Plasma boriding of a cobalt-chromium alloy as an interlayer for nanostructured diamond growth
NASA Astrophysics Data System (ADS)
Johnston, Jamin M.; Jubinsky, Matthew; Catledge, Shane A.
2015-02-01
Chemical vapor deposited (CVD) diamond coatings can potentially improve the wear resistance of cobalt-chromium medical implant surfaces, but the high cobalt content in these alloys acts as a catalyst to form graphitic carbon. Boriding by high temperature liquid baths and powder packing has been shown to improve CVD diamond compatibility with cobalt alloys. We use the microwave plasma-enhanced (PE) CVD process to deposit interlayers composed primarily of the borides of cobalt and chromium. The use of diborane (B2H6) in the plasma feedgas allows for the formation of a robust boride interlayer for suppressing graphitic carbon during subsequent CVD of nano-structured diamond (NSD). This metal-boride interlayer is shown to be an effective diffusion barrier against elemental cobalt for improving nucleation and adhesion of NSD coatings on a CoCrMo alloy. Migration of elemental cobalt to the surface of the interlayer is significantly reduced and undetectable on the surface of the subsequently-grown NSD coating. The effects of PECVD boriding are compared for a range of substrate temperatures and deposition times and are evaluated using glancing-angle X-ray diffraction (XRD), cross-sectional scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), and micro-Raman spectroscopy. Boriding of CoCrMo results in adhered nanostructured diamond coatings with low surface roughness.
In Situ Solid-Gas Reactivity of Nanoscaled Metal Borides from Molten Salt Synthesis.
Gouget, Guillaume; Debecker, Damien P; Kim, Ara; Olivieri, Giorgia; Gallet, Jean-Jacques; Bournel, Fabrice; Thomas, Cyril; Ersen, Ovidiu; Moldovan, Simona; Sanchez, Clément; Carenco, Sophie; Portehault, David
2017-08-07
Metal borides have mostly been studied as bulk materials. The nanoscale provides new opportunities to investigate the properties of these materials, e.g., nanoscale hardening and surface reactivity. Metal borides are often considered stable solids because of their covalent character, but little is known on their behavior under a reactive atmosphere, especially reductive gases. We use molten salt synthesis at 750 °C to provide cobalt monoboride (CoB) nanocrystals embedded in an amorphous layer of cobalt(II) and partially oxidized boron as a model platform to study morphological, chemical, and structural evolutions of the boride and the superficial layer exposed to argon, dihydrogen (H 2 ), and a mixture of H 2 and carbon dioxide (CO 2 ) through a multiscale in situ approach: environmental transmission electron microscopy, synchrotron-based near-ambient-pressure X-ray photoelectron spectroscopy, and near-edge X-ray absorption spectroscopy. Although the material is stable under argon, H 2 triggers at 400 °C decomposition of CoB, leading to cobalt(0) nanoparticles. We then show that H 2 activates CoB for the catalysis of CO 2 methanation. A similar decomposition process is also observed on NiB nanocrystals under oxidizing conditions at 300 °C. Our work highlights the instability under reactive atmospheres of nanocrystalline cobalt and nickel borides obtained from molten salt synthesis. Therefore, we question the general stability of metal borides with distinct compositions under such conditions. These results shed light on the actual species in metal boride catalysis and provide the framework for future applications of metal borides in their stability domains.
Certain physical properties of cobalt and nickel borides
NASA Technical Reports Server (NTRS)
Kostetskiy, I. I.; Lvov, S. N.
1981-01-01
The temperature dependence of the electrical resistivity, the thermal conductivity, and the thermal emf of cobalt and nickel borides were studied. In the case of the nickel borides the magnetic susceptibility and the Hall coefficient were determined at room temperature. The results are discussed with allowance for the current carrier concentration, the effect of various mechanisms of current-carrier scattering and the location of the Fermi level in relation to the 3d band.
NASA Astrophysics Data System (ADS)
Johnston, Jamin M.; Catledge, Shane A.
2016-02-01
Strengthening of cemented tungsten carbide by boriding is used to improve the wear resistance and lifetime of carbide tools; however, many conventional boriding techniques render the bulk carbide too brittle for extreme conditions, such as hard rock drilling. This research explored the variation in metal-boride phase formation during the microwave plasma enhanced chemical vapor deposition process at surface temperatures from 700 to 1100 °C. We showed several well-adhered metal-boride surface layers consisting of WCoB, CoB and/or W2CoB2 with average hardness from 23 to 27 GPa and average elastic modulus of 600-730 GPa. The metal-boride interlayer was shown to be an effective diffusion barrier against elemental cobalt; migration of elemental cobalt to the surface of the interlayer was significantly reduced. A combination of glancing angle X-ray diffraction, electron dispersive spectroscopy, nanoindentation and scratch testing was used to evaluate the surface composition and material properties. An evaluation of the material properties shows that plasma enhanced chemical vapor deposited borides formed at substrate temperatures of 800 °C, 850 °C, 900 °C and 1000 °C strengthen the material by increasing the hardness and elastic modulus of cemented tungsten carbide. Additionally, these boride surface layers may offer potential for adhesion of ultra-hard carbon coatings.
Investigation of the fracture mechanics of boride composites
NASA Technical Reports Server (NTRS)
Kaufman, L.; Clougherty, E. V.; Nesor, H.
1971-01-01
Fracture energies of WC-6Co, Boride 5 (ZrB2+SiC), Boride 8(ZrB2+SiC+C) and Boride 8-M2(ZrB2+SiC+C) were measured by slow bend and impact tests of notched charpy bars. Cobalt bonded tungsten carbide exhibited impact energies of 0.76 ft-lb or 73.9 in-lb/square inch. Boride 5 and the Boride 8 exhibit impact energies one third and one quarter of that observed for WC-6Co comparing favorably with measurements for SiC and Si3N4. Slow bend-notched bar-fracture energies for WC-6Co were near 2.6 in-lb/square inch or 1/20 the impact energies. Slow bend energies for Boride 8-M2, Boride 8 and Boride 5 were 58%, 42% and 25% of the value observed for WC-6Co. Fractograph showed differences for WC-6Co where slow bend testing resulted in smooth transgranular cleavage while samples broken by impact exhibited intergranular failures. By contrast the boride fractures showed no distinction based on testing method. Fabrication studies were conducted to effect alteration of the boride composites by alloying and introduction of graphite cloth.
NASA Astrophysics Data System (ADS)
Johnston, Jamin M.
This work is a compilation of theory, finite element modeling and experimental research related to the use of microwave plasma enhanced chemical vapor deposition (MPECVD) of diborane to create metal-boride surface coatings on CoCrMo and WC-Co, including the subsequent growth of nanostructured diamond (NSD). Motivation for this research stems from the need for wear resistant coatings on industrial materials, which require improved wear resistance and product lifetime to remain competitive and satisfy growing demand. Nanostructured diamond coatings are a promising solution to material wear but cannot be directly applied to cobalt containing substrates due to graphite nucleation. Unfortunately, conventional pre-treatment methods, such as acid etching, render the substrate too brittle. Thus, the use of boron in a MPECVD process is explored to create robust interlayers which inhibit carbon-cobalt interaction. Furthermore, modeling of the MPECVD process, through the COMSOL MultiphysicsRTM platform, is performed to provide insight into plasma-surface interactions using the simulation of a real-world apparatus. Experimental investigation of MPECVD boriding and NSD deposition was conducted at surface temperatures from 700 to 1100 °C. Several well-adhered metal-boride surface layers were formed: consisting of CoB, CrB, WCoB, CoB and/or W2CoB2. Many of the interlayers were shown to be effective diffusion barriers against elemental cobalt for improving nucleation and adhesion of NSD coatings; diamond on W2CoB2 was well adhered. However, predominantly WCoB and CoB phase interlayers suffered from diamond film delamination. Metal-boride and NSD surfaces were evaluated using glancing-angle x-ray diffraction (XRD), x-ray photoelectron spectroscopy (XPS), cross-sectional scanning electron microscopy (SEM), energy dispersive x-ray spectroscopy (EDS), micro-Raman spectroscopy, nanoindentation, scratch testing and epoxy pull testing. COMSOL MultiphysicsRTM was used to construct a representation of the MPECVD chamber. Relevant material properties, boundary conditions and adjustable parameters were applied to match the actual experimental set-up. Despite approximations, simulations for the surface temperature and surface accumulation matched well with experimental data. The combination of data from CoCrMo, WC-Co and modeling of the MPECVD process confirms that the use of boron to create metal-boride interlayers is applicable for subsequent nanostructured diamond coatings and that the surface temperature and deposition thickness can be predicted using finite element modeling.
Synthesis and properties of nickel cobalt boron nanoparticles
NASA Astrophysics Data System (ADS)
Patel, J.; Pankhurst, Q. A.; Parkin, I. P.
2005-01-01
Amorphous cobalt nickel boride nanoparticles were synthesised by chemical reduction synthesis in aqueous solution. Careful control of synthesis conditions and post reaction oxidation enabled the nanoparticles to be converted into a core-shell structure comprising of an amorphous Co-Ni-B core and an outer metal oxide sheet. These particles had interesting magnetic properties including saturation magnetisations and coercivities of the order of 80 emu/g and 170 Oe respectively, making them suitable for a potential use as an exchange-pinned magnetic material.
Effects of cobalt on the microstructure of Udimet 700. M.S. Thesis Final Report
NASA Technical Reports Server (NTRS)
Engel, M. A.
1982-01-01
Cobalt, a critical and "strategic" alloying element in many superalloys, was systematically substituted by nickel in experimental alloys Udimet 700 containing 0.1, 4.3, 8.6, 12.8 and the standard 17.0 wt.% cobalt. Electrolytic and chemical extraction techniques, X-ray diffraction, scanning electron and optical microscopy were used for the microstructural studies. The total weight fraction of gamma' was not significantly affected by the cobalt content, although a difference in the size and quantities of the primary and secondary gamma' phases was apparent. The lattice parameters of the gamma' were found to increase with increasing cobalt content while the lattice mismatch between the gamma matrix and gamma' phases decreased. Other significant effects of cobalt on the weight fraction, distribution and formation of the carbide and boride phases as well as the relative stability of the experimental alloys during long-time aging are also discussed.
Design of cemented tungsten carbide and boride-containing shields for a fusion power plant
NASA Astrophysics Data System (ADS)
Windsor, C. G.; Marshall, J. M.; Morgan, J. G.; Fair, J.; Smith, G. D. W.; Rajczyk-Wryk, A.; Tarragó, J. M.
2018-07-01
Results are reported on cemented tungsten carbide (cWC) and boride-containing composite materials for the task of shielding the centre column of a superconducting tokamak power plant. The shield is based on five concentric annular shells consisting of cWC and water layers of which the innermost cWC shield can be replaced with boride composites. Sample materials have been fabricated changing the parameters of porosity P, binder alloy fraction f binder and boron weight fraction f boron. For the fabricated materials, and other hypothetical samples with chosen parameters, Monte Carlo studies are made of: (i) the power deposition into the superconducting core, (ii) the fast neutron and gamma fluxes and (iii) the attenuation coefficients through the shield for the deposited power and neutron and gamma fluxes. It is shown that conventional Co-based cWC binder alloy can be replaced with a Fe–Cr alloy (92 wt.% Fe, 8 wt.% Cr), which has lower activation than cobalt with minor changes in shield performance. Boride-based composite materials have been prepared and shown to give a significant reduction in power deposition and flux, when placed close to the superconducting core. A typical shield of cemented tungsten carbide with 10 wt.% of Fe–8Cr binder and 0.1% porosity has a power reduction half-length of 0.06 m. It is shown that the power deposition increases by 4.3% for every 1% additional porosity, and 1.7% for every 1 wt.% additional binder. Power deposition decreased by 26% for an initial 1 wt.% boron addition, but further increases in f boron showed only a marginal decrease. The dependences of power deposited in the core, the maximum neutron and gamma fluxes on the core surface, and the half attenuation distances through the shield have been fitted to within a fractional percentage error by analytic functions of the porosity, metallic binder alloy and boron weight fractions.
The fracture toughness of borides formed on boronized cold work tool steels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sen, Ugur; Sen, Saduman
2003-06-15
In this study, the fracture toughness of boride layers of two borided cold work tool steels have been investigated. Boriding was carried out in a salt bath consisting of borax, boric acid, ferro-silicon and aluminum. Boriding was performed at 850 and 950 deg. C for 2 to 7 h. The presence of boride phases were determined by X-ray diffraction (XRD) analysis. Hardness and fracture toughness of borides were measured via Vickers indenter. Increasing of boriding time and temperature leads to reduction of fracture toughness of borides. Metallographic examination showed that boride layer formed on cold work tool steels was compactmore » and smooth.« less
Kinetics of electrochemical boriding of low carbon steel
NASA Astrophysics Data System (ADS)
Kartal, G.; Eryilmaz, O. L.; Krumdick, G.; Erdemir, A.; Timur, S.
2011-05-01
In this study, the growth kinetics of the boride layers forming on low carbon steel substrates was investigated during electrochemical boriding which was performed at a constant current density of 200 mA/cm 2 in a borax based electrolyte at temperatures ranging from 1123 K to 1273 K for periods of 5-120 min. After boriding, the presence of both FeB and Fe 2B phases were confirmed by the X-ray diffraction method. Cross-sectional microscopy revealed a very dense and thick morphology for both boride phases. Micro hardness testing of the borided steel samples showed a significant increase in the hardness of the borided surfaces (i.e., up to (1700 ± 200) HV), while the hardness of un-borided steel samples was approximately (200 ± 20) HV. Systematic studies over a wide range of boriding time and temperature confirmed that the rate of the boride layer formation is strongly dependent on boriding duration and has a parabolic character. The activation energy of boride layer growth for electrochemical boriding was determined as (172.75 ± 8.6) kJ/mol.
Method for ultra-fast boriding
Erdemir, Ali; Sista, Vivekanand; Kahvecioglu, Ozgenur; Eryilmaz, Osman Levent
2017-01-31
An article of manufacture and method of forming a borided material. An electrochemical cell is used to process a substrate to deposit a plurality of borided layers on the substrate. The plurality of layers are co-deposited such that a refractory metal boride layer is disposed on a substrate and a rare earth metal boride conforming layer is disposed on the refractory metal boride layer.
NASA Technical Reports Server (NTRS)
Nakanishi, T. G.
1984-01-01
A structural study was carried out on Co modified Udimet 738 alloys containing 0.04, 0.10, and 0.20 wt % Zr at 0.01 and 0.03 wt % B levels. Samples in the as-cast and solution-treated conditions were exposed at 843 C to study structural stability. The structures produced by the interactions of Co, Zr, and B were studied by SEM, X-ray diffraction, and dispersive analysis techniques. The additions of large amounts of Zr and B were found to increase the solidification range of the U-738. Structural changes involved eutectic gamma prime islands, formation of low melting point compounds, and precipitation of borides and Zr rich phases. Boron and zirconium additions did not show substantial changes in mechanical properties. Removal of Co from the alloys resulted in reduction of the matrix solubility for carbon and increase in the gamma prime solvus. Structural instabilities found were continuous grain boundary M23C6 films, MC breakdown, and plate-like phases. Removal of cobalt resulted in a slight decrease in tensile and stress rupture properties. Detailed structural results presented.
Xu, Shaomao; Chen, Yanan; Li, Yiju; Lu, Aijiang; Yao, Yonggang; Dai, Jiaqi; Wang, Yanbin; Liu, Boyang; Lacey, Steven D; Pastel, Glenn R; Kuang, Yudi; Danner, Valencia A; Jiang, Feng; Fu, Kun Kelvin; Hu, Liangbing
2017-09-13
The synthesis of nanoscale metal compound catalysts has attracted much research attention in the past decade. The challenges of preparation of the metal compound include the complexity of the synthesis process and difficulty of precise control of the reaction conditions. Herein, we report an in situ synthesis of nanoparticles via a high-temperature pulse method where the bulk material acts as the precursor. During the process of rapid heating and cooling, swift melting, anchoring, and recrystallization occur, resulting in the generation of high-purity nanoparticles. In our work, the cobalt boride (Co 2 B) nanoparticles with a diameter of 10-20 nm uniformly anchored on the reduced graphene oxide (rGO) nanosheets were successfully prepared using the high temperature pulse method. The as-prepared Co 2 B/rGO composite displayed remarkable electrocatalytic performance for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). We also prepared molybdenum disulfide (MoS 2 ) and cobalt oxide (Co 3 O 4 ) nanoparticles, thereby demonstrating that the high-temperature pulse is a universal method to synthesize ultrafine metal compound nanoparticles.
Gradient boride layers formed by diffusion carburizing and laser boriding
NASA Astrophysics Data System (ADS)
Kulka, M.; Makuch, N.; Dziarski, P.; Mikołajczak, D.; Przestacki, D.
2015-04-01
Laser boriding, instead of diffusion boriding, was proposed to formation of gradient borocarburized layers. The microstructure and properties of these layers were compared to those-obtained after typical diffusion borocarburizing. First method of treatment consists in diffusion carburizing and laser boriding only. In microstructure three zones are present: laser borided zone, hardened carburized zone and carburized layer without heat treatment. However, the violent decrease in the microhardness was observed below the laser borided zone. Additionally, these layers were characterized by a changeable value of mass wear intensity factor thus by a changeable abrasive wear resistance. Although at the beginning of friction the very low values of mass wear intensity factor Imw were obtained, these values increased during the next stages of friction. It can be caused by the fluctuations in the microhardness of the hardened carburized zone (HAZ). The use of through hardening after carburizing and laser boriding eliminated these fluctuations. Two zones characterized the microstructure of this layer: laser borided zone and hardened carburized zone. Mass wear intensity factor obtained a constant value for this layer and was comparable to that-obtained in case of diffusion borocarburizing and through hardening. Therefore, the diffusion boriding could be replaced by the laser boriding, when the high abrasive wear resistance is required. However, the possibilities of application of laser boriding instead of diffusion process were limited. In case of elements, which needed high fatigue strength, the substitution of diffusion boriding by laser boriding was not advisable. The surface cracks formed during laser re-melting were the reason for relatively quickly first fatigue crack. The preheating of the laser treated surface before laser beam action would prevent the surface cracks and cause the improved fatigue strength. Although the cohesion of laser borided carburized layer was sufficient, the diffusion borocarburized layer showed a better cohesion.
Yao, Quantong; Sun, Jian; Fu, Yuzhu; Tong, Weiping; Zhang, Hui
2016-01-01
In this paper, a nanocrystalline surface layer without impurities was fabricated on Ti-6Al-4V alloy by means of surface mechanical attrition treatment (SMAT). The grain size in the nanocrystalline layer is about 10 nm and grain morphology displays a random crystallographic orientation distribution. Subsequently, the low-temperature boriding behaviors (at 600 °C) of the SMAT sample, including the phase composition, microstructure, micro-hardness, and brittleness, were investigated in comparison with those of coarse-grained sample borided at 1100 °C. The results showed that the boriding kinetics could be significantly enhanced by SMAT, resulting in the formation of a nano-structured boride layers on Ti-6Al-4V alloy at lower temperature. Compared to the coarse-grained boriding sample, the SMAT boriding sample exhibits a similar hardness value, but improved surface toughness. The satisfactory surface toughness may be attributed to the boriding treatment that was carried out at lower temperature. PMID:28774115
Morphology and structure of borides in as-cast titanium and gamma-titanium aluminide-based alloys
NASA Astrophysics Data System (ADS)
Kitkamthorn, Usanee
In this study, the morphology and structure of the borides in boron-modified Ti- and gamma-TiAl-based alloys have been investigated using SEM, TEM, and HRTEM. A variety of different boride morphologies was observed including plates, needles, and ribbons. For the plate and needle borides, the major boride phase is B27 TiB. The needle borides have their major axis parallel to [010], and are bounded by (100) and {101} type-facets. The plate borides develop the same types of facets as the needles and have habit planes parallel to the (100). There are high densities of intrinsic stacking faults on (100) in these borides and these correspond to thin embedded layers of the Bf structure. The plate borides do not exhibit well-defined ORs with respect to the surrounding phases, suggesting that they develop in the liquid melt and were then trapped by the growing solid. Needle borides are observed mostly at boundaries between lamellar colonies: these needles tend to occur in groups lying nearly parallel to one another and, in some cases, to adopt well-defined ORs with respect to the surrounding phases. Cored borides with metallic phases such as beta, alpha, o and alpha 2+gamma in the center are frequently observed, especially in the Ti-based alloy. These core phases usually adopt well-defined ORs with respect to the surrounding boride which enable low-energy coherent interfaces to form between the phases. The ribbon borides are comprised of thin boride flakes interspersed with thin metallic layers. The major boride phase in these flakes is Bf TiB. The habit plane of the flakes is (010) and there are high densities of faults on this plane corresponding to intergrowths of the Ti3B 4 and TiB2 phases, together with thin layers or occluded pockets of metallic B2 phase. Occasional faults are observed on {110} corresponding to embedded slabs of B27 TiB. There is a well-defined OR between the boride flakes and the B2 phase within the ribbons, but not with the surrounding matrix. The characteristics of these various borides are consistent with them forming as eutectic reaction products, with the exception of the finest needles and plates observed in Ti-based alloy.
Ultra-fast boriding of metal surfaces for improved properties
Timur, Servet; Kartal, Guldem; Eryilmaz, Osman L.; Erdemir, Ali
2015-02-10
A method of ultra-fast boriding of a metal surface. The method includes the step of providing a metal component, providing a molten electrolyte having boron components therein, providing an electrochemical boriding system including an induction furnace, operating the induction furnace to establish a high temperature for the molten electrolyte, and boriding the metal surface to achieve a boride layer on the metal surface.
Boriding of high carbon high chromium cold work tool steel
NASA Astrophysics Data System (ADS)
Muhammad, W.
2014-06-01
High-carbon high-chromium cold work tool steels are widely used for blanking and cold forming of punches and dies. It is always advantageous to obtain an increased wear resistant surface to improve life and performance of these steels. In this connection boriding of a high-carbon high-chromium cold work die steel, D3, was conducted in a mixture of 30% B4C, 70% borax at 950 °C for two, four and six hours. Case depth of the borided layer obtained was between 40 to 80 μm. After boriding, the surface hardness achieved was between 1430 to 1544 HV depending upon the process time. X-ray diffraction studies confirmed the formation of a duplex compound layer consisting of FeB and Fe2B. It is generally considered that FeB is undesirable because of its inherent brittleness. Post boriding treatment (homogenization) transformed the compound layer into single-phase layer of Fe2B, while surface hardness decreased to 1345-1430 HV. Pin-on-disc wer test showed that wear resistance of the borided samples was superior as compared to non-borided material and increased with boriding time.
2015-02-19
boride composites *Volodymyr Borysovych Filipov SCIENCE AND TECHNOLOGY CENTER IN UKRAINE METALISTIV 7A, KYIV, UKRAINE *FRANTSEVICH...microstructure and interface boundary formation in directionally solidified ceramic boride composites 5a. CONTRACT NUMBER STCU P-512 5b. GRANT NUMBER...BOUNDARY FORMATION IN DIRECTIONALLY SOLIDIFIED CERAMIC BORIDE COMPOSITES Project manager: Filipov Volodymyr Borysovych Phone: (+380.44) 424-13-67
Novel Routes for Sintering of Ultra-high Temperature Ceramics and their Properties
2014-10-31
UHTCs charge (zirconium and hafnium borides , SiC) with additives (chromium carbide, nickel, chromium, etc.), which activate sintering process, is...temperature phases in a form of carboborides of zirconium and bi borides of zirconium or chromium. Elevation of densification rate of sintered borides is...superplasticity under the slip mechanism of zirconium boride and silica carbide grains on grain boundary interlayers with nanocrystalline grains of carbon
Designing superhard metals: The case of low borides
NASA Astrophysics Data System (ADS)
Liang, Yongcheng; Qin, Ping; Jiang, Haitao; Zhang, Lizhen; Zhang, Jing; Tang, Chun
2018-04-01
The search for new superhard materials has usually focused on strong covalent solids. It is, however, a huge challenge to design superhard metals because of the low resistance of metallic bonds against the formation and movement of dislocations. Here, we report a microscopic mechanism of enhancing hardness by identifying highly stable thermodynamic phases and strengthening weak slip planes. Using the well-known transition-metal borides as prototypes, we demonstrate that several low borides possess unexpectedly high hardness whereas high borides exhibit an anomalous hardness reduction. Such an unusual phenomenon originates from the peculiar bonding mechanisms in these compounds. Furthermore, the low borides have close compositions, similar structures, and degenerate formation energies. This enables facile synthesis of a multiphase material that includes a large number of interfaces among different borides, and these interfaces form nanoscale interlocks that strongly suppress the glide dislocations within the metal bilayers, thereby drastically enhancing extrinsic hardness and achieving true superhard metals. Therefore, this study not only elucidates the unique mechanism responsible for the anomalous hardening in this class of borides but also offers a valid alchemy to design novel superhard metals with multiple functionalities.
Characterisation of titanium-titanium boride composites processed by powder metallurgy techniques
DOE Office of Scientific and Technical Information (OSTI.GOV)
Selva Kumar, M., E-mail: sel_mcet@yahoo.co.in; Chandrasekar, P.; Chandramohan, P.
2012-11-15
In this work, a detailed characterisation of titanium-titanium boride composites processed by three powder metallurgy techniques, namely, hot isostatic pressing, spark plasma sintering and vacuum sintering, was conducted. Two composites with different volume percents of titanium boride reinforcement were used for the investigation. One was titanium with 20% titanium boride, and the other was titanium with 40% titanium boride (by volume). Characterisation was performed using X-ray diffraction, electron probe micro analysis - energy dispersive spectroscopy and wavelength dispersive spectroscopy, image analysis and scanning electron microscopy. The characterisation results confirm the completion of the titanium boride reaction. The results reveal themore » presence of titanium boride reinforcement in different morphologies such as needle-shaped whiskers, short agglomerated whiskers and fine plates. The paper also discusses how mechanical properties such as microhardness, elastic modulus and Poisson's ratio are influenced by the processing techniques as well as the volume fraction of the titanium boride reinforcement. - Highlights: Black-Right-Pointing-Pointer Ti-TiB composites were processed by HIP, SPS and vacuum sintering. Black-Right-Pointing-Pointer The completion of Ti-TiB{sub 2} reaction was confirmed by XRD, SEM and EPMA studies. Black-Right-Pointing-Pointer Hardness and elastic properties of Ti-TiB composites were discussed. Black-Right-Pointing-Pointer Processing techniques were compared with respect to their microstructure.« less
Characterization of AISI 4140 borided steels
NASA Astrophysics Data System (ADS)
Campos-Silva, I.; Ortiz-Domínguez, M.; López-Perrusquia, N.; Meneses-Amador, A.; Escobar-Galindo, R.; Martínez-Trinidad, J.
2010-02-01
The present study characterizes the surface of AISI 4140 steels exposed to the paste-boriding process. The formation of Fe 2B hard coatings was obtained in the temperature range 1123-1273 K with different exposure times, using a 4 mm thick layer of boron carbide paste over the material surface. First, the growth kinetics of boride layers at the surface of AISI 4140 steels was evaluated. Second, the presence and distribution of alloying elements on the Fe 2B phase was measured using the Glow Discharge Optical Emission Spectrometry (GDOES) technique. Further, thermal residual stresses produced on the borided phase were evaluated by X-ray diffraction (XRD) analysis. The fracture toughness of the iron boride layer of the AISI 4140 borided steels was estimated using a Vickers microindentation induced-fracture testing at a constant distance of 25 μm from the surface. The force criterion of fracture toughness was determined from the extent of brittle cracks, both parallel and perpendicular to the surface, originating at the tips of an indenter impression. The fracture toughness values obtained by the Palmqvist crack model are expressed in the form KC( π/2) > KC > KC(0) for the different applied loads and experimental parameters of the boriding process.
2015-09-16
AFRL-AFOSR-VA-TR-2015-0314 Computational -Experimental Processing of Boride /Carbide Composites by Reactive Infusion of Hf Alloy Melts into B4C...Computational -Experimental Processing of Boride /Carbide Composites by Reactive Infusion of Hf Alloy Melts into B4C 5a. CONTRACT NUMBER 5b. GRANT...with a packed bed of B4C to form boride - carbide precipitates. Although the ultimate goal of the research endeavor is to enhance significantly the
Field free, directly heated lanthanum boride cathode
Leung, Ka-Ngo; Moussa, D.; Wilde, S.B.
1987-02-02
A directly heated cylindrical lanthanum boride cathode assembly is disclosed which minimizes generation of magnetic field which would interfere with electron emission from the cathode. The cathode assembly comprises a lanthanum boride cylinder in electrical contact at one end with a central support shaft which functions as one electrode to carry current to the lanthanum boride cylinder and in electrical contact, at its opposite end with a second electrode which is coaxially position around the central support shaft so that magnetic fields generated by heater current flowing in one direction through the central support shaft are cancelled by an opposite magnetic field generated by current flowing through the lanthanum boride cylinder and the coaxial electrode in a direction opposite to the current flow in the central shaft.
Methods of repairing a substrate
NASA Technical Reports Server (NTRS)
Riedell, James A. (Inventor); Easler, Timothy E. (Inventor)
2011-01-01
A precursor of a ceramic adhesive suitable for use in a vacuum, thermal, and microgravity environment. The precursor of the ceramic adhesive includes a silicon-based, preceramic polymer and at least one ceramic powder selected from the group consisting of aluminum oxide, aluminum nitride, boron carbide, boron oxide, boron nitride, hafnium boride, hafnium carbide, hafnium oxide, lithium aluminate, molybdenum silicide, niobium carbide, niobium nitride, silicon boride, silicon carbide, silicon oxide, silicon nitride, tin oxide, tantalum boride, tantalum carbide, tantalum oxide, tantalum nitride, titanium boride, titanium carbide, titanium oxide, titanium nitride, yttrium oxide, zirconium boride, zirconium carbide, zirconium oxide, and zirconium silicate. Methods of forming the ceramic adhesive and of repairing a substrate in a vacuum and microgravity environment are also disclosed, as is a substrate repaired with the ceramic adhesive.
NASA Astrophysics Data System (ADS)
Keddam, Mourad; Taktak, Sukru
2017-03-01
The present study is focused on the estimation of activation energy of boron in the plasma paste borided Ti6Al4V alloy, which is extensively used in technological applications, using an analytical diffusion model. Titanium boride layers were successfully produced by plasma paste boriding method on the Ti6Al4V alloy in the temperature range of 973-1073 K for a treatment time ranging from 3 to 7 h. The presence of both TiB2 top-layer and TiB whiskers sub-layer was confirmed by the XRD analysis and SEM observations. The surface hardness of the borided alloy was evaluated using Micro-Knoop indenter. The formation rates of the TiB2 and TiB layers were found to have a parabolic character at all applied process temperatures. A diffusion model was suggested to estimate the boron diffusivities in TiB2 and TiB layers under certain assumptions, by considering the effect of boride incubation times. Basing on own experimental data on boriding kinetics, the activation energies of boron in TiB2 and TiB phases were estimated as 136.24 ± 0.5 and 63.76 ± 0.5 kJ mol-1, respectively. Finally, the obtained values of boron activation energies for Ti6Al4V alloy were compared with the data available in the literature.
Properties of boride-added powder metallurgy magnesium alloys
NASA Astrophysics Data System (ADS)
Tanaka, Atsushi; Yoshimura, Syota; Fujima, Takuya; Takagi, Ken-ichi
2009-06-01
Magnesium alloys with metallic borides, magnesium diboride (MgB2) or aluminum diboride (AlB2), were investigated regarding their mechanical properties, transverse rupture strength (TRS) and micro Vickers hardness (HV). The alloys were made from pure Mg, Al and B powders by mechanical alloying and hot pressing to have boride content of between 2.0 and 20 vol%. The alloy with AlB2 exhibited an obvious improvement of HV around a boride content of 6 vol% though the other alloy, with MgB2, did not. TRS showed moderate maxima around the same boride content region for the both alloys. X-ray diffraction measurements indicated an intermetallic compound, Mg17Al12, formed in the alloy with AlB2, which was consistent with its higher hardness.
NASA Astrophysics Data System (ADS)
Makuch, N.; Piasecki, A.; Dziarski, P.; Kulka, M.
2015-12-01
Ni-base superalloys were widely used in aeronautics, chemical and petrochemical industries due to their high corrosion resistance, high creep and rupture strength at high temperature. However, these alloys were not considered for applications in which conditions of appreciable mechanical wear were predominant. The diffusion boriding provided suitable protection against wear. Unfortunately, this process required long duration and high temperature. In this study, instead of the diffusion process, the laser alloying with boron and niobium was used in order to produce the hard and wear resistant layer on Nimonic 80A-alloy. The laser-alloying was carried out as a two-step process. First, the external cylindrical surface of specimens was pre-placed with a paste containing boron and niobium. Then, the pre-placed coating and the thin surface layer of the substrate were re-melted by a laser beam. The high laser beam power (P=1.56 kW) and high averaging irradiance (E=49.66 kW/cm2) provided the thick laser re-melted zone. The laser-borided layers were significantly thicker (470 μm) in comparison with the layers obtained as a consequence of the diffusion boriding. Simultaneously, the high overlapping of multiple laser tracks (86%) caused that the laser-alloyed layer was uniform in respect of the thickness. The produced layer consisted of nickel borides (Ni3B, Ni2B, Ni4B3, NiB), chromium borides (CrB, Cr2B), niobium borides (NbB2, NbB) and Ni-phase. The presence of hard borides caused the increase in microhardness up to 1000 HV in the re-melted zone. However, the measured values were lower than those-characteristic of niobium borides, chromium borides and nickel borides. The presence of the soft Ni-phase in re-melted zone was the reason for such a situation. After laser alloying, the significant increase in abrasive wear resistance was also observed. The mass wear intensity factor, as well as the relative mass loss of the laser-alloyed specimens, was over 10 times smaller in comparison with untreated Nimonic 80A-alloy.
Lindley, Sarah A; Cooper, Jason K; Rojas-Andrade, Mauricio D; Fung, Victoria; Leahy, Conor J; Chen, Shaowei; Zhang, Jin Z
2018-04-18
In principle, the diameter and surface plasmon resonance (SPR) frequency of hollow metal nanostructures can be independently adjusted, allowing the formation of targeted photoactivated structures of specific size and optical functionality. Although tunable SPRs have been reported for various systems, the shift in SPR is usually concomitant with a change in particle size. As such, more advanced tunability, including constant diameter with varying SPR or constant SPR with varying diameter, has not been properly achieved experimentally. Herein, we demonstrate this advanced tunability with hollow gold nanospheres (HGNs). HGNs were synthesized through galvanic exchange using cobalt-based nanoparticles (NPs) as sacrificial scaffolds. Co 2 B NP scaffolds were prepared by sodium borohydride nucleation of aqueous cobalt chloride and characterized using UV-vis, dynamic light scattering, X-ray absorption spectroscopy, and X-ray photoelectron spectroscopy. Careful control over the size of the Co 2 B scaffold and its galvanic conversion is essential to realize fine control of the resultant HGN diameter and shell thickness. In pursuit of size control, we introduce B(OH) 4 - (the final product of NaBH 4 hydrolysis) as a growth agent to obtain hydrodynamic diameters ranging from ∼17-85 nm with relative standard deviation <3%. The highly monodisperse Co 2 B NPs were then used as scaffolds for the formation of HGNs. In controlling HGN shell thickness and uniformity, environmental oxygen was shown to affect both the structural and optical properties of the resultant gold shells. With careful control of these key factors, we demonstrate an HGN synthesis that enables independent variation of diameter and shell thickness, and thereby SPR, with unprecedented uniformity. The new synthesis method creates a truly tunable plasmonic nanostructure platform highly desirable for a wide range of applications, including sensing, catalysis, and photothermal therapy.
NASA Astrophysics Data System (ADS)
Ballinger, Jared
Diamond thin films have promising applications in numerous fields due to the extreme properties of diamonds in conjunction with the surface enhancement of thin films. Biomedical applications are numerous including temporary implants and various dental and surgical instruments. The unique combination of properties offered by nanostructured diamond films that make it such an attractive surface coating include extreme hardness, low obtainable surface roughness, excellent thermal conductivity, and chemical inertness. Regrettably, numerous problems exist when attempting to coat stainless steel with diamond generating a readily delaminated film: outward diffusion of iron to the surface, inward diffusion of carbon limiting necessary surface carbon precursor, and the mismatch between the coefficients of thermal expansion yielding substantial residual stress. While some exotic methods have been attempted to overcome these hindrances, the most common approach is the use of an intermediate layer between the stainless steel substrate and the diamond thin film. In this research, both 316 stainless steel disks and 440C stainless steel ball bearings were tested with interlayers including discrete coatings and graded, diffusion-based surface enhancements. Titanium nitride and thermochemical diffusion boride interlayers were both examined for their effectiveness at allowing for the growth of continuous and adherent diamond films. Titanium nitride interlayers were deposited by cathodic arc vacuum deposition on 440C bearings. Lower temperature diamond processing resulted in improved surface coverage after cooling, but ultimately, both continuity and adhesion of the nanostructured diamond films were unacceptable. The ability to grow quality diamond films on TiN interlayers is in agreement with previous work on iron and low alloy steel substrates, and the similarly seen inadequate adhesion strength is partially a consequence of the lacking establishment of an interfacial carbide phase. Surface boriding was implemented using the novel method of microwave plasma CVD with a mixture of hydrogen and diborane gases. On 440C bearings, dual phase boride layers of Fe2B and FeB were formed which supported adhered nanostructured diamond films. Continuity of the films was not seamless with limited regions remaining uncoated potentially corresponding to delamination of the film as evidenced by the presence of tubular structures presumably composed of sp2 bonded carbon. Surface boriding of 316 stainless steel discs was conducted at various powers and pressures to achieve temperatures ranging from 550-800 °C. The substrate boriding temperature was found to substantially influence the resultant interlayer by altering the metal boride(s) present. The lowest temperatures produced an interlayer where CrB was the single detected phase, higher temperatures yielded the presence of only Fe2B, and a combination of the two phases resulted from an intermediate boriding temperature. Compared with the more common, commercialized boriding methods, this a profound result given the problems posed by the FeB phase in addition to other advantages offered by CVD processes and microwave generated plasmas in general. Indentation testing of the boride layers revealed excellent adhesion strength for all borided interlayers, and above all, no evidence of cracking was observed for a sole Fe2B phase. As with boriding of 440C bearings, subsequent diamond deposition was achieved on these interlayers with substantially improved adhesion strength relative to diamond coated TiN interlayers. Both XRD and Raman spectroscopy confirmed a nanostructured diamond film with interfacial chromium carbides responsible for enhanced adhesion strength. Interlayers consisting solely of Fe2B have displayed an ability to support fully continuous nanostructured diamond films, yet additional study is required for consistent reproduction. This is in good agreement with initial work on pack borided high alloy steels to promote diamond film surface modification. The future direction for continued research of nanostructured diamond coatings on microwave plasma CVD borided stainless steel should further investigate the adhesion of both borided interlayers and subsequent NSD films in addition to short, interrupted diamond depositions to study the interlayer/diamond film interface.
2012-08-01
interior, and carbides and borides at the grain boundaries. Blocky carbide particles can also be seen in the grain interior (Figure 1b). The borides ...can be seen distributed (b) higher magnification image of a typical grain boundary decorated with carbide and boride particles. Bi-modal distribution
Future Directions for Selected Topics in Physics and Materials Science
2012-07-12
referred to as lightides (e.g. borides , nitrides, phosphides) • Materials for energy conversion, energy storage, energy transport and energy production...Distributed nanosystems and sensors • Strategy for multilayered combinatorics • lightides ( borides , nitrides, phosphides, • New applications for...Strategy for multilayered combinatorics Lightides ( borides , nitrides, phosphides) • Energy conversion, .storage and production • Precision control
Plasma metallurgical production of nanocrystalline borides and carbides
NASA Astrophysics Data System (ADS)
Galevsky, G. V.; Rudneva, V. V.; Cherepanov, A. N.; Galevsky, S. G.; Efimova, K. A.
2016-09-01
he experience in production and study of properties of nanocrystalline borides and chromium carbides, titanium, silicon was summarized. The design and features of the vertical three-jet once-through reactor with power 150 kW, used in the plasma metallurgical production, was described. The technological, thermotechnical and resource characteristics of the reactor were identified. The parameters of borides and carbides synthesis, their main characteristics in the nanodispersed state and equipment-technological scheme of production were provided. Evaluation of engineering-and-economical performance of the laboratory and industrial levels of borides and carbides production and the state corresponding to the segment of the world market was carried out.
The Growth Behavior of Titanium Boride Layers in α and β Phase Fields of Titanium
NASA Astrophysics Data System (ADS)
Lv, Xiaojun; Hu, Lingyun; Shuang, Yajing; Liu, Jianhua; Lai, Yanqing; Jiang, Liangxing; Li, Jie
2016-07-01
In this study, the commercially pure titanium was successfully electrochemical borided in a borax-based electrolyte. The process was carried out at a constant cathodic current density of 300 mA cm-2 and at temperatures of 1123 K and 1223 K (850 °C and 950 °C) for 0.5, 1, 2, 3, and 5 hours. The growth behavior of titanium boride layers in the α phase field of titanium was compared with that in the β phase field. After boriding, the presence of both the TiB2 top layer and TiB whisker sub-layer was confirmed by the X-ray diffraction (XRD) and scanning electron microscope. The relationship between the thickness of boride layers and boriding time was found to have a parabolic character in both α and β phase fields of titanium. The TiB whiskers showed ultra-fast growth rate in the β phase field. Its growth rate constant was found to be as high as 3.2002 × 10-13 m2 s-1. Besides, the chemical resistance of the TiB2 layer on the surface of titanium substrate was characterized by immersion tests in molten aluminum.
Kinetic Investigation and Wear Properties of Fe2B Layers on AISI 12L14 Steel
NASA Astrophysics Data System (ADS)
Keddam, M.; Ortiz-Dominguez, M.; Elias-Espinosa, M.; Arenas-Flores, A.; Zuno-Silva, J.; Zamarripa-Zepeda, D.; Gomez-Vargas, O. A.
2018-03-01
In the current study, the powder-pack boriding was applied to the AISI 12L14 steel in the temperature range 1123 K to 1273 K for an exposure time between 2 and 8 hours. The produced boride layer was composed of Fe2B with a sawtooth morphology. A diffusion model based on the integral method was applied to investigate the growth kinetics of Fe2B layers. As a main result, the boron diffusion coefficients in Fe2B were estimated by considering the principle of mass balance at the (Fe2B/substrate) interface with an inclusion of boride incubation times. The value of activation energy for boron diffusion in AISI 12L14 steel was estimated as 165 kJ mol-1 and compared with other values of activation energy found in the literature. An experimental validation of the present model was made by using four different boriding conditions. Furthermore, the Rockwell-C adhesion test was employed to assess the cohesion of boride layers to the base metal. The scratch and pin-on-disc tests were also carried out to analyze the effect of boriding on wear behavior of AISI 12L14 steel.
NASA Astrophysics Data System (ADS)
Steuer, Susanne; Singer, Robert F.
2014-07-01
Two Ni-based superalloys, columnar grained Alloy 247 and single-crystal PWA1483, are joined by transient liquid phase bonding using an amorphous brazing foil containing boron as a melting point depressant. At lower brazing temperatures, two different morphologies of borides develop in both base materials: plate-like and globular ones. Their ratio to each other is temperature dependent. With very high brazing temperatures, the deleterious boride formation in Alloy 247 can be totally avoided, probably because the three-phase-field moves to higher alloying element contents. For the superalloy PWA1483, the formation of borides cannot be completely avoided at high brazing temperatures as incipient melting occurs. During subsequent solidification of these areas, Chinese-script-like borides precipitate. The mechanical properties (tensile tests at room and elevated temperatures and short-term creep rupture tests at elevated temperatures) for brazed samples without boride precipitation are very promising. Tensile strengths and creep times to 1 pct strain are comparable, respectively, higher than the ones of the weaker parent material for all tested temperatures and creep conditions (from 90 to 100 pct rsp. 175 to 250 pct).
2012-02-01
the presence of somewhat randomly-distributed carbides and borides (white particles in BSE images), this grain size was comparable to that observed...pinned by carbide/ boride particles (imaging white in Figure 8c). The very fine gamma-prime precipitates likely produced during magnetron sputtering...sputtered material. First, the carbide/ boride particles were nucleated and hence located preferentially at the grain boundaries in the sputtered
Novel Routes to Tune Thermal Conductivities and Thermoelectric Properties of Materials
2012-11-15
expand the possibilities of borides as functional compou nds. A series of indium-free novel TCO compounds with novel crystal structures, has...powerful methods for modification were demonstrated in the borides , silicides and oxides. Introduction: The goal of this project is to...the possibility to modify the crystal structures can expand the possibilities of borides as functional compounds. A series of indium-free novel TCO
Alloying-Element Loss during High-Temperature Processing of a Nickel-Base Superalloy (Preprint)
2013-01-01
precipitates, and the fine white/gray particles are carbides and borides . ............................................. 23 Figure 2. Aluminum...comparable size, and submicron carbides and borides . A fifteen-minute heat treatment at the subsolvus temperature used in the present work (i.e...precipitates, and ~0.3 volume pct. of carbides and borides with an average diameter of ~0.3 m (Figure 1) [5, 6]. B. Procedures To establish the
Amorphous Iron Borides: Preparation, Structure and Magnetic Properties.
1982-09-28
temperature. External magnetic field experiments were performed in a superconducting solenoid with both source and absor- ber at 4.2 K. The observed...D-Ai20 919 AMORPHOUS IRON BORIDES: PREPARATION STRUCTURE AND i/i MAGNETIC PROPERTIES(U) JOHNS HOPKINS UNIV LAUREL NO APPLIED PHYSICS LRB K MOORJRNI...NATIONAL BUREAU OF STANOANOS-93-A 10 AMORPHOUS IRON BORIDES: PREPARATION, STRUCTURE ~AND MAGNETIC PROPERTIES FINAL REPORT Kishin Moorjani September 1982 U
NASA Astrophysics Data System (ADS)
Zhang, H.; Tang, H.; He, Y. Z.; Zhang, J. L.; Li, W. H.; Guo, S.
2017-11-01
Effects of heat treatment on borides precipitation and mechanical properties of arc-melted and laser-cladded CoCrNiFeAl1.8Cu0.7B0.3Si0.1 high-entropy alloys were comparatively studied. The arc-melted alloy contains lots of long strip borides distributed in the body-centered cubic phase, with a hardness about 643 HV0.5. Laser-cladding can effectively inhibit the boride precipitation and the laser-cladded alloy is mainly composed of a simple bcc solid solution, with a high hardness about 769 HV0.5, indicating the strengthening effect by interstitial boron atoms is greater than the strengthening by borides precipitation. Heat treatments between 800°C and 1200°C can simultaneously improve the hardness and fracture toughness of arc-melted alloys, owing to the boride spheroidization, dissolution, re-precipitation, and hence the increased boron solubility and nano-precipitation in the bcc solid solution. By contrast, the hardness of laser-cladded alloys reduce after heat treatments in the same temperature range, due to the decreased boron solubility in the matrix.
Methods and computer executable instructions for marking a downhole elongate line and detecting same
Watkins, Arthur D.
2003-05-13
Methods and computer executable instructions are provided for making an elongate line (22) with a plurality of marks (30) and detecting those marks (30) to determine a distance of the elongate line (22) in a downhole or a physical integrity thereof. In a preferred embodiment, each mark comprises a plurality of particles (44) having a substantially permanent magnetizing capability adhered to an exterior surface of the elongate line (22) at preselected intervals with an epoxy paint. The particles (44) are arranged at each interval as a plurality of bands (40). Thereafter, the particles are oriented into a magnetic signature for that interval by magnetizing the particles to create a magnetic field substantially normal to the exterior surface. This facilitates detection by a Hall effect probe. The magnetic signatures are stored in a computing configuration and, once a mark is detected, a correlation is made to a unique position on the elongate line by comparison with the stored magnetic signatures. Preferred particles include samarium-cobalt and neodymium-iron-boride.
A study on the formation of solid state nanoscale materials using polyhedral borane compounds
NASA Astrophysics Data System (ADS)
Romero, Jennifer V.
The formation of boron containing materials using a variety of methods was explored. The pyrolysis of a metal boride precursor solution can be accomplished using a one-source method by combining TiCl4, B10H 14 and CH3CN in one reaction vessel and pyrolyzing it at temperatures above 900 °C. Amorphous dark blue colored films were obtained after the pyrolysis reactions. Well-defined spherical shaped grains or particles were observed by SEM. The amorphous films generated contained titanium, however, the determination of the boron content of the films was inconclusive. This one pot method making metal boride thin films has the advantage of being able to dictate the stoichiometry of the reactants. Another part of this work represents the first report of both the use of metal boride materials and the use of a titanium-based compound for the formation of nanotubes. This method provides a facile method for generating well-formed boron-containing carbon nanotubes in a "one-pot" process through an efficient aerosol process. The formation of metal boride corrosion resistant layers was also explored. It was shown that metallic substrates can be effectively boronized using paste mixtures containing boron carbide and borax. The formation of a Fe4B 2 iron boride phase was achieved, however, this iron boride phase does not give enough corrosion protection. The formation of a corrosion resistant metal boride coating with strong adhesion was accomplished by boronization of a thermal sprayed nickel layer on the surface of steel. Surfactants were explored as possible nanoreactors in which metal boride nanoparticles could be formed to use as nanotube growth catalyst via room temperature reaction. Different surfactants were used, but none of them successfully generated very well dispersed metal boride nanoparticles. Nanoparticles with varying shapes and sizes were generated which were highly amorphous. The carboxylic acid derivative of closo-C2B 10 cages was explored as a ligand in the hydrothermal preparation of coordination polymers with zinc salts. It was found that the stability of the cage is apparently insufficient under these conditions and cage degradation was observed. Consequently, a preliminary investigation of the preparation of dipyridyl derivatives of both the closo-C2B 10 and the closo-B12 cages was performed.
Synthesis and Characterization of YB4 Ceramics
2011-06-24
capa bility at temperatures above 2000°C1 with adequate mechani cal properties and oxidation resistance. Refractory metal borides based on HfB2 and ZrB2...increase in the oxidation resistance was accomplished by the addition of the Group IV VI transition metal borides , which was the result of phase...metal borides for use as materials for ultra high temper ature (UHT) applications. However, for instance, yttrium tet raboride, YB4, appears promising as
Finding the Stable Structures of WxN1-x with an ab-initio High-Throughput Approach
2014-03-13
cubic boron nitride[4], carbonitrides,[5] and transition metal borides .[6, 7] Over the past several years there has been considerable theoretical...include ionic and covalent structures which seem chemically similar to W-N. These include borides , carbides, oxides, and other nitrides. In this paper we...metallic alloys, [23–27] we extended it to include over fifty new structures. These include nitrides, oxides, borides , and carbides. The important
Magnesium Aluminum Borides as Explosive Materials
2011-12-20
Metal Silicides , and Metal Borides by Chemical Vapour Deposition Using Single Organometallic Precursors,” Trans. Inst. Met. Finishing, 72, 127-129...391 (2003). 62. X. Xiaojing, D. Bohua, Q. Zuanhui, and L. Yuanhui, “ Preparation and Synthesis Mechanism of Li-B Alloy,” Rare Metal Materials and...SUPPLEMENTARY NOTES 14. ABSTRACT Metal boride.; and boroo carbide Witted l’"irh Al ’I\\· ere compared co B. Mg. Al Mg:-AJ and Si a.s poteotia! fuel ad.diti
Development of high temperature stable Ohmic and Schottky contacts on n-gallium nitride
NASA Astrophysics Data System (ADS)
Khanna, Rohit
In this work the effort was made to towards develop and investigate high temperature stable Ohmic and Schottky contacts for n type GaN. Various borides and refractory materials were incorporated in metallization scheme to best attain the desired effect of minimal degradation of contacts when placed at high temperatures. This work focuses on achieving a contact scheme using different borides which include two Tungsten Borides (namely W2B, W2B 5), Titanium Boride (TiB2), Chromium Boride (CrB2) and Zirconium Boride (ZrB2). Further a high temperature metal namely Iridium (Ir) was evaluated as a potential contact to n-GaN, as part of continuing improved device technology development. The main goal of this project was to investigate the most promising boride-based contact metallurgies on GaN, and finally to fabricate a High Electron Mobility Transistor (HEMT) and compare its reliability to a HEMT using present technology contact. Ohmic contacts were fabricated on n GaN using borides in the metallization scheme of Ti/Al/boride/Ti/Au. The characterization of the contacts was done using current-voltage measurements, scanning electron microscopy (SEM) and Auger Electron Spectroscopy (AES) measurements. The contacts formed gave specific contact resistance of the order of 10-5 to 10-6 Ohm-cm2. A minimum contact resistance of 1.5x10-6 O.cm 2 was achieved for the TiB2 based scheme at an annealing temperature of 850-900°C, which was comparable to a regular ohmic contact of Ti/Al/Ni/Au on n GaN. When some of borides contacts were placed on a hot plate or in hot oven for temperature ranging from 200°C to 350°C, the regular metallization contacts degraded before than borides ones. Even with a certain amount of intermixing of the metallization scheme the boride contacts showed minimal roughening and smoother morphology, which, in terms of edge acuity, is crucial for very small gate devices. Schottky contacts were also fabricated and characterized using all the five boride compounds. The barrier height obtained on n GaN was ˜0-5-0.6 eV which was low compared to those obtained by Pt or Ni. This barrier height is too low for use as a gate contact and they can only have limited use, perhaps, in gas sensors where large leakage current can be tolerated in exchange for better thermal reliability. AlGaN/GaN High Electron Mobility Transistors (HEMTs) were fabricated with Ti/Al/TiB2/Ti/Au source/drain ohmic contacts and a variety of gate metal schemes (Pt/Au, Ni/Au, Pt/TiB2/Au or Ni/TiB 2/Au) and were subjected to long-term annealing at 350°C. By comparison with companion devices with conventional Ti/Al/Pt/Au ohmic contacts and Pt/Au gate contacts, the HEMTs with boride-based ohmic metal and either Pt/Au, Ni/Au or Ni/TiB2/Au gate metal showed superior stability of both source-drain current and transconductance after 25 days aging at 350°C. The need for sputter deposition of the borides causes' problem in achieving significantly lower specific contact resistance than with conventional schemes deposited using e-beam evaporation. The borides also seem to be, in general, good getters for oxygen leading to sheet resistivity issues. Ir/Au Schottky contacts and Ti/Al/Ir/Au ohmic contacts on n-type GaN were investigated as a function of annealing temperature and compared to their more common Ni-based counterparts. The Ir/Au ohmic contacts on n-type GaN with n˜1017 cm-3 exhibited barrier heights of 0.55 eV after annealing at 700°C and displayed less intermixing of the contact metals compared to Ni/Au. A minimum specific contact resistance of 1.6 x 10-6 O.cm2 was obtained for the ohmic contacts on n-type GaN with n˜1018 cm-3 after annealing at 900°C. The measurement temperature dependence of contact resistance was similar for both Ti/Al/Ir/Au and Ti/Al/Ni/Au, suggesting the same transport mechanism was present in both types of contacts. The Ir-based ohmic contacts displayed superior thermal aging characteristics at 350°C. Auger Electron Spectroscopy showed that Ir is a superior diffusion barrier at these moderate temperatures than Ni.
NASA Astrophysics Data System (ADS)
Wang, Bin; Wu, Jie; Jin, Xiaoyue; Wu, Xiaoling; Wu, Zhenglong; Xue, Wenbin
The influence of applied voltage on the plasma electrolytic borocarburizing (PEB/C) layer of Q235 low-carbon steel in high-concentration borax solution was investigated. XRD and XPS spectra of PEB/C layer confirmed that the modified boride layer mainly consisted of Fe2B phase, and the FeB phase only exists in the loose top layer. The applied voltage on Q235 steel played a key role in determining the properties of hardened layers. The thickness and microhardness of boride layers increased with the increase of the applied voltage, which led to superior corrosion and wear resistances of Q235 low-carbon steel. The diffusion coefficient (D) of boride layer at 280, 300 and 330V increased with borocarburizing temperature and ranged from 0.062×10-12m2/s to 0.462×10-12m2/s. The activation energy (Q) of boride layer growth during PEB/C treatment was only 52.83kJṡmol-1, which was much lower than that of the conventional boriding process.
Niobium boride layers deposition on the surface AISI D2 steel by a duplex treatment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kon, O., E-mail: okon42@htotmail.com; Pazarlioglu, S.; Sen, S.
2015-03-30
In this paper, we investigated the possibility of deposition of niobium boride layers on the surface of AISI D2 steel by a duplex treatment. At the first step of duplex treatment, boronizing was performed on AISI D2 steel samples at 1000{sup o}C for 2h and then pre-boronized samples niobized at 850°C, 900°C and 950°C using thermo-reactive deposition method for 1–4 h. The presence of the niobium boride layers such as NbB, NbB{sub 2} and Nb{sub 3}B{sub 4} and also iron boride phases such as FeB, Fe{sub 2}B were examined by X-ray diffraction analysis. Scanning electron microscope (SEM) and micro-hardness measurementsmore » were realized. Experimental studies showed that the depth of the coating layers increased with increasing temperature and times and also ranged from 0.42 µm to 2.43 µm, depending on treatment time and temperature. The hardness of the niobium boride layer was 2620±180 HV{sub 0.005}.« less
Crystal structure and phase stability of tungsten borides
NASA Astrophysics Data System (ADS)
Li, Quan; Zhou, Dan; Ma, Yanming; Chen, Changfeng
2013-03-01
We address the longstanding and controversial issue of ground-state structures of technically important tungsten borides using a first-principles structural search method via a particle-swarm optimization (PSO) algorithm. We have explored a large set of stable chemical compositions (convex hull) and clarified the ground-state structures for a wide range of boron concentrations, including W2B, W3B2,WB,W2B3, WB2,W2B5, WB3, and WB4. We further assessed relative stability of various tungsten borides and compared the calculated results with previously reported experimental data. The phase diagram predicted by the presented calculations may serve as a useful guide for synthesis of a variety of tungsten borides. This work was supported by DOE Grant No. DE-FC52-06NA26274.
High Energy Advanced Thermal Storage for Spacecraft Solar Thermal Power and Propulsion Systems
2011-10-12
Vol. 108, No. 6, June 1961, pp. 568-572. 38. Storms, E. and Mueller, B., "Phase Relations and Thermodynamic Properties of Transition Metal Borides ...T., and Naka, S., "Formation Process of Tungsten Borides by Solid State Reaction Between Tungsten and Amorphous Boron," Journal of Materials...Molybdenum- Borides ," Journal of Metals, September 1952, pp. 983-988. 41. Ellis, R.C., “Various Preparations of Elemental Boron,” Proceedings of the 1st
Finding the Stable Structures of N1-xWx with an Ab Initio High-Throughput Approach
2015-05-26
W. These include borides , carbides, oxides, and other nitrides. We also invented many structures to mimic the random pattern of vacancies on both the...structures. These include nitrides, oxides, borides , and carbides, as well as supercells of standard structures with atoms removed to mimic the random patter...1930). [15] R. Kiessling and Y. H. Liu, Thermal stability of the chromium, iron, and tungsten borides in streaming ammonia and the existence of a new
Molten Boron Phase-Change Thermal Energy Storage to Augment Solar Thermal Propulsion Systems
2011-07-13
Thermodynamic Properties of Transition Metal Borides . I. The Molybdenum-boron system and Elemental Boron," Journal of Physical Chemistry, Vol. 81...February 1977, pp. 318-324. 38Itoh, H., Matsudaira, T., and Naka, S., "Formation Process of Tungsten Borides by Solid State Reaction Between Tungsten...Molybdenum-Boron and Some Properties of The Molybdenum- Borides ," Journal of Metals, September 1952, pp. 983-988. 40Stout, N. D., Mar, R. W., and Boo, W. O
Liu, Xin; Wang, Mengmeng; Yin, Fucheng; Ouyang, Xuemei; Li, Zhi
2017-01-01
The effects of tungsten addition on the microstructure and corrosion resistance of Fe-3.5B alloys in a liquid zinc bath at 520 °C were investigated by means of scanning electron microscopy, X-ray diffraction and electron probe micro-analysis. The microstructure evolution in different alloys is analyzed and discussed using an extrapolated Fe-B-W ternary phase diagram. Experimental results show that there are three kinds of borides, the reticular (Fe, W)2B, the rod-like (Fe, W)3B and flower-like FeWB. The addition of tungsten can refine the microstructure and improve the stability of the reticular borides. Besides, it is beneficial to the formation of the metastable (Fe, W)3B phase. The resultant Fe-3.5B-11W (wt %) alloy possesses excellent corrosion resistance to liquid zinc. When tungsten content exceeds 11 wt %, the formed flower-like FeWB phase destroys the integrity of the reticular borides and results in the deterioration of the corrosion resistance. Also, the corrosion failure resulting from the spalling of borides due to the initiation of micro-cracks in the grain boundary of borides is discussed in this paper. PMID:28772759
Non-Contact Tabletop Mechanical Testing of Ultra-High Temperature Ceramics
2012-05-01
class of refractory materials including transition metal borides , carbides and nitrides e.g. ZrB2l HfB2) ZrC, HfC, TaC, HfN and ZrN. They recently...ike oxidizing atmospheres, at very high temperatures Refractory borides like ZrB2 and HfB2 have extremely high melting temperatures (over 3000°C...But borides are very poor in oxidation resistance, due to the nature of thär oxides Non-protective ZrCfe or Hf02 and volatile liquid B203. Addition
2011-11-01
Deformation is highly localized around stress concentrators such as carbides, borides and serrated grain boundaries, which act as sources of a/2h110i...highly localized around stress concentrators such as carbides, borides and serrated grain boundaries, which act as sources of a/2h110i matrix-type...phase at different thicknesses. 7328 R.R. Unocic et al. / Acta Materialia 59 (2011) 7325–7339 the image. A number of carbide and/or boride phases are
Beta cell device using icosahedral boride compounds
Aselage, Terrence L.; Emin, David
2002-01-01
A beta cell for converting beta-particle energies into electrical energy having a semiconductor junction that incorporates an icosahedral boride compound selected from B.sub.12 As.sub.2, B.sub.12 P.sub.2, elemental boron having an .alpha.-rhombohedral structure, elemental boron having a .beta.-rhombohedral structure, and boron carbides of the chemical formula B.sub.12-x C.sub.3-x, where 0.15
NASA Astrophysics Data System (ADS)
Galevskii, G. V.; Rudneva, V. V.; Galevskii, S. G.; Tomas, K. I.; Zubkov, M. S.
2016-04-01
The experience of production and study on properties of nano-disperse chromium and titanium borides and carbides, and silicon carbide has been generalized. The structure and special service aspects of utilized plasma-metallurgical complex equipped with a three-jet direct-flow reactor with a capacity of 150 kW have been outlined. Processing, heat engineering and service life characteristics of the reactor are specified. The synthesis parameters of borides and carbides, as well as their basic characteristics in nano-disperse condition and their production flow diagram are outlined. Engineering and economic performance of synthesizing borides in laboratory and industrial conditions is assessed, and the respective segment of the international market as well. The work is performed at State Siberian Industrial University as a project part of the State Order of Ministry of Science and Education of the Russian Federation No. 11.1531/2014/K.
The effect of boriding on wear resistance of cold work tool steel
NASA Astrophysics Data System (ADS)
Anzawa, Y.; Koyama, S.; Shohji, I.
2017-05-01
Recently, boriding has attracted extensive attention as surface stiffening processing of plain steel. In this research, the influence of processing time on the formation layer of cold work tool steel (KD11MAX) by Al added fused salt bath was examined. In addition, in order to improve the abrasion resistance of KD11MAX, the effect of the treatment of boronization on the formation layer has been investigated. Boriding were performed in molten borax which contained about 10 mass% Al at processing time of 1.8 ~ 7.2 ks (processing temperature of 1303 K). As a result of the examination, the hardness of the boriding layer becomes about 1900 HV when the processing time of 3.6 ks. Also the abrasion resistance has improved remarkably. Furthermore, it was revealed that the formation layer was boronized iron from the Vickers hardness and analysis of the X-ray diffraction measurement.
Metal Immiscibility Route to Synthesis of Ultrathin Carbides, Borides, and Nitrides.
Wang, Zixing; Kochat, Vidya; Pandey, Prafull; Kashyap, Sanjay; Chattopadhyay, Soham; Samanta, Atanu; Sarkar, Suman; Manimunda, Praveena; Zhang, Xiang; Asif, Syed; Singh, Abhisek K; Chattopadhyay, Kamanio; Tiwary, Chandra Sekhar; Ajayan, Pulickel M
2017-08-01
Ultrathin ceramic coatings are of high interest as protective coatings from aviation to biomedical applications. Here, a generic approach of making scalable ultrathin transition metal-carbide/boride/nitride using immiscibility of two metals is demonstrated. Ultrathin tantalum carbide, nitride, and boride are grown using chemical vapor deposition by heating a tantalum-copper bilayer with corresponding precursor (C 2 H 2 , B powder, and NH 3 ). The ultrathin crystals are found on the copper surface (opposite of the metal-metal junction). A detailed microscopy analysis followed by density functional theory based calculation demonstrates the migration mechanism, where Ta atoms prefer to stay in clusters in the Cu matrix. These ultrathin materials have good interface attachment with Cu, improving the scratch resistance and oxidation resistance of Cu. This metal-metal immiscibility system can be extended to other metals to synthesize metal carbide, boride, and nitride coatings. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Kinetics and Tribological Characterization of Pack-Borided AISI 1025 Steel
NASA Astrophysics Data System (ADS)
Gómez-Vargas, O. A.; Keddam, M.; Ortiz-Domínguez, M.
2017-03-01
In this present study, the AISI 1025 steel was pack-borided in the temperature range of 1,123-1,273 K for different treatment times ranging from 2 to 8 h. A diffusion model was suggested to estimate the boron diffusion coefficients in the Fe2B layers. As a result, the boron activation energy for the AISI 1025 steel was estimated as 174.36 kJ/mol. This value of energy was compared with the literature data. To extend the validity of the present model, other additional boriding conditions were considered. The boride layers formed on the AISI 1025 steel were characterized by the following experimental techniques: scanning electron microscopy, X-ray diffraction analysis and the Daimler-Benz Rockwell-C indentation technique. Finally, the scratch and pin-on-disc tests for wear resistance were achieved using an LG Motion Ltd and a CSM tribometer, respectively, under dry sliding conditions.
NASA Technical Reports Server (NTRS)
Riedell, James A. (Inventor); Easler, Timothy E. (Inventor)
2009-01-01
A precursor of a ceramic adhesive suitable for use in a vacuum, thermal, and microgravity environment. The precursor of the ceramic adhesive includes a silicon-based, preceramic polymer and at least one ceramic powder selected from the group consisting of aluminum oxide, aluminum nitride, boron carbide, boron oxide, boron nitride, hafnium boride, hafnium carbide, hafnium oxide, lithium aluminate, molybdenum silicide, niobium carbide, niobium nitride, silicon boride, silicon carbide, silicon oxide, silicon nitride, tin oxide, tantalum boride, tantalum carbide, tantalum oxide, tantalum nitride, titanium boride, titanium carbide, titanium oxide, titanium nitride, yttrium oxide, zirconium diboride, zirconium carbide, zirconium oxide, and zirconium silicate. Methods of forming the ceramic adhesive and of repairing a substrate in a vacuum and microgravity environment are also disclosed, as is a substrate repaired with the ceramic adhesive.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Xuan
To investigate borides effect on the hot deformation behavior and microstructure evolution of powder metallurgy high borated stainless steel, hot compression tests at the temperatures of 950– 1150 °C and the strain rates of 0.01– 10 s{sup −1} were performed. Flow stress curves indicated that borides increased the material's stress level at low temperature but the strength was sacrificed at temperatures above 1100 °C. A hyperbolic-sine equation was used to characterize the dependence of the flow stress on the deformation temperature and strain rate. The hot deformation activation energy and stress exponent were determined to be 355 kJ/mol and 3.2,more » respectively. The main factors leading to activation energy and stress exponent of studied steel lower than those of commercial 304 stainless steel were discussed. Processing maps at the strains of 0.1, 0.3, 0.5, and 0.7 showed that flow instability mainly concentrated at 950– 1150 °C and strain rate higher than 0.6 s{sup −1}. Results of microstructure illustrated that dynamic recrystallization was fully completed at both high temperature-low strain rate and low temperature-high strain rate. In the instability region cracks were generated in addition to cavities. Interestingly, borides maintained a preferential orientation resulting from particle rotation during compression. - Highlights: •The decrement of activation energy was affected by boride and boron solution. •The decrease of stress exponent was influenced by composition and Cottrell atmosphere. •Boride represented a preferential orientation caused by particle rotation.« less
2012-01-01
submitted to Metallurgical Transactions. This document contains color. 14. ABSTRACT While the role of borides on the microstructure of titanium...Ohio, U.S.A. Abstract While the role of borides on the microstructure of titanium alloys has been discussed in many previous reports, this paper...morphology of precipitates nucleating from boride precipitates present in the matrix of a titanium alloy; and (b) to investigate the role of presence or
NASA Astrophysics Data System (ADS)
Smirnyagina, N. N.; Khaltanova, V. M.; Lapina, A. E.; Dasheev, D. E.
2017-01-01
Composite layers on the basis of carbides and borides the titan and silicon on titanic alloy VT-1 are generated at diffused saturation in vacuum. Formation in a composite of MAX phase Ti3SiC2 is shown. Thermodynamic research of phase equilibrium in systems Ti-Si-C and Ti-B-C in the conditions of high vacuum is executed. The thermodynamics, formation mechanisms of superfirm layers borides and carbides of the titan and silicon are investigated.
Effect of mechanical activation on jell boronizing treatment of the AISI 4140
NASA Astrophysics Data System (ADS)
Yılmaz, S. O.; Karataş, S.
2013-06-01
The article presents the effect of mechanical activation on the growth kinetics of boride layer of boronized AISI 4140 steel. The samples were boronized by ferroboron + (SiO2-Na2O) powders for 873-1173 K temperature and 2, 4, 6 and 8 h times, respectively. The morphology and types of borides formed on the surface of AISI 4140 steel substrate were analyzed. Layer growth kinetics were analyzed by measuring the extent of penetration of FeB and Fe2B sublayers as function of treatment time and temperature in the range of 873-1173 K. High diffusivity was obtained by creating a large number of defects through mechanical activation in the form of nanometer sized crystalline particles through the repeated fracturing and cold-welding of the powder particles, and a depth of 100 μm was found in the specimen borided by the 2 h MA powders, for 4 h and 1073 K, where 2000-2350 HV were measured. Consequently, the application conditions of boronizing were improved by usage of mechanical activation. The preferred Fe2B boride without FeB could be formed in the boride layer under 973 K boronizing temperature by mechanically activated by ferroboron + sodium silicate powder mixture due to the decrease of the activation energy.
Yttria Nanoparticle Reinforced Commercially Pure (CP) Titanium
2011-09-01
nanoparticles as well as titanium boride (TiB) reinforcements were produced through gas atomization. After consolidation and extrusion, room temperature...pure FE iron O oxygen Ti titanium TiB titanium boride TYS tensile yield strength UTS ultimate tensile strength wt% weight percent Y2O3
Growth kinetics of borided layers: Artificial neural network and least square approaches
NASA Astrophysics Data System (ADS)
Campos, I.; Islas, M.; Ramírez, G.; VillaVelázquez, C.; Mota, C.
2007-05-01
The present study evaluates the growth kinetics of the boride layer Fe 2B in AISI 1045 steel, by means of neural networks and the least square techniques. The Fe 2B phase was formed at the material surface using the paste boriding process. The surface boron potential was modified considering different boron paste thicknesses, with exposure times of 2, 4 and 6 h, and treatment temperatures of 1193, 1223 and 1273 K. The neural network and the least square models were set by the layer thickness of Fe 2B phase, and assuming that the growth of the boride layer follows a parabolic law. The reliability of the techniques used is compared with a set of experiments at a temperature of 1223 K with 5 h of treatment time and boron potentials of 2, 3, 4 and 5 mm. The results of the Fe 2B layer thicknesses show a mean error of 5.31% for the neural network and 3.42% for the least square method.
NASA Astrophysics Data System (ADS)
Tian, Hongjing; Guo, Qingjie; Xu, Dongyan
An attapulgite clay-supported cobalt-boride (Co-B) catalyst used in portable fuel cell fields is prepared in this paper by impregnation-chemical reduction method. The cost of attapulgite clay is much lower compared with some other inert carriers, such as activated carbon and carbon nanotube. Its microstructure and catalytic activity are analyzed in this paper. The effects of NaOH concentration, NaBH 4 concentration, reacting temperature, catalyst loadings and recycle times on the performance of the catalysts in hydrogen production from alkaline NaBH 4 solutions are investigated. Furthermore, characteristics of these catalysts are carried out in SEM, XRD and TEM analysis. The high catalytic activity of the catalyst indicates that it is a promising and practical catalyst. Activation energy of hydrogen generation using such catalysts is estimated to be 56.32 kJ mol -1. In the cycle test, from the 1st cycle to the 9th cycle, the average hydrogen generation rate decreases gradually from 1.27 l min -1 g -1 Co-B to 0.87 l min -1 g -1 Co-B.
Abrasion resistant low friction and ultra-hard magnetron sputtered AlMgB14 coatings
NASA Astrophysics Data System (ADS)
Grishin, A. M.
2016-04-01
Hard aluminum magnesium boride films were fabricated by RF magnetron sputtering from a single stoichiometric AlMgB14 ceramic target. X-ray amorphous AlMgB14 films are very smooth. Their roughness does not exceed the roughness of Si wafer and Corning glass used as the substrates. Dispersion of refractive index and extinction coefficient were determined within 300 to 2500 nm range for the film deposited onto Corning glass. Stoichiometric in-depth compositionally homogeneous 2 μm thick films on the Si(100) wafer possess the peak values of nanohardness 88 GPa and Young’s modulus 517 GPa at the penetration depth of 26 nm and, respectively, 35 GPa and 275 GPa at 200 nm depth. Friction coefficient was found to be 0.06. The coating scratch adhesion strength of 14 N was obtained as the first chipping of the coating whereas its spallation failure happened at 21 N. These critical loads and the work of adhesion, estimated as high as 18.4 J m-2, surpass characteristics of diamond like carbon films deposited onto tungsten carbide-cobalt (WC-Co) substrates.
Selection of peptides binding to metallic borides by screening M13 phage display libraries.
Ploss, Martin; Facey, Sandra J; Bruhn, Carina; Zemel, Limor; Hofmann, Kathrin; Stark, Robert W; Albert, Barbara; Hauer, Bernhard
2014-02-10
Metal borides are a class of inorganic solids that is much less known and investigated than for example metal oxides or intermetallics. At the same time it is a highly versatile and interesting class of compounds in terms of physical and chemical properties, like semiconductivity, ferromagnetism, or catalytic activity. This makes these substances attractive for the generation of new materials. Very little is known about the interaction between organic materials and borides. To generate nanostructured and composite materials which consist of metal borides and organic modifiers it is necessary to develop new synthetic strategies. Phage peptide display libraries are commonly used to select peptides that bind specifically to metals, metal oxides, and semiconductors. Further, these binding peptides can serve as templates to control the nucleation and growth of inorganic nanoparticles. Additionally, the combination of two different binding motifs into a single bifunctional phage could be useful for the generation of new composite materials. In this study, we have identified a unique set of sequences that bind to amorphous and crystalline nickel boride (Ni3B) nanoparticles, from a random peptide library using the phage display technique. Using this technique, strong binders were identified that are selective for nickel boride. Sequence analysis of the peptides revealed that the sequences exhibit similar, yet subtle different patterns of amino acid usage. Although a predominant binding motif was not observed, certain charged amino acids emerged as essential in specific binding to both substrates. The 7-mer peptide sequence LGFREKE, isolated on amorphous Ni3B emerged as the best binder for both substrates. Fluorescence microscopy and atomic force microscopy confirmed the specific binding affinity of LGFREKE expressing phage to amorphous and crystalline Ni3B nanoparticles. This study is, to our knowledge, the first to identify peptides that bind specifically to amorphous and to crystalline Ni3B nanoparticles. We think that the identified strong binding sequences described here could potentially serve for the utilisation of M13 phage as a viable alternative to other methods to create tailor-made boride composite materials or new catalytic surfaces by a biologically driven nano-assembly synthesis and structuring.
Friedrich, Alexandra; Winkler, Björn; Juarez-Arellano, Erick A.; Bayarjargal, Lkhamsuren
2011-01-01
Transition metal nitrides, carbides and borides have a high potential for industrial applications as they not only have a high melting point but are generally harder and less compressible than the pure metals. Here we summarize recent advances in the synthesis of binary transition metal nitrides, carbides and borides focusing on the reaction of the elements at extreme conditions generated within the laser-heated diamond anvil cell. The current knowledge of their structures and high-pressure properties like high-(p,T) stability, compressibility and hardness is described as obtained from experiments. PMID:28824101
Directionally Solidified Eutectic Ceramics for Multifunctional Aerospace Applications
2013-01-01
eutectic materials development through a new initiative entitled Boride Eutectic Project. These results first time organize and populate materials...property databases, and utilize an iterative feedback routine to constantly improve the design process of the boride eutectics LaB6-MeB2 (Me = Zr, Hf, Ti
Superabrasive boride and a method of preparing the same by mechanical alloying and hot pressing
Cook, Bruce A.; Harringa, Joel L.; Russell, Alan M.
2002-08-13
A ceramic material which is an orthorhombic boride of the general formula: AlMgB.sub.14 :X, with X being a doping agent. The ceramic is a superabrasive, and in most instances provides a hardness of 40 GPa or greater.
2012-08-01
Properties. Abyss Books, Washington, D.C., 2002. 2. G. Montel, A. Lebugle and H. Pastor. "Manufacture of Materials Containing Refractory Borides ...and ZrO2," International Journal of Refractory Metals and Hard Materials, 17, 235-43 (1999). 10. A.W. Weimer, Carbide, nitride and boride
Adhesive and Cohesive Strength in FeB/Fe2B Systems
NASA Astrophysics Data System (ADS)
Meneses-Amador, A.; Blancas-Pérez, D.; Corpus-Mejía, R.; Rodríguez-Castro, G. A.; Martínez-Trinidad, J.; Jiménez-Tinoco, L. F.
2018-05-01
In this work, FeB/Fe2B systems were evaluated by the scratch test. The powder-pack boriding process was performed on the surface of AISI M2 steel. The mechanical parameters, such as yield stress and Young's modulus of the boride layer, were obtained by the instrumented indentation technique. Residual stresses produced on the boride layer were estimated by using the x-ray diffraction (XRD) technique. The scratch test was performed in order to evaluate the cohesive/adhesive strength of the FeB/Fe2B coating. In addition, a numerical evaluation of the scratch test on boride layers was performed by the finite element method. Maximum principal stresses were related to the failure mechanisms observed by the experimental scratch test. Shear stresses at the interfaces of the FeB/Fe2B/substrate system were also evaluated. Finally, the results obtained provide essential information about the effect of the layer thickness, the residual stresses, and the resilience modulus on the cohesive/adhesive strength in FeB/Fe2B systems.
The Effects of Borides on the Mechanical Properties of TLPB Repaired Inconel 738 Superalloy
NASA Astrophysics Data System (ADS)
Wei, J.; Ye, Y.; Sun, Z.; Zou, G.; Bai, H.; Wu, A.; Liu, L.
2017-10-01
The transient liquid phase diffusion bonding (TLPB) method was used to repair an artificial crack in Inconel 738, which was notched by a femtosecond laser. Mixed ratios of BNi-1a:DF-4B were investigated at the bonding temperature of 1373 K (1100 °C) for 2 to 36 hours. The effect of borides on the mechanical properties of TLPB repaired joints was studied through analysis of the microstructure, fracture path, and morphology observations. The borides formation, morphology, distribution, and joints strength were studied in detail. The results showed that the diffusion of B can either increase or decrease the joint strength, depending on its distribution and morphology. The amount of large blocky Ni-B compounds in the precipitate zone were reduced with increasing holding time, which resulted in an increase in joint strength. Nevertheless, further increasing the holding time led to a decrease in joint strength because of the formation of continuous acicular borides in the diffusion-affected zone. The fracture modes of TLPB joints were also discussed on the basis of the microstructure and fractography.
Micro-Abrasion Wear Resistance of Borided 316L Stainless Steel and AISI 1018 Steel
NASA Astrophysics Data System (ADS)
Reséndiz-Calderon, C. D.; Rodríguez-Castro, G. A.; Meneses-Amador, A.; Campos-Silva, I. E.; Andraca-Adame, J.; Palomar-Pardavé, M. E.; Gallardo-Hernández, E. A.
2017-11-01
The 316L stainless steel has high corrosion resistance but low tribological performance. In different industrial sectors (biomedical, chemical, petrochemical, and nuclear engineering), improvement upon wear resistance of 316L stainless steel components using accessible and inexpensive methods is critical. The AISI 1018 steel is widely used in industry, but its tribological performance is not the best among steels. Therefore, in this study the behavior of the borided 316L stainless steel and 1018 steel is evaluated under micro-abrasion wear. The boriding was carried out at 1223 K over 6 h of exposure time, resulting in a biphase layer composed of FeB/Fe2B phases. In order to evaluate Fe2B phase with no influence from FeB phase, AISI 1018 steel samples were borided at 1273 K for over 20 min and then diffusion annealed at 1273 K over 2 h to obtain a Fe2B mono-phase layer. Micro-abrasion wear resistance was evaluated by a commercial micro-abrasion testing rig using a mix of F-1200 SiC particles with deionized water as abrasive slurry. The obtained wear rates for FeB and Fe2B phases and for the 316L stainless steel were compared. Wear resistance of 316L stainless steel increases after boriding. The wear mechanisms for both phases and for the stainless steel were identified. Also, transient conditions for rolling and grooving abrasion were determined for the FeB and Fe2B phases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Menaka,; Kumar, Bharat; Kumar, Sandeep
The present study describes a novel low temperature route at ambient pressure for the synthesis of nanocrystalline chromium borides (CrB and CrB{sub 2}) without using any flux or additives. The favorable and intimate mixing of nanoparticles of chromium acetate (Cr source) and boron forms an active chromium–boron precursor which decomposes at much lower temperature (400 °C) to form CrB (which is ∼1000 °C less than the known ambient pressure synthesis). The chromium acetate nanoparticles (∼5 nm) decorate the larger boron particles (150–200 nm) due to electrostatic interactions resulting from opposing surface charges of boron (zeta potential:+48.101 mV) and chromium acetatemore » (zeta potential:−4.021 mV) in ethanolic medium and is evident in the TEM micrographs. The above method leads to the formation of pure CrB film like structure at 400 °C and nanospheres (40–60 nm) at 600 °C. Also, chromium diboride (CrB{sub 2}) nanoparticles (25 nm) could be obtained at 1000 °C. - Graphical abstract: Variation of surface charge of reactants, precursor and the products, chromium borides (CrB and CrB{sub 2}). Highlights: ► Novel borothermal reduction process for synthesis of chromium boride. ► Significant lowering of reaction temperature to obtain nanocrystalline chromium boride. ► Enhanced reactivity due to appropriate surface interactions.« less
NASA Astrophysics Data System (ADS)
Rai, Arun Kumar; Vijayashanthi, N.; Tripathy, H.; Hajra, R. N.; Raju, S.; Murugesan, S.; Saroja, S.
2017-11-01
In the present study, the feasibility of employing the indigenously developed ferroboron alloy (Fe-15 wt.%B) as an alternate neutron shield material in combination with 9Cr-based ferritic steel (P91) clad in future Indian fast breeder reactors (FBR), has been investigated from a metallurgical perspective. Towards this goal, a series of diffusion couple experiments have been conducted at three different temperatures namely, 600, 700 and 800 °C for time durations up to 5000 h. The thickness of interaction layer has been monitored using standard metallographic procedures. The experiments revealed that ferroboron/P91 combination exhibited a tendency to form complex intermetallic borides at the interface. The structural and microstructural characterization of the interface confirmed that the reaction layer consists predominantly of borides of Fe and Cr of type FeB, Fe2B, (Fe,Cr)2B and (Fe,Cr)B. The measured variation of interaction layer thickness as a function of time and temperature have been modelled in terms of diffusion mediated interaction. The growth kinetics of borided layer has followed the parabolic law at each temperature, and the apparent activation energy for boride layer formation is found to be of the order of 115 kJ mol-1. This indicates that the kinetics of boriding could be governed by diffusion of B into the P91 matrix. Based on the findings of present study, an extrapolative estimate of the clad attack thickness at 550 °C for 60 years of operating time has been made and it turns out to be 210 ± 15 μm, which is less than the clad thickness of FBR shielding subassembly (4 mm) [1]. Thus, this study confirms that at testing temperatures from 550 to 600 °C, the ferroboron/P91 steel combination can be safely employed for shielding subassembly applications in fast reactors.
NASA Astrophysics Data System (ADS)
Chernov, Ya. B.; Filatov, E. S.
2017-08-01
The kinetics of thermal diffusion boriding in a melt based on calcium chloride with a boron oxide additive is studied using reversed current. The main temperature, concentration, and current parameters of the process are determined. The phase composition of the coating is determined by a metallographic method.
Search for New Superconductors for Energy and Power Applications
2014-10-21
superconductors, borides , carbides, silicides, and chalcogenides. In addition, a number of thin film systems have been explored: A15s, superlattices, arrays of...YBa2Cu3O7 Bi2Se3 Eu-Si-C ErRh4B4 Bi2Sr2CaCu2O8 (UD, OD) Sb2Se3 V-Si-C (Ga,Mn)As CuO ZrSe2 Sm-Si-C Hf(FeCo)P Y1-xCaxCrO3 Fe-Te-Se BORIDES Hf-Fe-C-P...Physics, Warsaw, Poland Table III New superconductors, discovered by UCSD MURI team. BORIDES Tc (K) Nb0.9Zr0.1B 11.2 ZrNbxB 9.0 ZrVxB 9.0
NASA Technical Reports Server (NTRS)
Tanaka, Hidehiko
1987-01-01
A silicon carbide powder of a 5-micron grain size is mixed with 0.15 to 0.60 wt% mixture of a boron compound, i.e., boric acid, boron carbide (B4C), silicon boride (SiB4 or SiB6), aluminum boride, etc., and an aluminum compound, i.e., aluminum, aluminum oxide, aluminum hydroxide, aluminum carbide, etc., or aluminum boride (AlB2) alone, in such a proportion that the boron/aluminum atomic ratio in the sintered body becomes 0.05 to 0.25 wt% and 0.05 to 0.40 wt%, respectively, together with a carbonaceous additive to supply enough carbon to convert oxygen accompanying raw materials and additives into carbon monoxide.
Method of boronizing transition metal surfaces
Koyama, Koichiro; Shimotake, Hiroshi
1983-01-01
A method is presented for preparing a boride layer on a transition metal substrate for use in corrosive environments or as a harden surface in machine applications. This method is particularly useful in treating current collectors for use within a high temperature and corrosive electrochemical cell environment. A melt of a alkali metal boride tetrafluoride salt including such as KF to lower its melting point is prepared including a dissolved boron containing material, for instance NiB, MnB.sub.2, or CrB.sub.2. A transition metal to be coated is immersed in the melt at a temperature of no more than 700.degree. C. and a surface boride layer of that transition metal is formed within a period of about 24 hours on the substrate surface.
Subminiature eddy current transducers for studying boride coatings
NASA Astrophysics Data System (ADS)
Dmitriev, S. F.; Ishkov, A. V.; Malikov, V. N.; Sagalakov, A. M.
2016-07-01
Strengthening of parts and units of machines, increased reliability and longer service life is an important task of modern mechanical engineering. The main objects of study in the work were selected steel 65G and 50HGA, wear-resistant boride coatings ternary system Fe-B-Fe n B which were investigated by scanning electron microscopy and eddy-current nondestructive methods.
2012-09-01
of a di-tungsten boride (W2B) phase was not detected in the nW-B sample, but the low concentration of boron may have made this phase undetectable by...Split Hopkinson Bar UFG ultrafine grained W2B di-tungsten boride XRD x-ray diffraction NO. OF NO. OF COPIES ORGANIZATION COPIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burghaus, Jens; Dronskowski, Richard, E-mail: drons@HAL9000.ac.rwth-aachen.d; Miller, Gordon J.
2009-10-15
First-principles, density-functional studies of several intermetallic borides of the general type M{sub 2}M'Ru{sub 5-n}Rh{sub n}B{sub 2} (n=0-5; M=Sc, Ti, Nb; M'=Fe, Co) show that the variation in saturation magnetic moment with valence-electron count follows a Slater-Pauling curve, with a maximum moment occurring typically at 66 valence electrons. The magnetic moments in these compounds occur primarily from the 3d electrons of the magnetically active M' sites, with some contribution from the Ru/Rh sites via magnetic polarization. Electronic DOS curves reveal that a rigid-band approach is a reasonable approximation for the estimation of saturation moments and the analysis of orbital interactions inmore » this family of complex borides. COHP analyses of the M'-M' orbital interactions indicate optimized interactions in the minority spin states for Co-containing phases, but strong bonding interactions remaining in Fe-containing phases. - Graphical abstract: Theoretically determined (spin-polarized LMTO-GGA) local magnetic moments as a function of the chemical valence Z for various intermetallic borides.« less
Superplastic behavior of two ultrahigh boron steels
NASA Astrophysics Data System (ADS)
Jiménez, J. A.; González-Doncel, G.; Acosta, P.; Ruano, O. A.
1994-06-01
The high-temperature deformation behavior of two ultrahigh boron steels containing 2.2 pct and 4.9 pct B was investigated. Both alloys were processed via powder metallurgy involving gas atomization and hot isostatic pressing (hipping) at various temperatures. After hipping at 700 °C, the Fe-2.2 pct B alloy showed a fine microstructure consisting of l- µm grains and small elongated borides (less than 1 µm) . At 1100 °C, a coarser microstructure with rounded borides was formed. This alloy was superplastic at 850 °C with stress exponents of about two and tensile elongations as high as 435 pct. The microstructure of the Fe-4.9 pct B alloy was similar to that of the Fe-2.2 pct B alloy showing, in addition, coarse borides. This alloy also showed low stress exponent values but lacked high tensile elongation (less than 65 pct), which was attributed to the presence of stress accumulation at the interface between the matrix and the large borides. A change in the activation energy value at the α-γ transformation temperature was seen in the Fe-2.2 pct B alloy. The plastic flow data were in agreement with grain boundary sliding and slip creep models.
Friction and wear of radiofrequency-sputtered borides, silicides, and carbides
NASA Technical Reports Server (NTRS)
Brainard, W. A.; Wheeler, D. R.
1978-01-01
The friction and wear properties of several refractory compound coatings were examined. These compounds were applied to 440 C bearing steel surfaces by radiofrequency (RF) sputtering. The refractory compounds were the titanium and molybdenum borides, the titanium and molybdenum silicides, and the titanium, molybdenum, and boron carbides. Friction testing was done with a pin-on-disk wear apparatus at loads from 0.1 to 5.0 newtons. Generally, the best wear properties were obtained when the coatings were bias sputtered onto 440 C disks that had been preoxidized. Adherence was improved because of the better bonding of the coatings to the iron oxide formed during preoxidation. As a class the carbides provided wear protection to the highest loads. Titanium boride coatings provided low friction and good wear properties to moderate loads.
Low temperature InP /Si wafer bonding using boride treated surface
NASA Astrophysics Data System (ADS)
Huang, Hui; Ren, Xiaomin; Wang, Wenjuan; Song, Hailan; Wang, Qi; Cai, Shiwei; Huang, Yongqing
2007-04-01
An approach for InP /Si wafer bonding based on boride-solution treatment was presented. The bonding energy is higher than the InP fracture energy by annealing at 280°C. An In0.53Ga0.47As/InP multiple-quantum-well (MQW) structure grown on InP was transferred onto Si substrate via the bonding process. X-ray diffraction and photoluminescence reveal that crystal quality of the bonded MQW was preserved. A thin B2O3-POx-SiO2 oxide layer of about 28nm thick at the bonding interface was detected. X-ray photoelectron spectroscopy and Raman analyses indicate that the formation of oxygen bridging bonds by boride treatment is responsible for the strong fusion obtained at such low temperature.
Method of boronizing transition metal surfaces
Koyama, Koichiro; Shimotake, Hiroshi.
1983-08-16
A method is presented for preparing a boride layer on a transition metal substrate for use in corrosive environments or as a harden surface in machine applications. This method is particularly useful in treating current collectors for use within a high temperature and corrosive electrochemical cell environment. A melt of a alkali metal boride tetrafluoride salt including such as KF to lower its melting point is prepared including a dissolved boron containing material, for instance NiB, MnB[sub 2], or CrB[sub 2]. A transition metal to be coated is immersed in the melt at a temperature of no more than 700 C and a surface boride layer of that transition metal is formed within a period of about 24 hours on the substrate surface. 4 figs.
Matrix Transformation in Boron Containing High-Temperature Co-Re-Cr Alloys
NASA Astrophysics Data System (ADS)
Strunz, Pavel; Mukherji, Debashis; Beran, Přemysl; Gilles, Ralph; Karge, Lukas; Hofmann, Michael; Hoelzel, Markus; Rösler, Joachim; Farkas, Gergely
2018-03-01
An addition of boron largely increases the ductility in polycrystalline high-temperature Co-Re alloys. Therefore, the effect of boron on the alloy structural characteristics is of high importance for the stability of the matrix at operational temperatures. Volume fractions of ɛ (hexagonal close-packed—hcp), γ (face-centered cubic—fcc) and σ (Cr2Re3 type) phases were measured at ambient and high temperatures (up to 1500 °C) for a boron-containing Co-17Re-23Cr alloy using neutron diffraction. The matrix phase undergoes an allotropic transformation from ɛ to γ structure at high temperatures, similar to pure cobalt and to the previously investigated, more complex Co-17Re-23Cr-1.2Ta-2.6C alloy. It was determined in this study that the transformation temperature depends on the boron content (0-1000 wt. ppm). Nevertheless, the transformation temperature did not change monotonically with the increase in the boron content but reached a minimum at approximately 200 ppm of boron. A probable reason is the interplay between the amount of boron in the matrix and the amount of σ phase, which binds hcp-stabilizing elements (Cr and Re). Moreover, borides were identified in alloys with high boron content.
2011-11-01
30 kN pressure and heating rate of 100 K/min. Introduction Boride , carbides and nitrides of the group IVB and VB transition metals are considered...10. Sciti D., Silvestroni L., Nygren M. Spark plasma sintering of Zr- and Hf- borides with decreasing amounts of MoSi2 as sintering aid Journal of
Phase identification in boron-containing powder metallurgy steel using EBSD in combination with EPMA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Ming-Wei, E-mail: mwwu@ntut.edu.tw; Cai, Wen-Zhang
2016-03-15
Boron (B) is extensively used to induce liquid phase sintering (LPS) in powder metallurgy (PM) steels and thereby increase the densification. The alloying elements in B-containing PM steels affect the boride phase, stability of the boride, the temperature of liquid formation, and the progress of LPS. However, the boride phase has not been systematically identified yet. The main objective of this study was to clarify the influences of alloying elements, including C, Cr, and Ni, on the boride phases using electron backscatter diffraction (EBSD) in combination with electron probe microanalysis (EPMA). Network structures consisting of ferrite, Fe{sub 2}B boride, andmore » Fe{sub 3}C carbide were extensively observed in the Fe–0.4B–0.5C steel. The portions of Fe{sub 2}B were sufficiently larger than those of Fe{sub 3}C, and Fe{sub 3}C was mostly distributed at the interfaces between ferrite and Fe{sub 2}B. Adding 1.5 wt.% Cr or 1.8 wt.% Ni to Fe–0.4B–0.5C steel completely changes the Fe{sub 2}B and Fe{sub 3}C phases to a M{sub 3}(B,C) phase, where M represents the metallic elements, including Fe, Cr, Mo, and Ni. Furthermore, Cr, Mo, B, and C atoms tend to concentrate on the M{sub 3}(B,C) phase, but Ni atoms do not. - Highlights: • Network structures consisting of ferrite, Fe{sub 2}B boride, and Fe{sub 3}C carbide were extensively observed in the Fe–0.4B–0.5C steel. • Adding 1.5 wt.% Cr or 1.8 wt.% Ni to Fe–0.4B–0.5C steel completely transforms the Fe{sub 2}B and Fe{sub 3}C phases to a M{sub 3}(B,C) phase. • Cr, Mo, B, and C atoms tend to concentrate on the M{sub 3}(B,C) phase, but Ni atoms do not.« less
Multifunctional Ceramic Nanostructured Coatings
2010-12-01
silicon carbide composites // J. Europ. Cer. Soc. − 2004. − Vol. 24. − P. 2169−2179. 22. Yu. P. Udalov, E. E. Valova, S. S. Ordanian. Fabrication and...by the titanium and tungsten borides and carbides . The analysis was done using the X-ray and electron-optical methods. This information expands our...coating compositions should be based on limited solubility materials. Such systems include carbides , nitrides, borides and silicides based on
Structure of superhard tungsten tetraboride: A missing link between MB2 and MB12 higher borides
Lech, Andrew T.; Turner, Christopher L.; Mohammadi, Reza; Tolbert, Sarah H.; Kaner, Richard B.
2015-01-01
Superhard metals are of interest as possible replacements with enhanced properties over the metal carbides commonly used in cutting, drilling, and wear-resistant tooling. Of the superhard metals, the highest boride of tungsten—often referred to as WB4 and sometimes as W1–xB3—is one of the most promising candidates. The structure of this boride, however, has never been fully resolved, despite the fact that it was discovered in 1961—a fact that severely limits our understanding of its structure–property relationships and has generated increasing controversy in the literature. Here, we present a new crystallographic model of this compound based on refinement against time-of-flight neutron diffraction data. Contrary to previous X-ray–only structural refinements, there is strong evidence for the presence of interstitial arrangements of boron atoms and polyhedral bonding. The formation of these polyhedra—slightly distorted boron cuboctahedra—appears to be dependent upon the defective nature of the tungsten-deficient metal sublattice. This previously unidentified structure type has an intermediary relationship between MB2 and MB12 type boride polymorphs. Manipulation of the fractionally occupied metal and boron sites may provide insight for the rational design of new superhard metals. PMID:25733870
Analysis of boron carbides' electronic structure
NASA Technical Reports Server (NTRS)
Howard, Iris A.; Beckel, Charles L.
1986-01-01
The electronic properties of boron-rich icosahedral clusters were studied as a means of understanding the electronic structure of the icosahedral borides such as boron carbide. A lower bound was estimated on bipolaron formation energies in B12 and B11C icosahedra, and the associated distortions. While the magnitude of the distortion associated with bipolaron formation is similar in both cases, the calculated formation energies differ greatly, formation being much more favorable on B11C icosahedra. The stable positions of a divalent atom relative to an icosahedral borane was also investigated, with the result that a stable energy minimum was found when the atom is at the center of the borane, internal to the B12 cage. If incorporation of dopant atoms into B12 cages in icosahedral boride solids is feasible, novel materials might result. In addition, the normal modes of a B12H12 cluster, of the C2B10 cage in para-carborane, and of a B12 icosahedron of reduced (D sub 3d) symmetry, such as is found in the icosahedral borides, were calculated. The nature of these vibrational modes will be important in determining, for instance, the character of the electron-lattice coupling in the borides, and in analyzing the lattice contribution to the thermal conductivity.
Electrochemical Corrosion Behavior of Spray-Formed Boron-Modified Supermartensitic Stainless Steel
NASA Astrophysics Data System (ADS)
Zepon, Guilherme; Nogueira, Ricardo P.; Kiminami, Claudio S.; Botta, Walter J.; Bolfarini, Claudemiro
2017-04-01
Spray-formed boron-modified supermartensitic stainless steel (SMSS) grades are alloys developed to withstand severe wear conditions. The addition of boron to the conventional chemical composition of SMSS, combined with the solidification features promoted by the spray forming process, leads to a microstructure composed of low carbon martensitic matrix reinforced by an eutectic network of M2B-type borides, which considerably increases the wear resistance of the stainless steel. Although the presence of borides in the microstructure has a very beneficial effect on the wear properties of the alloy, their effect on the corrosion resistance of the stainless steel was not comprehensively evaluated. The present work presents a study of the effect of boron addition on the corrosion resistance of the spray-formed boron-modified SMSS grades by means of electrochemical techniques. The borides fraction seems to have some influence on the repassivation kinetics of the spray-formed boron-modified SMSS. It was shown that the Cr content of the martensitic matrix is the microstructural feature deciding the corrosion resistance of this sort of alloys. Therefore, if the Cr content in the alloy is increased to around 14 wt pct to compensate for the boron consumed by the borides formation, the corrosion resistance of the alloy is kept at the same level of the alloy without boron addition.
A Crossover from High Stiffness to High Hardness: The Case of Osmium and Its Borides
NASA Astrophysics Data System (ADS)
Bian, Yongming; Liu, Xiaomei; Li, Anhu; Liang, Yongcheng
2016-09-01
Transition-metal light-element compounds are currently raising great expectations for hard and superhard materials. Using the widely attracting osmium (Os) and its borides (OsB, Os2B3 and OsB2) as prototypes, we demonstrate by first-principles calculations that heavy transition metals, which possess high stiffness but low hardness, can be converted into highly hard materials by incorporating of light elements to form compounds. Such a crossover is a manifestation that the underlying sources of high stiffness and high hardness are fundamentally different. The stiffness is related to elastic deformation that is closely associated with valence electron density, whereas the hardness depends strongly on plastic deformation that is determined by bonding nature. Therefore, the incorporation of light atoms into transition metal should be a valid pathway of designing hard and superhard materials. This strategy is in principle also applicable to other transition-metal borides, carbides, and nitrides.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krivezhenko, Dina S., E-mail: dinylkaa@yandex.ru; Drobyaz, Ekaterina A., E-mail: ekaterina.drobyaz@yandex.ru; Bataev, Ivan A., E-mail: ivanbataev@ngs.ru
2015-10-27
An investigation of surface-hardened materials obtained by cladding with an electron beam injected into the air atmosphere was carried out. Structural investigations of coatings revealed that an increase in boron carbide concentration in a saturating mixture contributed to a rise of a volume fraction of iron borides in coatings. The maximum hardened depth reached 2 mm. Hardened layers were characterized by the formation of heterogeneous structure which consisted of iron borides and titanium carbides distributed uniformly in the eutectic matrix. Areas of titanium boride conglomerations were detected. It was found that an increase in the boron carbide content led to anmore » enhancement in hardness of the investigated materials. Friction testing against loosely fixed abrasive particles showed that electron-beam cladding of powder mixtures containing boron carbides, titanium, and iron in air atmosphere allowed enhancing a resistance of materials hardened in two times.« less
Thermodynamical and thermoelectric properties of boron doped YPd{sub 3} and YRh{sub 3}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dwivedi, Shalini; Sharma, Yamini, E-mail: sharma.yamini62@gmail.com; Sharma, Ramesh
2016-05-23
The structural, electronic, thermal, and optical properties of borides of cubic non-magnetic YX{sub 3} (X=Rh, Pd) compounds and their borides which crystallize in the AuCu{sub 3} structure have been studied using the density functional theory (DFT). The flat bands in the vicinity of E{sub F} which are associated with superconductivity appear in YPd{sub 3} and YRh{sub 3} band structures. However, the B s-states enhance the flat band only in YRh{sub 3}B. The optical properties clearly show that boron insertion modifies the absorption and transmittance. The YX{sub 3} alloys and their borides exhibit valuable changes in the thermopower and ZT. Itmore » is observed that the properties of the Y-X intermetallics change significantly for the Y-Rh and Y-Pd alloys and the presence of single boron atom modifies the properties to a great extent.« less
Magnetization Analysis of Magnesium Boride Wires
NASA Astrophysics Data System (ADS)
Cave, J. R.; Zhu, W.
2006-03-01
Cycled applied field magnetization curves contain a wealth of information on critical current density and flux pinning that is not commonly exploited. Detailed magnetization data for magnesium boride wire cores have been analyzed for critical state model consistency. The iron-sheathed silicon nitride doped magnesium boride wires were prepared from pure magnesium and boron powders with nano-scale silicon nitride additions (MgB2-x(Si3N4)x/7 with x = 0 - 0.4). A subsequent short annealing heat treatment, 800 degrees C and of 1 hour duration in Argon, was applied to create the desired phase. Magnetization critical current densities were up to ˜340 kA/cm2 at 5K and 1T. Major and minor loop analysis will be described, for field sweeps up to 3 tesla at fixed temperatures and for temperature sweeps from 5K to 45K in fixed fields, with respect to parameters describing the critical state model.
NASA Astrophysics Data System (ADS)
Krivezhenko, Dina S.; Drobyaz, Ekaterina A.; Bataev, Ivan A.; Chuchkova, Lyubov V.
2015-10-01
An investigation of surface-hardened materials obtained by cladding with an electron beam injected into the air atmosphere was carried out. Structural investigations of coatings revealed that an increase in boron carbide concentration in a saturating mixture contributed to a rise of a volume fraction of iron borides in coatings. The maximum hardened depth reached 2 mm. Hardened layers were characterized by the formation of heterogeneous structure which consisted of iron borides and titanium carbides distributed uniformly in the eutectic matrix. Areas of titanium boride conglomerations were detected. It was found that an increase in the boron carbide content led to an enhancement in hardness of the investigated materials. Friction testing against loosely fixed abrasive particles showed that electron-beam cladding of powder mixtures containing boron carbides, titanium, and iron in air atmosphere allowed enhancing a resistance of materials hardened in two times.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bykova, E., E-mail: elena.bykova@uni-bayreuth.de; Laboratory of Crystallography, University of Bayreuth, D-95440 Bayreuth; Gou, H.
2015-10-15
We present here a detailed description of the crystal structures of novel iron borides, Fe{sub 2}B{sub 7} and Fe{sub x}B{sub 50} with various iron content (x=1.01(1), 1.04(1), 1.32(1)), synthesized at high pressures and high temperatures. As revealed by high-pressure single-crystal X-ray diffraction, the structure of Fe{sub 2}B{sub 7} possesses short incompressible B–B bonds, which make it as stiff as diamond in one crystallographic direction. The volume compressibility of Fe{sub 2}B{sub 7} (the bulk modulus K{sub 0}= 259(1.8) GPa, K{sub 0}′= 4 (fixed)) is even lower than that of FeB{sub 4} and comparable with that of MnB{sub 4}, known for highmore » bulk moduli among 3d metal borides. Fe{sub x}B{sub 50} adopts the structure of the tetragonal δ-B, in which Fe atoms occupy an interstitial position. Fe{sub x}B{sub 50} does not show considerable anisotropy in the elastic behavior. - Graphical abstract: Crystal structures of novel iron borides, Fe{sub 2}B{sub 7} and Fe{sub x}B{sub 50} (x=1.01(1), 1.04(1), 1.32(1)). - Highlights: • Novel iron borides, Fe{sub 2}B{sub 7} and Fe{sub x}B{sub 50}, were synthesized under HPHT conditions. • Fe{sub 2}B{sub 7} has a unique orthorhombic structure (space group Pbam). • Fe{sub 2}B{sub 7} possesses short incompressible B–B bonds that results in high bulk modulus. • Fe{sub x}B{sub 50} adopts the structure of the tetragonal δ-B composed of B{sub 12} icosahedra. • In Fe{sub x}B{sub 50} intraicosahedral bonds are stiffer than intericosahedral ones.« less
Applied magnetism: A supply-driven materials challenge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rios, Orlando; McCall, Scott K.
Permanent magnets are important in many green energy technologies including wind turbine generators and hybrid-electric vehicle motors. For these applications, volume and weight are important factors driving the overall design, and therefore a high energy density, or energy product, is an important figure of merit. This quantity defines the magnetic energy contained in a given volume of material, and so higher energy density magnets enable smaller, lighter applications. Currently, the most powerful magnets suitable for commercial purposes contain rare earth elements (REE), usually neodymium and dysprosium in the neodymium-iron-boride class of magnets. However, for select applications, often requiring high temperatures,more » samarium cobalt is the alloy of choice. These magnets have energy densities several times greater than their nearest non-REE-based competitor, which for some applications is the defining factor in creating a viable device. The global supply of these REE is overwhelmingly produced in China, which in 2015 mined more than ten times as much as the next largest producer (Australia). Such market domination effectively creates a single source of supply, leaving industries which rely on REE consumption susceptible to price shocks and supply disruptions of these critical materials. Furthermore, this supply sensitivity may act as a drag on the adaptation rate of green energy technologies, particularly for large-scale users.« less
Applied magnetism: A supply-driven materials challenge
Rios, Orlando; McCall, Scott K.
2016-05-27
Permanent magnets are important in many green energy technologies including wind turbine generators and hybrid-electric vehicle motors. For these applications, volume and weight are important factors driving the overall design, and therefore a high energy density, or energy product, is an important figure of merit. This quantity defines the magnetic energy contained in a given volume of material, and so higher energy density magnets enable smaller, lighter applications. Currently, the most powerful magnets suitable for commercial purposes contain rare earth elements (REE), usually neodymium and dysprosium in the neodymium-iron-boride class of magnets. However, for select applications, often requiring high temperatures,more » samarium cobalt is the alloy of choice. These magnets have energy densities several times greater than their nearest non-REE-based competitor, which for some applications is the defining factor in creating a viable device. The global supply of these REE is overwhelmingly produced in China, which in 2015 mined more than ten times as much as the next largest producer (Australia). Such market domination effectively creates a single source of supply, leaving industries which rely on REE consumption susceptible to price shocks and supply disruptions of these critical materials. Furthermore, this supply sensitivity may act as a drag on the adaptation rate of green energy technologies, particularly for large-scale users.« less
The effect of melt refining upon inclusions in aluminum
NASA Astrophysics Data System (ADS)
Simensen, C. J.
1982-03-01
A series of aluminum melts has been refined with respect to inclusions by use of ALCOA 469, FILD, or SNIF. The content and size distribution of inclusions in the original-and the refined melts-have been measured by use of neutron activation (oxygen content), gas chromatography (carbide content), sedimentation analysis, and dissolution of metal in hydrochloric acid and subsequent analysis of oxides by means of a Coulter Counter. All the units tested have a beneficial effect and decrease the inclusion content, but the number of analyses are too few to make general conclusions. However, for melts cleaned by use of SNIF, it was found that oxides larger than 50 μm in cross section and borides larger than 20 μm in diameter were removed, while the smaller borides were agglomerated only. The effect of FILD and ALCOA 469 upon the melt tested was removal of borides larger than 5-10 μ m and oxides larger than 15μm in diameter, respectively.
Interfacial reactions in borsic/Ti-3Al-2-1/2V composite
NASA Technical Reports Server (NTRS)
Rao, V. B.; Houska, C. R.; Unnam, J.; Brewer, W. D.; Tenney, D. R.
1979-01-01
The paper provides a detailed X-ray characterization of a borsic/Ti-3Al-2-1/2V composite, and to correlate the relative intensities of the reaction products with the mechanical properties. Based on X-ray integrated intensity data two stages of interface reactions were identified: during the first stage there is a simultaneous interdiffusion of Si, C, and Ti atoms at the filament/matrix interface resulting in the formation of Ti5Si3, TiSi and small amounts of TiSi2 and TiC. The second stage is associated with considerable TiSi2 and boride formation. It appears that the alpha-phase of Ti is more reactive in forming silicides and borides than the beta-phase. The silicide intensities and the reaction zone thicknesses are shown to be directly related to the reduction of the ultimate tensile strength by thermal degradation, and the results indicate that silicide reaction products are as detrimental to strength as the borides.
NASA Astrophysics Data System (ADS)
Flores-Rentería, M. A.; Ortiz-Domínguez, M.; Keddam, M.; Damián-Mejía, O.; Elias-Espinosa, M.; Flores-González, M. A.; Medina-Moreno, S. A.; Cruz-Avilés, A.; Villanueva-Ibañez, M.
2015-02-01
This work focused on the determination of boron diffusion coefficient through the Fe2B layers on AISI 1026 steel using a mathematical model. The suggested model solves the mass balance equation at the (Fe2B/substrate) interface. This thermochemical treatment was carried out in the temperature range of 1123-1273 K for a treatment time ranging from 2 to 8 h. The generated boride layers were characterized by different experimental techniques such as light optical microscopy, scanning electron microscopy, XRD analysis and the Daimler-Benz Rockwell-C indentation technique. As a result, the boron activation energy for AISI 1026 steel was estimated as 178.4 kJ/mol. Furthermore, this kinetic model was validated by comparing the experimental Fe2B layer thickness with the predicted one at a temperature of 1253 K for 5 h of treatment. A contour diagram relating the layer thickness to the boriding parameters was proposed to be used in practical applications.
He, Daping; Zhang, Libo; He, Dongsheng; Zhou, Gang; Lin, Yue; Deng, Zhaoxiang; Hong, Xun; Wu, Yuen; Chen, Chen; Li, Yadong
2016-08-09
The low activity of the oxygen reduction reaction in polymer electrolyte membrane fuel cells is a major barrier for electrocatalysis, and hence needs to be optimized. Tuning the surface electronic structure of platinum-based bimetallic alloys, a promising oxygen reduction reaction catalyst, plays a key role in controlling its interaction with reactants, and thus affects the efficiency. Here we report that a dealloying process can be utilized to experimentally fabricate the interface between dealloyed platinum-nickel alloy and amorphous nickel boride membrane. The coating membrane works as an electron acceptor to tune the surface electronic structure of the platinum-nickel catalyst, and this composite catalyst composed of crystalline platinum-nickel covered by amorphous nickel boride achieves a 27-times enhancement in mass activity relative to commercial platinum/carbon at 0.9 V for the oxygen reduction reaction performance. Moreover, this interactional effect between a crystalline surface and amorphous membrane can be readily generalized to facilitate the 3-times higher catalytic activity of commercial platinum/carbon.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osterle, W.; Krause, S.; Moelders, T.
2008-11-15
Turbine components from conventionally cast nickel-base alloy Rene 80 show different hot cracking susceptibilities depending on their heat treatment conditions leading to slightly different microstructures. Electron probe micro-analysis, focused ion beam technique and analytical transmission electron microscopy were applied to reveal and identify grain boundary precipitates and the {gamma}-{gamma}'-microstructure. The distribution of borides along grain boundaries was evaluated statistically by quantitative metallography. The following features could be correlated with an increase of cracking susceptibility: i) Increasing grain size, ii) increasing fraction of grain boundaries with densely spaced borides, iii) lack of secondary {gamma}'-particles in matrix channels between the coarse cuboidalmore » {gamma}'-precipitates. The latter feature seems to be responsible for linking-up of cracked grain boundary precipitates which occurred as an additional cracking mechanism after one heat treatment, whereas decohesion at the boride-matrix-interface in the heat affected zone of laser-drilled holes was observed for both heat treatments.« less
Method of making an icosahedral boride structure
Hersee, Stephen D.; Wang, Ronghua; Zubia, David; Aselage, Terrance L.; Emin, David
2005-01-11
A method for fabricating thin films of an icosahedral boride on a silicon carbide (SiC) substrate is provided. Preferably the icosahedral boride layer is comprised of either boron phosphide (B.sub.12 P.sub.2) or boron arsenide (B.sub.12 As.sub.2). The provided method achieves improved film crystallinity and lowered impurity concentrations. In one aspect, an epitaxially grown layer of B.sub.12 P.sub.2 with a base layer or substrate of SiC is provided. In another aspect, an epitaxially grown layer of B.sub.12 As.sub.2 with a base layer or substrate of SiC is provided. In yet another aspect, thin films of B.sub.12 P.sub.2 or B.sub.12 As.sub.2 are formed on SiC using CVD or other vapor deposition means. If CVD techniques are employed, preferably the deposition temperature is above 1050.degree. C., more preferably in the range of 1100.degree. C. to 1400.degree. C., and still more preferably approximately 1150.degree. C.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wade, C.S.; Park, H.G.; Hoagland, R.G.
This paper considers the relation between microstructure and mechanical properties of two Ni-base and two Fe-base Boride-Dispersion-Strengthened Microcrystalline (BDSM) alloys. In these very fine grained materials the borides were primarily Cr, Mo, and MoFe in a fcc matrix in three of the alloys, and a bcc in one of the Fe-base alloys. Strength data and resistance to stress corrosion cracking are reported and, in the latter case, extraordinary resistance to SCC in NaCl, Na{sub 2}S{sub 2}O{sub 3} and boiling MgCl{sub 2} environments was observed in every case. The fcc BDSM alloys also demonstrated excellent thermal stability in terms of strengthmore » and fracture roughness up to 1000 C. The bcc alloy suffered severe loss of toughness. The fracture mode involved ductile rupture in all alloys and they display a reasonably linear correlation between K{sub Ic} and the square root of particle spacing.« less
Magnetic properties and magnetic hardening mechansim of Pt-Co-B alloys
NASA Technical Reports Server (NTRS)
Qiu, Ning; Flanagan, F.; Wittig, James E.
1994-01-01
The intrinsic coercivity is found to be maximized in the Pt42Co45B13 ternary alloy which is undercooled and rapidly solidified (quenched using a 70 m/s wheel speed after undercooling), and then annealed (800 C for 2400 min). The same alloy, processed at slower cooling rates and annealed in the same way, has a much larger scale microstructure and a much lower resulting magnetic coercivity. The microstructure which would optimize the coercitvity of this coercivity of this ternary alloy is a completely ordered L1(sub zero) Pt-Co matrix with a submicron magnetic single-domion Co-boride precipitate. The L1(sub zero) phase is highly anistropic magnetically while the Co-boride precipate is somewhat less so. Annealing treatments designed to produced single-domain Co-boride precipitates enhance the coercivity. This suggests that the refined microstructures is responsible for the high coercivities found in the rapidly solidified and annealed alloy. The magnetic domain wall thickness for a Co-boride precipitate is determined from both experimental observation and theoretical calculation in order to evaluate its influence on the coercivity of the alloy. The effects of the pinning of domain walls and the barrier to the nucleation of reverse domains on the coercivity are discussed. Both microstrucutral analysis and theoretical calculation indicate that the high coercivities in the Pt42Co45B13 alloy are due to the difficult nucleation of reverse magnetic domains.
Electroplating of the superconductive boride MgB2 from molten salts
NASA Astrophysics Data System (ADS)
Abe, Hideki; Yoshii, Kenji; Nishida, Kenji; Imai, Motoharu; Kitazawa, Hideaki
2005-02-01
An electroplating technique of the superconductive boride MgB2 onto graphite substrates is reported. Films of MgB2 with a thickness of tens micrometer were fabricated on the planar and curved surfaces of graphite substrates by means of electrolysis on a mixture of magnesium chloride, potassium chloride, sodium chloride, and magnesium borate fused at 600 °C under an Ar atmosphere. The electrical resistivity and magnetization measurements revealed that the electroplated MgB2 films undergo a superconducting transition with the critical temperature (Tc) of 36 K.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vainshtein, �. E.; Zhurakovskii, E. A.
1959-08-01
X-ray spectral analyses confirmed the hypothesis on the metal-like state of hydrogen in tithnium hydrides. Experiments with titunium borides and silicides indicate the special character and degree of the 3d--level participation in the metallic'' bond between the atoms of various complexes. The structure of metalloid elements becomes more complicated with an increase in the specific number of boron and silicon atoms and the bond between the atoms tends to become covalent. (R.V.J.)
NASA Astrophysics Data System (ADS)
Maiden, Colin; Siegel, Edward
History of ``NANO'': Siegel-Matsubara-Vest-Gregson[Mtls. Sci. and Eng. 8, 6, 323(`71); Physica Status Solidi (a)11,45(`72)] VERY EARLY carbides/nitrides/borides powders/cermets solid-state physics/chemistry/metallurgy/ ceramics FIRST-EVER EXPERIMENTAL NANO-physics/chemistry[1968 ->Physica Status Solidi (a)11,45(`72); and EARLY NANO-``physics''/NANO-``chemistry'' THEORY(after: Kubo(`62)-Matsubara(`60s-`70s)-Fulde (`65) [ref.: Sugano[Microcluster-Physics, Springer('82 `98)
Synthesis and Characterization of Low-Cost Superhard Transition-Metal Borides
NASA Astrophysics Data System (ADS)
Kaner, Richard
2013-06-01
The increasing demand for high-performance cutting and forming tools, along with the shortcomings of traditional tool materials such as diamond (unable to cut ferrous materials), cubic boron nitride (expensive) and tungsten carbide (relatively-low hardness), has motivated the search for new superhard materials for these applications. This has led us to a new class of superhard materials, dense refractory transition-metal borides, which promise to address some of the existing problems of conventional superhard materials. For example, we have synthesized rhenium diboride (ReB2) using arc melting at ambient pressure. This superhard material has demonstrated an excellent electrical conductivity and superior mechanical properties, including a Vickers hardness of 48.0 GPa (under an applied load of 0.49 N). To further increase the hardness and lower the materials costs, we have begun exploring high boron content metal borides including tungsten tetraboride (WB4) . We have synthesized WB4 by arc melting and studied its hardness and high-pressure behavior. With a similar Vickers hardness (43.3 GPa under a load of 0.49 N) and bulk modulus (326-339 GPa) to ReB2, WB4 offers a lower cost alternative and has the potential to be used in cutting tools. To further enhance the hardness of this superhard metal, we have created the binary and ternary solid solutions of WB4 with Cr, Mn and Ta, the results of which show a hardness increase of up to 20 percent. As with other metals, these metallic borides can be readily cut and shaped using electric discharge machining (EDM).
NASA Astrophysics Data System (ADS)
Ma, Qunshuang; Li, Yajiang; Wu, Na; Wang, Juan
2013-06-01
Vacuum brazing of super-Ni/NiCr laminated composite and Cr18-Ni8 stainless steel was carried out using Ni-Cr-Si-B amorphous filler metal at 1060, 1080, and 1100 °C, respectively. Microstructure and phase constitution were investigated by means of optical and scanning electron microscopy, energy-dispersive spectroscopy, x-ray diffraction, and micro-hardness tester. When brazed at 1060-1080 °C, the brazed region can be divided into two distinct zones: isothermally solidified zone (ISZ) consisting of γ-Ni solid solution and athermally solidified zone (ASZ) consisting of Cr-rich borides. Micro-hardness of the Cr-rich borides formed in the ASZ was as high as 809 HV50 g. ASZ decreased with increase of the brazing temperature. Isothermal solidification occurred sufficiently at 1100 °C and an excellent joint composed of γ-Ni solid solution formed. The segregation of boron from ISZ to residual liquid phase is the reason of Cr-rich borides formed in ASZ. The formation of secondary precipitates in diffusion-affected zone is mainly controlled by diffusion of B.
NASA Astrophysics Data System (ADS)
Lee, Kee-Ahn; Gwon, Jin-Han; Yoon, Tae-Sik
2018-03-01
This study investigated the microstructure and the room and high temperature mechanical properties of Fe-Cr-B alloy manufactured by metal injection molding. In addition, hot isostatic pressing was performed to increase the density of the material, and a comparison of properties was made. Microstructural observation confirmed a bi-continuous structure composed of a three-dimensional network of α-Fe phase and (Cr,Fe)2B phase. The HIPed specimen featured a well-formed adhesion between the α-Fe phase and boride, and the number of fine pores was significantly reduced. The tensile results confirmed that the HIPed specimen (RT to 900 °C) had higher strengths compared to the as-sintered specimen, and the change of elongation starting from 700 °C was significantly greater in the HIPed specimen. Fractography suggested that cracks propagated mostly along the interface between the α-Fe matrix and boride in the as-sintered specimen, while direct fracture of boride was observed in addition to interface separation in the HIPed specimen.
Electrically conductive containment vessel for molten aluminum
Holcombe, C.E.; Scott, D.G.
1984-06-25
The present invention is directed to a containment vessel which is particularly useful in melting aluminum. The vessel of the present invention is a multilayered vessel characterized by being electrically conductive, essentially nonwettable by and nonreactive with molten aluminum. The vessel is formed by coating a tantalum substrate of a suitable configuration with a mixture of yttria and particulate metal 10 borides. The yttria in the coating inhibits the wetting of the coating while the boride particulate material provides the electrical conductivity through the vessel. The vessel of the present invention is particularly suitable for use in melting aluminum by ion bombardment.
Electrically conductive containment vessel for molten aluminum
Holcombe, Cressie E.; Scott, Donald G.
1985-01-01
The present invention is directed to a containment vessel which is particularly useful in melting aluminum. The vessel of the present invention is a multilayered vessel characterized by being electrically conductive, essentially nonwettable by and nonreactive with molten aluminum. The vessel is formed by coating a tantalum substrate of a suitable configuration with a mixture of yttria and particulate metal borides. The yttria in the coating inhibits the wetting of the coating while the boride particulate material provides the electrical conductivity through the vessel. The vessel of the present invention is particularly suitable for use in melting aluminum by ion bombardment.
NASA Astrophysics Data System (ADS)
Smirnyagina, N. N.; Khaltanova, V. M.; Dasheev, D. E.; Lapina, A. E.
2017-05-01
Composite layers on the basis of carbides and borides the titan and silicon on titanic alloy VТ-1 are generated at diffused saturation by electron beam treatment in vacuum. Formation in a composite of MAX phase Ti3SiC2 is shown. Thermodynamic research of phase equilibrium in systems Ti-Si-C and Ti-B-C in the conditions of high vacuum is executed. The thermodynamics, formation mechanisms of superfirm layers borides and carbides of the titan and silicon are investigated.
Brazing Inconel 625 Using Two Ni/(Fe)-Based Amorphous Filler Foils
NASA Astrophysics Data System (ADS)
Chen, Wen-Shiang; Shiue, Ren-Kae
2012-07-01
For MBF-51 filler, the brazed joint consists of interfacial grain boundary borides, coarse Nb6Ni16Si7, and Ni/Cr-rich matrix. In contrast, the VZ-2106 brazed joint is composed of interfacial Nb6Ni16Si7 precipitates as well as grain boundary borides, coarse Nb6Ni16Si7, and Ni/Cr/Fe-rich matrix. The maximum tensile strength of 443 MPa is obtained from the MBF-51 brazed specimen. The tensile strengths of VZ-2106 brazed joints are approximately 300 MPa. Both amorphous filler foils demonstrate potential in brazing IN-625 substrate.
Synthesis, Structure, and Properties of Refractory Hard-Metal Borides
NASA Astrophysics Data System (ADS)
Lech, Andrew Thomas
As the limits of what can be achieved with conventional hard compounds, such as tungsten carbide, are nearing reach, super-hard materials are an area of increasing industrial interest. The refractory hard metal borides, such as ReB2 and WB4, offer an increasingly attractive alternative to diamond and cubic boron nitride as a next-generation tool material. In this Thesis, a thorough discussion is made of the progress achieved by our laboratory towards understanding the synthesis, structure, and properties of these extremely hard compounds. Particular emphasis is placed on structural manipulation, solid solution formation, and the unique crystallographic manifestations of what might also be called "super-hard metals".
Structural, electronic and thermal properties of super hard ternary boride, WAlB
NASA Astrophysics Data System (ADS)
Rajpoot, Priyanka; Rastogi, Anugya; Verma, U. P.
2018-04-01
A first principle study of the structural, electronic and thermal properties of Tungsten Aluminum Boride (WAlB) using full-potential linearized augmented plane wave (FP-LAPW) in the frame work of density function theory (DFT) have been calculated. The calculated equilibrium structural parameters are in excellent agreement with available experimental results. The calculated electronic band structure reveals that WAlB is metallic in nature. The quasi-harmonic Debye model is applied to study of the temperature and pressure effect on volume, Debye temperature, thermal expansion coefficient and specific heat at constant volume and constant pressure. To the best of our knowledge theoretical investigation of these properties of WAlB is reported for the first time.
Infiltration processing of boron carbide-, boron-, and boride-reactive metal cermets
Halverson, Danny C.; Landingham, Richard L.
1988-01-01
A chemical pretreatment method is used to produce boron carbide-, boron-, and boride-reactive metal composites by an infiltration process. The boron carbide or other starting constituents, in powder form, are immersed in various alcohols, or other chemical agents, to change the surface chemistry of the starting constituents. The chemically treated starting constituents are consolidated into a porous ceramic precursor which is then infiltrated by molten aluminum or other metal by heating to wetting conditions. Chemical treatment of the starting constituents allows infiltration to full density. The infiltrated precursor is further heat treated to produce a tailorable microstructure. The process at low cost produces composites with improved characteristics, including increased toughness, strength.
The Quantitative Significance of Nondestructive Evaluation of Graphite and Ceramic Materials.
NONDESTRUCTIVE TESTING), (* GRAPHITE , (*BORIDES, NONDESTRUCTIVE TESTING), (*REFRACTORY MATERIALS, NONDESTRUCTIVE TESTING), DEFECTS(MATERIALS), TENSILE PROPERTIES, RADIOGRAPHY, ULTRASONIC PROPERTIES, DENSITY.
High-Temperature Syntheses of New, Thermally-Stable Chemical Compounds.
SYNTHESIS(CHEMISTRY), HEAT RESISTANT PLASTICS, NITRILES, FLUORINE COMPOUNDS, COMPLEX COMPOUNDS, NITROGEN, SULFIDES, ORGANOMETALLIC COMPOUNDS, ORGANOBORANES, BORIDES, SPINEL, CARBIDES, NITRIDES, SILICIDES .
B Layers and Adhesion on Armco Iron Substrate
NASA Astrophysics Data System (ADS)
Elias-Espinosa, M.; Ortiz-Domínguez, M.; Keddam, M.; Flores-Rentería, M. A.; Damián-Mejía, O.; Zuno-Silva, J.; Hernández-Ávila, J.; Cardoso-Legorreta, E.; Arenas-Flores, A.
2014-08-01
In this work, a kinetic model was suggested to evaluate the boron diffusion coefficient in the Fe2B layers grown on the Armco iron substrate by the powder-pack boriding. This thermochemical treatment was carried out in the temperature range of 1123-1273 K for treatment times ranging from 2 to 8 h. The boron diffusion coefficient in the Fe2B layers was estimated by solving the mass balance equation at the (Fe2B/substrate) interface with an inclusion of boride incubation time. To validate the present model, the simulated value of Fe2B layer thickness was compared with the experimental value obtained at 1253 K for a treatment time of 5 h. The morphology of Fe2B layers was observed by SEM and optical microscopy. Metallographic studies showed that the boride layer has a saw-tooth morphology in all the samples. The layer thickness measurements were done with the help of MSQ PLUS software. The Fe2B phase was identified by x-ray diffraction method. Finally, the adherence of Fe2B layers on the Armco iron substrate was qualitatively evaluated by using the Daimler-Benz Rockwell-C indentation technique. In addition, the estimated value of boron activation energy was compared to the literature data.
A Simple, General Synthetic Route toward Nanoscale Transition Metal Borides.
Jothi, Palani R; Yubuta, Kunio; Fokwa, Boniface P T
2018-04-01
Most nanomaterials, such as transition metal carbides, phosphides, nitrides, chalcogenides, etc., have been extensively studied for their various properties in recent years. The similarly attractive transition metal borides, on the contrary, have seen little interest from the materials science community, mainly because nanomaterials are notoriously difficult to synthesize. Herein, a simple, general synthetic method toward crystalline transition metal boride nanomaterials is proposed. This new method takes advantage of the redox chemistry of Sn/SnCl 2 , the volatility and recrystallization of SnCl 2 at the synthesis conditions, as well as the immiscibility of tin with boron, to produce crystalline phases of 3d, 4d, and 5d transition metal nanoborides with different morphologies (nanorods, nanosheets, nanoprisms, nanoplates, nanoparticles, etc.). Importantly, this method allows flexibility in the choice of the transition metal, as well as the ability to target several compositions within the same binary phase diagram (e.g., Mo 2 B, α-MoB, MoB 2 , Mo 2 B 4 ). The simplicity and wide applicability of the method should enable the fulfillment of the great potential of this understudied class of materials, which show a variety of excellent chemical, electrochemical, and physical properties at the microscale. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Corrosion and wear behaviors of boronized AISI 316L stainless steel
NASA Astrophysics Data System (ADS)
Kayali, Yusuf; Büyüksaǧiş, Aysel; Yalçin, Yılmaz
2013-09-01
In this study, the effects of a boronizing treatment on the corrosion and wear behaviors of AISI 316L austenitic stainless steel (AISI 316L) were examined. The corrosion behavior of the boronized samples was studied via electrochemical methods in a simulation body fluid (SBF) and the wear behavior was examined using the ball-on-disk wear method. It was observed that the boride layer that formed on the AISI 316L surface had a flat and smooth morphology. Furthermore, X-ray diffraction analyses show that the boride layer contained FeB, Fe2B, CrB, Cr2B, NiB, and Ni2B phases. Boride layer thickness increased with an increasing boronizing temperature and time. The boronizing treatment also increased the surface hardness of the AISI 316L. Although there was no positive effect of the coating on the corrosion resistance in the SBF medium. Furthermore, a decrease in the friction coefficient was recorded for the boronized AISI 316L. As the boronizing temperature increased, the wear rate decreased in both dry and wet mediums. As a result, the boronizing treatment contributed positively to the wear resistance by increasing the surface hardness and by decreasing the friction coefficient of the AISI 316L.
NASA Astrophysics Data System (ADS)
Ruiz-Vargas, Jose
This thesis reports theoretical and experimental investigations carried out to understand the mechanisms of microstructure formation during isothermal brazing, produced by brazing Inconel 625 and MC2 nickel-based superalloys with filler metal BNi-2. Firstly, studies were made on pure Ni to interpret microstructure's formation with simplified alloy chemistry. Microstructure formation have been studied when varying time at constant temperature (isothermal kinetics), but also when varying temperature for constant hold time (isochronal kinetics). The chemical composition and crystallography of the present phases have been identified, with the following results : (i) the fraction of dissolved base metal has been found proportional to the initial thickness of the brazing alloy, so that the composition of the liquid remains homogeneous with a precise initial equilibrium composition during the whole brazing process, (ii) the melting of the joint occurs in two steps : at lower temperature, it involves only partially melting, and boron diffusion in pure Ni leads to the precipitation of fine Ni3B borides at the interface ; in a second stage, at higher temperature, melting is complete and thermodynamic equilibrium requires significant dissolution of nickel, which also involves the dissolution of part of borides already formed. Secondly, nickel plating technique was used on Inconel 625 nickel-based superalloy. A thin layer of Ni with varying thickness, has been electrodeposited to observe the gradual dissolution of Inconel and microstructural features formation due to the presence of superalloy alloying elements. It has been observed that the nickel coating does not prevent precipitation in the base metal as boron diffuse rapidly through the coating width. In the intermediate nickel plating width, fragile precipitates of nickel borides have been observed, because the contribution of Inconel alloying elements to the melt was very limited. In absence of nickel plating on the superalloy, the formation of Nb and Cr-Mo borides phase has been observed. Efforts have been made to evaluate the accuracy of Boron measurement by energy dispersion X-ray spectroscopy (EDS) in the MC2 superalloy and BNi-2 filler metal. The most accurate method to quantify Boron using EDS is by composition difference. A precision of 5 at.% has been reached when using optimized data acquisition and post processing schemes. Ultimately, Electron Backscatter Diffraction (EBSD) combined with localized EDS analysis has been proven invaluable in conclusively identifying micrometer sized boride precipitates ; thus further improving the characterization of brazed Ni-based superalloys.
Deposition and characterization of aluminum magnesium boride thin film coatings
NASA Astrophysics Data System (ADS)
Tian, Yun
Boron-rich borides are a special group of materials possessing complex structures typically comprised of B12 icosahedra. All of the boron-rich borides sharing this common structural unit exhibit a variety of exceptional physical and electrical properties. In this work, a new ternary boride compound AlMgB14, which has been extensively studied in bulk form due to its novel mechanical properties, was fabricated into thin film coatings by pulsed laser deposition (PLD) technology. The effect of processing conditions (laser operating modes, vacuum level, substrate temperature, and postannealing, etc.) on the composition, microstructure evolution, chemical bonding, and surface morphology of AlMgB14 thin film coatings has been investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), atomic force microscopy (AFM) and Fourier transform infrared (FTIR) spectrometry; the mechanical, electrical, and optical properties of AlMgB14 thin films have been characterized by nanoindentation, four-point probe, van der Pauw Hall measurement, activation energy measurement, and UV-VIS-NIR spectrophotometer. Experimental results show that AlMgB14 films deposited in the temperature range of 300 K - 873 K are amorphous. Depositions under a low vacuum level (5 x 10-5 Torr) can introduce a significant amount of C and O impurities into AlMgB14 films and lead to a complex oxide glass structure. Orthorhombic AlMgB14 phase cannot be obtained by subsequent high temperature annealing. By contrast, the orthorhombic AlMgB 14 crystal structure can be attained via high temperature-annealing of AlMgB14 films deposited under a high vacuum level (< 3 x 10-6 Torr), accompanied by strong texture formation. Low vacuum level-as deposited AlMgB14 films have low hardness (10 GPa), but high vacuum level-as deposited AlMgB14 films exhibit an extremely high hardness (45 GPa - 51 GPa), and the higher deposition temperature results in still higher hardness. Furthermore, a very low friction coefficient (0.04 - 0.05) has been observed for high vacuum level-as deposited AlMgB14 films, which could be ascribed to the in situ formation of a surface self-lubricating layer. Unlike most boron-rich boride films, high vacuum level-as deposited AlMgB14 films also possess a low n-type electrical resistivity, which is a consequence of high carrier concentration and moderate carrier mobility. The operative electrical transport mechanism and doping behavior for high vacuum level-as deposited AlMgB14 films are discussed in detail in this thesis.
Direct synthesis of magnesium borohydride
Ronnebro, Ewa Carin Ellinor [Kennewick, WA; Severa, Godwin [Honolulu, HI; Jensen, Craig M [Kailua, HI
2012-04-03
A method is disclosed for directly preparing an alkaline earth metal borohydride, i.e. Mg(BH.sub.4).sub.2, from the alkaline earth metal boride MgB.sub.2 by hydrogenating the MgB.sub.2 at an elevated temperature and pressure. The boride may also be doped with small amounts of a metal chloride catalyst such as TiCl.sub.3 and/or NiCl.sub.2. The process provides for charging MgB.sub.2 with high pressure hydrogen above at least 70 MPa while simultaneously heating the material to about 350.degree. C. to about 400.degree. C. The method is relatively simple and inexpensive and provides a reversible hydride compound having a hydrogen capacity of at least 11 wt %.
The low-lying quartet electronic states of group 14 diatomic borides XB (X = C, Si, Ge, Sn, Pb)
NASA Astrophysics Data System (ADS)
Pontes, Marcelo A. P.; de Oliveira, Marcos H.; Fernandes, Gabriel F. S.; Da Motta Neto, Joaquim D.; Ferrão, Luiz F. A.; Machado, Francisco B. C.
2018-04-01
The present work focuses in the characterization of the low-lying quartet electronic and spin-orbit states of diatomic borides XB, in which X is an element of group 14 (C, Si, Ge, Sn, PB). The wavefunction was obtained at the CASSCF/MRCI level with a quintuple-ζ quality basis set. Scalar relativistic effects were also taken into account. A systematic and comparative analysis of the spectroscopic properties for the title molecular series was carried out, showing that the (1)4Π→X4Σ- transition band is expected to be measurable by emission spectroscopy to the GeB, SnB and PbB molecules, as already observed for the lighter CB and SiB species.
NASA Astrophysics Data System (ADS)
Chun, Eun-Joon; Park, Changkyoo; Nishikawa, Hiroshi; Kim, Min-Su
2018-06-01
The microstructural characterization of thermal-sprayed Ni-based self-fluxing alloy (Metco-16C®) after laser-assisted homogenization treatment was performed. To this end, a high-power diode laser system was used. This supported the real-time control of the target homogenization temperature at the substrate surface. Non-homogeneities of the macrosegregation of certain elements (C and Cu) and the local concentration of Cr-based carbides and borides in certain regions in the as-sprayed state could be enhanced with the application of homogenization. After homogenization at 1423 K, the hardness of the thermal-sprayed layer was found to have increased by 1280 HV from the as-sprayed state (750 HV). At this homogenization temperature, the microstructure of the thermal-sprayed layer consisted of a lamellar structuring of the matrix phase (austenite and Ni3Si) with fine (<5 μm) carbides and borides (the rod-like phase of Cr5B3, the lumpy phase of M23C6, and the extra-fine phase of M7C3). Despite the formation of several kinds of carbides and borides during homogenization at 1473 K, the lowest hardness level was found to be less than that of the as-sprayed state, because of the liquid-state homogenization treatment without formation of lamellar structuring between austenite and Ni3Si.
NASA research on refractory compounds.
NASA Technical Reports Server (NTRS)
Gangler, J. J.
1971-01-01
The behavior and properties of the refractory carbides, nitrides, and borides are being investigated by NASA as part of its research aimed at developing superior heat resistant materials for aerospace applications. Studies of the zirconium-carbon-oxygen system show that zirconium oxycarbides of different compositions and lattice parameters can be formed between 1500 C and 1900 C and are stable below 1500 C. More applied studies show that hot working generally improves the microstructure and therefore the strength of TiC and NbC. Sintering studies on UN indicate that very high densities can be achieved. Hot pressing of cermets of HfN and HfC produces good mechanical properties for high temperature bearing applications. Attempts to improve the impact resistance of boride composites by the addition of a nickel or carbon yarn were not overly successful.
Ceramic fibers from Si-B-C polymer precursors
NASA Technical Reports Server (NTRS)
Riccitiello, S. R.; Hsu, M. S.; Chen, T. S.
1993-01-01
Non-oxide ceramics such as silicon carbide (SiC), silicon nitride (Si3N4), and silicon borides (SiB4, SiB6) have thermal stability, oxidation resistance, hardness, and varied electrical properties. All these materials can be prepared in a fiber form from a suitable polymer precursor. The above mentioned fibers, when tested over a temperature range from 25 to 1400 C, experience degradation at elevated temperatures. Past work in ceramic materials has shown that the strength of ceramics containing both carbides and borides is sustained at elevated temperatures, with minimum oxidation. The work presented here describes the formation of ceramic fibers containing both elements, boron and silicon, prepared via the polymer precursor route previously reported by the authors, and discusses the fiber mechanical properties that are retained over the temperature range studied.
Scanlon, Micheál D; Bian, Xiaojun; Vrubel, Heron; Amstutz, Véronique; Schenk, Kurt; Hu, Xile; Liu, BaoHong; Girault, Hubert H
2013-02-28
Rarely reported low-cost molybdenum boride and carbide microparticles, both of which are available in abundant quantities due to their widespread use in industry, adsorb at aqueous acid-1,2-dichloroethane interfaces and efficiently catalyse the hydrogen evolution reaction in the presence of the organic electron donor - decamethylferrocene. Kinetic studies monitoring biphasic reactions by UV/vis spectroscopy, and further evidence provided by gas chromatography, highlight (a) their superior rates of catalysis relative to other industrially significant transition metal carbides and silicides, as well as a main group refractory compound, and (b) their highly comparable rates of catalysis to Pt microparticles of similar dimensions. Insight into the catalytic processes occurring for each adsorbed microparticle was obtained by voltammetry at the liquid-liquid interface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vogli, Evelina; Sherman, Andrew J.; Glasgow, Curtis P.
The invention describes a method for producing ternary and binary ceramic powders and their thermal spraying capable of manufacturing thermal sprayed coatings with superior properties. Powder contain at least 30% by weight ternary ceramic, at least 20% by weight binary molybdenum borides, at least one of the binary borides of Cr, Fe, Ni, W and Co and a maximum of 10% by weight of nano and submicro-sized boron nitride. The primary crystal phase of the manufactured thermal sprayed coatings from these powders is a ternary ceramic, while the secondary phases are binary ceramics. The coatings have extremely high resistance againstmore » corrosion of molten metal, extremely thermal shock resistance and superior tribological properties at low and at high temperatures.« less
Design of Wear-Resistant Austenitic Steels for Selective Laser Melting
NASA Astrophysics Data System (ADS)
Lemke, J. N.; Casati, R.; Lecis, N.; Andrianopoli, C.; Varone, A.; Montanari, R.; Vedani, M.
2018-03-01
Type 316L stainless steel feedstock powder was modified by alloying with powders containing carbide/boride-forming elements to create improved wear-resistant austenitic alloys that can be readily processed by Selective Laser Melting. Fe-based alloys with high C, B, V, and Nb contents were thus produced, resulting in a microstructure that consisted of austenitic grains and a significant amount of hard carbides and borides. Heat treatments were performed to modify the carbide distribution and morphology. Optimal hard-phase spheroidization was achieved by annealing the proposed alloys at 1150 °C for 1 hour followed by water quenching. The total increase in hardness of samples containing 20 pct of C/B-rich alloy powder was of 82.7 pct while the wear resistance could be increased by a factor of 6.
Electronic Structure Properties and a Bonding Model of Thermoelectric Half-Heusler and Boride Phases
NASA Astrophysics Data System (ADS)
Simonson, Jack William
Half-Heusler alloys MNiSn and MCoSb (M = Ti, Zr, Hf) and layered boride intermetallics with structure types YCrB4 and Er 3CrB7 were designed, synthesized, and characterized. The thermoelectric properties of these two classes of alloys were measured from room temperature to 1100 K with the intent of indirectly studying their electronic structure properties and gauging not only their suitability but that of related alloys for high temperature thermoelectric power generation. In the case of the half-Heusler alloys, transition metals were substituted to both the M and Ni/Co sites to study the resultant modifications of the d-orbital-rich portion of the electronic structure near the Fermi energy. This modification and subsequent pinning of the Fermi energy within the gap is discussed herein in terms of first principles electronic structure calculations from the literature. In the half-Heusler alloys, it was found that substitution of transition metals invariably led to a decrease in the thermopower, while the resistivity typically maintained its semiconducting trend. On the other hand, Sn doping in MCoSb type alloys -- a dopant that has been known for some time to be efficient -- was shown to result in high ZT at temperatures in excess of 1000 K. Moreover, the band gaps of the transition metal-doped alloys measured in this work offer insight into the discrepancy between the predicted and measured band gaps in the undoped parent compositions. In the case of the layered boride alloys, on the other hand, few electronic calculations have been published, thus prompting the generalization of a well-known electron counting rule -- which is typically used to study molecular organometallics, boranes, and metallocenes -- to predict the trends in the densities of states of crystalline solids that possess the requisite deltahedral bonding geometry. In accordance with these generalized electronic counting rules, alloys of the form RMB4 (R = Y, Gd, Ho; M = Cr, Mo, W) were measured to be n-type semiconductors with band gaps ranging from 0.15 eV to 0.25 eV. These alloys exhibited thermoelectric power factors comparable with those of other potential boride thermoelectric materials reported in the literature. Furthermore, as a result of the procedure developed for precision synthesis of boron-rich intermetallics and the improved understanding of bonding trends, layered borides of several previously overlooked structure-types were synthesized and screened for superconductivity. Consequently, alloys of the MoB4 phase were discovered to be superconducting when doped with Nb or Ti. Electrical resistivity measurements of superconducting transitions between 6 and 8 K in these materials were confirmed via magnetic susceptibility measurements and x-ray diffraction. Structural measurements indicated opposite trends in lattice modification than those reported for the superconducting transition metal diborides.
NEUTRONIC REACTOR FUEL COMPOSITION
Thurber, W.C.
1961-01-10
Uranium-aluminum alloys in which boron is homogeneously dispersed by adding it as a nickel boride are described. These compositions have particular utility as fuels for neutronic reactors, boron being present as a burnable poison.
Anomalous stress response of ultrahard WB n compounds
Li, Quan; Zhou, Dan; Zheng, Weitao; ...
2015-10-29
Boron-rich tungsten borides are premier prototypes of a new class of ultrahard compounds. Here, we show by first-principles calculations that their stress-strain relations display surprisingly diverse and anomalous behavior under a variety of loading conditions. Most remarkable is the dramatically changing bonding configurations and deformation modes with rising boron concentration in WB n (n=2, 3, 4), resulting in significantly different stress responses and unexpected indentation strength variations. This novel phenomenon stems from the peculiar structural arrangements in tungsten borides driven by boron’s ability to form unusually versatile bonding states. Our results elucidate the intriguing deformation mechanisms that define a distinctmore » type of ultrahard material. Here, these new insights underscore the need to explore unconventional structure-property relations in a broad range of transition-metal light-element compounds.« less
NASA Technical Reports Server (NTRS)
Brainard, W. A.; Wheeler, D. R.
1977-01-01
Radiofrequency sputtered coatings of titanium carbide, molybdenum carbide and titanium boride were tested as wear resistant coatings on stainless steel in a pin on disk apparatus. X-ray photoelectron spectroscopy (XPS) was used to analyze the sputtered films with regard to both bulk and interface composition in order to obtain maximum film performance. Significant improvements in friction behavior were obtained when properly biased films were deposited on deliberately preoxidized substrates. XPS depth profile data showed thick graded interfaces for bias deposited films even when adherence was poor. The addition of 10 percent hydrogen to the sputtering gas produced coatings with thin poorly adherent interfaces. Results suggest that some of the common practices in the field of sputtering may be detrimental to achieving maximum adherence and optimum composition for these refractory compounds.
NASA Astrophysics Data System (ADS)
Touzani, Rachid St.; Fokwa, Boniface P. T.
2014-03-01
The Nb2FeB2 phase (U3Si2-type, space group P4/mbm, no. 127) is known for almost 50 years, but until now its magnetic properties have not been investigated. While the synthesis of Nb2OsB2 (space group P4/mnc, no. 128, a twofold superstructure of U3Si2-type) with distorted Nb-layers and Os2-dumbbells was recently achieved, "Nb2RuB2" is still not synthesized and its crystal structure is yet to be revealed. Our first principles density functional theory (DFT) calculations have confirmed not only the experimental structures of Nb2FeB2 and Nb2OsB2, but also predict "Nb2RuB2" to crystalize with the Nb2OsB2 structure type. According to chemical bonding analysis, the homoatomic B-B interactions are optimized and very strong, but relatively strong heteroatomic M-B, B-Nb and M-Nb bonds (M=Fe, Ru, Os) are also found. These interactions, which together build a three-dimensional network, are mainly responsible for the structural stability of these ternary borides. The density-of-states at the Fermi level predicts metallic behavior, as expected, from metal-rich borides. Analysis of possible magnetic structures concluded preferred antiferromagnetic ordering for Nb2FeB2, originating from ferromagnetic interactions within iron chains and antiferromagnetic exchange interactions between them.
Specific features of thermal and magnetic properties of Yb B50 at low temperatures
NASA Astrophysics Data System (ADS)
Novikov, V. V.; Zhemoedov, N. A.; Matovnikov, A. V.; Mitroshenkov, N. V.; Popova, E. A.; Tolstosheev, A. K.; Malkin, B. Z.; Bud'ko, S. L.
2018-05-01
Heat capacity, thermal expansion, and magnetization of ytterbium boride Yb B50 were studied at temperatures 0.6-300 K, 5-300 K, and 2-300 K, respectively. We revealed two smooth peaks at about 4.0 and 60 K in the temperature dependence of the heat capacity. A comparison with the heat capacity of the diamagnetic isostructural boride Lu B50 shows that these anomalies can be attributed to excitations in the ytterbium sublattice (Schottky anomalies). A scheme for splitting of the ground
Fusion welding of a modern borated stainless steel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robino, C.V.; Cieslak, M.J.
1997-01-01
Experiments designed to assess the fabrication and service weldability of 304B4A borated stainless steel were conducted. Welding procedures and parameters for manual gas tungsten arc (GTA) welding, autogenous electron beam (EB) welding and filler-added EB welding were developed and found to be similar to those for austenitic stainless steels. Following the procedure development, four test welds were produced and evaluated by microstructural analysis and Charpy impact testing. Further samples were used for determination of the postweld heat treatment (PWHT) response of the welds. The fusion zone structure of welds in this alloy consists of primary austenite dendrites with an interdendriticmore » eutectic-like austenite/boride constituent. Welds also show an appreciable partially molten zone that consists of the austenite/boride eutectic surrounding unmelted austenite islands. The microstructure of the EB welds was substantially finer than that of the GTA welds, and boride coarsening was not observed in the solid state heat-affected zone (HAZ) of either weld type. The impact toughness of as-welded samples was found to be relatively poor, averaging less than 10 J for both GTA and EB welds. For fusion zone notched GTA and EB samples and centerline notched EB samples, fracture generally occurred along the boundary between the partially molten and solid-state regions of the HAZ. The results of the PWHT study were very encouraging, with typical values of the impact energy for HAZ notched samples approaching 40 J, or twice the minimum code-acceptable value.« less
The physical and mechanical metallurgy of advanced O+BCC titanium alloys
NASA Astrophysics Data System (ADS)
Cowen, Christopher John
This thesis comprises a systematic study of the microstructural evolution, phase transformation behavior, elevated-temperature creep behavior, room-temperature and elevated-temperature tensile behavior, and room-temperature fatigue behavior of advanced titanium-aluminum-niobium (Ti-Al-Nb) alloys with and without boron additions. The specific alloys studied were: Ti-5A1-45Nb (at%), Ti-15Al-33Nb (at%), Ti-15Al-33Nb-0.5B (at%), Ti-15Al-33Nb-5B (at%), Ti-21Al-29Nb (at%), Ti-22Al-26Nb (at%), and Ti-22Al-26Nb-5B (at%). The only alloy composition that had been previously studied before this thesis work began was Ti-22Al-26Nb (at%). Publication in peer-reviewed material science journals of the work performed in this thesis has made data available in the scientific literature that was previously non-existent. The knowledge gap for Ti-Al-Nb phase equilibria over the compositional range of Ti-23Al-27Nb (at%) to Ti-12Al-38Nb (at%) that existed before this work began was successfully filled. The addition of 5 at% boron to the Ti-15Al-33Nb alloy produced 5-9 volume percent boride phase needles within the microstructure. The chemical composition of the boride phase measured by electron microprobe was determined to be approximately B 2TiNb. The lattice parameters of the boride phase were simulated through density functional theory calculations by collaborators at the Air Force Research Laboratory based on the measured composition. Using the simulated lattice parameters, electron backscatter diffraction kikuchi patterns and selected area electron diffraction patterns obtained from the boride phase were successfully indexed according to the space group and site occupancies of the B27 orthorhombic crystal structure. This suggests that half the Ti (c) Wyckoff positions are occupied by Ti atoms and the other half are occupied by Nb atoms in the boride phase lattice. Creep deformation behavior is the main focus of this thesis and in particular understanding the dominant creep deformation mechanisms as a function of stress, temperature, and strain rate. Microstructure-creep relationships for Ti-Al-Nb-xB alloys were developed with the understanding gained. A rule-of-mixtures empirical model based on constituent phase volume fractions and strain rates was developed to predict the minimum creep rates of two-phase O+BCC microstructures. The most innovative results of this thesis were produced through the development of an in-situ creep testing methodology. The creep deformation evolution was chronicled in-situ during high temperature creep experiments, while creep displacement versus time data was simultaneously obtained. The in-situ experiments revealed that prior-BCC grain boundaries were the locus of damage accumulation during creep deformation. A methodology that allows in-situ observation of surface creep deformation as a function of creep displacement has yet to be presented in the literature.
Magnetism and structural chemistry of ternary borides RE2MB 6 ( RE = rare earth, M = Ru, Os)
NASA Astrophysics Data System (ADS)
Hiebl, K.; Rogl, P.; Nowotny, H.
1984-10-01
The magnetic behavior of the ternary borides RE2RuB 6 and RE2OsB 6 ( RE = Y, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) was studied in the temperature range 1.5 K < T < 1100 K. All compounds crystallize with the Y 2ReB 6-type structure and are characterized by direct RE- RE contacts and the formation of planar infinite two-dimensional rigid boron nets. The magnetic properties reveal a typical Van Vleck paramagnetism of free RE3+-ions at temperatures higher than 200 K with ferromagnetic interaction in the low-temperature range T < 55 K. The ferromagnetic ordering temperatures vary with the De Gennes factor. There is no indication for a magnetic contribution from the Ru(Os)-sublattice. Above 1.8 K none of the samples were found to be superconducting.
NASA Astrophysics Data System (ADS)
Liang, Yongcheng; Zhao, Jianzhi; Zhang, Bin
2008-06-01
The stabilities, mechanical properties and electronic structures of osmium boride (OsB), carbide (OsC) and nitride (OsN), in the tungsten carbide (WC), rocksalt (NaCl), cesium chloride (CsCl) and zinc blende (ZnS) structures respectively, are systematically predicted by calculations from first-principles. Only four phases, namely, OsB(WC), OsB(CsCl), OsC(WC), and OsC(ZnS), are mechanically stable, and none is a superhard compound, contrary to previous speculation. Most importantly, we find that the changing trends of bulk modulus and shear modulus are completely different for OsB, OsC and OsN in same hexagonal WC structure, which indicates that the underlying sources of hardness and incompressibility are fundamentally different: the former is determined by bonding nature while the latter is closely associated with valence electron density.
NASA Astrophysics Data System (ADS)
Zhu, W.; Cave, J.
2006-03-01
The enhancement of flux line pinning in magnesium boride wires is a critical issue for their future applications in devices and machines. It is well known that small size dopants can significantly influence the current densities of these materials. Here, the influence of nanometric (<30nm) silicon nitride on physical properties and current density is presented. The iron-sheathed powder in tube wires were prepared using pure magnesium and boron powders with silicon nitride additions. The wires were rolled flat and treated at up to 900 degrees C in flowing argon. SEM and XRD were used to identify phases and microstructures. Magnetization critical currents, up to several 100 of thousands A/cm2, at various temperatures and fields (5K - 20K and up to 3 tesla) show that there are competing mechanisms from chemical and flux pinning effects.
Magnetic and magnetothermal studies of iron boride (FeB) nanoparticles
NASA Astrophysics Data System (ADS)
Hamayun, M. Asif; Abramchuk, Mykola; Alnasir, Hisham; Khan, Mohsin; Pak, Chongin; Lenhert, Steven; Ghazanfari, Lida; Shatruk, Michael; Manzoor, Sadia
2018-04-01
We report magnetic and magnetothermal properties of iron boride (FeB) nanoparticles prepared by surfactant-assisted ball milling of arc-melted bulk ingots of this binary alloy. Size-dependent magnetic properties were used to identify the transition to the single domain limit and calculate the anisotropy and exchange stiffness constants for this system. Extended milling is seen to produce coercivity enhancement and exchange bias of up to 270 Ôe at room temperature. The magnetothermal properties were investigated by measuring the response of single domain FeB nanoparticles to externally applied ac magnetic fields. All investigated particle sizes show a significant heating response, demonstrating their potential as candidates for magnetically induced hyperthermia. FeB nanoparticles were encapsulated into lipophilic domains of liposomes as evidenced by TEM. Exposure of HeLa cells to these liposomes did not affect cell viability, suggesting the biocompatibility of these new magnetic nanomaterials.
Identification of delamination failure of boride layer on common Cr-based steels
NASA Astrophysics Data System (ADS)
Taktak, Sukru; Tasgetiren, Suleyman
2006-10-01
Adhesion is an important aspect in the reliability of coated components. With low-adhesion of interfaces, different crack paths may develop depending on the local stress field at the interface and the fracture toughness of the coating, substrate, and interface. In the current study, an attempt has been made to identify the delamination failure of coated Cr-based steels by boronizing. For this reason, two commonly used steels (AISI H13, AISI 304) are considered. The steels contain 5.3 and 18.3 wt.% Cr, respectively. Boriding treatment is carried out in a slurry salt bath consisting of borax, boric acid, and ferrosilicon at a temperature range of 800 950 °C for 3, 5, and 7 h. The general properties of the boron coating are obtained by mechanical and metallographic characterization tests. For identification of coating layer failure, some fracture toughness tests and the Daimler-Benz Rockwell-C adhesion test are used.
The cytotoxicity and genotoxicity of soluble and particulate cobalt in human lung fibroblast cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Leah J.; Holmes, Amie L.; Maine Center for Environmental Toxicology and Health, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04101-9300
Cobalt exposure is increasing as cobalt demand rises worldwide due to its use in enhancing rechargeable battery efficiency, super-alloys, and magnetic products. Cobalt is considered a possible human carcinogen with the lung being a primary target. However, few studies have considered cobalt-induced toxicity in human lung cells. Therefore, in this study, we sought to determine the cytotoxicity and genotoxicity of particulate and soluble cobalt in human lung cells. Cobalt oxide and cobalt chloride were used as representative particulate and soluble cobalt compounds, respectively. Exposure to both particulate and soluble cobalt induced a concentration-dependent increase in cytotoxicity, genotoxicity, and intracellular cobaltmore » ion levels. Based on intracellular cobalt ion levels, we found that soluble cobalt was more cytotoxic than particulate cobalt while particulate and soluble cobalt induced similar levels of genotoxicity. However, soluble cobalt induced cell cycle arrest indicated by the lack of metaphases at much lower intracellular cobalt concentrations compared to cobalt oxide. Accordingly, we investigated the role of particle internalization in cobalt oxide-induced toxicity and found that particle-cell contact was necessary to induce cytotoxicity and genotoxicity after cobalt exposure. These data indicate that cobalt compounds are cytotoxic and genotoxic to human lung fibroblasts, and solubility plays a key role in cobalt-induced lung toxicity. - Highlights: • Particulate and soluble cobalt are cytotoxic and genotoxic to human lung cells. • Soluble cobalt induces more cytotoxicity compared to particulate cobalt. • Soluble and particulate cobalt induce similar levels of genotoxicity. • Particle-cell contact is required for particulate cobalt-induced toxicity.« less
Effect of Discharge Time on Plasma Electrolytic Borocarbonitriding of Pure Iron
NASA Astrophysics Data System (ADS)
Jin, Xiaoyue; Wu, Jie; Wang, Bin; Yang, Xuan; Chen, Lin; Qu, Yao; Xue, Wenbin
The plasma electrolytic borocarbonitriding (PEB/C/N) process on pure iron was carried out in 25% borax solution with glycerine and carbamide additives under different discharge time at 360V. The morphology and structure of PEB/C/N hardened layers were analyzed by SEM and XRD. The hardness profiles of hardened layers were measured by microhardness test. Corrosion behavior of PEB/C/N layers was evaluated by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). Their wear performance was carried out using a pin-disc friction and wear tester under dry sliding test. The PEB/C/N samples mainly consisted of α-Fe, Fe2B, Fe3C, FeN, FeB, Fe2O3 and Fe4N phases, and the Fe2B phase was the dominant phase in the boride layer. It was found that the thickness of boride layer increased with the discharge time and reached 14μm after 60min treatment. The microhardness of the boride layer was up to 2100HV, which was much higher than that of the bare pure iron (about 150HV). After PEB/C/N treatment, the corrosion resistance of pure iron was slightly improved. The friction coefficient of PEB/C/N treated pure iron decreased to 0.129 from 0.556 of pure iron substrate. The wear rate of the PEB/C/N layer after 60min under dry sliding against ZrO2 ball was only 1/10 of that of the bare pure iron. The PEB/C/N treatment is an effective way to improve the wear behavior of pure iron.
Cai, Weitong; Yang, Yuanzheng; Tao, Pingjun; Ouyang, Liuzhang; Wang, Hui
2018-04-03
Nanosized metal borides MBx (M = Mg, Ti, Fe, Si) are found to play an important role in enhancing the hydrogen storage performance of LiBH4 in this work. The hydrogen storage behavior and mechanism of these modified systems are investigated through TPD-MS, XRD, FTIR and SEM characterization methods. By introducing these metal borides into LiBH4 through ball milling, the systems display three dehydrogenation stages disclosing their similarity and distinction. The 1st stage starts at 190 °C, the 2nd stage ranges from 280 °C to 400 °C and the 3rd stage ends at 550 °C with a peak at round 440 °C similar to that of pristine LiBH4. Distinguishing features exist at the 2nd stage revealing the effectiveness of MBx in an order of MgB2 < TiB2 < FeB < SiB4. Significantly, reversibility up to 9.7 wt% is achieved from LiBH4 with assistance of SiB4. The catalytic effect of MBx is influenced by the Pauling electronegativity of M in MBx and the interfacial contact characteristic between LiBH4 and MBx. The larger electronegativity leads to an enhanced catalytic effect and consequently lower temperature at the major stage. In contrast to the components in the solid state, the molten LiBH4 promotes a catalytic effect due to a superior interfacial contact. These results provide an insight into designing high-performance catalysts applied to LiBH4 as a hydrogen storage material.
Boron-Based Hydrogen Storage: Ternary Borides and Beyond
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vajo, John J.
DOE continues to seek reversible solid-state hydrogen materials with hydrogen densities of ≥11 wt% and ≥80 g/L that can deliver hydrogen and be recharged at moderate temperatures (≤100 °C) and pressures (≤100 bar) enabling incorporation into hydrogen storage systems suitable for transportation applications. Boron-based hydrogen storage materials have the potential to meet the density requirements given boron’s low atomic weight, high chemical valance, and versatile chemistry. However, the rates of hydrogen exchange in boron-based compounds are thus far much too slow for practical applications. Although contributing to the high hydrogen densities, the high valance of boron also leads to slowmore » rates of hydrogen exchange due to extensive boron-boron atom rearrangements during hydrogen cycling. This rearrangement often leads to multiple solid phases occurring over hydrogen release and recharge cycles. These phases must nucleate and react with each other across solid-solid phase boundaries leading to energy barriers that slow the rates of hydrogen exchange. This project sought to overcome the slow rates of hydrogen exchange in boron-based hydrogen storage materials by minimizing the number of solid phases and the boron atom rearrangement over a hydrogen release and recharge cycle. Two novel approaches were explored: 1) developing matched pairs of ternary borides and mixed-metal borohydrides that could exchange hydrogen with only one hydrogenated phase (the mixed-metal borohydride) and only one dehydrogenated phase (the ternary boride); and 2) developing boranes that could release hydrogen by being lithiated using lithium hydride with no boron-boron atom rearrangement.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sitler, Steven J.; Raja, Krishnan S.; Charit, Indrajit
Solid solutions of HfB 2-ZrB 2 mixtures were prepared by high-energy ball milling of diboride and additive powders followed by spark plasma sintering (SPS). A mixture of stoichiometric 1:1 HfB 2-ZrB 2 borides was the base composition to which Hf, Zr, Ta, LaB 6 or Gd 2O 3 was added. Hf, Zr and Ta were added in order to bring the boron-to-metal ratio down to 1.86, rendering the boride as MeB 1.86. In the case of LaB 6 and Gd 2O 3, 1.8 mol% was added. Electroanalytical behavior of hydrogen evolution reactions was evaluated in 1 M H 2SO 4more » and 1 M NaOH solutions. The LaB 6 additive material showed Tafel slopes of 125 and 90 mV/decade in acidic and alkaline solutions respectively. The Hf and Zr rich samples showed Tafel slopes of about 120 mV/decade in both electrolytes. The over potentials of hydrogen evolution reactions (at 10 mA/cm 2) in the alkaline solution were about 100 mV lower than those in acidic solution. The metal-rich diborides and addition of LaB 6 showed better hydrogen evolution reaction (HER) activities than the base 1:1 HfB 2-ZrB 2 stoichiometric diboride solid solution. Furthermore, the higher activity of metal-rich borides could be attributed to the increased electron population at the d-orbitals of the metal shown by band structure modeling calculations using the Density Functional Theory approach.« less
Gordon, Roy G.; Kurtz, Sarah
1984-11-27
In a photovoltaic cell structure containing a visibly transparent, electrically conductive first layer of metal oxide, and a light-absorbing semiconductive photovoltaic second layer, the improvement comprising a thin layer of transition metal nitride, carbide or boride interposed between said first and second layers.
High density nonmagnetic cobalt in thin films
NASA Astrophysics Data System (ADS)
Banu, Nasrin; Singh, Surendra; Basu, Saibal; Roy, Anupam; Movva, Hema C. P.; Lauter, V.; Satpati, B.; Dev, B. N.
2018-05-01
Recently high density (HD) nonmagnetic cobalt has been discovered in a nanoscale cobalt thin film, grown on Si(111) single crystal. This form of cobalt is not only nonmagnetic but also superconducting. These promising results have encouraged further investigations of the growth of the nonmagnetic (NM) phase of cobalt. In the original investigation, the cobalt film had a natural cobalt oxide at the top. We have investigated whether the growth of HD NM cobalt layers in the thin film depends on (i) a capping layer on the cobalt film, (ii) the thickness of the cobalt film and (iii) the nature of the substrate on which the cobalt film is grown. The results of such investigations indicate that for cobalt films capped with a thin gold layer, and for various film thicknesses, HD NM cobalt layers are formed. However, instead of a Si substrate, when the cobalt films are grown on oxide substrates, such as silicon oxide or cobalt oxide, HD NM cobalt layers are not formed. The difference is attributed to the nature—crystalline or amorphous—of the substrate.
Thyssen, Jacob Pontoppidan; Jellesen, Morten S; Menné, Torkil; Lidén, Carola; Julander, Anneli; Møller, Per; Johansen, Jeanne Duus
2010-08-01
Before the introduction of the EU Nickel Directive, concern was raised that manufacturers of jewellery might turn from the use of nickel to cobalt following the regulatory intervention on nickel exposure. The aim was to study 354 consumer items using the cobalt spot test. Cobalt release was assessed to obtain a risk estimate of cobalt allergy and dermatitis in consumers who would wear the jewellery. The cobalt spot test was used to assess cobalt release from all items. Microstructural characterization was made using scanning electron microscope (SEM) and energy-dispersive spectroscopy (EDS). Cobalt release was found in 4 (1.1%) of 354 items. All these had a dark appearance. SEM/EDS was performed on the four dark appearing items which showed tin-cobalt plating on these. This study showed that only a minority of inexpensive jewellery purchased in Denmark released cobalt when analysed with the cobalt spot test. As fashion trends fluctuate and we found cobalt release from dark appearing jewellery, cobalt release from consumer items should be monitored in the future. Industries may not be fully aware of the potential cobalt allergy problem.
DFT investigations of hydrogen storage materials
NASA Astrophysics Data System (ADS)
Wang, Gang
Hydrogen serves as a promising new energy source having no pollution and abundant on earth. However the most difficult problem of applying hydrogen is to store it effectively and safely, which is smartly resolved by attempting to keep hydrogen in some metal hydrides to reach a high hydrogen density in a safe way. There are several promising metal hydrides, the thermodynamic and chemical properties of which are to be investigated in this dissertation. Sodium alanate (NaAlH4) is one of the promising metal hydrides with high hydrogen storage capacity around 7.4 wt. % and relatively low decomposition temperature of around 100 °C with proper catalyst. Sodium hydride is a product of the decomposition of NaAlH4 that may affect the dynamics of NaAlH4. The two materials with oxygen contamination such as OH- may influence the kinetics of the dehydriding/rehydriding processes. Thus the solid solubility of OH - groups (NaOH) in NaAlH4 and NaH is studied theoretically by DFT calculations. Magnesium boride [Mg(BH4)2] is has higher hydrogen capacity about 14.9 wt. % and the decomposition temparture of around 250 °C. However one flaw restraining its application is that some polyboron compounds like MgB12H12 preventing from further release of hydrogen. Adding some transition metals that form magnesium transition metal ternary borohydride [MgaTMb(BH4)c] may simply the decomposition process to release hydrogen with ternary borides (MgaTMbBc). The search for the probable ternary borides and the corresponding pseudo phase diagrams as well as the decomposition thermodynamics are performed using DFT calculations and GCLP method to present some possible candidates.
Metallic Borides, La 2 Re 3 B 7 and La 3 Re 2 B 5 , Featuring Extensive Boron–Boron Bonding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bugaris, Daniel E.; Malliakas, Christos D.; Chung, Duck Young
We synthesized La 2Re 3B 7 and La 3Re 2B 5 in single-crystalline form from a molten La/Ni eutectic at 1000°C, in the first example of the flux crystal growth of ternary rare-earth rhenium borides. Both compounds crystallize in their own orthorhombic structure types, with La 2Re 3B 7 (space group Pcca) having lattice parameters a = 7.657(2) Å, b = 6.755(1) Å, and c = 11.617(2) Å, and La 3Re 2B 5 (space group Pmma) having lattice parameters a = 10.809(2) Å, b = 5.287(1) Å, and c = 5.747(1) Å. Furthermore, the compounds possess three-dimensional framework structures thatmore » are built up from rhenium boride polyhedra and boron-boron bonding. La 3Re 2B 5 features fairly common B 2 dumbbells, whereas La 2Re 3B 7 has unique one-dimensional subunits composed of alternating triangular B3 and trans-B4 zigzag chain fragments. Also observed in La 3Re 2B 5 is an unusual coordination of B by an octahedron of La atoms. Electronic band structure calculations predict that La 2Re 3B 7 is a semimetal, which is observed in the electrical resistivity data as measured on single crystals, with behavior obeying the Bloch-Grüneisen model and a room-temperature resistivity ρ300K of ~ 375 μΩ cm. The electronic band structure calculations also suggest that La 3Re 2B 5 is a regular metal.« less
Metallic Borides, La 2 Re 3 B 7 and La 3 Re 2 B 5 , Featuring Extensive Boron–Boron Bonding
Bugaris, Daniel E.; Malliakas, Christos D.; Chung, Duck Young; ...
2016-01-26
We synthesized La 2Re 3B 7 and La 3Re 2B 5 in single-crystalline form from a molten La/Ni eutectic at 1000°C, in the first example of the flux crystal growth of ternary rare-earth rhenium borides. Both compounds crystallize in their own orthorhombic structure types, with La 2Re 3B 7 (space group Pcca) having lattice parameters a = 7.657(2) Å, b = 6.755(1) Å, and c = 11.617(2) Å, and La 3Re 2B 5 (space group Pmma) having lattice parameters a = 10.809(2) Å, b = 5.287(1) Å, and c = 5.747(1) Å. Furthermore, the compounds possess three-dimensional framework structures thatmore » are built up from rhenium boride polyhedra and boron-boron bonding. La 3Re 2B 5 features fairly common B 2 dumbbells, whereas La 2Re 3B 7 has unique one-dimensional subunits composed of alternating triangular B3 and trans-B4 zigzag chain fragments. Also observed in La 3Re 2B 5 is an unusual coordination of B by an octahedron of La atoms. Electronic band structure calculations predict that La 2Re 3B 7 is a semimetal, which is observed in the electrical resistivity data as measured on single crystals, with behavior obeying the Bloch-Grüneisen model and a room-temperature resistivity ρ300K of ~ 375 μΩ cm. The electronic band structure calculations also suggest that La 3Re 2B 5 is a regular metal.« less
Sitler, Steven J.; Raja, Krishnan S.; Charit, Indrajit
2016-09-23
Solid solutions of HfB 2-ZrB 2 mixtures were prepared by high-energy ball milling of diboride and additive powders followed by spark plasma sintering (SPS). A mixture of stoichiometric 1:1 HfB 2-ZrB 2 borides was the base composition to which Hf, Zr, Ta, LaB 6 or Gd 2O 3 was added. Hf, Zr and Ta were added in order to bring the boron-to-metal ratio down to 1.86, rendering the boride as MeB 1.86. In the case of LaB 6 and Gd 2O 3, 1.8 mol% was added. Electroanalytical behavior of hydrogen evolution reactions was evaluated in 1 M H 2SO 4more » and 1 M NaOH solutions. The LaB 6 additive material showed Tafel slopes of 125 and 90 mV/decade in acidic and alkaline solutions respectively. The Hf and Zr rich samples showed Tafel slopes of about 120 mV/decade in both electrolytes. The over potentials of hydrogen evolution reactions (at 10 mA/cm 2) in the alkaline solution were about 100 mV lower than those in acidic solution. The metal-rich diborides and addition of LaB 6 showed better hydrogen evolution reaction (HER) activities than the base 1:1 HfB 2-ZrB 2 stoichiometric diboride solid solution. Furthermore, the higher activity of metal-rich borides could be attributed to the increased electron population at the d-orbitals of the metal shown by band structure modeling calculations using the Density Functional Theory approach.« less
Thermal properties of zirconium diboride -- transition metal boride solid solutions
NASA Astrophysics Data System (ADS)
McClane, Devon Lee
This research focuses on the thermal properties of zirconium diboride (ZrB2) based ceramics. The overall goal was to improve the understanding of how different transition metal (TM) additives influence thermal transport in ZrB2. To achieve this, ZrB2 with 0.5 wt% carbon, and 3 mol% of individual transition metal borides, was densified by hot-press sintering. The transition metals that were investigated were: Y, Ti, Hf, V, Nb, Ta, Cr, Mo, W, and Re. The room temperature thermal diffusivities of the compositions ranged from 0.331 cm2/s for nominally pure ZrB2 to 0.105 cm2/s for (Zr,Cr)B2 and converged around 0.155cm2/s at higher temperatures for all compositions. Thermal conductivities were calculated from the diffusivities, using temperature-dependent values for density and heat capacity. The electron contribution to thermal conductivity was calculated from measured electrical resistivity according to the Wiedemann-Franz law. The phonon contribution to thermal conductivity was calculated by subtracting the electron contribution from the total thermal conductivity. Rietveld refinement of x-ray diffraction data was used to determine the lattice parameters of the compositions. The decrease in thermal conductivity for individual additives correlated directly to the metallic radius of the additive. Additional strain appeared to exist for additives when the stable TM boride for that metal had different crystal symmetries than ZrB2. This research provided insight into how additives and impurities affect thermal transport in ZrB2. The research potentially offers a basis for future modeling of thermal conductivity in ultra-high temperature ceramics based on the correlation between metallic radius and the decrease in thermal conductivity.
21 CFR 582.80 - Trace minerals added to animal feeds.
Code of Federal Regulations, 2011 CFR
2011-04-01
.... Manganese phosphate (dibasic). Manganese sulfate. Manganous oxide. Zinc Zinc acetate. Zinc carbonate. Zinc chloride. Zinc oxide. Zinc sulfate. ... Cobalt Cobalt acetate. Cobalt carbonate. Cobalt chloride. Cobalt oxide. Cobalt sulfate. Copper Copper...
21 CFR 582.80 - Trace minerals added to animal feeds.
Code of Federal Regulations, 2010 CFR
2010-04-01
.... Manganese phosphate (dibasic). Manganese sulfate. Manganous oxide. Zinc Zinc acetate. Zinc carbonate. Zinc chloride. Zinc oxide. Zinc sulfate. ... Cobalt Cobalt acetate. Cobalt carbonate. Cobalt chloride. Cobalt oxide. Cobalt sulfate. Copper Copper...
Boride Formation Induced by pcBN Tool Wear in Friction-Stir-Welded Stainless Steels
NASA Astrophysics Data System (ADS)
Park, Seung Hwan C.; Sato, Yutaka S.; Kokawa, Hiroyuki; Okamoto, Kazutaka; Hirano, Satoshi; Inagaki, Masahisa
2009-03-01
The wear of polycrystalline cubic boron nitride (pcBN) tool and its effect on second phase formation were investigated in stainless steel friction-stir (FS) welds. The nitrogen content and the flow stress were analyzed in these welds to examine pcBN tool wear. The nitrogen content in stir zone (SZ) was found to be higher in the austenitic stainless steel FS welds than in the ferritic and duplex stainless steel welds. The flow stress of austenitic stainless steels was almost 1.5 times larger than that of ferritic and duplex stainless steels. These results suggest that the higher flow stress causes the severe tool wear in austenitic stainless steels, which results in greater nitrogen pickup in austenitic stainless steel FS welds. From the microstructural observation, a possibility was suggested that Cr-rich borides with a crystallographic structure of Cr2B and Cr5B3 formed through the reaction between the increased boron and nitrogen and the matrix during FS welding (FSW).
Thompson, Levi T.; Patt, Jeremy; Moon, Dong Ju; Phillips, Cory
2003-09-23
Mono- and bimetallic transition metal carbides, nitrides and borides, and their oxygen containing analogs (e.g. oxycarbides) for use as water gas shift catalysts are described. In a preferred embodiment, the catalysts have the general formula of M1.sub.A M2.sub.B Z.sub.C O.sub.D, wherein M1 is selected from the group consisting of Mo, W, and combinations thereof; M2 is selected from the group consisting of Fe, Ni, Cu, Co, and combinations thereof; Z is selected from the group consisting of carbon, nitrogen, boron, and combinations thereof; A is an integer; B is 0 or an integer greater than 0; C is an integer; O is oxygen; and D is 0 or an integer greater than 0. The catalysts exhibit good reactivity, stability, and sulfur tolerance, as compared to conventional water shift gas catalysts. These catalysts hold promise for use in conjunction with proton exchange membrane fuel cell powered systems.
Ultra High Temperature Ceramics' Processing Routes and Microstructures Compared
NASA Technical Reports Server (NTRS)
Gusman, Michael; Stackpoole, Mairead; Johnson, Sylvia; Gasch, Matt; Lau, Kai-Hung; Sanjurjo, Angel
2009-01-01
Ultra High Temperature Ceramics (UHTCs), such as HfB2 and ZrB2 composites containing SiC, are known to have good thermal shock resistance and high thermal conductivity at elevated temperatures. These UHTCs have been proposed for a number of structural applications in hypersonic vehicles, nozzles, and sharp leading edges. NASA Ames is working on controlling UHTC properties (especially, mechanical properties, thermal conductivity, and oxidation resistance) through processing, composition, and microstructure. In addition to using traditional methods of combining additives to boride powders, we are preparing UHTCs using coat ing powders to produce both borides and additives. These coatings and additions to the powders are used to manipulate and control grain-boundary composition and second- and third-phase variations within the UHTCs. Controlling the composition of high temperature oxidation by-products is also an important consideration. The powders are consolidated by hot-pressing or field-assisted sintering (FAS). Comparisons of microstructures and hardness data will be presented.
A superconducting battery material: Lithium gold boride (LiAu3B)
NASA Astrophysics Data System (ADS)
Aydin, Sezgin; Şimşek, Mehmet
2018-04-01
The superconducting and potential cathode material properties of ternary boride of LiAu3B have been investigated by density functional first principles. The Li-concentration effects on the actual electronic and structural properties, namely the properties of LixAu9B3 (x = 0, 1, 2) sub-systems are studied. It is remarkably shown that the existence of Li-atoms has no considerable effect on the structural properties of Au-B skeleton in LiAu3B. Then, it can be offered as a potential cathode material for Li-ion batteries with the very small volume deviation of 0.42%, and the suitable average open circuit voltage of ∼1.30 V. Furthermore, the vibrational and superconducting properties such as electron-phonon coupling constant (λ) and critical temperature (Tc) of LiAu3B are studied. The calculated results suggest that LiAu3B should be a superconductor with Tc ∼5.8 K, also.
2011-05-01
failure resistance, which results from their different microplasticity (microbrittleness) and relaxation ability. In order to evaluate the... microplasticity (microbrittleness) in the series of isomorphic hexaborides produced by zone melting we have plotted a number of statistical curves that show
Ultracapacitor current collector
Jerabek, Elihu Calfin; Mikkor, Mati
2001-10-16
An ultracapacitor having two solid, nonporous current collectors, two porous electrodes separating the collectors, a porous separator between the electrodes and an electrolyte occupying the pores in the electrodes and separator. At least one of the current collectors comprises a conductive metal substrate coated with a metal nitride, carbide or boride coating.
NASA Astrophysics Data System (ADS)
Noble, Abigail E.; Ohnemus, Daniel C.; Hawco, Nicholas J.; Lam, Phoebe J.; Saito, Mak A.
2017-06-01
Cobalt is the scarcest of metallic micronutrients and displays a complex biogeochemical cycle. This study examines the distribution, chemical speciation, and biogeochemistry of dissolved cobalt during the US North Atlantic GEOTRACES transect expeditions (GA03/3_e), which took place in the fall of 2010 and 2011. Two major subsurface sources of cobalt to the North Atlantic were identified. The more prominent of the two was a large plume of cobalt emanating from the African coast off the eastern tropical North Atlantic coincident with the oxygen minimum zone (OMZ) likely due to reductive dissolution, biouptake and remineralization, and aeolian dust deposition. The occurrence of this plume in an OMZ with oxygen above suboxic levels implies a high threshold for persistence of dissolved cobalt plumes. The other major subsurface source came from Upper Labrador Seawater, which may carry high cobalt concentrations due to the interaction of this water mass with resuspended sediment at the western margin or from transport further upstream. Minor sources of cobalt came from dust, coastal surface waters and hydrothermal systems along the Mid-Atlantic Ridge. The full depth section of cobalt chemical speciation revealed near-complete complexation in surface waters, even within regions of high dust deposition. However, labile cobalt observed below the euphotic zone demonstrated that strong cobalt-binding ligands were not present in excess of the total cobalt concentration there, implying that mesopelagic labile cobalt was sourced from the remineralization of sinking organic matter. In the upper water column, correlations were observed between total cobalt and phosphate, and between labile cobalt and phosphate, demonstrating a strong biological influence on cobalt cycling. Along the western margin off the North American coast, this correlation with phosphate was no longer observed and instead a relationship between cobalt and salinity was observed, reflecting the importance of coastal input processes on cobalt distributions. In deep waters, both total and labile cobalt concentrations were lower than in intermediate depth waters, demonstrating that scavenging may remove labile cobalt from the water column. Total and labile cobalt distributions were also compared to a previously published South Atlantic GEOTRACES-compliant zonal transect (CoFeMUG, GAc01) to discern regional biogeochemical differences. Together, these Atlantic sectional studies highlight the dynamic ecological stoichiometry of total and labile cobalt. As increasing anthropogenic use and subsequent release of cobalt poses the potential to overpower natural cobalt signals in the oceans, it is more important than ever to establish a baseline understanding of cobalt distributions in the ocean.
21 CFR 582.80 - Trace minerals added to animal feeds.
Code of Federal Regulations, 2012 CFR
2012-04-01
... Cobalt Cobalt acetate. Cobalt carbonate. Cobalt chloride. Cobalt oxide. Cobalt sulfate. Copper Copper... pyrophosphate. Copper sulfate. Iodine Calcium iodate. Calcium iodobehenate. Cuprous iodide. 3,5-Diiodosalicylic.... Thymol iodide. Iron Iron ammonium citrate. Iron carbonate. Iron chloride. Iron gluconate. Iron oxide...
21 CFR 582.80 - Trace minerals added to animal feeds.
Code of Federal Regulations, 2014 CFR
2014-04-01
... Cobalt Cobalt acetate. Cobalt carbonate. Cobalt chloride. Cobalt oxide. Cobalt sulfate. Copper Copper... pyrophosphate. Copper sulfate. Iodine Calcium iodate. Calcium iodobehenate. Cuprous iodide. 3,5-Diiodosalicylic.... Thymol iodide. Iron Iron ammonium citrate. Iron carbonate. Iron chloride. Iron gluconate. Iron oxide...
21 CFR 582.80 - Trace minerals added to animal feeds.
Code of Federal Regulations, 2013 CFR
2013-04-01
... Cobalt Cobalt acetate. Cobalt carbonate. Cobalt chloride. Cobalt oxide. Cobalt sulfate. Copper Copper... pyrophosphate. Copper sulfate. Iodine Calcium iodate. Calcium iodobehenate. Cuprous iodide. 3,5-Diiodosalicylic.... Thymol iodide. Iron Iron ammonium citrate. Iron carbonate. Iron chloride. Iron gluconate. Iron oxide...
Nitrogen-doped carbon-supported cobalt-iron oxygen reduction catalyst
Zelenay, Piotr; Wu, Gang
2014-04-29
A Fe--Co hybrid catalyst for oxygen reaction reduction was prepared by a two part process. The first part involves reacting an ethyleneamine with a cobalt-containing precursor to form a cobalt-containing complex, combining the cobalt-containing complex with an electroconductive carbon supporting material, heating the cobalt-containing complex and carbon supporting material under conditions suitable to convert the cobalt-containing complex and carbon supporting material into a cobalt-containing catalyst support. The second part of the process involves polymerizing an aniline in the presence of said cobalt-containing catalyst support and an iron-containing compound under conditions suitable to form a supported, cobalt-containing, iron-bound polyaniline species, and subjecting said supported, cobalt-containing, iron bound polyaniline species to conditions suitable for producing a Fe--Co hybrid catalyst.
NASA Technical Reports Server (NTRS)
Wolski, W.
1985-01-01
Results of experimental studies of emission cathodes made from lanthanum, yttrium, and gadolinium hexaborides are presented. Maximum thermal emission was obtained from lanthanum hexaboride electrodes. The hexaboride cathodes operated stably under conditions of large current density power draw, at high voltages and poor vacuum. A microtron electron gun with a lanthanum hexaboride cathode is described.
1977-02-01
oxides and their mixtures, arsenides, borides, bromides , carbides , chlorides , fluoride s, nitride s, phosphides, silicides , sulfides , tellurides...ivity of alkali elements (lithium , sodium , potassium , rubi- dium , ces ium , and francium) and contains recomme nded reference values generated
Molecular Modeling of High-Temperature Oxidation of Refractory Borides
2008-02-01
generate the classical potential, we adopt the van Beest , Kramer and van Santen (BKS) parameterization for Si-O interactions, but fit B-O and Si-B...seminar at Department of Aerospace and Mechanical Engineering, University of Notre Dame, March 20, 2007. 6 Los Alamos National Lab Physics & Theoretical
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lim, Chong Wee; Shin, Chan Soo; Gall, Daniel
A method for forming an epitaxial cobalt silicide layer on a MOS device includes sputter depositing cobalt in an ambient to form a first layer of cobalt suicide on a gate and source/drain regions of the MOS device. Subsequently, cobalt is sputter deposited again in an ambient of argon to increase the thickness of the cobalt silicide layer to a second thickness.
Sumboja, Afriyanti; An, Tao; Goh, Hai Yang; Lübke, Mechthild; Howard, Dougal Peter; Xu, Yijie; Handoko, Albertus Denny; Zong, Yun; Liu, Zhaolin
2018-05-09
Catalysts for hydrogen evolution reaction are in demand to realize the efficient conversion of hydrogen via water electrolysis. In this work, cobalt phosphides were prepared using a one-step, scalable, and direct gas-solid phosphidation of commercially available cobalt salts. It was found that the effectiveness of the phosphidation reaction was closely related to the state of cobalt precursors at the reaction temperature. For instance, a high yield of cobalt phosphides obtained from the phosphidation of cobalt(II) acetate was related to the good stability of cobalt salt at the phosphidation temperature. On the other hand, easily oxidizable salts (e.g., cobalt(II) acetylacetonate) tended to produce a low amount of cobalt phosphides and a large content of metallic cobalt. The as-synthesized cobalt phosphides were in nanostructures with large catalytic surface areas. The catalyst prepared from phosphidation of cobalt(II) acetate exhibited an improved catalytic activity as compared to its counterpart derived from phosphidation of cobalt(II) acetylacetonate, showing an overpotential of 160 and 175 mV in acidic and alkaline electrolytes, respectively. Both catalysts also displayed an enhanced long-term stability, especially in the alkaline electrolyte. This study illustrates the direct phosphidation behavior of cobalt salts, which serve as a good vantage point in realizing the large-scale synthesis of transition-metal phosphides for high-performance electrocatalysts.
Controlling the misuse of cobalt in horses.
Ho, Emmie N M; Chan, George H M; Wan, Terence S M; Curl, Peter; Riggs, Christopher M; Hurley, Michael J; Sykes, David
2015-01-01
Cobalt is a well-established inducer of hypoxia-like responses, which can cause gene modulation at the hypoxia inducible factor pathway to induce erythropoietin transcription. Cobalt salts are orally active, inexpensive, and easily accessible. It is an attractive blood doping agent for enhancing aerobic performance. Indeed, recent intelligence and investigations have confirmed cobalt was being abused in equine sports. In this paper, population surveys of total cobalt in raceday samples were conducted using inductively coupled plasma mass spectrometry (ICP-MS). Urinary threshold of 75 ng/mL and plasma threshold of 2 ng/mL could be proposed for the control of cobalt misuse in raceday or in-competition samples. Results from administration trials with cobalt-containing supplements showed that common supplements could elevate urinary and plasma cobalt levels above the proposed thresholds within 24 h of administration. It would therefore be necessary to ban the use of cobalt-containing supplements on raceday as well as on the day before racing in order to implement and enforce the proposed thresholds. Since the abuse with huge quantities of cobalt salts can be done during training while the use of legitimate cobalt-containing supplements are also allowed, different urinary and plasma cobalt thresholds would be required to control cobalt abuse in non-raceday or out-of-competition samples. This could be achieved by setting the thresholds above the maximum urinary and plasma cobalt concentrations observed or anticipated from the normal use of legitimate cobalt-containing supplements. Urinary threshold of 2000 ng/mL and plasma threshold of 10 ng/mL were thus proposed for the control of cobalt abuse in non-raceday or out-of-competition samples. Copyright © 2014 John Wiley & Sons, Ltd.
On the cobalt and cobalt oxide electrodeposition from a glyceline deep eutectic solvent.
Sakita, Alan M P; Della Noce, Rodrigo; Fugivara, Cecílio S; Benedetti, Assis V
2016-09-14
The electrodeposition of cobalt and cobalt oxides from a glyceline deep eutectic solvent is reported. Cyclic voltammetry, chronoamperometry, scanning electron microscopy, and Raman spectroscopy are employed to study the Co deposition processes. Surface analysis reveals that metallic cobalt is deposited at potentials less negative than the current peak potential whereas cobalt oxides are detected and electrochemically observed when the deposition is done at more negative potentials. i-t transients are analyzed by applying the Scharifker and Hills (SH) theoretical model. It is concluded that cobalt deposition occurs via a progressive nucleation and growth mechanism for concentrations higher than 0.05 mol L -1 cobalt ions. For concentrations ≤0.025 mol L -1 cobalt ions and low overpotentials, the mechanism changes to instantaneous nucleation. The i m -t m relationships of the SH model are used to determine the values of the kinetic parameters and the cobalt ion diffusion coefficient.
Foose, M.P.
1983-01-01
Analyses of 28 stream sediment samples collected in the Bou Azzer district, Morocco, show that this sampling technique may be useful in locating the cobalt arsenide mineralization that exists in this area. The absence of exceptionally high values of cobalt and arsenic, the nearly lognormal distribution of cobalt values, and the lack of correlation between the highest values of cobalt and arsenic were unanticipated results that do not support the use of this sampling technique. However, highest values of several metals, including cobalt, were associated with an identified area of cobalt mineralization, and high cobalt was present near a second area in which cobalt mineralization is suspected. Although probably mostly reflecting the geochemistry of unexposed ultramafic rocks, the association of these metals with mineralization shows that this type of sampling can independently locate areas of known or potential cobalt mineralization.
Comparing Sliding-Wear Characteristics of the Electro-Pressure Sintered and Wrought Cobalt
NASA Astrophysics Data System (ADS)
Lee, J. E.; Kim, Y. S.; Kim, T. W.
Dry sliding wear tests of hot-pressure sintered and wrought cobalt were carried out to compare their wear characteristics. Cobalt powders with average size of 1.5µm were electro-pressure sintered to make sintered-cobalt disk wear specimens. A vacuum-induction melted cobalt ingot was hot-rolled at 800°C to a plate, from which wrought-cobalt disk specimens were machined. The specimens were heat treated at various temperatures to vary grain size and phase fraction. Wear tests of the cobalt specimens were carried out using a pin-on-disk wear tester against a glass (83% SiO2) bead at 100N with the constant sliding speed and distance of 0.36m/s and 600m, respectively. Worn surfaces, their cross sections, and wear debris were examined by an SEM. The wear of the cobalt was found to be strongly influenced by the strain-induced phase transformation of ɛ-Co (hcp) to α-Co (fcc). The sintered cobalt had smaller uniform grain size and showed higher wear rate than the wrought cobalt. The higher wear rate of the sintered cobalt was explained by the more active deformation-induced phase transformation than in the wrought cobalt with larger irregular grains.
A dissolved cobalt plume in the oxygen minimum zone of the eastern tropical South Pacific
NASA Astrophysics Data System (ADS)
Hawco, Nicholas J.; Ohnemus, Daniel C.; Resing, Joseph A.; Twining, Benjamin S.; Saito, Mak A.
2016-10-01
Cobalt is a nutrient to phytoplankton, but knowledge about its biogeochemical cycling is limited, especially in the Pacific Ocean. Here, we report sections of dissolved cobalt and labile dissolved cobalt from the US GEOTRACES GP16 transect in the South Pacific. The cobalt distribution is closely tied to the extent and intensity of the oxygen minimum zone in the eastern South Pacific with highest concentrations measured at the oxycline near the Peru margin. Below 200 m, remineralization and circulation produce an inverse relationship between cobalt and dissolved oxygen that extends throughout the basin. Within the oxygen minimum zone, elevated concentrations of labile cobalt are generated by input from coastal sources and reduced scavenging at low O2. As these high cobalt waters are upwelled and advected offshore, phytoplankton export returns cobalt to low-oxygen water masses underneath. West of the Peru upwelling region, dissolved cobalt is less than 10 pM in the euphotic zone and strongly bound by organic ligands. Because the cobalt nutricline within the South Pacific gyre is deeper than in oligotrophic regions in the North and South Atlantic, cobalt involved in sustaining phytoplankton productivity in the gyre is heavily recycled and ultimately arrives from lateral transport of upwelled waters from the eastern margin. In contrast to large coastal inputs, atmospheric deposition and hydrothermal vents along the East Pacific Rise appear to be minor sources of cobalt. Overall, these results demonstrate that oxygen biogeochemistry exerts a strong influence on cobalt cycling.
Cobalt metabolism and toxicology--a brief update.
Simonsen, Lars Ole; Harbak, Henrik; Bennekou, Poul
2012-08-15
Cobalt metabolism and toxicology are summarized. The biological functions of cobalt are updated in the light of recent understanding of cobalt interference with the sensing in almost all animal cells of oxygen deficiency (hypoxia). Cobalt (Co(2+)) stabilizes the transcriptional activator hypoxia-inducible factor (HIF) and thus mimics hypoxia and stimulates erythropoietin (Epo) production, but probably also by the same mechanism induces a coordinated up-regulation of a number of adaptive responses to hypoxia, many with potential carcinogenic effects. This means on the other hand that cobalt (Co(2+)) also may have beneficial effects under conditions of tissue hypoxia, and possibly can represent an alternative to hypoxic preconditioning. Cobalt is acutely toxic in larger doses, and in mammalian in vitro test systems cobalt ions and cobalt metal are cytotoxic and induce apoptosis and at higher concentrations necrosis with inflammatory response. Cobalt metal and salts are also genotoxic, mainly caused by oxidative DNA damage by reactive oxygen species, perhaps combined with inhibition of DNA repair. Of note, the evidence for carcinogenicity of cobalt metal and cobalt sulfate is considered sufficient in experimental animals, but is as yet considered inadequate in humans. Interestingly, some of the toxic effects of cobalt (Co(2+)) have recently been proposed to be due to putative inhibition of Ca(2+) entry and Ca(2+)-signaling and competition with Ca(2+) for intracellular Ca(2+)-binding proteins. The tissue partitioning of cobalt (Co(2+)) and its time-dependence after administration of a single dose have been studied in man, but mainly in laboratory animals. Cobalt is accumulated primarily in liver, kidney, pancreas, and heart, with the relative content in skeleton and skeletal muscle increasing with time after cobalt administration. In man the renal excretion is initially rapid but decreasing over the first days, followed by a second, slow phase lasting several weeks, and with a significant long-term retention in tissues for several years. In serum cobalt (Co(2+)) binds to albumin, and the concentration of free, ionized Co(2+) is estimated at 5-12% of the total cobalt concentration. In human red cells the membrane transport pathway for cobalt (Co(2+)) uptake appears to be shared with calcium (Ca(2+)), but with the uptake being essentially irreversible as cobalt is effectively bound in the cytosol and is not itself extruded by the Ca-pump. It is tempting to speculate that this could perhaps also be the case in other animal cells. If this were actually the case, the tissue partitioning and biokinetics of cobalt in cells and tissues would be closely related to the uptake of calcium, with cobalt partitioning primarily into tissues with a high calcium turn-over, and with cobalt accumulation and retention in tissues with a slow turn-over of the cells. The occupational cobalt exposure, e.g. in cobalt processing plants and hard-metal industry is well known and has probably been somewhat reduced in more recent years due to improved work place hygiene. Of note, however, adverse reactions to heart and lung have recently been demonstrated following cobalt exposure near or slightly under the current occupational exposure limit. Over the last decades the use of cobalt-chromium hard-metal alloys in orthopedic joint replacements, in particular in metal-on-metal bearings in hip joint arthroplasty, has created an entirely new source of internal cobalt exposure. Corrosion and wear produce soluble metal ions and metal debris in the form of huge numbers of wear particles in nanometric size, with systemic dissemination through lymph and systemic vascular system. This may cause adverse local reactions in peri-prosthetic soft-tissues, and in addition systemic toxicity. Of note, the metal nanoparticles have been demonstrated to be clearly more toxic than larger, micrometer-sized particles, and this has made the concept of nanotoxicology a crucial, new discipline. As another new potential source of cobalt exposure, suspicion has been raised that cobalt salts may be misused by athletes as an attractive alternative to Epo doping for enhancing aerobic performance. The cobalt toxicity in vitro seems to reside mainly with ionized cobalt. It is tempting to speculate that ionized cobalt is also the primary toxic form for systemic toxicity in vivo. Under this assumption, the relevant parameter for risk assessment would be the time-averaged value for systemic cobalt ion exposure that from a theoretical point of view might be obtained by measuring the cobalt content in red cells, since their cobalt uptake reflects uptake only of free ionized cobalt (Co(2+)), and since the uptake during their 120 days life span is practically irreversible. This clearly calls for future clinical studies in exposed individuals with a systematic comparison of concurrent measurements of cobalt concentration in red cells and in serum. Copyright © 2012 Elsevier B.V. All rights reserved.
Cobalt ferrite based magnetostrictive materials for magnetic stress sensor and actuator applications
NASA Technical Reports Server (NTRS)
Jiles, David C. (Inventor); Paulsen, Jason A. (Inventor); Snyder, John E. (Inventor); Lo, Chester C. H. (Inventor); Ring, Andrew P. (Inventor); Bormann, Keith A. (Inventor)
2008-01-01
Magnetostrictive material based on cobalt ferrite is described. The cobalt ferrite is substituted with transition metals (such manganese (Mn), chromium (Cr), zinc (Zn) and copper (Cu) or mixtures thereof) by substituting the transition metals for iron or cobalt to form substituted cobalt ferrite that provides mechanical properties that make the substituted cobalt ferrite material effective for use as sensors and actuators. The substitution of transition metals lowers the Curie temperature of the material (as compared to cobalt ferrite) while maintaining a suitable magnetostriction for stress sensing applications.
Slack, John F.; Kimball, Bryn E.; Shedd, Kim B.; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.
2017-12-19
Cobalt is a silvery gray metal that has diverse uses based on certain key properties, including ferromagnetism, hardness and wear-resistance when alloyed with other metals, low thermal and electrical conductivity, high melting point, multiple valences, and production of intense blue colors when combined with silica. Cobalt is used mostly in cathodes in rechargeable batteries and in superalloys for turbine engines in jet aircraft. Annual global cobalt consumption was approximately 75,000 metric tons in 2011; China, Japan, and the United States (in order of consumption amount) were the top three cobalt-consuming countries. In 2011, approximately 109,000 metric tons of recoverable cobalt was produced in ores, concentrates, and intermediate products from cobalt, copper, nickel, platinum-group-element (PGE), and zinc operations. The Democratic Republic of the Congo (Congo [Kinshasa]) was the principal source of mined cobalt globally (55 percent). The United States produced a negligible amount of byproduct cobalt as an intermediate product from a PGE mining and refining operation in southeastern Montana; no U.S. production was from mines in which cobalt was the principal commodity. China was the leading refiner of cobalt, and much of its production came from cobalt ores, concentrates, and partially refined materials imported from Congo (Kinshasa).The mineralogy of cobalt deposits is diverse and includes both primary (hypogene) and secondary (supergene) phases. Principal terrestrial (land-based) deposit types, which represent most of world’s cobalt mine production, include primary magmatic Ni-Cu(-Co-PGE) sulfides, primary and secondary stratiform sediment-hosted Cu-Co sulfides and oxides, and secondary Ni-Co laterites. Seven additional terrestrial deposit types are described in this chapter. The total terrestrial cobalt resource (reserves plus other resources) plus past production, where available, is calculated to be 25.5 million metric tons. Additional resources of cobalt are known to occur on the modern sea floor in aerially extensive deposits of Fe-Mn(-Ni-Cu-Co-Mo) nodules and Fe-Mn(-Co-Mo-rare-earth-element) crusts. Legal, economic, and technological barriers have prevented exploitation of these cobalt resources, which lie at water depths of as great as 6,000 meters, although advances in technology may soon allow production of these resources to be economically viable.Environmental issues related to cobalt mining concern mainly the elevated cobalt contents in soils and waters. Although at low levels cobalt is essential to human health (it is the central atom in the critical nutrient vitamin B12), overexposure to high levels of cobalt may cause lung and heart dysfunction, as well as dermatitis. The ecological impacts of cobalt vary widely and can be severe for some species of fish and plants, depending on various environmental factors.
Lithium Borides - High Energy Materials
2000-02-28
1993. 99, 7983. (32) Pulay P.; Hamilton. T. P. J. Chem. Phys. 1988, 88. 4926 . (33) Frisch. M. J.: Trucks. G. W.; Schlegel. H. B.: Gill, P. M. W...25] P.V. Sudhakar, K. Lammertsma, J. Chem. Phys. 99 (1993) 7929. [26] M.J. van der Woerd, K. Lammertsma, B.J. Duke, H.F. Schaefer , III, J
Hillyer, L L; Ridd, Z; Fenwick, S; Hincks, P; Paine, S W
2018-05-01
While cobalt is an essential micronutrient for vitamin B 12 synthesis in the horse, at supraphysiological concentrations, it has been shown to enhance performance in human subjects and rats, and there is evidence that its administration in high doses to horses poses a welfare threat. Animal sport regulators currently control cobalt abuse via international race day thresholds, but this work was initiated to explore means of potentially adding to application of those thresholds since cobalt may be present in physiological concentrations. To devise a scientific basis for differentiation between presence of cobalt from bona fide supplementation and cobalt doping through the use of ratios. Six Thoroughbred horses were given 10 mL vitamin B 12 /cobalt supplement (Hemo-15 ® ; Vetoquinol, Buckingham, Buckinghamshire, UK., 1.5 mg B 12 , 7 mg cobalt gluconate = 983 μg total Co) as an i.v. bolus then an i.v. infusion (15 min) of 100 mg cobalt chloride (45.39 mg Co) 6 weeks later. Pre-and post-administration plasma and urine samples were analysed for cobalt and vitamin B 12 . Urine and plasma samples were analysed for vitamin B 12 using an immunoassay and cobalt concentrations were measured via ICP-MS. Baseline concentrations of cobalt in urine and plasma for each horse were subtracted from their cobalt concentrations post-administration for the PK analysis. Compartmental analysis was used for the determination of plasma PK parameters for cobalt using commercially available software. On administration of a vitamin B 12 /cobalt supplement, the ratio of cobalt to vitamin B 12 in plasma rapidly increased to approximately 3 and then rapidly declined below a ratio of 1 and then back to near baseline over the next week. On administration of 100 mg cobalt chloride, the ratio initially exceeded 10 in plasma and then declined with the lower 95% confidence interval remaining above a ratio of 1 for 7 days. For two horses with extended sampling, the plasma ratio remained above one for approximately 28 days after cobalt chloride administration. The effect of the administration of the vitamin B 12 /cobalt supplement on the urine ratio was transient and reached a peak value of 10 which then rapidly declined. However, a urine ratio of 10 was exceeded, with the lower 95% confidence interval remaining above a ratio of 10 for 7 days after cobalt chloride administration. For the two horses with extended sampling, the urine ratio remained above 10 for about 18 days (442 h) after cobalt chloride administration even though the absolute cobalt urine concentration had dropped below the international threshold of 100 ng/mL after 96 h. Only one vitamin B 12 /cobalt product was evaluated, a limited number of horses were included, the horses were not in full race training and the results may be specific to this population of horses. The results provide the basis for a potential strategy for allowing supplementation with vitamin B 12 products, while controlling the misuse of high doses of cobalt, through a combination of international thresholds and ratios of cobalt to vitamin B 12 , in plasma and urine. © 2017 EVJ Ltd.
Grain Refinement and Texture Mitigation in Low Boron Containing TiAl-Alloys
NASA Astrophysics Data System (ADS)
Hecht, Ulrike; Witusiewicz, Victor T.
2017-12-01
Controlling the grain size and texture of lamellar TiAl-alloys is essential for well-balanced creep and fatigue properties. Excellent refinement and texture mitigation are achieved in aluminum lean alloys by low boron additions of 0.2 at.%. This amount is sufficient to promote in situ formation of ultrafine borides during the last stages of body centered cubic (BCC) solidification. The borides subsequently serve as nucleation sites for hexagonal close packed (HCP) during the BCC-HCP phase transformation. Bridgman solidification experiments with alloy Ti-43Al-8Nb-0.2C-0.2B were performed under a different growth velocity, i.e., cooling rate, to evaluate the HCP grain size distribution and texture. For slow-to-moderate cooling rates, about 65% of HCP grains are randomly oriented, despite the pronounced texture of the parent BCC phase resulting from directional solidification. For high cooling rates, obtained by quenching, texture mitigation is less pronounced. Only 28% of the HCP grains are randomly oriented, the majority being crystallographic variants of the Burgers orientation relationship.
NASA Technical Reports Server (NTRS)
Brainard, W. A.; Wheeler, D. R.
1978-01-01
Radio frequency sputtering was used to deposit refractory carbide, silicide, and boride coatings on 440-C steel substrates. Both sputter etched and pre-oxidized substrates were used and the films were deposited with and without a substrate bias. The composition of the coatings was determined as a function of depth by X-ray photoelectron spectroscopy combined with argon ion etching. Friction and wear tests were conducted to evaluate coating adherence. In the interfacial region there was evidence that bias may produce a graded interface for some compounds. Biasing, while generally improving bulk film stoichiometry, can adversely affect adherence by removing interfacial oxide layers. Oxides of all film constituents except carbon and iron were present in all cases but the iron oxide coverage was only complete on the preoxidized substrates. The film and iron oxides were mixed in the MoSi2 and Mo2C films but layered in the Mo2B5 films. In the case of mixed oxides, preoxidation enhanced film adherence. In the layered case it did not.
Boronization and Carburization of Superplastic Stainless Steel and Titanium-Based Alloys
Matsushita, Masafumi
2011-01-01
Bronization and carburization of fine-grain superplastic stainless steel is reviewed, and new experimental results for fine grain Ti88.5Al4.5V3Fe2Mo2 are reported. In superplastic duplex stainless steel, the diffusion of carbon and boron is faster than in non-superplastic duplex stainless steel. Further, diffusion is activated by uniaxial compressive stress. Moreover, non-superplastic duplex stainless steel shows typical grain boundary diffusion; however, inner grain diffusion is confirmed in superplastic stainless steel. The presence of Fe and Cr carbides or borides is confirmed by X-ray diffraction, which indicates that the diffused carbon and boron react with the Fe and Cr in superplastic stainless steel. The Vickers hardness of the carburized and boronized layers is similar to that achieved with other surface treatments such as electro-deposition. Diffusion of boron into the superplastic Ti88.5Al4.5V3Fe2Mo2 alloy was investigated. The hardness of the surface exposed to boron powder can be increased by annealing above the superplastic temperature. However, the Vickers hardness is lower than that of Ti boride. PMID:28824144
2013-01-01
A series of non-precious metal electrocatalysts, namely pyrolyzed carbon-supported cobalt-polypyrrole, Co-PPy-TsOH/C, are synthesized with various cobalt precursors, including cobalt acetate, cobalt nitrate, cobalt oxalate, and cobalt chloride. The catalytic performance towards oxygen reduction reaction (ORR) is comparatively investigated with electrochemical techniques of cyclic voltammogram, rotating disk electrode and rotating ring-disk electrode. The results are analyzed and discussed employing physiochemical techniques of X-ray diffraction, transmission electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, inductively coupled plasma, elemental analysis, and extended X-ray absorption fine structure. It shows that the cobalt precursor plays an essential role on the synthesis process as well as microstructure and performance of the Co-PPy-TsOH/C catalysts towards ORR. Among the studied Co-PPy-TsOH/C catalysts, that prepared with cobalt acetate exhibits the best ORR performance. The crystallite/particle size of cobalt and its distribution as well as the graphitization degree of carbon in the catalyst greatly affects the catalytic performance of Co-PPy-TsOH/C towards ORR. Metallic cobalt is the main component in the active site in Co-PPy-TsOH/C for catalyzing ORR, but some other elements such as nitrogen are probably involved, too. PMID:24229351
Comparison of supplemental cobalt form on fibre digestion and cobalamin concentrations in cattle
USDA-ARS?s Scientific Manuscript database
Cobalt is essential for rumen microbial metabolism to synthesize methane, acetate and methionine. It also serves as a structural component of vitamin B12, which functions as a coenzyme in energy metabolism. A study was conducted to determine if cobalt form (cobalt carbonate vs cobalt glucoheptonate...
Selective catalysts and their preparation for catalytic hydrocarbon synthesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iglesia, E.; Vroman, H.; Soled, S.
1991-07-30
This patent describes a method for preparing a supported cobalt catalyst particle. It comprises contacting a support particle with a molten cobalt salt, for a period sufficient to impregnate substantially all of the molten cobalt salt on the support to a depth of less than about 200 {mu}m; drying the supported cobalt salt obtained; reducing the cobalt of the supported cobalt salt to metallic cobalt by heating the salt in the presence of H{sub 2}, wherein the heating is conducted at a rate of less than about 1{degrees} C./min. up to a maximum temperature ranging from about 100{degrees} C. tomore » about 500{degrees} C., to produce a supported cobalt catalyst particle.« less
Mechanical properties of nanocrystalline cobalt
NASA Astrophysics Data System (ADS)
Karimpoor, Amir A.; Erb, Uwe
2006-05-01
Due to their excellent wear and corrosion properties, nanocrystalline cobalt and several cobalt alloys made by electrodeposition are currently being developed as environmentally benign replacement coatings for hard chromium electrodeposits. The focus of this study is on the mechanical properties of nanocrystalline cobalt, which are currently not well understood. A comparison is presented for hardness, tensile properties, Charpy impact properties and fracture surface analysis of both nanocrystalline (grain size: 12 nm) and conventional polycrystalline (grain size: 4.8 m) cobalt. It is shown that the hardness and tensile strength of nanocrystalline cobalt is 2-3 times higher than for polycrystalline cobalt. However, in contrast to other nanocrystalline materials tested previously, nanocrystalline cobalt retains considerable ductility with elongation to fracture values up to 7%.
Cobalt: A vital element in the aircraft engine industry
NASA Technical Reports Server (NTRS)
Stephens, J. R.
1981-01-01
Recent trends in the United States consumption of cobalt indicate that superalloys for aircraft engine manufacture require increasing amounts of this strategic element. Superalloys consume a lion's share of total U.S. cobalt usage which was about 16 million pounds in 1980. In excess of 90 percent of the cobalt used in this country was imported, principally from the African countries of Zaire and Zambia. Early studies on the roles of cobalt as an alloying element in high temperature alloys concentrated on the simple Ni-Cr and Nimonic alloy series. The role of cobalt in current complex nickel base superalloys is not well defined and indeed, the need for the high concentration of cobalt in widely used nickel base superalloys is not firmly established. The current cobalt situation is reviewed as it applies to superalloys and the opportunities for research to reduce the consumption of cobalt in the aircraft engine industry are described.
Characteristics of polyaniline cobalt supported catalysts for epoxidation reactions.
Kowalski, Grzegorz; Pielichowski, Jan; Grzesik, Mirosław
2014-01-01
A study of polyaniline (PANI) doping with various cobalt compounds, that is, cobalt(II) chloride, cobalt(II) acetate, and cobalt(II) salen, is presented. The catalysts were prepared by depositing cobalt compounds onto the polymer surface. PANI powders containing cobalt ions were obtained by one- or two-step method suspending PANI in the following acetonitrile/acetic acid solution or acetonitrile and then acetic acid solution. Moreover different ratios of Co(II) : PANI were studied. Catalysts obtained with both methods and at all ratios were investigated using various techniques including AAS and XPS spectroscopy. The optimum conditions for preparation of PANI/Co catalysts were established. Catalytic activity of polyaniline cobalt(II) supported catalysts was tested in dec-1-ene epoxidation with molecular oxygen at room temperature. The relationship between the amount of cobalt species, measured with both AAS and XPS techniques, and the activity of PANI-Co catalysts has been established.
Characteristics of Polyaniline Cobalt Supported Catalysts for Epoxidation Reactions
Kowalski, Grzegorz; Pielichowski, Jan; Grzesik, Mirosław
2014-01-01
A study of polyaniline (PANI) doping with various cobalt compounds, that is, cobalt(II) chloride, cobalt(II) acetate, and cobalt(II) salen, is presented. The catalysts were prepared by depositing cobalt compounds onto the polymer surface. PANI powders containing cobalt ions were obtained by one- or two-step method suspending PANI in the following acetonitrile/acetic acid solution or acetonitrile and then acetic acid solution. Moreover different ratios of Co(II) : PANI were studied. Catalysts obtained with both methods and at all ratios were investigated using various techniques including AAS and XPS spectroscopy. The optimum conditions for preparation of PANI/Co catalysts were established. Catalytic activity of polyaniline cobalt(II) supported catalysts was tested in dec-1-ene epoxidation with molecular oxygen at room temperature. The relationship between the amount of cobalt species, measured with both AAS and XPS techniques, and the activity of PANI-Co catalysts has been established. PMID:24701183
Sologub, Oksana; Salamakha, Leonid; Rogl, Peter; Stöger, Berthold; Bauer, Ernst; Bernardi, Johannes; Giester, Gerald; Waas, Monika; Svagera, Robert
2015-11-16
On the basis of a detailed study applying X-ray single-crystal and powder diffraction, differential scanning calorimetry, and scanning electron microscopy analysis, it was possible to resolve existing uncertainties in the Pt-rich section (≥65 atom % Pt) of the binary Pt-B phase diagram above 600 °C. The formation of a unique structure has been observed for Pt2B [X-ray single-crystal data: space group C2/m, a = 1.62717(11) nm, b = 0.32788(2) nm, c = 0.44200(3) nm, β = 104.401(4)°, RF2 = 0.030]. Within the homogeneity range of "Pt3B", X-ray powder diffraction phase analysis prompted two structural modifications as a function of temperature. The crystal structure of "hT-Pt3B" complies with the hitherto reported structure of anti-MoS2 [space group P63/mmc, a = 0.279377(2) nm, c = 1.04895(1) nm, RF = 0.075, RI = 0.090]. The structure of the new "[Formula: see text]T-Pt3B" is still unknown. The formation of previously reported Pt∼4B has not been confirmed from binary samples. Exploration of the Pt-rich section of the Pt-Cu-B system at 600 °C revealed a new ternary compound, Pt12CuB6-y [X-ray single-crystal data: space group Im3̅, a = 0.75790(2) nm, y = 3, RF2 = 0.0129], which exhibits the filled WAl12-type structure accommodating boron in the interstitial trigonal-prismatic site 12e. The isotypic platinum-aluminum-boride was synthesized and studied. The solubility of copper in binary platinum borides has been found to attain ∼7 atom % Cu for Pt2B but to be insignificant for "[Formula: see text]T-Pt3B". The architecture of the new Pt2B structure combines puckered layers of boron-filled and empty [Pt6] octahedra (anti-CaCl2-type fragment) alternating along the x axis with a double layer of boron-semifilled [Pt6] trigonal prisms interbedded with a layer of empty tetrahedra and tetragonal pyramids (B-deficient α-T[Formula: see text]I fragment). Assuming boron vacancies ordering (space group R3), the Pt12CuB6-y structure exhibits serpentine-like columns of edge-connected boron-filled [Pt6] trigonal prisms running infinitely along the z axis and embedding the icosahedrally coordinated Cu atom. Pt2B, (Pt1-yCuy)2B (y = 0.045), and Pt12CuB6-y (y = 3) behave metallically, as revealed by temperature-dependent electrical resistivity measurements.
NASA Astrophysics Data System (ADS)
Tagliabue, Alessandro; Hawco, Nicholas J.; Bundy, Randelle M.; Landing, William M.; Milne, Angela; Morton, Peter L.; Saito, Mak A.
2018-04-01
Cobalt is an important micronutrient for ocean microbes as it is present in vitamin B12 and is a co-factor in various metalloenzymes that catalyze cellular processes. Moreover, when seawater availability of cobalt is compared to biological demands, cobalt emerges as being depleted in seawater, pointing to a potentially important limiting role. To properly account for the potential biological role for cobalt, there is therefore a need to understand the processes driving the biogeochemical cycling of cobalt and, in particular, the balance between external inputs and internal cycling. To do so, we developed the first cobalt model within a state-of-the-art three-dimensional global ocean biogeochemical model. Overall, our model does a good job in reproducing measurements with a correlation coefficient of >0.7 in the surface and >0.5 at depth. We find that continental margins are the dominant source of cobalt, with a crucial role played by supply under low bottom-water oxygen conditions. The basin-scale distribution of cobalt supplied from margins is facilitated by the activity of manganese-oxidizing bacteria being suppressed under low oxygen and low temperatures, which extends the residence time of cobalt. Overall, we find a residence time of 7 and 250 years in the upper 250 m and global ocean, respectively. Importantly, we find that the dominant internal resupply process switches from regeneration and recycling of particulate cobalt to dissolution of scavenged cobalt between the upper ocean and the ocean interior. Our model highlights key regions of the ocean where biological activity may be most sensitive to cobalt availability.
Pinto-Ibieta, F; Serrano, A; Jeison, D; Borja, R; Fermoso, F G
2016-07-01
Due to the low trace metals concentration in the Olive Mill Solid Waste (OMSW), a proposed strategy to improve its biomethanization is the supplementation of key metals to enhance the microorganism activity. Among essential trace metals, cobalt has been reported to have a crucial role in anaerobic degradation. This study evaluates the effect of cobalt supplementation to OMSW, focusing on the connection between fractionation of cobalt in the system and the biological response. The highest biological responses was found in a range from 0.018 to 0.035mg/L of dissolved cobalt (0.24-0.65mg total cobalt/L), reaching improvements up to 23% and 30% in the methane production rate and the methane yield coefficient, respectively. It was found that the dissolved cobalt fraction is more accurately related with the biological response than the total cobalt. The total cobalt is distorted by the contribution of dissolved and non-dissolved inert fractions. Copyright © 2016 Elsevier Ltd. All rights reserved.
Fabrication of cobalt magnetic nanostructures using atomic force microscope lithography.
Chu, Haena; Yun, Seonghun; Lee, Haiwon
2013-12-01
Cobalt nanopatterns are promising assemblies for patterned magnetic storage applications. The fabrication of cobalt magnetic nanostructures on n-tridecylamine x hydrochloride (TDA x HCl) self-assembled monolayer (SAM) modified silicon surfaces using direct writing atomic force microscope (AFM) lithography for localized electrochemical reduction of cobalt ions was demonstrated. The ions were reduced to form metal nanowires along the direction of the electricfield between the AFM tip and the substrate. In this lithography process, TDA x HCI SAMs play an important role in the lithography process for improving the resolution of cobalt nanopatterns by preventing nonspecific reduction of cobalt ions on the unwritten background. Cobalt nanowires and nanodots with width of 225 +/- 26 nm and diameter of 208 +/- 28 nm were successfully fabricated. Platinium-coated polydimethylsiloxane (PDMS) stamp was used fabricating bulk cobalt structures which can be detected by energy dispersive X-ray spectroscopy for element analysis and the physical and magnetic properties of these cobalt nanopatterns were characterized using AFM and magnetic force microscope.
Influence of Cobalt Doping on the Physical Properties of Zn0.9Cd0.1S Nanoparticles
2010-01-01
Zn0.9Cd0.1S nanoparticles doped with 0.005–0.24 M cobalt have been prepared by co-precipitation technique in ice bath at 280 K. For the cobalt concentration >0.18 M, XRD pattern shows unidentified phases along with Zn0.9Cd0.1S sphalerite phase. For low cobalt concentration (≤0.05 M) particle size, dXRDis ~3.5 nm, while for high cobalt concentration (>0.05 M) particle size decreases abruptly (~2 nm) as detected by XRD. However, TEM analysis shows the similar particle size (~3.5 nm) irrespective of the cobalt concentration. Local strain in the alloyed nanoparticles with cobalt concentration of 0.18 M increases ~46% in comparison to that of 0.05 M. Direct to indirect energy band-gap transition is obtained when cobalt concentration goes beyond 0.05 M. A red shift in energy band gap is also observed for both the cases. Nanoparticles with low cobalt concentrations were found to have paramagnetic nature with no antiferromagnetic coupling. A negative Curie–Weiss temperature of −75 K with antiferromagnetic coupling was obtained for the high cobalt concentration. PMID:20672097
Blood doping by cobalt. Should we measure cobalt in athletes?
Lippi, Giuseppe; Franchini, Massimo; Guidi, Gian Cesare
2006-07-24
Blood doping is commonplace in competitive athletes who seek to enhance their aerobic performances through illicit techniques. Cobalt, a naturally-occurring element with properties similar to those of iron and nickel, induces a marked and stable polycythemic response through a more efficient transcription of the erythropoietin gene. Although little information is available so far on cobalt metabolism, reference value ranges or supplementation in athletes, there is emerging evidence that cobalt is used as a supplement and increased serum concentrations are occasionally observed in athletes. Therefore, given the athlete's connatural inclination to experiment with innovative, unfair and potentially unhealthy doping techniques, cobalt administration might soon become the most suited complement or surrogate for erythropoiesis-stimulating substances. Nevertheless, cobalt administration is not free from unsafe consequences, which involve toxic effects on heart, liver, kidney, thyroid and cancer promotion. Cobalt is easily purchasable, inexpensive and not currently comprehended within the World Anti-Doping Agency prohibited list. Moreover, available techniques for measuring whole blood, serum, plasma or urinary cobalt involve analytic approaches which are currently not practical for antidoping laboratories. Thus more research on cobalt metabolism in athletes is compelling, along with implementation of effective strategies to unmask this potentially deleterious doping practice.
Influence of Cobalt Doping on the Physical Properties of Zn0.9Cd0.1S Nanoparticles.
Singhal, Sonal; Chawla, Amit Kumar; Gupta, Hari Om; Chandra, Ramesh
2009-11-17
Zn0.9Cd0.1S nanoparticles doped with 0.005-0.24 M cobalt have been prepared by co-precipitation technique in ice bath at 280 K. For the cobalt concentration >0.18 M, XRD pattern shows unidentified phases along with Zn0.9Cd0.1S sphalerite phase. For low cobalt concentration (≤0.05 M) particle size, dXRDis ~3.5 nm, while for high cobalt concentration (>0.05 M) particle size decreases abruptly (~2 nm) as detected by XRD. However, TEM analysis shows the similar particle size (~3.5 nm) irrespective of the cobalt concentration. Local strain in the alloyed nanoparticles with cobalt concentration of 0.18 M increases ~46% in comparison to that of 0.05 M. Direct to indirect energy band-gap transition is obtained when cobalt concentration goes beyond 0.05 M. A red shift in energy band gap is also observed for both the cases. Nanoparticles with low cobalt concentrations were found to have paramagnetic nature with no antiferromagnetic coupling. A negative Curie-Weiss temperature of -75 K with antiferromagnetic coupling was obtained for the high cobalt concentration.
Kinobe, Robert T
2016-02-01
Cobalt is an essential trace element for many vital physiological functions. Cobalt is also known to stabilise hypoxia-inducible transcription factors leading to increased expression of erythropoietin which activates production of red blood cells. This implies that cobalt can be used to enhance aerobic performance in racing horses. If this becomes a pervasive practice, the welfare of racing animals would be at risk because cobalt is associated with cardiovascular, haematological, thyroid gland and reproductive toxicity as observed in laboratory animals and humans. It is expected that similar effects may manifest in horses but direct evidence on equine specific effects of cobalt and the corresponding exposure conditions leading to such effects is lacking. Available pharmacokinetic data demonstrates that intravenously administered cobalt has a long elimination half-life (42-156 h) and a large volume of distribution (0.94 L/kg) in a horse implying that repeated administration of cobalt would accumulate in tissues over time attaining equilibrium after ~9-33 days. Based on these pharmacokinetic data and surveys of horses post racing, threshold cobalt concentrations of 2-10 μg/L in plasma and 75-200 μg/L in urine have been recommended. However, there is no clearly defined, presumably normal cobalt supplementation regimen for horses and characterisation of potential adverse effects of any established threshold cobalt concentrations has not been done. This review outlines the strengths and limitations of the existing literature on the pharmacological effects of cobalt in horses with some recommendations on what gaps to bridge to enable the determination of optimal threshold cobalt concentrations in racing horses. Copyright © 2015 Elsevier Ltd. All rights reserved.
Consumer leather exposure: an unrecognized cause of cobalt sensitization.
Thyssen, Jacob P; Johansen, Jeanne D; Jellesen, Morten S; Møller, Per; Sloth, Jens J; Zachariae, Claus; Menné, Torkil
2013-11-01
A patient who had suffered from persistent generalized dermatitis for 7 years was diagnosed with cobalt sensitization, and his leather couch was suspected as the culprit, owing to the clinical presentation mimicking allergic chromium dermatitis resulting from leather furniture exposure. The cobalt spot test, X-ray fluorescence, inductively coupled plasma mass spectrometry and scanning electron microscopy were used to determine cobalt content and release from the leather couch that caused the dermatitis and from 14 randomly collected samples of furniture leather. The sample from the patient's leather couch, but none of the 14 random leather samples, released cobalt in high concentrations. Dermatitis cleared when the patient stopped using his couch. Cobalt is used in the so-called pre-metallized dyeing of leather products. Repeated studies have found high levels of cobalt sensitization, but not nickel sensitization, in patients with foot dermatitis. We raise the possibility that cobalt may be widely released from leather items, and advise dermatologists to consider this in patients with positive cobalt patch test reactions. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Fabrication of highly textured lithium cobalt oxide films by rapid thermal annealing
Bates, John B.
2003-04-29
Systems and methods are described for fabrication of highly textured lithium cobalt oxide films by rapid thermal annealing. A method of forming a lithium cobalt oxide film includes depositing a film of lithium cobalt oxide on a substrate; rapidly heating the film of lithium cobalt oxide to a target temperature; and maintaining the film of lithium cobalt oxide at the target temperature for a target annealing time of at most, approximately 60 minutes. The systems and methods provide advantages because they require less time to implement and are, therefore less costly than previous techniques.
Fabrication of highly textured lithium cobalt oxide films by rapid thermal annealing
Bates, John B.
2002-01-01
Systems and methods are described for fabrication of highly textured lithium cobalt oxide films by rapid thermal annealing. A method of forming a lithium cobalt oxide film includes depositing a film of lithium cobalt oxide on a substrate; rapidly heating the film of lithium cobalt oxide to a target temperature; and maintaining the film of lithium cobalt oxide at the target temperature for a target annealing time of at most, approximately 60 minutes. The systems and methods provide advantages because they require less time to implement and are, therefore less costly than previous techniques.
Fabrication of highly textured lithium cobalt oxide films by rapid thermal annealing
Bates, John B.
2003-05-13
Systems and methods are described for fabrication of highly textured lithium cobalt oxide films by rapid thermal annealing. A method of forming a lithium cobalt oxide film includes depositing a film of lithium cobalt oxide on a substrate; rapidly heating the film of lithium cobalt oxide to a target temperature; and maintaining the film of lithium cobalt oxide at the target temperature for a target annealing time of at most, approximately 60 minutes. The systems and methods provide advantages because they require less time to implement and are, therefore less costly than previous techniques.
Fowler, Joseph F
2016-01-01
Cobalt has been a recognized allergen capable of causing contact dermatitis for decades. Why, therefore, has it been named 2016 "Allergen of the Year"? Simply put, new information has come to light in the last few years regarding potential sources of exposure to this metallic substance. In addition to reviewing some background on our previous understanding of cobalt exposures, this article will highlight the recently recognized need to consider leather as a major site of cobalt and the visual cues suggesting the presence of cobalt in jewelry. In addition, a chemical spot test for cobalt now allows us to better identify its presence in suspect materials.
Blood doping by cobalt. Should we measure cobalt in athletes?
Lippi, Giuseppe; Franchini, Massimo; Guidi, Gian Cesare
2006-01-01
Background Blood doping is commonplace in competitive athletes who seek to enhance their aerobic performances through illicit techniques. Presentation of the hypothesis Cobalt, a naturally-occurring element with properties similar to those of iron and nickel, induces a marked and stable polycythemic response through a more efficient transcription of the erythropoietin gene. Testing the hypothesis Although little information is available so far on cobalt metabolism, reference value ranges or supplementation in athletes, there is emerging evidence that cobalt is used as a supplement and increased serum concentrations are occasionally observed in athletes. Therefore, given the athlete's connatural inclination to experiment with innovative, unfair and potentially unhealthy doping techniques, cobalt administration might soon become the most suited complement or surrogate for erythropoiesis-stimulating substances. Nevertheless, cobalt administration is not free from unsafe consequences, which involve toxic effects on heart, liver, kidney, thyroid and cancer promotion. Implications of the hypothesis Cobalt is easily purchasable, inexpensive and not currently comprehended within the World Anti-Doping Agency prohibited list. Moreover, available techniques for measuring whole blood, serum, plasma or urinary cobalt involve analytic approaches which are currently not practical for antidoping laboratories. Thus more research on cobalt metabolism in athletes is compelling, along with implementation of effective strategies to unmask this potentially deleterious doping practice PMID:16863591
PREFACE: The 16th International Symposium on Boron, Borides and Related Materials (ISBB 2008)
NASA Astrophysics Data System (ADS)
Tanaka, Takaho
2009-07-01
This volume of Journal of Physics: Conference Series contains invited and contributed peer-reviewed papers that were presented at the 16th International Symposium on Boron, Borides and Related Materials (ISBB 2008), which was held on 7-12 September 2008, at Kunibiki Messe, Matsue, Japan. This triennial symposium has a half-century long history starting from the 1st meeting in 1959 at Asbury Park, New Jersey. We were very pleased to organize ISBB 2008, which gathered chemists, physicists, materials scientists as well as diamond and high-pressure researchers. This meeting had a strong background in the boron-related Japanese research history, which includes the discovery of superconductivity in MgB2 and development of Nd-Fe-B hard magnets and of YB66 soft X-ray monochromator. The scope of ISBB 2008 spans both basic and applied interdisciplinary research that is centered on boron, borides and related materials, and the collection of articles defines the state of the art in research on these materials. The topics are centered on: 1. Preparation of new materials (single crystals, thin films, nanostructures, ceramics, etc) under normal or extreme conditions. 2. Crystal structure and chemical bonding (new crystal structures, nonstoichiometry, defects, clusters, quantum-chemical calculations). 3. Physical and chemical properties (band structure, phonon spectra, superconductivity; optical, electrical, magnetic, emissive, mechanical properties; phase diagrams, thermodynamics, catalytic activity, etc) in a wide range of temperatures and pressures. 4. Applications and prospects (thermoelectric converters, composites, ceramics, coatings, etc) There were a few discoveries of new materials, such as nanomaterials, and developments in applications. Many contributions were related to 4f heavy Fermion systems of rare-earth borides. Exotic mechanisms of magnetism and Kondo effects have been discussed, which may indicate another direction of development of boride. Two special sessions, 'Boron chemistry' and 'Superconductivity', were also held at the symposium. The session on Boron chemistry was planned to honor the scientific work in boron chemistry of Professor J Bauer on the occasion of his retirement. Many recent results were discussed in the session, and Professor Bauer himself introduced novel rare-earth-boron-carbon compounds RE10B7C10 (RE = Gd - Er) in his lecture. In the latter session, on the basis of recent discoveries of superconductivity in MgB2 and in β-boron under high pressure, the superconductivity of boron and related materials was discussed and the superconductivity of boron-doped diamond was also addressed. More than 120 participants from 16 countries attended the ISBB 2008, and active presentations (22 invited, 33 oral and 68 posters) and discussions suggest that research on boron and borides is entering a new phase of development. This volume contains 46 articles from 52 submitted manuscripts. The reviewers were invited not only from symposium participants but also from specialists worldwide, and they did a great job of evaluating and commenting on the submitted manuscripts to maintain the highest quality standard of this volume. Recent discoveries of superconductivity in boron under high pressure, synthesis of a new allotrope of boron and of various boron and boride nanostructures will lead this highly interdisciplinary field of science, which will further grow and gain attention in terms of both basic and applied research. In this context, we are very much looking forward to the next symposium, which will be held in Istanbul, Turkey, in 2011, organized by Professor Onuralp Yucel, Istanbul Technical University. Turkey currently has the world highest share of borate production and is expected to be involved more in boron-related research. Acknowledgements We gratefully acknowledge the style improvement by Dr K Iakoubovskii, and sincerely thank Shimane Prefecture and Matsue City for their financial support. The symposium was also supported by Tokyo University of Science, Suwa and foundations including, the Kajima Foundation, Foundation for Promotion of Material Science and Technology of Japan and Nippon Sheet Glass Foundation for Materials Science and Engineering, as well as companies including JFE Steel Corporation, Shincron Co, Ltd, Toyo Kohan Co, Ltd, Fukuda Metal Foil and Powder Co, Ltd, Japan New Metals Co, Ltd, H C Starck Ltd and Fritsch Japan Co, Ltd. Editors Chair Takaho Tanaka (National Institute for Materials Science, Japan) Vice chairs Koun Shirai (Osaka University, Japan) Kaoru Kimura (The University of Tokyo, Japan) Ken-ichi Takagi (Tokyo City University, Japan) Touetsu Shishido (Tohoku University, Japan) Shigeru Okada (Kokushikan University) Hideaki Itoh (Nagoya University,Japan) Katsumitsu Nakamura (Nihon University, Japan) Organizing committee of ISBB 2008 K Takagi Chairman (Tokyo City University) T Tanaka Program Committee Chairman (National Institute for Materials Science) K Kimura Secretary (The University of Tokyo) J Akimitsu (Aoyama University)K Shirai (Osaka University) H Itoh (Nagoya University)T Shishido (Tohoku University) K Nakamura (Nihon University)K Soga (Tokyo University of Science) K Nishiyama (Tokyo University of Science, Suwa)M Takeda (Nagaoka University of Technology) S Okada (Kokushikan University)Y Yamazaki (Toyo Kohan Co, Ltd) International Scientific Committee 0f ISBB (2008-2011) K Takagi Chairman (Japan) B Albert (Germany) J-F Halet (France) M Takeda (Japan) M Antadze (Georgia) H Hillebrecht (Germany) T Tanaka (Japan) J Bauer (France) W Jung (Germany) R Telle (Germany) I Boustani (Germany) K Kimura (Japan) M Trenary (USA) D Emin (USA) T Mori (Japan) O Tsagareishvili (Georgia) M Engler (Germany) P D Ownby (USA) H Werheit (Germany) N Frage (Israel) P Rogl (Austria) G Will (Germany) Yu Grin (Germany) S Shalamberidze (Georgia) O Yucel (Turkey) V N Gurin (Russia) N Shitsevalova (Ukraine) G Zhang (China)
NASA Astrophysics Data System (ADS)
Li, Tiejun; Lou, Qihong; Wei, Yunrong; Huang, Feng; Dong, Jingxing; Liu, Jingru
2001-12-01
Surface ablation of cobalt cemented tungsten carbide hardmetal with pulsed UV laser has been in situ diagnosed by using the technique of laser-induced optical emission spectroscopy. The dependence of emission intensity of cobalt lines on number of laser shots was investigated at laser fluence of 2.5 J/cm 2. As a comparison, the reliance of emission intensity of cobalt lines as a function of laser pulse number by using pure cobalt as ablation sample was also studied at the same laser condition. It was found that for surface ablation of tungsten carbide hardmetal at laser fluence of 2.5 J/cm 2, the intensities of cobalt lines fell off dramatically in the first 300 consecutive laser shots and then slowed down to a low stable level with even more shots. For surface ablation of pure cobalt at the same laser condition, the intensities of cobalt lines remained constant more or less even after 500 laser shots and then reduced very slowly with even more shots. It was concluded that selective evaporation of cobalt at this laser fluence should be responsible for the dramatic fall-off of cobalt lines with laser shots accumulation for surface ablation of tungsten carbide hardmetal. In contrast, for surface ablation of pure cobalt, the slow reduction of cobalt lines with pulse number accumulation should be due to the formation of laser-induced crater effect.
Cobalt recycling in the United States in 1998
Shedd, Kim B.
2002-01-01
This report is one of a series of reports on metals recycling. It defines and quantifies the 1998 flow of cobalt-bearing materials in the United States, from imports and stock releases through consumption and disposition, with particular emphasis on the recycling of industrial scrap (new scrap) and used products (old scrap). Because of cobalt?s many and diverse uses, numerous types of scrap were available for recycling by a wide variety of processes. In 1998, an estimated 32 percent of U.S. cobalt supply was derived from scrap. The ratio of cobalt consumed from new scrap to that from old scrap was estimated to be 50:50. Of all the cobalt in old scrap available for recycling, an estimated 68 percent was either consumed in the United States or exported to be recycled.
Thermal emission property of solid solution Gd{sub 1-x}Nd{sub x}B{sub 6} (x=0, 0.6, 0.8)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xing Zhang, Jiu; Hong Bao, Li; Lin Zhou, Shen, E-mail: zjiuxing@bjut.edu.cn, E-mail: Baolihong_10@yahoo.com.cn, E-mail: zhoushenlin@emails.bjut.edu.cn
2011-07-01
In this paper, to further explore the excellent emission properties of rare earth boride cathode, herein we present the synthesis, characterization and properties of polycrystalline Nd{sub 1-x}Gd{sub x}B{sub 6} (x = 0, 0.6, 0.8) bulk via arc plasma and reactive SPS. (author)
NASA Astrophysics Data System (ADS)
Mukhametzyanova, G. F.; Kolesnikov, MS; Mukhametzyanov, I. R.; Astatshenko, V. I.
2017-09-01
The kinetics and reasons for metallic pipe wear of hot chamberzinc alloy die casting machines are established.Increasing metallic pipe wear components wear resistance is being achieved by means of die steelДИ - 22 with electroslag remelting modification and electron-beamremelting modification and after the processes of nitriding and boriding besides.
NASA Astrophysics Data System (ADS)
Mbarki, Mohammed; Touzani, Rachid St.; Fokwa, Boniface P. T.
2013-07-01
The new ternary metal-rich boride, Nb2OsB2, was synthesized by arc-melting the elements in a water-cooled copper crucible under an argon atmosphere. The compound was characterized from single-crystal X-ray data and EDX measurements. It crystallizes as a new superstructure (space group P4/mnc, no. 128) of the tetragonal U3Si2-structure type with lattice parameters a=5.922(1) Å and c=6.879(2) Å. All of the B atoms are involved in B2 dumbbells with B-B distances of 1.89(4) Å. Structure relaxation using VASP (Vienna ab intio Simulation Package) has confirmed the space group and the lattice parameters. According to electronic structure calculations (TB-LMTO-ASA), the homoatomic B-B interactions are optimized and very strong, but relatively strong heteroatomic Os-B, Nb-B and Nb-Os bonds are also found: These interactions, which together build a three-dimensional network, are mainly responsible for the structural stability of this new phase. The density of state at the Fermi level predicts metallic behavior, as expected, from this metal-rich boride.
The use of surface layer with boron in friction pairs lubricated by engine oils
NASA Astrophysics Data System (ADS)
Szczypiński-Sala, W.; Lubas, J.
2016-09-01
The aim of the present work is to determine the influence of surface layers with boron and engine oil on the processes of friction and wear in friction pairs. The ring samples with borided surface layer cooperated under test conditions with counterparts made with CuPb30 and AlSn20 bearing alloys. During the tests, the friction pairs were lubricated with 15W/40 Lotos mineral oil and 5W/40 Lotos synthetic oil. The lubrication of friction area with Lotos mineral oil causes the reduction of the friction force, the temperature in the friction area and the wear of the bearing alloys under study, whereas the lubrication with Lotos synthetic oil reduces the changes in the geometrical structure of the cooperating friction pair elements. Lubrication of the friction area in the start-up phase of the friction pair by mineral oil causes faster stabilization of the friction conditions in the contact area than in the cause of lubrication of the friction pair by synthetic oil. The intensity of wear of the AlSn20 bearing alloy cooperating with the borided surface layer is three times smaller than the intensity of use of the CuPb30 alloy bearing.
NASA Astrophysics Data System (ADS)
Misse, Patrick R. N.; Mbarki, Mohammed; Fokwa, Boniface P. T.
2012-08-01
Powder samples and single crystals of the new complex boride series Crx(Rh1-yRuy)7-xB3 (x=0.88-1; y=0-1) have been synthesized by arc-melting the elements under purified argon atmosphere on a water-cooled copper crucible. The products, which have metallic luster, were structurally characterized by single-crystal and powder X-ray diffraction as well as EDX measurements. Within the whole solid solution range the hexagonal Th7Fe3 structure type (space group P63mc, no. 186, Z=2) was identified. Single-crystal structure refinement results indicate the presence of chromium at two sites (6c and 2b) of the available three metal Wyckoff sites, with a pronounced preference for the 6c site. An unexpected Rh/Ru site preference was found in the Ru-rich region only, leading to two different magnetic behaviors in the solid solution: The Rh-rich region shows a temperature-independent (Pauli) paramagnetism whereas an additional temperature-dependent paramagnetic component is found in the Ru-rich region.
On the transferability of electron density in binary vanadium borides VB, V3B4 and VB2.
Terlan, Bürgehan; Akselrud, Lev; Baranov, Alexey I; Borrmann, Horst; Grin, Yuri
2015-12-01
Binary vanadium borides are suitable model systems for a systematic analysis of the transferability concept in intermetallic compounds due to chemical intergrowth in their crystal structures. In order to underline this structural relationship, topological properties of the electron density in VB, V3B4 and VB2 reconstructed from high-resolution single-crystal X-ray diffraction data as well as derived from quantum chemical calculations, are analysed in terms of Bader's Quantum Theory of Atoms in Molecules [Bader (1990). Atoms in Molecules: A Quantum Theory, 1st ed. Oxford: Clarendon Press]. The compounds VB, V3B4 and VB2 are characterized by a charge transfer from the metal to boron together with two predominant atomic interactions, the shared covalent B-B interactions and the polar covalent B-M interactions. The resembling features of the crystal structures are well reflected by the respective B-B interatomic distances as well as by ρ(r) values at the B-B bond critical points. The latter decrease with an increase in the corresponding interatomic distances. The B-B bonds show transferable electron density properties at bond critical points depending on the respective bond distances.
Qiuxia, Yang; Ying, Yang; Han, Xu; Di, Wu; Ke, Guo
2016-02-01
This study aims to determine the effect of fluoride concentration on the corrosion behavior of cobalt-chromium alloy fabricated by two different technology processes in a simulated oral environment. A total of 15 specimens were employed with selective laser melting (SLM) and another 15 for traditional casting (Cast) in cobalt-chromium alloy powders and blocks with the same material composition. The corrosion behavior of the specimens was studied by potentiodynamic polarization test under different oral environments with varying solubilities of fluorine (0, 0.05%, and 0.20% for each) in acid artificial saliva (pH = 5.0). The specimens were soaked in fluorine for 24 h, and the surface microstructure was observed under a field emission scanning electron microscope after immersing the specimens in the test solution at constant temperature. The corrosion potential (Ecorr) value of the cobalt-chromium alloy cast decreased with increasing fluoride concentration in acidic artificial saliva. The Ecorr, Icorr, and Rp values of the cobalt-chromium alloy fabricated by two different technology processes changed significantly when the fluoride concentration was 0.20% (P < 0.05). The Ecorr, Icorr, and Rp values of the cobalt-chromium alloy fabricated by two different technology processes exhibited a statistically significant difference. The Icorr value of the cobalt-chromium alloy cast was higher than that in the SLM group cobalt-chromium alloy when the fluoride concentration was 0.20% (P < 0.05). The Ecorr, tRp alues of the cobalt-chromium alloy cast were lower htan those of the SLM group cobalt-chromium alloy when the fluoride concentration was 0.20% (P< 0 .05). Fluoride ions adversely affected the corrosion resistance of the cobalt-chromium alloy fabricated by two different technology processes. The corrosion resistance of the cobalt-chromium alloy cast was worse than that of the SLM group cobalt-chromium alloy when the fluoride concentration was 0.20%.
Separation and Recovery of Cobalt from Copper Leach Solutions
NASA Astrophysics Data System (ADS)
Jeffers, T. H.
1985-01-01
Significant amounts of cobalt, a strategic and critical metal, are present in readily accessible copper recycling leach solutions. However, cost-effective technology is not available to separate and recover the cobalt from this low-grade domestic source. The Bureau of Mines has developed a procedure using a chelating ion-exchange resin from Dow Chemical Co. to successfully extract cobalt from a pH 3.0 copper recycling solution containing only 30 mg/1 cobalt. Cyclic tests with the commercial resin XFS-4195 in 4-ft-high by 1-in.-diameter columns gave an average cobalt extraction of 95% when 65 bed volumes of solution were processed at a flow rate of 4 gpm/ft.2 Elution of the cobalt using a 50 g/l H2SO4 solution yielded an eluate containing 0.5 gli Co. Selective elution of the loaded resin and solvent extraction procedures using di-2-ethylhexyl phosphoric acid (D2EHPA) and Cyanex 272 removed the impurities and produced a cobalt sulfate solution containing 25 g/l Co.
Cobalt—Styles of deposits and the search for primary deposits
Hitzman, Murray W.; Bookstrom, Arthur A.; Slack, John F.; Zientek, Michael L.
2017-11-30
Cobalt (Co) is a potentially critical mineral. The vast majority of cobalt is a byproduct of copper and (or) nickel production. Cobalt is increasingly used in magnets and rechargeable batteries. More than 50 percent of primary cobalt production is from the Central African Copperbelt. The Central African Copperbelt is the only sedimentary rock-hosted stratiform copper district that contains significant cobalt. Its presence may indicate significant mafic-ultramafic rocks in the local basement. The balance of primary cobalt production is from magmatic nickel-copper and nickel laterite deposits. Cobalt is present in several carbonate-hosted lead-zinc and copper districts. It is also variably present in Besshi-type volcanogenic massive sulfide and siliciclastic sedimentary rock-hosted deposits in back arc and rift environments associated with mafic-ultramafic rocks. Metasedimentary cobalt-copper-gold deposits (such as Blackbird, Idaho), iron oxide-copper-gold deposits, and the five-element vein deposits (such as Cobalt, Ontario) contain different amounts of cobalt. None of these deposit types show direct links to mafic-ultramafic rocks; the deposits may result from crustal-scale hydrothermal systems capable of leaching and transporting cobalt from great depths. Hydrothermal deposits associated with ultramafic rocks, typified by the Bou Azzer district of Morocco, represent another type of primary cobalt deposit.In the United States, exploration for cobalt deposits may focus on magmatic nickel-copper deposits in the Archean and Proterozoic rocks of the Midwest and the east coast (Pennsylvania) and younger mafic rocks in southeastern and southern Alaska; also, possibly basement rocks in southeastern Missouri. Other potential exploration targets include—The Belt-Purcell basin of British Columbia (Canada), Idaho, Montana, and Washington for different styles of sedimentary rock-hosted cobalt deposits;Besshi-type VMS deposits, such as the Greens Creek (Alaska) deposit and the Ducktown (Tennessee) waste and tailings; andKnown five-element vein districts in Arizona and New Mexico, as well as in the Yukon-Tanana terrane of Alaska; and hydrothermal deposits associated with ultramafic rocks along the west coast, in Alaska, and in the Appalachian Mountains.
Quantifying cobalt in doping control urine samples--a pilot study.
Krug, Oliver; Kutscher, Daniel; Piper, Thomas; Geyer, Hans; Schänzer, Wilhelm; Thevis, Mario
2014-01-01
Since first reports on the impact of metals such as manganese and cobalt on erythropoiesis were published in the late 1920s, cobaltous chloride became a viable though not widespread means for the treatment of anaemic conditions. Today, its use is de facto eliminated from clinical practice; however, its (mis)use in human as well as animal sport as an erythropoiesis-stimulating agent has been discussed frequently. In order to assess possible analytical options and to provide relevant information on the prevalence of cobalt use/misuse among athletes, urinary cobalt concentrations were determined by inductively coupled plasma-mass spectrometry (ICP-MS) from four groups of subjects. The cohorts consisted of (1) a reference population with specimens of 100 non-elite athletes (not being part of the doping control system), (2) a total of 96 doping control samples from endurance sport athletes, (3) elimination study urine samples collected from six individuals having ingested cobaltous chloride (500 µg/day) through dietary supplements, and (4) samples from people supplementing vitamin B12 (cobalamin) at 500 µg/day, accounting for approximately 22 µg of cobalt. The obtained results demonstrated that urinary cobalt concentrations of the reference population as well as the group of elite athletes were within normal ranges (0.1-2.2 ng/mL). A modest but significant difference between these two groups was observed (Wilcoxon rank sum test, p < 0.01) with the athletes' samples presenting slightly higher urinary cobalt levels. The elimination study urine specimens yielded cobalt concentrations between 40 and 318 ng/mL during the first 6 h post-administration, and levels remained elevated (>22 ng/mL) up to 33 h. Oral supplementation of 500 µg of cobalamin did not result in urinary cobalt concentrations > 2 ng/mL. Based on these pilot study data it is concluded that measuring the urinary concentration of cobalt can provide information indicating the use of cobaltous chloride by athletes. Additional studies are however required to elucidate further factors potentially influencing urinary cobalt levels. Copyright © 2014 John Wiley & Sons, Ltd.
In Situ Characterization of Mesoporous Co/CeO 2 Catalysts for the High-Temperature Water-Gas Shift
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vovchok, Dimitriy; Guild, Curtis J.; Dissanayake, Shanka
Here, mesoporous Co/CeO 2 catalysts were found to exhibit significant activity for the high-temperature water-gas shift (WGS) reaction with cobalt loadings as low as 1 wt %. The catalysts feature a uniform dispersion of cobalt within the CeO 2 fluorite type lattice with no evidence of discrete cobalt phase segregation. In situ XANES and ambient pressure XPS experiments were used to elucidate the active state of the catalysts as partially reduced cerium oxide doped with oxidized cobalt atoms. In situ XRD and DRIFTS experiments suggest facile cerium reduction and oxygen vacancy formation, particularly with lower cobalt loadings. In situ DRIFTSmore » analysis also revealed the presence of surface carbonate and bidentate formate species under reaction conditions, which may be associated with additional mechanistic pathways for the WGS reaction. Deactivation behavior was observed with higher cobalt loadings. XANES data suggest the formation of small metallic cobalt clusters at temperatures above 400 °C may be responsible. Notably, this deactivation was not observed for the 1% cobalt loaded catalyst, which exhibited the highest activity per unit of cobalt.« less
The role of cobalt on the creep of Waspaloy
NASA Technical Reports Server (NTRS)
Jarrett, R. N.; Chin, L.; Tien, J. K.
1984-01-01
Cobalt was systematically replaced with nickel in Waspaloy (which normally contains 13% Co) to determine the effects of cobalt on the creep behavior of this alloy. Effects of cobalt were found to be minimal on tensile strengths and microstructure. The creep resistance and the stress rupture resistance determined in the range from 704 to 760 C (1300 to 1400 C) were found to decrease as cobalt was removed from the standard alloy at all stresses and temperatures. Roughly a ten-fold drop in rupture life and a corresponding increase in minimum creep rate were found under all test conditions. Both the apparent creep activation energy and the matrix contribution to creep resistance were found to increase with cobalt. These creep effects are attributed to cobalt lowering the stacking fault energy of the alloy matrix. The creep resistance loss due to the removal of cobalt is shown to be restored by slightly increasing the gamma' volume fraction. Results are compared to a previous study on Udimet 700, a higher strength, higher gamma' volume fraction alloy with similar phase chemistry, in which cobalt did not affect creep resistance. An explanation for this difference in behavior based on interparticle spacing and cross-slip is presented.
Metallic phases of cobalt-based catalysts in ethanol steam reforming: The effect of cerium oxide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Sean S.-Y.; Kim, Do Heui; Ha, Su Y.
2009-02-28
The catalytic activity of cobalt in the production of hydrogen via ethanol steam reforming has been investigated in its relation to the crystalline structure of metallic cobalt. At a reaction temperature of 350 8C, the specific hydrogen production rates show that hexagonal close-packed (hcp) cobalt possesses higher activity than face-centered cubic (fcc) cobalt. However, at typical reaction temperatures (400– 500 8C) for ethanol steam reforming, hcp cobalt is transformed to less active fcc cobalt, as confirmed by in situ X-ray diffractometry (XRD). The addition of CeO2 promoter (10 wt.%) stabilizes the hcp cobalt structure at reforming temperatures up to 600more » 8C. Moreover, during the pre-reduction process, CeO2 promoter prevents sintering during the transformation of Co3O4 to hcp cobalt. Both reforming experiments and in situ diffuse-reflectance infrared Fourier transform spectroscopy (DRIFTS) showed that the surface reactions were modified by CeO2 promoter on 10% Ce–Co (hcp) to give a lower CO selectivity and a higher H2 yield as compared with the unpromoted hcp Co.« less
In Situ Characterization of Mesoporous Co/CeO 2 Catalysts for the High-Temperature Water-Gas Shift
Vovchok, Dimitriy; Guild, Curtis J.; Dissanayake, Shanka; ...
2018-04-04
Here, mesoporous Co/CeO 2 catalysts were found to exhibit significant activity for the high-temperature water-gas shift (WGS) reaction with cobalt loadings as low as 1 wt %. The catalysts feature a uniform dispersion of cobalt within the CeO 2 fluorite type lattice with no evidence of discrete cobalt phase segregation. In situ XANES and ambient pressure XPS experiments were used to elucidate the active state of the catalysts as partially reduced cerium oxide doped with oxidized cobalt atoms. In situ XRD and DRIFTS experiments suggest facile cerium reduction and oxygen vacancy formation, particularly with lower cobalt loadings. In situ DRIFTSmore » analysis also revealed the presence of surface carbonate and bidentate formate species under reaction conditions, which may be associated with additional mechanistic pathways for the WGS reaction. Deactivation behavior was observed with higher cobalt loadings. XANES data suggest the formation of small metallic cobalt clusters at temperatures above 400 °C may be responsible. Notably, this deactivation was not observed for the 1% cobalt loaded catalyst, which exhibited the highest activity per unit of cobalt.« less
Exposure to Cobalt Causes Transcriptomic and Proteomic Changes in Two Rat Liver Derived Cell Lines
2013-12-01
although contact with cobalt can cause dermatitis [16]. While cobalt is known to cause adverse health effects, the exact mechanism of action remains...animals and humans through various exposure routes. Cobalt can enter the body through respiration, ingestion, or contact with the skin. The adverse...concentration on the liver, kidney and heart in mice. Orthop Surg 2: 134–140. 16. Schwartz L PS (1945) Allergic dermatitis due to metallic cobalt. Journal
NASA Astrophysics Data System (ADS)
Huang, Liping; Yao, Binglin; Wu, Dan; Quan, Xie
2014-08-01
Complete cobalt recovery from lithium cobalt oxide requires to firstly leach cobalt from particles LiCoO2 and then recover cobalt from aqueous Co(II). A self-driven microbial fuel cell (MFC)-microbial electrolysis cell (MEC) system can completely carry out these two processes, in which Co(II) is firstly released from particles LiCoO2 on the cathodes of MFCs and then reduced on the cathodes of MECs which are powered by the cobalt leaching MFCs. A cobalt leaching rate of 46 ± 2 mg L-1 h-1 with yield of 1.5 ± 0.1 g Co g-1 COD (MFCs) and a Co(II) reduction rate of 7 ± 0 mg L-1 h-1 with yield of 0.8 ± 0.0 g Co g-1 COD (MECs), as well as a overall system cobalt yield of 0.15 ± 0.01 g Co g-1 Co can be achieved in this self-driven MFC-MEC system. Coulombic efficiencies reach 41 ± 1% (anodic MFCs), 75 ± 0% (anodic MECs), 100 ± 2% (cathodic MFCs), and 29 ± 1% (cathodic MECs) whereas overall system efficiency averages 34 ± 1%. These results provide a new process of linking MFCs to MECs for complete recovery of cobalt and recycle of spent lithium ion batteries with no external energy consumption.
NASA Astrophysics Data System (ADS)
Park, Kyung-Ho; Mohapatra, Debasish
2006-10-01
The present paper deals with the extraction of cobalt from a solution containing cobalt and nickel in a sulphate medium similar to the leach liquor obtained by the dilute sulphuric acid pressure leaching of the Pacific Ocean nodules matte followed by copper extraction. The commercial extractant Cyanex 272 (bis (2, 4, 4-trimethylpentyl) phosphinic acid) is used for this purpose. The leach liquor used for the present study contains Co =1.78 g/L and Ni=16.78 g/L. Before cobalt extraction, impurities, such as copper and iron, are removed from the leach liquor by the precipitation method. Increasing the concentration of Cyanex 272 increased the extraction percentage of cobalt due to the increase of equilibrium pH. Cobalt extraction efficiency of >99.9 % is achieved with 0.20 M Cyanex 272 in two counter-current stages at an aqueous: organic (A:O) phase ratio of 1.5∶1. Complete stripping of cobalt from the loaded organic containing 2.73 g/L Co was carried out at pH 1.4 by a synthetic cobalt spent electrolyte in two stages at an A:O ratio of 1∶2. The enrichment of cobalt during extraction and stripping operations was about 3.5 times. A complete process flowsheet for the separation and recovery of cobalt is presented.
40 CFR 721.10201 - Cobalt lithium manganese nickel oxide.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Cobalt lithium manganese nickel oxide... Specific Chemical Substances § 721.10201 Cobalt lithium manganese nickel oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as cobalt lithium manganese...
40 CFR 721.10201 - Cobalt lithium manganese nickel oxide.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Cobalt lithium manganese nickel oxide... Specific Chemical Substances § 721.10201 Cobalt lithium manganese nickel oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as cobalt lithium manganese...
40 CFR 721.10201 - Cobalt lithium manganese nickel oxide.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Cobalt lithium manganese nickel oxide... Specific Chemical Substances § 721.10201 Cobalt lithium manganese nickel oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as cobalt lithium manganese...
Palladium-cobalt particles as oxygen-reduction electrocatalysts
Adzic, Radoslav [East Setauket, NY; Huang, Tao [Manorville, NY
2009-12-15
The present invention relates to palladium-cobalt particles useful as oxygen-reducing electrocatalysts. The invention also relates to oxygen-reducing cathodes and fuel cells containing these palladium-cobalt particles. The invention additionally relates to methods for the production of electrical energy by using the palladium-cobalt particles of the invention.
Liesegang banding and multiple precipitate formation in cobalt phosphate systems
NASA Astrophysics Data System (ADS)
Karam, Tony; El-Rassy, Houssam; Zaknoun, Farah; Moussa, Zeinab; Sultan, Rabih
2012-02-01
We study a cobalt phosphate Liesegang pattern from cobalt(II) and phosphate ions in a 1D tube. The system yields a complex, multi-component pattern. Characterization of the different precipitates by FTIR, SEM and XRD reveals that they are cobalt phosphate polymorphs with different degrees of hydration.
21 CFR 73.1015 - Chromium-cobalt-aluminum oxide.
Code of Federal Regulations, 2010 CFR
2010-04-01
...) Identity. The color additive chromium-cobalt-aluminum oxide is a blue-green pigment obtained by calcining a... percent each) of oxides of barium, boron, silicon, and nickel. (b) Specifications. Chromium-cobalt... milliliters of 0.5 N hydrochloric acid. (c) Uses and restrictions. The color additive chromium-cobalt-aluminum...
Comparison of different supplemental cobalt forms on fiber digestion and cobalamin levels
USDA-ARS?s Scientific Manuscript database
Cobalt (Co) is essential for rumen microbial metabolism to synthesize methane, acetate and methionine. It also serves as a structural component of vitamin B*12, which functions as a coenzyme in energy metabolism. A study was conducted to determine if Co form (cobalt carbonate vs cobalt glucoheptona...
Comparison of different supplemental cobalt forms on digestion and cobalamin levels
USDA-ARS?s Scientific Manuscript database
Cobalt (Co) is essential for rumen microbial metabolism to synthesize methane, acetate and methionine. It also serves as a structural component of vitamin B12, which functions as a coenzyme in energy metabolism. A study was conducted to determine if Co form (cobalt carbonate vs cobalt glucoheptonat...
Exposure to Cobalt Causes Transcriptomic and Proteomic Changes in Two Rat Liver Derived Cell Lines
2013-12-30
exposures are unlikely to have systemic effects as cobalt cannot readily penetrate normal skin, although contact with cobalt can cause dermatitis [16...Cobalt can enter the body through respiration, ingestion, or contact with the skin. The adverse effects of an inhalation exposure occur mostly in the lung...Surg 2: 134–140. 16. Schwartz L PS (1945) Allergic dermatitis due to metallic cobalt. Journal of Allergy 16: 51–53. 17. De Matteis F, Gibbs AH (1977
40 CFR 721.5315 - Nickel, cobalt mixed metal oxide (generic).
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Nickel, cobalt mixed metal oxide... Specific Chemical Substances § 721.5315 Nickel, cobalt mixed metal oxide (generic). (a) Chemical substance... nickel, cobalt mixed metal oxide. (PMN P-02-90) is subject to reporting under this section for the...
40 CFR 721.5315 - Nickel, cobalt mixed metal oxide (generic).
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Nickel, cobalt mixed metal oxide... Specific Chemical Substances § 721.5315 Nickel, cobalt mixed metal oxide (generic). (a) Chemical substance... nickel, cobalt mixed metal oxide. (PMN P-02-90) is subject to reporting under this section for the...
40 CFR 721.5315 - Nickel, cobalt mixed metal oxide (generic).
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Nickel, cobalt mixed metal oxide... Specific Chemical Substances § 721.5315 Nickel, cobalt mixed metal oxide (generic). (a) Chemical substance... nickel, cobalt mixed metal oxide. (PMN P-02-90) is subject to reporting under this section for the...
40 CFR 721.5315 - Nickel, cobalt mixed metal oxide (generic).
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Nickel, cobalt mixed metal oxide... Specific Chemical Substances § 721.5315 Nickel, cobalt mixed metal oxide (generic). (a) Chemical substance... nickel, cobalt mixed metal oxide. (PMN P-02-90) is subject to reporting under this section for the...
75 FR 70665 - Proposed Significant New Use Rule for Cobalt Lithium Manganese Nickel Oxide
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-18
... Proposed Significant New Use Rule for Cobalt Lithium Manganese Nickel Oxide AGENCY: Environmental... as cobalt lithium manganese nickel oxide (CAS No. 182442-95-1) which was the subject of... section 5(a)(2) of TSCA for the chemical substance identified as cobalt lithium manganese nickel oxide...
40 CFR 721.10600 - Calcium cobalt lead strontium titanium tungsten oxide.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Calcium cobalt lead strontium titanium... Specific Chemical Substances § 721.10600 Calcium cobalt lead strontium titanium tungsten oxide. (a... calcium cobalt lead strontium titanium tungsten oxide (PMN P-11-272; CAS No. 1262279-30-0) is subject to...
40 CFR 721.10600 - Calcium cobalt lead strontium titanium tungsten oxide.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Calcium cobalt lead strontium titanium... Specific Chemical Substances § 721.10600 Calcium cobalt lead strontium titanium tungsten oxide. (a... calcium cobalt lead strontium titanium tungsten oxide (PMN P-11-272; CAS No. 1262279-30-0) is subject to...
Thermal-fatigue and oxidation resistance of cobalt-modified Udimet 700 alloy
NASA Technical Reports Server (NTRS)
Bizon, P. T.; Barrow, B. J.
1986-01-01
Comparative thermal-fatigue and oxidation resistances of cobalt-modified wrought Udimet 700 alloy (obtained by reducing the cobalt level by direct substitution of nickel) were determined from fluidized-bed tests. Bed temperatures were 1010 and 288 C (1850 and 550 C) for the first 5500 symmetrical 6-min cycles. From cycle 5501 to the 14000-cycle limit of testing, the heating bed temperature was increased to 1050 C (1922 F). Cobalt levels between 0 and 17 wt% were studied in both the bare and NiCrAlY overlay coated conditions. A cobalt level of about 8 wt% gave the best thermal-fatigue life. The conventional alloy specification is for 18.5% cobalt, and hence, a factor of 2 in savings of cobalt could be achieved by using the modified alloy. After 13500 cycles, all bare cobalt-modified alloys lost 10 to 13 percent of their initial weight. Application of the NiCrAlY overlay coating resulted in weight losses of 1/20 to 1/100 of that of the corresponding bare alloy.
Selective Area Band Engineering of Graphene using Cobalt-Mediated Oxidation.
Bazylewski, Paul F; Nguyen, Van Luan; Bauer, Robert P C; Hunt, Adrian H; McDermott, Eamon J G; Leedahl, Brett D; Kukharenko, Andrey I; Cholakh, Seif O; Kurmaev, Ernst Z; Blaha, Peter; Moewes, Alexander; Lee, Young Hee; Chang, Gap Soo
2015-10-21
This study reports a scalable and economical method to open a band gap in single layer graphene by deposition of cobalt metal on its surface using physical vapor deposition in high vacuum. At low cobalt thickness, clusters form at impurity sites on the graphene without etching or damaging the graphene. When exposed to oxygen at room temperature, oxygen functional groups form in proportion to the cobalt thickness that modify the graphene band structure. Cobalt/Graphene resulting from this treatment can support a band gap of 0.30 eV, while remaining largely undamaged to preserve its structural and electrical properties. A mechanism of cobalt-mediated band opening is proposed as a two-step process starting with charge transfer from metal to graphene, followed by formation of oxides where cobalt has been deposited. Contributions from the formation of both CoO and oxygen functional groups on graphene affect the electronic structure to open a band gap. This study demonstrates that cobalt-mediated oxidation is a viable method to introduce a band gap into graphene at room temperature that could be applicable in electronics applications.
Bartosiak, Magdalena; Jankowski, Krzysztof; Giersz, Jacek
2018-06-05
Cobalt content (as vitamin B 12 and inorganic cobalt) in two nutritional supplements, namely Spirulina platensis and Saccharomyces cerevisiae known as a "superfood", has been determined using inductively coupled plasma optical emission spectrometry (ICP-OES). Several sample pre-treatment protocols have been applied and compared. Microwave-assisted acid digestion efficiently decomposed all cobalt-containing compounds, thus allowed obtaining total cobalt content in supplements examined. Vitamin B 12 was extracted from the samples with acetate buffer and potassium cyanide solution exposed to mild microwave radiation for 30 min, and cyanocobalamin was separated from the extract by on-column solid phase extraction using C-18 modified silica bed. About 100% of cobalt species was extracted using the triple microwave-assisted extraction procedure. Total cobalt content was 20-fold greater in Spirulina tablets than the declared cobalamin content (as Co). The ICP-OES method precision was about 3% and detection limit was 1.9 and 2.7 ng Co mL -1 for inorganic cobalt or cyanocobalamin, respectively. Copyright © 2018 Elsevier B.V. All rights reserved.
Studies on KIT-6 Supported Cobalt Catalyst for Fischer–Tropsch Synthesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gnanamani, M.; Jacobs, G; Graham, U
2010-01-01
KIT-6 molecular sieve was used as a support to prepare cobalt catalyst for Fischer-Tropsch synthesis (FTS) using an incipient wetness impregnation method to produce cobalt loadings of 15 and 25 wt%. The catalysts were characterized by BET surface area, X-ray diffraction, scanning transmission election microscopy (STEM), extended X-ray absorption fine spectroscopy and X-ray absorption near edge spectroscopy. The catalytic properties for FTS were evaluated using a 1L CSTR reactor. XRD, pore size distribution, and STEM analysis indicate that the KIT-6 mesostructure remains stable during and after cobalt impregnation and tends to form smaller cobalt particles, probably located inside the mesopores.more » The mesoporous KIT-6 exhibited a slightly higher cobalt dispersion compared to amorphous SiO{sub 2} supported catalyst. With the higher Co loading (25 wt%) on KIT-6, partial structural collapse was observed after the FTS reaction. Compared to an amorphous SiO{sub 2} supported cobalt catalyst, KIT-6 supported cobalt catalyst displayed higher methane selectivity at a similar Co loading, likely due to diffusion effects.« less
Selective Area Band Engineering of Graphene using Cobalt-Mediated Oxidation
Bazylewski, Paul F.; Nguyen, Van Luan; Bauer, Robert P.C.; Hunt, Adrian H.; McDermott, Eamon J. G.; Leedahl, Brett D.; Kukharenko, Andrey I.; Cholakh, Seif O.; Kurmaev, Ernst Z.; Blaha, Peter; Moewes, Alexander; Lee, Young Hee; Chang, Gap Soo
2015-01-01
This study reports a scalable and economical method to open a band gap in single layer graphene by deposition of cobalt metal on its surface using physical vapor deposition in high vacuum. At low cobalt thickness, clusters form at impurity sites on the graphene without etching or damaging the graphene. When exposed to oxygen at room temperature, oxygen functional groups form in proportion to the cobalt thickness that modify the graphene band structure. Cobalt/Graphene resulting from this treatment can support a band gap of 0.30 eV, while remaining largely undamaged to preserve its structural and electrical properties. A mechanism of cobalt-mediated band opening is proposed as a two-step process starting with charge transfer from metal to graphene, followed by formation of oxides where cobalt has been deposited. Contributions from the formation of both CoO and oxygen functional groups on graphene affect the electronic structure to open a band gap. This study demonstrates that cobalt-mediated oxidation is a viable method to introduce a band gap into graphene at room temperature that could be applicable in electronics applications. PMID:26486966
Cyanide speciation at four gold leach operations undergoing remediation
Johnson, Craig A.; Grimes, David J.; Leinz, Reinhard W.; Rye, Robert O.
2008-01-01
Analyses have been made of 81 effluents from four gold leach operations in various stages of remediation to identify the most-persistent cyanide species. Total cyanide and weak acid-dissociable (WAD) cyanide were measured using improved methods, and metals known to form stable cyanocomplexes were also measured. Typically, total cyanide greatly exceeded WAD indicating that cyanide was predominantly in strong cyanometallic complexes. Iron was generally too low to accommodate the strongly complexed cyanide as Fe(CN)63- or Fe(CN)64-, but cobalt was abundant enough to implicate Co(CN)63- or its dissociation products (Co(CN)6-x(H2O)x(3-x)-). Supporting evidence for cobalt-cyanide complexation was found in tight correlations between cobalt and cyanide in some sample suites. Also, abundant free cyanide was produced upon UV illumination. Iron and cobalt cyanocomplexes both photodissociate; however, the iron concentration was insufficient to have carried the liberated cyanide, while the cobalt concentration was sufficient. Cobalt cyanocomplexes have not previously been recognized in cyanidation wastes. Their identification at four separate operations, which had treated ores that were not especially rich in cobalt, suggests that cobalt complexation may be a common source of cyanide persistence. There is a need for more information on the importance and behavior of cobalt cyanocomplexes in ore-processing wastes at gold mines.
Effect of cobalt on Escherichia coli metabolism and metalloporphyrin formation
Majtan, Tomas; Frerman, Frank E.
2011-01-01
Toxicity in Escherichia coli resulting from high concentrations of cobalt has been explained by competition of cobalt with iron in various metabolic processes including Fe–S cluster assembly, sulfur assimilation, production of free radicals and reduction of free thiol pool. Here we present another aspect of increased cobalt concentrations in the culture medium resulting in the production of cobalt protoporphyrin IX (CoPPIX), which was incorporated into heme proteins including membrane-bound cytochromes and an expressed human cystathionine beta-synthase (CBS). The presence of CoPPIX in cytochromes inhibited their electron transport capacity and resulted in a substantially decreased respiration. Bacterial cells adapted to the increased cobalt concentration by inducing a modified mixed acid fermentative pathway under aerobiosis. We capitalized on the ability of E. coli to insert cobalt into PPIX to carry out an expression of CoPPIX-substituted heme proteins. The level of CoPPIX-substitution increased with the number of passages of cells in a cobalt-containing medium. This approach is an inexpensive method to prepare cobalt-substituted heme proteins compared to in vitro enzyme reconstitution or in vivo replacement using metalloporphyrin heme analogs and seems to be especially suitable for complex heme proteins with an additional coenzyme, such as human CBS. PMID:21184140
DOE Office of Scientific and Technical Information (OSTI.GOV)
McLaughlin, A.C.
1982-01-01
The paramagnetic divalent cation cobalt has large and well-understood effects on NMR signals from ligands bound in the first coordination sphere, i.e., inner-sphere ligands, and the authors have used these effects to identify divalent cation binding sites at the surface of phosphatidylserine membranes. /sup 31/P NMR results show that 13% of the bound cobalt ions are involved in inner-sphere complexes with the phosphodiester group, while /sup 13/C NMR results show that 54% of the bound cobalt ions are involved in unidentate inner sphere complexes with the carboxyl group. No evidence is found for cobalt binding to the carbonyl groups, butmore » proton release studies suggest that 32% of the bound cobalt ions are involved in chelate complexes that contain both the carboxyl and the amine groups. All of the bound cobalt ions can thus be accounted for in terms of inner sphere complexes with the phosphodiester group or the carboxyl group. They suggest that the unidentate inner-sphere complex between cobalt and the carboxyl group of phosphatidylserine and the inner-sphere complex between cobalt and the phosphodiester group of phosphatidylserine provide reasonable models for complexes between alkaline earth cations and phosphatidylserine membranes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
McLaughlin, A.C.
1982-09-28
The paramagnetic divalent cation cobalt has large and well-understood effects on NMR signals from ligands bound in the first coordination sphere, i.e., inner-sphere ligands, and we have used these effects to identify divalent cation binding sites at the surface of phosphatidylserine membranes. /sup 31/P NMR results show that 13% of the bound cobalt ions are involved in inner-sphere complexes with the phosphodiester group, while /sup 13/C NMR results show that 54% of the bound cobalt ions are involved in unidentate inner sphere complexes with the carboxyl group. No evidence is found for cobalt binding to the carbonyl groups, but protonmore » release studies suggest that 32% of the bound cobalt ions are involved in chelate complexes that contain both the carboxyl and the amine groups. All (i.e., 13% + 54% + 32% = 99%) of the bound cobalt ions can thus be accounted for in terms of inner sphere complexes with the phosphodiester group or the carboxyl group. We suggest that the unidentate inner-sphere complex between cobalt and the carboxyl group of phosphatidylserine and the inner-sphere complex between cobalt and the phosphodiester group of phosphatidylserine provide reasonable models for complexes between alkaline earth cations and phosphatidylserine membranes.« less
Cobalt asthma in metalworkers from an automotive engine valve manufacturer.
Walters, G I; Robertson, A S; Moore, V C; Burge, P S
2014-07-01
Cobalt asthma has previously been described in cobalt production workers, diamond polishers and glassware manufacturers. To describe a case series of occupational asthma (OA) due to cobalt, identified at the Birmingham Heartlands Occupational Lung Disease Unit, West Midlands, UK. Cases of cobalt asthma from a West Midlands' manufacturer of automotive engine valves, diagnosed between 1996 and 2005, were identified from the SHIELD database of OA. Case note data on demographics, employment status, asthma symptoms and diagnostic tests, including spirometry, peak expiratory flow (PEF) measurements, skin prick testing (SPT) and specific inhalational challenge (SIC) tests to cobalt chloride, were gathered, and descriptive statistics used to illustrate the data. The natural history of presentations has been described in detail, as well as a case study of one of the affected workers. Fourteen metalworkers (86% male; mean age 44.9 years) were diagnosed with cobalt asthma between 1996 and 2005. Workers were principally stellite grinders, stellite welders or machine setter-operators. All workers had positive Occupational Asthma SYStem analyses of serial PEF measurements, and sensitization to cobalt chloride was demonstrated in nine workers, by SPT or SIC. We have described a series of 14 workers with cobalt asthma from the automotive manufacturing industry, with objective evidence for sensitization. Health care workers should remain vigilant for cobalt asthma in the automotive manufacturing industry. © The Author 2014. Published by Oxford University Press on behalf of the Society of Occupational Medicine. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Ortega, Richard; Bresson, Carole; Fraysse, Aurélien; Sandre, Caroline; Devès, Guillaume; Gombert, Clémentine; Tabarant, Michel; Bleuet, Pierre; Seznec, Hervé; Simionovici, Alexandre; Moretto, Philippe; Moulin, Christophe
2009-07-10
Cobalt is known to be toxic at high concentration, to induce contact dermatosis, and occupational radiation skin damage because of its use in nuclear industry. We investigated the intracellular distribution of cobalt in HaCaT human keratinocytes as a model of skin cells, and its interaction with endogenous trace elements. Direct micro-chemical imaging based on ion beam techniques was applied to determine the quantitative distribution of cobalt in HaCaT cells. In addition, synchrotron radiation X-ray fluorescence microanalysis in tomography mode was performed, for the first time on a single cell, to determine the 3D intracellular distribution of cobalt. Results obtained with these micro-chemical techniques were compared to a more classical method based on cellular fractionation followed by inductively coupled plasma atomic emission spectrometry (ICP-AES) measurements. Cobalt was found to accumulate in the cell nucleus and in perinuclear structures indicating the possible direct interaction with genomic DNA, and nuclear proteins. The perinuclear accumulation in the cytosol suggests that cobalt could be stored in the endoplasmic reticulum or the Golgi apparatus. The multi-elemental analysis revealed that cobalt exposure significantly decreased magnesium and zinc content, with a likely competition of cobalt for magnesium and zinc binding sites in proteins. Overall, these data suggest a multiform toxicity of cobalt related to interactions with genomic DNA and nuclear proteins, and to the alteration of zinc and magnesium homeostasis.
Interlaboratory trial for the measurement of total cobalt in equine urine and plasma by ICP-MS.
Popot, Marie-Agnes; Ho, Emmie N M; Stojiljkovic, Natali; Bagilet, Florian; Remy, Pierre; Maciejewski, Pascal; Loup, Benoit; Chan, George H M; Hargrave, Sabine; Arthur, Rick M; Russo, Charlie; White, James; Hincks, Pamela; Pearce, Clive; Ganio, George; Zahra, Paul; Batty, David; Jarrett, Mark; Brooks, Lydia; Prescott, Lise-Anne; Bailly-Chouriberry, Ludovic; Bonnaire, Yves; Wan, Terence S M
2017-09-01
Cobalt is an essential mineral micronutrient and is regularly present in equine nutritional and feed supplements. Therefore, cobalt is naturally present at low concentrations in biological samples. The administration of cobalt chloride is considered to be blood doping and is thus prohibited. To control the misuse of cobalt, it was mandatory to establish an international threshold for cobalt in plasma and/or in urine. To achieve this goal, an international collaboration, consisting of an interlaboratory comparison between 5 laboratories for the urine study and 8 laboratories for the plasma study, has been undertaken. Quantification of cobalt in the biological samples was performed by inductively coupled plasma-mass spectrometry (ICP-MS). Ring tests were based on the analysis of 5 urine samples supplemented at concentrations ranging from 5 up to 500 ng/mL and 5 plasma samples spiked at concentrations ranging from 0.5 up to 25 ng/mL. The results obtained from the different laboratories were collected, compiled, and compared to assess the reproducibility and robustness of cobalt quantification measurements. The statistical approach for the ring test for total cobalt in urine was based on the determination of percentage deviations from the calculated means, while robust statistics based on the calculated median were applied to the ring test for total cobalt in plasma. The inter-laboratory comparisons in urine and in plasma were successful so that 97.6% of the urine samples and 97.5% of the plasma samples gave satisfactory results. Threshold values for cobalt in plasma and urine were established from data only obtained by laboratories involved in the ring test. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
NASA Technical Reports Server (NTRS)
Bolgar, A. S.; Verkhoglyadova, T. S.; Samsonov, G. V.
1985-01-01
The vapor pressure and evaporation rate of borides of titanium, zirconium, and chrome; and of strontium and carbides of titanium, zirconium, and chrome, molybdenum silicide; and nitrides of titanium, niobium, and tantalum in a vacuum were studied. It is concluded that all subject compounds evaporate by molecular structures except AlB sub 12' which dissociates, losing the aluminum.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erdemir, Ali; Eryilmaz, Osman Levent; Urgen, Mustafa
A nanocomposite coating and method of making and using the coating. The nanocomposite coating is disposed on a base material, such as a metal or ceramic; and the nanocomposite consists essentially of a matrix of an alloy selected from the group of Cu, Ni, Pd, Pt and Re which are catalytically active for cracking of carbon bonds in oils and greases and a grain structure selected from the group of borides, carbides and nitrides.
LINER FOR EXTRUSION BILLET CONTAINERS
Shrink-fit assembly device for buildup of ceramic-coated liner and sleeve assemblies was tested and modified to develop desired temperatures and...preliminary evaluation of suitability for extrusion liner use. Procedures were developed for welding short, hollow ceramic cylinders of high-strength metal...carbides and borides to form a ceramic extrusion liner of suitable length. Disassembly tooling for rapid separation of shrink-fitted sleeves from a worn
NASA Astrophysics Data System (ADS)
Nakamori, Yuko; Miwa, Kazutoshi; Ninomiya, Akihito; Li, Haiwen; Ohba, Nobuko; Towata, Shin-Ichi; Züttel, Andreas; Orimo, Shin-Ichi
2006-07-01
The thermodynamical stabilities for the series of metal borohydrides M(BH4)n ( M=Li , Na, K, Cu, Mg, Zn, Sc, Zr, and Hf; n=1-4 ) have been systematically investigated by first-principles calculations. The results indicated that an ionic bonding between Mn+ cations and [BH4]- anions exists in M(BH4)n , and the charge transfer from Mn+ cations to [BH4]- anions is a key feature for the stability of M(BH4)n . A good correlation between the heat of formation ΔHboro of M(BH4)n and the Pauling electronegativity of the cation χP can be found, which is represented by the linear relation, ΔHboro=248.7χP-390.8 in the unit of kJ/mol BH4 . In order to confirm the predicted correlation experimentally, the hydrogen desorption reactions were studied for M(BH4)n ( M=Li , Na, K, Mg, Zn, Sc, Zr, and Hf), where the samples of the later five borohydrides were mechanochemically synthesized. The thermal desorption analyses indicate that LiBH4 , NaBH4 , and KBH4 desorb hydrogen to hydride phases. Mg(BH4)2 , Sc(BH4)3 , and Zr(BH4)4 show multistep desorption reactions through the intermediate phases of hydrides and/or borides. On the other hand, Zn(BH4)2 desorbs hydrogen and borane to elemental Zn due to instabilities of Zn hydride and boride. A correlation between the desorption temperature Td and the Pauling electronegativity χP is observed experimentally and so χP is an indicator to approximately estimate the stability of M(BH4)n . The enthalpy change for the desorption reaction, ΔHdes , is estimated using the predicted ΔHboro and the reported data for decomposed product, ΔHhyd/boride . The estimated ΔHdes show a good correlation with the observed Td , indicating that the predicted stability of borohydride is experimentally supported. These results are useful for exploring M(BH4)n with appropriate stability as hydrogen storage materials.
Fokwa, Boniface P T; Hermus, Martin
2011-04-18
Polycrystalline samples and single crystals of four members of the new complex boride series Ti(3-x)Ru(5-y)Ir(y)B(2+x) (0 ≤ x ≤ 1 and 1 < y < 3) were synthesized by arc-melting the elements in a water-cooled copper crucible under an argon atmosphere. The new silvery phases were structurally characterized by powder and single-crystal X-ray diffraction as well as energy- and wavelength-dispersive X-ray spectroscopy analyses. They crystallize with the tetragonal Ti(3)Co(5)B(2) structure type in space group P4/mbm (No. 127). Tetragonal prisms of Ru/Ir atoms are filled with titanium in the boron-poorest phase (Ti(3)Ru(2.9)Ir(2.1)B(2)). Gradual substitution of titanium by boron then results in the successive filling of this site by a Ti/B mixture en route to the complete boron occupation, leading to the boron-richest phase (Ti(2)Ru(2.8)Ir(2.2)B(3)). Furthermore, both ruthenium and iridium share two sites in these structures, but a clear Ru/Ir site preference is found. First-principles density functional theory calculations (Vienna ab initio simulation package) on appropriate structural models (using a supercell approach) have provided more evidence on the stability of the boron-richest and -poorest phases, and the calculated lattice parameters corroborate very well with the experimentally found ones. Linear muffin-tin orbital atomic sphere approximation calculations further supported these findings through crystal orbital Hamilton population bonding analyses, which also show that the Ru/Ir-B and Ru/Ir-Ti heteroatomic interactions are mainly responsible for the structural stability of these compounds. Furthermore, some stable and unstable phases of this complex series could be predicted using the rigid-band model. According to the density of states analyses, all phases should be metallic conductors, as was expected from these metal-rich borides.
The effect of cobalt content in U-700 type alloys on degradation of aluminide coatings
NASA Technical Reports Server (NTRS)
Zaplatynsky, I.
1985-01-01
The influence of cobalt content in U-700 type alloys on the behavior of aluminide coatings is studied in burner rig cyclic oxidation tests at 1100C. It is determined that aluminide coatings on alloys with higher cobalt offer better oxidation protection than the same coatings on alloys containing less cobalt.
Radioactive cobalt removal from Salem liquid radwaste with cobalt selective media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maza R.; Wilson, J.A.; Hetherington, R.
This paper reports results of benchtop tests using ion exchange material to selectively remove radioactive cobalt from high conductivity liquid radwaste at the Salem Nuclear Generating Station. The purpose of this test program is to reduce the number of curies in liquid releases without increasing the solid waste volume. These tests have identified two cobalt selective materials that together remove radioactive cobalt more effectively than the single component currently used. All test materials were preconditioned by conversion to the divalent calcium or sulfate form to simulate chemically exhausted media.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liang, Xin; Ren, Zhibo; Zhu, Xiaolin
In the present work, cobalt nanochains have been successfully synthesized by a novel co assisted self-assembling formation strategy. A dramatic morphology transformation from cobalt nanoparticles to nanochains are observed when co molecules were introduced into the synthetic system. DFT calculations further confirm that competitive co-adsorbed co and oleylamine over the cobalt nanoparticles facilitates the formation of cobalt nanochains, which show higher co hydrogenation performance. The present work provides a new strategic and promising method for controllable synthesis of catalyst nanomaterials with the preferred surface structure and morphology.
The effects of cobalt on the development, oxidative stress, and apoptosis in zebrafish embryos.
Cai, Guiquan; Zhu, Junfeng; Shen, Chao; Cui, Yimin; Du, Jiulin; Chen, Xiaodong
2012-12-01
Metal-on-metal hip arthroplasty has been performed with increasing frequency throughout the world, particularly in younger and more active patients, including women of childbearing age. The potential toxicity of cobalt exposure on fetus is concerned since cobalt ions generated by metal-on-metal bearings can traverse the placenta and be detected in fetal blood and amniotic fluid. This study examined the effects of cobalt exposure on early embryonic development and the mechanisms underlying its toxicity. Zebrafish embryos were exposed to a range of cobalt concentrations (0-100 mg/L) between 1 and 144 h postfertilization. The survival and early development of embryos were not significantly affected by cobalt at concentrations <100 μg/L. However, embryos exposed to higher concentrations (>100 μg/L) displayed reduced survival rates and abnormal development, including delayed hatching, aberrant morphology, retarded growth, and bradycardia. Furthermore, this study examined oxidative stress and apoptosis in embryos exposed to cobalt at concentrations of 0-500 μg/L. Lipid peroxidation levels were increased in cobalt-treated embryos at concentrations of 100 and 500 μg/L. The mRNA levels of catalase, superoxide dismutase 2, p53, caspase-3, and caspase-9 genes were upregulated in a dose-dependent manner. Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assays also revealed abnormal apoptotic signals in the brain, trunk, and tail when treated with 500 μg/L cobalt. These data suggest that oxidative stress and apoptosis are associated with cobalt toxicity in zebrafish embryos.
Enhanced activity of gold-supported cobalt oxide for the electrochemical evolution of oxygen.
Yeo, Boon Siang; Bell, Alexis T
2011-04-13
Scanning electron microscopy, linear sweep voltammetry, chronoamperometry, and in situ surface-enhanced Raman spectroscopy were used to investigate the electrochemical oxygen evolution reaction (OER) occurring on cobalt oxide films deposited on Au and other metal substrates. All experiments were carried out in 0.1 M KOH. A remarkable finding is that the turnover frequency for the OER exhibited by ∼0.4 ML of cobalt oxide deposited on Au is 40 times higher than that of bulk cobalt oxide. The activity of small amounts of cobalt oxide deposited on Pt, Pd, Cu, and Co decreased monotonically in the order Au > Pt > Pd > Cu > Co, paralleling the decreasing electronegativity of the substrate metal. Another notable finding is that the OER turnover frequency for ∼0.4 ML of cobalt oxide deposited on Au is nearly three times higher than that for bulk Ir. Raman spectroscopy revealed that the as-deposited cobalt oxide is present as Co(3)O(4) but undergoes progressive oxidation to CoO(OH) with increasing anodic potential. The higher OER activity of cobalt oxide deposited on Au is attributed to an increase in fraction of the Co sites present as Co(IV) cations, a state of cobalt believed to be essential for OER to occur. A hypothesis for how Co(IV) cations contribute to OER is proposed and discussed. © 2011 American Chemical Society
Potential for cobalt recovery from lateritic ores in Europe
NASA Astrophysics Data System (ADS)
Herrington, R.
2012-04-01
Cobalt is one of the 'critical metals' identified under the EU Raw Materials Initiative. Annually the global mine production of cobalt is around 55,000 tonnes,with Europe's industries consuming around 30% of that figure. Currently Europe produces around 27 tonnes of cobalt from mines in Finland although new capacity is planned. Co-bearing nickel laterite ores being mined in Greece, Macedonia and Kosovo where the cobalt is currently not being recovered (ores have typical analyses of 0.055% Co and >1% Ni,). These ores are currently treated directly in pyrometallurgical plants to recover the contained nickel and this process means there is no separate cobalt product produced. Hydrometallurgical treatment of mineralogically suitable laterite ores can recover the cobalt; for example Cuba recovers 3,500 tonnes of cobalt from its laterite mining operations, which are of a similar scale to the current European operations. Implementation of hydrometallurgical techniques is in its infancy in Europe with one deposit in Turkey planning to use atmospheric heap leaching to recover nickel and copper from oxide-dominated ores. More widespread implementation of these methods to mineralogically suitable ore types could unlock the highly significant undeveloped resources (with metal contents >0.04% Co and >1% Ni), which have been defined throughout the Balkans eastwards into Turkey. At a conservative estimate, this region has the potential to supply up to 30% of the EU cobalt requirements.
NASA Astrophysics Data System (ADS)
Skoropata, E.; Desautels, R. D.; Falvo, E.; Ceci, P.; Kasyutich, O.; Freeland, J. W.; van Lierop, J.
2014-11-01
We present an in-depth examination of the composition and magnetism of cobalt (Co2 +)-doped iron-oxide nanoparticles encapsulated in Pyrococcus furiosus ferritin shells. We show that the Co2 + dopant ions were incorporated into the γ -Fe2O3/Fe3O4 core, with small paramagnetic-like clusters likely residing on the surface of the nanoparticle that were observed for all cobalt-doped samples. In addition, element-specific characterization using Mössbauer spectroscopy and polarized x-ray absorption indicated that Co2 + was incorporated exclusively into the octahedral B sites of the spinel-oxide nanoparticle. Comparable superparamagnetic blocking temperatures, coercivities, and effective anisotropies were obtained for 7%, 10%, and 12% cobalt-doped nanoparticles, and were only slightly reduced for 3% cobalt, indicating a strong effect of cobalt incorporation, with a lesser effect of cobalt content. Due to the regular particle size and separation that result from the use of the ferritin cage, a comparison of the effects of interparticle interactions on the disordered assembly of nanoparticles was also obtained that indicated significantly different behaviors between undoped and cobalt-doped nanoparticles.
NASA Astrophysics Data System (ADS)
Zhang, Tongwei; Cao, Changqian; Tang, Xu; Cai, Yao; Yang, Caiyun; Pan, Yongxin
2017-01-01
Magnetoferritin (M-HFn) is a biomimetic magnetic nanoparticle with a human heavy-chain ferritin (HFn) shell, trapping a magnetite (Fe3O4) core that has inherited peroxidase-like activity. In this study, cobalt-doped M-HFn nanoparticles (M-HFn-Co x Fe3-x O4) with different amounts of cobalt were successfully synthesized. Experimental results indicate that the controlled doping of a certain amount of cobalt into the magnetite cores of M-HFn nanoparticles enhances its peroxidase-like catalytic activity and efficacy for visualizing tumour tissues. For example, compared with sample Co0 (without cobalt doping), the peroxidase-like activity of the cobalt-doped nanoparticle sample Co60 (with a cobalt doping molar percentage of ˜34.2%) increases 1.7 times, and has the maximal reaction velocity (V max) values. Moreover, after a one-step incubation with Co60 nanoparticles, and using the peroxidase substrate 3,3‧-diaminobenzidine tetrahydrochloride (DAB) for colour development, the tumour tissues of breast, colorectal, stomach and pancreas tumours showed a deeper brown colour with clear boundaries between the healthy and tumourous cells. Therefore, this suggests that the cobalt-doped magnetoferritin nanoparticles enhance peroxidase activity and tumour tissue visualization.
Zhang, Tongwei; Cao, Changqian; Tang, Xu; Cai, Yao; Yang, Caiyun; Pan, Yongxin
2017-01-27
Magnetoferritin (M-HFn) is a biomimetic magnetic nanoparticle with a human heavy-chain ferritin (HFn) shell, trapping a magnetite (Fe 3 O 4 ) core that has inherited peroxidase-like activity. In this study, cobalt-doped M-HFn nanoparticles (M-HFn-Co x Fe 3-x O 4 ) with different amounts of cobalt were successfully synthesized. Experimental results indicate that the controlled doping of a certain amount of cobalt into the magnetite cores of M-HFn nanoparticles enhances its peroxidase-like catalytic activity and efficacy for visualizing tumour tissues. For example, compared with sample Co0 (without cobalt doping), the peroxidase-like activity of the cobalt-doped nanoparticle sample Co60 (with a cobalt doping molar percentage of ∼34.2%) increases 1.7 times, and has the maximal reaction velocity (V max ) values. Moreover, after a one-step incubation with Co60 nanoparticles, and using the peroxidase substrate 3,3'-diaminobenzidine tetrahydrochloride (DAB) for colour development, the tumour tissues of breast, colorectal, stomach and pancreas tumours showed a deeper brown colour with clear boundaries between the healthy and tumourous cells. Therefore, this suggests that the cobalt-doped magnetoferritin nanoparticles enhance peroxidase activity and tumour tissue visualization.
Temperature dependent viscosity of cobalt ferrite / ethylene glycol ferrofluids
NASA Astrophysics Data System (ADS)
Kharat, Prashant B.; Somvanshi, Sandeep B.; Kounsalye, Jitendra S.; Deshmukh, Suraj S.; Khirade, Pankaj P.; Jadhav, K. M.
2018-04-01
In the present work, cobalt ferrite / ethylene glycol ferrofluid is prepared in 0 to 1 (in the step of 0.2) volume fraction of cobalt ferrite nanoparticles synthesized by co-precipitation method. The XRD results confirmed the formation of single phase spinel structure. The Raman spectra have been deconvoluted into individual Lorentzian peaks. Cobalt ferrite has cubic spinel structure with Fd3m space group. FT-IR spectra consist of two major absorption bands, first at about 586 cm-1 (υ1) and second at about 392 cm-1 (υ2). These absorption bands confirm the formation of spinel-structured cobalt ferrite. Brookfield DV-III viscometer and programmable temperature-controlled bath was used to study the relationship between viscosity and temperature. Viscosity behavior with respect to temperature has been studied and it is revealed that the viscosity of cobalt ferrite / ethylene glycol ferrofluids increases with an increase in volume fraction of cobalt ferrite. The viscosity of the present ferrofluid was found to decrease with increase in temperature.
Open-Loop Performance of COBALT Precision Landing Payload on a Commercial Sub-Orbital Rocket
NASA Technical Reports Server (NTRS)
Restrepo, Carolina I.; Carson, John M., III; Amzajerdian, Farzin; Seubert, Carl R.; Lovelace, Ronney S.; McCarthy, Megan M.; Tse, Teming; Stelling, Richard; Collins, Steven M.
2018-01-01
An open-loop flight test campaign of the NASA COBALT (CoOperative Blending of Autonomous Landing Technologies) platform was conducted onboard the Masten Xodiac suborbital rocket testbed. The COBALT platform integrates NASA Guidance, Navigation and Control (GN&C) sensing technologies for autonomous, precise soft landing, including the Navigation Doppler Lidar (NDL) velocity and range sensor and the Lander Vision System (LVS) Terrain Relative Navigation (TRN) system. A specialized navigation filter running onboard COBALT fuses the NDL and LVS data in real time to produce a navigation solution that is independent of GPS and suitable for future, autonomous, planetary, landing systems. COBALT was a passive payload during the open loop tests. COBALT's sensors were actively taking data and processing it in real time, but the Xodiac rocket flew with its own GPS-navigation system as a risk reduction activity in the maturation of the technologies towards space flight. A future closed-loop test campaign is planned where the COBALT navigation solution will be used to fly its host vehicle.
Effects of cobalt in nickel-base superalloys
NASA Technical Reports Server (NTRS)
Tien, J. K.; Jarrett, R. N.
1983-01-01
The role of cobalt in a representative wrought nickel-base superalloy was determined. The results show cobalt affecting the solubility of elements in the gamma matrix, resulting in enhanced gamma' volume fraction, in the stabilization of MC-type carbides, and in the stabilization of sigma phase. In the particular alloy studied, these microstructural and microchemistry changes are insufficient in extent to impact on tensile strength, yield strength, and in the ductilities. Depending on the heat treatment, creep and stress rupture resistance can be cobalt sensitive. In the coarse grain, fully solutioned and aged condition, all of the alloy's 17% cobalt can be replaced by nickel without deleteriously affecting this resistance. In the fine grain, partially solutioned and aged condition, this resistance is deleteriously affected only when one-half or more of the initial cobalt content is removed. The structure and property results are discussed with respect to existing theories and with respect to other recent and earlier findings on the impact of cobalt, if any, on the performance of nickel-base superalloys.
Cobalt mineral exploration and supply from 1995 through 2013
Wilburn, David R.
2011-01-01
The global mining industry has invested a large amount of capital in mineral exploration and development over the past 15 years in an effort to ensure that sufficient resources are available to meet future increases in demand for minerals. Exploration data have been used to identify specific sites where this investment has led to a significant contribution in global mineral supply of cobalt or where a significant increase in cobalt production capacity is anticipated in the next 5 years. This report provides an overview of the cobalt industry, factors affecting mineral supply, and circumstances surrounding the development, or lack thereof, of key mineral properties with the potential to affect mineral supply. Of the 48 sites with an effective production capacity of at least 1,000 metric tons per year of cobalt considered for this study, 3 producing sites underwent significant expansion during the study period, 10 exploration sites commenced production from 1995 through 2008, and 16 sites were expected to begin production by 2013 if planned development schedules are met. Cobalt supply is influenced by economic, environmental, political, and technological factors affecting exploration for and production of copper, nickel, and other metals as well as factors affecting the cobalt industry. Cobalt-rich nickel laterite deposits were discovered and developed in Australia and the South Pacific and improvements in laterite processing technology took place during the 1990s and early in the first decade of the 21st century when mining of copper-cobalt deposits in Congo (Kinshasa) was restricted because of regional conflict and lack of investment in that country's mining sector. There was also increased exploration for and greater importance placed on cobalt as a byproduct of nickel mining in Australia and Canada. The emergence of China as a major refined cobalt producer and consumer since 2007 has changed the pattern of demand for cobalt, particularly from Africa and Australasia. Chinese companies are increasingly becoming involved in copper and cobalt exploration and mining in Congo (Kinshasa) and Zambia as well as nickel, copper, and other mining in Australia and the South Pacific. Between 2009 and 2013, mines with a cumulative capacity of more than 100,000 metric tons per year of cobalt were proposed to come into production if all sites came into production as scheduled. This additional capacity corresponds to 175 percent of the 2008 global refinery production level. About 45 percent of this cobalt would be from primary nickel deposits, about 32 percent from primary copper deposits, and about 21 percent from primary cobalt deposits. By 2013, about 40 percent of new capacity was expected to come from the African Copperbelt; 38 percent, from Australia and the South Pacific countries of Philippines, Indonesia, New Caledonia, and Papua New Guinea; 11 percent, from other African countries; 5 percent, from North America; and 6 percent, from other areas.
NASA Technical Reports Server (NTRS)
Klettlinger, Jennifer Lindsey Suder
2012-01-01
The objective of this study was to evaluate the effect of titanium oxide, lanthanum oxide, and zirconium oxide on alumina supported cobalt catalysts. The hypothesis was that the presence of lanthanum oxide, titanium oxide, and zirconium oxide would reduce the interaction between cobalt and the alumina support. This was of interest because an optimized weakened interaction could lead to the most advantageous cobalt dispersion, particle size, and reducibility. The presence of these oxides on the support were investigated using a wide range of characterization techniques such as SEM, nitrogen adsorption, x-ray diffraction (XRD), temperature programmed reduction (TPR), temperature programmed reduction after reduction (TPR-AR), and hydrogen chemisorptions/pulse reoxidation. Results indicated that both La2O3 and TiO2 doped supports facilitated the reduction of cobalt oxide species in reference to pure alumina supported cobalt catalysts, however further investigation is needed to determine the effect of ZrO2 on the reduction profile. Results showed an increased corrected cluster size for all three doped supported catalysts in comparison to their reference catalysts. The increase in reduction and an increase in the cluster size led to the conclusion that the support-metal interaction weakened by the addition of TiO2 and La2O3. It is also likely that the interaction decreased upon presence of ZrO2 on the alumina, but further research is necessary. Preliminary results have indicated that the alumina-supported catalysts with titanium oxide and lanthanum oxide present are of interest because of the weakened cobalt support interaction. These catalysts showed an increased extent of reduction, therefore more metallic cobalt is present on the support. However, whether or not there is more cobalt available to participate in the Fischer-Tropsch synthesis reaction (cobalt surface atoms) depends also on the cluster size. On one hand, increasing cluster size alone tends to decrease the active site density; on the other hand, by increasing the size of the cobalt clusters, there is less likelihood of forming oxidized cobalt complexes (cobalt aluminate) during Fischer-Tropsch synthesis. Thus, from the standpoint of stability, improving the extent of reduction while increasing the particle size slightly may be beneficial for maintaining the sites, even if there is a slight decrease in overall initial active site density.
Mineral resource of the month: cobalt
Shedd, Kim B.
2009-01-01
Cobalt is a metal used in numerous commercial, industrial and military applications. On a global basis, the leading use of cobalt is in rechargeable lithium-ion, nickel-cadmium and nickel-metal hydride battery electrodes. Cobalt use has grown rapidly since the early 1990s, with the development of new battery technologies and an increase in demand for portable electronics such as cell phones, laptop computers and cordless power tools.
Thompson; Parks; Brown
2000-02-15
The uptake and release behavior of cobalt(II) was studied over thousands of hours in CO(2)-free aqueous suspensions of kaolinite under three pairs of total cobalt concentration (Co(T)) and near-neutral pH (7.5-7.8) conditions. Dissolved cobalt, aluminum, and silicon concentrations were monitored by ICPMS, and cobalt-containing products were identified by EXAFS spectroscopy. In each uptake experiment, cobalt sorbed to kaolinite as a mixture of surface-adsorbed monomers or polymers and hydrotalcite-like precipitates of the approximate composition Co(x)Al(OH)(2x+2)(A(n-))(1/n), where 2=x=4 and A(n-) is nitrate or silicate anion. Precipitate stoichiometry varied with experimental conditions, with the highest Co:Al ratio in the high Co(T)/high pH experiment. Cobalt surface adsorption occurred within seconds, whereas precipitation was slower and continued for the duration of the experiments. Consequently, the proportion of precipitate in the sorbed mixture increased with time in all experiments. The most rapid precipitation occurred in the high Co(T)/high pH experiment, where solutions were most supersaturated with respect to cobalt hydrotalcite. Precipitates incorporated some previously adsorbed cobalt, as well as cobalt from solution. Cobalt release from the solid phase was effected by lowering solution pH to 7.0. Release experiments initiated after shorter sorption times returned a larger fraction of cobalt to solution than those initiated after longer sorption times, for a fixed duration of release. In other words, sorption product stability increased with sorption time. Specifically, under the conditions of the release experiments, the hydrotalcite-like precipitates are more stable than smaller adsorbates, and precipitates that formed over longer time periods are more stable than those that formed rapidly. The latter result suggests that precipitates ripened or modified their structure or composition to become more stable over the course of the several-thousand-hour sorption experiments. Precipitates that formed over hundreds of hours or longer did not dissolve over thousands of hours at the lower pH. Copyright 2000 Academic Press.
Proper, Steven P; Saini, Yogesh; Greenwood, Krista K; Bramble, Lori A; Downing, Nathaniel J; Harkema, Jack R; Lapres, John J
2014-02-01
Hard metal lung disease (HMLD) is an occupational lung disease specific to inhalation of cobalt-containing particles whose mechanism is largely unknown. Cobalt is a known hypoxia mimic and stabilizer of the alpha subunits of hypoxia-inducible factors (HIFs). Previous work revealed that though HIF1α contrib utes to cobalt toxicity in vitro, loss of HIF1α in the alveolar epithelial cells does not provide in vivo protection from cobalt-induced lung inflammation. HIF1α and HIF2α show unique tissue expression profiles, and HIF2α is known to be the predominant HIF mRNA isoform in the adult lung. Thus, if HIF2α activation by cobalt contributes to pathophysiology of HMLD, we hypothesized that loss of HIF2α in lung epithelium would provide protection from cobalt-induced inflammation. Mice with HIF2α-deficiency in Club and alveolar type II epithelial cells (ATIIs) (HIF2α(Δ/Δ)) were exposed to cobalt (60 µg/day) or saline using a subacute occupational exposure model. Bronchoalveolar lavage cellularity, cytokines, qRT-PCR, and histopathology were analyzed. Results show that loss of HIF2α leads to enhanced eosinophilic inflammation and increased goblet cell metaplasia. Additionally, control mice demonstrated a mild recovery from cobalt-induced lung injury compared with HIF2α(Δ/Δ) mice, suggesting a role for epithelial HIF2α in repair mechanisms. The expression of important cytokines, such as interleukin (IL)-5 and IL-10, displayed significant differences following cobalt exposure when HIF2α(Δ/Δ) and control mice were compared. In summary, our data suggest that although loss of HIF2α does not afford protection from cobalt-induced lung inflammation, epithelial HIF2α signaling does play an important role in modulating the inflammatory and repair response in the lung.
NASA Astrophysics Data System (ADS)
Boghaei, Davar M.; Gharagozlou, Mehrnaz
2006-01-01
Water-soluble cobalt(II) tetradentate Schiff base complexes have been shown to form charge transfer (CT) complexes with a series of nucleoside monophosphates including adenosine-5‧-monophosphate (AMP) and cytidine-5‧-monophosphate (CMP). The investigated water-soluble cobalt(II) Schiff base complexes are (i) disodium[{bis(5-sulfo-salicylaldehyde)-o-phenylenediiminato}cobalt(II)], Na2[Co(SO3-salophen)] (1); (ii) disodium[{bis(5-sulfo-salicylaldehyde)-4,5-dimethyl-o-phenylenediiminato}cobalt(II)], Na2[Co(SO3-sal-4,5-dmophen)] (2) and (iii) disodium[{bis(4-methoxy-5-sulfo-salicylaldehyde)-4,5-dimethyl-o-phenylenediiminato}cobalt(II)], Na2[Co(SO3-4-meosal-4,5-dmophen)] (3). The formation constant and thermodynamic parameters for charge transfer complex formation of water-soluble cobalt(II) Schiff base complexes with nucleoside monophosphates were determined spectrophotometrically in aqueous solution at constant ionic strength (I = 0.2 mol dm-3 KNO3) under physiological condition (pH 7.0) and at various temperatures between 288 and 308 K. The stoichiometry has been found to be 1:1 (water-soluble cobalt(II) Schiff base complex: nucleoside monophosphate) in each case. Our spectroscopic and thermodynamic results show that the interaction of water-soluble cobalt(II) Schiff base complexes with the investigated nucleoside monophosphates occurs mainly through the phosphate group. The trend of the interaction according to the cobalt(II) Schiff base complexes due to electronic and steric factors is as follows: Na2[Co(SO3-salophen)] > Na2[Co(SO3-sal-4,5-dmophen)] > Na2[Co(SO3-4-meosal-4,5-dmophen)]. Also the trend of the interaction of a given cobalt(II) Schiff base complex according to the nucleoside monophosphate is as follows: CMP > AMP.
Ternary boride product and process
NASA Technical Reports Server (NTRS)
Clougherty, Edward V. (Inventor)
1976-01-01
A hard, tough, strong ceramic body is formed by hot pressing a mixture of a powdered metal and a powdered metal diboride. The metal employed is zirconium, titanium or hafnium and the diboride is the diboride of a different member of the same group of zirconium, titanium or hafnium to form a ternary composition. During hot pressing at temperatures above about 2,000.degree.F., a substantial proportion of acicular ternary monoboride is formed.
40 CFR 421.310 - Applicability: Description of the secondary tungsten and cobalt subcategory.
Code of Federal Regulations, 2010 CFR
2010-07-01
... PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS NONFERROUS METALS MANUFACTURING POINT SOURCE... the production of tungsten or cobalt at secondary tungsten and cobalt facilities processing tungsten...
Mechanical, Electronic and Optical Properties of Two Phases of NbB4: First-Principles Calculations
NASA Astrophysics Data System (ADS)
Yang, Ruike; Ma, Shaowei; Wei, Qun; Zhang, Dongyun
2018-05-01
As transition metal borides have been successfully synthesised, the study of the combination of transition metal and boron is another effective way to investigate the properties of boride. We have predicted the novel phase Amm2-NbB4. Using the Cambridge Serial Total Energy Package (CASTEP) code, we further researched on the mechanical, electronic and optical properties of C2/c- and Amm2-NbB4. It is found that both the phases of NbB4 are dynamically and mechanically stable at 0 and 100 GPa. Their Vickers hardness values are both 34 GPa, which indicate that they are hard materials. The band gap of C2/c-NbB4 is 0.145 eV, which indicates that it is a semiconductor (or metalloid) at 0 GPa. For the Amm2-NbB4, the band structure without band gap indicates it is a metal at 0 GPa. The optical properties of these two structures are similar. At 0 eV, the real part of dielectric function is 28.8 for C2/c-NbB4, and the real part value for Amm2-NbB4 is 43. We hope our work will provide some help to the experimental work about the technology of the material.
NASA Technical Reports Server (NTRS)
Speck, J. S.
1986-01-01
The microstructures of melt-spun superalloy ribbons with variable boron levels have been studied by transmission electron microscopy. The base alloy was of approximate composition Ni-11% Cr-5%Mo-5%Al-4%Ti with boron levels of 0.06, 0.12, and 0.60 percent (all by weight). Thirty micron thick ribbons display an equiaxed chill zone near the wheel contact side which develops into primary dendrite arms in the ribbon center. Secondary dendrite arms are observed near the ribbon free surface. In the higher boron bearing alloys, boride precipitates are observed along grain boundaries. A concerted effort has been made to elucidate true grain shapes by the use of bright field/dark field microscopy. In the low boron alloy, grain shapes are often convex, and grain faces are flat. Boundary faces frequently have large curvature, and grain shapes form concave polygons in the higher boron level alloys. It is proposed that just after solidification, in all of the alloys studied, grain shapes were initially concave and boundaries were wavy. Boundary straightening is presumed to occur on cooling in the low boron alloy. Boundary migration is precluded in the higher boron alloys by fast precipitation of borides at internal interfaces.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stampfl, Ulrike; Sommer, Christof-Matthias; Thierjung, Heidi
2008-11-15
The purpose of this study was to investigate the potential of nanoscale coating with the highly biocompatible polymer Polyzene-F (PZF), in combination with cobalt chromium and stainless steel stents, to reduce in-stent stenosis, thrombogenicity, and vessel wall injury and inflammation. One bare cobalt chromium, PZF-nanocoated stainless steel or PZF-nanocoated cobalt chromium stent was implanted in right coronary artery of 30 mini-pigs (4- or 12-week follow-up). Primary study end points were in-stent stenosis and thrombogenicity. Secondary study end points were vessel wall injury and inflammation as evaluated by microscopy and a new immunoreactivity score applying C-reactive protein (CRP), tumor-necrosis factor alphamore » (TNF{alpha}), and TGF{beta}. At 12 weeks, angiography showed a significantly lower average loss in lumen diameter (2.1% {+-} 3.05%) in PZF-nanocoated cobalt chromium stents compared with stents in the other groups (9.73% {+-} 4.93% for bare cobalt chromium stents and 9.71% {+-} 7% for PZF-nanocoated stainless steel stents; p = 0.04), which was confirmed at microscopy (neointima 40.7 {+-} 16 {mu}m in PZF-nanocoated cobalt chromium stents, 74.7 {+-} 57.6 {mu}m in bare cobalt chromium stents, and 141.5 {+-} 109 {mu}m in PZF-nanocoated stainless steel stents; p = 0.04). Injury and inflammation scores were low in all stents and were without significant differences. PZF-nanocoated cobalt chromium stents provided the highest efficacy in reducing in-stent stenosis at long-term follow-up. The PZF nanocoat proved to be biocompatible with respect to thromboresistance and inflammation. Our data suggest that its combination with cobalt chromium stents might provide an interesting passive stent platform.« less
40 CFR 421.230 - Applicability: Description of the primary nickel and cobalt subcategory.
Code of Federal Regulations, 2010 CFR
2010-07-01
... PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS NONFERROUS METALS MANUFACTURING POINT SOURCE... production of nickel or cobalt by primary nickel and cobalt facilities processing ore concentrate raw...
2014-01-01
Background The mechanisms of toxicity of metal oxide particles towards lung cells are far from being understood. In particular, the relative contribution of intracellular particulate versus solubilized fractions is rarely considered as it is very challenging to assess, especially for low-solubility particles such as cobalt oxide (Co3O4). Methods This study was possible owing to two highly sensitive, independent, analytical techniques, based on single-cell analysis, using ion beam microanalysis, and on bulk analysis of cell lysates, using mass spectrometry. Results Our study shows that cobalt oxide particles, of very low solubility in the culture medium, are readily incorporated by BEAS-2B human lung cells through endocytosis via the clathrin-dependent pathway. They are partially solubilized at low pH within lysosomes, leading to cobalt ions release. Solubilized cobalt was detected within the cytoplasm and the nucleus. As expected from these low-solubility particles, the intracellular solubilized cobalt content is small compared with the intracellular particulate cobalt content, in the parts-per-thousand range or below. However, we were able to demonstrate that this minute fraction of intracellular solubilized cobalt is responsible for the overall toxicity. Conclusions Cobalt oxide particles are readily internalized by pulmonary cells via the endo-lysosomal pathway and can lead, through a Trojan-horse mechanism, to intracellular release of toxic metal ions over long periods of time, involving specific toxicity. PMID:24669904
Design, Fabrication, Characterization and Modeling of Integrated Functional Materials
2009-10-01
cobalt ferrite (CoFe2O4) nanoparticles dispersed in a low-loss commercial polymer matrix obtained from Rogers Corporation. 2 mmol of Cobalt (II...oleylamine and 20 ml benzyl ether were added to the Iron (III) acetylacetonate and Cobalt (II) acetylacetonate mixture. The mixture was stirred...microwave applications Multiferroic bilayers of Cobalt Ferrite and PZT: The objective of this project is to fabricate bilayers of ferroelectric
Investigation of Co, Ni and Fe Doped II-VI Chalcogenides
2013-01-04
dopants to the Fe ions. Figure 4. Cobalt doped ZnSe (7×3.1×50 mm3) samples after annealing for 7 days at 950C. A B 8 Approved for public...distribution unlimited. 4.2 Cobalt doped samples ........................................................................................................77...curve for the deposition monitor used for cobalt deposition during magnetron spattering at 1000 nm; B) percentage transmission of a cobalt thin film
Exfoliation and Reassembly of Cobalt Oxide Nanosheets into a Reversible Lithium-Ion Battery Cathode
2012-01-01
REPORT Exfoliation and Reassembly of Cobalt Oxide Nanosheets into a Reversible Lithium-Ion Battery Cathode 14. ABSTRACT 16. SECURITY CLASSIFICATION OF...battery fabrication, cobalt oxide Owen C. Compton, Ali Abouimrane, Zhi An, Marc J. Palmeri, L. Catherine Brinson, Khalil Amine, SonBinh T. Nguyen...Exfoliation and Reassembly of Cobalt Oxide Nanosheets into a Reversible Lithium-Ion Battery Cathode Report Title ABSTRACT An exfoliation–reassembly
Cyanide speciation at four gold leach operations undergoing remediation.
Johnson, Craig A; Grimes, David J; Leinz, Reinhard W; Rye, Robert O
2008-02-15
Analyses have been made of 81 effluents from four gold leach operations in various stages of remediation to identify the most -persistent cyanide species. Total cyanide and weak acid-dissociable (WAD) cyanide were measured using improved methods, and metals known to form stable cyanocomplexes were also measured. Typically, total cyanide greatly exceeded WAD indicating that cyanide was predominantly in strong cyanometallic complexes. Iron was generally too low to accommodate the strongly complexed cyanide as Fe(CN)6s3- or Fe(CN)6(4-), but cobalt was abundant enough to implicate Co(CN)6(3-) or its dissociation products (Co(CN)(6-x)(H2O)x((3-x)-)). Supporting evidenceforcobalt-cyanide complexationwas found in tight correlations between cobalt and cyanide in some sample suites. Also, abundant free cyanide was produced upon UV illumination. Iron and cobalt cyanocomplexes both photodissociate; however, the iron concentration was insufficient to have carried the liberated cyanide, while the cobalt concentration was sufficient. Cobalt cyanocomplexes have not previously been recognized in cyanidation wastes. Their identification atfour separate operations, which had treated ores that were not especially rich in cobalt, suggests that cobalt complexation may be a common source of cyanide persistence. There is a need for more information on the importance and behavior of cobalt cyanocomplexes in ore-processing wastes at gold mines.
Mobile Phones: Potential Sources of Nickel and Cobalt Exposure for Metal Allergic Patients
Mucci, Tania; Chong, Melanie; Lorton, Mark Davis; Fonacier, Luz
2013-01-01
The use of cellular phones has risen exponentially with over 300 million subscribers. Nickel has been detected in cell phones and reports of contact dermatitis attributable to metals are present in the literature. We determined nickel and cobalt content in popular cell phones in the United States. Adults (>18 years) who owned a flip phone, Blackberry®, or iPhone® were eligible. Seventy-two cell phones were tested using SmartPractice's® commercially available nickel and cobalt spot tests. Test areas included buttons, keypad, speakers, camera, and metal panels. Of the 72 cell phones tested, no iPhones or Droids® tested positive for nickel or cobalt. About 29.4% of Blackberrys [95% confidence interval (CI), 13%–53%] tested positive for nickel; none were positive for cobalt. About 90.5% of flip phones (95% CI, 70%–99%) tested positive for nickel and 52.4% of flip phones (95% CI, 32%–72%) tested positive for cobalt. Our study indicates that nickel and cobalt are present in popular cell phones. Patients with known nickel or cobalt allergy may consider their cellular phones as a potential source of exposure. Further studies are needed to examine whether there is a direct association with metal content in cell phones and the manifestation of metal allergy. PMID:24380018
[Evaluation of bond strength between low fusing porcelain with goldplated cobalt-chromium alloys].
Guo, Jing; Zhu, Jia; Zhu, Hong-shui
2014-02-01
To evaluate the bond strength of Vita OMEGA 900 low fusing porcelain fused with the goldplated Wirobond cobalt-chrome metalt ceramic alloy. Low fusing porcelain was fused with the cobalt-chromium alloy strips(group A) and the goldplated cobalt-chromium alloy strips(group B) respectively according to ISO9693 (A:8,B:10). 8 specimens of each group were submitted to three point bending test. Two more test pieces fused with gold plated cobalt-chromium alloys were made (group B'). One test piece of both group B and group B' were observed under scanning electron microscope (SEM) randomly. The data was analyzed with SPSS 16.0 software package. The bond strength (MPa) of group A and group B was 29.92±4.28 and 28.20±5.21, respectively (P>0.05), both higher than 25 MPa required by ISO9693. SEM showed that Vita OMEGA 900 low fusing porcelain and the goldplated Wirobond cobalt-chrome metalt ceramic alloy combined together closely without cracks. Much gold was fused to the cobalt-chrome alloy surface of breaking porcelain specimen after testing. Vita OMEGA 900 low fusing porcelain can match with the goldplated Wirobond cobalt-chrome metalt ceramic alloy. Supported by Foundation of Education Department of Jiangxi Province (GJJ10367).
NASA Astrophysics Data System (ADS)
Septia Rinda, Arfidyaninggar; Uraisin, Kanchana; Sabarudin, Akhmad; Nacapricha, Duangjai; Wilairat, Prapin
2018-01-01
Cobalt has been reported for being abused as an illegal doping agent due to its ability as an erythropoiesis-stimulating agent for enhancing performance in racehorses. Since 2015, cobalt is listed as a prohibited substance by the International Federation of Horseracing Authorities (IFHA) with a urinary threshold of 0.1 μg cobalt per mL urine. To prevent the misuse of cobalt in racehorse, a simple method for detection of cobalt is desirable. In this work, the detection of cobalt is based on the spectrometric detection of the complex formation between cobalt(II) and 2-(5-bromo-2-pyridylazo)-5-[N-n-propyl-N-(3-sulfopropyl)amino]aniline at pH 4. The absorbance of the complex is monitored at 602 nm. The metal:ligand ratio of the complex is 1:2. The calibration graph was linear in the range of 0 - 2.5 μM {Absorbance = (0.0825 ± 0.0013)[Co2+] + (0.0406 ± 0.0003), r2 = 0.999} and the detection limit (3 SD of intercept)/slope) was 0.044 μM. The proposed method has been successfully applied to horse urine samples with the recoveries in the range 91 - 98%.
Nickel and cobalt release from jewellery and metal clothing items in Korea.
Cheong, Seung Hyun; Choi, You Won; Choi, Hae Young; Byun, Ji Yeon
2014-01-01
In Korea, the prevalence of nickel allergy has shown a sharply increasing trend. Cobalt contact allergy is often associated with concomitant reactions to nickel, and is more common in Korea than in western countries. The aim of the present study was to investigate the prevalence of items that release nickel and cobalt on the Korean market. A total of 471 items that included 193 branded jewellery, 202 non-branded jewellery and 76 metal clothing items were sampled and studied with a dimethylglyoxime (DMG) test and a cobalt spot test to detect nickel and cobalt release, respectively. Nickel release was detected in 47.8% of the tested items. The positive rates in the DMG test were 12.4% for the branded jewellery, 70.8% for the non-branded jewellery, and 76.3% for the metal clothing items. Cobalt release was found in 6.2% of items. Among the types of jewellery, belts and hair pins showed higher positive rates in both the DMG test and the cobalt spot test. Our study shows that the prevalence of items that release nickel or cobalt among jewellery and metal clothing items is high in Korea. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Association between cobalt allergy and dermatitis caused by leather articles--a questionnaire study.
Bregnbak, David; Thyssen, Jacob P; Zachariae, Claus; Menné, Torkil; Johansen, Jeanne D
2015-02-01
Cobalt is a strong skin sensitizer and a prevalent contact allergen. Recent studies have recognized exposure to leather articles as a potential cause of cobalt allergy. To examine the association between contact allergy to cobalt and a history of dermatitis resulting from exposure to leather. A questionnaire case-control study was performed: the case group consisted of 183 dermatitis patients with a positive patch test reaction to cobalt chloride and a negative patch test reaction to potassium dichromate; the control group consisted of 621 dermatitis patients who did not react to either cobalt or chromium in patch testing. Comparisons were made by use of a χ(2) -test, Fisher's exact, and the Mann-Whitney test. Logistic regression analyses were used to test for associations while taking confounding factors into consideration. Leather was observed as the most frequent exposure source causing dermatitis in the case group. Although the case group significantly more often reported non-occupational dermatitis caused by leather exposure (p < 0.001), no association was found between cobalt allergy and dermatitis caused by work-related exposure to leather. Our study suggests a positive association between cobalt allergy and a history of dermatitis caused by non-occupational exposure to leather articles. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Hu, Peidong; Long, Mingce; Bai, Xue; Wang, Cheng; Cai, Caiyun; Fu, Jiajun; Zhou, Baoxue; Zhou, Yongfeng
2017-06-15
As an emerging carbonaceous material, carbon aerogels (CAs) display a great potential in environmental cleanup. In this study, a macroscopic three-dimensional monolithic cobalt-doped carbon aerogel was developed by co-condensation of graphene oxide sheets and resorcinol-formaldehyde resin in the presence of cobalt ions, followed by lyophilization, carbonization and thermal treatment in air. Cobalt ions were introduced as a polymerization catalyst to bridge the organogel framework, and finally cobalt species were retained as both metallic cobalt and Co 3 O 4 , wrapped by graphitized carbon layers. The material obtained after a thermal treatment in air (CoCA-A) possesses larger BET specific surface area and pore volume, better hydrophilicity and lower leaching of cobalt ions than that without the post-treatment (CoCA). Despite of a lower loading of cobalt content and a larger mass transfer resistance than traditional powder catalysts, CoCA-A can efficiently eliminate organic contaminants by activation of peroxymonosulfate with a low activation energy. CoCA-A can float beneath the surface of aqueous solution and can be taken out completely without any changes in morphology. The monolith is promising to be developed into an alternative water purification technology due to the easily separable feature. Copyright © 2017 Elsevier B.V. All rights reserved.
Porous cobalt spheres for high temperature gradient magnetically assisted fluidized beds
NASA Technical Reports Server (NTRS)
Atwater, James E.; Akse, James R.; Jovanovic, Goran N.; Wheeler, Richard R Jr; Sornchamni, Thana
2003-01-01
Porous metallic cobalt spheres have been prepared as high temperature capable media for employment in gradient magnetically assisted fluidization and filtration technologies. Cobalt impregnated alginate beads are first formed by extrusion of an aqueous suspension of Co3O4 into a Co(II) chloride solution. The organic polymer is thermally decomposed yielding cobalt oxide spheres, followed by reduction to the metallic state, and densification. Cobalt beads have been produced with porosities ranging between 10 and 50%, depending upon sintering conditions. The product media have been characterized by scanning electron microscopy (SEM), nitrogen adsorption porosimetry, and vibrating sample magnetometry. c2003 Elsevier Science Ltd. All rights reserved.
Evaluation of nickel and cobalt release from mobile phone devices used in Brazil.
Hafner, Mariana de Figueiredo Silva; Chen, Jessica Chia Sin; Lazzarini, Rosana
2018-01-01
Nickel and cobalt are often responsible for metal-induced allergic contact dermatitis. With the increasing use of cell phones, we observed an increase in cases reports on telephone-related allergic contact dermatitis. The present study evaluated nickel and cobalt release from mobile phones used in Brazil. We evaluated devices of 6 brands and 20 different models using nickel and cobalt allergy spot tests. Of the 20 models, 64.7% tested positive for nickel, with 41.1% positive results for the charger input and 23.5% for other tested areas. None of them was positive for cobalt. Nickel release was more common in older models.
Pulsed Laser Synthesized Magnetic Cobalt Oxide Nanoparticles for Biomedical Applications
NASA Astrophysics Data System (ADS)
Bhatta, Hari; Gupta, Ram; Ghosh, Kartik; Kahol, Pawan; Delong, Robert; Wanekawa, Adam
2011-03-01
Nanomaterials research has become a major attraction in the field of advanced materials research in the area of Physics, Chemistry, and Materials Science. Biocompatible and chemically stable magnetic metal oxide nanoparticles have biomedical applications that includes drug delivery, cell and DNA separation, gene cloning, magnetic resonance imaging (MRI). This research is aimed at the fabrication of magnetic cobalt oxide nanoparticles using a safe, cost effective, and easy to handle technique that is capable of producing nanoparticles free of any contamination. Cobalt oxide nanoparticles have been synthesized at room temperature using cobalt foil by pulsed laser ablation technique. These cobalt oxide nanoparticles were characterized using UV-Visible (UV-Vis) spectroscopy, transmission electron microscopy (TEM), and dynamic laser light scattering (DLLS). The magnetic cobalt oxides nanoparticles were stabilized in glucose solutions of various concentrations in deionized water. The presence of UV-Vis absorption peak at 270 nm validates the nature of cobalt oxide nanoparticles. The DLLS size distributions of nanoparticles are in the range of 110 to 300 nm, which further confirms the presence nanoparticles. This work is partially supported by National Science Foundation (DMR- 0907037).
NASA Astrophysics Data System (ADS)
Benea, Lidia
2013-02-01
A series of Co/CeO2 (25 nm) nanocomposite coating materials by electrodeposition were successfully prepared containing different cerium oxide composition in the cobalt-plating bath. Stainless steel (304L) was used as support material for nanocomposite coatings. The nano-CeO2 is uniformly incorporated into cobalt matrix, and the effect on surface morphologies was identified by scanning electron microscopy with energy-dispersive X-ray analysis. Codeposition of nano-CeO2 particles with cobalt disturbs the regular surface morphology of the cobalt coatings. It should be noted that the as-prepared Co/CeO2 nanocomposite coatings were found to be much superior in corrosion resistance over those of pure cobalt coatings materials based on a series of electrochemical impedance spectroscopy measurements in simulating body fluid solution. With increase in the nano-CeO2 particles concentration in the cobalt electrolyte, it is observed that the corrosion resistance of Co/CeO2 increases. Co/CeO2 nanocomposite coatings have higher polarization resistance as compared with pure cobalt layers in simulating body fluid solution.
Intolerability of cobalt salt as erythropoietic agent.
Ebert, Bastian; Jelkmann, Wolfgang
2014-03-01
Unfair athletes seek ways to stimulate erythropoiesis, because the mass of haemoglobin is a critical factor in aerobic sports. Here, the potential misuse of cobalt deserves special attention. Cobalt ions (Co(2+) ) stabilize the hypoxia-inducible transcription factors (HIFs) that increase the expression of the erythropoietin (Epo) gene. Co(2+) is orally active, easy to obtain, and inexpensive. However, its intake can bear risks to health. To elaborate this issue, a review of the pertinent literature was retrieved by a search with the keywords 'anaemia', 'cobalt', 'cobalt chloride', 'erythropoiesis', 'erythropoietin', 'Epo', 'side-effects' and 'treatment', amongst others. In earlier years, cobalt chloride was administered at daily doses of 25 to 300 mg for use as an anti-anaemic agent. Co(2+) therapy proved effective in stimulating erythropoiesis in both non-renal and renal anaemia, yet there were also serious medical adverse effects. The intake of inorganic cobalt can cause severe organ damage, concerning primarily the gastrointestinal tract, the thyroid, the heart and the sensory systems. These insights should keep athletes off taking Co(2+) to stimulate erythropoiesis. Copyright © 2013 John Wiley & Sons, Ltd.
Guo, Xiao-Hui; Mao, Chao-Chao; Zhang, Ji; Huang, Jun; Wang, Wa-Nv; Deng, Yong-Hui; Wang, Yao-Yu; Cao, Yong; Huang, Wei-Xin; Yu, Shu-Hong
2012-05-21
High-quality cobalt-doped ceria nanostructures with triangular column, triangular slab, and disklike shapes are synthesized by tuning the doping amount of cobalt nitrate in a facile hydrothermal reaction. The cobalt-doped ceria nanodisks display significantly enhanced catalytic activity in CO oxidation due to exposed highly active crystal planes and the presence of numerous surface defects. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Friction and wear of plasma-sprayed coatings containing cobalt alloys from 25 deg to 650 deg in air
NASA Technical Reports Server (NTRS)
Sliney, H. E.; Jacobson, T. P.
1979-01-01
Four different compositions of self-lubricating, plasma-sprayed, composite coatings with calcium fluoride dispersed throughout cobalt alloy-silver matrices were evaluated on a friction and wear apparatus. In addition, coatings of the cobalt alloys alone and one coating with a nickel alloy-silver matrix were evaluated for comparison. The wear specimens consisted of two, diametrically opposed, flat rub shoes sliding on the coated, cylindrical surface of a rotating disk. Two of the cobalt composite coatings gave a friction coefficient of about 0.25 and low wear at room temperature, 400 and 650 C. Wear rates were lower than those of the cobalt alloys alone or the nickel alloy composite coating. However, oxidation limited the maximum useful temperature of the cobalt composite coating to about 650 C compared to about 900 C for the nickel composite coating.
Cao, Derang; Pan, Lining; Li, Jianan; Cheng, Xiaohong; Zhao, Zhong; Xu, Jie; Li, Qiang; Wang, Xia; Li, Shandong; Wang, Jianbo; Liu, Qingfang
2018-05-21
Carbon or nitrogen doped cobalt ferrite nanoparticles were synthesized in the air by a facile calcination process. X-ray diffraction, mapping, X-ray photoelectron spectroscopy, and mössbauer spectra results indicate that the nonmetal elements as the interstitial one are doped into cobalt ferrite nanoparticles. The morphologies of doped cobalt ferrite nanoparticles change from near-spherical to irregular cubelike shapes gradually with the increased carbon or nitrogen concentration, and their particles sizes also increase more than 200 nm. Furthermore, the saturation magnetization of carbon doped cobalt ferrite is improved. Although the saturation magnetization of N-doped cobalt ferrite is not enhanced obviously due to the involved hematite, they also do not drop drastically. The results reveal an approach to synthesize large scale ferrite nanoparticles, and improve the magnetic properties of ferrite nanoparticles, and also provide the potential candidates to synthesis co-doped functional magnetic materials.
Unconventional magnetisation texture in graphene/cobalt hybrids
Vu, A. D.; Coraux, J.; Chen, G.; ...
2016-04-26
Magnetic domain structure and spin-dependent reflectivity measurements on cobalt thin films intercalated at the graphene/Ir(111) interface are investigated using spin-polarised low-energy electron microscopy. We find that graphene-covered cobalt films have surprising magnetic properties. Vectorial imaging of magnetic domains reveals an unusually gradual thickness-dependent spin reorientation transition, in which magnetisation rotates from out-of-the-film plane to the in-plane direction by less than 10° per cobalt monolayer. During this transition, cobalt films have a meandering spin texture, characterised by a complex, three-dimensional, wavy magnetisation pattern. In addition, spectroscopy measurements suggest that the electronic band structure of the unoccupied states is essentially spin-independent alreadymore » a few electron-Volts above the vacuum level. These properties strikingly differ from those of pristine cobalt films and could open new prospects in surface magnetism.« less
NASA Astrophysics Data System (ADS)
Cheng, Guanhua; Si, Conghui; Zhang, Jie; Wang, Ying; Yang, Wanfeng; Dong, Chaoqun; Zhang, Zhonghua
2016-04-01
Transition metal oxalate materials have shown huge competitive advantages for applications in supercapacitors. Herein, nanostructured cobalt oxalate supported on cobalt foils has been facilely fabricated by anodization, and could directly serve as additive/binder-free electrodes for supercapacitors. The as-prepared cobalt oxalate electrodes present superior specific capacitance of 1269 F g-1 at the current density of 6 A g-1 in the galvanostatic charge/discharge test. Moreover, the retained capacitance is as high as 87.2% as the current density increases from 6 A g-1 to 30 A g-1. More importantly, the specific capacitance of cobalt oxalate retains 91.9% even after super-long cycling of 100,000 cycles. In addition, an asymmetric supercapacitor assembled with cobalt oxalate (positive electrode) and activated carbon (negative electrode) demonstrates excellent capacitive performance with high energy density and power density.
Cobalt doped CuMnOx catalysts for the preferential oxidation of carbon monoxide
NASA Astrophysics Data System (ADS)
Dey, Subhashish; Dhal, Ganesh Chandra; Mohan, Devendra; Prasad, Ram; Gupta, Rajeev Nayan
2018-05-01
Carbon monoxide (CO) is a poisonous gas, recognized as a silent killer for the 21st century. It is produced from the partial oxidation of carbon containing compounds. The catalytic oxidation of CO receives a huge attention due to its applications in different fields. In the present work, hopcalite (CuMnOx) catalysts were synthesized using a co-precipitation method for CO oxidation purposes. Also, it was doped with the cobalt by varying concentration from 1 to 5wt%. It was observed that the addition of cobalt into the CuMnOx catalyst (by the deposition-precipitation method) improved the catalytic performance for the low-temperature CO oxidation. CuMnOx catalyst doped with 3wt% of cobalt exhibited most active performance and showed the highest activity than other cobalt concentrations. Different analytical tools (i.e. XRD, FTIR, BET, XPS and SEM-EDX) were used to characterize the as-synthesized catalysts. It was expected that the introduction of cobalt will introduce new active sites into the CuMnOx catalyst that are associated with the cobalt nano-particles. The order of calcination strategies based on the activity for cobalt doped CuMnOx catalysts was observed as: Reactive calcinations (RC) > flowing air > stagnant air. Therefore, RC (4.5% CO in air) route can be recommended for the synthesis of highly active catalysts. The catalytic activity of doped CuMnOx catalysts toward CO oxidation shows a correlation among average oxidation number of Mn and the position and the nature of the doped cobalt cation.
Fischer-Tropsch activity for non-promoted cobalt-on-alumina catalysts
Singleton, Alan H.; Oukaci, Rachid; Goodwin, James G.
2001-01-01
Cobalt catalysts, and processes employing these inventive catalysts, for hydrocarbon synthesis. The inventive catalyst comprises cobalt on an alumina support and is not promoted with any noble or near noble metals. In one aspect of the invention, the alumina support preferably includes a dopant in an amount effective for increasing the activity of the inventive catalyst. The dopant is preferably a titanium dopant. In another aspect of the invention, the cobalt catalyst is preferably reduced in the presence of hydrogen at a water vapor partial pressure effective to increase the activity of the cobalt catalyst for hydrocarbon synthesis. The water vapor partial pressure is preferably in the range of from 0 to about 0.1 atmospheres.
Piao, Jun-Yu; Liu, Xiao-Chan; Wu, Jinpeng; Yang, Wanli; Wei, Zengxi; Ma, Jianmin; Duan, Shu-Yi; Lin, Xi-Jie; Xu, Yan-Song; Cao, An-Min; Wan, Li-Jun
2018-06-28
Surface cobalt doping is an effective and economic way to improve the electrochemical performance of cathode materials. Herein, by tuning the precipitation kinetics of Co 2+ , we demonstrate an aqueous-based protocol to grow uniform basic cobaltous carbonate coating layer onto different substrates, and the thickness of the coating layer can be adjusted precisely in nanometer accuracy. Accordingly, by sintering the cobalt-coated LiNi 0.5 Mn 1.5 O 4 cathode materials, an epitaxial cobalt-doped surface layer will be formed, which will act as a protective layer without hindering charge transfer. Consequently, improved battery performance is obtained because of the suppression of interfacial degradation.
Neutron diffraction studies on cobalt substituted BiFeO3
NASA Astrophysics Data System (ADS)
Ray, J.; Biswal, A. K.; Acharya, S.; Babu, P. D.; Siruguri, V.; Vishwakarma, P. N.
2013-02-01
A dilute concentration of single phase Cobalt substituted Bismuth ferrite, BiFe1-XCoXO3; (x=0, 0.02) is prepared by sol-gel auto combustion method. Room temperature neutron diffraction patterns show no change in the crystal and magnetic structure upon cobalt doping. The calculation of magnetic moments shows 3.848 μB for Fe+ and 2.85 μB for Co3+. The cobalt is found to be in intermediate spin state.
NASA Astrophysics Data System (ADS)
Shustov, V. S.; Rubtsov, N. M.; Alymov, M. I.; Ankudinov, A. B.; Evstratov, E. V.; Zelensky, V. A.
2018-03-01
Porous materials with a bulk porosity of more than 68% were synthesized by powder metallurgy methods from a cobalt-nickel mixture. The effect of the ratio of nickel and cobalt powders used in the synthesis of this porous material (including cases when either nickel or cobalt alone was applied) and the conditions of their compaction on structural parameters, such as open and closed porosities and pose size, was established.
Sidell, Chester M.; Erickson, J. Gordon; McCleary, Jack E.
1958-01-01
Clinical observations in 60 cases of folliculitis or pronounced activation of acne in patients taking cobalt led to conclusion that the development or aggravation of the dermal lesions were owing to ingestion of the metal. The dermal manifestations abated when use of cobalt was discontinued. Active acne is considered a contraindication to the use of vitamin-iron-mineral supplements containing cobalt. Short courses of antibiotics in addition to regular acne regimen helped shorten the course of the eruption. ImagesFigure 1. PMID:13489508
NASA Astrophysics Data System (ADS)
Camacho, K. I.; Pariona, N.; Martinez, A. I.; Baggio-Saitovitch, E.; Herrera-Trejo, M.; Perry, Dale L.
2017-05-01
The effect of cobalt dications on the transformation of 2-line ferrihydrite (2LF) has been studied. The products of the transformation reaction were characterized by X-ray diffraction, Mössbauer spectroscopy (MS), transmission electron microscopy (TEM), magnetometry, and first-order reversal curve (FORC) diagrams. It was found that the concentration of cobalt dications plays an important role on the structural and magnetic properties of the products; i.e., for low cobalt concentrations, cobalt-substituted hematite is formed, while higher concentrations promote the formation of cobalt-substituted magnetite. Structural results revealed that formation of other iron oxide polymorphs is avoided and residual 2LF is always present in the final products. In this way, hematite/2LF and magnetite/2LF nanocomposites were formed. For all the samples, magnetic measurements yielded non-saturated hysteresis loops at a maximum field of 12 kOe. For cobalt-substituted hematite/2LF samples, FORC diagrams revealed the presence of multiple single-domain (SD) components which generate interaction coupling between SD with low and high coercivity. Moreover, for cobalt-substituted magnetite/2LF samples, the FORC diagrams revealed the components of wasp-waist hysteresis loops which consist of mixtures of SD and superparamagnetic particles. One of the goals of the present study is the rigorous, experimental documentation of ferrihydrite/hematite mixtures as a function of reaction conditions for use as analytical standards research.
NASA Astrophysics Data System (ADS)
Swain, Basudev; Jeong, Jinki; Lee, Jae-chun; Lee, Gae-Ho; Sohn, Jeong-Soo
The paper presents a new leaching-solvent extraction hydrometallurgical process for the recovery of a pure and marketable form of cobalt sulfate solution from waste cathodic active material generated during manufacturing of lithium ion batteries (LIBs). Leaching of the waste was carried out as a function of the leachant H 2SO 4 concentration, temperature, pulp density and reductant H 2O 2 concentration. The 93% of cobalt and 94% of lithium were leached at suitable optimum conditions of pulp density: 100 g L -1, 2 M H 2SO 4, 5 vol.% of H 2O 2, with a leaching time 30 min and a temperature 75 °C. In subsequent the solvent extraction study, 85.42% of the cobalt was recovered using 1.5 M Cyanex 272 as an extractant at an O/A ratio of 1.6 from the leach liquor at pH 5.00. The rest of the cobalt was totally recovered from the raffinate using 0.5 M of Cyanex 272 and an O/A ratio of 1, and a feed pH of 5.35. Then the co-extracted lithium was scrubbed from the cobalt-loaded organic using 0.1 M Na 2CO 3. Finally, the cobalt sulfate solution with a purity 99.99% was obtained from the cobalt-loaded organic by stripping with H 2SO 4.
NASA Astrophysics Data System (ADS)
Xiao, Xiangjun; Xi, Xiaoli; Nie, Zuoren; Zhang, Liwen; Ma, Liwen
2017-02-01
A novel process of preparing cobalt, tungsten, and tungsten carbide powders from cemented carbide scrap by molten salt electrolysis has been investigated in this paper. In this experiment, WC-6Co and NaCl-KCl salt were used as sacrificial anode and electrolyte, respectively. The dissolution potential of cobalt and WC was determined by linear sweep voltammetry to be 0 and 0.6 V ( vs Ag/AgCl), respectively. Furthermore, the electrochemical behavior of cobalt and tungsten ions was investigated by a variety of electrochemical techniques. Results of cyclic voltammetry (CV) and square-wave voltammetry show that the cobalt and tungsten ions existed as Co2+ and W2+ on melts, respectively. The effect of applied voltage, electrolysis current, and electrolysis times on the composition of the product was studied. Results showed that pure cobalt powder can be obtained when the electrolysis potential is lower than 0.6 V or during low current and short times. Double-cathode and two-stage electrolysis was utilized for the preparation of cobalt, tungsten carbide, and tungsten powders. Additionally, X-ray diffraction results confirm that the product collected at cathodes 1 and 2 is pure Co and WC, respectively. Pure tungsten powder was obtained after electrolysis of the second part. Scanning electron microscope results show that the diameters of tungsten, tungsten carbide, and cobalt powder are smaller than 100, 200, and 200 nm, respectively.
Method to produce catalytically active nanocomposite coatings
Erdemir, Ali; Eryilmaz, Osman Levent; Urgen, Mustafa; Kazmanli, Kursat
2016-02-09
A nanocomposite coating and method of making and using the coating. The nanocomposite coating is disposed on a base material, such as a metal or ceramic; and the nanocomposite consists essentially of a matrix of an alloy selected from the group of Cu, Ni, Pd, Pt and Re which are catalytically active for cracking of carbon bonds in oils and greases and a grain structure selected from the group of borides, carbides and nitrides.
High-Temperature Ceramic Matrix Composite with High Corrosion Resistance
2010-06-02
ceramics with silicide additives may be explained in the following ways: 1) metal oxide, for example Ta2O5, formed at oxidation of TaSi2, in the...practically monophase ones, possibly, the additives of corresponding metals in silicide powders were present in insignificant amounts. For...boride with zirconium silicide we prepared the mixtures with 20 vol. % of silicide , the latter being hot pressed in the temperature range of 1600
Computer Modeling of Ceramic Boride Composites
2014-11-01
the reinforcer deform elastically, for the theoretical strength of the composite it can be written [46] BBBAAABBAAK EE δεδεσδσδσ +=+= (51) where...coefficients of thermal expansion. Approximately linear expansion coefficient of the composite is determined by the relation [52] EEE BBBAAAk...1 δαδαα ⋅+⋅= , (58) where AE and BE are Young moduli of components, and E – average modulus for composition BBAA EEE δδ
Ground State Structures of Boron-Rich Rhodium Boride: An Ab Initio Study
NASA Astrophysics Data System (ADS)
Chu, Bin-Hua; Zhao, Yuan; Yan, Jin-Liang; Li, Da
2018-01-01
Not Available Supported by the Natural Science Foundation of Shandong Province under Grant Nos ZR2016AP02, ZR2016FM38 and ZR2016EMP01, the Innovation Project of Ludong University under Grant No LB2016013, the Open Project of State Key Laboratory of Superhard Materials of Jilin University under Grant No 201605, and the National Natural Science Foundation of China under Grant Nos 11704170 and 61705097.
NASA Technical Reports Server (NTRS)
Bolgar, A. S.; Gordiyenko, S. P.; Guseva, Y. A.; Turchanin, A. G.; Fenochka, B. V.; Fesenko, V. V.
1984-01-01
The evaporation rate, vapor pressure, heats of evaporation reaction (sublimation, dissociation), enthalpy, electrical resistance, heat capacity, emissivity, and heat conductivity of various carbides, borides, sulfides, nitrides, selenides, and phosphides were investigated. A set of high temperature high vacuum devices, calorimeters (designed for operation at 400 to 1300 K and from 1200 K), and mass spectrometers, most of which were specially developed for these studies, is described.
Samelko, Lauryn; Landgraeber, Stefan; McAllister, Kyron; Jacobs, Joshua; Hallab, Nadim James
2016-01-01
Cobalt alloy debris has been implicated as causative in the early failure of some designs of current total joint implants. The ability of implant debris to cause excessive inflammation via danger signaling (NLRP3 inflammasome) vs. pathogen associated pattern recognition receptors (e.g. Toll-like receptors; TLRs) remains controversial. Recently, specific non-conserved histidines on human TLR4 have been shown activated by cobalt and nickel ions in solution. However, whether this TLR activation is directly or indirectly an effect of metals or secondary endogenous alarmins (danger-associated molecular patterns, DAMPs) elicited by danger signaling, remains unknown and contentious. Our study indicates that in both a human macrophage cell line (THP-1) and primary human macrophages, as well as an in vivo murine model of inflammatory osteolysis, that Cobalt-alloy particle induced NLRP3 inflammasome danger signaling inflammatory responses were highly dominant relative to TLR4 activation, as measured respectively by IL-1β or TNF-α, IL-6, IL-10, tissue histology and quantitative bone loss measurement. Despite the lack of metal binding histidines H456 and H458 in murine TLR4, murine calvaria challenge with Cobalt alloy particles induced significant macrophage driven in vivo inflammation and bone loss inflammatory osteolysis, whereas LPS calvaria challenge alone did not. Additionally, no significant increase (p<0.05) in inflammation and inflammatory bone loss by LPS co-challenge with Cobalt vs. Cobalt alone was evident, even at high levels of LPS (i.e. levels commiserate with hematogenous levels in fatal sepsis, >500pg/mL). Therefore, not only do the results of this investigation support Cobalt alloy danger signaling induced inflammation, but under normal homeostasis low levels of hematogenous PAMPs (<2pg/mL) from Gram-negative bacteria, seem to have negligible contribution to the danger signaling responses elicited by Cobalt alloy metal implant debris. This suggests the unique nature of Cobalt alloy particle bioreactivity is strong enough to illicit danger signaling that secondarily activate concomitant TLR activation, and may in part explain Cobalt particulate associated inflammatory and toxicity-like reactions of specific orthopedic implants. PMID:27467577
Bioremediation of 60Co from simulated spent decontamination solutions.
Rashmi, K; Sowjanya, T Naga; Mohan, P Maruthi; Balaji, V; Venkateswaran, G
2004-07-26
Bioremediation of 60Co from simulated spent decontamination solutions by utilizing different biomass of (Neurospora crassa, Trichoderma viridae, Mucor recemosus, Rhizopus chinensis, Penicillium citrinum, Aspergillus niger and, Aspergillus flavus) fungi is reported. Various fungal species were screened to evaluate their potential for removing cobalt from very low concentrations (0.03-0.16 microM) in presence of a high background of iron (9.33 mM) and nickel (0.93 mM) complexed with EDTA (10.3 mM). The different fungal isolates employed in this study showed a pickup of cobalt in the range 8-500 ng/g of dry biomass. The [Fe]/[Co] and [Ni]/[Co] ratios in the solutions before and after exposure to the fungi were also determined. At micromolar level the cobalt pickup by many fungi especially the mutants of N. crassa is seen to be proportional to the initial cobalt concentration taken in the solution. However, R. chinensis exhibits a low but iron concentration dependent cobalt pickup. Prior saturating the fungi with excess of iron during their growth showed the presence of selective cobalt pickup sites. The existence of cobalt specific sorption sites is shown by a model experiment with R. chinensis wherein at a constant cobalt concentration (0.034 microM) and varying iron concentrations so as to yield [Fe/Co]initial ratios in solution of 10, 100, 1000 and 287000 have all yielded a definite Co pickup capacity in the range 8-47 ng/g. The presence of Cr(III)EDTA (3 mM) in solution along with complexed Fe and Ni has not influenced the cobalt removal. The significant feature of this study is that even when cobalt is present in trace level (sub-micromolar) in a matrix of high concentration (millimolar levels) of iron, nickel and chromium, a situation typically encountered in spent decontamination solutions arising from stainless steel based primary systems of nuclear reactors, a number of fungi studied in this work showed a good sensitivity for cobalt pickup. Copyright 2004 Elsevier B.V.
NASA Technical Reports Server (NTRS)
Hart, F. H.
1984-01-01
Because almost the entire U.S. consumption of cobalt depends on imports, this metal has been designated "strategic'. The role and effectiveness of cobalt is being evaluated in commercial nickel-base superalloys. Udiment 700 type alloys in which the cobalt content was reduced from the normal 17% down to 12.7%, 8.5%, 4.3%, and 0% were prepared by standard powder metallurgy techniques and hot isostatically pressed into billets. Mechanical testing and microstructural investigations were performed. The mechanical properties of alloys with reduced cobalt contents which were heat-treated identically were equal or better than those of the standard alloy, except that creep rates tended to increase as cobalt was reduced. The effects of long time exposures at 760 C on mechanical properties and at 760 C and 845 C on microstructures were determined. Decreased tensile properties and shorter rupture lives with increased creep rates were observed in alloy modifications. The exposures caused gamma prime particle coarsening and formation of sigma phase in the alloys with higher cobalt contents. Exposure at 845 C also reduced the amount of MC carbides.
Wang, Haitao; Wang, Wei; Asif, Muhammad; Yu, Yang; Wang, Zhengyun; Wang, Junlei; Liu, Hongfang; Xiao, Junwu
2017-10-19
The design and synthesis of a promising porous carbon-based electrocatalyst with an ordered and uninterrupted porous structure for oxygen reduction reaction (ORR) is still a significant challenge. Herein, an efficient catalyst based on cobalt-embedded nitrogen-doped ordered mesoporous carbon nanosheets (Co/N-OMCNS) is successfully prepared through a two-step procedure (cobalt ion-coordinated self-assembly and carbonization process) using 3-aminophenol as a nitrogen source, cobalt acetate as a cobalt source and Pluronic F127 as a mesoporous template. This work indicates that the formation of a two dimensional nanosheet structure is directly related to the extent of the cobalt ion coordination interaction. Moreover, the critical roles of pyrolysis temperature in nitrogen doping and ORR catalytic activity are also investigated. Benefiting from the high surface area and graphitic degree, high contents of graphitic N and pyridinic N, ordered interconnected mesoporous carbon framework, as well as synergetic interaction between the cobalt nanoparticles and protective nitrogen doped graphitic carbon layer, the resultant optimal catalyst Co/N-OMCNS-800 (pyrolyzed at 800 °C) exhibits comparable ORR catalytic activity to Pt/C, superior tolerance to methanol crossover and stability.
NASA Astrophysics Data System (ADS)
Shetty, N.; Olsovcova, V.; Versaci, R.
2018-06-01
Stainless steels contain nickel in large amounts (about 8 %) to improve its corrosion and heat resistance. Traces of cobalt are present in nickel, which are hard to separate because of its chemical similarity. Therefore, cobalt content in steel is restricted to a maximum of 2 parts per mille for applications in nuclear industry, as natural cobalt (composed of 100% Co-59) transmutes into highly radioactive Co-60 by absorbing a thermal neutron. Co-60 has a rather long half-life of 5.3 years decaying to stable Ni-60 by emitting 2 gammas of 1.17 MeV and 1.33 MeV during the process. These hard gammas will be mostly responsible for the dose rates seen in the next few tens of years. Therefore, it is important to consider the activation of cobalt in steel and estimate the dose contributed by it. Monte Carlo simulations are performed where stainless steel samples with different cobalt concentrations are irradiated with thermal and epithermal neutrons. The ambient dose equivalent, H*(10), from irradiated samples is found to be linearly proportional to the concentration of cobalt. This paper explains the motivation, the procedure, and the detailed results of the simulations.
NASA Technical Reports Server (NTRS)
Santoro, G. J.
1979-01-01
The corrosion of sodium sulfate coated cobalt alloys was measured and the results compared to the cyclic oxidation of alloys with the same composition, and to the hot corrosion of compositionally equivalent nickel-base alloys. Cobalt alloys with sufficient aluminum content to form aluminum containing scales corrode less than their nickel-base counterparts. The cobalt alloys with lower aluminum levels form CoO scales and corrode more than their nickel-base counterparts which form NiO scales.
Raman analysis of cobalt blue pigment in blue and white porcelain: A reassessment.
Jiang, Xiaochenyang; Ma, Yanying; Chen, Yue; Li, Yuanqiu; Ma, Qinglin; Zhang, Zhaoxia; Wang, Changsui; Yang, Yimin
2018-02-05
Cobalt blue is a famous pigment in human history. In the past decade it is widely reported that the cobalt aluminate has been detected in ancient ceramics as blue colorant in glaze, yet the acquired Raman spectra are incredibly different from that of synthesised references, necessitating a reassessment of such contradictory scenario with more accurate analytic strategies. In this study, micro-Raman spectroscopy (MRS) and scanning electron microscopy (SEM) in association with energy dispersive spectrometry (EDS) were performed on under-glaze cobalt pigments from one submerged blue and white porcelain shard dated from Wanli reign (1573-1620CE) of Ming dynasty (1365-1644CE) excavated at Nan'ao I shipwreck off the southern coast of China. The micro-structural inspection reveals that the pigment particles have characteristics of small account, tiny size, heterogeneously distribution, and more importantly, been completely enwrapped by well-developed anorthite crystals in the glaze, indicating that the signals recorded in previous publications are probably not from cobalt pigments themselves but from outside thickset anorthite shell. The further spectromicroscopic analyses confirm this presumption when the accurate spectra of cobalt aluminate pigment and surrounding anorthite were obtained separately with precise optical positioning. Accordingly, we reassess and clarify the previous Raman studies dedicated to cobalt blue pigment in ancient ceramics, e.g. cobalt blue in celadon glaze, and in turn demonstrate the superiority and necessity of coupling spectroscopic analysis with corresponding structure observation, especially in the characterization of pigments from complicated physico-chemical environment like antiquities. Thus, this study promotes a better understanding of Raman spectroscopy study of cobalt blue pigments in art and archaeology field. Copyright © 2017 Elsevier B.V. All rights reserved.
Raman analysis of cobalt blue pigment in blue and white porcelain: A reassessment
NASA Astrophysics Data System (ADS)
Jiang, Xiaochenyang; Ma, Yanying; Chen, Yue; Li, Yuanqiu; Ma, Qinglin; Zhang, Zhaoxia; Wang, Changsui; Yang, Yimin
2018-02-01
Cobalt blue is a famous pigment in human history. In the past decade it is widely reported that the cobalt aluminate has been detected in ancient ceramics as blue colorant in glaze, yet the acquired Raman spectra are incredibly different from that of synthesised references, necessitating a reassessment of such contradictory scenario with more accurate analytic strategies. In this study, micro-Raman spectroscopy (MRS) and scanning electron microscopy (SEM) in association with energy dispersive spectrometry (EDS) were performed on under-glaze cobalt pigments from one submerged blue and white porcelain shard dated from Wanli reign (1573-1620 CE) of Ming dynasty (1365-1644 CE) excavated at Nan'ao I shipwreck off the southern coast of China. The micro-structural inspection reveals that the pigment particles have characteristics of small account, tiny size, heterogeneously distribution, and more importantly, been completely enwrapped by well-developed anorthite crystals in the glaze, indicating that the signals recorded in previous publications are probably not from cobalt pigments themselves but from outside thickset anorthite shell. The further spectromicroscopic analyses confirm this presumption when the accurate spectra of cobalt aluminate pigment and surrounding anorthite were obtained separately with precise optical positioning. Accordingly, we reassess and clarify the previous Raman studies dedicated to cobalt blue pigment in ancient ceramics, e.g. cobalt blue in celadon glaze, and in turn demonstrate the superiority and necessity of coupling spectroscopic analysis with corresponding structure observation, especially in the characterization of pigments from complicated physico-chemical environment like antiquities. Thus, this study promotes a better understanding of Raman spectroscopy study of cobalt blue pigments in art and archaeology field.
de Ruiter, Lennert; Janssen, Dennis; Briscoe, Adam; Verdonschot, Nico
2017-12-01
The current study was designed to investigate the mechanical response of a polyetheretherketone-on-polyethylene total knee replacement device during a deep squat. Application of this high-demand loading condition can identify weaknesses of the polyetheretherketone relative to cobalt-chromium. This study investigated whether the implant is strong enough for this type of loading, whether cement stresses are considerably changed and whether a polyetheretherketone femoral component is likely to lead to reduced periprosthetic bone loss as compared to a cobalt-chromium component. A finite element model of a total knee arthroplasty subjected to a deep squat loading condition, which was previously published, was adapted with an alternative total knee arthroplasty design made of either polyetheretherketone or cobalt-chromium. The maximum tensile and compressive stresses within the implant and cement mantle were analysed against their yield and fatigue stress levels. The amount of stress shielding within the bone was compared between the polyetheretherketone and cobalt-chromium cases. Relative to its material strength, tensile peak stresses were higher in the cobalt-chromium implant; compressive peak stresses were higher in the polyetheretherketone implant. The stress patterns differed substantially between polyetheretherketone and cobalt-chromium. The tensile stresses in the cement mantle supporting the polyetheretherketone implant were up to 33% lower than with the cobalt-chromium component, but twice as high for compression. Stress shielding was reduced to a median of 1% for the polyetheretherketone implant versus 56% for the cobalt-chromium implant. Both the polyetheretherketone implant and the underlying cement mantle should be able to cope with the stress levels present during a deep squat. Relative to the cobalt-chromium component, stress shielding of the periprosthetic femur was substantially less with a polyetheretherketone femoral component.
NASA Technical Reports Server (NTRS)
Kim, Sunghyun; Tryk, Donald A.; Scherson, Daniel A.; Antonio, Mark R.
1993-01-01
Electronic and structural aspects of composite nickel-cobalt hydrous oxides have been examined in alkaline solutions using in situ X-ray absorption fine structure (XAFS). The results obtained have indicated that cobalt in this material is present as cobaltic ions regardless of the oxidation state of nickel in the lattice. Furthermore, careful analysis of the Co K-edge Extended X-ray absorption fine structure data reveals that the co-electrodeposition procedure generates a single phase, mixed metal hydrous oxide, in which cobaltic ions occupy nickel sites in the NiO2 sheet-like layers and not two intermixed phases each consisting of a single metal hydrous oxide.
Cobalt oxide nanoparticles can enter inside the cells by crossing plasma membranes
Bossi, Elena; Zanella, Daniele; Gornati, Rosalba; Bernardini, Giovanni
2016-01-01
The ability of nanoparticles (NPs) to be promptly uptaken by the cells makes them both dangerous and useful to human health. It was recently postulated that some NPs might cross the plasma membrane also by a non-endocytotic pathway gaining access to the cytoplasm. To this aim, after having filled mature Xenopus oocytes with Calcein, whose fluorescence is strongly quenched by divalent metal ions, we have exposed them to different cobalt NPs quantifying quenching as evidence of the increase of the concentration of Co2+ released by the NPs that entered into the cytoplasm. We demonstrated that cobalt oxide NPs, but not cobalt nor cobalt oxide NPs that were surrounded by a protein corona, can indeed cross plasma membranes. PMID:26924527
Code of Federal Regulations, 2014 CFR
2014-04-01
... migrating from food-packaging material shall include: Cobalt caprylate. Cobalt linoleate. Cobalt naphthenate... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Driers. 181.25 Section 181.25 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) PRIOR-SANCTIONED FOOD...
NASA Technical Reports Server (NTRS)
Harf, F. H.
1985-01-01
Nickel was substituted in various proportions for cobalt in a series of five hot-isostatically-pressed powder metallurgy alloys based on the UDIMET 700 composition. These alloys were given 5-step heat treatments appropriate for use in turbine engine disks. The resultant microstructures displayed three distinct sizes of gamma-prime particles in a gamma matrix. The higher cobalt-content alloys contained larger amounts of the finest gamma-prime particles, and had the lowest gamma-gamma-prime lattice mismatch. While all alloys had approximately the same tensile properties at 25 and 650 gamma C, the rupture lives at 650 and 760 C peaked in the alloys with cobalt contents between 12.7 and 4.3 pct. Minimum creep rates increased as cobalt contents were lowered, suggesting their correlation with the gamma-prime particle size distribution and the gamma-gamma-prime mismatch. It was also found that, on overaging at temperatures higher than suitable for turbine disk use, the high cobalt-content alloys were prone to sigma phase formation.
Wrought cobalt- base superalloys
NASA Astrophysics Data System (ADS)
Klarstrom, D. L.
1993-08-01
Wrought cobalt-base superalloys are used extensively in gas turbine engines because of their excellent high-temperature creep and fatigue strengths and resistance to hot corrosion attack. In addition, the unique character of the oxide scales that form on some of the alloys provides outstanding resistance to high-temperature sliding wear. This article provides a review of the evolutionary development of wrought cobalt-base alloys in terms of alloy design and physical metallurgy. The topics include solid-so-lution strengthening, carbide precipitation characteristics, and attempts to introduce age hardening. The use of PHACOMP to enhance thermal stability characteristics and the incorporation of rare-earth ele-ments to improve oxidation resistance is also reviewed and discussed. The further development of cobalt-base superalloys has been severely hampered by past political events, which have accentuated the strategic vulnerability of cobalt as a base or as an alloying element. Consequently, alternative alloys have been developed that use little or no cobalt. One such alternative, Haynes® 230TMalloy, is discussed briefly.
Cobalt toxicity after revision total hip replacement due to fracture of a ceramic head.
Pelayo-de Tomás, J M; Novoa-Parra, C; Gómez-Barbero, P
Symptomatic cobalt toxicity from a failed total hip replacement is a rare, but devastating complication. Potential clinical findings include cardiomyopathy, hypothyroidism, skin rash, visual and hearing impairment, polycythaemia, weakness, fatigue, cognitive impairment, and neuropathy. The case is presented of a 74year-old man in whom, after a ceramic-ceramic replacement and two episodes of prosthetic dislocation, it was decided to replace it with a polyethylene-metal total hip arthroplasty (THA). At 6months after the revision he developed symptoms of cobalt toxicity, confirmed by analytical determination (serum cobalt level=651.2μg/L). After removal of the prosthesis, the levels of chromium and cobalt in blood and urine returned to normal, with the patient currently being asymptomatic. It is recommended to use a new ceramic on ceramic bearing at revision, in order to minimise the risk of wear-related cobalt toxicity following breakage of ceramic components. Copyright © 2016 SECOT. Publicado por Elsevier España, S.L.U. All rights reserved.
Mustafa, Yasmen A; Zaiter, Maysoon J
2011-11-30
Iraqi synthetic zeolite type Na-A has been suggested as ion exchange material to treat cobalt-60 in radioactive liquid waste which came from neutron activation for corrosion products. Batch experiments were conducted to find out the equilibrium isotherm for source sample. The equilibrium isotherm for radioactive cobalt in the source sample showed unfavorable type, while the equilibrium isotherm for the total cobalt (the radioactive and nonradioactive cobalt) in the source sample showed a favorable type. The ability of Na-A zeolite to remove cobalt from wastewater was checked for high cobalt concentration (822 mg/L) in addition to low cobalt concentration in the source sample (0.093 mg/L). A good fitting for the experimental data with Langmuir equilibrium model was observed. Langmuir constant qm which is related to monolayer adsorption capacity for low and high cobalt concentration was determined to be 0.021 and 140 mg/g(zeolite). The effects of important design variables on the zeolite column performance were studied these include initial concentration, flow rate, and bed depth. The experimental results have shown that high sorption capacity can be obtained at high influent concentration, low flow rate, and high bed depth. Higher column performance was obtained at higher bed depth. Thomas model was employed to predict the breakthrough carves for the above variables. A good fitting was observed with correlation coefficients between 0.915 and 0.985. Copyright © 2011 Elsevier B.V. All rights reserved.
Leaching kinetics of cobalt from the scraps of spent aerospace magnetic materials.
Zhou, Xuejiao; Chen, Yongli; Yin, Jianguo; Xia, Wentang; Yuan, Xiaoli; Xiang, Xiaoyan
2018-06-01
Based on physicochemical properties of the scraps of spent aerospace magnetic materials, a roasting - magnetic separation followed by sulfuric acid leaching process was proposed to extract cobalt. Roasting was performed at 500 °C to remove organic impurity. Non-magnetic impurities were reduced by magnetic separation and then the raw material was sieved into desired particle sizes. Acid leaching was carried out to extract cobalt from the scraps and experimental parameters included agitation speed, particle size, initial concentration of sulfuric acid and temperature. Agitation speed higher than 300 r/min had a relatively small impact on the cobalt extraction. As the particle size reduced, the content of cobalt in the raw material decreases and the extraction of cobalt by acid leaching increased at first and decreased afterwards. Raising the initial concentration of sulfuric acid and temperature contributed to improve the cobalt extraction and the influence of temperature was more remarkable. SEM image revealed that the spent aerospace magnetic materials mainly existed in the sliced strip flake with a loose surface and porous structure. Under the experimental condition, the leaching rate of cobalt from the scraps in sulfuric acid solution could be expressed as ln(-ln(1 - α)) = lnk + nlnt. The apparent activation energy was found to be 38.33 kJ/mol and it was mainly controlled by the surface chemical reaction. Copyright © 2018 Elsevier Ltd. All rights reserved.
Amadeh, A; Ebadpour, R
2013-02-01
Metal-ceramic composite coatings are widely used in automotive and aerospace industries as well as micro-electronic systems. Electrodeposition is an economic method for application of these coatings. In this research, nickel-cobalt coatings reinforced by nano WC particles were applied on carbon steel substrate by pulse electrodeposition from modified Watts bath containing different amounts of cobalt sulphate as an additive. Saccharin and sodium dodecyl sulphate (SDS) were also added to electroplating bath as grain refiner and surfactant, respectively. The effect of cobalt content on wear and corrosion behavior of the coatings was investigated. Wear and corrosion properties were assessed by pin-on-disk and potentiodynamic polarization methods, respectively. Phase analysis was performed by X-ray diffraction (XRD) using CuK(alpha) radiation and the worn surfaces were studied by means of Scanning Electron Microscopy (SEM). The results showed that the addition of cobalt improved the wear resistance of the coatings. In the presence of 18 g/L cobalt in electrodeposition bath, the wear rate of the coating decreased to 0.002 mg/m and the coefficient of friction reduced to 0.695 while they were 0.004 mg/m and 0.77 in the absence of cobalt, respectively. This improvement in wear properties can be attributed to the formation of hcp phase in metallic matrix. Meanwhile, the corrosion resistance of the coatings slightly reduced because cobalt is more active metal with respect to nickel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun Liang; Key Laboratory of Resources Chemistry of Nonferrous Metals, Central South University, Ministry of Education of the People's Republic of China; Qiu Keqiang, E-mail: qiuwhs@sohu.com
2012-08-15
Graphical abstract: Display Omitted Highlights: Black-Right-Pointing-Pointer Vacuum pyrolysis as a pretreatment was used to separate cathode material from aluminum foils. Black-Right-Pointing-Pointer Cobalt and lithium can be leached using oxalate while cobalt can be directly precipitated as cobalt oxalate. Black-Right-Pointing-Pointer Cobalt and lithium can be separated efficiently from each other only in the oxalate leaching process. Black-Right-Pointing-Pointer High reaction efficiency of LiCoO{sub 2} was obtained with oxalate. - Abstract: Spent lithium-ion batteries containing lots of strategic resources such as cobalt and lithium are considered as an attractive secondary resource. In this work, an environmentally compatible process based on vacuum pyrolysis, oxalatemore » leaching and precipitation is applied to recover cobalt and lithium from spent lithium-ion batteries. Oxalate is introduced as leaching reagent meanwhile as precipitant which leaches and precipitates cobalt from LiCoO{sub 2} and CoO directly as CoC{sub 2}O{sub 4}{center_dot}2H{sub 2}O with 1.0 M oxalate solution at 80 Degree-Sign C and solid/liquid ratio of 50 g L{sup -1} for 120 min. The reaction efficiency of more than 98% of LiCoO{sub 2} can be achieved and cobalt and lithium can also be separated efficiently during the hydrometallurgical process. The combined process is simple and adequate for the recovery of valuable metals from spent lithium-ion batteries.« less
Cobalt Doping of Semiconducting Boron Carbide Using Cobaltocene
2007-03-01
COBALT DOPING OF SEMICONDUCTING BORON CARBIDE USING COBALTOCENE THESIS Lonnie Carlson, Major...DOPING OF SEMICONDUCTING BORON CARBIDE USING COBALTOCENE THESIS Presented to the Faculty Department of Engineering Physics Graduate School...DISTRIBUTION UNLIMITED AFIT/GNE/ENP/07-01 COBALT DOPING OF SEMICONDUCTING BORON CARBIDE USING COBALTOCENE Lonnie
Feasibility study of the welding of SiC
NASA Technical Reports Server (NTRS)
Moore, T. J.
1985-01-01
In a brief study of the feasibility of welding sintered alpha-SiC, solid-state welding and brazing were investigated. Joint quality was determined solely by microstructural examination. Hot-pressure welding was shown to be feasible at 1950 C. Diffusion welding and brazing were also successful under hot isostatic pressure at 1950 C when boride, carbide, and silicide interlayers were used. Furnace brazing was accomplished at 1750 C when a TiSi2 interlayer was introduced.
Titanium Diboride Electrodeposited Coatings
1977-06-01
4 Ti02. This material was deposited in the form of a porous mass or loose particles which must be leached in water and acid to remove adherent...poudres metallique par electrolyse ignee. Revue de Metallurgie, v. 45, 1948, p. 49-59. 7. POWELL, C. F. Borides in High Temperature Materials and... water solution of thallium formate-thallium malonate 50-50 mole percent mixture with a density ranging from about 5 g/cm^ at the bottom to about 2 g/cm
METHOD OF PROTECTING TANTALUM CRUCIBLES AGAINST REACTION WITH MOLTEN URANIUM
Feder, H.M.; Chellew, N.R.
1960-08-16
Tantalum crucibles against reaction with molten uranium by contacting the surfaces to be protected with metallic boron (as powder, vapor, or suspension in a liquid-volatilenonreacting medium, such as acetone and petroleum oil) at about 1800 deg C in vacuum, discontinuing contact with the boron, and heating the crucibles to a temperature of between 1800 aad 2000 deg C, whereby the tantalum boride formed in the first heating step is converted to tantalum monoboride.
Alumina-based ceramic composite
Alexander, Kathleen B.; Tiegs, Terry N.; Becher, Paul F.; Waters, Shirley B.
1996-01-01
An improved ceramic composite comprising oxide ceramic particulates, nonoxide ceramic particulates selected from the group consisting of carbides, borides, nitrides of silicon and transition metals and mixtures thereof, and a ductile binder selected from the group consisting of metallic, intermetallic alloys and mixtures thereof is described. The ceramic composite is made by blending powders of the ceramic particulates and the ductile to form a mixture and consolidating the mixture of under conditions of temperature and pressure sufficient to produce a densified ceramic composite.
Preliminary investigation of zirconium boride ceramals for gas-turbine blade applications
NASA Technical Reports Server (NTRS)
Hoffman, Charles A
1953-01-01
Zirconium boride ZrB2 ceramals were investigated for possible gas-turbine-blade application. Included in the study were thermal shock evaluations of disks, preliminary turbine-blade operation, and observations of oxidation resistance. Thermal shock disks of the following three compositions were studied: (a) 97.5 percent ZrB2 plus 2.5 percent B by weight; (b) 92.5 percent ZrB2 plus 7.5 percent B by weight; and (c) 100 percent ZrB2. Thermal shock disks were quenched from temperatures of 1800 degrees, 2000 degrees, 2200 degrees, and 2400 degrees F. The life of turbine blades containing 93 percent ZrB2 plus 7 percent B by weight was determined in gas-turbine tests. The blades were run at approximately 1600 degrees F and 15,000 to 26,000 rpm. The thermal shock resistance of the 97.5 percent ZrB2 plus 2.5 percent boron ceramals compares favorably with that of TiC plus Co and TiC plus Ni ceramals. Oxidation of the disks during the thermal shock evaluation was slight for the comparatively short time (8.3 hr) up through 2000 degrees F. Oxidation of a specimen was severe, however, after 100 hours at 2000 degrees F. The turbine blade performance evaluation of the 93 percent ZrB2 plus 7 percent B composition was preliminary in scope ; no conclusions can be drawn.
NASA Astrophysics Data System (ADS)
Barker, J. A. T.; Singh, R. P.; Hillier, A. D.; Paul, D. McK.
2018-03-01
The superconductivity in the rare-earth transition-metal ternary borides R RuB2 (where R =Lu and Y) has been investigated using muon-spin rotation and relaxation. Measurements made in zero field suggest that time-reversal symmetry is preserved upon entering the superconducting state in both materials; a small difference in depolarization is observed above and below the superconducting transition in both compounds, however, this has been attributed to quasistatic magnetic fluctuations. Transverse-field measurements of the flux-line lattice indicate that the superconductivity in both materials is fully gapped, with a conventional s -wave pairing symmetry and BCS-like magnitudes for the zero-temperature gap energies. The electronic properties of the charge carriers in the superconducting state have been calculated, with effective masses m*/me=9.8 ±0.1 and 15.0 ±0.1 in the Lu and Y compounds, respectively, with superconducting carrier densities ns=(2.73 ±0.04 ) ×1028m-3 and (2.17 ±0.02 ) ×1028m-3 . The materials have been classified according to the Uemura scheme for superconductivity, with values for Tc/TF of 1 /(414 ±6 ) and 1 /(304 ±3 ) , implying that the superconductivity may not be entirely conventional in nature.
21 CFR 73.1015 - Chromium-cobalt-aluminum oxide.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Chromium-cobalt-aluminum oxide. 73.1015 Section 73.1015 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1015 Chromium-cobalt-aluminum oxide. (a...
21 CFR 73.1015 - Chromium-cobalt-aluminum oxide.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Chromium-cobalt-aluminum oxide. 73.1015 Section 73.1015 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1015 Chromium-cobalt-aluminum oxide. (a...
21 CFR 73.1015 - Chromium-cobalt-aluminum oxide.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Chromium-cobalt-aluminum oxide. 73.1015 Section 73.1015 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1015 Chromium-cobalt-aluminum oxide. (a...
40 CFR 415.650 - Applicability; description of the cobalt salts production subcategory.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Applicability; description of the cobalt salts production subcategory. 415.650 Section 415.650 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS INORGANIC CHEMICALS MANUFACTURING POINT SOURCE CATEGORY Cobalt Salts Production...
Cobalt(II) and Cobalt(III) Coordination Compounds.
ERIC Educational Resources Information Center
Thomas, Nicholas C.; And Others
1989-01-01
Presents a laboratory experiment which illustrates the formation of tris(phenanthroline)cobalt complexes in the 2+ and 3+ oxidation states, the effect of coordination on reactions of the ligand, and the use of a ligand displacement reaction in recovering the transformed ligand. Uses IR, UV-VIS, conductivity, and NMR. (MVL)
A Highly-Reduced Cobalt Terminal Carbyne: Divergent Metal- and α-Carbon-Centered Reactivity.
Mokhtarzadeh, Charles C; Moore, Curtis E; Rheingold, Arnold L; Figueroa, Joshua S
2018-06-15
Reported here is the isolation of a dianionic cobalt terminal carbyne derived from chemical reduction of an encumbering isocyanide ligand. Crystallographic, spectroscopic and computational data reveal that this carbyne possesses a low-valent cobalt center with an extensively-filled d-orbital manifold. This electronic character renders the cobalt center the primary site of nucleophilicity upon reaction with protic substrates and silyl electrophiles. However, reactions with internal alkynes result in [2+2] cycloaddition with the carbyne carbon to form a new C-C bond.
NASA Astrophysics Data System (ADS)
Linnik, S. A.; Gaidaichuk, A. V.; Okhotnikov, V. V.
2018-02-01
The influence of cobalt on the phase composition and adhesion strength of polycrystalline diamond coatings has been studied using scanning electron microscopy, Raman spectroscopy, and X-ray microanalysis. The coatings have been deposited on WC-Co hard alloy substrates in glow discharge plasma. It has been found that the catalytic amorphization of carbon only takes place during the direct synthesis of the diamond coating, when the cobalt vapor pressure over the substrate is high and the cobalt-related degradation of the synthesized diamond is absent.
Ueira-Vieira, C; Tavares, R R; Morelli, S; Pereira, B B; Silva, R P; Torres-Mariano, A R; Kerr, W E; Bonetti, A M
2013-06-20
In order to optimize preparations of bee metaphases, we tested cobalt chloride, which has been used as a metaphase inducer in other organisms, such as hamsters and fish. Four microliters of 65 mM cobalt chloride aqueous solution was topically applied to larval and pupal stages of the stingless bee Melipona scutellaris. The cerebral ganglion was removed after treatment and prepared for cytogenetic analysis. Identically manipulated untreated individuals were used as controls. The number of metaphases was increased 3-fold in treated individuals compared to controls. The micronucleus test showed no mutagenic effects of cobalt chloride on M. scutellaris cells. We concluded that cobalt chloride is a metaphase-inducing agent in M. scutellaris, thus being useful for cytogenetic analyses.
NASA Technical Reports Server (NTRS)
Mcdonald, G.
1980-01-01
Black cobalt oxide coatings (high solar absorptance layer) were deposited on thin layers of silver or gold (low emittance layer) which had been previously deposited on oxidized (diffusion barrier layer) stainless steel substrates. The reflectance properties of these coatings were measured at various thicknesses of cobalt for integrated values of the solar and infrared spectrum. The values of absorptance and emittance were calculated from the measured reflectance values, before and after exposure in air at 650 C for approximately 1000 hours. Absorptance and emittance were interdependent functions of the weight of cobalt oxide. Also, these cobalt oxide/noble metal/oxide diffusion barrier coatings have absorptances greater than 0.90 and emittances of approximately 0.20 even after about 1000 hours at 650 C.
Impedance spectroscopy studies in cobalt ferrite-reduced graphene oxide nanocomposite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Supriya, Sweety, E-mail: sweety@iitp.ac.in; Kumar, Sunil, E-mail: sunil.pph13@iitp.ac.in; Kar, Manoranjan, E-mail: mano@iitp.ac.in
2016-05-06
(1-x)Cobalt ferrite-(x)reduced graphene oxidenanocomposites with x=0, 0.1, 0.2 and 0.3 were prepared by the ultrasonic method. The crystal symmetry modification due to reduced graphene oxide and cobalt ferrite interaction has been studied by employing the X-ray diffraction technique. Morphology of the samples was studied by the Field emission scanning electron microscopy (FE-SEM). Study on electrical properties of the cobalt ferrite-reduced graphene oxide nanocomposites explores the possible application of these composites as anode material. Impedance decreases with an increase in frequency as well as temperature, which supports an increase in ac electrical conductivity. The modified Debye relaxation model can explain themore » behavior of impedance in cobalt ferrite-reduced graphene oxide nanocomposites.« less
[Spectroscopic studies on transition metal ions in colored diamonds].
Meng, Yu-Fei; Peng, Ming-Sheng
2004-07-01
Transition metals like nickel, cobalt and iron have been often used as solvent catalysts in high pressure high temperature (HPHT) synthesis of diamond, and nickel and cobalt ions have been found in diamond lattice. Available studies indicated that nickel and cobalt ions could enter the lattice as interstitial or substitutional impurities and form complexes with nitrogen. Polarized microscopy, SEM-EDS, EPR, PL and FTIR have been used in this study to investigate six fancy color natural and synthetic diamonds in order to determine the spectroscopic characteristics and the existing forms of transition metal ions in colored diamond lattice. Cobalt-related optical centers were first found in natural chameleon diamonds, and some new nickel and cobalt-related optical and EPR centers have also been detected in these diamond samples.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Shibin; College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061; Chang, Xueting, E-mail: xuetingchang@yahoo.cn
Cobalt-doped tungsten oxide mesocrystals with different morphologies have been successfully generated using a solvothermal method with tungsten hexachloride and cobalt chloride salts as precursors. The resulting mesocrystals were characterized by X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, Brunauer-Emmet-Teller analysis of nitrogen sorptometer, and UV-vis diffuse reflectance spectroscopy. The photocatalytic properties of the cobalt-doped tungsten oxide mesocrystals were evaluated on the basis of their ability to degrade methyl orange in an aqueous solution under simulated sunlight irradiation. Results showed that the cobalt doping had obvious effect on the morphologies of the final products, and lenticular and blocky cobalt-dopedmore » tungsten oxide mesocrystals could be obtained with 1.0 wt.% and 2.0 wt.% cobalt doping, respectively. The cobalt-doped tungsten oxides exhibited superior photocatalytic activities to that of the undoped tungsten oxide. - Graphical abstract: Schematic illustrations of the growth of the bundled nanowires, lenticular mesocrystals, and blocky mesocrystals. Highlights: Black-Right-Pointing-Pointer Co-doped W{sub 18}O{sub 49} mesocrystals were synthesized using a solvothermal method. Black-Right-Pointing-Pointer The Co doping has obvious effect on the morphology of the final mesocrystals. Black-Right-Pointing-Pointer The Co-doped W{sub 18}O{sub 49} exhibited superior photocatalytic activity to the undoped W{sub 18}O{sub 49}.« less
COBALT COMPOUNDS AS ANTIDOTES FOR HYDROCYANIC ACID.
EVANS, C L
1964-12-01
The antidotal potency of a cobalt salt (acetate), of dicobalt edetate, of hydroxocobalamin and of cobinamide against hydrocyanic acid was examined mainly on mice and rabbits. All the compounds were active antidotes for up to twice the LD50; under some conditions for larger doses. The most successful was cobalt acetate for rabbits (5xLD50), which was effective at a molar cyanide/cobalt (CN/Co) ratio of 5, but had as a side-effect intense purgation. Hydroxocobalamin was irregular in action, but on the whole was most effective for mice (4.5xLD50 at a molar ratio of 1), and had no apparent side effects. Dicobalt edetate, at molar ratios of up to 2, was more effective for rabbits (3xLD50) than for mice (2xLD50), but had fewer side effects than cobalt acetate. The effect of thiosulphate was to augment the efficacy of dicobalt edetate and, in mice, that of hydroxocobalamin; but, apparently, in rabbits, to reduce that of hydroxocobalamin. Cobinamide, at a molar ratio of 1, was slightly more effective than hydroxocobalamin on rabbits and also less irregular in its action. Cobalt acetate by mouth was effective against orally administered hydrocyanic acid. The oxygen uptake of the body, reduced by cyanide, is rapidly reinstated when one of the cobalt antidotes has been successfully administered.
Effect of Er doping on the structural and magnetic properties of cobalt-ferrite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prathapani, Sateesh; Vinitha, M.; Das, D., E-mail: ddse@uohyd.ernet.in
2014-05-07
Nanocrystalline particulates of Er doped cobalt-ferrites CoFe{sub (2−x)}Er{sub x}O{sub 4} (0 ≤ x ≤ 0.04), were synthesized, using sol-gel assisted autocombustion method. Co-, Fe-, and Er- nitrates were the oxidizers, and malic acid served as a fuel and chelating agent. Calcination (400–600 °C for 4 h) of the precursor powders was followed by sintering (1000 °C for 4 h) and structural and magnetic characterization. X-ray diffraction confirmed the formation of single phase of spinel for the compositions x = 0, 0.01, and 0.02; and for higher compositions an additional orthoferrite phase formed along with the spinel phase. Lattice parameter of the doped cobalt-ferrites was higher than that of pure cobalt-ferrite.more » The observed red shift in the doped cobalt-ferrites indicates the presence of induced strain in the cobalt-ferrite matrix due to large size of the Er{sup +3} compared to Fe{sup +3}. Greater than two-fold increase in coercivity (∼66 kA/m for x = 0.02) was observed in doped cobalt-ferrites compared to CoFe{sub 2}O{sub 4} (∼29 kA/m)« less
Open-Loop Flight Testing of COBALT GN&C Technologies for Precise Soft Landing
NASA Technical Reports Server (NTRS)
Carson, John M., III; Amzajerdian, Farzin; Seubert, Carl R.; Restrepo, Carolina I.
2017-01-01
A terrestrial, open-loop (OL) flight test campaign of the NASA COBALT (CoOperative Blending of Autonomous Landing Technologies) platform was conducted onboard the Masten Xodiac suborbital rocket testbed, with support through the NASA Advanced Exploration Systems (AES), Game Changing Development (GCD), and Flight Opportunities (FO) Programs. The COBALT platform integrates NASA Guidance, Navigation and Control (GN&C) sensing technologies for autonomous, precise soft landing, including the Navigation Doppler Lidar (NDL) velocity and range sensor and the Lander Vision System (LVS) Terrain Relative Navigation (TRN) system. A specialized navigation filter running onboard COBALT fuzes the NDL and LVS data in real time to produce a precise navigation solution that is independent of the Global Positioning System (GPS) and suitable for future, autonomous planetary landing systems. The OL campaign tested COBALT as a passive payload, with COBALT data collection and filter execution, but with the Xodiac vehicle Guidance and Control (G&C) loops closed on a Masten GPS-based navigation solution. The OL test was performed as a risk reduction activity in preparation for an upcoming 2017 closed-loop (CL) flight campaign in which Xodiac G&C will act on the COBALT navigation solution and the GPS-based navigation will serve only as a backup monitor.
Kirkland, David; Brock, Tom; Haddouk, Hasnaà; Hargeaves, Victoria; Lloyd, Melvyn; Mc Garry, Sarah; Proudlock, Raymond; Sarlang, Séverine; Sewald, Katherina; Sire, Guillaume; Sokolowski, Andrea; Ziemann, Christina
2015-10-01
The genotoxicity of cobalt metal and cobalt compounds has been widely studied. Several publications show induction of chromosomal aberrations, micronuclei or DNA damage in mammalian cells in vitro in the absence of S9. Mixed results were seen in gene mutation studies in bacteria and mammalian cells in vitro, and in chromosomal aberration or micronucleus assays in vivo. To resolve these inconsistencies, new studies were performed with soluble and poorly soluble cobalt compounds according to OECD-recommended protocols. Induction of chromosomal damage was confirmed in vitro, but data suggest this may be due to oxidative stress. No biologically significant mutagenic responses were obtained in bacteria, Tk(+/-) or Hprt mutation tests. Negative results were also obtained for chromosomal aberrations (in bone marrow and spermatogonia) and micronuclei at maximum tolerated doses in vivo. Poorly soluble cobalt compounds do not appear to be genotoxic. Soluble compounds do induce some DNA and chromosomal damage in vitro, probably due to reactive oxygen. The absence of chromosome damage in robust GLP studies in vivo suggests that effective protective processes are sufficient to prevent oxidative DNA damage in whole mammals. Overall, there is no evidence of genetic toxicity with relevance for humans of cobalt substances and cobalt metal. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Reactivity of a Cobalt(III)–Hydroperoxo Complex in Electrophilic Reactions
Shin, Bongki; Sutherlin, Kyle D.; Ohta, Takehiro; ...
2016-11-15
The reactivity of mononuclear metal-hydroperoxo adducts has fascinated researchers in many areas due to their diverse biological and catalytic processes. In this study, a mononuclear cobalt(III)-peroxo complex bearing a tetradentate macrocyclic ligand, [Co III(Me 3-TPADP)(O 2)] + (Me 3-TPADP = 3,6,9-trimethyl-3,6,9-triaza-1(2,6)-pyridinacyclodecaphane), was prepared by reacting [Co II(Me 3-TPADP)(CH 3CN) 2] 2+ with H 2O 2 in the presence of triethylamine. Upon protonation, the cobalt(III)- peroxo intermediate was converted into a cobalt(III)-hydroperoxo complex, [Co III(Me 3-TPADP)(O 2H)(CH 3CN)] 2+. The mononuclear cobalt(III)-peroxo and -hydroperoxo intermediates were characterized by a variety of physicochemical methods. Results of electrospray ionization mass spectrometry clearly showmore » the transformation of the intermediates: the peak at m/z 339.2 assignable to the cobalt(III)-peroxo species disappears with concomitant growth of the peak at m/z 190.7 corresponding to the cobalt(III)-hydroperoxo complex (with bound CH 3CN). Isotope labeling experiments further support the existence of the cobalt(III)-peroxo and -hydroperoxo complexes. In particular, the O-O bond stretching frequency of the cobalt(III)-hydroperoxo complex was determined to be 851 cm -1 for 16O 2H samples (803 cm -1 for 18O 2H samples) and its Co-O vibrational energy was observed at 571 cm -1 for 16O 2H samples (551 cm -1 for 18O 2H samples; 568 cm -1 for 16O 2 2H samples) by resonance Raman spectroscopy. Reactivity studies performed with the cobalt(III)-peroxo and -hydroperoxo complexes in organic functionalizations reveal that the latter is capable of conducting oxygen atom transfer with an electrophilic character, whereas the former exhibits no oxygen atom transfer reactivity under the same reaction conditions. Alternatively, the cobalt(III)-hydroperoxo complex does not perform hydrogen atom transfer reactions, while analogous low-spin Fe(III)-hydroperoxo complexes are capable of this reactivity. Density function theory calculations indicate that this lack of reactivity is due to the high free energy cost of O-O bond homolysis that would be required to produce the hypothetical Co(IV)-oxo product.« less
Reactivity of a Cobalt(III)–Hydroperoxo Complex in Electrophilic Reactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shin, Bongki; Sutherlin, Kyle D.; Ohta, Takehiro
The reactivity of mononuclear metal-hydroperoxo adducts has fascinated researchers in many areas due to their diverse biological and catalytic processes. In this study, a mononuclear cobalt(III)-peroxo complex bearing a tetradentate macrocyclic ligand, [Co III(Me 3-TPADP)(O 2)] + (Me 3-TPADP = 3,6,9-trimethyl-3,6,9-triaza-1(2,6)-pyridinacyclodecaphane), was prepared by reacting [Co II(Me 3-TPADP)(CH 3CN) 2] 2+ with H 2O 2 in the presence of triethylamine. Upon protonation, the cobalt(III)- peroxo intermediate was converted into a cobalt(III)-hydroperoxo complex, [Co III(Me 3-TPADP)(O 2H)(CH 3CN)] 2+. The mononuclear cobalt(III)-peroxo and -hydroperoxo intermediates were characterized by a variety of physicochemical methods. Results of electrospray ionization mass spectrometry clearly showmore » the transformation of the intermediates: the peak at m/z 339.2 assignable to the cobalt(III)-peroxo species disappears with concomitant growth of the peak at m/z 190.7 corresponding to the cobalt(III)-hydroperoxo complex (with bound CH 3CN). Isotope labeling experiments further support the existence of the cobalt(III)-peroxo and -hydroperoxo complexes. In particular, the O-O bond stretching frequency of the cobalt(III)-hydroperoxo complex was determined to be 851 cm -1 for 16O 2H samples (803 cm -1 for 18O 2H samples) and its Co-O vibrational energy was observed at 571 cm -1 for 16O 2H samples (551 cm -1 for 18O 2H samples; 568 cm -1 for 16O 2 2H samples) by resonance Raman spectroscopy. Reactivity studies performed with the cobalt(III)-peroxo and -hydroperoxo complexes in organic functionalizations reveal that the latter is capable of conducting oxygen atom transfer with an electrophilic character, whereas the former exhibits no oxygen atom transfer reactivity under the same reaction conditions. Alternatively, the cobalt(III)-hydroperoxo complex does not perform hydrogen atom transfer reactions, while analogous low-spin Fe(III)-hydroperoxo complexes are capable of this reactivity. Density function theory calculations indicate that this lack of reactivity is due to the high free energy cost of O-O bond homolysis that would be required to produce the hypothetical Co(IV)-oxo product.« less
NASA Astrophysics Data System (ADS)
Kamble, Ganesh S.; Ghare, Anita A.; Kolekar, Sanjay S.; Han, Sung H.; Anuse, Mansing A.
2011-12-01
A synergistic simple and selective spectrophotometric method was developed for the determination of cobalt(II) with 1-(2',4'-dinitro aminophenyl)-4,4,6-trimethyl-1,4-dihydropyrimidine-2-thiol [2',4'-dinitro APTPT] as a chromogenic reagent. The proposed method has been described on the basis of synergistic effective extraction of cobalt(II) in presence of pyridine at pH range 9.5-10.2, showed orange-red coloured ternary complex having molar ratio 1:2:2 (M:L:Py). The equilibrium time is 10 min for extraction of cobalt(III) from organic phase. The absorbance of coloured organic layer in chloroform is measured spectrophotometrically at 490 nm against reagent blank. The Beer's law was obeyed in the concentration range 2.5-15 μg mL -1 of cobalt(II) and optimum concentration range was 5-12.5 μg mL -1 of cobalt(II) and it was evaluated from Ringbom's plot. The molar absorptivity and Sandell's sensitivity of cobalt(II)-2',4'-dinitro APTPT-pyridine complex in chloroform are 1.109 × 10 3 L mol -1 cm -1 and 0.053 μg cm -2, respectively while molar absorptivity and Sandell's sensitivity of cobalt(II)-2',4'-dinitro APTPT complex in chloroform are 6.22 × 10 2 L mol -1 cm -1 and 0.096 μg cm -2, respectively. The composition of cobalt(II)-2',4'-dinitro APTPT-pyridine complex (1:2:2) was established by slope ratio method, mole ratio method and Job's method of continuous variation. The ternary complex was stable for more than 48 h. The interfering effects of various cations and anions were also studied, and use of suitable masking agents enhances the selectivity of the method. The method is successfully applied for the determination of cobalt(II) in binary, synthetic mixtures and real samples. A repetition of the method was checked by finding relative standard deviation (R.S.D.) for n = 5 which was 0.15%. The reliability of the method is confirmed by comparison of experimental results with atomic absorption spectrophotometer.
2012-01-01
Background In the present study, 4 different metallic implant materials, either partly coated or polished, were tested for their osseointegration and biocompatibility in a pelvic implantation model in sheep. Methods Materials to be evaluated were: Cobalt-Chrome (CC), Cobalt-Chrome/Titanium coating (CCTC), Cobalt-Chrome/Zirconium/Titanium coating (CCZTC), Pure Titanium Standard (PTST), Steel, TAN Standard (TANST) and TAN new finish (TANNEW). Surgery was performed on 7 sheep, with 18 implants per sheep, for a total of 63 implants. After 8 weeks, the specimens were harvested and evaluated macroscopically, radiologically, biomechanically (removal torque), histomorphometrically and histologically. Results Cobalt-Chrome screws showed significantly (p = 0.031) lower removal torque values than pure titanium screws and also a tendency towards lower values compared to the other materials, except for steel. Steel screws showed no significant differences, in comparison to cobalt-chrome and TANST, however also a trend towards lower torque values than the remaining materials. The results of the fluorescence sections agreed with those of the biomechanical test. Histomorphometrically, there were no significant differences of bone area between the groups. The BIC (bone-to-implant-contact), used for the assessment of the osseointegration, was significantly lower for cobalt-chrome, compared to steel (p = 0.001). Steel again showed a lower ratio (p = 0.0001) compared to the other materials. Conclusion This study demonstrated that cobalt-chrome and steel show less osseointegration than the other metals and metal-alloys. However, osseointegration of cobalt-chrome was improved by zirconium and/or titanium based coatings (CCTC, TANST, TAN, TANNEW) being similar as pure titanium in their osseointegrative behavior. PMID:22400715
21 CFR 73.3110a - Chromium-cobalt-aluminum oxide.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Chromium-cobalt-aluminum oxide. 73.3110a Section 73.3110a Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Medical Devices § 73.3110a Chromium-cobalt-aluminum...
21 CFR 73.3110a - Chromium-cobalt-aluminum oxide.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Chromium-cobalt-aluminum oxide. 73.3110a Section 73.3110a Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Medical Devices § 73.3110a Chromium-cobalt-aluminum...
21 CFR 73.3110a - Chromium-cobalt-aluminum oxide.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Chromium-cobalt-aluminum oxide. 73.3110a Section 73.3110a Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Medical Devices § 73.3110a Chromium-cobalt-aluminum...
21 CFR 73.3110a - Chromium-cobalt-aluminum oxide.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Chromium-cobalt-aluminum oxide. 73.3110a Section 73.3110a Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Medical Devices § 73.3110a Chromium-cobalt-aluminum...
21 CFR 73.3110a - Chromium-cobalt-aluminum oxide.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Chromium-cobalt-aluminum oxide. 73.3110a Section 73.3110a Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Medical Devices § 73.3110a Chromium-cobalt-aluminum...
Catalyzed sodium chlorate candles
NASA Technical Reports Server (NTRS)
Malich, C. W.; Wydeven, T.
1972-01-01
The catalytic effect of cobalt powder on chlorate decomposition has been confirmed. Catalysis is enhanced by oxidation of the metal during burning. Catalysts other than cobalt compounds should also be effective; the complete elimination of fuel has shown that the oxidation of cobalt during decomposition is not a vital factor in the improved performance of catalyzed candles.
21 CFR 189.120 - Cobaltous salts and its derivatives.
Code of Federal Regulations, 2010 CFR
2010-04-01
... malt beverages as a foam stabilizer and to prevent “gushing.” (b) Food containing any added cobaltous... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Cobaltous salts and its derivatives. 189.120 Section 189.120 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES...
76 FR 47996 - Cobalt Lithium Manganese Nickel Oxide; Significant New Use Rule
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-08
... 2070-AB27 Cobalt Lithium Manganese Nickel Oxide; Significant New Use Rule AGENCY: Environmental... lithium manganese nickel oxide (CAS No. 182442-95-1), which was the subject of premanufacture notice (PMN... 5(a)(2) (15 U.S.C. 2604(a)(2)) for the chemical substance identified as cobalt lithium manganese...
21 CFR 189.120 - Cobaltous salts and its derivatives.
Code of Federal Regulations, 2011 CFR
2011-04-01
... malt beverages as a foam stabilizer and to prevent “gushing.” (b) Food containing any added cobaltous... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Cobaltous salts and its derivatives. 189.120 Section 189.120 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES...
NASA Astrophysics Data System (ADS)
Yuliusman; Ramadhan, I. T.; Huda, M.
2018-03-01
Catalyst are often used in the petroleum refinery industry, especially cobalt-based catalyst such as CoMoX. Every year, Indonesia’s oil industry produces around 1350 tons of spent hydrodesulphurization catalyst in which cobalt makes up for 7%wt. of them. Cobalt is a non-renewable and highly valuable resource. Taking into account the aforementioned reasons, this research was made to recover cobalt from spent hydrodesulphurization catalyst so that it can be reused by industries needing them. The methods used in the recovery of cobalt from the waste catalyst leach solution are liquid-liquid extraction using a synergistic system of VersaticTM 10 and Cyanex®272. Based on the experiments done using the aforementioned methods and materials, the optimum condition for the extraction process: concentration of VersaticTM 10 of 0.35 M, Cyanex®272 of 0.25 M, temperature of 23-25°C (room temperature), and pH of 6 with an extraction percentage of 98.80% and co-extraction of Ni at 93.51%.
NASA Astrophysics Data System (ADS)
Raekelboom, E.; Cuevas, F.; Knosp, B.; Percheron-Guégan, A.
The effect of cobalt and manganese content on the dehydrogenation properties of air-exposed MmB 5+ x-type (Mm = mischmetal; B = Ni, Al, Co and Mn) alloys was investigated both in solid gas and electrochemical reactions. The cobalt and manganese content were varied separately while keeping constant the plateau pressure of the hydrides. The increase of the cobalt content leads to a decrease of the hydrogen capacity whereas the manganese content has no much effect. In solid gas reactions, the kinetics were found to be limited by the hydrogen diffusion through the surface oxidation layer. As for the electrochemistry, the kinetics are limited by a corrosion layer formed in alkaline medium. The desorption rates for both processes increase as the cobalt or manganese content decreases. This is thought to be due to an enhancement of the hydrogen diffusivity through the oxidation layer. As a result, a low cobalt or manganese content in MmB 5+ x alloys is found to be beneficial for the hydrogen desorption kinetics in both processes.
Fischer-Tropsch Cobalt Catalyst Activation and Handling Through Wax Enclosure Methods
NASA Technical Reports Server (NTRS)
Klettlinger, Jennifer L. S.; Yen, Chia H.; Nakley, Leah M.; Surgenor, Angela D.
2016-01-01
Fischer-Tropsch (F-T) synthesis is considered a gas to liquid process which converts syn-gas, a gaseous mixture of hydrogen and carbon monoxide, into liquids of various hydrocarbon chain length and product distributions. Cobalt based catalysts are used in F-T synthesis and are the focus of this paper. One key concern with handling cobalt based catalysts is that the active form of catalyst is in a reduced state, metallic cobalt, which oxidizes readily in air. In laboratory experiments, the precursor cobalt oxide catalyst is activated in a fixed bed at 350 ?C then transferred into a continuous stirred tank reactor (CSTR) with inert gas. NASA has developed a process which involves the enclosure of active cobalt catalyst in a wax mold to prevent oxidation during storage and handling. This improved method allows for precise catalyst loading and delivery into a CSTR. Preliminary results indicate similar activity levels in the F-T reaction in comparison to the direct injection method. The work in this paper was supported by the NASA Fundamental Aeronautics Subsonics Fixed Wing Project.
Yamaki, Regina Terumi; Nunes, Luana Sena; de Oliveira, Hygor Rodrigues; Araújo, André S; Bezerra, Marcos Almeida; Lemos, Valfredo Azevedo
2011-01-01
The synthesis and characterization of the reagent 2-(5-bromothiazolylazo)-4-chlorophenol and its application in the development of a preconcentration procedure for cobalt determination using flame atomic absorption spectrometry after cloud point extraction is presented. This procedure is based on cobalt complexing and entrapment of the metal chelates into micelles of a surfactant-rich phase of Triton X-114. The preconcentration procedure was optimized by using a response surface methodology through the application of the Box-Behnken matrix. Under optimum conditions, the procedure determined the presence of cobalt with an LOD of 2.8 microg/L and LOQ of 9.3 microg/L. The enrichment factor obtained was 25. The precision was evaluated as the RSD, which was 5.5% for 10 microg/L cobalt and 6.9% for 30 microg/L. The accuracy of the procedure was assessed by comparing the results with those found using inductively coupled plasma-optical emission spectrometry. After validation, the procedure was applied to the determination of cobalt in pharmaceutical preparation samples containing cobalamin (vitamin B12).
Mok, Simon Wing Fai; Liu, Hauwei; Zeng, Wu; Han, Yu; Gordillo-Martinez, Flora; Chan, Wai-Kit; Wong, Keith Man-Chung; Wong, Vincent Kam Wai
2017-01-01
Platinating compounds including cisplatin, carboplatin, and oxaliplatin are common chemotherapeutic agents, however, patients developed resistance to these clinical agents after initial therapeutic treatments. Therefore, different approaches have been applied to identify novel therapeutic agents, molecular mechanisms, and targets for overcoming drug resistance. In this study, we have identified a panel of cobalt complexes that were able to specifically induce collateral sensitivity in taxol-resistant and p53-deficient cancer cells. Consistently, our reported anti-cancer functions of cobalt complexes 1–6 towards multidrug-resistant cancers have suggested the protective and non-toxic properties of cobalt metal-ions based compounds in anti-cancer therapies. As demonstrated in xenograft mouse model, our results also confirmed the identified cobalt complex 2 was able to suppress tumor growth in vivo. The anti-cancer effect of the cobalt complex 2 was further demonstrated to be exerted via the induction of autophagy, cell cycle arrest, and inhibition of cell invasion and P-glycoprotein (P-gp) activity. These data have provided alternative metal ion compounds for targeting drug resistance cancers in chemotherapies. PMID:28903398
Physiological Remediation of Cobalt Ferrite Nanoparticles by Ferritin
NASA Astrophysics Data System (ADS)
Volatron, Jeanne; Kolosnjaj-Tabi, Jelena; Javed, Yasir; Vuong, Quoc Lam; Gossuin, Yves; Neveu, Sophie; Luciani, Nathalie; Hémadi, Miryana; Carn, Florent; Alloyeau, Damien; Gazeau, Florence
2017-01-01
Metallic nanoparticles have been increasingly suggested as prospective therapeutic nanoplatforms, yet their long-term fate and cellular processing in the body is poorly understood. Here we examined the role of an endogenous iron storage protein - namely the ferritin - in the remediation of biodegradable cobalt ferrite magnetic nanoparticles. Structural and elemental analysis of ferritins close to exogenous nanoparticles within spleens and livers of mice injected in vivo with cobalt ferrite nanoparticles, suggests the intracellular transfer of degradation-derived cobalt and iron, entrapped within endogenous protein cages. In addition, the capacity of ferritin cages to accommodate and store the degradation products of cobalt ferrite nanoparticles was investigated in vitro in the acidic environment mimicking the physiological conditions that are present within the lysosomes. The magnetic, colloidal and structural follow-up of nanoparticles and proteins in the lysosome-like medium confirmed the efficient remediation of nanoparticle-released cobalt and iron ions by ferritins in solution. Metal transfer into ferritins could represent a quintessential process in which biomolecules and homeostasis regulate the local degradation of nanoparticles and recycle their by-products.
Venkatesan, Kaliyamoorthy; Rajan Babu, Dhanakotti; Kavya Bai, Mane Prabhu; Supriya, Ravi; Vidya, Radhakrishnan; Madeswaran, Saminathan; Anandan, Pandurangan; Arivanandhan, Mukannan; Hayakawa, Yasuhiro
2015-01-01
Cobalt-doped iron oxide nanoparticles were prepared by solution combustion technique. The structural and magnetic properties of the prepared samples were also investigated. The average crystallite size of cobalt ferrite (CoFe2O4) magnetic nanoparticle was calculated using Scherrer equation, and it was found to be 16±5 nm. The particle size was measured by transmission electron microscope. This value was found to match with the crystallite size calculated by Scherrer equation corresponding to the prominent intensity peak (311) of X-ray diffraction. The high-resolution transmission electron microscope image shows clear lattice fringes and high crystallinity of cobalt ferrite magnetic nanoparticles. The synthesized magnetic nanoparticles exhibited the saturation magnetization value of 47 emu/g and coercivity of 947 Oe. The anti-microbial activity of cobalt ferrite nanoparticles showed better results as an anti-bacterial agent. The affinity constant was determined for the nanoparticles, and the cytotoxicity studies were conducted for the cobalt ferrite nanoparticles at different concentrations and the results are discussed.
NASA Astrophysics Data System (ADS)
Sha, Hao-Dong; Yuan, Xianxia; Li, Lin; Ma, Zhong; Ma, Zi-Feng; Zhang, Lei; Zhang, Jiujun
2014-06-01
A series of carbon supported cobalt-polypyrrole-4-toluenesulfinic acid have been pyrolyzed in an argon atmosphere at 800 °C, then structurally characterized and electrochemically evaluated as oxygen reduction reaction (ORR) catalysts in aqueous 0.5 M sulfuric acid. The structures are cobalt bonded to nitrogen species (Co-Nx) along with metallic cobalt and cobalt oxide. When the cobalt loading in the compound is less than 1.0 wt%, the predominate form is Co-Nx, when the loading is higher than 1.0 wt%, metallic Co and Co oxide particles co-exist with the Co-Nx compound. At a Co loading of ∼1.0 wt%, the catalyst gives the best ORR activity. Both metallic Co and Co oxide are not active for catalyzing ORR, and block the catalytically active Co-Nx species from the surface and reduce the catalytic activity since the diffusion limiting current density on a rotating disk electrode (RDE) increases when the electrode blocking agents are washed away with acid.
Venkatesan, Kaliyamoorthy; Rajan Babu, Dhanakotti; Kavya Bai, Mane Prabhu; Supriya, Ravi; Vidya, Radhakrishnan; Madeswaran, Saminathan; Anandan, Pandurangan; Arivanandhan, Mukannan; Hayakawa, Yasuhiro
2015-01-01
Cobalt-doped iron oxide nanoparticles were prepared by solution combustion technique. The structural and magnetic properties of the prepared samples were also investigated. The average crystallite size of cobalt ferrite (CoFe2O4) magnetic nanoparticle was calculated using Scherrer equation, and it was found to be 16±5 nm. The particle size was measured by transmission electron microscope. This value was found to match with the crystallite size calculated by Scherrer equation corresponding to the prominent intensity peak (311) of X-ray diffraction. The high-resolution transmission electron microscope image shows clear lattice fringes and high crystallinity of cobalt ferrite magnetic nanoparticles. The synthesized magnetic nanoparticles exhibited the saturation magnetization value of 47 emu/g and coercivity of 947 Oe. The anti-microbial activity of cobalt ferrite nanoparticles showed better results as an anti-bacterial agent. The affinity constant was determined for the nanoparticles, and the cytotoxicity studies were conducted for the cobalt ferrite nanoparticles at different concentrations and the results are discussed. PMID:26491320
NASA Astrophysics Data System (ADS)
Gac, Wojciech; Greluk, Magdalena; Słowik, Grzegorz; Turczyniak-Surdacka, Sylwia
2018-05-01
Surface and structural changes of unmodified manganese and cobalt-manganese oxide during activation and ethanol steam reforming reaction conditions (ESR) were studied by means of X-ray diffraction, X-ray photoelectron spectroscopy, temperature-programmed reduction/oxidation (TPR/TPO) and transmission electron microscopy. It was shown that synthesis of cobalt manganese oxide by the redox precipitation method led to the formation of strongly dispersed cobalt ionic species within cryptomelane-based manganese oxide structure. Development of large cube-like MnO nanoparticles with spherical cobalt metallic crystallites decorated by manganese oxide on the high oxidation state and potassium species was observed during reduction. Cobalt manganese catalyst showed high initial activity and selectivity to H2 and CO2 in ethanol stem reforming reaction in the range of 390-480 °C. The drop of ethanol conversion and changes of selectivity with the time-on-stream were observed. An increase of reaction temperature led to intensification of deactivation phenomena. TEM studies evidenced coexistence of Co and CoOx nanoparticles formed under ethanol steam reforming conditions, partially covered by filamentous and encapsulating carbonaceous deposits.
NASA Astrophysics Data System (ADS)
Das, Kuheli; Datta, Amitabha; Pevec, Andrej; Mane, Sandeep B.; Rameez, Mohammad; Garribba, Eugenio; Akitsu, Takashiro; Tanka, Shinnosuke
2018-01-01
The cobalt(III) derivative [Co3(sip)4(bipy)2(H2O)10][Co(bipy)2(H2O)4]3(sip)2·20H2O (1) has been hydro(solvo) thermally synthesized by combining sodium 5-sulfoisophthalate (sipH2Na) as organic linker, divalent cobalt nitrate hexahydrate as metal salt and the flexible N-donor ancillary ligand bipy (4,4‧-bipyridine). Compound 1 is an ionic solid consisting of both cobalt containing cations and anions and also in addition 5-sulfoisophthalate anions. Cobalt containing cations in the crystal structure are mononuclear complex while cobalt containing anion is a discrete trinuclear species. The π-π interaction present in 1 results in chain supramolecular structure. The encapsulation of the cobalt compound displays a moderate luminescent property. On temperature dependent magnetic study, it is revealed that the corresponding effective magnetic moment is 5.27 B.M. at 300 K, which suggests isolated Co(III) species with S = 2 (theoretical value is 4.90 B M.) and thus 1 shows a rare paramagnetic behavior.
Amo-Ochoa, Pilar; Alexandre, Simone S; Hribesh, Samira; Galindo, Miguel A; Castillo, Oscar; Gómez-García, Carlos J; Pike, Andrew R; Soler, José M; Houlton, Andrew; Zamora, Félix; Harrington, Ross W; Clegg, William
2013-05-06
In this work we have synthetized and characterized by X-ray diffraction five cobalt complexes with 6-thioguanine (6-ThioGH), 6-thioguanosine (6-ThioGuoH), or 2'-deoxy-6-thioguanosine (2'-d-6-ThioGuoH) ligands. In all cases, these ligands coordinate to cobalt via N7 and S6 forming a chelate ring. However, independently of reagents ratio, 6-ThioGH provided monodimensional cobalt(II) coordination polymers, in which the 6-ThioG(-) acts as bridging ligand. However, for 2'-d-6-ThioGuoH and 6-ThioGuoH, the structure directing effect of the sugar residue gives rise to mononuclear cobalt complexes which form extensive H-bond interactions to generate 3D supramolecular networks. Furthermore, with 2'-d-6-ThioGuoH the cobalt ion remains in the divalent state, whereas with 6-ThioGuoH oxidation occurs and Co(III) is found. The electrical and magnetic properties of the coordination polymers isolated have been studied and the results discussed with the aid of DFT calculations, in the context of molecular wires.
Kim, Ji Eun; Lim, Joonwon; Lee, Gil Yong; Choi, Sun Hee; Maiti, Uday Narayan; Lee, Won Jun; Lee, Ho Jin; Kim, Sang Ouk
2016-01-27
Electrochemical oxygen redox reactions are the crucial elements for energy conversion and storage including fuel cells and metal air batteries. Despite tremendous research efforts, developing high-efficient, low-cost, and durable bifunctional oxygen catalysts remains a major challenge. We report a new class of hybrid material consisting of subnanometer thick amorphous cobalt hydroxide anchored on NCNT as a durable ORR/OER bifunctional catalyst. Although amorphous cobalt species-based catalysts are known as good OER catalysts, hybridizing with NCNT successfully enhanced ORR activity by promoting a 4e reduction pathway. Abundant charge carriers in amorphous cobalt hydroxide are found to trigger the superior OER activity with high current density and low Tafel slope as low as 36 mV/decade. A remarkably high OER turnover frequency (TOF) of 2.3 s(-1) at an overpotential of 300 mV was obtained, one of the highest values reported so far. Moreover, the catalytic activity was maintained over 120 h of cycling. The unique subnanometer scale morphology of amorphous hydroxide cobalt species along with intimate cobalt species-NCNT interaction minimizes the deactivation of catalyst during prolonged repeated cycles.
Mei, Ruhuai; Sauermann, Nicolas; Oliveira, João C A; Ackermann, Lutz
2018-06-27
Electrochemical oxidative C-H/N-H activations have been accomplished with a versatile cobalt catalyst in terms of [4 + 2] annulations of internal alkynes. The electro-oxidative C-H activation manifold proved viable with an undivided cell setup under exceedingly mild reaction conditions at room temperature using earth-abundant cobalt catalysts. The electrochemical cobalt catalysis prevents the use of transition metal oxidants in C-H activation catalysis, generating H 2 as the sole byproduct. Detailed mechanistic studies provided strong support for a facile C-H cobaltation by an initially formed cobalt(III) catalyst. The subsequent alkyne migratory insertion was interrogated by mass spectrometry and DFT calculations, providing strong support for a facile C-H activation and the formation of a key seven-membered cobalta(III) cycle in a regioselective fashion. Key to success for the unprecedented use of internal alkynes in electrochemical C-H/N-H activations was represented by the use of N-2-pyridylhydrazides, for which we developed a traceless electrocleavage strategy by electroreductive samarium catalysis at room temperature.
Synthesis and properties of precipitated cobalt ferrite nanoparticles
NASA Astrophysics Data System (ADS)
Ristic, Mira; Krehula, Stjepko; Reissner, Michael; Jean, Malick; Hannoyer, Beatrice; Musić, Svetozar
2017-07-01
The formation and properties of cobalt ferrite were investigated with XRD, FT-IR, FE-SEM, Mössbauer and magnetometry. Cobalt ferrite samples were prepared (a) by combining coprecipitation Co(OH)2/2Fe(OH)3, using NaOH between pH 5.2 and 11.4 and autoclaving, and (b) by autoclaving the Co(OH)2/2Fe(OH)3 coprecipitate in a very strong alkaline medium. XRD and FE SEM showed that both CoFe2O4 crystallites and particles were in the nanosize range. The FT-IR spectra were typical of spinel ferrites. Cobalt ferrite precipitated at pH 7.2 and at 11.4 contained a small fraction of α-Fe2O3, whereas in the sample precipitated at pH 11.4 a very small amount (traces) of α-FeOOH were detected by FT-IR, additionally. Parameters obtained by Mössbauer spectroscopy suggested a structural migration of cobalt and iron ions in prepared cobalt ferrite spinels with the prolonged time of autoclaving. Magnetic measurements showed the magnetic behaviour typical of spinel ferrite nanoparticles.
Physiological Remediation of Cobalt Ferrite Nanoparticles by Ferritin
Volatron, Jeanne; Kolosnjaj-Tabi, Jelena; Javed, Yasir; Vuong, Quoc Lam; Gossuin, Yves; Neveu, Sophie; Luciani, Nathalie; Hémadi, Miryana; Carn, Florent; Alloyeau, Damien; Gazeau, Florence
2017-01-01
Metallic nanoparticles have been increasingly suggested as prospective therapeutic nanoplatforms, yet their long-term fate and cellular processing in the body is poorly understood. Here we examined the role of an endogenous iron storage protein – namely the ferritin – in the remediation of biodegradable cobalt ferrite magnetic nanoparticles. Structural and elemental analysis of ferritins close to exogenous nanoparticles within spleens and livers of mice injected in vivo with cobalt ferrite nanoparticles, suggests the intracellular transfer of degradation-derived cobalt and iron, entrapped within endogenous protein cages. In addition, the capacity of ferritin cages to accommodate and store the degradation products of cobalt ferrite nanoparticles was investigated in vitro in the acidic environment mimicking the physiological conditions that are present within the lysosomes. The magnetic, colloidal and structural follow-up of nanoparticles and proteins in the lysosome-like medium confirmed the efficient remediation of nanoparticle-released cobalt and iron ions by ferritins in solution. Metal transfer into ferritins could represent a quintessential process in which biomolecules and homeostasis regulate the local degradation of nanoparticles and recycle their by-products. PMID:28067263
Influence of silicon on friction and wear of iron-cobalt alloys
NASA Technical Reports Server (NTRS)
Buckley, D. H.; Brainard, W. A.
1972-01-01
Sliding friction and wear experiments were conducted with ternary ordered alloys of iron and cobalt containing various amounts of silicon to 5 weight percent. The friction and wear of these alloys were compared to those for binary iron-cobalt alloys in the ordered and disordered states and to those for the conventionally used bearing material, 440-C. Environments in which experiments were conducted included air, argon, and 0.25percent stearic acid in hexadecane. Results indicate that a ternary iron - cobalt - 5-percent-silicon alloy exhibits lower friction and wear than the simple binary iron-cobalt alloy. It exhibits lower wear than 440-C in all three environments. Friction was lower for the alloy in argon than in air. Auger analysis of the surface of the ternary alloy indicated segregation of silicon at the surface as a result of sliding.
Cobalt sorption onto anaerobic granular sludge: isotherm and spatial localization analysis.
van Hullebusch, Eric D; Gieteling, Jarno; Zhang, Min; Zandvoort, Marcel H; Daele, Wim Van; Defrancq, Jacques; Lens, Piet N L
2006-01-24
This study investigated the effect of different feeding regimes on the cobalt sorption capacity of anaerobic granular sludge from a full-scale bioreactor treating paper mill wastewater. Adsorption experiments were done with non-fed granules in monometal (only Co) and competitive conditions (Co and Ni in equimolar concentrations). In order to modify the extracellular polymeric substances and sulfides content of the granules, the sludge was fed for 30 days with glucose (pH 7, 30 degrees C, organic loading rate=1.2 g glucose l(-1) day-1) in the presence (COD/SO4(2-)=1) or absence of sulfate. The partitioning of the sorbed cobalt between the exchangeable, carbonates, organic matter/sulfides and residual fractions was determined using a sequential extraction procedure (modified Tessier). Experimental equilibrium sorption data for cobalt were analysed by the Langmuir, Freundlich and Redlich-Peterson isotherm equations. The total Langmuir maximal sorption capacity of the sludge fed with glucose and sulfate loaded with cobalt alone displayed a significantly higher maximal cobalt sorption (Qmax =18.76 mg g-1 TSS) than the sludge fed with glucose alone (Qmax =13.21 mg g-1 TSS), essentially due to an increased sorption capacity of the exchangeable (30-107%) and organic/sulfides fractions (70-30%). Environmental scanning electron microscopy coupled with an energy dispersive X-ray analysis of granular cross-sections showed that mainly iron minerals (i.e. iron sulfides) were involved in the cobalt accumulation. Moreover, the sorbed cobalt was mainly located at the edge of the granules. The sorption characteristics of the exchangeable and carbonates fractions fitted well to the Redlich-Peterson model (intermediate multi-layer sorption behaviour), whereas the sorption characteristics of the organic matter/sulfides and residual fractions fitted well to the Langmuir model (monolayer sorption behaviour). The organic matter/sulfides fraction displayed the highest affinity for cobalt for the three sludge types investigated.
Dokpikul, Thanittra; Chaoprasid, Paweena; Saninjuk, Kritsakorn; Sirirakphaisarn, Sirin; Johnrod, Jaruwan; Nookabkaew, Sumontha; Mongkolsuk, Skorn
2016-01-01
ABSTRACT The Agrobacterium tumefaciens C58 genome harbors an operon containing the dmeR (Atu0890) and dmeF (Atu0891) genes, which encode a transcriptional regulatory protein belonging to the RcnR/CsoR family and a metal efflux protein belonging to the cation diffusion facilitator (CDF) family, respectively. The dmeRF operon is specifically induced by cobalt and nickel, with cobalt being the more potent inducer. Promoter-lacZ transcriptional fusion, an electrophoretic mobility shift assay, and DNase I footprinting assays revealed that DmeR represses dmeRF transcription through direct binding to the promoter region upstream of dmeR. A strain lacking dmeF showed increased accumulation of intracellular cobalt and nickel and exhibited hypersensitivity to these metals; however, this strain displayed full virulence, comparable to that of the wild-type strain, when infecting a Nicotiana benthamiana plant model under the tested conditions. Cobalt, but not nickel, increased the expression of many iron-responsive genes and reduced the induction of the SoxR-regulated gene sodBII. Furthermore, control of iron homeostasis via RirA is important for the ability of A. tumefaciens to cope with cobalt and nickel toxicity. IMPORTANCE The molecular mechanism of the regulation of dmeRF transcription by DmeR was demonstrated. This work provides evidence of a direct interaction of apo-DmeR with the corresponding DNA operator site in vitro. The recognition site for apo-DmeR consists of 10-bp AT-rich inverted repeats separated by six C bases (5′-ATATAGTATACCCCCCTATAGTATAT-3′). Cobalt and nickel cause DmeR to dissociate from the dmeRF promoter, which leads to expression of the metal efflux gene dmeF. This work also revealed a connection between iron homeostasis and cobalt/nickel resistance in A. tumefaciens. PMID:27235438
NASA Astrophysics Data System (ADS)
Fu, Lei; Liu, Yuling; Wang, Chenwei; Han, Linan
2018-04-01
Cobalt has become a new type of barrier material with its unique advantages since the copper-interconnects in the great-large scale integrated circuits (GLSI) into 10 nm and below technical nodes, but cobalt and copper have severe galvanic corrosion during chemical–mechanical flattening. The effect of 1,2,4-triazole on Co/Cu galvanic corrosion in alkaline slurry and the control of rate selectivity of copper and cobalt were investigated in this work. The results of electrochemical experiments and polishing experiments had indicated that a certain concentration of 1,2,4-triazole could form a layer of insoluble and dense passive film on the surface of cobalt and copper, which reduced the corrosion potential difference between cobalt and copper. Meantime, the removal rate of cobalt and copper could be effectively controlled according to demand during the CMP process. When the study optimized slurry was composed of 0.5 wt% colloidal silica, 0.1 %vol. hydrogen peroxide, 0.05 wt% FA/O, 345 ppm 1,2,4-triazole, cobalt had higher corrosion potential than copper and the galvanic corrosion could be reduced effectively when the corrosion potential difference between them decreased to 1 mV and the galvanic corrosion current density reached 0.02 nA/cm2. Meanwhile, the removal rate of Co was 62.396 nm/min, the removal rate of Cu was 47.328 nm/min, so that the removal rate ratio of cobalt and copper was 1.32 : 1, which was a good amendment to the dishing pits. The contact potential corrosion of Co/Cu was very weak, which could be better for meeting the requirements of the barrier CMP. Project supported by the Major National Science and Technology Special Projects (No. 2016ZX02301003-004-007), the Natural Science Foundation of Hebei Province, China (No. F2015202267), and the Outstanding Young Science and Technology Innovation Fund of Hebei University of Technology (No. 2015007).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalpana, S.; Dhananjay, S.; Anju, B.
2008-09-15
This study reports the efficacy of cobalt preconditioning in preventing hypobaric hypoxia induced vascular leakage (an indicator of cerebral edema) using male Sprague-Dawley rats as model system. Exposure of animals to hypobaric hypoxia led to a significant increase in vascular leakage, reactive oxygen species (ROS), nitric oxide (NO), and vascular endothelial growth factor (VEGF) levels. There was a marked increase in Nuclear Factor {kappa}B (NF{kappa}B) DNA binding activity and levels of pro-inflammatory cytokines such as Monocyte chemoattractant protein (MCP-1), Interferon-{gamma} (IFN-{gamma}), Interleukin-1 (IL-1), and Tumor Necrosis Factor-{alpha} (TNF-{alpha}) and cell adhesion molecules such as Vascular Cell Adhesion Molecule-1 (VCAM-1), andmore » P-selectin. Chemical preconditioning by cobalt for 7 days (12.5 mg Co/kg b.w., oral) significantly attenuated cerebral vascular leakage and the expression of inflammatory mediators induced by hypoxia. Administration of NF{kappa}B inhibitor, curcumin (50 mg/kg b.w.; i.p.) appreciably inhibited hypoxia induced vascular leakage indicating the involvement of NF{kappa}B in causing vascular leakage. Interestingly, cobalt when administered at 12.5 mg Co/kg b.w. (i.p.), 1 h before hypoxia could not prevent the vascular leakage indicating that cobalt per se did not have an effect on NF{kappa}B. The lower levels of NF{kappa}B observed in the brains of cobalt administered animals might be due to higher levels of antioxidant and anti-inflammatory proteins (hemeoxygenase-1 and metallothionein). To conclude cobalt preconditioning inhibited hypobaric hypoxia induced cerebral vascular leakage by lowering NF{kappa}B DNA binding activity and its regulated pro-inflammatory mediators. This is contemplated to be mediated by cobalt induced reduction in ROS/NO and increase in HO-1 and MT.« less
Veasey, Sigrid C.; Lear, Jessica; Zhu, Yan; Grinspan, Judith B.; Hare, Dominic J.; Wang, SiHe; Bunch, Dustin; Doble, Philip A.; Robinson, Stephen R.
2013-01-01
Study Objectives: Exposure to the variable oxygenation patterns in obstructive sleep apnea (OSA) causes oxidative stress within the brain. We hypothesized that this stress is associated with increased levels of redox-active metals and white matter injury. Design: Participants were randomly allocated to a control or experimental group (single independent variable). Setting: University animal house. Participants: Adult male C57BL/6J mice. Interventions: To model OSA, mice were exposed to long-term intermittent hypoxia (LTIH) for 10 hours/day for 8 weeks or sham intermittent hypoxia (SIH). Measurements and Results: Laser ablation-inductively coupled plasma-mass spectrometry was used to quantitatively map the distribution of the trace elements cobalt, copper, iron, and zinc in forebrain sections. Control mice contained 62 ± 7 ng cobalt/g wet weight, whereas LTIH mice contained 5600 ± 600 ng cobalt/g wet weight (P < 0.0001). Other elements were unchanged between conditions. Cobalt was concentrated within white matter regions of the brain, including the corpus callosum. Compared to that of control mice, the corpus callosum of LTIH mice had significantly more endoplasmic reticulum stress, fewer myelin-associated proteins, disorganized myelin sheaths, and more degenerated axon profiles. Because cobalt is an essential component of vitamin B12, serum methylmalonic acid (MMA) levels were measured. LTIH mice had low MMA levels (P < 0.0001), indicative of increased B12 activity. Conclusions: Long-term intermittent hypoxia increases brain cobalt, predominantly in the white matter. The increased cobalt is associated with endoplasmic reticulum stress, myelin loss, and axonal injury. Low plasma methylmalonic acid levels are associated with white matter injury in long-term intermittent hypoxia and possibly in obstructive sleep apnea. Citation: Veasey SC; Lear J; Zhu Y; Grinspan JB; Hare DJ; Wang S; Bunch D; Doble PA; Robinson SR. Long-term intermittent hypoxia elevates cobalt levels in the brain and injures white matter in adult mice. SLEEP 2013;36(10):1471-1481. PMID:24082306
ALHAT COBALT: CoOperative Blending of Autonomous Landing Technology
NASA Technical Reports Server (NTRS)
Carson, John M.
2015-01-01
The COBALT project is a flight demonstration of two NASA ALHAT (Autonomous precision Landing and Hazard Avoidance Technology) capabilities that are key for future robotic or human landing GN&C (Guidance, Navigation and Control) systems. The COBALT payload integrates the Navigation Doppler Lidar (NDL) for ultraprecise velocity and range measurements with the Lander Vision System (LVS) for Terrain Relative Navigation (TRN) position estimates. Terrestrial flight tests of the COBALT payload in an open-loop and closed-loop GN&C configuration will be conducted onboard a commercial, rocket-propulsive Vertical Test Bed (VTB) at a test range in Mojave, CA.
Shimoda, Tomoe; Morishima, Takeshi; Kodama, Koichi; ...
2018-04-26
Trigonal-bipyramidal Co(II) complexes are used for photochemical carbon dioxide (CO 2) reduction with Ru(bpy) 3 2+ as a photosensitizer, tri-p-tolylamine (TTA) as a reversible quencher, and triethylamine (TEA) as a sacrificial electron donor to produce carbon monoxide and dihydrogen. Here, the CO 2 reduction is slow because of the large structural changes, spin flipping in the cobalt catalytic intermediates, and an uphill reaction for reduction to catalytically active Co(0) by the photoproduced [Ru(bpy) 3] +.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shimoda, Tomoe; Morishima, Takeshi; Kodama, Koichi
Trigonal-bipyramidal Co(II) complexes are used for photochemical carbon dioxide (CO 2) reduction with Ru(bpy) 3 2+ as a photosensitizer, tri-p-tolylamine (TTA) as a reversible quencher, and triethylamine (TEA) as a sacrificial electron donor to produce carbon monoxide and dihydrogen. Here, the CO 2 reduction is slow because of the large structural changes, spin flipping in the cobalt catalytic intermediates, and an uphill reaction for reduction to catalytically active Co(0) by the photoproduced [Ru(bpy) 3] +.
Porous Cobalt Phosphide Polyhedrons with Iron Doping as an Efficient Bifunctional Electrocatalyst.
Li, Feng; Bu, Yunfei; Lv, Zijian; Mahmood, Javeed; Han, Gao-Feng; Ahmad, Ishfaq; Kim, Guntae; Zhong, Qin; Baek, Jong-Beom
2017-10-01
Iron (Fe)-doped porous cobalt phosphide polyhedrons are designed and synthesized as an efficient bifunctional electrocatalyst for both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). The synthesis strategy involves one-step route for doping foreign metallic element and forming porous cobalt phosphide polyhedrons. With varying doping levels of Fe, the optimized Fe-doped porous cobalt phosphide polyhedron exhibits significantly enhanced HER and OER performances, including low onset overpotentials, large current densities, as well as small Tafel slopes and good electrochemical stability during HER and OER. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The Effects of Pulse Current Plating on the Mechanical Properties of Cobalt and Cobalt-Al2O3
1977-04-01
258. Branson cobalt deposits as a function ol cu rrent pulses superImposed on Ultrasonic Corp.) was used tominimi,eAl ..0 agglomeration in a back...intens ify nucleation and growth processes leading to a Iheauthors wishtot hank Mr. Richard Carte rforprepar ingthe re finement in grain structure...i N BOX CM , I)UKE STATION ATTN : A~.1\\5T..SD ATTN : RI)Rl)- IP L 220 “III SIR E !~T N .E . Du RHAM , NC 27706 C1LARI U l’Tl Sv ILI.I. , VA 22901 Cl)R
Relating FTS Catalyst Properties to Performance
NASA Technical Reports Server (NTRS)
Ma, Wenping; Ramana Rao Pendyala, Venkat; Gao, Pei; Jermwongratanachai, Thani; Jacobs, Gary; Davis, Burton H.
2016-01-01
During the reporting period June 23, 2011 to August 31, 2013, CAER researchers carried out research in two areas of fundamental importance to the topic of cobalt-based Fischer-Tropsch Synthesis (FTS): promoters and stability. The first area was research into possible substitute promoters that might be used to replace the expensive promoters (e.g., Pt, Re, and Ru) that are commonly used. To that end, three separate investigations were carried out. Due to the strong support interaction of ?-Al2O3 with cobalt, metal promoters are commonly added to commercial FTS catalysts to facilitate the reduction of cobalt oxides and thereby boost active surface cobalt metal sites. To date, the metal promoters examined have been those up to and including Group 11. Because two Group 11 promoters (i.e., Ag and Au) were identified to exhibit positive impacts on conversion, selectivity, or both, research was undertaken to explore metals in Groups 12 - 14. The three metals selected for this purpose were Cd, In, and Sn. At a higher loading of 25%Co on alumina, 1% addition of Cd, In, or Sn was found to-on average-facilitate reduction by promoting a heterogeneous distribution of cobalt consisting of larger lesser interacting cobalt clusters and smaller strongly interacting cobalt species. The lesser interacting species were identified in TPR profiles, where a sharp low temperature peak occurred for the reduction of larger, weakly interacting, CoO species. In XANES, the Cd, In, and Sn promoters were found to exist as oxides, whereas typical promoters (e.g., Re, Ru, Pt) were previously determined to exist in an metallic state in atomic coordination with cobalt. The larger cobalt clusters significantly decreased the active site density relative to the unpromoted 25%Co/Al2O3 catalyst. Decreasing the cobalt loading to 15%Co eliminated the large non-interacting species. The TPR peak for reduction of strongly interacting CoO in the Cd promoted catalyst occurred at a measurably lower temperature than in the unpromoted catalyst. Nevertheless, the Co clusters remained slightly larger, on average, in comparison with the unpromoted 15%Co/Al2O3 reference catalyst. None of the promoted catalysts (i.e., with Cd, In, or Sn) exhibited surface Co0 site densities higher than that of the unpromoted catalyst. In activity testing, the activities were even much lower than what was expected from the H2-TPD results. Two possible explanations were proposed: (1) the promoters may be located on the surfaces of cobalt particles, blocking surface Co0 but being able to desorb hydrogen or (2) the promoters may facilitate Co oxidation during FTS, as previously observed by Huffman and coworkers when K was added to cobalt catalysts.
NASA Astrophysics Data System (ADS)
Aminatun, Putri, N. S. Efinda; Indriani, Arista; Himawati, Umi; Hikmawati, Dyah; Suhariningsih
2014-09-01
Cobalt-based alloys are widely used as total hip and knee replacements because of their excellent properties, such as corrosion resistance, fatigue strength and biocompatibility. In this work, cobalt alloys with variation of Cr (28.5; 30; 31.5; 33, and 34.5% wt) have been synthesized by smelting method began with the process of compaction, followed by smelting process using Tri Arc Melting Furnace at 200A. Continued by homogenization process at recrystallization temperature (1250° C) for 3 hours to allow the atoms diffuses and transform into γ phase. The next process is rolling process which is accompanied by heating at 1200° C for ± 15 minutes and followed by quenching. This process is repeated until the obtained thickness of ± 1 mm. The evaluated material properties included microstructure, surface morphology, and hardness value. It was shown that microstructure of cobalt alloys with variation of Cr is dominant by γ phase, thus making the entire cobalt alloys have high hardness. It was also shown from the surface morphology of entire cobalt alloys sample indicated the whole process of synthesis that had good solubility were at flat surface area. Hardness value test showed all of cobalt alloys sample had high hardness, just variation of 33% Cr be in the range of ASTMF75, it were 345,24 VHN which is potential to be applied as an implant prosthesis.
Effect of electrical spot welding on load deflection rate of orthodontic wires.
Alavi, Shiva; Abrishami, Arezoo
2015-01-01
One of the methods used for joining metals together is welding, which can be carried out using different techniques such as electric spot welding. This study evaluated the effect of electric spot welding on the load deflection rate of stainless steel and chromium-cobalt orthodontic wires. In this experimental-laboratory study, load deflection rate of 0.016 × 0.022 inch stainless steel and chromium cobalt wires were evaluated in five groups (n =18): group one: Stainless steel wires, group two: chromium-cobalt wires, group three: stainless steel wires welded to stainless steel wires, group four: Stainless steel wires welded to chromium-cobalt wires, group five: chromium-cobalt wire welded to chromium-cobalt wires. Afterward, the forces induced by the samples in 0.5 mm, 1 mm, 1.5 mm deflection were measured using a universal testing machine. Then mean force measured for each group was compared with other groups. The data were analyzed using repeated measure analysis of variance (ANOVA), one-way ANOVA, and paired t-test by the SPSS software. The significance level was set as 0.05. The Tukey test showed that there were significant differences between the load deflection rates of welded groups compared to control ones (P < 0.001). Considering the limitation of this study, the electric spot welding process performed on stainless steel and chromium-cobalt wires increased their load deflection rates.
Cobalt compounds as antidotes for hydrocyanic acid
Evans, C. Lovatt
1964-01-01
The antidotal potency of a cobalt salt (acetate), of dicobalt edetate, of hydroxocobalamin and of cobinamide against hydrocyanic acid was examined mainly on mice and rabbits. All the compounds were active antidotes for up to twice the LD50; under some conditions for larger doses. The most successful was cobalt acetate for rabbits (5×LD50), which was effective at a molar cyanide/cobalt (CN/Co) ratio of 5, but had as a side-effect intense purgation. Hydroxocobalamin was irregular in action, but on the whole was most effective for mice (4.5×LD50 at a molar ratio of 1), and had no apparent side effects. Dicobalt edetate, at molar ratios of up to 2, was more effective for rabbits (3×LD50) than for mice (2×LD50), but had fewer side effects than cobalt acetate. The effect of thiosulphate was to augment the efficacy of dicobalt edetate and, in mice, that of hydroxocobalamin; but, apparently, in rabbits, to reduce that of hydroxocobalamin. Cobinamide, at a molar ratio of 1, was slightly more effective than hydroxocobalamin on rabbits and also less irregular in its action. Cobalt acetate by mouth was effective against orally administered hydrocyanic acid. The oxygen uptake of the body, reduced by cyanide, is rapidly reinstated when one of the cobalt antidotes has been successfully administered. PMID:14256807
[Determination of tungsten and cobalt in the air of workplace by ICP-OES].
Zhang, J; Ding, C G; Li, H B; Song, S; Yan, H F
2017-08-20
Objective: To establish the inductively coupled plasma optical emission spectrometry (ICP-OES) method for determination of cobalt and tungsten in the air of workplace. Methods: The cobalt and tungsten were collected by filter membrane and then digested by nitric acid, inductively coupled plasma optical emission spectrometry (ICP-OES) was used for the detection of cobalt and tungsten. Results: The linearity of tungsten was good at the range of 0.01-1 000 μg/ml with a correlation coefficient of 0.999 9, the LOD and LOQ were 0.006 7 μg/ml and 0.022 μg/ml, respectively. The recovery was ranged from 98%-101%, the RSD of intra-and inter-batch precision were 1.1%-3.0% and 2.1%-3.8%, respectively. The linearity of cobalt was good at the range of 0.01-100 μg/ml with a correlation coefficient of 0.999 9, the LOD and LOQ were 0.001 2 μg/ml and 0.044 μg/ml, respectively. The recovery was ranged from 95%-97%, the RSD of intra-and inter-batch precision were 1.1%-2.4% and 1.1%-2.9%, respectively. The sampling efficiency of tungsten and cobalt were higher than 94%. Conclusion: The linear range, sensitivity and precision of the method was suitable for the detection of tungsten and cobalt in the air of workplace.
Adams, E J; Warrington, A P
2008-04-01
The simplicity of cobalt units gives them the advantage of reduced maintenance, running costs and downtime when compared with linear accelerators. However, treatments carried out on such units are typically limited to simple techniques. This study has explored the use of cobalt beams for conformal and intensity-modulated radiotherapy (IMRT). Six patients, covering a range of treatment sites, were planned using both X-ray photons (6/10 MV) and cobalt-60 gamma rays (1.17 and 1.33 MeV). A range of conformal and IMRT techniques were considered, as appropriate. Conformal plans created using cobalt beams for small breast, meningioma and parotid cases were found to compare well with those created using X-ray photons. By using additional fields, acceptable conformal plans were also created for oesophagus and prostate cases. IMRT plans were found to be of comparable quality for meningioma, parotid and thyroid cases on the basis of dose-volume histogram analysis. We conclude that it is possible to plan high-quality radical radiotherapy treatments for cobalt units. A well-designed beam blocking/compensation system would be required to enable a practical and efficient alternative to multileaf collimator (MLC)-based linac treatments to be offered. If cobalt units were to have such features incorporated into them, they could offer considerable benefits to the radiotherapy community.
Understanding the roles of the strategic element cobalt in nickel base superalloys
NASA Technical Reports Server (NTRS)
Stephens, J. R.; Dreshfield, R. L.
1983-01-01
The United States imports over 90% of its cobalt, chromium, columbium, and tantalum, all key elements in high temperature nickel base superalloys for aircraft gas turbine disks and airfoils. Research progress in understanding the roles of cobalt and some possible substitutes effects on microstructure, mechanical properties, and environmental resistance of turbine alloys is discussed.
Microwave Mapping Demonstration Using the Thermochromic Cobalt Chloride Equilibrium
ERIC Educational Resources Information Center
Nguyen, Vu D.; Birdwhistell, Kurt R.
2014-01-01
An update to the thermochromic cobalt(II) chloride equilibrium demonstration is described. Filter paper that has been saturated with aqueous cobalt(II) chloride is heated for seconds in a microwave oven, producing a color change. The resulting pink and blue map is used to colorfully demonstrate Le Châtelier's principle and to illuminate the…
75 FR 70583 - Cobalt Lithium Manganese Nickel Oxide; Withdrawal of Significant New Use Rule
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-18
... 2070-AB27 Cobalt Lithium Manganese Nickel Oxide; Withdrawal of Significant New Use Rule AGENCY... chemical substance identified as cobalt lithium manganese nickel oxide (CAS No. 182442-95-1), which was the... lithium manganese nickel oxide (PMN P-04-269; CAS No. 182442-95-1) at 40 CFR 721.10201 because the Agency...
Method of making a light weight battery plaque
NASA Technical Reports Server (NTRS)
Reid, M. A.; Post, R. E.; Soltis, D. G. (Inventor)
1984-01-01
A nickel plaque which may be coated with a suitable metal or compound to make an electrode for a fuel cell or battery is fabricated by directing nickel sensitizer, catalyst and plating solutions through a porous plastic substrate in the order named and at prescribed temperatures and flow rates. A boride compound dissolved in the plating solution decreases the electrical resistance of the plaque. Certain substrates may require treatment in an alkali solution to dissolve filler materials thereby increasing porosity to a required 65%.
NASA Technical Reports Server (NTRS)
Divecha, A. P.
1974-01-01
Attempts made to develop processes capable of producing metal composites in structural shapes and sizes suitable for space applications are described. The processes must be continuous and promise to lower fabrication costs. Special attention was given to the aluminum boride (Al/b) composite system. Results show that despite adequate temperature control, the consolidation characteristics did not improve as expected. Inadequate binder removal was identified as the cause responsible. An Al/c (aluminum-graphite) composite was also examined.
NASA Technical Reports Server (NTRS)
Misra, Ajay K.
1990-01-01
Aluminide-base intermetallic matrix composites are currently being considered as potential high-temperature materials. One of the key factors in the selection of a reinforcement material is its chemical stability in the matrix. In this study, chemical interactions between iron aluminides and several potential reinforcement materials, which include carbides, oxides, borides, and nitrides, are analyzed from thermodynamic considerations. Several chemically compatible reinforcement materials are identified for the iron aluminides with Al concentrations ranging from 40 to 50 at. pct.
The Physics and Chemistry of carbides, Nitrides and Borides. Volume 185
1990-01-01
and C-B-C chains [15,17]. Clearly, the use of boron-rich solids as electronic materials will place new demands on the quality of materials. In this...first heated in a pyrolytic boron nitride (PBN) crucible ( Union Carbide Corp.) under high vacuum (< 50 mTorr) to 1900°C. This removed surface...contamination of the sample. The powders were loaded into a graphite die with a high-purity BN die liner ( Union Carbide Grade HBC) with inner diameter of 3/8
Alumina-based ceramic composite
Alexander, K.B.; Tiegs, T.N.; Becher, P.F.; Waters, S.B.
1996-07-23
An improved ceramic composite comprising oxide ceramic particulates, nonoxide ceramic particulates selected from the group consisting of carbides, borides, nitrides of silicon and transition metals and mixtures thereof, and a ductile binder selected from the group consisting of metallic, intermetallic alloys and mixtures thereof is described. The ceramic composite is made by blending powders of the ceramic particulates and the ductile to form a mixture and consolidating the mixture of under conditions of temperature and pressure sufficient to produce a densified ceramic composite. 5 figs.
Anti-scratch AlMgB14 Gorilla® Glass coating
NASA Astrophysics Data System (ADS)
Putrolaynen, V. V.; Grishin, A. M.; Rigoev, I. V.
2017-10-01
Hard aluminum-magnesium boride (BAM) films were fabricated onto Corning® Gorilla® Glass by radio-frequency magnetron sputtering of a single stoichiometric AlMgB14 target. BAM films exhibit a Vickers hardness from 10 to 30 GPa and a Young's modulus from 80 to 160 GPa depending on applied loading forces. Deposited hard coating increases the critical load at which glass substrate cracks. The adhesion energy of BAM films on Gorilla® Glass is 6.4 J/m2.
NASA Astrophysics Data System (ADS)
Noble, Abigail E.; Saito, Mak A.; Maiti, Kanchan; Benitez-Nelson, Claudia R.
2008-05-01
The vertical distributions of cobalt, iron, and manganese in the water column were studied during the E-Flux Program (E-Flux II and III), which focused on the biogeochemistry of cold-core cyclonic eddies that form in the lee of the Hawaiian Islands. During E-Flux II (January 2005) and E-Flux III (March 2005), 17 stations were sampled for cobalt ( n=147), all of which demonstrated nutrient-like depletion in surface waters. During E-Flux III, two depth profiles collected from within a mesoscale cold-core eddy, Cyclone Opal, revealed small distinct maxima in cobalt at ˜100 m depth and a larger inventory of cobalt within the eddy. We hypothesize that this was due to a cobalt concentrating effect within the eddy, where upwelled cobalt was subsequently associated with sinking particulate organic carbon (POC) via biological activity and was released at a depth coincident with nearly complete POC remineralization [Benitez-Nelson, C., Bidigare, R.R., Dickey, T.D., Landry, M.R., Leonard, C.L., Brown, S.L., Nencioli, F., Rii, Y.M., Maiti, K., Becker, J.W., Bibby, T.S., Black, W., Cai, W.J., Carlson, C.A., Chen, F., Kuwahara, V.S., Mahaffey, C., McAndrew, P.M., Quay, P.D., Rappe, M.S., Selph, K.E., Simmons, M.P., Yang, E.J., 2007. Mesoscale eddies drive increased silica export in the subtropical Pacific Ocean. Science 316, 1017-1020]. There is also evidence for the formation of a correlation between cobalt and soluble reactive phosphorus during E-Flux III relative to the E-Flux II cruise that we suggest is due to increased productivity, implying a minimum threshold of primary production below which cobalt-phosphate coupling does not occur. Dissolved iron was measured in E-Flux II and found in somewhat elevated concentrations (˜0.5 nM) in surface waters relative to the iron depleted waters of the surrounding Pacific [Fitzwater, S.E., Coale, K.H., Gordon, M.R., Johnson, K.S., Ondrusek, M.E., 1996. Iron deficiency and phytoplankton growth in the equatorial Pacific. Deep-Sea Research II 43 (4-6), 995-1015], possibly due to island effects associated with the iron-rich volcanic soil from the Hawaiian Islands and/or anthropogenic inputs. Distinct depth maxima in total dissolved cobalt were observed at 400-600 m depth, suggestive of the release of metals from the shelf area of comparable depth that surrounds these islands.
A Comparison of Blood Metal Ions in Total Hip Arthroplasty Using Metal and Ceramic Heads.
White, Peter B; Meftah, Morteza; Ranawat, Amar S; Ranawat, Chitranjan S
2016-10-01
In recent time, metal ion debris and adverse local tissue reaction have reemerged as an area of clinical concern with the use of large femoral heads after total hip arthroplasty (THA). Between June 2014 and January 2015, 60 patients with a noncemented THA using a titanium (titanium, molybdenum, zirconium, and iron alloy) femoral stem and a V40 trunnion were identified with a minimum 5-year follow-up. All THAs had a 32- or 36-mm metal (n = 30) or ceramic (n = 30) femoral head coupled with highly cross-linked polyethylene. Cobalt, chromium, and nickel ions were measured. Patients with metal heads had detectable cobalt and chromium levels. Cobalt levels were detectable in 17 (56.7%) patients with a mean of 2.0 μg/L (range: <1.0-10.8 μg/L). Chromium levels were detectable in 5 (16.7%) patients with a mean of 0.3 μg/L (range: <1.0-2.2 μg/L). All patients with a ceramic head had nondetectable cobalt and chromium levels. Cobalt and chromium levels were significantly higher with metal heads compared to ceramic heads (P < .01). Cobalt levels were significantly higher with 36-mm metal heads compared with 32-mm heads (P < .01). Seven patients with metal femoral heads had mild hip symptoms, 4 of whom had positive findings of early adverse local tissue reaction on magnetic resonance imaging. All ceramic THA was asymptomatic. The incidence and magnitude of cobalt and chromium levels is higher in metal heads compared to ceramic heads with this implant system (P < .01). Thirty-six millimeter metal femoral heads result in larger levels of cobalt compared with 32-mm metal heads. Copyright © 2016 Elsevier Inc. All rights reserved.
[Metallurgical differentiation of cobalt-chromium alloys for implants].
Holzwarth, U; Thomas, P; Kachler, W; Göske, J; Schuh, A
2005-10-01
Cobalt Chromium alloys are used in cemented total hip or knee arthroplasty as well as in metal-on-metal bearings in total hip arthroplasty. An increasing number of publications report about (allergic) reactions to wear particles of Cobalt Chromium alloys. Reactions to nickel are more frequent in comparison to Cobalt or Chromium particles. It is well known that different kinds of Cobalt Chromium alloys contain different amounts of alloying elements; nevertheless. The aim of the current work was to compare the different Cobalt Chromium alloys according to ASTM F or ISO standards in respect to the different alloying elements. Co28Cr6Mo casting alloys according to ASTM F 75 or ISO 5832-4 as well as forging alloy types according to ASTM F 799 and ISO 5832 such as Co20Cr15W10Ni, Co35Ni20Cr, Fe40Co20Cr10Ni, Co20Cr20Ni, and Co28Cr6Mo were analyzed in respect to their element content of Co, Cr, Ni, Mo, Fe, W, and Mn. In 1935 the Cobalt based alloy "Vitallium" Co30Cr5Mo basically used in the aircraft industry was introduced into medicine. The chemical composition of this alloy based on Cobalt showed 30 wt.% Chromium and 5 wt.% Molybdenum. The differentiation using alloy names showed no Nickel information in single alloy names. The information given about different alloys can lead to an unprecise evaluation of histopathological findings in respect to alloys or alloying constituents. Therefore, implant manufacturers should give the exact information about the alloys used and adhere to European law, Euronorm 93/42/EWG.
Selected aspects of the action of cobalt ions in the human body.
Czarnek, Katarzyna; Terpiłowska, Sylwia; Siwicki, Andrzej K
2015-01-01
Cobalt is widespread in the natural environment and can be formed as an effect of anthropogenic activity. This element is used in numerous industrial applications and nuclear power plants. Cobalt is an essential trace element for the human body and can occur in organic and inorganic forms. The organic form is a necessary component of vitamin B12 and plays a very important role in forming amino acids and some proteins in nerve cells, and in creating neurotransmitters that are indispensable for correct functioning of the organism. Its excess or deficiency will influence it unfavourably. Salts of cobalt have been applied in medicine in the treatment of anaemia, as well as in sport as an attractive alternative to traditional blood doping. Inorganic forms of cobalt present in ion form, are toxic to the human body, and the longer they are stored in the body, the more changes they cause in cells. Cobalt gets into the body in several ways: firstly, with food; secondly by the respiratory system; thirdly, by the skin; and finally, as a component of biomaterials. Cobalt and its alloys are fundamental components in orthopaedic implants and have been used for about 40 years. The corrosion of metal is the main problem in the construction of implants. These released metal ions may cause type IV inflammatory and hypersensitivity reactions, and alternations in bone modelling that lead to aseptic loosening and implant failure. The ions of cobalt released from the surface of the implant are absorbed by present macrophages, which are involved in many of the processes associated with phagocytose orthopaedic biomaterials particles and release pro-inflammatory mediators such as interleukin-1 (IL-1), interleukin-6 (IL-6), tumour necrosis factor α (TNF-α), and prostaglandin.
Selected aspects of the action of cobalt ions in the human body
Terpiłowska, Sylwia; Siwicki, Andrzej K.
2015-01-01
Cobalt is widespread in the natural environment and can be formed as an effect of anthropogenic activity. This element is used in numerous industrial applications and nuclear power plants. Cobalt is an essential trace element for the human body and can occur in organic and inorganic forms. The organic form is a necessary component of vitamin B12 and plays a very important role in forming amino acids and some proteins in nerve cells, and in creating neurotransmitters that are indispensable for correct functioning of the organism. Its excess or deficiency will influence it unfavourably. Salts of cobalt have been applied in medicine in the treatment of anaemia, as well as in sport as an attractive alternative to traditional blood doping. Inorganic forms of cobalt present in ion form, are toxic to the human body, and the longer they are stored in the body, the more changes they cause in cells. Cobalt gets into the body in several ways: firstly, with food; secondly by the respiratory system; thirdly, by the skin; and finally, as a component of biomaterials. Cobalt and its alloys are fundamental components in orthopaedic implants and have been used for about 40 years. The corrosion of metal is the main problem in the construction of implants. These released metal ions may cause type IV inflammatory and hypersensitivity reactions, and alternations in bone modelling that lead to aseptic loosening and implant failure. The ions of cobalt released from the surface of the implant are absorbed by present macrophages, which are involved in many of the processes associated with phagocytose orthopaedic biomaterials particles and release pro-inflammatory mediators such as interleukin-1 (IL-1), interleukin-6 (IL-6), tumour necrosis factor α (TNF-α), and prostaglandin. PMID:26557039
Obligacion, Jennifer V; Chirik, Paul J
2017-07-07
Studies into the mechanism of cobalt-catalyzed C(sp 2 )-H borylation of five-membered heteroarenes with pinacolborane (HBPin) as the boron source established the catalyst resting state as the trans -cobalt(III) dihydride boryl, ( iPr PNP)Co(H) 2 (BPin) ( iPr PNP = 2,6-( i Pr 2 PCH 2 ) 2 (C 5 H 3 N)), at both low and high substrate conversions. The overall first-order rate law and observation of a normal deuterium kinetic isotope effect on the borylation of benzofuran versus benzofuran-2- d 1 support H 2 reductive elimination from the cobalt(III) dihydride boryl as the turnover-limiting step. These findings stand in contrast to that established previously for the borylation of 2,6-lutidine with the same cobalt precatalyst, where borylation of the 4-position of the pincer occurred faster than the substrate turnover and arene C-H activation by a cobalt(I) boryl is turnover-limiting. Evaluation of the catalytic activity of different cobalt precursors in the C-H borylation of benzofuran with HBPin established that the ligand design principles for C- H borylation depend on the identities of both the arene and the boron reagent used: electron-donating groups improve catalytic activity of the borylation of pyridines and arenes with B 2 Pin 2 , whereas electron-withdrawing groups improve catalytic activity of the borylation of five-membered heteroarenes with HBPin. Catalyst deactivation by P-C bond cleavage from a cobalt(I) hydride was observed in the C-H borylation of arene substrates with C-H bonds that are less acidic than those of five-membered heteroarenes using HBPin and explains the requirement of B 2 Pin 2 to achieve synthetically useful yields with these arene substrates.
Biological and protein-binding studies of newly synthesized polymer-cobalt(III) complexes.
Vignesh, G; Pradeep, I; Arunachalam, S; Vignesh, S; Arthur James, R; Arun, R; Premkumar, K
2016-03-01
The polymer-cobalt(III) complexes, [Co(bpy)(dien)BPEI]Cl3 · 4H2O (bpy = 2,2'-bipyridine, dien = diethylentriamine, BPEI = branched polyethyleneimine) were synthesized and characterized. The interaction of these complexes with human serum albumin (HSA) and bovine serum albumin (BSA) was investigated under physiological conditions using various physico-chemical techniques. The results reveal that the fluorescence quenching of serum albumins by polymer-cobalt(III) complexes took place through static quenching. The binding of these complexes changed the molecular conformation of the protein considerably. The polymer-cobalt(III) complex with x = 0.365 shows antimicrobial activity against several human pathogens. This complex also induces cytotoxicity against MCF-7 through apoptotic induction. However, further studies are needed to decipher the molecular mode of action of polymer-cobalt(III) complex and for its possible utilization in anticancer therapy. Copyright © 2015 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Wan, Houzhao; Ji, Xiao; Jiang, Jianjun; Yu, Jingwen; Miao, Ling; Zhang, Li; Bie, Shaowei; Chen, Haichao; Ruan, Yunjun
2013-12-01
Cobalt sulfide nanotubes are synthesized by hydrothermal method. The precursor is characterized by XRD, FTIR and SEM. We study the influence of temperature on the evolution of this special coarse shape nanostructure and analyze relationship between the sizes of cobalt sulfide nanotubes and the capacitive properties of active materials. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) are used to study the effects of microstructure and morphology of the samples on their capacitance and conductivity. The specific capacitance of cobalt sulfide nanotubes (obtained in 80 °C) electrode exhibits a capacitance of 285 F g-1 at the current density of 0.5 A g-1 as well as rather good cycling stability. Moreover, during the cycling process, the coulombic efficiency remains 99%. The as-prepared cobalt sulfide nanotubes electrode exhibits excellent electrochemical performance as electrode materials for supercapacitors.
Low Temperature Synthesis of Cobalt-Chromium Carbide Nanoparticles-Doped Carbon Nanofibers.
Yousef, Ayman; Brooks, Robert M; Abutaleb, Ahmed; Al-Deyab, Salem S; El-Newehy, Mohamed H
2018-04-01
Electrospinning has been used to synthesize cobalt-chromium carbide nanoparticles (NPs)-doped carbon nanofibers (CNFs) (Composite). Electrospun mat comprising of cobalt acetate, chromium acetate and poly(vinyl alcohol) (PVA) has been carbonized at low temperature (850 °C) for 3 h under argon atmosphere to produce the introduced composite. The process was achieved at low temperature due to the presence of cobalt as an activator. Field emission scanning electron microscope (FE-SEM), X-ray diffractometry (XRD), and transmission electron microscopy (TEM) equipped with EDX techniques were used to determine the products characteristics. The results indicated the formation of pure cobalt (Co), Cr7C3 NPs and crystalline CNFs. The Co and Cr7C3 NPs were covered with CNFs. Overall, the proposed NFs open new avenue to prepare different metals-metal carbides-carbon NFs at low temperature and short reaction time.
Controllable synthesis of hierarchical nickel cobalt sulfide with enhanced electrochemical activity
NASA Astrophysics Data System (ADS)
Tie, Jinjin; Han, Jiaxi; Diao, Guiqiang; Liu, Jiwen; Xie, Zhuopeng; Cheng, Gao; Sun, Ming; Yu, Lin
2018-03-01
The composition of nickel cobalt sulfide has great influence on its electrochemical performance. Herein, the nickel cobalt sulfide with different composition and mixed phase were synthesized by one-step solvothermal method through changing the molar ratio of Ni to Co in the reaction system. The electrochemical measurements showed that the nickel cobalt sulfide with a theoretical molar ratio of Ni/Co to be 1.5:1.5 (NCS-2) demonstrates the superior pseudocapacitive performance with a high specific capacitance (6.47 F cm-2 at 10 mA cm-2) and a favorable Coulombic efficiency (∼99%). Whereas, when applied as the catalyst for hydrogen evolution reaction in 1 M KOH aqueous electrolyte, the nickel cobalt sulfide with a theoretical molar ratio of Ni/Co is 1:2 (NCS-1) displays better catalytic activity, and it requires a relatively lower overpotential of 282 mV to deliver the current density of 10 mA cm-2.
Computational investigation of spin-polarization in cobalt/graphite superlattices
NASA Astrophysics Data System (ADS)
Goto, Kim F.; Hill, Nicola A.; Sanvito, Stefano
2003-03-01
We present results of a computational investigation of the magnetic properties of cobalt/ graphite superlattices. This work was motivated by experimental data showing spin injection into carbon nanotubes via cobalt contacts [1] as well as the discovery of a magnetic meteorite made from graphite and magnetic particles, in which part of the magnetization is on the carbon atoms [2]. Using density functional theory within the local spin-density approximation (the SIESTA implementation), we show that cobalt induces both n-doping and a magnetic moment in the graphite layers adjacent to the cobalt-carbon interface. We also show that the magnetic properties are strongly affected by the orientation of the graphite. Finally, implications for spin injection and spin-polarized transport are discussed. [1] K. Tsukagoshi, B.W. Alphenaar, and H. Ago, Nature (London) 401, 572 (1999) [2] J.M.D. Coey, M. Venkatesan, C.B. Fitzgerald, A.P. Douvalis and I.S. Sanders, Nature (London) 420, 156 (2002)
Magnetic properties of cobalt ferrite synthesized by mechanical alloying
NASA Astrophysics Data System (ADS)
Dedi, Idayanti, Novrita; Kristiantoro, Tony; Alam, Ginanjar Fajar Nur; Sudrajat, Nanang
2018-05-01
Cobalt ferrite (CoFe2O4) is a well-known hard magnetic material with high coercivity and moderate magnetization. These properties, along with their great physical and chemical stability, make CoFe2O4 suitable for many applications such as generator, audio, video-tape etc. In this study, the magnetic properties of cobalt ferrite synthesized via the mechanical alloying using α-Fe2O3 of Hot Strip Mill (HSM) waste and cobalt carbonate as the precursors have been investigated. Structural and magnetic properties were systematically investigated. The X-ray diffraction (XRD) pattern exhibited the single phase of cobalt ferrite when the sintering temperature was 1000 °C. Permagraph measurements of the sintered sample revealed a saturation magnetization (Ms) of 77-83 emu/g and coercivity (Hc) of 575 Oe which closely to the magnetic properties of references; Ms = 47.2-56.7 emu/g and Hc =233-2002 Oe.
NASA Astrophysics Data System (ADS)
Briley, Chad; Mock, Alyssa; Korlacki, Rafał; Hofmann, Tino; Schubert, Eva; Schubert, Mathias
2017-11-01
We present magneto-optical dielectric tensor data of cobalt and cobalt oxide slanted columnar thin films obtained by vector magneto-optical generalized ellipsometry. Room-temperature hysteresis magnetization measurements were performed in longitudinal and polar Kerr geometries on samples prior to and after a heat treatment process with and without a conformal Al2O3 passivation coating. The samples have been characterized by generalized ellipsometry, scanning electron microscopy, and Raman spectroscopy in conjuncture with density functional theory. We observe strongly anisotropic hysteresis behaviors, which depend on the nanocolumn and magnetizing field orientations. We find that deposited cobalt films that have been exposed to heat treatment and subsequent atmospheric oxidation into Co3O4, when not conformally passivated, reveal no measurable magneto-optical properties while cobalt films with passivation coatings retain highly anisotropic magneto-optical properties.
Wu, Xuesong; Yang, Ke; Zhao, Yan; Sun, Hao; Li, Guigen; Ge, Haibo
2015-01-01
Cobalt-catalysed sp2 C–H bond functionalization has attracted considerable attention in recent years because of the low cost of cobalt complexes and interesting modes of action in the process. In comparison, much less efforts have been devoted to the sp3 carbons. Here we report the cobalt-catalysed site-selective dehydrogenative cyclization of aliphatic amides via a C–H bond functionalization process on unactivated sp3 carbons with the assistance of a bidentate directing group. This method provides a straightforward synthesis of monocyclic and spiro β- or γ-lactams with good to excellent stereoselectivity and functional group tolerance. In addition, a new procedure has been developed to selectively remove the directing group, which enables the synthesis of free β- or γ-lactam compounds. Furthermore, the first cobalt-catalysed intermolecular dehydrogenative amination of unactivated sp3 carbons is also realized. PMID:25753366
Cobalt: for strength and color
Boland, Maeve A.; Kropschot, S.J.
2011-01-01
Cobalt is a shiny, gray, brittle metal that is best known for creating an intense blue color in glass and paints. It is frequently used in the manufacture of rechargeable batteries and to create alloys that maintain their strength at high temperatures. It is also one of the essential trace elements (or "micronutrients") that humans and many other living creatures require for good health. Cobalt is an important component in many aerospace, defense, and medical applications and is a key element in many clean energy technologies. The name cobalt comes from the German word kobold, meaning goblin. It was given this name by medieval miners who believed that troublesome goblins replaced the valuable metals in their ore with a substance that emitted poisonous fumes when smelted. The Swedish chemist Georg Brandt isolated metallic cobalt-the first new metal to be discovered since ancient times-in about 1735 and identified some of its valuable properties.
Battery related cobalt and REE flows in WEEE treatment.
Sommer, P; Rotter, V S; Ueberschaar, M
2015-11-01
In batteries associated with waste electrical and electronic equipment (WEEE), battery systems can be found with a higher content of valuable and critical raw materials like cobalt and rare earth elements (REE) relative to the general mix of portable batteries. Based on a material flow model, this study estimates the flows of REE and cobalt associated to WEEE and the fate of these metals in the end-of-life systems. In 2011, approximately 40 Mg REE and 325 Mg cobalt were disposed of with WEEE-batteries. The end-of-life recycling rate for cobalt was 14%, for REE 0%. The volume of waste batteries can be expected to grow, but variation in the battery composition makes it difficult to forecast the future secondary raw material potential. Nevertheless, product specific treatment strategies ought to be implemented throughout the stages of the value chain. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Petit, C.; Wang, Z. L.; Pileni, M. P.
2007-05-01
By gentle annealing, 7 nm cobalt nanoparticles synthesized by soft chemistry, are transformed to hard magnetic hexagonal close packed (HCP) cobalt nanocrystals without changing the size, size distribution and passivating layer. This method permits to recover the nanocrystals isolated in solution after the annealing process and then to study the magnetic properties of the HCP cobalt nanocrystals at isolated status or in a self-organized film. Monolayer self-assembly of the HCP cobalt nanocrystals is obtained, and due to the dipolar interaction, ferromagnetic behavior close to room temperature has been observed. The magnetic properties differ significantly due to the influence of the substrate on the annealing process. This different approach of the annealing process of nanocrystals is compared to the classical approach of annealing in which the nanocrystals are first deposited on a substrate and then annealed.
Determination of traces of cobalt in soils: A field method
Almond, H.
1953-01-01
The growing use of geochemical prospecting methods in the search for ore deposits has led to the development of a field method for the determination of cobalt in soils. The determination is based on the fact that cobalt reacts with 2-nitroso-1-naphthol to yield a pink compound that is soluble in carbon tetrachloride. The carbon tetrachloride extract is shaken with dilute cyanide to complex interfering elements and to remove excess reagent. The cobalt content is estimated by comparing the pink color in the carbon tetrachloride with a standard series prepared from standard solutions. The cobalt 2-nitroso-1-naphtholate system in carbon tetrachloride follows Beer's law. As little as 1 p.p.m. can be determined in a 0.1-gram sample. The method is simple and fast and requires only simple equipment. More than 40 samples can be analyzed per man-day with an accuracy within 30% or better.
Bobrowski, A
1994-05-01
The catalytic adsorptive stripping voltammetric method with alpha-benzil dioxime and nitrite affords numerous advantages in cobalt determination. The detailed conditions of the determination of the cobalt traces in metallic zinc by catalytic adsorptive stripping voltammetry have been investigated. Both the linear sweep and the differential pulse stripping modes can be used with similar sensitivity. Possible interferences by Mn, Pb, Cu, Ni and Fe are evaluated. In the presence of 5 x 10(5) fold excess of Zn the linear dependence of the cobalt CASV peak current on concentration ranged from 0.05 mug/l to 3 mug/l. Optimal conditions include the accumulation potential of -0.65 V and the accumulation time of 10 sec. The results of the determination of 10(-5)% level of Co in the metallic zinc showed good reproducibility (relative standard deviation, RSD = 0.07) and reliability.
Controlled cobalt doping in biogenic magnetite nanoparticles.
Byrne, J M; Coker, V S; Moise, S; Wincott, P L; Vaughan, D J; Tuna, F; Arenholz, E; van der Laan, G; Pattrick, R A D; Lloyd, J R; Telling, N D
2013-06-06
Cobalt-doped magnetite (CoxFe3 -xO4) nanoparticles have been produced through the microbial reduction of cobalt-iron oxyhydroxide by the bacterium Geobacter sulfurreducens. The materials produced, as measured by superconducting quantum interference device magnetometry, X-ray magnetic circular dichroism, Mössbauer spectroscopy, etc., show dramatic increases in coercivity with increasing cobalt content without a major decrease in overall saturation magnetization. Structural and magnetization analyses reveal a reduction in particle size to less than 4 nm at the highest Co content, combined with an increase in the effective anisotropy of the magnetic nanoparticles. The potential use of these biogenic nanoparticles in aqueous suspensions for magnetic hyperthermia applications is demonstrated. Further analysis of the distribution of cations within the ferrite spinel indicates that the cobalt is predominantly incorporated in octahedral coordination, achieved by the substitution of Fe(2+) site with Co(2+), with up to 17 per cent Co substituted into tetrahedral sites.
Controlled cobalt doping of magnetosomes in vivo.
Staniland, Sarah; Williams, Wyn; Telling, Neil; Van Der Laan, Gerrit; Harrison, Andrew; Ward, Bruce
2008-03-01
Magnetotactic bacteria biomineralize iron into magnetite (Fe3O4) nanoparticles that are surrounded by lipid vesicles. These 'magnetosomes' have considerable potential for use in bio- and nanotechnological applications because of their narrow size and shape distribution and inherent biocompatibility. The ability to tailor the magnetic properties of magnetosomes by chemical doping would greatly expand these applications; however, the controlled doping of magnetosomes has so far not been achieved. Here, we report controlled in vivo cobalt doping of magnetosomes in three strains of the bacterium Magnetospirillum. The presence of cobalt increases the coercive field of the magnetosomes--that is, the field necessary to reverse their magnetization--by 36-45%, depending on the strain and the cobalt content. With elemental analysis, X-ray absorption and magnetic circular dichroism, we estimate the cobalt content to be between 0.2 and 1.4%. These findings provide an important advance in designing biologically synthesized nanoparticles with useful highly tuned magnetic properties.
Structure of catabolite activator protein with cobalt(II) and sulfate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rao, Ramya R.; Lawson, Catherine L., E-mail: cathy.lawson@rutgers.edu
2014-04-15
The crystal structure of E. coli catabolite activator protein with bound cobalt(II) and sulfate ions at 1.97 Å resolution is reported. The crystal structure of cyclic AMP–catabolite activator protein (CAP) from Escherichia coli containing cobalt(II) chloride and ammonium sulfate is reported at 1.97 Å resolution. Each of the two CAP subunits in the asymmetric unit binds one cobalt(II) ion, in each case coordinated by N-terminal domain residues His19, His21 and Glu96 plus an additional acidic residue contributed via a crystal contact. The three identified N-terminal domain cobalt-binding residues are part of a region of CAP that is important for transcriptionmore » activation at class II CAP-dependent promoters. Sulfate anions mediate additional crystal lattice contacts and occupy sites corresponding to DNA backbone phosphate positions in CAP–DNA complex structures.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prathapani, Sateesh; Department of Metallurgical Engineering and Materials Science, IIT-Bombay, Mumbai 400076; Jayaraman, Tanjore V., E-mail: ddas@uohyd.ernet.in, E-mail: tvjayaraman@gmail.com
2014-07-14
Er-substituted cobalt-ferrites CoFe{sub 2−x}Er{sub x}O{sub 4} (0 ≤ x ≤ 0.04) were synthesized by sol-gel assisted auto-combustion method. The precursor powders were calcined at 673–873 K for 4 h, subsequently pressed into pellets and sintered at 1273 K for 4 h. X-ray diffraction (XRD) confirmed the presence of the spinel phase for all the compositions and, additional orthoferrite phase for higher compositions (x = 0.03 and 0.04). The XRD spectra and the Transmission Electron Microscopy micrographs indicate that the nanocrystalline particulates of the Er-substituted cobalt ferrites have crystallite size of ∼120–200 nm. The magnetization curves show an increase in saturation magnetization (M{sub S}) and coercivity (H{sub C}) for Er-substituted cobalt-ferrites atmore » sub-ambient temperatures. M{sub S} for CoFe{sub 2}O{sub 4}, CoFe{sub 0.99}Er{sub 0.01}O{sub 4}, CoFe{sub 0.98}Er{sub 0.02}O{sub 4}, and CoFe{sub 0.97}Er{sub 0.03}O{sub 4} peak at 89.7 Am{sup 2}/kg, 89.3 Am{sup 2}/kg, 88.8 Am{sup 2}/kg, and 87.1 Am{sup 2}/kg, respectively, at a sub-ambient temperature of ∼150 K. H{sub C} substantially increases with decrease in temperature for all the compositions, while it peaks at x = 0.01−0.02 at all temperatures. The combination of Er content—x ∼ 0.02 and the temperature—∼5 K provides the maximum H{sub C} ∼ 984 kA/m. Er-substituted cobalt-ferrites have higher cubic anisotropy constant, K{sub 1}, compared to pure cobalt-ferrite at ambient/sub-ambient temperatures. K{sub 1} gradually increases for all compositions in the temperature decreasing from 300 to 100 K. While K{sub 1} peaks at ∼150 K for pure cobalt-ferrite, it peaks at ∼50 K for CoFe{sub 0.99}Er{sub 0.01}O{sub 4}, CoFe{sub 0.98}Er{sub 0.02}O{sub 4}, and CoFe{sub 0.96}Er{sub 0.04}O{sub 4}. The M{sub S} (∼88.7 Am{sup 2}/kg), at 5 K, for Er substituted cobalt-ferrite is close to the highest values reported for Sm and Gd substituted cobalt-ferrites. The M{sub S} (∼83.5 Am{sup 2}/kg) at 300 K for Er-substituted cobalt-ferrite is the highest among the lanthanide series element substituted cobalt-ferrites. The H{sub C} (at 5 K) for Er substituted cobalt-ferrite is close to the highest values observed for La, Ce, Nd, Sm, and Gd substituted cobalt-ferrites.« less
40 CFR 471.35 - Pretreatment standards for new sources (PSNS).
Code of Federal Regulations, 2011 CFR
2011-07-01
... (pounds per million off-pounds) of nickel-cobalt rolled with emulsions Chromium 0.063 0.026 Nickel 0.094 0... nickel-cobalt rolled with water Chromium 0.028 0.012 Nickel 0.042 0.028 Fluoride 4.49 1.99 (d) Tube... monthly average mg/off-kg (pounds per million off-pounds) of nickel-cobalt drawn with emulsions Chromium 0...
One-step separation by thermal treatment and cobalt acid-leaching from spent lithium-ion batteries
NASA Astrophysics Data System (ADS)
Mu, Deying
2017-10-01
Lithium-ion batteries are extensively used in portable storage devices and automobiles, therefore the environment and resource problems caused by spent lithium ion batteries have become increasingly severe. This paper focuses on the recovery process of spent lithium cobalt oxide active material and comes up with reasonable processes and the best conditions for cobalt leaching ultimately.
Magneto-Optic Devices Based on Organic Polymer Materials
2012-09-10
cobalt ferrite particles...to cobalt ferrite particles. The rings in the SAED pattern also indicate averaging of the... cobalt ferrite nanoparticles (A), a high resolution image of a single nanoparticle showing the
Self-assembled Tunable Photonic Hyper-crystals
2014-07-16
a cobalt nanoparticle-based ferrofluid. Unique spectral properties of photonic hyper-crystals lead to extreme sensitivity of the material to...monolayer coatings of cobalt nanoparticles, which should find numerous applications in biological and chemical sensing. 2 Approved for public release...assembly of photonic hyper crystals has been achieved by application of external magnetic field to a cobalt nanoparticle based ferrofluid. Unique spectral
Systems and Methods for the Electrodeposition of a Nickel-cobalt Alloy
NASA Technical Reports Server (NTRS)
Ogozalek, Nance Jo (Inventor); Wistrand, Richard E. (Inventor)
2013-01-01
Systems and methods for electrodepositing a nickel-cobalt alloy using a rotating cylinder electrode assembly with a plating surface and an electrical contact. The assembly is placed within a plating bath and rotated while running a plating cycle. Nickel-cobalt alloy deposition is selectively controlled by controlling current density distribution and/or cobalt content in the plating bath while running the plating cycle to deposit an alloy of a desired yield strength onto the plating surface in a single plating cycle. In various embodiments, the rotating cylinder may be used as an insitu monitoring method to assist in obtaining the properties desired.
Delgado, Jorge A.; Claver, Carmen; Castillón, Sergio; Curulla-Ferré, Daniel; Godard, Cyril
2017-01-01
A series of small and well defined cobalt nanoparticles were synthesized by the chemical reduction of cobalt salts in water using NaBH4 as a reducing agent and using various polymeric stabilizers. The obtained nanocatalysts of similar mean diameters (ca. 2.6 nm) were fully characterized and tested in the aqueous phase Fischer-Tropsch Synthesis (AFTS). Interestingly, the nature and structure of the stabilizers used during the synthesis of the CoNPs affected the reduction degree of cobalt and the B-doping of these NPs and consequently, influenced the performance of these nanocatalysts in AFTS. PMID:28336892
Ga and In modified ceria as supports for cobalt-catalyzed Fischer-Tropsch synthesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gnanamani, Muthu Kumaran; Jacobs, Gary; Shafer, Wilson D.
Ga- and In-modified ceria (Ce 0.8Ga 0.2O 2, Ce 0.8In 0.2O 2) materials were used as supports for cobalt-catalyzed Fischer-Tropsch synthesis (FTS). The addition of Ga to ceria was found to improve CO conversion for cobalt-catalyzed FTS, while the addition of In tended to decrease it. A similar trend was observed with the Ag-promoted cobalt/ceria catalysts. Doping of ceria with Ga or In decreased methane and increased the selectivity to olefins and alcohols for Ag-promoted cobalt/ceria. The sum of the products of olefins and alcohols for various catalysts exhibited a decreasing trend as follows: Ag-Co/Ce-Ga > Ag-Co/Ce-In > Ag-Co/Ce. Resultsmore » of H 2-TPR-XANES showed that adding of Ga or In to ceria increases the fraction of Ce 3+ in the surface shell for both unpromoted and Ag-promoted catalysts in the range of temperature typical of catalyst activation. In conclusion, this partially reduced ceria plays an important role in controlling the product selectivity of cobalt-catalyzed FT synthesis.« less
Sun, Yuxia; Ma, Hong; Luo, Yang; Zhang, Shujing; Gao, Jin; Xu, Jie
2018-03-26
It has long been a challenge for activating O 2 by transition-metal nanocatalysts, which might lose activity due to strong tendency for oxidation. Herein, O 2 could be activated by durable encapsulated cobalt nanoparticles (NPs) with N-doped graphitic carbon shells (Co@N-C), but not by encapsulated cobalt NPs with graphitic carbon, exposed cobalt NPs supported on activated carbon, or N-doped carbon. Electron paramagnetic resonance, real-time in situ FTIR spectroscopy, and mass spectrometry measurements demonstrated the generation of the highly active superoxide radical, O 2 .- . This unique ability enables Co@N-C to afford an excellent catalytic performance in model aerobic oxidation of monomeric lignin-derived alcohols. Further analysis elucidated that encapsulated cobalt and nitrogen-doped graphitic carbon might contribute to the capacity through influencing the electronic properties of outer layers. Moreover, through isolation by N-doped graphitic carbon shells, the inner metallic cobalt NPs are inaccessible in term of either alcohols or oxygenated products, and a distinctive resistance to leaching and agglomeration has been achieved. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
McKendry, Ian G; Thenuwara, Akila C; Shumlas, Samantha L; Peng, Haowei; Aulin, Yaroslav V; Chinnam, Parameswara Rao; Borguet, Eric; Strongin, Daniel R; Zdilla, Michael J
2018-01-16
The effect on the electrocatalytic oxygen evolution reaction (OER) of cobalt incorporation into the metal oxide sheets of the layered manganese oxide birnessite was investigated. Birnessite and cobalt-doped birnessite were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and conductivity measurements. A cobalt:manganese ratio of 1:2 resulted in the most active catalyst for the OER. In particular, the overpotential (η) for the OER was 420 mV, significantly lower than the η = 780 mV associated with birnessite in the absence of Co. Furthermore, the Tafel slope for Co/birnessite was 81 mV/dec, in comparison to a Tafel slope of greater than 200 mV/dec for birnessite. For chemical water oxidation catalysis, an 8-fold turnover number (TON) was achieved (h = 70 mmol of O 2 /mol of metal). Density functional theory (DFT) calculations predict that cobalt modification of birnessite resulted in a raising of the valence band edge and occupation of that edge by holes with enhanced mobility during catalysis. Inclusion of extra cobalt beyond the ideal 1:2 ratio was detrimental to catalysis due to disruption of the layered structure of the birnessite phase.
Ga and In modified ceria as supports for cobalt-catalyzed Fischer-Tropsch synthesis
Gnanamani, Muthu Kumaran; Jacobs, Gary; Shafer, Wilson D.; ...
2017-08-24
Ga- and In-modified ceria (Ce 0.8Ga 0.2O 2, Ce 0.8In 0.2O 2) materials were used as supports for cobalt-catalyzed Fischer-Tropsch synthesis (FTS). The addition of Ga to ceria was found to improve CO conversion for cobalt-catalyzed FTS, while the addition of In tended to decrease it. A similar trend was observed with the Ag-promoted cobalt/ceria catalysts. Doping of ceria with Ga or In decreased methane and increased the selectivity to olefins and alcohols for Ag-promoted cobalt/ceria. The sum of the products of olefins and alcohols for various catalysts exhibited a decreasing trend as follows: Ag-Co/Ce-Ga > Ag-Co/Ce-In > Ag-Co/Ce. Resultsmore » of H 2-TPR-XANES showed that adding of Ga or In to ceria increases the fraction of Ce 3+ in the surface shell for both unpromoted and Ag-promoted catalysts in the range of temperature typical of catalyst activation. In conclusion, this partially reduced ceria plays an important role in controlling the product selectivity of cobalt-catalyzed FT synthesis.« less
NASA Astrophysics Data System (ADS)
Komolwit, Piyamanee
The effects of cobalt additions on the mechanical properties and strengthening mechanisms of a martensitic precipitation strengthening stainless steel whose composition is (in wt. %) 0.005C/12Cr/5Mo/1.5Ni has been investigated for cobalt levels of 9, 12, 15, 18, and 21 wt. %. Hardness, yield strength and ultimate tensile strength increase as the cobalt content increases, while the Charpy impact energy decreases as tempering temperature increases. At the peak strength of the 21 wt. % cobalt alloy, which is after tempering at 550°C, the yield strength is 1772 MPa, the ultimate tensile strength is 1916 MPa, and the hardness is 55 HRC. The martensite start temperature decreases as cobalt content increases. In this alloys there is no retained austenite after austenitizing, oil quenching and then refrigerating in liquid nitrogen prior to tempering. These alloys contain no reverted austenite except for the 21 wt. % cobalt alloy after tempering at 600°C. Optical micrographs show lath martensite as the matrix for all alloys. Increasing cobalt content has little effect on prior austenite grain size. Transmission electron micrographs show a substructure of lath martensite and a b.c.c. matrix for all alloys after tempering at 525°C. Precipitates were observed in dark field images at all cobalt levels and were seen in bright field images of 21 wt. % cobalt alloy. One of the precipitates was identified as omega phase with a trigonal structure with lattice parameter of a = b = 4.1 A, c = 2.51 A with c/a = 0.612. The particle size appears to be 17 nanometers in diameter and they were found only in the foils of 21 wt. % cobalt alloy. The second precipitate type was identified as a monoclinic phase with a monoclinic structure with lattice parameters of a = 5.464 A, b = 2.843 A, c = 3.178 A, and alpha = gamma = 90° and beta = 63.4°. The monoclinic phase particles appear to significantly contribute to the strength of these alloys, with particles size and volume fraction increasing with increasing cobalt content for the same condition. Limited observation on the effects of carbon additions to a 12Cr/12Co/5Mo/4.5Ni martensitic precipitation strengthening stainless steel has been made for carbon levels of 0.005 wt. %, 0.025 wt. % and 0.05 wt. %. A small addition of chromium, one weight percent, to a 0.005C/12Co/5Mo/5Ni martensitic precipitation strengthening stainless steel was found to increase hardness, strength, Charpy impact energy, and ductility. Results on the effects of cobalt, carbon and chromium additions helped in the selection of modified alloys which were used to investigate the effects of composition and heat treatment on strength and toughness. The first set of modified alloys are referred to as the low carbon modified alloys. These alloys have a better Charpy impact energy than the alloys used to investigate the effect of cobalt on strength and the hardness and strength of these alloys are similar to those of alloys used to investigate the effects of cobalt on strength. Fractographs of these alloys show quasi-cleavage fracture, the presence of ductile fracture increases with increasing cobalt content. The martensite start temperature is lowered by the chromium additions and results in the existence of retained austenite even after refrigeration after austenitizing. Refrigeration prior to tempering is not necessary for these alloys to achieve a high yield strength and good Charpy impact energy. The second set of modified alloys are referred to as the carbon-titanium modified alloys. These alloys differ from the first set of modified alloys in that these alloys contain small additions of carbon and titanium and have lower cobalt levels. Lower cobalt levels were required because carbon lowers the martensite start temperature. These alloys have improved Charpy impact energy and ductility. The carbon addition lowers the martensite start temperature and the martensite start temperature of these alloys is sufficiently low that they contain retain austenite even after refrigeration after austenitizing. Refrigeration prior to tempering is necessity for the alloys to maintain their yield strength and hardness. The effects of austenitizing temperature, cooling rate after austenitization, refrigeration and double austenitization on the mechanical properties of the modified alloys were investigated. Lowering the austenitization temperature decreases the Charpy impact energy and hardness of these alloys. (Abstract shortened by UMI.)
NASA Astrophysics Data System (ADS)
Zhang, Yajing; Zhu, Yuan; Wang, Kangjun; Li, Da; Wang, Dongping; Ding, Fu; Meng, Dan; Wang, Xiaolei; Choi, Chuljin; Zhang, Zhidong
2018-06-01
Cobalt carbides (Co2C and Co3C) nanocomposites exhibit interesting hard magnetic property, controlled synthesis of individual phase facilitates to clarify the magnetism of each, but it is difficult to obtain the single phase. We present a new approach to address this issue via a polyol refluxing process, using cobalt laurate as the precursor. The single phase Co2C magnetic nanochains self-assembled by nanoparticles are synthesized. The precursor is the key factor for controlling the growth kinetics of the Co2C nanochains. Cobalt, instead of cobalt carbides, is produced if cobalt chloride, acetate and acetylacetonate replace cobalt laurate as the precursor, respectively. The evolution of the growth process has been studied. In the formation of Co2C, first fcc-Co produces, then it transforms into Co2C by carbon diffusion process, and the produced carbon first exists in disordered state and then a small amount of them transforms into graphite. Saturation magnetization (Ms) of Co2C nanochains obtained at 300 °C for 20, 60, and 180 min are 27.1, 18.9, and 10.9 emu g-1, respectively. The decrease of Ms caused by increasing carbon content, and the carbon content are much larger than the stoichiometric ratio value of Co2C (9.2 wt%). The Co2C nanochains have mesoporous pore of 3.8 nm and the specific surface area of 48.6 m2 g-1.
Hypoxia-mimicking bioactive glass regenerative effects on dental stem cells
NASA Astrophysics Data System (ADS)
Noor, Siti Noor Fazliah Mohd; Azevedo, Maria; Mohamad, Hasmaliza; Autefage, Hélène
2016-12-01
Vascularization is an important aspect of tissue regeneration. Hypoxia, low oxygen concentration, is a known stimulus for the release of vascular endothelial growth factors (VEGF) which play important roles in vascularization. The current study aimed to assess the effect of a cobalt-containing bioactive glass (BG) in stimulating hypoxia and promoting vascularization. To incorporate cobalt into BG, 1 mol% of calcium was substituting with cobalt, and this formulation was compared to the one without cobalt. Both BGs were processed via melt-derived method. The BG powders with particle size less than 38 µm were incubated with cell culture medium for 4 hours at 37°C on continuous rolling, and then the medium was filtered using 0.22 µm syringe filters. Prior to use, the BG-conditioned media were supplemented with 10% (v/v) fetal bovine serum and 1% (v/v) antibiotic-antimycotic, and were allowed to equilibrate overnight inside a CO2 incubator. The conditioned media were used on human dental stem cells (stem cells from permanent (DPSC) and deciduous (SHED) teeth) and assessed for their capacity to stimulate the release of angiogenic factors from the cells. The results showed that cobalt ions were released from the cobalt-containing BG, following partial dissolution of the glasses in cell culture medium, and promoted VEGF release from the cells. In conclusion, the incorporation of cobalt in BG may have potential to be used for tissue regeneration by promoting vascularization through the activation of hypoxia pathway and the release of VEGF.
Feldt, Sandra M; Gibson, Elizabeth A; Gabrielsson, Erik; Sun, Licheng; Boschloo, Gerrit; Hagfeldt, Anders
2010-11-24
Dye-sensitized solar cells (DSCs) with cobalt-based mediators with efficiencies surpassing the record for DSCs with iodide-free electrolytes were developed by selecting a suitable combination of a cobalt polypyridine complex and an organic sensitizer. The effect of the steric properties of two triphenylamine-based organic sensitizers and a series of cobalt polypyridine redox mediators on the overall device performance in DSCs as well as on transport and recombination processes in these devices was compared. The recombination and mass-transport limitations that, previously, have been found to limit the performance of these mediators were avoided by matching the properties of the dye and the cobalt redox mediator. Organic dyes with higher extinction coefficients than the standard ruthenium sensitizers were employed in DSCs in combination with outer-sphere redox mediators, enabling thinner TiO(2) films to be used. Recombination was reduced further by introducing insulating butoxyl chains on the dye rather than on the cobalt redox mediator, enabling redox couples with higher diffusion coefficients and more suitable redox potential to be used, simultaneously improving the photocurrent and photovoltage of the device. Optimization of DSCs sensitized with a triphenylamine-based organic dye in combination with tris(2,2'-bipyridyl)cobalt(II/III) yielded solar cells with overall conversion efficiencies of 6.7% and open-circuit potentials of more than 0.9 V under 1000 W m(-2) AM1.5 G illumination. Excellent performance was also found under low light intensity indoor conditions.
Wu, Chang-Hsun; Lin, Jyun-Ting; Lin, Kun-Yi Andrew
2018-05-01
Direct carbonization of cobalt complexes represents as a convenient approach to prepare magnetic carbon/cobalt nanocomposites (MCCNs) as heterogeneous environmental catalysts. However, most of MCCNs derived from consist of sheet-like carbon matrices with very sparse cobaltic nanoparticles (NPs), making them exhibit relatively low catalytic activities, porosity and magnetism. In this study, dipicolinic acid (DPA) is selected to prepare a 3-dimensional cobalt coordination polymer (CoDPA). MCCN derived from CoDPA can consist of a porous carbon matrix embedded with highly-dense Co 0 and Co 3 O 4 NPs. This magnetic Co 0 /Co 3 O 4 NP-anchored carbon composite (MCNC) appears as a promising heterogeneous catalyst for oxidative and reductive environmental catalytic reactions. As peroxymonosulfate (PMS) activation is selected as a model catalytic oxidative reaction, MCNC exhibits a much higher catalytic activity than Co 3 O 4 , a benchmark catalyst for PMS activation. The reductive catalytic activity of MCNC is demonstrated through 4-nitrophenol (4-NP) reduction in the presence of NaBH 4 . MCNC could rapidly react with NaBH 4 to generate H 2 for hydrogenation of 4-NP to 4-aminophenol (4-AP). In comparison with other precious metallic catalysts, MCNC also shows a relatively high catalytic activity. These results indicate that MCNC is a conveniently prepared and highly effective and stable carbon-supported cobaltic heterogeneous catalyst for versatile environmental catalytic applications. Copyright © 2018 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gavel, O.Y.; Bursakov, S.A.; Rocco, G.Di
2009-05-18
Adenylate kinase (AK) mediates the reversible transfer of phosphate groups between the adenylate nucleotides and contributes to the maintenance of their constant cellular level, necessary for energy metabolism and nucleic acid synthesis. The AK were purified from crude extracts of two sulfate-reducing bacteria (SRB), Desulfovibrio (D.) gigas NCIB 9332 and Desulfovibrio desulfuricans ATCC 27774, and biochemically and spectroscopically characterized in the native and fully cobalt- or zinc-substituted forms. These are the first reported adenylate kinases that bind either zinc or cobalt and are related to the subgroup of metal-containing AK found, in most cases, in Gram-positive bacteria. The electronic absorptionmore » spectrum is consistent with tetrahedral coordinated cobalt, predominantly via sulfur ligands, and is supported by EPR. The involvement of three cysteines in cobalt or zinc coordination was confirmed by chemical methods. Extended X-ray absorption fine structure (EXAFS) indicate that cobalt or zinc are bound by three cysteine residues and one histidine in the metal-binding site of the 'LID' domain. The sequence {sup 129}Cys-X{sub 5}-His-X{sub 15}-Cys-X{sub 2}-Cys of the AK from D. gigas is involved in metal coordination and represents a new type of binding motif that differs from other known zinc-binding sites of AK. Cobalt and zinc play a structural role in stabilizing the LID domain.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rashidi, S.; Ataie, A., E-mail: aataie@ut.ac.ir
Highlights: • Single phase CoFe{sub 2}O{sub 4} nano-particles synthesized in one step by mechanical alloying. • PVA/CoFe{sub 2}O{sub 4} magnetic nano-composites were fabricated via mechanical milling. • FTIR confirmed the interaction between PVA and magnetic CoFe{sub 2}O{sub 4} particles. • Increasing in milling time and PVA amount led to well dispersion of CoFe{sub 2}O{sub 4}. - Abstract: In this research, polyvinyl alcohol/cobalt ferrite nano-composites were successfully synthesized employing a two-step procedure: the spherical single-phase cobalt ferrite of 20 ± 4 nm mean particle size was synthesized via mechanical alloying method and then embedded into polymer matrix by intensive milling. Themore » results revealed that increase in polyvinyl alcohol content and milling time causes cobalt ferrite particles disperse more homogeneously in polymer matrix, while the mean particle size and shape of cobalt ferrite have not been significantly affected. Transmission electron microscope images indicated that polyvinyl alcohol chains have surrounded the cobalt ferrite nano-particles; also, the interaction between polymer and cobalt ferrite particles in nano-composite samples was confirmed. Magnetic properties evaluation showed that saturation magnetization, coercivity and anisotropy constant values decreased in nano-composite samples compared to pure cobalt ferrite. However, the coercivity values of related nano-composite samples enhanced by increasing PVA amount due to domain wall mechanism.« less
Comparison of Uninjured and Concussed Adolecent Athletes on the Concussion Balance Test (COBALT).
Massingale, Shelly; Alexander, Amy; Erickson, Steven; McQueary, Elizabeth; Gerkin, Richard; Kisana, Haroon; Silvestri, Briana; Schodrof, Sarah; Nalepa, Bryce; Pardini, Jamie
2018-06-01
Dizziness and balance problems are common symptoms following sports-related concussion (SRC). Most sports require high-level balance skills that integrate the sensory inputs used for balance. Thus, a comprehensive assessment of postural control following SRC is recommended as an integral part of evaluation and management of the injury. The purpose of this exploratory study was to examine performance differences between uninjured and concussed athletes on the Concussion Balance Test (COBALT), as well as complete preliminary analyses of criterion-related validity and reliability of COBALT. COBALT is an 8 condition test developed for both preseason and postinjury assessment using force plate technology to measure sway velocity under dynamic postural conditions that challenge the vestibular system. Retrospective COBALT data obtained through chart review for 132 uninjured athletes and 106 concussed age-matched athletes were compared. All uninjured athletes were able to complete the assessment, compared with only 55% of concussed athletes. Concussed athletes committed significantly more errors than uninjured athletes. Sway velocity for concussed athletes was higher (worse) than that for uninjured athletes on 2 conditions in COBALT. By examining an athlete's ability to complete the protocol, error rate, and sway velocity on COBALT postinjury, the clinician can identify balance function impairment, which may help the medical team develop a more targeted treatment plan, and provide objective input regarding recovery of balance function following SRC.Video Abstract available for more insights from the authors (see Supplemental Digital Content 1, available at: http://links.lww.com/JNPT/A204).
The impact of rare earth cobalt permanent magnets on electromechanical device design
NASA Technical Reports Server (NTRS)
Fisher, R. L.; Studer, P. A.
1979-01-01
Specific motor designs which employ rare earth cobalt magnets are discussed with special emphasis on their unique properties and magnetic field geometry. In addition to performance improvements and power savings, high reliability devices are attainable. Both the mechanism and systems engineering should be aware of the new performance levels which are currently becoming available as a result of the rare earth cobalt magnets.
ERIC Educational Resources Information Center
Curtis, Neil F.; And Others
1986-01-01
Discusses the need for student research-type chemistry projects based upon "unknown" metal complexes. Describes an experiment involving the product from the reaction between cobalt(II) chloride, ethane-1,2-diamine (en) and concentrated hydrochloric acid. Outlines the preparation of the cobalt complex, along with procedure, results and…
Electrodeposition of Nanocrystalline Cobalt Phosphorous Coatings as a Hard Chrome Alternative
2014-11-01
1 ASETSDefense 2014 Electrodeposition of Nanocrystalline Cobalt Phosphorous Coatings as a Hard Chrome Alternative Ruben A. Prado, CEF...COVERED 00-00-2014 to 00-00-2014 4. TITLE AND SUBTITLE Electrodeposition of Nanocrystalline Cobalt Phosphorous Coatings as a Hard Chrome Alternative...coatings as a Hard Chrome (EHC) electroplating alternative for DoD manufacturing and repair. – Fully define deposition parameters and properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, G; LoSasso, T; Saleh, Z
2015-06-15
Purpose: Due to saturation, high density materials Result in an apparent density of 3.2 g/cm{sup 3} in CT images. The true density of traditional titanium stabilization rods (∼4.4 g/cm{sup 3}) is typically ignored in treatment planning. This may not be acceptable for new cobalt-chrome rods with a density of 8.5 g/cm{sup 3}. This study reports the dosimetric impact of cobalt-chrome rods in paraspinal radiotherapy. Methods: For titanium and cobalt-chrome rods, two planning studies were done for both IMRT and VMAT in Varian Eclipse using AAA. 1) The effect of planning without assigning the true rod density was assessed by comparingmore » plans generated with the apparent density and recalculated with the true density for titanium and cobalt-chrome. 2) To test if TPS can compensate for high density rods during optimization. Furthermore, TPS calculation accuracy was verified using MapCheck for a single 20 x 10 cm{sup 2} field. The MapCheck was incrementally shifted to achieve measurement resolution of 1 mm. Results: PTV coverage was ∼0.3% and ∼4.7% lower in plans that were recalculated with the true rod density of titanium and cobalt-chrome, respectively. PTV coverage can be maintained if the correct density is used in optimization. Measurements showed that TPS overestimated the dose locally by up to 11% for cobalt-chrome rods and up to 4% for titanium rods if the density is incorrect. With density corrected, maximum local differences of 6% and 3% were seen for cobalt-chrome and titanium rods, respectively. At 2 cm beneath a rod, electrons scattered from the side of the rod increased the lateral dose and diminished as depth increases. TPS was not able to account for this effect properly even with the true rod density assigned. Conclusion: Neglecting the true density of cobalt-chrome rods can cause under coverage to the PTV. Assigning the correct density during treatment planning can minimize unexpected decrease in PTV dose.« less
[Lead adsorption and arsenite oxidation by cobalt doped birnessite].
Yin, Hui; Feng, Xiong-Han; Qiu, Guo-Hong; Tan, Wen-Feng; Liu, Fan
2011-07-01
In order to study the effects of transition metal ions on the physic-chemical properties of manganese dioxides as environmental friendly materials, three-dimensional nano-microsphere cobalt-doped birnessite was synthesized by reduction of potassium permanganate by mixtures of concentrated hydrochloride and cobalt (II) chloride. Powder X-ray diffraction, chemical analysis, N2 physical adsorption, field emission scanning electron microscopy (FE-SEM) and X-ray photoelectron spectra (XPS) were used to characterize the crystal structure, chemical composition and micro-morphologies of products. In the range of molar ratios from 0.05 to 0.20, birnessite was fabricated exclusively. It was observed that cobalt incorporated into the layers of birnessite and had little effect on the crystal structure and micromorpholgy, but crystallinity decreased after cobalt doping. Both chemical analysis and XPS results showed that manganese average oxidation state decreased after cobalt doping, and the percentage of Mn3+ increased. Co(III) OOH existed mainly in the structure. With the increase of cobalt, hydroxide oxygen percentage in molar increased from 12.79% for undoped birnessite to 13.05%, 17.69% and 17.79% for doped samples respectively. Adsorption capacity for lead and oxidation of arsenite of birnessite were enhanced by cobalt doping. The maximum capacity of Pb2+ adsorption increased in the order HB (2 538 mmol/kg) < CoB5 (2798 mmol/kg) < CoB10 (2932 mmol/kg) < CoB20 (3 146 mmol/kg). Oxidation percentage of arsenite in simulated waste water by undoped birnessite was 76.5%, those of doped ones increased by 2.0%, 12.8% and 18.9% respectively. Partial of Co3+ substitution for Mn4+ results in the increase of negative charge of the layer and the content of hydroxyl group, which could account for the improved adsorption capacity of Pb2+. After substitution of manganese by cobalt, oxidation capacity of arsenite by birnessite increases likely due to the higher standard redox potential of Co3+/Co2+ than those of Mn4+/Mn3+/Mn2+. Therefore, Co-doped birnessite is more applicable for the remediation of water polluted with heavy metal ions, implying new methods of modification of manganese dioxides in practice.
Features of surface phase formation during case-hardening of iron- and titanium-based alloys
NASA Astrophysics Data System (ADS)
Vintaikin, B. E.; Kamynin, A. V.; Kraposhin, V. S.; Smirnov, A. E.; Terezanova, K. V.; Cherenkova, S. A.; Sheykina, V. I.
2017-11-01
The article provides a detailed analysis of formation features for surface phases in technical iron and Cr20-Ni80 alloy samples that undergo case-hardening at a temperature of 850°C for 2, 4 and 6 hours of saturation in two different environments: acetylene, and molten salt consisting of sodium tetraborate and amorphous boron. We carried out an X-ray phase analysis to determine the phase structure of surface material layers that formed as a result of the case-hardening process. We discovered that after carburising it was possible to detect Fe3C and Fe-α phases on the surface of technical iron samples, and after boriding we found FeB, Fe2B and Fe3B phases; we noted a lack of characteristic Fe-α and Fe-γ peaks on the X-ray diffraction pattern. We detected many different phases in the Cr20-Ni80 alloy after the same type of case-hardening. Titanium oxides appeared after case-hardening of titanium in air at 800°C. We provide data on surface structure of samples subjected to vacuum carburising: over a 2 to 6 hour interval, the layer thickness is a parabolic function of time. When carrying out electrolysis-free liquid boriding, increasing exposure time from 2 to 6 hours alters the thickness of the strengthened layer only slightly, so, when carrying out case-hardening, it is less efficient to increase saturation time in molten salt containing sodium tetraborate and amorphous boron.
Role of atomic bonding for compound and glass formation in Ni-Si, Pd-Si, and Ni-B systems
NASA Astrophysics Data System (ADS)
Tanaka, K.; Saito, T.; Suzuki, K.; Hasegawa, R.
1985-11-01
Valence electronic structures of crystalline compounds and glassy alloys of Ni silicides, Pd silicides, and Ni borides are studied by soft-x-ray spectroscopy over wide ranges of Si and B concentrations. The samples prepared include bulk compounds, glassy ribbons, and amorphous sputtered films. Silicon Kβ emissions of Ni and Pd silicides generally consist of a prominent peak fixed at ~=4.5 and ~=5.8 eV below the Fermi level EF, respectively, with a shoulder near EF which grows and shifts toward lower energy with increasing Si concentration. The former is identified as due to Si p-like states forming Si 3p-Ni 3d or Si 3p-Pd 4d bonding states while the latter as due to the corresponding antibonding states. Ni L3 and Pd L3 emissions of these silicides indicate that Ni 3d and Pd 4d states lie between the above two states. These local electronic configurations are consistent with partial-density-of-states (PDOS) calculations performed by Bisi and Calandra. Similar electronic configurations are suggested for Ni borides from B Kα and Ni L3 emissions. Differences of emission spectra between compounds and glasses of similar compositions are rather small, but some enhancement of the contribution of antibonding states to the PDOS near EF is suggested for certain glasses over that of the corresponding compounds. These features are discussed in connection with the compound stability and glass formability.
Intercalation of Cobalt into the Interlayer of Birnessite Improves Oxygen Evolution Catalysis
Thenuwara, Akila C.; Shumlas, Samantha L.; Attanayake, Nuwan H.; ...
2016-10-10
Here we show that the activity of cobalt for the oxygen evolution reaction (OER) can be enhanced by confining it in the interlayer region of birnessite (layered manganese oxide). The cobalt intercalation was verified by employing state-of-the-art characterization techniques such as XRD, Raman and electron microscopy. It is demonstrated that the Co 2+/birnessite electrocatalyst can reach 10 mA cm -2 at an overpotential of 360 mV with near unity Faradaic efficiency. This overpotential is lower than that which can be achieved by using a pure cobalt hydroxide electrocatalyst for the OER. Furthermore, the Co 2+/birnessite catalyst shows no degradation aftermore » 1000 electrochemical cycles.« less
Hepatic lipidosis associated with cobalt deficiency in Omani goats.
Johnson, E H; Muirhead, D E; Annamalai, K; King, G J; Al-Busaidy, R; Hameed, M S
1999-06-01
Livers from 36 of 684 (5.3%) apparently healthy goats examined at an abattoir in the greater Muscat area of Oman exhibited gross pathological findings characterized by extremely pale, friable, fatty livers encompassing the entire organ. Histopathologically, diffuse hepatic lipidosis and occasional bile duct proliferation were observed. Periodic acid Schiff-positive, diastase-resistant pigment was observed in the macrophages lining the sinusoids. These histopathological lesions were consistent with those characteristic of ovine white liver disease. Cobalt analysis revealed that normal livers had six times more cobalt and a 3-fold less fat content than those measured in the fatty livers. This is the first report of an association between cobalt deficiency and hepatic lipidosis in Omani goats.
Magnetic and resonance properties of ferrihydrite nanoparticles doped with cobalt
NASA Astrophysics Data System (ADS)
Stolyar, S. V.; Yaroslavtsev, R. N.; Iskhakov, R. S.; Bayukov, O. A.; Balaev, D. A.; Dubrovskii, A. A.; Krasikov, A. A.; Ladygina, V. P.; Vorotynov, A. M.; Volochaev, M. N.
2017-03-01
Powders of undoped ferrihydrite nanoparticles and ferrihydrite nanoparticles doped with cobalt in the ratio of 5: 1 have been prepared by hydrolysis of 3 d-metal salts. It has been shown using Mössbauer spectroscopy that cobalt is uniformly distributed over characteristic crystal-chemical positions of iron ions. The blocking temperatures of ferrihydrite nanoparticles have been determined. The nanoparticle sizes, magnetizations, surface anisotropy constants, and bulk anisotropy constants have been estimated. The doping of ferrihydrite nanoparticles with cobalt leads to a significant increase in the anisotropy constant of a nanoparticle and to the formation of surface rotational anisotropy with the surface anisotropy constant K u = 1.6 × 10-3 erg/cm2.
Characterization of cobalt(II) chloride-modified condensation polyimide films
NASA Technical Reports Server (NTRS)
Rancourt, J. D.; Taylor, L. T.
1988-01-01
The effect of solvent extraction on the properties of cobalt(II) chloride-modified polyimide films was investigated. Solvent-cast films were prepared from solutions of cobalt chloride in poly(amide acid)/N,N-dimethylacetamide (DMAc) and were subsequently dried and cured in static air, forced air, or inert gas ovens with controlled humidity. The films were extracted by either of the three processes (1) soaking in a tray with distilled water at room temperature, (2) soxhlett extraction with distilled water, or (3) soxhell extraction with DMAc. Extraction with DMAc was found to remove both cobalt and chlorine from the films and to slightly increase bulk thermal stability and both surface resistivity and electrical resistivity.
Cobalt spin states and hyperfine interactions in LaCoO3 investigated by LDA+U calculations
NASA Astrophysics Data System (ADS)
Hsu, Han; Blaha, Peter; Wentzcovitch, Renata M.; Leighton, C.
2010-09-01
With a series of local-density approximation plus Hubbard U calculations, we have demonstrated that for lanthanum cobaltite (LaCoO3) , the electric field gradient at the cobalt nucleus can be used as a fingerprint to identify the spin state of the cobalt ion. Therefore, in principle, the spin state of the cobalt ion can be unambiguously determined from nuclear magnetic resonance spectra. Our calculations also suggest that a crossover from the low-spin to intermediate-spin state in the temperature range of 0-90 K is unlikely, based on the half-metallic band structure associated with isolated IS Co ions, which is incompatible with the measured conductivity.
Intercalating cobalt between graphene and iridium (111): Spatially dependent kinetics from the edges
NASA Astrophysics Data System (ADS)
Vlaic, Sergio; Rougemaille, Nicolas; Kimouche, Amina; Burgos, Benito Santos; Locatelli, Andrea; Coraux, Johann
2017-10-01
Using low-energy electron microscopy, we image in real time the intercalation of a cobalt monolayer between graphene and the (111) surface of iridium. Our measurements reveal that the edges of a graphene flake represent an energy barrier to intercalation. Based on a simple description of the growth kinetics, we estimate this energy barrier and find small, but substantial, local variations. These local variations suggest a possible influence of the graphene orientation with respect to its substrate and of the graphene edge termination on the energy value of the barrier height. Besides, our measurements show that intercalated cobalt is energetically more favorable than cobalt on bare iridium, indicating a surfactant role of graphene.
NASA Astrophysics Data System (ADS)
Makinde, Zainab O.; Louzada, Marcel; Mashazi, Philani; Nyokong, Tebello; Khene, Samson
2017-12-01
Cobalt binuclear phthalocyanine (CoBiPc) bearing pentanethio substituents at the peripheral positions were synthesized. The immobilization of the synthesized cobalt phthalocyanines on gold electrode was achieved using self-assembled monolayer method (SAM). X-ray photoelectron spectroscopy (XPS) and Kelvin Probe (KP) techniques were used to characterise the formation of monomeric and binuclear phthalocyanine SAMs on the gold surface. The phthalocyanine SAMs on gold electrodes were investigated for electrocatalytic oxidation of 4-chlorophenol. The electrocatalytic properties of tetra- and octa- pentanethio substituted cobalt binuclear phthalocyanine (CoBiPc) are compared with their tetra- and octa-pentanethio substituted phthalocyanine (CoPc). The SAMs modified gold electrode surfaces showed a peak current enhancement and stability and reduction in electrocatalytic potentials compared to the bare or unmodified electrodes towards the detection of the 4-chlorophenol. The SAMs of cobalt binuclear phthalocyanines exhibited more enhanced electrocatalytic properties in terms of stability, detection peak current and reduction of the electrocatalytic over potential.
Interfacial microanalysis of rubber tyre-cord adhesion and the influence of cobalt
NASA Astrophysics Data System (ADS)
Fulton, W. Stephen; Smith, Graham C.; Titchener, Keith J.
2004-01-01
The effect of cobalt-containing adhesion promoters on the structure and morphology of rubber-brass and rubber-tyre-cord interfaces before and after ageing has been investigated by X-ray photoelectron spectroscopy (XPS) depth profiling, glancing incidence X-ray diffraction (XRD) and transmission electron microscopy (TEM). The effect the cobalt adhesion promoters had upon the interface morphology as they suppressed the growth of crystalline dendrites normally associated with the ageing process was imaged in TEM using samples prepared by the focused ion beam (FIB) milling technique. XPS depth profiling through the interfaces revealed that different types of adhesion promoter influenced the amount and distribution of cobalt ions in the bonding layer. XRD demonstrated the influence that cobalt had upon the structure of the interface and subsequent crystallinity, with a lesser degree of crystallinity being associated with better adhesion performance. From the results a model for the effect of the Co chemistry of the adhesion promotor has been developed.
NASA Astrophysics Data System (ADS)
Agrawal, Shraddha; Parveen, Azra; Azam, Ameer
2018-05-01
The Ca and Cr doped cobalt ferrite nanoparticles (Co0.8Ca0.2) (Fe0.8 Cr0.2)2O4 were synthesized by auto combustion method. Microstructural studies were carried out by X-ray diffraction (XRD). The crystalline size of synthesized nanoparticles as determined by the XRD was found to be 17.6 nm. These structural studies suggest that the crystal system remains spinal even with the doping of calcium and chromium. Optical properties of Ca and Cr doped cobalt ferrite were studied by UV-visible technique in the range of 200-800 nm. The energy band gap was calculated with the help of Tauc relationship. Ca and Cr doped cobalt ferrite annealed at 600°C exhibit significant dispersion in complex permeability. The dielectric constant and dielectric loss of cobalt ferrite were studied as a function of frequency and were explained on the basis of Koop's theory based on Maxwell Wagner two layer models and electron hopping.
NASA Astrophysics Data System (ADS)
Coban, Mustafa Burak; Gungor, Elif; Kara, Hulya; Baisch, Ulrich; Acar, Yasemin
2018-02-01
A new defect dicubane cobalt(II)/cobalt(III), [(CoII2CoIII2L42(H2O)(CH3COO)(CH3COOH]. 4H2O complex (1) where H2L = [1-(3-hydroxypropyliminomethyl)naphthalene-2-ol], has been synthesized and characterized by element analysis, FT-IR, solid UV-Vis spectroscopy and single crystal X-ray diffraction. The crystal structure determination shows a cationic tetrameric arrangement consisting of a defect dicubane core with two missing vertexes. Each cobalt ion has a distorted octahedral geometry with six coordinate ordered CoII and CoIII ions. The solid state photoluminescence properties of complex (1) and its ligand H2L have been investigated under UV light at 349 nm in the visible region. H2L exhibits blue emission while complex (1) shows red emission at room temperature. Variable-temperature magnetic susceptibility measurements on the complex (1) in the range 2-300 K indicate an antiferromagnetic interaction.
NASA Astrophysics Data System (ADS)
Rahman Ansari, Akhalakur; Hussain, Shahir; Imran, Mohd; Abdel-wahab, M. Sh; Alshahrie, Ahmed
2018-06-01
The pure cobalt thin film was deposited on the glass substrate by using DC magnetron sputtering and then exposed to microwave assist oxygen plasma generated in microwave plasma CVD. The oxidation process of Co thin film into Co3O4 thin films with different microwave power and temperature were studied. The influences of microwave power, temperature and irradiation time were investigated on the morphology and particle size of oxide thin films. The crystal structure, chemical conformation, morphologies and optical properties of oxidized Co thin films (Co3O4) were studied by using x-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM), Raman Spectroscopy and UV–vis Spectroscopy. The data of these films showed complete oxidation pure metallic cobalt (Co) into cobalt oxide (Co3O4). The optical properties were studied for calculating the direct band gaps which ranges from 1.35 to 1.8 eV.
Gao, Min-Rui; Liang, Jin-Xia; Zheng, Ya-Rong; Xu, Yun-Fei; Jiang, Jun; Gao, Qiang; Li, Jun; Yu, Shu-Hong
2015-01-01
The electroreduction of water for sustainable hydrogen production is a critical component of several developing clean-energy technologies, such as water splitting and fuel cells. However, finding a cheap and efficient alternative catalyst to replace currently used platinum-based catalysts is still a prerequisite for the commercialization of these technologies. Here we report a robust and highly active catalyst for hydrogen evolution reaction that is constructed by in situ growth of molybdenum disulfide on the surface of cobalt diselenide. In acidic media, the molybdenum disulfide/cobalt diselenide catalyst exhibits fast hydrogen evolution kinetics with onset potential of −11 mV and Tafel slope of 36 mV per decade, which is the best among the non-noble metal hydrogen evolution catalysts and even approaches to the commercial platinum/carbon catalyst. The high hydrogen evolution activity of molybdenum disulfide/cobalt diselenide hybrid is likely due to the electrocatalytic synergistic effects between hydrogen evolution-active molybdenum disulfide and cobalt diselenide materials and the much increased catalytic sites. PMID:25585911
Hydrothermal-electrochemical growth of heterogeneous ZnO: Co films
NASA Astrophysics Data System (ADS)
Yilmaz, Ceren; Unal, Ugur
2017-10-01
This study demonstrates the preparation of heterogeneous ZnO: Co nanostructures via hydrothermal-electrochemical deposition at 130 °C and -1.1 V (vs Ag/AgCl (satd)) in dimethyl sulfoxide (DMSO)-H2O mixture. Under the stated conditions, ZnO: Co nanostructures grow preferentially along (002) direction. Strength of directional growth progressively increases with the increasing concentration of Co(II) in the deposition bath. Films are composed of hexagonal Wurtzite ZnO, metallic cobalt, and mixed cobalt oxide on the surface and cobalt(II) oxide in deeper levels. Increasing the Co(II) concentration in the deposition bath results in different morphological features as well as phase separation. Platelets, sponge-like structures, cobalt-rich spheres, microislands of cobalt-rich spheres which are interconnected by ZnO network can be synthesized by adjusting [Co(II)]: [Zn(II)] ratio. Growth mechanisms giving rise to these particular structures, surface morphology, crystal structure, phase purity, chemical binding characteristics, and optical properties of the deposits are discussed in detail.
Zhang, Xiu-qing; Peng, Jun; Ling, Jian; Liu, Chao-juan; Cao, Qiu-e; Ding, Zhong-tao
2015-04-01
In the present paper, the authors studied fluorescence resonance energy transfer (FRET) phenomenon between silver triangular nanoplates and bovine serum albumin (BSA)/Rhodamine 6G fluorescence complex, and established a fluorescence method for the detection of cobalt ions. We found that when increasing the silver triangular nanoplates added to certain concentrations of fluorescent bovine serum albumin (BSA)/Rhodamine 6G complex, the fluorescence of Rhodamine 6G would be quenched up to 80% due to the FRET between the quencher and donor. However, in the presence of cobalt ions, the disassociation of the fluorescent complex from silver triangular nanoplates occurred and the fluorescence of the Rhodamine 6G recovered. The recovery of fluorescence intensity rate (I/I0) has a good relationship with the cobalt ion concentration (cCO2+) added. Thus, the authors developed a fluorescence method for the detection of cobalt ions based on the FRET of silver triangular nanoplates and Rhodamine 6G.
NASA Astrophysics Data System (ADS)
Jameson, Donald L.; Grzybowski, Joseph J.; Hammels, Deb E.; Castellano, Ronald K.; Hoke, Molly E.; Freed, Kimberly; Basquill, Sean; Mendel, Angela; Shoemaker, William J.
1998-04-01
This article describes a four-reaction sequence for the synthesis of two organometallic "cobaloxime" derivatives. The concept of "Umpolung" or reversal of reactivity is demonstrated in the preparation of complexes. The complex Co(dmgH)2(4-t-BuPy)Et is formed by the reaction of a cobalt (I) intermediate (cobalt in the role of nucleophile) with ethyl iodide. The complex Co(dmgH)2(4-t-BuPy)Ph is formed by the reaction of PhMgBr with a cobalt (III) intermediate (cobalt in the role of electrophile). All the products contain cobalt in the diamagnetic +3 oxidation state and are readily characterized by proton and carbon NMR. The four reaction sequence may be completed in two 4-hour lab periods. Cobaloximes are well known as model complexes for Vitamin B-12 and the experiment exposes students to aspects of classical coordination chemistry, organometallic chemistry and bioinorganic chemistry. The experiment also illustrates an important reactivity parallel between organic and organometallic chemistry.
Influence of Cobalt on the Properties of Load-Sensitive Magnesium Alloys
Klose, Christian; Demminger, Christian; Mroz, Gregor; Reimche, Wilfried; Bach, Friedrich-Wilhelm; Maier, Hans Jürgen; Kerber, Kai
2013-01-01
In this study, magnesium is alloyed with varying amounts of the ferromagnetic alloying element cobalt in order to obtain lightweight load-sensitive materials with sensory properties which allow an online-monitoring of mechanical forces applied to components made from Mg-Co alloys. An optimized casting process with the use of extruded Mg-Co powder rods is utilized which enables the production of magnetic magnesium alloys with a reproducible Co concentration. The efficiency of the casting process is confirmed by SEM analyses. Microstructures and Co-rich precipitations of various Mg-Co alloys are investigated by means of EDS and XRD analyses. The Mg-Co alloys' mechanical strengths are determined by tensile tests. Magnetic properties of the Mg-Co sensor alloys depending on the cobalt content and the acting mechanical load are measured utilizing the harmonic analysis of eddy-current signals. Within the scope of this work, the influence of the element cobalt on magnesium is investigated in detail and an optimal cobalt concentration is defined based on the performed examinations. PMID:23344376
Novel synthesis of cobalt/poly vinyl alcohol/gamma alumina nanocomposite for catalytic application
NASA Astrophysics Data System (ADS)
Hatamie, Shadie; Ahadian, Mohammad Mahdi; Rashidi, Alimoradeh; Karimi, Ali; Akhavan, Omid
2017-05-01
In this manuscript, synthesis of cobalt/poly vinyl alcohol (PVA)/gamma alumina nanocomposite via a simple room temperature, as well as its catalyst performance were explored. Brunauer-Emmett-Teller analysis, X-ray diffraction, X-ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy were conducted. The surface area of the polymeric composite was obtained to be 280 m2/g. The cobalt loading on the nanocomposite was measured using inductivity couple plasma. Transmission electron microscopy analysis showed that the size of cobalt crystalline encapsulate inside the polymer was confined to 5 nm. Magnetic property analysis, using vibrating sample magnetometer, confirmed ferromagnetic nature of the composite. Thermo-gravimetric analyses were employed to explain the degradation process for the polymeric base nanocomposite. Temperature-programmed reduction was used to evaluate the structural form of cobalt oxide in nanocomposite. The catalysis activity was determined by Fischer-Tropsch synthesize, which showed a high catalyst selectivity to C2-C4 hydrocarbons.
NASA Astrophysics Data System (ADS)
Guo, Hailing; Youliwasi, Nuerguli; Zhao, Lei; Chai, Yongming; Liu, Chenguang
2018-03-01
This paper addresses a new post-treatment strategy for the formation of carbon-encapsulated nickel-cobalt alloys nanoparticles, which is easily controlled the performance of target products via changing precursor composition, calcination conditions (e.g., temperature and atmosphere) and post-treatment condition. Glassy carbon electrode (GCE) modified by the as-obtained carbon-encapsulated mono- and bi-transition metal nanoparticles exhibit excellent electro-catalytic activity for hydrogen production in alkaline water electrolysis. Especially, Ni0.4Co0.6@N-Cs800-b catalyst prepared at 800 °C under an argon flow exhibited the best electrocatalytic performance towards HER. The high HER activity of the Ni0.4Co0.6@N-Cs800-b modified electrode is related to the appropriate nickel-cobalt metal ratio with high crystallinity, complete and homogeneous carbon layers outside of the nickel-cobalt with high conductivity and the synergistic effect of nickel-cobalt alloys that also accelerate electron transfer process.
A Janus cobalt-based catalytic material for electro-splitting of water
NASA Astrophysics Data System (ADS)
Cobo, Saioa; Heidkamp, Jonathan; Jacques, Pierre-André; Fize, Jennifer; Fourmond, Vincent; Guetaz, Laure; Jousselme, Bruno; Ivanova, Valentina; Dau, Holger; Palacin, Serge; Fontecave, Marc; Artero, Vincent
2012-09-01
The future of energy supply depends on innovative breakthroughs regarding the design of cheap, sustainable and efficient systems for the conversion and storage of renewable energy sources. The production of hydrogen through water splitting seems a promising and appealing solution. We found that a robust nanoparticulate electrocatalytic material, H2-CoCat, can be electrochemically prepared from cobalt salts in a phosphate buffer. This material consists of metallic cobalt coated with a cobalt-oxo/hydroxo-phosphate layer in contact with the electrolyte and mediates H2 evolution from neutral aqueous buffer at modest overpotentials. Remarkably, it can be converted on anodic equilibration into the previously described amorphous cobalt oxide film (O2-CoCat or CoPi) catalysing O2 evolution. The switch between the two catalytic forms is fully reversible and corresponds to a local interconversion between two morphologies and compositions at the surface of the electrode. After deposition, the noble-metal-free coating thus functions as a robust, bifunctional and switchable catalyst.
Meijer, C; Bredberg, M; Fischer, T; Widström, L
1995-03-01
Piercing the earlobes has increased in popularity among males in recent years. This habit would be expected to increase the incidence of nickel and cobalt sensitization. Patch testing with nickel sulfate and cobalt chloride was performed in 520 young Swedish men doing compulsory military service. The overall frequency of nickel/cobalt positive tests was 4.2%. The prevalence of nickel/cobalt positive tests was significantly higher (p < 0.05) in 152 men with pierced earlobes (7.9%) than in those 368 with unpierced earlobes (2.7%). A history of hand eczema (7/152 = 4.6%) or other types of eczema (22/152 = 14.5%) in individuals with pierced earlobes was no more common than in those with unpierced earlobes: 24/368 = 6.5% and 51/386 = 13.9%, respectively (n.s.). Hand eczema was no more common in sensitized (1/22 = 4.5%) than in nonsensitized individuals (32/498 = 6.4%) (n.s.).
NASA Astrophysics Data System (ADS)
Alias, R.; Hamid, N. H.; Jaapar, J.; Musa, M.; Alwi, H.; Halim, K. H. Ku
2018-03-01
Thermal behavior and decomposition kinetics of shredded oil palm empty fruit bunches (SOPEFB) were investigated in this study by using thermogravimetric analysis (TGA). The SOPEFB were analyzed under conditions of temperature 30 °C to 900 °C with nitrogen gas flow at 50 ml/min. The SOPEFB were embedded with cobalt (II) nitrate solution with concentration 5%, 10%, 15% and 20%. The TG/DTG curves shows the degradation behavior of SOPEFB following with char production for each heating rate and each concentration of cobalt catalyst. Thermal degradation occurred in three phases, water drying phase, decomposition of hemicellulose and cellulose phase, and lignin decomposition phase. The kinetic equation with relevant parameters described the activation energy required for thermal degradation at the temperature regions of 200 °C to 350 °C. Activation energy (E) for different heating rate with SOPEFB embedded with different concentration of cobalt catalyst showing that the lowest E required was at SOPEFB with 20% concentration of cobalt catalyst..