression after solid solution heat treatment and quenching. The grain structure of the castings was random, that is, there was no preferred orientation, unlike the situation in extrusions and forgings usually reported in the literature. The results are compared to earlier work on Mg-Zn alloys. A tension-compression asymmetry in which the yield strength in compression is less than in tension was observed in pure Mg but was reversed for the concentrated alloys. The Hall-Petch stress intensity factor, k, first increased then decreased with the amount of Gd in solution. It is noted that defining the friction stress by extrapolating the data to infinite grain size should be treated with caution in Mg and its alloys: nevertheless, a rationale involving solid solution softening/hardening and twinning is offered for the observed values of the friction stress. The reversion of the tension-compression asymmetry is explained by the operation of { {10bar{1}1} } (contraction) twinning in the concentrated alloys in place of { {10bar{1}2} } (extension) twinning in pure Mg and the dilute alloys. It is argued that the activation of { {10bar{1}1} } twinning in the more concentrated alloys accounts for their lower k-value.

  6. Volume-surface hardening of railroad transport parts by a high-speed water stream

    NASA Astrophysics Data System (ADS)

    Fedin, V. M.

    1996-09-01

    Large production volumes of rolling stock and track structure require the introduction of effective strengthening methods at a minimum expenditure. This stimulates a search for ways of increasing the service life of parts of railroad transport. Volume-surface hardening is an efficient method of thermal strengthening. The method consists in through or deep furnace or induction heating of parts before hardening and subsequent intense cooling. The hardenability of the steel used is consistent with the thickness of the strengthened layer, which creates a hardness gradient over the thickness of the parts, i.e., a high surface hardness and a ductile core. In turn, this creates a favorable distribution of internal stresses and provides a high cyclic endurance of the parts in operation. The possibility of using volume-surface hardening to strength railroad transport parts is considered with allowance for the special features of their production and operation.

  7. Evaluation of the Characteristics of Hardening of Heat-Resistant Steel Subjected to Combined Thermochemical Treatment

    NASA Astrophysics Data System (ADS)

    Semenov, M. Yu.; Fakhurtdinov, R. S.; Lashnev, M. M.; Gromov, V. I.; Demidov, P. N.

    2013-11-01

    Computation by known models of hardening by particles of excess phase is used to determine dependences of the shear yield strength of carburized and nitrided layers in complexly alloyed steels on the size and quantitative characteristics of carbides and nitrides.

  8. Model Identification and FE Simulations: Effect of Different Yield Loci and Hardening Laws in Sheet Forming

    NASA Astrophysics Data System (ADS)

    Flores, P.; Duchêne, L.; Lelotte, T.; Bouffioux, C.; El Houdaigui, F.; Van Bael, A.; He, S.; Duflou, J.; Habraken, A. M.

    2005-08-01

    The bi-axial experimental equipment developed by Flores enables to perform Baushinger shear tests and successive or simultaneous simple shear tests and plane-strain tests. Such experiments and classical tensile tests investigate the material behavior in order to identify the yield locus and the hardening models. With tests performed on two steel grades, the methods applied to identify classical yield surfaces such as Hill or Hosford ones as well as isotropic Swift type hardening or kinematic Armstrong-Frederick hardening models are explained. Comparison with the Taylor-Bishop-Hill yield locus is also provided. The effect of both yield locus and hardening model choice will be presented for two applications: Single Point Incremental Forming (SPIF) and a cup deep drawing.

  9. Model Identification and FE Simulations: Effect of Different Yield Loci and Hardening Laws in Sheet Forming

    SciTech Connect

    Flores, P.; Lelotte, T.; Bouffioux, C.; El Houdaigui, F.; Habraken, A.M.; Duchene, L.; Bael, A. van; He, S.; Duflou, J.

    2005-08-05

    The bi-axial experimental equipment developed by Flores enables to perform Baushinger shear tests and successive or simultaneous simple shear tests and plane-strain tests. Such experiments and classical tensile tests investigate the material behavior in order to identify the yield locus and the hardening models. With tests performed on two steel grades, the methods applied to identify classical yield surfaces such as Hill or Hosford ones as well as isotropic Swift type hardening or kinematic Armstrong-Frederick hardening models are explained. Comparison with the Taylor-Bishop-Hill yield locus is also provided. The effect of both yield locus and hardening model choice will be presented for two applications: Single Point Incremental Forming (SPIF) and a cup deep drawing.

  10. Monitoring of hardening and hygroscopic induced strains in a calcium phosphate bone cement using FBG sensor.

    PubMed

    Bimis, A; Karalekas, D; Bouropoulos, N; Mouzakis, D; Zaoutsos, S

    2016-07-01

    This study initially deals with the investigation of the induced strains during hardening stage of a self-setting calcium phosphate bone cement using fiber-Bragg grating (FBG) optical sensors. A complementary Scanning Electron Microscopy (SEM) investigation was also conducted at different time intervals of the hardening period and its findings were related to the FBG recordings. From the obtained results, it is demonstrated that the FBG response is affected by the microstructural changes taking place when the bone cement is immersed into the hardening liquid media. Subsequently, the FBG sensor was used to monitor the absorption process and hygroscopic response of the hardened and dried biocement when exposed to a liquid/humid environment. From the FBG-based calculated hygric strains as a function of moisture concentration, the coefficient of moisture expansion (CME) of the examined bone cement was obtained, exhibiting two distinct linear regions.

  11. Nanoparticle amount, and not size, determines chain alignment and nonlinear hardening in polymer nanocomposites.

    PubMed

    Varol, H Samet; Meng, Fanlong; Hosseinkhani, Babak; Malm, Christian; Bonn, Daniel; Bonn, Mischa; Zaccone, Alessio; Parekh, Sapun H

    2017-04-04

    Polymer nanocomposites-materials in which a polymer matrix is blended with nanoparticles (or fillers)-strengthen under sufficiently large strains. Such strain hardening is critical to their function, especially for materials that bear large cyclic loads such as car tires or bearing sealants. Although the reinforcement (i.e., the increase in the linear elasticity) by the addition of filler particles is phenomenologically understood, considerably less is known about strain hardening (the nonlinear elasticity). Here, we elucidate the molecular origin of strain hardening using uniaxial tensile loading, microspectroscopy of polymer chain alignment, and theory. The strain-hardening behavior and chain alignment are found to depend on the volume fraction, but not on the size of nanofillers. This contrasts with reinforcement, which depends on both volume fraction and size of nanofillers, potentially allowing linear and nonlinear elasticity of nanocomposites to be tuned independently.

  12. The Use of a Simple Enzyme Assay in 'Seed-Hardening' Studies

    ERIC Educational Resources Information Center

    Ead, J.; Devonald, V. G.

    1975-01-01

    Describes a single technique for an enzyme assay of catalase. The method shows that vegetable seeds submitted to pre-sowing 'hardening' cycles of imbition and drying have greater catalase activity and more rapid germination than do the controls. (LS)

  13. Analysis of structure and phase composition of rails subjected to differential hardening at different regimes

    SciTech Connect

    Gromov, V. E. Morozov, K. V. Konovalov, S. V.; Alsaraeva, K. V.; Semina, O. A.; Ivanov, Yu. F.; Volkov, K. V.

    2014-11-14

    Differential hardening of rails by compressed air in different regimes is accompanied by formation of morphologically different structure, being formed according to the diffusion mechanism of γ↔α transformation and consisting of grains of lamellar pearlite, free ferrite and grains of ferrite-carbide mixture. By methods of transmission electron microscopy the layer by layer analysis of differentially hardened rails has been carried out, the quantitative parameters of the structure, phase composition and dislocation substructure have been established and their comparison has been made for different regimes of hardening. It has been found that the structure-phase states being formed have gradient character, defined by the hardening regime, direction of study from the surface of rolling and by depth of location of layer under study.

  14. Precipitation hardening in the first aerospace aluminum alloy: the wright flyer crankcase.

    PubMed

    Gayle, F W; Goodway, M

    1994-11-11

    Aluminum has had an essential part in aerospace history from its very inception: An aluminum copper alloy (with a copper composition of 8 percent by weight) was used in the engine that powered the historic first flight of the Wright brothers in 1903. Examination of this alloy shows that it is precipitation-hardened by Guinier-Preston zones in a bimodal distribution, with larger zones (10 to 22 nanometers) originating in the casting practice and finer ones (3 nanometers) resulting from ambient aging over the last 90 years. The precipitation hardening in the Wright Flyer crankcase occurred earlier than the experiments of Wilm in 1909, when such hardening was first discovered, and predates the accepted first aerospace application of precipitation-hardened aluminum in 1910.

  15. Mathematical modeling of grain boundary hardening in two-phase materials

    NASA Astrophysics Data System (ADS)

    Ozernykh, Vladimir S.; Volegov, Pavel S.

    2016-11-01

    In this paper, we consider such an important physical mechanism of hardening in polycrystalline metals as hardening due to the interaction of dislocations and grain boundaries. A mathematical model of inelastic deformation for the polycrystalline representative volume with consideration for dislocation hardening on the phase boundary is proposed. Numerical experiments are carried out with different phase parameters. We study the influence of the average grain size of the polycrystalline material and statistical distribution of the grain size on the deformation behavior. A submodel that describes the additional hardening phenomenon due to the interaction of intragranular and grain boundary dislocations is proposed. Numerical experiments under different schemes of material loading are carried out; deformation curves are constructed and analyzed.

  16. Press hardening of alternative high strength aluminium and ultra-high strength steels

    NASA Astrophysics Data System (ADS)

    Mendiguren, Joseba; Ortubay, Rafael; Agirretxe, Xabier; Galdos, Lander; de Argandoña, Eneko Sáenz

    2016-10-01

    The boron steel press hardening process takes more and more importance on the body in white structure in the last decade. In this work, the advantages of using alternative alloys on the press hardening process is analysed. In particular, the press hardening of AA7075 high strength aluminium and CP800 complex phase ultra-high strength steel is analysed. The objective is to analyse the potential decrease on springback while taking into account the strength change associated with the microstructural modification carried out during the press hardening process. The results show a clear improvement of the final springback in both cases. Regarding the final mechanical properties, an important decrease has been measured in the AA7075 due to the process while an important increase has been found in the CP800 material.

  17. The effect of twinning on the work hardening behavior in Hafnium

    SciTech Connect

    Cerreta, E. K.; Gray, G. T. , III; Yablinsky, C.

    2004-01-01

    In many HCP metals, both twinning and slip are known to be important modes of deformation. However, the interaction of the two mechanisms and their effect on work hardening is not well understood. In hafnium, twinning and work hardening rates increase with increasing strain, increasing strain rate, and decreasing temperature. At low strains and strain rates and at higher temperatures, slip dominates deformation and rates of work hardening are relatively lower. To characterize the interaction of slip and twinning, Hf specimens were prestrained quasi-statically in compression at 77K, creating specimens that were heavily twinned. These specimens were subsequently reloaded at room temperature. Twinning within the microstructures was characterized optically and using transmission electron microscopy. The interaction of slip with the twins was investigated as a function of prestrain and correlated with the observed rates of work hardening.

  18. Corrosion resistant coating

    DOEpatents

    Wrobleski, Debra A.; Benicewicz, Brian C.; Thompson, Karen G.; Bryan, Coleman J.

    1997-01-01

    A method of protecting a metal substrate from corrosion including coating a metal substrate of, e.g., steel, iron or aluminum, with a conductive polymer layer of, e.g., polyaniline, coating upon said metal substrate, and coating the conductive polymer-coated metal substrate with a layer of a topcoat upon the conductive polymer coating layer, is provided, together with the resultant coated article from said method.

  19. Corrosion resistant coating

    DOEpatents

    Wrobleski, D.A.; Benicewicz, B.C.; Thompson, K.G.; Bryan, C.J.

    1997-08-19

    A method of protecting a metal substrate from corrosion including coating a metal substrate of, e.g., steel, iron or aluminum, with a conductive polymer layer of, e.g., polyaniline, coating upon said metal substrate, and coating the conductive polymer-coated metal substrate with a layer of a topcoat upon the conductive polymer coating layer, is provided, together with the resultant coated article from said method.

  20. Protective coatings of metal surfaces by cold plasma treatment

    NASA Technical Reports Server (NTRS)

    Manory, R.; Grill, A.

    1985-01-01

    The cold plasma techniques for deposition of various types of protective coatings are reviewed. The main advantage of these techniques for deposition of ceramic films is the lower process temperature, which enables heat treating of the metal prior to deposition. In the field of surface hardening of steel, significant reduction of treatment time and energy consumption were obtained. A simple model for the plasma - surface reactions in a cold plasma system is presented, and the plasma deposition techniques are discussed in view of this model.

  1. Surface and superficial dose dosimetric verification for postmastectomy radiotherapy

    SciTech Connect

    Shiau, An-Cheng; Chiu, Min-Chi; Chen, Tung-Ho; Chiou, Jeng-Fong; Shueng, Pei-Wei; Chen, Shang-Wen; Chen, Wei-Li; Kuan, Wei-Peng

    2012-01-01

    In patients given postmastectomy radiotherapy (PMRT), the chest wall is a very thin layer of soft tissue with a low-density lung tissue behind. Chest wall treated in this situation with a high-energy photon beam presents a high dosimetric uncertainty region for both calculation and measurement. The purpose of this study was to measure and to evaluate the surface and superficial doses for patients requiring PMRT with different treatment techniques. An elliptic cylinder cork and superflab boluses were used to simulate the lung and the chest wall, respectively. Sets of computed tomography (CT) images with different chest wall thicknesses were acquired for the study phantom. Hypothetical clinical target volumes (CTVs) were outlined and modified to fit a margin of 1-3 mm, depending on the chest wall thickness, away from the surface for the sets of CT images. The planning target volume (PTV) was initially created by expanding an isotropic 3-mm margin from the CTV, and then a margin of 3 mm was shrunk from the phantom surface to avoid artifact-driven results in the beam-let intensity. Treatment techniques using a pair of tangential wedged fields (TWFs) and 4-field intensity-modulated radiation therapy (IMRT) were designed with a prescribed fraction dose (D{sub p}) of 180 cGy. Superficial dose profiles around the phantom circumference at depths of 0, 1, 2, 3, and 5 mm were obtained for each treatment technique using radiochromic external beam therapy (EBT) films. EBT film exhibits good characteristics for dose measurements in the buildup region. Underdoses at the median and lateral regions of the TWF plans were shown. The dose profiles at shallow depths for the TWF plans show a dose buildup about 3 mm at the median and lateral tangential incident regions with a surface dose of about 52% of D{sub p}. The dose was gradually increased toward the most obliquely tangential angle with a maximum dose of about 118% of D{sub p.} Dose profiles were more uniform in the PTV region for

  2. Method for determining the hardness of strain hardening articles of tungsten-nickel-iron alloy

    SciTech Connect

    Wallace, S.A.

    1981-07-29

    The present invention is directed to a rapid nondestructive method for determining the extent of strain hardening in an article of tungsten-nickel-iron alloy. The method comprises saturating the article with a magnetic field from a permanent magnet, measuring the magnetic flux emanating from the article, comparing the measurements of the magnetic flux emanating from the article with measured magnetic fluxes from similarly shaped standards of the alloy with known amounts of strain hardening to determine the hardness.

  3. A Review of NASA's Radiation-Hardened Electronics for Space Environments Project

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.; Adams, James H.; Patrick, Marshall C.; Johnson, Michael A.; Cressler, John D.

    2008-01-01

    NASA's Radiation Hardened Electronics for Space Exploration (RHESE) project develops the advanced technologies required to produce radiation hardened electronics, processors, and devices in support of the requirements of NASA's Constellation program. Over the past year, multiple advancements have been made within each of the RHESE technology development tasks that will facilitate the success of the Constellation program elements. This paper provides a brief review of these advancements, discusses their application to Constellation projects, and addresses the plans for the coming year.

  4. On the Precipitation Hardening of Selective Laser Melted AlSi10Mg

    NASA Astrophysics Data System (ADS)

    Aboulkhair, Nesma T.; Tuck, Chris; Ashcroft, Ian; Maskery, Ian; Everitt, Nicola M.

    2015-08-01

    Precipitation hardening of selective laser melted AlSi10Mg was investigated in terms of solution heat treatment and aging duration. The influence on the microstructure and hardness was established, as was the effect on the size and density of Si particles. Although the hardness changes according to the treatment duration, the maximum hardening effect falls short of the hardness of the as-built parts with their characteristic fine microstructure. This is due to the difference in strengthening mechanisms.

  5. Effect of the chemical composition and austenitizing conditions on the hardenability of 35GR steel

    NASA Astrophysics Data System (ADS)

    Potapov, A. I.; Malikov, I. T.; Urazov, V. I.; Semin, A. E.

    2010-12-01

    The effect of the content of impurity elements (in particular, chromium), the heating temperature before rolling, and the austenitizing schedule on the hardenability of boron-containing 35 GR steel is studied. It is shown that a change in the heating temperature of the steel for rolling by 50-100°C does not influence the hardenability depth, which is mainly dependent on the austenitizing temperature and time and the chromium content.

  6. Synthesis of a new hardener agent for self-healing epoxy resins

    NASA Astrophysics Data System (ADS)

    Raimondo, Marialuigia; Guadagno, Liberata; Naddeo, Carlo; Longo, Pasquale; Mariconda, Annaluisa; Agovino, Anna

    2014-05-01

    Actually, the development of smart composites capable of self-repair in aeronautical structures is still at the planning stage owing to complex issues to overcome. One of the critical points in the development of self-healing epoxy resin is related to the impossibility to employ primary amines as hardeners. In this paper, the synthesis of a new hardener for self-healing resins is shown together with applicability conditions/ranges.

  7. Cellular Composites with Ambient and Autoclaved Type of Hardening with Application of Nanostructured Binder

    NASA Astrophysics Data System (ADS)

    Nelyubova, V.; Pavlenko, N.; Netsvet, D.

    2015-11-01

    The research presents the dimensional and structural characteristics of nonhydrational hardening binders - nanostructured binders. Rational areas of their use in composites for construction purposes are given. The paper presents the results of the development of natural hardening foam concrete and aerated autoclaved concrete for thermal insulating and construction and thermal insulating purposes. Thus nanostructured binder (NB) in the composites was used as a primary binder and a high reactive modifier.

  8. Effect of alloying additions on secondary hardening behavior of Mo-containing steels

    NASA Astrophysics Data System (ADS)

    Kwon, H.; Lee, J. H.; Lee, K. B.; Kim, C. M.; Yang, H. R.

    1997-03-01

    The effect of alloying additions on secondary hardening behavior in Fe-Mo-C steels has been investigated by means of the successive alloying additions of Cr, Co, and Ni. The Cr additions promote M3C cementite formation. The Ni additions destabilize the cementite formation, while the Co additions retard dislocation recovery and present the necessary sites for M2C formation which provides the secondary hardening.

  9. Method for determining the hardness of strain hardening articles of tungsten-nickel-iron alloy

    DOEpatents

    Wallace, Steven A.

    1984-01-01

    The present invention is directed to a rapid nondestructive method for determining the extent of strain hardening in an article of tungsten-nickel-iron alloy. The method comprises saturating the article with a magnetic field from a permanent magnet, measuring the magnetic flux emanating from the article, comparing the measurements of the magnetic flux emanating from the article with measured magnetic fluxes from similarly shaped standards of the alloy with known amounts of strain hardening to determine the hardness.

  10. Hardening of the surface layers of a hollow billet formed by centrifugal casting

    NASA Astrophysics Data System (ADS)

    Chumanov, V. I.; Chumanov, I. V.; Anikeev, A. N.; Garifulin, R. R.

    2010-12-01

    One of the methods to increase the mechanical properties of steel is its hardening via the introduction of a refractory fine-grained phase into a melt. A method of fabrication of a tube blank by centrifugal casting accompanied by hardening with a refractory phase is considered. The introduction of fine tungsten and silicon carbides is shown to improve the structure of grade 15 steel and to increase the wear resistance of a tube blank made of this steel.

  11. Demonstration of finite element simulations in MOOSE using crystallographic models of irradiation hardening and plastic deformation

    SciTech Connect

    Patra, Anirban; Wen, Wei; Martinez Saez, Enrique; Tome, Carlos

    2016-05-31

    This report describes the implementation of a crystal plasticity framework (VPSC) for irradiation hardening and plastic deformation in the finite element code, MOOSE. Constitutive models for irradiation hardening and the crystal plasticity framework are described in a previous report [1]. Here we describe these models briefly and then describe an algorithm for interfacing VPSC with finite elements. Example applications of tensile deformation of a dog bone specimen and a 3D pre-irradiated bar specimen performed using MOOSE are demonstrated.

  12. Analysis of the regimes in the scanner-based laser hardening process

    NASA Astrophysics Data System (ADS)

    Martínez, S.; Lamikiz, A.; Ukar, E.; Calleja, A.; Arrizubieta, J. A.; Lopez de Lacalle, L. N.

    2017-03-01

    Laser hardening is becoming a consolidated process in different industrial sectors such as the automotive industry or in the die and mold industry. The key to ensure the success in this process is to control the surface temperature and the hardened layer thickness. Furthermore, the development of reliable scanners, based on moving optics for guiding high power lasers at extremely fast speeds allows the rapid motion of laser spots, resulting on tailored shapes of swept areas by the laser. If a scanner is used to sweep a determined area, the laser energy density distribution can be adapted by varying parameters such us the scanning speed or laser power inside this area. Despite its advantages in terms of versatility, the use of scanners for the laser hardening process has not yet been introduced in the thermal hardening industry because of the difficulty of the temperature control and possible non-homogeneous hardness thickness layers. In the present work the laser hardening process with scanning optics applied to AISI 1045 steel has been studied, with special emphasis on the influence of the scanning speed and the results derived from its variation, the evolution of the hardened layer thickness and different strategies for the control of the process temperature. For this purpose, the hardened material has been studied by measuring microhardness at different points and the shape of the hardened layer has also been evaluated. All tests have been performed using an experimental setup designed to keep a nominal temperature value using a closed-loop control. The tests results show two different regimes depending on the scanning speed and feed rate values. The experimental results conclusions have been validated by means of thermal simulations at different conditions.

  13. An Evaluation of the Corrosion and Mechanical Performance of Interstitially Surface Hardened Stainless Steel

    DTIC Science & Technology

    2013-05-10

    deep circumferential notches, created with a thread cutting tool , were machined to expose the base metal during SSRT tests conducted in air and...interstitial carbon atoms into stainless steel surfaces without the formation of carbides . Surface hardening of machine elements such as impellors or...developed to introduce interstitial carbon atoms into stainless steel surfaces without the formation of carbides . Surface hardening of machine elements

  14. Characterization of Hardening by Design Techniques on Commercial, Small Feature Sized Field-Programmable Gate Arrays

    DTIC Science & Technology

    2009-03-01

    AFIT/GE/ENG/09-43 CHARACTERIZATION OF HARDENING BY DESIGN TECHNIQUES ON COMMERCIAL, SMALL FEATURE SIZED FIELD-PROGRAMMABLE GATE ARRAYS THESIS...The purpose of which is to determine the radiation effects and characterize the improvements of various hardening by design techniques. The...Distributed RAM memory elements that are loaded both with ECC and non-error corrected data. The circuit is designed to check for errors in memory data, stuck

  15. The Chemistry of Coatings.

    ERIC Educational Resources Information Center

    Griffith, James R.

    1981-01-01

    The properties of natural and synthetic polymeric "coatings" are reviewed, including examples and uses of such coatings as cellulose nitrate lacquers (for automobile paints), polyethylene, and others. (JN)

  16. High-lateral-tension abdominoplasty with superficial fascial system suspension.

    PubMed

    Lockwood, T

    1995-09-01

    Modern abdominoplasty techniques were developed in the 1960s. The advent of liposuction has reduced the need for classic abdominoplasty and allowed more aesthetic sculpting of the entire trunk. However, the combination of significant truncal liposuction and classic abdominoplasty is not recommended due to the increased risk of complications. Although the surgical principles of classic abdominoplasty certainly have stood the test of time, they are based on two theoretical assumptions that may be proved to be inaccurate. The first assumption is that wide direct undermining to costal margins is essential for abdominal flap advancement. In fact, discontinuous undermining allows effective loosening of the abdominal flap while preserving vascular perforators. The second inaccurate assumption is that with aging and weight fluctuations (including pregnancy), abdominal skin relaxation occurs primarily in the vertical direction from the xiphoid to the pubis. This is true in the lower abdomen, but in most patients a strong superficial fascial system adherence to the linea alba in the epigastrium limits vertical descent. Epigastric laxity frequently results from a progressive horizontal loosening due to relaxation of the tissue along the lateral trunk. Experience with the lower-body lift procedure has shown that significant lateral truncal skin resection results in epigastric tightening. In these patients, the ideal abdominoplasty pattern would resect as much or more laterally than centrally, leading to more natural abdominal contours. Fifty patients who underwent high-lateral-tension abdominoplasty with and without significant truncal liposuction and other aesthetic procedures were followed for 4 to 16 months. The primary indication for surgery was moderate to severe laxity of abdominal skin and muscle with or without truncal fat deposits. Complication rates were equal to or less than those of historical controls and did not increase with significant adjunctive liposuction

  17. Effects of work hardening rate on formation of nanocrystallized subsurface layer in Cu alloys

    NASA Astrophysics Data System (ADS)

    Sato, Hisashi; Kaneko, Yuya; Watanabe, Yoshimi

    2017-01-01

    The effects of the work hardening rate on the formation of a nanocrystallized subsurface layer by sliding wear for pure Cu and Cu-Ge alloys are investigated. The nanocrystallized subsurface layer is called the wear-induced layer (WIL). The work hardening rates of the Cu-Ge alloys increase with Ge concentration. By sliding wear, the WIL is formed around a worn surface in all the specimens. The thickness of the WIL decreases with increasing Ge concentration. This means that a thinner WIL is formed in a specimen with a higher work hardening rate. The equivalent Hencky strain required to form the WIL is about 5 regardless of the work hardening rate of the specimen. In addition, a larger strain gradient is generated just below the WIL in the specimen with a higher work hardening rate. This decrease in the thickness of the WIL depending on the work hardening rate of the specimen can be explained by the localization of shear deformation around the worn surface.

  18. Analysis of Hardened Depth Variability, Process Potential, and Measurement Error in Case Carburized Components

    NASA Astrophysics Data System (ADS)

    Rowan, Olga K.; Keil, Gary D.; Clements, Tom E.

    2014-12-01

    Hardened depth (effective case depth) measurement is one of the most commonly used methods for carburizing performance evaluation. Variation in direct hardened depth measurements is routinely assumed to represent the heat treat process variation without properly correcting for the large uncertainty frequently observed in industrial laboratory measurements. These measurement uncertainties may also invalidate application of statistical control requirements on hardened depth. Gage R&R studies were conducted at three different laboratories on shallow and deep case carburized components. The primary objectives were to understand the magnitude of the measurement uncertainty and heat treat process variability, and to evaluate practical applicability of statistical control methods to metallurgical quality assessment. It was found that ~75% of the overall hardened depth variation is attributed to the measurement error resulting from the accuracy limitation of microhardness equipment and the linear interpolation technique. The measurement error was found to be proportional to the hardened depth magnitude and may reach ~0.2 mm uncertainty at 1.3 mm nominal depth and ~0.8 mm uncertainty at 3.2mm depth. A case study was discussed to explain a methodology for analyzing a large body of hardened depth information, determination of the measurement error, and calculation of the true heat treat process variation.

  19. Dislocation subgrain structures and modeling the plastic hardening of metallic single crystals

    NASA Astrophysics Data System (ADS)

    Hansen, B. L.; Bronkhorst, C. A.; Ortiz, M.

    2010-07-01

    A single crystal plasticity theory for insertion into finite element simulation is formulated using sequential laminates to model subgrain dislocation structures. It is known that local models do not adequately account for latent hardening, as latent hardening is not only a material property, but a nonlocal property (e.g. grain size and shape). The addition of the nonlocal energy from the formation of subgrain structure dislocation walls and the boundary layer misfits provide both latent and self-hardening of a crystal slip. Latent hardening occurs as the formation of new dislocation walls limits motion of new mobile dislocations, thus hardening future slip systems. Self-hardening is accomplished by an evolution of the subgrain structure length scale. The substructure length scale is computed by minimizing the nonlocal energy. The minimization of the nonlocal energy is a competition between the dislocation wall energy and the boundary layer energies. The nonlocal terms are also directly minimized within the subgrain model as they affect deformation response. The geometrical relationship between the dislocation walls and slip planes affecting the dislocation mean free path is taken into account, giving a first-order approximation to shape effects. A coplanar slip model is developed due to requirements while modeling the subgrain structure. This subgrain structure plasticity model is noteworthy as all material parameters are experimentally determined rather than fit. The model also has an inherit path dependence due to the formation of the subgrain structures. Validation is accomplished by comparison with single crystal tension test results.

  20. Deformation and strain hardening of different steels in impact dominated systems

    SciTech Connect

    Rojacz, H.; Mozdzen, G.; Winkelmann, H.

    2014-04-01

    Strain hardening is a common technique to exploit the full potential of materials in diverse applications. Single impact studies were performed to evaluate work hardening effects of different steels, correlated to their deformation at different energy and momentum levels. Three different steels were examined regarding their forming behavior and their tendency to strain harden in impact loading conditions, revealing different intensities of hardness increase, deformation and coinciding microstructural changes. Detailed studies in the deformed zone such as micro hardness mappings were performed to reveal the materials hardness increase in the deformed zones. Additionally high resolution scanning electron microscopy (HRSEM) supported by electron backscatter diffraction (EBSD) was used to determine microstructural changes. Results indicate, that the influence of different velocities/strain rates at constant energy levels cannot be neglected for the strain hardening behavior of steels and provide data for a better control of the hardness increase in impact dominated materials fabrication operations. - Highlights: • Deformation and strain hardening behaviour of three different steels. • Influence of impact energies and momenta on the strain hardening. • Hardness increase and depth controllable by momentum and energy.

  1. Low Temperature Salt Bath Hardening of AISI 201 Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Luo, H. S.; Zhao, C.

    Salt bath hardening at low temperature was applied in order to enhance the surface hardness of AISI 201 stainless steel. The structure and properties of the hardened layer were investigated, such as microstructure, hardness, wear resistance and corrosion resistance. The experiment results show that the treatment temperature plays an importance role in the microstructure and properties of the hardened layer. If the treatment temperature is below 460°C, the hardened layer was a face centre tetragonal (fct) structure without chromium nitride precipitation. The corrosion resistance of hardened layer is better than the matrix and as good as AISI 316 austenitic stainless steel. If the temperature rises above 460 °C the precipitation show up and the corrosion resistance gets worse. The hardness and thickness of the layer increase as the raising of treatment temperature. The test of wear resistance shows that the amount of wear reduces rapidly after hardening treatment and the worn morphology of the surface behaves abrasive wear while that of AISI 201 stainless steel behaves adhesive wear.

  2. Time-dependent 3-D modelling of laser surface heating for the hardening of metallic materials

    NASA Astrophysics Data System (ADS)

    Colombo, V.; Mentrelli, A.; Trombetti, T.

    2003-12-01

    A numerical code for the time-dependent three-dimensional modelling of the laser surface heating for the hardening of metallic materials has been developed by the authors. The temperature-dependence of the thermal properties of the material (stainless steel) is taken into account in the frame of a heating process that doesn’t lead to material melting or evaporation. Calculations have been carried out for various dimensions of the parallelepiped-shaped and of the square-shaped spot of the laser beam, as well as for different scanning velocity and for different levels of the laser source power. Various patterns of the laser spot path have also been studied, including a single-pass hardening pattern, a double-pass hardening pattern with and without overlapping, multiple discontinuous and continuous hardening patterns and spiral hardening patterns. The presented results show how the proposed model can be usefully employed in the prediction of the time-evolution of temperature distribution which arises in the workpiece as a consequence of the laser-workpiece interaction under operating conditions typically encountered in industrial applications of the laser hardening process.

  3. Precipitation hardening of an Al-4.2 wt% Mg-0.6 wt% Cu alloy

    SciTech Connect

    Ratchev, P.; Verlinden, B.; Houtte, P. van; Smet, P. de

    1998-06-12

    The precipitation hardening of an experimental Al-4.2 wt % Mg-0.6 wt % Cu alloy has been studied. After a first initial jump, the yield strength increases almost linearly with the logarithm of the ageing time and a peak of hardness is reached after 11 days at 180 C. Special attention is given to the precipitation hardening during the early stage of ageing. It has been shown that S{double_prime} phase can be formed heterogeneously on dislocation loops and helices and a new mechanism of precipitation hardening due to this S{double_prime} phase precipitation is proposed. The precipitation of S{double_prime} on dislocations is the predominant cause of strengthening during the initial stage of precipitation hardening (up to 30 min at 180 C). Guinier-Preston-Bagaryatsky (GPB) zones (or better, the recently introduced Cu/Mg clusters) also appear in the initial stage, but their contribution to the hardness, which up to now as considered to be predominant, is shown to be smaller than the one of the S{double_prime} precipitates. Since the density of the S{double_prime} nucleation sites is related to the amount of dislocations, this mechanism is important in the case of a bake hardening treatment when ageing is preceded by cold deformation. Uniform S{double_prime} precipitation has also been found at the later ageing stage, which suggests that the contribution of S{double_prime} to the precipitation hardening at that stage is not less important.

  4. Development of high-performance multi-layer resist process with hardening treatment

    NASA Astrophysics Data System (ADS)

    Ono, Yoshiharu; Ishibashi, Takeo; Yamaguchi, Atsumi; Hanawa, Tetsuro; Tadokoro, Masahiro; Yoshikawa, Kazunori; Yonekura, Kazumasa; Matsuda, Keiko; Matsunobe, Takeshi; Fujii, Yasushi; Tanaka, Takeshi

    2007-03-01

    In the manufacture of devices beyond the 45 nm node, it is important to employ a high-performance multi-layer resist (MLR) process that uses silicon containing ARC (Si-ARC) and spin on carbon (SOC). We examined an additional hardening process of SOC by H II plasma treatment in order to improve the etching durability of the MLR. The dry etching durability of H II-plasma-hardened SOC film showed a drastic improvement, while the wiggling features of the MLR without H II treatment observed after SiO II etching disappeared completely. The hardening mechanism of SOC was analyzed by Fourier transform infrared spectroscopy (FTIR) with gradient shaving preparation (GSP) and Raman spectrometry. The formation of diamond-like amorphous carbon at a depth of approximately 50 nm was observed and was attributed to the improvement in the dry etching durability. In addition, the MLR stack with hardening has good reflectivity characteristics. The simulated reflectivity at the interface between the bottom of the resist and top surface of the MLR stack with hardening below 0.6% was attained over a wide range of Si-ARC thicknesses and hyper NA (~1.3) regions. The measured refractive indices of the hardened SOC film at 193 nm had a high value at the surface; however, they gradually decreased toward the inner region and finally became the same as those of untreated SOC. This might be the origin of the estimated excellent reflectivity characteristics.

  5. Microstructural analysis of ion-irradiation-induced hardening in inconel 718

    NASA Astrophysics Data System (ADS)

    Hashimoto, N.; Hunn, J. D.; Byun, T. S.; Mansur, L. K.

    2003-05-01

    As an assessment for a possible accelerator beam line window material for the US Spallation Neutron Source (SNS) target, performance, radiation-induced hardening and microstructural evolution in Inconel 718 were investigated in both solution annealed (SA) and precipitation hardened (PH) conditions. Irradiations were carried out using 3.5 MeV Fe +, 370 keV He + and 180 keV H + either singly or simultaneously at 200 °C to simulate the damage and He/H production in the SNS target vessel wall. This resulted in systematic hardening in SA Inconel and gradual net softening in the PH material. TEM microstructural analysis showed the hardening was associated with the formation of small loop and faulted loop structures. Helium-irradiated specimens included more loops and cavities than Fe + ion-irradiated specimens. Softening of the PH material was due to dissolution of the γ '/γ ″ precipitates. High doses of helium were implanted in order to study the effect of high retention of gaseous transmutation products. Simultaneous with the hardening and/or softening due to the displacement damage cascade, helium filled cavities produced additional hardening at high concentrations.

  6. Investigation of Clusters in Medium Carbon Secondary Hardening Ultra-high-strength Steel After Hardening and Aging Treatments

    NASA Astrophysics Data System (ADS)

    Veerababu, R.; Balamuralikrishnan, R.; Muraleedharan, K.; Srinivas, M.

    2015-06-01

    Clusters, containing between 10 and 1000 atoms, have been investigated in a martensitic secondary hardening ultra-high-strength steel austenitized at 1173 K (900 °C) for 1 hour and tempered at either 768 K or 783 K (495 °C or 510 °C) for 4 or 8 hours using 3D atom probe. The presence of clusters was unambiguously established by comparing the observed spatial distribution of the different alloying elements against the corresponding distribution expected for a random solid solution. Maximum separation envelope method has been used for delineating the clusters from the surrounding "matrix." Statistical analysis was used extensively for size and composition analyses of the clusters. The clusters were found to constitute a significant fraction accounting for between 1.14 and 2.53 vol pct of the microstructure. On the average, the clusters in the 783 K (510 °C) tempered sample were coarser by ~65 pct, with an average diameter of 2.26 nm, relative to the other samples. In all samples, about 85 to 90 pct of the clusters have size less than 2 nm. The percentage frequency histograms for carbon content of the clusters in 768 K and 783 K (495 °C and 510 °C) tempered samples revealed that the distribution shifts toward higher carbon content when the tempering temperature is higher. It is likely that the presence of these clusters exerts considerable influence on the strength and fracture toughness of the steel.

  7. Effect of the coordination of the superficial site in the ZGB model for the COO 2 reaction

    NASA Astrophysics Data System (ADS)

    Cortés, Joaquín; Valencia, Eliana

    1997-02-01

    Using Monte Carlo experiments of the catalytic oxidation of CO (COO 2 reaction) a study is made of the increase in the coordination number of the superficial sites if diagonal actions are allowed on the superficial sites lattice.

  8. Combined radiation and hyperthermia in superficial human tumors

    SciTech Connect

    Marmor, J.B.; Hahn, G.M.

    1980-11-01

    Hyperthermia (42-43 C) appears to potentiate the effects of radiation therapy in experimental tumor models. In addition, some studies indicate that tumors may be sensitized to a greater extent than normal tissue. This study was designed to test whether the effectiveness of irradiating human tumors was enhanced significantly by concomitant heating. We also examined skin to see if heating enhanced the response to radiation of normal tissues. Nineteen patients with multiple metastatic superficial tumor masses of various histologies were studied. Two or more masses in the same patient were matched for size and location, so that one of the patient's own tumors was a control to monitor the effect of irradiation alone. One of the matched nodules was given hyperthermia (43 C) for 15 minutes before and 30 minutes after each radiation fraction. In seven of 15 evaluable patients the tumor that received heat in addition to radiation had a greater objective response than the tumor receiving radiation alone. Two patients had increased cutaneous reaction to radiation in the heated area; one of these was a severe desquamative reaction, which conformed to the size and shape of the ultrasound field. These results suggest that hyperthermia improves the objective response to radiation in some human tumors; in two cases it appeared to sensitize skin as well.

  9. Ultrasonic quantitation of superficial degradation of articular cartilage.

    PubMed

    Saarakkala, Simo; Töyräs, Juha; Hirvonen, Jani; Laasanen, Mikko S; Lappalainen, Reijo; Jurvelin, Jukka S

    2004-06-01

    Ultrasound (US) has been suggested as a means for the quantitative detection of early osteoarthrotic changes in articular cartilage. In this study, the ability of quantitative US 2-D imaging (20 MHz) to reveal superficial changes in bovine articular cartilage after mechanical or enzymatic degradation was investigated in vitro. Mechanical degradation was induced by grinding samples against an emery paper with the grain size of 250 microm, 106 microm, 45 microm or 23 microm. For enzymatic degradation, samples were digested with collagenase, trypsin or chondroitinase ABC. Variations of the US reflection coefficient induced by the degradation were investigated. Furthermore, two novel parameters, the US roughness index (URI) and the spatial variation of the US reflection coefficient (SVR), were established to quantitate the integrity of the cartilage surface. Statistically significant decreases (p < 0.05) in US reflection coefficient were observed after mechanical degradations or enzymatic digestion with collagenase. Increases (p < 0.05) in URI were also revealed after these treatments. We conclude that quantitative US imaging may be used to detect collagen disruption and increased roughness in the articular surface. These structural damages are typical of early osteoarthrosis.

  10. [Surgery of superficial skin injuries (I of III). Nursing approach].

    PubMed

    Yegler Velasco, M C; Asenio Esteve, A; Cabra Lluva, R; López Gómez, Y; Rico Blázquez, M

    2003-09-01

    Among the procedures in minor surgery, to suture wounds is a technique which nursing professional frequently perform as part of their normal work load, especially those nurses who work in Primary Health Care Centers and Emergency Wards. This article in the first in a series of three articles which enables the reader to review his/her knowledge about how to repair superficial skin lesions. After citing the legal aspects, the authors shall review each step in this procedure. We will check to see if the indication for suture is correct, evaluating a wound adequately. Afterwards, we review the procedure to clean the wound and to apply an anti-tetanus prophylaxis. We will mention how to adequately select the technique, the suture material and the instrument to be used. We will show the manner to use to avoid complications derived from an inadequate technique and we will continue with the follow up procedure for cicatrisation after first treatment, which includes informing the patient and a precocious treatment of complications, assuring the patient's welfare and the defense of his/her rights at all times; all of which will make possible an intervention which guarantees quality and is satisfactory to both the patient and the nursing professional who employs it.

  11. Superficial vessel reconstruction with a multiview camera system

    PubMed Central

    Marreiros, Filipe M. M.; Rossitti, Sandro; Karlsson, Per M.; Wang, Chunliang; Gustafsson, Torbjörn; Carleberg, Per; Smedby, Örjan

    2016-01-01

    Abstract. We aim at reconstructing superficial vessels of the brain. Ultimately, they will serve to guide the deformation methods to compensate for the brain shift. A pipeline for three-dimensional (3-D) vessel reconstruction using three mono-complementary metal-oxide semiconductor cameras has been developed. Vessel centerlines are manually selected in the images. Using the properties of the Hessian matrix, the centerline points are assigned direction information. For correspondence matching, a combination of methods was used. The process starts with epipolar and spatial coherence constraints (geometrical constraints), followed by relaxation labeling and an iterative filtering where the 3-D points are compared to surfaces obtained using the thin-plate spline with decreasing relaxation parameter. Finally, the points are shifted to their local centroid position. Evaluation in virtual, phantom, and experimental images, including intraoperative data from patient experiments, shows that, with appropriate camera positions, the error estimates (root-mean square error and mean error) are ∼1  mm. PMID:26759814

  12. Effects of clinical infrared laser on superficial radial nerve conduction

    SciTech Connect

    Greathouse, D.G.; Currier, D.P.; Gilmore, R.L.

    1985-08-01

    The purposes of this study were to demonstrate the effects of infrared laser radiation on the sensory nerve conduction of a specified peripheral nerve in man and determine temperature changes in the tissue surrounding the treated nerve. Twenty healthy adults were divided into three groups: control (n = 5); experimental (n = 10), infrared laser radiation at 20 sec/cm2; and experimental (n = 5), infrared laser radiation treatment at 120 sec/cm2. Antidromic sensory nerve conduction studies were performed on the superficial radial nerve of each subject's right forearm. The infrared laser radiation was applied at a fixed intensity for five 1-cm2 segments. Latency, amplitude, and temperature measurements were recorded pretest; posttest; and posttest intervals of 1, 3, 5, 10, and 15 minutes. An analysis of variance with repeated measures was used to examine the data. No significant change was noted in the distal sensory latency or amplitude of the evoked sensory potential in either experimental or control groups as a result of the applications of the infrared laser radiation treatment. This study demonstrates that infrared laser used at clinically applied intensities does not alter conduction of sensory nerves nor does it elevate the subcutaneous temperature.

  13. Superficial topography of wound: a determinant of underlying biological events?

    PubMed

    Farahani, Ramin Mostofi Zadeh; Aminabadi, Naser Asl; Kloth, Luther C

    2008-01-01

    Three-dimensional configuration of wounds varies considerably according to the etiology. Wounding of skin is proceeded by release of dermal pretension. Subsequent disruption of physical equilibrium with resulting development of force vectors alters the primary shape of wound to maintain a new dynamic physical equilibrium. This leads to the development of stress-relaxation and stress-concentration areas throughout the wound milieu. Mechanical strain produces piezoelectric current which is maximal in stress-relaxation regions due to lower tissue stiffness and higher mobility. Early surge in the tissue level of TGF-beta would be exaggerated through synergistic interaction with piezoelectric current in stress-relaxation areas. Subsequently, fibroblasts migrate to these areas due to galvanotaxis. The gradual dissipation of tissue tension, due to irreversible loss of viscous strain, reduces the synergistic action of TGF-beta and piezoelectricity. However, a similar pattern of activity of TGF-beta due to the polarized migration of fibroblasts, which are the main source of TGF-beta during secondary surge, may be continued. It seems that a biological-mechanical continuum exists for wounds so that even the superficial topography of wounds may affect the underlying biological activity and final healing outcome during healing of dermal wounds.

  14. Superficial siderosis of the central nervous system: A case report

    PubMed Central

    GAO, JI-GUO; ZHOU, CHUN-KUI; LIU, JING-YAO

    2015-01-01

    Superficial siderosis of the central nervous system (SSCNS) is a rare syndrome resulting from hemosiderin deposits in neuronal tissues close to the cerebrospinal fluid. SSCNS is characterized by sensorineural deafness, cerebellar ataxia and signs of pyramidal tract dysfunction. The present study describes a patient with SSCNS that did not suffer from hearing loss, which is the most common symptom of SSCNS. The patient was a 48-year-old male, presenting with dizziness, ataxia and slurred speech. The patient’s ataxia was characterized by dizziness, nystagmus, dysarthria, abnormal finger-nose pointing and heel-knee-shin tests and a positive Chaddock sign. The patient had suffered from a pontine hemorrhage two years prior to the study. Audiometric tests showed normal hearing during the hospital stay and at the two-month follow-up examination. The diagnosis of SSCNS was made based on magnetic resonance images, which showed areas of linear hypointensity on the surface of the pons with mild cerebellar atrophy. However, a long-term follow-up is required to monitor the hearing of the patient. Improved understanding of SSCNS is important for clinicians to identify SSCNS patients who present without typical clinical symptoms. PMID:25780438

  15. Preoperative transcutaneous electrical nerve stimulation for localizing superficial nerve paths.

    PubMed

    Natori, Yuhei; Yoshizawa, Hidekazu; Mizuno, Hiroshi; Hayashi, Ayato

    2015-12-01

    During surgery, peripheral nerves are often seen to follow unpredictable paths because of previous surgeries and/or compression caused by a tumor. Iatrogenic nerve injury is a serious complication that must be avoided, and preoperative evaluation of nerve paths is important for preventing it. In this study, transcutaneous electrical nerve stimulation (TENS) was used for an in-depth analysis of peripheral nerve paths. This study included 27 patients who underwent the TENS procedure to evaluate the peripheral nerve path (17 males and 10 females; mean age: 59.9 years, range: 18-83 years) of each patient preoperatively. An electrode pen coupled to an electrical nerve stimulator was used for superficial nerve mapping. The TENS procedure was performed on patients' major peripheral nerves that passed close to the surgical field of tumor resection or trauma surgery, and intraoperative damage to those nerves was apprehensive. The paths of the target nerve were detected in most patients preoperatively. The nerve paths of 26 patients were precisely under the markings drawn preoperatively. The nerve path of one patient substantially differed from the preoperative markings with numbness at the surgical region. During surgery, the nerve paths could be accurately mapped preoperatively using the TENS procedure as confirmed by direct visualization of the nerve. This stimulation device is easy to use and offers highly accurate mapping of nerves for surgical planning without major complications. The authors conclude that TENS is a useful tool for noninvasive nerve localization and makes tumor resection a safe and smooth procedure.

  16. Electrocurtain coating process for coating solar mirrors

    DOEpatents

    Kabagambe, Benjamin; Boyd, Donald W.; Buchanan, Michael J.; Kelly, Patrick; Kutilek, Luke A.; McCamy, James W.; McPheron, Douglas A.; Orosz, Gary R.; Limbacher, Raymond D.

    2013-10-15

    An electrically conductive protective coating or film is provided over the surface of a reflective coating of a solar mirror by flowing or directing a cation containing liquid and an anion containing liquid onto the conductive surface. The cation and the anion containing liquids are spaced from, and preferably out of contact with one another on the surface of the reflective coating as an electric current is moved through the anion containing liquid, the conductive surface between the liquids and the cation containing liquid to coat the conductive surface with the electrically conductive coating.

  17. Calibration free beam hardening correction for cardiac CT perfusion imaging

    NASA Astrophysics Data System (ADS)

    Levi, Jacob; Fahmi, Rachid; Eck, Brendan L.; Fares, Anas; Wu, Hao; Vembar, Mani; Dhanantwari, Amar; Bezerra, Hiram G.; Wilson, David L.

    2016-03-01

    Myocardial perfusion imaging using CT (MPI-CT) and coronary CTA have the potential to make CT an ideal noninvasive gate-keeper for invasive coronary angiography. However, beam hardening artifacts (BHA) prevent accurate blood flow calculation in MPI-CT. BH Correction (BHC) methods require either energy-sensitive CT, not widely available, or typically a calibration-based method. We developed a calibration-free, automatic BHC (ABHC) method suitable for MPI-CT. The algorithm works with any BHC method and iteratively determines model parameters using proposed BHA-specific cost function. In this work, we use the polynomial BHC extended to three materials. The image is segmented into soft tissue, bone, and iodine images, based on mean HU and temporal enhancement. Forward projections of bone and iodine images are obtained, and in each iteration polynomial correction is applied. Corrections are then back projected and combined to obtain the current iteration's BHC image. This process is iterated until cost is minimized. We evaluate the algorithm on simulated and physical phantom images and on preclinical MPI-CT data. The scans were obtained on a prototype spectral detector CT (SDCT) scanner (Philips Healthcare). Mono-energetic reconstructed images were used as the reference. In the simulated phantom, BH streak artifacts were reduced from 12+/-2HU to 1+/-1HU and cupping was reduced by 81%. Similarly, in physical phantom, BH streak artifacts were reduced from 48+/-6HU to 1+/-5HU and cupping was reduced by 86%. In preclinical MPI-CT images, BHA was reduced from 28+/-6 HU to less than 4+/-4HU at peak enhancement. Results suggest that the algorithm can be used to reduce BHA in conventional CT and improve MPI-CT accuracy.

  18. Low temperature tolerance and cold hardening of cacti

    SciTech Connect

    Nobel, P.S.

    1982-12-01

    Reduced uptake by the chlorenchyma cells of cacti of a stain (neutral red) was used as an indicator of low-temperature damage resulting from cooling stems in the laboratory. Necrosis set in a few degrees below the temperature at which the fraction of cells accumulating stain was reduced by 50%. Coryphantha vivipara, Opuntia polyacantha, and Pediocactus simpsonii, which range to over 3000 m altitude in southern Wyoming, were quite cold tolerant (50% inhibition of staining occurred from -17/sup 0/ to -20/sup 0/C), while O. bigelovii and O. ramosissima, which are restricted to much warmer habitats, were not very cold tolerant (50% inhibition from -4/sup 0/ to -7/sup 0/). Relationships among tissue cold sensitivity, morphological features which protect the stems from low temperatures, and the occurrence of species in progressively colder regions were investigated. Differences in tissue cold sensitivity accounted for the =600 m higher elevational limit of Coryphantha vivipara var. rosea compared to the morphologically similar var. deserti in southern Nevada. In contrast, morphological differences alone could adequately explain the relative northern limits of the columnar cacti Carnegiea gigantea vs. Stenocereus gummosus and the barrel cacti Ferocactus acanthodes vs. F. wislizenii in the southwestern United States, as previously indicated using a computer model. Differences in both morphology and tissue cold sensitivity apparently influenced the relative northern ranges of Lophocereus schottii with respect to the other columnar cacti and F. covillei with respect to the other barrel cacti, as well as the relative elevational range of Denmoza rhodacantha with respect to Trichocereus candicans in northcentral Argentina. Cold hardening in response to decreasing day/night air temperatures was observed for 10 species.

  19. BAE Systems Radiation Hardened SpaceWire ASIC and Roadmap

    NASA Technical Reports Server (NTRS)

    Berger, Richard; Milliser, Myrna; Kapcio, Paul; Stanley, Dan; Moser, David; Koehler, Jennifer; Rakow, Glenn; Schnurr, Richard

    2006-01-01

    An Application Specific Integrated Circuit (ASIC) that implements the SpaceWire protocol has been developed in a radiation hardened 0.25 micron CMOS, technology. This effort began in March 2003 as a joint development between the NASA Goddard Space Flight Center (GSFC) and BAE Systems. The BAE Systems SpaceWire ASlC is comprised entirely of reusable core elements, many of which are already flight-proven. It incorporates a 4-port SpaceWire router with two local ports, dual PC1 bus interfaces, a microcontroller, 32KB of internal memory, -and a memory controller for additional external memory use. The SpaceWire ASlC is planned for use on both the Geostationary Operational Environmental Satellites (GOES)-R and the Lunar Reconnaissance Orbiter (LRO). Engineering parts have already been delivered to both programs. This paper discusses the SpaceWire protocol and those elements of it that have been built into the current SpaceWire reusable core. There are features within the core that go beyond the current standard that can be enabled or disabled by the user and these will be described. The adaptation of SpaceWire to BAE Systems' On Chip Bus (OCB) for compatibility with the other reusable cores will be discussed. Optional configurations within user systems will be shown. The physical imp!ementation of the design will be described and test results from the hardware will be discussed. Finally, the BAE Systems roadmap for SpaceWire developments will be discussed, including some products already in design as well as longer term plans.

  20. Characterization of osseointegrative phosphatidylserine and cholesterol orthopaedic implant coatings

    NASA Astrophysics Data System (ADS)

    Rodgers, William Paul, III

    Total joint arthroplasties are one of the most successful surgeries available today for improving patients' quality of life. Increasing demand is driven largely by an ageing population and an increased occurrence of obesity. Current patient options have significant shortcomings. Nearly a third of patients require a revision surgery before the implant is 15 years old, and those who have revision surgeries are at an increased risk of requiring additional reoperations. A recent implant technology that has shown to be effective at improving bone to implant integration is the use of phosphatidylserine (DOPS) coatings. These coatings are challenging to analyze and measure due to their highly dynamic, soft, rough, thick, and optically diffractive properties. Previous work had difficulty investigating pertinent parameters for these coating's development due in large part to a lack of available analytical techniques and a dearth of understanding of the micro- and nano-structural configuration of the coatings. This work addresses the lack of techniques available for use with DOPS coatings through the development of original methods of measurement, including the use of scanning white light interferometry and nanoindentation. These techniques were then applied for the characterization of DOPS coatings and the study of effects from several factors: 1. influence of adding calcium and cholesterol to the coatings, 2. effects of composition and roughness on aqueous contact angles, and 3. impact of ageing and storage environment on the coatings. Using these newly developed, highly repeatable quantitative analysis methods, this study sheds light on the microstructural configuration of the DOPS coatings and elucidates previously unexplained phenomena of the coatings. Cholesterol was found to supersaturate in the coatings at high concentration and phase separate into an anhydrous crystalline form, while lower concentrations were found to significantly harden the coatings. Morphological

  1. Histological and biochemical study of the superficial abdominal fascia and its implication in obesity

    PubMed Central

    Kumar, Pramod; Aithal, Srinivas Kodavoor; Kotian, Sushma R.; Thittamaranahalli, Honnegowda; Bangera, Hemalatha; Prasad, Keerthana; Souza, Anne D.

    2016-01-01

    The advancement of liposculpturing and fascial flaps in reconstructive surgery has renewed interest in the superficial fascia of abdomen. Its histological and biochemical composition may play a vital role in maintaining strength and elasticity of the fascia. Hence, study of abdominal fascia for the elastic, collagen, and hydroxyproline contents is desirable to understand asymmetrical bulges and skin folds and in improving surgical treatment of obesity. Samples of superficial fascia were collected from of upper and lower abdomen from 21 fresh cadavers (15 males and 6 females). Samples were stained using Verhoeff–Van Gieson stain. Digital images of superficial fascia were analyzed using TissueQuant software. The samples were also subjected to hydroxyproline estimation. The superficial fascia was formed by loosely packed collagen fibers mixed with abundant elastic fibers and adipose tissue. Elastic contents and collagen contents of superficial fascia were significantly more in the upper abdomen than that in the lower abdomen in males. Hydroxyproline content of superficial fascia of upper abdomen was significantly more than that of lower abdomen in both males and females. The elastic, collagen and hydroxyproline contents of superficial fascia of upper abdomen were higher compared to the lower abdomen. This may be a reason for asymmetric bulging over abdomen and more sagging fold of skin in the lower abdomen than in the upper abdomen. This study may therefore be helpful in finding new ways to manage obesity and other body contour deformities. PMID:27722011

  2. Experience of high-nitrogenous steel powder application in repairs and surface hardening of responsible parts for power equipment by plasma spraying

    NASA Astrophysics Data System (ADS)

    Kolpakov, A. S.; Kardonina, N. I.

    2016-02-01

    The questions of the application of novel diffusion-alloying high-nitrogenous steel powders for repair and surface hardening of responsible parts of power equipment by plasma spraying are considered. The appropriateness of the method for operative repair of equipment and increasing its service life is justified. General data on the structure, properties, and manufacture of nitrogen-, aluminum-, and chromium-containing steel powders that are economically alloyed using diffusion are described. It is noted that the nitrogen release during the decomposition of iron nitrides, when heating, protects the powder particles from oxidation in the plasma jet. It is shown that the coating retains 50% of nitrogen that is contained in the powder. Plasma spraying modes for diffusion-alloying high-nitrogenous steel powders are given. The service properties of plasma coatings based on these powders are analyzed. It is shown that the high-nitrogenous steel powders to a nitrogen content of 8.9 wt % provide the necessary wear resistance and hardness of the coating and the strength of its adhesion to the substrate and corrosion resistance to typical aggressive media. It is noted that increasing the coating porosity promotes stress relaxation and increases its thickness being limited with respect to delamination conditions in comparison with dense coatings on retention of the low defectiveness of the interface and high adhesion to the substrate. The examples of the application of high-nitrogenous steel powders in power engineering during equipment repairs by service companies and overhaul subdivisions of heat power plants are given. It is noted that the plasma spraying of diffusion-alloyed high-nitrogenous steel powders is a unique opportunity to restore nitrided steel products.

  3. Multi-layer coatings

    DOEpatents

    Maghsoodi, Sina; Brophy, Brenor L.; Abrams, Ze'ev R.; Gonsalves, Peter R.

    2016-06-28

    Disclosed herein are coating materials and methods for applying a top-layer coating that is durable, abrasion resistant, highly transparent, hydrophobic, low-friction, moisture-sealing, anti-soiling, and self-cleaning to an existing conventional high temperature anti-reflective coating. The top coat imparts superior durability performance and new properties to the under-laying conventional high temperature anti-reflective coating without reducing the anti-reflectiveness of the coating. Methods and data for optimizing the relative thickness of the under-layer high temperature anti-reflective coating and the top-layer thickness for optimizing optical performance are also disclosed.

  4. IR and NMR analyses of hardening and maturation of glass-ionomer cement.

    PubMed

    Matsuya, S; Maeda, T; Ohta, M

    1996-12-01

    It has been reported that the silicate phase as well as the cross-linking of the polycarboxylic acid by aluminum and calcium ions played an important role in the hardening of glass-ionomer cement. The objective of this study was to investigate the structural change during hardening of the cements by means of infrared (IR) spectroscopy and solid-state nuclear magnetic resonance (NMR) spectroscopy and to confirm the role of the silica phase in the hardening of the cement. For that purpose, we measured the change in compressive strength of an experimental glass-ionomer cement, two commercial glass-ionomer cements, and a polycarboxylate cement and carried out 29Si and 27Al NMR analyses of the cement samples after the strength measurement. In the IR spectra during hardening, a characteristic band of the silicate network around 1000 cm-1 shifted toward high frequency with time. The spectrum after hardening was similar to that for a hydrated amorphous silica structure. The 27Al NMR analysis showed that Al3+ ion was tetrahedrally coordinated by oxygen in the original glass, but a part of the Al3+ ion was octahedrally coordinated after hardening to form Al polyacrylate gel. The chemical shift of Si in the 29Si NMR spectra also changed during hardening. The variation in the chemical shift reflected the structural change in the silicate network. The initial increase in compressive strength of the cement was mainly caused by polycarboxylate gel formation. However, it was concluded that the reconstruction of the silicate network contributed to the increase in strength with time during the period after the gelation by cross-linking was completed.

  5. The Strain-Hardening Behavior of TZAV-30 Alloy After Various Heat Treatments

    NASA Astrophysics Data System (ADS)

    Liang, S. X.; Yin, L. X.; Zheng, L. Y.; Ma, M. Z.; Liu, R. P.

    2016-02-01

    The Ti-Zr-Al-V series titanium alloys with excellent mechanical properties and low density exhibit tremendous application potential as structural materials in aviation, automotive, and navigation industries. The strain-hardening behavior of Ti-30Zr-5Al-3V (wt.%, TZAV-30) alloy with various heat treatments is investigated in this study. Experimental results show that strain-hardening behavior of the examined alloy depends on the heat treatment process. The average strain-hardening exponent, n, is approximately 0.061 for WA specimen (825 °C/0.5 h/water quenching + 600 °C/4 h/air cooling), 0.068 for FC (850 °C/0.5 h/furnace cooling), 0.121 for AC (850 °C/0.5 h/air cooling), and 0.412 for WQ (850 °C/0.5 h/water quenching). Analysis of strain-hardening rate versus true strain curves indicates that higher n of AC specimen results from the lower degradation rate of strain-hardening rate with strain, and the ultrahigh n of WQ specimen is attributed to the evident increase in strain-hardening rate at the true strain from 0.04 to 0.06. Phase constitution and microstructural analyses reveal that the n of the examined alloy with α + β phases increases with the increase in the relative content of the retained β phase but is independent of average thickness of α plates. The increase in strain-hardening rate in WQ specimen depends on metastable α″ martensite and martensitic transition induced by tensile stress.

  6. Direct observation of Lomer-Cottrell locks during strain hardening in nanocrystalline nickel by in situ TEM.

    PubMed

    Lee, Joon Hwan; Holland, Troy B; Mukherjee, Amiya K; Zhang, Xinghang; Wang, Haiyan

    2013-01-01

    Strain hardening capability is critical for metallic materials to achieve high ductility during plastic deformation. A majority of nanocrystalline metals, however, have inherently low work hardening capability with few exceptions. Interpretations on work hardening mechanisms in nanocrystalline metals are still controversial due to the lack of in situ experimental evidence. Here we report, by using an in situ transmission electron microscope nanoindentation tool, the direct observation of dynamic work hardening event in nanocrystalline nickel. During strain hardening stage, abundant Lomer-Cottrell (L-C) locks formed both within nanograins and against twin boundaries. Two major mechanisms were identified during interactions between L-C locks and twin boundaries. Quantitative nanoindentation experiments recorded show an increase of yield strength from 1.64 to 2.29 GPa during multiple loading-unloading cycles. This study provides both the evidence to explain the roots of work hardening at small length scales and the insight for future design of ductile nanocrystalline metals.

  7. Applied anatomy of the superficial branch of the radial nerve.

    PubMed

    Robson, A J; See, M S; Ellis, H

    2008-01-01

    The superficial branch of the radial nerve (SBRN) is highly vulnerable to trauma and iatrogenic injury. This study aimed to map the course of the SBRN in the context of surgical approaches and identify a safe area of incision for de Quervain's tenosynovitis. Twenty-five forearms were dissected. The SBRN emerged from under brachioradialis by a mean of 8.31 cm proximal to the radial styloid (RS), and remained radial to the dorsal tubercle of the radius by a mean of 1.49 cm. The nerve divided into a median of four branches. The first branch arose a mean of 4.92 cm proximal to the RS, traveling 0.49 cm radial to the first compartment of the extensor retinaculum, while the main nerve remained ulnar to it by 0.64 cm. All specimens had branches underlying the traditional transverse incision for de Quervain's release. A 2.5-cm longitudinal incision proximal from the RS avoided the SBRN in 17/25 cases (68%). In 20/25 specimens (80%), the SBRN underlay the cephalic vein. In 18/25 (72%), the radial artery was closely associated with a sensory nerve branch near the level of the RS (SBRN 12/25, lateral cutaneous nerve of the forearm (LCNF) 6/25.) A longitudinal incision in de Quervain's surgery may be preferable. Cannulation of the cephalic vein in the distal third of the forearm is best avoided. The close association between the radial artery and first branch of the SBRN or the LCNF may explain the pain often experienced during arterial puncture. Particular care should be taken during radial artery harvest to avoid nerve injury.

  8. Microwave array applicator for radiometry-controlled superficial hyperthermia

    NASA Astrophysics Data System (ADS)

    Stauffer, Paul R.; Jacobsen, Svein; Neuman, Daniel

    2001-06-01

    Hyperthermia therapy has been shown clinically effective for a variety of skin diseases but current heating equipment is inadequate for most patients. This effort describes the design and performance of a flexible microstrip array applicator intended for heating large regions of tissue over contoured anatomy while at the same time monitoring temperature of the underlying tissue by non-invasive radiometric sensing of blackbody radiation from the heated volume. For this dual purpose applicator, an array of broadband Archimedean spiral receive antennas is integrated into an array of Dual Concentric Conductor heating apertures. Applicator heating uniformity is assessed with electric field scans in homogenous muscle phantoms and with measured temperature distributions in clinical treatments of chestwall recurrence of breast carcinoma. The data demonstrate precisely controlled heating out to the perimeter of large (40 x 13 cm2) multiaperture conformal array applicators. Capabilities of the radiometry system are assessed by correlation of brightness temperatures measured in phantom loads of known temperature distribution as seen through an intervening 5 mm thick water bolus at constant 40°C. The radiometer demonstrates excellent sensitivity and an accuracy of +0.1-0.45°C for temperature measurements up to 5 cm deep in phantom when using a one dimensional weighting function analysis and up to 6 independent 500 MHz bandwidths within the 1-4 GHz range. The data clearly indicate that both heating and radiometric thermometry are possible using the same thin and flexible printed circuit board microstrip array applicator. Once development is complete, this dual mode conformal array applicator with multiplexed radiometric display system should provide significantly improved uniformity and ease of heating large area superficial tissue disease.

  9. Superficial white matter: effects of age, sex, and hemisphere.

    PubMed

    Phillips, Owen R; Clark, Kristi A; Luders, Eileen; Azhir, Ramin; Joshi, Shantanu H; Woods, Roger P; Mazziotta, John C; Toga, Arthur W; Narr, Katherine L

    2013-01-01

    Structural and diffusion imaging studies demonstrate effects of age, sex, and asymmetry in many brain structures. However, few studies have addressed how individual differences might influence the structural integrity of the superficial white matter (SWM), comprised of short-range association (U-fibers), and intracortical axons. This study thus applied a sophisticated computational analysis approach to structural and diffusion imaging data obtained from healthy individuals selected from the International Consortium for Brain Mapping (ICBM) database across a wide adult age range (n=65, age: 18-74 years, all Caucasian). Fractional anisotropy (FA), radial diffusivity (RD), and axial diffusivity (AD) were sampled and compared at thousands of spatially matched SWM locations and within regions-of-interest to examine global and local variations in SWM integrity across age, sex, and hemisphere. Results showed age-related reductions in FA that were more pronounced in the frontal SWM than in the posterior and ventral brain regions, whereas increases in RD and AD were observed across large areas of the SWM. FA was significantly greater in left temporoparietal regions in men and in the posterior callosum in women. Prominent leftward FA and rightward AD and RD asymmetries were observed in the temporal, parietal, and frontal regions. Results extend previous findings restricted to the deep white matter pathways to demonstrate regional changes in the SWM microstructure relating to processes of demyelination and/or to the number, coherence, or integrity of axons with increasing age. SWM fiber organization/coherence appears greater in the left hemisphere regions spanning language and other networks, while more localized sex effects could possibly reflect sex-specific advantages in information strategies.

  10. Maturational differences in superficial and deep zone articular chondrocytes.

    PubMed

    Hidaka, Chisa; Cheng, Christina; Alexandre, Deborah; Bhargava, Madhu; Torzilli, Peter A

    2006-01-01

    To examine whether differences in chondrocytes from skeletally immature versus adult individuals are important in cartilage healing, repair, or tissue engineering, superficial zone chondrocytes (SZC, from within 100 microm of the articular surface) and deep zone chondrocytes (DZC, from 30%-45% of the deepest un-mineralized part of articular cartilage) were harvested from immature (1-4 months) and young adult (18-36 months) steers and compared. Cell size, matrix gene expression and protein levels, integrin levels, and chemotactic ability were measured in cells maintained in micromass culture for up to 7 days. Regardless of age, SZC were smaller, had a lower type II to type I collagen gene expression ratio, and higher gene expression of SZ proteins than their DZC counterparts. Regardless of zone, chondrocytes from immature steers had higher levels of Sox 9 and type II collagen gene expression. Over 7 days in culture, the SZC of immature steers had the highest rate of proliferation. Phenotypically, the SZC of immature and adult steers were more stable than their respective DZC. Cell surface alpha5 and alpha2 integrin subunit levels were higher in the SZC of immature than of adult steers, whereas beta1 integrin subunit levels were similar. Both immature and adult SZC were capable of chemotaxis in response to fetal bovine serum or basic fibroblast growth factor. Our data indicate that articular chondrocytes vary in the different zones of cartilage and with the age of the donor. These differences may be important for cartilage growth, tissue engineering, and/or repair.

  11. Superficial White Matter: Effects of Age, Sex, and Hemisphere

    PubMed Central

    Phillips, Owen R.; Clark, Kristi A.; Luders, Eileen; Azhir, Ramin; Joshi, Shantanu H.; Woods, Roger P.; Mazziotta, John C.; Toga, Arthur W.

    2013-01-01

    Abstract Structural and diffusion imaging studies demonstrate effects of age, sex, and asymmetry in many brain structures. However, few studies have addressed how individual differences might influence the structural integrity of the superficial white matter (SWM), comprised of short-range association (U-fibers), and intracortical axons. This study thus applied a sophisticated computational analysis approach to structural and diffusion imaging data obtained from healthy individuals selected from the International Consortium for Brain Mapping (ICBM) database across a wide adult age range (n=65, age: 18–74 years, all Caucasian). Fractional anisotropy (FA), radial diffusivity (RD), and axial diffusivity (AD) were sampled and compared at thousands of spatially matched SWM locations and within regions-of-interest to examine global and local variations in SWM integrity across age, sex, and hemisphere. Results showed age-related reductions in FA that were more pronounced in the frontal SWM than in the posterior and ventral brain regions, whereas increases in RD and AD were observed across large areas of the SWM. FA was significantly greater in left temporoparietal regions in men and in the posterior callosum in women. Prominent leftward FA and rightward AD and RD asymmetries were observed in the temporal, parietal, and frontal regions. Results extend previous findings restricted to the deep white matter pathways to demonstrate regional changes in the SWM microstructure relating to processes of demyelination and/or to the number, coherence, or integrity of axons with increasing age. SWM fiber organization/coherence appears greater in the left hemisphere regions spanning language and other networks, while more localized sex effects could possibly reflect sex-specific advantages in information strategies. PMID:23461767

  12. Quality control of superficial hyperthermia by treatment evaluation.

    PubMed

    de Bruijne, Maarten; Van der Zee, Jacoba; Ameziane, Ali; Van Rhoon, Gerard C

    2011-01-01

    Steering of multi-element heating arrays for superficial hyperthermia (SHT) can be a challenge in the clinic. This is because the technician has to deal with a multiple-input multiple-output system, varying tissue dynamics, and often sparse tissue temperature data. In addition, patient feedback needs to be taken into account. Effective management of the steering task determines the quality of heating. Systematic evaluation is an effective tool to control the quality of treatments. The purpose of this manuscript is to report on a treatment evaluation flow developed for SHT at the Erasmus MC. This flow is used to secure the quality of steering as well as to stimulate general quality awareness in the hyperthermia team. All treatments are evaluated in a multidisciplinary discussion. Tools and methods were developed to enable effective and efficient evaluations. The treatment evaluation sheet is a compact and intuitive representation of power and temperature data. Trend lines and a temperature-depth plot allow a quick analysis of the steering parameters and the heating profile within the target volume. In addition, the principal statistics of applicator power, water bolus and tissue temperature values are given. Power steering data includes the number of switch-off events, interruption time and the number of steering actions. A list of basic checks and reference values for clinical data support further the treatment evaluation. These tools and the systematic treatment evaluations they facilitate, ultimately lead to consistent performance and fine tuning of the set-up and steering strategy for each individual patient.

  13. Prevalence of cortical superficial siderosis in patients with cognitive impairment.

    PubMed

    Wollenweber, Frank Arne; Buerger, Katharina; Mueller, Claudia; Ertl-Wagner, Birgit; Malik, Rainer; Dichgans, Martin; Linn, Jennifer; Opherk, Christian

    2014-02-01

    Cortical superficial siderosis (cSS) is a magnetic resonance imaging marker of cerebral amyloid angiopathy (CAA) and can be its sole imaging sign. cSS has further been identified as a risk marker for future intracranial hemorrhage. Although uncommon in the general population, cSS may be much more prevalent in high risk populations for amyloid pathology. We aimed to determine the frequency of cSS in patients with cognitive impairment presenting to a memory clinic. We prospectively evaluated consecutive patients presenting to our memory clinic between April 2011 and April 2013. Subjects received neuropsychological testing using the Consortium to Establish a Registry for Alzheimer's Disease battery (CERAD-NP). Two hundred and twelve patients with documented cognitive impairment further underwent a standardized 3T-MR-imaging protocol with T2*-weighted gradient-echo sequences for detection of cSS. Thirteen of 212 patients (6.1 %) displayed cSS. In seven of them (54 %) cSS was the only imaging sign of CAA. Patients with cSS did not differ from patients without cSS with regard to medical history, age or cardiovascular risk profile. Subjects with cSS performed worse in the mini-mental state examination (p = 0.001), showed more white matter hyperintensities (p = 0.005) and more often had microbleeds (p = 0.001) compared to those without cSS. cSS is common in patients with cognitive impairment. It is associated with lower cognitive scores, white matter hyperintensities and microbleeds and can be the only imaging sign for CAA in this patient group.

  14. Terbinafine-loaded wound dressing for chronic superficial fungal infections.

    PubMed

    Paskiabi, Farnoush Asghari; Bonakdar, Shahin; Shokrgozar, Mohammad Ali; Imani, Mohammad; Jahanshiri, Zahra; Shams-Ghahfarokhi, Masoomeh; Razzaghi-Abyaneh, Mehdi

    2017-04-01

    In spite of developing new drugs and modern formulations, the treatments of chronic fungal infections are still challenging. Fibrous wound dressings are new suggestions for the treatment of chronic superficial infections. In the present study, we formulated an antifungal agent, terbinafine hydrochloride (TFH), which is a hydrophobic drug, in wound dressings prepared by electrospun polycaprolactone, polycaprolactone/gelatin (50:50 w/w) and gelatin. To obtain more water-stable meshes, the preparations were treated by glutaraldehyde and their properties were determined before and after treatment. The morphology of fibrous meshes was observed by scanning electron microscopy. Drug loading efficiency and release rate were measured by high performance liquid chromatography (HPLC) and the release rate was monitored for 144h. Antifungal tests were performed on Trichophyton mentagrophytes, Aspergillus fumigatus and Candida albicans cultured on Muller-Hinton agar. The toxicity of the meshes was measured after 24h and 14days by MTT assay. Terbinafine loading of polycaprolactone/gelatin (50:50) was 100% and it released the highest amount of TFH too. In antifungal tests, all samples were able to hinderT. mentagrophytes and A. fumigatus but not C. albicans growth among them, polycaprolactone fibers made the largest inhibition zone. In MTT assay, none of prepared samples showed toxicity against L929 cells. Teken together, the prepared TFH-loaded PCL/gelatin electrospun meshes were able to release TFH slowly and in a steady state in time. With respect to no obvious cytotoxicity in MTT assay and stong antifungal activity toward T. mentagrophytesin vitro, these TFH-based meshes could be considered as potential candidates in clinical application as wound dressing for treatment of chronic dermatophytosis.

  15. Microstructural evolution and the variation of tensile behavior after aging heat treatment of precipitation hardened martensitic steel

    SciTech Connect

    Shin, Jong-Ho; Jeong, JaeSuk; Lee, Jong-Wook

    2015-01-15

    The effects of aging temperature on the microstructural evolution and the tensile behavior of precipitation hardened martensitic steel were investigated. Microscopic analysis using transmission electron microscope (TEM) was combined with the microstructural analysis using the synchrotron X-ray diffraction (XRD) to characterize the microstructural evolution with aging temperature. Peak hardness was obtained by precipitation of the Ni{sub 3}Al ordered phase. After aging at temperature range from 420 to 590 °C, spherical Ni{sub 3}Al precipitates and ellipsoidal M{sub 23}C{sub 6} carbides were observed within laths and at lath boundaries, respectively. Strain hardening behavior was analyzed with Ludwik equation. It is observed that the plastic strain regimes can be divided into two different stages by a rapid increase in strain hardening followed by a comparatively lower increase. At the first strain hardening stage, the aged specimen exhibited higher strain hardening exponent than the as-quenched specimen, and the exponent in the aged specimen was not changed considerably with increasing aging temperature. It is revealed that the strain hardening exponents at the first and the second stages were associated with the Ni{sub 3}Al precipitates and the domain size representing the coherent scattering area, respectively. - Highlights: • All of aged specimen exhibited higher strain hardening exponent than the as-quenched specimen at the first stage. • The value of strain hardening exponent in the aged specimen was nearly constant with aging temperature. • Ni{sub 3}Al precipitation dominantly influenced to the increase of strain hardening exponent at the first strain hardening stage. • Domain size was associated with strain hardening exponent at the second strain hardening stage.

  16. Innovative Structural Materials and Sections with Strain Hardening Cementitious Composites

    NASA Astrophysics Data System (ADS)

    Dey, Vikram

    The motivation of this work is based on development of new construction products with strain hardening cementitious composites (SHCC) geared towards sustainable residential applications. The proposed research has three main objectives: automation of existing manufacturing systems for SHCC laminates; multi-level characterization of mechanical properties of fiber, matrix, interface and composites phases using servo-hydraulic and digital image correlation techniques. Structural behavior of these systems were predicted using ductility based design procedures using classical laminate theory and structural mechanics. SHCC sections are made up of thin sections of matrix with Portland cement based binder and fine aggregates impregnating continuous one-dimensional fibers in individual or bundle form or two/three dimensional woven, bonded or knitted textiles. Traditional fiber reinforced concrete (FRC) use random dispersed chopped fibers in the matrix at a low volume fractions, typically 1-2% to avoid to avoid fiber agglomeration and balling. In conventional FRC, fracture localization occurs immediately after the first crack, resulting in only minor improvement in toughness and tensile strength. However in SHCC systems, distribution of cracking throughout the specimen is facilitated by the fiber bridging mechanism. Influence of material properties of yarn, composition, geometry and weave patterns of textile in the behavior of laminated SHCC skin composites were investigated. Contribution of the cementitious matrix in the early age and long-term performance of laminated composites was studied with supplementary cementitious materials such as fly ash, silica fume, and wollastonite. A closed form model with classical laminate theory and ply discount method, coupled with a damage evolution model was utilized to simulate the non-linear tensile response of these composite materials. A constitutive material model developed earlier in the group was utilized to characterize and

  17. Radiation Hardened Electronics Destined For Severe Nuclear Reactor Environments

    SciTech Connect

    Holbert, Keith E.; Clark, Lawrence T.

    2016-02-19

    Post nuclear accident conditions represent a harsh environment for electronics. The full station blackout experience at Fukushima shows the necessity for emergency sensing capabilities in a radiation-enhanced environment. This NEET (Nuclear Energy Enabling Technologies) research project developed radiation hardened by design (RHBD) electronics using commercially available technology that employs commercial off-the-shelf (COTS) devices and present generation circuit fabrication techniques to improve the total ionizing dose (TID) hardness of electronics. Such technology not only has applicability to severe accident conditions but also to facilities throughout the nuclear fuel cycle in which radiation tolerance is required. For example, with TID tolerance to megarads of dose, electronics could be deployed for long-term monitoring, inspection and decontamination missions. The present work has taken a two-pronged approach, specifically, development of both board and application-specific integrated circuit (ASIC) level RHBD techniques. The former path has focused on TID testing of representative microcontroller ICs with embedded flash (eFlash) memory, as well as standalone flash devices that utilize the same fabrication technologies. The standalone flash devices are less complicated, allowing better understanding of the TID response of the crucial circuits. Our TID experiments utilize biased components that are in-situ tested, and in full operation during irradiation. A potential pitfall in the qualification of memory circuits is the lack of rigorous testing of the possible memory states. For this reason, we employ test patterns that include all ones, all zeros, a checkerboard of zeros and ones, an inverse checkerboard, and random data. With experimental evidence of improved radiation response for unbiased versus biased conditions, a demonstration-level board using the COTS devices was constructed. Through a combination of redundancy and power gating, the demonstration

  18. Predictions for weak mechanical ignition of strain hardened granular explosive

    NASA Astrophysics Data System (ADS)

    Gonthier, Keith A.

    2004-04-01

    Predictions are given for the coupled bulk and grain scale response of initially unstressed, strain hardened granular HMX (C4H8N8O8) due to mild piston impact (impact speeds <100 m/s). Importantly, this response depends on the material's strain history as the stress necessary for bulk inelastic compaction (crush up) increases with the solid volume fraction. Although the quasistatic compaction behavior of HMX is well characterized, the influence of strain history on the bulk and grain scale dynamic loading response has largely been unexplored. In this study, the initial solid volume fraction of the unstressed material is varied over the range of φf⩽φ0⩽1, where φf=0.655 is its free pour value. A Hugoniot analysis for the bulk material identifies three dispersed compaction wave structures that depend on the impact speed and initial solid volume fraction, and are analogous to elastic-plastic waves in dynamically loaded solids. For increasing impact speed, these structures consist of (1) a single viscoelastic wave; (2) a leading viscoelastic wave and a trailing viscoplastic wave; and (3) a single viscoplastic wave. It is shown that the resulting localized heating near intergranular contact surfaces can trigger sustained combustion of the material. Predictions for the grain scale thermochemical response indicate that significant bulk viscoplastic heating is required for ignition of materials with φf⩽φ0⩽0.88, whereas bulk viscoelastic heating leads to the ignition of denser materials (φ0>0.91). Both viscoelastic and viscoplastic heating are predicted to be important for ignition of materials having 0.88⩽φ0⩽0.91. Within this transition range there is predicted a sharp increase in impact sensitivity as the power input needed for ignition rapidly decreases to a value close to that for the free pour density (0.40 MW/cm2) before increasing again. This result is important for assessing the impact sensitivity and deflagration-to-detonation transition of

  19. Drought tolerance and transplanting performance of holm oak (Quercus ilex) seedlings after drought hardening in the nursery.

    PubMed

    Villar-Salvador, Pedro; Planelles, Rosa; Oliet, Juan; Peñuelas-Rubira, Juan L; Jacobs, Douglass F; González, Magdalena

    2004-10-01

    Drought stress is the main cause of mortality of holm oak (Quercus ilex L.) seedlings in forest plantations. We therefore assessed if drought hardening, applied in the nursery at the end of the growing season, enhanced the drought tolerance and transplanting performance of holm oak seedlings. Seedlings were subjected to three drought hardening intensities (low, moderate and severe) for 2.5 and 3.5 months, and compared with control seedlings. At the end of the hardening period, water relations, gas exchange and morphological attributes were determined, and survival and growth under mesic and xeric transplanting conditions were assessed. Drought hardening increased drought tolerance primarily by affecting physiological traits, with no effect on shoot/root ratio or specific leaf mass. Drought hardening reduced osmotic potential at saturation and at the turgor loss point, stomatal conductance, residual transpiration (RT) and new root growth capacity (RGC), but enhanced cell membrane stability. Among treated seedlings, the largest response occurred in seedlings subjected to moderate hardening. Severe hardening reduced shoot soluble sugar concentration and increased shoot starch concentration. Increasing the duration of hardening had no effect on water relations but reduced shoot mineral and starch concentrations. Variation in cell membrane stability, RT and RGC were negatively related to osmotic adjustment. Despite differences in drought tolerance, no differences in mortality and relative growth rate were observed between hardening treatments when the seedlings were transplanted under either mesic or xeric conditions.

  20. Partial relapse of Bell's palsy following superficial radiotherapy to a basal cell carcinoma in the temple.

    PubMed

    Brincat, S; Mantell, B S

    1986-07-01

    A patient who developed a partial relapse of Bell's palsy following superficial radiotherapy to a basal cell carcinoma in the temple is reported. Nerves injured by Bell's palsy may be more susceptible to radiation induced damage.

  1. Superficial siderosis of the central nervous system due to chronic hemorrhage from a giant invasive prolactinoma.

    PubMed

    Steinberg, Jacob; Cohen, José E; Gomori, John M; Fraifeld, Shifra; Moscovici, Samuel; Rosenthal, Guy; Shoshan, Yigal; Itshayek, Eyal

    2013-07-01

    Superficial siderosis of the central nervous system (CNS) is a rare disorder caused by deposition of hemosiderin in neuronal tissue in the subpial layer of the CNS due to slow subarachnoid or intraventricular hemorrhage. The most common neurologic manifestations include progressive gait ataxia, sensorineural hearing loss, and corticospinal tract signs. We present a case of superficial siderosis in a 43-year-old man who presented to the Emergency Department with sudden onset bilateral visual deterioration and a loss of consciousness. A hemorrhagic giant prolactinoma was diagnosed based on brain CT scan, T1-weighted MRI, and an endocrine blood examination. Susceptibility-weighted non-contrast MRI showed pathognomonic signs of superficial siderosis in the form of a hypointensity rim surrounding the brainstem, cerebellar fissures, and cranial nerves VII and VIII. This report demonstrates that superficial siderosis can be caused by pituitary apoplexy.

  2. Biomass torrefaction characteristics in inert and oxidative atmospheres at various superficial velocities.

    PubMed

    Chen, Wei-Hsin; Lu, Ke-Miao; Liu, Shih-Hsien; Tsai, Chi-Ming; Lee, Wen-Jhy; Lin, Ta-Chang

    2013-10-01

    The reaction characteristics of four biomass materials (i.e. oil palm fiber, coconut fiber, eucalyptus, and Cryptomeria japonica) with non-oxidative and oxidative torrefaction at various superficial velocities are investigated where nitrogen and air are used as carrier gases. Three torrefaction temperatures of 250, 300, and 350 °C are considered. At a given temperature, the solid yield of biomass is not affected by N2 superficial velocity, revealing that the thermal degradation is controlled by heat and mass transfer in biomass. Increasing air superficial velocity decreases the solid yield, especially in oil palm fiber and coconut fiber, implying that the torrefaction reaction of biomass is dominated by surface oxidation. There exists an upper limit of air superficial velocity in the decrement of solid yield, suggesting that beyond this limit the thermal degradation of biomass is no longer governed by surface oxidation, but rather is controlled by internal mass transport.

  3. Physico-chemical studies of hardened cement paste structure with micro-reinforcing fibers

    NASA Astrophysics Data System (ADS)

    Steshenko, Aleksei; Kudyakov, Aleksander; Konusheva, Viktoriya

    2016-01-01

    The results of physico-chemical studies of modified hardened cement paste with micro-reinforcing fibers are given in this article. The goal was to study the reasons of the increase of strength properties of modified hardened cement paste by the method of X-ray diffraction and electron microscopy. It is shown that the use of mineral fibers in the production of cement based material has positive effect on its properties. The study found out that the increase in the strength of the hardened cement paste with micro-reinforcing fibers is due to the increase of the rate of hydration of cement without a significant change in the phase composition in comparison with hardened cement paste without additive. The results of microstructure investigation (of control samples and samples of the reinforced hardened cement paste) have shown that introduction of mineral fibers in the amount of 0.1-2 % by weight of cement provides the structure of the homogeneous microporous material with uniform distribution of the crystalline phase provided by densely packed hydrates.

  4. New steels and methods for induction hardening of bearing rings and rollers

    SciTech Connect

    Ouchakov, B.K.; Shepeljakovsky, K.Z.

    1998-12-31

    The new method of through-surface hardening (TSH) of bearing rings and rollers was developed and used in Russia and former USSR. The principles of the method include the use of special steels of low or controlled hardenability, through-the-section induction of furnace heating and intense quenching of the parts by water stream in special devices. Due to the low hardenability of applied steels, the bearing rings and rollers have high-strength martensitic surface layer, combined with a core strengthened with a troostite and sorbite structure. High compressive residual stresses are formed in the martensitic surface layers. For a long time TSH has been successfully used for inner rings of bearings for railway car boxes, large rings and rollers of bearings for cement furnaces and rolling mills. Recently TSH was used for hollow rollers of railway bearings. For bearing rings made of SAE 52100 type high-carbon, chromium-alloyed steel a new method of low-deformation hardening was developed. The method is based on self-calibration of the rings during the quenching process and is intended for through hardening by induction heating and quenching by rapidly moved water stream.

  5. Microstructure, Tensile Properties and Work Hardening Behavior of GTA-Welded Dual-Phase Steels

    NASA Astrophysics Data System (ADS)

    Ashrafi, H.; Shamanian, M.; Emadi, R.; Saeidi, N.

    2017-02-01

    In the present study, microstructure, tensile properties and work hardening behavior of a DP700 steel after gas tungsten arc welding were investigated. Formation of bainite in the fusion zone resulted in a hardness increase compared to that for the base metal (BM), whereas tempering of the pre-existing martensite in the subcritical heat-affected zone (HAZ) led to softening. The GTA-welded joint exhibited a continuous yielding behavior and a yield strength close to that for the BM, while its ultimate tensile strength and total elongation were lower than those for the BM owing to the formation of soft zone in the HAZ. A joint efficiency of about 81% was obtained for the GTA-welded joint, and it failed in the softened HAZ. Analysis of work hardening based on the Kocks-Mecking approach showed one stage of hardening behavior corresponding to the stage III for both the DP700 BM and welded sample. It was also revealed that the DP700 BM has larger values of work hardening exponent and magnitude of work hardening compared with the welded sample. Analysis of fractured surfaces showed that the dominant fracture mode for both the DP700 BM and welded joint was ductile.

  6. Effects of TEA·HCl hardening accelerator on the workability of cement-based materials

    NASA Astrophysics Data System (ADS)

    Pan, Wenhao; Ding, Zhaoyang; Chen, Yanwen

    2017-03-01

    The aim of the test is to research the influence rules of TEA·HCl on the workability of cement paste and concrete. Based on the features of the new hardening accelerator, an experimental analysis system were established through different dosages of hardening accelerator, and the feasibility of such accelerator to satisfy the need of practical engineering was verified. The results show that adding of the hardening accelerator can accelerate the cement hydration, and what’s more, when the dosage was 0.04%, the setting time was the shortest while the initial setting time and final setting time were 130 min and 180 min, respectively. The initial fluidity of cement paste of adding accelerator was roughly equivalent compared with that of blank. After 30 min, fluidity loss would decrease with the dosage increasing, but fluidity may increase. The application of the hardening accelerator can make the early workability of concrete enhance, especially the slump loss of 30 min can improve more significantly. The bleeding rate of concrete significantly decreases after adding TEA·HCl. The conclusion is that the new hardening accelerator can meet the need of the workability of cement-based materials in the optimum dosage range.

  7. Cognitive work hardening: a return-to-work intervention for people with depression.

    PubMed

    Wisenthal, Adeena; Krupa, Terry

    2013-01-01

    Mental health claims in the workplace are rising, particularly those due to depression. Associated with this is an increase in disability costs for the employer and the disability insurer, but even more important is the human suffering that results. While treatments are available for the depression there is a gap in interventions that specifically target return-to-work preparation. This paper presents cognitive work hardening, a treatment intervention that can bridge this gap by addressing the unique functional issues inherent in depression with a view to increasing return-to-work success. Cognitive work hardening applies the proven principles of classical work hardening (which has typically been applied to people with physical injuries) to the mental health domain. This paper explains how the occupational therapy principle of occupation and the core competency, enablement, are utilized and applied in cognitive work hardening. Key skills of the occupational therapist are also discussed. In addition, the paper considers the relationship of cognitive work hardening to recovery and mental illness, and the role it plays among workplace-based return-to-work interventions in the current movement toward non-clinical return-to-work interventions.

  8. Beam hardening effects in grating-based x-ray phase-contrast imaging

    SciTech Connect

    Chabior, Michael; Donath, Tilman; David, Christian; Bunk, Oliver; Schuster, Manfred; Schroer, Christian; Pfeiffer, Franz

    2011-03-15

    Purpose: In this work, the authors investigate how beam hardening affects the image formation in x-ray phase-contrast imaging and consecutively develop a correction algorithm based on the results of the analysis. Methods: The authors' approach utilizes a recently developed x-ray imaging technique using a grating interferometer capable of visualizing the differential phase shift of a wave front traversing an object. An analytical description of beam hardening is given, highlighting differences between attenuation and phase-contrast imaging. The authors present exemplary beam hardening artifacts for a number of well-defined samples in measurements at a compact laboratory setup using a polychromatic source. Results: Despite the differences in image formation, the authors show that beam hardening leads to a similar reduction of image quality in phase-contrast imaging as in conventional attenuation-contrast imaging. Additionally, the authors demonstrate that for homogeneous objects, beam hardening artifacts can be corrected by a linearization technique, applicable to all kinds of phase-contrast methods using polychromatic sources. Conclusions: The evaluated correction algorithm is shown to yield good results for a number of simple test objects and can thus be advocated in medical imaging and nondestructive testing.

  9. Survival of heat stress with and without heat hardening in Drosophila melanogaster: interactions with larval density.

    PubMed

    Arias, Leticia N; Sambucetti, Pablo; Scannapieco, Alejandra C; Loeschcke, Volker; Norry, Fabian M

    2012-07-01

    Survival of a potentially lethal high temperature stress is a genetically variable thermal adaptation trait in many organisms. Organisms cope with heat stress by basal or induced thermoresistance. Here, we tested quantitative trait loci (QTL) for heat stress survival (HSS) in Drosophila melanogaster, with and without a cyclic heat-hardening pre-treatment, for flies that were reared at low (LD) or high (HD) density. Mapping populations were two panels of recombinant inbred lines (RIL), which were previously constructed from heat stress-selected stocks: RIL-D48 and RIL-SH2, derived from backcrosses to stocks of low and high heat resistance, respectively. HSS increased with heat hardening in both LD and HD flies. In addition, HSS increased consistently with density in non-hardened flies. There was a significant interaction between heat hardening and density effects in RIL-D48. Several QTL were significant for both density and hardening treatments. Many QTL overlapped with thermotolerance QTL identified for other traits in previous studies based on LD cultures only. However, three new QTL were found in HD only (cytological ranges: 12E-16F6; 30A3-34C2; 49C-50C). Previously found thermotolerance QTL were also significant for flies from HD cultures.

  10. Beam hardening correction using iterative total variation (ITV)-based algorithm in CBCT reconstruction

    SciTech Connect

    Seo, Chang-Woo; Cha, Bo Kyung; Jeon, Sungchae; Huh, Young

    2015-07-01

    Recently, beam hardening reduction is required to produce high-quality reconstructions of X-ray cone-beam computed tomography (CBCT) system for medical applications. This paper introduces the iterative total variation (ITV) for filtered-backprojection suffering from the serious beam hardening problems. Feldkamp, Davis, and Kress (FDK) reconstruction algorithm for CBCT system is widely used reconstruction technique. FDK reconstruction algorithm could be realized by generating the weighted projection data, filtering the projection images, and back-projecting the filtered projection data into the volume. However, FDK algorithm suffers from the beam hardening artifacts by X-ray attenuation coefficients. Recently, total variation (TV) method for compressed sensing (CS) has been particularly useful in exploiting the prior knowledge of minimal variation in the X-ray attenuation characteristics across object or human body. But a practical implementation of this method still remains a challenge. The main problem is the iterative nature of solving the TV-based CS formulation, which generally requires multiple iterations of forward and backward projections of a large dataset in clinically or industrially feasible time frame. In this paper, we propose ITV method after FDK reconstruction for reducing the beam hardening artifacts. The beam hardening problems are reduced by the ITV method to promote sparsity inherent in the X-ray attenuation characteristics. (authors)

  11. ON THE SPECTRAL HARDENING AT {approx}>300 keV IN SOLAR FLARES

    SciTech Connect

    Li, G.; Kong, X.; Zank, G.; Chen, Y.

    2013-05-20

    It has long been noted that the spectra of observed continuum emissions in many solar flares are consistent with double power laws with a hardening at energies {approx}>300 keV. It is now widely believed that at least in electron-dominated events, the hardening in the photon spectrum reflects an intrinsic hardening in the source electron spectrum. In this paper, we point out that a power-law spectrum of electrons with a hardening at high energies can be explained by the diffusive shock acceleration of electrons at a termination shock with a finite width. Our suggestion is based on an early analytical work by Drury et al., where the steady-state transport equation at a shock with a tanh profile was solved for a p-independent diffusion coefficient. Numerical simulations with a p-dependent diffusion coefficient show hardenings in the accelerated electron spectrum that are comparable with observations. One necessary condition for our proposed scenario to work is that high-energy electrons resonate with the inertial range of the MHD turbulence and low-energy electrons resonate with the dissipation range of the MHD turbulence at the acceleration site, and the spectrum of the dissipation range {approx}k {sup -2.7}. A {approx}k {sup -2.7} dissipation range spectrum is consistent with recent solar wind observations.

  12. A mathematical model to predict the strength of aluminum alloys subjected to precipitation hardening

    SciTech Connect

    Qureshi, F.S.; Sheikh, A.K.; Rashid, M.

    1999-06-01

    A number of alloys, notably most of the aluminum alloys, can be heat treated by aging. This aging due to time-dependent precipitation hardening increases the strength and hardness as well as modifying other mechanical properties. Precipitation hardening has been a popular strengthening mechanism for many decades; therefore, extensive information is available in literature about the precipitation-hardening response of various series of aluminum alloys. The age-hardening response of these alloys is usually represented in graphical form as plotted between property changes and aging time for different temperatures. In designing a suitable precipitation-hardening strategy, one can refer to these graphs. However, for automatic control of aging furnaces, as well as for decision making regarding optimal selection of aging conditions (time/temperature combination), it is desirable to express these relationships in a formal mathematical structure. A mathematical model is developed in this article for widely used heat treatable aluminum alloys used in the extrusion industry. This model is a condensed representation of all {sigma} = f(T,t) curves in different series of aluminum alloys, and the parameters of this model characterize the various compositions of the alloys in the series.

  13. Physico-chemical studies of hardened cement paste structure with micro-reinforcing fibers

    SciTech Connect

    Steshenko, Aleksei Kudyakov, Aleksander; Konusheva, Viktoriya

    2016-01-15

    The results of physico-chemical studies of modified hardened cement paste with micro-reinforcing fibers are given in this article. The goal was to study the reasons of the increase of strength properties of modified hardened cement paste by the method of X-ray diffraction and electron microscopy. It is shown that the use of mineral fibers in the production of cement based material has positive effect on its properties. The study found out that the increase in the strength of the hardened cement paste with micro-reinforcing fibers is due to the increase of the rate of hydration of cement without a significant change in the phase composition in comparison with hardened cement paste without additive. The results of microstructure investigation (of control samples and samples of the reinforced hardened cement paste) have shown that introduction of mineral fibers in the amount of 0.1-2 % by weight of cement provides the structure of the homogeneous microporous material with uniform distribution of the crystalline phase provided by densely packed hydrates.

  14. Beam hardening correction for interior tomography based on exponential formed model and radon inversion transform

    NASA Astrophysics Data System (ADS)

    Chen, Siyu; Zhang, Hanming; Li, Lei; Xi, Xiaoqi; Han, Yu; Yan, Bin

    2016-10-01

    X-ray computed tomography (CT) has been extensively applied in industrial non-destructive testing (NDT). However, in practical applications, the X-ray beam polychromaticity often results in beam hardening problems for image reconstruction. The beam hardening artifacts, which manifested as cupping, streaks and flares, not only debase the image quality, but also disturb the subsequent analyses. Unfortunately, conventional CT scanning requires that the scanned object is completely covered by the field of view (FOV), the state-of-art beam hardening correction methods only consider the ideal scanning configuration, and often suffer problems for interior tomography due to the projection truncation. Aiming at this problem, this paper proposed a beam hardening correction method based on radon inversion transform for interior tomography. Experimental results show that, compared to the conventional correction algorithms, the proposed approach has achieved excellent performance in both beam hardening artifacts reduction and truncation artifacts suppression. Therefore, the presented method has vitally theoretic and practicable meaning in artifacts correction of industrial CT.

  15. Effect of strain rate on bake hardening response of BH220 steel

    NASA Astrophysics Data System (ADS)

    Das, Anindya; Tarafder, Soumitro; Sivaprasad, S.; Chakrabarti, Debalay

    2015-09-01

    This study aims at understanding the bake hardening ability of ultra low carbon BH220 steel at different strain rates. The as-received material has been pre-strained to four different levels and then deformed in tension under (a) as pre-strained state and (b) after baking at 170 ∘C for 20 minutes, at three different strain rates of 0.001, 0.1 and 100/s. In both the conditions, yield stress increased with pre-strain and strain rate, but bake hardening ability was found to decrease when strain rate was increased. The strain rate sensitivity of the material was also found to decrease with bake hardening. Generation of dislocation forests and their subsequent immobility during baking treatment enables them to act as long range obstacles during further deformation. At higher strain rates, less amount of dislocations are produced which can interact with themselves and produce hardening, because of which bake hardening ability and the strain rate drops. A dislocation based strengthening model, as proposed by Larour et al. 2011 [7], was used to predict the yield stress values obtained at different conditions. The equation produced excellent co-relation with the experimental data.

  16. Microstructure, Tensile Properties and Work Hardening Behavior of GTA-Welded Dual-Phase Steels

    NASA Astrophysics Data System (ADS)

    Ashrafi, H.; Shamanian, M.; Emadi, R.; Saeidi, N.

    2017-03-01

    In the present study, microstructure, tensile properties and work hardening behavior of a DP700 steel after gas tungsten arc welding were investigated. Formation of bainite in the fusion zone resulted in a hardness increase compared to that for the base metal (BM), whereas tempering of the pre-existing martensite in the subcritical heat-affected zone (HAZ) led to softening. The GTA-welded joint exhibited a continuous yielding behavior and a yield strength close to that for the BM, while its ultimate tensile strength and total elongation were lower than those for the BM owing to the formation of soft zone in the HAZ. A joint efficiency of about 81% was obtained for the GTA-welded joint, and it failed in the softened HAZ. Analysis of work hardening based on the Kocks-Mecking approach showed one stage of hardening behavior corresponding to the stage III for both the DP700 BM and welded sample. It was also revealed that the DP700 BM has larger values of work hardening exponent and magnitude of work hardening compared with the welded sample. Analysis of fractured surfaces showed that the dominant fracture mode for both the DP700 BM and welded joint was ductile.

  17. Identifying Deformation and Strain Hardening Behaviors of Nanoscale Metallic Multilayers Through Nano-wear Testing

    SciTech Connect

    Economy, David Ross; Mara, Nathan A.; Schoeppner, R.; Schultz, Bradley M.; Unocic, Raymond R.; Kennedy, Marian S.

    2016-01-13

    In complex loading conditions (e.g. sliding contact), mechanical properties, such as strain hardening and initial hardness, will dictate the long-term performance of materials systems. With this in mind, the strain hardening behaviors of Cu/Nb nanoscale metallic multilayer systems were examined by performing nanoindentation tests within nanoscratch wear boxes and undeformed, as-deposited regions. Both the architecture and substrate influence were examined by utilizing three different individual layer thicknesses (2, 20, and 100 nm) and two total film thicknesses (1 and 10 μm). After nano-wear deformation, multilayer systems with thinner layers showed less volume loss as measured by laser scanning microscopy. Additionally, the hardness of the deformed regions significantly rose with respect to the as-deposited measurements, which further increased with greater wear loads. Strain hardening exponents for multilayers with thinner layers (2 and 20 nm, n ≈ 0.018 and n ≈ 0.022 respectively) were less than was determined for 100 nm systems (n ≈ 0.041). These results suggest that singledislocation based deformation mechanisms observed for the thinner systems limit the extent of achievable strain hardening. This conclusion indicates that impacts of both architecture strengthening and strain hardening must be considered to accurately predict multilayer performance during sliding contact across varying length scales.

  18. Identifying Deformation and Strain Hardening Behaviors of Nanoscale Metallic Multilayers Through Nano-wear Testing

    DOE PAGES

    Economy, David Ross; Mara, Nathan A.; Schoeppner, R.; ...

    2016-01-13

    In complex loading conditions (e.g. sliding contact), mechanical properties, such as strain hardening and initial hardness, will dictate the long-term performance of materials systems. With this in mind, the strain hardening behaviors of Cu/Nb nanoscale metallic multilayer systems were examined by performing nanoindentation tests within nanoscratch wear boxes and undeformed, as-deposited regions. Both the architecture and substrate influence were examined by utilizing three different individual layer thicknesses (2, 20, and 100 nm) and two total film thicknesses (1 and 10 μm). After nano-wear deformation, multilayer systems with thinner layers showed less volume loss as measured by laser scanning microscopy. Additionally,more » the hardness of the deformed regions significantly rose with respect to the as-deposited measurements, which further increased with greater wear loads. Strain hardening exponents for multilayers with thinner layers (2 and 20 nm, n ≈ 0.018 and n ≈ 0.022 respectively) were less than was determined for 100 nm systems (n ≈ 0.041). These results suggest that singledislocation based deformation mechanisms observed for the thinner systems limit the extent of achievable strain hardening. This conclusion indicates that impacts of both architecture strengthening and strain hardening must be considered to accurately predict multilayer performance during sliding contact across varying length scales.« less

  19. Technology of Strengthening Steel Details by Surfacing Composite Coatings

    NASA Astrophysics Data System (ADS)

    Burov, V. G.; Bataev, A. A.; Rakhimyanov, Kh M.; Mul, D. O.

    2016-04-01

    The article considers the problem of forming wear resistant meal ceramic coatings on steel surfaces using the results of our own investigations and the analysis of achievements made in the country and abroad. Increasing the wear resistance of surface layers of steel details is achieved by surfacing composite coatings with carbides or borides of metals as disperse particles in the strengthening phase. The use of surfacing on wearing machine details and mechanisms has a history of more than 100 years. But still engineering investigations in this field are being conducted up to now. The use of heating sources which provide a high density of power allows ensuring temperature and time conditions of surfacing under which composites with peculiar service and functional properties are formed. High concentration of energy in the zone of melt, which is created from powder mixtures and the hardened surface layer, allows producing the transition zone between the main material and surfaced coating. Surfacing by the electron beam directed from vacuum to the atmosphere is of considerable technological advantages. They give the possibility of strengthening surface layers of large-sized details by surfacing powder mixtures without their preliminary compacting. A modified layer of the main metal with ceramic particles distributed in it is created as a result of heating surfaced powders and the detail surface layer by the electron beam. Technology of surfacing allows using powders of refractory metals and graphite in the composition of powder mixtures. They interact with one another and form the particles of the hardening phase of the composition coating. The chemical composition of the main and surfaced materials is considered to be the main factor which determines the character of metallurgical processes in local zones of melt as well as the structure and properties of surfaced composition.

  20. Flow coating apparatus and method of coating

    SciTech Connect

    Hanumanthu, Ramasubrahmaniam; Neyman, Patrick; MacDonald, Niles; Brophy, Brenor; Kopczynski, Kevin; Nair, Wood

    2014-03-11

    Disclosed is a flow coating apparatus, comprising a slot that can dispense a coating material in an approximately uniform manner along a distribution blade that increases uniformity by means of surface tension and transfers the uniform flow of coating material onto an inclined substrate such as for example glass, solar panels, windows or part of an electronic display. Also disclosed is a method of flow coating a substrate using the apparatus such that the substrate is positioned correctly relative to the distribution blade, a pre-wetting step is completed where both the blade and substrate are completed wetted with a pre-wet solution prior to dispensing of the coating material onto the distribution blade from the slot and hence onto the substrate. Thereafter the substrate is removed from the distribution blade and allowed to dry, thereby forming a coating.

  1. Clinically silent deep vein thrombosis in patients with superficial thrombophlebitis and varicose veins at legs.

    PubMed

    Jerkic, Zoran; Karic, Alen; Karic, Amela

    2009-01-01

    Although superficial thrombophlebitis is a common disorder until recently it was considered as benign disorder. Also it is associated with varicose vein at legs and it was treated effectively with conservative methods, walking and non-steroid anti-inflammatory drugs. Aims of our investigation were: determine frequency of clinically silent deep vein thrombosis at legs in patient with and without superficial thrombophlebitis, determine correlation between superficial thrombophlebitis and deep vein thrombosis regardless of localization of superficial thrombophlebitis in superficial veins of legs and determine adequacy and safety vein phlebography in early diagnosis clinically silent deep vein thrombosis in patients with superficial thrombophlebitis. Using flebography in prospective study was evaluated incidence of clinically silent deep vein thrombosis in 92 patients with varicose veins at legs. By phlebograpy in patients with varicose veins at legs and superficial thrombophlebitis at legs and without clinical signs of DVT at legs of the 49 patients we detected DVT in 12 patients (24, 48%), in three male and nine female. We detected localization of DVT in ilijacofemoral junction in 4,08% patients, although localization of DVT in femoropopliteal region was observed in 6, 12% patients and localization in crural region was in 14.28% patients. Localization of DVT at legs was detected in iliac vein in 16.66% patients, in femoral vein in 25% patients, popliteal vein 8.33% patients, anterior tibial vein 16.66%, posterior tibial vein in 25% and crural veins 8.33% patients. Also we deduced significant difference between two group of patients (chi2 = 10, 76). Such result proves thesis that in most patients with superficial thrombophlebitis and varicose veins is possibility of developing of DVT.

  2. [Superficial angiomyxoma of the parotid region and review of the literature].

    PubMed

    Rosado Rodríguez, Pablo; de Vicente, Juan C; de Villalaín, Lucas; Blanco, Verónica

    2012-01-01

    Superficial angiomyxoma (SA) is a rare benign cutaneous neoplasm first described by Allen et al in 1988. To the best of our knowledge, we report the first case of superficial angiomyxoma located in the parotid region. We also stress the importance of distinguishing this entity from other lesions that may be involved in this location such as cutaneous neoplasms, parotid tumours or cysts. We emphasise the need to rule out the Carney complex, which has been associated with these tumours.

  3. Clinical inquiries. How does tissue adhesive compare with suturing for superficial lacerations?

    PubMed

    Aukerman, Douglas F; Sebastianelli, Wayne J; Nashelsky, Joan

    2005-04-01

    Tissue adhesives are effective and yield results comparable to those with conventional suturing of superficial, linear, and low-tension lacerations. The cosmetic outcome is similar; wound complications, such as infection and dehiscence, may be lower with tissue adhesives. Wound closure of superficial lacerations by tissue adhesives is quicker and less painful compared with conventional suturing (strength of recommendation: A, systematic reviews of randomized trials).

  4. Static measurement of the thickness of the ablative coating of the solid rocket boosters

    NASA Technical Reports Server (NTRS)

    Harrison, Harry C.

    1996-01-01

    The Solid Rocket Boosters (SRB's) used to launch the Space Shuttle are coated with a layer of ablative material to prevent thermal damage when they reenter the earth's atmosphere. The coating consists of a mixture of cork, glass, and resin. A new coating (Marshall Convergent Coating, MCC-2) was recently developed that is environmentally complaint. The coating must meet certain minimum thickness standards in order to protect the SRB. The coating is applied by a robot controlled nozzle that moves from the bottom to top, as the rocket part rotates on a table. Several coats are applied, building up to the desired thickness. Inspectors do a limited amount of destructive 'wet' testing. This involves an inspector inserting a rod in the wet coating and removing the rod. This results in a hole that, of course, must be patched later. The material is cured and the thickness is measured. There is no real-time feedback as the coating is being applied. Although this might seem like the best way to control thickness, the problems with 'blowback' (reflected material covering the sensor) are formidable, and have not been solved. After the thermal coating is applied, a protective top coat is applied. The SRB part is then placed in a oven and baked to harden the surface. The operations personnel then measure the thickness of the layer using the Kaman 7200 Displacement Measuring System. The probe is placed on the surface. One person (the inspector) reads the instrument, while another(the technician) records the thickness. Measurements are taken at one foot intervals. After the measurements are taken, the number of low readings is tabulated. If more than 10 percent of the points fall below the minimum value, there is a design review, and the part may be stripped of coating, and a new coating is applied. There is no other analysis.

  5. Designing energy dissipation properties via thermal spray coatings

    DOE PAGES

    Brake, Matthew R. W.; Hall, Aaron Christopher; Madison, Jonathan D.

    2016-12-14

    The coefficient of restitution is a measure of energy dissipation in a system across impact events. Often, the dissipative qualities of a pair of impacting components are neglected during the design phase. This research looks at the effect of applying a thin layer of metallic coating, using thermal spray technologies, to significantly alter the dissipative properties of a system. We studied the dissipative properties across multiple impacts in order to assess the effects of work hardening, the change in microstructure, and the change in surface topography. The results of the experiments indicate that any work hardening-like effects are likely attributablemore » to the crushing of asperities, and the permanent changes in the dissipative properties of the system, as measured by the coefficient of restitution, are attributable to the microstructure formed by the thermal spray coating. Furthermore, the microstructure appears to be robust across impact events of moderate energy levels, exhibiting negligible changes across multiple impact events.« less

  6. Apparatus for coating powders

    DOEpatents

    Makowiecki, Daniel M.; Kerns, John A.; Alford, Craig S.; McKernan, Mark A.

    2000-01-01

    A process and apparatus for coating small particles and fibers. The process involves agitation by vibrating or tumbling the particles or fibers to promote coating uniformly, removing adsorbed gases and static charges from the particles or fibers by an initial plasma cleaning, and coating the particles or fibers with one or more coatings, a first coating being an adhesion coating, and with subsequent coatings being deposited in-situ to prevent contamination at layer interfaces. The first coating is of an adhesion forming element (i.e. W, Zr, Re, Cr, Ti) of a 100-10,000 .ANG. thickness and the second coating or final coating of a multiple (0.1-10 microns) being Cu or Ag, for example for brazing processes, or other desired materials that defines the new surface related properties of the particles. An essential feature of the coating process is the capability to deposit in-situ without interruption to prevent the formation of a contaminated interface that could adversely affect the coating adhesion. The process may include screening of the material to be coated and either continuous or intermittent vibration to prevent agglomeration of the material to be coated.

  7. "The Superficial Quad Technique" for Medial Patellofemoral Ligament Reconstruction: The Surgical Video Technique.

    PubMed

    Goyal, Deepak

    2015-10-01

    With the introduction of the superficial quad technique, there has been a recent revival of interest in the quadriceps tendon as a graft choice for medial patellofemoral ligament (MPFL) reconstruction. The superficial quad technique has many anatomic advantages because the length, breadth, and thickness of the graft are similar to those of the native MPFL; moreover, the graft provides a continuous patellar attachment at the superior half of the medial border of the patella. The technique requires neither a patellar bony procedure nor patellar hardware. Biomechanically, the mean strength and stiffness of the graft are very similar to those of the native MPFL. The anatomic and biomechanical advantages depend on correct identification of the anatomic superficial lamina of the quadriceps tendon; hence the correct harvesting technique for the superficial lamina is crucial. Various sub-techniques for harvesting the quadriceps graft have emerged recently, such as superficial strip, pedicled, or partial graft harvesting; these can create confusion for surgeons. Additional confusion related to the preparation and fixation of the graft should also be addressed to avoid any potential complications. A step-by-step video of the superficial quad technique is presented, covering the exact dissection of the graft material and its preparation, delivery, and fixation.

  8. Vascular patterns of upper limb: an anatomical study with accent on superficial brachial artery

    PubMed Central

    Kachlik, David; Konarik, Marek; Baca, Vaclav

    2011-01-01

    The aim of the study was to evaluate the terminal segmentation of the axillary artery and to present four cases of anomalous branching of the axillary artery, the superficial brachial artery (arteria brachialis superficialis), which is defined as the brachial artery that runs superficially to the median nerve. Totally, 130 cadaveric upper arms embalmed by classical formaldehyde technique from collections of the Department of Anatomy, Third Faculty of Medicine, Charles University in Prague, were macroscopically dissected with special focus on the branching arrangement of the axillary artery. The most distal part of the axillary artery (infrapectoral part) terminated in four cases as a bifurcation into two terminal branches: the superficial brachial artery and profunda brachii artery, denominated according to their relation to the median nerve. The profunda brachii artery primarily gave rise to the main branches of the infrapectoral part of the axillary artery. The superficial brachial artery descended to the cubital fossa where it assumed the usual course of the brachial artery in two cases and in the other two cases its branches (the radial and ulnar arteries) passed superficially to the flexors. The incidence of the superficial brachial artery in our study was 5% of cases. The reported incidence is a bit contradictory, from 0.12% to 25% of cases. The anatomical knowledge of the axillary region is of crucial importance for neurosurgeons and specialists using the radiodiagnostic techniques, particularly in cases involving traumatic injuries. The improved knowledge would allow more accurate diagnostic interpretations and surgical treatment. PMID:21342134

  9. Tension characteristics of the iliotibial tract and role of its superficial layer.

    PubMed

    Matsumoto, H; Seedhom, B

    1995-04-01

    Change in tension along the iliotibial tract by sectioning its superficial layer was analyzed using 5 fresh whole cadavers, and the role of the superficial layer was investigated. Tibial attachment of the iliotibial tract (Gerdy's tubercle) was detached and pulled gradually in a distal direction with respect to the femur. Tension along the iliotibial tract by the distal movement of Gerdy's tubercle (stretching the iliotibial tract) was measured first when the whole iliotibial tract was intact, and then when the superficial layer was sectioned at different levels. When the superficial layer was sectioned above the greater trochanter, no significant change in tension was observed from that observed when the whole iliotibial tract was intact. When the superficial layer was sectioned at the middle of the thigh, the tension at Gerdy's tubercle was significantly reduced. It was concluded that not only Kaplan's fibers, those attached to the distal end of the femur and Gerdy's tubercle, but also the superficial layer of the iliotibial tract had an important role in producing tension at Gerdy's tubercle.

  10. Fotometria superficial BVRI de 18 galáxias fracas

    NASA Astrophysics Data System (ADS)

    Saraiva, M. F. O.; Silva, P. R.

    2003-08-01

    Conhecer as propriedades de galáxias a diferentes redshifts é uma questão fundamental para entender o problema da formação e evolução das galáxias, e desde a década passada tem se intensificado fortemente o estudo de galáxias muito distantes. No entanto parece haver um interesse menor em galáxias a distâncias intermediárias, que aparecem como objetos de fundo em imagens de objetos próximos, e que são igualmente importantes. Examinando imagens BVRI de longa exposição, ótimo sinal/ruído, grande campo (46'x46'), das vizinhanças de NGC 7479, detectamos 18 galáxias fracas (18 < B < 21) nessas imagens. Neste trabalho, apresentamos a fotometria superficial desses objetos. Determinamos coordenadas equatoriais, magnitudes e cores integradas, perfis de brilho e de cor, e parâmetros isofotais calculados por ajuste de ellipses, dentro do limite permitido pela baixa resolução espacial dos dados (1,35 segarc/pixel). Nosso objetivo é procurar correlações entre as propriedades das galáxias e, tentativamente, comparar esses dados com aqueles de galáxias de redshift conhecido, disponíveis na literatura, para estimar suas distâncias (a partir da relação cor x redshift) e suas morfologias. Uma análise preliminar nesse sentido mostrou que as cores aparentes B-V, V-R e V-I dos objetos da nossa amostra, a menos de duas exceções, ocupam regiões bem definidas nos diagramas cor-cor, e não apresentam diferenças notáveis em relação às cores típicas de galáxias próximas.

  11. Interaction of mobile phones with superficial passive metallic implants.

    PubMed

    Virtanen, H; Huttunen, J; Toropainen, A; Lappalainen, R

    2005-06-07

    The dosimetry of exposure to radiofrequency (RF) electromagnetic (EM) fields of mobile phones is generally based on the specific absorption rate (SAR, W kg(-1)), which is the electromagnetic energy absorbed in the tissues per unit mass and time. In this study, numerical methods and modelling were used to estimate the effect of a passive, metallic (conducting) superficial implant on a mobile phone EM field and especially its absorption in tissues in the near field. Two basic implant models were studied: metallic pins and rings in the surface layers of the human body near the mobile phone. The aim was to find out 'the worst case scenario' with respect to energy absorption by varying different parameters such as implant location, orientation, size and adjacent tissues. Modelling and electromagnetic field calculations were carried out using commercial SEMCAD software based on the FDTD (finite difference time domain) method. The mobile phone was a 900 MHz or 1800 MHz generic phone with a quarter wave monopole antenna. A cylindrical tissue phantom models different curved sections of the human body such as limbs or a head. All the parameters studied (implant size, orientation, location, adjacent tissues and signal frequency) had a major effect on the SAR distribution and in certain cases high local EM fields arose near the implant. The SAR values increased most when the implant was on the skin and had a resonance length or diameter, i.e. about a third of the wavelength in tissues. The local peak SAR values increased even by a factor of 400-700 due to a pin or a ring. These highest values were reached in a limited volume close to the implant surface in almost all the studied cases. In contrast, without the implant the highest SAR values were generally reached on the skin surface. Mass averaged SAR(1 g) and SAR(10 g) values increased due to the implant even by a factor of 3 and 2, respectively. However, at typical power levels of mobile phones the enhancement is unlikely to

  12. Recovery of AlMg alloys: Flow stress and strain-hardening properties

    SciTech Connect

    Verdier, M.; Brechet, Y.; Guyot, P.

    1998-12-11

    The recovery of Al-2.5wt% Mg alloys cold-rolled to several strains between 0.1 and 3 has been studied essentially using tensile tests. The yield stress and strain-hardening properties are studied as a function of the initial prestrain, and of the temperature and the duration of annealing treatments. A theoretical model based on the dislocation structure is proposed. The kinetic evolution of the yield stress is related to the variation of the total dislocation density as a single structural parameter. The pseudo-logarithmic time decay is explained on the basis of a relaxation of the internal stresses by thermally activated dislocation motion. A strain-hardening model is proposed based on Kocks` constitutive law of plasticity, where the dislocation storage and dislocation annihilation parameters are adapted to a heterogeneous cell/subgrain dislocation structure. The adjustment of the model to the work-hardening behavior is in agreement with TEM observations.

  13. Precipitation Reactions in Age-Hardenable Alloys During Laser Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    Jägle, Eric A.; Sheng, Zhendong; Wu, Liang; Lu, Lin; Risse, Jeroen; Weisheit, Andreas; Raabe, Dierk

    2016-03-01

    We describe and study the thermal profiles experienced by various age-hardenable alloys during laser additive manufacturing (LAM), employing two different manufacturing techniques: selective laser melting and laser metal deposition. Using scanning electron microscopy and atom probe tomography, we reveal at which stages during the manufacturing process desired and undesired precipitation reactions can occur in age-hardenable alloys. Using examples from a maraging steel, a nickel-base superalloy and a scandium-containing aluminium alloy, we demonstrate that precipitation can already occur during the production of the powders used as starting material, during the deposition of material (i.e. during solidification and subsequent cooling), during the intrinsic heat treatment effected by LAM (i.e. in the heat affected zones) and, naturally, during an ageing post-heat treatment. These examples demonstrate the importance of understanding and controlling the thermal profile during the entire additive manufacturing cycle of age-hardenable materials including powder synthesis.

  14. Hardening of the surface layers of commercial pure titanium VT1-0 under combined treatment

    NASA Astrophysics Data System (ADS)

    Bashchenko, Lyudmila P.; Gromov, Viktor E.; Budovskikh, Evgenii A.; Ivanov, Yurii F.; Soskova, Nina A.

    2015-10-01

    The treatment of VT1-0 titanium samples was carried out by concentrated energy fluxes. The combined treatment included surface carburizing with the joint use of powder samples of compounds with high physical and mechanical properties (namely, titanium diboride TiB2, silicon carbide SiC and zirconium oxide ZrO2) and subsequent electron beam treatment of surface layers formed in electroexplosive treatment. The combined treatment of surface layers resulted in the multifold increase in microhardness, which reduces depending on the depth of hardening zone. After electron-beam treatment, the depth of hardening zone is increased. During electron-beam treatment, the two-layer hardening zone forms.

  15. Cyclic hardening in copper described in terms of combined monotonic and cyclic stress-strain curves

    SciTech Connect

    Chandler, H.D. . School of Mechanical Engineering)

    1995-01-01

    Hardening of polycrystalline copper subjected to tension-compression loading cycles in the plastic region is discussed with reference to changes in flow stress determined from equations describing dislocation glide. It is suggested that hardening is as a result of the accumulation of strain on a monotonic stress-strain curve. On initial loading, the behavior is monotonic. On stress reversal, a characteristic cyclic stress-strain curve is followed until the stress reaches a value in reverse loading corresponding to the maximum attained during the preceding half cycle. Thereafter, the monotonic path is followed until strain reversal occurs at completion of the half cycle. Repetition of the process results in cyclic hardening. Steady state cyclic behavior is reached when a stress associated with the monotonic stress-strain curve is reached which is equal to the stress associated with the cyclic stress-strain curve corresponding to the imposed strain amplitude.

  16. Stepwise work hardening induced by individual grain boundary in Cu bicrystal micropillars.

    PubMed

    Li, L L; Zhang, Z J; Tan, J; Jiang, C B; Qu, R T; Zhang, P; Yang, J B; Zhang, Z F

    2015-10-22

    Vast experiments have demonstrated that the external specimen size makes a large difference in the deformation behavior of crystalline materials. However, as one important kind of internal planar defects, the role of grain boundary (GB) in small scales needs to be clarified in light of the scarce and inconsistent experimental results at present. Through compression of Cu bicrystal and its counterpart monocrystal micropillars, it is found that, in contrast to the monocrystals, the bicrystals are characterized by work hardening with discrete strain bursts. Interestingly, the stress rise between two adjacent strain bursts of the bicrystals increases with the decrease of specimen size. The results suggest that GBs play a critical role in the work hardening of materials in small scales, which may provide important implications to further understand the general work hardening behaviors of materials in the future.

  17. Densification and strain hardening of a metallic glass under tension at room temperature.

    PubMed

    Wang, Z T; Pan, J; Li, Y; Schuh, C A

    2013-09-27

    The deformation of metallic glasses involves two competing processes: a disordering process involving dilatation, free volume accumulation, and softening, and a relaxation process involving diffusional ordering and densification. For metallic glasses at room temperature and under uniaxial loading, disordering usually dominates, and the glass can fail catastrophically as the softening process runs away in a localized mode. Here we demonstrate conditions where the opposite, unexpected, situation occurs: the densifying process dominates, resulting in stable plastic deformation and work hardening at room temperature. We report densification and hardening during deformation in a Zr-based glass under multiaxial loading, in a notched tensile geometry. The effect is driven by stress-enhanced diffusional relaxation, and is attended by a reduction in exothermic heat and hardening signatures similar to those observed in the classical thermal relaxation of glasses. The result is significant, stable, plastic, extensional flow in metallic glasses, which suggest a possibility of designing tough glasses based on their flow properties.

  18. Hardening of the surface layers of commercial pure titanium VT1-0 under combined treatment

    SciTech Connect

    Bashchenko, Lyudmila P. Gromov, Viktor E. Budovskikh, Evgenii A. Soskova, Nina A.; Ivanov, Yurii F.

    2015-10-27

    The treatment of VT1-0 titanium samples was carried out by concentrated energy fluxes. The combined treatment included surface carburizing with the joint use of powder samples of compounds with high physical and mechanical properties (namely, titanium diboride TiB{sub 2}, silicon carbide SiC and zirconium oxide ZrO{sub 2}) and subsequent electron beam treatment of surface layers formed in electroexplosive treatment. The combined treatment of surface layers resulted in the multifold increase in microhardness, which reduces depending on the depth of hardening zone. After electron-beam treatment, the depth of hardening zone is increased. During electron-beam treatment, the two-layer hardening zone forms.

  19. Thermal stresses in chemically hardening elastic media with application to the molding process

    NASA Technical Reports Server (NTRS)

    Levitsky, M.; Shaffer, B. W.

    1974-01-01

    A method has been formulated for the determination of thermal stresses in materials which harden in the presence of an exothermic chemical reaction. Hardening is described by the transformation of the material from an inviscid liquid-like state into an elastic solid, where intermediate states consist of a mixture of the two, in a ratio which is determined by the degree of chemical reaction. The method is illustrated in terms of an infinite slab cast between two rigid mold surfaces. It is found that the stress component normal to the slab surfaces vanishes in the residual state, so that removal of the slab from the mold leaves the remaining residual stress unchanged. On the other hand, the residual stress component parallel to the slab surfaces does not vanish. Its distribution is described as a function of the parameters of the hardening process.

  20. Strength, Hardening, and Failure Observed by In Situ TEM Tensile Testing.

    PubMed

    Kiener, Daniel; Kaufmann, Petra; Minor, Andrew M

    2012-11-01

    We present in situ transmission electron microscope tensile tests on focused ion beam fabricated single and multiple slip oriented Cu tensile samples with thicknesses in the range of 100-200 nm. Both crystal orientations fail by localized shear. While failure occurs after a few percent plastic strain and limited hardening in the single slip case, the multiple slip samples exhibit extended homogenous deformation and necking due to the activation of multiple dislocation sources in conjunction with significant hardening. The hardening behavior at 1% plastic strain is even more pronounced compared to compression samples of the same orientation due to the absence of sample taper and the interface to the compression platen. Moreover, we show for the first time that the strain rate sensitivity of such FIB prepared samples is an order of magnitude higher than that of bulk Cu.