Sample records for cobalt compounds

  1. New investigations into the genotoxicity of cobalt compounds and their impact on overall assessment of genotoxic risk.

    PubMed

    Kirkland, David; Brock, Tom; Haddouk, Hasnaà; Hargeaves, Victoria; Lloyd, Melvyn; Mc Garry, Sarah; Proudlock, Raymond; Sarlang, Séverine; Sewald, Katherina; Sire, Guillaume; Sokolowski, Andrea; Ziemann, Christina

    2015-10-01

    The genotoxicity of cobalt metal and cobalt compounds has been widely studied. Several publications show induction of chromosomal aberrations, micronuclei or DNA damage in mammalian cells in vitro in the absence of S9. Mixed results were seen in gene mutation studies in bacteria and mammalian cells in vitro, and in chromosomal aberration or micronucleus assays in vivo. To resolve these inconsistencies, new studies were performed with soluble and poorly soluble cobalt compounds according to OECD-recommended protocols. Induction of chromosomal damage was confirmed in vitro, but data suggest this may be due to oxidative stress. No biologically significant mutagenic responses were obtained in bacteria, Tk(+/-) or Hprt mutation tests. Negative results were also obtained for chromosomal aberrations (in bone marrow and spermatogonia) and micronuclei at maximum tolerated doses in vivo. Poorly soluble cobalt compounds do not appear to be genotoxic. Soluble compounds do induce some DNA and chromosomal damage in vitro, probably due to reactive oxygen. The absence of chromosome damage in robust GLP studies in vivo suggests that effective protective processes are sufficient to prevent oxidative DNA damage in whole mammals. Overall, there is no evidence of genetic toxicity with relevance for humans of cobalt substances and cobalt metal. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Characteristics of polyaniline cobalt supported catalysts for epoxidation reactions.

    PubMed

    Kowalski, Grzegorz; Pielichowski, Jan; Grzesik, Mirosław

    2014-01-01

    A study of polyaniline (PANI) doping with various cobalt compounds, that is, cobalt(II) chloride, cobalt(II) acetate, and cobalt(II) salen, is presented. The catalysts were prepared by depositing cobalt compounds onto the polymer surface. PANI powders containing cobalt ions were obtained by one- or two-step method suspending PANI in the following acetonitrile/acetic acid solution or acetonitrile and then acetic acid solution. Moreover different ratios of Co(II) : PANI were studied. Catalysts obtained with both methods and at all ratios were investigated using various techniques including AAS and XPS spectroscopy. The optimum conditions for preparation of PANI/Co catalysts were established. Catalytic activity of polyaniline cobalt(II) supported catalysts was tested in dec-1-ene epoxidation with molecular oxygen at room temperature. The relationship between the amount of cobalt species, measured with both AAS and XPS techniques, and the activity of PANI-Co catalysts has been established.

  3. Characteristics of Polyaniline Cobalt Supported Catalysts for Epoxidation Reactions

    PubMed Central

    Kowalski, Grzegorz; Pielichowski, Jan; Grzesik, Mirosław

    2014-01-01

    A study of polyaniline (PANI) doping with various cobalt compounds, that is, cobalt(II) chloride, cobalt(II) acetate, and cobalt(II) salen, is presented. The catalysts were prepared by depositing cobalt compounds onto the polymer surface. PANI powders containing cobalt ions were obtained by one- or two-step method suspending PANI in the following acetonitrile/acetic acid solution or acetonitrile and then acetic acid solution. Moreover different ratios of Co(II) : PANI were studied. Catalysts obtained with both methods and at all ratios were investigated using various techniques including AAS and XPS spectroscopy. The optimum conditions for preparation of PANI/Co catalysts were established. Catalytic activity of polyaniline cobalt(II) supported catalysts was tested in dec-1-ene epoxidation with molecular oxygen at room temperature. The relationship between the amount of cobalt species, measured with both AAS and XPS techniques, and the activity of PANI-Co catalysts has been established. PMID:24701183

  4. The cytotoxicity and genotoxicity of soluble and particulate cobalt in human lung fibroblast cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Leah J.; Holmes, Amie L.; Maine Center for Environmental Toxicology and Health, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04101-9300

    Cobalt exposure is increasing as cobalt demand rises worldwide due to its use in enhancing rechargeable battery efficiency, super-alloys, and magnetic products. Cobalt is considered a possible human carcinogen with the lung being a primary target. However, few studies have considered cobalt-induced toxicity in human lung cells. Therefore, in this study, we sought to determine the cytotoxicity and genotoxicity of particulate and soluble cobalt in human lung cells. Cobalt oxide and cobalt chloride were used as representative particulate and soluble cobalt compounds, respectively. Exposure to both particulate and soluble cobalt induced a concentration-dependent increase in cytotoxicity, genotoxicity, and intracellular cobaltmore » ion levels. Based on intracellular cobalt ion levels, we found that soluble cobalt was more cytotoxic than particulate cobalt while particulate and soluble cobalt induced similar levels of genotoxicity. However, soluble cobalt induced cell cycle arrest indicated by the lack of metaphases at much lower intracellular cobalt concentrations compared to cobalt oxide. Accordingly, we investigated the role of particle internalization in cobalt oxide-induced toxicity and found that particle-cell contact was necessary to induce cytotoxicity and genotoxicity after cobalt exposure. These data indicate that cobalt compounds are cytotoxic and genotoxic to human lung fibroblasts, and solubility plays a key role in cobalt-induced lung toxicity. - Highlights: • Particulate and soluble cobalt are cytotoxic and genotoxic to human lung cells. • Soluble cobalt induces more cytotoxicity compared to particulate cobalt. • Soluble and particulate cobalt induce similar levels of genotoxicity. • Particle-cell contact is required for particulate cobalt-induced toxicity.« less

  5. New perspectives of cobalt tris(bipyridine) system: anti-cancer effect and its collateral sensitivity towards multidrug-resistant (MDR) cancers

    PubMed Central

    Mok, Simon Wing Fai; Liu, Hauwei; Zeng, Wu; Han, Yu; Gordillo-Martinez, Flora; Chan, Wai-Kit; Wong, Keith Man-Chung; Wong, Vincent Kam Wai

    2017-01-01

    Platinating compounds including cisplatin, carboplatin, and oxaliplatin are common chemotherapeutic agents, however, patients developed resistance to these clinical agents after initial therapeutic treatments. Therefore, different approaches have been applied to identify novel therapeutic agents, molecular mechanisms, and targets for overcoming drug resistance. In this study, we have identified a panel of cobalt complexes that were able to specifically induce collateral sensitivity in taxol-resistant and p53-deficient cancer cells. Consistently, our reported anti-cancer functions of cobalt complexes 1–6 towards multidrug-resistant cancers have suggested the protective and non-toxic properties of cobalt metal-ions based compounds in anti-cancer therapies. As demonstrated in xenograft mouse model, our results also confirmed the identified cobalt complex 2 was able to suppress tumor growth in vivo. The anti-cancer effect of the cobalt complex 2 was further demonstrated to be exerted via the induction of autophagy, cell cycle arrest, and inhibition of cell invasion and P-glycoprotein (P-gp) activity. These data have provided alternative metal ion compounds for targeting drug resistance cancers in chemotherapies. PMID:28903398

  6. Coordination of different ligands to copper(II) and cobalt(III) metal centers enhances Zika virus and dengue virus loads in both arthropod cells and human keratinocytes.

    PubMed

    Dutta, Shovan; Celestine, Michael J; Khanal, Supreet; Huddleston, Alexis; Simms, Colin; Arca, Jessa Faye; Mitra, Amlan; Heller, Loree; Kraj, Piotr J; Ledizet, Michel; Anderson, John F; Neelakanta, Girish; Holder, Alvin A; Sultana, Hameeda

    2018-01-01

    Trace elements such as copper and cobalt have been associated with virus-host interactions. However, studies to show the effect of conjugation of copper(II) or cobalt(III) metal centers to thiosemicarbazone ligand(s) derived from either food additives or mosquito repellent such as 2-acetylethiazole or citral, respectively, on Zika virus (ZIKV) or dengue virus (serotype 2; DENV2) infections have not been explored. In this study, we show that four compounds comprising of thiosemicarbazone ligand derived from 2-acetylethiazole viz., (E)-N-ethyl-2-[1-(thiazol-2-yl)ethylidene]hydrazinecarbothioamide (acetylethTSC) (compound 1), a copper(II) complex with acetylethTSC as a ligand (compound 2), a thiosemicarbazone ligand-derived from citral (compound 3) and a cobalt(III) complex with a citral-thiosemicarbazone ligand (compound 4) increased DENV2 and ZIKV replication in both mosquito C6/36 cells and human keratinocytes (HaCaT cells). Treatment of both cell lines with compounds 2 or 4 showed increased dengue viral titers at all three tested doses. Enhanced dengue viral plaque formation was also noted at the tested dose of 100μM, suggesting higher production of infectious viral particles. Treatment with the compounds 2 or 4 enhanced ZIKV and DENV2 RNA levels in HeLa cell line and primary cultures of mouse bone marrow derived dendritic cells. Also, pre- or post treatments with conjugated compounds 2 or 4 showed higher loads of ZIKV or DENV2 envelope (E) protein in HaCaT cells. No changes in loads of E-protein were found in ZIKV-infected C6/36 cells, when compounds were treated after infection. In addition, we tested bis(1,10-phenanthroline)copper(II) chloride ([Cu(phen) 2 ]Cl 2 , (compound 5) and tris(1,10-phenanthroline)cobalt(III) chloride ([Co(phen) 3 ]Cl 3 , (compound 6) that also showed enhanced DENV2 loads. Also, we found that copper(II) chloride dehydrate (CuCl 2 ·2H 2 O) or cobalt(II) chloride hexahydrate (CoCl 2 ·6H 2 O) alone had no effects as "free" cations. Taken together, these findings suggest that use of Cu(II) or Co(III) conjugation to organic compounds, in insect repellents and/or food additives could enhance DENV2/ZIKV loads in human cells and perhaps induce pathogenesis in infected individuals or individuals pre-exposed to such conjugated complexes. Mosquito-borne diseases are of great concern to the mankind. Use of chemicals/repellents against mosquito bites and transmission of microbes has been the topic of interest for many years. Here, we show that thiosemicarbazone ligand(s) derived from 2-acetylethiazole or citral or 1,10-phenanthroline upon conjugation with copper(II) or cobalt(III) metal centers enhances dengue virus (serotype 2; DENV2) and/or Zika virus (ZIKV) infections in mosquito, mouse and human cells. Enhanced ZIKV/DENV2 capsid mRNA or envelope protein loads were evident in mosquito cells and human keratinocytes, when treated with compounds before/after infections. Also, treatment with copper(II) or cobalt(III) conjugated compounds increased viral titers and number of plaque formations. These studies suggest that conjugation of compounds in repellents/essential oils/natural products/food additives with copper(II) or cobalt(III) metal centers may not be safe, especially in tropical and subtropical places, where several dengue infection cases and deaths are reported annually or in places with increased ZIKV caused microcephaly. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Nitrogen-doped carbon-supported cobalt-iron oxygen reduction catalyst

    DOEpatents

    Zelenay, Piotr; Wu, Gang

    2014-04-29

    A Fe--Co hybrid catalyst for oxygen reaction reduction was prepared by a two part process. The first part involves reacting an ethyleneamine with a cobalt-containing precursor to form a cobalt-containing complex, combining the cobalt-containing complex with an electroconductive carbon supporting material, heating the cobalt-containing complex and carbon supporting material under conditions suitable to convert the cobalt-containing complex and carbon supporting material into a cobalt-containing catalyst support. The second part of the process involves polymerizing an aniline in the presence of said cobalt-containing catalyst support and an iron-containing compound under conditions suitable to form a supported, cobalt-containing, iron-bound polyaniline species, and subjecting said supported, cobalt-containing, iron bound polyaniline species to conditions suitable for producing a Fe--Co hybrid catalyst.

  8. THE DIFFERENTIAL THERMAL ANALYSIS OF CYANO-TRANSITION METAL COMPLEXES

    DTIC Science & Technology

    COMPOUNDS, CHROMATES, COBALT COMPOUNDS, CYANIDES, CYANOGEN, DYES, FERRATES , GASES, HEAT, HYDROXIDES, LITHIUM COMPOUNDS, MOLYBDATES, NICKELATES, NITRATES...OXIDATION REDUCTION REACTIONS, POTASSIUM COMPOUNDS, SILVER COMPOUNDS, SODIUM COMPOUNDS, VANADATES

  9. Cobalt(II) and Cobalt(III) Coordination Compounds.

    ERIC Educational Resources Information Center

    Thomas, Nicholas C.; And Others

    1989-01-01

    Presents a laboratory experiment which illustrates the formation of tris(phenanthroline)cobalt complexes in the 2+ and 3+ oxidation states, the effect of coordination on reactions of the ligand, and the use of a ligand displacement reaction in recovering the transformed ligand. Uses IR, UV-VIS, conductivity, and NMR. (MVL)

  10. The crystal structures of iron and cobalt pyridine (py)–sulfates, [Fe(SO4)(py)4]n and [Co3(SO4)3(py)11]n

    PubMed Central

    Pham, Duyen N. K.; Roy, Mrittika; Kreider-Mueller, Ava; Golen, James A.; Manke, David R.

    2018-01-01

    The solid-state structures of two metal–pyridine–sulfate compounds, namely catena-poly[[tetra­kis­(pyridine-κN)iron(II)]-μ-sulfato-κ2 O:O′], [Fe(SO4)(C5H5N)4]n, (1), and catena-poly[[tetra­kis­(pyridine-κN)cobalt(II)]-μ-sulfato-κ2 O:O′-[tetra­kis­(pyridine-κN)cobalt(II)]-μ-sulfato-κ3 O,O′:O′′-[tris­(pyridine-κN)cobalt(II)]-μ-sulfato-κ2 O:O′], [Co3(SO4)3(C5H5N)11]n, (2), are reported. The iron compound (1) displays a polymeric structure, with infinite chains of FeII atoms adopting octa­hedral N4O2 coordination environments that involve four pyridine ligands and two bridging sulfate ligands. The cobalt compound (2) displays a polymeric structure, with infinite chains of CoII atoms. Two of the three Co centers have an octa­hedral N4O2 coordination environment that involves four pyridine ligands and two bridging sulfate ligands. The third Co center has an octa­hedral N3O3 coordination environment that involves three pyridine ligands, and two bridging sulfate ligands with one sulfate chelating the cobalt atom.

  11. Catalyzed sodium chlorate candles

    NASA Technical Reports Server (NTRS)

    Malich, C. W.; Wydeven, T.

    1972-01-01

    The catalytic effect of cobalt powder on chlorate decomposition has been confirmed. Catalysis is enhanced by oxidation of the metal during burning. Catalysts other than cobalt compounds should also be effective; the complete elimination of fuel has shown that the oxidation of cobalt during decomposition is not a vital factor in the improved performance of catalyzed candles.

  12. Experimental identification of the active sites in pyrolyzed carbon-supported cobalt-polypyrrole-4-toluenesulfinic acid as electrocatalysts for oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Sha, Hao-Dong; Yuan, Xianxia; Li, Lin; Ma, Zhong; Ma, Zi-Feng; Zhang, Lei; Zhang, Jiujun

    2014-06-01

    A series of carbon supported cobalt-polypyrrole-4-toluenesulfinic acid have been pyrolyzed in an argon atmosphere at 800 °C, then structurally characterized and electrochemically evaluated as oxygen reduction reaction (ORR) catalysts in aqueous 0.5 M sulfuric acid. The structures are cobalt bonded to nitrogen species (Co-Nx) along with metallic cobalt and cobalt oxide. When the cobalt loading in the compound is less than 1.0 wt%, the predominate form is Co-Nx, when the loading is higher than 1.0 wt%, metallic Co and Co oxide particles co-exist with the Co-Nx compound. At a Co loading of ∼1.0 wt%, the catalyst gives the best ORR activity. Both metallic Co and Co oxide are not active for catalyzing ORR, and block the catalytically active Co-Nx species from the surface and reduce the catalytic activity since the diffusion limiting current density on a rotating disk electrode (RDE) increases when the electrode blocking agents are washed away with acid.

  13. Structural elucidation, EPR and magnetic property of a Co(III) complex salt incorporating 4,4‧-bipyridine and 5-sulfoisophthalate

    NASA Astrophysics Data System (ADS)

    Das, Kuheli; Datta, Amitabha; Pevec, Andrej; Mane, Sandeep B.; Rameez, Mohammad; Garribba, Eugenio; Akitsu, Takashiro; Tanka, Shinnosuke

    2018-01-01

    The cobalt(III) derivative [Co3(sip)4(bipy)2(H2O)10][Co(bipy)2(H2O)4]3(sip)2·20H2O (1) has been hydro(solvo) thermally synthesized by combining sodium 5-sulfoisophthalate (sipH2Na) as organic linker, divalent cobalt nitrate hexahydrate as metal salt and the flexible N-donor ancillary ligand bipy (4,4‧-bipyridine). Compound 1 is an ionic solid consisting of both cobalt containing cations and anions and also in addition 5-sulfoisophthalate anions. Cobalt containing cations in the crystal structure are mononuclear complex while cobalt containing anion is a discrete trinuclear species. The π-π interaction present in 1 results in chain supramolecular structure. The encapsulation of the cobalt compound displays a moderate luminescent property. On temperature dependent magnetic study, it is revealed that the corresponding effective magnetic moment is 5.27 B.M. at 300 K, which suggests isolated Co(III) species with S = 2 (theoretical value is 4.90 B M.) and thus 1 shows a rare paramagnetic behavior.

  14. Exchange interactions and magnetic properties of hexagonal rare-earth-cobalt compounds

    NASA Astrophysics Data System (ADS)

    Burzo, E.

    2018-03-01

    The magnetic properties of some GdxY1-xCo4A compounds with A = Co, Si or B are analysed including the pressure effects. Isomorphous structure transitions, parallelly with changes of cobalt moments from high spin states to low spin states, were shown as pressure increases. The magnetic data, obtained from band structures, were compared with those predicted by the mean field model.

  15. Study of the influence of the bridge on the magnetic coupling in cobalt(II) complexes.

    PubMed

    Fabelo, Oscar; Cañadillas-Delgado, Laura; Pasán, Jorge; Delgado, Fernando S; Lloret, Francesc; Cano, Joan; Julve, Miguel; Ruiz-Pérez, Catalina

    2009-12-07

    Two new cobalt(II) complexes of formula [Co(2)(bta)(H(2)O)(6)](n) x 2nH(2)O (1) and [Co(phda)(H(2)O)](n) x nH(2)O (2) [H(4)bta = 1,2,4,5-benzenetetracarboxylic acid, H(2)phda = 1,4-phenylenediacetic acid] have been characterized by single crystal X-ray diffraction. Compound 1 is a one-dimensional compound where the bta(4-) ligand acts as 2-fold connector between the cobalt(II) ions through two carboxylate groups in para-conformation. Triply bridged dicobalt(II) units occur within each chain, a water molecule, a carboxylate group in the syn-syn conformation, and an oxo-carboxylate with the mu(2)O(1);kappa(2)O(1),O(2) coordination mode acting as bridges. Compound 2 is a three-dimensional compound, where the phda(2-) group acts as a bridge through its two carboxylate groups, one of them adopting the mu-O,O' coordination mode in the syn-syn conformation and the other exhibiting the single mu(2)-O'' bridging mode. As in 1, chains of cobalt(II) ions occur in 2 with a water molecule, a syn-syn carboxylate group, and an oxo-carboxylate constitute the triply intrachain bridging skeleton. Each chain is linked to other four ones through the phda(2-) ligand, giving rise to the three-dimensional structure. The values of the intrachain cobalt-cobalt separation are 3.1691(4) (1) and 3.11499(2) A (2) whereas those across the phenyl ring of the extended bta(4-) (1) and phda(2-) (2) groups are 10.1120(6) and 11.4805(69 A, respectively. The magnetic properties of 1 and 2 have been investigated in the temperature range 1.9-300 K, and their analysis has revealed the occurrence of moderate intrachain ferromagnetic couplings [J = +5.4 (1) and +2.16 cm(-1) (2), J being the isotropic magnetic coupling parameter], the magnetic coupling through the extended bta(4-) and phda(2-) with cobalt-cobalt separations larger than 10 A being negligible. The nature and magnitude of the magnetic interactions between the high-spin cobalt(II) ions in 1 and 2 are compared to those of related systems and discussed as a function of the complementarity-countercomplementarity effects of the triple bridges.

  16. COBALT COMPOUNDS AS ANTIDOTES FOR HYDROCYANIC ACID.

    PubMed

    EVANS, C L

    1964-12-01

    The antidotal potency of a cobalt salt (acetate), of dicobalt edetate, of hydroxocobalamin and of cobinamide against hydrocyanic acid was examined mainly on mice and rabbits. All the compounds were active antidotes for up to twice the LD50; under some conditions for larger doses. The most successful was cobalt acetate for rabbits (5xLD50), which was effective at a molar cyanide/cobalt (CN/Co) ratio of 5, but had as a side-effect intense purgation. Hydroxocobalamin was irregular in action, but on the whole was most effective for mice (4.5xLD50 at a molar ratio of 1), and had no apparent side effects. Dicobalt edetate, at molar ratios of up to 2, was more effective for rabbits (3xLD50) than for mice (2xLD50), but had fewer side effects than cobalt acetate. The effect of thiosulphate was to augment the efficacy of dicobalt edetate and, in mice, that of hydroxocobalamin; but, apparently, in rabbits, to reduce that of hydroxocobalamin. Cobinamide, at a molar ratio of 1, was slightly more effective than hydroxocobalamin on rabbits and also less irregular in its action. Cobalt acetate by mouth was effective against orally administered hydrocyanic acid. The oxygen uptake of the body, reduced by cyanide, is rapidly reinstated when one of the cobalt antidotes has been successfully administered.

  17. Synthesis, Crystal Structure, and Magnetic Properties of the Linear-Chain Cobalt Oxide Sr 5Pb 3CoO 12

    NASA Astrophysics Data System (ADS)

    Yamaura, K.; Huang, Q.; Takayama-Muromachi, E.

    2002-02-01

    The novel spin-chain cobalt oxide Sr5Pb3CoO12 [Poverline6×2m, a=10.1093(2) Å and c=3.562 51(9) Å at 295 K] is reported. A polycrystalline sample of the compound was studied by neutron diffraction (at 6 and 295 K) and magnetic susceptibility measurements (5 to 390 K). The cobalt oxide was found to be analogous to the copper oxide Sr5Pb3CuO12, which is comprised of magnetic-linear chains at an interchain distance of 10 Å. Although the cobalt oxide chains (μeff of 3.64 μB per Co) are substantially antiferromagnetic (θW=-38.8 K), neither low-dimensional magnetism nor long-range ordering has been found; a local-structure disorder in the chains might have an impact on the magnetism. This compound is highly electrically insulating.

  18. Influence of Cobalt Substitution on the Magnetic Properties of Fe5PB2.

    PubMed

    Cedervall, Johan; Nonnet, Elise; Hedlund, Daniel; Häggström, Lennart; Ericsson, Tore; Werwiński, Mirosław; Edström, Alexander; Rusz, Ján; Svedlindh, Peter; Gunnarsson, Klas; Sahlberg, Martin

    2018-01-16

    The substitutional effects of cobalt in (Fe 1-x Co x ) 5 PB 2 have been studied with respect to crystalline structure and chemical order with X-ray diffraction and Mössbauer spectroscopy. The magnetic properties have been determined from magnetic measurements, and density functional theory calculations have been performed for the magnetic properties of both the end compounds, as well as the chemically disordered intermediate compounds. The crystal structure of (Fe 1-x Co x ) 5 PB 2 is tetragonal (space group I4/mcm) with two different metal sites, with a preference for cobalt atoms in the M(2) position (4c) at higher cobalt contents. The substitution also affects the magnetic properties with a decrease of the Curie temperature (T C ) with increasing cobalt content, from 622 to 152 K for Fe 5 PB 2 and (Fe 0.3 Co 0.7 ) 5 PB 2 , respectively. Thus, the Curie temperature is dependent on composition, and it is possible to tune T C to a temperature near room temperature, which is one prerequisite for magnetic cooling materials.

  19. Cobalt compounds as antidotes for hydrocyanic acid

    PubMed Central

    Evans, C. Lovatt

    1964-01-01

    The antidotal potency of a cobalt salt (acetate), of dicobalt edetate, of hydroxocobalamin and of cobinamide against hydrocyanic acid was examined mainly on mice and rabbits. All the compounds were active antidotes for up to twice the LD50; under some conditions for larger doses. The most successful was cobalt acetate for rabbits (5×LD50), which was effective at a molar cyanide/cobalt (CN/Co) ratio of 5, but had as a side-effect intense purgation. Hydroxocobalamin was irregular in action, but on the whole was most effective for mice (4.5×LD50 at a molar ratio of 1), and had no apparent side effects. Dicobalt edetate, at molar ratios of up to 2, was more effective for rabbits (3×LD50) than for mice (2×LD50), but had fewer side effects than cobalt acetate. The effect of thiosulphate was to augment the efficacy of dicobalt edetate and, in mice, that of hydroxocobalamin; but, apparently, in rabbits, to reduce that of hydroxocobalamin. Cobinamide, at a molar ratio of 1, was slightly more effective than hydroxocobalamin on rabbits and also less irregular in its action. Cobalt acetate by mouth was effective against orally administered hydrocyanic acid. The oxygen uptake of the body, reduced by cyanide, is rapidly reinstated when one of the cobalt antidotes has been successfully administered. PMID:14256807

  20. Magnetic and magnetoresistance properties of La0.7Sr0.3(Mn,Сo)O3

    NASA Astrophysics Data System (ADS)

    Troyanchuk, I. O.; Karpinsky, D. V.; Bushinsky, M. V.; Sikolenko, V. V.; Gavrilov, S. A.; Silibin, M. V.

    2017-11-01

    Magnetic and magnetotransport properties of La0.7Sr0.3Mn1-xCoxO3 ceramics have been investigated by neutron powder diffraction, magnetization and electrical measurements. It is shown that substitution by cobalt ions leads to a decrease of magnetic transition temperature down to 140 K for the compound with x = 0.33. The compounds with cobalt content 0.4 < x < 0.6 are characterized by a presence of small ferromagnetic component due to exchange interactions between cobalt and manganese ions with maximal transition temperature of about 190 K observed for x = 0.5. Further increase of the dopant concentration diminishes ferromagnetic interactions. An evolution of electronic configuration of manganese and cobalt ions upon chemical substitution as well as related changes in the exchange interactions which determine the type of the magnetic state are discussed. Based on the neutron diffraction results and magnetometry data the preliminary magnetic phase diagram has been constructed.

  1. Syntheses, Characterization, Resolution, and Biological Studies of Coordination Compounds of Aspartic Acid and Glycine

    PubMed Central

    Akinkunmi, Ezekiel; Ojo, Isaac; Adebajo, Clement; Isabirye, David

    2017-01-01

    Enantiomerically enriched coordination compounds of aspartic acid and racemic mixtures of coordination compounds of glycine metal-ligand ratio 1 : 3 were synthesized and characterized using infrared and UV-Vis spectrophotometric techniques and magnetic susceptibility measurements. Five of the complexes were resolved using (+)-cis-dichlorobis(ethylenediamine)cobalt(III) chloride, (+)-bis(glycinato)(1,10-phenanthroline)cobalt(III) chloride, and (+)-tris(1,10-phenanthroline)nickel(II) chloride as resolving agents. The antimicrobial and cytotoxic activities of these complexes were then determined. The results obtained indicated that aspartic acid and glycine coordinated in a bidentate fashion. The enantiomeric purity of the compounds was in the range of 22.10–32.10%, with (+)-cis-dichlorobis(ethylenediamine)cobalt(III) complex as the more efficient resolving agent. The resolved complexes exhibited better activity in some cases compared to the parent complexes for both biological activities. It was therefore inferred that although the increase in the lipophilicity of the complexes may assist in the permeability of the complexes through the cell membrane of the pathogens, the enantiomeric purity of the complexes is also of importance in their activity as antimicrobial and cytotoxic agents. PMID:28293149

  2. Determination of cobalt species in nutritional supplements using ICP-OES after microwave-assisted extraction and solid-phase extraction.

    PubMed

    Bartosiak, Magdalena; Jankowski, Krzysztof; Giersz, Jacek

    2018-06-05

    Cobalt content (as vitamin B 12 and inorganic cobalt) in two nutritional supplements, namely Spirulina platensis and Saccharomyces cerevisiae known as a "superfood", has been determined using inductively coupled plasma optical emission spectrometry (ICP-OES). Several sample pre-treatment protocols have been applied and compared. Microwave-assisted acid digestion efficiently decomposed all cobalt-containing compounds, thus allowed obtaining total cobalt content in supplements examined. Vitamin B 12 was extracted from the samples with acetate buffer and potassium cyanide solution exposed to mild microwave radiation for 30 min, and cyanocobalamin was separated from the extract by on-column solid phase extraction using C-18 modified silica bed. About 100% of cobalt species was extracted using the triple microwave-assisted extraction procedure. Total cobalt content was 20-fold greater in Spirulina tablets than the declared cobalamin content (as Co). The ICP-OES method precision was about 3% and detection limit was 1.9 and 2.7 ng Co mL -1 for inorganic cobalt or cyanocobalamin, respectively. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Carcinogens Report Adds Seven Agents.

    PubMed

    2017-01-01

    The National Toxicology Program has added seven new substances to its 14th Report on Carcinogens, bringing the total number in this congressionally mandated report to 248. The latest additions are the chemical trichloroethylene; cobalt metal and compounds that release cobalt ions in vivo; and five viruses, including HIV-1. ©2017 American Association for Cancer Research.

  4. A Novel Coordination Polymer Based on Trinuclear Cobalt Building Blocks Cluster: Synthesis, Crystal Structure, and Properties

    NASA Astrophysics Data System (ADS)

    Lu, J. F.; Tang, Z. H.; Shi, J.; Ge, H. G.; Jiang, M.; Song, J.; Jin, L. X.

    2017-12-01

    The title compound {[Co3(μ3-OH)(μ2-H2O)2(H2O)5(BTC)2] · 6H2O} n (H3BTC is a 1,3,5-benzenetricarboxylic acid) was prepared and characterized by single crystal and powder X-ray diffraction, Fourier transform infrared spectroscopy, thermogravimetric and elemental analyses. The single crystal X-ray diffraction reveals that the title compound consists of 1D infinite zigzag chains which were constructed by trinuclear cobalt cluster and BTC3- ligand. Neighbouring above-mentioned 1D infinite zigzag chains are further linked by intermolecular hydrogen bonding to form a 3D supermolecular structure. In addition, the luminescent properties of the title compound were investigated.

  5. Fischer-Tropsch Catalyst for Aviation Fuel Production

    NASA Technical Reports Server (NTRS)

    DeLaRee, Ana B.; Best, Lauren M.; Bradford, Robyn L.; Gonzalez-Arroyo, Richard; Hepp, Aloysius F.

    2012-01-01

    As the oil supply declines, there is a greater need for cleaner alternative fuels. There will undoubtedly be a shift from crude oil to nonpetroleum sources as a feedstock for aviation (and other transportation) fuels. The Fischer-Tropsch process uses a gas mixture of carbon monoxide and hydrogen which is converted into various liquid hydrocarbons; this versatile gas-to-liquid technology produces a complex product stream of paraffins, olefins, and oxygenated compounds such as alcohols and aldehydes. The Fischer-Tropsch process can produce a cleaner diesel oil fraction with a high cetane number (typically above 70) without any sulfur and aromatic compounds. It is most commonly catalyzed by cobalt supported on alumina, silica, or titania or unsupported alloyed iron powders. Cobalt is typically used more often than iron, in that cobalt is a longer-active catalyst, has lower water-gas shift activity, and lower yield of modified products. Promoters are valuable in improving Fischer-Tropsch catalyst as they can increase cobalt oxide dispersion, enhance the reduction of cobalt oxide to the active metal phase, stabilize a high metal surface area, and improve mechanical properties. Our goal is to build up the specificity of the Fischer-Tropsch catalyst while adding less-costly transition metals as promoters; the more common promoters used in Fischer-Tropsch synthesis are rhenium, platinum, and ruthenium. In this report we will describe our preliminary efforts to design and produce catalyst materials to achieve our goal of preferentially producing C8 to C18 paraffin compounds in the NASA Glenn Research Center Gas-To-Liquid processing plant. Efforts at NASA Glenn Research Center for producing green fuels using non-petroleum feedstocks support both the Sub-sonic Fixed Wing program of Fundamental Aeronautics and the In Situ Resource Utilization program of the Exploration Technology Development and Demonstration program.

  6. Fischer-Tropsch Catalyst for Aviation Fuel Production

    NASA Technical Reports Server (NTRS)

    deLaRee, Ana B.; Best, Lauren M.; Hepp, Aloysius F.

    2011-01-01

    As the oil supply declines, there is a greater need for cleaner alternative fuels. There will undoubtedly be a shift from crude oil to non-petroleum sources as a feedstock for aviation (and other transportation) fuels. The Fischer-Tropsch process uses a gas mixture of carbon monoxide and hydrogen which is converted into various liquid hydrocarbons; this versatile gas-to-liquid technology produces a complex product stream of paraffins, olefins, and oxygenated compounds such as alcohols and aldehydes. The Fischer-Tropsch process can produce a cleaner diesel oil fraction with a high cetane number (typically above 70) without any sulfur and aromatic compounds. It is most commonly catalyzed by cobalt supported on alumina, silica, or titania or unsupported alloyed iron powders. Cobalt is typically used more often than iron, in that cobalt is a longer-active catalyst, has lower water-gas shift activity, and lower yield of modified products. Promoters are valuable in improving Fischer-Tropsch catalyst as they can increase cobalt oxide dispersion, enhance the reduction of cobalt oxide to the active metal phase, stabilize a high metal surface area, and improve mechanical properties. Our goal is to build up the specificity of the Fischer-Tropsch catalyst while adding less-costly transition metals as promoters; the more common promoters used in Fischer-Tropsch synthesis are rhenium, platinum, and ruthenium. In this report we will describe our preliminary efforts to design and produce catalyst materials to achieve our goal of preferentially producing C8 to C18 paraffin compounds in the NASA Glenn Research Center Gas-To-Liquid processing plant. Efforts at NASA Glenn Research Center for producing green fuels using non-petroleum feedstocks support both the Sub-sonic Fixed Wing program of Fundamental Aeronautics and the In Situ Resource Utilization program of the Exploration Technology Development and Demonstration program.

  7. Cermet electrode

    DOEpatents

    Maskalick, Nicholas J.

    1988-08-30

    Disclosed is a cermet electrode consisting of metal particles of nickel, cobalt, iron, or alloys or mixtures thereof immobilized by zirconia stabilized in cubic form which contains discrete deposits of about 0.1 to about 5% by weight of praseodymium, dysprosium, terbium, or a mixture thereof. The solid oxide electrode can be made by covering a substrate with particles of nickel, cobalt, iron, or mixtures thereof, growing a stabilized zirconia solid oxide skeleton around the particles thereby immobilizing them, contacting the skeleton with a compound of praseodymium, dysprosium, terbium, or a mixture thereof, and heating the skeleton to a temperature of at least 500.degree. C. The electrode can also be made by preparing a slurry of nickel, cobalt, iron, or mixture and a compound of praseodymium, dysprosium, terbium, or a mixture thereof, depositing the slurry on a substrate, heating the slurry to dryness, and growing a stabilized zirconia skeleton around the metal particles.

  8. Synthesis and Characterization of Mononuclear, Pseudotetrahedral Cobalt(III) Compounds

    PubMed Central

    2015-01-01

    The preparation and characterization of two mononuclear cobalt(III) tropocoronand complexes, [Co(TC-5,5)](BF4) and [Co(TC-6,6)](BPh4), are reported. The cobalt(III) centers exist in rare pseudotetrahedral conformations, with twist angles of 65° and 74° for the [Co(TC-5,5]+ and [Co(TC-6,6)]+ species, respectively. Structural and electrochemical characteristics are compared with those of newly synthesized [Ga(TC-5,5)](GaCl4) and [Ga(TC-6,6)](GaCl4) analogues. The spin state of the pseudotetrahedral [Co(TC-6,6)](BPh4) compound was determined to be S = 2, a change in spin state from the value of S = 1 that occurs in the square-planar and distorted square-planar complexes, [Co(TC-3,3)](X) (X = BPh4, BAr′4) and [Co(TC-4,4)](BPh4), respectively. PMID:25531129

  9. Cobalt-catalysed site-selective intra- and intermolecular dehydrogenative amination of unactivated sp3 carbons

    PubMed Central

    Wu, Xuesong; Yang, Ke; Zhao, Yan; Sun, Hao; Li, Guigen; Ge, Haibo

    2015-01-01

    Cobalt-catalysed sp2 C–H bond functionalization has attracted considerable attention in recent years because of the low cost of cobalt complexes and interesting modes of action in the process. In comparison, much less efforts have been devoted to the sp3 carbons. Here we report the cobalt-catalysed site-selective dehydrogenative cyclization of aliphatic amides via a C–H bond functionalization process on unactivated sp3 carbons with the assistance of a bidentate directing group. This method provides a straightforward synthesis of monocyclic and spiro β- or γ-lactams with good to excellent stereoselectivity and functional group tolerance. In addition, a new procedure has been developed to selectively remove the directing group, which enables the synthesis of free β- or γ-lactam compounds. Furthermore, the first cobalt-catalysed intermolecular dehydrogenative amination of unactivated sp3 carbons is also realized. PMID:25753366

  10. Determination of traces of cobalt in soils: A field method

    USGS Publications Warehouse

    Almond, H.

    1953-01-01

    The growing use of geochemical prospecting methods in the search for ore deposits has led to the development of a field method for the determination of cobalt in soils. The determination is based on the fact that cobalt reacts with 2-nitroso-1-naphthol to yield a pink compound that is soluble in carbon tetrachloride. The carbon tetrachloride extract is shaken with dilute cyanide to complex interfering elements and to remove excess reagent. The cobalt content is estimated by comparing the pink color in the carbon tetrachloride with a standard series prepared from standard solutions. The cobalt 2-nitroso-1-naphtholate system in carbon tetrachloride follows Beer's law. As little as 1 p.p.m. can be determined in a 0.1-gram sample. The method is simple and fast and requires only simple equipment. More than 40 samples can be analyzed per man-day with an accuracy within 30% or better.

  11. Cobalt-Catalyzed Trifluoromethylation-Peroxidation of Unactivated Alkenes with Sodium Trifluoromethanesulfinate and Hydroperoxide.

    PubMed

    Zhang, Hong-Yu; Ge, Chao; Zhao, Jiquan; Zhang, Yuecheng

    2017-10-06

    Disclosed herein is an unprecedented cobalt-catalyzed trifluoromethylation-peroxidation of unactivated alkenes. In this process the hydroperoxide acts as a radical initiator as well as a coupling partner. The cheap and readily available sodium trifluoromethanesulfinate serves as the CF 3 source in the reaction. Various alkenes are transformed into vicinal trifluoromethyl-peroxide compounds in moderate to good yields.

  12. Thermal properties of rare earth cobalt oxides and of La1- x Gd x CoO3 solid solutions

    NASA Astrophysics Data System (ADS)

    Orlov, Yu. S.; Dudnikov, V. A.; Gorev, M. V.; Vereshchagin, S. N.; Solov'ev, L. A.; Ovchinnikov, S. G.

    2016-05-01

    Powder X-ray diffraction data for the crystal structure, phase composition, and molar specific heat for La1‒ x Gd x CoO3 cobaltites in the temperature range of 300-1000 K have been analyzed. The behavior of the volume thermal expansion coefficient in cobaltites with isovalent doping in the temperature range of 100-1000 K is studied. It is found that the β( T) curve exhibits two peaks at some doping levels. The rate of the change in the occupation number for the high-spin state of cobalt ions is calculated for the compounds under study taking into account the spin-orbit interaction. With the Birch-Murnaghan equation of state, it is demonstrated that the low-temperature peak in the thermal expansion shifts with the growth of the pressure toward higher temperatures and at pressure P ˜ 7 GPa coincides with the second peak. The similarity in the behavior of the thermal expansion coefficient in the La1- x Gd x CoO3 compounds with the isovalent substitution and the undoped LnCoO3 compound (Ln is a lanthanide) is considered. For the whole series of rare earth cobalt oxides, the nature of two specific features in the temperature dependence of the specific heat and thermal expansion is revealed and their relation to the occupation number for the high-spin state of cobalt ions and to the insulator-metal transition is established.

  13. Chemical and Phase Composition of Powders Obtained by Electroerosion Dispersion from WC - Co Alloys

    NASA Astrophysics Data System (ADS)

    Putintseva, M. N.

    2004-03-01

    The dependence of the chemical and phase composition of dispersed powders on the mode and medium of electroerosion dispersion and the content of cobalt in the initial alloy is considered. It is shown that the dissociation of carbon from tungsten carbide occurs even in dispersion in liquid hydrocarbon-bearing media (kerosene and industrial oils). The phase composition is primarily determined by the dispersion medium and the content of cobalt in the initial alloy. Compound tungsten-cobalt carbides and even a Co7W6 intermetallic are determined in all the powders.

  14. Three cobalt(II)-linked {P8W48} network assemblies: syntheses, structures, and magnetic and photocatalysis properties.

    PubMed

    Jiao, Yan-Qing; Qin, Chao; Wang, Xin-Long; Wang, Chun-Gang; Sun, Chun-Yi; Wang, Hai-Ning; Shao, Kui-Zhan; Su, Zhong-Min

    2014-02-01

    Three cobalt(II)-containing tungstophosphate compounds, Na8Li8Co5[Co5.5(H2O)19P8W48.5O184]⋅60 H2O (1), K2Na4Li11Co5[Co7(H2O)28P8W48O184]Cl⋅ 59 H2O (2), and K2Na4LiCo11[Co8(H2O)32P8W48O184](CH3COO)4Cl⋅47 H2O (3), have been synthesized and characterized by IR spectroscopy, thermogravimetric analysis, elemental analyses, and magnetic measurements. The pH value impacts the formation of distinct cobalt-linked frameworks. The cyclic cavity of the polyanion accommodates 5.5, 7, and 8 cobalt ions in 1, 2, and 3, respectively. In compounds 1 and 2, each {Co5.5P8W48} and {Co7P8W48} fragment links to four others through multiple {Co-O-W} coordination bonds to generate a two-dimensional network. Compound 3 can be considered as a 3D network based on the {Co-O-W} coordination bonds and the {Co3(CH3COO)2(H2O)10} linkers between the {P8W48} fragments. Interestingly, acetate ligands have been employed to form the {Co3(CH3COO)2(H2O)10} unit, thereby inducing the construction of a 12-connected framework. To the best of our knowledge, compound 3 contains the largest-ever number of cobalt ions in a {P8W48}-based polyoxometalate when counterions are taken into account and the {P8W48} unit shows the highest number of connections thanks to the carboxyl bridges. The UV/Vis diffuse reflectance spectra of these powder samples indicate that the corresponding well-defined optical absorption associated with Eg can be assessed at 2.58, 2.48, and 2.73 eV and reveal the presence of an optical band gap. The photocatalytic H2 evolution activities of these {P8W48}-based compounds are evaluated. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Operationally defined species characterization and bioaccessibility evaluation of cobalt, copper and selenium in Cape gooseberry (Physalis Peruviana L.) by SEC-ICP MS.

    PubMed

    Wojcieszek, Justyna; Ruzik, Lena

    2016-03-01

    Physalis peruviana could attract great interest because of its nutritional and industrial properties. It is an excellent source of vitamins, minerals, essential fatty acids and carotenoids. Physalis Peruviana is also known to have a positive impact on human health. Unfortunately, still little is known about trace elements present in Physalis Peruviana and their forms available for the human body. Thus, the aim of this study was to estimate bioaccessibility and characterization of species of cobalt, copper and selenium in Physalis Peruviana fruits. Total and extractable contents of elements were determined by mass spectrometer with inductively coupled plasma (ICP MS). In order to separate the different types of metal complexes Physalis peruviana fruits were treated with the following solvents: Tris-HCl (pH 7.4), sodium dodecyl sulfate (SDS) (pH 7.4) and ammonium acetate (pH 5.5). The best efficiency of extraction of: cobalt was obtained for ammonium acetate (56%) and Tris-HCl (60%); for copper was obtained for SDS (66%), for selenium the best extraction efficiency was obtained after extraction with SDS (48%). To obtain information about bioaccessibility of investigated elements, enzymatic extraction based on in vitro simulation of gastric (pepsin) and intestinal (pancreatin) digestion was performed. For copper and selenium the simulation of gastric digestion leads to the extraction yield above 90%, while both steps of digestion method were necessary to obtain satisfactory extraction yield in the case of cobalt. Size exclusion chromatography (SEC) coupled to on-line ICP MS detection was used to investigate collected metal species. The main fraction of metal compounds was found in the 17 kDa region. Cobalt and copper create complexes mostly with compounds extracted by means of ammonium acetate and SDS, respectively. Cobalt, copper and selenium were found to be highly bioaccessible from Physalis Peruviana. Investigation of available standards of cobalt and selenium allows confirming the presence of vitamin B12 and probably selenomethionine in the fraction bioaccessible by human body (obtained during enzymatic extraction). It should be noted that the presence of small seleno-compounds in Cape gooseberry was performed for the first time. The results show that the combination of SEC and ICP MS could provide a simple method for separating of soluble element species. Copyright © 2015 Elsevier GmbH. All rights reserved.

  16. Fischer–Tropsch synthesis: Effect of ammonia on supported cobalt catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pendyala, Venkat Ramana Rao; Jacobs, Gary; Bertaux, Clement

    The effect of ammonia in syngas on the performance of various supported cobalt catalysts (i.e., Al 2O 3, TiO 2 and SiO 2) was investigated during Fischer-Tropsch synthesis (FTS) using a continuously stirred tank reactor (CSTR). The addition of ammonia (10 ppmv NH 3) caused a significant deactivation for all supported cobalt catalysts, but the rate of deactivation was higher for the silica-supported catalysts relative to the alumina and titania-supported catalysts used in this work. Ammonia addition had a positive effect on product selectivity (i.e., lower light gas products and higher C 5+) for alumina and titania-supported catalysts compared tomore » ammonia free conditions, whereas, the addition of ammonia increased lighter hydrocarbon (C 1-C 4) products and decreased higher hydrocarbon (C 5+) selectivity compared to ammonia-free synthesis conditions for the silica-supported catalyst. For alumina and titania-supported catalysts, the activity almost recovered with mild in-situ hydrogen treatment of the ammonia exposed catalysts. For the silica-supported catalyst, the loss of activity is somewhat irreversible (i.e., cannot be regained after the mild hydrogen treatment). Addition of ammonia led to a significant loss in BET surface area and changes in pore diameter (consistent with pore collapse of a fraction of pores into the microporous range as described in the literature), as well as formation of catalytically inactive cobalt support compounds for the silica-supported catalyst. On the other hand, the pore characteristics of alumina and titania-supported catalysts were not significantly changed. In conclusion, XANES results of the ammonia exposed silica-supported catalysts further confirm the formation of cobalt-support compounds (cobalt silicates).« less

  17. Fischer–Tropsch synthesis: Effect of ammonia on supported cobalt catalysts

    DOE PAGES

    Pendyala, Venkat Ramana Rao; Jacobs, Gary; Bertaux, Clement; ...

    2016-02-22

    The effect of ammonia in syngas on the performance of various supported cobalt catalysts (i.e., Al 2O 3, TiO 2 and SiO 2) was investigated during Fischer-Tropsch synthesis (FTS) using a continuously stirred tank reactor (CSTR). The addition of ammonia (10 ppmv NH 3) caused a significant deactivation for all supported cobalt catalysts, but the rate of deactivation was higher for the silica-supported catalysts relative to the alumina and titania-supported catalysts used in this work. Ammonia addition had a positive effect on product selectivity (i.e., lower light gas products and higher C 5+) for alumina and titania-supported catalysts compared tomore » ammonia free conditions, whereas, the addition of ammonia increased lighter hydrocarbon (C 1-C 4) products and decreased higher hydrocarbon (C 5+) selectivity compared to ammonia-free synthesis conditions for the silica-supported catalyst. For alumina and titania-supported catalysts, the activity almost recovered with mild in-situ hydrogen treatment of the ammonia exposed catalysts. For the silica-supported catalyst, the loss of activity is somewhat irreversible (i.e., cannot be regained after the mild hydrogen treatment). Addition of ammonia led to a significant loss in BET surface area and changes in pore diameter (consistent with pore collapse of a fraction of pores into the microporous range as described in the literature), as well as formation of catalytically inactive cobalt support compounds for the silica-supported catalyst. On the other hand, the pore characteristics of alumina and titania-supported catalysts were not significantly changed. In conclusion, XANES results of the ammonia exposed silica-supported catalysts further confirm the formation of cobalt-support compounds (cobalt silicates).« less

  18. Kinetic control of intralayer cobalt coordination in layered hydroxides: Co(1-0.5x)(oct) Co(x)(tet) (OH)2 (Cl)x (H2O)n.

    PubMed

    Neilson, James R; Schwenzer, Birgit; Seshadri, Ram; Morse, Daniel E

    2009-12-07

    We report the synthesis and characterization of new structural variants of the isotypic compound with the generic chemical formula, Co(1-0.5x)(oct) Co(x)(tet) (OH)2 (Cl)x (H2O)n, all modifications of an alpha-Co(OH)2 lattice. We show that the occupancy of tetrahedrally coordinated cobalt sites and associated chloride ligands, x, is modulated by the rate of formation of the respective layered hydroxide salts from kinetically controlled aqueous hydrolysis at an air-water interface. This new level of structural control is uniquely enabled by the slow diffusion of a hydrolytic catalyst, a simple technique. Independent structural characterizations of the compounds separately describe various attributes of the materials on different length scales, revealing details hidden by the disordered average structures. The precise control over the population of distinct octahedrally and tetrahedrally coordinated cobalt ions in the lattice provides a gentle, generic method for modulating the coordination geometry of cobalt in the material without disturbing the lattice or using additional reagents. A mechanism is proposed to reconcile the observation of the kinetic control of the structure with competing interactions during the initial stages of hydrolysis and condensation.

  19. Dicobalt-μ-oxo polyoxometalate compound, [(α(2)-P2W17O61Co)2O](14-): a potent species for water oxidation, C-H bond activation, and oxygen transfer.

    PubMed

    Barats-Damatov, Delina; Shimon, Linda J W; Weiner, Lev; Schreiber, Roy E; Jiménez-Lozano, Pablo; Poblet, Josep M; de Graaf, Coen; Neumann, Ronny

    2014-02-03

    High-valent oxo compounds of transition metals are often implicated as active species in oxygenation of hydrocarbons through carbon-hydrogen bond activation or oxygen transfer and also in water oxidation. Recently, several examples of cobalt-catalyzed water oxidation have been reported, and cobalt(IV) species have been suggested as active intermediates. A reactive species, formally a dicobalt(IV)-μ-oxo polyoxometalate compound [(α2-P2W17O61Co)2O](14-), [(POMCo)2O], has now been isolated and characterized by the oxidation of a monomeric [α2-P2W17O61Co(II)(H2O)](8-), [POMCo(II)H2O], with ozone in water. The crystal structure shows a nearly linear Co-O-Co moiety with a Co-O bond length of ∼1.77 Å. In aqueous solution [(POMCo)2O] was identified by (31)P NMR, Raman, and UV-vis spectroscopy. Reactivity studies showed that [(POMCo)2O]2O] is an active compound for the oxidation of H2O to O2, direct oxygen transfer to water-soluble sulfoxides and phosphines, indirect epoxidation of alkenes via a Mn porphyrin, and the selective oxidation of alcohols by carbon-hydrogen bond activation. The latter appears to occur via a hydrogen atom transfer mechanism. Density functional and CASSCF calculations strongly indicate that the electronic structure of [(POMCo)2O]2O] is best defined as a compound having two cobalt(III) atoms with two oxidized oxygen atoms.

  20. Synthesis and characterization of α-cobalt hydroxide nanobelts

    NASA Astrophysics Data System (ADS)

    Tian, L.; Zhu, J. L.; Chen, L.; An, B.; Liu, Q. Q.; Huang, K. L.

    2011-08-01

    α-Cobalt hydroxide was synthesized by a facile hydrothermal process from Co(Ac)2 and NH3·H2O in the presence of 1,3-propanediol. The large-scale-prepared cobalt hydroxide has a uniform nanobelt morphology with a considerably high aspect-ratio more than 20 which may be advantageous for exploration of their physicochemical properties. This synthetic method is convenient, economical, and controllable. The samples were characterized by powder X-ray diffraction, energy dispersive spectrum, scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, CHN element analysis, thermogravimetric and differential-thermogravimetric analysis, which revealed the compound is lamellar structural cobalt organic-inorganic hybrid with the chemical formula of Co(OH)1.49(NH3)0.01(CO3 2-)0.22(Ac-)0.07(H2O)0.11 and single-crystalline.

  1. Advanced waste management technology evaluation

    NASA Technical Reports Server (NTRS)

    Couch, H.; Birbara, P.

    1996-01-01

    The purpose of this program is to evaluate the feasibility of steam reforming spacecraft wastes into simple recyclable inorganic salts, carbon dioxide and water. Model waste compounds included cellulose, urea, methionine, Igapon TC-42, and high density polyethylenes. These are compounds found in urine, feces, hygiene water, etc. The gasification and steam reforming process used the addition of heat and low quantities of oxygen to oxidize and reduce the model compounds.The studied reactions were aimed at recovery of inorganic residues that can be recycled into a closed biologic system. Results indicate that even at very low concentrations of oxygen (less than 3%) the formation of a carbonaceous residue was suppressed. The use of a nickel/cobalt reforming catalyst at reaction temperature of 1600 degrees yielded an efficient destruction of the organic effluents, including methane and ammonia. Additionally, the reforming process with nickel/cobalt catalyst diminished the noxious odors associated with butyric acid, methionine and plastics.

  2. Phase equilibria in the iron oxide-cobalt oxide-phosphorus oxide system

    NASA Technical Reports Server (NTRS)

    De Guire, Mark R.; Prasanna, T. R. S.; Kalonji, Gretchen; O'Handley, Robert C.

    1987-01-01

    Two novel ternary compounds are noted in the present study of 1000 C solid-state equilibria in the Fe-Co-P-O system's Fe2O3-FePO4-Co3(Po4)2-CoO region: CoFe(PO4)O, which undergoes incongruent melting at 1130 C, and Co3Fe4(PO4)6, whose incongruent melting occurs at 1080 C. The liquidus behavior-related consequences of rapidly solidified cobalt ferrite formation from cobalt ferrite-phosphate melts are discussed with a view to spinel formation. It is suggested that quenching from within the spinel-plus-liquid region may furnish an alternative to quenching a homogeneous melt.

  3. COLBALT-MEDIATED ACTIVATION OF PEROXYMONOSULFATE AND SULFATE RADICAL ATTACK ON PHENOLIC COMPOUNDS, IMPLICATIONS OF CHLORIDE IONS

    EPA Science Inventory

    This study reports on the sulfate radical pathway of room temperature degradation of two phenolic compounds in water. The radicals were produced by the cobalt-mediated decomposition of peroxymonosulfate (Oxone) in an aqueous homogeneous system. The major intermediates formed from...

  4. Cobalt doped CuMnOx catalysts for the preferential oxidation of carbon monoxide

    NASA Astrophysics Data System (ADS)

    Dey, Subhashish; Dhal, Ganesh Chandra; Mohan, Devendra; Prasad, Ram; Gupta, Rajeev Nayan

    2018-05-01

    Carbon monoxide (CO) is a poisonous gas, recognized as a silent killer for the 21st century. It is produced from the partial oxidation of carbon containing compounds. The catalytic oxidation of CO receives a huge attention due to its applications in different fields. In the present work, hopcalite (CuMnOx) catalysts were synthesized using a co-precipitation method for CO oxidation purposes. Also, it was doped with the cobalt by varying concentration from 1 to 5wt%. It was observed that the addition of cobalt into the CuMnOx catalyst (by the deposition-precipitation method) improved the catalytic performance for the low-temperature CO oxidation. CuMnOx catalyst doped with 3wt% of cobalt exhibited most active performance and showed the highest activity than other cobalt concentrations. Different analytical tools (i.e. XRD, FTIR, BET, XPS and SEM-EDX) were used to characterize the as-synthesized catalysts. It was expected that the introduction of cobalt will introduce new active sites into the CuMnOx catalyst that are associated with the cobalt nano-particles. The order of calcination strategies based on the activity for cobalt doped CuMnOx catalysts was observed as: Reactive calcinations (RC) > flowing air > stagnant air. Therefore, RC (4.5% CO in air) route can be recommended for the synthesis of highly active catalysts. The catalytic activity of doped CuMnOx catalysts toward CO oxidation shows a correlation among average oxidation number of Mn and the position and the nature of the doped cobalt cation.

  5. Selective growth of chirality-enriched semiconducting carbon nanotubes by using bimetallic catalysts from salt precursors.

    PubMed

    Zhao, Xiulan; Yang, Feng; Chen, Junhan; Ding, Li; Liu, Xiyan; Yao, Fengrui; Li, Meihui; Zhang, Daqi; Zhang, Zeyao; Liu, Xu; Yang, Juan; Liu, Kaihui; Li, Yan

    2018-04-19

    Bimetallic catalysts play important roles in the selective growth of single-walled carbon nanotubes (SWNTs). Using the simple salts (NH4)6W7O24·6H2O and Co(CH3COO)2·4H2O as precursors, tungsten-cobalt catalysts were prepared. The catalysts were composed of W6Co7 intermetallic compounds and tungsten-dispersed cobalt. With the increase of the W/Co ratio in the precursors, the content of W6Co7 was increased. Because the W6Co7 intermetallic compound can enable the chirality specified growth of SWNTs, the selectivity of the resulting SWNTs is improved at a higher W/Co ratio. At a W/Co ratio of 6 : 4 and under optimized chemical vapor deposition conditions, we realized the direct growth of semiconducting SWNTs with the purity of ∼96%, in which ∼62% are (14, 4) tubes. Using salts as precursors to prepare tungsten-cobalt bimetallic catalysts is flexible and convenient. This offers an efficient pathway for the large-scale preparation of chirality enriched semiconducting SWNTs.

  6. Synthesis and crystal structures of nitratocobaltates Na2[Co(NO3)4], K2[Co(NO3)4], and Ag[Co(NO3)3] and potassium nitratonickelate K2[Ni(NO3)4

    NASA Astrophysics Data System (ADS)

    Morozov, I. V.; Fedorova, A. A.; Albov, D. V.; Kuznetsova, N. R.; Romanov, I. A.; Rybakov, V. B.; Troyanov, S. I.

    2008-03-01

    The cobalt(II) and nickel(II) nitrate complexes with an island structure (Na2[Co(NO3)4] ( I) and K2[Co(NO3)4] ( II)] and a chain structure [Ag[Co(NO3)3] ( III) and K2[Ni(NO3)4] ( IV)] are synthesized and investigated using X-ray diffraction. In the anionic complex [Co(NO3)4]2- of the crystal structure of compound I, the Co coordination polyhedron is a twisted tetragonal prism formed by the O atoms of four asymmetric bidentate nitrate groups. In the anion [Co(NO3)4]2- of the crystal structure of compound II, one of the four NO3 groups is monodentate and the other NO3 groups are bidentate (the coordination number of the cobalt atom is equal to seven, and the cobalt coordination polyhedron is a monocapped trigonal prism). The crystal structures of compounds III and IV contain infinite chains of the compositions [Co(NO3)2(NO3)2/2]- and [Ni(NO3)3(NO3)2/2]2-, respectively. In the crystal structure of compound III, seven oxygen atoms of one monodentate and three bidentate nitrate groups form a dodecahedron with an unoccupied vertex of the A type around the Co atom. In the crystal structure of compound IV, the octahedral polyhedron of the Ni atom is formed by five nitrate groups, one of which is terminal bidentate. The data on the structure of Co(II) coordination polyhedra in the known nitratocobaltates are generalized.

  7. Influence of Fe-substitution on structural, magnetic and magnetocaloric properties of Nd2Fe17-xCox solid solutions

    NASA Astrophysics Data System (ADS)

    Bouchaala, N.; Jemmali, M.; Bartoli, T.; Nouri, K.; Hentech, I.; Walha, S.; Bessais, L.; Salah, A. Ben

    2018-02-01

    Nd2Fe17-xCox (x = 0 , 1 , 2 , 3 , 4) intermetallic compounds, obtained under arc-melting conditions, have been investigated by means of X-ray diffraction analysis (XRD), Mössbauer spectrometry and magnetic measurements. The Rietveld refinement revealed that the sample is a pure compound with rhombohedral Th2Zn17-type structure (R 3 bar m space group) with the following lattice parameters: a = 8.5792 (2) Å, c = 12.4615 (2) Å. Using Mössbauer spectrometry analysis coupled with structural consideration we have unambiguously determined the cobalt atoms preferred inequivalent crystallographic site. Nd2Fe17 show an increase of 3.5 T in their weighted average hyperfine fields upon cobalt substitution. Whatever the cobalt content, the hyperfine field of these compounds follow this sequence Hhf { 6 c } >Hhf { 9 d } >Hhf { 18 f } >Hhf { 18 h }. The magnetic measurements showed that the Curie temperature increases with the Co content. The magnetic entropy change (ΔSM) was estimated from isothermal magnetization curves and it increases from 3.35 J/Kg K for x = 0 to 5.83 J/Kg K for x = 2 at μ0 H = 1.6 T . The relative cooling power (RCP) is in the range of 11.6 J/kg (x = 0) and 16 J/kg (x = 2).

  8. RADIOLYSIS OF ORGANIC COMPOUNDS IN THE ADSORBED STATE

    DOEpatents

    Sutherland, J.W.; Allen, A.O.

    1961-10-01

    >A method of forming branch chained hydrocarbons by means of energetic penetrating radiation is described. A solid zeolite substrate is admixed with a cobalt ion and is irradiated with a hydrocarbon adsorbed therein. Upon irradiation with gamma rays, there is an increased yield of branched and lower molecular straight chain compounds. (AEC)

  9. Universal, In Situ Transformation of Bulky Compounds into Nanoscale Catalysts by High-Temperature Pulse.

    PubMed

    Xu, Shaomao; Chen, Yanan; Li, Yiju; Lu, Aijiang; Yao, Yonggang; Dai, Jiaqi; Wang, Yanbin; Liu, Boyang; Lacey, Steven D; Pastel, Glenn R; Kuang, Yudi; Danner, Valencia A; Jiang, Feng; Fu, Kun Kelvin; Hu, Liangbing

    2017-09-13

    The synthesis of nanoscale metal compound catalysts has attracted much research attention in the past decade. The challenges of preparation of the metal compound include the complexity of the synthesis process and difficulty of precise control of the reaction conditions. Herein, we report an in situ synthesis of nanoparticles via a high-temperature pulse method where the bulk material acts as the precursor. During the process of rapid heating and cooling, swift melting, anchoring, and recrystallization occur, resulting in the generation of high-purity nanoparticles. In our work, the cobalt boride (Co 2 B) nanoparticles with a diameter of 10-20 nm uniformly anchored on the reduced graphene oxide (rGO) nanosheets were successfully prepared using the high temperature pulse method. The as-prepared Co 2 B/rGO composite displayed remarkable electrocatalytic performance for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). We also prepared molybdenum disulfide (MoS 2 ) and cobalt oxide (Co 3 O 4 ) nanoparticles, thereby demonstrating that the high-temperature pulse is a universal method to synthesize ultrafine metal compound nanoparticles.

  10. Construction of Pyrrolo[1,2-a]indoles via Cobalt(III)-Catalyzed Enaminylation of 1-(Pyrimidin-2-yl)-1H-indoles with Ketenimines and Subsequent Base-Promoted Cyclization.

    PubMed

    Zhou, Xiaorong; Fan, Zili; Zhang, Zhiyin; Lu, Ping; Wang, Yanguang

    2016-09-16

    A cobalt(III)-catalyzed cross-coupling reaction of 1-(pyrimidin-2-yl)-1H-indoles with ketenimines is reported. The reaction provided 2-enaminylated indole derivatives in moderate to excellent yields with a broad substrate scope. The prepared 2-enaminylated indoles could be conveniently converted into pyrrolo[1,2-a]indoles, which are an important class of compounds in medicinal chemistry.

  11. Development of Intake Retention, and Excretion Fractions used in Bioassay Programs for Metallic Nanoparticle Aerosols Produced in Modern Munitions Development

    DTIC Science & Technology

    2014-03-01

    potential toxicological effects of tungsten-compounds are often attributed to the presence of cobalt and or chromium which are frequently contained in...rat test subjects.4 These claims were later put in doubt because of the substantial presents of chromium and cobalt in the tungsten alloy. Very little...biokinetics of aluminum follow similar trends as other trivalent metals. Of specific importance to this work, Priest made the assertion that

  12. Systems for the Storage of Molecular Oxygen - A Study.

    DTIC Science & Technology

    1980-11-25

    form adducts with certain chemical compounds . This process, which will be called chemical absorption, generally uses a transition metal coordination... compound as the absorber. The study of oxygen binding to metal complexes has become of great interest over the past three decades (21), and some...for iron, most notably cobalt (33-35) manganese (36,37) and ruthenium (38), usually to serve as model compounds for biologically important heme

  13. Study on the spin-states of cobalt-based double-layer perovskite Sr2Y0.5Ca0.5Co2O7

    NASA Astrophysics Data System (ADS)

    He, H.; Zhang, W. Y.

    2008-02-01

    The spin-states of cobalt based perovskite compounds depend sensitively on the valence state and local crystal environment of Co ions and the rich physical properties arise from strong coupling among charge, spin, and orbital degrees of freedom. While extensive studies have been carried out in the past, most of them concentrated on the isotropic compound LaCoO3. In this paper, using the unrestricted Hartree-Fock approximation and the real-space recursion method, we have investigated the competition of various magnetically ordered spin-states of anisotropic double-layered perovskite Sr2Y0.5Ca0.5Co2O7. The energy comparison among these states shows that the nearest-neighbor high-spin-intermediate-spin ferromagnetically ordered state is the relevant magnetic ground state of the compound. The magnetic structure and sizes of magnetic moments are consistent with the recent experimental observation.

  14. CoBi3-the first binary compound of cobalt with bismuth: high-pressure synthesis and superconductivity

    NASA Astrophysics Data System (ADS)

    Tencé, S.; Janson, O.; Krellner, C.; Rosner, H.; Schwarz, U.; Grin, Y.; Steglich, F.

    2014-10-01

    The first compound in the cobalt bismuth system was synthesized by high-pressure high-temperature synthesis at 5 GPa and 450 °C. CoBi3 crystallizes in space group Pnma (no. 62) with lattice parameters of a = 8.8464(7) Å, b = 4.0697(4) Å and c = 11.5604(9) Å adopting a NiBi3-type crystal structure. CoBi3 undergoes a superconducting transition at Tc = 0.48(3) K as evidenced by electrical-resistivity and specific-heat measurements. Based on the anomaly of the specific heat at Tc and considering the estimated electron-phonon coupling, the new Bi-rich compound can be classified as a Bardeen-Cooper-Schrieffer-type superconductor with weak electron-phonon coupling. Density-functional theory calculations disclose a sizable influence of the spin-orbit coupling to the valence states and proximity to a magnetic instability, which accounts for a significantly enhanced Sommerfeld coefficient.

  15. Syntheses and structural characterization of Co(II) and Cd(II) coordination polymers with 1,4-bis(imidazolyl)butane ligand

    NASA Astrophysics Data System (ADS)

    Lalegani, Arash; Khalaj, Mehdi; Sedaghat, Sajjad; Łyczko, Krzysztof; Lipkowski, Janusz

    2017-11-01

    Two new coordination polymers, {[Co(bib)3](PF6)2}n (1) and [Cd (bib) Cl2]n (2), were prepared at room temperature by the reaction of appropriate salts of cobalt (II) and cadmium (II) with the flexible linker ligands 1,4-bis(imidazolyl) butane (bib). The compounds were characterized by elemental analyses, IR spectroscopy and single crystal X-ray diffraction. In the polymeric structure of 1, the Co(II) ion lies on an inversion centre and adopts the CoN6 octahedral geometry, while in the structure of 2, the Cd(II) ions adopt the CdN2Cl4 pseudo-octahedral geometry. In compound 1, six bib ligands are coordinated to one central cobalt (II) to form an open 3D 2-fold interpenetrating framework of the α-polonium (pcu) type topology, while in compound 2 two bib ligands are coordinated to one central cadmium (II) to form 2D network structure.

  16. Hydrodesulfurization catalysis by Chevrel phase compounds

    DOEpatents

    McCarty, Kevin F.; Schrader, Glenn L.

    1985-12-24

    A process is disclosed for the hydrodesulfurization of sulfur-containing hydrocarbon fuel with reduced ternary molybdenum sulfides, known as Chevrel phase compounds. Chevrel phase compounds of the general composition M.sub.x Mo.sub.6 S.sub.8, with M being Ho, Pb, Sn, Ag, In, Cu, Fe, Ni, or Co, were found to have hydrodesulfurization activities comparable to model unpromoted and cobalt-promoted MoS.sub.2 catalysts. The most active catalysts were the "large" cation compounds (Ho, Pb, Sn), and the least active catalysts were the "small" cation compounds (Cu, Fe, Ni, Co.).

  17. Hydrodesulfurization catalyst by Chevrel phase compounds

    DOEpatents

    McCarty, K.F.; Schrader, G.L.

    1985-05-20

    A process is disclosed for the hydrodesulfurization of sulfur-containing hydrocarbon fuel with reduced ternary molybdenum sulfides, known as Chevrel phase compounds. Chevrel phase compounds of the general composition M/sub x/Mo/sub 6/S/sub 8/, with M being Ho, Pb, Sn, Ag, In, Cu, Fe, Ni, or Co, were found to have hydrodesulfurization activities comparable to model unpromoted and cobalt-promoted MoS/sub 2/ catalysts. The most active catalysts were the ''large'' cation compounds (Ho, Pb, Sn), and the least active catalysts were the ''small'' cation compounds (Cu, Fe, Ni, Co.).

  18. Homologation process making higher alcohols

    DOEpatents

    Leung, Tak W.; Dombek, Bernard D.

    1990-01-01

    A liquid phase process for the manufacture of C.sub.2+ alkanols by the reaction of hydrogen with carbon monoxide in the presence of a catalyst containing ruthenium, cobalt, a halide-containing compound, and an aromatic compound substituted in adjacent ring positions by nitrogen atoms. The process embraces the use of rhodium as an additive to the catalyst system.

  19. Amorphous cobalt potassium phosphate microclusters as efficient photoelectrochemical water oxidation catalyst

    NASA Astrophysics Data System (ADS)

    Zhang, Ye; Zhao, Chunsong; Dai, Xuezeng; Lin, Hong; Cui, Bai; Li, Jianbao

    2013-12-01

    A novel amorphous cobalt potassium phosphate hydrate compound (KCoPO4·H2O) is identified to be active photocatalyst for oxygen evolution reaction (OER) to facilitate hydrogen generation from water photolysis. It has been synthesized through a facile and cost-effective solution-based precipitation method using earth-abundant materials. Its highly porous structure and large surface areas are found to be responsible for the excellent electrochemical performance featuring a low OER onset at ∼550 mVSCE and high current density in alkaline condition. Unlike traditional cobalt-based spinel oxides (Co3O4, NiCo2O4) and phosphate (Co-Pi, Co(PO3)2) electrocatalysts, with proper energy band alignment for light-assisted water oxidation, cobalt potassium phosphate hydrate also exhibits robust visible-light response, generating a photocurrent density of ∼200 μA cm-2 at 0.7 VSCE. This catalyst could thus be considered as a promising candidate to perform photoelectrochemical water splitting.

  20. Synthesis and crystal structure of the [Co{sub 2}(Nicotinamide){sub 4}(C{sub 4}H{sub 9}COO){sub 4}(H{sub 2}O)] complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadikov, G. G., E-mail: sadgg@igic.ras.ru; Antsyshkina, A. S.; Koksharova, T. V.

    2007-09-15

    The [Co{sub 2}L{sub 4}(C{sub 4}H{sub 9}COO){sub 4}(H{sub 2}O)] coordination compound of cobalt(II) valerate with nicotinamide (L) is synthesized and studied by IR spectroscopy. The crystal structure of the synthesized compound is determined. The crystals are triclinic, and the unit cell parameters are as follows: a = 10.2759(10) A, b = 16.3858(10) A, c = 16.4262(10) A, {alpha} = 100.538(10) deg., {beta} = 101.199(10) deg., {gamma} = 90.813 (10) deg., Z = 2, and space group P1-bar. The structural units of the crystal are dimeric molecular complexes in which pairs of cobalt atoms are linked by triple bridges formed by oxygenmore » atoms of two bidentately coordinated valerate anions and a water molecule. The octahedral coordination of each cobalt atom is complemented by the pyridine nitrogen atoms of two nicotinamide ligands and the oxygen atom of the monodentate valerate group. The hydrocarbon chains of the valerate anions are disordered over two or three positions each.« less

  1. 40 CFR 63.10906 - What definitions apply to this subpart?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... pressure. Capture system means the collection of components used to capture gases and fumes released from... concentrations of compounds of antimony, arsenic, beryllium, cadmium, chromium, cobalt, lead, manganese, mercury...

  2. 40 CFR 63.10906 - What definitions apply to this subpart?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... pressure. Capture system means the collection of components used to capture gases and fumes released from... concentrations of compounds of antimony, arsenic, beryllium, cadmium, chromium, cobalt, lead, manganese, mercury...

  3. 40 CFR 63.10906 - What definitions apply to this subpart?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... pressure. Capture system means the collection of components used to capture gases and fumes released from... concentrations of compounds of antimony, arsenic, beryllium, cadmium, chromium, cobalt, lead, manganese, mercury...

  4. Preparation of Fischer-Tropsch catalysts from cobalt/iron hydrotalcites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howard, B.H.; Boff, J.J.; Zarochak, M.F.

    1995-12-31

    Compounds with the (hydrotalcites) have properties that make them attractive as precursors for Fischer-Tropsch catalysts. A series of single-phase hydrotalcites with cobalt/iron atom ratios ranging from 75/25 to 25/75 has been synthesized. Mixed cobalt/iron oxides have been prepared from these hydrotalcites by controlled thermal decomposition. Thermal decomposition at temperatures below 600 {degrees}C typically produced a single-phase mixed metal oxide with a spinel structure. The BET surface areas of the spinal samples have been found to be as high as about 150 m{sup 2}/g. Appropriate reducing pretreatments have been developed for several of these spinels and their activity, selectivity, and activitymore » and selectivity maintenance have been examined at 13 MPa in a fixed-bed microreactor.« less

  5. Mechanical process for enhancing metal hydride for the anode of a Ni-MH secondary battery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ikeya, T.; Kumai, K.; Iwahori, T.

    1993-11-01

    This study attempted to find a simpler method for modifying hydrogen storage alloys that are used as anodes in Ni-MH batteries to prolong their cycle life. The alloy was modified by mechanical grinding with cobalt metal powder. A short grinding time yielded samples with a higher discharge capacity and longer cycle life than those of the alloy which was mixed with the cobalt powder without the mechanical treatment. However, prolonged grinding caused a decrease in the discharge capacity because of amorphization of the alloy by mechanical stress. The authors believed the formation of a cobalt compound on the alloy surfacemore » plus closer contact between particle enhanced the cyclic durability and discharge capacity of metal hydride anodes.« less

  6. Stable and Inert Cobalt Catalysts for Highly Selective and Practical Hydrogenation of C≡N and C═O Bonds.

    PubMed

    Chen, Feng; Topf, Christoph; Radnik, Jörg; Kreyenschulte, Carsten; Lund, Henrik; Schneider, Matthias; Surkus, Annette-Enrica; He, Lin; Junge, Kathrin; Beller, Matthias

    2016-07-20

    Novel heterogeneous cobalt-based catalysts have been prepared by pyrolysis of cobalt complexes with nitrogen ligands on different inorganic supports. The activity and selectivity of the resulting materials in the hydrogenation of nitriles and carbonyl compounds is strongly influenced by the modification of the support and the nitrogen-containing ligand. The optimal catalyst system ([Co(OAc)2/Phen@α-Al2O3]-800 = Cat. E) allows for efficient reduction of both aromatic and aliphatic nitriles including industrially relevant dinitriles to primary amines under mild conditions. The generality and practicability of this system is further demonstrated in the hydrogenation of diverse aliphatic, aromatic, and heterocyclic ketones as well as aldehydes, which are readily reduced to the corresponding alcohols.

  7. Stability of coordination compounds of Ni2+ and Co2+ ions with succinic acid anion in water-ethanol solvents

    NASA Astrophysics Data System (ADS)

    Tukumova, N. V.; Dieu Thuan, Tran Thi; Usacheva, T. R.; Koryshev, N. E.; Sharnin, V. A.

    2017-04-01

    Stability constants of the coordination compounds of nickel(II) and cobalt(II) ions with succinic acid anion in water-ethanol solvents are determined via potentiometric titration at ionic strength of 0.1 and at T = 298.15 K. It is found that logβ values of monoligand complexes of these ions and succinic acid anions rise along with the content of ethanol in solution ( X EtOH = 0-0.7 mole fractions). Based on an analysis of the thermodynamic characteristics of the solvation of the reagents involved in complex formation, it is found that the increased stability of succinate complexes of nickel(II) and cobalt(II) ions in water-ethanol solvents is mainly determined by the weakening of the solvation of succinic acid anion (Y2-).

  8. Two-fold interpenetrating btc based cobaltous coordination polymer: A promising catalyst for solvent free oxidation of 1-hexene

    NASA Astrophysics Data System (ADS)

    Bora, Sanchay J.; Paul, Rima; Nandi, Mithun; Bhattacharyya, Pradip K.

    2017-12-01

    This work describes the synthesis of a new 2-D coordination polymer (CP), [Co3(btc)2(dmp)8]n (btc = 1,3,5-benzenetricarboxylate and dmp = 3,5-dimethylpyrazole) and its catalytic activity towards the oxidation reaction of 1-hexene to form oxygenated compounds under solvent free condition. Structural analysis reveals that Co(II) cations in this polymeric compound are linked by btc3- anions with alternate tetrahedral/octahedral coordination forming a two-fold interpenetrated 3-connected hcb underlying net. Electronic spectrum of the cobaltous polymer has been calculated using TDDFT/B3LYP method for making the appropriate assignments of electronic transitions. Catalytic results show good conversions of the starting material to oxygenated products with high selectivities for 1,2-epoxyhexane and 1-hexanal.

  9. Role of cobalt, iron, lead, manganese, mercury, platinum, selenium, and titanium in carcinogenesis.

    PubMed Central

    Kazantzis, G

    1981-01-01

    The possible carcinogenicity of cobalt, iron, lead, manganese, mercury, platinum, selenium, and titanium is reviewed, taking into account epidemiological data, the results of animal experimental studies, data on mutagenic effects and on other in vitro test systems. Of the great variety of occupations where exposure to one of these metals may occur, only haematite mining has been clearly shown to involve an increased human cancer risk. While the possibility that haematite might in some way act as a carcinogen has to be taken into consideration it is more likely that other carcinogens are responsible. Certain platinum coordination complexes are used in cancer chemotherapy, are mutagenic, and likely to be carcinogenic. Cobalt, its oxide and sulfide, certain lead salts, one organomanganese, and one organotitanium compound have been shown to have a limited carcinogenic effect in experimental animal studies, and except for titanium appear to be mutagenic. Certain mercury compounds are mutagenic but none have been shown to be carcinogenic. The presently available data are inadequate to assess the possible carcinogenicity of selenium compounds, but a few observations suggest that selenium may suppress the effect of other carcinogens administered to experimental animals and may even be associated with lower cancer mortality rates in man. Epidemiological observations are essential for the assessment of a human cancer risk, but the difficulty in collecting past exposure data in occupational groups and the complexity of multiple occupational exposures with changes over time, limits the usefulness of retrospective epidemiological studies. PMID:7023929

  10. Diastereoselective Radical‐Type Cyclopropanation of Electron‐Deficient Alkenes Mediated by the Highly Active Cobalt(II) Tetramethyltetraaza[14]annulene Catalyst

    PubMed Central

    Chirila, Andrei; Gopal Das, Braja; Paul, Nanda D.

    2017-01-01

    Abstract A new protocol for the catalytic synthesis of cyclopropanes using electron‐deficient alkenes is presented, which is catalysed by a series of affordable, easy to synthesise and highly active substituted cobalt(II) tetraaza[14]annulenes. These catalysts are compatible with the use of sodium tosylhydrazone salts as precursors to diazo compounds in one‐pot catalytic transformations to afford the desired cyclopropanes in almost quantitative yields. The reaction takes advantage of the metalloradical character of the Co complexes to activate the diazo compounds. The reaction is practical and fast, and proceeds from readily available starting materials. It does not require the slow addition of diazo reagents or tosylhydrazone salts or heating and tolerates many solvents, which include protic ones such as MeOH. The CoII complexes derived from the tetramethyltetraaza[14]annulene ligand are easier to prepare than cobalt(II) porphyrins and present a similar catalytic carbene radical reactivity but are more active. The reaction proceeds at 20 °C in a matter of minutes and even at −78 °C in a few hours. The catalytic system is robust and can operate with either the alkene or the diazo reagent as the limiting reagent, which inhibits the dimerisation of diazo compounds totally. The protocol has been applied to synthesise a variety of substituted cyclopropanes. High yields and selectivities were achieved for various substrates with an intrinsic preference for trans cyclopropanes. PMID:28529668

  11. Magnetic whiskers of p-aminobenzoic acid and their use for preparation of filled and microchannel silicone rubbers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Semenov, V. V., E-mail: vvsemenov@iomc.ras.ru; Loginova, V. V.; Zolotareva, N. V.

    A thin cobalt layer has been formed on the surface of p-aminobenzoic acid whiskers by chemical vapor deposition (CVD). The metallized crystals have been oriented in liquid polydimethylsiloxane rubber by applying a dc magnetic field. After vulcanization, the filler has been removed by processing in an alcohol solution of trifluoroacetic acid. The cobalt deposition on the surface of the organic compound and the properties of metallized whiskers are investigated by optical microscopy, scanning electron microscopy (SEM), and atomic force microscopy (AFM).

  12. Advanced Zinc Phosphate Conversion and Pre-Ceramic Polymetallosiloxane Coatings for Corrosion Protection of Steel and Aluminum, and Characteristics of Polyphenyletheretherketone-Based Materials

    DTIC Science & Technology

    1992-09-24

    which the trivalent ion is the principal oxidation state, preferentially reacts with hydroxylated organosilane to form the Al-O-Si linkage at a low... tig front the carboxylic acid, COOH, in the p(AA) [6j. The spectra for all of the cobalt- and nickel-incorporated Zn-Ph samples show a slight...to study bonding in chromium , manganese, iron, and cobalt compounds J Chem Phys 57 (1972) pp 973-982 1 1 Lindberg, B.J. et at. Molecular

  13. Electrochemical Cobalt-Catalyzed C-H Activation.

    PubMed

    Sauermann, Nicolas; Meyer, Tjark H; Ackermann, Lutz

    2018-06-19

    Carbon-heteroatom bonds represent omnipresent structural motifs of the vast majority of functionalized materials and bioactive compounds. C-H activation has emerged as arguably the most efficient strategy to construct C-Het bonds. Despite of major advances, these C-H transformations were largely dominated by precious transition metal catalysts, in combination with stoichiometric, toxic metal oxidants. Herein, we discuss the recent evolution of cobalt-catalyzed C-H activations that enable C-Het formations with electricity as the sole sustainable oxidant until May 2018. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Cobalt(II) chloride adducts with acetonitrile, propan-2-ol and tetrahydrofuran: considerations on nuclearity, reactivity and synthetic applications.

    PubMed

    Stinghen, Danilo; Rüdiger, André Luis; Giese, Siddhartha O K; Nunes, Giovana G; Soares, Jaísa F; Hughes, David L

    2017-02-01

    High-spin cobalt(II) complexes are considered useful building blocks for the synthesis of single-molecule magnets (SMM) because of their intrinsic magnetic anisotropy. In this work, three new cobalt(II) chloride adducts with labile ligands have been synthesized from anhydrous CoCl 2 , to be subsequently employed as starting materials for heterobimetallic compounds. The products were characterized by elemental, spectroscopic (EPR and FT-IR) and single-crystal X-ray diffraction analyses. trans-Tetrakis(acetonitrile-κN)bis(tetrahydrofuran-κO)cobalt(II) bis[(acetonitrile-κN)trichloridocobaltate(II)], [Co(C 2 H 3 N) 4 (C 4 H 8 O) 2 ][CoCl 3 (C 2 H 3 N)] 2 , (1), comprises mononuclear ions and contains both acetonitrile and tetrahydrofuran (thf) ligands, The coordination polymer catena-poly[[tetrakis(propan-2-ol-κO)cobalt(II)]-μ-chlorido-[dichloridocobalt(II)]-μ-chlorido], [Co 2 Cl 4 (C 3 H 8 O) 4 ], (2'), was prepared by direct reaction between anhydrous CoCl 2 and propan-2-ol in an attempt to rationalize the formation of the CoCl 2 -alcohol adduct (2), probably CoCl 2 (HO i Pr) m . The binuclear complex di-μ-chlorido-1:2κ 4 Cl:Cl-dichlorido-2κ 2 Cl-tetrakis(tetrahydrofuran-1κO)dicobalt(II), [Co 2 Cl 4 (C 4 H 8 O) 4 ], (3), was obtained from (2) after recrystallization from tetrahydrofuran. All three products present cobalt(II) centres in both octahedral and tetrahedral environments, the former usually less distorted than the latter, regardless of the nature of the neutral ligand. Product (2') is stabilized by an intramolecular hydrogen-bond network that appears to favour a trans arrangement of the chloride ligands in the octahedral moiety; this differs from the cis disposition found in (3). The expected easy displacement of the bound solvent molecules from the metal coordination sphere makes the three compounds good candidates for suitable starting materials in a number of synthetic applications.

  15. Sensitivity of Fischer-Tropsch Synthesis and Water-Gas Shift Catalysts to Poisons from High-Temperature High-Pressure Entrained-Flow (EF) Oxygen-Blown Gasifier Gasification of Coal/Biomass Mixtures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burtron Davis; Gary Jacobs; Wenping Ma

    The successful adaptation of conventional cobalt and iron-based Fischer-Tropsch synthesis catalysts for use in converting biomass-derived syngas hinges in part on understanding their susceptibility to byproducts produced during the biomass gasification process. With the possibility that oil production will peak in the near future, and due to concerns in maintaining energy security, the conversion of biomass-derived syngas and syngas derived from coal/biomass blends to Fischer-Tropsch synthesis products to liquid fuels may provide a sustainable path forward, especially considering if carbon sequestration can be successfully demonstrated. However, one current drawback is that it is unknown whether conventional catalysts based on ironmore » and cobalt will be suitable without proper development because, while ash, sulfur compounds, traces of metals, halide compounds, and nitrogen-containing chemicals will likely be lower in concentration in syngas derived from mixtures of coal and biomass (i.e., using an entrained-flow oxygen-blown gasifier) than solely from coal, other byproducts may be present in higher concentrations. The current project examines the impact of a number of potential byproducts of concern from the gasification of biomass process, including compounds containing alkali chemicals like the chlorides of sodium and potassium. In the second year, researchers from the University of Kentucky Center for Applied Energy Research (UK-CAER) continued the project by evaluating the sensitivity of a commercial iron-chromia high temperature water-gas shift catalyst (WGS) to a number of different compounds, including KHCO{sub 3}, NaHCO{sub 3}, HCl, HBr, HF, H{sub 2}S, NH{sub 3}, and a combination of H{sub 2}S and NH{sub 3}. Cobalt and iron-based Fischer-Tropsch synthesis (FT) catalysts were also subjected to a number of the same compounds in order to evaluate their sensitivities.« less

  16. HAEM SYNTHASE AND COBALT PORPHYRIN SYNTHASE IN VARIOUS MICRO-ORGANISMS.

    PubMed

    PORRA, R J; ROSS, B D

    1965-03-01

    1. The preparation of a crude extract of Clostridium tetanomorphum containing cobalt porphyrin synthase but little haem-synthase activity is described. 2. The properties of cobalt porphyrin synthase in the clostridial extracts is compared with the properties of a haem synthase present in crude extracts of the yeast Torulopsis utilis. 3. Cobalt porphyrin synthase in extracts of C. tetanomorphum inserts Co(2+) ions into the following dicarboxylic porphyrins in descending order of rate of insertion: meso-, deutero- and proto-porphyrins. Esterification renders meso- and deutero-porphyrins inactive as substrates. Neither the tetracarboxylic (coproporphyrin III) nor the octacarboxylic (uroporphyrin III) compounds are converted into cobalt porphyrins by the extract, but the non-enzymic incorporation of Co(2+) ions into these two porphyrins is rapid. These extracts are unable to insert Mn(2+), Zn(2+), Mg(2+) or Cu(2+) ions into mesoporphyrin. 4. Crude extracts of T. utilis readily insert both Co(2+) and Fe(2+) ions into deutero-, meso, and proto-porphyrins. Unlike the extracts of C. tetanomorphum, these preparations catalyse the insertion of Co(2+) ions into deuteroporphyrin more rapidly than into mesoporphyrin. This parallels the formation of haems by the T. utilis extract. 5. Cobalt porphyrin synthase is present in the particulate fraction of the extracts of C. tetanomorphum but requires a heat-stable factor present in the soluble fraction. This soluble factor can be replaced by GSH. 6. Cobalt porphyrin synthase in the clostridial extract is inhibited by iodoacetamide and to a smaller extent by p-chloromercuribenzoate and N-ethylmaleimide. The haem synthases of T. utilis and Micrococcus denitrificans are also inhibited by various thiol reagents.

  17. Synthesis, molecular and crystalline architectures, and properties of mononuclear cobalt(II)thiocyanates containing a symmetrical tailored diimine/an unsymmetrical bidentate Schiff base

    NASA Astrophysics Data System (ADS)

    Sarkar, Bhola Nath; Bhar, Kishalay; Kundu, Subhasis; Fun, Hoong-Kun; Ghosh, Barindra Kumar

    2009-11-01

    Two hexacoordinated mononuclear cobalt(II)thiocyanate complexes of general formula [Co(LL) 2(NCS) 2]. nH 2O [LL = 2,2'-dipyridylamine (dpa), n = 1, 1; LL = N-((pyridin-2-yl)benzylidene)benzylamine (pbba), n = 0, 2] have been prepared and characterized using microanalytical, spectroscopic and other physicochemical results. The compounds are non-electrolytes and behave as three-electron paramagnets. Structures of 1 and 2 are solved by X-ray diffraction measurements. Structural analyses show that each metal center in 1 and 2 adopts a distorted octahedral geometry with a CoN 6 chromophore ligated through four N atoms of two bidentate LL units; the hexacoordination is completed by two N atoms of terminal thiocyanates in mutual cis orientation. The mononuclear units in 1 are engaged in weak intermolecular N-H…S and C-H…S hydrogen bonds to give a 2D sheet structure, which is further stabilized by π…π interactions among the pyridine rings of dpa units. In the long-range form, two mononuclear units of 2 are locked by weak doubly C-H…S hydrogen bonds producing a dimeric unit, which packs through C-H…π interaction leading to a 2D continuum. In MeCN solutions, the compounds show a nearly reversible one-electron oxidative response corresponding to cobalt(III)-cobalt(II) couple. The complexes display intraligand 1(π-π∗) fluorescence at room temperature and intraligand 3(π-π∗) phosphorescence in glassy solutions (DMF at 77 K).

  18. Cobalt coordination and clustering in alpha-Co(OH)(2) revealed by synchrotron X-ray total scattering.

    PubMed

    Neilson, James R; Kurzman, Joshua A; Seshadri, Ram; Morse, Daniel E

    2010-09-03

    Structures of layered metal hydroxides are not well described by traditional crystallography. Total scattering from a synthesis-controlled subset of these materials, as described here, reveals that different cobalt coordination polyhedra cluster within each layer on short length scales, offering new insights and approaches for understanding the properties of these and related layered materials. Structures related to that of brucite [Mg(OH)(2)] are ubiquitous in the mineral world and offer a variety of useful functions ranging from catalysis and ion-exchange to sequestration and energy transduction, including applications in batteries. However, it has been difficult to resolve the atomic structure of these layered compounds because interlayer disorder disrupts the long-range periodicity necessary for diffraction-based structure determination. For this reason, traditional unit-cell-based descriptions have remained inaccurate. Here we apply, for the first time to such layered hydroxides, synchrotron X-ray total scattering methods-analyzing both the Bragg and diffuse components-to resolve the intralayer structure of three different alpha-cobalt hydroxides, revealing the nature and distribution of metal site coordination. The different compounds with incorporated chloride ions have been prepared with kinetic control of hydrolysis to yield different ratios of octahedrally and tetrahedrally coordinated cobalt ions within the layers, as confirmed by total scattering. Real-space analyses indicate local clustering of polyhedra within the layers, manifested in the weighted average of different ordered phases with fixed fractions of tetrahedrally coordinated cobalt sites. These results, hidden from an averaged unit-cell description, reveal new structural characteristics that are essential to understanding the origin of fundamental material properties such as color, anion exchange capacity, and magnetic behavior. Our results also provide further insights into the detailed mechanisms of aqueous hydrolysis chemistry of hydrated metal salts. We emphasize the power of the methods used here for establishing structure-property correlations in functional materials with related layered structures.

  19. Cobalt Complex with Thiazole-Based Ligand as New Pseudomonas aeruginosa Quorum Quencher, Biofilm Inhibitor and Virulence Attenuator.

    PubMed

    Borges, Anabela; Simões, Manuel; Todorović, Tamara R; Filipović, Nenad R; García-Sosa, Alfonso T

    2018-06-08

    Pseudomonas aeruginosa is one of the most dreaded human pathogens, because of its intrinsic resistance to a number of commonly used antibiotics and ability to form sessile communities (biofilms). Innovative treatment strategies are required and that can rely on the attenuation of the pathogenicity and virulence traits. The interruption of the mechanisms of intercellular communication in bacteria (quorum sensing) is one of such promising strategies. A cobalt coordination compound (Co( HL )₂) synthesized from ( E )-2-(2-(pyridin-2-ylmethylene)hydrazinyl)-4-(p-tolyl)thiazole ( HL ) is reported herein for the first time to inhibit P. aeruginosa 3-oxo-C12-HSL-dependent QS system (LasI/LasR system) and underling phenotypes (biofilm formation and virulence factors). Its interactions with a possible target, the transcriptional activator protein complex LasR-3-oxo-C12-HSL, was studied by molecular modeling with the coordination compound ligand having stronger predicted interactions than those of co-crystallized ligand 3-oxo-C12-HSL, as well as known-binder furvina. Transition metal group 9 coordination compounds may be explored in antipathogenic/antibacterial drug design.

  20. Molecular, crystal, and electronic structure of the cobalt(II) complex with 10-(2-benzothiazolylazo)-9-phenanthrol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Linko, R. V., E-mail: rlinko@mail.ru; Sokol, V. I.; Polyanskaya, N. A.

    2013-05-15

    The reaction of 10-(2-benzothiazolylazo)-9-phenanthrol (HL) with cobalt(II) acetate gives the coordination compound [CoL{sub 2}] {center_dot} CHCl{sub 3} (I). The molecular and crystal structure of I is determined by X-ray diffraction. The coordination polyhedron of the Co atom in complex I is an octahedron. The anion L acts as a tridentate chelating ligand and is coordinated to the Co atom through the phenanthrenequinone O1 atom and the benzothiazole N1 atom of the moieties L and the N3 atom of the azo group to form two five-membered metallocycles. The molecular and electronic structures of the compounds HL, L, and CoL{sub 2} aremore » studied at the density functional theory level. The results of the quantum-chemical calculations are in good agreement with the values determined by X-ray diffraction.« less

  1. Ising-type magnetic anisotropy in a cobalt(II) nitronyl nitroxide compound: a key to understanding the formation of molecular magnetic nanowires.

    PubMed

    Caneschi, A; Gatteschi, Dante; Lalioti, N; Sessoli, R; Sorace, L; Tangoulis, V; Vindigni, A

    2002-01-04

    The compound [Co(hfac)2-(NITPhOMe)2] (2) (hfac = hexafluoroacetylacetonate, NITPhOMe = 4'-methoxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide) crystallizes in the triclinic P1 space group, a= 10.870(5), b = 11.520(5), c = 19.749(5) A, alpha = 78.05(5), beta = 84.20(5), gamma = 64.51(5) degrees, Z = 2. It can be considered a model system for studying the nature of the magnetic anisotropy of [Co(hfac)2(NITPhOMe)] (1), which was recently reported to behave as a molecular magnetic wire. The magnetic anisotropy of 2 was investigated by EPR spectroscopy and SQUID magnetometry both in the polycrystalline powder and in a single crystal. The experimental magnetic anisotropy was related to the anisotropy of the central ion and to the exchange interaction between the cobalt(II) ion and the radicals.

  2. Two Co(II) compound constructed by phthalic acid and 3-Cl-phthalic acid: Synthesis, structure, and magnetic properties

    NASA Astrophysics Data System (ADS)

    Meng, Jun-Rong; Yao, Peng-Fei; Cui, Lian-Sheng; Gan, Yong-Le; Li, Hai-Ye; Liu, Han-Fu; Huang, Fu-Ping

    2018-03-01

    In this paper, we obtained two novel 2D layered cobalt coordination polymers, namely [(Co(o-BDC)]n (1) and (Co(3-Cl-o-BDC)]n (2), through solvothermal method with acetone as solvent based on phthalic acid (o-H2BDC) and 3-chloro-phthalic acid (3-Cl-o-H2BDC) respectively. Due to the steric hindrance effect of chloric substituent, the two ligands revealed different coordination modes. And cobalt centers of 1 and 2 showed CoO6 octahedral and CoO4 tetrahedral configurations respectively. As a result, 1 and 2 revealed different layered constructions: a 5-connected topology with 48.62 Schläfli symbol for 1, and a 4-connected topology with 44.62 Schläfli symbol for 2, respectively. Besides, Compound 1 and 2 reveal ferromagnetic and antiferromagnetic behaviors, respectively.

  3. Stripe Antiferromagnetic Spin Fluctuations in SrCo 2As 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jayasekara, Wageesha; Lee, Young-Jin; Pandey, Abhishek

    Inelastic neutron scattering measurements of paramagnetic SrCo 2As 2 at T = 5 K reveal antiferromagnetic (AFM) spin fluctuations that are peaked at a wave vector of Q AFM = (1/2, 1/2, 1) and possess a large energy scale. These stripe spin fluctuations are similar to those found in AFe 2As 2 compounds, where spin-density wave AFM is driven by Fermi surface nesting between electron and hole pockets separated by Q AFM. SrCo 2As 2 has a more complex Fermi surface and band-structure calculations indicate a potential instability toward either a ferromagnetic or stripe AFM ground state. The results suggestmore » that stripe AFM magnetism is a general feature of both iron and cobalt-based arsenides and the search for spin fluctuation-induced unconventional superconductivity should be expanded to include cobalt-based compounds.« less

  4. Current status of environmental, health, and safety issues of lithium ion electric vehicle batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vimmerstedt, L.J.; Ring, S.; Hammel, C.J.

    The lithium ion system considered in this report uses lithium intercalation compounds as both positive and negative electrodes and has an organic liquid electrolyte. Oxides of nickel, cobalt, and manganese are used in the positive electrode, and carbon is used in the negative electrode. This report presents health and safety issues, environmental issues, and shipping requirements for lithium ion electric vehicle (EV) batteries. A lithium-based electrochemical system can, in theory, achieve higher energy density than systems using other elements. The lithium ion system is less reactive and more reliable than present lithium metal systems and has possible performance advantages overmore » some lithium solid polymer electrolyte batteries. However, the possibility of electrolyte spills could be a disadvantage of a liquid electrolyte system compared to a solid electrolyte. The lithium ion system is a developing technology, so there is some uncertainty regarding which materials will be used in an EV-sized battery. This report reviews the materials presented in the open literature within the context of health and safety issues, considering intrinsic material hazards, mitigation of material hazards, and safety testing. Some possible lithium ion battery materials are toxic, carcinogenic, or could undergo chemical reactions that produce hazardous heat or gases. Toxic materials include lithium compounds, nickel compounds, arsenic compounds, and dimethoxyethane. Carcinogenic materials include nickel compounds, arsenic compounds, and (possibly) cobalt compounds, copper, and polypropylene. Lithiated negative electrode materials could be reactive. However, because information about the exact compounds that will be used in future batteries is proprietary, ongoing research will determine which specific hazards will apply.« less

  5. A metal-organic tetrahedron as a redox vehicle to encapsulate organic dyes for photocatalytic proton reduction.

    PubMed

    Jing, Xu; He, Cheng; Yang, Yang; Duan, Chunying

    2015-03-25

    The design of artificial systems that mimic highly evolved and finely tuned natural photosynthetic systems is a subject of intensive research. We report herein a new approach to constructing supramolecular systems for the photocatalytic generation of hydrogen from water by encapsulating an organic dye molecule into the pocket of a redox-active metal-organic polyhedron. The assembled neutral Co4L4 tetrahedron consists of four ligands and four cobalt ions that connect together in alternating fashion. The cobalt ions are coordinated by three thiosemicarbazone NS chelators and exhibit a redox potential suitable for electrochemical proton reduction. The close proximity between the redox site and the photosensitizer encapsulated in the pocket enables photoinduced electron transfer from the excited state of the photosensitizer to the cobalt-based catalytic sites via a powerful pseudo-intramolecular pathway. The modified supramolecular system exhibits TON values comparable to the highest values reported for related cobalt/fluorescein systems. Control experiments based on a smaller tetrahedral analogue of the vehicle with a filled pocket and a mononuclear compound resembling the cobalt corner of the tetrahedron suggest an enzymatic dynamics behavior. The new, well-elucidated reaction pathways and the increased molarity of the reaction within the confined space render these supramolecular systems superior to other relevant systems.

  6. 2D-COS of in situ μ-Raman and in situ IR spectra for structure evolution characterisation of NEP-deposited cobalt oxide catalyst during n-nonane combustion

    NASA Astrophysics Data System (ADS)

    Chlebda, Damian K.; Jodłowski, Przemysław J.; Jędrzejczyk, Roman J.; Łojewska, Joanna

    2017-11-01

    New catalytic systems are still in development to meet the challenge of regulations concerning the emission of volatile organic compounds (VOCs). This is because such compounds have a significant impact on air quality and some of them are toxic to the environment and human beings. The catalytic combustion process of VOCs over non-noble metal catalysts is of great interest to researchers. The high conversion parameters and cost effective preparation makes them a valuable alternative to monoliths and noble metal catalysts. In this study, the cobalt catalyst was prepared by non-equilibrium plasma deposition of organic precursor on calcined kanthal steel. Thus prepared, cobalt oxide based microstructural short-channel reactors were tested for n-nonane combustion and the catalyst surfaces were examined by in situ μ-Raman spectroscopy and in situ infrared spectroscopy. The spectra collected at various temperatures were used in generalised two-dimensional correlation analysis to establish the sequential order of spectral intensity changes and correlate the simultaneous changes in bands selectively coupled by different interaction mechanisms. The 2D synchronous and asynchronous contour maps were proved to be a valuable extension to the standard analysis of the temperature dependent 1D spectra.

  7. The influence of manganese-cobalt oxide/graphene on reducing fire hazards of poly(butylene terephthalate).

    PubMed

    Wang, Dong; Zhang, Qiangjun; Zhou, Keqing; Yang, Wei; Hu, Yuan; Gong, Xinglong

    2014-08-15

    By means of direct nucleation and growth on the surface of graphene and element doping of cobalt oxide (Co3O4) nano-particles, manganese-cobalt oxide/graphene hybrids (MnCo2O4-GNS) were synthesized to reduce fire hazards of poly(butylene terephthalate) (PBT). The structure, elemental composition and morphology of the obtained hybrids were surveyed by X-ray diffraction, X-ray photoelectron spectrometer and transmission electron microscopy, respectively. Thermogravimetric analysis was applied to simulate and study the influence of MnCo2O4-GNS hybrids on thermal degradation of PBT during combustion. The fire hazards of PBT and its composites were assessed by the cone calorimeter. The cone test results had showed that peak HRR and SPR values of MnCo2O4-GNS/PBT composites were lower than that of pure PBT and Co3O4-GNS/PBT composites. Furthermore, the incorporation of MnCo2O4-GNS hybrids gave rise to apparent decrease of pyrolysis products containing aromatic compounds, carbonyl compounds, carbon monoxide and carbon dioxide, attributed to combined impact of physical barrier for graphene and cat O4 for organic volatiles and carbon monoxide. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Low-Temperature Thermoelectric Properties of Fe2VAl with Partial Cobalt Doping

    NASA Astrophysics Data System (ADS)

    Liu, Chang; Morelli, Donald T.

    2012-06-01

    Ternary metallic alloy Fe2VAl with a pseudogap in its energy band structure has received intensive scrutiny for potential thermoelectric applications. Due to the sharp change in the density of states profile near the Fermi level, interesting transport properties can be triggered to render possible enhancement in the overall thermoelectric performance. Previously, this full-Heusler-type alloy was partially doped with cobalt at the iron sites to produce a series of compounds with n-type conductivity. Their thermoelectric properties in the temperature range of 300 K to 850 K were reported. In this research, efforts were made to extend the investigation on (Fe1- x Co x )2VAl to the low-temperature range. Alloy samples were prepared by arc-melting and annealing. Seebeck coefficient, electrical resistivity, and thermal conductivity measurements were performed from 80 K to room temperature. The effects of cobalt doping on the material's electronic and thermal properties are discussed.

  9. Heteroatom-free arene-cobalt and arene-iron catalysts for hydrogenations.

    PubMed

    Gärtner, Dominik; Welther, Alice; Rad, Babak Rezaei; Wolf, Robert; Jacobi von Wangelin, Axel

    2014-04-01

    75 years after the discovery of hydroformylation, cobalt catalysts are now undergoing a renaissance in hydrogenation reactions. We have evaluated arene metalates in which the low-valent metal species is--conceptually different from heteroatom-based ligands--stabilized by π coordination to hydrocarbons. Potassium bis(anthracene)cobaltate 1 and -ferrate 2 can be viewed as synthetic precursors of quasi-"naked" anionic metal species; their aggregation is effectively impeded by (labile) coordination to the various π acceptors present in the hydrogenation reactions of unsaturated molecules (alkenes, arenes, carbonyl compounds). Kinetic studies, NMR spectroscopy, and poisoning studies of alkene hydrogenations support the formation of a homogeneous catalyst derived from 1 which is stabilized by the coordination of alkenes. This catalyst concept complements the use of complexes with heteroatom donor ligands for reductive processes. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. The efficacy and adverse effects of dicobalt edetate in cyanide poisoning.

    PubMed

    Marrs, Timothy Clive; Thompson, John Paul

    2016-09-01

    Dicobalt edetate is one of a number of cobalt compounds that have been studied in the treatment of cyanide poisoning, their efficacy being based upon the fact that cyanide combines with cobalt to form relatively non-toxic complexes. Inorganic cobalt salts are quite toxic (cyanide and cobalt antagonise one another's toxicity) and complexes such as dicobalt edetate were studied with the aim of identifying compounds that were less acutely toxic, but which retained the antidotal properties of cobalt salts. The proprietary preparation, Kelocyanor™, contains free cobalt and glucose as well as dicobalt edetate. The aim of this study was to evaluate the published evidence for the efficacy and adverse effects of dicobalt edetate. A Pubmed search was undertaken for the period 1961-September 2015. The search terms were "dicobalt edetate", "cobalt edetate" and "Kelocyanor", which produced 24 relevant citations. A review of the references in four relevant books (L'intoxication cyanhydrique et son traitement, Clinical and Experimental Toxicology of Cyanides, Antidotes for Poisoning by Cyanide and Antidotes) produced three further relevant papers, making a total of 27 papers. Efficacy of dicobalt edetate: There is evidence from animal pharmacodynamic studies that dicobalt edetate is an effective cyanide antidote in experimental animals. Some 39 cases of human poisoning treated with dicobalt edetate have been reported, but in only nine cases were blood cyanide concentrations measured, although administration of dicobalt edetate procured survival in four of the seven patients with concentrations in the lethal range (>3.0 mg/L). It is unlikely that death in any of the adequately documented fatal cases was attributable to treatment failure with dicobalt edetate, as it is probable that they all had suffered anoxic brain damage before treatment could be initiated. Furthermore, in one case, acute gold toxicity contributed substantially to death. Adverse effects of dicobalt edetate: Adverse effects reported have included hypertension, tachycardia, nausea, retrosternal pain, sweating, palpebral, facial and laryngeal oedema, vomiting, urticaria and/or a feeling of impending doom. Such effects appear to be more prevalent where the antidote has been administered without evidence of substantial systemic poisoning or where other antidotes have been used which might have been expected also to combine with cyanide. Although the adverse effects observed were doubtless unpleasant, and some were severe, no fatal reactions were found. Dicobalt edetate is an effective cyanide antidote when given to patients with systemic cyanide poisoning, but it has the potential to give rise to adverse reactions, particularly when administered in the absence of intoxication.

  11. EFFECTS OF COMPOSITION ON THE MECHANICAL PROPERTIES OF NI-CR-MO-CO FILLER METALS.

    DTIC Science & Technology

    STEEL, WELDING RODS), CHEMICAL ANALYSIS, CARBON ALLOYS , COBALT ALLOYS , CHROMIUM ALLOYS , MOLYBDENUM ALLOYS , NICKEL ALLOYS , MARAGING STEELS...ALUMINUM COMPOUNDS, TITANIUM , NONMETALS, SHIP HULLS, SHIP PLATES, SUBMARINE HULLS, WELDING , WELDS , MECHANICAL PROPERTIES, STATISTICAL ANALYSIS, MICROSTRUCTURE.

  12. Mixed-valent dicobalt and iron-cobalt complexes with high-spin configurations and short metal-metal bonds.

    PubMed

    Zall, Christopher M; Clouston, Laura J; Young, Victor G; Ding, Keying; Kim, Hyun Jung; Zherebetskyy, Danylo; Chen, Yu-Sheng; Bill, Eckhard; Gagliardi, Laura; Lu, Connie C

    2013-08-19

    Cobalt-cobalt and iron-cobalt bonds are investigated in coordination complexes with formally mixed-valent [M2](3+) cores. The trigonal dicobalt tris(diphenylformamidinate) compound, Co2(DPhF)3, which was previously reported by Cotton, Murillo, and co-workers (Inorg. Chim. Acta 1996, 249, 9), is shown to have an energetically isolated, high-spin sextet ground-state by magnetic susceptibility and electron paramagnetic resonance (EPR) spectroscopy. A new tris(amidinato)amine ligand platform is introduced. By tethering three amidinate donors to an apical amine, this platform offers two distinct metal-binding sites. Using the phenyl-substituted variant (abbreviated as L(Ph)), the isolation of a dicobalt homobimetallic and an iron-cobalt heterobimetallic are demonstrated. The new [Co2](3+) and [FeCo](3+) cores have high-spin sextet and septet ground states, respectively. Their solid-state structures reveal short metal-metal bond distances of 2.29 Å for Co-Co and 2.18 Å for Fe-Co; the latter is the shortest distance for an iron-cobalt bond to date. To assign the positions of iron and cobalt atoms as well as to determine if Fe/Co mixing is occurring, X-ray anomalous scattering experiments were performed, spanning the Fe and Co absorption energies. These studies show only a minor amount of metal-site mixing in this complex, and that FeCoL(Ph) is more precisely described as (Fe0.94(1)Co0.06(1))(Co0.95(1)Fe0.05(1))L(Ph). The iron-cobalt heterobimetallic has been further characterized by Mössbauer spectroscopy. Its isomer shift of 0.65 mm/s and quadrupole splitting of 0.64 mm/s are comparable to the related diiron complex, Fe2(DPhF)3. On the basis of spectroscopic data and theoretical calculations, it is proposed that the formal [M2](3+) cores are fully delocalized.

  13. Cobalt(II) sheet-like systems based on diacetic ligands: from subtle structural variances to different magnetic behaviors.

    PubMed

    Fabelo, Oscar; Pasán, Jorge; Cañadillas-Delgado, Laura; Delgado, Fernando S; Lloret, Francesc; Julve, Miguel; Ruiz-Pérez, Catalina

    2009-07-06

    The preparation, X-ray crystallography, and magnetic investigation of the compounds [Co(H(2)O)(2)(phda)](n) (1), [Co(phda)](n) (2), and [Co(chda)](n) (3) [H(2)phda = 1,4-phenylenediacetic acid and H(2)chda = 1,1-cyclohexanediacetic acid] are described herein. The cobalt atoms in this series are six- (1) and four-coordinated (2 and 3) in distorted octahedral (CoO(6)) and tetrahedral (CoO(4)) environments. The structures of 1-3 consists of rectangular-grids which are built up by sheets of cobalt atoms linked through anti-syn carboxylate bridges, giving rise to either a three-dimensional structure across the phenyl ring (1 and 2) or to regularly stacked layers with the cyclohexyl groups acting as organic separators (3). The magnetic properties of 1-3 were investigated as a function of the temperature and the magnetic field. Ferromagnetic coupling between the six-coordinate cobalt(II) ions across the anti-syn carboxylate bridge occurs in 1 (J = +1.2 cm(-1)) whereas antiferromagnetic coupling among the tetrahedral cobalt(II) centers within the sheets is observed in 2 and 3 [J = -1.63 (2) and -1.70 cm(-1) (3)] together with a spin-canted structure in 3 giving rise a long-range magnetic ordering (T(c) = 7.5 K).

  14. Charge-lattice interplay in layered cobaltates RBaCo2O5+x

    NASA Astrophysics Data System (ADS)

    Lavrov, A. N.; Kameneva, M. Yu.; Kozeeva, L. P.; Zhdanov, K. R.

    2017-10-01

    X-ray diffraction, electrical resistivity and thermal expansion measurements are used to study the interrelation between the structural, magnetic and electron-transport peculiarities in RBaCo2O5+x (R=Y, Gd) over a wide range of oxygen contents. We find that the anisotropic lattice strain caused by the oxygen chain ordering in these compounds favors the metallic state and is a necessary condition for the coupled insulator-to-metal and spin-state phase transitions to occur. The obtained data point to the key role of the crystal lattice in selecting the preferred spin and orbital states of cobalt ions.

  15. 3D chiral and 2D achiral cobalt(ii) compounds constructed from a 4-(benzimidazole-1-yl)benzoic ligand exhibiting field-induced single-ion-magnet-type slow magnetic relaxation.

    PubMed

    Wang, Yu-Ling; Chen, Lin; Liu, Cai-Ming; Du, Zi-Yi; Chen, Li-Li; Liu, Qing-Yan

    2016-05-04

    Organizing magnetically isolated 3d transition metal ions, which behave as single-ion magnet (SIM) units, in a coordination network is a promising approach to design novel single-molecule magnets (SMMs). Herein 3D chiral and 2D achiral cobalt(ii) coordination compounds based on single metal nodes with a 4-(benzimidazole-1-yl)benzoic acid (Hbmzbc) ligand, namely, [Co(bmzbc)2(1,2-etdio)]n () (1,2-etdio = 1,2-ethanediol) and [Co(bmzbc)2(Hbmzbc)]n (), have been synthesized and structurally characterized. The 3D chiral structure with 2-fold interpenetrating qtz topological nets consisting of totally achiral components was obtained via spontaneous resolution, while the achiral structure is a 2D (4,4) net. In both structures, individual cobalt(ii) ions are spatially well separated by the long organic ligands in the well-defined networks. Magnetic measurements on and showed field-induced slow magnetic relaxation resulting from single-ion anisotropy of the individual Co(ii) ions. Analysis of the dynamic ac susceptibilities with the Arrhenius law afforded an anisotropy energy barrier of 16.8(3) and 31.3(2) K under a 2 kOe static magnetic field for and , respectively. The distinct coordination environments of the Co(ii) ions in and lead to the different anisotropic energy barriers.

  16. Structure and magnetism of a new hydrogen-bonded layered cobalt(II) network, constructed by the unprecedented carboxylate-phosphinate ligand [O2(C6H5)PCH2CO2]2-.

    PubMed

    Midollini, Stefano; Orlandini, Annabella; Rosa, Patrick; Sorace, Lorenzo

    2005-03-21

    By hydrothermal reaction of CoCl2 x 6H2O with K2pcc (H2pcc = phenyl(carboxymethyl) phosphinic acid) at 423 K, a novel hybrid material of formula [Co2(pcc)2 (H2O)2] x H2O has been obtained. The compound, which is the first pcc/metal complex reported, exhibits a polymeric arrangement, where cobalt metal ions, linked together by bridging carboxylate and phosphinate oxygens, form infinite chains of edge-shared CoO6 octahedra. The cobalt chains are in turn linked together through important hydrogen-bonding interactions, which create an infinite 2D architecture. The two crystallographically independent cobalt centers, both displaying distorted octahedral coordination, present different environments as one is surrounded by six ligand oxygens and the other by four ligand oxygens and by two water oxygens. Careful magnetic studies performed by a home-built alternating current susceptometer reveal that the system undergoes an antiferromagnetic transition below 2.0 K leading to a canted structure. Field-dependent studies further indicate the occurrence of a metamagnetic transition at a critical field of 650 +/- 50 G.

  17. Cobalt silicide nanocables grown on Co films: synthesis and physical properties.

    PubMed

    Hsin, Cheng-Lun; Yu, Shih-Ying; Wu, Wen-Wei

    2010-12-03

    Single-crystalline cobalt silicide/SiO(x) nanocables have been grown on Co thin films on an SiO(2) layer by a self-catalysis process via vapor-liquid-solid mechanism. The nanocables consist of a core of CoSi nanowires and a silicon oxide shell with a length of several tens of micrometers. In the confined space in the oxide shell, the CoSi phase is stable and free from agglomeration in samples annealed in air ambient at 900 °C for 1 h. The nanocable structure came to a clear conclusion that the thermal stability of the silicide nanowires can be resolved by the shell encapsulation. Cobalt silicide nanowires were obtained from the nanocable structure. The electrical properties of the CoSi nanowires have been found to be compatible with their thin film counterpart and a high maximum current density of the nanowires has been measured. One way to obtain silicate nanowires has been demonstrated. The silicate compound, which is composed of cobalt, silicon and oxygen, was achieved. The Co silicide/oxide nanocables are potentially useful as a key component of silicate nanowires, interconnects and magnetic units in nanoelectronics.

  18. Sensitivity of Fischer-Tropsch Synthesis and Water-Gas Shift Catalysts to Poisons from High-Temperature High-Pressure Entrained-Flow (EF) Oxygen-Blown Gasifier Gasification of Coal/Biomass Mixtures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burton Davis; Gary Jacobs; Wenping Ma

    2011-09-30

    There has been a recent shift in interest in converting not only natural gas and coal derived syngas to Fischer-Tropsch synthesis products, but also converting biomass-derived syngas, as well as syngas derived from coal and biomass mixtures. As such, conventional catalysts based on iron and cobalt may not be suitable without proper development. This is because, while ash, sulfur compounds, traces of metals, halide compounds, and nitrogen-containing chemicals will likely be lower in concentration in syngas derived from mixtures of coal and biomass (i.e., using entrained-flow oxygen-blown gasifier gasification gasification) than solely from coal, other compounds may actually be increased.more » Of particular concern are compounds containing alkali chemicals like the chlorides of sodium and potassium. In the first year, University of Kentucky Center for Applied Energy Research (UK-CAER) researchers completed a number of tasks aimed at evaluating the sensitivity of cobalt and iron-based Fischer-Tropsch synthesis (FT) catalysts and a commercial iron-chromia high temperature water-gas shift catalyst (WGS) to alkali halides. This included the preparation of large batches of 0.5%Pt-25%Co/Al{sub 2}O{sub 3} and 100Fe: 5.1Si: 3.0K: 2.0Cu (high alpha) catalysts that were split up among the four different entities participating in the overall project; the testing of the catalysts under clean FT and WGS conditions; the testing of the Fe-Cr WGS catalyst under conditions of co-feeding NaCl and KCl; and the construction and start-up of the continuously stirred tank reactors (CSTRs) for poisoning investigations. In the second and third years, researchers from the University of Kentucky Center for Applied Energy Research (UK-CAER) continued the project by evaluating the sensitivity of a commercial iron-chromia high temperature water-gas shift catalyst (WGS) to a number of different compounds, including KHCO{sub 3}, NaHCO{sub 3}, HCl, HBr, HF, H{sub 2}S, NH{sub 3}, and a combination of H{sub 2}S and NH{sub 3}. Cobalt and iron-based Fischer-Tropsch synthesis (FT) catalysts were also subjected to a number of the same compounds in order to evaluate their sensitivities at different concentration levels of added contaminant.« less

  19. Effects of metallic nanoparticle doped flux on the interfacial intermetallic compounds between lead-free solder ball and copper substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sujan, G.K., E-mail: sgkumer@gmail.com; Haseeb, A.S.M.A., E-mail: haseeb@um.edu.my; Afifi, A.B.M., E-mail: amalina@um.edu.my

    2014-11-15

    Lead free solders currently in use are prone to develop thick interfacial intermetallic compound layers with rough morphology which are detrimental to the long term solder joint reliability. A novel method has been developed to control the morphology and growth of intermetallic compound layers between lead-free Sn–3.0Ag–0.5Cu solder ball and copper substrate by doping a water soluble flux with metallic nanoparticles. Four types of metallic nanoparticles (nickel, cobalt, molybdenum and titanium) were used to investigate their effects on the wetting behavior and interfacial microstructural evaluations after reflow. Nanoparticles were dispersed manually with a water soluble flux and the resulting nanoparticlemore » doped flux was placed on copper substrate. Lead-free Sn–3.0Ag–0.5Cu solder balls of diameter 0.45 mm were placed on top of the flux and were reflowed at a peak temperature of 240 °C for 45 s. Angle of contact, wetting area and interfacial microstructure were studied by optical microscopy, field emission scanning electron microscopy and energy-dispersive X-ray spectroscopy. It was observed that the angle of contact increased and wetting area decreased with the addition of cobalt, molybdenum and titanium nanoparticles to flux. On the other hand, wettability improved with the addition of nickel nanoparticles. Cross-sectional micrographs revealed that both nickel and cobalt nanoparticle doping transformed the morphology of Cu{sub 6}Sn{sub 5} from a typical scallop type to a planer one and reduced the intermetallic compound thickness under optimum condition. These effects were suggested to be related to in-situ interfacial alloying at the interface during reflow. The minimum amount of nanoparticles required to produce the planer morphology was found to be 0.1 wt.% for both nickel and cobalt. Molybdenum and titanium nanoparticles neither appear to undergo alloying during reflow nor have any influence at the solder/substrate interfacial reaction. Thus, doping of flux with appropriate metallic nanoparticles can be successfully used to control the morphology and growth of intermetallic compound layers at the solder/substrate interface which is expected to lead to better reliability of electronic devices. - Highlights: • A novel nanodoped flux method has been developed to control the growth of IMCs. • Ni doped flux improves the wettability, but Co, Mo and Ti deteriorate it. • Ni and Co doped flux gives planer IMC morphology through in-situ alloying effect. • 0.1 wt.% Ni and Co addition into flux gives the lowest interfacial IMC thickness. • Mo and Ti doped flux does not have any influence at the interfacial reaction.« less

  20. High performance of a cobalt–nitrogen complex for the reduction and reductive coupling of nitro compounds into amines and their derivatives

    PubMed Central

    Zhou, Peng; Jiang, Liang; Wang, Fan; Deng, Kejian; Lv, Kangle; Zhang, Zehui

    2017-01-01

    Replacement of precious noble metal catalysts with low-cost, non-noble heterogeneous catalysts for chemoselective reduction and reductive coupling of nitro compounds holds tremendous promise for the clean synthesis of nitrogen-containing chemicals. We report a robust cobalt–nitrogen/carbon (Co–Nx/C-800-AT) catalyst for the reduction and reductive coupling of nitro compounds into amines and their derivates. The Co–Nx/C-800-AT catalyst was prepared by the pyrolysis of cobalt phthalocyanine–silica colloid composites and the subsequent removal of silica template and cobalt nanoparticles. The Co–Nx/C-800-AT catalyst showed extremely high activity, chemoselectivity, and stability toward the reduction of nitro compounds with H2, affording full conversion and >97% selectivity in water after 1.5 hours at 110°C and under a H2 pressure of 3.5 bar for all cases. The hydrogenation of nitrobenzene over the Co–Nx/C-800-AT catalyst can even be smoothly performed under very mild conditions (40°C and a H2 pressure of 1 bar) with an aniline yield of 98.7%. Moreover, the Co–Nx/C-800-AT catalyst has high activity toward the transfer hydrogenation of nitrobenzene into aniline and the reductive coupling of nitrobenzene into other derivates with high yields. These processes were carried out in an environmentally friendly manner without base and ligands. PMID:28232954

  1. Fischer-Tropsch process

    DOEpatents

    Dyer, Paul N.; Pierantozzi, Ronald; Withers, Howard P.

    1987-01-01

    A Fischer-Tropsch process utilizing a product selective and stable catalyst by which synthesis gas, particularly carbon-monoxide rich synthesis gas is selectively converted to higher hydrocarbons of relatively narrow carbon number range is disclosed. In general, the selective and notably stable catalyst, consist of an inert carrier first treated with a Group IV B metal compound (such as zirconium or titanium), preferably an alkoxide compound, and subsequently treated with an organic compound of a Fischer-Tropsch metal catalyst, such as cobalt, iron or ruthenium carbonyl. Reactions with air and water and calcination are specifically avoided in the catalyst preparation procedure.

  2. Hydrotalcite-derived cobalt-aluminum mixed oxide catalysts for toluene combustion

    NASA Astrophysics Data System (ADS)

    Białas, Anna; Mazur, Michal; Natkański, Piotr; Dudek, Barbara; Kozak, Marek; Wach, Anna; Kuśtrowski, Piotr

    2016-01-01

    Hydrotalcite-like compounds (HTlcs) containing cobalt and aluminum (intended Co/Al molar ratio = 3.0) were coprecipitated at 30, 50 and 70 °C. Their crystallinity, which was confirmed by powder X-ray diffraction, increased with the precipitation temperature. Furthermore, HTlcs with various cobalt contents were prepared at 70 °C. Thermogravimetric analysis showed that HTlcs were transformed into stable oxides at 550 °C. The decrease in the crystallite size of the formed spinels with the increase in the precipitation temperature was observed. Low temperature sorption of nitrogen revealed meso-macroporous nature of the oxides with extended interparticle porosity. Aluminum segregated on the samples surface, which contained various amounts of lattice and adsorbed/electrophilic oxygen as detected by X-ray electron spectroscopy. The high ratio of lattice to adsorbed/electrophilic oxygen found for the sample with Co/Al = 3:1 caused that it turned out to be the most efficient catalyst in the total oxidation of toluene (50% conversion at 257 °C).

  3. Mixed-Valent Dicobalt and Iron-Cobalt Complexes with High-Spin Configurations and Short Metal-Metal Bonds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zall, Christopher M.; Clouston, Laura J.; Young, Jr., Victor G.

    2013-09-23

    Cobalt–cobalt and iron–cobalt bonds are investigated in coordination complexes with formally mixed-valent [M 2] 3+ cores. The trigonal dicobalt tris(diphenylformamidinate) compound, Co 2(DPhF) 3, which was previously reported by Cotton, Murillo, and co-workers (Inorg. Chim. Acta 1996, 249, 9), is shown to have an energetically isolated, high-spin sextet ground-state by magnetic susceptibility and electron paramagnetic resonance (EPR) spectroscopy. A new tris(amidinato)amine ligand platform is introduced. By tethering three amidinate donors to an apical amine, this platform offers two distinct metal-binding sites. Using the phenyl-substituted variant (abbreviated as L Ph), the isolation of a dicobalt homobimetallic and an iron–cobalt heterobimetallic aremore » demonstrated. The new [Co 2] 3+ and [FeCo] 3+ cores have high-spin sextet and septet ground states, respectively. Their solid-state structures reveal short metal–metal bond distances of 2.29 Å for Co–Co and 2.18 Å for Fe–Co; the latter is the shortest distance for an iron–cobalt bond to date. To assign the positions of iron and cobalt atoms as well as to determine if Fe/Co mixing is occurring, X-ray anomalous scattering experiments were performed, spanning the Fe and Co absorption energies. These studies show only a minor amount of metal-site mixing in this complex, and that FeCoL Ph is more precisely described as (Fe 0.94(1)Co 0.06(1))(Co 0.95(1)Fe 0.05(1))L Ph. The iron–cobalt heterobimetallic has been further characterized by Mössbauer spectroscopy. Its isomer shift of 0.65 mm/s and quadrupole splitting of 0.64 mm/s are comparable to the related diiron complex, Fe 2(DPhF) 3. On the basis of spectroscopic data and theoretical calculations, it is proposed that the formal [M 2] 3+ cores are fully delocalized.« less

  4. High Temperature Oxidation Studies on Alloys Containing Dispersed Phase Particles and Clarification of the Mechanism of Growth of SiO2.

    DTIC Science & Technology

    1986-08-28

    beneath the Cr 0 layer. ’ 2~ 2 3 Nickel and cobalt based alloys were also tested with additions of Si N. . IN 3 4 particles and were found to behave in a...additions of Si ION, a high temperature compound found in the P*~~ 4 f°.-0 Si"Ali-O-N system, to cobalt - chromium alloys4 The particular SiAlON used in...a chromium spinel appeared as a product aLong with CrO0 Fe0. and Fe0 . At higher chromium concentrations Fe 0 was eliminat das a- detectable product

  5. Occupational dermatoses from exposure to epoxy resin compounds in a ski factory.

    PubMed

    Jolanki, R; Tarvainen, K; Tatar, T; Estlander, T; Henriks-Eckerman, M L; Mustakallio, K K; Kanerva, L

    1996-06-01

    Of 22 workers in a ski factory, occupational allergic contact dermatitis was found in 8. 6 were sensitive to epoxy resin compounds, i.e., epoxy resins, hardeners or diluents, 1 to cobalt in glass-fiber reinforcements, and 1 to formaldehyde in a urea-formaldehyde glue and a lacquer. 4 workers had irritant contact dermatitis from epoxy resin compounds, lacquers, sanding dust, or glass-fiber dust. 3 had contact allergy from a new sensitizer, diethyleneglycol diglycidyl ether, in a reactive diluent. Immediate transfer of workers sensitized to epoxy resin from epoxy exposure prevents aggravation of their dermatitis and broadening of the sensitization to epoxy hardeners, diluents and other compounds.

  6. Zinc phosphate conversion coatings

    DOEpatents

    Sugama, Toshifumi

    1997-01-01

    Zinc phosphate conversion coatings for producing metals which exhibit enhanced corrosion prevention characteristics are prepared by the addition of a transition-metal-compound promoter comprising a manganese, iron, cobalt, nickel, or copper compound and an electrolyte such as polyacrylic acid, polymethacrylic acid, polyitaconic acid and poly-L-glutamic acid to a phosphating solution. These coatings are further improved by the incorporation of Fe ions. Thermal treatment of zinc phosphate coatings to generate .alpha.-phase anhydrous zinc phosphate improves the corrosion prevention qualities of the resulting coated metal.

  7. Zinc phosphate conversion coatings

    DOEpatents

    Sugama, T.

    1997-02-18

    Zinc phosphate conversion coatings for producing metals which exhibit enhanced corrosion prevention characteristics are prepared by the addition of a transition-metal-compound promoter comprising a manganese, iron, cobalt, nickel, or copper compound and an electrolyte such as polyacrylic acid, polymethacrylic acid, polyitaconic acid and poly-L-glutamic acid to a phosphating solution. These coatings are further improved by the incorporation of Fe ions. Thermal treatment of zinc phosphate coatings to generate {alpha}-phase anhydrous zinc phosphate improves the corrosion prevention qualities of the resulting coated metal. 33 figs.

  8. Homogeneously Dispersed Co9S8 Anchored on Nitrogen and Sulfur Co-Doped Carbon Derived from Soybean as Bifunctional Oxygen Electrocatalysts and Supercapacitors.

    PubMed

    Xiao, Zhen; Xiao, Guozheng; Shi, Minhao; Zhu, Ying

    2018-05-16

    Developing low-cost and highly active multifunctional electrocatalysts to replace noble metal catalysts is crucial for the commercialization of future clean energy technology. Herein, homogeneous Co 9 S 8 nanoparticles anchored on nitrogen and sulfur co-doped porous carbon nanomaterials (CoS@NSCs) are fabricated by pyrolysis of natural soybean treated with cobalt nitrate. The unique porous structures of the soybean are utilized to provide space for the oxidation and complexation reactions for cobalt compounds, thus leading to in situ generation of homogenously dispersed cobalt sulfide nanoparticles that anchored on the N,S co-doped carbon framework. Because of the coupling effect of cobalt sulfide and doping heteroatoms, CoS@NSC-800 not only displays excellent electrocatalytic performances with low overpotential and high current density toward both oxygen reduction reaction and oxygen evolution reaction comparable to the commercial Pt/C catalyst and IrO 2 catalyst, but also might be a promising candidate for high-performance supercapacitors. The method for the preparation of the multifunctional hybrids is simple but effective for the formation of uniformly distributed metal sulfide nanoparticles anchored on carbon materials, therefore providing a new perspective for the design and synthesis of multifunctional electrocatalysts for electrochemical energy conversion and storage at a large scale.

  9. Structure Evolution and Multiferroic Properties in Cobalt Doped Bi4NdTi3Fe1-xCoxO15-Bi3NdTi2Fe1-xCoxO12-δ Intergrowth Aurivillius Compounds

    PubMed Central

    Zhang, D. L.; Huang, W. C.; Chen, Z. W.; Zhao, W. B.; Feng, L.; Li, M.; Yin, Y. W.; Dong, S. N.; Li, X. G.

    2017-01-01

    Here, we report the structure evolution, magnetic and ferroelectric properties in Co-doped 4- and 3-layered intergrowth Aurivillius compounds Bi4NdTi3Fe1-xCoxO15-Bi3NdTi2Fe1-xCoxO12-δ. The compounds suffer a structure evolution from the parent 4-layered phase (Bi4NdTi3FeO15) to 3-layered phase (Bi3NdTi2CoO12-δ) with increasing cobalt doping level from 0 to 1. Meanwhile the remanent magnetization and polarization show opposite variation tendencies against the doping level, and the sample with x = 0.3 has the largest remanent magnetization and the smallest polarization. It is believed that the Co concentration dependent magnetic properties are related to the population of the Fe3+ -O-Co3+ bonds, while the suppressed ferroelectric polarization is due to the enhanced leakage current caused by the increasing Co concentration. Furthermore, the samples (x = 0.1–0.7) with ferromagnetism show magnetoelectric coupling effects at room temperature. The results indicate that it is an effective method to create new multiferroic materials through modifying natural superlattices. PMID:28272495

  10. Energy cascades, excited state dynamics, and photochemistry in cob(III)alamins and ferric porphyrins.

    PubMed

    Rury, Aaron S; Wiley, Theodore E; Sension, Roseanne J

    2015-03-17

    Porphyrins and the related chlorins and corrins contain a cyclic tetrapyrrole with the ability to coordinate an active metal center and to perform a variety of functions exploiting the oxidation state, reactivity, and axial ligation of the metal center. These compounds are used in optically activated applications ranging from light harvesting and energy conversion to medical therapeutics and photodynamic therapy to molecular electronics, spintronics, optoelectronic thin films, and optomagnetics. Cobalt containing corrin rings extend the range of applications through photolytic cleavage of a unique axial carbon-cobalt bond, permitting spatiotemporal control of drug delivery. The photochemistry and photophysics of cyclic tetrapyrroles are controlled by electronic relaxation dynamics including internal conversion and intersystem crossing. Typically the electronic excitation cascades through ring centered ππ* states, ligand to metal charge transfer (LMCT) states, metal to ligand charge transfer (MLCT) states, and metal centered states. Ultrafast transient absorption spectroscopy provides a powerful tool for the investigation of the electronic state dynamics in metal containing tetrapyrroles. The UV-visible spectrum is sensitive to the oxidation state, electronic configuration, spin state, and axial ligation of the central metal atom. Ultrashort broadband white light probes spanning the range from 270 to 800 nm, combined with tunable excitation pulses, permit the detailed unravelling of the time scales involved in the electronic energy cascade. State-of-the-art theoretical calculations provide additional insight required for precise assignment of the states. In this Account, we focus on recent ultrafast transient absorption studies of ferric porphyrins and corrin containing cob(III)alamins elucidating the electronic states responsible for ultrafast energy cascades, excited state dynamics, and the resulting photoreactivity or photostability of these compounds. Iron tetraphenyl porphyrin chloride (Fe((III))TPPCl) exhibits picosecond decay to a metal centered d → d* (4)T state. This state decays on a ca. 16 ps time scale in room temperature solution but persists for much longer in a cryogenic glass. The photoreactivity of the (4)T state may lead to novel future applications for these compounds. In contrast, the nonplanar cob(III)alamins contain two axial ligands to the central cobalt atom. The upper axial ligand can be an alkyl group as in the two biologically active coenzymes or a nonalkyl ligand such as -CN in cyanocobalamin (vitamin B12) or -OH in hydroxocobalamin. The electronic structure, energy cascade, and bond cleavage of these compounds is sensitive to the details of the axial ligand. Nonalkylcobalamins exhibit ultrafast internal conversion to a low-lying state of metal to ligand or ligand to metal charge transfer character. The compounds are generally photostable with ground state recovery complete on a time scale of 2-7 ps in room temperature aqueous solution. Alkylcobalamins exhibit ultrafast internal conversion to an S1 state of d/π → π* character. Most compounds undergo bond cleavage from this state with near unit quantum yield within ∼100 ps. Recent theoretical calculations provide a potential energy surface accounting for these observations. Conformation dependent mixing of the corrin π and cobalt d orbitals plays a significant role in the observed photochemistry and photophysics.

  11. Ni/metal hydride secondary element

    DOEpatents

    Bauerlein, Peter

    2005-04-19

    A Ni/metal hydride secondary element having a positive nickel hydroxide electrode, a negative electrode having a hydrogen storage alloy, and an alkaline electrolyte, the positive electrode, provided with a three-dimensional metallic conductive structure, also contains an aluminum compound which is soluble in the electrolyte, in addition to nickel hydroxide and cobalt oxide. The aluminum compound is aluminum hydroxide and/or aluminum oxide, and the mass of the aluminum compound which is present in the positive bulk material mixture is 0.1 to 2% by weight relative to the mass of the nickel hydroxide which is present. In combination with aluminum hydroxide or aluminum oxide, the positive electrode further contains lanthanoid oxidic compounds Y.sub.2 O.sub.3, La.sub.2 O.sub.3 and Ca(OH).sub.2, as well as mixtures of these compounds.

  12. Supported fischer-tropsch catalyst and method of making the catalyst

    DOEpatents

    Dyer, Paul N.; Pierantozzi, Ronald; Withers, Howard P.

    1987-01-01

    A Fischer-Tropsch catalyst and a method of making the catalyst for a Fischer-Tropsch process utilizing the catalyst by which synthesis gas, particularly carbon-monoxide rich synthesis gas, is selectively converted to higher hydrocarbons of relatively narrow carbon number range is disclosed. In general, the selective and notably stable catalyst, consist of an inert carrier first treated with a Group IV B metal compound (such as zirconium or titanium), preferably an alkoxide compound, and subsequently treated with an organic compound of a Fischer-Tropsch metal catalyst, such as cobalt, iron or ruthenium carbonyl. Reactions with air and water and calcination are specifically avoided in the catalyst preparation procedure.

  13. Application of Two Cobalt-Based Metal-Organic Frameworks as Oxidative Desulfurization Catalysts.

    PubMed

    Masoomi, Mohammad Yaser; Bagheri, Minoo; Morsali, Ali

    2015-12-07

    Two new porous cobalt-based metal-organic frameworks, [Co6(oba)5(OH)2(H2O)2(DMF)4]n · 5DMF (TMU-10) and [Co3(oba)3(O) (Py)0.5] n · 4DMF · Py (TMU-12) have been synthesized by solvothermal method using a nonlinear dicarboxylate ligand. Under mild reaction conditions, these compounds exhibited good catalytic activity and reusability in oxidative desulfurization (ODS) reaction of model oil which was prepared by dissolving dibenzothiophene (DBT) in n-hexane. FT-IR and Mass analysis showed that the main product of DBT oxidation is its corresponding sulfone, which was adsorbed on the surfaces of catalysts. The activation energy was obtained as 13.4 kJ/mol.

  14. Catalytic hydrogenation using complexes of base metals with tridentate ligands

    DOEpatents

    Hanson, Susan K.; Zhang, Guoqi; Vasudevan, Kalyan V.

    2017-02-14

    Complexes of cobalt and nickel with tridentate ligand PNHP.sup.R are effective for hydrogenation of unsaturated compounds. Cobalt complex [(PNHP.sup.Cy)Co(CH.sub.2SiMe.sub.3)]BAr.sup.F.sub.4 (PNHP.sup.Cy=bis[2-(dicyclohexylphosphino)ethyl]amine, BAr.sup.F.sub.4=B(3,5-(CF.sub.3).sub.2C.sub.6H.sub.3).sub.4)) was prepared and used with hydrogen for hydrogenation of alkenes, aldehydes, ketones, and imines under mild conditions (25-60.degree. C., 1-4 atm H.sub.2). Nickel complex [(PNHP.sup.Cy)Ni(H)]BPh.sub.4 was used for hydrogenation of styrene and 1-octene under mild conditions. (PNP.sup.Cy)Ni(H) was used for hydrogenating alkenes.

  15. Catalytic hydrogenation using complexes of base metals with tridentate ligands

    DOEpatents

    Vasudevan, Kalyan V.; Zhang, Guoqi; Hanson, Susan K.

    2016-09-06

    Complexes of cobalt and nickel with tridentate ligand PNHP.sup.R are effective for hydrogenation of unsaturated compounds. Cobalt complex [(PNHP.sup.Cy)Co(CH.sub.2SiMe.sub.3)]BAr.sup.F.sub.4 (PNHP.sup.Cy=bis[2-(dicyclohexylphosphino)ethyl]amine, BAr.sup.F.sub.4=B(3,5-(CF.sub.3).sub.2C.sub.6H.sub.3).sub.4)) was prepared and used with hydrogen for hydrogenation of alkenes, aldehydes, ketones, and imines under mild conditions (25-60.degree. C., 1-4 atm H.sub.2). Nickel complex [(PNHP.sup.Cy)Ni(H)]BPh.sub.4 was used for hydrogenation of styrene and 1-octene under mild conditions. (PNP.sup.Cy)Ni(H) was used for hydrogenating alkenes.

  16. 1,2,4,5-benzenetetracarboxylate- and 2,2'-bipyrimidine-containing cobalt(II) coordination polymers: preparation, crystal structure, and magnetic properties.

    PubMed

    Fabelo, Oscar; Pasán, Jorge; Lloret, Francesc; Julve, Miguel; Ruiz-Pérez, Catalina

    2008-05-05

    Three new mixed-ligand cobalt(II) complexes of formula [Co2(H2O)6(bta)(bpym)]n.4nH2O (1), [Co2(H2O)2(bta)(bpym)]n (2), and [Co2(H2O)4(bta)(bpym)]n.2nH2O ( 3) (bpym = 2,2'-bipyrimidine and H 4bta = 1,2,4,5-benzenetretracaboxylic acid) have been synthesized and characterized by single crystal X-ray diffraction. 1 is a chain compound of mer-triaquacobalt(II) units which are linked through regular alternating bis-bidentate bpym and bis-monodentate bta groups. 2 and 3 are three-dimensional compounds where aquacobalt(II) ( 2) and cis-diaquacobalt(II) ( 3) entities are linked by bis-bidentate bpym ( 2 and 3) and tetrakis- ( 2 and 3) and octakis-monodentate ( 2) bta ligands. The cobalt atoms in 1- 3 exhibit somewhat distorted octahedral surroundings. Two bpym-nitrogen atoms ( 1- 3) and either two bta-oxygens ( 2) or one bta-oxygen and a water molecule ( 1 and 3) build the equatorial plane, whereas the axial positions are filled either by two water molecules ( 1) or by a bta-oxygen atom and a water molecule ( 2 and 3). The values of the cobalt-cobalt separation across the bridging bpym vary in the range 5.684(2)-5.7752(7) A, whereas those through the bta bridge cover the ranges 5.288(2)-5.7503(5) A (across the anti-syn carboxylate) and 7.715(3)-11.387(1) A (across the phenyl ring). The magnetic properties of 1- 3 have been investigated in the temperature range 1.9-290 K. They are all typical of an overall antiferromagnetic coupling with the maxima of the magnetic susceptibility at 14.5 ( 1) and 11.5 K ( 2 and 3). Although exchange pathways through bis-bidentate bpym and carboxylate-bta in different coordination modes are involved in 1- 3, their magnetic behavior is practically governed by that across the bpym bridge, the magnitude of the exchange coupling being J = -5.59(2) ( 1), -4.41(2) ( 2), and -4.49(2) ( 3) with the Hamiltonian H = - JS 1 S 2.

  17. Solvent-free synthesis of new metal phosphites with double-layered, pillared-layered, and framework structures

    NASA Astrophysics Data System (ADS)

    Liu, Lin; Zhang, Wei; Shi, Zhonghua; Chen, Yaoqiang; Lin, Zhien

    2014-12-01

    Three new metal phosphites, formulated as (H3O)2·Mn2(HPO3)3 (1), Co(bpy) (H2O) (HPO3) (2), and H2tmpda·Zn3(HPO3)4 (3), have been synthesized under solvent-free conditions, where bpy = 4,4‧-bipyridine, and tmpda = N,N,N‧,N‧-tetramethyl-1,3-propanediamine. Compound 1 has a double-layered structure with a thickness of 5.68 Å. Compound 2 has an inorganic-organic hybrid framework with cobalt phosphite layers pillared by bpy ligands. Compound 3 has a three-dimensional open-framework structure containing 8-ring channels. The temperature dependence of the magnetic susceptibility of compounds 1 and 2 were also investigated.

  18. Synthesis, structural characterization, photo-physical and magnetic properties of cobalt salphen pseudo halide complexes showing meta-magnetic ordering

    NASA Astrophysics Data System (ADS)

    Nassief, A. R.; Abdel-Hafiez, M.; Hassen, A.; Khalil, A. S. G.; Saber, M. R.

    2018-04-01

    The solvo-thermal syntheses of [(CoSalphen)2Co (SCN)2]n (1), CoSalphen(NH3)(N3)(2), Na[CoIIIsalphen(N3)2](3), Na[CoIIIsalen(N3)2](4) and CoIIIsalen(NH3)(N3) (5) {salphen = N,N'-o-phenylene-bis(salicylideneimine)} are reported. The structural studies using X-ray diffraction measurements revealed that 1 crystalizes in a monoclinic C2/c space group. Two cobalt (II) metal centers in penta-coordinated and octahedral local coordination environments are bridged via alternating O and μ1,3 SCN bridges resulting in a novel 2D layered coordination polymer. Compound 2 is a trivalent mononuclear cobalt azido complex with an octahedral coordination environment. The magnetic investigations of 1 revealed ferromagnetic coupling (J = +49.1 cm-1) and meta-magnetic ordering. Time resolved photoluminescence studies of the complexes showed excited state lifetimes of (τ1 = 0.4675 ns, τ2 = 5.23 ns) for 1 and (τ1 = 0.5078 ns, τ2 = 6.79 ns) for 2.

  19. Efficient hydrogen evolution catalysis using ternary pyrite-type cobalt phosphosulphide

    NASA Astrophysics Data System (ADS)

    Cabán-Acevedo, Miguel; Stone, Michael L.; Schmidt, J. R.; Thomas, Joseph G.; Ding, Qi; Chang, Hung-Chih; Tsai, Meng-Lin; He-Hau, Jr.; Jin, Song

    2015-12-01

    The scalable and sustainable production of hydrogen fuel through water splitting demands efficient and robust Earth-abundant catalysts for the hydrogen evolution reaction (HER). Building on promising metal compounds with high HER catalytic activity, such as pyrite structure cobalt disulphide (CoS2), and substituting non-metal elements to tune the hydrogen adsorption free energy could lead to further improvements in catalytic activity. Here we present a combined theoretical and experimental study to establish ternary pyrite-type cobalt phosphosulphide (CoPS) as a high-performance Earth-abundant catalyst for electrochemical and photoelectrochemical hydrogen production. Nanostructured CoPS electrodes achieved a geometrical catalytic current density of 10 mA cm-2 at overpotentials as low as 48 mV, with outstanding long-term operational stability. Integrated photocathodes of CoPS on n+-p-p+ silicon micropyramids achieved photocurrents up to 35 mA cm-2 at 0 V versus the reversible hydrogen electrode (RHE), onset photovoltages as high as 450 mV versus RHE, and the most efficient solar-driven hydrogen generation from Earth-abundant systems.

  20. High performance electrode material for supercapacitors based on α-Co(OH)2 nano-sheets prepared through pulse current cathodic electro-deposition (PC-CED)

    NASA Astrophysics Data System (ADS)

    Aghazadeh, Mustafa; Rashidi, Amir; Ganjali, Mohammad Reza

    2018-01-01

    In this paper, the well-defined nano-sheets of α-Co(OH)2 were prepared through the cathodic electrosynthesis from an additive-free aqueous cobalt nitrate bath. The pulse current cathodic electro-deposition (PC-CED) was used as the means for the controlling the OH- electrogeneration on the cathode surface. The characteristics and electrochemical behavior of the prepared cobalt hydroxide were also assessed through SEM, TEM, XRD, BET, and IR. The results proved the product to be composed of crystalline pure α phase of cobalt hydroxide with sheet-like morphology at nanoscale. Evaluations of the electrochemical behaviour of the α-Co(OH)2 nano-sheets revealed that they are capable to delivering the specific capacitance of 1122 F g-1 at a discharge load of 3 A g-1 and SC retention of 84% after 4000 continues discharging cycles, suggesting the nano-sheets as promising candidates for use in electrochemical supercapacitors. Further, the method used for the preparation of the compounds enjoys the capability of being scaled up. [Figure not available: see fulltext.

  1. Hybrid organic-inorganic system for producing biofuels

    DOEpatents

    Yeh, Yi-Chun; Singer, Steven W.; Chhabra, Swapnil R.; Beller, Harry R.; Mueller, Jana

    2017-10-03

    The present invention provides for a system for converting CO.sub.2 and H.sub.2 to one or more biologically derived compounds. In some embodiments, the system comprises a host cell comprising one or more nucleic acids encoding genes for a recombinant surface display protein which is capable of tethering an electrocatalyst molecule, such as a cobalt(II) complex supported by tetradentate polypyridyl ligand 2-bis(2-pyridyl)(methoxy)methyl-6-pyridylpyridine (PY4), and enzymes for synthesizing a biologically derived compound, such as an alkane, alcohol, fatty acid, ester, or isoprenoid.

  2. Primary explosives

    DOEpatents

    Hiskey, Michael A [Los Alamos, NM; Huynh, My Hang V [Los Alamos, NM

    2011-01-25

    The present invention provides a compound of the formula (Cat).sup.+.sub.z[M.sup.++(5-nitro-1H-tetrazolato-N2).sup.-.sub.x(H.sub.2- O).sub.y] where x is 3 or 4, y is 2 or 3, x+y is 6, z is 1 or 2, and M.sup.++ is selected from the group consisting of iron, cobalt, nickel, copper, zinc, chromium, and manganese, and (Cat).sup.+ is selected from the group consisting of ammonium, sodium, potassium, rubidium and cesium. A method of preparing the compound of that formula is also disclosed.

  3. Primary explosives

    DOEpatents

    Hiskey, Michael A [Los Alamos, NM; Huynh, My Hang V [Los Alamos, NM

    2009-03-03

    The present invention provides a compound of the formula (Cat).sup.+.sub.z[M.sup.++(5-nitro-1H-tetrazolato-N2).sup.-.sub.x(H.sub.2- O).sub.y] where x is 3 or 4, y is 2 or 3, x+y is 6, z is 1 or 2, and M.sup.++ is selected from the group consisting of iron, cobalt, nickel, copper, zinc, chromium, and manganese, and (Cat).sup.+ is selected from the group consisting of ammonium, sodium, potassium, rubidium and cesium. A method of preparing the compound of that formula is also disclosed.

  4. A rechargeable lithium battery employing cobalt chevrel-phase compound as the cathode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yomaguchi, S.; Uchida, T.; Wakihara, M.

    This paper reports on the single-phase region of cobalt Chevrel-phase compound (Co{sub y}Mo{sub 6}S{sub 8{minus}z}:CoCP) determined by x-ray diffraction analysis. The nonstoichiometric range of CoCP was very narrow and the only CoCP with y = 1.6,8 {minus} z = 7.7 could be prepared as a single phase. The CoCP was evaluated as a cathode for lithium secondary batteries. 1M CiClO{sub 4} in PC was used as an electrolyte. The discharge properties and discharge-charge cycling properties were measured galvanostatically under constant current densities from 0.1 to 2.0 mA/cm{sup 2}. The cell exhibited good discharge performance; for example when the cell wasmore » discharged under a cd = 0.1 mA/cm{sup 2}, 4.8 Li/Co{sub 1.6}Mo{sub 6}S{sub 7.7} were incorporated before the cell voltage fell down to 1.0 V (energy density: 277 Wh/kg). Also a rechargeability of more than 200 cycles was observed at cd = 0.5 mA/cm{sup 2}. The curve of OCV with varying Li content in the CoCP was very flat and near 2.1 V. The x-ray analysis of lithium incorporated cobalt Chevrel phase, Li{sub x}CoCP, was two sets of hexagonal lattice parameters showing the existence of two types of Chevrel phases (having different lattice parameters) coexisting in a wide range of 0 {lt} x {lt} 4.5.« less

  5. Part I. Cobalt thiolate complexes modeling the active site of cobalt nitrile hydratase. Part II. Formation of inorganic nanoparticles on protein scaffolding in Escherichia coli glutamine synthetase

    NASA Astrophysics Data System (ADS)

    Kung, Irene Yuk Man

    Part I. A series of novel cobalt dithiolate complexes with mixed imine/amine ligand systems is presented here as electronic and structural models for the active site in the bacterial enzyme class, nitrile hydratase (NHase). Pentadentate cobalt(II) complexes with S2N 3 ligand environments are first studied as precursors to the more relevant cobalt(III) complexes. Adjustment of the backbone length by removal of a methylene group increases the reactivity of the system; whereas reduction of the two backbone imine bonds to allow free rotation about those bonds may decrease reactivity. Reactivity change due to the replacement of the backbone amine proton with a more sterically challenging methyl group is not yet clear. Upon oxidation, the monocationic pentadentate cobalt(III) complex, 1b, shows promising reactivity similar to that of NHase. The metal's open coordination site allows reversible binding of the endogenous, monoanionic ligands, N 3- and NCS-. Oxygenation of the thiolate sulfur atoms by exposure to O2 and H2O 2 produces sulfenate and sulfinate ligands in complex 8, which resembles the crystal structure of "deactivated" Fe NHase. However, its lack of reactivity argues against the oxygenated enzyme structure as the active form. Six-coordinate cobalt(III) complexes with S2N4 amine/amine ligand systems are also presented as analogues of previously reported iron(III) compounds, which mimic the spectroscopic properties of Fe NHase. The cobalt complexes do not seem to similarly model Co NHase. However, the S = 0 cobalt(III) center can be spectroscopically silent and difficult to detect, making comparison with synthetic models using common techniques hard. Part II. Dodecameric Escherichia coli glutamine synthetase mutant, E165C, stacks along its six-fold axis to produce tubular nanostructures in the presence of some divalent metal ions, as does the wild type enzyme. The centrally located, engineered Cys-165 residues appear to bind to various species and may serve as scaffolding for inorganic mineralization. US nanoclusters of discreet size seem to grow in the presence of E165C in aqueous solution spontaneously. Commercially available mono(maleimido)undecagold seem to bind only to E165C through the reactive cysteine side chains. Reduction of Au3+ to elemental gold in solution with E165C, generates long, linear structures of approximately 100-nm diameter.

  6. Crystal structures of bis-[(9S,13S,14S)-3-meth-oxy-17-methyl-morphinanium] tetra-chlorido-cobaltate and tetra-chlorido-cuprate.

    PubMed

    Gauchat, Eric; Nazarenko, Alexander Y

    2017-01-01

    (9 S ,13 S ,14 S )-3-Meth-oxy-17-methyl-morphinan (dextromethorphan) forms two isostructural salts with ( a ) tetra-chlorido-cobaltate, namely bis-[(9 S ,13 S ,14 S )-3-meth-oxy-17-methyl-morphinanium] tetra-chlorido-cobaltate, (C 18 H 26 NO) 2 [CoCl 4 ], and ( b ) tetra-chlorido-cuprate, namely bis-[(9 S ,13 S ,14 S )-3-meth-oxy-17-methyl-morphinanium] tetra-chlorido-cuprate, (C 18 H 26 NO) 2 [CuCl 4 ]. The distorted tetra-hedral anions are located on twofold rotational axes. The dextromethorphan cation can be described as being composed of two ring systems, a tetra-hydro-naphthalene system A + B and a deca-hydro-isoquinolinium subunit C + D , that are nearly perpendicular to one another: the angle between mean planes of the A + B and C + D moieties is 78.8 (1)° for ( a ) and 79.0 (1)° for ( b ). Two symmetry-related cations of protonated dextromethorphan are connected to the tetra-chlorido-cobaltate (or tetra-chlorido-cuprate) anions via strong N-H⋯Cl hydrogen bonds, forming neutral ion associates. These associates are packed in the (001) plane with no strong attractive bonding between them. Both compounds are attractive crystalline forms for unambiguous identification of the dextromethorphan and, presumably, of its optical isomer, levomethorphan.

  7. Paramagnetic resonance studies of bistrispyrazolylborate cobalt(II) and related derivatives

    NASA Astrophysics Data System (ADS)

    Myers, William K.

    Herein, a systematic frozen solution electron-nuclear double resonance (ENDOR) study of high-spin Co(II) complexes is reported to demonstrate the efficacy of methyl substitutions as a means of separating dipolar and contact coupling, and further, to increase the utility of high-spin Co(II) as a spectroscopic probe for the ubiquitous, but spectroscopically-silent Zn(II) metalloenzymes. High-spin (hs) Co(II) has been subject of paramagnetic resonance studies for over 50 years and has been used as a spectroscopic probe for Zn metalloenzymes for over 35 years. However, as will be seen, the inherent complexity of the electronic properties of the cobaltous ion remains to be exploited to offer a wealth of information on Zn(II) enzymatic environments. Specifically, ENDOR measurements on bistrispyrazolylborate cobalt(II) confirm the utility of the novel method of methyl substitution to differentiate dipolar and Fermi contact couplings. An extensive set of electron paramagnetic resonance (EPR) simulations were performed. Software was developed to implement an ENDOR control interface. Finally, proton relaxation measurements were made in the range of 12-42 MHz, which were accounted for with the large g-value anisotropy of the Co(II) compounds. Taken as a whole, these studies point to the rich complexity of the electronic structure of high-spin cobalt(II) and, when sufficiently well-characterized, the great utility it has as a surrogate of biological Zn(II).

  8. From nonpeptide toward noncarbon protease inhibitors: Metallacarboranes as specific and potent inhibitors of HIV protease

    PubMed Central

    Cígler, Petr; Kožíšek, Milan; Řezáčová, Pavlína; Brynda, Jíří; Otwinowski, Zbyszek; Pokorná, Jana; Plešek, Jaromír; Grüner, Bohumír; Dolečková-Marešová, Lucie; Máša, Martin; Sedláček, Juraj; Bodem, Jochen; Kräusslich, Hans-Georg; Král, Vladimír; Konvalinka, Jan

    2005-01-01

    HIV protease (PR) represents a prime target for rational drug design, and protease inhibitors (PI) are powerful antiviral drugs. Most of the current PIs are pseudopeptide compounds with limited bioavailability and stability, and their use is compromised by high costs, side effects, and development of resistant strains. In our search for novel PI structures, we have identified a group of inorganic compounds, icosahedral metallacarboranes, as candidates for a novel class of nonpeptidic PIs. Here, we report the potent, specific, and selective competitive inhibition of HIV PR by substituted metallacarboranes. The most active compound, sodium hydrogen butylimino bis-8,8-[5-(3-oxa-pentoxy)-3-cobalt bis(1,2-dicarbollide)]di-ate, exhibited a Ki value of 2.2 nM and a submicromolar EC50 in antiviral tests, showed no toxicity in tissue culture, weakly inhibited human cathepsin D and pepsin, and was inactive against trypsin, papain, and amylase. The structure of the parent cobalt bis(1,2-dicarbollide) in complex with HIV PR was determined at 2.15 Å resolution by protein crystallography and represents the first carborane-protein complex structure determined. It shows the following mode of PR inhibition: two molecules of the parent compound bind to the hydrophobic pockets in the flap-proximal region of the S3 and S3′ subsites of PR. We suggest, therefore, that these compounds block flap closure in addition to filling the corresponding binding pockets as conventional PIs. This type of binding and inhibition, chemical and biological stability, low toxicity, and the possibility to introduce various modifications make boron clusters attractive pharmacophores for potent and specific enzyme inhibition. PMID:16227435

  9. Donor exciton of cobalt and its interaction with lattice vibrations in the semiconductor crystal ZnO:Co

    NASA Astrophysics Data System (ADS)

    Gruzdev, N. B.; Sokolov, V. I.; Yemelchenko, G. A.

    2009-01-01

    Vibrational states interacting with a donor exciton in the compound ZnO:Co are revealed by the sensitive method of field exciton-vibrational spectroscopy. The vibrational modes of the electroabsorption spectrum of the compound ZnO:Co in the region of the donor exciton are given an interpretation based on the existing data on the symmetrized local density of states of the compounds ZnO and ZnO :Ni3+. The results are compared with the known data for II-VI:Ni compounds in the case of an acceptor exciton. The position of the donor level of the Co2+ ion relative to the bottom of the conduction band in the given compound is determined and found to conform well to the universal trend for donor levels of 3d ions in II-VI compounds.

  10. The effects of platinum on nickel electrodes in the nickel hydrogen cell

    NASA Technical Reports Server (NTRS)

    Zimmerman, Albert H.

    1991-01-01

    Interactions of platinum and platinum compounds with the nickel electrode that are possible in the nickel hydrogen cell, where both the nickel electrode and a platinum catalyst hydrogen electrode are in intimate contact with the alkaline electrolyte, are examined. Additionally, a mechanism of nickel cobalt oxyhydroxide formation in NiH2 cells is presented.

  11. Highly efficient and stable catalyst for peroxynitrite decomposition

    Treesearch

    Yurii V. Geletii; Alan J. Bailey; Jennifer J. Cowan; Ira A. Weinstock; Craig L. Hill

    2001-01-01

    The new cobalt substituted-polyoxometalate K7[CoAlW11O39]•15H2O and the simple CoCl2•6H2O salt are efficient catalysts for peroxynitrite decomposition. These compounds also catalyze the oxidation of ascorbic acid and the nitration of phenol by peroxynitrite.

  12. Characterization of Catalyst Materials for Production of Aerospace Fuels

    NASA Technical Reports Server (NTRS)

    Best, Lauren M.; De La Ree, Ana B.; Hepp, Aloysius F.

    2012-01-01

    Due to environmental, economic, and security issues, there is a greater need for cleaner alternative fuels. There will undoubtedly be a shift from crude oil to non-petroleum sources as a feedstock for aviation (and other transportation) fuels. Additionally, efforts are concentrated on reducing costs coupled with fuel production from non-conventional sources. One solution to this issue is Fischer-Tropsch gas-to-liquid technology. Fischer-Tropsch processing of synthesis gas (CO/H2) produces a complex product stream of paraffins, olefins, and oxygenated compounds such as alcohols and aldehydes. The Fisher-Tropsch process can produce a cleaner diesel oil fraction with a high cetane number (typically above 70) without any sulfur or aromatic compounds. This process is most commonly catalyzed by heterogeneous (in this case, silver and platinum) catalysts composed of cobalt supported on alumina or unsupported alloyed iron powders. Physisorption, chemisorptions, scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS) are described to better understand the potential performance of Fischer-Tropsch cobalt on alumina catalysts promoted with silver and platinum. The overall goal is to preferentially produce C8 to C18 paraffin compounds for use as aerospace fuels. Progress towards this goal will eventually be updated and achieved by a more thorough understanding of the characterization of catalyst materials. This work was supported by NASA s Subsonic Fixed Wing and In-situ Resource Utilization projects.

  13. Characterization of Catalyst Materials for Production of Aerospace Fuels

    NASA Technical Reports Server (NTRS)

    DeLaRee, Ana B.; Hepp, Aloysius F.

    2011-01-01

    Due to environmental, economic, and security issues, there is a greater need for cleaner alternative fuels. There will undoubtedly be a shift from crude oil to non-petroleum sources as a feedstock for aviation (and other transportation) fuels. Additionally, efforts are concentrated on reducing costs coupled with fuel production from non-conventional sources. One solution to this issue is Fischer-Tropsch gas-to-liquid technology. Fischer-Tropsch processing of synthesis gas (CO/H2) produces a complex product stream of paraffins, olefins, and oxygenated compounds such as alcohols and aldehydes. The Fisher-Tropsch process can produce a cleaner diesel oil fraction with a high cetane number (typically above 70) without any sulfur or aromatic compounds. This process is most commonly catalyzed by heterogeneous (in this case, silver and platinum) catalysts composed of cobalt supported on alumina or unsupported alloyed iron powders. Physisorption, chemisorptions, scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS) are described to better understand the potential performance of Fischer-Tropsch cobalt on alumina catalysts promoted with silver and platinum. The overall goal is to preferentially produce C8 to C18 paraffin compounds for use as aerospace fuels. Progress towards this goal will eventually be updated and achieved by a more thorough understanding of the characterization of catalyst materials. This work was supported by NASA s Subsonic Fixed Wing and In-situ Resource Utilization projects.

  14. Thin film Heusler compounds manganese nickel gallium

    NASA Astrophysics Data System (ADS)

    Jenkins, Catherine Ann

    Multiferroic Heusler compounds Mn3--xNi xGa (x=0,1,2) have a tetragonal unit cell that can variously be used for magneto-mechanically coupled shape memory ( x=1,2) and spin-mechanical applications (x=0). The first fabrication of fully epitaxial thin films of these and electronically related compounds by sputtering is discussed. Traditional and custom lab characterization of the magnetic and temperature driven multiferroic behavior is augmented by more detailed synchrotron-based high energy photoemission spectroscopic techniques to describe the atomic and electronic structure. Integration of the MnNi2Ga magnetic shape memory compound in microwave patch antennas and active free-standing structures represents a fraction of the available and promising applications for these compounds. Prototype magnetic tunnel junctions are demonstrated by Mn3Ga electrodes with perpendicular anisotropy for spin torque transfer memory structures. The main body of the work concentrates on the definition and exploration of the material series Mn3--xNi xGa (x=0,1,2) and the relevant multiferroic phenomena exhibited as a function of preparation and external stimuli. Engineering results on each x=0,1,2 are presented with device prototypes where relevant. In the appendices the process of the materials design undertaken with the goal of developing new ternary intermetallics with enhanced properties is presented with a full exploration of the road from band structure calculations to device implementation. Cobalt based compounds in single crystal and nanoparticle form are fabricated with an eye to developing the production methods for new cobalt- and iron-based magnetic shape memory compounds for device applications in different forms. Mn2CoSn, a compound isolectronic and with similar atomic ordering to Mn2NiGa is experimentally determined to be a nearly half-metallic ferromagnet in contrast to the metallic ferrimagnetism in the parent compound. High energy photoemission spectroscopy is shown to be applicable to the analysis and observation of deeply buried metallic and semiconducting interface in an analysis of chalcopyrite solar cell heterolayers and model magnetic tunnel junctions with half-metalic Heusler electrodes.

  15. DFT Insights into the Competitive Adsorption of Sulfur- and Nitrogen-Containing Compounds and Hydrocarbons on Co-Promoted Molybdenum Sulfide Catalysts

    DOE PAGES

    Rangarajan, Srinivas; Mavrikakis, Manos

    2016-04-07

    The adsorption of 20 nitrogen-/sulfur-containing and hydrocarbon compounds on the sulfur edge of cobalt-promoted molybdenum sulfide (CoMoS) catalyst was studied using density functional theory, accounting for van der Waals interactions, to elicit comparative structure–property trends across different classes of molecules relevant to hydrotreating. Unhindered organosulfur compounds preferentially adsorb on a “CUS-like” site formed by the dimerization of two neighboring sulfur atoms on the edge to create a vacancy. Nitrogen-containing compounds and 4,6-dimethyldibenzothiophene, however, prefer the brim sites. Binding energy trends indicate that nitrogen-containing compounds will inhibit hydrodesulfurization on the brim sites and, relatively weakly, on the CUS-like sites. Edge vacanciesmore » are,thus, likely to be essential for hydrodesulfurization of unhindered organosulfur compounds. Furthermore, van der Waals forces contribute significantly to the binding energy of compounds (up to 1.0 eV for large compounds such as alkyl-substituted acridines) on CoMoS.« less

  16. Catalyst for selective conversion of synthesis gas and method of making the catalyst

    DOEpatents

    Dyer, Paul N.; Pierantozzi, Ronald

    1986-01-01

    A Fischer-Tropsch (F-T) catalyst, a method of making the catalyst and an F-T process utilizing the catalyst by which synthesis gas, particularly carbon-monoxide rich synthesis gas is selectively converted to higher hydrocarbons of relatively narrow carbon number range. In general, the selective and notably stable catalyst, consists of an inert carrier first treated with a Group IV B metal compound (such as zirconium or titanium), preferably an alkoxide compound, and subsequently treated with an organic compound of an F-T metal catalyst, such as cobalt, iron or ruthenium carbonyl. Reactions with air and water and calcination are specifically avoided in the catalyst preparation procedure.

  17. Crystal structure of (18-crown-6)potassium(I) [(1,2,3,4,5-η)-cyclo-hepta-dien-yl][(1,2,3-η)-cyclo-hepta-trien-yl]cobalt(I).

    PubMed

    Brennessel, William W; Ellis, John E

    2015-03-01

    The reaction of bis-(anthracene)cobaltate(-I) with excess cyclo-hepta-triene, C7H8, resulted in a new 18-electron cobaltate containing two different seven-membered ring ligands, based on single-crystal X-ray diffraction. The asymmetric unit of this structure contains two independent cation-anion pairs of the title complex, [K(18-crown-6)][Co(η(3)-C7H7)(η(5)-C7H9)], where 18-crown-6 stands for 1,4,7,10,13,16-hexa-oxa-cyclo-octa-decane (C12H24O6), in general positions and well separated. Each (18-crown-6)potassium cation is in contact with the η(3)-coordinating ligand of one cobaltate complex. Each η(3)-coordinating ligand behaves as an allylic anion whose exo-diene moiety is bent away from the allylic plane, and thus is not involved directly in the bonding. The metal-coordinating portions of the anionic η(5) ligands are planar and one of these ligands is modeled as disordered over two positions, with occupancy ratio 0.699 (5):0.301 (5), such that one orientation is rotated by one carbon atom with respect to the other. The diffraction intensities were integrated according to non-merohedral twin law [-1 0 0/0 -1 0/0.064 0 1], a 180° rotation about reciprocal lattice axis [001], and the masses of the twin domains refined to equal amounts. As both ligands are formally coordinated as anions, the cobalt atom is best considered to be Co(I). This compound is of inter-est as the first to possess cyclo-hepta-trienyl and cyclo-hepta-dienyl ligands in an anionic metal complex.

  18. Fischer-Tropsch Synthesis: XANES Investigation of Hydrogen Chloride Poisoned Iron and Cobalt-Based Catalysts at the K-Edges of Cl, Fe, and Co

    DOE PAGES

    Pendyala, Venkat Ramana Rao; Jacobs, Gary; Ma, Wenping; ...

    2016-07-23

    The effect of co-fed hydrogen chloride (HCl) in syngas on the performance of iron and cobalt-based Fischer-Tropsch (FT) catalysts was investigated in our earlier studies [ACS Catal. 5 (2015) 3124-3136 and DOE final report 2011; Catal. Lett. 144 (2014) 1127-1133]. For an iron catalyst, lower HCl concentrations (< 2.0 ppmw of HCl)) in syngas did not significantly affect the activity, whereas rapid deactivation occurred at higher concentrations (~20 ppmw). With cobalt catalysts, even low concentrations of HCl (100 ppbw) caused catalyst deactivation, and the deactivation rate increased with increasing HCl concentration in the syngas. The deactivation of the catalysts ismore » explained by the chloride being adsorbed on the catalyst surface to (1) block the active sites and/or (2) electronically modify the sites. In this study, XANES spectroscopy was employed to investigate HCl poisoning mechanism on the iron and cobalt catalysts. Cl K-edge normalized XANES results indicate that Cl is indeed present on the catalyst following HCl poisoning and exhibits a structure similar to the family of compounds MCl; two main peaks are formed, with the second peak consisting of a main peak and a higher energy shoulder. At the Co K and Fe K edges, the white line was observed to be slightly increased relative to the same catalyst under clean conditions. There is then the additional possibility that Cl adsorption may act in part to intercept electron density from the FT metallic function (e.g.,cobalt or iron carbide). If so, this would result in less back-donation and therefore hinder the scission of molecules such as CO.« less

  19. The Influence of Fe Substitution in Lanthanum Calcium Cobalt Oxide on the Oxygen Evolution Reaction in Alkaline Media

    DOE PAGES

    Abreu-Sepulveda, Maria A.; Dhital, Chetan; Huq, Ashfia; ...

    2016-07-30

    The effect due to systematic substitution of cobalt by iron in La 0.6Ca 0.4Co 1-xFe xO 3 towards the oxygen evolution reaction(OER) in alkaline media has been investigated. We synthesized these compounds by a facile glycine-nitrate synthesis and the phase formation was confirmed by X-ray diffraction and Neutron Diffraction elemental analysis. The apparent OER activity was evaluated by quasi steady state current measurements in alkaline media using a traditional three-electrode cell. X-ray photoelectron spectroscopy shows iron substitution causes an increase in the surface concentration of various cobalt oxidation states. Tafel slope in the vicinity of 60 mV/decade and electrochemical reactionmore » order towards OH- near unity were achieved for the unsubstituted La 0.6Ca 0.4CoO 3. Moreover, a decrease in the Tafel slope to 49 mV/decade was observed when iron is substituted in high amounts in the perovskite structure. The area specific current density showed dependence on the Fe fraction, however the relationship of specific current density with Fe fraction is not linear. High Fe substitutions, La 0.6Ca 0.4Co 0.2Fe 0.8O 3 and La 0.6Ca 0.4Co 0.1Fe 0.9O 3 showed higher area specific activity towards OER than La 0.6Ca 0.4CoO 3 or La 0.6Ca 0.4FeO 3. Finally, we believe iron inclusion in the cobalt sites of the perovskite helps decrease the electron transfer barrier and facilitates the formation of cobalt-hydroxide at the surface. Possible OER mechanisms based on the observed kinetic parameters will be discussed.« less

  20. Atomic-scale visualization of surface-assisted orbital order

    PubMed Central

    Kim, Howon; Yoshida, Yasuo; Lee, Chi-Cheng; Chang, Tay-Rong; Jeng, Horng-Tay; Lin, Hsin; Haga, Yoshinori; Fisk, Zachary; Hasegawa, Yukio

    2017-01-01

    Orbital-related physics attracts growing interest in condensed matter research, but direct real-space access of the orbital degree of freedom is challenging. We report a first, real-space, imaging of a surface-assisted orbital ordered structure on a cobalt-terminated surface of the well-studied heavy fermion compound CeCoIn5. Within small tip-sample distances, the cobalt atoms on a cleaved (001) surface take on dumbbell shapes alternatingly aligned in the [100] and [010] directions in scanning tunneling microscopy topographies. First-principles calculations reveal that this structure is a consequence of the staggered dxz-dyz orbital order triggered by enhanced on-site Coulomb interaction at the surface. This so far overlooked surface-assisted orbital ordering may prevail in transition metal oxides, heavy fermion superconductors, and other materials. PMID:28948229

  1. Lattice Matched Carbide–Phosphide Composites with Superior Electrocatalytic Activity and Stability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Regmi, Yagya N.; Roy, Asa; King, Laurie A.

    Composites of electrocatalytically active transition-metal compounds present an intriguing opportunity toward enhanced activity and stability. Here, to identify potentially scalable pairs of a catalytically active family of compounds, we demonstrate that phosphides of iron, nickel, and cobalt can be deposited on molybdenum carbide to generate nanocrystalline heterostructures. Composites synthesized via solvothermal decomposition of metal acetylacetonate salts in the presence of highly dispersed carbide nanoparticles show hydrogen evolution activities comparable to those of state-of-the-art non-noble metal catalysts. Investigation of the spent catalyst using high resolution microscopy and elemental analysis reveals that formation of carbide–phosphide composite prevents catalyst dissolution in acid electrolyte.more » Lattice mismatch between the two constituent electrocatalysts can be used to rationally improve electrochemical stability. Among the composites of iron, nickel, and cobalt phosphide, iron phosphide displays the lowest degree of lattice mismatch with molybdenum carbide and shows optimal electrochemical stability. Turnover rates of the composites are higher than that of the carbide substrate and compare favorably to other electrocatalysts based on earth-abundant elements. Lastly, our findings will inspire further investigation into composite nanocrystalline electrocatalysts that use molybdenum carbide as a stable catalyst support.« less

  2. Crystal structure of tri­hydrogen bis­{[1,1,1-tris­(2-oxido­ethyl­amino­meth­yl)ethane]­cobalt(III)} trinitrate

    PubMed Central

    Sethi, Waqas; Johannesen, Heini V.; Morsing, Thorbjørn J.; Piligkos, Stergios; Weihe, Høgni

    2015-01-01

    The title compound, [Co2(L)2]3+·3NO3 − [where L = CH3C(CH2NHCH2CH2OH1/2)3], has been synthesized from the ligand 1,1,1-tris­(2-hy­droxy­ethyl­amino­meth­yl)ethane. The cobalt(III) dimer has an inter­esting and uncommon O—H⋯O hydrogen-bonding motif with the three bridging hy­droxy H atoms each being equally disordered over two positions. In the dimeric trication, the octa­hedrally coordinated CoIII atoms and the capping C atoms lie on a threefold rotation axis. The N atoms of two crystallographically independent nitrate anions also lie on threefold rotation axes. N—H⋯O hydrogen bonding between the complex cations and nitrate anions leads to the formation of a three-dimensional network structure. The compound is a racemic conglomerate of crystals containing either d or l mol­ecules. The crystal used for this study is a d crystal. PMID:26870462

  3. Effect of cobalt doping level of ferrites in enhancing sensitivity of analytical performances of carbon paste electrode for simultaneous determination of catechol and hydroquinone.

    PubMed

    Lakić, Mladen; Vukadinović, Aleksandar; Kalcher, Kurt; Nikolić, Aleksandar S; Stanković, Dalibor M

    2016-12-01

    This work presents the simultaneous determination of catechol (CC) and hydroquinone (HQ), employing a modified carbon paste electrode (CPE) with ferrite nanomaterial. Ferrite nanomaterial was doped with different amount of cobalt and this was investigated toward simultaneous oxidation of CC and HQ. It was shown that this modification strongly increases electrochemical characteristics of the CPE. Also, electrocatalytic activity of such materials strongly depends on the level of substituted Co in the ferrite nanoparticles. The modified electrodes, labeled as CoFerrite/CPE, showed two pairs of well-defined redox peaks for the electrochemical processes of catechol and hydroquinone. Involving of ferrite material in the structure of CPE, cause increase in the potentials differences between redox couples of the investigated compounds, accompanied with increases in peaks currents. Several important parameters were optimized and calibration curves, with limits of detection (LOD) of 0.15 and 0.3µM for catechol and hydroquinone, respectively, were constructed by employing amperometric detection. Effect of possible interfering compounds was also studied, and proposed method was successfully applied for CC and HQ quantification in real samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Lattice Matched Carbide–Phosphide Composites with Superior Electrocatalytic Activity and Stability

    DOE PAGES

    Regmi, Yagya N.; Roy, Asa; King, Laurie A.; ...

    2017-10-19

    Composites of electrocatalytically active transition-metal compounds present an intriguing opportunity toward enhanced activity and stability. Here, to identify potentially scalable pairs of a catalytically active family of compounds, we demonstrate that phosphides of iron, nickel, and cobalt can be deposited on molybdenum carbide to generate nanocrystalline heterostructures. Composites synthesized via solvothermal decomposition of metal acetylacetonate salts in the presence of highly dispersed carbide nanoparticles show hydrogen evolution activities comparable to those of state-of-the-art non-noble metal catalysts. Investigation of the spent catalyst using high resolution microscopy and elemental analysis reveals that formation of carbide–phosphide composite prevents catalyst dissolution in acid electrolyte.more » Lattice mismatch between the two constituent electrocatalysts can be used to rationally improve electrochemical stability. Among the composites of iron, nickel, and cobalt phosphide, iron phosphide displays the lowest degree of lattice mismatch with molybdenum carbide and shows optimal electrochemical stability. Turnover rates of the composites are higher than that of the carbide substrate and compare favorably to other electrocatalysts based on earth-abundant elements. Lastly, our findings will inspire further investigation into composite nanocrystalline electrocatalysts that use molybdenum carbide as a stable catalyst support.« less

  5. Toxicity of cobalt-complexed cyanide to Oncorhynchus mykiss, Daphnia magna, and Ceriodaphnia dubia: Potentiation by ultraviolet radiation and attenuation by dissolved organic carbon and adaptive UV tolerance

    USGS Publications Warehouse

    Little, Edward E.; Calfee, Robin D.; Theodorakos, Peter M.; Brown, Zoe Ann; Johnson, Craig A.

    2007-01-01

    BackgroundCobalt cyanide complexes often result when ore is treated with cyanide solutions to extract gold and other metals. These have recently been discovered in low but significant concentrations in effluents from gold leach operations. This study was conducted to determine the potential toxicity of cobalt-cyanide complexes to freshwater organisms and the extent to which ultraviolet radiation (UV) potentiates this toxicity. Tests were also conducted to determine if humic acids or if adaptation to UV influenced sensitivity to the cyanide complexes.MethodsRainbow trout (Oncorhynchus mykiss), Daphnia magna, and Ceriodaphnia dubia were exposed to potassium hexacyanocobaltate in the presence and absence of UV radiation, in the presence and absence of humic acids. Cyano-cobalt exposures were also conducted with C. dubia from cultures adapted to elevated UV.ResultsWith an LC50 concentration of 0.38 mg/L, cyanocobalt was over a 1000 times more toxic to rainbow trout in the presence of UV at a low, environmentally relevant irradiance level (4 μW/cm2 as UVB) than exposure to this compound in the absence of UV with an LC50 of 112.9 mg/L. Toxicity was immediately apparent, with mortality occurring within an hour of the onset of exposure at the highest concentration. Fish were unaffected by exposure to UV alone. Weak-acid dissociable cyanide concentrations were observed in irradiated aqueous solutions of cyanocobaltate within hours of UV exposure and persisted in the presence of UV for at least 96 hours, whereas negligible concentrations were observed in the absence of UV. The presence of humic acids significantly diminished cyanocobalt toxicity to D. magna and reduced mortality from UV exposure. Humic acids did not significantly influence survival among C. dubia. C. dubia from UV-adapted populations were less sensitive to metallocyanide compounds than organisms from unadapted populations.ConclusionsThe results indicate that metallocyanide complexes may pose a hazard to aquatic life through photochemically induced processes. Factors that decrease UV exposure such as dissolved organic carbon or increased pigmentation would diminish toxicity.

  6. Single-Chain Magnets Based on Octacyanotungstate with the Highest Energy Barriers for Cyanide Compounds.

    PubMed

    Wei, Rong-Min; Cao, Fan; Li, Jing; Yang, Li; Han, Yuan; Zhang, Xiu-Ling; Zhang, Zaichao; Wang, Xin-Yi; Song, You

    2016-04-13

    By introducing large counter cations as the spacer, two isolated 3, 3-ladder compounds, (Ph4P)[Co(II)(3-Mepy)2.7(H2O)0.3W(V)(CN)8] · 0.6H2O (1) and (Ph4As)[Co(II)(3-Mepy)3W(V)(CN)8] (2, 3-Mepy = 3-methylpyridine), were synthesized and characterized. Static and dynamic magnetic characterizations reveal that compounds 1 and 2 both behave as the single-chain magnets (SCMs) with very high energy barriers: 252(9) K for 1 and 224(7) K for 2, respectively. These two compounds display the highest relaxation barriers for cyano-bridged SCMs and are preceded only by two cobalt(II)-radical compounds among all SCMs. Meanwhile, a large coercive field of 26.2 kOe (1) and 22.6 kOe (2) were observed at 1.8 K.

  7. Solvent for the simultaneous recovery of radionuclides from liquid radioactive wastes

    DOEpatents

    Romanovskiy, Valeriy Nicholiavich; Smirnov, Igor V.; Babain, Vasiliy A.; Todd, Terry A.; Brewer, Ken N.

    2002-01-01

    The present invention relates to solvents, and methods, for selectively extracting and recovering radionuclides, especially cesium and strontium, rare earths and actinides from liquid radioactive wastes. More specifically, the invention relates to extracting agent solvent compositions comprising complex organoboron compounds, substituted polyethylene glycols, and neutral organophosphorus compounds in a diluent. The preferred solvent comprises a chlorinated cobalt dicarbollide, diphenyl-dibutylmethylenecarbamoylphosphine oxide, PEG-400, and a diluent of phenylpolyfluoroalkyl sulfone. The invention also provides a method of using the invention extracting agents to recover cesium, strontium, rare earths and actinides from liquid radioactive waste.

  8. Method for the simultaneous recovery of radionuclides from liquid radioactive wastes using a solvent

    DOEpatents

    Romanovskiy, Valeriy Nicholiavich; Smirnov, Igor V.; Babain, Vasiliy A.; Todd, Terry A.; Brewer, Ken N.

    2001-01-01

    The present invention relates to solvents, and methods, for selectively extracting and recovering radionuclides, especially cesium and strontium, rare earths and actinides from liquid radioactive wastes. More specifically, the invention relates to extracting agent solvent compositions comprising complex organoboron compounds, substituted polyethylene glycols, and neutral organophosphorus compounds in a diluent. The preferred solvent comprises a chlorinated cobalt dicarbollide, diphenyl-dibutylmethylenecarbamoylphosphine oxide, PEG-400, and a diluent of phenylpolyfluoroalkyl sulfone. The invention also provides a method of using the invention extracting agents to recover cesium, strontium, rare earths and actinides from liquid radioactive waste.

  9. Influence of composition on phase occurrence during charge process of AB 5+x Ni-MH negative electrode materials

    NASA Astrophysics Data System (ADS)

    Vivet, S.; Latroche, M.; Chabre, Y.; Joubert, J.-M.; Knosp, B.; Percheron-Guégan, A.

    2005-05-01

    Multi-substituted LaNi 5-type alloys (AB 5+x) are widely used as negative electrode materials in commercial Ni-MH batteries. Cobalt substitution on Ni sites allows to enhance battery cycle life by reducing alloy pulverization induced by hydrogen cycling. This improvement is attributed to the occurrence of a three-phase process (α, β and γ) during electrochemical hydrogen loading. In order to better understand the effect of the composition on the phase occurrence and to reduce the rate of costly cobalt, an in situ neutron diffraction study has been performed at room temperature during electrochemical charge of two different electrode materials MmNi 4.07Mn 0.63Al 0.2M 0.4 with M=Fe and Mn and B/A=5.3. These cobalt free compounds show cycle life comparable to that of commercial materials. The results show that three phases are also observed for these samples. The γ-phase content depends on M and is higher for M=Fe than for M=Mn. These results are related to the improved cycle lives and to the alloy pulverization process.

  10. Synthesis and Magnetic Properties of Nearly Monodisperse CoFe2O4Nanoparticles Through a Simple Hydrothermal Condition

    PubMed Central

    2010-01-01

    Nearly monodisperse cobalt ferrite (CoFe2O4) nanoparticles without any size-selection process have been prepared through an alluring method in an oleylamine/ethanol/water system. Well-defined nanospheres with an average size of 5.5 nm have been synthesized using metal chloride as the law materials and oleic amine as the capping agent, through a general liquid–solid-solution (LSS) process. Magnetic measurement indicates that the particles exhibit a very high coercivity at 10 K and perform superparamagnetism at room temperature which is further illuminated by ZFC/FC curves. These superparamagnetic cobalt ferrite nanomaterials are considered to have potential application in the fields of biomedicine. The synthesis method is possible to be a general approach for the preparation of other pure binary and ternary compounds. PMID:20672131

  11. Synthesis, structure and magnetic study of a novel mixed-valent Co(II)10Co(III)4 shield constructed by mixed pyridine-alcoholate ligands.

    PubMed

    Peng, Yan; Tian, Chong-Bin; Zhang, Hua-Bin; Li, Zhi-Hua; Lin, Ping; Du, Shao-Wu

    2012-04-28

    A novel tetradecanuclear mixed-valent cobalt cluster, formulated as [Co(II)(10)Co(III)(4)(OH)(2)O(6)(hmp)(10)(pdm)(4)(CH(3)OH)(2)]·5H(2)O (1), was obtained using mixed ligands of 2-(hydroxymethyl)pyridine (hmpH) and 2,6-pyridinedimethanol (pdmH(2)). The cobalt ions in 1 are connected by ten chelating hmp(-) ligands, four tris-chelating pdm(2-) ligands and six μ(3)-oxide/hydroxide anions, forming a unique shield-like planar structure that is rarely observed for Co-based clusters. Compound 1 displays slight frequency dependence at static zero field below 4.5 K, suggesting that it might be a single molecule magnet (SMM). This journal is © The Royal Society of Chemistry 2012

  12. [Skin diseases and sensitization to metals in construction workers engaged in the production of pre-cast cellular concrete slabs].

    PubMed

    Kieć-Swierczyńska, M; Woźniak, H; Wojtczak, J

    1989-01-01

    The study involved 461 building workers exposed to ashes, cement and ash-cement mixtures in direct production and at auxiliary posts (fitters, welders, mechanics, electricians etc.). In addition, all those workers were exposed to lubricants ans machine oils, as well as anti-adhesive oils used to lubricate moulds. All the subjects underwent patch tests. Dermatitis was found in 18.9%, whereas oil acne in 7.4% of subjects, 23.0% exhibited chromium allergy, 15.2% - cobalt allergy and 5.0% - nickel allergy. Two workers were ++hypersensitive to zinc. No differences were found in the rates of dermatitis, oil acne and metal allergy between production workers and auxiliary ones. Airborne dust concentrations at those workplaces were similar. Cement and ashes contained compounds of chromium, cobalt and nickel.

  13. Synthesis of sulfadimethoxine based surfactants and their evaluation as antitumor agents.

    PubMed

    Khowdiary, Manal Mohmed; Mostafa, Nashwa S

    2016-01-01

    Synthesized CO (II) and Pt (II) of sulfadimethoxine. These compounds were tested for potential antitumor activity against two of human tumor cell lines, colon carcinoma cell line [Hct116], and breast carcinoma cell line MCF7. The structures of the resulting compounds have been investigated by elemental, FT-IR and H 1 NMR analyzes to insure the purity and confirmed the structures of them. The surface properties studies and octanol/water partition coefficients, Po/w were measured. The synthesized compounds exhibit biological activities with the lowest log Po/w and critical micelle concentration (CMC) values. In addition, in this article we provide an insight into this subject in order to increase the drug bioavailability. Inhibitory activity against colon carcinoma cells was detected for Pt and cobalt ion complex with IC50 = 4.5, 2.2 µg and against breast carcinoma cells IC50 = 18.2, 5.7 µg, respectively. The main goal of cancer therapy is to attain the maximum therapeutic damage of tumor cells in combination with a minimum concentration of the drug. This can be achieved in principle via selective antitumor preparations, the cytostatic effects of which would be restricted within tumor tissue. While 100% selectivity may be impractical, the achievement of reasonably high selectivity seems to be a feasible aim. Platinum and cobalt complex surfactants in our research affect tumor tissue at a very low concentration at values lower than their CMC values; this indicate that the sulfadimethoxine complexes merit further investigation as potential antitumor drugs.

  14. Phthalocyanine Tetraamine Epoxy-Curing Agents

    NASA Technical Reports Server (NTRS)

    Fohlen, G. M.; Achar, B. N.; Parker, J. A.

    1986-01-01

    Tough fire- and chemical-resistant epoxies produced by using metalphthalocyanine tetraamines (MPT's) of copper, cobalt, or nickel as curing agents. Synthesis of MPT's commercially realizable and gives pure compounds with almost 90-percent yield. Synthesis applicable for metals with atomic radii of about 1.35 angstroms, including Cu, Co, Ni, Zn, Fe, Pt, Al, and V. Possible to use metal phthalocyanines to cure epoxy resins in homogeneous reaction.

  15. The Research Laboratory of Electronics Progress Report Number 133, January 1-December 1990

    DTIC Science & Technology

    1990-12-31

    4 6 Chapter 7 High-Frequency InAlAs/InGaAs Metal -Insulator-Doped Semiconductor...Epitaxy of Compound Semiconductors Chapter 7 High-Frequency InAlAs/InGaAs Metal -Insulator- Doped Semiconductor Field-Effect Transistors (MIDFETs) for...aligned silicided NMOS posed of refractory metals to allow a subsequentdevice fabrication. We have used cobalt deposi- high temperature anneal. This

  16. Sensitivity of Fischer-Tropsch Synthesis and Water-Gas Shift Catalystes to Poisons form High-Temperature High-Pressure Entrained-Flow (EF) Oxygen-Blown Gasifier Gasification of Coal/Biomass Mixtures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burton Davis; Gary Jacobs; Wenping Ma

    2009-09-30

    There has been a recent shift in interest in converting not only natural gas and coal derived syngas to Fischer-Tropsch synthesis products, but also converting biomass-derived syngas, as well as syngas derived from coal and biomass mixtures. As such, conventional catalysts based on iron and cobalt may not be suitable without proper development. This is because, while ash, sulfur compounds, traces of metals, halide compounds, and nitrogen-containing chemicals will likely be lower in concentration in syngas derived from mixtures of coal and biomass (i.e., using entrained-flow oxygen-blown gasifier gasification gasification) than solely from coal, other compounds may actually be increased.more » Of particular concern are compounds containing alkali chemicals like the chlorides of sodium and potassium. In the first year, University of Kentucky Center for Applied Energy Research (UK-CAER) researchers completed a number of tasks aimed at evaluating the sensitivity of cobalt and iron-based Fischer-Tropsch synthesis (FT) catalysts and a commercial iron-chromia high temperature water-gas shift catalyst (WGS) to alkali halides. This included the preparation of large batches of 0.5%Pt-25%Co/Al{sub 2}O{sub 3} and 100Fe: 5.1Si: 3.0K: 2.0Cu (high alpha) catalysts that were split up among the four different entities participating in the overall project; the testing of the catalysts under clean FT and WGS conditions; the testing of the Fe-Cr WGS catalyst under conditions of co-feeding NaCl and KCl; and the construction and start-up of the continuously stirred tank reactors (CSTRs) for poisoning investigations.« less

  17. Proton and metal ion binding to natural organic polyelectrolytes-I. Studies with synthetic model compounds

    USGS Publications Warehouse

    Marinsky, J.A.; Reddy, M.M.

    1984-01-01

    A unified physico-chemical model, based on a modified Henderson-Hasselbalch equation, for the analysis of ion complexation reactions involving charged polymeric systems is presented and verified. In this model pH = pKa+p(??Ka) + log(??/1 - ??) where Ka is the intrinsic acid dissociation constant of the ionizable functional groups on the polymer, ??Ka is the deviation of the intrinsic constant due to electrostatic interaction between the hydrogen ion and the polyanion, and alpha (??) is the polyacid degree of ionization. Using this approach pKa values for repeating acidic units of polyacrylic (PAA) and polymethacrylic (PMA) acids were found to be 4.25 ?? 0.03 and 4.8 ?? 0.1, respectively. The polyion electrostatic deviation term derived from the potentiometric titration data (i.e. p(??Ka)) is used to calculate metal ion concentration at the complexation site on the surface of the polyanion. Intrinsic cobalt-polycarboxylate binding constants (7.5 for PAA and 5.6 for PMA), obtained using this procedure, are consistent with the range of published binding constants for cobalt-monomer carboxylate complexes. In two phase systems incorporation of a Donnan membrane potential term allows determination of the intrinsic pKa of a cross-linked PMA gel, pKa = 4.83, in excellent agreement with the value obtained for the linear polyelectrolyte and the monomer. Similarly, the intrinsic stability constant for cobalt ion binding to a PMA-gel (??CoPMA+ = 11) was found to be in agreement with the linear polyelectrolyte analogue and the published data for cobalt-carboxylate monodentate complexes. ?? 1984.

  18. High quality thin films of thermoelectric misfit cobalt oxides prepared by a chemical solution method

    PubMed Central

    Rivas-Murias, Beatriz; Manuel Vila-Fungueiriño, José; Rivadulla, Francisco

    2015-01-01

    Misfit cobaltates ([Bi/Ba/Sr/Ca/CoO]nRS[CoO2]q) constitute the most promising family of thermoelectric oxides for high temperature energy harvesting. However, their complex structure and chemical composition makes extremely challenging their deposition by high-vacuum physical techniques. Therefore, many of them have not been prepared as thin films until now. Here we report the synthesis of high-quality epitaxial thin films of the most representative members of this family of compounds by a water-based chemical solution deposition method. The films show an exceptional crystalline quality, with an electrical conductivity and thermopower comparable to single crystals. These properties are linked to the epitaxial matching of the rock-salt layers of the structure to the substrate, producing clean interfaces free of amorphous phases. This is an important step forward for the integration of these materials with complementary n-type thermoelectric oxides in multilayer nanostructures. PMID:26153533

  19. Preparation of nanoporous metal foam from high nitrogen transition metal complexes

    DOEpatents

    Tappan, Bryce C.; Huynh, My Hang V.; Hiskey, Michael A.; Son, Steven F.; Oschwald, David M.; Chavez, David E.; Naud, Darren L.

    2006-11-28

    Nanoporous metal foams are prepared by ignition of high nitrogen transition metal complexes. The ammonium salts of iron(III) tris[bi(tetrazolato)-amine], cobalt(III) tris(bi(tetrazolato)amine), and high nitrogen compounds of copper and silver were prepared as loose powders, pressed into pellets and wafers, and ignited under an inert atmosphere to form nanoporous metal foam monoliths having very high surface area and very low density.

  20. Potential Applications of Biotechnology to Aerospace Materials.

    DTIC Science & Technology

    1986-11-01

    sulfate:(1) ms + 202 a msO4 where m is a bivalent metal. In the indirect method of bioleach- ing, the metal sulfide is oxidized by ferric ion: ms + 2Fe...possibility exists of using bioleaching or biosorption for recovery of strategic and precious metals such as cobalt, nickel, zinc, arsenic, gallium ...workshop that could be of significant interest to the Materials Laboratory including acetylene compounds , adhesives, structural materials, lubricants, and

  1. Structural Disorder and Magnetism in the Spin-Gapless Semiconductor CoFeCrAl

    DTIC Science & Technology

    2016-08-24

    of the Fe doped half-Heusler and Heusler compounds CoFexCrAl and Co2-xFexCrAl (x = 0, 0.25, 0.5, 0.75, 1.0), respectively, have been studied both...Oogane, A. Hirohata, and V. K. Lazarov, “The Effect of Cobalt -Sublattice Disorder on Spin Polarisation in Co2FexMn1−xSi Heusler Alloys,” Materials 7

  2. Changes in the vascular tissue of fresh Hass avocados treated with cobalt 60

    NASA Astrophysics Data System (ADS)

    Arevalo, Lourdes; Bustos, Ma. Emilia; Saucedo, Cresenciano

    2002-03-01

    This research was based on fresh avocado fruit treated with gamma rays at quarantine doses and stored at room temperature. The effects of irradiation were analyzed and measured by three different types of studies: histological, biochemical and physiological. Histological studies were focused on the effect of Cobalt 60 gamma rays in the mesocarp of avocado irradiated at three different doses; 150, 250, and 350 Gy. Damage was observed principally in the parenchyma tissue where the cell membrane was plazmolized and a red color was observed due to the development of phenol compounds. Another important effect was an increase in the size of xylem and phloem cells in the vascular tissue even at the minimum dose of 150 Gy. The biochemical and the physiological studies were done on avocado fruit irradiated at 100 and 150 Gy. An increase in L-phenilalanine ammonialyase activity was observed and therefore, an increase in the concentration of phenol compounds. These changes were not perceived by panelists in a sensorial test. Irradiated fruits were accepted by panelists as well as control fruit as regards parameters of taste, internal color and external color. These results demonstrate the feasibility of using irradiation to disinfest avocado fruit using a minimum dose of 100 Gy.

  3. Synthesis and characterization of BaGa2O4 and Ba3Co2O6(CO3)0.6 compounds in the search of alternative materials for Proton Ceramic Fuel Cell (PCFC)

    NASA Astrophysics Data System (ADS)

    Acuña, Wilder; Tellez, Jhoan F.; Macías, Mario A.; Roussel, Pascal; Ricote, Sandrine; Gauthier, Gilles H.

    2017-09-01

    BaGa2O4 and Ba3Co2O6(CO3)0.6 compounds were studied as electrolyte and cathode materials for Proton Ceramic Fuel Cells (PCFC), respectively. Not only BaGa2O4 rapidly reacts with atmospheric H2O and CO2 and leads to a progressive material decomposition, but it does not present real hydration properties in normal conditions of pressure. On the other hand, the basic cobalt oxocarbonate Ba3Co2O6(CO3)0.6 exhibits an interesting tendency for weight uptake and formation of hydrogencarbonate groups in moist heating/cooling conditions. This material was therefore considered for complementary studies in order to confirm its potential use as mixed proton-electron conductor, taking into account the ordered intergrowth of carbonates and face sharing Co-octahedra columns forming a pseudo-one-dimensional structure. Some preliminary results concerning electrochemical properties of the barium cobalt oxocarbonate as a PCFC cathode are also described and show at the moment modest performance, possibly related to a hydrated/carbonated surface layer contribution and/or the lack of electron percolation within the electrode layer.

  4. Nonaqueous capillary electrophoresis with indirect electrochemical detection.

    PubMed

    Matysik, Frank-Michael; Marggraf, Daniela; Gläser, Petra; Broekaert, José A C

    2002-11-01

    Nonaqueous capillary electrophoresis (NACE) which makes use of organic solvents in place of conventional aqueous electrophoresis buffers is gaining increasing importance among modern separation techniques. Recently, it has been shown that amperometric detection in conjunction with acetonitrile-based NACE offers an extended accessible potential range and an enhanced long-term stability of the amperometric responses generated at solid electrodes. The present contribution takes advantage of the latter aspect to develop reliable systems for NACE with indirect electrochemical detection (IED). In this context, several compounds such as (ferrocenylmethyl)trimethylammonium perchlorate, tris(1,10-phenanthroline)cobalt(III) perchlorate and bis(1,4,7-triazacyclononane)nickel(II) perchlorate were studied regarding their suitability to act as electroactive buffer additives for IED in NACE. The performance characteristics for the respective buffer systems were evaluated. Tetraalkylammonium perchlorates served as model compounds for the optimization of the NACE-IED system. Target analytes choline and acetylcholine could easily be separated and determined by means of NACE-IED. In the case of a buffer system containing 10(-4) M tris(1,10-phenanthroline)cobalt(III) perchlorate the limits of detection were 2.5 x 10(-7) M and 4.6 x 10(-7) M for choline and acetylcholine, respectively. With the elaborated analytical procedure choline could be determined in pharmaceutical preparations.

  5. Catalysts for the hydrodenitrogenation of organic materials and process for the preparation of the catalysts

    DOEpatents

    Laine, R.M.; Hirschon, A.S.; Wilson, R.B. Jr.

    1987-12-29

    A process is described for the preparation of a multimetallic catalyst for the hydrodenitrogenation of an organic feedstock, which process comprises: (a) forming a precatalyst itself comprising: (1) a first metal compound selected from compounds of nickel, cobalt or mixtures thereof; (2) a second metal compound selected from compounds of chromium, molybdenum, tungsten, or mixtures thereof; and (3) an inorganic support; (b) heating the precatalyst of step (a) with a source of sulfide in a first non-oxidizing gas at a temperature and for a time effective to presulfide the precatalyst; (c) adding in a second non-oxidizing gas to the sulfided precatalyst of step (b) an organometallic transition metal moiety selected from compounds of iridium, rhodium, iron, ruthenium, tungsten or mixtures thereof for a time and at a temperature effective to chemically combine the metal components; and (d) optionally heating the chemically combined catalyst of step (b) in vacuum at a temperature and for a time effective to remove residual volatile organic materials. 12 figs.

  6. Growth, structural, spectroscopic, thermal, dielectric and optical study of cobalt sulphide-doped ADP crystals

    NASA Astrophysics Data System (ADS)

    Kochuparampil, A. P.; Joshi, J. H.; Joshi, M. J.

    2017-09-01

    As ammonium dihydrogen phosphate (ADP) is a popular nonlinear optical crystal, to engineer its linear and nonlinear optical properties, the chalcogenide compound cobalt sulphide (CoS) was doped and the crystals were grown by the slow solvent evaporation method. To increase the solubility of CoS in water, its nanoparticles were synthesized by wet chemical technique using ethylene diamine as the capping agent followed by microwave irradiation. The nanoparticle sample exhibited finite solubility in water and was used to dope in ADP crystals. The powder XRD patterns showed the single phase nature of the doped crystals. The FTIR spectra confirmed the presence of various functional groups and EDAX gave the estimation of Co and S elements. The EPR spectroscopy also confirmed the presence of cobalt in the doped samples. TGA indicated slightly less thermal stability of the doped crystals compared to the pure ADP. The dielectric study was carried out at room temperature in the frequency range from 100Hz to 1MHz. Also, various linear optical parameters were evaluated for pure and doped crystals using UV-Vis spectroscopy. The second harmonic generation (SHG) efficiency of Nd:YAG laser was evaluated by the Kurtz and Parry method for the doped samples, it was found to be slightly lesser than that of the pure ADP crystals.

  7. Synthesis, crystal structure, and magnetic characterization of the three-dimensional compound [Co2(cbut)(H2O)3]n (H4cbut = 1,2,3,4-cyclobutanetetracarboxylic acid).

    PubMed

    Díaz-Gallifa, Pau; Fabelo, Oscar; Pasán, Jorge; Cañadillas-Delgado, Laura; Rodríguez-Carvajal, Juan; Lloret, Francesc; Julve, Miguel; Ruiz-Pérez, Catalina

    2014-06-02

    A novel cobalt(II) complex of formula [Co2(cbut)(H2O)3]n (1) (H4cbut = 1,2,3,4-cyclobutanetetracarboxylic acid) has been synthesized under hydrothermal conditions and its crystal structure has been determined by means of synchrotron radiation and neutron powder diffraction. The crystal structure of 1 consists of layers of cobalt(II) ions extending in the bc-plane which are pillared along the crystallographic a-axis through the skeleton of the cbut(4-) ligand. Three crystallographically independent cobalt(II) ions [Co(1), Co(2), and Co(3)] occur in 1. They are all six-coordinate with four carboxylate-oxygens [Co(1)-Co(3)] and two cis-[Co(1)] or trans-water molecules [Co(2) and Co(3)] building distorted octahedral surroundings. Regular alternating double oxo(carboxylate) [between Co(1) and Co(1a)] and oxo(carboxylate) plus one aqua and a syn-syn carboxylate bridges [between Co(1) and Co(2)] occur along the crystallographic b-axis, the values of the cobalt-cobalt separation being 3.1259(8) and 3.1555(6) Å, respectively. These chains are connected to the Co(3) atoms through the OCO carboxylate along the [011] direction leading to the organic-inorganic bc-layers with Co(1)-OCO(anti-syn)-Co(3) and Co(2)-OCO(anti-anti)-Co(3) distances of 5.750(2) and 4.872(1) Å. The shortest interlayer cobalt-cobalt separation through the cbut(4-) skeleton along the crystallographic a-axis is 7.028(2) Å. Variable-temperature magnetic susceptibility measurements show the occurrence of antiferromagnetic ordering with a Néel temperature of 5.0 K, followed by a field-induced ferromagnetic transition under applied dc fields larger than 1500 Oe. The magnetic structure of 1 has been elucidated at low temperatures in zero field by neutron powder diffraction measurements and was found to be formed by ferromagnetic chains running along the b-axis which are antiferromagnetically coupled with the Co(3) ions through the c-axis giving rise to noncompensated magnetic moments within each bc-layer (ferrimagnetic plane). The occurrence of an antitranslation operation between these layers produces a weak interlayer antiferromagnetic coupling along the a-axis which is overcome by dc fields greater than 1500 Oe resulting in a phase transition toward a ferromagnetic state (metamagnetic behavior).

  8. High density nonmagnetic cobalt in thin films

    NASA Astrophysics Data System (ADS)

    Banu, Nasrin; Singh, Surendra; Basu, Saibal; Roy, Anupam; Movva, Hema C. P.; Lauter, V.; Satpati, B.; Dev, B. N.

    2018-05-01

    Recently high density (HD) nonmagnetic cobalt has been discovered in a nanoscale cobalt thin film, grown on Si(111) single crystal. This form of cobalt is not only nonmagnetic but also superconducting. These promising results have encouraged further investigations of the growth of the nonmagnetic (NM) phase of cobalt. In the original investigation, the cobalt film had a natural cobalt oxide at the top. We have investigated whether the growth of HD NM cobalt layers in the thin film depends on (i) a capping layer on the cobalt film, (ii) the thickness of the cobalt film and (iii) the nature of the substrate on which the cobalt film is grown. The results of such investigations indicate that for cobalt films capped with a thin gold layer, and for various film thicknesses, HD NM cobalt layers are formed. However, instead of a Si substrate, when the cobalt films are grown on oxide substrates, such as silicon oxide or cobalt oxide, HD NM cobalt layers are not formed. The difference is attributed to the nature—crystalline or amorphous—of the substrate.

  9. Epidemiological and experimental aspects of metal carcinogenesis: physicochemical properties, kinetics, and the active species.

    PubMed Central

    Magos, L

    1991-01-01

    The carcinogenic properties of selected metals and their compounds are reviewed to provide a useful reference for existing knowledge on relationships between physical and chemical forms, kinetics and carcinogenic potential and between epidemiology, bioassays, and short-term tests. Extensive consideration is given to arsenic, beryllium, cadmium, chromium, lead, and nickel. Other metals such as antimony, cobalt, copper, iron, manganese, selenium, and zinc are discussed briefly. PMID:1821370

  10. Cobalt release from inexpensive jewellery: has the use of cobalt replaced nickel following regulatory intervention?

    PubMed

    Thyssen, Jacob Pontoppidan; Jellesen, Morten S; Menné, Torkil; Lidén, Carola; Julander, Anneli; Møller, Per; Johansen, Jeanne Duus

    2010-08-01

    Before the introduction of the EU Nickel Directive, concern was raised that manufacturers of jewellery might turn from the use of nickel to cobalt following the regulatory intervention on nickel exposure. The aim was to study 354 consumer items using the cobalt spot test. Cobalt release was assessed to obtain a risk estimate of cobalt allergy and dermatitis in consumers who would wear the jewellery. The cobalt spot test was used to assess cobalt release from all items. Microstructural characterization was made using scanning electron microscope (SEM) and energy-dispersive spectroscopy (EDS). Cobalt release was found in 4 (1.1%) of 354 items. All these had a dark appearance. SEM/EDS was performed on the four dark appearing items which showed tin-cobalt plating on these. This study showed that only a minority of inexpensive jewellery purchased in Denmark released cobalt when analysed with the cobalt spot test. As fashion trends fluctuate and we found cobalt release from dark appearing jewellery, cobalt release from consumer items should be monitored in the future. Industries may not be fully aware of the potential cobalt allergy problem.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abreu-Sepulveda, Maria A.; Dhital, Chetan; Huq, Ashfia

    The effect due to systematic substitution of cobalt by iron in La 0.6Ca 0.4Co 1-xFe xO 3 towards the oxygen evolution reaction(OER) in alkaline media has been investigated. We synthesized these compounds by a facile glycine-nitrate synthesis and the phase formation was confirmed by X-ray diffraction and Neutron Diffraction elemental analysis. The apparent OER activity was evaluated by quasi steady state current measurements in alkaline media using a traditional three-electrode cell. X-ray photoelectron spectroscopy shows iron substitution causes an increase in the surface concentration of various cobalt oxidation states. Tafel slope in the vicinity of 60 mV/decade and electrochemical reactionmore » order towards OH- near unity were achieved for the unsubstituted La 0.6Ca 0.4CoO 3. Moreover, a decrease in the Tafel slope to 49 mV/decade was observed when iron is substituted in high amounts in the perovskite structure. The area specific current density showed dependence on the Fe fraction, however the relationship of specific current density with Fe fraction is not linear. High Fe substitutions, La 0.6Ca 0.4Co 0.2Fe 0.8O 3 and La 0.6Ca 0.4Co 0.1Fe 0.9O 3 showed higher area specific activity towards OER than La 0.6Ca 0.4CoO 3 or La 0.6Ca 0.4FeO 3. Finally, we believe iron inclusion in the cobalt sites of the perovskite helps decrease the electron transfer barrier and facilitates the formation of cobalt-hydroxide at the surface. Possible OER mechanisms based on the observed kinetic parameters will be discussed.« less

  12. 21 CFR 582.80 - Trace minerals added to animal feeds.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    .... Manganese phosphate (dibasic). Manganese sulfate. Manganous oxide. Zinc Zinc acetate. Zinc carbonate. Zinc chloride. Zinc oxide. Zinc sulfate. ... Cobalt Cobalt acetate. Cobalt carbonate. Cobalt chloride. Cobalt oxide. Cobalt sulfate. Copper Copper...

  13. 21 CFR 582.80 - Trace minerals added to animal feeds.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    .... Manganese phosphate (dibasic). Manganese sulfate. Manganous oxide. Zinc Zinc acetate. Zinc carbonate. Zinc chloride. Zinc oxide. Zinc sulfate. ... Cobalt Cobalt acetate. Cobalt carbonate. Cobalt chloride. Cobalt oxide. Cobalt sulfate. Copper Copper...

  14. Study of a series of cobalt(II) sulfonamide complexes: Synthesis, spectroscopic characterization, and microbiological evaluation against M. tuberculosis. Crystal structure of [Co(sulfamethoxazole)2(H2O)2]·H2O

    NASA Astrophysics Data System (ADS)

    Mondelli, Melina; Pavan, Fernando; de Souza, Paula C.; Leite, Clarice Q.; Ellena, Javier; Nascimento, Otaciro R.; Facchin, Gianella; Torre, María H.

    2013-03-01

    Nowadays, the research for new and better antimicrobial compounds is an important field due to the increase of immunocompromised patients, the use of invasive medical procedures and extensive surgeries, among others, that can affect the incidence of infections. Another big problem associated is the occurrence of drug-resistant microbial strains that impels a ceaseless search for new antimicrobial agents. In this context, a series of heterocyclic-sulfonamide complexes with Co(II) was synthesized and characterized with the aim of obtaining new antimicrobial compounds. The structural characterization was performed using different spectroscopic methods (UV-Vis, IR, and EPR). In spite of the fact that the general stoichiometry for all the complexes was Co(sulfonamide)2·nH2O, the coordination atoms were different depending on the coordinated sulfonamide. The crystal structure of [Co(sulfamethoxazole)2(H2O)2]·H2O was obtained by X-ray diffraction showing that Co(II) is in a slightly tetragonal distorted octahedron where sulfamethoxazole molecules act as a head-to-tail bridges between two cobalt atoms, forming polymeric chains. Besides, the activity against Mycobacterium tuberculosis, one of the responsible for tuberculosis, and the cytotoxicity on J774A.1 macrophage cells were evaluated.

  15. Studies of Cobalt-Mediated Electrocatalytic CO2 Reduction Using a Redox-Active Ligand

    PubMed Central

    2015-01-01

    The cobalt complex [CoIIIN4H(Br)2]+ (N4H = 2,12-dimethyl-3,7,11,17-tetraazabicyclo-[11.3.1]-heptadeca-1(7),2,11,13,15-pentaene) was used for electrocatalytic CO2 reduction in wet MeCN with a glassy carbon working electrode. When water was employed as the proton source (10 M in MeCN), CO was produced (fCO= 45% ± 6.4) near the CoI/0 redox couple for [CoIIIN4H(Br)2]+ (E1/2 = −1.88 V FeCp2+/0) with simultaneous H2 evolution (fH2= 30% ± 7.8). Moreover, we successfully demonstrated that the catalytically active species is homogeneous through the use of control experiments and XPS studies of the working glassy-carbon electrodes. As determined by cyclic voltammetry, CO2 catalysis occurred near the formal CoI/0redox couple, and attempts were made to isolate the triply reduced compound (“[Co0N4H]”). Instead, the doubly reduced (“CoI”) compounds [CoN4] and [CoN4H(MeCN)]+ were isolated and characterized by X-ray crystallography. Their molecular structures prompted DFT studies to illuminate details regarding their electronic structure. The results indicate that reducing equivalents are stored on the ligand, implicating redox noninnocence in the ligands for H2 evolution and CO2 reduction electrocatalysis. PMID:24773584

  16. Coastal sources, sinks and strong organic complexation of dissolved cobalt within the US North Atlantic GEOTRACES transect GA03

    NASA Astrophysics Data System (ADS)

    Noble, Abigail E.; Ohnemus, Daniel C.; Hawco, Nicholas J.; Lam, Phoebe J.; Saito, Mak A.

    2017-06-01

    Cobalt is the scarcest of metallic micronutrients and displays a complex biogeochemical cycle. This study examines the distribution, chemical speciation, and biogeochemistry of dissolved cobalt during the US North Atlantic GEOTRACES transect expeditions (GA03/3_e), which took place in the fall of 2010 and 2011. Two major subsurface sources of cobalt to the North Atlantic were identified. The more prominent of the two was a large plume of cobalt emanating from the African coast off the eastern tropical North Atlantic coincident with the oxygen minimum zone (OMZ) likely due to reductive dissolution, biouptake and remineralization, and aeolian dust deposition. The occurrence of this plume in an OMZ with oxygen above suboxic levels implies a high threshold for persistence of dissolved cobalt plumes. The other major subsurface source came from Upper Labrador Seawater, which may carry high cobalt concentrations due to the interaction of this water mass with resuspended sediment at the western margin or from transport further upstream. Minor sources of cobalt came from dust, coastal surface waters and hydrothermal systems along the Mid-Atlantic Ridge. The full depth section of cobalt chemical speciation revealed near-complete complexation in surface waters, even within regions of high dust deposition. However, labile cobalt observed below the euphotic zone demonstrated that strong cobalt-binding ligands were not present in excess of the total cobalt concentration there, implying that mesopelagic labile cobalt was sourced from the remineralization of sinking organic matter. In the upper water column, correlations were observed between total cobalt and phosphate, and between labile cobalt and phosphate, demonstrating a strong biological influence on cobalt cycling. Along the western margin off the North American coast, this correlation with phosphate was no longer observed and instead a relationship between cobalt and salinity was observed, reflecting the importance of coastal input processes on cobalt distributions. In deep waters, both total and labile cobalt concentrations were lower than in intermediate depth waters, demonstrating that scavenging may remove labile cobalt from the water column. Total and labile cobalt distributions were also compared to a previously published South Atlantic GEOTRACES-compliant zonal transect (CoFeMUG, GAc01) to discern regional biogeochemical differences. Together, these Atlantic sectional studies highlight the dynamic ecological stoichiometry of total and labile cobalt. As increasing anthropogenic use and subsequent release of cobalt poses the potential to overpower natural cobalt signals in the oceans, it is more important than ever to establish a baseline understanding of cobalt distributions in the ocean.

  17. Formation of hydrocarbon compounds during the hydrocracking of non-edible vegetable oils with cobalt-nickel supported on hierarchical HZSM-5 catalyst

    NASA Astrophysics Data System (ADS)

    Marlinda, L.; Al-Muttaqii, M.; Roesyadi, A.; Prajitno, D. H.

    2017-05-01

    The hierarchical Co-Ni/HZSM-5 catalyst with hierarchical pore structure was prepared by desilication and incipient wetness impregnation. Hydrocracking of non-edible vegetable oils at temperature of 400 °C, 20±5 bar for 2 h was performed in the presence of this type of catalyst under hydrogen initial pressure in pressured batch reactor. Non-edible vegetable oils, such as Reutealis trisperma (Blanco) airy shaw (sunan candlenut) and Hevea brasiliensis (rubber seed) were chosen to study the effect of the degree of saturation and lateral chain length on hydrocarbon compounds obtained through hydrocracking. Cerbera manghas oil was also tested for comparison because the composition of fatty acid was different with the other oils The hydrocracking test indicated that liquid product produced has a similar hydrocarbon compounds with petroleum diesel. The most abundant hydrocarbon is pentadecane (n-C15) and heptadecane (n-C17). The high aromatic compounds were found in liquid product produced in hydrocracking of Sunan candlenut oil.

  18. 21 CFR 582.80 - Trace minerals added to animal feeds.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Cobalt Cobalt acetate. Cobalt carbonate. Cobalt chloride. Cobalt oxide. Cobalt sulfate. Copper Copper... pyrophosphate. Copper sulfate. Iodine Calcium iodate. Calcium iodobehenate. Cuprous iodide. 3,5-Diiodosalicylic.... Thymol iodide. Iron Iron ammonium citrate. Iron carbonate. Iron chloride. Iron gluconate. Iron oxide...

  19. 21 CFR 582.80 - Trace minerals added to animal feeds.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Cobalt Cobalt acetate. Cobalt carbonate. Cobalt chloride. Cobalt oxide. Cobalt sulfate. Copper Copper... pyrophosphate. Copper sulfate. Iodine Calcium iodate. Calcium iodobehenate. Cuprous iodide. 3,5-Diiodosalicylic.... Thymol iodide. Iron Iron ammonium citrate. Iron carbonate. Iron chloride. Iron gluconate. Iron oxide...

  20. 21 CFR 582.80 - Trace minerals added to animal feeds.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Cobalt Cobalt acetate. Cobalt carbonate. Cobalt chloride. Cobalt oxide. Cobalt sulfate. Copper Copper... pyrophosphate. Copper sulfate. Iodine Calcium iodate. Calcium iodobehenate. Cuprous iodide. 3,5-Diiodosalicylic.... Thymol iodide. Iron Iron ammonium citrate. Iron carbonate. Iron chloride. Iron gluconate. Iron oxide...

  1. Preparation and Application of Hollow Silica/magnetic Nanocomposite Particle

    NASA Astrophysics Data System (ADS)

    Wang, Cheng-Chien; Lin, Jing-Mo; Lin, Chun-Rong; Wang, Sheng-Chang

    The hollow silica/cobalt ferrite (CoFe2O4) magnetic microsphere with amino-groups were successfully prepared via several steps, including preparing the chelating copolymer microparticles as template by soap-free emulsion polymerization, manufacturing the hollow cobalt ferrite magnetic microsphere by in-situ chemical co-precipitation following calcinations, and surface modifying of the hollow magnetic microsphere by 3-aminopropyltrime- thoxysilane via the sol-gel method. The average diameter of polymer microspheres was ca. 200 nm from transmission electron microscope (TEM) measurement. The structure of the hollow magnetic microsphere was characterized by using TEM and scanning electron microscope (SEM). The spinel-type lattice of CoFe2O4 shell layer was identified by using XRD measurement. The diameter of CoFe2O4 crystalline grains ranged from 54.1 nm to 8.5 nm which was estimated by Scherrer's equation. Additionally, the hollow silica/cobalt ferrite microsphere possesses superparamagnetic property after VSM measurement. The result of BET measurement reveals the hollow magnetic microsphere which has large surface areas (123.4m2/g). After glutaraldehyde modified, the maximum value of BSA immobilization capacity of the hollow magnetic microsphere was 33.8 mg/g at pH 5.0 buffer solution. For microwave absorption, when the hollow magnetic microsphere was compounded within epoxy resin, the maximum reflection loss of epoxy resins could reach -35dB at 5.4 GHz with 1.9 mm thickness.

  2. XAS Study at Mo and Co K-Edges of the Sulfidation of a CoMo / Al2O3 Hydrotreating Catalyst

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pichon, C.; Gandubert, A. D.; Legens, C.

    2007-02-02

    Because of its impact on environment, the removal of sulfur is an indispensable step, called hydrotreatment, in the refining of petroleum. One of the most commonly used hydrotreating catalysts is CoMo-type catalyst which is composed of molybdenum disulfide slabs promoted by cobalt atoms (CoMoS phase) and well dispersed on a high specific area alumina. As far as the highest sulfur content allowed in gasoline and diesel is continually decreasing, more and more efficient and active hydrotreating catalysts are required. In order to optimize the reactivity of the CoMo-type catalyst in hydrotreatment, a better understanding of the processes used to producemore » the active phase (CoMoS slabs) of the catalyst is necessary. The study reported here deals with the sulfiding mechanism of the slabs and the influence of temperature on the phenomenon. Ex situ X-ray absorption spectroscopy (XANES and EXAFS) was used to study the evolution of the structure of CoMo-type catalyst sulfided at various temperatures (from 293 to 873 K). XAS analysis was performed at both molybdenum and cobalt K-edges to obtain a cross-characterization of the sulfidation of the slabs. It evidenced the formation of various compounds, including two molybdenum oxides, MoS3 (or MoS3-like compound) and Co9S8, at specific steps of the sulfiding process. It showed the role of intermediate played by MoS3 (or MoS3-like compound) during the formation of the slabs and the competition between the appearance of promoted slabs (CoMoS phase) and Co9S8. At last, it leaded to the proposal of a mechanism for the sulfidation of the catalyst.« less

  3. Short-range magentic correlations and dynamic orbital ordering in the thermally activated spin state of LaCoO3

    NASA Astrophysics Data System (ADS)

    Rosenkranz, S.; Phelan, D.; Louca, D.; Lee, S. H.; Chupas, P. J.; Osborn, R.; Zheng, H.; Mitchell, J. F.

    2006-03-01

    The cobalt perovskites La1-xSrxCoO3 show intriguing spin, lattice, and orbital properties similar to the ones observed in colossal magnetoresistive manganites. The x=0 parent compound is a non-magnetic insulator at low temperatures, but shows evidence of a spin-state transition of the cobalt ions above 50K from a low-spin to an intermediate or high-spin configuration. Using high resolution, inelastic neutron scattering, we observe a distinct low energy excitation at 0.6meV coincident with the thermally induced spin state transition observed in susceptibility measurements. The thermal activation of this excited spin state also leads to short-range, dynamic ferro- and antiferromagnetic correlations. These observations are consistent with the activation of a zero-field split intermediate spin state as well as the presence of dynamic orbital ordering of these excited states. Work supported by US DOE BES-DMS W-31-109-ENG-38 and NSF DMR-0454672

  4. Cobamide-mediated enzymatic reductive dehalogenation via long-range electron transfer.

    PubMed

    Kunze, Cindy; Bommer, Martin; Hagen, Wilfred R; Uksa, Marie; Dobbek, Holger; Schubert, Torsten; Diekert, Gabriele

    2017-07-03

    The capacity of metal-containing porphyrinoids to mediate reductive dehalogenation is implemented in cobamide-containing reductive dehalogenases (RDases), which serve as terminal reductases in organohalide-respiring microbes. RDases allow for the exploitation of halogenated compounds as electron acceptors. Their reaction mechanism is under debate. Here we report on substrate-enzyme interactions in a tetrachloroethene RDase (PceA) that also converts aryl halides. The shape of PceA's highly apolar active site directs binding of bromophenols at some distance from the cobalt and with the hydroxyl substituent towards the metal. A close cobalt-substrate interaction is not observed by electron paramagnetic resonance spectroscopy. Nonetheless, a halogen substituent para to the hydroxyl group is reductively eliminated and the path of the leaving halide is traced in the structure. Based on these findings, an enzymatic mechanism relying on a long-range electron transfer is concluded, which is without parallel in vitamin B 12 -dependent biochemistry and represents an effective mode of RDase catalysis.

  5. The Structure and Properties of Plasma Sprayed Iron Oxide Doped Manganese Cobalt Oxide Spinel Coatings for SOFC Metallic Interconnectors

    NASA Astrophysics Data System (ADS)

    Puranen, Jouni; Lagerbom, Juha; Hyvärinen, Leo; Kylmälahti, Mikko; Himanen, Olli; Pihlatie, Mikko; Kiviaho, Jari; Vuoristo, Petri

    2011-01-01

    Manganese cobalt oxide spinel doped with Fe2O3 was studied as a protective coating on ferritic stainless steel interconnects. Chromium alloying causes problems at high operation temperatures in such oxidizing conditions where chromium compounds evaporate and poison the cathode active area, causing the degradation of the solid oxide fuel cell. In order to prevent chromium evaporation, these interconnectors need a protective coating to block the chromium evaporation and to maintain an adequate electrical conductivity. Thermal spraying is regarded as a promising way to produce dense and protective layers. In the present work, the ceramic Mn-Co-Fe oxide spinel coatings were produced by using the atmospheric plasma spray process. Coatings with low thickness and low amount of porosity were produced by optimizing deposition conditions. The original spinel structure decomposed because of the fast transformation of solid-liquid-solid states but was partially restored by using post-annealing treatment.

  6. [Results of patch tests using basic allergens in construction workers].

    PubMed

    Kieć-Swierczyńska, M

    1983-01-01

    A group of 853 construction industry workers exposed to irritants and allergens (mainly cement, lime, sand, water, lubricants and antiadhesive oils and a control group of 74 subjects (sawers) underwent patch tests after Jadassohn--Bloch with seven allergens most common in the construction industry working environment (compounds of chromium, nickel and cobalt, turpentine and three rubber allergens--mercantobenzothiazole, thiocarbamoyl and diphenylguanidine). Allergy was found in 25.5% of the construction industry workers, in this 7.7% were those with eczema and dermatitis, 17.8%--those with latent allergy (in 12.2% allergy was accompanied by dermatoses of non-allergic etiology, 5.6% construction workers no skin changes). The highest number of skin positive tests was that with chromium (22.4% of affected workers) and cobalt (12.4%). Most susceptible to allergy were: painters, bricklayers, carpenters, joiners, reinforcing concretors, terrazers, concretors, electricians, smiths and reinforcers. In addition, allergy was found to be dependent on age and length of employment.

  7. Metallo-deuteroporphyrin as a biomimetic catalyst for the catalytic oxidation of lignin to aromatics.

    PubMed

    Zhu, Chenjie; Ding, Weiwei; Shen, Tao; Tang, Chenglun; Sun, Chenguo; Xu, Shichao; Chen, Yong; Wu, Jinglan; Ying, Hanjie

    2015-05-22

    A series of metallo-deuteroporphyrins derived from hemin were prepared as models of the cytochrome P450 enzyme. With the aid of the highly active Co(II) deuteroporphyrin complex, the catalytic oxidation system was applied for the oxidation of several lignin model compounds, and high yields of monomeric products were obtained under mild reaction conditions. It was found that the modified cobalt deuteroporphyrin that has no substituents at the meso sites but does have the disulfide linkage in the propionate side chains at the β sites exhibited much higher activity and stability than the synthetic tetraphenylporphyrin. The changes in the propionate side chains can divert the reactivity of cobalt deuteroporphyrins from the typical CC bond cleavage to CO bond cleavage. Furthermore, this novel oxidative system can convert enzymolysis lignin into depolymerized products including a significant portion of well-defined aromatic monomers. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Direct Structural and Chemical Characterization of the Photolytic Intermediates of Methylcobalamin Using Time-Resolved X-ray Absorption Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Subramanian, Ganesh; Zhang, Xiaoyi; Kodis, Gerdenis

    Cobalt-carbon bond cleavage is crucial to most natural and synthetic applications of the cobalamin class of compounds, and here we present the first direct electronic and geometric structural characteristics of intermediates formed following photoexcitation of methylcobalamin (MeCbl) using time-resolved X-ray absorption spectroscopy (XAS). We catch transients corresponding to two intermediates, in the hundreds of picoseconds and a few microseconds. Highlights of the picosecond intermediate, which is reduced in comparison to the ground state, are elongation of the upper axial Co-C bond and relaxation of the corrin ring. This is not so with the recombining photocleaved products captured at a fewmore » microseconds, where the Co-C bond almost (yet not entirely) reverts to its ground state configuration and a substantially elongated lower axial Co-NIm bond is observed. The reduced cobalt site here confirms formation of methyl radical as the photoproduct.« less

  9. Application of chromatography and mass spectrometry to the characterization of cobalt, copper, manganese and molybdenum in Morinda citrifolia.

    PubMed

    Rybak, Justyna; Ruzik, Lena

    2013-03-15

    An analytical procedure was proposed to determine the manganese species and to study the fractionation of microelements such as copper, cobalt and molybdenum in Noni juice. Morinda citrifolia is known as a noni fruit, Indian mulberry, nunaakai, dog dumpling, mengkudu, beach mulberry, vomit fruit and cheese fruit. It is a tropical plant with a long tradition of medicinal use in Polynesia and tropical parts of eastern Asia and Australia. This article covers the determination of manganese species in Noni juice and established by fractionation by size exclusion chromatography inductively coupled plasma mass spectrometry (SEC ICP MS) and next characterization of species by electrospray ionization mass spectrometry (ESI MS). Also presented the fractionation analysis of copper, cobalt and molybdenum in Noni juice sample using SEC ICP MS - juice was treated with buffer and enzymatic extraction media and analyzed. For the evaluation of the amounts of the metal fractions distinguished, the ICP MS was used off-line prior to the determination of copper, cobalt, molybdenum and manganese concentrations in the juice. It was established that elements are present in the analyzed samples in different species and their concentration is μg mL(-1) and ng mL(-1) range in fruit. The accuracy of the entire fractionation scheme and sample preparation procedures involved was verified by the performance of the recovery test. For the information about the bioavailability of these elements, in vitro bioavailability investigation was used by SEC ICP MS technique. Two step digestion model simulating gastric (pepsin digestion) and intestinal (pancreatin digestion) juices. In Noni juice, manganese is complexed from flavonoids - rutin, from dye like anthraquinone (alizarin) and glycosides - asperulosidic acid (ESI MS - characterization). The study shows that copper and molybdenum contained in Noni juice are complexed by peptides, and cobalt by organic acids (which are 3.6% of juice). Molybdenum in the sample is also bound by the polysaccharides (SEC ICP MS). In addition, compounds complexing manganese, copper and molybdenum are hydrophobic proteins. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Sixuan; Latturner, Susan E., E-mail: latturner@chem.fsu.edu

    The intermetallic compounds RE{sub 6}Co{sub 5}Ge{sub 1+x}Al{sub 3−x} (RE=Pr{sub ,} Nd) were synthesized from the reaction of germanium and aluminum in RE/Co eutectic flux. These phases crystallize with the Nd{sub 6}Co{sub 5}Ge{sub 2.2} structure type in hexagonal space group P-6m2 (a=9.203(2)Å, c=4.202(1) Å, R{sub 1}=0.0109 for Pr{sub 6}Co{sub 5}Ge{sub 1.80}Al{sub 2.20}; and a=9.170(3) Å, c=4.195(1) Å, R{sub 1}=0.0129 for Nd{sub 6}Co{sub 5}Ge{sub 1.74}Al{sub 2.26}). The structure features chains of face-sharing Ge@RE{sub 9} clusters intersecting hexagonal cobalt nets linked by aluminum atoms. Magnetic susceptibility measurements indicate that both phases exhibit ferromagnetic ordering of the cobalt layers with T{sub C} in themore » range of 130–140 K. The magnetic moments of the rare earth ions order at lower temperature (30–40 K). Magnetic measurements on oriented crystals of Nd{sub 6}Co{sub 5}Ge{sub 1.74}Al{sub 2.26} show a strong preference of the moments to order along the c-axis. - Graphical abstract: RE{sub 6}Co{sub 5}Ge{sub 1+x}Al{sub 3−x} (RE=Pr{sub ,} Nd) were grown as large crystals from reactions of Ge and Al in RE/Co eutectic melts. Magnetic measurements indicate ordering of the 2-D cobalt nets at 130–140 K, and ordering of the rare earth moments at 30–40 K. Display Omitted - Highlights: • RE{sub 6}Co{sub 5}Ge{sub 1+x}Al{sub 3−x} (RE=Pr{sub ,} Nd) grown as large crystals from RE/Co eutectic flux. • RE{sub 6}Co{sub 5}Ge{sub 1+x}Al{sub 3−x} structure features hexagonal cobalt nets stacked along c-axis. • Cobalt layers order ferromagnetically with T{sub c}=130–140 K. • Rare earth magnetic moments order at low temperature (30–40 K).« less

  11. Radiolytic degradation scheme for 60Co-irradiated corticosteroids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kane, M.P.; Tsuji, K.

    The cobalt 60 radiolytic degradation products have been identified in the following corticosteroids: cortisone, cortisone acetate, hydrocortisone, hydrocortisone acetate, hydrocortisone sodium succinate, isoflupredone acetate, methylprednisolone, methylprednisolone acetate, prednisolone, prednisolone acetate, and prednisone. Two major types of degradation processes have been identified: loss of the corticoid side chain on the D-ring to produce the C-17 ketone and conversion of the C-11 alcohol, if present, to the C-11 ketone. Minor degradation products derived from other changes affecting the side chain are also identified in several corticosteroids. These compounds are frequently associated in corticosteroids as process impurities or degradation compounds. No new radiolyticmore » compounds unique to 60Co-irradiation have been found. The majority of corticosteroids have been shown to be stable to 60Co-irradiation. The rates of radiolytic degradation ranged from 0.2 to 1.4%/Mrad.« less

  12. Reactions of salts of hexakis(pyridine N-oxide)M(II) complexes (M = Co, Ni, Zn) and alkali halides used in infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Padmos, J.; van Veen, A.

    A number of salts of hexakis(pyridine N-oxide)zinc(II) complexes decompose in alkali halide pellets. Initially ion exchange occurs, often followed by the formation of Zn(pyno) 3X 2 (pyno = pyridine N-oxide; X = Br, Cl). The analogous cobalt and nickel compounds are nearly always stable. A mull between alkali halide plates gives greater amounts of the same product Washing this product with toluene gives Zn(pyno) 2X 2. Examples of i.r. and far i.r. spectra are given. Energetical and structural effects are discussed. Far i.r. spectra of M(pyno) 3X 2(M = Co, Zn) confirm the structure [M(pyno) 6][MX 4] for these compounds. New compounds are [Zn(pyno) 2(NO 3) 2], [Zn(pyno- d5) 2[NO 3) 2], [Zn(pyno- d5) 6](NO 3) 2 and [Zn(pyno) 6]I 2.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bie Haiying; Lu Jing; Yu Jiehui

    Three novel thiocyanate supramolecular compounds have been synthesized and characterized by X-ray diffraction and fluorescent spectra. Compound [pipH]{sub 2}[Co(NCS){sub 4}] (pip=piperazine) 1 possesses a two-dimensional layer connected by the combination of N-H...N hydrogen bonds and weak S...S contacts. Under the same conditions, using nickel salt instead of cobalt salt as a starting material, we obtained a different two-dimensional supramolecular layer [pipH]{sub 2}[Ni(NCS){sub 4}] 2 connected by unusual N-H...S hydrogen bonds and weak S...S contacts. In order to observe the influence of the dimension of ligand on the self-assembly structure, dabco was used for substituting pip, and compound [dabcoH]{sub 2}[Ni(NCS){sub 4}]more » (dabco=1,4-Diazabicyclo[2.2.2] octane) 3 was gained, which constructed two-dimensional, highly wavy network with hourglass-shaped cavities only through N-H...S hydrogen bonds.« less

  14. Cosine (Cobalt Silicide Growth Through Nitrogen-Induced Epitaxy) Process For Epitaxial Cobalt Silicide Formation For High Performance Sha

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, Chong Wee; Shin, Chan Soo; Gall, Daniel

    A method for forming an epitaxial cobalt silicide layer on a MOS device includes sputter depositing cobalt in an ambient to form a first layer of cobalt suicide on a gate and source/drain regions of the MOS device. Subsequently, cobalt is sputter deposited again in an ambient of argon to increase the thickness of the cobalt silicide layer to a second thickness.

  15. Structure of transition-metal cluster compounds: Use of an additional orbital resulting from the f, g character of spd bond orbitals*

    PubMed Central

    Pauling, Linus

    1977-01-01

    A general theory of the structure of complexes of the transition metals is developed on the basis of the enneacovalence of the metals and the requirements of the electroneutrality principle. An extra orbital may be provided through the small but not negligible amount of f and g character of spd bond orbitals, and an extra electron or electron pair may be accepted in this orbital for a single metal or a cluster to neutralize the positive electric charge resulting from the partial ionic character of the bonds with ligands, such as the carbonyl group. Examples of cluster compounds of cobalt, ruthenium, rhodium, osmium, and gold are discussed. PMID:16592470

  16. Structure of transition-metal cluster compounds: Use of an additional orbital resulting from the f, g character of spd bond orbitals.

    PubMed

    Pauling, L

    1977-12-01

    A general theory of the structure of complexes of the transition metals is developed on the basis of the enneacovalence of the metals and the requirements of the electroneutrality principle. An extra orbital may be provided through the small but not negligible amount of f and g character of spd bond orbitals, and an extra electron or electron pair may be accepted in this orbital for a single metal or a cluster to neutralize the positive electric charge resulting from the partial ionic character of the bonds with ligands, such as the carbonyl group. Examples of cluster compounds of cobalt, ruthenium, rhodium, osmium, and gold are discussed.

  17. Method of forming oxide coatings. [for solar collector heating panels

    NASA Technical Reports Server (NTRS)

    Mcdonald, G. E. (Inventor)

    1983-01-01

    This invention is concerned with an improved plating process for covering a substrate with a black metal oxide film. The invention is particularly directed to making a heating panel for a solar collector. A compound is electrodeposited from an aqueous solution containing cobalt metal salts onto a metal substrate. This compound is converted during plating into a black, highly absorbing oxide coating which contains hydrated oxides. This is achieved by the inclusion of an oxidizing agent in the plating bath. The inclusion of an oxidizing agent in the plating bath is contrary to standard electroplating practice. The hydrated oxides are converted to oxides by treatment in a hot bath, such as boiling water. An oxidizing agent may be added to the hot liquid treating bath.

  18. Synthesis and characterization of polycrystalline brownmillerite cobalt doped Ca2Fe2O5

    NASA Astrophysics Data System (ADS)

    Dhankhar, Suchita; Bhalerao, Gopal; Baskar, K.; Singh, Shubra

    2016-05-01

    Brownmillerite compounds with general formula A2BB'O5 (BB' = Mn, Al, Fe, Co) have attracted attention in wide range of applications such as in solid oxide fuel cell, oxygen separation membrane and photocatalysis. Brownmillerite compounds have unique structure with alternate layers of BO6 octahedral layers and BO4 tetrahedral layers. Presence of dopants like Co in place of Fe increases oxygen vacancies. In the present work we have synthesized polycrystalline Ca2Fe2O5 and Ca2Fe1-xCoxO5 (x = 0.01, 0.03) by citrate combustion route. The as prepared samples were characterized by XRD using PANalytical X'Pert System, DRS (Diffuse reflectance spectroscopy) and SEM (Scanning electron microscopy).

  19. Intermetallic M--Sn.sub.5 (M=Fe, Cu, Co, Ni) compound and a method of synthesis thereof

    DOEpatents

    Wang, Xiao-Liang; Han, Weiqiang

    2017-09-05

    Novel intermetallic materials are provided that are composed of tin and one or more additional metal(s) having a formula M.sub.(1-x)-Sn.sub.5, where -0.1.ltoreq.x.ltoreq.0.5, with 0.01.ltoreq.x.ltoreq.0.4 being more preferred and the second metallic element (M) is selected from iron (Fe), copper (Cu), cobalt (Co), nickel (Ni), and a combination of two or more of those metals. Due to low concentration of the second metallic element, the intermetallic compound affords an enhanced capacity applicable for electrochemical cells and may serve as an intermediate phase between Sn and MSn.sub.2. A method of synthesizing these intermetallic materials is also disclosed.

  20. Highly effective synthesis of a cobalt(ii) metal-organic coordination polymer by using continuous flow chemistry.

    PubMed

    Gong, Chunhua; Zhang, Junyong; Zeng, Xianghua; Xie, Jingli

    2016-12-20

    The coordination polymer [Co 2 L 4 (H 2 O) 2 ]·CH 3 CN·H 2 O (HL = (E)-2-[2-(4-chlorophenyl)vinyl]-8-hydroxyquinoline) has been achieved with 95% yield by using an Asia flow synthesis system (chip reactor). Compared with the conventional batch-type methods such as diffusion, reflux and solvothermal reactions, higher yielding reactions carried out in a flow reactor have demonstrated that this technique is a powerful strategy to obtain coordination compounds.

  1. One-Step Facile Synthesis of Cobalt Phosphides for Hydrogen Evolution Reaction Catalysts in Acidic and Alkaline Medium.

    PubMed

    Sumboja, Afriyanti; An, Tao; Goh, Hai Yang; Lübke, Mechthild; Howard, Dougal Peter; Xu, Yijie; Handoko, Albertus Denny; Zong, Yun; Liu, Zhaolin

    2018-05-09

    Catalysts for hydrogen evolution reaction are in demand to realize the efficient conversion of hydrogen via water electrolysis. In this work, cobalt phosphides were prepared using a one-step, scalable, and direct gas-solid phosphidation of commercially available cobalt salts. It was found that the effectiveness of the phosphidation reaction was closely related to the state of cobalt precursors at the reaction temperature. For instance, a high yield of cobalt phosphides obtained from the phosphidation of cobalt(II) acetate was related to the good stability of cobalt salt at the phosphidation temperature. On the other hand, easily oxidizable salts (e.g., cobalt(II) acetylacetonate) tended to produce a low amount of cobalt phosphides and a large content of metallic cobalt. The as-synthesized cobalt phosphides were in nanostructures with large catalytic surface areas. The catalyst prepared from phosphidation of cobalt(II) acetate exhibited an improved catalytic activity as compared to its counterpart derived from phosphidation of cobalt(II) acetylacetonate, showing an overpotential of 160 and 175 mV in acidic and alkaline electrolytes, respectively. Both catalysts also displayed an enhanced long-term stability, especially in the alkaline electrolyte. This study illustrates the direct phosphidation behavior of cobalt salts, which serve as a good vantage point in realizing the large-scale synthesis of transition-metal phosphides for high-performance electrocatalysts.

  2. Controlling the misuse of cobalt in horses.

    PubMed

    Ho, Emmie N M; Chan, George H M; Wan, Terence S M; Curl, Peter; Riggs, Christopher M; Hurley, Michael J; Sykes, David

    2015-01-01

    Cobalt is a well-established inducer of hypoxia-like responses, which can cause gene modulation at the hypoxia inducible factor pathway to induce erythropoietin transcription. Cobalt salts are orally active, inexpensive, and easily accessible. It is an attractive blood doping agent for enhancing aerobic performance. Indeed, recent intelligence and investigations have confirmed cobalt was being abused in equine sports. In this paper, population surveys of total cobalt in raceday samples were conducted using inductively coupled plasma mass spectrometry (ICP-MS). Urinary threshold of 75 ng/mL and plasma threshold of 2 ng/mL could be proposed for the control of cobalt misuse in raceday or in-competition samples. Results from administration trials with cobalt-containing supplements showed that common supplements could elevate urinary and plasma cobalt levels above the proposed thresholds within 24 h of administration. It would therefore be necessary to ban the use of cobalt-containing supplements on raceday as well as on the day before racing in order to implement and enforce the proposed thresholds. Since the abuse with huge quantities of cobalt salts can be done during training while the use of legitimate cobalt-containing supplements are also allowed, different urinary and plasma cobalt thresholds would be required to control cobalt abuse in non-raceday or out-of-competition samples. This could be achieved by setting the thresholds above the maximum urinary and plasma cobalt concentrations observed or anticipated from the normal use of legitimate cobalt-containing supplements. Urinary threshold of 2000 ng/mL and plasma threshold of 10 ng/mL were thus proposed for the control of cobalt abuse in non-raceday or out-of-competition samples. Copyright © 2014 John Wiley & Sons, Ltd.

  3. On the cobalt and cobalt oxide electrodeposition from a glyceline deep eutectic solvent.

    PubMed

    Sakita, Alan M P; Della Noce, Rodrigo; Fugivara, Cecílio S; Benedetti, Assis V

    2016-09-14

    The electrodeposition of cobalt and cobalt oxides from a glyceline deep eutectic solvent is reported. Cyclic voltammetry, chronoamperometry, scanning electron microscopy, and Raman spectroscopy are employed to study the Co deposition processes. Surface analysis reveals that metallic cobalt is deposited at potentials less negative than the current peak potential whereas cobalt oxides are detected and electrochemically observed when the deposition is done at more negative potentials. i-t transients are analyzed by applying the Scharifker and Hills (SH) theoretical model. It is concluded that cobalt deposition occurs via a progressive nucleation and growth mechanism for concentrations higher than 0.05 mol L -1 cobalt ions. For concentrations ≤0.025 mol L -1 cobalt ions and low overpotentials, the mechanism changes to instantaneous nucleation. The i m -t m relationships of the SH model are used to determine the values of the kinetic parameters and the cobalt ion diffusion coefficient.

  4. A preliminary evaluation of stream sediment sampling for the detection of cobalt mineralization in the Bou Azzer District, Morocco

    USGS Publications Warehouse

    Foose, M.P.

    1983-01-01

    Analyses of 28 stream sediment samples collected in the Bou Azzer district, Morocco, show that this sampling technique may be useful in locating the cobalt arsenide mineralization that exists in this area. The absence of exceptionally high values of cobalt and arsenic, the nearly lognormal distribution of cobalt values, and the lack of correlation between the highest values of cobalt and arsenic were unanticipated results that do not support the use of this sampling technique. However, highest values of several metals, including cobalt, were associated with an identified area of cobalt mineralization, and high cobalt was present near a second area in which cobalt mineralization is suspected. Although probably mostly reflecting the geochemistry of unexposed ultramafic rocks, the association of these metals with mineralization shows that this type of sampling can independently locate areas of known or potential cobalt mineralization.

  5. Comparing Sliding-Wear Characteristics of the Electro-Pressure Sintered and Wrought Cobalt

    NASA Astrophysics Data System (ADS)

    Lee, J. E.; Kim, Y. S.; Kim, T. W.

    Dry sliding wear tests of hot-pressure sintered and wrought cobalt were carried out to compare their wear characteristics. Cobalt powders with average size of 1.5µm were electro-pressure sintered to make sintered-cobalt disk wear specimens. A vacuum-induction melted cobalt ingot was hot-rolled at 800°C to a plate, from which wrought-cobalt disk specimens were machined. The specimens were heat treated at various temperatures to vary grain size and phase fraction. Wear tests of the cobalt specimens were carried out using a pin-on-disk wear tester against a glass (83% SiO2) bead at 100N with the constant sliding speed and distance of 0.36m/s and 600m, respectively. Worn surfaces, their cross sections, and wear debris were examined by an SEM. The wear of the cobalt was found to be strongly influenced by the strain-induced phase transformation of ɛ-Co (hcp) to α-Co (fcc). The sintered cobalt had smaller uniform grain size and showed higher wear rate than the wrought cobalt. The higher wear rate of the sintered cobalt was explained by the more active deformation-induced phase transformation than in the wrought cobalt with larger irregular grains.

  6. A dissolved cobalt plume in the oxygen minimum zone of the eastern tropical South Pacific

    NASA Astrophysics Data System (ADS)

    Hawco, Nicholas J.; Ohnemus, Daniel C.; Resing, Joseph A.; Twining, Benjamin S.; Saito, Mak A.

    2016-10-01

    Cobalt is a nutrient to phytoplankton, but knowledge about its biogeochemical cycling is limited, especially in the Pacific Ocean. Here, we report sections of dissolved cobalt and labile dissolved cobalt from the US GEOTRACES GP16 transect in the South Pacific. The cobalt distribution is closely tied to the extent and intensity of the oxygen minimum zone in the eastern South Pacific with highest concentrations measured at the oxycline near the Peru margin. Below 200 m, remineralization and circulation produce an inverse relationship between cobalt and dissolved oxygen that extends throughout the basin. Within the oxygen minimum zone, elevated concentrations of labile cobalt are generated by input from coastal sources and reduced scavenging at low O2. As these high cobalt waters are upwelled and advected offshore, phytoplankton export returns cobalt to low-oxygen water masses underneath. West of the Peru upwelling region, dissolved cobalt is less than 10 pM in the euphotic zone and strongly bound by organic ligands. Because the cobalt nutricline within the South Pacific gyre is deeper than in oligotrophic regions in the North and South Atlantic, cobalt involved in sustaining phytoplankton productivity in the gyre is heavily recycled and ultimately arrives from lateral transport of upwelled waters from the eastern margin. In contrast to large coastal inputs, atmospheric deposition and hydrothermal vents along the East Pacific Rise appear to be minor sources of cobalt. Overall, these results demonstrate that oxygen biogeochemistry exerts a strong influence on cobalt cycling.

  7. Cobalt metabolism and toxicology--a brief update.

    PubMed

    Simonsen, Lars Ole; Harbak, Henrik; Bennekou, Poul

    2012-08-15

    Cobalt metabolism and toxicology are summarized. The biological functions of cobalt are updated in the light of recent understanding of cobalt interference with the sensing in almost all animal cells of oxygen deficiency (hypoxia). Cobalt (Co(2+)) stabilizes the transcriptional activator hypoxia-inducible factor (HIF) and thus mimics hypoxia and stimulates erythropoietin (Epo) production, but probably also by the same mechanism induces a coordinated up-regulation of a number of adaptive responses to hypoxia, many with potential carcinogenic effects. This means on the other hand that cobalt (Co(2+)) also may have beneficial effects under conditions of tissue hypoxia, and possibly can represent an alternative to hypoxic preconditioning. Cobalt is acutely toxic in larger doses, and in mammalian in vitro test systems cobalt ions and cobalt metal are cytotoxic and induce apoptosis and at higher concentrations necrosis with inflammatory response. Cobalt metal and salts are also genotoxic, mainly caused by oxidative DNA damage by reactive oxygen species, perhaps combined with inhibition of DNA repair. Of note, the evidence for carcinogenicity of cobalt metal and cobalt sulfate is considered sufficient in experimental animals, but is as yet considered inadequate in humans. Interestingly, some of the toxic effects of cobalt (Co(2+)) have recently been proposed to be due to putative inhibition of Ca(2+) entry and Ca(2+)-signaling and competition with Ca(2+) for intracellular Ca(2+)-binding proteins. The tissue partitioning of cobalt (Co(2+)) and its time-dependence after administration of a single dose have been studied in man, but mainly in laboratory animals. Cobalt is accumulated primarily in liver, kidney, pancreas, and heart, with the relative content in skeleton and skeletal muscle increasing with time after cobalt administration. In man the renal excretion is initially rapid but decreasing over the first days, followed by a second, slow phase lasting several weeks, and with a significant long-term retention in tissues for several years. In serum cobalt (Co(2+)) binds to albumin, and the concentration of free, ionized Co(2+) is estimated at 5-12% of the total cobalt concentration. In human red cells the membrane transport pathway for cobalt (Co(2+)) uptake appears to be shared with calcium (Ca(2+)), but with the uptake being essentially irreversible as cobalt is effectively bound in the cytosol and is not itself extruded by the Ca-pump. It is tempting to speculate that this could perhaps also be the case in other animal cells. If this were actually the case, the tissue partitioning and biokinetics of cobalt in cells and tissues would be closely related to the uptake of calcium, with cobalt partitioning primarily into tissues with a high calcium turn-over, and with cobalt accumulation and retention in tissues with a slow turn-over of the cells. The occupational cobalt exposure, e.g. in cobalt processing plants and hard-metal industry is well known and has probably been somewhat reduced in more recent years due to improved work place hygiene. Of note, however, adverse reactions to heart and lung have recently been demonstrated following cobalt exposure near or slightly under the current occupational exposure limit. Over the last decades the use of cobalt-chromium hard-metal alloys in orthopedic joint replacements, in particular in metal-on-metal bearings in hip joint arthroplasty, has created an entirely new source of internal cobalt exposure. Corrosion and wear produce soluble metal ions and metal debris in the form of huge numbers of wear particles in nanometric size, with systemic dissemination through lymph and systemic vascular system. This may cause adverse local reactions in peri-prosthetic soft-tissues, and in addition systemic toxicity. Of note, the metal nanoparticles have been demonstrated to be clearly more toxic than larger, micrometer-sized particles, and this has made the concept of nanotoxicology a crucial, new discipline. As another new potential source of cobalt exposure, suspicion has been raised that cobalt salts may be misused by athletes as an attractive alternative to Epo doping for enhancing aerobic performance. The cobalt toxicity in vitro seems to reside mainly with ionized cobalt. It is tempting to speculate that ionized cobalt is also the primary toxic form for systemic toxicity in vivo. Under this assumption, the relevant parameter for risk assessment would be the time-averaged value for systemic cobalt ion exposure that from a theoretical point of view might be obtained by measuring the cobalt content in red cells, since their cobalt uptake reflects uptake only of free ionized cobalt (Co(2+)), and since the uptake during their 120 days life span is practically irreversible. This clearly calls for future clinical studies in exposed individuals with a systematic comparison of concurrent measurements of cobalt concentration in red cells and in serum. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Cobalt ferrite based magnetostrictive materials for magnetic stress sensor and actuator applications

    NASA Technical Reports Server (NTRS)

    Jiles, David C. (Inventor); Paulsen, Jason A. (Inventor); Snyder, John E. (Inventor); Lo, Chester C. H. (Inventor); Ring, Andrew P. (Inventor); Bormann, Keith A. (Inventor)

    2008-01-01

    Magnetostrictive material based on cobalt ferrite is described. The cobalt ferrite is substituted with transition metals (such manganese (Mn), chromium (Cr), zinc (Zn) and copper (Cu) or mixtures thereof) by substituting the transition metals for iron or cobalt to form substituted cobalt ferrite that provides mechanical properties that make the substituted cobalt ferrite material effective for use as sensors and actuators. The substitution of transition metals lowers the Curie temperature of the material (as compared to cobalt ferrite) while maintaining a suitable magnetostriction for stress sensing applications.

  9. Desulfurization of benzonaphthothiophenes and dibenzothiophene with a Raney nickel catalyst and its relationship to the. pi. -electron density

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagai, M.; Urimoto, H.; Uetake, K.

    The hydrodesulfurization of heavy petroleum feedstocks and coal-derived liquids requires the conversion of high molecular weight compounds like dibenzothiophene and benzonaphthothiophenes. There are several studies in the literature which deal with the mechanism of the hydrodesulfurization of multi-ring thiophenic compounds on cobalt or nickel molybdenum catalysts at high pressure. However, there are only a few studies which relate the chemical reactivity of these compounds to their electronic structure. The reactivity of a multi-ring sulfur-containing compound is not determined solely by the size of the molecule. In addition, others studied the relationship between the first step in the hydrotreating reaction ofmore » benzonaphthothiophene and the Coulombic interaction term of the compounds using the CNDO/S method. Because there is competition between the different processes (hydrogenation and desulfurization) during reaction, it is difficult to understand the relationship between desulfurization and the electronic properties of the compounds under reaction conditions. The calculation of electronic structures necessarily involves many sigma bonds of hydrogenated aromatic rings as well as many electrons of high molecular weight compounds. For this reason, it is best to select a catalyst and reaction conditions under which desulfurization takes place without hydrogenation.« less

  10. Cobalt

    USGS Publications Warehouse

    Slack, John F.; Kimball, Bryn E.; Shedd, Kim B.; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.

    2017-12-19

    Cobalt is a silvery gray metal that has diverse uses based on certain key properties, including ferromagnetism, hardness and wear-resistance when alloyed with other metals, low thermal and electrical conductivity, high melting point, multiple valences, and production of intense blue colors when combined with silica. Cobalt is used mostly in cathodes in rechargeable batteries and in superalloys for turbine engines in jet aircraft. Annual global cobalt consumption was approximately 75,000 metric tons in 2011; China, Japan, and the United States (in order of consumption amount) were the top three cobalt-consuming countries. In 2011, approximately 109,000 metric tons of recoverable cobalt was produced in ores, concentrates, and intermediate products from cobalt, copper, nickel, platinum-group-element (PGE), and zinc operations. The Democratic Republic of the Congo (Congo [Kinshasa]) was the principal source of mined cobalt globally (55 percent). The United States produced a negligible amount of byproduct cobalt as an intermediate product from a PGE mining and refining operation in southeastern Montana; no U.S. production was from mines in which cobalt was the principal commodity. China was the leading refiner of cobalt, and much of its production came from cobalt ores, concentrates, and partially refined materials imported from Congo (Kinshasa).The mineralogy of cobalt deposits is diverse and includes both primary (hypogene) and secondary (supergene) phases. Principal terrestrial (land-based) deposit types, which represent most of world’s cobalt mine production, include primary magmatic Ni-Cu(-Co-PGE) sulfides, primary and secondary stratiform sediment-hosted Cu-Co sulfides and oxides, and secondary Ni-Co laterites. Seven additional terrestrial deposit types are described in this chapter. The total terrestrial cobalt resource (reserves plus other resources) plus past production, where available, is calculated to be 25.5 million metric tons. Additional resources of cobalt are known to occur on the modern sea floor in aerially extensive deposits of Fe-Mn(-Ni-Cu-Co-Mo) nodules and Fe-Mn(-Co-Mo-rare-earth-element) crusts. Legal, economic, and technological barriers have prevented exploitation of these cobalt resources, which lie at water depths of as great as 6,000 meters, although advances in technology may soon allow production of these resources to be economically viable.Environmental issues related to cobalt mining concern mainly the elevated cobalt contents in soils and waters. Although at low levels cobalt is essential to human health (it is the central atom in the critical nutrient vitamin B12), overexposure to high levels of cobalt may cause lung and heart dysfunction, as well as dermatitis. The ecological impacts of cobalt vary widely and can be severe for some species of fish and plants, depending on various environmental factors.

  11. Pharmacokinetics of inorganic cobalt and a vitamin B12 supplement in the Thoroughbred horse: Differentiating cobalt abuse from supplementation.

    PubMed

    Hillyer, L L; Ridd, Z; Fenwick, S; Hincks, P; Paine, S W

    2018-05-01

    While cobalt is an essential micronutrient for vitamin B 12 synthesis in the horse, at supraphysiological concentrations, it has been shown to enhance performance in human subjects and rats, and there is evidence that its administration in high doses to horses poses a welfare threat. Animal sport regulators currently control cobalt abuse via international race day thresholds, but this work was initiated to explore means of potentially adding to application of those thresholds since cobalt may be present in physiological concentrations. To devise a scientific basis for differentiation between presence of cobalt from bona fide supplementation and cobalt doping through the use of ratios. Six Thoroughbred horses were given 10 mL vitamin B 12 /cobalt supplement (Hemo-15 ® ; Vetoquinol, Buckingham, Buckinghamshire, UK., 1.5 mg B 12 , 7 mg cobalt gluconate = 983 μg total Co) as an i.v. bolus then an i.v. infusion (15 min) of 100 mg cobalt chloride (45.39 mg Co) 6 weeks later. Pre-and post-administration plasma and urine samples were analysed for cobalt and vitamin B 12 . Urine and plasma samples were analysed for vitamin B 12 using an immunoassay and cobalt concentrations were measured via ICP-MS. Baseline concentrations of cobalt in urine and plasma for each horse were subtracted from their cobalt concentrations post-administration for the PK analysis. Compartmental analysis was used for the determination of plasma PK parameters for cobalt using commercially available software. On administration of a vitamin B 12 /cobalt supplement, the ratio of cobalt to vitamin B 12 in plasma rapidly increased to approximately 3 and then rapidly declined below a ratio of 1 and then back to near baseline over the next week. On administration of 100 mg cobalt chloride, the ratio initially exceeded 10 in plasma and then declined with the lower 95% confidence interval remaining above a ratio of 1 for 7 days. For two horses with extended sampling, the plasma ratio remained above one for approximately 28 days after cobalt chloride administration. The effect of the administration of the vitamin B 12 /cobalt supplement on the urine ratio was transient and reached a peak value of 10 which then rapidly declined. However, a urine ratio of 10 was exceeded, with the lower 95% confidence interval remaining above a ratio of 10 for 7 days after cobalt chloride administration. For the two horses with extended sampling, the urine ratio remained above 10 for about 18 days (442 h) after cobalt chloride administration even though the absolute cobalt urine concentration had dropped below the international threshold of 100 ng/mL after 96 h. Only one vitamin B 12 /cobalt product was evaluated, a limited number of horses were included, the horses were not in full race training and the results may be specific to this population of horses. The results provide the basis for a potential strategy for allowing supplementation with vitamin B 12 products, while controlling the misuse of high doses of cobalt, through a combination of international thresholds and ratios of cobalt to vitamin B 12 , in plasma and urine. © 2017 EVJ Ltd.

  12. Effects of cobalt precursor on pyrolyzed carbon-supported cobalt-polypyrrole as electrocatalyst toward oxygen reduction reaction

    PubMed Central

    2013-01-01

    A series of non-precious metal electrocatalysts, namely pyrolyzed carbon-supported cobalt-polypyrrole, Co-PPy-TsOH/C, are synthesized with various cobalt precursors, including cobalt acetate, cobalt nitrate, cobalt oxalate, and cobalt chloride. The catalytic performance towards oxygen reduction reaction (ORR) is comparatively investigated with electrochemical techniques of cyclic voltammogram, rotating disk electrode and rotating ring-disk electrode. The results are analyzed and discussed employing physiochemical techniques of X-ray diffraction, transmission electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, inductively coupled plasma, elemental analysis, and extended X-ray absorption fine structure. It shows that the cobalt precursor plays an essential role on the synthesis process as well as microstructure and performance of the Co-PPy-TsOH/C catalysts towards ORR. Among the studied Co-PPy-TsOH/C catalysts, that prepared with cobalt acetate exhibits the best ORR performance. The crystallite/particle size of cobalt and its distribution as well as the graphitization degree of carbon in the catalyst greatly affects the catalytic performance of Co-PPy-TsOH/C towards ORR. Metallic cobalt is the main component in the active site in Co-PPy-TsOH/C for catalyzing ORR, but some other elements such as nitrogen are probably involved, too. PMID:24229351

  13. Synthesis and oxidation catalysis of [tris(oxazolinyl)borato]cobalt(II) scorpionates

    DOE PAGES

    Reinig, Regina R.; Mukherjee, Debabrata; Weinstein, Zachary B.; ...

    2016-04-28

    The reaction of CoCl 2·THF and thallium tris(4,4-dimethyl-2-oxazolinyl)phenylborate (TlTo M) in tetrahydrofuran (THF) provides To MCoCl (1) in 95 % yield; however, appropriate solvents and starting materials are required to favor 1 over two other readily formed side-products, (To M) 2Co (2) and {HTo M}CoCl 2 (3). ESR, NMR, FTIR, and UV/Vis spectroscopies were used to distinguish these cobalt(II) products and probe their electronic and structural properties. Even after the structures indicated by these methods were confirmed by X-ray crystallography, the spectroscopic identification of trace contaminants in the material was challenging. The recognition of possible contaminants in the synthesis ofmore » To MCoCl in combination with the paramagnetic nature of these complexes provided impetus for the utilization of X-ray powder diffraction to measure the purity of the To MCoCl bulk sample. Furthermore, the X-ray powder diffraction results provide support for the bulk-phase purity of To MCoCl in preparations that avoid 2 and 3. Thus, 1 is a precursor for new [tris(oxazolinyl)borato]cobalt chemistry, as exemplified by its reactions with KOtBu and NaOAc to give To MCoOtBu (4) and To MCoOAc (5), respectively. Compound 5 is a catalyst for the oxidation of cyclohexane with meta-chloroperoxybenzoic acid (mCPBA), and the rate constants and selectivity for cyclohexanol versus cyclohexanone and ϵ-caprolactone were assessed.« less

  14. Influence of the manganese and cobalt content on the electrochemical performance of P2-Na0.67MnxCo1-xO2 cathodes for sodium-ion batteries.

    PubMed

    Hemalatha, K; Jayakumar, M; Prakash, A S

    2018-01-23

    The resurgence of sodium-ion batteries in recent years is due to their potential ability to form intercalation compounds possessing a high specific capacity and energy density comparable to existing lithium systems. To comprehend the role of cobalt substitution in the structure and electrochemical performance of Na 0.67 MnO 2 , the solid solutions of P2-Na 0.67 Mn x Co 1-x O 2 (x = 0.25, 0.5, 0.75) are synthesized and characterized. The XRD-Rietveld analysis revealed that the Co-substitution in Na 0.67 MnO 2 decreases lattice parameters 'a' and 'c' resulting in the contraction of MO 6 octahedra and the enlargement of inter-layer 'd' spacing. XPS indicates that the isovalent cobalt substitution in Na 0.67 MnO 2 results in the partial/complete replacement of Jahn-Teller active trivalent manganese to form low-spin complexes of better structural stability. The Na-ion diffusion coefficient, D Na + , derived from cyclic voltammetry and impedance spectroscopy, confirmed the enhanced mass transport in Co-rich phases compared to Mn-rich phases. Furthermore, higher diffusion coefficient values are observed for Co 3+ /Co 4+ than for their Mn 3+ /Mn 4+ redox processes. In addition, Co-rich phases exhibit a high structural stability and superior capacity retention, whereas Mn-rich phases discharge higher capacities.

  15. Comparison of supplemental cobalt form on fibre digestion and cobalamin concentrations in cattle

    USDA-ARS?s Scientific Manuscript database

    Cobalt is essential for rumen microbial metabolism to synthesize methane, acetate and methionine. It also serves as a structural component of vitamin B12, which functions as a coenzyme in energy metabolism. A study was conducted to determine if cobalt form (cobalt carbonate vs cobalt glucoheptonate...

  16. Selective catalysts and their preparation for catalytic hydrocarbon synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iglesia, E.; Vroman, H.; Soled, S.

    1991-07-30

    This patent describes a method for preparing a supported cobalt catalyst particle. It comprises contacting a support particle with a molten cobalt salt, for a period sufficient to impregnate substantially all of the molten cobalt salt on the support to a depth of less than about 200 {mu}m; drying the supported cobalt salt obtained; reducing the cobalt of the supported cobalt salt to metallic cobalt by heating the salt in the presence of H{sub 2}, wherein the heating is conducted at a rate of less than about 1{degrees} C./min. up to a maximum temperature ranging from about 100{degrees} C. tomore » about 500{degrees} C., to produce a supported cobalt catalyst particle.« less

  17. Mechanical properties of nanocrystalline cobalt

    NASA Astrophysics Data System (ADS)

    Karimpoor, Amir A.; Erb, Uwe

    2006-05-01

    Due to their excellent wear and corrosion properties, nanocrystalline cobalt and several cobalt alloys made by electrodeposition are currently being developed as environmentally benign replacement coatings for hard chromium electrodeposits. The focus of this study is on the mechanical properties of nanocrystalline cobalt, which are currently not well understood. A comparison is presented for hardness, tensile properties, Charpy impact properties and fracture surface analysis of both nanocrystalline (grain size: 12 nm) and conventional polycrystalline (grain size: 4.8 m) cobalt. It is shown that the hardness and tensile strength of nanocrystalline cobalt is 2-3 times higher than for polycrystalline cobalt. However, in contrast to other nanocrystalline materials tested previously, nanocrystalline cobalt retains considerable ductility with elongation to fracture values up to 7%.

  18. Cobalt: A vital element in the aircraft engine industry

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.

    1981-01-01

    Recent trends in the United States consumption of cobalt indicate that superalloys for aircraft engine manufacture require increasing amounts of this strategic element. Superalloys consume a lion's share of total U.S. cobalt usage which was about 16 million pounds in 1980. In excess of 90 percent of the cobalt used in this country was imported, principally from the African countries of Zaire and Zambia. Early studies on the roles of cobalt as an alloying element in high temperature alloys concentrated on the simple Ni-Cr and Nimonic alloy series. The role of cobalt in current complex nickel base superalloys is not well defined and indeed, the need for the high concentration of cobalt in widely used nickel base superalloys is not firmly established. The current cobalt situation is reviewed as it applies to superalloys and the opportunities for research to reduce the consumption of cobalt in the aircraft engine industry are described.

  19. The Role of External Inputs and Internal Cycling in Shaping the Global Ocean Cobalt Distribution: Insights From the First Cobalt Biogeochemical Model

    NASA Astrophysics Data System (ADS)

    Tagliabue, Alessandro; Hawco, Nicholas J.; Bundy, Randelle M.; Landing, William M.; Milne, Angela; Morton, Peter L.; Saito, Mak A.

    2018-04-01

    Cobalt is an important micronutrient for ocean microbes as it is present in vitamin B12 and is a co-factor in various metalloenzymes that catalyze cellular processes. Moreover, when seawater availability of cobalt is compared to biological demands, cobalt emerges as being depleted in seawater, pointing to a potentially important limiting role. To properly account for the potential biological role for cobalt, there is therefore a need to understand the processes driving the biogeochemical cycling of cobalt and, in particular, the balance between external inputs and internal cycling. To do so, we developed the first cobalt model within a state-of-the-art three-dimensional global ocean biogeochemical model. Overall, our model does a good job in reproducing measurements with a correlation coefficient of >0.7 in the surface and >0.5 at depth. We find that continental margins are the dominant source of cobalt, with a crucial role played by supply under low bottom-water oxygen conditions. The basin-scale distribution of cobalt supplied from margins is facilitated by the activity of manganese-oxidizing bacteria being suppressed under low oxygen and low temperatures, which extends the residence time of cobalt. Overall, we find a residence time of 7 and 250 years in the upper 250 m and global ocean, respectively. Importantly, we find that the dominant internal resupply process switches from regeneration and recycling of particulate cobalt to dissolution of scavenged cobalt between the upper ocean and the ocean interior. Our model highlights key regions of the ocean where biological activity may be most sensitive to cobalt availability.

  20. Formation of cytochrome P-450 containing haem or cobalt-protoporphyrin in liver homogenates of rats treated with phenobarbital and allylisopropylacetamide.

    PubMed Central

    Bonkovsky, H L; Sinclair, J F; Healey, J F; Sinclair, P R; Smith, E L

    1984-01-01

    The potent porphyrogen allylisopropylacetamide and related compounds decrease hepatic concentrations of cytochrome P-450. This decrease occurs particularly in phenobarbital-induced cytochrome P-450 and is caused by suicidal breakdown of the haem of cytochrome P-450. Quantitative rocket immunoelectrophoresis showed that the protein moiety of the major phenobarbital-inducible form of hepatic cytochrome P-450 was not diminished up to 1 h, but was markedly decreased (to 43% of that of the phenobarbital-treated control) at 20 h after allylisopropylacetamide treatment. In contrast, the concentration of total cytochrome P-450, measured spectrophotometrically, decreased to 30-40% of the control at both 1 and 20 h after allylisopropylacetamide. Cytochrome P-450-dependent demethylations of ethylmorphine and benzphetamine decreased to a similar extent. When liver homogenates from rats treated with allylisopropylacetamide 1 h before being killed were incubated with haem, functional holocytochrome P-450 could be reconstituted from the apoprotein. Incubation with haem increased spectrophotometrically measurable cytochrome P-450 to 69%, ethylmorphine demethylase to 64% and benzphetamine demethylase to 93% of the activities in rats treated with phenobarbital alone. At 20 h after allylisopropylacetamide treatment, however, little or no reconstitution of cytochrome P-450 occurred after incubation with haem. When liver homogenates were incubated with cobalt and protoporphyrin, and microsomal proteins were then subjected to polyacrylamide-gel electrophoresis, cobalt-protoporphyrin was found specifically associated with proteins of Mr 50 000-53 000. When homogenates from rats given allylisopropylacetamide for 1 h or 20 h were compared, it was found that the extent of this association was higher in livers from the rats containing more apocytochrome P-450, suggesting that cobalt-protoporphyrin had associated with the apocytochrome. The data provide insight into the association of haem with the protein moiety of cytochrome P-450 and factors affecting breakdown of this protein. Images Fig. 2. Fig. 3. Fig. 5. PMID:6477526

  1. Magnetism and structure of a half-metallic Heusler compound Co-Mn-Cr-Si

    NASA Astrophysics Data System (ADS)

    Huh, Yung; Joshi, Swarangi; Jain, Sanmati; Pathak, Ojas; Kharel, Parashu

    Half metallic ferromagnetic Heusler compounds have a potential in the development of spintronic devices for its high spin polarization at the Fermi level and lattice structure compatibility. Heusler compounds based on cobalt are considered a good candidate for room temperature half-metals due to their high Curie temperature. Co2CrSi is one of such predicted half-metal, but it is meta-stable and difficult to synthesize in the desired crystal structure. We have successfully synthesized a Heusler compound Co2Mn0.5Cr0.5Si by using arc melting and rapid quenching followed by thermal treatment under high vacuum to control any parasitic contamination. Crystal X-ray diffraction pattern shows the samples crystallize in a cubic Heusler structure with some degrees of structural disorder. Curie temperatures of the prepared samples are observed well beyond room temperature near 900 K. Magnetic anomalies present in as-prepared samples are cleared, and its magnetic properties are improved by thermal treatment. This research is supported by Academic and Scholarly Excellence Funds, and Research/Scholarship Support Fund, South Dakota State University.

  2. Effect of cobalt supplementation and fractionation on the biological response in the biomethanization of Olive Mill Solid Waste.

    PubMed

    Pinto-Ibieta, F; Serrano, A; Jeison, D; Borja, R; Fermoso, F G

    2016-07-01

    Due to the low trace metals concentration in the Olive Mill Solid Waste (OMSW), a proposed strategy to improve its biomethanization is the supplementation of key metals to enhance the microorganism activity. Among essential trace metals, cobalt has been reported to have a crucial role in anaerobic degradation. This study evaluates the effect of cobalt supplementation to OMSW, focusing on the connection between fractionation of cobalt in the system and the biological response. The highest biological responses was found in a range from 0.018 to 0.035mg/L of dissolved cobalt (0.24-0.65mg total cobalt/L), reaching improvements up to 23% and 30% in the methane production rate and the methane yield coefficient, respectively. It was found that the dissolved cobalt fraction is more accurately related with the biological response than the total cobalt. The total cobalt is distorted by the contribution of dissolved and non-dissolved inert fractions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Fabrication of cobalt magnetic nanostructures using atomic force microscope lithography.

    PubMed

    Chu, Haena; Yun, Seonghun; Lee, Haiwon

    2013-12-01

    Cobalt nanopatterns are promising assemblies for patterned magnetic storage applications. The fabrication of cobalt magnetic nanostructures on n-tridecylamine x hydrochloride (TDA x HCl) self-assembled monolayer (SAM) modified silicon surfaces using direct writing atomic force microscope (AFM) lithography for localized electrochemical reduction of cobalt ions was demonstrated. The ions were reduced to form metal nanowires along the direction of the electricfield between the AFM tip and the substrate. In this lithography process, TDA x HCI SAMs play an important role in the lithography process for improving the resolution of cobalt nanopatterns by preventing nonspecific reduction of cobalt ions on the unwritten background. Cobalt nanowires and nanodots with width of 225 +/- 26 nm and diameter of 208 +/- 28 nm were successfully fabricated. Platinium-coated polydimethylsiloxane (PDMS) stamp was used fabricating bulk cobalt structures which can be detected by energy dispersive X-ray spectroscopy for element analysis and the physical and magnetic properties of these cobalt nanopatterns were characterized using AFM and magnetic force microscope.

  4. Evaluation of organic compounds and trace elements in Amazon Creek Basin, Oregon, September 1990

    USGS Publications Warehouse

    Rinella, F.A.

    1993-01-01

    Water and bottom sediment were collected from Amazon Creek, Oregon during a summer low-flow condition and analyzed for different classes of organic compounds, including many from the U.S. Environmental Protection Agency's priority pollutant list. Bottom sediment also was analyzed for trace elements typically associated with urban runoff. Trace-element concentrations in the less than 63 micrometer fraction of Amazon Creek bottom-sediment samples were compared with baseline concentrations (expected 95 percent confidence range) for soils from the Western United States and with concen- trations found in bottom sediment from the Willamette River Basin. Total-digestion concentrations of antimony, arsenic, cadmium, chromium, cobalt, copper, lead, manganese, mercury, nickel, silver, titanium, and zinc were enriched at some or all sites sampled. Whole-water samples from some sites contained concentrations of several chlorophenoxy-acid herbicides, the organophosphorus insecticide diazinon, and several semivolatile priority pollutants. Classes of compounds not detected in whole-water samples included carbamate insecticides, triazine and other nitrogen-containing herbicides, and purgeable organic compounds. Bottom-sediment samples contained many organochlorine compounds, including chlordane, DDT plus metabolites, dieldrin, endrin, heptachlor epoxide (a metabolite of heptachlor), and PCBs at some or all sites sampled. Twenty-four of 54 semivolatile compounds were detected in bottom- sediment samples at some or all sites sampled.

  5. Structural comparison of nickel electrodes and precursor phases

    NASA Technical Reports Server (NTRS)

    Cornilsen, Bahne C.; Shan, Xiaoyin; Loyselle, Patricia

    1989-01-01

    Researchers summarize previous Raman spectroscopic results and discuss important structural differences in the various phases of active mass and active mass precursors. Raman spectra provide unique signatures for these phases, and allow one to distinguish each phase, even when the compound is amorphous to x rays (i.e., does not scatter x rays because of a lack of order and/or small particle size). The structural changes incurred during formation, charge and discharge, cobalt addition, and aging are discussed. The oxidation states and dopant contents are explained in terms of the nonstoichiometric structures.

  6. Bis(tetra­phenyl­phospho­nium) tetra­chlorido­cobaltate(II)

    PubMed Central

    Ouahida, Zeghouan; Hadjadj, Nasreddine; Guenifa, Fatiha; Bendjeddou, Lamia; Merazig, Hocine

    2014-01-01

    The title compound, (C24H20P)2[CoCl4], was prepared under hydro­thermal conditions. In the crystal, the tetra­phenyl­phospho­nium cations are linked by pairs of weak C—H⋯π inter­actions into supra­molecular dimers; the CoII cations lie on twofold rotation axes and the tetra­hedral [CoCl4]2− anions are linked with the tetra­phenyl­phospho­nium cations via weak C—H⋯Cl hydrogen bonds. PMID:24940211

  7. Effects of cobalt, boron, and zirconium on the microstructure of Udimet 738. M.S. Thesis. Final Report

    NASA Technical Reports Server (NTRS)

    Nakanishi, T. G.

    1984-01-01

    A structural study was carried out on Co modified Udimet 738 alloys containing 0.04, 0.10, and 0.20 wt % Zr at 0.01 and 0.03 wt % B levels. Samples in the as-cast and solution-treated conditions were exposed at 843 C to study structural stability. The structures produced by the interactions of Co, Zr, and B were studied by SEM, X-ray diffraction, and dispersive analysis techniques. The additions of large amounts of Zr and B were found to increase the solidification range of the U-738. Structural changes involved eutectic gamma prime islands, formation of low melting point compounds, and precipitation of borides and Zr rich phases. Boron and zirconium additions did not show substantial changes in mechanical properties. Removal of Co from the alloys resulted in reduction of the matrix solubility for carbon and increase in the gamma prime solvus. Structural instabilities found were continuous grain boundary M23C6 films, MC breakdown, and plate-like phases. Removal of cobalt resulted in a slight decrease in tensile and stress rupture properties. Detailed structural results presented.

  8. the Characteristic Phase Transitions of Co-doped BaFe2 As2 Synthesized via Flux Growth

    NASA Astrophysics Data System (ADS)

    Shea, C. H.; Roncaioli, C.; Eckberg, C.; Drye, T.; Sulliavan, M. C.; Paglione, J.

    2015-03-01

    Since the discovery of a new family of type II superconductors in 2008, the iron pnictides, researches have had suspicions that they might bear similar electronic properties to the well-known (but not easily understood) oxide superconductors. For this reason studies on this family of compounds has been of great interest to the materials science community. Our efforts have been aimed at single crystal growth and measurement of a particular member of this family, BaFe2As2. While this material is not superconducting at standard pressure, the partial substitution of cobalt on the iron site has been shown to suppresses an anti-ferromagnetic phase transition occurring at lower temperatures allowing for the appearance of a superconducting phase. Transport and low field magnetization measurements taken on our samples show clean transitions, indicating Tc's of up to 24 K in optimally doped samples. We will discuss the growth methods and temperature dependent phase transitions of this material at different cobalt concentrations. This work was supported by NSF Grant DMR-1305637.

  9. hcp-Co nanowires grown on metallic foams as catalysts for the Fischer-Tropsch synthesis.

    PubMed

    Soulantica, Katerina; Harmel, Justine; Peres, Laurent; Estrader, Marta; Berliet, Adrien; Maury, Sylvie; Fécant, Antoine; Chaudret, Bruno; Serp, Philippe

    2018-06-12

    The possibility to control the structural characteristics of the active phase of supported catalysts offers the opportunity to improve catalyst performance, especially in structure sensitive catalytic reactions. In parallel, heat management is of critical importance for the catalytic performance in highly endo- or exothermic reactions. The Fisher-Tropsch synthesis (FTS) is a structure sensitive exothermic reaction, which enables catalytic transformation of syngas to high quality liquid fuels. We have elaborated monolithic cobalt based heterogeneous catalysts through a wet chemistry approach that allows control over nanocrystal shape and crystallographic phase, while at the same time enables heat management. Copper and nickel foams have been employed as supports for the epitaxial growth of hcp-Co nanowires, directly from a solution containing a coordination compound of cobalt and stabilizing ligands. The Co/Cufoam catalyst has been tested for the Fischer-Tropsch synthesis in fixed bed reactor, showing stability, and significantly superior activity and selectivity towards C5+ compared to a Co/SiO2-Al2O3 reference catalyst under the same conditions. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Pyrolyzed binuclear-cobalt-phthalocyanine as electrocatalyst for oxygen reduction reaction in microbial fuel cells.

    PubMed

    Li, Baitao; Wang, Mian; Zhou, Xiuxiu; Wang, Xiujun; Liu, Bingchuan; Li, Baikun

    2015-10-01

    A novel platinum (Pt)-free cathodic materials binuclear-cobalt-phthalocyanine (Bi-CoPc) pyrolyzed at different temperatures (300-1000 °C) were examined as the oxygen reduction reaction (ORR) catalysts, and compared with unpyrolyzed Bi-CoPc/C and Pt cathode in single chamber microbial fuel cells (SCMFCs). The results showed that the pyrolysis process increased the nitrogen abundance on Bi-CoPc and changed the nitrogen types. The Bi-CoPc pyrolyzed at 800 °C contained a significant amount of pyrrolic-N, and exhibited a high electrochemical catalytic activity. The power density and current density increased with temperature: Bi-CoPc/C-800 > Bi-CoPc/C-1000 > Bi-CoPc/C-600 > Bi-CoPc/C-300 > Bi-CoPc/C. The SCMFC with Bi-CoPc/C-800 cathode had a maximum power density of 604 mW m(-2). The low cost Bi-CoPc compounds developed in this study showed a potential in air-breathing MFC systems, with the proper pyrolysis temperature being chosen. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Poisoning of a silica supported cobalt catalyst due to the presence of sulfur impurities in syngas during Fischer-Tropsch synthesis: Effect of chelating agent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bambal, A.S.; Gardner, T.H.; Kugler, E.L.

    2012-01-01

    Sulfur compounds that are generally found in syngas derived from coal and biomass are a poison to Fischer-Tropsch (FT) catalysts. The presence of sulfur impurities in the ppm range can limit the life of a FT catalyst to a few hours or a few days. In this study, FT synthesis was carried out in a fixed-bed reactor at 230 °C, 20 bar, and 13,500 Ncm3/h/gcat for 72 h using syngas with H2/CO = 2.0. Cobalt-based catalysts were subjected to poisoning by 10 and 50 ppm sulfur in the syngas. The performance of FT catalyst was compared in context of syngasmore » conversion, product selectivities and yields, during the poisoning as well as post-poisoning stages. At both the impurity concentrations, the sulfur was noted to cause permanent loss in the activity, possibly by adsorbing irreversibly on the surface. The sulfur poison affects the hydrogenation and the chain-propagation ability of the catalysts, and shifts the product selectivity towards short-chain hydrocarbons with higher percentages of olefins. Additional diffusion limitations caused due to sulfur poisoning are thought to alter the product selectivity. The shifts in product selectivities suggest that the sulfur decreases the ability of the catalyst to form C-C bonds to produce longer-chain hydrocarbons. The selective blocking of sulfur is thought to affect the hydrogenation ability on the catalyst, resulting in more olefins in the product after sulfur poisoning. The sulfur poisoning on the cobalt catalyst is expected to cause an increase in the number of sites responsible for WGS or to influence the Boudouard reaction, resulting in a higher CO2 selectivity. Both the sites responsible for CO adsorptions as well as the sites for chain growth are poisoned during the poisoning. Additionally, the performance of a base-case cobalt catalyst is compared with that of catalysts modified by chelating agents (CAs). The superior performance of CA-modified catalysts during sulfur poisoning is attributed to the presence of smaller crystallite sizes and higher dispersions of cobalt on the support. Finally, the sulfur deactivation data is modeled by a simple kinetic expression to determine the deactivation constant, deactivation rates and half-life of the FT catalyst.« less

  12. Influence of Cobalt Doping on the Physical Properties of Zn0.9Cd0.1S Nanoparticles

    PubMed Central

    2010-01-01

    Zn0.9Cd0.1S nanoparticles doped with 0.005–0.24 M cobalt have been prepared by co-precipitation technique in ice bath at 280 K. For the cobalt concentration >0.18 M, XRD pattern shows unidentified phases along with Zn0.9Cd0.1S sphalerite phase. For low cobalt concentration (≤0.05 M) particle size, dXRDis ~3.5 nm, while for high cobalt concentration (>0.05 M) particle size decreases abruptly (~2 nm) as detected by XRD. However, TEM analysis shows the similar particle size (~3.5 nm) irrespective of the cobalt concentration. Local strain in the alloyed nanoparticles with cobalt concentration of 0.18 M increases ~46% in comparison to that of 0.05 M. Direct to indirect energy band-gap transition is obtained when cobalt concentration goes beyond 0.05 M. A red shift in energy band gap is also observed for both the cases. Nanoparticles with low cobalt concentrations were found to have paramagnetic nature with no antiferromagnetic coupling. A negative Curie–Weiss temperature of −75 K with antiferromagnetic coupling was obtained for the high cobalt concentration. PMID:20672097

  13. Blood doping by cobalt. Should we measure cobalt in athletes?

    PubMed

    Lippi, Giuseppe; Franchini, Massimo; Guidi, Gian Cesare

    2006-07-24

    Blood doping is commonplace in competitive athletes who seek to enhance their aerobic performances through illicit techniques. Cobalt, a naturally-occurring element with properties similar to those of iron and nickel, induces a marked and stable polycythemic response through a more efficient transcription of the erythropoietin gene. Although little information is available so far on cobalt metabolism, reference value ranges or supplementation in athletes, there is emerging evidence that cobalt is used as a supplement and increased serum concentrations are occasionally observed in athletes. Therefore, given the athlete's connatural inclination to experiment with innovative, unfair and potentially unhealthy doping techniques, cobalt administration might soon become the most suited complement or surrogate for erythropoiesis-stimulating substances. Nevertheless, cobalt administration is not free from unsafe consequences, which involve toxic effects on heart, liver, kidney, thyroid and cancer promotion. Cobalt is easily purchasable, inexpensive and not currently comprehended within the World Anti-Doping Agency prohibited list. Moreover, available techniques for measuring whole blood, serum, plasma or urinary cobalt involve analytic approaches which are currently not practical for antidoping laboratories. Thus more research on cobalt metabolism in athletes is compelling, along with implementation of effective strategies to unmask this potentially deleterious doping practice.

  14. Influence of Cobalt Doping on the Physical Properties of Zn0.9Cd0.1S Nanoparticles.

    PubMed

    Singhal, Sonal; Chawla, Amit Kumar; Gupta, Hari Om; Chandra, Ramesh

    2009-11-17

    Zn0.9Cd0.1S nanoparticles doped with 0.005-0.24 M cobalt have been prepared by co-precipitation technique in ice bath at 280 K. For the cobalt concentration >0.18 M, XRD pattern shows unidentified phases along with Zn0.9Cd0.1S sphalerite phase. For low cobalt concentration (≤0.05 M) particle size, dXRDis ~3.5 nm, while for high cobalt concentration (>0.05 M) particle size decreases abruptly (~2 nm) as detected by XRD. However, TEM analysis shows the similar particle size (~3.5 nm) irrespective of the cobalt concentration. Local strain in the alloyed nanoparticles with cobalt concentration of 0.18 M increases ~46% in comparison to that of 0.05 M. Direct to indirect energy band-gap transition is obtained when cobalt concentration goes beyond 0.05 M. A red shift in energy band gap is also observed for both the cases. Nanoparticles with low cobalt concentrations were found to have paramagnetic nature with no antiferromagnetic coupling. A negative Curie-Weiss temperature of -75 K with antiferromagnetic coupling was obtained for the high cobalt concentration.

  15. Towards the elimination of excessive cobalt supplementation in racing horses: A pharmacological review.

    PubMed

    Kinobe, Robert T

    2016-02-01

    Cobalt is an essential trace element for many vital physiological functions. Cobalt is also known to stabilise hypoxia-inducible transcription factors leading to increased expression of erythropoietin which activates production of red blood cells. This implies that cobalt can be used to enhance aerobic performance in racing horses. If this becomes a pervasive practice, the welfare of racing animals would be at risk because cobalt is associated with cardiovascular, haematological, thyroid gland and reproductive toxicity as observed in laboratory animals and humans. It is expected that similar effects may manifest in horses but direct evidence on equine specific effects of cobalt and the corresponding exposure conditions leading to such effects is lacking. Available pharmacokinetic data demonstrates that intravenously administered cobalt has a long elimination half-life (42-156 h) and a large volume of distribution (0.94 L/kg) in a horse implying that repeated administration of cobalt would accumulate in tissues over time attaining equilibrium after ~9-33 days. Based on these pharmacokinetic data and surveys of horses post racing, threshold cobalt concentrations of 2-10 μg/L in plasma and 75-200 μg/L in urine have been recommended. However, there is no clearly defined, presumably normal cobalt supplementation regimen for horses and characterisation of potential adverse effects of any established threshold cobalt concentrations has not been done. This review outlines the strengths and limitations of the existing literature on the pharmacological effects of cobalt in horses with some recommendations on what gaps to bridge to enable the determination of optimal threshold cobalt concentrations in racing horses. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Epitaxial Growth of Oriented Metalloporphyrin Network Thin Film for Improved Selectivity of Volatile Organic Compounds.

    PubMed

    Li, De-Jing; Gu, Zhi-Gang; Vohra, Ismail; Kang, Yao; Zhu, Yong-Sheng; Zhang, Jian

    2017-05-01

    This study reports an oriented and homogenous cobalt-metalloporphyrin network (PIZA-1) thin film prepared by liquid phase epitaxial (LPE) method. The thickness of the obtained thin films can be well controlled, and their photocurrent properties can also be tuned by LPE cycles or the introduction of conductive guest molecules (tetracyanoquinodimethane and C 60 ) into the PIZA-1 pores. The study of quartz crystal microbalance adsorption confirms that the PIZA-1 thin film with [110]-orientation presents much higher selectivity of benzene over toluene and p-xylene than that of the PIZA-1 powder with mixed orientations. These results reveal that the selective adsorption of volatile organic compounds highly depends on the growth orientations of porphyrin-based metal-organic framework thin films. Furthermore, the work will provide a new perspective for developing important semiconductive sensing materials with improved selectivity of guest compounds. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Electronic structure and properties of magnetic defects in Co(1+x)Al(1-x) and Fe(1+x)Al(1-x) alloys. Ph.D. Thesis - Paris Univ.

    NASA Technical Reports Server (NTRS)

    Abbe, D.

    1984-01-01

    CoAl and FeAl compounds are developed along two directions. Magnetic susceptibility and specific heat at low temperature on (NiCo)Al and (CoFe)Al ternary alloys are in good agreement with band calculations. Results on magnetization and specific heat under field at low temperature on nonstoichiometric compounds show clearly the importance of the nearest neighbor effects. In the case of CoAl, the isolated cobalt atoms substituting aluminum are characterized by a Kondo behavior, and, for FeAl, the isolated extra iron atoms are magnetic and polarize the matrix. Moreover, for the two compounds, clusters of higher order play a considerable part in the magnetic properties for CoAl, these clusters also seem to be characterized by a Kondo behavior, for FeAl, these clusters whose moment is higher than in the case of isolated atoms, could be constituted of excess parts of iron atoms.

  18. Surfactant-thermal method to prepare two new cobalt metal-organic frameworks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Xianglin; Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430074; Toh, Yong Siang

    2015-12-15

    Employing surfactants as reaction media, two new metal-organic frameworks (MOFs):(HTEA){sub 3}[Co{sub 3}(BTC){sub 3}] (NTU-Z33) and (HTEA)[Co{sub 3}(HBTC){sub 2}(BTC)] (NTU-Z34) (H{sub 3}BTC=1,3,5-benzenetricarboxylic acid, TEA=trimethylamine, and NTU=Nanyang Technological University), have been successfully synthesized and fully characterized. Note that NTU-Z33 has an unusual trimeric [Co{sub 3}(COO){sub 9}] secondary building unit (SBU). Magnetic characterization suggests that both compounds have weak antiferromagnetic behaviors. Our success in preparing new crystalline Co-BTC based MOFs under different surfactant media could provide a new road to prepare new diverse MOFs through various combinations of surfactants. - Graphical abstract: Employing surfactants as reaction media, two new metal-organic frame-works (MOFs) havemore » been successfully synthesized and magnetic study suggests that both compounds have weak antiferromagnetic behaviors. - Highlights: • Two novel metal-organic frame-works (MOFs). • Synthesis through surfactant-thermal condition. • weak antiferromagnetic behaviors for both compounds.« less

  19. Synthesis, structure, optical, photoluminescence and magnetic properties of K2[Co(C2O4)2(H2O)2]·4H2O

    NASA Astrophysics Data System (ADS)

    Narsimhulu, M.; Hussain, K. A.

    2018-06-01

    The synthesis, crystal structure, optical, photoluminescence and magnetic behaviour of potassium bis(oxalato)cobaltate(II)tertrahydrate{K2[Co(C2O4)2(H2O)2]·4H2O} are described. The compound was grown at room temperature from mixture of aqueous solutions by slow evaporation method. The X-ray crystallographic data showed that the compound belongs to the monoclinic crystal system with P21/n space group and Z = 4. The UV-visible diffuse absorbance spectra exhibited bands at 253, 285 and 541 nm in the visible and ultraviolet regions. The optical band gap of the compound was estimated as 3.4 eV. At room temperature, an intense photoluminescence was observed from this material around 392 nm when it excited at 254 nm. The variable temperature dc magnetic susceptibility measurements exposed paramagnetic behaviour at high temperatures and antiferromagnetic ordering at low temperatures.

  20. Formation, characterization, aggregation, fluorescence and antioxidant properties of novel tetrasubstituted metal-free and metallophthalocyanines bearing (4-(methylthio)phenoxy) moieties

    NASA Astrophysics Data System (ADS)

    Yıldırım, Nurdan; Bilgiçli, Ahmet T.; Alici, Esma Hande; Arabacı, Gulnur; Yarasir, M. Nilüfer

    2017-09-01

    The synthesis and characterization of peripherally tetra 4-(methylthio)phenoxy substituted metal-free(2), Zn(II) (3) and Co(II) (4) phthalocyanine derivatives were reported. These newly synthesized phthalocyanine derivatives showed the enhanced solubility in organic solvents and they were characterized by a combination of elemental analysis, FTIR, 1H NMR, 13C NMR, UV-vis and MALDI-TOF/MS spectral data. Their aggregation properties were investigated in THF by UV-vis and fluorescence. These metal-free and metallophthalocyanine compounds were also evaluated for their total antioxidant abilities by using three different antioxidant methods such as 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging, ferrous ion chelating and reducing power activity. All tested compounds showed radical scavenging activity. The highest radical scavenging activity was found from cobalt phthalocyanine (4) compound respectively. IC50 values of the compounds and standards (BHT and Trolox) were also determined. The results showed that the compound 4 had the highest antioxidant activity among all tested compounds including standards. The tested phthalocyanine compounds had ferrous ion chelating activity. In addition, they showed very high reducing power. All tested compounds had higher reducing power than the standards such as ascorbic acid and BHT. The present study shows that the synthesized tetra phthalocyanine [M: 2H(2), Zn(II)(3), Co(II)(4)] with four peripheral 4-(methylthio) phenoxy compounds have the effective antioxidant properties that can be used as antioxidant agents.

  1. Consumer leather exposure: an unrecognized cause of cobalt sensitization.

    PubMed

    Thyssen, Jacob P; Johansen, Jeanne D; Jellesen, Morten S; Møller, Per; Sloth, Jens J; Zachariae, Claus; Menné, Torkil

    2013-11-01

    A patient who had suffered from persistent generalized dermatitis for 7 years was diagnosed with cobalt sensitization, and his leather couch was suspected as the culprit, owing to the clinical presentation mimicking allergic chromium dermatitis resulting from leather furniture exposure. The cobalt spot test, X-ray fluorescence, inductively coupled plasma mass spectrometry and scanning electron microscopy were used to determine cobalt content and release from the leather couch that caused the dermatitis and from 14 randomly collected samples of furniture leather. The sample from the patient's leather couch, but none of the 14 random leather samples, released cobalt in high concentrations. Dermatitis cleared when the patient stopped using his couch. Cobalt is used in the so-called pre-metallized dyeing of leather products. Repeated studies have found high levels of cobalt sensitization, but not nickel sensitization, in patients with foot dermatitis. We raise the possibility that cobalt may be widely released from leather items, and advise dermatologists to consider this in patients with positive cobalt patch test reactions. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Fabrication of highly textured lithium cobalt oxide films by rapid thermal annealing

    DOEpatents

    Bates, John B.

    2003-04-29

    Systems and methods are described for fabrication of highly textured lithium cobalt oxide films by rapid thermal annealing. A method of forming a lithium cobalt oxide film includes depositing a film of lithium cobalt oxide on a substrate; rapidly heating the film of lithium cobalt oxide to a target temperature; and maintaining the film of lithium cobalt oxide at the target temperature for a target annealing time of at most, approximately 60 minutes. The systems and methods provide advantages because they require less time to implement and are, therefore less costly than previous techniques.

  3. Fabrication of highly textured lithium cobalt oxide films by rapid thermal annealing

    DOEpatents

    Bates, John B.

    2002-01-01

    Systems and methods are described for fabrication of highly textured lithium cobalt oxide films by rapid thermal annealing. A method of forming a lithium cobalt oxide film includes depositing a film of lithium cobalt oxide on a substrate; rapidly heating the film of lithium cobalt oxide to a target temperature; and maintaining the film of lithium cobalt oxide at the target temperature for a target annealing time of at most, approximately 60 minutes. The systems and methods provide advantages because they require less time to implement and are, therefore less costly than previous techniques.

  4. Fabrication of highly textured lithium cobalt oxide films by rapid thermal annealing

    DOEpatents

    Bates, John B.

    2003-05-13

    Systems and methods are described for fabrication of highly textured lithium cobalt oxide films by rapid thermal annealing. A method of forming a lithium cobalt oxide film includes depositing a film of lithium cobalt oxide on a substrate; rapidly heating the film of lithium cobalt oxide to a target temperature; and maintaining the film of lithium cobalt oxide at the target temperature for a target annealing time of at most, approximately 60 minutes. The systems and methods provide advantages because they require less time to implement and are, therefore less costly than previous techniques.

  5. Cobalt.

    PubMed

    Fowler, Joseph F

    2016-01-01

    Cobalt has been a recognized allergen capable of causing contact dermatitis for decades. Why, therefore, has it been named 2016 "Allergen of the Year"? Simply put, new information has come to light in the last few years regarding potential sources of exposure to this metallic substance. In addition to reviewing some background on our previous understanding of cobalt exposures, this article will highlight the recently recognized need to consider leather as a major site of cobalt and the visual cues suggesting the presence of cobalt in jewelry. In addition, a chemical spot test for cobalt now allows us to better identify its presence in suspect materials.

  6. Blood doping by cobalt. Should we measure cobalt in athletes?

    PubMed Central

    Lippi, Giuseppe; Franchini, Massimo; Guidi, Gian Cesare

    2006-01-01

    Background Blood doping is commonplace in competitive athletes who seek to enhance their aerobic performances through illicit techniques. Presentation of the hypothesis Cobalt, a naturally-occurring element with properties similar to those of iron and nickel, induces a marked and stable polycythemic response through a more efficient transcription of the erythropoietin gene. Testing the hypothesis Although little information is available so far on cobalt metabolism, reference value ranges or supplementation in athletes, there is emerging evidence that cobalt is used as a supplement and increased serum concentrations are occasionally observed in athletes. Therefore, given the athlete's connatural inclination to experiment with innovative, unfair and potentially unhealthy doping techniques, cobalt administration might soon become the most suited complement or surrogate for erythropoiesis-stimulating substances. Nevertheless, cobalt administration is not free from unsafe consequences, which involve toxic effects on heart, liver, kidney, thyroid and cancer promotion. Implications of the hypothesis Cobalt is easily purchasable, inexpensive and not currently comprehended within the World Anti-Doping Agency prohibited list. Moreover, available techniques for measuring whole blood, serum, plasma or urinary cobalt involve analytic approaches which are currently not practical for antidoping laboratories. Thus more research on cobalt metabolism in athletes is compelling, along with implementation of effective strategies to unmask this potentially deleterious doping practice PMID:16863591

  7. Two-dimensional 3d-4f heterometallic coordination polymers: syntheses, crystal structures, and magnetic properties of six new Co(II)-Ln(III) compounds.

    PubMed

    Díaz-Gallifa, Pau; Fabelo, Oscar; Pasán, Jorge; Cañadillas-Delgado, Laura; Lloret, Francesc; Julve, Miguel; Ruiz-Pérez, Catalina

    2014-06-16

    Six new heterometallic cobalt(II)-lanthanide(III) complexes of formulas [Ln(bta)(H2O)2]2[Co(H2O)6]·10H2O [Ln = Nd(III) (1) and Eu(III) (2)] and [Ln2Co(bta)2(H2O)8]n·6nH2O [Ln = Eu(III) (3), Sm(III) (4), Gd(III) (5), and Tb(III) (6)] (H4bta = 1,2,4,5-benzenetretracaboxylic acid) have been synthesized and characterized via single-crystal X-ray diffraction. 1 and 2 are isostructural compounds with a structure composed of anionic layers of [Ln(bta)(H2O)2]n(n-) sandwiching mononuclear [Co(H2O)6](2+) cations plus crystallization water molecules, which are interlinked by electrostatic forces and hydrogen bonds, leading to a supramolecular three-dimensional network. 3-6 are also isostructural compounds, and their structure consists of neutral layers of formula [Ln2Co(bta)2(H2O)8]n and crystallization water molecules, which are connected through hydrogen bonds to afford a supramolecular three-dimensional network. Heterometallic chains formed by the regular alternation of two nine-coordinate lanthanide(III) polyhedra [Ln(III)O9] and one compressed cobalt(II) octahedron [Co(II)O6] along the crystallographic c-axis are cross-linked by bta ligands within each layer of 3-6. Magnetic susceptibility measurements on polycrystalline samples for 3-6 have been carried out in the temperature range of 2.0-300 K. The magnetic behavior of these types of Ln(III)-Co(II) complexes, which have been modeled by using matrix dagonalization techniques, reveals the lack of magnetic coupling for 3 and 4, and the occurrence of weak antiferromagnetic interactions within the Gd(III)-Gd(III) (5) and Tb(III)-Tb(III) (6) dinuclear units through the exchange pathway provided by the double oxo(carboxylate) and double syn-syn carboxylate bridges.

  8. Photo-catalytic Degradation and Sorption of Radio-cobalt from EDTA-Co Complexes Using Manganese Oxide Materials - 12220

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koivula, Risto; Harjula, Risto; Tusa, Esko

    2012-07-01

    The synthesised cryptomelane-type α-MnO{sub 2} was tested for its Co-57 uptake properties in UV-photo-reactor filled with 10 μM Co-EDTA solution with a background of 10 mM NaNO{sub 3}. High cobalt uptake of 96% was observed after 1 hour of UV irradiation. As for comparison, a well-known TiO{sub 2} (Degussa P25) was tested as reference material that showed about 92% cobalt uptake after six hours of irradiation in identical experiment conditions. It was also noted that the cobalt uptake on cryptomelane with out UV irradiation was modest, only about 10%. Decreasing the pH of the Co-EDTA solution had severe effects onmore » the cobalt uptake mainly due to the rather high point of zero charge of the MnO{sub 2} surface (pzc at pH ∼4.5). Modifying the synthesis procedure we were able to produce a material that functioned well even in solution of pH 3 giving cobalt uptake of almost 99%. The known properties, catalytic and ion exchange, of manganese oxides were simultaneously used for the separation of EDTA complexed Co-57. Tunnel structured cryptomelane -type showed very fast and efficient Co uptake properties outperforming the well known and widely used Degussa P25 TiO{sub 2} in both counts. The layered structured manganese oxide, birnessite, reached also as high Co removal level as the reference material Degussa did but the reaction rate was considerably faster. Since the decontamination solutions are typically slightly acidic and the point of zero charge of the manganese oxides are rather high > pH 4.5 the material had to be modified. This modified material had tolerance to acidic solutions and it's Co uptake performance remained high in the solutions of lower pH (pH 3). Increasing the ion concentration of test solutions, background concentration, didn't affect the final Co uptake level; however, some changes in the uptake kinetics could be seen. The increase in EDTA/MoMO ratio was clearly reflected in the Co uptake curves. The obtained results of manganese oxide were very promising for the treatment of EDTA complexed Co solutions. The better performance values and cheaper production cost of manganese oxide, compared to titanium dioxide, is so big driving force that further studies on the material are evident. The possibilities for continuous treatment, instead of the fluidized bed -type batch experiment are investigated and the effects of other compounds affecting the de-complexation of Co-EDTA are further studied. (authors)« less

  9. In situ diagnosis of pulsed UV laser surface ablation of tungsten carbide hardmetal by using laser-induced optical emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, Tiejun; Lou, Qihong; Wei, Yunrong; Huang, Feng; Dong, Jingxing; Liu, Jingru

    2001-12-01

    Surface ablation of cobalt cemented tungsten carbide hardmetal with pulsed UV laser has been in situ diagnosed by using the technique of laser-induced optical emission spectroscopy. The dependence of emission intensity of cobalt lines on number of laser shots was investigated at laser fluence of 2.5 J/cm 2. As a comparison, the reliance of emission intensity of cobalt lines as a function of laser pulse number by using pure cobalt as ablation sample was also studied at the same laser condition. It was found that for surface ablation of tungsten carbide hardmetal at laser fluence of 2.5 J/cm 2, the intensities of cobalt lines fell off dramatically in the first 300 consecutive laser shots and then slowed down to a low stable level with even more shots. For surface ablation of pure cobalt at the same laser condition, the intensities of cobalt lines remained constant more or less even after 500 laser shots and then reduced very slowly with even more shots. It was concluded that selective evaporation of cobalt at this laser fluence should be responsible for the dramatic fall-off of cobalt lines with laser shots accumulation for surface ablation of tungsten carbide hardmetal. In contrast, for surface ablation of pure cobalt, the slow reduction of cobalt lines with pulse number accumulation should be due to the formation of laser-induced crater effect.

  10. Cobalt recycling in the United States in 1998

    USGS Publications Warehouse

    Shedd, Kim B.

    2002-01-01

    This report is one of a series of reports on metals recycling. It defines and quantifies the 1998 flow of cobalt-bearing materials in the United States, from imports and stock releases through consumption and disposition, with particular emphasis on the recycling of industrial scrap (new scrap) and used products (old scrap). Because of cobalt?s many and diverse uses, numerous types of scrap were available for recycling by a wide variety of processes. In 1998, an estimated 32 percent of U.S. cobalt supply was derived from scrap. The ratio of cobalt consumed from new scrap to that from old scrap was estimated to be 50:50. Of all the cobalt in old scrap available for recycling, an estimated 68 percent was either consumed in the United States or exported to be recycled.

  11. [Effect of fluoride concentration on the corrosion behavior of cobalt-chromium alloy fabricated by two different technology processes].

    PubMed

    Qiuxia, Yang; Ying, Yang; Han, Xu; Di, Wu; Ke, Guo

    2016-02-01

    This study aims to determine the effect of fluoride concentration on the corrosion behavior of cobalt-chromium alloy fabricated by two different technology processes in a simulated oral environment. A total of 15 specimens were employed with selective laser melting (SLM) and another 15 for traditional casting (Cast) in cobalt-chromium alloy powders and blocks with the same material composition. The corrosion behavior of the specimens was studied by potentiodynamic polarization test under different oral environments with varying solubilities of fluorine (0, 0.05%, and 0.20% for each) in acid artificial saliva (pH = 5.0). The specimens were soaked in fluorine for 24 h, and the surface microstructure was observed under a field emission scanning electron microscope after immersing the specimens in the test solution at constant temperature. The corrosion potential (Ecorr) value of the cobalt-chromium alloy cast decreased with increasing fluoride concentration in acidic artificial saliva. The Ecorr, Icorr, and Rp values of the cobalt-chromium alloy fabricated by two different technology processes changed significantly when the fluoride concentration was 0.20% (P < 0.05). The Ecorr, Icorr, and Rp values of the cobalt-chromium alloy fabricated by two different technology processes exhibited a statistically significant difference. The Icorr value of the cobalt-chromium alloy cast was higher than that in the SLM group cobalt-chromium alloy when the fluoride concentration was 0.20% (P < 0.05). The Ecorr, tRp alues of the cobalt-chromium alloy cast were lower htan those of the SLM group cobalt-chromium alloy when the fluoride concentration was 0.20% (P< 0 .05). Fluoride ions adversely affected the corrosion resistance of the cobalt-chromium alloy fabricated by two different technology processes. The corrosion resistance of the cobalt-chromium alloy cast was worse than that of the SLM group cobalt-chromium alloy when the fluoride concentration was 0.20%.

  12. Separation and Recovery of Cobalt from Copper Leach Solutions

    NASA Astrophysics Data System (ADS)

    Jeffers, T. H.

    1985-01-01

    Significant amounts of cobalt, a strategic and critical metal, are present in readily accessible copper recycling leach solutions. However, cost-effective technology is not available to separate and recover the cobalt from this low-grade domestic source. The Bureau of Mines has developed a procedure using a chelating ion-exchange resin from Dow Chemical Co. to successfully extract cobalt from a pH 3.0 copper recycling solution containing only 30 mg/1 cobalt. Cyclic tests with the commercial resin XFS-4195 in 4-ft-high by 1-in.-diameter columns gave an average cobalt extraction of 95% when 65 bed volumes of solution were processed at a flow rate of 4 gpm/ft.2 Elution of the cobalt using a 50 g/l H2SO4 solution yielded an eluate containing 0.5 gli Co. Selective elution of the loaded resin and solvent extraction procedures using di-2-ethylhexyl phosphoric acid (D2EHPA) and Cyanex 272 removed the impurities and produced a cobalt sulfate solution containing 25 g/l Co.

  13. Cobalt—Styles of deposits and the search for primary deposits

    USGS Publications Warehouse

    Hitzman, Murray W.; Bookstrom, Arthur A.; Slack, John F.; Zientek, Michael L.

    2017-11-30

    Cobalt (Co) is a potentially critical mineral. The vast majority of cobalt is a byproduct of copper and (or) nickel production. Cobalt is increasingly used in magnets and rechargeable batteries. More than 50 percent of primary cobalt production is from the Central African Copperbelt. The Central African Copperbelt is the only sedimentary rock-hosted stratiform copper district that contains significant cobalt. Its presence may indicate significant mafic-ultramafic rocks in the local basement. The balance of primary cobalt production is from magmatic nickel-copper and nickel laterite deposits. Cobalt is present in several carbonate-hosted lead-zinc and copper districts. It is also variably present in Besshi-type volcanogenic massive sulfide and siliciclastic sedimentary rock-hosted deposits in back arc and rift environments associated with mafic-ultramafic rocks. Metasedimentary cobalt-copper-gold deposits (such as Blackbird, Idaho), iron oxide-copper-gold deposits, and the five-element vein deposits (such as Cobalt, Ontario) contain different amounts of cobalt. None of these deposit types show direct links to mafic-ultramafic rocks; the deposits may result from crustal-scale hydrothermal systems capable of leaching and transporting cobalt from great depths. Hydrothermal deposits associated with ultramafic rocks, typified by the Bou Azzer district of Morocco, represent another type of primary cobalt deposit.In the United States, exploration for cobalt deposits may focus on magmatic nickel-copper deposits in the Archean and Proterozoic rocks of the Midwest and the east coast (Pennsylvania) and younger mafic rocks in southeastern and southern Alaska; also, possibly basement rocks in southeastern Missouri. Other potential exploration targets include—The Belt-Purcell basin of British Columbia (Canada), Idaho, Montana, and Washington for different styles of sedimentary rock-hosted cobalt deposits;Besshi-type VMS deposits, such as the Greens Creek (Alaska) deposit and the Ducktown (Tennessee) waste and tailings; andKnown five-element vein districts in Arizona and New Mexico, as well as in the Yukon-Tanana terrane of Alaska; and hydrothermal deposits associated with ultramafic rocks along the west coast, in Alaska, and in the Appalachian Mountains.

  14. Quantifying cobalt in doping control urine samples--a pilot study.

    PubMed

    Krug, Oliver; Kutscher, Daniel; Piper, Thomas; Geyer, Hans; Schänzer, Wilhelm; Thevis, Mario

    2014-01-01

    Since first reports on the impact of metals such as manganese and cobalt on erythropoiesis were published in the late 1920s, cobaltous chloride became a viable though not widespread means for the treatment of anaemic conditions. Today, its use is de facto eliminated from clinical practice; however, its (mis)use in human as well as animal sport as an erythropoiesis-stimulating agent has been discussed frequently. In order to assess possible analytical options and to provide relevant information on the prevalence of cobalt use/misuse among athletes, urinary cobalt concentrations were determined by inductively coupled plasma-mass spectrometry (ICP-MS) from four groups of subjects. The cohorts consisted of (1) a reference population with specimens of 100 non-elite athletes (not being part of the doping control system), (2) a total of 96 doping control samples from endurance sport athletes, (3) elimination study urine samples collected from six individuals having ingested cobaltous chloride (500 µg/day) through dietary supplements, and (4) samples from people supplementing vitamin B12 (cobalamin) at 500 µg/day, accounting for approximately 22 µg of cobalt. The obtained results demonstrated that urinary cobalt concentrations of the reference population as well as the group of elite athletes were within normal ranges (0.1-2.2 ng/mL). A modest but significant difference between these two groups was observed (Wilcoxon rank sum test, p < 0.01) with the athletes' samples presenting slightly higher urinary cobalt levels. The elimination study urine specimens yielded cobalt concentrations between 40 and 318 ng/mL during the first 6 h post-administration, and levels remained elevated (>22 ng/mL) up to 33 h. Oral supplementation of 500 µg of cobalamin did not result in urinary cobalt concentrations > 2 ng/mL. Based on these pilot study data it is concluded that measuring the urinary concentration of cobalt can provide information indicating the use of cobaltous chloride by athletes. Additional studies are however required to elucidate further factors potentially influencing urinary cobalt levels. Copyright © 2014 John Wiley & Sons, Ltd.

  15. In Situ Characterization of Mesoporous Co/CeO 2 Catalysts for the High-Temperature Water-Gas Shift

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vovchok, Dimitriy; Guild, Curtis J.; Dissanayake, Shanka

    Here, mesoporous Co/CeO 2 catalysts were found to exhibit significant activity for the high-temperature water-gas shift (WGS) reaction with cobalt loadings as low as 1 wt %. The catalysts feature a uniform dispersion of cobalt within the CeO 2 fluorite type lattice with no evidence of discrete cobalt phase segregation. In situ XANES and ambient pressure XPS experiments were used to elucidate the active state of the catalysts as partially reduced cerium oxide doped with oxidized cobalt atoms. In situ XRD and DRIFTS experiments suggest facile cerium reduction and oxygen vacancy formation, particularly with lower cobalt loadings. In situ DRIFTSmore » analysis also revealed the presence of surface carbonate and bidentate formate species under reaction conditions, which may be associated with additional mechanistic pathways for the WGS reaction. Deactivation behavior was observed with higher cobalt loadings. XANES data suggest the formation of small metallic cobalt clusters at temperatures above 400 °C may be responsible. Notably, this deactivation was not observed for the 1% cobalt loaded catalyst, which exhibited the highest activity per unit of cobalt.« less

  16. The role of cobalt on the creep of Waspaloy

    NASA Technical Reports Server (NTRS)

    Jarrett, R. N.; Chin, L.; Tien, J. K.

    1984-01-01

    Cobalt was systematically replaced with nickel in Waspaloy (which normally contains 13% Co) to determine the effects of cobalt on the creep behavior of this alloy. Effects of cobalt were found to be minimal on tensile strengths and microstructure. The creep resistance and the stress rupture resistance determined in the range from 704 to 760 C (1300 to 1400 C) were found to decrease as cobalt was removed from the standard alloy at all stresses and temperatures. Roughly a ten-fold drop in rupture life and a corresponding increase in minimum creep rate were found under all test conditions. Both the apparent creep activation energy and the matrix contribution to creep resistance were found to increase with cobalt. These creep effects are attributed to cobalt lowering the stacking fault energy of the alloy matrix. The creep resistance loss due to the removal of cobalt is shown to be restored by slightly increasing the gamma' volume fraction. Results are compared to a previous study on Udimet 700, a higher strength, higher gamma' volume fraction alloy with similar phase chemistry, in which cobalt did not affect creep resistance. An explanation for this difference in behavior based on interparticle spacing and cross-slip is presented.

  17. Metallic phases of cobalt-based catalysts in ethanol steam reforming: The effect of cerium oxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Sean S.-Y.; Kim, Do Heui; Ha, Su Y.

    2009-02-28

    The catalytic activity of cobalt in the production of hydrogen via ethanol steam reforming has been investigated in its relation to the crystalline structure of metallic cobalt. At a reaction temperature of 350 8C, the specific hydrogen production rates show that hexagonal close-packed (hcp) cobalt possesses higher activity than face-centered cubic (fcc) cobalt. However, at typical reaction temperatures (400– 500 8C) for ethanol steam reforming, hcp cobalt is transformed to less active fcc cobalt, as confirmed by in situ X-ray diffractometry (XRD). The addition of CeO2 promoter (10 wt.%) stabilizes the hcp cobalt structure at reforming temperatures up to 600more » 8C. Moreover, during the pre-reduction process, CeO2 promoter prevents sintering during the transformation of Co3O4 to hcp cobalt. Both reforming experiments and in situ diffuse-reflectance infrared Fourier transform spectroscopy (DRIFTS) showed that the surface reactions were modified by CeO2 promoter on 10% Ce–Co (hcp) to give a lower CO selectivity and a higher H2 yield as compared with the unpromoted hcp Co.« less

  18. In Situ Characterization of Mesoporous Co/CeO 2 Catalysts for the High-Temperature Water-Gas Shift

    DOE PAGES

    Vovchok, Dimitriy; Guild, Curtis J.; Dissanayake, Shanka; ...

    2018-04-04

    Here, mesoporous Co/CeO 2 catalysts were found to exhibit significant activity for the high-temperature water-gas shift (WGS) reaction with cobalt loadings as low as 1 wt %. The catalysts feature a uniform dispersion of cobalt within the CeO 2 fluorite type lattice with no evidence of discrete cobalt phase segregation. In situ XANES and ambient pressure XPS experiments were used to elucidate the active state of the catalysts as partially reduced cerium oxide doped with oxidized cobalt atoms. In situ XRD and DRIFTS experiments suggest facile cerium reduction and oxygen vacancy formation, particularly with lower cobalt loadings. In situ DRIFTSmore » analysis also revealed the presence of surface carbonate and bidentate formate species under reaction conditions, which may be associated with additional mechanistic pathways for the WGS reaction. Deactivation behavior was observed with higher cobalt loadings. XANES data suggest the formation of small metallic cobalt clusters at temperatures above 400 °C may be responsible. Notably, this deactivation was not observed for the 1% cobalt loaded catalyst, which exhibited the highest activity per unit of cobalt.« less

  19. Exposure to Cobalt Causes Transcriptomic and Proteomic Changes in Two Rat Liver Derived Cell Lines

    DTIC Science & Technology

    2013-12-01

    although contact with cobalt can cause dermatitis [16]. While cobalt is known to cause adverse health effects, the exact mechanism of action remains...animals and humans through various exposure routes. Cobalt can enter the body through respiration, ingestion, or contact with the skin. The adverse...concentration on the liver, kidney and heart in mice. Orthop Surg 2: 134–140. 16. Schwartz L PS (1945) Allergic dermatitis due to metallic cobalt. Journal

  20. Complete cobalt recovery from lithium cobalt oxide in self-driven microbial fuel cell - Microbial electrolysis cell systems

    NASA Astrophysics Data System (ADS)

    Huang, Liping; Yao, Binglin; Wu, Dan; Quan, Xie

    2014-08-01

    Complete cobalt recovery from lithium cobalt oxide requires to firstly leach cobalt from particles LiCoO2 and then recover cobalt from aqueous Co(II). A self-driven microbial fuel cell (MFC)-microbial electrolysis cell (MEC) system can completely carry out these two processes, in which Co(II) is firstly released from particles LiCoO2 on the cathodes of MFCs and then reduced on the cathodes of MECs which are powered by the cobalt leaching MFCs. A cobalt leaching rate of 46 ± 2 mg L-1 h-1 with yield of 1.5 ± 0.1 g Co g-1 COD (MFCs) and a Co(II) reduction rate of 7 ± 0 mg L-1 h-1 with yield of 0.8 ± 0.0 g Co g-1 COD (MECs), as well as a overall system cobalt yield of 0.15 ± 0.01 g Co g-1 Co can be achieved in this self-driven MFC-MEC system. Coulombic efficiencies reach 41 ± 1% (anodic MFCs), 75 ± 0% (anodic MECs), 100 ± 2% (cathodic MFCs), and 29 ± 1% (cathodic MECs) whereas overall system efficiency averages 34 ± 1%. These results provide a new process of linking MFCs to MECs for complete recovery of cobalt and recycle of spent lithium ion batteries with no external energy consumption.

  1. Process for cobalt separation and recovery in the presence of nickel from sulphate solutions by Cyanex 272

    NASA Astrophysics Data System (ADS)

    Park, Kyung-Ho; Mohapatra, Debasish

    2006-10-01

    The present paper deals with the extraction of cobalt from a solution containing cobalt and nickel in a sulphate medium similar to the leach liquor obtained by the dilute sulphuric acid pressure leaching of the Pacific Ocean nodules matte followed by copper extraction. The commercial extractant Cyanex 272 (bis (2, 4, 4-trimethylpentyl) phosphinic acid) is used for this purpose. The leach liquor used for the present study contains Co =1.78 g/L and Ni=16.78 g/L. Before cobalt extraction, impurities, such as copper and iron, are removed from the leach liquor by the precipitation method. Increasing the concentration of Cyanex 272 increased the extraction percentage of cobalt due to the increase of equilibrium pH. Cobalt extraction efficiency of >99.9 % is achieved with 0.20 M Cyanex 272 in two counter-current stages at an aqueous: organic (A:O) phase ratio of 1.5∶1. Complete stripping of cobalt from the loaded organic containing 2.73 g/L Co was carried out at pH 1.4 by a synthetic cobalt spent electrolyte in two stages at an A:O ratio of 1∶2. The enrichment of cobalt during extraction and stripping operations was about 3.5 times. A complete process flowsheet for the separation and recovery of cobalt is presented.

  2. 40 CFR 721.10201 - Cobalt lithium manganese nickel oxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Cobalt lithium manganese nickel oxide... Specific Chemical Substances § 721.10201 Cobalt lithium manganese nickel oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as cobalt lithium manganese...

  3. 40 CFR 721.10201 - Cobalt lithium manganese nickel oxide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Cobalt lithium manganese nickel oxide... Specific Chemical Substances § 721.10201 Cobalt lithium manganese nickel oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as cobalt lithium manganese...

  4. 40 CFR 721.10201 - Cobalt lithium manganese nickel oxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Cobalt lithium manganese nickel oxide... Specific Chemical Substances § 721.10201 Cobalt lithium manganese nickel oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as cobalt lithium manganese...

  5. Palladium-cobalt particles as oxygen-reduction electrocatalysts

    DOEpatents

    Adzic, Radoslav [East Setauket, NY; Huang, Tao [Manorville, NY

    2009-12-15

    The present invention relates to palladium-cobalt particles useful as oxygen-reducing electrocatalysts. The invention also relates to oxygen-reducing cathodes and fuel cells containing these palladium-cobalt particles. The invention additionally relates to methods for the production of electrical energy by using the palladium-cobalt particles of the invention.

  6. Liesegang banding and multiple precipitate formation in cobalt phosphate systems

    NASA Astrophysics Data System (ADS)

    Karam, Tony; El-Rassy, Houssam; Zaknoun, Farah; Moussa, Zeinab; Sultan, Rabih

    2012-02-01

    We study a cobalt phosphate Liesegang pattern from cobalt(II) and phosphate ions in a 1D tube. The system yields a complex, multi-component pattern. Characterization of the different precipitates by FTIR, SEM and XRD reveals that they are cobalt phosphate polymorphs with different degrees of hydration.

  7. 21 CFR 73.1015 - Chromium-cobalt-aluminum oxide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) Identity. The color additive chromium-cobalt-aluminum oxide is a blue-green pigment obtained by calcining a... percent each) of oxides of barium, boron, silicon, and nickel. (b) Specifications. Chromium-cobalt... milliliters of 0.5 N hydrochloric acid. (c) Uses and restrictions. The color additive chromium-cobalt-aluminum...

  8. Comparison of different supplemental cobalt forms on fiber digestion and cobalamin levels

    USDA-ARS?s Scientific Manuscript database

    Cobalt (Co) is essential for rumen microbial metabolism to synthesize methane, acetate and methionine. It also serves as a structural component of vitamin B*12, which functions as a coenzyme in energy metabolism. A study was conducted to determine if Co form (cobalt carbonate vs cobalt glucoheptona...

  9. Comparison of different supplemental cobalt forms on digestion and cobalamin levels

    USDA-ARS?s Scientific Manuscript database

    Cobalt (Co) is essential for rumen microbial metabolism to synthesize methane, acetate and methionine. It also serves as a structural component of vitamin B12, which functions as a coenzyme in energy metabolism. A study was conducted to determine if Co form (cobalt carbonate vs cobalt glucoheptonat...

  10. Exposure to Cobalt Causes Transcriptomic and Proteomic Changes in Two Rat Liver Derived Cell Lines

    DTIC Science & Technology

    2013-12-30

    exposures are unlikely to have systemic effects as cobalt cannot readily penetrate normal skin, although contact with cobalt can cause dermatitis [16...Cobalt can enter the body through respiration, ingestion, or contact with the skin. The adverse effects of an inhalation exposure occur mostly in the lung...Surg 2: 134–140. 16. Schwartz L PS (1945) Allergic dermatitis due to metallic cobalt. Journal of Allergy 16: 51–53. 17. De Matteis F, Gibbs AH (1977

  11. Magnetism of new metastable cobalt-nitride compounds.

    PubMed

    Balasubramanian, Balamurugan; Zhao, Xin; Valloppilly, Shah R; Beniwal, Sumit; Skomski, Ralph; Sarella, Anandakumar; Jin, Yunlong; Li, Xingzhong; Xu, Xiaoshan; Cao, Huibo; Wang, Haohan; Enders, Axel; Wang, Cai-Zhuang; Ho, Kai-Ming; Sellmyer, David J

    2018-06-06

    The search for new magnetic materials with high magnetization and magnetocrystalline anisotropy is important for a wide range of applications including information and energy processing. There is only a limited number of naturally occurring magnetic compounds that are suitable. This situation stimulates an exploration of new phases that occur far from thermal-equilibrium conditions, but their stabilization is generally inhibited due to high positive formation energies. Here a nanocluster-deposition method has enabled the discovery of a set of new non-equilibrium Co-N intermetallic compounds. The experimental search was assisted by computational methods including adaptive-genetic-algorithm and electronic-structure calculations. Conventional wisdom is that the interstitial or substitutional solubility of N in Co is much lower than that in Fe and that N in Co in equilibrium alloys does not produce materials with significant magnetization and anisotropy. By contrast, our experiments identify new Co-N compounds with favorable magnetic properties including hexagonal Co3N nanoparticles with a high saturation magnetic polarization (Js = 1.28 T or 12.8 kG) and an appreciable uniaxial magnetocrystalline anisotropy (K1 = 1.01 MJ m-3 or 10.1 Mergs per cm3). This research provides a pathway for uncovering new magnetic compounds with computational efficiency beyond the existing materials database, which is significant for future technologies.

  12. 40 CFR 721.5315 - Nickel, cobalt mixed metal oxide (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Nickel, cobalt mixed metal oxide... Specific Chemical Substances § 721.5315 Nickel, cobalt mixed metal oxide (generic). (a) Chemical substance... nickel, cobalt mixed metal oxide. (PMN P-02-90) is subject to reporting under this section for the...

  13. 40 CFR 721.5315 - Nickel, cobalt mixed metal oxide (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Nickel, cobalt mixed metal oxide... Specific Chemical Substances § 721.5315 Nickel, cobalt mixed metal oxide (generic). (a) Chemical substance... nickel, cobalt mixed metal oxide. (PMN P-02-90) is subject to reporting under this section for the...

  14. 40 CFR 721.5315 - Nickel, cobalt mixed metal oxide (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Nickel, cobalt mixed metal oxide... Specific Chemical Substances § 721.5315 Nickel, cobalt mixed metal oxide (generic). (a) Chemical substance... nickel, cobalt mixed metal oxide. (PMN P-02-90) is subject to reporting under this section for the...

  15. 40 CFR 721.5315 - Nickel, cobalt mixed metal oxide (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Nickel, cobalt mixed metal oxide... Specific Chemical Substances § 721.5315 Nickel, cobalt mixed metal oxide (generic). (a) Chemical substance... nickel, cobalt mixed metal oxide. (PMN P-02-90) is subject to reporting under this section for the...

  16. 75 FR 70665 - Proposed Significant New Use Rule for Cobalt Lithium Manganese Nickel Oxide

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-18

    ... Proposed Significant New Use Rule for Cobalt Lithium Manganese Nickel Oxide AGENCY: Environmental... as cobalt lithium manganese nickel oxide (CAS No. 182442-95-1) which was the subject of... section 5(a)(2) of TSCA for the chemical substance identified as cobalt lithium manganese nickel oxide...

  17. 40 CFR 721.10600 - Calcium cobalt lead strontium titanium tungsten oxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Calcium cobalt lead strontium titanium... Specific Chemical Substances § 721.10600 Calcium cobalt lead strontium titanium tungsten oxide. (a... calcium cobalt lead strontium titanium tungsten oxide (PMN P-11-272; CAS No. 1262279-30-0) is subject to...

  18. 40 CFR 721.10600 - Calcium cobalt lead strontium titanium tungsten oxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Calcium cobalt lead strontium titanium... Specific Chemical Substances § 721.10600 Calcium cobalt lead strontium titanium tungsten oxide. (a... calcium cobalt lead strontium titanium tungsten oxide (PMN P-11-272; CAS No. 1262279-30-0) is subject to...

  19. Thermal-fatigue and oxidation resistance of cobalt-modified Udimet 700 alloy

    NASA Technical Reports Server (NTRS)

    Bizon, P. T.; Barrow, B. J.

    1986-01-01

    Comparative thermal-fatigue and oxidation resistances of cobalt-modified wrought Udimet 700 alloy (obtained by reducing the cobalt level by direct substitution of nickel) were determined from fluidized-bed tests. Bed temperatures were 1010 and 288 C (1850 and 550 C) for the first 5500 symmetrical 6-min cycles. From cycle 5501 to the 14000-cycle limit of testing, the heating bed temperature was increased to 1050 C (1922 F). Cobalt levels between 0 and 17 wt% were studied in both the bare and NiCrAlY overlay coated conditions. A cobalt level of about 8 wt% gave the best thermal-fatigue life. The conventional alloy specification is for 18.5% cobalt, and hence, a factor of 2 in savings of cobalt could be achieved by using the modified alloy. After 13500 cycles, all bare cobalt-modified alloys lost 10 to 13 percent of their initial weight. Application of the NiCrAlY overlay coating resulted in weight losses of 1/20 to 1/100 of that of the corresponding bare alloy.

  20. Selective Area Band Engineering of Graphene using Cobalt-Mediated Oxidation.

    PubMed

    Bazylewski, Paul F; Nguyen, Van Luan; Bauer, Robert P C; Hunt, Adrian H; McDermott, Eamon J G; Leedahl, Brett D; Kukharenko, Andrey I; Cholakh, Seif O; Kurmaev, Ernst Z; Blaha, Peter; Moewes, Alexander; Lee, Young Hee; Chang, Gap Soo

    2015-10-21

    This study reports a scalable and economical method to open a band gap in single layer graphene by deposition of cobalt metal on its surface using physical vapor deposition in high vacuum. At low cobalt thickness, clusters form at impurity sites on the graphene without etching or damaging the graphene. When exposed to oxygen at room temperature, oxygen functional groups form in proportion to the cobalt thickness that modify the graphene band structure. Cobalt/Graphene resulting from this treatment can support a band gap of 0.30 eV, while remaining largely undamaged to preserve its structural and electrical properties. A mechanism of cobalt-mediated band opening is proposed as a two-step process starting with charge transfer from metal to graphene, followed by formation of oxides where cobalt has been deposited. Contributions from the formation of both CoO and oxygen functional groups on graphene affect the electronic structure to open a band gap. This study demonstrates that cobalt-mediated oxidation is a viable method to introduce a band gap into graphene at room temperature that could be applicable in electronics applications.

  1. Studies on KIT-6 Supported Cobalt Catalyst for Fischer–Tropsch Synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gnanamani, M.; Jacobs, G; Graham, U

    2010-01-01

    KIT-6 molecular sieve was used as a support to prepare cobalt catalyst for Fischer-Tropsch synthesis (FTS) using an incipient wetness impregnation method to produce cobalt loadings of 15 and 25 wt%. The catalysts were characterized by BET surface area, X-ray diffraction, scanning transmission election microscopy (STEM), extended X-ray absorption fine spectroscopy and X-ray absorption near edge spectroscopy. The catalytic properties for FTS were evaluated using a 1L CSTR reactor. XRD, pore size distribution, and STEM analysis indicate that the KIT-6 mesostructure remains stable during and after cobalt impregnation and tends to form smaller cobalt particles, probably located inside the mesopores.more » The mesoporous KIT-6 exhibited a slightly higher cobalt dispersion compared to amorphous SiO{sub 2} supported catalyst. With the higher Co loading (25 wt%) on KIT-6, partial structural collapse was observed after the FTS reaction. Compared to an amorphous SiO{sub 2} supported cobalt catalyst, KIT-6 supported cobalt catalyst displayed higher methane selectivity at a similar Co loading, likely due to diffusion effects.« less

  2. Selective Area Band Engineering of Graphene using Cobalt-Mediated Oxidation

    PubMed Central

    Bazylewski, Paul F.; Nguyen, Van Luan; Bauer, Robert P.C.; Hunt, Adrian H.; McDermott, Eamon J. G.; Leedahl, Brett D.; Kukharenko, Andrey I.; Cholakh, Seif O.; Kurmaev, Ernst Z.; Blaha, Peter; Moewes, Alexander; Lee, Young Hee; Chang, Gap Soo

    2015-01-01

    This study reports a scalable and economical method to open a band gap in single layer graphene by deposition of cobalt metal on its surface using physical vapor deposition in high vacuum. At low cobalt thickness, clusters form at impurity sites on the graphene without etching or damaging the graphene. When exposed to oxygen at room temperature, oxygen functional groups form in proportion to the cobalt thickness that modify the graphene band structure. Cobalt/Graphene resulting from this treatment can support a band gap of 0.30 eV, while remaining largely undamaged to preserve its structural and electrical properties. A mechanism of cobalt-mediated band opening is proposed as a two-step process starting with charge transfer from metal to graphene, followed by formation of oxides where cobalt has been deposited. Contributions from the formation of both CoO and oxygen functional groups on graphene affect the electronic structure to open a band gap. This study demonstrates that cobalt-mediated oxidation is a viable method to introduce a band gap into graphene at room temperature that could be applicable in electronics applications. PMID:26486966

  3. Cyanide speciation at four gold leach operations undergoing remediation

    USGS Publications Warehouse

    Johnson, Craig A.; Grimes, David J.; Leinz, Reinhard W.; Rye, Robert O.

    2008-01-01

    Analyses have been made of 81 effluents from four gold leach operations in various stages of remediation to identify the most-persistent cyanide species. Total cyanide and weak acid-dissociable (WAD) cyanide were measured using improved methods, and metals known to form stable cyanocomplexes were also measured. Typically, total cyanide greatly exceeded WAD indicating that cyanide was predominantly in strong cyanometallic complexes. Iron was generally too low to accommodate the strongly complexed cyanide as Fe(CN)63- or Fe(CN)64-, but cobalt was abundant enough to implicate Co(CN)63- or its dissociation products (Co(CN)6-x(H2O)x(3-x)-). Supporting evidence for cobalt-cyanide complexation was found in tight correlations between cobalt and cyanide in some sample suites. Also, abundant free cyanide was produced upon UV illumination. Iron and cobalt cyanocomplexes both photodissociate; however, the iron concentration was insufficient to have carried the liberated cyanide, while the cobalt concentration was sufficient. Cobalt cyanocomplexes have not previously been recognized in cyanidation wastes. Their identification at four separate operations, which had treated ores that were not especially rich in cobalt, suggests that cobalt complexation may be a common source of cyanide persistence. There is a need for more information on the importance and behavior of cobalt cyanocomplexes in ore-processing wastes at gold mines.

  4. Effect of cobalt on Escherichia coli metabolism and metalloporphyrin formation

    PubMed Central

    Majtan, Tomas; Frerman, Frank E.

    2011-01-01

    Toxicity in Escherichia coli resulting from high concentrations of cobalt has been explained by competition of cobalt with iron in various metabolic processes including Fe–S cluster assembly, sulfur assimilation, production of free radicals and reduction of free thiol pool. Here we present another aspect of increased cobalt concentrations in the culture medium resulting in the production of cobalt protoporphyrin IX (CoPPIX), which was incorporated into heme proteins including membrane-bound cytochromes and an expressed human cystathionine beta-synthase (CBS). The presence of CoPPIX in cytochromes inhibited their electron transport capacity and resulted in a substantially decreased respiration. Bacterial cells adapted to the increased cobalt concentration by inducing a modified mixed acid fermentative pathway under aerobiosis. We capitalized on the ability of E. coli to insert cobalt into PPIX to carry out an expression of CoPPIX-substituted heme proteins. The level of CoPPIX-substitution increased with the number of passages of cells in a cobalt-containing medium. This approach is an inexpensive method to prepare cobalt-substituted heme proteins compared to in vitro enzyme reconstitution or in vivo replacement using metalloporphyrin heme analogs and seems to be especially suitable for complex heme proteins with an additional coenzyme, such as human CBS. PMID:21184140

  5. Phosphorus-31 and carbon-13 nuclear magnetic resonance studies of divalent cation binding to phosphatidylserine membranes. Use of cobalt as a paramagnetic probe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McLaughlin, A.C.

    1982-01-01

    The paramagnetic divalent cation cobalt has large and well-understood effects on NMR signals from ligands bound in the first coordination sphere, i.e., inner-sphere ligands, and the authors have used these effects to identify divalent cation binding sites at the surface of phosphatidylserine membranes. /sup 31/P NMR results show that 13% of the bound cobalt ions are involved in inner-sphere complexes with the phosphodiester group, while /sup 13/C NMR results show that 54% of the bound cobalt ions are involved in unidentate inner sphere complexes with the carboxyl group. No evidence is found for cobalt binding to the carbonyl groups, butmore » proton release studies suggest that 32% of the bound cobalt ions are involved in chelate complexes that contain both the carboxyl and the amine groups. All of the bound cobalt ions can thus be accounted for in terms of inner sphere complexes with the phosphodiester group or the carboxyl group. They suggest that the unidentate inner-sphere complex between cobalt and the carboxyl group of phosphatidylserine and the inner-sphere complex between cobalt and the phosphodiester group of phosphatidylserine provide reasonable models for complexes between alkaline earth cations and phosphatidylserine membranes.« less

  6. Phosphorus-31 and carbon-13 nuclear magnetic resonance studies of divalent cation binding to phosphatidylserine membranes: use of cobalt as a paramagnetic probe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McLaughlin, A.C.

    1982-09-28

    The paramagnetic divalent cation cobalt has large and well-understood effects on NMR signals from ligands bound in the first coordination sphere, i.e., inner-sphere ligands, and we have used these effects to identify divalent cation binding sites at the surface of phosphatidylserine membranes. /sup 31/P NMR results show that 13% of the bound cobalt ions are involved in inner-sphere complexes with the phosphodiester group, while /sup 13/C NMR results show that 54% of the bound cobalt ions are involved in unidentate inner sphere complexes with the carboxyl group. No evidence is found for cobalt binding to the carbonyl groups, but protonmore » release studies suggest that 32% of the bound cobalt ions are involved in chelate complexes that contain both the carboxyl and the amine groups. All (i.e., 13% + 54% + 32% = 99%) of the bound cobalt ions can thus be accounted for in terms of inner sphere complexes with the phosphodiester group or the carboxyl group. We suggest that the unidentate inner-sphere complex between cobalt and the carboxyl group of phosphatidylserine and the inner-sphere complex between cobalt and the phosphodiester group of phosphatidylserine provide reasonable models for complexes between alkaline earth cations and phosphatidylserine membranes.« less

  7. Cobalt asthma in metalworkers from an automotive engine valve manufacturer.

    PubMed

    Walters, G I; Robertson, A S; Moore, V C; Burge, P S

    2014-07-01

    Cobalt asthma has previously been described in cobalt production workers, diamond polishers and glassware manufacturers. To describe a case series of occupational asthma (OA) due to cobalt, identified at the Birmingham Heartlands Occupational Lung Disease Unit, West Midlands, UK. Cases of cobalt asthma from a West Midlands' manufacturer of automotive engine valves, diagnosed between 1996 and 2005, were identified from the SHIELD database of OA. Case note data on demographics, employment status, asthma symptoms and diagnostic tests, including spirometry, peak expiratory flow (PEF) measurements, skin prick testing (SPT) and specific inhalational challenge (SIC) tests to cobalt chloride, were gathered, and descriptive statistics used to illustrate the data. The natural history of presentations has been described in detail, as well as a case study of one of the affected workers. Fourteen metalworkers (86% male; mean age 44.9 years) were diagnosed with cobalt asthma between 1996 and 2005. Workers were principally stellite grinders, stellite welders or machine setter-operators. All workers had positive Occupational Asthma SYStem analyses of serial PEF measurements, and sensitization to cobalt chloride was demonstrated in nine workers, by SPT or SIC. We have described a series of 14 workers with cobalt asthma from the automotive manufacturing industry, with objective evidence for sensitization. Health care workers should remain vigilant for cobalt asthma in the automotive manufacturing industry. © The Author 2014. Published by Oxford University Press on behalf of the Society of Occupational Medicine. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Cobalt distribution in keratinocyte cells indicates nuclear and perinuclear accumulation and interaction with magnesium and zinc homeostasis.

    PubMed

    Ortega, Richard; Bresson, Carole; Fraysse, Aurélien; Sandre, Caroline; Devès, Guillaume; Gombert, Clémentine; Tabarant, Michel; Bleuet, Pierre; Seznec, Hervé; Simionovici, Alexandre; Moretto, Philippe; Moulin, Christophe

    2009-07-10

    Cobalt is known to be toxic at high concentration, to induce contact dermatosis, and occupational radiation skin damage because of its use in nuclear industry. We investigated the intracellular distribution of cobalt in HaCaT human keratinocytes as a model of skin cells, and its interaction with endogenous trace elements. Direct micro-chemical imaging based on ion beam techniques was applied to determine the quantitative distribution of cobalt in HaCaT cells. In addition, synchrotron radiation X-ray fluorescence microanalysis in tomography mode was performed, for the first time on a single cell, to determine the 3D intracellular distribution of cobalt. Results obtained with these micro-chemical techniques were compared to a more classical method based on cellular fractionation followed by inductively coupled plasma atomic emission spectrometry (ICP-AES) measurements. Cobalt was found to accumulate in the cell nucleus and in perinuclear structures indicating the possible direct interaction with genomic DNA, and nuclear proteins. The perinuclear accumulation in the cytosol suggests that cobalt could be stored in the endoplasmic reticulum or the Golgi apparatus. The multi-elemental analysis revealed that cobalt exposure significantly decreased magnesium and zinc content, with a likely competition of cobalt for magnesium and zinc binding sites in proteins. Overall, these data suggest a multiform toxicity of cobalt related to interactions with genomic DNA and nuclear proteins, and to the alteration of zinc and magnesium homeostasis.

  9. Radioluminescence of polyester resin modified with acrylic acid and its salts

    NASA Astrophysics Data System (ADS)

    Szalińska, H.; Wypych, M.; Pietrzak, M.; Szadkowska-Nicze, M.

    Polimal-109 polyester resin and its compounds containing acrylic acid and its salts such as: sodium, potassium, magnesium, calcium, barium, iron, cobalt, copper and manganese acrylates were studied by the radioluminescence method, including isothermal luminescence (ITL) at a radiation temperature of 77 K, thermoluminescence (RTL) and spectral distributions of isothermal luminescence. Measurements of optical absorption at 77 K before and after irradiation of the investigated samples were also carried out. The results obtained have shown that metal ions play a significant part in the processes taking place in the polyester matrix under the influence of γ 60Co radiation.

  10. Radiation cured polyester compositions containing metal-properties

    NASA Astrophysics Data System (ADS)

    Szalińska, H.; Pietrzak, M.; Gonerski, A.

    The subject of the studies was unsaturated polyester resin, Polimal-109 and its compositions containing acrylates of: sodium, potassium, calcium, magnesium, barium, manganese, iron, cobalt, copper and acrylic acid. Polyester resin modified with acrylic acid salts was cured with 60Co gamma radiation. Measurements of Vicat softening temperature, water absorption, creep current resistance, volume and surface resistivity, the tangent of dielectric loss angle and permittivity of radiation cured compositions were carried out. The results of the studies presented testify to the fact that the properties of cross-linked polymers alter after ionogenic compounds have been introduced into them.

  11. Effects of ionizing radiations on a pharmaceutical compound, chloramphenicol

    NASA Astrophysics Data System (ADS)

    Varshney, L.; Patel, K. M.

    1994-05-01

    Chloramphenicol, a broad spectrum antibiotic, has been irradiated using Cobalt-60 γ radiation and electron beam at graded radiation doses upto 100 kGy. Several degradation products and free radicals are formed on irradiation. Purity, degradation products, free radicals, discolouration, crystallinity, solubility and entropy of radiation processing have been investigated. Aqueous solutions undergo extensive radiolysis even at low doses. Physico-chemical, microbiological and toxicological tests do not show significant degradation at sterilization dose. High performance liquid chromatography (HPLC), differential scanning calorimetry (DSC), UV-spectrophotometry, diffuse reflectance spectroscopy (DRS) and electron spin resonance spectroscopy (ESR) techniques were employed for the investigations.

  12. Expert Assessment of Advanced Power Sources

    DTIC Science & Technology

    2007-07-01

    including [13] LiCo1-yNiyO2 , LiNiO2, LiMnO2, LiMn2O4, LiV2O5 and LiFePO4 . The last compound, lithium iron phosphate [19], is attractive as iron is...cheaper and more environmentally friendly than cobalt, nickel or manganese. Commercial development of a lithium ion battery based on LiFePO4 is...electrochemical performance evaluated. Materials studied include: LiV2O5 and other vanadium oxides, LiCoO2, LiMnO2, LiMn2O4 and LiFePO4 . 3-D

  13. (Carbonato-κO,O')bis-(1,10-phenan-throline-κN,N')cobalt(III) nitrate monohydrate.

    PubMed

    Andaç, Omer; Yolcu, Zuhal; Büyükgüngör, Orhan

    2009-12-12

    The crystal structure of the title compound, [Co(CO(3))(C(12)H(8)N(2))(2)]NO(3)·H(2)O, consists of Co(III) complex cations, nitrate anions and uncoordinated water mol-ecules. The Co(III) cation is chelated by a carbonate anion and two phenanthroline ligands in a distorted octa-hedral coordination geometry. A three-dimensional supra-molecular structure is formed by O-H⋯O and C-H⋯O hydrogen bonding, C-H⋯π and aromatic π-π stacking [centroid-centroid distance = 3.995 (1)Å] inter-actions.

  14. Interlaboratory trial for the measurement of total cobalt in equine urine and plasma by ICP-MS.

    PubMed

    Popot, Marie-Agnes; Ho, Emmie N M; Stojiljkovic, Natali; Bagilet, Florian; Remy, Pierre; Maciejewski, Pascal; Loup, Benoit; Chan, George H M; Hargrave, Sabine; Arthur, Rick M; Russo, Charlie; White, James; Hincks, Pamela; Pearce, Clive; Ganio, George; Zahra, Paul; Batty, David; Jarrett, Mark; Brooks, Lydia; Prescott, Lise-Anne; Bailly-Chouriberry, Ludovic; Bonnaire, Yves; Wan, Terence S M

    2017-09-01

    Cobalt is an essential mineral micronutrient and is regularly present in equine nutritional and feed supplements. Therefore, cobalt is naturally present at low concentrations in biological samples. The administration of cobalt chloride is considered to be blood doping and is thus prohibited. To control the misuse of cobalt, it was mandatory to establish an international threshold for cobalt in plasma and/or in urine. To achieve this goal, an international collaboration, consisting of an interlaboratory comparison between 5 laboratories for the urine study and 8 laboratories for the plasma study, has been undertaken. Quantification of cobalt in the biological samples was performed by inductively coupled plasma-mass spectrometry (ICP-MS). Ring tests were based on the analysis of 5 urine samples supplemented at concentrations ranging from 5 up to 500 ng/mL and 5 plasma samples spiked at concentrations ranging from 0.5 up to 25 ng/mL. The results obtained from the different laboratories were collected, compiled, and compared to assess the reproducibility and robustness of cobalt quantification measurements. The statistical approach for the ring test for total cobalt in urine was based on the determination of percentage deviations from the calculated means, while robust statistics based on the calculated median were applied to the ring test for total cobalt in plasma. The inter-laboratory comparisons in urine and in plasma were successful so that 97.6% of the urine samples and 97.5% of the plasma samples gave satisfactory results. Threshold values for cobalt in plasma and urine were established from data only obtained by laboratories involved in the ring test. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  15. The effect of cobalt content in U-700 type alloys on degradation of aluminide coatings

    NASA Technical Reports Server (NTRS)

    Zaplatynsky, I.

    1985-01-01

    The influence of cobalt content in U-700 type alloys on the behavior of aluminide coatings is studied in burner rig cyclic oxidation tests at 1100C. It is determined that aluminide coatings on alloys with higher cobalt offer better oxidation protection than the same coatings on alloys containing less cobalt.

  16. Radioactive cobalt removal from Salem liquid radwaste with cobalt selective media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maza R.; Wilson, J.A.; Hetherington, R.

    This paper reports results of benchtop tests using ion exchange material to selectively remove radioactive cobalt from high conductivity liquid radwaste at the Salem Nuclear Generating Station. The purpose of this test program is to reduce the number of curies in liquid releases without increasing the solid waste volume. These tests have identified two cobalt selective materials that together remove radioactive cobalt more effectively than the single component currently used. All test materials were preconditioned by conversion to the divalent calcium or sulfate form to simulate chemically exhausted media.

  17. Competitive Adsorption-Assisted Formation of One-Dimensional Cobalt Nanochains with High CO Hydrogenation Activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, Xin; Ren, Zhibo; Zhu, Xiaolin

    In the present work, cobalt nanochains have been successfully synthesized by a novel co assisted self-assembling formation strategy. A dramatic morphology transformation from cobalt nanoparticles to nanochains are observed when co molecules were introduced into the synthetic system. DFT calculations further confirm that competitive co-adsorbed co and oleylamine over the cobalt nanoparticles facilitates the formation of cobalt nanochains, which show higher co hydrogenation performance. The present work provides a new strategic and promising method for controllable synthesis of catalyst nanomaterials with the preferred surface structure and morphology.

  18. An electrochemical sensor prepared by sonochemical one-pot synthesis of multi-walled carbon nanotube-supported cobalt nanoparticles for the simultaneous determination of paracetamol and dopamine.

    PubMed

    Kutluay, Aysegul; Aslanoglu, Mehmet

    2014-08-11

    Multi-walled carbon nanotubes (MWCNTs) functionalized by cobalt nanoparticles were obtained using a single step chemical deposition method in an ultrasonic bath. The composite material was characterized using scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX). The electroactivity of the cobalt-functionalized MWCNTs was assessed in respect to the electrooxidation of paracetamol (PAR) and dopamine (DA). It was found that the carbon nanotube supported cobalt nanoparticles have significantly higher catalytic properties. The proposed electrode has been applied for the simultaneous determination of PAR and DA. The modified electrode could resolve the overlapped voltammetric waves of PAR and DA into two well-defined voltammetric peaks with peak to peak separation of about 203 mV. On the other hand, the presence of potential drug interfering compounds AA and UA did not affect the voltammetric responses of PAR and DA. The current of oxidation peaks showed a linear dependent on the concentrations of PAR and DA in the range of 5.2×10(-9)-4.5×10(-7) M (R(2)=0.9987) and 5.0×10(-8)-3.0×10(-6) M (R(2)=0.9999), respectively. The detection limits of 1.0×10(-9) M and 1.5×10(-8) M were obtained for PAR and DA, respectively. The proposed electrode showed good stability (peak current change: 4.9% with and RSD of 2.6% for PAR; 5.5% with and RSD of 3.0% for DA over 3 weeks), reproducibility (RSD 2.3% for PAR and RSD 1.5% for DA), repeatability (RSD 2.25% for PAR and RSD 2.50% for DA) and high recovery (99.7% with an RSD of 1.3% for PAR; 100.8% with an RSD of 1.8% for DA). The proposed method was successfully applied to the determination of PAR and DA in pharmaceuticals. Copyright © 2014. Published by Elsevier B.V.

  19. Synthesis and characterization of polycrystalline brownmillerite cobalt doped Ca{sub 2}Fe{sub 2}O{sub 5}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dhankhar, Suchita; Baskar, K.; Singh, Shubra, E-mail: shubra6@gmail.com

    2016-05-23

    Brownmillerite compounds with general formula A{sub 2}BB’O{sub 5} (BB’ = Mn, Al, Fe, Co) have attracted attention in wide range of applications such as in solid oxide fuel cell, oxygen separation membrane and photocatalysis. Brownmillerite compounds have unique structure with alternate layers of BO{sub 6} octahedral layers and BO{sub 4} tetrahedral layers. Presence of dopants like Co in place of Fe increases oxygen vacancies. In the present work we have synthesized polycrystalline Ca{sub 2}Fe{sub 2}O{sub 5} and Ca{sub 2}Fe{sub 1-x}Co{sub x}O{sub 5} (x = 0.01, 0.03) by citrate combustion route. The as prepared samples were characterized by XRD using PANalyticalmore » X’Pert System, DRS (Diffuse reflectance spectroscopy) and SEM (Scanning electron microscopy).« less

  20. New metal phthalocyanines/metal simple hydroxide multilayers: experimental evidence of dipolar field-driven magnetic behavior.

    PubMed

    Bourzami, Riadh; Eyele-Mezui, Séraphin; Delahaye, Emilie; Drillon, Marc; Rabu, Pierre; Parizel, Nathalie; Choua, Sylvie; Turek, Philippe; Rogez, Guillaume

    2014-01-21

    A series of new hybrid multilayers has been synthesized by insertion-grafting of transition metal (Cu(II), Co(II), Ni(II), and Zn(II)) tetrasulfonato phthalocyanines between layers of Cu(II) and Co(II) simple hydroxides. The structural and spectroscopic investigations confirm the formation of new layered hybrid materials in which the phthalocyanines act as pillars between the inorganic layers. The magnetic investigations show that all copper hydroxide-based compounds behave similarly, presenting an overall antiferromagnetic behavior with no ordering down to 1.8 K. On the contrary, the cobalt hydroxide-based compounds present a ferrimagnetic ordering around 6 K, regardless of the nature of the metal phthalocyanine between the inorganic layers. The latter observation points to strictly dipolar interactions between the inorganic layers. The amplitude of the dipolar field has been evaluated from X-band and Q-band EPR spectroscopy investigation (Bdipolar ≈ 30 mT).

  1. Effect of cobalt doping on the structural, magnetic and abnormal thermal expansion properties of NaZn13-type La(Fe1-xCox)11.4Al1.6 compounds.

    PubMed

    Zhao, Yuqiang; Huang, Rongjin; Li, Shaopeng; Wang, Wei; Jiang, Xingxing; Lin, Zheshuai; Li, Jiangtao; Li, Laifeng

    2016-07-27

    Cubic NaZn13-type La(Fe1-xCox)11.4Al1.6 compounds were synthesized and extensively explored through crystal structure and magnetization analyses. By optimizing the chemical composition, the isotropic abnormal properties of excellent zero and giant negative thermal expansion in a pure form were both found at different temperature ranges through room temperature. Moreover, the temperature regions with the remarkable abnormal thermal expansion (ATE) properties have been broadened which are controlled by the dM/dT. The present study demonstrates that the ATE behavior mainly depends on special structural and magnetic properties. These diverse properties suggest the high potential of La(Fe1-xCox)11.4Al1.6 for the development of abnormal expansion materials.

  2. Extraction processes and solvents for recovery of cesium, strontium, rare earth elements, technetium and actinides from liquid radioactive waste

    DOEpatents

    Zaitsev, Boris N.; Esimantovskiy, Vyacheslav M.; Lazarev, Leonard N.; Dzekun, Evgeniy G.; Romanovskiy, Valeriy N.; Todd, Terry A.; Brewer, Ken N.; Herbst, Ronald S.; Law, Jack D.

    2001-01-01

    Cesium and strontium are extracted from aqueous acidic radioactive waste containing rare earth elements, technetium and actinides, by contacting the waste with a composition of a complex organoboron compound and polyethylene glycol in an organofluorine diluent mixture. In a preferred embodiment the complex organoboron compound is chlorinated cobalt dicarbollide, the polyethylene glycol has the formula RC.sub.6 H.sub.4 (OCH.sub.2 CH.sub.2).sub.n OH, and the organofluorine diluent is a mixture of bis-tetrafluoropropyl ether of diethylene glycol with at least one of bis-tetrafluoropropyl ether of ethylene glycol and bis-tetrafluoropropyl formal. The rare earths, technetium and the actinides (especially uranium, plutonium and americium), are extracted from the aqueous phase using a phosphine oxide in a hydrocarbon diluent, and reextracted from the resulting organic phase into an aqueous phase by using a suitable strip reagent.

  3. Combination for electrolytic reduction of alumina

    DOEpatents

    Brown, Craig W.; Brooks, Richard J.; Frizzle, Patrick B.; Juric, Drago D.

    2002-04-30

    An electrolytic bath for use during the electrolytic reduction of alumina to aluminum. The bath comprises molten electrolyte having the following ingredients: AlF.sub.3 and at least one salt selected from the group consisting of NaF, KF, and LiF; and about 0.004 wt. % to about 0.2 wt. %, based on total weight of the molten electrolyte, of at least one transition metal or at least one compound of the metal or both. The compound is, a fluoride; oxide, or carbonate. The metal is nickel, iron, copper, cobalt, or molybdenum. The bath is employed in a combination including a vessel for containing the bath and at least one non-consumable anode and at least one dimensionally stable cathode in the bath. Employing the instant bath during electrolytic reduction of alumina to aluminum improves the wetting of aluminum on a cathode by reducing or eliminating the formation of non-metallic deposits on the cathode.

  4. Synthesis of some metallophthalocyanines with dimethyl 5-(phenoxy)-isophthalate substituents and evaluation of their antioxidant-antibacterial activities

    NASA Astrophysics Data System (ADS)

    Salih Ağırtaş, M.; Karataş, Ceyhun; Özdemir, Sadin

    2015-01-01

    The synthesis, characterization, spectral, antioxidant and antibacterial properties of dimethyl 5-(phenoxy)-isophthalate substituted Zinc, Cobalt, Copper, and Nickel phthalocyanines are reported. The novel compounds have been characterized by using electronic absorption, nuclear magnetic resonance spectroscopy, infrared, elemental analysis and mass spectrometry. The antioxidant and antibacterial activities of newly synthesized phthalocyanines and its starting material are tested. The DPPH free radical scavenging ability of phthalocyanine Co(II) and Zn(II) complexes on DPPH are 44.8% and 40.1% at 100 mg/L concentration, respectively. The phthalocyanine Co(II) and Cu(II) complexes show very strong ferrous ion chelating activity of 91.2% and 89.3% at concentration of 100 mg/L, respectively. Compound 3 displays strong reducing power like α-tocopherol. Antibacterial activities of phthalocyanine Co(II) and Amikacin (30 μg/disk) against Micrococcus luteus (ATCC 9341) are 16 mm in diameter.

  5. Striped lanthanum cobaltite films: how strain orders oxygen defects

    NASA Astrophysics Data System (ADS)

    Birenbaum, Axiel Yael; Biegalski, Michael D.; Qiao, Liang; Cooper, Valentino R.; Borisevich, Albina

    Oxygen-deficient metal cobalt oxides have been widely studied for solid oxide fuel cell cathode applications. In order to predict atomic-scale transport pathways, a thorough understanding of its defect properties is crucial. Previous studies, including Scanning Transmission Electron Microscopy (STEM), demonstrate lanthanum cobaltite, grown as thin films on [100]pc oriented perovskites, spontaneously order its oxygen vacancies. In this work, we investigate the behavior of LaCoO3 - δ thin films grown on SrTiO3 [111] surface to determine if orientation can be used to shape the anisotropy of oxygen transport. For these films, STEM studies reveal ordered vacancy arrangements. We do so by establishing the structural and electronic properties of LaCoO3 - δ on SrTiO3, using ab initio electronic structure calculations. We then treat how epitaxial strain leads to oxygen vacancies forming these distinctive stripe patterns. The impact of different substrates is addressed. In addition, this leads to an opportunity to discuss the effect of reduced symmetry in oxygen deficient compounds on cobalt oxide behavior compared to the ideal perovskite environment. Research was sponsored by the US DoE, Office of Science, BES, MSED, and used resources at NERSC and OLCF.

  6. Spectrophotometric Study of the Complex Formation of Anionic Chelates of Cobalt(II) with Monotetrazolium Cations

    NASA Astrophysics Data System (ADS)

    Divarova, V. V.; Stojnova, K. T.; Racheva, P. V.; Lekova, V. D.

    2017-05-01

    The complex formation and extraction of anionic chelates of Co(II)-4-(2-thiazolylazo)resorcinol (TAR) with cations of monotetrazolium salts (TS) — (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) and 3-(2-naphthyl)-2,5-diphenyl-2H-tetrazolium chloride (TV) — in the liquid-liquid extraction system Co(II)-TAR-TS-H2O-CHCl3 were studied by spectrophotometric methods. The optimum conditions for the extraction of Co(II) were found. The molar ratio of the components and the form of the anionic chelates of Co(II) in the extracted compounds were determined by independent methods. The association process in the aqueous phase and the extraction process were investigated and quantitatively characterized. The following key constants were calculated: association constant, distribution constant, extraction constant, and recovery factor. The validity of the Beer's law was checked, and some analytical characteristics were calculated. Based on the obtained results and the lower price of the monotetrazolium salt MTT compared with that of TV, the ion-associated complex of Co(II)-TAR-MTT can be implemented for determination of cobalt(II) traces in alloys and biological, medical, and pharmaceutical samples.

  7. Effect of overcharge on Li(Ni 0.5Mn 0.3Co 0.2)O 2 cathodes: NMP-soluble binder. II — Chemical changes in the anode

    DOE PAGES

    Bloom, Ira; Bareno, Javier; Dietz Rago, Nancy; ...

    2018-02-13

    For this study, cells based on nickel manganese cobalt oxide (NMC)/graphite electrodes, which contained polyvinylidene difluoride (PVDF) binders in the electrodes, were systematically charged to 100, 120, 140, 160, 180, and 250% state of charge (SOC). Characterization of the anodes by inductively-coupled-plasma mass spectrometry (ICP-MS), X-ray photoelectron spectroscopy (XPS), and high-performance liquid chromatography coupled with electrospray ionization mass spectrometry (HPLC-ESI-MS) showed several extent-of-overcharge-dependent trends. The concentrations (by wt) of nickel, manganese, and cobalt in the negative electrode increased with SOC, but the metals remained in the same ratio as that of the positive. Electrolyte reaction products, such as LiF:LiPO 3,more » increased with overcharge, as expected. Three organic products were found by HPLC-ESI-MS. From an analysis of the mass spectra, two of these compounds seem to be organophosphates, which were formed by the reaction of polymerized electrolyte decomposition products and PF 3 or O=PF 3. Their concentration tended to reach a constant ratio. The third was seen at 250% SOC only.« less

  8. Kinetic phase evolution of spinel cobalt oxide during lithiation

    DOE PAGES

    Li, Jing; He, Kai; Meng, Qingping; ...

    2016-09-15

    Spinel cobalt oxide has been proposed to undergo a multiple-step reaction during the electrochemical lithiation process. Understanding the kinetics of the lithiation process in this compound is crucial to optimize its performance and cyclability. In this work, we have utilized a low-angle annular dark-field scanning transmission electron microscopy method to visualize the dynamic reaction process in real time and study the reaction kinetics at different rates. We show that the particles undergo a two-step reaction at the single-particle level, which includes an initial intercalation reaction followed by a conversion reaction. At low rates, the conversion reaction starts after the intercalationmore » reaction has fully finished, consistent with the prediction of density functional theoretical calculations. At high rates, the intercalation reaction is overwhelmed by the subsequently nucleated conversion reaction, and the reaction speeds of both the intercalation and conversion reactions are increased. Phase-field simulations show the crucial role of surface diffusion rates of lithium ions in controlling this process. Furthermore, this work provides microscopic insights into the reaction dynamics in non-equilibrium conditions and highlights the effect of lithium diffusion rates on the overall reaction homogeneity as well as the performance.« less

  9. Kinetic phase evolution of spinel cobalt oxide during lithiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jing; He, Kai; Meng, Qingping

    Spinel cobalt oxide has been proposed to undergo a multiple-step reaction during the electrochemical lithiation process. Understanding the kinetics of the lithiation process in this compound is crucial to optimize its performance and cyclability. In this work, we have utilized a low-angle annular dark-field scanning transmission electron microscopy method to visualize the dynamic reaction process in real time and study the reaction kinetics at different rates. We show that the particles undergo a two-step reaction at the single-particle level, which includes an initial intercalation reaction followed by a conversion reaction. At low rates, the conversion reaction starts after the intercalationmore » reaction has fully finished, consistent with the prediction of density functional theoretical calculations. At high rates, the intercalation reaction is overwhelmed by the subsequently nucleated conversion reaction, and the reaction speeds of both the intercalation and conversion reactions are increased. Phase-field simulations show the crucial role of surface diffusion rates of lithium ions in controlling this process. Furthermore, this work provides microscopic insights into the reaction dynamics in non-equilibrium conditions and highlights the effect of lithium diffusion rates on the overall reaction homogeneity as well as the performance.« less

  10. Synthesis of layered LiMnO2 as an electrode for rechargeable lithium batteries

    NASA Astrophysics Data System (ADS)

    Armstrong, A. Robert; Bruce, Peter G.

    1996-06-01

    RECHARGEABLE lithium batteries can store more than twice as much energy per unit weight and volume as other rechargeable batteries1,2. They contain lithium ions in an electrolyte, which shuttle back and forth between, and are intercalated by, the electrode materials. The first commercially successful rechargeable lithium battery3, introduced by the Sony Corporation in 1990, consists of a carbon-based negative electrode, layered LiCoO2 as the positive electrode, and a non-aqueous liquid electrolyte. The high cost and toxicity of cobalt compounds, however, has prompted a search for alternative materials that intercalate lithium ions. One such is LiMn2O4, which has been much studied as a positive electrode material4-7 the cost of manganese is less than 1% of that of cobalt, and it is less toxic. Here we report the synthesis and electrochemical performance of a new material, layered LiMnO2, which is structurally analogous to LiCoO2. The charge capacity of LiMnO2 (~270mAhg-1) compares well with that of both LiCoO2 and LiMn2O4, and preliminary results indicate good stability over repeated charge-discharge cycles.

  11. Synthesis, crystal structure, catecholase and phenoxazinone synthase activities of a mononuclear cobalt(III) complex containing in situ formed tridentate N-donor Schiff base

    NASA Astrophysics Data System (ADS)

    Maji, Ashis Kumar; Chatterjee, Arnab; Khan, Sumitava; Ghosh, Barindra Kumar; Ghosh, Rajarshi

    2017-10-01

    Synthesis and structural characterization of a mononuclear cobalt(III) Schiff base complex is reported. It crystallizes with monoclinic crystal system with P21/n space group with a = 9.9793(4) Å, b = 28.2907(12) Å and c = 13.1233(6) Å, and β = 97.532(3)°. The compound is active to catecholase and phenoxazinone synthase activities in MeOH, and MeOH and MeCN solvents, respectively at room temperature. Each of the reactions was found to be of first order with reaction rate 8.08 × 10-3 min-1 (MeOH) for the catecholase activity and 1.05 × 10-3 min-1 (MeOH) and 3.82 × 10-3 min-1 (MeCN) for the phenoxazinone synthase activity. The turn over numbers for the catecholase activity is 5.02 × 103 h-1 (MeOH) and for the phenoxazinone synthase activity is 4.59 × 103 h-1 (MeOH) and 5.12 × 103 h-1 (MeCN). Substrate-catalyst adduct was tried to be trapped in each case using mass spectrometry.

  12. Effect of overcharge on Li(Ni 0.5Mn 0.3Co 0.2)O 2 cathodes: NMP-soluble binder. II — Chemical changes in the anode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bloom, Ira; Bareno, Javier; Dietz Rago, Nancy

    For this study, cells based on nickel manganese cobalt oxide (NMC)/graphite electrodes, which contained polyvinylidene difluoride (PVDF) binders in the electrodes, were systematically charged to 100, 120, 140, 160, 180, and 250% state of charge (SOC). Characterization of the anodes by inductively-coupled-plasma mass spectrometry (ICP-MS), X-ray photoelectron spectroscopy (XPS), and high-performance liquid chromatography coupled with electrospray ionization mass spectrometry (HPLC-ESI-MS) showed several extent-of-overcharge-dependent trends. The concentrations (by wt) of nickel, manganese, and cobalt in the negative electrode increased with SOC, but the metals remained in the same ratio as that of the positive. Electrolyte reaction products, such as LiF:LiPO 3,more » increased with overcharge, as expected. Three organic products were found by HPLC-ESI-MS. From an analysis of the mass spectra, two of these compounds seem to be organophosphates, which were formed by the reaction of polymerized electrolyte decomposition products and PF 3 or O=PF 3. Their concentration tended to reach a constant ratio. The third was seen at 250% SOC only.« less

  13. Effect of overcharge on Li(Ni0.5Mn0.3Co0.2)O2 cathodes: NMP-soluble binder. II - Chemical changes in the anode

    NASA Astrophysics Data System (ADS)

    Bloom, Ira; Bareño, Javier; Dietz Rago, Nancy; Dogan, Fulya; Graczyk, Donald G.; Tsai, Yifen; Naik, Seema R.; Han, Sang-Don; Lee, Eungje; Du, Zhijia; Sheng, Yangping; Li, Jianlin; Wood, David L.; Steele, Leigh Anna; Lamb, Joshua; Spangler, Scott; Grosso, Christopher; Fenton, Kyle

    2018-05-01

    Cells based on nickel manganese cobalt oxide (NMC)/graphite electrodes, which contained polyvinylidene difluoride (PVDF) binders in the electrodes, were systematically charged to 100, 120, 140, 160, 180, and 250% state of charge (SOC). Characterization of the anodes by inductively-coupled-plasma mass spectrometry (ICP-MS), X-ray photoelectron spectroscopy (XPS), and high-performance liquid chromatography coupled with electrospray ionization mass spectrometry (HPLC-ESI-MS) showed several extent-of-overcharge-dependent trends. The concentrations (by wt) of nickel, manganese, and cobalt in the negative electrode increased with SOC, but the metals remained in the same ratio as that of the positive. Electrolyte reaction products, such as LiF:LiPO3, increased with overcharge, as expected. Three organic products were found by HPLC-ESI-MS. From an analysis of the mass spectra, two of these compounds seem to be organophosphates, which were formed by the reaction of polymerized electrolyte decomposition products and PF3 or O=PF3. Their concentration tended to reach a constant ratio. The third was seen at 250% SOC only.

  14. The effects of cobalt on the development, oxidative stress, and apoptosis in zebrafish embryos.

    PubMed

    Cai, Guiquan; Zhu, Junfeng; Shen, Chao; Cui, Yimin; Du, Jiulin; Chen, Xiaodong

    2012-12-01

    Metal-on-metal hip arthroplasty has been performed with increasing frequency throughout the world, particularly in younger and more active patients, including women of childbearing age. The potential toxicity of cobalt exposure on fetus is concerned since cobalt ions generated by metal-on-metal bearings can traverse the placenta and be detected in fetal blood and amniotic fluid. This study examined the effects of cobalt exposure on early embryonic development and the mechanisms underlying its toxicity. Zebrafish embryos were exposed to a range of cobalt concentrations (0-100 mg/L) between 1 and 144 h postfertilization. The survival and early development of embryos were not significantly affected by cobalt at concentrations <100 μg/L. However, embryos exposed to higher concentrations (>100 μg/L) displayed reduced survival rates and abnormal development, including delayed hatching, aberrant morphology, retarded growth, and bradycardia. Furthermore, this study examined oxidative stress and apoptosis in embryos exposed to cobalt at concentrations of 0-500 μg/L. Lipid peroxidation levels were increased in cobalt-treated embryos at concentrations of 100 and 500 μg/L. The mRNA levels of catalase, superoxide dismutase 2, p53, caspase-3, and caspase-9 genes were upregulated in a dose-dependent manner. Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assays also revealed abnormal apoptotic signals in the brain, trunk, and tail when treated with 500 μg/L cobalt. These data suggest that oxidative stress and apoptosis are associated with cobalt toxicity in zebrafish embryos.

  15. Enhanced activity of gold-supported cobalt oxide for the electrochemical evolution of oxygen.

    PubMed

    Yeo, Boon Siang; Bell, Alexis T

    2011-04-13

    Scanning electron microscopy, linear sweep voltammetry, chronoamperometry, and in situ surface-enhanced Raman spectroscopy were used to investigate the electrochemical oxygen evolution reaction (OER) occurring on cobalt oxide films deposited on Au and other metal substrates. All experiments were carried out in 0.1 M KOH. A remarkable finding is that the turnover frequency for the OER exhibited by ∼0.4 ML of cobalt oxide deposited on Au is 40 times higher than that of bulk cobalt oxide. The activity of small amounts of cobalt oxide deposited on Pt, Pd, Cu, and Co decreased monotonically in the order Au > Pt > Pd > Cu > Co, paralleling the decreasing electronegativity of the substrate metal. Another notable finding is that the OER turnover frequency for ∼0.4 ML of cobalt oxide deposited on Au is nearly three times higher than that for bulk Ir. Raman spectroscopy revealed that the as-deposited cobalt oxide is present as Co(3)O(4) but undergoes progressive oxidation to CoO(OH) with increasing anodic potential. The higher OER activity of cobalt oxide deposited on Au is attributed to an increase in fraction of the Co sites present as Co(IV) cations, a state of cobalt believed to be essential for OER to occur. A hypothesis for how Co(IV) cations contribute to OER is proposed and discussed. © 2011 American Chemical Society

  16. Potential for cobalt recovery from lateritic ores in Europe

    NASA Astrophysics Data System (ADS)

    Herrington, R.

    2012-04-01

    Cobalt is one of the 'critical metals' identified under the EU Raw Materials Initiative. Annually the global mine production of cobalt is around 55,000 tonnes,with Europe's industries consuming around 30% of that figure. Currently Europe produces around 27 tonnes of cobalt from mines in Finland although new capacity is planned. Co-bearing nickel laterite ores being mined in Greece, Macedonia and Kosovo where the cobalt is currently not being recovered (ores have typical analyses of 0.055% Co and >1% Ni,). These ores are currently treated directly in pyrometallurgical plants to recover the contained nickel and this process means there is no separate cobalt product produced. Hydrometallurgical treatment of mineralogically suitable laterite ores can recover the cobalt; for example Cuba recovers 3,500 tonnes of cobalt from its laterite mining operations, which are of a similar scale to the current European operations. Implementation of hydrometallurgical techniques is in its infancy in Europe with one deposit in Turkey planning to use atmospheric heap leaching to recover nickel and copper from oxide-dominated ores. More widespread implementation of these methods to mineralogically suitable ore types could unlock the highly significant undeveloped resources (with metal contents >0.04% Co and >1% Ni), which have been defined throughout the Balkans eastwards into Turkey. At a conservative estimate, this region has the potential to supply up to 30% of the EU cobalt requirements.

  17. Intra- and interparticle magnetism of cobalt-doped iron-oxide nanoparticles encapsulated in a synthetic ferritin cage

    NASA Astrophysics Data System (ADS)

    Skoropata, E.; Desautels, R. D.; Falvo, E.; Ceci, P.; Kasyutich, O.; Freeland, J. W.; van Lierop, J.

    2014-11-01

    We present an in-depth examination of the composition and magnetism of cobalt (Co2 +)-doped iron-oxide nanoparticles encapsulated in Pyrococcus furiosus ferritin shells. We show that the Co2 + dopant ions were incorporated into the γ -Fe2O3/Fe3O4 core, with small paramagnetic-like clusters likely residing on the surface of the nanoparticle that were observed for all cobalt-doped samples. In addition, element-specific characterization using Mössbauer spectroscopy and polarized x-ray absorption indicated that Co2 + was incorporated exclusively into the octahedral B sites of the spinel-oxide nanoparticle. Comparable superparamagnetic blocking temperatures, coercivities, and effective anisotropies were obtained for 7%, 10%, and 12% cobalt-doped nanoparticles, and were only slightly reduced for 3% cobalt, indicating a strong effect of cobalt incorporation, with a lesser effect of cobalt content. Due to the regular particle size and separation that result from the use of the ferritin cage, a comparison of the effects of interparticle interactions on the disordered assembly of nanoparticles was also obtained that indicated significantly different behaviors between undoped and cobalt-doped nanoparticles.

  18. Enhanced peroxidase activity and tumour tissue visualization by cobalt-doped magnetoferritin nanoparticles

    NASA Astrophysics Data System (ADS)

    Zhang, Tongwei; Cao, Changqian; Tang, Xu; Cai, Yao; Yang, Caiyun; Pan, Yongxin

    2017-01-01

    Magnetoferritin (M-HFn) is a biomimetic magnetic nanoparticle with a human heavy-chain ferritin (HFn) shell, trapping a magnetite (Fe3O4) core that has inherited peroxidase-like activity. In this study, cobalt-doped M-HFn nanoparticles (M-HFn-Co x Fe3-x O4) with different amounts of cobalt were successfully synthesized. Experimental results indicate that the controlled doping of a certain amount of cobalt into the magnetite cores of M-HFn nanoparticles enhances its peroxidase-like catalytic activity and efficacy for visualizing tumour tissues. For example, compared with sample Co0 (without cobalt doping), the peroxidase-like activity of the cobalt-doped nanoparticle sample Co60 (with a cobalt doping molar percentage of ˜34.2%) increases 1.7 times, and has the maximal reaction velocity (V max) values. Moreover, after a one-step incubation with Co60 nanoparticles, and using the peroxidase substrate 3,3‧-diaminobenzidine tetrahydrochloride (DAB) for colour development, the tumour tissues of breast, colorectal, stomach and pancreas tumours showed a deeper brown colour with clear boundaries between the healthy and tumourous cells. Therefore, this suggests that the cobalt-doped magnetoferritin nanoparticles enhance peroxidase activity and tumour tissue visualization.

  19. Enhanced peroxidase activity and tumour tissue visualization by cobalt-doped magnetoferritin nanoparticles.

    PubMed

    Zhang, Tongwei; Cao, Changqian; Tang, Xu; Cai, Yao; Yang, Caiyun; Pan, Yongxin

    2017-01-27

    Magnetoferritin (M-HFn) is a biomimetic magnetic nanoparticle with a human heavy-chain ferritin (HFn) shell, trapping a magnetite (Fe 3 O 4 ) core that has inherited peroxidase-like activity. In this study, cobalt-doped M-HFn nanoparticles (M-HFn-Co x Fe 3-x O 4 ) with different amounts of cobalt were successfully synthesized. Experimental results indicate that the controlled doping of a certain amount of cobalt into the magnetite cores of M-HFn nanoparticles enhances its peroxidase-like catalytic activity and efficacy for visualizing tumour tissues. For example, compared with sample Co0 (without cobalt doping), the peroxidase-like activity of the cobalt-doped nanoparticle sample Co60 (with a cobalt doping molar percentage of ∼34.2%) increases 1.7 times, and has the maximal reaction velocity (V max ) values. Moreover, after a one-step incubation with Co60 nanoparticles, and using the peroxidase substrate 3,3'-diaminobenzidine tetrahydrochloride (DAB) for colour development, the tumour tissues of breast, colorectal, stomach and pancreas tumours showed a deeper brown colour with clear boundaries between the healthy and tumourous cells. Therefore, this suggests that the cobalt-doped magnetoferritin nanoparticles enhance peroxidase activity and tumour tissue visualization.

  20. Temperature dependent viscosity of cobalt ferrite / ethylene glycol ferrofluids

    NASA Astrophysics Data System (ADS)

    Kharat, Prashant B.; Somvanshi, Sandeep B.; Kounsalye, Jitendra S.; Deshmukh, Suraj S.; Khirade, Pankaj P.; Jadhav, K. M.

    2018-04-01

    In the present work, cobalt ferrite / ethylene glycol ferrofluid is prepared in 0 to 1 (in the step of 0.2) volume fraction of cobalt ferrite nanoparticles synthesized by co-precipitation method. The XRD results confirmed the formation of single phase spinel structure. The Raman spectra have been deconvoluted into individual Lorentzian peaks. Cobalt ferrite has cubic spinel structure with Fd3m space group. FT-IR spectra consist of two major absorption bands, first at about 586 cm-1 (υ1) and second at about 392 cm-1 (υ2). These absorption bands confirm the formation of spinel-structured cobalt ferrite. Brookfield DV-III viscometer and programmable temperature-controlled bath was used to study the relationship between viscosity and temperature. Viscosity behavior with respect to temperature has been studied and it is revealed that the viscosity of cobalt ferrite / ethylene glycol ferrofluids increases with an increase in volume fraction of cobalt ferrite. The viscosity of the present ferrofluid was found to decrease with increase in temperature.

  1. Open-Loop Performance of COBALT Precision Landing Payload on a Commercial Sub-Orbital Rocket

    NASA Technical Reports Server (NTRS)

    Restrepo, Carolina I.; Carson, John M., III; Amzajerdian, Farzin; Seubert, Carl R.; Lovelace, Ronney S.; McCarthy, Megan M.; Tse, Teming; Stelling, Richard; Collins, Steven M.

    2018-01-01

    An open-loop flight test campaign of the NASA COBALT (CoOperative Blending of Autonomous Landing Technologies) platform was conducted onboard the Masten Xodiac suborbital rocket testbed. The COBALT platform integrates NASA Guidance, Navigation and Control (GN&C) sensing technologies for autonomous, precise soft landing, including the Navigation Doppler Lidar (NDL) velocity and range sensor and the Lander Vision System (LVS) Terrain Relative Navigation (TRN) system. A specialized navigation filter running onboard COBALT fuses the NDL and LVS data in real time to produce a navigation solution that is independent of GPS and suitable for future, autonomous, planetary, landing systems. COBALT was a passive payload during the open loop tests. COBALT's sensors were actively taking data and processing it in real time, but the Xodiac rocket flew with its own GPS-navigation system as a risk reduction activity in the maturation of the technologies towards space flight. A future closed-loop test campaign is planned where the COBALT navigation solution will be used to fly its host vehicle.

  2. Effects of cobalt in nickel-base superalloys

    NASA Technical Reports Server (NTRS)

    Tien, J. K.; Jarrett, R. N.

    1983-01-01

    The role of cobalt in a representative wrought nickel-base superalloy was determined. The results show cobalt affecting the solubility of elements in the gamma matrix, resulting in enhanced gamma' volume fraction, in the stabilization of MC-type carbides, and in the stabilization of sigma phase. In the particular alloy studied, these microstructural and microchemistry changes are insufficient in extent to impact on tensile strength, yield strength, and in the ductilities. Depending on the heat treatment, creep and stress rupture resistance can be cobalt sensitive. In the coarse grain, fully solutioned and aged condition, all of the alloy's 17% cobalt can be replaced by nickel without deleteriously affecting this resistance. In the fine grain, partially solutioned and aged condition, this resistance is deleteriously affected only when one-half or more of the initial cobalt content is removed. The structure and property results are discussed with respect to existing theories and with respect to other recent and earlier findings on the impact of cobalt, if any, on the performance of nickel-base superalloys.

  3. Cobalt mineral exploration and supply from 1995 through 2013

    USGS Publications Warehouse

    Wilburn, David R.

    2011-01-01

    The global mining industry has invested a large amount of capital in mineral exploration and development over the past 15 years in an effort to ensure that sufficient resources are available to meet future increases in demand for minerals. Exploration data have been used to identify specific sites where this investment has led to a significant contribution in global mineral supply of cobalt or where a significant increase in cobalt production capacity is anticipated in the next 5 years. This report provides an overview of the cobalt industry, factors affecting mineral supply, and circumstances surrounding the development, or lack thereof, of key mineral properties with the potential to affect mineral supply. Of the 48 sites with an effective production capacity of at least 1,000 metric tons per year of cobalt considered for this study, 3 producing sites underwent significant expansion during the study period, 10 exploration sites commenced production from 1995 through 2008, and 16 sites were expected to begin production by 2013 if planned development schedules are met. Cobalt supply is influenced by economic, environmental, political, and technological factors affecting exploration for and production of copper, nickel, and other metals as well as factors affecting the cobalt industry. Cobalt-rich nickel laterite deposits were discovered and developed in Australia and the South Pacific and improvements in laterite processing technology took place during the 1990s and early in the first decade of the 21st century when mining of copper-cobalt deposits in Congo (Kinshasa) was restricted because of regional conflict and lack of investment in that country's mining sector. There was also increased exploration for and greater importance placed on cobalt as a byproduct of nickel mining in Australia and Canada. The emergence of China as a major refined cobalt producer and consumer since 2007 has changed the pattern of demand for cobalt, particularly from Africa and Australasia. Chinese companies are increasingly becoming involved in copper and cobalt exploration and mining in Congo (Kinshasa) and Zambia as well as nickel, copper, and other mining in Australia and the South Pacific. Between 2009 and 2013, mines with a cumulative capacity of more than 100,000 metric tons per year of cobalt were proposed to come into production if all sites came into production as scheduled. This additional capacity corresponds to 175 percent of the 2008 global refinery production level. About 45 percent of this cobalt would be from primary nickel deposits, about 32 percent from primary copper deposits, and about 21 percent from primary cobalt deposits. By 2013, about 40 percent of new capacity was expected to come from the African Copperbelt; 38 percent, from Australia and the South Pacific countries of Philippines, Indonesia, New Caledonia, and Papua New Guinea; 11 percent, from other African countries; 5 percent, from North America; and 6 percent, from other areas.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clouston, Laura J.; Bernales, Varinia; Carlson, Rebecca K.

    Expanding a family of cobalt bimetallic complexes, we report the synthesis of the Ti(III) metalloligand, Ti[N(o-(NCH2P(iPr)2)C6H4)3] (abbreviated as TiL), and three heterobimetallics that pair cobalt with an early transition metal ion: CoTiL (1), K(crypt-222)[(N2)CoVL] (2), and K(crypt-222)[(N2)CoCrL] (3). The latter two complexes, along with previously reported K(crypt-222)[(N2)CoAlL] and K(crypt-222)[(N2)Co2L], constitute an isostructural series of cobalt bimetallics that bind dinitrogen in an end-on fashion, i.e. [(N2)CoML]-. The characterization of 1–3 includes cyclic voltammetry, X-ray crystallography, and infrared spectroscopy. The [CoTiL]0/– reduction potential is extremely negative at -3.20 V versus Fc+/Fc. In the CoML series where M is a transition metal, themore » reduction potentials shift anodically as M is varied across the first-row period. Among the [(N2)CoML]- compounds, the dinitrogen ligand is weakly activated, as evidenced by N–N bond lengths between 1.110(8) and 1.135(4) Å and by N–N stretching frequencies between 1971 and 1995 cm–1. Though changes in νN2 are subtle, the extent of N2 activation decreases across the first-row period. A correlation is found between the [CoML]0/– reduction potentials and N2 activation, where the more cathodic potentials correspond to lower N–N frequencies. Theoretical calculations of the [(N2)CoML]- complexes reveal important variations in the electronic structure and Co–M interactions, which depend on the exact nature of the supporting metal ion, M.« less

  5. Temperature dependent and applied field strength dependent magnetic study of cobalt nickel ferrite nano particles: Synthesized by an environmentally benign method

    NASA Astrophysics Data System (ADS)

    Sontu, Uday Bhasker; G, Narsinga Rao; Chou, F. C.; M, V. Ramana Reddy

    2018-04-01

    Spinel ferrites have come a long way in their versatile applications. The ever growing applications of these materials demand detailed study of material properties and environmental considerations in their synthesis. In this article, we report the effect of temperature and applied magnetic field strength on the magnetic behavior of the cobalt nickel ferrite nano powder samples. Basic structural properties of spinel ferrite nano particles, that are synthesized by an environmentally benign method of auto combustion, are characterized through XRD, TEM, RAMAN spectroscopy. Diffuse Reflectance Spectroscopy (DRS) is done to understand the nickel substitution effect on the optical properties of cobalt ferrite nano particles. Thermo magnetic studies using SQUID in the temperature range 5 K to 400 K and room temperature (300 K) VSM studies are performed on these samples. Fields of 0Oe (no applied field: ZF), 1 kOe (for ZFC and FC curves), 5 kOe (0.5 T), 50 kOe (5T) (for M-H loop study) are used to study the magnetic behavior of these nano particles. The XRD,TEM analysis suggest 40 nm crystallites that show changes in the cation distribution and phase changes in the spinel structure with nickel substitution. Raman micrographs support phase purity changes and cation redistributions with nickel substitution. Diffuse reflectance study on powder samples suggests two band gap values for nickel rich compounds. The Magnetic study of these sample nano particles show varied magnetic properties from that of hard magnetic, positive multi axial anisotropy and single-magnetic-domain structures at 5 K temperature to soft magnetic core shell like structures at 300 K temperature. Nickel substitution effect is non monotonous. Blocking temperature of all the samples is found to be higher than the values suggested in the literature.

  6. Pharmacokinetics of Chlorin e6-Cobalt Bis(Dicarbollide) Conjugate in Balb/c Mice with Engrafted Carcinoma

    PubMed Central

    Volovetsky, Arthur B.; Balalaeva, Irina V.; Dudenkova, Varvara V.; Shilyagina, Natalia Yu.; Feofanov, Аlexey V.; Efremenko, Anastasija V.; Grin, Mikhail A.; Mironov, Andrey F.; Bregadze, Vladimir I.; Maslennikova, Anna V.

    2017-01-01

    The necessary precondition for efficient boron neutron capture therapy (BNCT) is control over the content of isotope 10B in the tumor and normal tissues. In the case of boron-containing porphyrins, the fluorescent part of molecule can be used for quantitative assessment of the boron content. Study Objective: We performed a study of the biodistribution of the chlorin e6-Cobalt bis(dicarbollide) conjugate in carcinoma-bearing Balb/c mice using ex vivo fluorescence imaging, and developed a mathematical model describing boron accumulation and release based on the obtained experimental data. Materials and Methods: The study was performed on Balb/c tumor-bearing mice (CT-26 tumor model). A solution of the chlorin e6-Cobalt bis(dicarbollide) conjugate (CCDC) was injected into the blood at a dose of 10 mg/kg of the animal’s weight. Analysis of the fluorescence signal intensity was performed at several time points by spectrofluorimetry in blood and by laser scanning microscopy in muscle, liver, and tumor tissues. The boron content in the same samples was determined by mass spectroscopy with inductively coupled plasma. Results: Analysis of a linear approximation between the fluorescence intensity and boron content in the tissues demonstrated a satisfactory value of approximation reliability with a Spearman’s rank correlation coefficient of r = 0.938, p < 0.01. The dynamics of the boron concentration change in various organs, calculated on the basis of the fluorescence intensity, enabled the development of a model describing the accumulation of the studied compound and its distribution in tissues. The obtained results reveal a high level of correspondence between the model and experimental data. PMID:29182594

  7. Pharmacokinetics of Chlorin e₆-Cobalt Bis(Dicarbollide) Conjugate in Balb/c Mice with Engrafted Carcinoma.

    PubMed

    Volovetsky, Arthur B; Sukhov, Vladimir S; Balalaeva, Irina V; Dudenkova, Varvara V; Shilyagina, Natalia Yu; Feofanov, Аlexey V; Efremenko, Anastasija V; Grin, Mikhail A; Mironov, Andrey F; Sivaev, Igor B; Bregadze, Vladimir I; Maslennikova, Anna V

    2017-11-28

    The necessary precondition for efficient boron neutron capture therapy (BNCT) is control over the content of isotope 10 B in the tumor and normal tissues. In the case of boron-containing porphyrins, the fluorescent part of molecule can be used for quantitative assessment of the boron content. Study Objective: We performed a study of the biodistribution of the chlorin e ₆-Cobalt bis(dicarbollide) conjugate in carcinoma-bearing Balb/c mice using ex vivo fluorescence imaging, and developed a mathematical model describing boron accumulation and release based on the obtained experimental data. Materials and Methods: The study was performed on Balb/c tumor-bearing mice (CT-26 tumor model). A solution of the chlorin e ₆-Cobalt bis(dicarbollide) conjugate (CCDC) was injected into the blood at a dose of 10 mg/kg of the animal's weight. Analysis of the fluorescence signal intensity was performed at several time points by spectrofluorimetry in blood and by laser scanning microscopy in muscle, liver, and tumor tissues. The boron content in the same samples was determined by mass spectroscopy with inductively coupled plasma. Results: Analysis of a linear approximation between the fluorescence intensity and boron content in the tissues demonstrated a satisfactory value of approximation reliability with a Spearman's rank correlation coefficient of r = 0.938, p < 0.01. The dynamics of the boron concentration change in various organs, calculated on the basis of the fluorescence intensity, enabled the development of a model describing the accumulation of the studied compound and its distribution in tissues. The obtained results reveal a high level of correspondence between the model and experimental data.

  8. Fischer-Tropsch Cobalt Catalyst Improvements with the Presence of TiO2, La2O3, and ZrO2 on an Alumina Support

    NASA Technical Reports Server (NTRS)

    Klettlinger, Jennifer Lindsey Suder

    2012-01-01

    The objective of this study was to evaluate the effect of titanium oxide, lanthanum oxide, and zirconium oxide on alumina supported cobalt catalysts. The hypothesis was that the presence of lanthanum oxide, titanium oxide, and zirconium oxide would reduce the interaction between cobalt and the alumina support. This was of interest because an optimized weakened interaction could lead to the most advantageous cobalt dispersion, particle size, and reducibility. The presence of these oxides on the support were investigated using a wide range of characterization techniques such as SEM, nitrogen adsorption, x-ray diffraction (XRD), temperature programmed reduction (TPR), temperature programmed reduction after reduction (TPR-AR), and hydrogen chemisorptions/pulse reoxidation. Results indicated that both La2O3 and TiO2 doped supports facilitated the reduction of cobalt oxide species in reference to pure alumina supported cobalt catalysts, however further investigation is needed to determine the effect of ZrO2 on the reduction profile. Results showed an increased corrected cluster size for all three doped supported catalysts in comparison to their reference catalysts. The increase in reduction and an increase in the cluster size led to the conclusion that the support-metal interaction weakened by the addition of TiO2 and La2O3. It is also likely that the interaction decreased upon presence of ZrO2 on the alumina, but further research is necessary. Preliminary results have indicated that the alumina-supported catalysts with titanium oxide and lanthanum oxide present are of interest because of the weakened cobalt support interaction. These catalysts showed an increased extent of reduction, therefore more metallic cobalt is present on the support. However, whether or not there is more cobalt available to participate in the Fischer-Tropsch synthesis reaction (cobalt surface atoms) depends also on the cluster size. On one hand, increasing cluster size alone tends to decrease the active site density; on the other hand, by increasing the size of the cobalt clusters, there is less likelihood of forming oxidized cobalt complexes (cobalt aluminate) during Fischer-Tropsch synthesis. Thus, from the standpoint of stability, improving the extent of reduction while increasing the particle size slightly may be beneficial for maintaining the sites, even if there is a slight decrease in overall initial active site density.

  9. Polymeric cobalt(ii) thiolato complexes - syntheses, structures and properties of [Co(SMes)2] and [Co(SPh)2NH3].

    PubMed

    Eichhöfer, Andreas; Buth, Gernot

    2016-11-01

    Reactions of [Co(N(SiMe 3 ) 2 ) 2 thf] with 2.1 equiv. of MesSH (Mes = C 6 H 2 -2,4,6-(CH 3 ) 3 ) yield dark brown crystals of the one dimensional chain compound [Co(SMes) 2 ]. In contrast reactions of [Co(N(SiMe 3 ) 2 ) 2 thf] with 2.1 equiv. of PhSH result in the formation of a dark brown almost X-ray amorphous powder of 'Co(SPh) 2 '. Addition of aliquots of CH 3 OH to the latter reaction resulted in the almost quantitative formation of crystalline ammonia thiolato complexes either [Co(SPh) 2 (NH 3 ) 2 ] or [Co(SPh) 2 NH 3 ]. Single crystal XRD reveals that [Co(SPh) 2 NH 3 ] forms one-dimensional chains in the crystal via μ 2 -SPh bridges whereas [Co(SPh) 2 (NH 3 ) 2 ] consists at a first glance of isolated distorted tetrahedral units. Magnetic measurements suggest strong antiferromagnetic coupling for the two chain compounds [Co(SMes) 2 ] (J = -38.6 cm -1 ) and [Co(SPh) 2 NH 3 ] (J = -27.1 cm -1 ). Interestingly, also the temperature dependence of the susceptibility of tetrahedral [Co(SPh) 2 (NH 3 ) 2 ] shows an antiferromagnetic transition at around 6 K. UV-Vis-NIR spectra display d-d bands in the NIR region between 500 and 2250 nm. Thermal gravimetric analysis of [Co(SPh) 2 (NH 3 ) 2 ] and [Co(SPh) 2 NH 3 ] reveals two well separated cleavage processes for NH 3 and SPh 2 upon heating accompanied by the stepwise formation of 'Co(SPh) 2 ' and cobalt sulfide.

  10. Genotoxicity of two heavy metal compounds: lead nitrate and cobalt chloride in Polychaete Perinereis cultrifera.

    PubMed

    Singh, Nisha; Bhagat, Jacky; Ingole, Baban S

    2017-07-01

    The present study explores the in vivo and in vitro genotoxic effects of lead nitrate, [Pb(NO 3 ) 2 ] a recognized environmental pollutant and cobalt chloride (CoCl 2 ), an emerging environmental pollutant in polychaete Perinereis cultrifera using comet assay. Despite widespread occurrence and extensive industrial applications, no previous published reports on genotoxicity of these compounds are available in polychaete as detected by comet assay. Polychaetes were exposed in vivo to Pb(NO 3 ) 2 (0, 100, 500, and 1000 μg/l) and CoCl 2 (0, 100, 300, and 500 μg/l) for 5 days. At 100 μg/l Pb(NO 3 ) 2 concentration, tail DNA (TDNA) values in coelomocytes were increase by 1.16, 1.43, and 1.55-fold after day 1, day 3, and day 5, whereas, OTM showed 1.12, 2.33, and 2.10-fold increase in in vivo. Pb(NO 3 ) 2 showed a concentration and time-dependent genotoxicity whereas CoCl 2 showed a concentration-dependent genotoxicity in in vivo. A concentration-dependent increase in DNA damage was observed in in vitro studies for Pb(NO 3 ) 2 and CoCl 2 . DNA damage at 500 μg/L showed almost threefold increase in TDNA and approximately fourfold increase in OTM as compared to control in in vitro. Our studies suggest that Pb(NO 3 ) 2 and CoCl 2 have potential to cause genotoxic damage, with Pb(NO 3 ) 2 being more genotoxic in polychaete and should be used more carefully in industrial and other activities. Graphical abstract.

  11. Amino acid based MOFs: synthesis, structure, single crystal to single crystal transformation, magnetic and related studies in a family of cobalt and nickel aminoisophthales.

    PubMed

    Sarma, Debajit; Ramanujachary, K V; Lofland, S E; Magdaleno, Travis; Natarajan, Srinivasan

    2009-12-21

    Four new 5-aminoisophthalates of cobalt and nickel have been prepared employing hydro/solvothermal methods: [Co(2)(C(8)H(5)NO(4))(2)(C(4)H(4)N(2))(H(2)O)(2)].3H(2)O (I), [Ni(2)(C(8)H(5)NO(4))(2)(C(4)H(4)N(2))(H(2)O)(2)].3H(2)O (II), [Co(2)(H(2)O)(mu(3)-OH)(2)(C(8)H(5)NO(4))] (III), and [Ni(2)(H(2)O)(mu(3)-OH)(2)(C(8)H(5)NO(4))] (IV). Compounds I and II are isostructural, having anion-deficient CdCl(2) related layers bridged by a pyrazine ligand, giving rise to a bilayer arrangement. Compounds III and IV have one-dimensional M-O(H)-M chains connected by the 5-aminoisophthalate units forming a three-dimensional structure. The coordinated as well as the lattice water molecules of I and II could be removed and inserted by simple heating-cooling cycles under the atmospheric conditions. The removal of the coordinated water molecule is accompanied by changes in the coordination environment around the M(2+) (M = Co, Ni) and color of the samples (purple to blue, Co; green to dark yellow, Ni). This change has been examined by a variety of techniques that include in situ single crystal to single crystal transformation studies and in situ IR and UV-vis spectroscopic studies. Magnetic studies indicate antiferromagnetic behavior in I and II, a field-induced magnetism in III, and a canted antiferromagnetic behavior in IV.

  12. Mineral resource of the month: cobalt

    USGS Publications Warehouse

    Shedd, Kim B.

    2009-01-01

    Cobalt is a metal used in numerous commercial, industrial and military applications. On a global basis, the leading use of cobalt is in rechargeable lithium-ion, nickel-cadmium and nickel-metal hydride battery electrodes. Cobalt use has grown rapidly since the early 1990s, with the development of new battery technologies and an increase in demand for portable electronics such as cell phones, laptop computers and cordless power tools.

  13. Formation and Release of Cobalt(II) Sorption and Precipitation Products in Aging Kaolinite-Water Slurries.

    PubMed

    Thompson; Parks; Brown

    2000-02-15

    The uptake and release behavior of cobalt(II) was studied over thousands of hours in CO(2)-free aqueous suspensions of kaolinite under three pairs of total cobalt concentration (Co(T)) and near-neutral pH (7.5-7.8) conditions. Dissolved cobalt, aluminum, and silicon concentrations were monitored by ICPMS, and cobalt-containing products were identified by EXAFS spectroscopy. In each uptake experiment, cobalt sorbed to kaolinite as a mixture of surface-adsorbed monomers or polymers and hydrotalcite-like precipitates of the approximate composition Co(x)Al(OH)(2x+2)(A(n-))(1/n), where 2

  14. Loss of hypoxia-inducible factor 2 alpha in the lung alveolar epithelium of mice leads to enhanced eosinophilic inflammation in cobalt-induced lung injury.

    PubMed

    Proper, Steven P; Saini, Yogesh; Greenwood, Krista K; Bramble, Lori A; Downing, Nathaniel J; Harkema, Jack R; Lapres, John J

    2014-02-01

    Hard metal lung disease (HMLD) is an occupational lung disease specific to inhalation of cobalt-containing particles whose mechanism is largely unknown. Cobalt is a known hypoxia mimic and stabilizer of the alpha subunits of hypoxia-inducible factors (HIFs). Previous work revealed that though HIF1α contrib utes to cobalt toxicity in vitro, loss of HIF1α in the alveolar epithelial cells does not provide in vivo protection from cobalt-induced lung inflammation. HIF1α and HIF2α show unique tissue expression profiles, and HIF2α is known to be the predominant HIF mRNA isoform in the adult lung. Thus, if HIF2α activation by cobalt contributes to pathophysiology of HMLD, we hypothesized that loss of HIF2α in lung epithelium would provide protection from cobalt-induced inflammation. Mice with HIF2α-deficiency in Club and alveolar type II epithelial cells (ATIIs) (HIF2α(Δ/Δ)) were exposed to cobalt (60 µg/day) or saline using a subacute occupational exposure model. Bronchoalveolar lavage cellularity, cytokines, qRT-PCR, and histopathology were analyzed. Results show that loss of HIF2α leads to enhanced eosinophilic inflammation and increased goblet cell metaplasia. Additionally, control mice demonstrated a mild recovery from cobalt-induced lung injury compared with HIF2α(Δ/Δ) mice, suggesting a role for epithelial HIF2α in repair mechanisms. The expression of important cytokines, such as interleukin (IL)-5 and IL-10, displayed significant differences following cobalt exposure when HIF2α(Δ/Δ) and control mice were compared. In summary, our data suggest that although loss of HIF2α does not afford protection from cobalt-induced lung inflammation, epithelial HIF2α signaling does play an important role in modulating the inflammatory and repair response in the lung.

  15. Charge transfer complexes of adenosine-5‧-monophosphate and cytidine-5‧-monophosphate with water-soluble cobalt(II) Schiff base complexes in aqueous solution

    NASA Astrophysics Data System (ADS)

    Boghaei, Davar M.; Gharagozlou, Mehrnaz

    2006-01-01

    Water-soluble cobalt(II) tetradentate Schiff base complexes have been shown to form charge transfer (CT) complexes with a series of nucleoside monophosphates including adenosine-5‧-monophosphate (AMP) and cytidine-5‧-monophosphate (CMP). The investigated water-soluble cobalt(II) Schiff base complexes are (i) disodium[{bis(5-sulfo-salicylaldehyde)-o-phenylenediiminato}cobalt(II)], Na2[Co(SO3-salophen)] (1); (ii) disodium[{bis(5-sulfo-salicylaldehyde)-4,5-dimethyl-o-phenylenediiminato}cobalt(II)], Na2[Co(SO3-sal-4,5-dmophen)] (2) and (iii) disodium[{bis(4-methoxy-5-sulfo-salicylaldehyde)-4,5-dimethyl-o-phenylenediiminato}cobalt(II)], Na2[Co(SO3-4-meosal-4,5-dmophen)] (3). The formation constant and thermodynamic parameters for charge transfer complex formation of water-soluble cobalt(II) Schiff base complexes with nucleoside monophosphates were determined spectrophotometrically in aqueous solution at constant ionic strength (I = 0.2 mol dm-3 KNO3) under physiological condition (pH 7.0) and at various temperatures between 288 and 308 K. The stoichiometry has been found to be 1:1 (water-soluble cobalt(II) Schiff base complex: nucleoside monophosphate) in each case. Our spectroscopic and thermodynamic results show that the interaction of water-soluble cobalt(II) Schiff base complexes with the investigated nucleoside monophosphates occurs mainly through the phosphate group. The trend of the interaction according to the cobalt(II) Schiff base complexes due to electronic and steric factors is as follows: Na2[Co(SO3-salophen)] > Na2[Co(SO3-sal-4,5-dmophen)] > Na2[Co(SO3-4-meosal-4,5-dmophen)]. Also the trend of the interaction of a given cobalt(II) Schiff base complex according to the nucleoside monophosphate is as follows: CMP > AMP.

  16. 40 CFR 421.310 - Applicability: Description of the secondary tungsten and cobalt subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS NONFERROUS METALS MANUFACTURING POINT SOURCE... the production of tungsten or cobalt at secondary tungsten and cobalt facilities processing tungsten...

  17. Reduction of Late In-Stent Stenosis in a Porcine Coronary Artery Model by Cobalt Chromium Stents with a Nanocoat of Polyphosphazene (Polyzene-F)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stampfl, Ulrike; Sommer, Christof-Matthias; Thierjung, Heidi

    2008-11-15

    The purpose of this study was to investigate the potential of nanoscale coating with the highly biocompatible polymer Polyzene-F (PZF), in combination with cobalt chromium and stainless steel stents, to reduce in-stent stenosis, thrombogenicity, and vessel wall injury and inflammation. One bare cobalt chromium, PZF-nanocoated stainless steel or PZF-nanocoated cobalt chromium stent was implanted in right coronary artery of 30 mini-pigs (4- or 12-week follow-up). Primary study end points were in-stent stenosis and thrombogenicity. Secondary study end points were vessel wall injury and inflammation as evaluated by microscopy and a new immunoreactivity score applying C-reactive protein (CRP), tumor-necrosis factor alphamore » (TNF{alpha}), and TGF{beta}. At 12 weeks, angiography showed a significantly lower average loss in lumen diameter (2.1% {+-} 3.05%) in PZF-nanocoated cobalt chromium stents compared with stents in the other groups (9.73% {+-} 4.93% for bare cobalt chromium stents and 9.71% {+-} 7% for PZF-nanocoated stainless steel stents; p = 0.04), which was confirmed at microscopy (neointima 40.7 {+-} 16 {mu}m in PZF-nanocoated cobalt chromium stents, 74.7 {+-} 57.6 {mu}m in bare cobalt chromium stents, and 141.5 {+-} 109 {mu}m in PZF-nanocoated stainless steel stents; p = 0.04). Injury and inflammation scores were low in all stents and were without significant differences. PZF-nanocoated cobalt chromium stents provided the highest efficacy in reducing in-stent stenosis at long-term follow-up. The PZF nanocoat proved to be biocompatible with respect to thromboresistance and inflammation. Our data suggest that its combination with cobalt chromium stents might provide an interesting passive stent platform.« less

  18. 40 CFR 421.230 - Applicability: Description of the primary nickel and cobalt subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS NONFERROUS METALS MANUFACTURING POINT SOURCE... production of nickel or cobalt by primary nickel and cobalt facilities processing ore concentrate raw...

  19. Low-solubility particles and a Trojan-horse type mechanism of toxicity: the case of cobalt oxide on human lung cells

    PubMed Central

    2014-01-01

    Background The mechanisms of toxicity of metal oxide particles towards lung cells are far from being understood. In particular, the relative contribution of intracellular particulate versus solubilized fractions is rarely considered as it is very challenging to assess, especially for low-solubility particles such as cobalt oxide (Co3O4). Methods This study was possible owing to two highly sensitive, independent, analytical techniques, based on single-cell analysis, using ion beam microanalysis, and on bulk analysis of cell lysates, using mass spectrometry. Results Our study shows that cobalt oxide particles, of very low solubility in the culture medium, are readily incorporated by BEAS-2B human lung cells through endocytosis via the clathrin-dependent pathway. They are partially solubilized at low pH within lysosomes, leading to cobalt ions release. Solubilized cobalt was detected within the cytoplasm and the nucleus. As expected from these low-solubility particles, the intracellular solubilized cobalt content is small compared with the intracellular particulate cobalt content, in the parts-per-thousand range or below. However, we were able to demonstrate that this minute fraction of intracellular solubilized cobalt is responsible for the overall toxicity. Conclusions Cobalt oxide particles are readily internalized by pulmonary cells via the endo-lysosomal pathway and can lead, through a Trojan-horse mechanism, to intracellular release of toxic metal ions over long periods of time, involving specific toxicity. PMID:24669904

  20. Design, Fabrication, Characterization and Modeling of Integrated Functional Materials

    DTIC Science & Technology

    2009-10-01

    cobalt ferrite (CoFe2O4) nanoparticles dispersed in a low-loss commercial polymer matrix obtained from Rogers Corporation. 2 mmol of Cobalt (II...oleylamine and 20 ml benzyl ether were added to the Iron (III) acetylacetonate and Cobalt (II) acetylacetonate mixture. The mixture was stirred...microwave applications Multiferroic bilayers of Cobalt Ferrite and PZT: The objective of this project is to fabricate bilayers of ferroelectric

  1. Investigation of Co, Ni and Fe Doped II-VI Chalcogenides

    DTIC Science & Technology

    2013-01-04

    dopants to the Fe ions. Figure 4. Cobalt doped ZnSe (7×3.1×50 mm3) samples after annealing for 7 days at 950C. A B 8 Approved for public...distribution unlimited. 4.2 Cobalt doped samples ........................................................................................................77...curve for the deposition monitor used for cobalt deposition during magnetron spattering at 1000 nm; B) percentage transmission of a cobalt thin film

  2. Exfoliation and Reassembly of Cobalt Oxide Nanosheets into a Reversible Lithium-Ion Battery Cathode

    DTIC Science & Technology

    2012-01-01

    REPORT Exfoliation and Reassembly of Cobalt Oxide Nanosheets into a Reversible Lithium-Ion Battery Cathode 14. ABSTRACT 16. SECURITY CLASSIFICATION OF...battery fabrication, cobalt oxide Owen C. Compton, Ali Abouimrane, Zhi An, Marc J. Palmeri, L. Catherine Brinson, Khalil Amine, SonBinh T. Nguyen...Exfoliation and Reassembly of Cobalt Oxide Nanosheets into a Reversible Lithium-Ion Battery Cathode Report Title ABSTRACT An exfoliation–reassembly

  3. Cyanide speciation at four gold leach operations undergoing remediation.

    PubMed

    Johnson, Craig A; Grimes, David J; Leinz, Reinhard W; Rye, Robert O

    2008-02-15

    Analyses have been made of 81 effluents from four gold leach operations in various stages of remediation to identify the most -persistent cyanide species. Total cyanide and weak acid-dissociable (WAD) cyanide were measured using improved methods, and metals known to form stable cyanocomplexes were also measured. Typically, total cyanide greatly exceeded WAD indicating that cyanide was predominantly in strong cyanometallic complexes. Iron was generally too low to accommodate the strongly complexed cyanide as Fe(CN)6s3- or Fe(CN)6(4-), but cobalt was abundant enough to implicate Co(CN)6(3-) or its dissociation products (Co(CN)(6-x)(H2O)x((3-x)-)). Supporting evidenceforcobalt-cyanide complexationwas found in tight correlations between cobalt and cyanide in some sample suites. Also, abundant free cyanide was produced upon UV illumination. Iron and cobalt cyanocomplexes both photodissociate; however, the iron concentration was insufficient to have carried the liberated cyanide, while the cobalt concentration was sufficient. Cobalt cyanocomplexes have not previously been recognized in cyanidation wastes. Their identification atfour separate operations, which had treated ores that were not especially rich in cobalt, suggests that cobalt complexation may be a common source of cyanide persistence. There is a need for more information on the importance and behavior of cobalt cyanocomplexes in ore-processing wastes at gold mines.

  4. Mobile Phones: Potential Sources of Nickel and Cobalt Exposure for Metal Allergic Patients

    PubMed Central

    Mucci, Tania; Chong, Melanie; Lorton, Mark Davis; Fonacier, Luz

    2013-01-01

    The use of cellular phones has risen exponentially with over 300 million subscribers. Nickel has been detected in cell phones and reports of contact dermatitis attributable to metals are present in the literature. We determined nickel and cobalt content in popular cell phones in the United States. Adults (>18 years) who owned a flip phone, Blackberry®, or iPhone® were eligible. Seventy-two cell phones were tested using SmartPractice's® commercially available nickel and cobalt spot tests. Test areas included buttons, keypad, speakers, camera, and metal panels. Of the 72 cell phones tested, no iPhones or Droids® tested positive for nickel or cobalt. About 29.4% of Blackberrys [95% confidence interval (CI), 13%–53%] tested positive for nickel; none were positive for cobalt. About 90.5% of flip phones (95% CI, 70%–99%) tested positive for nickel and 52.4% of flip phones (95% CI, 32%–72%) tested positive for cobalt. Our study indicates that nickel and cobalt are present in popular cell phones. Patients with known nickel or cobalt allergy may consider their cellular phones as a potential source of exposure. Further studies are needed to examine whether there is a direct association with metal content in cell phones and the manifestation of metal allergy. PMID:24380018

  5. [Evaluation of bond strength between low fusing porcelain with goldplated cobalt-chromium alloys].

    PubMed

    Guo, Jing; Zhu, Jia; Zhu, Hong-shui

    2014-02-01

    To evaluate the bond strength of Vita OMEGA 900 low fusing porcelain fused with the goldplated Wirobond cobalt-chrome metalt ceramic alloy. Low fusing porcelain was fused with the cobalt-chromium alloy strips(group A) and the goldplated cobalt-chromium alloy strips(group B) respectively according to ISO9693 (A:8,B:10). 8 specimens of each group were submitted to three point bending test. Two more test pieces fused with gold plated cobalt-chromium alloys were made (group B'). One test piece of both group B and group B' were observed under scanning electron microscope (SEM) randomly. The data was analyzed with SPSS 16.0 software package. The bond strength (MPa) of group A and group B was 29.92±4.28 and 28.20±5.21, respectively (P>0.05), both higher than 25 MPa required by ISO9693. SEM showed that Vita OMEGA 900 low fusing porcelain and the goldplated Wirobond cobalt-chrome metalt ceramic alloy combined together closely without cracks. Much gold was fused to the cobalt-chrome alloy surface of breaking porcelain specimen after testing. Vita OMEGA 900 low fusing porcelain can match with the goldplated Wirobond cobalt-chrome metalt ceramic alloy. Supported by Foundation of Education Department of Jiangxi Province (GJJ10367).

  6. Spectrophotometric determination of cobalt in horse urine using 2-(5-bromo-2-pyridylazo)-5-[N-n-propyl-N-(3-sulfopropyl)amino]aniline as chromogenic reagent

    NASA Astrophysics Data System (ADS)

    Septia Rinda, Arfidyaninggar; Uraisin, Kanchana; Sabarudin, Akhmad; Nacapricha, Duangjai; Wilairat, Prapin

    2018-01-01

    Cobalt has been reported for being abused as an illegal doping agent due to its ability as an erythropoiesis-stimulating agent for enhancing performance in racehorses. Since 2015, cobalt is listed as a prohibited substance by the International Federation of Horseracing Authorities (IFHA) with a urinary threshold of 0.1 μg cobalt per mL urine. To prevent the misuse of cobalt in racehorse, a simple method for detection of cobalt is desirable. In this work, the detection of cobalt is based on the spectrometric detection of the complex formation between cobalt(II) and 2-(5-bromo-2-pyridylazo)-5-[N-n-propyl-N-(3-sulfopropyl)amino]aniline at pH 4. The absorbance of the complex is monitored at 602 nm. The metal:ligand ratio of the complex is 1:2. The calibration graph was linear in the range of 0 - 2.5 μM {Absorbance = (0.0825 ± 0.0013)[Co2+] + (0.0406 ± 0.0003), r2 = 0.999} and the detection limit (3 SD of intercept)/slope) was 0.044 μM. The proposed method has been successfully applied to horse urine samples with the recoveries in the range 91 - 98%.

  7. Nickel and cobalt release from jewellery and metal clothing items in Korea.

    PubMed

    Cheong, Seung Hyun; Choi, You Won; Choi, Hae Young; Byun, Ji Yeon

    2014-01-01

    In Korea, the prevalence of nickel allergy has shown a sharply increasing trend. Cobalt contact allergy is often associated with concomitant reactions to nickel, and is more common in Korea than in western countries. The aim of the present study was to investigate the prevalence of items that release nickel and cobalt on the Korean market. A total of 471 items that included 193 branded jewellery, 202 non-branded jewellery and 76 metal clothing items were sampled and studied with a dimethylglyoxime (DMG) test and a cobalt spot test to detect nickel and cobalt release, respectively. Nickel release was detected in 47.8% of the tested items. The positive rates in the DMG test were 12.4% for the branded jewellery, 70.8% for the non-branded jewellery, and 76.3% for the metal clothing items. Cobalt release was found in 6.2% of items. Among the types of jewellery, belts and hair pins showed higher positive rates in both the DMG test and the cobalt spot test. Our study shows that the prevalence of items that release nickel or cobalt among jewellery and metal clothing items is high in Korea. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Association between cobalt allergy and dermatitis caused by leather articles--a questionnaire study.

    PubMed

    Bregnbak, David; Thyssen, Jacob P; Zachariae, Claus; Menné, Torkil; Johansen, Jeanne D

    2015-02-01

    Cobalt is a strong skin sensitizer and a prevalent contact allergen. Recent studies have recognized exposure to leather articles as a potential cause of cobalt allergy. To examine the association between contact allergy to cobalt and a history of dermatitis resulting from exposure to leather. A questionnaire case-control study was performed: the case group consisted of 183 dermatitis patients with a positive patch test reaction to cobalt chloride and a negative patch test reaction to potassium dichromate; the control group consisted of 621 dermatitis patients who did not react to either cobalt or chromium in patch testing. Comparisons were made by use of a χ(2) -test, Fisher's exact, and the Mann-Whitney test. Logistic regression analyses were used to test for associations while taking confounding factors into consideration. Leather was observed as the most frequent exposure source causing dermatitis in the case group. Although the case group significantly more often reported non-occupational dermatitis caused by leather exposure (p < 0.001), no association was found between cobalt allergy and dermatitis caused by work-related exposure to leather. Our study suggests a positive association between cobalt allergy and a history of dermatitis caused by non-occupational exposure to leather articles. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Monolithic cobalt-doped carbon aerogel for efficient catalytic activation of peroxymonosulfate in water.

    PubMed

    Hu, Peidong; Long, Mingce; Bai, Xue; Wang, Cheng; Cai, Caiyun; Fu, Jiajun; Zhou, Baoxue; Zhou, Yongfeng

    2017-06-15

    As an emerging carbonaceous material, carbon aerogels (CAs) display a great potential in environmental cleanup. In this study, a macroscopic three-dimensional monolithic cobalt-doped carbon aerogel was developed by co-condensation of graphene oxide sheets and resorcinol-formaldehyde resin in the presence of cobalt ions, followed by lyophilization, carbonization and thermal treatment in air. Cobalt ions were introduced as a polymerization catalyst to bridge the organogel framework, and finally cobalt species were retained as both metallic cobalt and Co 3 O 4 , wrapped by graphitized carbon layers. The material obtained after a thermal treatment in air (CoCA-A) possesses larger BET specific surface area and pore volume, better hydrophilicity and lower leaching of cobalt ions than that without the post-treatment (CoCA). Despite of a lower loading of cobalt content and a larger mass transfer resistance than traditional powder catalysts, CoCA-A can efficiently eliminate organic contaminants by activation of peroxymonosulfate with a low activation energy. CoCA-A can float beneath the surface of aqueous solution and can be taken out completely without any changes in morphology. The monolith is promising to be developed into an alternative water purification technology due to the easily separable feature. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Porous cobalt spheres for high temperature gradient magnetically assisted fluidized beds

    NASA Technical Reports Server (NTRS)

    Atwater, James E.; Akse, James R.; Jovanovic, Goran N.; Wheeler, Richard R Jr; Sornchamni, Thana

    2003-01-01

    Porous metallic cobalt spheres have been prepared as high temperature capable media for employment in gradient magnetically assisted fluidization and filtration technologies. Cobalt impregnated alginate beads are first formed by extrusion of an aqueous suspension of Co3O4 into a Co(II) chloride solution. The organic polymer is thermally decomposed yielding cobalt oxide spheres, followed by reduction to the metallic state, and densification. Cobalt beads have been produced with porosities ranging between 10 and 50%, depending upon sintering conditions. The product media have been characterized by scanning electron microscopy (SEM), nitrogen adsorption porosimetry, and vibrating sample magnetometry. c2003 Elsevier Science Ltd. All rights reserved.

  11. Evaluation of nickel and cobalt release from mobile phone devices used in Brazil.

    PubMed

    Hafner, Mariana de Figueiredo Silva; Chen, Jessica Chia Sin; Lazzarini, Rosana

    2018-01-01

    Nickel and cobalt are often responsible for metal-induced allergic contact dermatitis. With the increasing use of cell phones, we observed an increase in cases reports on telephone-related allergic contact dermatitis. The present study evaluated nickel and cobalt release from mobile phones used in Brazil. We evaluated devices of 6 brands and 20 different models using nickel and cobalt allergy spot tests. Of the 20 models, 64.7% tested positive for nickel, with 41.1% positive results for the charger input and 23.5% for other tested areas. None of them was positive for cobalt. Nickel release was more common in older models.

  12. Pulsed Laser Synthesized Magnetic Cobalt Oxide Nanoparticles for Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Bhatta, Hari; Gupta, Ram; Ghosh, Kartik; Kahol, Pawan; Delong, Robert; Wanekawa, Adam

    2011-03-01

    Nanomaterials research has become a major attraction in the field of advanced materials research in the area of Physics, Chemistry, and Materials Science. Biocompatible and chemically stable magnetic metal oxide nanoparticles have biomedical applications that includes drug delivery, cell and DNA separation, gene cloning, magnetic resonance imaging (MRI). This research is aimed at the fabrication of magnetic cobalt oxide nanoparticles using a safe, cost effective, and easy to handle technique that is capable of producing nanoparticles free of any contamination. Cobalt oxide nanoparticles have been synthesized at room temperature using cobalt foil by pulsed laser ablation technique. These cobalt oxide nanoparticles were characterized using UV-Visible (UV-Vis) spectroscopy, transmission electron microscopy (TEM), and dynamic laser light scattering (DLLS). The magnetic cobalt oxides nanoparticles were stabilized in glucose solutions of various concentrations in deionized water. The presence of UV-Vis absorption peak at 270 nm validates the nature of cobalt oxide nanoparticles. The DLLS size distributions of nanoparticles are in the range of 110 to 300 nm, which further confirms the presence nanoparticles. This work is partially supported by National Science Foundation (DMR- 0907037).

  13. Electrochemical Impedance Spectroscopy and Corrosion Behavior of Co/CeO2 Nanocomposite Coatings in Simulating Body Fluid Solution

    NASA Astrophysics Data System (ADS)

    Benea, Lidia

    2013-02-01

    A series of Co/CeO2 (25 nm) nanocomposite coating materials by electrodeposition were successfully prepared containing different cerium oxide composition in the cobalt-plating bath. Stainless steel (304L) was used as support material for nanocomposite coatings. The nano-CeO2 is uniformly incorporated into cobalt matrix, and the effect on surface morphologies was identified by scanning electron microscopy with energy-dispersive X-ray analysis. Codeposition of nano-CeO2 particles with cobalt disturbs the regular surface morphology of the cobalt coatings. It should be noted that the as-prepared Co/CeO2 nanocomposite coatings were found to be much superior in corrosion resistance over those of pure cobalt coatings materials based on a series of electrochemical impedance spectroscopy measurements in simulating body fluid solution. With increase in the nano-CeO2 particles concentration in the cobalt electrolyte, it is observed that the corrosion resistance of Co/CeO2 increases. Co/CeO2 nanocomposite coatings have higher polarization resistance as compared with pure cobalt layers in simulating body fluid solution.

  14. Intolerability of cobalt salt as erythropoietic agent.

    PubMed

    Ebert, Bastian; Jelkmann, Wolfgang

    2014-03-01

    Unfair athletes seek ways to stimulate erythropoiesis, because the mass of haemoglobin is a critical factor in aerobic sports. Here, the potential misuse of cobalt deserves special attention. Cobalt ions (Co(2+) ) stabilize the hypoxia-inducible transcription factors (HIFs) that increase the expression of the erythropoietin (Epo) gene. Co(2+) is orally active, easy to obtain, and inexpensive. However, its intake can bear risks to health. To elaborate this issue, a review of the pertinent literature was retrieved by a search with the keywords 'anaemia', 'cobalt', 'cobalt chloride', 'erythropoiesis', 'erythropoietin', 'Epo', 'side-effects' and 'treatment', amongst others. In earlier years, cobalt chloride was administered at daily doses of 25 to 300 mg for use as an anti-anaemic agent. Co(2+) therapy proved effective in stimulating erythropoiesis in both non-renal and renal anaemia, yet there were also serious medical adverse effects. The intake of inorganic cobalt can cause severe organ damage, concerning primarily the gastrointestinal tract, the thyroid, the heart and the sensory systems. These insights should keep athletes off taking Co(2+) to stimulate erythropoiesis. Copyright © 2013 John Wiley & Sons, Ltd.

  15. Phase separations of amorphous CoW films during oxidation and reactions with Si and Al

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, S.Q.; Mayer, J.W.

    1989-03-01

    Reactions of thin Co/sub 55/ W/sub 45/ films in contact with Si(100) substrates and aluminum overlayers annealed in vacuum in the temperature ranges of 625--700 /sup 0/C and 500--600 /sup 0/C, respectively, and of thin Co/sub 55/W/sub 45/ films in air from 500 to 600 /sup 0/C were investigated by Rutherford backscattering spectrometry, glancing angle x-ray diffraction, and scanning electron microscope techniques. CoW alloy films were amorphous and have a crystallization temperature of 850 /sup 0/C on SiO/sub 2/ substrates. The compound formed is Co/sub 7/ W/sub 6/. Phase separations were found in all the reactions. A layer of cobaltmore » compounds (CoSi/sub 2/ in Si/CoW, Co/sub 2/ Al/sub 9/ in CoW/Al, and Co/sub 3/ O/sub 4/ in CoW with air) was found to form at the reaction interfaces. In addition, a layer of mainly tungsten compounds (WSi/sub 2/ in Si/CoW, WAl/sub 12/ in CoW/Al, and WO/sub 3/ in CoW with air) was found next to cobalt compound layers, but further away from the reaction interfaces. The reactions started at temperatures comparable to those required for the formation of corresponding tungsten compounds.« less

  16. Cobalt-doping-induced synthesis of ceria nanodisks and their significantly enhanced catalytic activity.

    PubMed

    Guo, Xiao-Hui; Mao, Chao-Chao; Zhang, Ji; Huang, Jun; Wang, Wa-Nv; Deng, Yong-Hui; Wang, Yao-Yu; Cao, Yong; Huang, Wei-Xin; Yu, Shu-Hong

    2012-05-21

    High-quality cobalt-doped ceria nanostructures with triangular column, triangular slab, and disklike shapes are synthesized by tuning the doping amount of cobalt nitrate in a facile hydrothermal reaction. The cobalt-doped ceria nanodisks display significantly enhanced catalytic activity in CO oxidation due to exposed highly active crystal planes and the presence of numerous surface defects. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Effects of cobalt on the microstructure of Udimet 700. M.S. Thesis Final Report

    NASA Technical Reports Server (NTRS)

    Engel, M. A.

    1982-01-01

    Cobalt, a critical and "strategic" alloying element in many superalloys, was systematically substituted by nickel in experimental alloys Udimet 700 containing 0.1, 4.3, 8.6, 12.8 and the standard 17.0 wt.% cobalt. Electrolytic and chemical extraction techniques, X-ray diffraction, scanning electron and optical microscopy were used for the microstructural studies. The total weight fraction of gamma' was not significantly affected by the cobalt content, although a difference in the size and quantities of the primary and secondary gamma' phases was apparent. The lattice parameters of the gamma' were found to increase with increasing cobalt content while the lattice mismatch between the gamma matrix and gamma' phases decreased. Other significant effects of cobalt on the weight fraction, distribution and formation of the carbide and boride phases as well as the relative stability of the experimental alloys during long-time aging are also discussed.

  18. Friction and wear of plasma-sprayed coatings containing cobalt alloys from 25 deg to 650 deg in air

    NASA Technical Reports Server (NTRS)

    Sliney, H. E.; Jacobson, T. P.

    1979-01-01

    Four different compositions of self-lubricating, plasma-sprayed, composite coatings with calcium fluoride dispersed throughout cobalt alloy-silver matrices were evaluated on a friction and wear apparatus. In addition, coatings of the cobalt alloys alone and one coating with a nickel alloy-silver matrix were evaluated for comparison. The wear specimens consisted of two, diametrically opposed, flat rub shoes sliding on the coated, cylindrical surface of a rotating disk. Two of the cobalt composite coatings gave a friction coefficient of about 0.25 and low wear at room temperature, 400 and 650 C. Wear rates were lower than those of the cobalt alloys alone or the nickel alloy composite coating. However, oxidation limited the maximum useful temperature of the cobalt composite coating to about 650 C compared to about 900 C for the nickel composite coating.

  19. Investigation on the structures and magnetic properties of carbon or nitrogen doped cobalt ferrite nanoparticles.

    PubMed

    Cao, Derang; Pan, Lining; Li, Jianan; Cheng, Xiaohong; Zhao, Zhong; Xu, Jie; Li, Qiang; Wang, Xia; Li, Shandong; Wang, Jianbo; Liu, Qingfang

    2018-05-21

    Carbon or nitrogen doped cobalt ferrite nanoparticles were synthesized in the air by a facile calcination process. X-ray diffraction, mapping, X-ray photoelectron spectroscopy, and mössbauer spectra results indicate that the nonmetal elements as the interstitial one are doped into cobalt ferrite nanoparticles. The morphologies of doped cobalt ferrite nanoparticles change from near-spherical to irregular cubelike shapes gradually with the increased carbon or nitrogen concentration, and their particles sizes also increase more than 200 nm. Furthermore, the saturation magnetization of carbon doped cobalt ferrite is improved. Although the saturation magnetization of N-doped cobalt ferrite is not enhanced obviously due to the involved hematite, they also do not drop drastically. The results reveal an approach to synthesize large scale ferrite nanoparticles, and improve the magnetic properties of ferrite nanoparticles, and also provide the potential candidates to synthesis co-doped functional magnetic materials.

  20. Unconventional magnetisation texture in graphene/cobalt hybrids

    DOE PAGES

    Vu, A. D.; Coraux, J.; Chen, G.; ...

    2016-04-26

    Magnetic domain structure and spin-dependent reflectivity measurements on cobalt thin films intercalated at the graphene/Ir(111) interface are investigated using spin-polarised low-energy electron microscopy. We find that graphene-covered cobalt films have surprising magnetic properties. Vectorial imaging of magnetic domains reveals an unusually gradual thickness-dependent spin reorientation transition, in which magnetisation rotates from out-of-the-film plane to the in-plane direction by less than 10° per cobalt monolayer. During this transition, cobalt films have a meandering spin texture, characterised by a complex, three-dimensional, wavy magnetisation pattern. In addition, spectroscopy measurements suggest that the electronic band structure of the unoccupied states is essentially spin-independent alreadymore » a few electron-Volts above the vacuum level. These properties strikingly differ from those of pristine cobalt films and could open new prospects in surface magnetism.« less

  1. Facile fabrication of cobalt oxalate nanostructures with superior specific capacitance and super-long cycling stability

    NASA Astrophysics Data System (ADS)

    Cheng, Guanhua; Si, Conghui; Zhang, Jie; Wang, Ying; Yang, Wanfeng; Dong, Chaoqun; Zhang, Zhonghua

    2016-04-01

    Transition metal oxalate materials have shown huge competitive advantages for applications in supercapacitors. Herein, nanostructured cobalt oxalate supported on cobalt foils has been facilely fabricated by anodization, and could directly serve as additive/binder-free electrodes for supercapacitors. The as-prepared cobalt oxalate electrodes present superior specific capacitance of 1269 F g-1 at the current density of 6 A g-1 in the galvanostatic charge/discharge test. Moreover, the retained capacitance is as high as 87.2% as the current density increases from 6 A g-1 to 30 A g-1. More importantly, the specific capacitance of cobalt oxalate retains 91.9% even after super-long cycling of 100,000 cycles. In addition, an asymmetric supercapacitor assembled with cobalt oxalate (positive electrode) and activated carbon (negative electrode) demonstrates excellent capacitive performance with high energy density and power density.

  2. Aqua­(1,10-phenanthroline-κ2 N,N′)bis­(trimethyl­acetato)-κ2 O,O′;κO-cobalt(II)

    PubMed Central

    Chen, Xiao-Dan; Chen, Hong-Xian; Li, Zhong-Shu; Zhang, Huai-Hong; Sun, Bai-Wang

    2009-01-01

    In the title compound, [Co(C5H9O2)2(C12H8N2)(H2O)], the CoII atom is coordinated in a distorted octahedral environment by three carboxyl O atoms of two trimethyl­acetate ligands, one aqua O atom and two N atoms from 1,10-phen­anthroline. The crystal structure is stabilized by O—H⋯O hydrogen bonds and π–π stacking inter­actions [inter­planar distance between inter­digitating 1,10-phenanthroline ligands = 3.378 (2) Å]. PMID:21583436

  3. Surfactant-thermal method to prepare two new cobalt metal-organic frameworks

    NASA Astrophysics Data System (ADS)

    Yu, Xianglin; Toh, Yong Siang; Zhao, Jun; Nie, Lina; Ye, Kaiqi; Wang, Yue; Li, Dongsheng; Zhang, Qichun

    2015-12-01

    Employing surfactants as reaction media, two new metal-organic frameworks (MOFs):(HTEA)3[Co3(BTC)3] (NTU-Z33) and (HTEA)[Co3(HBTC)2(BTC)] (NTU-Z34) (H3BTC=1,3,5-benzenetricarboxylic acid, TEA=trimethylamine, and NTU=Nanyang Technological University), have been successfully synthesized and fully characterized. Note that NTU-Z33 has an unusual trimeric [Co3(COO)9] secondary building unit (SBU). Magnetic characterization suggests that both compounds have weak antiferromagnetic behaviors. Our success in preparing new crystalline Co-BTC based MOFs under different surfactant media could provide a new road to prepare new diverse MOFs through various combinations of surfactants.

  4. Crystal structure of langbeinite-related Rb0.743K0.845Co0.293Ti1.707(PO4)3.

    PubMed

    Strutynska, Nataliia Yu; Bondarenko, Marina A; Ogorodnyk, Ivan V; Baumer, Vyacheslav N; Slobodyanik, Nikolay S

    2015-03-01

    Potassium rubidium cobalt(II)/titanium(IV) tris-(orthophosphate), Rb0.743K0.845Co0.293Ti1.707(PO4)3, has been obtained using a high-temperature crystallization method. The obtained compound has a langbeinite-type structure. The three-dimensional framework is built up from mixed-occupied (Co/Ti(IV))O6 octa-hedra (point group symmetry .3.) and PO4 tetra-hedra. The K(+) and Rb(+) cations are statistically distributed over two distinct sites (both with site symmetry .3.) in the large cavities of the framework. They are surrounded by 12 O atoms.

  5. Charge transfer transitions in the photoluminescence spectra of Zn1-xMexO (Me = Mn, Ni, Co) oxide compounds

    NASA Astrophysics Data System (ADS)

    Sokolov, V. I.; Gruzdev, N. B.; Pustovarov, V. A.; Churmanov, V. N.

    2013-01-01

    Crystals of Zn1-xCoxO and Zn1-xNixO are studied by photoluminescence at temperatures of 8 and 90 K. By resolving the spectra into sums of gaussian distributions and using the known positions of donor and acceptor levels of 3d-impurities relative to the edges of the allowed bands, the observed peaks in the photoluminescence spectra are interpreted in terms of radiative recombination through donor and acceptor levels of nickel and cobalt ions. These results are compared with previously observed features of the photoluminescence spectra of Zn1-xMnxO crystals.

  6. Thermal behaviour of GdCo1-xMnxO3 cobaltates

    NASA Astrophysics Data System (ADS)

    Thakur, Rasna; Thakur, Rajesh K.; Gaur, N. K.

    2018-05-01

    With the objective of exploring the unknown thermodynamic behavior of GdCo1-xMnxO3 family, we present here an investigation of the temperature-dependent (10K≤T≤1000K) thermodynamic properties of GdCo1-xMnxO3 (x=0.1 to 0.8). The specific heat of GdCoO3 with Mn doping in the perovskite structure at B-site has been studied by means of a Modified Rigid Ion Model (MRIM). The cohesive energy, specific heat (C), volume thermal expansion (α) and Gruneisen parameter (γ) of GdCo1-xMnxO3 compounds are also discussed.

  7. Studies on Some Biologically Cobalt(II), Copper(II) and Zinc(II) Complexes With ONO, NNO and SNO Donor Pyrazinoylhydrazine-Derived Ligands

    PubMed Central

    Praveen, Marapaka; Sherazi, Syed K. A.

    1998-01-01

    Biologically active complexes of Co(II), Ni(II), Cu(II) and Zn(II) with novel ONO, NNO and SNO donor pyrazinoylhydrazine-derived compounds have been prepared and characterized on the basis of analytical data and various physicochemical studies. Distorted octahedral structures for all the complexes have been proposed. The synthesized ligands and their complexes have been screened for their antibacterial activity against bacterial species Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Klebsiella pneumonae. The activity data show the metal complexes to be more active than the parent free ligands against one or more bacterial species. PMID:18475857

  8. Magnetic particles

    NASA Technical Reports Server (NTRS)

    Chang, Manchium (Inventor); Colvin, Michael S. (Inventor); Rembaum, Alan (Inventor); Richards, Gil F. (Inventor)

    1987-01-01

    Metal oxide containing polymers and particularly styrene, acrylic or protein polymers containing fine, magnetic iron oxide particles are formed by combining a NO.sub.2 -substituted polymer with an acid such as hydrochloric acid in the presence of metal, particularly iron particles. The iron is oxidized to fine, black Fe.sub.3 O.sub.4 particles which deposit selectively on the polymer particles. Nitrated polymers are formed by reacting functionally substituted, nitrated organic compounds such as trinitrobenzene sulfonate or dinitrofluoro benzene with a functionally coreactive polymer such as an amine modified acrylic polymer or a protein. Other transition metals such as cobalt can also be incorporated into polymers using this method.

  9. One-pot three-component Biginelli-type reaction to synthesize 3,4-dihydropyrimidine-2-(1H)-ones catalyzed by Co phthalocyanines: Synthesis, characterization, aggregation behavior and antibacterial activity.

    PubMed

    Medyouni, Rawdha; Elgabsi, Wissal; Naouali, Olfa; Romerosa, Antonio; Sulaiman Al-Ayed, Abdullah; Baklouti, Lasaad; Hamdi, Naceur

    2016-10-05

    The synthesis of a novel phthalonitrile derivative with pyridine-2-thiol and 2,4,6-trimethylphenylamine substituents functionalized groups and its peripherally tetrasubstituted cobalt phthalocyanine and cationic phthalocyanines complexes were reported. The aggregation investigations carried out in different concentrations indicate that Co Phthalocyanines compounds 3,4 do not have any aggregation behavior for the concentration range of 6×10(-4)-14×10(-6)M in DMSO. The ion binding properties of Co Phthalocyanines compounds 3,4 show the formation of stable complex with Co(2+). In addition 3,4-Dihydropyrimidin-2(1H)-one derivatives were synthesized by modified Biginelli cyclocondensation reaction catalyzed by MPc as Lewis base. The structures of the synthesized compounds have been successfully characterized by the spectroscopic methods (IR, (1)H NMR, (13C)NMR, UV-Vis, mass spectrometry, elemental analysis and NMR 2D). The influence of substrate/catalyst ratio, solvent was also investigated to find optimal reaction on this synthesis for getting the highest conversion. Different parameters were examined for finding optimal conditions of catalysis. In addition; the compounds 3-11 were investigated for antimicrobial activity. Most of them exhibited important antimicrobial activity. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Fischer-Tropsch activity for non-promoted cobalt-on-alumina catalysts

    DOEpatents

    Singleton, Alan H.; Oukaci, Rachid; Goodwin, James G.

    2001-01-01

    Cobalt catalysts, and processes employing these inventive catalysts, for hydrocarbon synthesis. The inventive catalyst comprises cobalt on an alumina support and is not promoted with any noble or near noble metals. In one aspect of the invention, the alumina support preferably includes a dopant in an amount effective for increasing the activity of the inventive catalyst. The dopant is preferably a titanium dopant. In another aspect of the invention, the cobalt catalyst is preferably reduced in the presence of hydrogen at a water vapor partial pressure effective to increase the activity of the cobalt catalyst for hydrocarbon synthesis. The water vapor partial pressure is preferably in the range of from 0 to about 0.1 atmospheres.

  11. Construction of Uniform Cobalt-Based Nanoshells and Its Potential for Improving Li-Ion Battery Performance.

    PubMed

    Piao, Jun-Yu; Liu, Xiao-Chan; Wu, Jinpeng; Yang, Wanli; Wei, Zengxi; Ma, Jianmin; Duan, Shu-Yi; Lin, Xi-Jie; Xu, Yan-Song; Cao, An-Min; Wan, Li-Jun

    2018-06-28

    Surface cobalt doping is an effective and economic way to improve the electrochemical performance of cathode materials. Herein, by tuning the precipitation kinetics of Co 2+ , we demonstrate an aqueous-based protocol to grow uniform basic cobaltous carbonate coating layer onto different substrates, and the thickness of the coating layer can be adjusted precisely in nanometer accuracy. Accordingly, by sintering the cobalt-coated LiNi 0.5 Mn 1.5 O 4 cathode materials, an epitaxial cobalt-doped surface layer will be formed, which will act as a protective layer without hindering charge transfer. Consequently, improved battery performance is obtained because of the suppression of interfacial degradation.

  12. A novel ruthenium(II)-cobaloxime supramolecular complex for photocatalytic H2 evolution: Synthesis, characterisation, and mechanistic studies

    PubMed Central

    Cropek, Donald M.; Metz, Anja; Müller, Astrid M.; Gray, Harry B.; Horne, Toyketa; Horton, Dorothy C.; Poluektov, Oleg; Tiede, David M.; Weber, Ralph T.; Jarrett, William L.; Phillips, Joshua D.

    2012-01-01

    We report the synthesis and characterization of novel mixed-metal binuclear ruthenium(II)-cobalt(II) photocatalysts for hydrogen evolution in acidic acetonitrile. First, 2-(2′-pyridyl)benzothiazole (pbt), 1, was reacted with RuCl3·xH2O to produce [Ru(pbt)2Cl2] ·0.25CH3COCH3, 2, which was then reacted with 1,10-phenanthroline-5,6-dione (phendione), 3 in order to produce [Ru(pbt)2(phendione)](PF6)2·4H2O, 4. Compound 4 was then reacted with 4-pyridinecarboxaldehyde in order to produce [Ru(pbt)2(L-pyr)](PF6)2·9.5H2O, 5 (where L-pyr = (4-pyridine)oxazolo[4,5-f]phenanthroline). Compound 5 was then reacted with [Co(dmgBF2)2(H2O)2] (where dmgBF2 = difluorboryldimethylglyoximate) in order to produce the mixed-metal binuclear complex, [Ru(pbt)2(L-pyr)Co(dmgBF2)2(H2O)](PF6)2·11H2O·1.5CH3COCH3, 6. [Ru(Me2bpy)2(L-pyr)Co(dmgBF2)2(OH2)](PF6)2, 7 (where Me2bpy = 1,10-phenanthroline, 4,4′-dimethyl-2,2′-bipyridine) and [Ru(phen)2(L-pyr)Co(dmgBF2)2(OH2)](PF6)2, 8 were also synthesised. All complexes were characterized by elemental analysis, UV-visible absorption, 11B, 19F, and 59Co NMR, ESR spectroscopy, and cyclic voltammetry, where appropriate. Photocatalytic studies carried out in acidified acetonitrile demonstrated constant hydrogen generation longer than a 42 hour period as detected by gas chromatography. Time resolved spectroscopic measurements were performed on compound 6, which proved an intramolecular electron transfer from an excited Ru(II) metal centre to the Co(II) metal centre via the bridging L-pyr ligand. This resulted in the formation of a cobalt(I)-containing species that is essential for the production of H2 gas in the presence of H+ ions. A proposed mechanism for the generation of hydrogen is presented. PMID:23001132

  13. Neutron diffraction studies on cobalt substituted BiFeO3

    NASA Astrophysics Data System (ADS)

    Ray, J.; Biswal, A. K.; Acharya, S.; Babu, P. D.; Siruguri, V.; Vishwakarma, P. N.

    2013-02-01

    A dilute concentration of single phase Cobalt substituted Bismuth ferrite, BiFe1-XCoXO3; (x=0, 0.02) is prepared by sol-gel auto combustion method. Room temperature neutron diffraction patterns show no change in the crystal and magnetic structure upon cobalt doping. The calculation of magnetic moments shows 3.848 μB for Fe+ and 2.85 μB for Co3+. The cobalt is found to be in intermediate spin state.

  14. Effect of Pressing Parameters on the Structure of Porous Materials Based on Cobalt and Nickel Powders

    NASA Astrophysics Data System (ADS)

    Shustov, V. S.; Rubtsov, N. M.; Alymov, M. I.; Ankudinov, A. B.; Evstratov, E. V.; Zelensky, V. A.

    2018-03-01

    Porous materials with a bulk porosity of more than 68% were synthesized by powder metallurgy methods from a cobalt-nickel mixture. The effect of the ratio of nickel and cobalt powders used in the synthesis of this porous material (including cases when either nickel or cobalt alone was applied) and the conditions of their compaction on structural parameters, such as open and closed porosities and pose size, was established.

  15. COBALT FOLLICULITIS

    PubMed Central

    Sidell, Chester M.; Erickson, J. Gordon; McCleary, Jack E.

    1958-01-01

    Clinical observations in 60 cases of folliculitis or pronounced activation of acne in patients taking cobalt led to conclusion that the development or aggravation of the dermal lesions were owing to ingestion of the metal. The dermal manifestations abated when use of cobalt was discontinued. Active acne is considered a contraindication to the use of vitamin-iron-mineral supplements containing cobalt. Short courses of antibiotics in addition to regular acne regimen helped shorten the course of the eruption. ImagesFigure 1. PMID:13489508

  16. Structural and magnetic properties of the products of the transformation of ferrihydrite: Effect of cobalt dications

    NASA Astrophysics Data System (ADS)

    Camacho, K. I.; Pariona, N.; Martinez, A. I.; Baggio-Saitovitch, E.; Herrera-Trejo, M.; Perry, Dale L.

    2017-05-01

    The effect of cobalt dications on the transformation of 2-line ferrihydrite (2LF) has been studied. The products of the transformation reaction were characterized by X-ray diffraction, Mössbauer spectroscopy (MS), transmission electron microscopy (TEM), magnetometry, and first-order reversal curve (FORC) diagrams. It was found that the concentration of cobalt dications plays an important role on the structural and magnetic properties of the products; i.e., for low cobalt concentrations, cobalt-substituted hematite is formed, while higher concentrations promote the formation of cobalt-substituted magnetite. Structural results revealed that formation of other iron oxide polymorphs is avoided and residual 2LF is always present in the final products. In this way, hematite/2LF and magnetite/2LF nanocomposites were formed. For all the samples, magnetic measurements yielded non-saturated hysteresis loops at a maximum field of 12 kOe. For cobalt-substituted hematite/2LF samples, FORC diagrams revealed the presence of multiple single-domain (SD) components which generate interaction coupling between SD with low and high coercivity. Moreover, for cobalt-substituted magnetite/2LF samples, the FORC diagrams revealed the components of wasp-waist hysteresis loops which consist of mixtures of SD and superparamagnetic particles. One of the goals of the present study is the rigorous, experimental documentation of ferrihydrite/hematite mixtures as a function of reaction conditions for use as analytical standards research.

  17. Hydrometallurgical process for recovery of cobalt from waste cathodic active material generated during manufacturing of lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Swain, Basudev; Jeong, Jinki; Lee, Jae-chun; Lee, Gae-Ho; Sohn, Jeong-Soo

    The paper presents a new leaching-solvent extraction hydrometallurgical process for the recovery of a pure and marketable form of cobalt sulfate solution from waste cathodic active material generated during manufacturing of lithium ion batteries (LIBs). Leaching of the waste was carried out as a function of the leachant H 2SO 4 concentration, temperature, pulp density and reductant H 2O 2 concentration. The 93% of cobalt and 94% of lithium were leached at suitable optimum conditions of pulp density: 100 g L -1, 2 M H 2SO 4, 5 vol.% of H 2O 2, with a leaching time 30 min and a temperature 75 °C. In subsequent the solvent extraction study, 85.42% of the cobalt was recovered using 1.5 M Cyanex 272 as an extractant at an O/A ratio of 1.6 from the leach liquor at pH 5.00. The rest of the cobalt was totally recovered from the raffinate using 0.5 M of Cyanex 272 and an O/A ratio of 1, and a feed pH of 5.35. Then the co-extracted lithium was scrubbed from the cobalt-loaded organic using 0.1 M Na 2CO 3. Finally, the cobalt sulfate solution with a purity 99.99% was obtained from the cobalt-loaded organic by stripping with H 2SO 4.

  18. Direct Electrochemical Preparation of Cobalt, Tungsten, and Tungsten Carbide from Cemented Carbide Scrap

    NASA Astrophysics Data System (ADS)

    Xiao, Xiangjun; Xi, Xiaoli; Nie, Zuoren; Zhang, Liwen; Ma, Liwen

    2017-02-01

    A novel process of preparing cobalt, tungsten, and tungsten carbide powders from cemented carbide scrap by molten salt electrolysis has been investigated in this paper. In this experiment, WC-6Co and NaCl-KCl salt were used as sacrificial anode and electrolyte, respectively. The dissolution potential of cobalt and WC was determined by linear sweep voltammetry to be 0 and 0.6 V ( vs Ag/AgCl), respectively. Furthermore, the electrochemical behavior of cobalt and tungsten ions was investigated by a variety of electrochemical techniques. Results of cyclic voltammetry (CV) and square-wave voltammetry show that the cobalt and tungsten ions existed as Co2+ and W2+ on melts, respectively. The effect of applied voltage, electrolysis current, and electrolysis times on the composition of the product was studied. Results showed that pure cobalt powder can be obtained when the electrolysis potential is lower than 0.6 V or during low current and short times. Double-cathode and two-stage electrolysis was utilized for the preparation of cobalt, tungsten carbide, and tungsten powders. Additionally, X-ray diffraction results confirm that the product collected at cathodes 1 and 2 is pure Co and WC, respectively. Pure tungsten powder was obtained after electrolysis of the second part. Scanning electron microscope results show that the diameters of tungsten, tungsten carbide, and cobalt powder are smaller than 100, 200, and 200 nm, respectively.

  19. Cobalt Alloy Implant Debris Induces Inflammation and Bone Loss Primarily through Danger Signaling, Not TLR4 Activation: Implications for DAMP-ening Implant Related Inflammation

    PubMed Central

    Samelko, Lauryn; Landgraeber, Stefan; McAllister, Kyron; Jacobs, Joshua; Hallab, Nadim James

    2016-01-01

    Cobalt alloy debris has been implicated as causative in the early failure of some designs of current total joint implants. The ability of implant debris to cause excessive inflammation via danger signaling (NLRP3 inflammasome) vs. pathogen associated pattern recognition receptors (e.g. Toll-like receptors; TLRs) remains controversial. Recently, specific non-conserved histidines on human TLR4 have been shown activated by cobalt and nickel ions in solution. However, whether this TLR activation is directly or indirectly an effect of metals or secondary endogenous alarmins (danger-associated molecular patterns, DAMPs) elicited by danger signaling, remains unknown and contentious. Our study indicates that in both a human macrophage cell line (THP-1) and primary human macrophages, as well as an in vivo murine model of inflammatory osteolysis, that Cobalt-alloy particle induced NLRP3 inflammasome danger signaling inflammatory responses were highly dominant relative to TLR4 activation, as measured respectively by IL-1β or TNF-α, IL-6, IL-10, tissue histology and quantitative bone loss measurement. Despite the lack of metal binding histidines H456 and H458 in murine TLR4, murine calvaria challenge with Cobalt alloy particles induced significant macrophage driven in vivo inflammation and bone loss inflammatory osteolysis, whereas LPS calvaria challenge alone did not. Additionally, no significant increase (p<0.05) in inflammation and inflammatory bone loss by LPS co-challenge with Cobalt vs. Cobalt alone was evident, even at high levels of LPS (i.e. levels commiserate with hematogenous levels in fatal sepsis, >500pg/mL). Therefore, not only do the results of this investigation support Cobalt alloy danger signaling induced inflammation, but under normal homeostasis low levels of hematogenous PAMPs (<2pg/mL) from Gram-negative bacteria, seem to have negligible contribution to the danger signaling responses elicited by Cobalt alloy metal implant debris. This suggests the unique nature of Cobalt alloy particle bioreactivity is strong enough to illicit danger signaling that secondarily activate concomitant TLR activation, and may in part explain Cobalt particulate associated inflammatory and toxicity-like reactions of specific orthopedic implants. PMID:27467577

  20. Bioremediation of 60Co from simulated spent decontamination solutions.

    PubMed

    Rashmi, K; Sowjanya, T Naga; Mohan, P Maruthi; Balaji, V; Venkateswaran, G

    2004-07-26

    Bioremediation of 60Co from simulated spent decontamination solutions by utilizing different biomass of (Neurospora crassa, Trichoderma viridae, Mucor recemosus, Rhizopus chinensis, Penicillium citrinum, Aspergillus niger and, Aspergillus flavus) fungi is reported. Various fungal species were screened to evaluate their potential for removing cobalt from very low concentrations (0.03-0.16 microM) in presence of a high background of iron (9.33 mM) and nickel (0.93 mM) complexed with EDTA (10.3 mM). The different fungal isolates employed in this study showed a pickup of cobalt in the range 8-500 ng/g of dry biomass. The [Fe]/[Co] and [Ni]/[Co] ratios in the solutions before and after exposure to the fungi were also determined. At micromolar level the cobalt pickup by many fungi especially the mutants of N. crassa is seen to be proportional to the initial cobalt concentration taken in the solution. However, R. chinensis exhibits a low but iron concentration dependent cobalt pickup. Prior saturating the fungi with excess of iron during their growth showed the presence of selective cobalt pickup sites. The existence of cobalt specific sorption sites is shown by a model experiment with R. chinensis wherein at a constant cobalt concentration (0.034 microM) and varying iron concentrations so as to yield [Fe/Co]initial ratios in solution of 10, 100, 1000 and 287000 have all yielded a definite Co pickup capacity in the range 8-47 ng/g. The presence of Cr(III)EDTA (3 mM) in solution along with complexed Fe and Ni has not influenced the cobalt removal. The significant feature of this study is that even when cobalt is present in trace level (sub-micromolar) in a matrix of high concentration (millimolar levels) of iron, nickel and chromium, a situation typically encountered in spent decontamination solutions arising from stainless steel based primary systems of nuclear reactors, a number of fungi studied in this work showed a good sensitivity for cobalt pickup. Copyright 2004 Elsevier B.V.

  1. Effects of long-time elevated temperature exposures on hot-isostatically-pressed power-metallurgy Udimet 700 alloys with reduced cobalt contents

    NASA Technical Reports Server (NTRS)

    Hart, F. H.

    1984-01-01

    Because almost the entire U.S. consumption of cobalt depends on imports, this metal has been designated "strategic'. The role and effectiveness of cobalt is being evaluated in commercial nickel-base superalloys. Udiment 700 type alloys in which the cobalt content was reduced from the normal 17% down to 12.7%, 8.5%, 4.3%, and 0% were prepared by standard powder metallurgy techniques and hot isostatically pressed into billets. Mechanical testing and microstructural investigations were performed. The mechanical properties of alloys with reduced cobalt contents which were heat-treated identically were equal or better than those of the standard alloy, except that creep rates tended to increase as cobalt was reduced. The effects of long time exposures at 760 C on mechanical properties and at 760 C and 845 C on microstructures were determined. Decreased tensile properties and shorter rupture lives with increased creep rates were observed in alloy modifications. The exposures caused gamma prime particle coarsening and formation of sigma phase in the alloys with higher cobalt contents. Exposure at 845 C also reduced the amount of MC carbides.

  2. Cobalt ion-coordinated self-assembly synthesis of nitrogen-doped ordered mesoporous carbon nanosheets for efficiently catalyzing oxygen reduction.

    PubMed

    Wang, Haitao; Wang, Wei; Asif, Muhammad; Yu, Yang; Wang, Zhengyun; Wang, Junlei; Liu, Hongfang; Xiao, Junwu

    2017-10-19

    The design and synthesis of a promising porous carbon-based electrocatalyst with an ordered and uninterrupted porous structure for oxygen reduction reaction (ORR) is still a significant challenge. Herein, an efficient catalyst based on cobalt-embedded nitrogen-doped ordered mesoporous carbon nanosheets (Co/N-OMCNS) is successfully prepared through a two-step procedure (cobalt ion-coordinated self-assembly and carbonization process) using 3-aminophenol as a nitrogen source, cobalt acetate as a cobalt source and Pluronic F127 as a mesoporous template. This work indicates that the formation of a two dimensional nanosheet structure is directly related to the extent of the cobalt ion coordination interaction. Moreover, the critical roles of pyrolysis temperature in nitrogen doping and ORR catalytic activity are also investigated. Benefiting from the high surface area and graphitic degree, high contents of graphitic N and pyridinic N, ordered interconnected mesoporous carbon framework, as well as synergetic interaction between the cobalt nanoparticles and protective nitrogen doped graphitic carbon layer, the resultant optimal catalyst Co/N-OMCNS-800 (pyrolyzed at 800 °C) exhibits comparable ORR catalytic activity to Pt/C, superior tolerance to methanol crossover and stability.

  3. Sensitivity of ambient dose equivalent to the concentration of cobalt impurity present in stainless steel

    NASA Astrophysics Data System (ADS)

    Shetty, N.; Olsovcova, V.; Versaci, R.

    2018-06-01

    Stainless steels contain nickel in large amounts (about 8 %) to improve its corrosion and heat resistance. Traces of cobalt are present in nickel, which are hard to separate because of its chemical similarity. Therefore, cobalt content in steel is restricted to a maximum of 2 parts per mille for applications in nuclear industry, as natural cobalt (composed of 100% Co-59) transmutes into highly radioactive Co-60 by absorbing a thermal neutron. Co-60 has a rather long half-life of 5.3 years decaying to stable Ni-60 by emitting 2 gammas of 1.17 MeV and 1.33 MeV during the process. These hard gammas will be mostly responsible for the dose rates seen in the next few tens of years. Therefore, it is important to consider the activation of cobalt in steel and estimate the dose contributed by it. Monte Carlo simulations are performed where stainless steel samples with different cobalt concentrations are irradiated with thermal and epithermal neutrons. The ambient dose equivalent, H*(10), from irradiated samples is found to be linearly proportional to the concentration of cobalt. This paper explains the motivation, the procedure, and the detailed results of the simulations.

  4. Corrosion resistance of sodium sulfate coated cobalt-chromium-aluminum alloys at 900 C, 1000 C, and 1100 C

    NASA Technical Reports Server (NTRS)

    Santoro, G. J.

    1979-01-01

    The corrosion of sodium sulfate coated cobalt alloys was measured and the results compared to the cyclic oxidation of alloys with the same composition, and to the hot corrosion of compositionally equivalent nickel-base alloys. Cobalt alloys with sufficient aluminum content to form aluminum containing scales corrode less than their nickel-base counterparts. The cobalt alloys with lower aluminum levels form CoO scales and corrode more than their nickel-base counterparts which form NiO scales.

  5. Raman analysis of cobalt blue pigment in blue and white porcelain: A reassessment.

    PubMed

    Jiang, Xiaochenyang; Ma, Yanying; Chen, Yue; Li, Yuanqiu; Ma, Qinglin; Zhang, Zhaoxia; Wang, Changsui; Yang, Yimin

    2018-02-05

    Cobalt blue is a famous pigment in human history. In the past decade it is widely reported that the cobalt aluminate has been detected in ancient ceramics as blue colorant in glaze, yet the acquired Raman spectra are incredibly different from that of synthesised references, necessitating a reassessment of such contradictory scenario with more accurate analytic strategies. In this study, micro-Raman spectroscopy (MRS) and scanning electron microscopy (SEM) in association with energy dispersive spectrometry (EDS) were performed on under-glaze cobalt pigments from one submerged blue and white porcelain shard dated from Wanli reign (1573-1620CE) of Ming dynasty (1365-1644CE) excavated at Nan'ao I shipwreck off the southern coast of China. The micro-structural inspection reveals that the pigment particles have characteristics of small account, tiny size, heterogeneously distribution, and more importantly, been completely enwrapped by well-developed anorthite crystals in the glaze, indicating that the signals recorded in previous publications are probably not from cobalt pigments themselves but from outside thickset anorthite shell. The further spectromicroscopic analyses confirm this presumption when the accurate spectra of cobalt aluminate pigment and surrounding anorthite were obtained separately with precise optical positioning. Accordingly, we reassess and clarify the previous Raman studies dedicated to cobalt blue pigment in ancient ceramics, e.g. cobalt blue in celadon glaze, and in turn demonstrate the superiority and necessity of coupling spectroscopic analysis with corresponding structure observation, especially in the characterization of pigments from complicated physico-chemical environment like antiquities. Thus, this study promotes a better understanding of Raman spectroscopy study of cobalt blue pigments in art and archaeology field. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Raman analysis of cobalt blue pigment in blue and white porcelain: A reassessment

    NASA Astrophysics Data System (ADS)

    Jiang, Xiaochenyang; Ma, Yanying; Chen, Yue; Li, Yuanqiu; Ma, Qinglin; Zhang, Zhaoxia; Wang, Changsui; Yang, Yimin

    2018-02-01

    Cobalt blue is a famous pigment in human history. In the past decade it is widely reported that the cobalt aluminate has been detected in ancient ceramics as blue colorant in glaze, yet the acquired Raman spectra are incredibly different from that of synthesised references, necessitating a reassessment of such contradictory scenario with more accurate analytic strategies. In this study, micro-Raman spectroscopy (MRS) and scanning electron microscopy (SEM) in association with energy dispersive spectrometry (EDS) were performed on under-glaze cobalt pigments from one submerged blue and white porcelain shard dated from Wanli reign (1573-1620 CE) of Ming dynasty (1365-1644 CE) excavated at Nan'ao I shipwreck off the southern coast of China. The micro-structural inspection reveals that the pigment particles have characteristics of small account, tiny size, heterogeneously distribution, and more importantly, been completely enwrapped by well-developed anorthite crystals in the glaze, indicating that the signals recorded in previous publications are probably not from cobalt pigments themselves but from outside thickset anorthite shell. The further spectromicroscopic analyses confirm this presumption when the accurate spectra of cobalt aluminate pigment and surrounding anorthite were obtained separately with precise optical positioning. Accordingly, we reassess and clarify the previous Raman studies dedicated to cobalt blue pigment in ancient ceramics, e.g. cobalt blue in celadon glaze, and in turn demonstrate the superiority and necessity of coupling spectroscopic analysis with corresponding structure observation, especially in the characterization of pigments from complicated physico-chemical environment like antiquities. Thus, this study promotes a better understanding of Raman spectroscopy study of cobalt blue pigments in art and archaeology field.

  7. The mechanical response of a polyetheretherketone femoral knee implant under a deep squatting loading condition.

    PubMed

    de Ruiter, Lennert; Janssen, Dennis; Briscoe, Adam; Verdonschot, Nico

    2017-12-01

    The current study was designed to investigate the mechanical response of a polyetheretherketone-on-polyethylene total knee replacement device during a deep squat. Application of this high-demand loading condition can identify weaknesses of the polyetheretherketone relative to cobalt-chromium. This study investigated whether the implant is strong enough for this type of loading, whether cement stresses are considerably changed and whether a polyetheretherketone femoral component is likely to lead to reduced periprosthetic bone loss as compared to a cobalt-chromium component. A finite element model of a total knee arthroplasty subjected to a deep squat loading condition, which was previously published, was adapted with an alternative total knee arthroplasty design made of either polyetheretherketone or cobalt-chromium. The maximum tensile and compressive stresses within the implant and cement mantle were analysed against their yield and fatigue stress levels. The amount of stress shielding within the bone was compared between the polyetheretherketone and cobalt-chromium cases. Relative to its material strength, tensile peak stresses were higher in the cobalt-chromium implant; compressive peak stresses were higher in the polyetheretherketone implant. The stress patterns differed substantially between polyetheretherketone and cobalt-chromium. The tensile stresses in the cement mantle supporting the polyetheretherketone implant were up to 33% lower than with the cobalt-chromium component, but twice as high for compression. Stress shielding was reduced to a median of 1% for the polyetheretherketone implant versus 56% for the cobalt-chromium implant. Both the polyetheretherketone implant and the underlying cement mantle should be able to cope with the stress levels present during a deep squat. Relative to the cobalt-chromium component, stress shielding of the periprosthetic femur was substantially less with a polyetheretherketone femoral component.

  8. Applications of x ray absorption fine structure to the in situ study of the effect of cobalt in nickel hydrous oxide electrodes for fuel cells and rechargeable batteries

    NASA Technical Reports Server (NTRS)

    Kim, Sunghyun; Tryk, Donald A.; Scherson, Daniel A.; Antonio, Mark R.

    1993-01-01

    Electronic and structural aspects of composite nickel-cobalt hydrous oxides have been examined in alkaline solutions using in situ X-ray absorption fine structure (XAFS). The results obtained have indicated that cobalt in this material is present as cobaltic ions regardless of the oxidation state of nickel in the lattice. Furthermore, careful analysis of the Co K-edge Extended X-ray absorption fine structure data reveals that the co-electrodeposition procedure generates a single phase, mixed metal hydrous oxide, in which cobaltic ions occupy nickel sites in the NiO2 sheet-like layers and not two intermixed phases each consisting of a single metal hydrous oxide.

  9. Cobalt oxide nanoparticles can enter inside the cells by crossing plasma membranes

    PubMed Central

    Bossi, Elena; Zanella, Daniele; Gornati, Rosalba; Bernardini, Giovanni

    2016-01-01

    The ability of nanoparticles (NPs) to be promptly uptaken by the cells makes them both dangerous and useful to human health. It was recently postulated that some NPs might cross the plasma membrane also by a non-endocytotic pathway gaining access to the cytoplasm. To this aim, after having filled mature Xenopus oocytes with Calcein, whose fluorescence is strongly quenched by divalent metal ions, we have exposed them to different cobalt NPs quantifying quenching as evidence of the increase of the concentration of Co2+ released by the NPs that entered into the cytoplasm. We demonstrated that cobalt oxide NPs, but not cobalt nor cobalt oxide NPs that were surrounded by a protein corona, can indeed cross plasma membranes. PMID:26924527

  10. 21 CFR 181.25 - Driers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... migrating from food-packaging material shall include: Cobalt caprylate. Cobalt linoleate. Cobalt naphthenate... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Driers. 181.25 Section 181.25 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) PRIOR-SANCTIONED FOOD...

  11. The substitution of nickel for cobalt in hot isostatically pressed powder metallurgy UDIMET 700 alloys

    NASA Technical Reports Server (NTRS)

    Harf, F. H.

    1985-01-01

    Nickel was substituted in various proportions for cobalt in a series of five hot-isostatically-pressed powder metallurgy alloys based on the UDIMET 700 composition. These alloys were given 5-step heat treatments appropriate for use in turbine engine disks. The resultant microstructures displayed three distinct sizes of gamma-prime particles in a gamma matrix. The higher cobalt-content alloys contained larger amounts of the finest gamma-prime particles, and had the lowest gamma-gamma-prime lattice mismatch. While all alloys had approximately the same tensile properties at 25 and 650 gamma C, the rupture lives at 650 and 760 C peaked in the alloys with cobalt contents between 12.7 and 4.3 pct. Minimum creep rates increased as cobalt contents were lowered, suggesting their correlation with the gamma-prime particle size distribution and the gamma-gamma-prime mismatch. It was also found that, on overaging at temperatures higher than suitable for turbine disk use, the high cobalt-content alloys were prone to sigma phase formation.

  12. Wrought cobalt- base superalloys

    NASA Astrophysics Data System (ADS)

    Klarstrom, D. L.

    1993-08-01

    Wrought cobalt-base superalloys are used extensively in gas turbine engines because of their excellent high-temperature creep and fatigue strengths and resistance to hot corrosion attack. In addition, the unique character of the oxide scales that form on some of the alloys provides outstanding resistance to high-temperature sliding wear. This article provides a review of the evolutionary development of wrought cobalt-base alloys in terms of alloy design and physical metallurgy. The topics include solid-so-lution strengthening, carbide precipitation characteristics, and attempts to introduce age hardening. The use of PHACOMP to enhance thermal stability characteristics and the incorporation of rare-earth ele-ments to improve oxidation resistance is also reviewed and discussed. The further development of cobalt-base superalloys has been severely hampered by past political events, which have accentuated the strategic vulnerability of cobalt as a base or as an alloying element. Consequently, alternative alloys have been developed that use little or no cobalt. One such alternative, Haynes® 230TMalloy, is discussed briefly.

  13. Cobalt toxicity after revision total hip replacement due to fracture of a ceramic head.

    PubMed

    Pelayo-de Tomás, J M; Novoa-Parra, C; Gómez-Barbero, P

    Symptomatic cobalt toxicity from a failed total hip replacement is a rare, but devastating complication. Potential clinical findings include cardiomyopathy, hypothyroidism, skin rash, visual and hearing impairment, polycythaemia, weakness, fatigue, cognitive impairment, and neuropathy. The case is presented of a 74year-old man in whom, after a ceramic-ceramic replacement and two episodes of prosthetic dislocation, it was decided to replace it with a polyethylene-metal total hip arthroplasty (THA). At 6months after the revision he developed symptoms of cobalt toxicity, confirmed by analytical determination (serum cobalt level=651.2μg/L). After removal of the prosthesis, the levels of chromium and cobalt in blood and urine returned to normal, with the patient currently being asymptomatic. It is recommended to use a new ceramic on ceramic bearing at revision, in order to minimise the risk of wear-related cobalt toxicity following breakage of ceramic components. Copyright © 2016 SECOT. Publicado por Elsevier España, S.L.U. All rights reserved.

  14. Treatment of radioactive liquid waste (Co-60) by sorption on Zeolite Na-A prepared from Iraqi kaolin.

    PubMed

    Mustafa, Yasmen A; Zaiter, Maysoon J

    2011-11-30

    Iraqi synthetic zeolite type Na-A has been suggested as ion exchange material to treat cobalt-60 in radioactive liquid waste which came from neutron activation for corrosion products. Batch experiments were conducted to find out the equilibrium isotherm for source sample. The equilibrium isotherm for radioactive cobalt in the source sample showed unfavorable type, while the equilibrium isotherm for the total cobalt (the radioactive and nonradioactive cobalt) in the source sample showed a favorable type. The ability of Na-A zeolite to remove cobalt from wastewater was checked for high cobalt concentration (822 mg/L) in addition to low cobalt concentration in the source sample (0.093 mg/L). A good fitting for the experimental data with Langmuir equilibrium model was observed. Langmuir constant qm which is related to monolayer adsorption capacity for low and high cobalt concentration was determined to be 0.021 and 140 mg/g(zeolite). The effects of important design variables on the zeolite column performance were studied these include initial concentration, flow rate, and bed depth. The experimental results have shown that high sorption capacity can be obtained at high influent concentration, low flow rate, and high bed depth. Higher column performance was obtained at higher bed depth. Thomas model was employed to predict the breakthrough carves for the above variables. A good fitting was observed with correlation coefficients between 0.915 and 0.985. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Leaching kinetics of cobalt from the scraps of spent aerospace magnetic materials.

    PubMed

    Zhou, Xuejiao; Chen, Yongli; Yin, Jianguo; Xia, Wentang; Yuan, Xiaoli; Xiang, Xiaoyan

    2018-06-01

    Based on physicochemical properties of the scraps of spent aerospace magnetic materials, a roasting - magnetic separation followed by sulfuric acid leaching process was proposed to extract cobalt. Roasting was performed at 500 °C to remove organic impurity. Non-magnetic impurities were reduced by magnetic separation and then the raw material was sieved into desired particle sizes. Acid leaching was carried out to extract cobalt from the scraps and experimental parameters included agitation speed, particle size, initial concentration of sulfuric acid and temperature. Agitation speed higher than 300 r/min had a relatively small impact on the cobalt extraction. As the particle size reduced, the content of cobalt in the raw material decreases and the extraction of cobalt by acid leaching increased at first and decreased afterwards. Raising the initial concentration of sulfuric acid and temperature contributed to improve the cobalt extraction and the influence of temperature was more remarkable. SEM image revealed that the spent aerospace magnetic materials mainly existed in the sliced strip flake with a loose surface and porous structure. Under the experimental condition, the leaching rate of cobalt from the scraps in sulfuric acid solution could be expressed as ln(-ln(1 - α)) = lnk + nlnt. The apparent activation energy was found to be 38.33 kJ/mol and it was mainly controlled by the surface chemical reaction. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Effect of cobalt content on wear and corrosion behaviors of electrodeposited Ni-Co/WC nano-composite coatings.

    PubMed

    Amadeh, A; Ebadpour, R

    2013-02-01

    Metal-ceramic composite coatings are widely used in automotive and aerospace industries as well as micro-electronic systems. Electrodeposition is an economic method for application of these coatings. In this research, nickel-cobalt coatings reinforced by nano WC particles were applied on carbon steel substrate by pulse electrodeposition from modified Watts bath containing different amounts of cobalt sulphate as an additive. Saccharin and sodium dodecyl sulphate (SDS) were also added to electroplating bath as grain refiner and surfactant, respectively. The effect of cobalt content on wear and corrosion behavior of the coatings was investigated. Wear and corrosion properties were assessed by pin-on-disk and potentiodynamic polarization methods, respectively. Phase analysis was performed by X-ray diffraction (XRD) using CuK(alpha) radiation and the worn surfaces were studied by means of Scanning Electron Microscopy (SEM). The results showed that the addition of cobalt improved the wear resistance of the coatings. In the presence of 18 g/L cobalt in electrodeposition bath, the wear rate of the coating decreased to 0.002 mg/m and the coefficient of friction reduced to 0.695 while they were 0.004 mg/m and 0.77 in the absence of cobalt, respectively. This improvement in wear properties can be attributed to the formation of hcp phase in metallic matrix. Meanwhile, the corrosion resistance of the coatings slightly reduced because cobalt is more active metal with respect to nickel.

  17. Organic oxalate as leachant and precipitant for the recovery of valuable metals from spent lithium-ion batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun Liang; Key Laboratory of Resources Chemistry of Nonferrous Metals, Central South University, Ministry of Education of the People's Republic of China; Qiu Keqiang, E-mail: qiuwhs@sohu.com

    2012-08-15

    Graphical abstract: Display Omitted Highlights: Black-Right-Pointing-Pointer Vacuum pyrolysis as a pretreatment was used to separate cathode material from aluminum foils. Black-Right-Pointing-Pointer Cobalt and lithium can be leached using oxalate while cobalt can be directly precipitated as cobalt oxalate. Black-Right-Pointing-Pointer Cobalt and lithium can be separated efficiently from each other only in the oxalate leaching process. Black-Right-Pointing-Pointer High reaction efficiency of LiCoO{sub 2} was obtained with oxalate. - Abstract: Spent lithium-ion batteries containing lots of strategic resources such as cobalt and lithium are considered as an attractive secondary resource. In this work, an environmentally compatible process based on vacuum pyrolysis, oxalatemore » leaching and precipitation is applied to recover cobalt and lithium from spent lithium-ion batteries. Oxalate is introduced as leaching reagent meanwhile as precipitant which leaches and precipitates cobalt from LiCoO{sub 2} and CoO directly as CoC{sub 2}O{sub 4}{center_dot}2H{sub 2}O with 1.0 M oxalate solution at 80 Degree-Sign C and solid/liquid ratio of 50 g L{sup -1} for 120 min. The reaction efficiency of more than 98% of LiCoO{sub 2} can be achieved and cobalt and lithium can also be separated efficiently during the hydrometallurgical process. The combined process is simple and adequate for the recovery of valuable metals from spent lithium-ion batteries.« less

  18. Cobalt Phthalocyanine Modified Electrodes Utilised in Electroanalysis: Nano-Structured Modified Electrodes vs. Bulk Modified Screen-Printed Electrodes

    PubMed Central

    Foster, Christopher W.; Pillay, Jeseelan; Metters, Jonathan P.; Banks, Craig E.

    2014-01-01

    Cobalt phthalocyanine (CoPC) compounds have been reported to provide electrocatalytic performances towards a substantial number of analytes. In these configurations, electrodes are typically constructed via drop casting the CoPC onto a supporting electrode substrate, while in other cases the CoPC complex is incorporated within the ink of a screen-printed sensor, providing a one-shot economical and disposable electrode configuration. In this paper we critically compare CoPC modified electrodes prepared by drop casting CoPC nanoparticles (nano-CoPC) onto a range of carbon based electrode substrates with that of CoPC bulk modified screen-printed electrodes in the sensing of the model analytes l-ascorbic acid, oxygen and hydrazine. It is found that no “electrocatalysis” is observed towards l-ascorbic acid using either of these CoPC modified electrode configurations and that the bare underlying carbon electrode is the origin of the obtained voltammetric signal, which gives rise to useful electroanalytical signatures, providing new insights into literature reports where “electrocatalysis” has been reported with no clear control experiments undertaken. On the other hand true electrocatalysis is observed towards hydrazine, where no such voltammetric features are witnessed on the bare underlying electrode substrate. PMID:25414969

  19. Electrical, structural and thermal studies of carbon nanotubes from natural legume seeds: kala chana

    NASA Astrophysics Data System (ADS)

    Ranu, Rachana; Chauhan, Yatishwar; Singh, Pramod K.; Bhattacharya, B.; Tomar, S. K.

    2016-12-01

    Carbon nanotubes (CNTs) are the carbon materials measured at nanoscale level and they are defined in two types according to the number of concentric layers, i.e. single-layer tube is single-walled nanotubes, while multi-layer tube structure is called multi-walled nanotubes. The green method synthesis for the preparation of CNTs begins with the smashing of legume seeds kala chana, and then they form complex with cobalt salt. Desiccation of the complex compound forms cobalt salt and seed protein. The complex is then decomposed at 625 °C in muffle furnace for 20 min. Purification of the decomposed sample is done through acid wash treatment and dried in vacuum oven. The confirmations of CNTs are done by nuclear magnetic resonance and Fourier transform infrared, which analyzes the denatured protein, reacted to the metal salt. X-Ray diffraction determines the MWNTs with transmission electron microscope (TEM) reports the network structure of CNTs. thermal gravimetric analysis (TGA)-differential thermal analysis (DTA)-thermogravimetric analysis (DTG) tests the amount of sample under thermal treatment. Vibrating sample magnetometer determines the paramagnetic nature of CNTs. CNTs thus prepared can be used in mechanical fields, in solar cells, in electronics fields, etc. because of their multidisciplinary properties. The synthesized CNTs are eco-friendly in nature, prepared by the legume seed natural precursor.

  20. Two-stage preparation of magnetic sorbent based on exfoliated graphite with ferrite phases for sorption of oil and liquid hydrocarbons from the water surface

    NASA Astrophysics Data System (ADS)

    Pavlova, Julia A.; Ivanov, Andrei V.; Maksimova, Natalia V.; Pokholok, Konstantin V.; Vasiliev, Alexander V.; Malakho, Artem P.; Avdeev, Victor V.

    2018-05-01

    Due to the macropore structure and the hydrophobic properties, exfoliated graphite (EG) is considered as a perspective sorbent for oil and liquid hydrocarbons from the water surface. However, there is the problem of EG collection from the water surface. One of the solutions is the modification of EG by a magnetic compound and the collection of EG with sorbed oil using the magnetic field. In this work, the method of the two-stage preparation of exfoliated graphite with ferrite phases is proposed. This method includes the impregnation of expandable graphite in the mixed solution of iron (III) chloride and cobalt (II) or nickel (II) nitrate in the first stage and the thermal exfoliation of impregnated expandable graphite with the formation of exfoliated graphite containing cobalt and nickel ferrites in the second stage. Such two-stage method makes it possible to obtain the sorbent based on EG modified by ferrimagnetic phases with high sorption capacity toward oil (up to 45-51 g/g) and high saturation magnetization (up to 42 emu/g). On the other hand, this method allows to produce the magnetic sorbent in a short period of time (up to 10 s) during which the thermal exfoliation is carried out in the air atmosphere.

  1. Synthesis, cytotoxicity, cellular uptake and influence on eicosanoid metabolism of cobalt-alkyne modified fructoses in comparison to auranofin and the cytotoxic COX inhibitor Co-ASS.

    PubMed

    Ott, Ingo; Koch, Thao; Shorafa, Hashem; Bai, Zhenlin; Poeckel, Daniel; Steinhilber, Dieter; Gust, Ronald

    2005-06-21

    Propargylhexacarbonyldicobalt complexes with fructopyranose ligands were prepared and investigated for cytotoxicity in the MCF-7 human breast cancer cell line. The antiproliferative effects depended on the presence of isopropylidene protecting groups in the carbohydrate ligand and correlated with the cellular concentration of the complexes. IC(50) values of > 20 microM demonstrated that the fructose derivatives were only moderately active compared to the references auranofin and the aspirin (ASS) derivative [2-acetoxy(2-propynyl)benzoate]hexacarbonyldicobalt (Co-ASS). In continuation of our studies on the mode of action of cobalt-alkyne complexes we studied the influence of the compounds on the formation of 12-HHT (COX-1 product) and 12-HETE (12-LOX product) by human platelets as an indication of the interference in the eicosanoid metabolism, which is discussed as a target system of cytostatics. Co-ASS was an efficient COX-1 inhibitor without LOX inhibitory activity and auranofin inhibited both COX-1 and 12-LOX eicosanoid production. The missing activity of the fructopyranose complexes at the 12-LOX and the only moderate effects at COX-1 indicate that COX/LOX inhibition may be in part responsible for the pharmacological effects of auranofin and Co-ASS but not for those of the fructopyranose complexes.

  2. Investigation of structural, magnetic and dielectric properties of Cr3+ substituted Cu0.75Co0.25Fe2-xO4 ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Reddi, M. Sushma; Ramesh, M.; Sreenivasu, T.; Rao, G. S. N.; Samatha, K.

    2018-05-01

    Chromium doped Copper-Cobalt ferrite Nanoparticles were obtained by sol-gel auto-combustion method using citric acid as a fuel. The metal nitrates to citric acid ratio was taken as 1:1. The prepared powder of Cr3+ doped copper-cobalt ferrite nanoparticles is annealed at 600°C for 5 hrs and the same powder was used for characterization and investigations of structural properties. The phase composition, micro-structural, micro morphological and elemental analysis studies were carried out by X-ray diffraction (XRD), scanning electron microscope (SEM) technique and energy dispersive spectroscopy (EDS). The FTIR spectra of these samples are recorded to ensure the presence of the metallic compounds. The average crystallite size obtained by Scherrer's formula is of the order of 19.28 nm to 32.92 nm. The dielectric properties are investigated as a function of frequency at room temperature using LCR-Q meter. The saturation magnetization (Ms) of the Cr3+ substituted Cu-Co ferrite sintered at 1100°C lies in the range of 5.4136-28.9943 emu/g, the coercivity (Hc) dropped desperately from about 2091.3-778.53Oe as Cr3+ composition increases from 0.0 to 0.25.

  3. Local structural relaxation around Co2+ along the hardystonite-Co-åkermanite melilite solid solution

    NASA Astrophysics Data System (ADS)

    Ardit, Matteo; Cruciani, Giuseppe; Dondi, Michele

    2012-10-01

    Six pure compounds belonging to the hardystonite (Ca2ZnSi2O7)-Co-åkermanite (Ca2CoSi2O7) solid solution were investigated by the combined application of X-ray powder diffraction and electronic absorption spectroscopy. Structural refinements of the XRPD data revealed a negative excess volume of mixing due to the single isovalent substitution of Co for Zn in the tetrahedral site. In agreement with the diffraction data, deconvolution of the optical spectra showed a progressive decreasing of the crystal field strength parameter 10 Dq moving toward the Co-åkermanite end-member, meaning that the local cobalt-oxygen bond distance, < {{Co}}{-}{{O}}rangle^{{local}} , increased along the join with the amount of cobalt. The calculated structural relaxation coefficient around the fourfold coordinated Co2+ in the Ca2(Zn1- x Co x )Si2O7 join was ɛ = 0.69, very far from the one predicted by the Vegard's law ( ɛ = 0) and at variance with ɛ = 0.47 previously found for tetrahedrally coordinated Co2+ in gahnite-Co-aluminate spinel solid solution. This difference is consistent with the largest constraints existing on the spinel structure, based on cubic closest packing, compared to the more flexible layered melilite structure.

  4. Cobalt Doping of Semiconducting Boron Carbide Using Cobaltocene

    DTIC Science & Technology

    2007-03-01

    COBALT DOPING OF SEMICONDUCTING BORON CARBIDE USING COBALTOCENE THESIS Lonnie Carlson, Major...DOPING OF SEMICONDUCTING BORON CARBIDE USING COBALTOCENE THESIS Presented to the Faculty Department of Engineering Physics Graduate School...DISTRIBUTION UNLIMITED AFIT/GNE/ENP/07-01 COBALT DOPING OF SEMICONDUCTING BORON CARBIDE USING COBALTOCENE Lonnie

  5. 21 CFR 73.1015 - Chromium-cobalt-aluminum oxide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Chromium-cobalt-aluminum oxide. 73.1015 Section 73.1015 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1015 Chromium-cobalt-aluminum oxide. (a...

  6. 21 CFR 73.1015 - Chromium-cobalt-aluminum oxide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Chromium-cobalt-aluminum oxide. 73.1015 Section 73.1015 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1015 Chromium-cobalt-aluminum oxide. (a...

  7. 21 CFR 73.1015 - Chromium-cobalt-aluminum oxide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Chromium-cobalt-aluminum oxide. 73.1015 Section 73.1015 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1015 Chromium-cobalt-aluminum oxide. (a...

  8. 40 CFR 415.650 - Applicability; description of the cobalt salts production subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Applicability; description of the cobalt salts production subcategory. 415.650 Section 415.650 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS INORGANIC CHEMICALS MANUFACTURING POINT SOURCE CATEGORY Cobalt Salts Production...

  9. A Highly-Reduced Cobalt Terminal Carbyne: Divergent Metal- and α-Carbon-Centered Reactivity.

    PubMed

    Mokhtarzadeh, Charles C; Moore, Curtis E; Rheingold, Arnold L; Figueroa, Joshua S

    2018-06-15

    Reported here is the isolation of a dianionic cobalt terminal carbyne derived from chemical reduction of an encumbering isocyanide ligand. Crystallographic, spectroscopic and computational data reveal that this carbyne possesses a low-valent cobalt center with an extensively-filled d-orbital manifold. This electronic character renders the cobalt center the primary site of nucleophilicity upon reaction with protic substrates and silyl electrophiles. However, reactions with internal alkynes result in [2+2] cycloaddition with the carbyne carbon to form a new C-C bond.

  10. Influence of Cobalt on the Adhesion Strength of Polycrystalline Diamond Coatings on WC-Co Hard Alloys

    NASA Astrophysics Data System (ADS)

    Linnik, S. A.; Gaidaichuk, A. V.; Okhotnikov, V. V.

    2018-02-01

    The influence of cobalt on the phase composition and adhesion strength of polycrystalline diamond coatings has been studied using scanning electron microscopy, Raman spectroscopy, and X-ray microanalysis. The coatings have been deposited on WC-Co hard alloy substrates in glow discharge plasma. It has been found that the catalytic amorphization of carbon only takes place during the direct synthesis of the diamond coating, when the cobalt vapor pressure over the substrate is high and the cobalt-related degradation of the synthesized diamond is absent.

  11. Cobalt chloride induces metaphase when topically applied to larvae and pupae of the stingless bee Melipona scutellaris (Hymenoptera, Apidae, Meliponini).

    PubMed

    Ueira-Vieira, C; Tavares, R R; Morelli, S; Pereira, B B; Silva, R P; Torres-Mariano, A R; Kerr, W E; Bonetti, A M

    2013-06-20

    In order to optimize preparations of bee metaphases, we tested cobalt chloride, which has been used as a metaphase inducer in other organisms, such as hamsters and fish. Four microliters of 65 mM cobalt chloride aqueous solution was topically applied to larval and pupal stages of the stingless bee Melipona scutellaris. The cerebral ganglion was removed after treatment and prepared for cytogenetic analysis. Identically manipulated untreated individuals were used as controls. The number of metaphases was increased 3-fold in treated individuals compared to controls. The micronucleus test showed no mutagenic effects of cobalt chloride on M. scutellaris cells. We concluded that cobalt chloride is a metaphase-inducing agent in M. scutellaris, thus being useful for cytogenetic analyses.

  12. Preliminary study of a solar selective coating system using black cobalt oxide for high temperature solar collectors

    NASA Technical Reports Server (NTRS)

    Mcdonald, G.

    1980-01-01

    Black cobalt oxide coatings (high solar absorptance layer) were deposited on thin layers of silver or gold (low emittance layer) which had been previously deposited on oxidized (diffusion barrier layer) stainless steel substrates. The reflectance properties of these coatings were measured at various thicknesses of cobalt for integrated values of the solar and infrared spectrum. The values of absorptance and emittance were calculated from the measured reflectance values, before and after exposure in air at 650 C for approximately 1000 hours. Absorptance and emittance were interdependent functions of the weight of cobalt oxide. Also, these cobalt oxide/noble metal/oxide diffusion barrier coatings have absorptances greater than 0.90 and emittances of approximately 0.20 even after about 1000 hours at 650 C.

  13. Impedance spectroscopy studies in cobalt ferrite-reduced graphene oxide nanocomposite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Supriya, Sweety, E-mail: sweety@iitp.ac.in; Kumar, Sunil, E-mail: sunil.pph13@iitp.ac.in; Kar, Manoranjan, E-mail: mano@iitp.ac.in

    2016-05-06

    (1-x)Cobalt ferrite-(x)reduced graphene oxidenanocomposites with x=0, 0.1, 0.2 and 0.3 were prepared by the ultrasonic method. The crystal symmetry modification due to reduced graphene oxide and cobalt ferrite interaction has been studied by employing the X-ray diffraction technique. Morphology of the samples was studied by the Field emission scanning electron microscopy (FE-SEM). Study on electrical properties of the cobalt ferrite-reduced graphene oxide nanocomposites explores the possible application of these composites as anode material. Impedance decreases with an increase in frequency as well as temperature, which supports an increase in ac electrical conductivity. The modified Debye relaxation model can explain themore » behavior of impedance in cobalt ferrite-reduced graphene oxide nanocomposites.« less

  14. [Spectroscopic studies on transition metal ions in colored diamonds].

    PubMed

    Meng, Yu-Fei; Peng, Ming-Sheng

    2004-07-01

    Transition metals like nickel, cobalt and iron have been often used as solvent catalysts in high pressure high temperature (HPHT) synthesis of diamond, and nickel and cobalt ions have been found in diamond lattice. Available studies indicated that nickel and cobalt ions could enter the lattice as interstitial or substitutional impurities and form complexes with nitrogen. Polarized microscopy, SEM-EDS, EPR, PL and FTIR have been used in this study to investigate six fancy color natural and synthetic diamonds in order to determine the spectroscopic characteristics and the existing forms of transition metal ions in colored diamond lattice. Cobalt-related optical centers were first found in natural chameleon diamonds, and some new nickel and cobalt-related optical and EPR centers have also been detected in these diamond samples.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Shibin; College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061; Chang, Xueting, E-mail: xuetingchang@yahoo.cn

    Cobalt-doped tungsten oxide mesocrystals with different morphologies have been successfully generated using a solvothermal method with tungsten hexachloride and cobalt chloride salts as precursors. The resulting mesocrystals were characterized by X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, Brunauer-Emmet-Teller analysis of nitrogen sorptometer, and UV-vis diffuse reflectance spectroscopy. The photocatalytic properties of the cobalt-doped tungsten oxide mesocrystals were evaluated on the basis of their ability to degrade methyl orange in an aqueous solution under simulated sunlight irradiation. Results showed that the cobalt doping had obvious effect on the morphologies of the final products, and lenticular and blocky cobalt-dopedmore » tungsten oxide mesocrystals could be obtained with 1.0 wt.% and 2.0 wt.% cobalt doping, respectively. The cobalt-doped tungsten oxides exhibited superior photocatalytic activities to that of the undoped tungsten oxide. - Graphical abstract: Schematic illustrations of the growth of the bundled nanowires, lenticular mesocrystals, and blocky mesocrystals. Highlights: Black-Right-Pointing-Pointer Co-doped W{sub 18}O{sub 49} mesocrystals were synthesized using a solvothermal method. Black-Right-Pointing-Pointer The Co doping has obvious effect on the morphology of the final mesocrystals. Black-Right-Pointing-Pointer The Co-doped W{sub 18}O{sub 49} exhibited superior photocatalytic activity to the undoped W{sub 18}O{sub 49}.« less

  16. Effect of Er doping on the structural and magnetic properties of cobalt-ferrite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prathapani, Sateesh; Vinitha, M.; Das, D., E-mail: ddse@uohyd.ernet.in

    2014-05-07

    Nanocrystalline particulates of Er doped cobalt-ferrites CoFe{sub (2−x)}Er{sub x}O{sub 4} (0 ≤ x ≤ 0.04), were synthesized, using sol-gel assisted autocombustion method. Co-, Fe-, and Er- nitrates were the oxidizers, and malic acid served as a fuel and chelating agent. Calcination (400–600 °C for 4 h) of the precursor powders was followed by sintering (1000 °C for 4 h) and structural and magnetic characterization. X-ray diffraction confirmed the formation of single phase of spinel for the compositions x = 0, 0.01, and 0.02; and for higher compositions an additional orthoferrite phase formed along with the spinel phase. Lattice parameter of the doped cobalt-ferrites was higher than that of pure cobalt-ferrite.more » The observed red shift in the doped cobalt-ferrites indicates the presence of induced strain in the cobalt-ferrite matrix due to large size of the Er{sup +3} compared to Fe{sup +3}. Greater than two-fold increase in coercivity (∼66 kA/m for x = 0.02) was observed in doped cobalt-ferrites compared to CoFe{sub 2}O{sub 4} (∼29 kA/m)« less

  17. Open-Loop Flight Testing of COBALT GN&C Technologies for Precise Soft Landing

    NASA Technical Reports Server (NTRS)

    Carson, John M., III; Amzajerdian, Farzin; Seubert, Carl R.; Restrepo, Carolina I.

    2017-01-01

    A terrestrial, open-loop (OL) flight test campaign of the NASA COBALT (CoOperative Blending of Autonomous Landing Technologies) platform was conducted onboard the Masten Xodiac suborbital rocket testbed, with support through the NASA Advanced Exploration Systems (AES), Game Changing Development (GCD), and Flight Opportunities (FO) Programs. The COBALT platform integrates NASA Guidance, Navigation and Control (GN&C) sensing technologies for autonomous, precise soft landing, including the Navigation Doppler Lidar (NDL) velocity and range sensor and the Lander Vision System (LVS) Terrain Relative Navigation (TRN) system. A specialized navigation filter running onboard COBALT fuzes the NDL and LVS data in real time to produce a precise navigation solution that is independent of the Global Positioning System (GPS) and suitable for future, autonomous planetary landing systems. The OL campaign tested COBALT as a passive payload, with COBALT data collection and filter execution, but with the Xodiac vehicle Guidance and Control (G&C) loops closed on a Masten GPS-based navigation solution. The OL test was performed as a risk reduction activity in preparation for an upcoming 2017 closed-loop (CL) flight campaign in which Xodiac G&C will act on the COBALT navigation solution and the GPS-based navigation will serve only as a backup monitor.

  18. Reactivity of a Cobalt(III)–Hydroperoxo Complex in Electrophilic Reactions

    DOE PAGES

    Shin, Bongki; Sutherlin, Kyle D.; Ohta, Takehiro; ...

    2016-11-15

    The reactivity of mononuclear metal-hydroperoxo adducts has fascinated researchers in many areas due to their diverse biological and catalytic processes. In this study, a mononuclear cobalt(III)-peroxo complex bearing a tetradentate macrocyclic ligand, [Co III(Me 3-TPADP)(O 2)] + (Me 3-TPADP = 3,6,9-trimethyl-3,6,9-triaza-1(2,6)-pyridinacyclodecaphane), was prepared by reacting [Co II(Me 3-TPADP)(CH 3CN) 2] 2+ with H 2O 2 in the presence of triethylamine. Upon protonation, the cobalt(III)- peroxo intermediate was converted into a cobalt(III)-hydroperoxo complex, [Co III(Me 3-TPADP)(O 2H)(CH 3CN)] 2+. The mononuclear cobalt(III)-peroxo and -hydroperoxo intermediates were characterized by a variety of physicochemical methods. Results of electrospray ionization mass spectrometry clearly showmore » the transformation of the intermediates: the peak at m/z 339.2 assignable to the cobalt(III)-peroxo species disappears with concomitant growth of the peak at m/z 190.7 corresponding to the cobalt(III)-hydroperoxo complex (with bound CH 3CN). Isotope labeling experiments further support the existence of the cobalt(III)-peroxo and -hydroperoxo complexes. In particular, the O-O bond stretching frequency of the cobalt(III)-hydroperoxo complex was determined to be 851 cm -1 for 16O 2H samples (803 cm -1 for 18O 2H samples) and its Co-O vibrational energy was observed at 571 cm -1 for 16O 2H samples (551 cm -1 for 18O 2H samples; 568 cm -1 for 16O 2 2H samples) by resonance Raman spectroscopy. Reactivity studies performed with the cobalt(III)-peroxo and -hydroperoxo complexes in organic functionalizations reveal that the latter is capable of conducting oxygen atom transfer with an electrophilic character, whereas the former exhibits no oxygen atom transfer reactivity under the same reaction conditions. Alternatively, the cobalt(III)-hydroperoxo complex does not perform hydrogen atom transfer reactions, while analogous low-spin Fe(III)-hydroperoxo complexes are capable of this reactivity. Density function theory calculations indicate that this lack of reactivity is due to the high free energy cost of O-O bond homolysis that would be required to produce the hypothetical Co(IV)-oxo product.« less

  19. Reactivity of a Cobalt(III)–Hydroperoxo Complex in Electrophilic Reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shin, Bongki; Sutherlin, Kyle D.; Ohta, Takehiro

    The reactivity of mononuclear metal-hydroperoxo adducts has fascinated researchers in many areas due to their diverse biological and catalytic processes. In this study, a mononuclear cobalt(III)-peroxo complex bearing a tetradentate macrocyclic ligand, [Co III(Me 3-TPADP)(O 2)] + (Me 3-TPADP = 3,6,9-trimethyl-3,6,9-triaza-1(2,6)-pyridinacyclodecaphane), was prepared by reacting [Co II(Me 3-TPADP)(CH 3CN) 2] 2+ with H 2O 2 in the presence of triethylamine. Upon protonation, the cobalt(III)- peroxo intermediate was converted into a cobalt(III)-hydroperoxo complex, [Co III(Me 3-TPADP)(O 2H)(CH 3CN)] 2+. The mononuclear cobalt(III)-peroxo and -hydroperoxo intermediates were characterized by a variety of physicochemical methods. Results of electrospray ionization mass spectrometry clearly showmore » the transformation of the intermediates: the peak at m/z 339.2 assignable to the cobalt(III)-peroxo species disappears with concomitant growth of the peak at m/z 190.7 corresponding to the cobalt(III)-hydroperoxo complex (with bound CH 3CN). Isotope labeling experiments further support the existence of the cobalt(III)-peroxo and -hydroperoxo complexes. In particular, the O-O bond stretching frequency of the cobalt(III)-hydroperoxo complex was determined to be 851 cm -1 for 16O 2H samples (803 cm -1 for 18O 2H samples) and its Co-O vibrational energy was observed at 571 cm -1 for 16O 2H samples (551 cm -1 for 18O 2H samples; 568 cm -1 for 16O 2 2H samples) by resonance Raman spectroscopy. Reactivity studies performed with the cobalt(III)-peroxo and -hydroperoxo complexes in organic functionalizations reveal that the latter is capable of conducting oxygen atom transfer with an electrophilic character, whereas the former exhibits no oxygen atom transfer reactivity under the same reaction conditions. Alternatively, the cobalt(III)-hydroperoxo complex does not perform hydrogen atom transfer reactions, while analogous low-spin Fe(III)-hydroperoxo complexes are capable of this reactivity. Density function theory calculations indicate that this lack of reactivity is due to the high free energy cost of O-O bond homolysis that would be required to produce the hypothetical Co(IV)-oxo product.« less

  20. Electronic structure of the alkyne-bridged dicobalt hexacarbonyl complex Co(2) micro-C(2)H(2) (CO)(6): evidence for singlet diradical character and implications for metal-metal bonding.

    PubMed

    Platts, James A; Evans, Gareth J S; Coogan, Michael P; Overgaard, Jacob

    2007-08-06

    A series of ab initio calculations are presented on the alkyne-bridged dicobalt hexacarbonyl cluster Co2 micro-C2H2 (CO)6, indicating that this compound has substantial multireference character, which we interpret as evidence of singlet diradical behavior. As a result, standard theoretical methods such as restricted Hartree-Fock (RHF) or Kohn-Sham (RKS) density functional theory cannot properly describe this compound. We have therefore used complete active space (CAS) methods to explore the bonding in and spectroscopic properties of Co2 micro-C2H2 (CO)6. CAS methods identify significant population of a Co-Co antibonding orbital, along with Co-pi* back-bonding, and a relatively large singlet-triplet energy splitting. Analysis of the electron density and related quantities, such as energy densities and atomic overlaps, indicates a small but significant amount of covalent bonding between cobalt centers.

  1. Catalytic hydroprocessing of heavy oil feedstocks

    NASA Astrophysics Data System (ADS)

    Okunev, A. G.; Parkhomchuk, E. V.; Lysikov, A. I.; Parunin, P. D.; Semeikina, V. S.; Parmon, V. N.

    2015-09-01

    A grave problem of modern oil refining industry is continuous deterioration of the produced oil quality, on the one hand, and increase in the demand for motor fuels, on the other hand. This necessitates processing of heavy oil feedstock with high contents of sulfur, nitrogen and metals and the atmospheric residue. This feedstock is converted to light oil products via hydrogenation processes catalyzed by transition metal compounds, first of all, cobalt- or nickel-promoted molybdenum and tungsten compounds. The processing involves desulfurization, denitrogenation and demetallization reactions as well as reactions converting heavy hydrocarbons to lighter fuel components. The review discusses the mechanisms of reactions involved in the heavy feedstock hydroprocessing, the presumed structure and state of the catalytically active components and methods for the formation of supports with the desired texture. Practically used and prospective approaches to catalytic upgrading of heavy oil feedstock as well as examples of industrial processing of bitumen and vacuum residues in the presence of catalysts are briefly discussed. The bibliography includes 140 references.

  2. Reversible solvatomagnetic switching in a single-ion magnet from an entatic state.

    PubMed

    Vallejo, J; Pardo, E; Viciano-Chumillas, M; Castro, I; Amorós, P; Déniz, M; Ruiz-Pérez, C; Yuste-Vivas, C; Krzystek, J; Julve, M; Lloret, F; Cano, J

    2017-05-01

    A vast impact on molecular nanoscience can be achieved using simple transition metal complexes as dynamic chemical systems to perform specific and selective tasks under the control of an external stimulus that switches "ON" and "OFF" their electronic properties. While the interest in single-ion magnets (SIMs) lies in their potential applications in information storage and quantum computing, the switching of their slow magnetic relaxation associated with host-guest processes is insufficiently explored. Herein, we report a unique example of a mononuclear cobalt(ii) complex in which geometrical constraints are the cause of easy and reversible water coordination and its release. As a result, a reversible and selective colour and SIM behaviour switch occurs between a "slow-relaxing" deep red anhydrous material (compound 1 ) and its "fast-relaxing" orange hydrated form (compound 2 ). The combination of this optical and magnetic switching in this new class of vapochromic and thermochromic SIMs offers fascinating possibilities for designing multifunctional molecular materials.

  3. Reactivity of amine antioxidants relative to OH and anti e

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minkhadzhidinova, D.R.; Nikiforov, G.A.; Khrapova, N.G.

    1986-06-20

    An ESR study was carried out on the reactivity of various types of amines relative to OH/sup ./ and anti e. The selection of these compounds having anti-oxidant properties was also based on the circumstance that amine molecules contain a set of functional groups which may be potential sites for the attack of both OH and anti e radicals. A sample of 6 M H/sub 3/PO/sub 4/ was used for the matrix solutions and forms a glass upon rapid insertion into liquid nitrogen. The phosphoric acid solutions of these compounds taken in concentrations from 0.025 to 0.05 M were flushedmore » with argon to remove oxygen. Ampules containing the solutions were inserted into liquid nitrogen and irradiated from a cobalt source. The ESR spectra of the irradiated solutions clearly show the components of the atomic hydrogen doublet with a = 50 mT and of H/sub 2/PO/sub 4//sup ./ radicals in the central region of the spectrum.« less

  4. Supramolecular photochemistry and solar cells

    PubMed

    Iha

    2000-01-01

    Supramolecular photochemistry as well as solar cells are fascinating topics of current interest in Inorganic Photochemistry and very active research fields which have attracted wide attention in last two decades. A brief outline of the investigations in these fields carried out in our Laboratory of Inorganic Photochemistry and Energy Conversion is given here with no attempt of an exhaustive coverage of the literature. The emphasis is placed on recent work and information on the above mentioned subjects. Three types of supramolecular systems have been the focus of this work: (i) cage-type coordination compounds; (ii) second-sphere coordination compounds, exemplified by ion-pair photochemistry of cobalt complexes and (iii) covalently-linked systems. In the latter, modulation of the photoluminescence and photochemistry of some rhenium complexes are discussed. Solar energy conversion and development of thin-layer photoelectrochemical solar cells based on sensitization of nanocrystalline semiconductor films by some ruthenium polypyridyl complexes are presented as an important application that resulted from specifically engineered artificial assemblies.

  5. Bath for electrolytic reduction of alumina and method therefor

    DOEpatents

    Brown, Craig W.; Brooks, Richard J.; Frizzle, Patrick B.; Juric, Drago D.

    2001-07-10

    An electrolytic bath for use during the electrolytic reduction of alumina to aluminum. The bath comprises a molten electrolyte having the following ingredients: (a) AlF.sub.3 and at least one salt selected from the group consisting of NaF, KF, and LiF; and (b) about 0.004 wt. % to about 0.2 wt. %, based on total weight of the molten electrolyte, of at least one transition metal or at least one compound of the metal or both. The compound may be, for example, a fluoride, oxide, or carbonate. The metal can be nickel, iron, copper, cobalt, or molybdenum. The bath can be employed in a combination that includes a vessel for containing the bath and at least one non-consumable anode and at least one dimensionally stable cathode in the bath. Employing the bath of the present invention during electrolytic reduction of alumina to aluminum can improve the wetting of aluminum on a cathode by reducing or eliminating the formation of non-metallic deposits on the cathode.

  6. Development of an reliable analytical method for synergistic extractive spectrophotometric determination of cobalt(II) from alloys and nano composite samples by using chromogenic chelating ligand

    NASA Astrophysics Data System (ADS)

    Kamble, Ganesh S.; Ghare, Anita A.; Kolekar, Sanjay S.; Han, Sung H.; Anuse, Mansing A.

    2011-12-01

    A synergistic simple and selective spectrophotometric method was developed for the determination of cobalt(II) with 1-(2',4'-dinitro aminophenyl)-4,4,6-trimethyl-1,4-dihydropyrimidine-2-thiol [2',4'-dinitro APTPT] as a chromogenic reagent. The proposed method has been described on the basis of synergistic effective extraction of cobalt(II) in presence of pyridine at pH range 9.5-10.2, showed orange-red coloured ternary complex having molar ratio 1:2:2 (M:L:Py). The equilibrium time is 10 min for extraction of cobalt(III) from organic phase. The absorbance of coloured organic layer in chloroform is measured spectrophotometrically at 490 nm against reagent blank. The Beer's law was obeyed in the concentration range 2.5-15 μg mL -1 of cobalt(II) and optimum concentration range was 5-12.5 μg mL -1 of cobalt(II) and it was evaluated from Ringbom's plot. The molar absorptivity and Sandell's sensitivity of cobalt(II)-2',4'-dinitro APTPT-pyridine complex in chloroform are 1.109 × 10 3 L mol -1 cm -1 and 0.053 μg cm -2, respectively while molar absorptivity and Sandell's sensitivity of cobalt(II)-2',4'-dinitro APTPT complex in chloroform are 6.22 × 10 2 L mol -1 cm -1 and 0.096 μg cm -2, respectively. The composition of cobalt(II)-2',4'-dinitro APTPT-pyridine complex (1:2:2) was established by slope ratio method, mole ratio method and Job's method of continuous variation. The ternary complex was stable for more than 48 h. The interfering effects of various cations and anions were also studied, and use of suitable masking agents enhances the selectivity of the method. The method is successfully applied for the determination of cobalt(II) in binary, synthetic mixtures and real samples. A repetition of the method was checked by finding relative standard deviation (R.S.D.) for n = 5 which was 0.15%. The reliability of the method is confirmed by comparison of experimental results with atomic absorption spectrophotometer.

  7. Osseointegration and biocompatibility of different metal implants - a comparative experimental investigation in sheep

    PubMed Central

    2012-01-01

    Background In the present study, 4 different metallic implant materials, either partly coated or polished, were tested for their osseointegration and biocompatibility in a pelvic implantation model in sheep. Methods Materials to be evaluated were: Cobalt-Chrome (CC), Cobalt-Chrome/Titanium coating (CCTC), Cobalt-Chrome/Zirconium/Titanium coating (CCZTC), Pure Titanium Standard (PTST), Steel, TAN Standard (TANST) and TAN new finish (TANNEW). Surgery was performed on 7 sheep, with 18 implants per sheep, for a total of 63 implants. After 8 weeks, the specimens were harvested and evaluated macroscopically, radiologically, biomechanically (removal torque), histomorphometrically and histologically. Results Cobalt-Chrome screws showed significantly (p = 0.031) lower removal torque values than pure titanium screws and also a tendency towards lower values compared to the other materials, except for steel. Steel screws showed no significant differences, in comparison to cobalt-chrome and TANST, however also a trend towards lower torque values than the remaining materials. The results of the fluorescence sections agreed with those of the biomechanical test. Histomorphometrically, there were no significant differences of bone area between the groups. The BIC (bone-to-implant-contact), used for the assessment of the osseointegration, was significantly lower for cobalt-chrome, compared to steel (p = 0.001). Steel again showed a lower ratio (p = 0.0001) compared to the other materials. Conclusion This study demonstrated that cobalt-chrome and steel show less osseointegration than the other metals and metal-alloys. However, osseointegration of cobalt-chrome was improved by zirconium and/or titanium based coatings (CCTC, TANST, TAN, TANNEW) being similar as pure titanium in their osseointegrative behavior. PMID:22400715

  8. 21 CFR 73.3110a - Chromium-cobalt-aluminum oxide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Chromium-cobalt-aluminum oxide. 73.3110a Section 73.3110a Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Medical Devices § 73.3110a Chromium-cobalt-aluminum...

  9. 21 CFR 73.3110a - Chromium-cobalt-aluminum oxide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Chromium-cobalt-aluminum oxide. 73.3110a Section 73.3110a Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Medical Devices § 73.3110a Chromium-cobalt-aluminum...

  10. 21 CFR 73.3110a - Chromium-cobalt-aluminum oxide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Chromium-cobalt-aluminum oxide. 73.3110a Section 73.3110a Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Medical Devices § 73.3110a Chromium-cobalt-aluminum...

  11. 21 CFR 73.3110a - Chromium-cobalt-aluminum oxide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Chromium-cobalt-aluminum oxide. 73.3110a Section 73.3110a Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Medical Devices § 73.3110a Chromium-cobalt-aluminum...

  12. 21 CFR 73.3110a - Chromium-cobalt-aluminum oxide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Chromium-cobalt-aluminum oxide. 73.3110a Section 73.3110a Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Medical Devices § 73.3110a Chromium-cobalt-aluminum...

  13. 21 CFR 189.120 - Cobaltous salts and its derivatives.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... malt beverages as a foam stabilizer and to prevent “gushing.” (b) Food containing any added cobaltous... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Cobaltous salts and its derivatives. 189.120 Section 189.120 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES...

  14. 76 FR 47996 - Cobalt Lithium Manganese Nickel Oxide; Significant New Use Rule

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-08

    ... 2070-AB27 Cobalt Lithium Manganese Nickel Oxide; Significant New Use Rule AGENCY: Environmental... lithium manganese nickel oxide (CAS No. 182442-95-1), which was the subject of premanufacture notice (PMN... 5(a)(2) (15 U.S.C. 2604(a)(2)) for the chemical substance identified as cobalt lithium manganese...

  15. 21 CFR 189.120 - Cobaltous salts and its derivatives.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... malt beverages as a foam stabilizer and to prevent “gushing.” (b) Food containing any added cobaltous... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Cobaltous salts and its derivatives. 189.120 Section 189.120 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES...

  16. Recovery of Cobalt from leach solution of spent oil Hydrodesulphurization catalyst using a synergistic system consisting of VersaticTM10 and Cyanex®272

    NASA Astrophysics Data System (ADS)

    Yuliusman; Ramadhan, I. T.; Huda, M.

    2018-03-01

    Catalyst are often used in the petroleum refinery industry, especially cobalt-based catalyst such as CoMoX. Every year, Indonesia’s oil industry produces around 1350 tons of spent hydrodesulphurization catalyst in which cobalt makes up for 7%wt. of them. Cobalt is a non-renewable and highly valuable resource. Taking into account the aforementioned reasons, this research was made to recover cobalt from spent hydrodesulphurization catalyst so that it can be reused by industries needing them. The methods used in the recovery of cobalt from the waste catalyst leach solution are liquid-liquid extraction using a synergistic system of VersaticTM 10 and Cyanex®272. Based on the experiments done using the aforementioned methods and materials, the optimum condition for the extraction process: concentration of VersaticTM 10 of 0.35 M, Cyanex®272 of 0.25 M, temperature of 23-25°C (room temperature), and pH of 6 with an extraction percentage of 98.80% and co-extraction of Ni at 93.51%.

  17. Influence of cobalt and manganese content on the dehydrogenation capacity and kinetics of air-exposed LaNi 5+ x-type alloys in solid gas and electrochemical reactions

    NASA Astrophysics Data System (ADS)

    Raekelboom, E.; Cuevas, F.; Knosp, B.; Percheron-Guégan, A.

    The effect of cobalt and manganese content on the dehydrogenation properties of air-exposed MmB 5+ x-type (Mm = mischmetal; B = Ni, Al, Co and Mn) alloys was investigated both in solid gas and electrochemical reactions. The cobalt and manganese content were varied separately while keeping constant the plateau pressure of the hydrides. The increase of the cobalt content leads to a decrease of the hydrogen capacity whereas the manganese content has no much effect. In solid gas reactions, the kinetics were found to be limited by the hydrogen diffusion through the surface oxidation layer. As for the electrochemistry, the kinetics are limited by a corrosion layer formed in alkaline medium. The desorption rates for both processes increase as the cobalt or manganese content decreases. This is thought to be due to an enhancement of the hydrogen diffusivity through the oxidation layer. As a result, a low cobalt or manganese content in MmB 5+ x alloys is found to be beneficial for the hydrogen desorption kinetics in both processes.

  18. Fischer-Tropsch Cobalt Catalyst Activation and Handling Through Wax Enclosure Methods

    NASA Technical Reports Server (NTRS)

    Klettlinger, Jennifer L. S.; Yen, Chia H.; Nakley, Leah M.; Surgenor, Angela D.

    2016-01-01

    Fischer-Tropsch (F-T) synthesis is considered a gas to liquid process which converts syn-gas, a gaseous mixture of hydrogen and carbon monoxide, into liquids of various hydrocarbon chain length and product distributions. Cobalt based catalysts are used in F-T synthesis and are the focus of this paper. One key concern with handling cobalt based catalysts is that the active form of catalyst is in a reduced state, metallic cobalt, which oxidizes readily in air. In laboratory experiments, the precursor cobalt oxide catalyst is activated in a fixed bed at 350 ?C then transferred into a continuous stirred tank reactor (CSTR) with inert gas. NASA has developed a process which involves the enclosure of active cobalt catalyst in a wax mold to prevent oxidation during storage and handling. This improved method allows for precise catalyst loading and delivery into a CSTR. Preliminary results indicate similar activity levels in the F-T reaction in comparison to the direct injection method. The work in this paper was supported by the NASA Fundamental Aeronautics Subsonics Fixed Wing Project.

  19. Synthesis and application of a new thiazolylazo reagent for cloud point extraction and determination of cobalt in pharmaceutical preparations.

    PubMed

    Yamaki, Regina Terumi; Nunes, Luana Sena; de Oliveira, Hygor Rodrigues; Araújo, André S; Bezerra, Marcos Almeida; Lemos, Valfredo Azevedo

    2011-01-01

    The synthesis and characterization of the reagent 2-(5-bromothiazolylazo)-4-chlorophenol and its application in the development of a preconcentration procedure for cobalt determination using flame atomic absorption spectrometry after cloud point extraction is presented. This procedure is based on cobalt complexing and entrapment of the metal chelates into micelles of a surfactant-rich phase of Triton X-114. The preconcentration procedure was optimized by using a response surface methodology through the application of the Box-Behnken matrix. Under optimum conditions, the procedure determined the presence of cobalt with an LOD of 2.8 microg/L and LOQ of 9.3 microg/L. The enrichment factor obtained was 25. The precision was evaluated as the RSD, which was 5.5% for 10 microg/L cobalt and 6.9% for 30 microg/L. The accuracy of the procedure was assessed by comparing the results with those found using inductively coupled plasma-optical emission spectrometry. After validation, the procedure was applied to the determination of cobalt in pharmaceutical preparation samples containing cobalamin (vitamin B12).

  20. Physiological Remediation of Cobalt Ferrite Nanoparticles by Ferritin

    NASA Astrophysics Data System (ADS)

    Volatron, Jeanne; Kolosnjaj-Tabi, Jelena; Javed, Yasir; Vuong, Quoc Lam; Gossuin, Yves; Neveu, Sophie; Luciani, Nathalie; Hémadi, Miryana; Carn, Florent; Alloyeau, Damien; Gazeau, Florence

    2017-01-01

    Metallic nanoparticles have been increasingly suggested as prospective therapeutic nanoplatforms, yet their long-term fate and cellular processing in the body is poorly understood. Here we examined the role of an endogenous iron storage protein - namely the ferritin - in the remediation of biodegradable cobalt ferrite magnetic nanoparticles. Structural and elemental analysis of ferritins close to exogenous nanoparticles within spleens and livers of mice injected in vivo with cobalt ferrite nanoparticles, suggests the intracellular transfer of degradation-derived cobalt and iron, entrapped within endogenous protein cages. In addition, the capacity of ferritin cages to accommodate and store the degradation products of cobalt ferrite nanoparticles was investigated in vitro in the acidic environment mimicking the physiological conditions that are present within the lysosomes. The magnetic, colloidal and structural follow-up of nanoparticles and proteins in the lysosome-like medium confirmed the efficient remediation of nanoparticle-released cobalt and iron ions by ferritins in solution. Metal transfer into ferritins could represent a quintessential process in which biomolecules and homeostasis regulate the local degradation of nanoparticles and recycle their by-products.

  1. Structural and magnetic properties of cobalt-doped iron oxide nanoparticles prepared by solution combustion method for biomedical applications.

    PubMed

    Venkatesan, Kaliyamoorthy; Rajan Babu, Dhanakotti; Kavya Bai, Mane Prabhu; Supriya, Ravi; Vidya, Radhakrishnan; Madeswaran, Saminathan; Anandan, Pandurangan; Arivanandhan, Mukannan; Hayakawa, Yasuhiro

    2015-01-01

    Cobalt-doped iron oxide nanoparticles were prepared by solution combustion technique. The structural and magnetic properties of the prepared samples were also investigated. The average crystallite size of cobalt ferrite (CoFe2O4) magnetic nanoparticle was calculated using Scherrer equation, and it was found to be 16±5 nm. The particle size was measured by transmission electron microscope. This value was found to match with the crystallite size calculated by Scherrer equation corresponding to the prominent intensity peak (311) of X-ray diffraction. The high-resolution transmission electron microscope image shows clear lattice fringes and high crystallinity of cobalt ferrite magnetic nanoparticles. The synthesized magnetic nanoparticles exhibited the saturation magnetization value of 47 emu/g and coercivity of 947 Oe. The anti-microbial activity of cobalt ferrite nanoparticles showed better results as an anti-bacterial agent. The affinity constant was determined for the nanoparticles, and the cytotoxicity studies were conducted for the cobalt ferrite nanoparticles at different concentrations and the results are discussed.

  2. Structural and magnetic properties of cobalt-doped iron oxide nanoparticles prepared by solution combustion method for biomedical applications

    PubMed Central

    Venkatesan, Kaliyamoorthy; Rajan Babu, Dhanakotti; Kavya Bai, Mane Prabhu; Supriya, Ravi; Vidya, Radhakrishnan; Madeswaran, Saminathan; Anandan, Pandurangan; Arivanandhan, Mukannan; Hayakawa, Yasuhiro

    2015-01-01

    Cobalt-doped iron oxide nanoparticles were prepared by solution combustion technique. The structural and magnetic properties of the prepared samples were also investigated. The average crystallite size of cobalt ferrite (CoFe2O4) magnetic nanoparticle was calculated using Scherrer equation, and it was found to be 16±5 nm. The particle size was measured by transmission electron microscope. This value was found to match with the crystallite size calculated by Scherrer equation corresponding to the prominent intensity peak (311) of X-ray diffraction. The high-resolution transmission electron microscope image shows clear lattice fringes and high crystallinity of cobalt ferrite magnetic nanoparticles. The synthesized magnetic nanoparticles exhibited the saturation magnetization value of 47 emu/g and coercivity of 947 Oe. The anti-microbial activity of cobalt ferrite nanoparticles showed better results as an anti-bacterial agent. The affinity constant was determined for the nanoparticles, and the cytotoxicity studies were conducted for the cobalt ferrite nanoparticles at different concentrations and the results are discussed. PMID:26491320

  3. Structural and surface changes of cobalt modified manganese oxide during activation and ethanol steam reforming reaction

    NASA Astrophysics Data System (ADS)

    Gac, Wojciech; Greluk, Magdalena; Słowik, Grzegorz; Turczyniak-Surdacka, Sylwia

    2018-05-01

    Surface and structural changes of unmodified manganese and cobalt-manganese oxide during activation and ethanol steam reforming reaction conditions (ESR) were studied by means of X-ray diffraction, X-ray photoelectron spectroscopy, temperature-programmed reduction/oxidation (TPR/TPO) and transmission electron microscopy. It was shown that synthesis of cobalt manganese oxide by the redox precipitation method led to the formation of strongly dispersed cobalt ionic species within cryptomelane-based manganese oxide structure. Development of large cube-like MnO nanoparticles with spherical cobalt metallic crystallites decorated by manganese oxide on the high oxidation state and potassium species was observed during reduction. Cobalt manganese catalyst showed high initial activity and selectivity to H2 and CO2 in ethanol stem reforming reaction in the range of 390-480 °C. The drop of ethanol conversion and changes of selectivity with the time-on-stream were observed. An increase of reaction temperature led to intensification of deactivation phenomena. TEM studies evidenced coexistence of Co and CoOx nanoparticles formed under ethanol steam reforming conditions, partially covered by filamentous and encapsulating carbonaceous deposits.

  4. Coordination chemistry of 6-thioguanine derivatives with cobalt: toward formation of electrical conductive one-dimensional coordination polymers.

    PubMed

    Amo-Ochoa, Pilar; Alexandre, Simone S; Hribesh, Samira; Galindo, Miguel A; Castillo, Oscar; Gómez-García, Carlos J; Pike, Andrew R; Soler, José M; Houlton, Andrew; Zamora, Félix; Harrington, Ross W; Clegg, William

    2013-05-06

    In this work we have synthetized and characterized by X-ray diffraction five cobalt complexes with 6-thioguanine (6-ThioGH), 6-thioguanosine (6-ThioGuoH), or 2'-deoxy-6-thioguanosine (2'-d-6-ThioGuoH) ligands. In all cases, these ligands coordinate to cobalt via N7 and S6 forming a chelate ring. However, independently of reagents ratio, 6-ThioGH provided monodimensional cobalt(II) coordination polymers, in which the 6-ThioG(-) acts as bridging ligand. However, for 2'-d-6-ThioGuoH and 6-ThioGuoH, the structure directing effect of the sugar residue gives rise to mononuclear cobalt complexes which form extensive H-bond interactions to generate 3D supramolecular networks. Furthermore, with 2'-d-6-ThioGuoH the cobalt ion remains in the divalent state, whereas with 6-ThioGuoH oxidation occurs and Co(III) is found. The electrical and magnetic properties of the coordination polymers isolated have been studied and the results discussed with the aid of DFT calculations, in the context of molecular wires.

  5. Subnanometer Cobalt-Hydroxide-Anchored N-Doped Carbon Nanotube Forest for Bifunctional Oxygen Catalyst.

    PubMed

    Kim, Ji Eun; Lim, Joonwon; Lee, Gil Yong; Choi, Sun Hee; Maiti, Uday Narayan; Lee, Won Jun; Lee, Ho Jin; Kim, Sang Ouk

    2016-01-27

    Electrochemical oxygen redox reactions are the crucial elements for energy conversion and storage including fuel cells and metal air batteries. Despite tremendous research efforts, developing high-efficient, low-cost, and durable bifunctional oxygen catalysts remains a major challenge. We report a new class of hybrid material consisting of subnanometer thick amorphous cobalt hydroxide anchored on NCNT as a durable ORR/OER bifunctional catalyst. Although amorphous cobalt species-based catalysts are known as good OER catalysts, hybridizing with NCNT successfully enhanced ORR activity by promoting a 4e reduction pathway. Abundant charge carriers in amorphous cobalt hydroxide are found to trigger the superior OER activity with high current density and low Tafel slope as low as 36 mV/decade. A remarkably high OER turnover frequency (TOF) of 2.3 s(-1) at an overpotential of 300 mV was obtained, one of the highest values reported so far. Moreover, the catalytic activity was maintained over 120 h of cycling. The unique subnanometer scale morphology of amorphous hydroxide cobalt species along with intimate cobalt species-NCNT interaction minimizes the deactivation of catalyst during prolonged repeated cycles.

  6. Electroremovable Traceless Hydrazides for Cobalt-Catalyzed Electro-Oxidative C-H/N-H Activation with Internal Alkynes.

    PubMed

    Mei, Ruhuai; Sauermann, Nicolas; Oliveira, João C A; Ackermann, Lutz

    2018-06-27

    Electrochemical oxidative C-H/N-H activations have been accomplished with a versatile cobalt catalyst in terms of [4 + 2] annulations of internal alkynes. The electro-oxidative C-H activation manifold proved viable with an undivided cell setup under exceedingly mild reaction conditions at room temperature using earth-abundant cobalt catalysts. The electrochemical cobalt catalysis prevents the use of transition metal oxidants in C-H activation catalysis, generating H 2 as the sole byproduct. Detailed mechanistic studies provided strong support for a facile C-H cobaltation by an initially formed cobalt(III) catalyst. The subsequent alkyne migratory insertion was interrogated by mass spectrometry and DFT calculations, providing strong support for a facile C-H activation and the formation of a key seven-membered cobalta(III) cycle in a regioselective fashion. Key to success for the unprecedented use of internal alkynes in electrochemical C-H/N-H activations was represented by the use of N-2-pyridylhydrazides, for which we developed a traceless electrocleavage strategy by electroreductive samarium catalysis at room temperature.

  7. Synthesis and properties of precipitated cobalt ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Ristic, Mira; Krehula, Stjepko; Reissner, Michael; Jean, Malick; Hannoyer, Beatrice; Musić, Svetozar

    2017-07-01

    The formation and properties of cobalt ferrite were investigated with XRD, FT-IR, FE-SEM, Mössbauer and magnetometry. Cobalt ferrite samples were prepared (a) by combining coprecipitation Co(OH)2/2Fe(OH)3, using NaOH between pH 5.2 and 11.4 and autoclaving, and (b) by autoclaving the Co(OH)2/2Fe(OH)3 coprecipitate in a very strong alkaline medium. XRD and FE SEM showed that both CoFe2O4 crystallites and particles were in the nanosize range. The FT-IR spectra were typical of spinel ferrites. Cobalt ferrite precipitated at pH 7.2 and at 11.4 contained a small fraction of α-Fe2O3, whereas in the sample precipitated at pH 11.4 a very small amount (traces) of α-FeOOH were detected by FT-IR, additionally. Parameters obtained by Mössbauer spectroscopy suggested a structural migration of cobalt and iron ions in prepared cobalt ferrite spinels with the prolonged time of autoclaving. Magnetic measurements showed the magnetic behaviour typical of spinel ferrite nanoparticles.

  8. Physiological Remediation of Cobalt Ferrite Nanoparticles by Ferritin

    PubMed Central

    Volatron, Jeanne; Kolosnjaj-Tabi, Jelena; Javed, Yasir; Vuong, Quoc Lam; Gossuin, Yves; Neveu, Sophie; Luciani, Nathalie; Hémadi, Miryana; Carn, Florent; Alloyeau, Damien; Gazeau, Florence

    2017-01-01

    Metallic nanoparticles have been increasingly suggested as prospective therapeutic nanoplatforms, yet their long-term fate and cellular processing in the body is poorly understood. Here we examined the role of an endogenous iron storage protein – namely the ferritin – in the remediation of biodegradable cobalt ferrite magnetic nanoparticles. Structural and elemental analysis of ferritins close to exogenous nanoparticles within spleens and livers of mice injected in vivo with cobalt ferrite nanoparticles, suggests the intracellular transfer of degradation-derived cobalt and iron, entrapped within endogenous protein cages. In addition, the capacity of ferritin cages to accommodate and store the degradation products of cobalt ferrite nanoparticles was investigated in vitro in the acidic environment mimicking the physiological conditions that are present within the lysosomes. The magnetic, colloidal and structural follow-up of nanoparticles and proteins in the lysosome-like medium confirmed the efficient remediation of nanoparticle-released cobalt and iron ions by ferritins in solution. Metal transfer into ferritins could represent a quintessential process in which biomolecules and homeostasis regulate the local degradation of nanoparticles and recycle their by-products. PMID:28067263

  9. Composite catalyst for carbon monoxide and hydrocarbon oxidation

    DOEpatents

    Liu, W.; Flytzani-Stephanopoulos, M.

    1996-03-19

    A method and composition are disclosed for the complete oxidation of carbon monoxide and/or hydrocarbon compounds. The method involves reacting the carbon monoxide and/or hydrocarbons with an oxidizing agent in the presence of a metal oxide composite catalyst. The catalyst is prepared by combining fluorite-type oxygen ion conductors with active transition metals. The fluorite oxide, selected from the group consisting of cerium oxide, zirconium oxide, thorium oxide, hafnium oxide, and uranium oxide, and may be doped by alkaline earth and rare earth oxides. The transition metals, selected from the group consisting of molybdenum, copper, cobalt, manganese, nickel, and silver, are used as additives. The atomic ratio of transition metal to fluorite oxide is less than one.

  10. Composite catalyst for carbon monoxide and hydrocarbon oxidation

    DOEpatents

    Liu, Wei; Flytzani-Stephanopoulos, Maria

    1996-01-01

    A method and composition for the complete oxidation of carbon monoxide and/or hydrocarbon compounds. The method involves reacting the carbon monoxide and/or hydrocarbons with an oxidizing agent in the presence of a metal oxide composite catalyst. The catalyst is prepared by combining fluorite-type oxygen ion conductors with active transition metals. The fluorite oxide, selected from the group consisting of cerium oxide, zirconium oxide, thorium oxide, hafnium oxide, and uranium oxide, and may be doped by alkaline earth and rare earth oxides. The transition metals, selected from the group consisting of molybdnum, copper, cobalt, maganese, nickel, and silver, are used as additives. The atomic ratio of transition metal to fluorite oxide is less than one.

  11. Crystal structure of poly[{μ-N,N′-bis[(pyridin-4-yl)meth­yl]oxalamide}-μ-oxalato-cobalt(II)

    PubMed Central

    Zou, Hengye; Qi, Yanjuan

    2014-01-01

    In the polymeric title compound, [Co(C2O4)(C14H14N4O2)]n, the CoII atom is six-coordinated by two N atoms from symmetry-related bis­[(pyridin-4-yl)meth­yl]oxalamide (BPMO) ligands and four O atoms from two centrosymmetric oxalate anions in a distorted octa­hedral coordination geometry. The CoII atoms are linked by the oxalate anions into a chain running parallel to [100]. The chains are linked by the BPMO ligands into a three-dimensional architecture. In addition, N—H⋯O hydrogen bonds stabilize the crystal packing. PMID:25309173

  12. catena-Poly[[aqua­(1,10-phenanthroline)cobalt(II)]-μ-4,4′-(propane-1,3-diyldi­oxy)dibenzoato

    PubMed Central

    Shen, Su-Mei

    2009-01-01

    In the title compound, [Co(C17H14O6)(C12H8N2)(H2O)]n, the CoII atom is coordinated by a monodentate 4,4′-(propane-1,3-diyldi­oxy)dibenzoate (cpp) dianion, a water mol­ecule and a chelating 1,10-phenanthroline (phen) ligand. A symmetry-generated cpp ligand completes the CoN2O3 trigonal-bipyramidal geometry for the metal ion, with the N atoms occupying both equatorial and axial sites. The bridging cpp ligands form chains propagating in [110] and O—H⋯O hydrogen bonds consolidate the packing. PMID:21577702

  13. Crystal structure of langbeinite-related Rb0.743K0.845Co0.293Ti1.707(PO4)3

    PubMed Central

    Strutynska, Nataliia Yu.; Bondarenko, Marina A.; Ogorodnyk, Ivan V.; Baumer, Vyacheslav N.; Slobodyanik, Nikolay S.

    2015-01-01

    Potassium rubidium cobalt(II)/titanium(IV) tris­(orthophosphate), Rb0.743K0.845Co0.293Ti1.707(PO4)3, has been obtained using a high-temperature crystallization method. The obtained compound has a langbeinite-type structure. The three-dimensional framework is built up from mixed-occupied (Co/TiIV)O6 octa­hedra (point group symmetry .3.) and PO4 tetra­hedra. The K+ and Rb+ cations are statistically distributed over two distinct sites (both with site symmetry .3.) in the large cavities of the framework. They are surrounded by 12 O atoms. PMID:25844179

  14. (Carbonato-κ2 O,O′)bis­(1,10-phenan­throline-κ2 N,N′)cobalt(III) nitrate monohydrate

    PubMed Central

    Andaç, Ömer; Yolcu, Zuhal; Büyükgüngör, Orhan

    2010-01-01

    The crystal structure of the title compound, [Co(CO3)(C12H8N2)2]NO3·H2O, consists of CoIII complex cations, nitrate anions and uncoordinated water mol­ecules. The CoIII cation is chelated by a carbonate anion and two phenanthroline ligands in a distorted octa­hedral coordination geometry. A three-dimensional supra­molecular structure is formed by O—H⋯O and C—H⋯O hydrogen bonding, C—H⋯π and aromatic π–π stacking [centroid–centroid distance = 3.995 (1)Å] inter­actions. PMID:21579944

  15. Influence of silicon on friction and wear of iron-cobalt alloys

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.; Brainard, W. A.

    1972-01-01

    Sliding friction and wear experiments were conducted with ternary ordered alloys of iron and cobalt containing various amounts of silicon to 5 weight percent. The friction and wear of these alloys were compared to those for binary iron-cobalt alloys in the ordered and disordered states and to those for the conventionally used bearing material, 440-C. Environments in which experiments were conducted included air, argon, and 0.25percent stearic acid in hexadecane. Results indicate that a ternary iron - cobalt - 5-percent-silicon alloy exhibits lower friction and wear than the simple binary iron-cobalt alloy. It exhibits lower wear than 440-C in all three environments. Friction was lower for the alloy in argon than in air. Auger analysis of the surface of the ternary alloy indicated segregation of silicon at the surface as a result of sliding.

  16. Cobalt sorption onto anaerobic granular sludge: isotherm and spatial localization analysis.

    PubMed

    van Hullebusch, Eric D; Gieteling, Jarno; Zhang, Min; Zandvoort, Marcel H; Daele, Wim Van; Defrancq, Jacques; Lens, Piet N L

    2006-01-24

    This study investigated the effect of different feeding regimes on the cobalt sorption capacity of anaerobic granular sludge from a full-scale bioreactor treating paper mill wastewater. Adsorption experiments were done with non-fed granules in monometal (only Co) and competitive conditions (Co and Ni in equimolar concentrations). In order to modify the extracellular polymeric substances and sulfides content of the granules, the sludge was fed for 30 days with glucose (pH 7, 30 degrees C, organic loading rate=1.2 g glucose l(-1) day-1) in the presence (COD/SO4(2-)=1) or absence of sulfate. The partitioning of the sorbed cobalt between the exchangeable, carbonates, organic matter/sulfides and residual fractions was determined using a sequential extraction procedure (modified Tessier). Experimental equilibrium sorption data for cobalt were analysed by the Langmuir, Freundlich and Redlich-Peterson isotherm equations. The total Langmuir maximal sorption capacity of the sludge fed with glucose and sulfate loaded with cobalt alone displayed a significantly higher maximal cobalt sorption (Qmax =18.76 mg g-1 TSS) than the sludge fed with glucose alone (Qmax =13.21 mg g-1 TSS), essentially due to an increased sorption capacity of the exchangeable (30-107%) and organic/sulfides fractions (70-30%). Environmental scanning electron microscopy coupled with an energy dispersive X-ray analysis of granular cross-sections showed that mainly iron minerals (i.e. iron sulfides) were involved in the cobalt accumulation. Moreover, the sorbed cobalt was mainly located at the edge of the granules. The sorption characteristics of the exchangeable and carbonates fractions fitted well to the Redlich-Peterson model (intermediate multi-layer sorption behaviour), whereas the sorption characteristics of the organic matter/sulfides and residual fractions fitted well to the Langmuir model (monolayer sorption behaviour). The organic matter/sulfides fraction displayed the highest affinity for cobalt for the three sludge types investigated.

  17. Regulation of the Cobalt/Nickel Efflux Operon dmeRF in Agrobacterium tumefaciens and a Link between the Iron-Sensing Regulator RirA and Cobalt/Nickel Resistance

    PubMed Central

    Dokpikul, Thanittra; Chaoprasid, Paweena; Saninjuk, Kritsakorn; Sirirakphaisarn, Sirin; Johnrod, Jaruwan; Nookabkaew, Sumontha; Mongkolsuk, Skorn

    2016-01-01

    ABSTRACT The Agrobacterium tumefaciens C58 genome harbors an operon containing the dmeR (Atu0890) and dmeF (Atu0891) genes, which encode a transcriptional regulatory protein belonging to the RcnR/CsoR family and a metal efflux protein belonging to the cation diffusion facilitator (CDF) family, respectively. The dmeRF operon is specifically induced by cobalt and nickel, with cobalt being the more potent inducer. Promoter-lacZ transcriptional fusion, an electrophoretic mobility shift assay, and DNase I footprinting assays revealed that DmeR represses dmeRF transcription through direct binding to the promoter region upstream of dmeR. A strain lacking dmeF showed increased accumulation of intracellular cobalt and nickel and exhibited hypersensitivity to these metals; however, this strain displayed full virulence, comparable to that of the wild-type strain, when infecting a Nicotiana benthamiana plant model under the tested conditions. Cobalt, but not nickel, increased the expression of many iron-responsive genes and reduced the induction of the SoxR-regulated gene sodBII. Furthermore, control of iron homeostasis via RirA is important for the ability of A. tumefaciens to cope with cobalt and nickel toxicity. IMPORTANCE The molecular mechanism of the regulation of dmeRF transcription by DmeR was demonstrated. This work provides evidence of a direct interaction of apo-DmeR with the corresponding DNA operator site in vitro. The recognition site for apo-DmeR consists of 10-bp AT-rich inverted repeats separated by six C bases (5′-ATATAGTATACCCCCCTATAGTATAT-3′). Cobalt and nickel cause DmeR to dissociate from the dmeRF promoter, which leads to expression of the metal efflux gene dmeF. This work also revealed a connection between iron homeostasis and cobalt/nickel resistance in A. tumefaciens. PMID:27235438

  18. Effect of 1,2,4-triazole on galvanic corrosion between cobalt and copper in CMP based alkaline slurry

    NASA Astrophysics Data System (ADS)

    Fu, Lei; Liu, Yuling; Wang, Chenwei; Han, Linan

    2018-04-01

    Cobalt has become a new type of barrier material with its unique advantages since the copper-interconnects in the great-large scale integrated circuits (GLSI) into 10 nm and below technical nodes, but cobalt and copper have severe galvanic corrosion during chemical–mechanical flattening. The effect of 1,2,4-triazole on Co/Cu galvanic corrosion in alkaline slurry and the control of rate selectivity of copper and cobalt were investigated in this work. The results of electrochemical experiments and polishing experiments had indicated that a certain concentration of 1,2,4-triazole could form a layer of insoluble and dense passive film on the surface of cobalt and copper, which reduced the corrosion potential difference between cobalt and copper. Meantime, the removal rate of cobalt and copper could be effectively controlled according to demand during the CMP process. When the study optimized slurry was composed of 0.5 wt% colloidal silica, 0.1 %vol. hydrogen peroxide, 0.05 wt% FA/O, 345 ppm 1,2,4-triazole, cobalt had higher corrosion potential than copper and the galvanic corrosion could be reduced effectively when the corrosion potential difference between them decreased to 1 mV and the galvanic corrosion current density reached 0.02 nA/cm2. Meanwhile, the removal rate of Co was 62.396 nm/min, the removal rate of Cu was 47.328 nm/min, so that the removal rate ratio of cobalt and copper was 1.32 : 1, which was a good amendment to the dishing pits. The contact potential corrosion of Co/Cu was very weak, which could be better for meeting the requirements of the barrier CMP. Project supported by the Major National Science and Technology Special Projects (No. 2016ZX02301003-004-007), the Natural Science Foundation of Hebei Province, China (No. F2015202267), and the Outstanding Young Science and Technology Innovation Fund of Hebei University of Technology (No. 2015007).

  19. Cobalt chloride attenuates hypobaric hypoxia induced vascular leakage in rat brain: Molecular mechanisms of action of cobalt chloride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalpana, S.; Dhananjay, S.; Anju, B.

    2008-09-15

    This study reports the efficacy of cobalt preconditioning in preventing hypobaric hypoxia induced vascular leakage (an indicator of cerebral edema) using male Sprague-Dawley rats as model system. Exposure of animals to hypobaric hypoxia led to a significant increase in vascular leakage, reactive oxygen species (ROS), nitric oxide (NO), and vascular endothelial growth factor (VEGF) levels. There was a marked increase in Nuclear Factor {kappa}B (NF{kappa}B) DNA binding activity and levels of pro-inflammatory cytokines such as Monocyte chemoattractant protein (MCP-1), Interferon-{gamma} (IFN-{gamma}), Interleukin-1 (IL-1), and Tumor Necrosis Factor-{alpha} (TNF-{alpha}) and cell adhesion molecules such as Vascular Cell Adhesion Molecule-1 (VCAM-1), andmore » P-selectin. Chemical preconditioning by cobalt for 7 days (12.5 mg Co/kg b.w., oral) significantly attenuated cerebral vascular leakage and the expression of inflammatory mediators induced by hypoxia. Administration of NF{kappa}B inhibitor, curcumin (50 mg/kg b.w.; i.p.) appreciably inhibited hypoxia induced vascular leakage indicating the involvement of NF{kappa}B in causing vascular leakage. Interestingly, cobalt when administered at 12.5 mg Co/kg b.w. (i.p.), 1 h before hypoxia could not prevent the vascular leakage indicating that cobalt per se did not have an effect on NF{kappa}B. The lower levels of NF{kappa}B observed in the brains of cobalt administered animals might be due to higher levels of antioxidant and anti-inflammatory proteins (hemeoxygenase-1 and metallothionein). To conclude cobalt preconditioning inhibited hypobaric hypoxia induced cerebral vascular leakage by lowering NF{kappa}B DNA binding activity and its regulated pro-inflammatory mediators. This is contemplated to be mediated by cobalt induced reduction in ROS/NO and increase in HO-1 and MT.« less

  20. Long-Term Intermittent Hypoxia Elevates Cobalt Levels in the Brain and Injures White Matter in Adult Mice

    PubMed Central

    Veasey, Sigrid C.; Lear, Jessica; Zhu, Yan; Grinspan, Judith B.; Hare, Dominic J.; Wang, SiHe; Bunch, Dustin; Doble, Philip A.; Robinson, Stephen R.

    2013-01-01

    Study Objectives: Exposure to the variable oxygenation patterns in obstructive sleep apnea (OSA) causes oxidative stress within the brain. We hypothesized that this stress is associated with increased levels of redox-active metals and white matter injury. Design: Participants were randomly allocated to a control or experimental group (single independent variable). Setting: University animal house. Participants: Adult male C57BL/6J mice. Interventions: To model OSA, mice were exposed to long-term intermittent hypoxia (LTIH) for 10 hours/day for 8 weeks or sham intermittent hypoxia (SIH). Measurements and Results: Laser ablation-inductively coupled plasma-mass spectrometry was used to quantitatively map the distribution of the trace elements cobalt, copper, iron, and zinc in forebrain sections. Control mice contained 62 ± 7 ng cobalt/g wet weight, whereas LTIH mice contained 5600 ± 600 ng cobalt/g wet weight (P < 0.0001). Other elements were unchanged between conditions. Cobalt was concentrated within white matter regions of the brain, including the corpus callosum. Compared to that of control mice, the corpus callosum of LTIH mice had significantly more endoplasmic reticulum stress, fewer myelin-associated proteins, disorganized myelin sheaths, and more degenerated axon profiles. Because cobalt is an essential component of vitamin B12, serum methylmalonic acid (MMA) levels were measured. LTIH mice had low MMA levels (P < 0.0001), indicative of increased B12 activity. Conclusions: Long-term intermittent hypoxia increases brain cobalt, predominantly in the white matter. The increased cobalt is associated with endoplasmic reticulum stress, myelin loss, and axonal injury. Low plasma methylmalonic acid levels are associated with white matter injury in long-term intermittent hypoxia and possibly in obstructive sleep apnea. Citation: Veasey SC; Lear J; Zhu Y; Grinspan JB; Hare DJ; Wang S; Bunch D; Doble PA; Robinson SR. Long-term intermittent hypoxia elevates cobalt levels in the brain and injures white matter in adult mice. SLEEP 2013;36(10):1471-1481. PMID:24082306

  1. ALHAT COBALT: CoOperative Blending of Autonomous Landing Technology

    NASA Technical Reports Server (NTRS)

    Carson, John M.

    2015-01-01

    The COBALT project is a flight demonstration of two NASA ALHAT (Autonomous precision Landing and Hazard Avoidance Technology) capabilities that are key for future robotic or human landing GN&C (Guidance, Navigation and Control) systems. The COBALT payload integrates the Navigation Doppler Lidar (NDL) for ultraprecise velocity and range measurements with the Lander Vision System (LVS) for Terrain Relative Navigation (TRN) position estimates. Terrestrial flight tests of the COBALT payload in an open-loop and closed-loop GN&C configuration will be conducted onboard a commercial, rocket-propulsive Vertical Test Bed (VTB) at a test range in Mojave, CA.

  2. Photocatalytic CO 2 Reduction by Trigonal-Bipyramidal Cobalt(II) Polypyridyl Complexes: The Nature of Cobalt(I) and Cobalt(0) Complexes upon Their Reactions with CO 2, CO, or Proton

    DOE PAGES

    Shimoda, Tomoe; Morishima, Takeshi; Kodama, Koichi; ...

    2018-04-26

    Trigonal-bipyramidal Co(II) complexes are used for photochemical carbon dioxide (CO 2) reduction with Ru(bpy) 3 2+ as a photosensitizer, tri-p-tolylamine (TTA) as a reversible quencher, and triethylamine (TEA) as a sacrificial electron donor to produce carbon monoxide and dihydrogen. Here, the CO 2 reduction is slow because of the large structural changes, spin flipping in the cobalt catalytic intermediates, and an uphill reaction for reduction to catalytically active Co(0) by the photoproduced [Ru(bpy) 3] +.

  3. Photocatalytic CO 2 Reduction by Trigonal-Bipyramidal Cobalt(II) Polypyridyl Complexes: The Nature of Cobalt(I) and Cobalt(0) Complexes upon Their Reactions with CO 2, CO, or Proton

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shimoda, Tomoe; Morishima, Takeshi; Kodama, Koichi

    Trigonal-bipyramidal Co(II) complexes are used for photochemical carbon dioxide (CO 2) reduction with Ru(bpy) 3 2+ as a photosensitizer, tri-p-tolylamine (TTA) as a reversible quencher, and triethylamine (TEA) as a sacrificial electron donor to produce carbon monoxide and dihydrogen. Here, the CO 2 reduction is slow because of the large structural changes, spin flipping in the cobalt catalytic intermediates, and an uphill reaction for reduction to catalytically active Co(0) by the photoproduced [Ru(bpy) 3] +.

  4. Porous Cobalt Phosphide Polyhedrons with Iron Doping as an Efficient Bifunctional Electrocatalyst.

    PubMed

    Li, Feng; Bu, Yunfei; Lv, Zijian; Mahmood, Javeed; Han, Gao-Feng; Ahmad, Ishfaq; Kim, Guntae; Zhong, Qin; Baek, Jong-Beom

    2017-10-01

    Iron (Fe)-doped porous cobalt phosphide polyhedrons are designed and synthesized as an efficient bifunctional electrocatalyst for both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). The synthesis strategy involves one-step route for doping foreign metallic element and forming porous cobalt phosphide polyhedrons. With varying doping levels of Fe, the optimized Fe-doped porous cobalt phosphide polyhedron exhibits significantly enhanced HER and OER performances, including low onset overpotentials, large current densities, as well as small Tafel slopes and good electrochemical stability during HER and OER. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. The Effects of Pulse Current Plating on the Mechanical Properties of Cobalt and Cobalt-Al2O3

    DTIC Science & Technology

    1977-04-01

    258. Branson cobalt deposits as a function ol cu rrent pulses superImposed on Ultrasonic Corp.) was used tominimi,eAl ..0 agglomeration in a back...intens ify nucleation and growth processes leading to a Iheauthors wishtot hank Mr. Richard Carte rforprepar ingthe re finement in grain structure...i N BOX CM , I)UKE STATION ATTN : A~.1\\5T..SD ATTN : RI)Rl)- IP L 220 “III SIR E !~T N .E . Du RHAM , NC 27706 C1LARI U l’Tl Sv ILI.I. , VA 22901 Cl)R

  6. Relating FTS Catalyst Properties to Performance

    NASA Technical Reports Server (NTRS)

    Ma, Wenping; Ramana Rao Pendyala, Venkat; Gao, Pei; Jermwongratanachai, Thani; Jacobs, Gary; Davis, Burton H.

    2016-01-01

    During the reporting period June 23, 2011 to August 31, 2013, CAER researchers carried out research in two areas of fundamental importance to the topic of cobalt-based Fischer-Tropsch Synthesis (FTS): promoters and stability. The first area was research into possible substitute promoters that might be used to replace the expensive promoters (e.g., Pt, Re, and Ru) that are commonly used. To that end, three separate investigations were carried out. Due to the strong support interaction of ?-Al2O3 with cobalt, metal promoters are commonly added to commercial FTS catalysts to facilitate the reduction of cobalt oxides and thereby boost active surface cobalt metal sites. To date, the metal promoters examined have been those up to and including Group 11. Because two Group 11 promoters (i.e., Ag and Au) were identified to exhibit positive impacts on conversion, selectivity, or both, research was undertaken to explore metals in Groups 12 - 14. The three metals selected for this purpose were Cd, In, and Sn. At a higher loading of 25%Co on alumina, 1% addition of Cd, In, or Sn was found to-on average-facilitate reduction by promoting a heterogeneous distribution of cobalt consisting of larger lesser interacting cobalt clusters and smaller strongly interacting cobalt species. The lesser interacting species were identified in TPR profiles, where a sharp low temperature peak occurred for the reduction of larger, weakly interacting, CoO species. In XANES, the Cd, In, and Sn promoters were found to exist as oxides, whereas typical promoters (e.g., Re, Ru, Pt) were previously determined to exist in an metallic state in atomic coordination with cobalt. The larger cobalt clusters significantly decreased the active site density relative to the unpromoted 25%Co/Al2O3 catalyst. Decreasing the cobalt loading to 15%Co eliminated the large non-interacting species. The TPR peak for reduction of strongly interacting CoO in the Cd promoted catalyst occurred at a measurably lower temperature than in the unpromoted catalyst. Nevertheless, the Co clusters remained slightly larger, on average, in comparison with the unpromoted 15%Co/Al2O3 reference catalyst. None of the promoted catalysts (i.e., with Cd, In, or Sn) exhibited surface Co0 site densities higher than that of the unpromoted catalyst. In activity testing, the activities were even much lower than what was expected from the H2-TPD results. Two possible explanations were proposed: (1) the promoters may be located on the surfaces of cobalt particles, blocking surface Co0 but being able to desorb hydrogen or (2) the promoters may facilitate Co oxidation during FTS, as previously observed by Huffman and coworkers when K was added to cobalt catalysts.

  7. Synthesis of cobalt alloy through smelting method and its characterization as prosthesis bone implant

    NASA Astrophysics Data System (ADS)

    Aminatun, Putri, N. S. Efinda; Indriani, Arista; Himawati, Umi; Hikmawati, Dyah; Suhariningsih

    2014-09-01

    Cobalt-based alloys are widely used as total hip and knee replacements because of their excellent properties, such as corrosion resistance, fatigue strength and biocompatibility. In this work, cobalt alloys with variation of Cr (28.5; 30; 31.5; 33, and 34.5% wt) have been synthesized by smelting method began with the process of compaction, followed by smelting process using Tri Arc Melting Furnace at 200A. Continued by homogenization process at recrystallization temperature (1250° C) for 3 hours to allow the atoms diffuses and transform into γ phase. The next process is rolling process which is accompanied by heating at 1200° C for ± 15 minutes and followed by quenching. This process is repeated until the obtained thickness of ± 1 mm. The evaluated material properties included microstructure, surface morphology, and hardness value. It was shown that microstructure of cobalt alloys with variation of Cr is dominant by γ phase, thus making the entire cobalt alloys have high hardness. It was also shown from the surface morphology of entire cobalt alloys sample indicated the whole process of synthesis that had good solubility were at flat surface area. Hardness value test showed all of cobalt alloys sample had high hardness, just variation of 33% Cr be in the range of ASTMF75, it were 345,24 VHN which is potential to be applied as an implant prosthesis.

  8. Effect of electrical spot welding on load deflection rate of orthodontic wires.

    PubMed

    Alavi, Shiva; Abrishami, Arezoo

    2015-01-01

    One of the methods used for joining metals together is welding, which can be carried out using different techniques such as electric spot welding. This study evaluated the effect of electric spot welding on the load deflection rate of stainless steel and chromium-cobalt orthodontic wires. In this experimental-laboratory study, load deflection rate of 0.016 × 0.022 inch stainless steel and chromium cobalt wires were evaluated in five groups (n =18): group one: Stainless steel wires, group two: chromium-cobalt wires, group three: stainless steel wires welded to stainless steel wires, group four: Stainless steel wires welded to chromium-cobalt wires, group five: chromium-cobalt wire welded to chromium-cobalt wires. Afterward, the forces induced by the samples in 0.5 mm, 1 mm, 1.5 mm deflection were measured using a universal testing machine. Then mean force measured for each group was compared with other groups. The data were analyzed using repeated measure analysis of variance (ANOVA), one-way ANOVA, and paired t-test by the SPSS software. The significance level was set as 0.05. The Tukey test showed that there were significant differences between the load deflection rates of welded groups compared to control ones (P < 0.001). Considering the limitation of this study, the electric spot welding process performed on stainless steel and chromium-cobalt wires increased their load deflection rates.

  9. [Determination of tungsten and cobalt in the air of workplace by ICP-OES].

    PubMed

    Zhang, J; Ding, C G; Li, H B; Song, S; Yan, H F

    2017-08-20

    Objective: To establish the inductively coupled plasma optical emission spectrometry (ICP-OES) method for determination of cobalt and tungsten in the air of workplace. Methods: The cobalt and tungsten were collected by filter membrane and then digested by nitric acid, inductively coupled plasma optical emission spectrometry (ICP-OES) was used for the detection of cobalt and tungsten. Results: The linearity of tungsten was good at the range of 0.01-1 000 μg/ml with a correlation coefficient of 0.999 9, the LOD and LOQ were 0.006 7 μg/ml and 0.022 μg/ml, respectively. The recovery was ranged from 98%-101%, the RSD of intra-and inter-batch precision were 1.1%-3.0% and 2.1%-3.8%, respectively. The linearity of cobalt was good at the range of 0.01-100 μg/ml with a correlation coefficient of 0.999 9, the LOD and LOQ were 0.001 2 μg/ml and 0.044 μg/ml, respectively. The recovery was ranged from 95%-97%, the RSD of intra-and inter-batch precision were 1.1%-2.4% and 1.1%-2.9%, respectively. The sampling efficiency of tungsten and cobalt were higher than 94%. Conclusion: The linear range, sensitivity and precision of the method was suitable for the detection of tungsten and cobalt in the air of workplace.

  10. A comparison between cobalt and linear accelerator-based treatment plans for conformal and intensity-modulated radiotherapy.

    PubMed

    Adams, E J; Warrington, A P

    2008-04-01

    The simplicity of cobalt units gives them the advantage of reduced maintenance, running costs and downtime when compared with linear accelerators. However, treatments carried out on such units are typically limited to simple techniques. This study has explored the use of cobalt beams for conformal and intensity-modulated radiotherapy (IMRT). Six patients, covering a range of treatment sites, were planned using both X-ray photons (6/10 MV) and cobalt-60 gamma rays (1.17 and 1.33 MeV). A range of conformal and IMRT techniques were considered, as appropriate. Conformal plans created using cobalt beams for small breast, meningioma and parotid cases were found to compare well with those created using X-ray photons. By using additional fields, acceptable conformal plans were also created for oesophagus and prostate cases. IMRT plans were found to be of comparable quality for meningioma, parotid and thyroid cases on the basis of dose-volume histogram analysis. We conclude that it is possible to plan high-quality radical radiotherapy treatments for cobalt units. A well-designed beam blocking/compensation system would be required to enable a practical and efficient alternative to multileaf collimator (MLC)-based linac treatments to be offered. If cobalt units were to have such features incorporated into them, they could offer considerable benefits to the radiotherapy community.

  11. Plasma boriding of a cobalt-chromium alloy as an interlayer for nanostructured diamond growth

    NASA Astrophysics Data System (ADS)

    Johnston, Jamin M.; Jubinsky, Matthew; Catledge, Shane A.

    2015-02-01

    Chemical vapor deposited (CVD) diamond coatings can potentially improve the wear resistance of cobalt-chromium medical implant surfaces, but the high cobalt content in these alloys acts as a catalyst to form graphitic carbon. Boriding by high temperature liquid baths and powder packing has been shown to improve CVD diamond compatibility with cobalt alloys. We use the microwave plasma-enhanced (PE) CVD process to deposit interlayers composed primarily of the borides of cobalt and chromium. The use of diborane (B2H6) in the plasma feedgas allows for the formation of a robust boride interlayer for suppressing graphitic carbon during subsequent CVD of nano-structured diamond (NSD). This metal-boride interlayer is shown to be an effective diffusion barrier against elemental cobalt for improving nucleation and adhesion of NSD coatings on a CoCrMo alloy. Migration of elemental cobalt to the surface of the interlayer is significantly reduced and undetectable on the surface of the subsequently-grown NSD coating. The effects of PECVD boriding are compared for a range of substrate temperatures and deposition times and are evaluated using glancing-angle X-ray diffraction (XRD), cross-sectional scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), and micro-Raman spectroscopy. Boriding of CoCrMo results in adhered nanostructured diamond coatings with low surface roughness.

  12. Synthesis, spectroscopic characterization, DFT optimization and biological activities of Schiff bases and their metal (II) complexes

    NASA Astrophysics Data System (ADS)

    Rauf, Abdur; Shah, Afzal; Munawar, Khurram Shahzad; Khan, Abdul Aziz; Abbasi, Rashda; Yameen, Muhammad Arfat; Khan, Asad Muhammad; Khan, Abdur Rahman; Qureshi, Irfan Zia; Kraatz, Heinz-Bernhard; Zia-ur-Rehman

    2017-10-01

    A Novel Schiff base, 3-(((4-chlorophenyl)imino)methyl)benzene-1,2-diol (HL1) was successfully synthesized along with a structurally similar Schiff base 3-(((4-bromophenyl)imino)methyl)benzene-1,2-diol (HL2). Both the Schiff bases were used to synthesize their zinc (II) and cobalt (II) complexes. These compounds were characterized by FTIR, 1H NMR, 13C NMR and elemental analysis. Metal complexes were confirmed by TGA. Crystals of Schiff bases were also characterized by X-ray analysis and experimental parameters were found in line with the theoretical parameters. Quantum mechanical approach was also used to fine useful structural parameters and to ensure the geometry of metal complexes. The photometric behaviors of all the synthesized compounds were investigated in a wide pH range using BR buffers. The appearance of isosbestic points indicated the existence of Schiff bases in more than one isomeric form. Moreover, these compounds were screened for enzyme inhibition; antibacterial, cytotoxic and in vivo antidiabetic activities and compounds were found active against one or other activity. Results indicate that ZnL22 is a good inhibitor of alkaline phosphatase enzyme and possess highest potential against diabetes, blood cholesterol level and cancer cells. This effort just provides preliminary data for some biological properties. Further investigations are required to precisely determine mechanistic pathways of their use towards drug development.

  13. Understanding the roles of the strategic element cobalt in nickel base superalloys

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.; Dreshfield, R. L.

    1983-01-01

    The United States imports over 90% of its cobalt, chromium, columbium, and tantalum, all key elements in high temperature nickel base superalloys for aircraft gas turbine disks and airfoils. Research progress in understanding the roles of cobalt and some possible substitutes effects on microstructure, mechanical properties, and environmental resistance of turbine alloys is discussed.

  14. Microwave Mapping Demonstration Using the Thermochromic Cobalt Chloride Equilibrium

    ERIC Educational Resources Information Center

    Nguyen, Vu D.; Birdwhistell, Kurt R.

    2014-01-01

    An update to the thermochromic cobalt(II) chloride equilibrium demonstration is described. Filter paper that has been saturated with aqueous cobalt(II) chloride is heated for seconds in a microwave oven, producing a color change. The resulting pink and blue map is used to colorfully demonstrate Le Châtelier's principle and to illuminate the…

  15. 75 FR 70583 - Cobalt Lithium Manganese Nickel Oxide; Withdrawal of Significant New Use Rule

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-18

    ... 2070-AB27 Cobalt Lithium Manganese Nickel Oxide; Withdrawal of Significant New Use Rule AGENCY... chemical substance identified as cobalt lithium manganese nickel oxide (CAS No. 182442-95-1), which was the... lithium manganese nickel oxide (PMN P-04-269; CAS No. 182442-95-1) at 40 CFR 721.10201 because the Agency...

  16. Cobalt, manganese, and iron near the Hawaiian Islands: A potential concentrating mechanism for cobalt within a cyclonic eddy and implications for the hybrid-type trace metals

    NASA Astrophysics Data System (ADS)

    Noble, Abigail E.; Saito, Mak A.; Maiti, Kanchan; Benitez-Nelson, Claudia R.

    2008-05-01

    The vertical distributions of cobalt, iron, and manganese in the water column were studied during the E-Flux Program (E-Flux II and III), which focused on the biogeochemistry of cold-core cyclonic eddies that form in the lee of the Hawaiian Islands. During E-Flux II (January 2005) and E-Flux III (March 2005), 17 stations were sampled for cobalt ( n=147), all of which demonstrated nutrient-like depletion in surface waters. During E-Flux III, two depth profiles collected from within a mesoscale cold-core eddy, Cyclone Opal, revealed small distinct maxima in cobalt at ˜100 m depth and a larger inventory of cobalt within the eddy. We hypothesize that this was due to a cobalt concentrating effect within the eddy, where upwelled cobalt was subsequently associated with sinking particulate organic carbon (POC) via biological activity and was released at a depth coincident with nearly complete POC remineralization [Benitez-Nelson, C., Bidigare, R.R., Dickey, T.D., Landry, M.R., Leonard, C.L., Brown, S.L., Nencioli, F., Rii, Y.M., Maiti, K., Becker, J.W., Bibby, T.S., Black, W., Cai, W.J., Carlson, C.A., Chen, F., Kuwahara, V.S., Mahaffey, C., McAndrew, P.M., Quay, P.D., Rappe, M.S., Selph, K.E., Simmons, M.P., Yang, E.J., 2007. Mesoscale eddies drive increased silica export in the subtropical Pacific Ocean. Science 316, 1017-1020]. There is also evidence for the formation of a correlation between cobalt and soluble reactive phosphorus during E-Flux III relative to the E-Flux II cruise that we suggest is due to increased productivity, implying a minimum threshold of primary production below which cobalt-phosphate coupling does not occur. Dissolved iron was measured in E-Flux II and found in somewhat elevated concentrations (˜0.5 nM) in surface waters relative to the iron depleted waters of the surrounding Pacific [Fitzwater, S.E., Coale, K.H., Gordon, M.R., Johnson, K.S., Ondrusek, M.E., 1996. Iron deficiency and phytoplankton growth in the equatorial Pacific. Deep-Sea Research II 43 (4-6), 995-1015], possibly due to island effects associated with the iron-rich volcanic soil from the Hawaiian Islands and/or anthropogenic inputs. Distinct depth maxima in total dissolved cobalt were observed at 400-600 m depth, suggestive of the release of metals from the shelf area of comparable depth that surrounds these islands.

  17. A Comparison of Blood Metal Ions in Total Hip Arthroplasty Using Metal and Ceramic Heads.

    PubMed

    White, Peter B; Meftah, Morteza; Ranawat, Amar S; Ranawat, Chitranjan S

    2016-10-01

    In recent time, metal ion debris and adverse local tissue reaction have reemerged as an area of clinical concern with the use of large femoral heads after total hip arthroplasty (THA). Between June 2014 and January 2015, 60 patients with a noncemented THA using a titanium (titanium, molybdenum, zirconium, and iron alloy) femoral stem and a V40 trunnion were identified with a minimum 5-year follow-up. All THAs had a 32- or 36-mm metal (n = 30) or ceramic (n = 30) femoral head coupled with highly cross-linked polyethylene. Cobalt, chromium, and nickel ions were measured. Patients with metal heads had detectable cobalt and chromium levels. Cobalt levels were detectable in 17 (56.7%) patients with a mean of 2.0 μg/L (range: <1.0-10.8 μg/L). Chromium levels were detectable in 5 (16.7%) patients with a mean of 0.3 μg/L (range: <1.0-2.2 μg/L). All patients with a ceramic head had nondetectable cobalt and chromium levels. Cobalt and chromium levels were significantly higher with metal heads compared to ceramic heads (P < .01). Cobalt levels were significantly higher with 36-mm metal heads compared with 32-mm heads (P < .01). Seven patients with metal femoral heads had mild hip symptoms, 4 of whom had positive findings of early adverse local tissue reaction on magnetic resonance imaging. All ceramic THA was asymptomatic. The incidence and magnitude of cobalt and chromium levels is higher in metal heads compared to ceramic heads with this implant system (P < .01). Thirty-six millimeter metal femoral heads result in larger levels of cobalt compared with 32-mm metal heads. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. [Metallurgical differentiation of cobalt-chromium alloys for implants].

    PubMed

    Holzwarth, U; Thomas, P; Kachler, W; Göske, J; Schuh, A

    2005-10-01

    Cobalt Chromium alloys are used in cemented total hip or knee arthroplasty as well as in metal-on-metal bearings in total hip arthroplasty. An increasing number of publications report about (allergic) reactions to wear particles of Cobalt Chromium alloys. Reactions to nickel are more frequent in comparison to Cobalt or Chromium particles. It is well known that different kinds of Cobalt Chromium alloys contain different amounts of alloying elements; nevertheless. The aim of the current work was to compare the different Cobalt Chromium alloys according to ASTM F or ISO standards in respect to the different alloying elements. Co28Cr6Mo casting alloys according to ASTM F 75 or ISO 5832-4 as well as forging alloy types according to ASTM F 799 and ISO 5832 such as Co20Cr15W10Ni, Co35Ni20Cr, Fe40Co20Cr10Ni, Co20Cr20Ni, and Co28Cr6Mo were analyzed in respect to their element content of Co, Cr, Ni, Mo, Fe, W, and Mn. In 1935 the Cobalt based alloy "Vitallium" Co30Cr5Mo basically used in the aircraft industry was introduced into medicine. The chemical composition of this alloy based on Cobalt showed 30 wt.% Chromium and 5 wt.% Molybdenum. The differentiation using alloy names showed no Nickel information in single alloy names. The information given about different alloys can lead to an unprecise evaluation of histopathological findings in respect to alloys or alloying constituents. Therefore, implant manufacturers should give the exact information about the alloys used and adhere to European law, Euronorm 93/42/EWG.

  19. Selected aspects of the action of cobalt ions in the human body.

    PubMed

    Czarnek, Katarzyna; Terpiłowska, Sylwia; Siwicki, Andrzej K

    2015-01-01

    Cobalt is widespread in the natural environment and can be formed as an effect of anthropogenic activity. This element is used in numerous industrial applications and nuclear power plants. Cobalt is an essential trace element for the human body and can occur in organic and inorganic forms. The organic form is a necessary component of vitamin B12 and plays a very important role in forming amino acids and some proteins in nerve cells, and in creating neurotransmitters that are indispensable for correct functioning of the organism. Its excess or deficiency will influence it unfavourably. Salts of cobalt have been applied in medicine in the treatment of anaemia, as well as in sport as an attractive alternative to traditional blood doping. Inorganic forms of cobalt present in ion form, are toxic to the human body, and the longer they are stored in the body, the more changes they cause in cells. Cobalt gets into the body in several ways: firstly, with food; secondly by the respiratory system; thirdly, by the skin; and finally, as a component of biomaterials. Cobalt and its alloys are fundamental components in orthopaedic implants and have been used for about 40 years. The corrosion of metal is the main problem in the construction of implants. These released metal ions may cause type IV inflammatory and hypersensitivity reactions, and alternations in bone modelling that lead to aseptic loosening and implant failure. The ions of cobalt released from the surface of the implant are absorbed by present macrophages, which are involved in many of the processes associated with phagocytose orthopaedic biomaterials particles and release pro-inflammatory mediators such as interleukin-1 (IL-1), interleukin-6 (IL-6), tumour necrosis factor α (TNF-α), and prostaglandin.

  20. Selected aspects of the action of cobalt ions in the human body

    PubMed Central

    Terpiłowska, Sylwia; Siwicki, Andrzej K.

    2015-01-01

    Cobalt is widespread in the natural environment and can be formed as an effect of anthropogenic activity. This element is used in numerous industrial applications and nuclear power plants. Cobalt is an essential trace element for the human body and can occur in organic and inorganic forms. The organic form is a necessary component of vitamin B12 and plays a very important role in forming amino acids and some proteins in nerve cells, and in creating neurotransmitters that are indispensable for correct functioning of the organism. Its excess or deficiency will influence it unfavourably. Salts of cobalt have been applied in medicine in the treatment of anaemia, as well as in sport as an attractive alternative to traditional blood doping. Inorganic forms of cobalt present in ion form, are toxic to the human body, and the longer they are stored in the body, the more changes they cause in cells. Cobalt gets into the body in several ways: firstly, with food; secondly by the respiratory system; thirdly, by the skin; and finally, as a component of biomaterials. Cobalt and its alloys are fundamental components in orthopaedic implants and have been used for about 40 years. The corrosion of metal is the main problem in the construction of implants. These released metal ions may cause type IV inflammatory and hypersensitivity reactions, and alternations in bone modelling that lead to aseptic loosening and implant failure. The ions of cobalt released from the surface of the implant are absorbed by present macrophages, which are involved in many of the processes associated with phagocytose orthopaedic biomaterials particles and release pro-inflammatory mediators such as interleukin-1 (IL-1), interleukin-6 (IL-6), tumour necrosis factor α (TNF-α), and prostaglandin. PMID:26557039

  1. Mechanistic Studies of Cobalt-Catalyzed C(sp2)-H Borylation of Five-Membered Heteroarenes with Pinacolborane.

    PubMed

    Obligacion, Jennifer V; Chirik, Paul J

    2017-07-07

    Studies into the mechanism of cobalt-catalyzed C(sp 2 )-H borylation of five-membered heteroarenes with pinacolborane (HBPin) as the boron source established the catalyst resting state as the trans -cobalt(III) dihydride boryl, ( iPr PNP)Co(H) 2 (BPin) ( iPr PNP = 2,6-( i Pr 2 PCH 2 ) 2 (C 5 H 3 N)), at both low and high substrate conversions. The overall first-order rate law and observation of a normal deuterium kinetic isotope effect on the borylation of benzofuran versus benzofuran-2- d 1 support H 2 reductive elimination from the cobalt(III) dihydride boryl as the turnover-limiting step. These findings stand in contrast to that established previously for the borylation of 2,6-lutidine with the same cobalt precatalyst, where borylation of the 4-position of the pincer occurred faster than the substrate turnover and arene C-H activation by a cobalt(I) boryl is turnover-limiting. Evaluation of the catalytic activity of different cobalt precursors in the C-H borylation of benzofuran with HBPin established that the ligand design principles for C- H borylation depend on the identities of both the arene and the boron reagent used: electron-donating groups improve catalytic activity of the borylation of pyridines and arenes with B 2 Pin 2 , whereas electron-withdrawing groups improve catalytic activity of the borylation of five-membered heteroarenes with HBPin. Catalyst deactivation by P-C bond cleavage from a cobalt(I) hydride was observed in the C-H borylation of arene substrates with C-H bonds that are less acidic than those of five-membered heteroarenes using HBPin and explains the requirement of B 2 Pin 2 to achieve synthetically useful yields with these arene substrates.

  2. Cobalt toxicity in humans-A review of the potential sources and systemic health effects.

    PubMed

    Leyssens, Laura; Vinck, Bart; Van Der Straeten, Catherine; Wuyts, Floris; Maes, Leen

    2017-07-15

    Cobalt (Co) and its compounds are widely distributed in nature and are part of numerous anthropogenic activities. Although cobalt has a biologically necessary role as metal constituent of vitamin B 12 , excessive exposure has been shown to induce various adverse health effects. This review provides an extended overview of the possible Co sources and related intake routes, the detection and quantification methods for Co intake and the interpretation thereof, and the reported health effects. The Co sources were allocated to four exposure settings: occupational, environmental, dietary and medical exposure. Oral intake of Co supplements and internal exposure through metal-on-metal (MoM) hip implants deliver the highest systemic Co concentrations. The systemic health effects are characterized by a complex clinical syndrome, mainly including neurological (e.g. hearing and visual impairment), cardiovascular and endocrine deficits. Recently, a biokinetic model has been proposed to characterize the dose-response relationship and effects of chronic exposure. According to the model, health effects are unlikely to occur at blood Co concentrations under 300μg/l (100μg/l respecting a safety factor of 3) in healthy individuals, hematological and endocrine dysfunctions are the primary health endpoints, and chronic exposure to acceptable doses is not expected to pose considerable health hazards. However, toxic reactions at lower doses have been described in several cases of malfunctioning MoM hip implants, which may be explained by certain underlying pathologies that increase the individual susceptibility for Co-induced systemic toxicity. This may be associated with a decrease in Co bound to serum proteins and an increase in free ionic Co 2+ . As the latter is believed to be the primary toxic form, monitoring of the free fraction of Co 2+ might be advisable for future risk assessment. Furthermore, future research should focus on longitudinal studies in the clinical setting of MoM hip implant patients to further elucidate the dose-response discrepancies. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Biological and protein-binding studies of newly synthesized polymer-cobalt(III) complexes.

    PubMed

    Vignesh, G; Pradeep, I; Arunachalam, S; Vignesh, S; Arthur James, R; Arun, R; Premkumar, K

    2016-03-01

    The polymer-cobalt(III) complexes, [Co(bpy)(dien)BPEI]Cl3 · 4H2O (bpy = 2,2'-bipyridine, dien = diethylentriamine, BPEI = branched polyethyleneimine) were synthesized and characterized. The interaction of these complexes with human serum albumin (HSA) and bovine serum albumin (BSA) was investigated under physiological conditions using various physico-chemical techniques. The results reveal that the fluorescence quenching of serum albumins by polymer-cobalt(III) complexes took place through static quenching. The binding of these complexes changed the molecular conformation of the protein considerably. The polymer-cobalt(III) complex with x = 0.365 shows antimicrobial activity against several human pathogens. This complex also induces cytotoxicity against MCF-7 through apoptotic induction. However, further studies are needed to decipher the molecular mode of action of polymer-cobalt(III) complex and for its possible utilization in anticancer therapy. Copyright © 2015 John Wiley & Sons, Ltd.

  4. Hydrothermal synthesis of cobalt sulfide nanotubes: The size control and its application in supercapacitors

    NASA Astrophysics Data System (ADS)

    Wan, Houzhao; Ji, Xiao; Jiang, Jianjun; Yu, Jingwen; Miao, Ling; Zhang, Li; Bie, Shaowei; Chen, Haichao; Ruan, Yunjun

    2013-12-01

    Cobalt sulfide nanotubes are synthesized by hydrothermal method. The precursor is characterized by XRD, FTIR and SEM. We study the influence of temperature on the evolution of this special coarse shape nanostructure and analyze relationship between the sizes of cobalt sulfide nanotubes and the capacitive properties of active materials. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) are used to study the effects of microstructure and morphology of the samples on their capacitance and conductivity. The specific capacitance of cobalt sulfide nanotubes (obtained in 80 °C) electrode exhibits a capacitance of 285 F g-1 at the current density of 0.5 A g-1 as well as rather good cycling stability. Moreover, during the cycling process, the coulombic efficiency remains 99%. The as-prepared cobalt sulfide nanotubes electrode exhibits excellent electrochemical performance as electrode materials for supercapacitors.

  5. Low Temperature Synthesis of Cobalt-Chromium Carbide Nanoparticles-Doped Carbon Nanofibers.

    PubMed

    Yousef, Ayman; Brooks, Robert M; Abutaleb, Ahmed; Al-Deyab, Salem S; El-Newehy, Mohamed H

    2018-04-01

    Electrospinning has been used to synthesize cobalt-chromium carbide nanoparticles (NPs)-doped carbon nanofibers (CNFs) (Composite). Electrospun mat comprising of cobalt acetate, chromium acetate and poly(vinyl alcohol) (PVA) has been carbonized at low temperature (850 °C) for 3 h under argon atmosphere to produce the introduced composite. The process was achieved at low temperature due to the presence of cobalt as an activator. Field emission scanning electron microscope (FE-SEM), X-ray diffractometry (XRD), and transmission electron microscopy (TEM) equipped with EDX techniques were used to determine the products characteristics. The results indicated the formation of pure cobalt (Co), Cr7C3 NPs and crystalline CNFs. The Co and Cr7C3 NPs were covered with CNFs. Overall, the proposed NFs open new avenue to prepare different metals-metal carbides-carbon NFs at low temperature and short reaction time.

  6. Controllable synthesis of hierarchical nickel cobalt sulfide with enhanced electrochemical activity

    NASA Astrophysics Data System (ADS)

    Tie, Jinjin; Han, Jiaxi; Diao, Guiqiang; Liu, Jiwen; Xie, Zhuopeng; Cheng, Gao; Sun, Ming; Yu, Lin

    2018-03-01

    The composition of nickel cobalt sulfide has great influence on its electrochemical performance. Herein, the nickel cobalt sulfide with different composition and mixed phase were synthesized by one-step solvothermal method through changing the molar ratio of Ni to Co in the reaction system. The electrochemical measurements showed that the nickel cobalt sulfide with a theoretical molar ratio of Ni/Co to be 1.5:1.5 (NCS-2) demonstrates the superior pseudocapacitive performance with a high specific capacitance (6.47 F cm-2 at 10 mA cm-2) and a favorable Coulombic efficiency (∼99%). Whereas, when applied as the catalyst for hydrogen evolution reaction in 1 M KOH aqueous electrolyte, the nickel cobalt sulfide with a theoretical molar ratio of Ni/Co is 1:2 (NCS-1) displays better catalytic activity, and it requires a relatively lower overpotential of 282 mV to deliver the current density of 10 mA cm-2.

  7. Computational investigation of spin-polarization in cobalt/graphite superlattices

    NASA Astrophysics Data System (ADS)

    Goto, Kim F.; Hill, Nicola A.; Sanvito, Stefano

    2003-03-01

    We present results of a computational investigation of the magnetic properties of cobalt/ graphite superlattices. This work was motivated by experimental data showing spin injection into carbon nanotubes via cobalt contacts [1] as well as the discovery of a magnetic meteorite made from graphite and magnetic particles, in which part of the magnetization is on the carbon atoms [2]. Using density functional theory within the local spin-density approximation (the SIESTA implementation), we show that cobalt induces both n-doping and a magnetic moment in the graphite layers adjacent to the cobalt-carbon interface. We also show that the magnetic properties are strongly affected by the orientation of the graphite. Finally, implications for spin injection and spin-polarized transport are discussed. [1] K. Tsukagoshi, B.W. Alphenaar, and H. Ago, Nature (London) 401, 572 (1999) [2] J.M.D. Coey, M. Venkatesan, C.B. Fitzgerald, A.P. Douvalis and I.S. Sanders, Nature (London) 420, 156 (2002)

  8. Magnetic properties of cobalt ferrite synthesized by mechanical alloying

    NASA Astrophysics Data System (ADS)

    Dedi, Idayanti, Novrita; Kristiantoro, Tony; Alam, Ginanjar Fajar Nur; Sudrajat, Nanang

    2018-05-01

    Cobalt ferrite (CoFe2O4) is a well-known hard magnetic material with high coercivity and moderate magnetization. These properties, along with their great physical and chemical stability, make CoFe2O4 suitable for many applications such as generator, audio, video-tape etc. In this study, the magnetic properties of cobalt ferrite synthesized via the mechanical alloying using α-Fe2O3 of Hot Strip Mill (HSM) waste and cobalt carbonate as the precursors have been investigated. Structural and magnetic properties were systematically investigated. The X-ray diffraction (XRD) pattern exhibited the single phase of cobalt ferrite when the sintering temperature was 1000 °C. Permagraph measurements of the sintered sample revealed a saturation magnetization (Ms) of 77-83 emu/g and coercivity (Hc) of 575 Oe which closely to the magnetic properties of references; Ms = 47.2-56.7 emu/g and Hc =233-2002 Oe.

  9. Effects of annealing and conformal alumina passivation on anisotropy and hysteresis of magneto-optical properties of cobalt slanted columnar thin films

    NASA Astrophysics Data System (ADS)

    Briley, Chad; Mock, Alyssa; Korlacki, Rafał; Hofmann, Tino; Schubert, Eva; Schubert, Mathias

    2017-11-01

    We present magneto-optical dielectric tensor data of cobalt and cobalt oxide slanted columnar thin films obtained by vector magneto-optical generalized ellipsometry. Room-temperature hysteresis magnetization measurements were performed in longitudinal and polar Kerr geometries on samples prior to and after a heat treatment process with and without a conformal Al2O3 passivation coating. The samples have been characterized by generalized ellipsometry, scanning electron microscopy, and Raman spectroscopy in conjuncture with density functional theory. We observe strongly anisotropic hysteresis behaviors, which depend on the nanocolumn and magnetizing field orientations. We find that deposited cobalt films that have been exposed to heat treatment and subsequent atmospheric oxidation into Co3O4, when not conformally passivated, reveal no measurable magneto-optical properties while cobalt films with passivation coatings retain highly anisotropic magneto-optical properties.

  10. Cobalt: for strength and color

    USGS Publications Warehouse

    Boland, Maeve A.; Kropschot, S.J.

    2011-01-01

    Cobalt is a shiny, gray, brittle metal that is best known for creating an intense blue color in glass and paints. It is frequently used in the manufacture of rechargeable batteries and to create alloys that maintain their strength at high temperatures. It is also one of the essential trace elements (or "micronutrients") that humans and many other living creatures require for good health. Cobalt is an important component in many aerospace, defense, and medical applications and is a key element in many clean energy technologies. The name cobalt comes from the German word kobold, meaning goblin. It was given this name by medieval miners who believed that troublesome goblins replaced the valuable metals in their ore with a substance that emitted poisonous fumes when smelted. The Swedish chemist Georg Brandt isolated metallic cobalt-the first new metal to be discovered since ancient times-in about 1735 and identified some of its valuable properties.

  11. Battery related cobalt and REE flows in WEEE treatment.

    PubMed

    Sommer, P; Rotter, V S; Ueberschaar, M

    2015-11-01

    In batteries associated with waste electrical and electronic equipment (WEEE), battery systems can be found with a higher content of valuable and critical raw materials like cobalt and rare earth elements (REE) relative to the general mix of portable batteries. Based on a material flow model, this study estimates the flows of REE and cobalt associated to WEEE and the fate of these metals in the end-of-life systems. In 2011, approximately 40 Mg REE and 325 Mg cobalt were disposed of with WEEE-batteries. The end-of-life recycling rate for cobalt was 14%, for REE 0%. The volume of waste batteries can be expected to grow, but variation in the battery composition makes it difficult to forecast the future secondary raw material potential. Nevertheless, product specific treatment strategies ought to be implemented throughout the stages of the value chain. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Ferromagnetic cobalt nanocrystals achieved by soft annealing approach—From individual behavior to mesoscopic organized properties

    NASA Astrophysics Data System (ADS)

    Petit, C.; Wang, Z. L.; Pileni, M. P.

    2007-05-01

    By gentle annealing, 7 nm cobalt nanoparticles synthesized by soft chemistry, are transformed to hard magnetic hexagonal close packed (HCP) cobalt nanocrystals without changing the size, size distribution and passivating layer. This method permits to recover the nanocrystals isolated in solution after the annealing process and then to study the magnetic properties of the HCP cobalt nanocrystals at isolated status or in a self-organized film. Monolayer self-assembly of the HCP cobalt nanocrystals is obtained, and due to the dipolar interaction, ferromagnetic behavior close to room temperature has been observed. The magnetic properties differ significantly due to the influence of the substrate on the annealing process. This different approach of the annealing process of nanocrystals is compared to the classical approach of annealing in which the nanocrystals are first deposited on a substrate and then annealed.

  13. Application of catalytic adsorptive stripping voltammetry of the cobalt-alpha-benzil dioxime complex to analysis of cobalt traces in metallic zinc.

    PubMed

    Bobrowski, A

    1994-05-01

    The catalytic adsorptive stripping voltammetric method with alpha-benzil dioxime and nitrite affords numerous advantages in cobalt determination. The detailed conditions of the determination of the cobalt traces in metallic zinc by catalytic adsorptive stripping voltammetry have been investigated. Both the linear sweep and the differential pulse stripping modes can be used with similar sensitivity. Possible interferences by Mn, Pb, Cu, Ni and Fe are evaluated. In the presence of 5 x 10(5) fold excess of Zn the linear dependence of the cobalt CASV peak current on concentration ranged from 0.05 mug/l to 3 mug/l. Optimal conditions include the accumulation potential of -0.65 V and the accumulation time of 10 sec. The results of the determination of 10(-5)% level of Co in the metallic zinc showed good reproducibility (relative standard deviation, RSD = 0.07) and reliability.

  14. Controlled cobalt doping in biogenic magnetite nanoparticles.

    PubMed

    Byrne, J M; Coker, V S; Moise, S; Wincott, P L; Vaughan, D J; Tuna, F; Arenholz, E; van der Laan, G; Pattrick, R A D; Lloyd, J R; Telling, N D

    2013-06-06

    Cobalt-doped magnetite (CoxFe3 -xO4) nanoparticles have been produced through the microbial reduction of cobalt-iron oxyhydroxide by the bacterium Geobacter sulfurreducens. The materials produced, as measured by superconducting quantum interference device magnetometry, X-ray magnetic circular dichroism, Mössbauer spectroscopy, etc., show dramatic increases in coercivity with increasing cobalt content without a major decrease in overall saturation magnetization. Structural and magnetization analyses reveal a reduction in particle size to less than 4 nm at the highest Co content, combined with an increase in the effective anisotropy of the magnetic nanoparticles. The potential use of these biogenic nanoparticles in aqueous suspensions for magnetic hyperthermia applications is demonstrated. Further analysis of the distribution of cations within the ferrite spinel indicates that the cobalt is predominantly incorporated in octahedral coordination, achieved by the substitution of Fe(2+) site with Co(2+), with up to 17 per cent Co substituted into tetrahedral sites.

  15. Controlled cobalt doping of magnetosomes in vivo.

    PubMed

    Staniland, Sarah; Williams, Wyn; Telling, Neil; Van Der Laan, Gerrit; Harrison, Andrew; Ward, Bruce

    2008-03-01

    Magnetotactic bacteria biomineralize iron into magnetite (Fe3O4) nanoparticles that are surrounded by lipid vesicles. These 'magnetosomes' have considerable potential for use in bio- and nanotechnological applications because of their narrow size and shape distribution and inherent biocompatibility. The ability to tailor the magnetic properties of magnetosomes by chemical doping would greatly expand these applications; however, the controlled doping of magnetosomes has so far not been achieved. Here, we report controlled in vivo cobalt doping of magnetosomes in three strains of the bacterium Magnetospirillum. The presence of cobalt increases the coercive field of the magnetosomes--that is, the field necessary to reverse their magnetization--by 36-45%, depending on the strain and the cobalt content. With elemental analysis, X-ray absorption and magnetic circular dichroism, we estimate the cobalt content to be between 0.2 and 1.4%. These findings provide an important advance in designing biologically synthesized nanoparticles with useful highly tuned magnetic properties.

  16. Structure of catabolite activator protein with cobalt(II) and sulfate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao, Ramya R.; Lawson, Catherine L., E-mail: cathy.lawson@rutgers.edu

    2014-04-15

    The crystal structure of E. coli catabolite activator protein with bound cobalt(II) and sulfate ions at 1.97 Å resolution is reported. The crystal structure of cyclic AMP–catabolite activator protein (CAP) from Escherichia coli containing cobalt(II) chloride and ammonium sulfate is reported at 1.97 Å resolution. Each of the two CAP subunits in the asymmetric unit binds one cobalt(II) ion, in each case coordinated by N-terminal domain residues His19, His21 and Glu96 plus an additional acidic residue contributed via a crystal contact. The three identified N-terminal domain cobalt-binding residues are part of a region of CAP that is important for transcriptionmore » activation at class II CAP-dependent promoters. Sulfate anions mediate additional crystal lattice contacts and occupy sites corresponding to DNA backbone phosphate positions in CAP–DNA complex structures.« less

  17. Structural and ambient/sub-ambient temperature magnetic properties of Er-substituted cobalt-ferrites synthesized by sol-gel assisted auto-combustion method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prathapani, Sateesh; Department of Metallurgical Engineering and Materials Science, IIT-Bombay, Mumbai 400076; Jayaraman, Tanjore V., E-mail: ddas@uohyd.ernet.in, E-mail: tvjayaraman@gmail.com

    2014-07-14

    Er-substituted cobalt-ferrites CoFe{sub 2−x}Er{sub x}O{sub 4} (0 ≤ x ≤ 0.04) were synthesized by sol-gel assisted auto-combustion method. The precursor powders were calcined at 673–873 K for 4 h, subsequently pressed into pellets and sintered at 1273 K for 4 h. X-ray diffraction (XRD) confirmed the presence of the spinel phase for all the compositions and, additional orthoferrite phase for higher compositions (x = 0.03 and 0.04). The XRD spectra and the Transmission Electron Microscopy micrographs indicate that the nanocrystalline particulates of the Er-substituted cobalt ferrites have crystallite size of ∼120–200 nm. The magnetization curves show an increase in saturation magnetization (M{sub S}) and coercivity (H{sub C}) for Er-substituted cobalt-ferrites atmore » sub-ambient temperatures. M{sub S} for CoFe{sub 2}O{sub 4}, CoFe{sub 0.99}Er{sub 0.01}O{sub 4}, CoFe{sub 0.98}Er{sub 0.02}O{sub 4}, and CoFe{sub 0.97}Er{sub 0.03}O{sub 4} peak at 89.7 Am{sup 2}/kg, 89.3 Am{sup 2}/kg, 88.8 Am{sup 2}/kg, and 87.1 Am{sup 2}/kg, respectively, at a sub-ambient temperature of ∼150 K. H{sub C} substantially increases with decrease in temperature for all the compositions, while it peaks at x = 0.01−0.02 at all temperatures. The combination of Er content—x ∼ 0.02 and the temperature—∼5 K provides the maximum H{sub C} ∼ 984 kA/m. Er-substituted cobalt-ferrites have higher cubic anisotropy constant, K{sub 1}, compared to pure cobalt-ferrite at ambient/sub-ambient temperatures. K{sub 1} gradually increases for all compositions in the temperature decreasing from 300 to 100 K. While K{sub 1} peaks at ∼150 K for pure cobalt-ferrite, it peaks at ∼50 K for CoFe{sub 0.99}Er{sub 0.01}O{sub 4}, CoFe{sub 0.98}Er{sub 0.02}O{sub 4}, and CoFe{sub 0.96}Er{sub 0.04}O{sub 4}. The M{sub S} (∼88.7 Am{sup 2}/kg), at 5 K, for Er substituted cobalt-ferrite is close to the highest values reported for Sm and Gd substituted cobalt-ferrites. The M{sub S} (∼83.5 Am{sup 2}/kg) at 300 K for Er-substituted cobalt-ferrite is the highest among the lanthanide series element substituted cobalt-ferrites. The H{sub C} (at 5 K) for Er substituted cobalt-ferrite is close to the highest values observed for La, Ce, Nd, Sm, and Gd substituted cobalt-ferrites.« less

  18. 40 CFR 471.35 - Pretreatment standards for new sources (PSNS).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (pounds per million off-pounds) of nickel-cobalt rolled with emulsions Chromium 0.063 0.026 Nickel 0.094 0... nickel-cobalt rolled with water Chromium 0.028 0.012 Nickel 0.042 0.028 Fluoride 4.49 1.99 (d) Tube... monthly average mg/off-kg (pounds per million off-pounds) of nickel-cobalt drawn with emulsions Chromium 0...

  19. One-step separation by thermal treatment and cobalt acid-leaching from spent lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Mu, Deying

    2017-10-01

    Lithium-ion batteries are extensively used in portable storage devices and automobiles, therefore the environment and resource problems caused by spent lithium ion batteries have become increasingly severe. This paper focuses on the recovery process of spent lithium cobalt oxide active material and comes up with reasonable processes and the best conditions for cobalt leaching ultimately.

  20. Magneto-Optic Devices Based on Organic Polymer Materials

    DTIC Science & Technology

    2012-09-10

    cobalt  ferrite  particles...to   cobalt  ferrite  particles.     The   rings   in   the  SAED  pattern  also   indicate  averaging  of   the... cobalt  ferrite  nanoparticles  (A),  a  high   resolution  image  of  a  single  nanoparticle  showing  the

Top