Science.gov

Sample records for cobalt ii oxinate

  1. Rapid and sensitive colorimetric determination of cobalt(II).

    PubMed

    Eldawy, M A; Tawfik, A S; Elshabouri, S R

    1976-05-01

    A highly selective and sensitive spectrophotometric determination of cobalt (II) was developed. 7-Nitroso-8-hydroxyquinoline-5-sulfonic acid sodium salt was used as the chromogenic reagent for color development. Although other metals form colored chelates with the ligand, it was possible to develop a selective method using McIlvaine's pH 8 citric acid-phosphate buffer. Under these conditions, iron(II), iron (III), copper (II), zinc (II), and manganese (II), minerals likely to be compounded with cobalt (II) in geriatric formulations, do not interfere with the precision of the method or the color development. Calcium (II) and magnesium (II) do not form colored chelates with the used ligand. Hormones, vitamins, and additives likely to be present along with the cobalt ion in pharmaceutical formulations do not interfere. The sensitivity is 0.37 mug of cobalt (II)/ml of sample solution.

  2. Cobalt(II) and Cobalt(III) Coordination Compounds.

    ERIC Educational Resources Information Center

    Thomas, Nicholas C.; And Others

    1989-01-01

    Presents a laboratory experiment which illustrates the formation of tris(phenanthroline)cobalt complexes in the 2+ and 3+ oxidation states, the effect of coordination on reactions of the ligand, and the use of a ligand displacement reaction in recovering the transformed ligand. Uses IR, UV-VIS, conductivity, and NMR. (MVL)

  3. Analysis of cobalt(II) in 2-(5-cyanotetrazolato)pentaammine cobalt(III) perchlorate

    SciTech Connect

    Schumacher, R.J.; Brown, N.E.; Deutsch, E.A.

    1985-10-30

    A new method of analysis is described for cobalt(II) complexes in 2-(5-cyanotetrazolato)pentaammine cobalt(III) perchlorate. The color reagent is 2,2'-dipyridyl-2-pyridyl hydrazone (DPPH), which complexes with the Co(II) and is oxidized to a substitution inert Co(III) (DPPH)/sub 2/ complex. Interferences from other ions is not a problem because the complex is stable at pH 2 - where complexes formed between DPPH and other ions are not stable. The usual air oxidant in this type of analysis has been replaced with ammonium peroxydisulfate improving both the precision and accuracy. The Sandell sensitivity is 0.0015 ..mu..g Co(II)/cm/sup 2/. The system obeys Beer's Law up to 4 ..mu..g in Co(II)mL of solution and has a molar absorptivity of 3.9 x 10/sup 4/ L/mole cm at 514 nm. The procedure was used to determine the degree of decomposition in samples that had undergone partial thermal decomposition. 11 refs., 4 figs., 6 tabs.

  4. Cobalt.

    PubMed

    Fowler, Joseph F

    2016-01-01

    Cobalt has been a recognized allergen capable of causing contact dermatitis for decades. Why, therefore, has it been named 2016 "Allergen of the Year"? Simply put, new information has come to light in the last few years regarding potential sources of exposure to this metallic substance. In addition to reviewing some background on our previous understanding of cobalt exposures, this article will highlight the recently recognized need to consider leather as a major site of cobalt and the visual cues suggesting the presence of cobalt in jewelry. In addition, a chemical spot test for cobalt now allows us to better identify its presence in suspect materials.

  5. Determination of cobalt(II)-EDTA, cobalt(III)-EDTA, and cobalt(II) in an aqueous solution

    SciTech Connect

    Ayres, D.M.; Davis, A.P.

    1996-11-01

    The determination of Co-EDTA species is critical to the understanding of radionuclide migration in the environment, as well as determining efficiencies of various complexed-Co treatment technologies. A new, simple column-oxidation separation methodology was devised to determine the fraction of uncomplexed Co(II), Co(II)-EDTA, and Co(III)-EDTA in an aqueous mixture. A Dowex 50W (H{sup +}) ion-exchange resin, and the oxidative conversion of residual Co(II)-EDTA to Co(III)-EDTA using H{sub 2}O{sub 2}, allowed the separation of species fractions. Only atomic absorption spectrophotometric measurements were required after separation of the fractions. Analysis of individual Co species separated from mixtures ranging in concentration from 3 {times} 10{sup {minus}5} to 3 {times} 10{sup {minus}3} M total Co resulted in average recoveries of 97 {plus_minus} 4%. 15 refs., 2 tabs.

  6. A novel method for preparation of cobalt(II) and lead(II) carbonates

    NASA Astrophysics Data System (ADS)

    Refat, M. S.; Teleb, S. M.; Sadeek, S. A.

    2004-10-01

    Cobalt(II) carbonate, CoCO 3·4H 2O and lead(II) carbonate, PbCO 3·2H 2O were synthesis by a new simple method during the reaction of aqueous solutions of CoX 2 (X = Cl -, NO 3- and CH 3COO -) and PbX 2 (X = NO 3- or CH 3COO -), respectively, with urea at ˜85 °C for 2 h. The infrared spectra of the reaction products clearly indicates the absence of the bands due to coordinated urea, but show the characteristic bands of ionic carbonate. A general mechanisms describing the formation of cobalt and lead carbonates are suggested.

  7. Synthesis, Characterization, and Use of a Cobalt(II) Complex as an NMR Shift Reagent.

    ERIC Educational Resources Information Center

    Goff, Harold M.; And Others

    1982-01-01

    Describes procedures for preparing acetylacetonate complex of cobalt(II), followed by spectrophotometric analysis to characterize the material, with additional characterization methods supplied by students to provide open-ended dimension for the experiment. (SK)

  8. Structure of catabolite activator protein with cobalt(II) and sulfate

    SciTech Connect

    Rao, Ramya R.; Lawson, Catherine L.

    2014-04-15

    The crystal structure of E. coli catabolite activator protein with bound cobalt(II) and sulfate ions at 1.97 Å resolution is reported. The crystal structure of cyclic AMP–catabolite activator protein (CAP) from Escherichia coli containing cobalt(II) chloride and ammonium sulfate is reported at 1.97 Å resolution. Each of the two CAP subunits in the asymmetric unit binds one cobalt(II) ion, in each case coordinated by N-terminal domain residues His19, His21 and Glu96 plus an additional acidic residue contributed via a crystal contact. The three identified N-terminal domain cobalt-binding residues are part of a region of CAP that is important for transcription activation at class II CAP-dependent promoters. Sulfate anions mediate additional crystal lattice contacts and occupy sites corresponding to DNA backbone phosphate positions in CAP–DNA complex structures.

  9. Synthesis and structural characterization of zinc(II) and cobalt(II) complexes based on multidentate hydrazone ligands

    NASA Astrophysics Data System (ADS)

    Li, Li; Zhang, Yuan Zhuo; Liu, E.; Yang, Chengxiong; Golen, James A.; Rheingold, Arnold L.; Zhang, Guoqi

    2016-04-01

    Two multidentate Schiff base ligands containing a hydrazone unit have been synthesized and investigated for zinc(II) and cobalt(II) coordination chemistry. The reactions of the 4-pyridyl derived hydrazone ligand HL1 with zinc(II) or cobalt(II) salts gave three mononuclear complexes that were structurally characterized by X-ray diffraction analysis. The results revealed that the ligand could adopt different coordination modes when various counter anions were employed. While in the case that zinc dichloride was used as a metal salt a neutral mononuclear mono-ligand complex was formed, the deprotonation of hydrazone occurred when zinc(II) or cobalt(II) nitrate were present and two new isostructural mononuclear bis-ligand complexes were isolated. Modification of the hydrazone ligand with oxygen donors was found to have a significant impact on the ligand reactivity, and a similar reaction of H2L2 with cobalt(II) nitrate gave a protonated product of H2L2 without the incorporation of cobalt(II), which features a one-dimensional hydrogen-bonded network in the solid state.

  10. Spectral studies on cobalt(II), nickel(II) and copper(II) complexes of naphthaldehyde substituted aroylhydrazones.

    PubMed

    Singh, Pramod Kumar; Kumar, Deo Nandan

    2006-07-01

    A series of new coordination complexes of cobalt(II), nickel(II) and copper(II) with two new aroylhydrazones, 2-hydroxy-1-naphthaldehyde isonicotinoylhydrazone (H(2)L(1)) and 2-hydroxy-1-naphthaldehyde-2-thenoyl-hydrazone (H(2)L(2)) have been synthesized and characterized by elemental analysis, conductance measurements, magnetic susceptibility measurements, (1)H NMR spectroscopy, IR spectroscopy, electronic spectroscopy, EPR spectroscopy and thermal analysis. IR spectra suggests ligands acts as a tridentate dibasic donor coordinating through the deprotonated naphtholic oxygen atom, azomethine nitrogen atom and enolic oxygen atom. EPR and ligand field spectra suggests octahedral geometry for Co(II) and Ni(II) complexes and a square planar geometry for Cu(II) complexes. PMID:16529995

  11. Spectral studies on cobalt(II), nickel(II) and copper(II) complexes of naphthaldehyde substituted aroylhydrazones

    NASA Astrophysics Data System (ADS)

    Singh, Pramod Kumar; Kumar, Deo Nandan

    2006-07-01

    A series of new coordination complexes of cobalt(II), nickel(II) and copper(II) with two new aroylhydrazones, 2-hydroxy-1-naphthaldehyde isonicotinoylhydrazone (H 2L 1) and 2-hydroxy-1-naphthaldehyde-2-thenoyl-hydrazone (H 2L 2) have been synthesized and characterized by elemental analysis, conductance measurements, magnetic susceptibility measurements, 1H NMR spectroscopy, IR spectroscopy, electronic spectroscopy, EPR spectroscopy and thermal analysis. IR spectra suggests ligands acts as a tridentate dibasic donor coordinating through the deprotonated naphtholic oxygen atom, azomethine nitrogen atom and enolic oxygen atom. EPR and ligand field spectra suggests octahedral geometry for Co(II) and Ni(II) complexes and a square planar geometry for Cu(II) complexes.

  12. Fluorescence characteristic study of the ternary complex of fluoroquinolone antibiotics and cobalt (II) with ATP

    NASA Astrophysics Data System (ADS)

    Wu, Shuqing; Zhang, Wujuan; Chen, Xingguo; Hu, Zhide; Hooper, Martin; Hooper, Beveley; Zhao, Zhengfeng

    2001-05-01

    The results from the measurement of the fluorescence spectra of fluoroquinolone antibiotics including ofloxacin (OF), norfloxacin (NOR) and ciprofloxacin (CIP) complexed with cobalt (II) and ATP give information concerning the antibiotics-nucleotide interactions. From the fluorescence spectral data, it appears that the fluoroquinolone antibiotic cannot directly complex with ATP but indirectly complex with cobalt (II), which is playing an intermediary role. The interaction of fluoroquinolone antibiotic with the nucleotide occurs mainly through the phosphate group. The conclusion offers a more complete mechanism, which is important for understanding the interaction of these drugs with DNA.

  13. Extractive spectrophotometric determination of Cobalt(II) in synthetic and pharmaceutical samples using Cyanex 923.

    PubMed

    Reddy, B Ramachandra; Radhika, P; Kumar, J Rajesh; Priya, D Neela; Rajgopal, K

    2004-02-01

    Cyanex 923 has been proposed as a sensitive analytical reagent for the direct extractive spectrophotometric determination of cobalt(II). Cobalt(II) forms a blue-colored complex with Cyanex 923 in the organic phase. The maximum absorbance of the complex is measured at 635 nm. Beer's law was obeyed in the range 58.9 - 589.0 microg of cobalt. The molar absorptivitiy and Sandell's sensitivity of the complex was calculated to be 6.79 x 10920 l mol(-1) cm(-1) and 0.088 microg cm(-2), respectively. The nature of the extracted species was found to be Co(SCN)2 x 2S. An excellent linearity with a correlation coefficient value of 0.999 was obtained for the Co(II)-Cyanex 923 complex. Stability and regeneration of the reagent (Cyanex 923) for reuse is the main advantage of the present method. The method was successfully applied to the determination of cobalt in synthetic mixtures and pharmaceutical samples was found to give values close to the actual ones. Standard alloy samples, such as high-speed tool BCS 484 and 485, have been tested for the determination of cobalt for the purpose of validating the present method. The results of the proposed method are comparable with atomic absorption spectrometry and were found to be in good agreement.

  14. Strong Exchange Coupling in a Trimetallic Radical-Bridged Cobalt(II)-Hexaazatrinaphthylene Complex.

    PubMed

    Moilanen, Jani O; Chilton, Nicholas F; Day, Benjamin M; Pugh, Thomas; Layfield, Richard A

    2016-04-25

    Reducing hexaazatrinaphthylene (HAN) with potassium in the presence of 18-c-6 produces [{K(18-c-6)}HAN], which contains the S=1/2 radical [HAN](.-) . The [HAN](.-) radical can be transferred to the cobalt(II) amide [Co{N(SiMe3 )2 }2 ], forming [K(18-c-6)][(HAN){Co(N'')2 }3 ]; magnetic measurements on this compound reveal an S=4 spin system with strong cobalt-ligand antiferromagnetic exchange and J≈-290 cm(-1) (-2 J formalism). In contrast, the Co(II) centres in the unreduced analogue [(HAN){Co(N'')2 }3 ] are weakly coupled (J≈-4.4 cm(-1) ). The finding that [HAN](.-) can be synthesized as a stable salt and transferred to cobalt introduces potential new routes to magnetic materials based on strongly coupled, triangular HAN building blocks. PMID:26997130

  15. Polymer - supported cobalt (II) catalysts for the oxidation of alkenes.

    PubMed

    Błaz, Edyta; Pielichowski, Jan

    2006-01-31

    Polymer-supported heterogeneous catalysts in a form of complexes of 8-hydroxy- quinoline with cobalt acetate were synthesized. Conjugated polymers - polyaniline (PANI), poly-o-toluidine (POT), poly-o-anisidine (POA) - were used as supports. Oxidation reactions of aliphatic and aromatic hydrocarbons were carried out in the presence of molecular oxygen at atmospheric pressure and epoxides or ketones were obtained as the main products with high selectivity.

  16. Cobalt(II) Oxidation by the Marine Manganese(II)-Oxidizing Bacillus sp. Strain SG-1

    PubMed Central

    Lee, Yoon; Tebo, Bradley M.

    1994-01-01

    The geochemical cycling of cobalt (Co) has often been considered to be controlled by the scavenging and oxidation of Co(II) on the surface of manganese [Mn(III,IV)] oxides or manganates. Because Mn(II) oxidation in the environment is often catalyzed by bacteria, we have investigated the ability of Mn(II)-oxidizing bacteria to bind and oxidize Co(II) in the absence of Mn(II) to determine whether some Mn(II)-oxidizing bacteria also oxidize Co(II) independently of Mn oxidation. We used the marine Bacillus sp. strain SG-1, which produces mature spores that oxidize Mn(II), apparently due to a protein in their spore coats (R.A. Rosson and K. H. Nealson, J. Bacteriol. 151:1027-1034, 1982; J. P. M. de Vrind et al., Appl. Environ. Microbiol. 52:1096-1100, 1986). A method to measure Co(II) oxidation using radioactive 57Co as a tracer and treatments with nonradioactive (cold) Co(II) and ascorbate to discriminate bound Co from oxidized Co was developed. SG-1 spores were found to oxidize Co(II) over a wide range of pH, temperature, and Co(II) concentration. Leucoberbelin blue, a reagent that reacts with Mn(III,IV) oxides forming a blue color, was found to also react with Co(III) oxides and was used to verify the presence of oxidized Co in the absence of added Mn(II). Co(II) oxidation occurred optimally around pH 8 and between 55 and 65°C. SG-1 spores oxidized Co(II) at all Co(II) concentrations tested from the trace levels found in seawater to 100 mM. Co(II) oxidation was found to follow Michaelis-Menten kinetics. An Eadie-Hofstee plot of the data suggests that SG-1 spores have two oxidation systems, a high-affinity-low-rate system (Km, 3.3 × 10-8 M; Vmax, 1.7 × 10-15 M · spore-1 · h-1) and a low-affinity-high-rate system (Km, 5.2 × 10-6 M; Vmax, 8.9 × 10-15 M · spore-1 · h-1). SG-1 spores did not oxidize Co(II) in the absence of oxygen, also indicating that oxidation was not due to abiological Co(II) oxidation on the surface of preformed Mn(III,IV) oxides. These

  17. Solvent effects on the stability of nifuroxazide complexes with cobalt(II), nickel(II) and copper(II) in alcohols.

    PubMed

    Khan, Mustayeen A; Ali, S Kauser; Bouet, Gilles M

    2002-05-21

    A spectrophotometric study of the complexation of nifuroxazide with cobalt(II), nickel(II) and copper(II) was carried out in different alcohols. The formation of a complex in each case is reported and their stability constants have been calculated. For a given solvent, the stability of the complexes increases from cobalt to copper. In the case of copper(II), the stability varies as an inverse function of the dielectric constant of the solvent. A possible structure of the complex is proposed. PMID:12009257

  18. Study of the influence of the bridge on the magnetic coupling in cobalt(II) complexes.

    PubMed

    Fabelo, Oscar; Cañadillas-Delgado, Laura; Pasán, Jorge; Delgado, Fernando S; Lloret, Francesc; Cano, Joan; Julve, Miguel; Ruiz-Pérez, Catalina

    2009-12-01

    Two new cobalt(II) complexes of formula [Co(2)(bta)(H(2)O)(6)](n) x 2nH(2)O (1) and [Co(phda)(H(2)O)](n) x nH(2)O (2) [H(4)bta = 1,2,4,5-benzenetetracarboxylic acid, H(2)phda = 1,4-phenylenediacetic acid] have been characterized by single crystal X-ray diffraction. Compound 1 is a one-dimensional compound where the bta(4-) ligand acts as 2-fold connector between the cobalt(II) ions through two carboxylate groups in para-conformation. Triply bridged dicobalt(II) units occur within each chain, a water molecule, a carboxylate group in the syn-syn conformation, and an oxo-carboxylate with the mu(2)O(1);kappa(2)O(1),O(2) coordination mode acting as bridges. Compound 2 is a three-dimensional compound, where the phda(2-) group acts as a bridge through its two carboxylate groups, one of them adopting the mu-O,O' coordination mode in the syn-syn conformation and the other exhibiting the single mu(2)-O'' bridging mode. As in 1, chains of cobalt(II) ions occur in 2 with a water molecule, a syn-syn carboxylate group, and an oxo-carboxylate constitute the triply intrachain bridging skeleton. Each chain is linked to other four ones through the phda(2-) ligand, giving rise to the three-dimensional structure. The values of the intrachain cobalt-cobalt separation are 3.1691(4) (1) and 3.11499(2) A (2) whereas those across the phenyl ring of the extended bta(4-) (1) and phda(2-) (2) groups are 10.1120(6) and 11.4805(69 A, respectively. The magnetic properties of 1 and 2 have been investigated in the temperature range 1.9-300 K, and their analysis has revealed the occurrence of moderate intrachain ferromagnetic couplings [J = +5.4 (1) and +2.16 cm(-1) (2), J being the isotropic magnetic coupling parameter], the magnetic coupling through the extended bta(4-) and phda(2-) with cobalt-cobalt separations larger than 10 A being negligible. The nature and magnitude of the magnetic interactions between the high-spin cobalt(II) ions in 1 and 2 are compared to those of related systems and

  19. First iron and cobalt(II) hexabromoclathrochelates: structural, magnetic, redox, and electrocatalytic behavior.

    PubMed

    Dolganov, Alexander V; Belov, Alexander S; Novikov, Valentin V; Vologzhanina, Anna V; Romanenko, Galina V; Budnikova, Yulia G; Zelinskii, Genrikh E; Buzin, Michail I; Voloshin, Yan Z

    2015-02-01

    Template condensation of dibromoglyoxime with n-butylboronic acid on the corresponding metal ion as a matrix under vigorous reaction conditions afforded iron and cobalt(ii) hexabromoclathrochelates. The paramagnetic cobalt clathrochelate was found to be a low-spin complex at temperatures below 100 K, with a gradual increase in the effective magnetic moment at higher temperatures due to the temperature 1/2↔3/2 spin crossover and a gap caused by the structure phase transition. The multitemperature X-ray and DSC studies of this complex and its iron(ii)-containing analog also showed temperature structural transitions. The variation of an encapsulated metal ion's radius, electronic structure and spin state caused substantial differences in the geometry of its coordination polyhedron; these differences increase with the decrease in temperature due to Jahn-Teller distortion of the encapsulated cobalt(ii) ion with an electronic configuration d(7). As follows from CV and GC data, these cage iron and cobalt complexes undergo both oxidation and reduction quasireversibly, and showed an electrocatalytic activity for hydrogen production in different producing systems. PMID:25559125

  20. Characterization of cobalt(II) chloride-modified condensation polyimide films

    NASA Technical Reports Server (NTRS)

    Rancourt, J. D.; Taylor, L. T.

    1988-01-01

    The effect of solvent extraction on the properties of cobalt(II) chloride-modified polyimide films was investigated. Solvent-cast films were prepared from solutions of cobalt chloride in poly(amide acid)/N,N-dimethylacetamide (DMAc) and were subsequently dried and cured in static air, forced air, or inert gas ovens with controlled humidity. The films were extracted by either of the three processes (1) soaking in a tray with distilled water at room temperature, (2) soxhlett extraction with distilled water, or (3) soxhell extraction with DMAc. Extraction with DMAc was found to remove both cobalt and chlorine from the films and to slightly increase bulk thermal stability and both surface resistivity and electrical resistivity.

  1. Synthesis, crystal structure and magnetic property of a new cobalt(II) vanadate

    SciTech Connect

    Zhang, Su-Yun; Guo, Wen-Bin; Yang, Ming; Tang, Ying-Ying; Wang, Nan-Nan; Huang, Rong-Rong; Cui, Mei-Yan; He, Zhang-Zhen

    2015-05-15

    A new cobalt(II) vanadate has been synthesized by hydrothermal reaction. It exhibits 3D cobalt(II) oxide architecture with Co{sub 12} member ring (MR) and Co{sub 6} MR tunnels along c-axis. V(2)O{sub 4} tetrahedra are located at the center of Co{sub 6}-MR tunnels whereas V(1)O{sub 4} tetrahedra and ‘isolated’ 1D Co(1)O{sub 6} octahedral chains are located at the Co{sub 12}-MR tunnels. The 3D cobalt(II) oxide architecture is constructed on irregular ladder chains formed by edge- and face-sharing of Co(2)O{sub 6} octahedra whereas the ‘isolated’ 1D Co(1)O{sub 6} octahedral chain in the tunnels are formed by face-sharing of Co(1)O{sub 6} octahedra. Magnetic property is investigated by means of magnetic susceptibility, magnetization and heat capacity measurement. Magnetic susceptibility and heat capacity measurement indicate a typical long-range spin-canting antiferromagnetic ordering below ~71 K; metamagnetic behavior was detected in the isothermal magnetization measurement at 2 K. - Graphical abstract: A cobalt(II) vanadate, Co{sub 7}V{sub 4}O{sub 16}(OH){sub 2}(H{sub 2}O) has been synthesized and structurally characterized. It exhibits antiferromagnetic interaction with weak spin-canting below ~71 K; metamagnetic behavior was detected in isothermal magnetization at 2 K. - Highlights: • Hydrothermal reaction of CoCl{sub 2}·6H{sub 2}O and Na{sub 3}VO{sub 4} yielded a new cobalt(||) vanadate. • It shows novel structure since its large Co/V ratio. • It shows long-range spin-canting antiferromagnetic ordering below ~71 K. • Metamagnetic behavior was detected in the isothermal magnetization at 2 K.

  2. On the kinetics of the absorption of nitric oxide into ammoniacal cobalt(II) solutions.

    PubMed

    Yu, Hesheng; Tan, Zhongchao

    2014-02-18

    Experiments were conducted using a custom double-stirred tank reactor to determine the rate constants of reactions between nitric oxide (NO) and both pentaaminecobalt(II) and hexaaminecobalt(II) at temperatures of 298.2 and 303.2 K and pH levels between 8.50 and 9.87 under atmospheric pressure. The NO concentration of simulated flue gas stream ranged from 400 to 1400 ppmv. Ammoniacal cobalt(II) solutions were prepared by adding aqueous ammonia into a cobalt(II) nitrate solution in the presence of concentrated ammonium nitrate. The reaction rate constants were calculated with an enhancement factor for gas absorption associated with parallel chemical reactions. The results showed that the reaction between NO and pentaaminecobalt(II) was first order with respect to both the NO and the pentaamminecobalt(II) ion. Similarly, the reaction between NO and hexaamminecobalt(II) was first order with respect to both the NO and the hexaamminecobalt(II) ion. The forward reaction rate constants of these two reactions were 6.43 × 10(6) and 1.00 × 10(7) L · mol(-1) · s(-1) at 298.2 K, respectively, and increased to 7.57 × 10(6) and 1.12 × 10(7) L · mol(-1) · s(-1) at 303.2 K, respectively. Ammoniacal cobalt(II) solutions also have the potential to simultaneously remove CO2, SO2, and NOx from postcombustion flue gas.

  3. Poly[(μ4-decanedio­ato)cobalt(II)

    PubMed Central

    Giuseppe, Bruno; Francesco, Nicolò; Giovanni, Grassi; Alessandro, Saccà; Mollica Nardo, Viviana

    2014-01-01

    In the title compound, [Co(C10H16O4)]n, the CoII atom is bonded in a slightly distorted tetra­hedral environment by four O atoms from the bridging sebacate dications, comprising two separate half-ligands which lie across crystallographic inversion centres. In the three-dimensional network coordination polymer, there are two different spatial extensions of CoII atoms, one with the CoII atoms lying parallel to (100) [Co⋯Co = 4.653 (1) Å], the other lying parallel to (010) [Co⋯Co = 4.764 (1) Å]. PMID:24860298

  4. Synthesis, crystal structures and spectroscopic properties of cobalt(II) complexes with chelating sulfonylamidophosphate ligands

    NASA Astrophysics Data System (ADS)

    Znovjyak, Kateryna O.; Seredyuk, Maksym; Kusz, Joachim; Nowak, Maria; Moroz, Olesia V.; Sliva, Tetiana Yu; Amirkhanov, Vladimir M.

    2015-11-01

    Two new cobalt(II) complexes with general formula Co(L1)2Phen (1) and Co(L2)2Phen (2), in which HL1 = dimethyl phenylsulfonylphosphoramidate and HL2 = dimethyl tosylphosphoramidate, were prepared in one-step synthesis and characterized by IR, UV-VIS spectroscopy, TGA-DTA and elemental analysis. Moreover, the single crystal structures of 1 and 2 were determined by single crystal X-ray diffractometry. Complexes consist of mononuclear units comprising two L1-(or L2-) and phenanthroline ligands bidentatly linked to metal ion. The UV-VIS spectra of complexes in the solid state show broad asymmetric band at 530 nm attributed to the d-d transition of the metal ion. Comparing of these spectra with the absorption spectra in acetone, octahedral environment of the cobalt(II) ion in solution were considered. The structural similarity of 1 and 2 leads to a similar thermal decomposition profile.

  5. Structures and fragmentations of cobalt(II)-cysteine complexes in the gas phase.

    PubMed

    Buchmann, William; Spezia, Riccardo; Tournois, Guewen; Cartailler, Thierry; Tortajada, Jeanine

    2007-04-01

    The electronebulization of a cobalt(II)/cysteine(Cys) mixture in water/methanol (50/50) produced mainly cobalt-cationized species. Three main groups of the Co-cationized species can be distinguished in the ESI-MS spectrum: (1) the cobalt complexes including the cysteine amino acid only (they can be singly charged, for example, [Co(Cys)n- H]+ with n = 1-3 or doubly charged such as [Co + (Cys)2]2+); (2) the cobalt complexes with methanol: [Co(CH3OH)n- H]+ with n = 1-3, [Co(CH3OH)4]2+; and (3) the complexes with the two different types of ligands: [Co(Cys)(CH3OH) - H]+. Only the singly charged complexes were observed. Collision-induced dissociation (CID) products of the [Co(Cys)2]2+, [Co(Cys)2 - H]+ and [Co(Cys) - H]+ complexes were studied as a function of the collision energy, and mechanisms for the dissociation reactions are proposed. These were supported by the results of deuterium labelling experiments and by density functional theory calculations. Since [Co(Cys) - H]+ was one of the main product ions obtained upon the CID of [Co(Cys)2]2+ and of [Co(Cys)2 - H]+ under low-energy conditions, the fragmentation pathways of [Co(Cys) - H]+ and the resulting product ion structures were studied in detail. The resulting product ion structures confirmed the high affinity of cobalt(II) for the sulfur atom of cysteine. PMID:17323419

  6. Nitrous oxide activation by a cobalt(ii) complex for aldehyde oxidation under mild conditions.

    PubMed

    Corona, Teresa; Company, Anna

    2016-10-01

    Nitrous oxide (N2O) is a waste gas produced in many industrial processes with an important environmental impact. Thus, its application as an oxidant is highly desirable because it produces innocuous N2 as a by-product. In this work we report a new cobalt(ii) complex that reacts with N2O under mild conditions and the catalytic application of this system to carry out the oxidation of aldehydes. PMID:27445004

  7. Nitrous oxide activation by a cobalt(ii) complex for aldehyde oxidation under mild conditions.

    PubMed

    Corona, Teresa; Company, Anna

    2016-10-01

    Nitrous oxide (N2O) is a waste gas produced in many industrial processes with an important environmental impact. Thus, its application as an oxidant is highly desirable because it produces innocuous N2 as a by-product. In this work we report a new cobalt(ii) complex that reacts with N2O under mild conditions and the catalytic application of this system to carry out the oxidation of aldehydes.

  8. Structural and magnetic properties of cobalt(II) complexes with pyridinecarboxamide ligands

    NASA Astrophysics Data System (ADS)

    Dojer, Brina; Pevec, Andrej; Belaj, Ferdinand; Jagličić, Zvonko; Kristl, Matjaž; Drofenik, Miha

    2014-11-01

    The synthesis and characterization of two new cobalt(II) coordination compounds with nicotinamide (nia) and isonicotinamide (isn) are reported. The products were characterized magnetically, structurally by single-crystal X-ray diffraction analysis and spectrally by FT-IR spectroscopy. Using the reaction of cobalt(II) acetate tetrahydrate and nicotinamide in methanol we obtained light-red crystals of the mononuclear complex [Co(nia)2(H2O)4](CH3COO)2·2H2O (1). The synthesis in a system cobalt(II) acetate dihydrathe, isonicotinamide and dimethylformamide-methanol mixture gave a new dinuclear coordination compound with the formula [Co2(CH3COO)4(isn)4]·2C3H7NO (2). In both compounds a trans arrangement of pyridinecarboxamide ligands was found. Intermolecular hydrogen bonds in the crystal structures of both complexes are discussed. The magnetic properties were studied between 2 K and 300 K giving the result μeff = 4.6 BM for 1 and μeff = 4.7 BM for 2 in the paramagnetic region.

  9. A multisyringe flow-based system for kinetic-catalytic determination of cobalt(II).

    PubMed

    Chaparro, Laura; Ferrer, Laura; Leal, Luz; Cerdà, Víctor

    2015-02-01

    A kinetic-catalytic method for cobalt determination based on the catalytic effect of cobalt(II) on the oxidative coupling of 1,2-dihydroxyanthraquinone (alizarin) was automated exploiting multisyringe flow injection analysis (MSFIA). The proposed method was performed at pH 9.2, resulting in a discoloration process in the presence of hydrogen peroxide. The fixed-time approach was employed for analytical signal measurement. The spectrophotometric detection was used exploiting a liquid waveguide capillary cell (LWCC), of 1m optical length at 465 nm. The optimization was carried out by a multivariate approach, reaching critical values of 124 µmol L(-1) and 0.22 mol L(-1) for alizarin and hydrogen peroxide, respectively, and 67°C of reagent temperature. A sample volume of 150 µL was used allowing a sampling rate of 30h(-1). Under optimal conditions, calibration curve was linear in the range of 1-200 µg L(-1) Co, achieving a DL of 0.3 µg L(-1) Co. The repeatability, expressed as relative standard deviation (RSD) was lower than 1%. The proposed analytical procedure was applied to the determination of cobalt in cobalt gluconate and different forms of vitamin B12, cyanocobalamin and hydroxicobalamin with successful results showing recoveries around 95%.

  10. Crystal structures of salicylideneguanylhydrazinium chloride and its copper(II) and cobalt(III) chloride complexes

    SciTech Connect

    Chumakov, Yu. M. Tsapkov, V. I.; Bocelli, G.; Antosyak, B. Ya.; Shova, S. G.; Gulea, A. P.

    2006-01-15

    The crystal structures of salicylideneguanylhydrazinium chloride hydrate hemiethanol solvate (I), salicylideneguanylhydrazinium trichloroaquacuprate(II) (II), and bis(salicylideneguanylhydrazino)cobalt(III) chloride trihydrate (III) are determined using X-ray diffraction. The structures of compounds I, II, and III are solved by direct methods and refined using the least-squares procedure in the anisotropic approximation for the non-hydrogen atoms to the final factors R = 0.0597, 0.0212, and 0.0283, respectively. In the structure of compound I, the monoprotonated molecules and chlorine ions linked by hydrogen bonds form layers aligned parallel to the (010) plane. In the structure of compound II, the salicylaldehyde guanylhydrazone cations and polymer chains consisting of trichloroaquacuprate(II) anions are joined by an extended three-dimensional network of hydrogen bonds. In the structure of compound III, the [Co(LH){sub 2}]{sup +} cations, chloride ions, and molecules of crystallization water are linked together by a similar network.

  11. Linear trinuclear cobalt(II) single molecule magnet.

    PubMed

    Zhang, Yuan-Zhu; Brown, Andrew J; Meng, Yin-Shan; Sun, Hao-Ling; Gao, Song

    2015-02-14

    The introduction of NaBPh(4) into a methanolic solution of CoCl(2)·(6)H(2)O and 2-[(pyridine-2-ylimine)-methyl]phenol (Hpymp) afforded {[Co(II)(3)(pymp)(4)(MeOH)(2)][BPh(4)](2)}·(2)MeOH (1) with a centro-symmetrically linear trinuclear structure. Magnetic analysis of 1 exhibited significant intracluster ferromagnetic exchange (2.4 cm(-1)) and slow relaxation of magnetization in both zero and non-zero static fields below 5 K, giving the first [Co(II)(3)] single molecule magnet with an effective energy barrier of 17.2(3) cm(-1) under a 500 Oe dc field.

  12. What is the weighing form in gravimetric determination of antimony(III) with oxine?

    PubMed

    Hioki, Akiharu

    2004-03-01

    The gravimetric analysis of antimony(III) with oxine (8-quinolinol, Hox) was studied. The amount of antimony left in filtrate and washing solutions was corrected with the results of atomic absorption spectrometry. The weighing form, which had not been conclusive before the present study, was determined to be SbO(ox)(Hox)2. The result (purity of antimony(II) oxide: 99.84 +/- 0.05% (m/m)) of the gravimetric analysis was in good agreement with that of coulometric titration with electrogenerated iodine.

  13. Formation and interconversion of organo-cobalt complexes in reactions of cobalt(II) porphyrins with cyanoalkyl radicals and vinyl olefins.

    PubMed

    Peng, Chi-How; Li, Shan; Wayland, Bradford B

    2009-06-01

    Observation of the formation and interconversion of organo-cobalt complexes ((TMP)Co-R) is used to reveal mechanistic features in the living radical polymerization (LRP) of methyl acrylate (MA) mediated by cobalt porphyrins. Both dissociative and associative exchange of radicals in solution with organo-cobalt complexes contribute to controlling the radical polymerization. The sequence of organo-cobalt species formed during the induction period for the (TMP)Co-R mediated LRP of MA indicates that homolytic dissociation is a prominent pathway for the interconversion of organo-cobalt complexes which contrasts with the corresponding vinyl acetate (VAc) system where associative radical exchange totally dominates these processes. The dissociation equilibrium constant (K(d(333 K))) for organo-cobalt complexes formed in methyl acrylate polymerization ((TMP)Co-CH(CO(2)CH(3))CH(2)P) was estimated as 1.15 x 10(-10) from analysis of the polymerization kinetics and (1)H NMR. The ratio of the rate constants (333 K) for the cyanoisopropyl radical (*C(CH(3))(2)CN) adding with monomer (k(1)) to the process of transferring a hydrogen atom to (TMP)Co(II)* (k(2)) was evaluated for the methyl acrylate system as 2 x 10(-3) which is larger than that for vinyl acetate LRP (9 x 10(-5)). Kinetic analysis places the rate constant for associative radical interchange (333 K) at approximately 7 x 10(5) M(-1) s(-1). The larger radical stabilization energy and lower energy of the singly occupied molecular orbital (SOMO) for methyl acrylate based radicals (*CH(CO(2)CH(3))CH(2)P) compared to vinyl acetate contribute to the observed prominence of organo-cobalt homolytic dissociation and much smaller chain transfer which result in substantially better control for living radical polymerization of methyl acrylate than that observed for vinyl acetate.

  14. Synthesis, crystal structure, and thermal decomposition of the cobalt(II) complex with 2-picolinic acid.

    PubMed

    Li, Di; Zhong, Guo-Qing

    2014-01-01

    The cobalt(II) complex of 2-picolinic acid (Hpic), namely, [Co(pic)₂(H₂O)₂] · 2H₂O, was synthesized with the reaction of cobalt acetate and 2-picolinic acid as the reactants by solid-solid reaction at room temperature. The composition and structure of the complex were characterized by elemental analysis, infrared spectroscopy, single crystal X-ray diffraction, and thermogravimetry-differential scanning calorimetry (TG-DSC). The crystal structure of the complex belongs to monoclinic system and space group P2(1)/n, with cell parameters of a = 9.8468(7) Å, b = 5.2013(4) Å, c = 14.6041(15) Å, β = 111.745(6)°, V = 747.96(11) ų, Z = 2, D(c) = 1.666 g cm⁻³, R₁ = 0.0297, and wR₂ = 0.0831. In the title complex, the Co(II) ion is six-coordinated by two pyridine N atoms and two carboxyl O atoms from two 2-picolinic acid anions, and two O atoms from two H2O molecules, and forming a slightly distorted octahedral geometry. The thermal decomposition processes of the complex under nitrogen include dehydration and pyrolysis of the ligand, and the final residue is cobalt oxalate at about 450°C.

  15. Synthesis, Crystal Structure, and Thermal Decomposition of the Cobalt(II) Complex with 2-Picolinic Acid

    PubMed Central

    Li, Di

    2014-01-01

    The cobalt(II) complex of 2-picolinic acid (Hpic), namely, [Co(pic)2(H2O)2] · 2H2O, was synthesized with the reaction of cobalt acetate and 2-picolinic acid as the reactants by solid-solid reaction at room temperature. The composition and structure of the complex were characterized by elemental analysis, infrared spectroscopy, single crystal X-ray diffraction, and thermogravimetry-differential scanning calorimetry (TG-DSC). The crystal structure of the complex belongs to monoclinic system and space group P2(1)/n, with cell parameters of a = 9.8468(7) Å, b = 5.2013(4) Å, c = 14.6041(15) Å, β = 111.745(6)°, V = 747.96(11) Å3, Z = 2, Dc = 1.666 g cm−3, R1 = 0.0297, and wR2 = 0.0831. In the title complex, the Co(II) ion is six-coordinated by two pyridine N atoms and two carboxyl O atoms from two 2-picolinic acid anions, and two O atoms from two H2O molecules, and forming a slightly distorted octahedral geometry. The thermal decomposition processes of the complex under nitrogen include dehydration and pyrolysis of the ligand, and the final residue is cobalt oxalate at about 450°C. PMID:24578654

  16. cis-Diaqua-bis-[dimethyl (phenyl-sulfonyl-imino)-phospho-nato]cobalt(II).

    PubMed

    Trush, Elizaveta A; Trush, Victor A; Sliva, Tetyana Yu; Konovalova, Irina S; Amirkhanov, Volodymyr M

    2011-01-01

    In the title diaqua-cobalt complex, [Co(C(8)H(11)NO(5)PS)(2)(H(2)O)(2)], the Co(II) atom is surrounded by six O atoms belonging to the phosphoryl and sulfonyl groups of two deprotonated chelate ligands and two additional O atoms from water mol-ecules which are in cis positions with respect to one another. The coordination environment of cobalt can be described as a distorted octa-hedron. O-H⋯O hydrogen bonds between the water and sulfonyl O atoms of neighboring mol-ecules form chains running parallel to [010]. Two methoxy groups attached to one phosphorus are disordered over two sets of sites in a 0.6:0.4 ratio. PMID:21522293

  17. Hydrogen Peroxide Coordination to Cobalt(II) Facilitated by Second-Sphere Hydrogen Bonding.

    PubMed

    Wallen, Christian M; Palatinus, Lukáš; Bacsa, John; Scarborough, Christopher C

    2016-09-19

    M(H2 O2 ) adducts have been postulated as intermediates in biological and industrial processes; however, only one observable M(H2 O2 ) adduct has been reported, where M is redox-inactive zinc. Herein, direct solution-phase detection of an M(H2 O2 ) adduct with a redox-active metal, cobalt(II), is described. This Co(II) (H2 O2 ) compound is made observable by incorporating second-sphere hydrogen-bonding interactions between bound H2 O2 and the supporting ligand, a trianionic trisulfonamido ligand. Thermodynamics of H2 O2 binding and decay kinetics of the Co(II) (H2 O2 ) species are described, as well as the reaction of this Co(II) (H2 O2 ) species with Group 2 cations. PMID:27560462

  18. Bis(2-pyridylimino)isoindolato iron(II) and cobalt(II) complexes: structural chemistry and paramagnetic NMR spectroscopy.

    PubMed

    Kruck, Matthias; Sauer, Désirée C; Enders, Markus; Wadepohl, Hubert; Gade, Lutz H

    2011-10-28

    Condensation of phthalodinitrile and 2-amino-5,6,7,8-tetrahydroquinoline gave the bis(2-pyridylimino)isoindole protioligand 1 (thqbpiH) in high yield. Deprotonation of thqbpiH (1) using LDA in THF at -78 °C yields the corresponding lithium complex [Li(THF)(thqbpi)] (2) in which the lithium atom enforces almost planar arrangement of the tridentate ligand, with an additional molecule of THF coordinated to Li. Reaction of cobalt(II) chloride or iron(II) chloride with one equivalent of the lithium complex 2 in THF led to formation of the metal complexes [CoCl(THF)(thqbpi)] (3a) and [FeCl(THF)(thqbpi)] (3b). The paramagnetic susceptibility of 3a,b in solution was measured by the Evans method (3a: μ(eff) = 4.17 μ(B); 3b: μ(eff) = 5.57 μ(B)). Stirring a solution of 1 and cobalt(II) acetate tetrahydrate in methanol yielded the cobalt(II) complex 4 which was also accessible by treatment of 3a with one equivalent of silver or thallium acetate in DMSO. Whereas 3a,b were found to be mononuclear in the solid state, the acetate complex 4 was found to be dinuclear, the two metal centres being linked by an almost symmetrically bridging acetate. For all transition metal complexes paramagnetic (1)H as well as (13)C NMR spectra were recorded at variable temperatures. The complete assignment of the paramagnetic NMR spectra was achieved by computation of the spin densities within the complexes using DFT. The proton NMR spectra of 3a and 3b displayed dynamic behaviour. This was attributed to the exchange of coordinating solvent molecules by an associative mechanism which was analysed using lineshape analysis (ΔS(≠)= -154 ± 25 J mol(-1) K(-1) for 3a and ΔS(≠) = -168 ± 15 J mol(-1) K(-1) for 3b).

  19. XRD, SEM and EXAFS investigation of cobalt (II) macro cyclic complexes

    NASA Astrophysics Data System (ADS)

    Mishra, Ashutosh; Ninama, Samrath; Mishra, Niyati

    2012-06-01

    Cobalt (II) complexes were synthesis by chemical rout method. The samples were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Extended X-ray absorption fine structure (EXAFS). XRD analysis shows that sample is crystalline in nature and having particle size in the range of few micro meters, SEM is designed for studying of the surfaces of solid objects and EXAFS technique extract the local structure of complexes. The nearest neighboring atom distances commonly known as `bond length' were calculated using different methods and also compared with IFEFFIT method.

  20. Part I. Cobalt thiolate complexes modeling the active site of cobalt nitrile hydratase. Part II. Formation of inorganic nanoparticles on protein scaffolding in Escherichia coli glutamine synthetase

    NASA Astrophysics Data System (ADS)

    Kung, Irene Yuk Man

    Part I. A series of novel cobalt dithiolate complexes with mixed imine/amine ligand systems is presented here as electronic and structural models for the active site in the bacterial enzyme class, nitrile hydratase (NHase). Pentadentate cobalt(II) complexes with S2N 3 ligand environments are first studied as precursors to the more relevant cobalt(III) complexes. Adjustment of the backbone length by removal of a methylene group increases the reactivity of the system; whereas reduction of the two backbone imine bonds to allow free rotation about those bonds may decrease reactivity. Reactivity change due to the replacement of the backbone amine proton with a more sterically challenging methyl group is not yet clear. Upon oxidation, the monocationic pentadentate cobalt(III) complex, 1b, shows promising reactivity similar to that of NHase. The metal's open coordination site allows reversible binding of the endogenous, monoanionic ligands, N 3- and NCS-. Oxygenation of the thiolate sulfur atoms by exposure to O2 and H2O 2 produces sulfenate and sulfinate ligands in complex 8, which resembles the crystal structure of "deactivated" Fe NHase. However, its lack of reactivity argues against the oxygenated enzyme structure as the active form. Six-coordinate cobalt(III) complexes with S2N4 amine/amine ligand systems are also presented as analogues of previously reported iron(III) compounds, which mimic the spectroscopic properties of Fe NHase. The cobalt complexes do not seem to similarly model Co NHase. However, the S = 0 cobalt(III) center can be spectroscopically silent and difficult to detect, making comparison with synthetic models using common techniques hard. Part II. Dodecameric Escherichia coli glutamine synthetase mutant, E165C, stacks along its six-fold axis to produce tubular nanostructures in the presence of some divalent metal ions, as does the wild type enzyme. The centrally located, engineered Cys-165 residues appear to bind to various species and may serve as

  1. Fluorescence reaction of 5-(p-methoxyphenylazo)-8-(p-tolylsulfonamido)quinoline with cobalt(II) and its analytical application

    SciTech Connect

    Zeng Zuotao ) Xu Qiheng )

    1992-08-01

    5-(p-Methoxyphenylazo)-8-(p-tolylsulfonamido)quinoline(MTAQ) has been synthesized. The product was checked by IR, thermogravimetry, NMR and elemental analysis. A highly sensitive spectrofluorimetric method has been developed for the determination of cobalt(II) based on the formation of a complex with MTAQ in slightly basic medium aqueous solution and in the presence of nonionic surfactant, tween-80. The complex shows two excitation maxima at 304 nm and 338 nm, its emission maximum is centered at 402nm. The fluorescence intensity is proportional to cobalt(II) concentration in the range of 0-85 ppb. The method has good selectivity and has been applied to the direct fluorimetric determination of trace cobalt(II) in pig's liver, Dianchi shrimp and celery.

  2. Synthesis and structure of mono-, bi- and trimetallic amine-bis(phenolate) cobalt(II) complexes.

    PubMed

    Das, Uttam K; Bobak, Julia; Fowler, Candace; Hann, Sarah E; Petten, Chad F; Dawe, Louise N; Decken, Andreas; Kerton, Francesca M; Kozak, Christopher M

    2010-06-21

    A series of cobalt(ii) amine-bis(phenolate) complexes has been prepared and characterized. The protonated tripodal tetradentate ligand precursors; dimethylaminoethylamino-N,N-bis(2-methylene-4-tert-butyl-6-methylphenol), H(2)[O(2)NN'](BuMeNMe2), dimethylaminoethylamino-N,N-bis(2-methylene-4,6-di-tert-butylphenol), H(2)[O(2)NN'](BuBuNMe2), diethylaminoethylamino-N,N-bis(2-methylene-4,6-di-tert-amylphenol), H(2)[O(2)NN'](AmAmNEt2) and 2-pyridylamino-N,N-bis(2-methylene-4,6-di-tert-amylphenol), H(2)[O(2)NN'](AmAmPy); were reacted with cobaltous acetate tetrahydrate under varying conditions to afford a range of monometallic, bimetallic and trimetallic species. An unusual four coordinate complex Co[O(2)NN'](AmAmNEt2) containing Co(II) in a trigonal monopyramidal environment was structurally characterized, whereas using a less sterically demanding ligand a series of five coordinate complexes Co[O(2)NN'](BuBuNMe2)(L) (L = H(2)O, CH(3)OH, (CH(3))(2)C[double bond, length as m-dash]O, propylene oxide) containing Co(II) in a trigonal bipyramidal environment was prepared. A new angular structural parameter related to tau is defined, where tau' may be used to compare complexes with trigonal monopyramidal structures. In contrast, ligands containing a pendant pyridyl donor afford dimeric species including {Co(mu-CH(3)OH)[O(2)NN'](AmAmPy)}(2). In the absence of base and in the presence of excess cobaltous acetate, trimetallic complexes were isolated containing a central Co(II) in an octahedral environment coordinated to four CH(3)OH and two bridging acetate ligands between two Co[O(2)NN'] fragments with Co(II) in a trigonal bipyramidal setting. The paramagnetic Co(II) complexes reported were also characterized by UV-vis spectroscopy, mass spectrometry, cyclic voltammetry and magnetic measurements.

  3. Dimerization of the octaethylporphyrin {pi} cation radical complex of cobalt(II): Thermodynamic, kinetic, and spectroscopic studies

    SciTech Connect

    Ni, Y.; Lee, S.; Wayland, B.B.

    1999-08-23

    One electron oxidation of cobalt(II) can occur from either the cobalt d or porphyrin {pi} orbitals depending on the choice of porphyrin and reaction media. Oxidation of (octaethylporphyrinato)cobalt(II), (OEP)Co{sup II} (1), in the presence of ligands such as H{sub 2}O and CO produces diamagnetic five and six coordinate complexes of cobalt(III). In the absence of additional ligands to coordinate with Co(III) the first oxidation of [(OEP)Co{sup II}]{sup +} (2). Metalloporphyrin {pi} cation radical complexes and dimers of the OEP derivatives have been extensively investigated. This article reports on the interconversion of the paramagnetic (S = 1) monomer, [(OEP)Co{sup II}]{sup +} (2), with a diamagnetic dimer, [(OEP)-Co{sup II}]{sub 2}{sup 2+} (3), in dichloromethane solvant. {sup 1}H NMR shift and line width studies in CD{sub 2}Cl{sub 2} are applied in evaluating the thermodynamic and activation parameters for homolytic dissociation of the diamagnetic dimer (3).

  4. Strong Exchange Coupling in a Trimetallic Radical‐Bridged Cobalt(II)‐Hexaazatrinaphthylene Complex

    PubMed Central

    Moilanen, Jani O.; Chilton, Nicholas F.; Day, Benjamin M.; Pugh, Thomas

    2016-01-01

    Abstract Reducing hexaazatrinaphthylene (HAN) with potassium in the presence of 18‐c‐6 produces [{K(18‐c‐6)}HAN], which contains the S=1/2 radical [HAN].−. The [HAN].− radical can be transferred to the cobalt(II) amide [Co{N(SiMe3)2}2], forming [K(18‐c‐6)][(HAN){Co(N′′)2}3]; magnetic measurements on this compound reveal an S=4 spin system with strong cobalt–ligand antiferromagnetic exchange and J≈−290 cm−1 (−2 J formalism). In contrast, the CoII centres in the unreduced analogue [(HAN){Co(N′′)2}3] are weakly coupled (J≈−4.4 cm−1). The finding that [HAN].− can be synthesized as a stable salt and transferred to cobalt introduces potential new routes to magnetic materials based on strongly coupled, triangular HAN building blocks. PMID:26997130

  5. Correlation of reactivity with structural factors in a series of Fe(II) substituted cobalt ferrites

    SciTech Connect

    Sileo, Elsa E.; Garcia Rodenas, Luis; Paiva-Santos, Carlos O.; Stephens, Peter W.; Morando, Pedro J. . E-mail: morando@cnea.gov.ar; Blesa, Miguel A.

    2006-07-15

    A series of powdered cobalt ferrites, Co {sub x} Fe{sub 3-} {sub x} O{sub 4} with 0.66{<=}x<1.00 containing different amounts of Fe{sup II}, were synthesized by a mild procedure, and their Fe and Co site occupancies and structural characteristics were explored using X-ray anomalous scattering and the Rietveld refinement method. The dissolution kinetics, measured in 0.1 M oxalic acid aqueous solution at 70 deg. C, indicate in all cases the operation of a contracting volume rate law. The specific rates increased with the Fe{sup II} content following approximately a second-order polynomial expression. This result suggests that the transfer of Fe{sup III} controls the dissolution rate, and that the leaching of a first layer of ions Co{sup II} and Fe{sup II} leaves exposed a surface enriched in slower dissolving octahedral Fe{sup III} ions. Within this model, inner vicinal lattice Fe{sup II} accelerates the rate of Fe{sup III} transfer via internal electron hopping. A chain mechanism, involving successive electron transfers, fits the data very well. - Graphical abstract: The electron exchange between octahedral Fe{sup II} and Fe{sup III} ions has important consequences on the specific dissolution rates. Display Omitted.

  6. Growth and characterization of diaquatetrakis (thiocyanato) cobalt (II) mercury (II) N-methyl-2-pyrolidone (CMTWMP) single crystals

    NASA Astrophysics Data System (ADS)

    Potheher, I. Vetha; Madhavan, J.; Rajarajan, K.; Nagaraja, K. S.; Sagayaraj, P.

    2008-01-01

    Single crystals of diaquatetrakis (thiocyanato) cobalt (II) mercury (II) N-methyl-2-pyrolidone, (CoHg(SCN) 4·(H 2O) 2·2(C 3H 6CONCH 3) (abbreviated as CMTWMP) were grown using slow solvent evaporation technique. The structure of the grown crystals was confirmed by single-crystal X-ray diffraction (XRD) technique. The optical properties of the crystals were investigated by Fourier transform infrared (FTIR) and UV-Vis-NIR transmission spectra. The grown crystals of CMTWMP were also subjected to dielectric, photoconductivity, thermal and microhardness studies. The photoconductivity study of CMTWMP confirms the electrochromism behaviour in the sample. The SHG efficiency of the sample was measured by Kurtz and Perry powder technique and its value is almost comparable with KDP.

  7. Tetra-aqua-bis-[2-(2-nitro-phen-yl)acetato-κO]cobalt(II).

    PubMed

    Danish, Muhammad; Tahir, Muhammad Nawaz; Iftikhar, Sana; Raza, Muhammad Asam; Ashfaq, Muhammad

    2015-03-01

    The mol-ecule of the title compound, [Co(C8H6NO4)2(H2O)4], is centrosymmetric. It is a cobalt(II) complex, bearing two (2-nitro-phen-yl)acetate and four aqua ligands. The coordination around the Co(II) atom is distorted octa-hedral, defined by four O atoms of water mol-ecules in the equatorial plane and by two carboxyl-ate O atoms at axial positions. The dihedral angles between the benzene ring and the acetate and nitro groups are 61.90 (10) and 19.21 (11)°, respectively. The water mol-ecules form O-H⋯O hydrogen bonds with the nitro and carboxyl-ate groups, leading to a layered structural arrangement parallel to (001).

  8. Selective, Tunable O2 Binding in Cobalt(II)–Triazolate/Pyrazolate Metal–Organic Frameworks

    PubMed Central

    2016-01-01

    The air-free reaction of CoCl2 with 1,3,5-tri(1H-1,2,3-triazol-5-yl)benzene (H3BTTri) in N,N-dimethylformamide (DMF) and methanol leads to the formation of Co-BTTri (Co3[(Co4Cl)3(BTTri)8]2·DMF), a sodalite-type metal–organic framework. Desolvation of this material generates coordinatively unsaturated low-spin cobalt(II) centers that exhibit a strong preference for binding O2 over N2, with isosteric heats of adsorption (Qst) of −34(1) and −12(1) kJ/mol, respectively. The low-spin (S = 1/2) electronic configuration of the metal centers in the desolvated framework is supported by structural, magnetic susceptibility, and computational studies. A single-crystal X-ray structure determination reveals that O2 binds end-on to each framework cobalt center in a 1:1 ratio with a Co–O2 bond distance of 1.973(6) Å. Replacement of one of the triazolate linkers with a more electron-donating pyrazolate group leads to the isostructural framework Co-BDTriP (Co3[(Co4Cl)3(BDTriP)8]2·DMF; H3BDTriP = 5,5′-(5-(1H-pyrazol-4-yl)-1,3-phenylene)bis(1H-1,2,3-triazole)), which demonstrates markedly higher yet still fully reversible O2 affinities (Qst = −47(1) kJ/mol at low loadings). Electronic structure calculations suggest that the O2 adducts in Co-BTTri are best described as cobalt(II)–dioxygen species with partial electron transfer, while the stronger binding sites in Co-BDTriP form cobalt(III)–superoxo moieties. The stability, selectivity, and high O2 adsorption capacity of these materials render them promising new adsorbents for air separation processes. PMID:27180991

  9. Synthesis, crystal structure and antifungal activity of a divalent cobalt(II) complex with uniconazole.

    PubMed

    Zhang, Yao; Li, Jie; Ren, Guoyu; Qin, Baofu; Ma, Haixia

    2016-06-01

    Azole compounds have attracted commercial interest due to their high bactericidal and plant-growth-regulating activities. Uniconazole [or 1-(4-chlorophenyl)-4,4-dimethyl-2-(1H-1,2,4-triazol-1-yl)pent-1-en-3-ol] is a highly active 1,2,4-triazole fungicide and plant-growth regulator with low toxicity. The pharmacological and toxicological properties of many drugs are modified by the formation of their metal complexes. Therefore, there is much interest in exploiting the coordination chemistry of triazole pesticides and their potential application in agriculture. However, reports of complexes of uniconazole are rare. A new cobalt(II) complex of uniconazole, namely dichloridotetrakis[1-(4-chlorophenyl)-4,4-dimethyl-2-(1H-1,2,4-triazol-1-yl-κN(4))pent-1-en-3-ol]cobalt(II), [CoCl2(C15H18ClN3O)4], was synthesized and structurally characterized by element analysis, IR spectrometry and X-ray single-crystal diffraction. The crystal structural analysis shows that the Co(II) atom is located on the inversion centre and is coordinated by four uniconazole and two chloride ligands, forming a distorted octahedral geometry. The hydroxy groups of an uniconazole ligands of adjacent molecules form hydrogen bonds with the axial chloride ligands, resulting in one-dimensional chains parallel to the a axis. The complex was analysed for its antifungal activity by the mycelial growth rate method. It was revealed that the antifungal effect of the title complex is more pronounced than the effect of fungicide uniconazole for Botryosphaeria ribis, Wheat gibberellic and Grape anthracnose. PMID:27256696

  10. Kinetics of Formation of Cobalt(II)- and Nickel(II) Carbonic Anhydrase.

    ERIC Educational Resources Information Center

    McQuate, Robert S.; Reardon, John E.

    1978-01-01

    Discusses the kinetic behavior associated with the interaction of metal ions with apocarbonic anhydrase, focusing on the formation of two metallocarbonic anhydrase--the biochemically active Co(II) and the inactive Ni(II)derivatives. (GA)

  11. Spin canting in an unprecedented three-dimensional pyrophosphate- and 2,2'-bipyrimidine-bridged cobalt(II) framework.

    PubMed

    Marino, Nadia; Mastropietro, Teresa F; Armentano, Donatella; De Munno, Giovanni; Doyle, Robert P; Lloret, Francesc; Julve, Miguel

    2008-10-14

    The three-dimensional cobalt(ii) compound of formula {[Co(2)(P(2)O(7))(bpym)(2)].12H(2)O}(n), where the pyrophosphate and 2,2'-bipyrimidine act as bridging ligands, is a new example of a spin-canted antiferromagnet with T(c) = 19 K.

  12. Synthesis and structural and magnetic characterisation of cobalt(ii) complexes of mixed phosphonate-antimonate ligands.

    PubMed

    Ali, Shoaib; Muryn, Christopher A; Tuna, Floriana; Winpenny, Richard E P

    2010-10-28

    The polynucleating oxygen donor ligands, [(SbAr)(4)O(2)(PhPO(3)H)(4)(PhPO(3))(4)] 1 and [(SbAr)(2)O(HO(3)P(t)Bu)(6)] 2, based on condensation of p-chlorophenylstibonic acid (ArSbO(3)H(2)) and phosphonic acids, were used to prepare polymetallic cobalt(ii) complexes. Reaction of 1 with cobalt acetate under solvothermal conditions produces three different types of polymetallic cobalt complexes. With LiOMe/pyridine as base in MeOH a dinuclear cobalt cage, [Co(2)(SbAr)(4)O(4)(O(3)PPh)(4)(OMe)(4)py(2)] 3, is formed, with four Sb(ii) and two Co(ii) centres bridged by μ(3)-oxides and phosphonates. The pyridine in the structure can be replaced by 3-picoline 4, 4-picoline 5, quinoline 6, 1,2-diazole 7, 4-phenylpyridine 8, 4-ethyl pyridine 9 and methanol 10. Using pyrazine (pyz) instead of pyridine under the same conditions a polymer, [Co(2)(SbAr)(4)O(4)(O(3)PPh)(4)(OMe)(4)(C(4)H(4)N(2))](n)11, is formed. A similar 1D-polymer forms with 4,4'-bipyridyl-ethylene 12 in place of pyrazine. With Et(3)N/pyridine as base in MeCN a tetranuclear cobalt cage, [Co(4)(SbAr)(5)O(9)(O(3)PPh)(6)(py)(4)] 13, with five Sb(ii) centres forming a "bowtie" and bridging to four Co(ii) centres by phosphonates and μ(3)-oxides, is formed. The reaction of 2 with cobalt acetate using LiOMe/pyridine as base in methanol, under solvothermal conditions, produces a dinuclear Co(ii) complex, [Co(2)(SbAr)(2)(O(3)P(t)Bu)(3)O(2)(OMe)(2)(py)(2)] 14, with two Co(II) and two Sb centres at the vertices of a distorted tetrahedron. Magnetic measurements on selected number of these cobalt cages are reported.

  13. A Bioinspired Molecular Polyoxometalate Catalyst with Two Cobalt(II) Oxide Cores for Photocatalytic Water Oxidation.

    PubMed

    Wei, Jie; Feng, Yingying; Zhou, Panpan; Liu, Yan; Xu, Jingyin; Xiang, Rui; Ding, Yong; Zhao, Chongchao; Fan, Linyuan; Hu, Changwen

    2015-08-24

    To overcome the bottleneck of water splitting, the exploration of efficient, selective, and stable water oxidation catalysts (WOCs) is crucial. We report an all-inorganic, oxidatively and hydrolytically stable WOC based on a polyoxometalate [(A-α-SiW9 O34)2Co8(OH)6(H2O)2(CO3)3](16-) (Co8 POM). As a cobalt(II)-based cubane water oxidation catalyst, Co8POM embeds double Co(II)4O3 cores. The self-assembled catalyst is similar to the oxygen evolving complex (OEC) of photosystem II (PS II). Using [Ru(bpy)3](2+) as a photosensitizer and persulfate as a sacrificial electron acceptor, Co8POM exhibits excellent water oxidation activity with a turnover number (TON) of 1436, currently the highest among bioinspired catalysts with a cubical core, and a high initial turnover frequency (TOF). Investigation by several spectroscopy, spectrometry, and other techniques confirm that Co8POM is a stable and efficient catalyst for visible light-driven water oxidation. The results offer a useful insight into the design of water oxidation catalysts.

  14. Engineering surface atomic structure of single-crystal cobalt (II) oxide nanorods for superior electrocatalysis

    PubMed Central

    Ling, Tao; Yan, Dong-Yang; Jiao, Yan; Wang, Hui; Zheng, Yao; Zheng, Xueli; Mao, Jing; Du, Xi-Wen; Hu, Zhenpeng; Jaroniec, Mietek; Qiao, Shi-Zhang

    2016-01-01

    Engineering the surface structure at the atomic level can be used to precisely and effectively manipulate the reactivity and durability of catalysts. Here we report tuning of the atomic structure of one-dimensional single-crystal cobalt (II) oxide (CoO) nanorods by creating oxygen vacancies on pyramidal nanofacets. These CoO nanorods exhibit superior catalytic activity and durability towards oxygen reduction/evolution reactions. The combined experimental studies, microscopic and spectroscopic characterization, and density functional theory calculations reveal that the origins of the electrochemical activity of single-crystal CoO nanorods are in the oxygen vacancies that can be readily created on the oxygen-terminated {111} nanofacets, which favourably affect the electronic structure of CoO, assuring a rapid charge transfer and optimal adsorption energies for intermediates of oxygen reduction/evolution reactions. These results show that the surface atomic structure engineering is important for the fabrication of efficient and durable electrocatalysts. PMID:27650485

  15. Engineering surface atomic structure of single-crystal cobalt (II) oxide nanorods for superior electrocatalysis.

    PubMed

    Ling, Tao; Yan, Dong-Yang; Jiao, Yan; Wang, Hui; Zheng, Yao; Zheng, Xueli; Mao, Jing; Du, Xi-Wen; Hu, Zhenpeng; Jaroniec, Mietek; Qiao, Shi-Zhang

    2016-09-21

    Engineering the surface structure at the atomic level can be used to precisely and effectively manipulate the reactivity and durability of catalysts. Here we report tuning of the atomic structure of one-dimensional single-crystal cobalt (II) oxide (CoO) nanorods by creating oxygen vacancies on pyramidal nanofacets. These CoO nanorods exhibit superior catalytic activity and durability towards oxygen reduction/evolution reactions. The combined experimental studies, microscopic and spectroscopic characterization, and density functional theory calculations reveal that the origins of the electrochemical activity of single-crystal CoO nanorods are in the oxygen vacancies that can be readily created on the oxygen-terminated {111} nanofacets, which favourably affect the electronic structure of CoO, assuring a rapid charge transfer and optimal adsorption energies for intermediates of oxygen reduction/evolution reactions. These results show that the surface atomic structure engineering is important for the fabrication of efficient and durable electrocatalysts.

  16. Engineering surface atomic structure of single-crystal cobalt (II) oxide nanorods for superior electrocatalysis.

    PubMed

    Ling, Tao; Yan, Dong-Yang; Jiao, Yan; Wang, Hui; Zheng, Yao; Zheng, Xueli; Mao, Jing; Du, Xi-Wen; Hu, Zhenpeng; Jaroniec, Mietek; Qiao, Shi-Zhang

    2016-01-01

    Engineering the surface structure at the atomic level can be used to precisely and effectively manipulate the reactivity and durability of catalysts. Here we report tuning of the atomic structure of one-dimensional single-crystal cobalt (II) oxide (CoO) nanorods by creating oxygen vacancies on pyramidal nanofacets. These CoO nanorods exhibit superior catalytic activity and durability towards oxygen reduction/evolution reactions. The combined experimental studies, microscopic and spectroscopic characterization, and density functional theory calculations reveal that the origins of the electrochemical activity of single-crystal CoO nanorods are in the oxygen vacancies that can be readily created on the oxygen-terminated {111} nanofacets, which favourably affect the electronic structure of CoO, assuring a rapid charge transfer and optimal adsorption energies for intermediates of oxygen reduction/evolution reactions. These results show that the surface atomic structure engineering is important for the fabrication of efficient and durable electrocatalysts. PMID:27650485

  17. Single-ion magnet behaviour in mononuclear and two-dimensional dicyanamide-containing cobalt(ii) complexes.

    PubMed

    Switlicka-Olszewska, Anna; Palion-Gazda, Joanna; Klemens, Tomasz; Machura, Barbara; Vallejo, Julia; Cano, Joan; Lloret, Francesc; Julve, Miguel

    2016-06-21

    Three cobalt(ii) complexes of formulae [Co(dca)2(bim)4] (), [Co(dca)2(bim)2]n () and [Co(dca)2(bmim)2]n () [dca = dicyanamide, bim = 1-benzylimidazole and bmim = 1-benzyl-2-methylimidazole] were prepared and structurally analyzed by single-crystal X-ray crystallography. Compound is a mononuclear species where the cobalt(ii) ion is six-coordinate with four bim molecules in the equatorial positions [Co-Nbim = 2.1546(15) and 2.1489(15) Å] and two trans-positioned dca ligands [Co-Ndca = 2.1575(18) Å] in the axial sites of a somewhat distorted octahedral surrounding. The structures of and consist of two-dimensional grids of cobalt(ii) ions where each metal atom is linked to the other four metal centres by single dca bridges exhibiting the μ1,5-dca coordination mode [Co-Ndca = 2.190(3)-2.220(3) () and 2.127(3)-2.153(3) Å ()]. Two trans-coordinated bim ()/bmim () molecules achieve the six-coordination around each cobalt(ii) ion [Co-Nbim = 2.128(3)-2.134(4) Å () and Co-Nbmim = 2.156(3)-2.163(39) Å ()]. The values of the cobalt-cobalt separation through the single dca bridges are 8.927(2) and 8.968(2) Å in and 8.7110(5) and 8.7158(5) Å in . Magnetic susceptibility measurements for in the temperature range of 2.0-300 K reveal that these compounds behave as magnetically isolated high-spin cobalt(ii) ions with a significant orbital contribution to the magnetic moment. Alternating current (ac) magnetic susceptibility measurements for show a frequency dependence of out-of-phase susceptibility under static applied fields in the range of 500-2500 G, a feature which is characteristic of the single-ion magnet behaviour (SIM) of the Co(ii) ion in them. The values of the energy barrier for the magnetic relaxation (Ea) are 5.45-7.74 (), 4.53-9.24 () and 11.48-15.44 cm(-1) (). They compare well with those previously reported for the analogous dca-bridged 2D compound [Co(dca)2(atz)2]n () (Ea = 5.1 cm(-1) under an applied static field of 1000 G), which was the subject of a

  18. Single-ion magnet behaviour in mononuclear and two-dimensional dicyanamide-containing cobalt(ii) complexes.

    PubMed

    Switlicka-Olszewska, Anna; Palion-Gazda, Joanna; Klemens, Tomasz; Machura, Barbara; Vallejo, Julia; Cano, Joan; Lloret, Francesc; Julve, Miguel

    2016-06-21

    Three cobalt(ii) complexes of formulae [Co(dca)2(bim)4] (), [Co(dca)2(bim)2]n () and [Co(dca)2(bmim)2]n () [dca = dicyanamide, bim = 1-benzylimidazole and bmim = 1-benzyl-2-methylimidazole] were prepared and structurally analyzed by single-crystal X-ray crystallography. Compound is a mononuclear species where the cobalt(ii) ion is six-coordinate with four bim molecules in the equatorial positions [Co-Nbim = 2.1546(15) and 2.1489(15) Å] and two trans-positioned dca ligands [Co-Ndca = 2.1575(18) Å] in the axial sites of a somewhat distorted octahedral surrounding. The structures of and consist of two-dimensional grids of cobalt(ii) ions where each metal atom is linked to the other four metal centres by single dca bridges exhibiting the μ1,5-dca coordination mode [Co-Ndca = 2.190(3)-2.220(3) () and 2.127(3)-2.153(3) Å ()]. Two trans-coordinated bim ()/bmim () molecules achieve the six-coordination around each cobalt(ii) ion [Co-Nbim = 2.128(3)-2.134(4) Å () and Co-Nbmim = 2.156(3)-2.163(39) Å ()]. The values of the cobalt-cobalt separation through the single dca bridges are 8.927(2) and 8.968(2) Å in and 8.7110(5) and 8.7158(5) Å in . Magnetic susceptibility measurements for in the temperature range of 2.0-300 K reveal that these compounds behave as magnetically isolated high-spin cobalt(ii) ions with a significant orbital contribution to the magnetic moment. Alternating current (ac) magnetic susceptibility measurements for show a frequency dependence of out-of-phase susceptibility under static applied fields in the range of 500-2500 G, a feature which is characteristic of the single-ion magnet behaviour (SIM) of the Co(ii) ion in them. The values of the energy barrier for the magnetic relaxation (Ea) are 5.45-7.74 (), 4.53-9.24 () and 11.48-15.44 cm(-1) (). They compare well with those previously reported for the analogous dca-bridged 2D compound [Co(dca)2(atz)2]n () (Ea = 5.1 cm(-1) under an applied static field of 1000 G), which was the subject of a

  19. Solvate-dependent spin crossover and exchange in cobalt(II) oxazolidine nitroxide chelates.

    PubMed

    Gass, Ian A; Tewary, Subrata; Rajaraman, Gopalan; Asadi, Mousa; Lupton, David W; Moubaraki, Boujemaa; Chastanet, Guillaume; Létard, Jean-Francois; Murray, Keith S

    2014-05-19

    Two oxazolidine nitroxide complexes of cobalt(II), [Co(II)(L(•))2](B(C6F5)4)2·CH2Cl2 (1) and [Co(II)(L(•))2](B(C6F5)4)2·2Et2O (2), where, L(•) is the tridentate chelator 4,4-dimethyl-2,2-bis(2-pyridyl)oxazolidine N-oxide, have been investigated by crystallographic, magnetic, reflectivity, and theoretical (DFT) methods. This work follows on from a related study on [Co(II)(L(•))2](NO3)2 (3), a multifunctional complex that simultaneously displays magnetic exchange, spin crossover, and single molecule magnetic features. Changing the anion and the nature of solvation in the present crystalline species leads to significant differences, not only between 1 and 2 but also in comparison to 3. Structural data at 123 and 273 K, in combination with magnetic data, show that at lower temperatures 1 displays low-spin Co(II)-to-radical exchange with differences in fitted J values in comparison to DFT (broken symmetry) calculated J values ascribed to the sensitive influence of a tilt angle (θ) formed between the Co(dz(2)) and the trans-oriented O atoms of the NO radical moieties in L(•). Spin crossover in 1 is evident at higher temperatures, probably influenced by the solvate molecules and crystal packing arrangement. Complex 2 remains in the high-spin Co(II) state between 2 and 350 K and undergoes antiferromagnetic exchange between Co-radical and radical-radical centers, but it is difficult to quantify. Calculations of the magnetic orbitals, eigenvalue plots, and the spin densities at the Co and radical sites in 1 and 2 have yielded satisfying details on the mechanism of metal-radical and radical-radical exchange, the radical spins being in π*NO orbitals.

  20. A method of high sensitivity and in situ determination of trace cobalt(II) in water samples with salicyl fluorone.

    PubMed

    Chen, Zhe; Li, Hua

    2014-01-01

    Based on the sensitive reaction of Co(II) and salicyl fluorone with the presence of cetylpyridinium bromide in basic solution, a new method of flow injection micelle-solubilized spectrophotometry was developed for the determination of cobalt. The reaction was monitored for the absorbance of Co(II) at 540 nm. The reagents, flow injection variables and effects of foreign ions were investigated and the optimum conditions were established. At the optimum test conditions, the developed method provides a linearity range of 3-40 μg L(-1) with a detection limit of 0.1 μg L(-1) at about 60 h(-1) sampling frequency. Relative standard deviation of 0.91, 0.95 and 0.89% were obtained for the determination of 3, 15 and 30 μg L(-1) Co(II) solution. The proposed method has been successfully applied for analysis of trace amounts of cobalt in water samples. PMID:25325542

  1. Synthesis and oxidation catalysis of [tris(oxazolinyl)borato]cobalt(II) scorpionates

    DOE PAGES

    Reinig, Regina R.; Mukherjee, Debabrata; Weinstein, Zachary B.; Xie, Weiwei; Albright, Toshia; Baird, Benjamin; Gray, Tristan S.; Ellern, Arkady; Miller, Gordon J.; Winter, Arthur H.; et al

    2016-04-28

    The reaction of CoCl2·THF and thallium tris(4,4-dimethyl-2-oxazolinyl)phenylborate (TlToM) in tetrahydrofuran (THF) provides ToMCoCl (1) in 95 % yield; however, appropriate solvents and starting materials are required to favor 1 over two other readily formed side-products, (ToM)2Co (2) and {HToM}CoCl2 (3). ESR, NMR, FTIR, and UV/Vis spectroscopies were used to distinguish these cobalt(II) products and probe their electronic and structural properties. Even after the structures indicated by these methods were confirmed by X-ray crystallography, the spectroscopic identification of trace contaminants in the material was challenging. The recognition of possible contaminants in the synthesis of ToMCoCl in combination with the paramagnetic naturemore » of these complexes provided impetus for the utilization of X-ray powder diffraction to measure the purity of the ToMCoCl bulk sample. Furthermore, the X-ray powder diffraction results provide support for the bulk-phase purity of ToMCoCl in preparations that avoid 2 and 3. Thus, 1 is a precursor for new [tris(oxazolinyl)borato]cobalt chemistry, as exemplified by its reactions with KOtBu and NaOAc to give ToMCoOtBu (4) and ToMCoOAc (5), respectively. Compound 5 is a catalyst for the oxidation of cyclohexane with meta-chloroperoxybenzoic acid (mCPBA), and the rate constants and selectivity for cyclohexanol versus cyclohexanone and ϵ-caprolactone were assessed.« less

  2. 31-day study of cobalt(II) chloride ingestion in humans: pharmacokinetics and clinical effects.

    PubMed

    Finley, Brent L; Unice, Kenneth M; Kerger, Brent D; Otani, Joanne M; Paustenbach, Dennis J; Galbraith, David A; Tvermoes, Brooke E

    2013-01-01

    The United Kingdom Expert Group on Vitamins and Minerals concluded that ingesting cobalt (Co)-containing supplements up to 1400 μg Co/d is unlikely to produce adverse health effects. However, the associated blood Co concentrations and safety of Co-containing dietary supplements have not been fully characterized. Thus, blood Co kinetics and a toxicological assessment of hematological and biochemical parameters were evaluated following Co dietary supplementation in 5 male and 5 female volunteers who ingested approximately 1000 μg Co/d (10-19 μg Co/kg-d) as cobalt(II) chloride for a period of 31 d. Supplement intake was not associated with significant overt adverse events, alterations in clinical chemistries including blood counts and indicators of thyroid, cardiac, liver, or kidney functions, or metal sensitization. A non-clinically significant (<5%) increase in hemoglobin, hematocrit, and red blood cell (RBC) counts were observed in males but not females 1 wk after dose termination. Mean Co concentrations in whole blood/serum after 31 d of dosing were approximately two-fold higher in females (33/53 μg/L) than in males (16/21 μg/L). In general, steady-state concentrations of Co were achieved in whole blood and/or red blood cells (RBC) within 14-24 d. Temporal patterns of whole blood and serum Co concentrations indicated metal sequestration in RBC accompanied by slower whole blood clearance compared to serum. Data also indicated that peak whole blood Co concentrations up to 91.4 μg/L were not associated with clinically significant changes in clinical chemistries. In addition, Co blood concentrations and systemic uptake via ingestion were generally higher in females.

  3. Cobalt(II) sheet-like systems based on diacetic ligands: from subtle structural variances to different magnetic behaviors.

    PubMed

    Fabelo, Oscar; Pasán, Jorge; Cañadillas-Delgado, Laura; Delgado, Fernando S; Lloret, Francesc; Julve, Miguel; Ruiz-Pérez, Catalina

    2009-07-01

    The preparation, X-ray crystallography, and magnetic investigation of the compounds [Co(H(2)O)(2)(phda)](n) (1), [Co(phda)](n) (2), and [Co(chda)](n) (3) [H(2)phda = 1,4-phenylenediacetic acid and H(2)chda = 1,1-cyclohexanediacetic acid] are described herein. The cobalt atoms in this series are six- (1) and four-coordinated (2 and 3) in distorted octahedral (CoO(6)) and tetrahedral (CoO(4)) environments. The structures of 1-3 consists of rectangular-grids which are built up by sheets of cobalt atoms linked through anti-syn carboxylate bridges, giving rise to either a three-dimensional structure across the phenyl ring (1 and 2) or to regularly stacked layers with the cyclohexyl groups acting as organic separators (3). The magnetic properties of 1-3 were investigated as a function of the temperature and the magnetic field. Ferromagnetic coupling between the six-coordinate cobalt(II) ions across the anti-syn carboxylate bridge occurs in 1 (J = +1.2 cm(-1)) whereas antiferromagnetic coupling among the tetrahedral cobalt(II) centers within the sheets is observed in 2 and 3 [J = -1.63 (2) and -1.70 cm(-1) (3)] together with a spin-canted structure in 3 giving rise a long-range magnetic ordering (T(c) = 7.5 K).

  4. Recent Advances of Cobalt(II/III) Redox Couples for Dye-Sensitized Solar Cell Applications.

    PubMed

    Giribabu, Lingamallu; Bolligarla, Ramababu; Panigrahi, Mallika

    2015-08-01

    In recent years dye-sensitized solar cells (DSSCs) have emerged as one of the alternatives for the global energy crisis. DSSCs have achieved a certified efficiency of >11% by using the I(-) /I3 (-) redox couple. In order to commercialize the technology almost all components of the device have to be improved. Among the various components of DSSCs, the redox couple that regenerates the oxidized sensitizer plays a crucial role in achieving high efficiency and durability of the cell. However, the I(-) /I3 (-) redox couple has certain limitations such as the absorption of triiodide up to 430 nm and the volatile nature of iodine, which also corrodes the silver-based current collectors. These limitations are obstructing the commercialization of this technology. For this reason, one has to identify alternative redox couples. In this regard, the Co(II/III) redox couple is found to be the best alternative to the existing I(-) /I3 (-) redox couple. Recently, DSSC test cell efficiency has risen up to 13% by using the cobalt redox couple. This review emphasizes the recent development of Co(II/III) redox couples for DSSC applications.

  5. Chemoselective amination of propargylic C(sp³)-H bonds by cobalt(II)-based metalloradical catalysis.

    PubMed

    Lu, Hongjian; Li, Chaoqun; Jiang, Huiling; Lizardi, Christopher L; Zhang, X Peter

    2014-07-01

    Highly chemoselective intramolecular amination of propargylic C(sp(3))-H bonds has been demonstrated for N-bishomopropargylic sulfamoyl azides through cobalt(II)-based metalloradical catalysis. Supported by D(2h)-symmetric amidoporphyrin ligand 3,5-Di(t)Bu-IbuPhyrin, the cobalt(II)-catalyzed C-H amination proceeds effectively under neutral and nonoxidative conditions without the need of any additives, and generates N2 as the only byproduct. The metalloradical amination is suitable for both secondary and tertiary propargylic C-H substrates with an unusually high degree of functional-group tolerance, thus providing a direct method for high-yielding synthesis of functionalized propargylamine derivatives.

  6. Comparison of In-111-MERC leukocytes with In-111-Oxine leukocytes for abscess detection

    SciTech Connect

    Intenzo, C.M.; Desai, A.G.; Thakur, M.L.; Park, C.H.

    1985-05-01

    This study was done to compare the clinical results of generally accepted Indium-111-oxine (oxine) labeled leukocytes with a relatively newer Indium-111-2-Mercaptopyridine-N-oxide (Merc) labeled leukocytes for the detection of occult abscesses. Of the 74 patients suspected of harboring an occult abscess, autologous leukocytes of 34 patients were labeled with oxine while in 40 patients Merc labeled leukocytes were used. Whole body imaging was performed at 24 hours. Interpretation of the scans was done without the knowledge of the leukocyte label (i.e. oxine vs Merc). The diagnosis was confirmed in each case by either subsequent clinical course, radiographic correlation (CT, US, etc.), surgery pathology, or autopsy. The results presented in this paper indicate that there is no significant difference between the Merc and oxine labeled leukocytes for abscess detection. The ease of labeling and potential availability of Merc as a kit is an advantage.

  7. Photoinduced hydrogen evolution with new tetradentate cobalt(ii) complexes based on the TPMA ligand.

    PubMed

    Natali, Mirco; Badetti, Elena; Deponti, Elisa; Gamberoni, Marta; Scaramuzzo, Francesca A; Sartorel, Andrea; Zonta, Cristiano

    2016-10-01

    Hydrogen production from water splitting is nowadays recognized as a target, fundamental reaction for the production of clean fuels. Indeed, tremendous efforts have been devoted towards the research of suitable catalysts capable of performing this reaction. With respect to heterogeneous systems, molecular catalysts such as metal complexes are amenable to chemical functionalization in order to fine tune the catalytic properties. In this paper a new class of tris(2-pyridylmethyl)-amine (TPMA) cobalt(ii) complexes (CoL0-4) has been synthesized and employed as hydrogen evolving catalysts under photochemical conditions taking advantage of Ru(bpy)3(2+) (where bpy is 2,2'-bipyridine) as a light-harvesting sensitizer and ascorbic acid as a sacrificial electron donor. Tuning of the photocatalytic activity has been attempted through the introduction of different substituents at the catalyst periphery rather than through a direct chemical modification of the chelating TPMA ligand. The results show that CoL0-4 behave as competent hydrogen evolving catalysts (HECs), although the effects played by the different substituents on the catalysis are relatively modest. Possible reasons supporting the observed behavior as well as possible improvements of the aforementioned tuning approach are discussed. PMID:27435757

  8. Growth of carbon nanofibers using resol-type phenolic resin and cobalt(II) catalyst.

    PubMed

    Kim, Taeyun; Mees, Karina; Park, Ho-Seon; Willert-Porada, Monika; Lee, Chang-Seop

    2013-11-01

    This study investigated carbon nanofibers (CNFs) grown on reticulated vitreous carbon (RVC) foam through catalytic deposition of ethylene. Before growing the CNFs, Co(II) on the RVC foam was expected to act as a catalyst by deposition. The preparation of the CNFs was a two-step process. The first step was preparing the RVC from polyurethane (PU) foam. Changes in weight over time were evaluated using two kinds of resol. The change in the mass and state of the sample with the change in temperature was studied during the carbonization process. The second step was to prepare the CNFs. An OH group was attached by the oxidation of the RVC foam. A change in the shape and mass of the sample was observed due to a change in nitric acid concentration and oxidation time. Then, cobalt was deposited to grow CNFs on the RVC foam. Hydrolysis helped to deposit the Co(ll) on the RVC foam. The appropriate time and temperature were investigated for the reduction process. In the last step, CNFs were prepared by the introducing ethylene gas. The resulting samples were analyzed using scanning electron microscopy, energy dispersive spectroscopy, N2-sorption, and X-ray photoelectron spectroscopy. PMID:24245253

  9. EPR study of Cu(2+) ion doped orotato(nicotinamid)cobalt(II) single crystal.

    PubMed

    Yıldırım, I; Karabulut, B; Büyükgüngör, O

    2016-01-01

    We have studied the Cu(2+) ion doped orotato(nicotinamid)cobalt(II) complex by using EPR spectroscopy and X-ray diffraction. The single crystal is triclinic with the space group P1‾. The unit cell dimensions of the crystal are a=7.2785(4)Å, b=10.2349(5)Å, c=12.7372(6)Å, α=69.297(4)°, β=74.791(4)° and γ=76.995(4)°, with Z=2. We analyzed the EPR spectra of both single crystal and powder of the complex at room temperature. EPR analysis indicates the presence of only one Cu(2+) site. We obtained the spin Hamiltonian parameters from the single crystal data for the complex. The spin Hamiltonian parameters are gx=2.032, gy=2.116, gz=2.319, Ax=28G, Ay=66G, Az=126G. These data indicate that the symmetry of paramagnetic center is rhombic. We constructed the ground state wave function of the Cu(2+) ion.

  10. Iron(II)-catalyzed autoxidation of a macrocyclic cobalt(II) complex

    SciTech Connect

    Marchaj, A.; Bakac, A.; Espenson, H. )

    1993-05-26

    The otherwise very slow reduction of O[sub 2] by Co(tim)[sup 2][sup +] (tim = 2,3,9,10-tetramethyl-1,4,8,11-tetraazacyclotetradeca-1,3,8,10-tetraene) in acidic aqueous media is efficiently catalyzed by iron(II) ions. The rate law shows first-order dependences on Co(tim)[sup 2][sup +], O[sub 2], and Fe[sup 2][sup +] but remains independent of halide and hydrogen ion concentrations. The catalytic autoxidation yields Co(tim)[sup 3][sup +] and involves the four-electron reduction of O[sub 2] as indicated by the stoichiometry, which is independent of the reagent in excess. Moreover, the reduction of oxygen to water clearly bypasses the stage in which Co(tim)[sup 2][sup +] would reduce hydrogen peroxide, since this independently known reaction leads to other products. The small deviations from the exact model proposed, more evident at the 340-nm isosbestic point for Co(tim)[sup 2][sup +] and Co(tim)[sup 3][sup +], arise from a minor side reaction. The chemistry of the system is consistent with the formation of [(tim)CoOOFe[sup 4][sup +

  11. Substituted oxines inhibit endothelial cell proliferation and angiogenesis†

    PubMed Central

    Bhat, Shridhar; Shim, Joong Sup; Zhang, Feiran; Chong, Curtis Robert; Liu, Jun O.

    2013-01-01

    Two substituted oxines, nitroxoline (5) and 5-chloroquinolin-8-yl phenylcarbamate (22), were identified as hits in a high-throughput screen aimed at finding new anti-angiogenic agents. In a previous study, we have elucidated the molecular mechanism of antiproliferative activity of nitroxoline in endothelial cells, which comprises of a dual inhibition of type 2 human methionine aminopeptidase (MetAP2) and sirtuin 1 (SIRT1). Structure–activity relationship study (SAR) of nitroxoline offered many surprises where minor modifications yielded oxine derivatives with increased potency against human umbilical vein endothelial cells (HUVEC), but with entirely different as yet unknown mechanisms. For example, 5-nitrosoquinolin-8-ol (33) inhibited HUVEC growth with sub-micromolar IC50, but did not affect MetAP2 or MetAP1, and it only showed weak inhibition against SIRT1. Other sub-micromolar inhibitors were derivatives of 5-aminoquinolin-8-ol (34) and 8-sulfonamidoquinoline (32). A sulfamate derivative of nitroxoline (48) was found to be more potent than nitroxoline with the retention of activities against MetAP2 and SIRT1. The bioactivity of the second hit, micromolar HUVEC and MetAP2 inhibitor carbamate 22 was improved further with an SAR study culminating in carbamate 24 which is a nanomolar inhibitor of HUVEC and MetAP2. PMID:22391578

  12. Supported cobalt oxide on graphene oxide: highly efficient catalysts for the removal of Orange II from water.

    PubMed

    Shi, Penghui; Su, Ruijing; Zhu, Shaobo; Zhu, Mincong; Li, Dengxin; Xu, Shihong

    2012-08-30

    The current paper investigated the removal of the azo dye Orange II from water using advanced oxidation processes based on sulfate radicals. The cobalt oxide catalyst immobilized on graphene oxide (GO) can activate peroxymonosulfate (PMS) for the degradation of Orange II in water. The Co(3)O(4)/GO catalyst system was characterized via X-ray diffraction, Fourier transform infrared spectroscopy, Raman spectroscopy, scanning electron microscopy, and X-ray spectroscopy. Results showed that Co(3)O(4) was distributed on GO. The Co(3)O(4)/GO catalyst system exhibited high activity in Orange II oxidation when the Co(3)O(4)/GO catalyst has an optimum Co(3)O(4) loading. In addition, 100% decomposition could be achieved within 6 min with 0.2mM Orange II, 0.1 g L(-1) catalyst, and 2mM PMS. Meanwhile, inductively coupled plasma analysis revealed that the leach of cobalt ions was low. The catalyst also exhibited stable performance after several rounds of regeneration. Several operational parameters, such as catalyst amount, oxidant amount, pH, temperature, and oxidation rate, affected the degradation of Orange II. PMID:22738772

  13. [Complexes of cobalt (II, III) with derivatives of dithiocarbamic acid--effectors of peptidases of Bacillus thuringiensis and alpha-L-rhamnozidase of Eupenicillium erubescens and Cryptococcus albidus].

    PubMed

    Varbanets, L D; Matseliukh, E V; Seĭfullina, I I; Khitrich, N V; Nidialkova, N A; Hudzenko, E V

    2014-01-01

    The influence of cobalt (II, III) coordinative compounds with derivatives of dithiocarbamic acid on Bacillus thuringiensis IMV B-7324 peptidases with elastase and fibrinolytic activity and Eupenicillium erubescens and Cryptococcus albidus alpha-L-rhamnosidases have been studied. Tested coordinative compounds of cobalt (II, III) on the basis of their composition and structure are presented by 6 groups: 1) tetrachlorocobaltates (II) of 3,6-di(R,R')-iminio-1,2,4,5-tetratiane--(RR')2Ditt[CoCl4]; 2) tetrabromocobaltates (II) of 3,6-di(R,R')-iminio-1,2,4,5-tetratiane--(RR')2Ditt[CoBr4]; 3) isothiocyanates of tetra((R,R')-dithiocarbamatoisothiocyanate)cobalt (II)--[Co(RR'Ditc)4](NCS)2]; 4) dithiocarbamates of cobalt (II)--[Co(S2CNRR')2]; 5) dithiocarbamates of cobalt (III)--[Co(S2CNRR')3]; 6) molecular complexes of dithiocarbamates of cobalt (III) with iodine--[Co(S2CNRR')3] x 2I(2). These groups (1-6) are combined by the presence of the same complexing agent (cobalt) and a fragment S2CNRR' in their molecules. Investigated complexes differ by a charge of intrinsic coordination sphere: anionic (1-2), cationic (3) and neutral (4-6). The nature of substituents at nitrogen atoms varies in each group of complexes. It is stated that the studied coordination compounds render both activating and inhibiting effect on enzyme activity, depending on composition, structure, charge of complex, coordination number of complex former and also on the enzyme and strain producer. Maximum effect is achieved by activating of peptidases B. thuringiensis IMV B-7324 with elastase and fibrinolytic activity. So, in order to improve the catalytic properties of peptidase 1, depending on the type of exhibited activity, it is possible to recommend the following compounds: for elastase--coordinately nonsaturated complexes of cobalt (II) (1-4) containing short aliphatic or alicyclic substituents at atoms of nitrogen and increasing activity by 17-100% at an average; for fibrinolytic

  14. [Complexes of cobalt (II, III) with derivatives of dithiocarbamic acid--effectors of peptidases of Bacillus thuringiensis and alpha-L-rhamnozidase of Eupenicillium erubescens and Cryptococcus albidus].

    PubMed

    Varbanets, L D; Matseliukh, E V; Seĭfullina, I I; Khitrich, N V; Nidialkova, N A; Hudzenko, E V

    2014-01-01

    The influence of cobalt (II, III) coordinative compounds with derivatives of dithiocarbamic acid on Bacillus thuringiensis IMV B-7324 peptidases with elastase and fibrinolytic activity and Eupenicillium erubescens and Cryptococcus albidus alpha-L-rhamnosidases have been studied. Tested coordinative compounds of cobalt (II, III) on the basis of their composition and structure are presented by 6 groups: 1) tetrachlorocobaltates (II) of 3,6-di(R,R')-iminio-1,2,4,5-tetratiane--(RR')2Ditt[CoCl4]; 2) tetrabromocobaltates (II) of 3,6-di(R,R')-iminio-1,2,4,5-tetratiane--(RR')2Ditt[CoBr4]; 3) isothiocyanates of tetra((R,R')-dithiocarbamatoisothiocyanate)cobalt (II)--[Co(RR'Ditc)4](NCS)2]; 4) dithiocarbamates of cobalt (II)--[Co(S2CNRR')2]; 5) dithiocarbamates of cobalt (III)--[Co(S2CNRR')3]; 6) molecular complexes of dithiocarbamates of cobalt (III) with iodine--[Co(S2CNRR')3] x 2I(2). These groups (1-6) are combined by the presence of the same complexing agent (cobalt) and a fragment S2CNRR' in their molecules. Investigated complexes differ by a charge of intrinsic coordination sphere: anionic (1-2), cationic (3) and neutral (4-6). The nature of substituents at nitrogen atoms varies in each group of complexes. It is stated that the studied coordination compounds render both activating and inhibiting effect on enzyme activity, depending on composition, structure, charge of complex, coordination number of complex former and also on the enzyme and strain producer. Maximum effect is achieved by activating of peptidases B. thuringiensis IMV B-7324 with elastase and fibrinolytic activity. So, in order to improve the catalytic properties of peptidase 1, depending on the type of exhibited activity, it is possible to recommend the following compounds: for elastase--coordinately nonsaturated complexes of cobalt (II) (1-4) containing short aliphatic or alicyclic substituents at atoms of nitrogen and increasing activity by 17-100% at an average; for fibrinolytic

  15. Adsorptive separation of rhodium(III) using Fe(III)-templated oxine type of chemically modified chitosan

    SciTech Connect

    Alam, M.S.; Inoue, Katsutoshi; Yoshizuka, Kazuharu; Ishibashi, Hideaki

    1998-03-01

    The oxine type of chemically modified chitosan was prepared by the template crosslinking method using Fe(III) as a template ion. Batchwise adsorption of rhodium(III) on this chemically modified chitosan was examined from chloride media in the absence and presence of a large amount of tin(II). It was observed that the Fe(III)-templated oxine type of chemically modified chitosan shows better performance for rhodium adsorption than that of the original chitosan. When Sn(II) is absent from the solution, Rh(III) is hardly adsorbed on the modified chitosan and the order of selectivity of the adsorption of Rh(III), Pt(IV), and Cu(II) was found to be Pt(IV) > Cu(II) {approx} Rh(III). On the other hand, adsorption of rhodium is significantly increased in the presence of Sn(II) and the selectivity order of the adsorption was drastically changed to Rh(III) > Pt(IV) {much_gt} Cu(II), which ensures selective separation of Rh(III) from their mixture. Adsorption of Rh(III) increases with an increase in the concentration of Sn(II) in the aqueous solution, and maximum adsorption is achieved at a molar ratio, [Sn]/[Rh], of >6. The adsorption of Rh(III) decreases at a high concentration of hydrochloric acid. The maximum adsorption capacity was evaluated to be 0.92 mol/kg-dry adsorbent. Stripping tests of rhodium from the loaded chemically modified chitosan were carried out using different kinds of stripping agents containing some oxidizing agent. The maximum stripping of rhodium under these experimental conditions was found to be 72.5% by a single contact with 0.5 M HCl + 8 M HNO{sub 3}.

  16. No difference in sensitivity for occult infection between tropolone- and oxine-labeled indium-111 leukocytes

    SciTech Connect

    Datz, F.L.; Bedont, R.A.; Baker, W.J.; Alazraki, N.P.; Taylor, A. Jr.

    1985-05-01

    There is considerable disagreement as to whether oxine or tropolone is the best labeling agent for indium leukocytes. The authors have previously looked at the sensitivity of oxine-labeled /sup 111/In leukocyte scans for occult infections and now present a similar group of patients imaged with tropolone-labeled /sup 111/In leukocytes. Thirty-four patients (38 studies) with possible occult infection were prospectively studied. Patients were imaged 1-4 hr after injection and again at 24 hr postinjection. The differences in sensitivity between oxine and tropolone when imaged early and at 24 hr were not statistically significant. They conclude that there is not significant difference in the ability to detect infection between oxine- and tropolone-labeled leukocytes, both early at 1-4 hr, and on delayed imaging 24 hr after injection.

  17. Development of an reliable analytical method for synergistic extractive spectrophotometric determination of cobalt(II) from alloys and nano composite samples by using chromogenic chelating ligand.

    PubMed

    Kamble, Ganesh S; Ghare, Anita A; Kolekar, Sanjay S; Han, Sung H; Anuse, Mansing A

    2011-12-15

    A synergistic simple and selective spectrophotometric method was developed for the determination of cobalt(II) with 1-(2',4'-dinitro aminophenyl)-4,4,6-trimethyl-1,4-dihydropyrimidine-2-thiol [2',4'-dinitro APTPT] as a chromogenic reagent. The proposed method has been described on the basis of synergistic effective extraction of cobalt(II) in presence of pyridine at pH range 9.5-10.2, showed orange-red coloured ternary complex having molar ratio 1:2:2 (M:L:Py). The equilibrium time is 10 min for extraction of cobalt(III) from organic phase. The absorbance of coloured organic layer in chloroform is measured spectrophotometrically at 490 nm against reagent blank. The Beer's law was obeyed in the concentration range 2.5-15 μg mL(-1) of cobalt(II) and optimum concentration range was 5-12.5 μg mL(-1) of cobalt(II) and it was evaluated from Ringbom's plot. The molar absorptivity and Sandell's sensitivity of cobalt(II)-2',4'-dinitro APTPT-pyridine complex in chloroform are 1.109×10(3) L mol(-1) cm(-1) and 0.053 μg cm(-2), respectively while molar absorptivity and Sandell's sensitivity of cobalt(II)-2',4'-dinitro APTPT complex in chloroform are 6.22×10(2) L mol(-1) cm(-1) and 0.096 μg cm(-2), respectively. The composition of cobalt(II)-2',4'-dinitro APTPT-pyridine complex (1:2:2) was established by slope ratio method, mole ratio method and Job's method of continuous variation. The ternary complex was stable for more than 48 h. The interfering effects of various cations and anions were also studied, and use of suitable masking agents enhances the selectivity of the method. The method is successfully applied for the determination of cobalt(II) in binary, synthetic mixtures and real samples. A repetition of the method was checked by finding relative standard deviation (R.S.D.) for n=5 which was 0.15%. The reliability of the method is confirmed by comparison of experimental results with atomic absorption spectrophotometer. PMID:21978559

  18. Development of an reliable analytical method for synergistic extractive spectrophotometric determination of cobalt(II) from alloys and nano composite samples by using chromogenic chelating ligand

    NASA Astrophysics Data System (ADS)

    Kamble, Ganesh S.; Ghare, Anita A.; Kolekar, Sanjay S.; Han, Sung H.; Anuse, Mansing A.

    2011-12-01

    A synergistic simple and selective spectrophotometric method was developed for the determination of cobalt(II) with 1-(2',4'-dinitro aminophenyl)-4,4,6-trimethyl-1,4-dihydropyrimidine-2-thiol [2',4'-dinitro APTPT] as a chromogenic reagent. The proposed method has been described on the basis of synergistic effective extraction of cobalt(II) in presence of pyridine at pH range 9.5-10.2, showed orange-red coloured ternary complex having molar ratio 1:2:2 (M:L:Py). The equilibrium time is 10 min for extraction of cobalt(III) from organic phase. The absorbance of coloured organic layer in chloroform is measured spectrophotometrically at 490 nm against reagent blank. The Beer's law was obeyed in the concentration range 2.5-15 μg mL -1 of cobalt(II) and optimum concentration range was 5-12.5 μg mL -1 of cobalt(II) and it was evaluated from Ringbom's plot. The molar absorptivity and Sandell's sensitivity of cobalt(II)-2',4'-dinitro APTPT-pyridine complex in chloroform are 1.109 × 10 3 L mol -1 cm -1 and 0.053 μg cm -2, respectively while molar absorptivity and Sandell's sensitivity of cobalt(II)-2',4'-dinitro APTPT complex in chloroform are 6.22 × 10 2 L mol -1 cm -1 and 0.096 μg cm -2, respectively. The composition of cobalt(II)-2',4'-dinitro APTPT-pyridine complex (1:2:2) was established by slope ratio method, mole ratio method and Job's method of continuous variation. The ternary complex was stable for more than 48 h. The interfering effects of various cations and anions were also studied, and use of suitable masking agents enhances the selectivity of the method. The method is successfully applied for the determination of cobalt(II) in binary, synthetic mixtures and real samples. A repetition of the method was checked by finding relative standard deviation (R.S.D.) for n = 5 which was 0.15%. The reliability of the method is confirmed by comparison of experimental results with atomic absorption spectrophotometer.

  19. Labeling of pseudomonas aeruginosa with In-111-oxine

    SciTech Connect

    Bettin, K.M.; Gerding, D.N.; O'Connor, M.J.; Forstrom, L.A.; Shafer, R.B.

    1984-01-01

    Labeling of live bacteria with gamma emitting radioisotope provides a useful tool for the experimental in vivo tracking of bacteria in various body organs of animals. The authors labeled a serum resistant strain of Pseudomonas aeruginosa (ATCC number27853) with In-111-oxine. P. aeruginosa streaked heavily on ten blood agar plates, was grown overnight, and suspended in 50 ml of saline using sterile cotton swabs. The suspension was sonicated for 3 minutes at 40 watts with a small probe, 500 ..mu..Ci of commercially prepared In-111-oxine added and the bacteria incubated at 37/sup 0/C for 2.5 hours. The labeled bacteria were centrifuged and washed once with saline and resuspended to a final volume of 50 ml in saline. The labeled Pseudomonas, 10/sup 9/-10/sup 10/ cfu/ml, retained 120-190 ..mu..Ci of cell-bound In-111. In vitro studies showed good retention of the In-111 label in saline at 37/sup 0/C (75-85% cell-bound radioactivity at 1 hour) and in canine blood at 37/sup 0/C (30-55% cell-bound radioactivity at 1 hour). The loss of cell-associated radioactivity in blood, with a corresponding decrease in the number of viable organisms, is probably a result of phagocyte-mediated killing of the organisms and subsequent release of the label. The labeled bacteria have been used successfully for sequential imaging in experimental animals to track bacteria injected into blood and the biliary tree.

  20. [Effect of manganese (II), cobalt (II), and nickel (II) ions on the growth and production of coumarins in the suspension culture of Angelica archangelica L].

    PubMed

    Siatka, T; Kasparová, M; Sklenárová, H; Solich, P

    2005-01-01

    The plant cell reacts to an increased concentration of metals in the environment by various mechanisms. They include an increase in the formation of heat-shock proteins, metallothioneins, phytochelatins, amino acids (cysteine, histidine), organic acids (citric, malic), or secondary metabolites. The latter mechanism is being investigated for its possible use in explant cultures for the stimulation of secondary metabolism, which is the source of substances of pharmaceutical importance. The study tested manganese (II) (0, 0.1, 0.2, 0.5, 1, 2, 5, 10, 20, and 50 mM in the medium), cobalt (II), and nickel (II) ions (0, 0.1, 0.5, 1, 5, 10, 50, 100, 200, and 500 microM in the medium) as potential elicitors of coumarin production. At the same time, toxicity of these metals for the culture was examined by evaluating their effect on growth (characterized by fresh and dry weight of biomass at the end of a two-week cultivation). Cultures were cultivated in the dark and in the light. It has been found that the growth of cultures is not influenced by manganese in concentrations ranging from 0 to 2 mM, then it slightly decreases, at a concentration of 50 mM it is lower by 20 % when cultivated in the dark and by 30 % when cultivated in the light in comparison with the control. Cobalt in concentrations of 0 to 50 microM does not significantly influence the growth of the culture, higher concentrations decrease the biomass yields, more markedly when cultivated in the light (at 500 microM Co by 60 %, in the dark only by 30 % in comparison with the controls). Nickel in concentrations of 0.1 to 200 microM does not influence growth, and in a concentration of 500 microM decreases it by approximately 30 % in comparison with the control both in the light and dark. Production of coumarins was not stimulated by any metal in comparison with the control cultures, only the removal of manganese from the medium in the culture cultivated in the dark increased production by about 15 % versus the

  1. Comparison of oxine and tropolone methods for labeling human platelets with indium-111

    SciTech Connect

    Kotze, H.F.; Heyns, A.D.; Loetter, M.G.P.; Pieters, H.; Roodt, J.P.; Sweetlove, M.A.; Badenhorst, P.N. )

    1991-01-01

    The effect of the chelates oxine and tropolone, used to label platelets, on the kinetics of indium-111-({sup 111}In) labeled platelets was studied in twelve normal human subjects. Autologous platelets were labeled either in saline with {sup 111}In-oxine or in plasma with {sup 111}In-tropolone. Mean platelet lifespan was estimated by fitting the disappearance curve of platelets from the circulation to the multiple hit and other mathematical models. The in vivo distribution of platelets was quantitatively imaged with a scintillation camera. The in vivo recovery of {sup 111}In-oxine and {sup 111}In-tropolone did not differ, and the mean platelet lifespan was also similar ({sup 111}In-oxine: 230 +/- 29 hr; {sup 111}In-tropolone: 226 +/- 13 hr). At equilibrium (90 min after reinjection of labeled platelets) and at the end of platelet lifespan, {sup 111}In-oxine and {sup 111}In-tropolone radioactivities in the spleen and liver were similar. These results demonstrate that the results of kinetics measured with {sup 111}In-oxine or {sup 111}In-tropolone do not differ significantly.

  2. The Interaction of Sheep Genomic DNA with a Cobalt(II) Complex Containing p-Nitrobenzoate and N,N′-Diethylnicotinamide Ligands

    PubMed Central

    Arslantas, Ali; Devrim, A. Kadir; Necefoglu, Hacali

    2007-01-01

    The synthesized cobalt(II) complex, CoPNBDENA and the binding of this complex with sheep genomic DNA were investigated by UV–Visible absorption and viscosity techniques. Also the interaction of sheep genomic DNA with the complex was studied using the agarose gel electrophoresis method. The results indicated that the complex interacted with DNA. The nature of the binding seemed to be mainly an electrostatic interaction between DNA and the cobalt(II) complex. Other binding modes such as hydrogen bonds may also exist in this system. In this study, after the interaction of DNA–CoPNBDENA, it was observed that the migration of the DNA band became slow as the amount of cobalt(II) complex was increased. This clearly demonstrates that the CoPNBDENA complex neutralizes the negative charges of DNA.

  3. Cobalt (II) removal from aqueous solutions by natural hemp fibers: Batch and fixed-bed column studies

    NASA Astrophysics Data System (ADS)

    Tofan, Lavinia; Teodosiu, Carmen; Paduraru, Carmen; Wenkert, Rodica

    2013-11-01

    Natural hemp fibers were explored as sorbent for the removal of Co(II) ions from aqueous solutions in batch and dynamic conditions. The batch Co(II) sorption capacity increased up to pH 5, reached the maximum (7.5-7.8 mg/g) over the initial pH of 4.5-5. As the initial concentration of metal ion increased (in the range of 25-200 mg/L), the cobalt uptake was enhanced, but the Co(II) removal efficiency decreased. The batch sorption of Co(II) on the tested hemp follows a pseudo-second order model, which relies on the assumption that the chemisorptions may be the rate-controlling step. The Langmuir model better described the Co(II) sorption process on the natural hemp fibers in comparison with the Freundlich model. This finding complies with the results of fixed-bed studies which emphasize that the optimal solution for describing the behavior of the investigated hemp bed column is provided by the Thomas model. The sorption capacity of the hemp fibers column (15.44 mg/g) performed better than that of the Co(II)-hemp batch system (13.58 mg/g). The possibility to use hemp fibers as an alternative in the Co(II) wastewater treatment should be studied under pilot scale applications, so as to complete the studies concerning the removal efficiencies with technical and economic factors that influence process scale-up.

  4. Two-dimensional coordination polymers constructed using, simultaneously, linear and angular spacers and cobalt(II) nodes. New examples of networks of single-ion magnets.

    PubMed

    Ion, Adrian E; Nica, Simona; Madalan, Augustin M; Shova, Sergiu; Vallejo, Julia; Julve, Miguel; Lloret, Francesc; Andruh, Marius

    2015-01-01

    Two novel bidimensional coordination polymers, [Co(azbbpy)(4,4'-bipy)0.5(DMF)(NCS)2]·MeOH (1) and [Co(azbbpy)(bpe)0.5(DMF)(NCS)2]·0.25H2O (2), resulted from the assembling of cobalt(II) ions by 1,3-bis(4-pyridyl)azulene, using either 4,4'-bipyridyl or 1,2-bis(4-pyridyl)ethylene as neutral spacers. The cobalt(II) nodes in 1 and 2 act as single-ion magnets (SIMs).

  5. Flow injection determination of hydrogen peroxide using catalytic effect of cobalt(II) ion on a dye formation reaction.

    PubMed

    Kurihara, Makoto; Muramatsu, Miyuki; Yamada, Mari; Kitamura, Naoya

    2012-07-15

    A novel flow injection photometric method was developed for the determination of hydrogen peroxide in rainwater. This method is based on a cobalt(II)-catalyzed oxidative coupling of 3-methyl-2-benzothiazolinone hydrazone (MBTH) with N-ethyl-N-(2-hydroxy-3-sulfopropyl)-3,5-dimethoxyaniline (DAOS) as a modified Trinder's reagent to produce intensely colored dye (λ(max)=530nm) in the presence of hydrogen peroxide at pH 8.4. In this method, 1,2-dihydroxy-3,5-benzenedisulfonic acid (Tiron) acted as an activator for the cobalt(II)-catalyzed reaction and effectively increased the peak height for hydrogen peroxide. The linear calibration graphs were obtained in the hydrogen peroxide concentration range 5×10(-8) to 2.2×10(-6)mol dm(-3) at a sampling rate of 20h(-1). The relative standard deviations for ten determinations of 2.2×10(-6) and 2×10(-7)mol dm(-3) hydrogen peroxide were 1.1% and 3.7%, respectively. The proposed method was successfully applied to the determination of hydrogen peroxide in rainwater samples and the analytical results agreed fairly well with the results obtained by different two reference methods; peroxidase method and hydrogen peroxide electrode method.

  6. 2,6-Bis(2,6-diethylphenyliminomethyl)pyridine coordination compounds with cobalt(II), nickel(II), copper(II), and zinc(II): synthesis, spectroscopic characterization, X-ray study and in vitro cytotoxicity.

    PubMed

    Martinez-Bulit, Pablo; Garza-Ortíz, Ariadna; Mijangos, Edgar; Barrón-Sosa, Lidia; Sánchez-Bartéz, Francisco; Gracia-Mora, Isabel; Flores-Parra, Angelina; Contreras, Rosalinda; Reedijk, Jan; Barba-Behrens, Norah

    2015-01-01

    Coordination compounds with cobalt(II), nickel(II), copper(II) and zinc(II) and the ligand 2,6-bis(2,6-diethylphenyliminomethyl)pyridine (L) were synthesized and fully characterized by IR and UV-Vis-NIR spectroscopy, elemental analysis, magnetic susceptibility and X-ray diffraction for two representative cases. These novel compounds were designed to study their activity as anti-proliferative drugs against different human cancer cell lines. The tridentate ligand forms heptacoordinated compounds from nitrate metallic salts, where the nitrate acts in a chelating form to complete the seven coordination positions. In vitro cell growth inhibition was measured for Co(II), Cu(II) and Zn(II) complexes, as well as for the free ligand. Upon coordination, the IC50 value of the transition-metal compounds is improved compared to the free ligand. The copper(II) and zinc(II) compounds are the most promising candidates for further in vitro and in vivo studies. The activity against colon and prostate cell lines merits further research, in views of the limited therapeutic options for such cancer types.

  7. Penta­cobalt(II) divanadium(III) tetrakis(diphosphate), Co5V2(P2O7)4

    PubMed Central

    Bronova, Anna; Glaum, Robert; Litterscheid, Christian

    2013-01-01

    Co5V2(P2O7)4 was crystallized by chemical vapour transport using HCl as transport agent. Its crystal structure is isotypic to that of FeII 5FeIII 2(P2O7)4 and can be regarded as a member of the thortveitite structure family with corrugated layers of metal–oxygen polyhedra extending parallel to (010). Significant occupational disorder between cobalt(II) and vanadium(III) is observed. Four of the five cation sites are occupied by both cobalt and vanadium. The fifth cation site (Co1) is occupied by cobalt only. Sites Co1, M3 and M4 are located on twofold axes. Sites Co1, M2, M3 and M4 show o­cta­hedral coordination by oxygen; M5 has a square-pyramidal environment. PMID:23723750

  8. Aromatic carboxylate effect on dimensionality of three bis(benzimidazole)-based cobalt(II) coordination polymers: Syntheses, structures and properties

    SciTech Connect

    Zhang, Ju-Wen; Gong, Chun-Hua; Hou, Li-Li; Tian, Ai-Xiang; Wang, Xiu-Li

    2013-09-15

    Three new metal-organic coordination polymers [Co(4-bbc){sub 2}(bbbm)] (1), [Co(3,5-pdc)(bbbm)]·2H{sub 2}O (2) and [Co(1,4-ndc)(bbbm)] (3) (4-Hbbc=4-bromobenzoic acid, 3,5-H{sub 2}pdc=3,5-pyridinedicarboxylic acid, 1,4-H{sub 2}ndc=1,4-naphthalenedicarboxylic acid and bbbm=1,1-(1,4-butanediyl)bis-1H-benzimidazole) were hydrothermally synthesized and structurally characterized. Polymer 1 is a 1D chain formed by the bbbm ligands and Co{sup II} ions. Polymer 2 exhibits a 2D network with a (3·4·5)(3{sup 2}·4·5·6{sup 2}·7{sup 4}) topology. Polymer 3 possesses a 3D three-fold interpenetrating framework. The versatile structures of title polymers indicate that the aromatic carboxylates have an important influence on the dimensionality of 1–3. Moreover, the thermal stability, electrochemical and luminescent properties of 1–3 were investigated. - graphical abstract: Three bis(benzimidazole)-based cobalt(II) coordination polymers tuned by aromatic carboxylates were hydrothermally synthesized and structurally characterized. The aromatic carboxylates play a key role in the dimensionality of three polymers. The electrochemical and luminescent properties of three polymers were investigated. Display Omitted - Highlights: • Three bis(benzimidazole)-based cobalt(II) coordination polymers tuned by aromatic carboxylates were obtained. • The aromatic carboxylates have an important influence on the dimensionality of three polymers. • The electrochemical and luminescent properties of three polymers were investigated.

  9. Carbonaceous material obtained from exhausted coffee by an aqueous solution combustion process and used for cobalt (II) and cadmium (II) sorption.

    PubMed

    Serrano-Gómez, J; López-González, H; Olguín, M T; Bulbulian, S

    2015-06-01

    New carbonaceous materials were obtained using a fast aqueous solution combustion process from mixtures of exhausted coffee, ammonium nitrate (oxidizer) and urea (fuel) heated at 600, 700, 800 or 900 °C. The resulting powders were effective adsorbents for removing Co(II) and Cd(II) from aqueous solutions. Exhausted coffee was also calcined at different temperatures and compared. The products were characterized, and the obtained carbons had BET specific surface areas of 114.27-390.85 m(2)/g and pore diameters of 4.19 to 2.44 nm when the temperature was increased from 600 to 800 °C. Cobalt and cadmium adsorption by the carbonaceous materials was correlated with the maximum adsorption capacities and specific surface areas of the materials. The method reported here is advantageous because it only required 5 min of reaction to improve the textural properties of carbon obtained from exhausted coffee, which play an important role in the material's cobalt and cadmium adsorption capacities. PMID:25841193

  10. Carbonaceous material obtained from exhausted coffee by an aqueous solution combustion process and used for cobalt (II) and cadmium (II) sorption.

    PubMed

    Serrano-Gómez, J; López-González, H; Olguín, M T; Bulbulian, S

    2015-06-01

    New carbonaceous materials were obtained using a fast aqueous solution combustion process from mixtures of exhausted coffee, ammonium nitrate (oxidizer) and urea (fuel) heated at 600, 700, 800 or 900 °C. The resulting powders were effective adsorbents for removing Co(II) and Cd(II) from aqueous solutions. Exhausted coffee was also calcined at different temperatures and compared. The products were characterized, and the obtained carbons had BET specific surface areas of 114.27-390.85 m(2)/g and pore diameters of 4.19 to 2.44 nm when the temperature was increased from 600 to 800 °C. Cobalt and cadmium adsorption by the carbonaceous materials was correlated with the maximum adsorption capacities and specific surface areas of the materials. The method reported here is advantageous because it only required 5 min of reaction to improve the textural properties of carbon obtained from exhausted coffee, which play an important role in the material's cobalt and cadmium adsorption capacities.

  11. [Study on S-benzyl-N-(ferrocenyl-1-methyl-metylidene)-dithiocarbazate nickel (II)/cobalt (II) complexes by in-situ FTIR spectroelectrochemistry].

    PubMed

    Wang, Xia-yan; Jin, Bao-kang; Tian, Yu-peng; Lin, Xiang-qin

    2003-02-01

    Comparative studies were carried out by using electrochemistry and in-situ FTIR spectroelectrochemistry for nonlinear optical complexes, S-benzyl-N-(ferrocenyl-1-methyl-metylidene)-dithiocarbazate nickel (II)/cobalt (II) complexes (Ni(LSB)2/Co (LSB)2). The results indicated that Ni(LSB)2 involves two consecutive reversible one-electron oxidation steps, while Co(LSB)2 involves only one two-electron oxidation step. Ni(LSB)2 complex that has a square planar configuration exhibits a moderately strong electronic communication between the two-ferrocene moieties, taking place through the skeleton chain of the ligand due to the extensive electron delocalization in the whole molecule and leads to the appearance of a strong nu c-c vibration band at 1,453 cm-1 during the oxidation process, while Co(LSB)2 complex that has a tetrahedral configuration shows low electron delocalization and has two almost identical ferrocene moieties.

  12. Three cobalt(II)-linked {P8W48} network assemblies: syntheses, structures, and magnetic and photocatalysis properties.

    PubMed

    Jiao, Yan-Qing; Qin, Chao; Wang, Xin-Long; Wang, Chun-Gang; Sun, Chun-Yi; Wang, Hai-Ning; Shao, Kui-Zhan; Su, Zhong-Min

    2014-02-01

    Three cobalt(II)-containing tungstophosphate compounds, Na8Li8Co5[Co5.5(H2O)19P8W48.5O184]⋅60 H2O (1), K2Na4Li11Co5[Co7(H2O)28P8W48O184]Cl⋅ 59 H2O (2), and K2Na4LiCo11[Co8(H2O)32P8W48O184](CH3COO)4Cl⋅47 H2O (3), have been synthesized and characterized by IR spectroscopy, thermogravimetric analysis, elemental analyses, and magnetic measurements. The pH value impacts the formation of distinct cobalt-linked frameworks. The cyclic cavity of the polyanion accommodates 5.5, 7, and 8 cobalt ions in 1, 2, and 3, respectively. In compounds 1 and 2, each {Co5.5P8W48} and {Co7P8W48} fragment links to four others through multiple {Co-O-W} coordination bonds to generate a two-dimensional network. Compound 3 can be considered as a 3D network based on the {Co-O-W} coordination bonds and the {Co3(CH3COO)2(H2O)10} linkers between the {P8W48} fragments. Interestingly, acetate ligands have been employed to form the {Co3(CH3COO)2(H2O)10} unit, thereby inducing the construction of a 12-connected framework. To the best of our knowledge, compound 3 contains the largest-ever number of cobalt ions in a {P8W48}-based polyoxometalate when counterions are taken into account and the {P8W48} unit shows the highest number of connections thanks to the carboxyl bridges. The UV/Vis diffuse reflectance spectra of these powder samples indicate that the corresponding well-defined optical absorption associated with Eg can be assessed at 2.58, 2.48, and 2.73 eV and reveal the presence of an optical band gap. The photocatalytic H2 evolution activities of these {P8W48}-based compounds are evaluated.

  13. Pharmacological Role of Anions (Sulphate, Nitrate, Oxalate and Acetate) on the Antibacterial Activity of Cobalt(II), Copper(II) and Nickel(II) Complexes With Nicotinoylhydrazine-Derived ONO, NNO and SNO Ligands

    PubMed Central

    Rauf, Abdur

    1996-01-01

    Mixed ligands biologically active complexes of cobalt(II), copper(II) and nickel(II) with nicotinoylhydrazine-derived ONO, NNO and SNO donor schiff-base ligands having the same metal ion but different anions such as sulphate, nitrate, oxalate and acetate have been synthesised and characterised on the basis of their physical, analytical and spectral data. In order to evaluate the role of anions on their bioability, these ligands and their synthesised metal complexes with various anions have been screened against bacterial species such as Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus and the title studies have proved a definative role of anions in increasing the biological activity PMID:18472896

  14. Two water-bridged cobalt(II) chains with isomeric naphthoate spacers: from metamagnetic to single-chain magnetic behaviour.

    PubMed

    Liu, Zhong-Yi; Xia, Yan-Fei; Jiao, Jiao; Yang, En-Cui; Zhao, Xiao-Jun

    2015-12-14

    The crystal structures and magnetic behaviours of two water-bridged one-dimensional (1D) cobalt(II) chains with different isomeric naphthoate (na(-)) terminals, [Co(H2O)3(2-na)2]n (1) and {[Co(H2O)3(1-na)2]·2H2O}n (2), were reported to investigate the effect of interchain distance on their magnetic properties. Complex 1 with trans-2-na(-) blocks and dense interchain separation exhibits a metamagnetic transition from antiferromagnetic ordering to a saturated paramagnetic phase. By contrast, complex 2 possessing cis-arranged 1-na(-) spacers and good interchain isolation shows unusual single-chain magnetic behavior under a zero dc field. Thus, completely different interchain packing by isomeric naphthoate ligands governs the ratio of intra- to inter-chain magnetic interactions and further results in different magnetic phenomena, which provide significant magnetostructural information on 1D magnetic systems. PMID:26514974

  15. Non-enzymatic glucose biosensor based on overoxidized polypyrrole nanofiber electrode modified with cobalt(II) phthalocyanine tetrasulfonate.

    PubMed

    Ozcan, Levent; Sahin, Yücel; Türk, Hayrettin

    2008-12-01

    An enzymeless biosensor, based on electrodeposition of overoxidized polypyrrole nanofiber onto pencil graphite electrode and modified with cobalt(II) phthalocyanine tetrasulfonate (CoPcTS), was investigated in this study. CoPcTS showed electrocatalytic activity for the oxidation of glucose in alkaline solution. The electrochemical performance of the modified electrodes was investigated by differential pulse voltammetric (DPV) method. The resulting biosensor exhibited excellent performance for glucose determination with a wide linear range (0.25-20mM), a highly reproducible response (R.S.D. of 2.7%), low percentage of the interferences and long-term stability. The calculated detection limit was 0.1mM at 3sigma. In order to verify the reliability of the biosensor, it was applied to the determination of glucose in serum samples. The results were satisfactory and agreed closely with those measured in a hospital.

  16. Intramolecular Radical Aziridination of Allylic Sulfamoyl Azides by Cobalt(II)-Based Metalloradical Catalysis: Effective Construction of Strained Heterobicyclic Structures.

    PubMed

    Jiang, Huiling; Lang, Kai; Lu, Hongjian; Wojtas, Lukasz; Zhang, X Peter

    2016-09-12

    Cobalt(II)-based metalloradical catalysis (MRC) has been successfully applied for effective construction of the highly strained 2-sulfonyl-1,3-diazabicyclo[3.1.0]hexane structures in high yields through intramolecular radical aziridination of allylic sulfamoyl azides. The resulting [3.1.0] bicyclic aziridines prove to be versatile synthons for the preparation of a diverse range of 1,2- and 1,3-diamine derivatives by selective ring-opening reactions. As a demonstration of its application for target synthesis, the metalloradical intramolecular aziridination reaction has been incorporated as a key step for efficient synthesis of a potent neurokinin 1 (NK1 ) antagonist in 60 % overall yield. PMID:27511474

  17. A four-coordinate cobalt(II) single-ion magnet with coercivity and a very high energy barrier.

    PubMed

    Rechkemmer, Yvonne; Breitgoff, Frauke D; van der Meer, Margarethe; Atanasov, Mihail; Hakl, Michael; Orlita, Milan; Neugebauer, Petr; Neese, Frank; Sarkar, Biprajit; van Slageren, Joris

    2016-01-01

    Single-molecule magnets display magnetic bistability of molecular origin, which may one day be exploited in magnetic data storage devices. Recently it was realised that increasing the magnetic moment of polynuclear molecules does not automatically lead to a substantial increase in magnetic bistability. Attention has thus increasingly focussed on ions with large magnetic anisotropies, especially lanthanides. In spite of large effective energy barriers towards relaxation of the magnetic moment, this has so far not led to a big increase in magnetic bistability. Here we present a comprehensive study of a mononuclear, tetrahedrally coordinated cobalt(II) single-molecule magnet, which has a very high effective energy barrier and displays pronounced magnetic bistability. The combined experimental-theoretical approach enables an in-depth understanding of the origin of these favourable properties, which are shown to arise from a strong ligand field in combination with axial distortion. Our findings allow formulation of clear design principles for improved materials. PMID:26883902

  18. Studies on the sorption of praseodymium (III), holmium (III) and cobalt (II) from nitrate medium using TVEX-PHOR resin.

    PubMed

    El-Dessouky, S I; El-Sofany, E A; Daoud, J A

    2007-05-01

    The use of TVEX-PHOR resin for the sorption of praseodymium (III), holmium (III) and cobalt (II) from nitrate medium was carried out using batch and column techniques. Various parameters affecting the uptake of these metal ions such as v/m ratio, pH and the metal ion concentration were separately studied. Effect of temperature on the equilibrium distribution values has been studied to evaluate the changes in standard thermodynamic quantities. Experimental results of the investigated metal ions were found to fit to Freundlich isotherm model over the entire studied concentration range. Selectivity sequence of the resin for these metals is Ho>Pr>Co. The recovery of the investigated metals from the loaded resin is preformed with 0.1M sulphuric acid.

  19. Assembling an alkyl rotor to access abrupt and reversible crystalline deformation of a cobalt(II) complex

    PubMed Central

    Su, Sheng-Qun; Kamachi, Takashi; Yao, Zi-Shuo; Huang, You-Gui; Shiota, Yoshihito; Yoshizawa, Kazunari; Azuma, Nobuaki; Miyazaki, Yuji; Nakano, Motohiro; Maruta, Goro; Takeda, Sadamu; Kang, Soonchul; Kanegawa, Shinji; Sato, Osamu

    2015-01-01

    Harnessing molecular motion to reversibly control macroscopic properties, such as shape and size, is a fascinating and challenging subject in materials science. Here we design a crystalline cobalt(II) complex with an n-butyl group on its ligands, which exhibits a reversible crystal deformation at a structural phase transition temperature. In the low-temperature phase, the molecular motion of the n-butyl group freezes. On heating, the n-butyl group rotates ca. 100° around the C–C bond resulting in 6–7% expansion of the crystal size along the molecular packing direction. Importantly, crystal deformation is repeatedly observed without breaking the single-crystal state even though the shape change is considerable. Detailed structural analysis allows us to elucidate the underlying mechanism of this deformation. This work may mark a step towards converting the alkyl rotation to the macroscopic deformation in crystalline solids. PMID:26531811

  20. Assembling an alkyl rotor to access abrupt and reversible crystalline deformation of a cobalt(II) complex.

    PubMed

    Su, Sheng-Qun; Kamachi, Takashi; Yao, Zi-Shuo; Huang, You-Gui; Shiota, Yoshihito; Yoshizawa, Kazunari; Azuma, Nobuaki; Miyazaki, Yuji; Nakano, Motohiro; Maruta, Goro; Takeda, Sadamu; Kang, Soonchul; Kanegawa, Shinji; Sato, Osamu

    2015-01-01

    Harnessing molecular motion to reversibly control macroscopic properties, such as shape and size, is a fascinating and challenging subject in materials science. Here we design a crystalline cobalt(II) complex with an n-butyl group on its ligands, which exhibits a reversible crystal deformation at a structural phase transition temperature. In the low-temperature phase, the molecular motion of the n-butyl group freezes. On heating, the n-butyl group rotates ca. 100° around the C-C bond resulting in 6-7% expansion of the crystal size along the molecular packing direction. Importantly, crystal deformation is repeatedly observed without breaking the single-crystal state even though the shape change is considerable. Detailed structural analysis allows us to elucidate the underlying mechanism of this deformation. This work may mark a step towards converting the alkyl rotation to the macroscopic deformation in crystalline solids.

  1. A four-coordinate cobalt(II) single-ion magnet with coercivity and a very high energy barrier

    PubMed Central

    Rechkemmer, Yvonne; Breitgoff, Frauke D.; van der Meer, Margarethe; Atanasov, Mihail; Hakl, Michael; Orlita, Milan; Neugebauer, Petr; Sarkar, Biprajit; van Slageren, Joris

    2016-01-01

    Single-molecule magnets display magnetic bistability of molecular origin, which may one day be exploited in magnetic data storage devices. Recently it was realised that increasing the magnetic moment of polynuclear molecules does not automatically lead to a substantial increase in magnetic bistability. Attention has thus increasingly focussed on ions with large magnetic anisotropies, especially lanthanides. In spite of large effective energy barriers towards relaxation of the magnetic moment, this has so far not led to a big increase in magnetic bistability. Here we present a comprehensive study of a mononuclear, tetrahedrally coordinated cobalt(II) single-molecule magnet, which has a very high effective energy barrier and displays pronounced magnetic bistability. The combined experimental-theoretical approach enables an in-depth understanding of the origin of these favourable properties, which are shown to arise from a strong ligand field in combination with axial distortion. Our findings allow formulation of clear design principles for improved materials. PMID:26883902

  2. Molecular, crystal, and electronic structure of the cobalt(II) complex with 10-(2-benzothiazolylazo)-9-phenanthrol

    SciTech Connect

    Linko, R. V.; Sokol, V. I.; Polyanskaya, N. A.; Ryabov, M. A.; Strashnov, P. V.; Davydov, V. V.; Sergienko, V. S.

    2013-05-15

    The reaction of 10-(2-benzothiazolylazo)-9-phenanthrol (HL) with cobalt(II) acetate gives the coordination compound [CoL{sub 2}] {center_dot} CHCl{sub 3} (I). The molecular and crystal structure of I is determined by X-ray diffraction. The coordination polyhedron of the Co atom in complex I is an octahedron. The anion L acts as a tridentate chelating ligand and is coordinated to the Co atom through the phenanthrenequinone O1 atom and the benzothiazole N1 atom of the moieties L and the N3 atom of the azo group to form two five-membered metallocycles. The molecular and electronic structures of the compounds HL, L, and CoL{sub 2} are studied at the density functional theory level. The results of the quantum-chemical calculations are in good agreement with the values determined by X-ray diffraction.

  3. Cobalt(II)-Based Single-Ion Magnets with Distorted Pseudotetrahedral [N2O2] Coordination: Experimental and Theoretical Investigations.

    PubMed

    Ziegenbalg, Sven; Hornig, David; Görls, Helmar; Plass, Winfried

    2016-04-18

    The synthesis and magnetic properties of cobalt(II) complexes with sterically demanding Schiff-base ligands are reported. The compounds [Co(L(Br))2] (1) and [Co(L(Ph))2]·CH2Cl2 (2·CH2Cl2) are obtained by the reaction of cobalt(II) acetate with the ligands HL(Br) and HL(Ph) in a dichloromethane/methanol mixture. 1 and 2 crystallize in the space groups P21212 and P1̅, respectively. X-ray diffraction studies revealed mononuclear constitution of both complexes. For 1, relatively short intermolecular Co-Co distances of 569 pm are observed. In compound 2, a hydrogen-bonded dichloromethane molecule is present, leading to a solvent aggregate with remarkable thermal stability for which desolvation is taking place between 150 and 210 °C. Magnetic measurements were performed to determine the zero-field-splitting (ZFS) parameter D for both complexes. Frequency-dependent susceptibility measurements revealed slow magnetic relaxation behavior with spin-reversal barriers of 36 cm(-1) for 1 and 43 cm(-1) for 2 at an applied external field of 400 Oe. This observation is related to an increasing distortion of the pseudotetrahedral coordination geometry for complex 2. These distortions can be decomposed in two major contributions. One is the elongation effect described by the parameter ϵT, which is the ratio of the averaged obtuse and acute bond angles. The other effect is related to a twisting distortion of the chelate coordination planes at the cobalt center. A comparison with literature examples reveals that the elongation effect seems to govern the overall magnetic behavior in pseudotetrahedral complexes with two bidentate chelate ligands. Ab initio calculations for complexes 1 and 2 using the CASPT2 method show strong splitting of the excited (4)T2 term, which explains the observed strong ZFS. Spin-orbit calculations with the RASSI-SO method confirm the single-molecule-magnet behavior because only small transversal elements are found for the lowest Kramers doublet for both

  4. Ternary complexes of copper(II) and cobalt(II) involving nitrite/pyrazole and tetradentate N4-coordinate ligand: Synthesis, characterization, structures and antimicrobial activity

    NASA Astrophysics Data System (ADS)

    Solanki, Ankita; Sadhu, Mehul H.; Kumar, Sujit Baran

    2015-12-01

    Five new mononuclear mixed ligand complexes of the type [Cu(NCCH3)(dbdmp)](ClO4)2, [M(ONO)(dbdmp)]ClO4, [M(pz) (dbdmp)](ClO4)2 where M = Cu(II) and Co(II), pz = 3,5-dimethylpyrazole and dbdmp = N,N-diethyl-N‧,N‧-bis((3,5-dimethyl-1H-pyrazol-1-yl)methyl)ethane-1,2-diamine have been synthesized and characterized by physico-chemical and spectroscopy studies. The crystal structures of three copper(II) complexes [Cu(NCCH3)(dbdmp)](ClO4)2, [Cu(ONO)(dbdmp)]ClO4 and [Cu(pz)(dbdmp)](ClO4)2 have been determined by single crystal X-ray diffraction studies. Structural analyses reveal the geometry of [Cu(pz)(dbdmp)](ClO4)2 is distorted square pyramidal and other two copper(II) complexes have distorted trigonal bipyramidal geometry. Molecular composition of cobalt(II) complexes have been determined by mass spectral data. The EPR spectra of copper(II) complexes in frozen acetonitrile solution exhibit axial spectra, characteristic of dx2-y2 ground state. Electrochemical studies of copper(II) complexes using glassy carbon as working electrode in acetonitrile solution show Cu(II)/Cu(I) couple with quasi reversible electron transfer versus Ag/Ag+ reference electrode. Antimicrobial activity of all the synthesized complexes were investigated against two Gram positive and two Gram negative bacterial strains.

  5. Crystal structure and EPR studies of mixed ligand complex of cobalt(II) with saccharin and ethylisonicotine

    NASA Astrophysics Data System (ADS)

    Uçar, İbrahim; Karabulut, Bünyamin; Bulut, Ahmet; Büyükgüngör, Orhan

    2008-12-01

    The tetraaquabis(ethylisonicotinate)cobalt(II) disaccharinate, [Co(ein) 2(H 2O) 4]·(sac) 2, (CENS), (ein: ethylisonicotinate and sac: saccharinate) complex has been synthesized and its crystal structure has been determined by X-ray diffraction analysis. The title complex crystallizes in monoclinic system with space group P2 1/ c and Z = 2. The Co(II) cations present a slightly distorted CoN 2O 4 octahedral environment, with equatorially coordinated water molecules and axially pyridine N-bound ethylisonicotinate ligands. The magnetic environments of Cu 2+-doped Co(II) complex have been identified by electron paramagnetic resonance (EPR) technique. Cu 2+-doped CENS single crystals have been studied at room temperature in three mutually perpendicular planes. The calculated results of the Cu 2+-doped CENS indicate that Cu 2+ ion substitute with the Co 2+ ion in the host lattice. The angular variations of the EPR spectra have shown that two different Cu 2+ complexes are located in different chemical environments, and each environment contains two magnetically inequvalent Cu 2+sites in distinct orientations occupying substitutional positions in the lattice and show very high angular dependence. The cyclic voltammogram of the title complex investigated in dimethylformamide (DMF) solution exhibits only metal centerd electroactivity in the potential range -1.0-1.25 V versus Ag/AgCl reference electrode.

  6. /sup 111/In-oxine platelet survivals in thrombocytopenic infants

    SciTech Connect

    Castle, V.; Coates, G.; Kelton, J.G.; Andrew, M.

    1987-09-01

    Thrombocytopenia is a common occurrence (20%) in sick neonates, but the causes have not been well studied. In this report we demonstrate that thrombocytopenia in the neonate is characterized by increased platelet destruction as shown by shortened homologous /sup 111/In-oxine-labeled platelet life spans. Thirty-one prospectively studied thrombocytopenic neonates were investigated by measuring the /sup 111/In-labeled platelet life span, platelet-associated IgG (PAIgG), and coagulation screening tests. In every infant, the thrombocytopenia was shown to have a destructive component since the mean platelet life span was significantly shortened to 65 +/- 6 (mean +/- SEM) hours with a range of one to 128 hours compared with adult values (212 +/- 8; range, 140 to 260; gamma function analysis). The platelet survival was directly related to the lowest platelet count and inversely related to both the highest mean platelet volume and duration of the thrombocytopenia. In 22 infants the percent recovery of the radiolabeled platelets was less than 50%, which suggested that increased sequestration also contributed to the thrombocytopenia. Infants with laboratory evidence of disseminated intravascular coagulation (n = 8) or immune platelet destruction evidenced by elevated levels of PAIgG (n = 13) had even shorter platelet survivals and a more severe thrombocytopenia compared with the ten infants in whom an underlying cause for the thrombocytopenia was not apparent. Full-body scintigraphic images obtained in 11 infants showed an increased uptake in the spleen and liver, with a spleen-to-liver ratio of 3:1. This study indicates that thrombocytopenia in sick neonates is primarily destructive, with a subgroup having evidence of increased platelet sequestration.

  7. Characterization of the Unusual Product from the Reaction between Cobalt(II) Chloride, Ethane-1,2-diamine, and Hydrochloric Acid: An Undergraduate Project Involving an Unknown Metal Complex.

    ERIC Educational Resources Information Center

    Curtis, Neil F.; And Others

    1986-01-01

    Discusses the need for student research-type chemistry projects based upon "unknown" metal complexes. Describes an experiment involving the product from the reaction between cobalt(II) chloride, ethane-1,2-diamine (en) and concentrated hydrochloric acid. Outlines the preparation of the cobalt complex, along with procedure, results and discussion.…

  8. Single-crystal EPR investigation of Mn(II)-doped biomineral cobalt ammonium phosphate hexahydrate: a case of multiple substitutions

    NASA Astrophysics Data System (ADS)

    Deepa, S.; Natarajan, B.; Mithira, S.; Velavan, K.; Rao, P. S.

    2005-08-01

    Single-crystal electron paramagnetic resonance (EPR) study of Mn(II)-doped cobalt ammonium phosphate hexahydrate has been carried out at room temperature. The impurity shows more than 30 line pattern EPR spectra along the three crystallographic axes, suggesting the existence of more than one type of impurity ion in the host lattice. The spin Hamiltonian parameters, estimated from the three mutually orthogonal crystal rotations, are: site 1: g(xx) =1.989, g(yy) =1.994, g(zz) =1.999, A(xx) =-8.97, A(yy) =-9.52, A(zz) =-9.71 mT, D-xx =-8.09 mT, D-yy =-6.05 mT, D-zz =14.14 mT, site 2: g(xx) =1.988, g(yy) =2.009, g(zz) =2.019, A(xx) =-9.11 mT, A(yy) =-9.58 mT, A(zz) =-9.93 mT, D-xx =-6.61 mT, D-yy =-6.11 mT, D-zz =12.72 mT. The angular variation studies further reveal that the Mn(II) impurities enter the lattice substitutionally. The other Mn(II) sites which are at interstitial locations are difficult to follow due to their low intensity. The variation of zero-field splitting parameter with temperature indicates no phase transition. The observation of well-resolved Mn(II) spectrum at room temperature has been interpreted in terms of 'host spin-lattice relaxation narrowing mechanism.

  9. Synthesis, characterization, and catalytic properties of cationic hydrogels containing copper(II) and cobalt(II) ions.

    PubMed

    Lombardo Lupano, Lucía Victoria; Lázaro Martínez, Juan Manuel; Piehl, Lidia Leonor; Rubín de Celis, Emilio; Torres Sánchez, Rosa María; Campo Dall' Orto, Viviana

    2014-03-18

    Here, we report the synthesis and characterization of a hydrogel based on ethylene glycol diglycidyl ether (EGDE) and 1,8-diamino-3,6-dioxaoctane (DA). Chemically stable Co(II) and Cu(II) coordination complexes were prepared with this nonsoluble polyelectrolyte, poly(EGDE-DA), and studied by ss-NMR, FT-IR, thermogravimetry, and microscopy. Mesopores were found in all the samples, the thermal stability of the polymer matrix was highly affected by the presence of metal ions, and the (13)C CP-MAS spectrum for the Cu(II)-complex evidenced a significant increase in the reticulation degree by Cu(II) ions. The catalytic activity of these materials on H2O2 activation was studied by electron spin resonance (ESR). The Co(II)-poly(EGDE-DA)/H2O2 heterogeneous system produced O2, an anion superoxide (O2(•)¯), and a hydroxyl radical (OH(•)), which diffused into the solution at the time that a decrease in pH was detected. In the same way, the Cu(II)-poly(EGDE-DA)/H2O2 heterogeneous system produced O2 and OH(•). H2O2 activation by the poly(EGDE-DA) complexes with Co(II) and Cu(II) were applied on the decolorization of solutions of the azo-dye methyl orange (MO). In the presence of 63 mM H2O2, 87% of MO was removed in 10 min with Cu(II)-poly(EGDE-DA) and in 110 min with Co(II)-poly(EGDE-DA). In addition, the pharmaceutical product epinephrine was partially oxidized to adrenochrome by the O2(•)¯ released from the Co(II)-poly(EGDE-DA)/H2O2 heterogeneous system.

  10. Toward higher nuclearity: tetranuclear cobalt(II) metallogrid exhibiting spin crossover.

    PubMed

    Wu, Shu-Qi; Wang, Yi-Tong; Cui, Ai-Li; Kou, Hui-Zhong

    2014-03-01

    Supramolecular strategy was employed to achieve the highest nuclearity Co(II) cluster exhibiting spin-crossover (SCO) behavior. Magnetic susceptibility characterization of the Co4(II) complex shows that two different spin-transition processes occur. The SCO behavior is directed by the partially deprotonated polydentate ligand, which favors the structural distortion required by the spin transition. PMID:24555696

  11. Cobalt(II), nickel(II), copper(II), zinc(II) and hafnium(IV) complexes of N'-(furan-3-ylmethylene)-2-(4-methoxyphenylamino)acetohydrazide.

    PubMed

    Emam, Sanaa M; El-Saied, Fathy A; Abou El-Enein, Saeyda A; El-Shater, Heba A

    2009-03-01

    Cobalt(II), nickel(II), copper(II), zinc(II) and hafnium(IV) complexes of furan-2-carbaldehyde 4-methoxy-N-anilinoacetohydrazone were synthesized and characterized by elemental and thermal (TG and DTA) analyses, IR, UV-vis and (1)H NMR spectra as well as magnetic moment and molar conductivity. Mononuclear complexes are obtained with 1:1 molar ratio except complexes 3 and 9 which are obtained with 1:2 molar ratios. The IR spectra of ligand and metal complexes reveal various modes of chelation. The ligand behaves as a neutral bidentate one and coordination occurs via the carbonyl oxygen atom and azomethine nitrogen atom. The ligand behaves also as a monobasic tridentate one and coordination occurs through the enolic oxygen atom, azomethine nitrogen atom and the oxygen atom of furan ring. Moreover, the ligand behaves as a neutral tridentate and coordination occurs via the carbonyl oxygen, azomethine nitrogen and furan oxygen atoms as well as a monobasic bidentate and coordination occurs via the enolic oxygen atom and azomethine nitrogen atom. The electronic spectra and magnetic moment measurements reveal that all complexes possess octahedral geometry except the copper complex 10 possesses a square planar geometry. The thermal studies showed the type of water molecules involved in metal complexes as well as the thermal decomposition of some metal complexes.

  12. Role of direct reactivity with metals in chemoprotection by N-acetylcysteine against chromium(VI), cadmium(II) and cobalt(II)

    PubMed Central

    Luczak, Michal W.; Zhitkovich, Anatoly

    2013-01-01

    The antioxidant N-acetylcysteine (NAC) is widely used for the assessment of the role of reactive oxygen species (ROS) in various biological processes and adverse drug reactions. NAC has been found to effectively inhibit toxicity of carcinogenic metals, which was attributed to its potent ROS-suppressive properties. However, the absence of redox activity among some metals and findings from genetic models suggested a more diverse, smaller role of oxidative stress in metal toxicity. Here, we examined mechanisms of chemoprotection by NAC against Cd(II), Co(II) and Cr(VI) in human cells. We found that NAC displayed a broad-spectrum chemoprotective activity against all three metals, including suppression of cytotoxicity, apoptosis, p53 activation and HSP72 and HIF-1α upregulation. Cytoprotection by NAC was independent of cellular glutathione. NAC strongly inhibited uptake of all three metals in histologically different types of human cells, explaining its high chemoprotective potential. A loss of Cr(VI) accumulation by cells was caused by NAC-mediated extracellular reduction of chromate to membrane-impermeable Cr(III). Suppression of Co(II) uptake resulted from a rapid formation of Co(II)-NAC conjugates that were unable to enter cells. Our results demonstrate that NAC acts through more than one mechanism in preventing metal toxicity and its chemoprotective activity can be completely ROS-independent. A good clinical safety and effectiveness in Co(II) sequestration suggest that NAC could be useful for prevention of tissue accumulation and toxic effects of Co ions released by cobalt-chromium hip prostheses. PMID:23792775

  13. Role of direct reactivity with metals in chemoprotection by N-acetylcysteine against chromium(VI), cadmium(II), and cobalt(II).

    PubMed

    Luczak, Michal W; Zhitkovich, Anatoly

    2013-12-01

    The antioxidant N-acetylcysteine (NAC) is widely used for the assessment of the role of reactive oxygen species (ROS) in various biological processes and adverse drug reactions. NAC has been found to effectively inhibit the toxicity of carcinogenic metals, which was attributed to its potent ROS-suppressive properties. However, the absence of redox activity among some metals and findings from genetic models suggested a more diverse, smaller role of oxidative stress in metal toxicity. Here, we examined mechanisms of chemoprotection by NAC against Cd(II), Co(II), and Cr(VI) in human cells. We found that NAC displayed a broad-spectrum chemoprotective activity against all three metals, including suppression of cytotoxicity, apoptosis, p53 activation, and HSP72 and HIF-1α upregulation. Cytoprotection by NAC was independent of cellular glutathione. NAC strongly inhibited the uptake of all three metals in histologically different types of human cells, explaining its high chemoprotective potential. A loss of Cr(VI) accumulation by cells was caused by NAC-mediated extracellular reduction of chromate to membrane-impermeative Cr(III). Suppression of Co(II) uptake resulted from a rapid formation of Co(II)-NAC conjugates that were unable to enter cells. Our results demonstrate that NAC acts through more than one mechanism in preventing metal toxicity and its chemoprotective activity can be completely ROS-independent. Good clinical safety and effectiveness in Co(II) sequestration suggest that NAC could be useful in the prevention of tissue accumulation and toxic effects of Co ions released by cobalt-chromium hip prostheses.

  14. The electronic structure of the adducts of nickel(II) and cobalt(II) acetylacetonate with 2,2ʹ-dipyridyl by the method of quantum chemical modeling

    NASA Astrophysics Data System (ADS)

    Komissarov, A. A.; Korochentsev, V. V.; Vovna, V. I.

    2016-02-01

    The electronic structure of the nickel(II) and cobalt(II) bis-acetylacetonate with the additional 2,2ʹ-dipyridyl ligand is investigated using density functional theory calculations and X-ray photoelectron spectroscopy. Additional ligand effect on geometry, charges, electronic structure and X-ray photoelectron spectrum is studied. Our calculations show that the electron-donating ability of the 2,2ʹ-dipyridyl ligand is low. The computed data is compared with experimental data.

  15. Corroborative models of the cobalt(II) inhibited Fe/Mn superoxide dismutases.

    PubMed

    Scarpellini, Marciela; Wu, Amy J; Kampf, Jeff W; Pecoraro, Vincent L

    2005-07-11

    Attempting to model superoxide dismutase (SOD) enzymes, we designed two new N3O-donor ligands to provide the same set of donor atoms observed in the active site of these enzymes: K(i)Pr2TCMA (potassium 1,4-diisopropyl-1,4,7-triazacyclononane-N-acetate) and KBPZG (potassium N,N-bis(3,5-dimethylpyrazolylmethyl) glycinate). Five new Co(II) complexes (1-5) were obtained and characterized by X-ray crystallography, mass spectrometry, electrochemistry, magnetochemistry, UV-vis, and electron paramagnetic resonance (EPR) spectroscopies. The crystal structures of 1 and 3-5 revealed five-coordinate complexes, whereas complex 2 is six-coordinate. The EPR data of complexes 3 and 4 agree with those of the Co(II)-substituted SOD, which strongly support the proposition that the active site of the enzyme structurally resembles these models. The redox behavior of complexes 1-5 clearly demonstrates the stabilization of the Co(II) state in the ligand field provided by these ligands. The irreversibility displayed by all of the complexes is probably related to an electron-transfer process followed by a rearrangement of the geometry around the metal center for complexes 1 and 3-5 that probably changes from a trigonal bipyramidal (high spin, d7) to octahedral (low spin, d6) as Co(II) is oxidized to Co(III), which is also expected to be accompanied by a spin-state conversion. As the redox potentials to convert the Co(II) to Co(III) are high, it can be inferred that the redox potential of the Co(II)-substituted SOD may be outside the range required to convert the superoxide radical (O2*-) to hydrogen peroxide, and this is sufficient to explain the inactivity of the enzyme. Finally, the complexes reported here are the first corroborative structural models of the Co(II)-substituted SOD.

  16. Unraveling Binding Effects of Cobalt(II) Sepulchrate with the Monooxygenase P450 BM-3 Heme Domain Using Molecular Dynamics Simulations.

    PubMed

    Verma, Rajni; Schwaneberg, Ulrich; Holtmann, Dirk; Roccatano, Danilo

    2016-01-12

    One of the major limitations to exploit enzymes in industrial processes is their dependence on expensive reduction equivalents like NADPH to drive their catalytic cycle. Soluble electron-transfer (ET) mediators like cobalt(II) sepulchrate have been proposed as a cost-effective alternative to shuttle electrons between an inexpensive electron source and an enzyme's redox center. The interactions of these molecules with enzymes have not yet been elucidated at the molecular level. Herein, molecular dynamics simulations are performed to understand the binding and ET mechanism of the cobalt(II) sepulchrate with the heme domain of cytochrome P450 BM-3. The study provides a detailed map of ET mediator binding sites on the protein surface that are prevalently composed of Asp and Glu amino acids. The cobalt(II) sepulchrate does not show a preferential binding to these sites. However, among the observed binding sites, only few of them provide efficient ET pathways to heme iron. The results of this study can be used to improve the ET mediator efficiency of the enzyme for possible biotechnological applications.

  17. A non-aqueous redox flow battery based on tris(1,10-phenanthroline) complexes of iron(II) and cobalt(II)

    NASA Astrophysics Data System (ADS)

    Xing, Xueqi; Zhao, Yicheng; Li, Yongdan

    2015-10-01

    A novel non-aqueous redox flow battery employing tris(1,10-phenanthroline) complexes of iron(II) and cobalt(II) as active species is proposed and investigated for energy storage application. The [Fe(phen)3]2+/3+ and [Co(phen)3]+/2+ (phen = 1,10-phenanthroline) redox couples are used as the positive and negative active materials, respectively, in an electrolyte consisting of TEAPF6 and acetonitrile. Electrochemical measurements display that the two redox couples possess a superior and stable potential difference (E°) with a value of 2.1 V vs. Ag/Ag+. The charge-discharge characteristics of the cell show that the charging and discharging current densities have important influences on the battery performance. Stable cycling performance is obtained with low charge-discharge current densities with an electrolyte flow rate of 25 mL min-1. The coulomb, voltage and energy efficiencies achieve up to 80%, 40% and 39%, respectively.

  18. Atomic emission line wavelength calculations below 2000 angstroms for Lithium II through Cobalt XXVI

    NASA Technical Reports Server (NTRS)

    Williams, M. D.

    1971-01-01

    Atomic-emission-line wavelengths are presented which were calculated from wavelengths of previously identified transition sequences using second-degree polynomials fitted to known wave numbers by the least squares method. Wavelengths less than 2000 angstroms are included for ions from Li II to Co XXVI. The computer program written in FORTRAN 4 is also included.

  19. Reversible Oxygenation of α-Amino Acid–Cobalt(II) Complexes

    PubMed Central

    Zhang, Xincun; Yue, Fan; Li, Hui; Huang, Yan; Zhang, Yi; Wen, Hongmei; Wang, Jide

    2016-01-01

    We systematically investigated the reversibility, time lapse, and oxygenation-deoxygenation properties of 15 natural α-amino acid–Co(II) complexes through UV-vis spectrophotometer, polarographic oxygen electrode, and DFT calculations, respectively, to explore the relationship between the coordinating structure and reversible oxygenation of α-amino acid–Co(II) complexes. Results revealed that the α-amino acid structure plays a key role in the reversible oxygenation properties of these complexes. The specific configuration of the α-amino acid group affects the eg1 electron of Co(II) transfer to the π⁎ orbit of O2; this phenomenon also favors the reversible formation and dissociation of Co–O2 bond when O2 coordinates with Co(II) complexes. Therefore, the co-coordination of amino and carboxyl groups is a determinant of Co complexes to absorb O2 reversibly. The group adjacent to the α-amino acid unit evidently influences the dioxygen affinity and antioxidation ability of the complexes. The presence of amino (or imino) and hydroxy groups adjacent to the α-amino acid group increases the oxygenation-deoxygenation rate and the number of reversible cycles. Our findings demonstrate a new mechanism to develop reversible oxygenation complexes and to reveal the oxygenation of oxygen carriers. PMID:27022316

  20. CoCEST: cobalt(II) amide-appended paraCEST MRI contrast agents.

    PubMed

    Dorazio, Sarina J; Olatunde, Abiola O; Spernyak, Joseph A; Morrow, Janet R

    2013-11-01

    The first examples of air-stable Co(II) paraCEST MRI contrast agents are reported. Amide NH protons on the complexes give rise to CEST peaks that are shifted up to 112 ppm from the bulk water resonance. One complex has multiple CEST peaks that may be useful for ratiometric mapping of pH.

  1. Monitoring of cobalt(II) uptake and transformation in cells of the plant-associated soil bacterium Azospirillum brasilense using emission Mössbauer spectroscopy.

    PubMed

    Kamnev, Alexander A; Antonyuk, Lyudmila P; Kulikov, Leonid A; Perfiliev, Yury D

    2004-08-01

    Interaction of cobalt(II) at micromolar concentrations with live cells of the plant-growth-promoting rhizobacterium Azospirillum brasilense (strain Sp245) and further transformations of the metal cation were monitored using 57Co emission Mössbauer spectroscopy (EMS). Cell suspensions of the bacterial culture (2.4 x 10(8) cells ml(-1)) were doped with radioactive 57CoCl2 (1 mCi; final concentration 2 x 10(-6) M 57Co2+), kept under physiological conditions for various periods of time (from 2 min up to 1 hour) and then rapidly frozen in liquid nitrogen. Analysis of emission Mössbauer spectra of the frozen aqueous suspensions of the bacterial cell samples shows that the primary absorption of cobalt(II) at micromolar concentrations by the bacterial cells is rapid and virtually complete, giving at least two major forms of cobalt(II) species bound to the cells. Within an hour, the metal is involved in further metabolic transformations reflected by changes occurring in the spectra. The Mössbauer parameters calculated from the EMS data by statistical treatment were different for suspensions of live and dead (thermally killed) bacterial cells that had been in contact with 57Co2+ for 1 h, as well as for the cell-free culture medium containing the same concentration of 57Co2+. Chemical after-effects of the nuclear transition (57Co --> 5 7Fe), which provide additional information on the chemical environment of metal ions, are also considered. The data presented demonstrate that EMS is a valuable tool for monitoring the chemical state of cobalt species in biological matter providing information at the atomic level in the course of its uptake and/or metabolic transformations.

  2. Kagóme Cobalt(II)-Organic Layers as Robust Scaffolds for Highly Efficient Photocatalytic Oxygen Evolution.

    PubMed

    Xu, Jiaheng; Wang, Zhi; Yu, Wenguang; Sun, Di; Zhang, Qing; Tung, Chen-Ho; Wang, Wenguang

    2016-05-23

    Two Kagóme cobalt(II)-organic layers of [Co3 (μ3 -OH)2 (bdc)2 ]n (1) and [Co3 (μ3 -OH)2 (chdc)2 ]n (2) (bdc=o-benzenedicarboxylate and chdc=1,2-cyclohexanedicarboxylate) that bear bridging OH(-) ligands were explored as water oxidation catalysts (WOCs) for photocatalytic O2 production. The activities of 1 and 2 towards H2 O oxidation were assessed by monitoring the in situ O2 concentration versus time in the reaction medium by utilizing a Clark-type oxygen electrode under photochemical conditions. The oxygen evolution rate (RO2 ) was 24.3 μmol s(-1)  g(-1) for 1 and 48.8 μmol s(-1)  g(-1) for 2 at pH 8.0. Photocatalytic reaction studies show that 1 and 2 exhibit enhanced activities toward the oxidation of water compared to commercial nanosized Co3 O4 . In scaled-up photoreactions, the pH value of the reaction medium decreased from 8.0 to around 7.0 after 20 min and the O2 production ceased. Based on the amounts of the sacrificial oxidant (K2 S2 O8 ) used, the yield of O2 produced is 49.6 % for 2 and 29.8 % for 1. However, the catalyst can be recycled without a significant loss of catalytic activity. Spectroscopic studies suggest that the structure and composition of recycled 1 and 2 are maintained. In isotope-labeling H2 (18) O (97 % enriched) experiments, the distribution of (16) O(16) O/(16) O(18) O/(18) O(18) O detected was 0:7.55:92.45, which is comparable to the theoretical values of 0.09:5.82:94.09. This work not only provides new catalysts that resemble ligand-protected cobalt oxide materials but also establishes the significance of the existence of OH(-) (or H2 O) binding sites at the metal center in WOCs.

  3. Kagóme Cobalt(II)-Organic Layers as Robust Scaffolds for Highly Efficient Photocatalytic Oxygen Evolution.

    PubMed

    Xu, Jiaheng; Wang, Zhi; Yu, Wenguang; Sun, Di; Zhang, Qing; Tung, Chen-Ho; Wang, Wenguang

    2016-05-23

    Two Kagóme cobalt(II)-organic layers of [Co3 (μ3 -OH)2 (bdc)2 ]n (1) and [Co3 (μ3 -OH)2 (chdc)2 ]n (2) (bdc=o-benzenedicarboxylate and chdc=1,2-cyclohexanedicarboxylate) that bear bridging OH(-) ligands were explored as water oxidation catalysts (WOCs) for photocatalytic O2 production. The activities of 1 and 2 towards H2 O oxidation were assessed by monitoring the in situ O2 concentration versus time in the reaction medium by utilizing a Clark-type oxygen electrode under photochemical conditions. The oxygen evolution rate (RO2 ) was 24.3 μmol s(-1)  g(-1) for 1 and 48.8 μmol s(-1)  g(-1) for 2 at pH 8.0. Photocatalytic reaction studies show that 1 and 2 exhibit enhanced activities toward the oxidation of water compared to commercial nanosized Co3 O4 . In scaled-up photoreactions, the pH value of the reaction medium decreased from 8.0 to around 7.0 after 20 min and the O2 production ceased. Based on the amounts of the sacrificial oxidant (K2 S2 O8 ) used, the yield of O2 produced is 49.6 % for 2 and 29.8 % for 1. However, the catalyst can be recycled without a significant loss of catalytic activity. Spectroscopic studies suggest that the structure and composition of recycled 1 and 2 are maintained. In isotope-labeling H2 (18) O (97 % enriched) experiments, the distribution of (16) O(16) O/(16) O(18) O/(18) O(18) O detected was 0:7.55:92.45, which is comparable to the theoretical values of 0.09:5.82:94.09. This work not only provides new catalysts that resemble ligand-protected cobalt oxide materials but also establishes the significance of the existence of OH(-) (or H2 O) binding sites at the metal center in WOCs. PMID:27098180

  4. Physicochemical and biological properties of oxovanadium(IV), cobalt(II) and nickel(II) complexes with oxydiacetate anions.

    PubMed

    Wyrzykowski, Dariusz; Kloska, Anna; Pranczk, Joanna; Szczepańska, Aneta; Tesmar, Aleksandra; Jacewicz, Dagmara; Pilarski, Bogusław; Chmurzyński, Lech

    2015-03-01

    The potentiometric and conductometric titration methods have been used to characterize the stability of series of VO(IV)-, Co(II)- and Ni(II)-oxydiacetato complexes in DMSO-water solutions containing 0-50 % (v/v) DMSO. The influence of DMSO as a co-solvent on the stability of the complexes as well as the oxydiacetic acid was evaluated. Furthermore, the reactivity of the complexes towards superoxide free radicals was assessed by employing the nitro blue tetrazolium (NBT) assay. The biological properties of the complexes were investigated in relation to their cytoprotective activity against the oxidative damage generated exogenously by using hydrogen peroxide in the Human Dermal Fibroblasts adult (HDFa) cell line as well as to their antimicrobial activity against the bacteria (Bacillus subtilis, Escherichia coli, Enterococcus faecalis, Pseudomonas aeruginosa, Staphylococcus aureus, Staphylococcus epidermidis). The relationship between physicochemical and biological properties of the complexes was discussed. PMID:25488702

  5. Radical polymerization of vinyl acetate with bis(tetramethylheptadionato)cobalt(II): coexistence of three different mechanisms.

    PubMed

    Santhosh, Kumar; Gnanou, Yves; Champouret, Yohan; Daran, Jean-Claude; Poli, Rinaldo

    2009-01-01

    The complex [Co(II)(tmhd)(2)] (4; tmhd = 2,2,6,6-tetramethylhepta-3,5-dionato) has been investigated as a mediator for controlled radical polymerization of vinyl acetate (VAc) and compared with the analogue [Co(II)(acac)(2)] (1; acac = acetylacetonato). A relatively well controlled process occurs, after an induction time, with 2,2'-azobis(4-methoxyl-2,4-dimethylvaleronitrile) (V-70) as radical initiator at 30 degrees C. However, whereas the polymerization essentially stops after about six initiator half-lives in the presence of 1, it continues with a first-order rate law in the presence of 4. The successful simulation of the kinetic data shows that 4 operates simultaneously by associative (degenerative transfer, DT) and dissociative (organometallic radical polymerization, OMRP) mechanisms. The occurrence of OMRP was confirmed by an independent polymerization experiment starting from an isolated and purified [Co(tmhd)(2)](PVAc) macroinitiator. The polymer molecular weight evolves linearly with conversion in accordance with the expected values for one chain per Co atom when DT is the predominant mechanism and also during the pure OMRP process; however, observation of stagnating molecular weights at long reaction times with concomitant breakdown of the first-order rate law for monomer consumption indicates a competitive chain-transfer process catalyzed by an increasing amount of Co(II). In the presence of external donors L (water, pyridine, triethylamine) the DT pathway is blocked and the OMRP pathway is accelerated, and polymerization with complex 4 is then about five times slower than with complex 1. The reversal of relative effective OMRP rate constants k(eff) (4>1 in the absence of external donors, 4<1 in their presence) is rationalized through competitive steric effects on Co(III)-C and Co(II)-L bond strengths. These propositions are supported by (1)H NMR studies and by DFT calculations.

  6. Tris(1,10-phenanthroline)cobalt(II) bis-(trichloro-acetate).

    PubMed

    Li, Li-Min; Li, Yu-Feng; Liu, Li; Zhang, Zeng-Hui

    2011-07-01

    In the title complex, [Co(C(12)H(8)N(2))(3)](C(2)Cl(3)O(2))(2), the Co(II) ion lies on a twofold rotation axis and is coordinated by six N atoms from three bis-chelating 1,10-phenanthroline ligands in a distorted octa-hedral environment. The crystal structure is stabilized by weak inter-molecular C-H⋯O hydrogen bonds.

  7. Cobalt(II) complexes with bis(N-imidazolyl/benzimidazolyl) pyridazine: Structures, photoluminescent and photocatalytic properties

    NASA Astrophysics Data System (ADS)

    Li, Jin-Ping; Fan, Jian-Zhong; Wang, Duo-Zhi

    2016-07-01

    Six new CoII complexes [Co(L1)4(OH)2] (1), {[Co(L1)(H2O)4]·2ClO4}∞ (2), {[Co(L1)(H2O)4]·SiF6}∞ (3), {[Co(L1)3]·2ClO4}∞ (4), [Co(L2)Cl2]∞ (5) and {[Co(L2)2]·SiF6}∞ (6) [L1=3,6-bis(N-imidazolyl) pyridazine, L2=3,6-bis (N-benzimidazolyl) pyridazine] have been synthesized and characterized by elemental analysis, IR spectra and single crystal X-ray diffraction. Complex 1 has a mononuclear structure, while complexes 2 and 3 have 1-D chain structures. Considering the CoII centers were linked by the L1 ligands, the 3-D framework of complex 4 can be rationalized to be a {4^12.6^3} 6-c topological net with the stoichiometry uninodal net. 5 reveals a coordination 1-D zigzag chain structure consisting of a neutral chain [Co(L2)Cl2]n with the CoII centers. Complex 6 has a rhombohedral grid with a (4, 4) topology. The TGA property, fluorescent property and photocatalytic activity of complexes 1-6 have been investigated and discussed.

  8. Disodium diaqua-bis-(methyl-enedi-phos-pho-nato-κO,O')cobaltate(II) dihydrate.

    PubMed

    van Merwe, Kina; Visser, Hendrik G; Venter, Johan A

    2011-10-01

    In the title compound, Na(2)[Co(CH(4)O(6)P(2))(2)(H(2)O)(2)]·2H(2)O, the asymmetric unit is composed of one methyl-enediphospho-nate ligand and one water mol-ecule, which both are coordinated to a Co(II) atom, as well as a non-coordinated water mol-ecule and a sodium cation. The Co(II) atom occupies a special position on a crystallographic inversion centre. The slightly distorted Co(II)O(6) octa-hedral coordination environment is composed of two bidentate methyl-enediphospho-nate ligands and two coordinated water mol-ecules in trans positions. The sodium ion is octa-hedrally coordinated to six O atoms with Na-O distances ranging from 2.3149 (12) to 2.6243 (12) Å. An extensive three-dimensional network of inter-molecular as well as intra-molecular O-H⋯O and C-H⋯O hydrogen bonding inter-acions is present. PMID:22058722

  9. Formation of a cobalt(III)-phenoxyl radical complex by acetic acid promoted aerobic oxidation of a Co(II)salen complex.

    PubMed

    Vinck, Evi; Murphy, Damien M; Fallis, Ian A; Strevens, Robert R; Van Doorslaer, Sabine

    2010-03-01

    The activation of N,N'-bis(3,5-di-tert-butylsalicylidene)-1,2-cyclohexane-diamino Co(II), [Co(II)(1)], by the addition of acetic acid under aerobic conditions has been investigated by a range of spectroscopic techniques including continuous-wave EPR, HYSCORE, pulsed ENDOR, and resonance Raman. These measurements have revealed for the first time the formation of a coordinated cobalt(III)-bound phenoxyl radical labeled [Co(III)(1(*))(OAc)(n)](OAc)(m) (n = m = 1 or n = 2, m = 0). This cobalt(III)-bound phenoxyl radical is characterized by the following spin Hamiltonian parameters: g(x) = 2.0060, g(y) = 2.0031, g(z) = 1.9943, A(x) = 17 MHz, A(y) = 55 MHz, and A(z) = 14 MHz. Although the radical contains coordinated acetate(s), the experiments unambiguously proved that the phenoxyl radical is situated on ligand (1) as opposed to a phenoxyl radical ligated to cobalt in the axial position. Density functional theory computations on different models corroborate the stability of such a phenoxyl radical species and suggest the ligation of one or two acetate molecules to the complex. A mechanism is proposed, which accounts for the formation of this unusual and extremely robust phenoxyl radical, never previously observed for [Co(1)].

  10. Cobalt(II) complex with new terpyridine ligand: An ab initio geometry optimization investigation

    NASA Astrophysics Data System (ADS)

    Ciesielski, Artur; Gorczyński, Adam; Jankowski, Piotr; Kubicki, Maciej; Patroniak, Violetta

    2010-06-01

    Structural parameters of a complex formed between Co(II), and a terpyridine ligand were investigated using the unrestricted Becke three-parameter hybrid exchange functional combined with the Lee-Yang-Parr correlation functional (B3LYP) with the LANL2DZ, 6-31G(d,p), and 6-31G++(d,p) basis sets applied for geometry optimizations. The computations reveal that frequently used methods, which take into consideration primary and secondary interactions, can often be efficient in optimizing structural geometries of systems based on organic molecules and transition-metal ions.

  11. {2-[(Benzylphenyl-phosphanyl-κP)methyl]phenyl-κC}iodidobis(trimethyl-phos-phane)cobalt(II).

    PubMed

    Jia, Jiong; Wang, Chenggen; Liu, Nazhen; Li, Xiaoyan

    2011-07-01

    In the title compound, [Co(C(20)H(18)P)I(C(3)H(9)P)(2)], the Co(II) atom has a distorted square-pyramidal geometry, the base of which is comprised of two trans PMe(3) groups, an I atom, and a C atom of the benzyl group. This benzyl group is tethered to the P atom at the apex of the pyramid, thereby forming a five-membered chelated Co-C-C-C-P ring. PMID:21836963

  12. Molecularly Engineered Ru(II) Sensitizers Compatible with Cobalt(II/III) Redox Mediators for Dye-Sensitized Solar Cells.

    PubMed

    Wu, Kuan-Lin; Huckaba, Aron J; Clifford, John N; Yang, Ya-Wen; Yella, Aswani; Palomares, Emilio; Grätzel, Michael; Chi, Yun; Nazeeruddin, Mohammad Khaja

    2016-08-01

    Thiocyanate-free isoquinazolylpyrazolate Ru(II) complexes were synthesized and applied as sensitizers in dye-sensitized solar cells (DSCs). Unlike most other successful Ru sensitizers, Co-based electrolytes were used, and resulting record efficiency of 9.53% was obtained under simulated sunlight with an intensity of 100 mW cm(-2). Specifically, dye 51-57dht.1 and an electrolyte based on Co(phen)3 led to measurement of a JSC of 13.89 mA cm(-2), VOC of 900 mV, and FF of 0.762 to yield 9.53% efficiency. The improved device performances were achieved by the inclusion of 2-hexylthiophene units onto the isoquinoline subunits, in addition to lengthening the perfluoroalkyl chain on the pyrazolate chelating group, which worked to increase light absorption and decrease recombination effects when using the Co-based electrolyte. As this study shows, Ru(II) sensitizers bearing sterically demanding ligands can allow successful utilization of important Co electrolytes and high performance. PMID:27420188

  13. A cobalt (II) complex with 6-methylpicolinate: Synthesis, characterization, second- and third-order nonlinear optical properties, and DFT calculations

    NASA Astrophysics Data System (ADS)

    Altürk, Sümeyye; Avcı, Davut; Tamer, Ömer; Atalay, Yusuf; Şahin, Onur

    2016-11-01

    A cobalt(II) complex of 6-methylpicolinic acid, [Co(6-Mepic)2(H2O)2]·2H2O, was prepared and fully determined by single crystal X-ray crystal structure analysis as well as FT-IR, FT-Raman. UV-vis spectra were recorded within different solvents, to illustrate electronic transitions and molecular charge transfer within complex 1. The coordination sphere of complex 1 is a distorted octahedron according to single crystal X-ray results. Moreover, DFT (density functional theory) calculations with HSEH1PBE/6-311 G(d,p) level were carried out to back up the experimental results, and form base for future work in advanced level. Hyperconjugative interactions, intramolecular charge transfer (ICT), molecular stability and bond strength were researched by the using natural bond orbital (NBO) analysis. X-ray and NBO analysis results demonsrate that O-H···O hydrogen bonds between the water molecules and carboxylate oxygen atoms form a 2D supramolecular network, and also adjacent 2D networks connected by C-H···π and π···π interactions to form a 3D supramolecular network. Additionally, the second- and third-order nonlinear optical parameters of complex 1 were computed at DFT/HSEH1PBE/6-311 G(d,p) level. The refractive index (n) was calculated by using the Lorentz-Lorenz equation in order to investigate polarization behavior of complex 1 in different solvent polarities. The first-order static hyperpolarizability (β) value is found to be lower than pNA value because of the inversion symmetry around Co (II). But the second-order static hyperpolarizability (γ) value is 2.45 times greater than pNA value (15×10-30 esu). According to these results, Co(II) complex can be considered as a candidate to NLO material. Lastly molecular electrostatic potential (MEP), frontier molecular orbital energies and related molecular parameters for complex 1 were evaluated.

  14. Crystal structure of di-chlorido-bis-(dimethyl N-cyano-dithio-imino-carbonate)cobalt(II).

    PubMed

    Diop, Mouhamadou Birame; Diop, Libasse; Oliver, Allen G

    2016-01-01

    The structure of the mononuclear title complex, [{(H3CS)2C=NC  N}2CoCl2], consists of a Co(II) atom coordinated in a distorted tetra-hedral manner by two Cl(-) ligands and the terminal N atoms of two dimethyl N-cyano-dithio-imino-carbonate ligands. The two organic ligands are almost coplanar, with a dihedral angle of 5.99 (6)° between their least-squares planes. The crystal packing features pairs of inversion-related complexes that are held together through C-H⋯Cl and C-H⋯S inter-actions and π-π stacking [centroid-to-centroid distance = 3.515 (su?) Å]. Additional C-H⋯Cl and C-H⋯S inter-actions, as well as Cl⋯S contacts < 3.6 Å, consolidate the crystal packing. PMID:26870588

  15. Dicaesium diaqua-bis-(methyl-ene-diphospho-nato-κO,O')cobaltate(II).

    PubMed

    van Merwe, Kina; Visser, Hendrik G; Venter, Johan A

    2011-10-01

    The asymmetric unit of the title compound, Cs(2)[Co(CH(4)O(6)P(2))(2)(H(2)O)(2)], is comprised of one bidentate methyl-enediphospho-nate ligand and one water mol-ecule which are coordinated to the Co(II) atom, as well as a caesium counter-cation. The Co atom occupies a special position on a crystallographic inversion center. The caesium ion is octa-hedrally coordinated by six O atoms with Cs-O distances ranging from 3.119 (2) to 3.296 (2) Å. A three-dimensional network is formed through O-H⋯O hydrogen bonds. PMID:22065711

  16. Investigation of the molecular nature of low-molecular-mass cobalt(II) ions in isolated osteoarthritic knee-joint synovial fluid.

    PubMed

    Silwood, Christopher J L; Chikanza, Ian C; Tanner, K Elizabeth; Shelton, Julia C; Bowsher, John G; Grootveld, Martin

    2004-06-01

    High field 1H NMR spectroscopy demonstrated that addition of Co(II) ions to osteoarthritic knee-joint synovial fluid (SF) resulted in its complexation by a range of biomolecules, the relative efficacies of these complexants/chelators being citrate > histidine - threonine > glycine - glutamate - glutamine - phenylalanine tyrosine > formate > lactate > alanine > valine > acetate > pyruvate > creatinine, this order reflecting the ability of these ligands to compete for the available Co(II) in terms of (1) thermodynamic equilibrium constants for the formation of their complexes and (2) their SF concentrations. Since many of these SF Co(II) complexants (e.g. histidinate) serve as powerful *OH scavengers, the results acquired indicate that any of this radical generated from the Co(II) source in such complexes via Fenton or pseudo-Fenton reaction systems will be "site-specifically" scavenged. The significance of these observations with regard to cobalt toxicity and the in vivo corrosion of cobalt-containing metal alloy joint prostheses (e.g. CoCr alloys) is discussed.

  17. Absent splenic uptake of indium-111-oxine-labeled autologous leukocytes in functional asplenia

    SciTech Connect

    Hicks, R.J.; Young, W.; Shapiro, B.; Kuhl, D.E. )

    1991-03-01

    An incidental finding of absent splenic uptake of autologous, indium-111-oxine-labeled leukocytes in an immunosuppressed renal transplant recipient was documented to be associated with functional asplenia based on absence of technetium-99m-sulfur colloid clearance by a morphologically normal spleen. The patient had recently suffered an episode of disseminated varicella infection that might have led to the development of functional asplenia.

  18. Rates of water exchange for two cobalt(II) heteropoly-oxotungstate compounds in aqueous solution

    SciTech Connect

    Ohlin, C. Andre; Harley, Stephen J.; McAlpin, J. Gregory; Hocking, Rosalie K.; Mercado, Brandon Q.; Johnson, Rene L.; Villa, Eric M.; Fidler, Mary Kate; Olmstead, Marilyn M.; Spiccia, Leone; Britt, R. David; Casey, William H.

    2011-03-17

    Polyoxometalate ions are used as ligands in water-oxidation processes related to solar energy production. An important step in these reactions is the association and dissociation of water from the catalytic sites, the rates of which are unknown. Here we report the exchange rates of water ligated to CoII atoms in two polyoxotungstate sandwich molecules using the 17O-NMR-based Swift–Connick method. The compounds were the [Co4(H2O)2(B-α-W9O34)2]-10 and the larger αββα-[Co4(H2O)2(P2W15O56)2]-16 ions, each with two water molecules bound trans to one another in a CoII sandwich between the tungstate ligands. The clusters, in both solid and solution state, were characterized by a range of methods, including NMR, EPR, FT-IR, UV-Vis, and EXAFS spectroscopy, ESI-MS, single-crystal X-ray crystallography, and potentiometry. For [Co4(H2O)2(B-α-PW9O34)2]-10 at pH 5.4, we estimate: k 298=1.5(5)±0.3×106 s-1, ΔH=39.8±0.4 kJ mol-1, ΔS=+7.1±1.2 J mol-1 K-1 and ΔV=5.6 ±1.6 cm3 mol-1. For the Wells–Dawson sandwich cluster (αββα-[Co4(H2O)2(P2W15O56)2]-16) at pH 5.54, we find: k298=1.6(2)±0.3×106 s-1, ΔH=27.6±0.4 kJ mol-1 ΔS=-33±1.3 J mol-1 K-1 and ΔV=2.2±1.4 cm3mol-1 at pH 5.2. The molecules are clearly stable and monospecific in slightly acidic solutions, but dissociate in strongly acidic solutions. This dissociation is detectable by EPR

  19. A method for following human lymphocyte traffic using indium-111 oxine labelling.

    PubMed Central

    Wagstaff, J; Gibson, C; Thatcher, N; Ford, W L; Sharma, H; Benson, W; Crowther, D

    1981-01-01

    A method is described whereby large numbers of human lymphocytes are separated from peripheral blood and labelled in vitro with indium-111 oxine. Following autologous reinjection, the distribution within the body is followed by means of serial blood samples, surface-probe counting and gamma camera imaging. The distribution of radioactivity following reinjection of heat-damaged labelled lymphocytes and free indium-111 oxine is different from that of 'normal' lymphocytes. The results suggest that the separation and labelling procedure does not cause significant physical damage to the lymphocytes The importance of restricting the specific lymphocyte activity to 20-40 microCi per 10(8) cells in order to minimize radiation damage to the lymphocytes is emphasized. Good resolution of lymphoid structures is obtained using gamma camera imaging and the changes recorded in organ distribution correlate well with data from animal models of lymphocyte migration. Thus, indium-111 oxine labelling of human lymphocytes provides a non-invasive method whereby the migratory properties of human lymphocytes can be followed. Images Fig. 2 Fig. 3 Fig. 4 PMID:7285387

  20. /sup 111/In-platelet survival kinetics: Tropolone vs oxine method

    SciTech Connect

    Vallabhajosula, S.; Machac, J.; Lipszyc, H.; Badimon, L.; Goldsmith, S.J.; Fuster, V.

    1985-05-01

    /sup 111/In-tropolone (In-tr) is being evaluated because of its greater affinity for platelets in plasma than /sup 111/In-oxine (In-ox). Platelets separated from a 50 ml blood sample were labeled with In-tr in 2 ml autologous plasma and In-ox in 4 ml ACD-saline. 10 blood samples starting at 1 hr were obtained over a 8 day period. Platelet survival was calculated based on linear, exponential and multi hit analysis. The life-span of platelets measured by tropolone and oxine methods were compared in the same 8 normal human subjects and were performed 2 months apart. With In-tr, the platelet recovery is higher at 1 hr and throughout the 8-days and the gamma camera images showed less uptake in liver and spleen than In-ox. In addition, linear model is the best fit (63%) with a life-span equal or slightly longer than In-ox. Linear model is the best fit (100%) with In-ox and the multiple hit analysis also showed significantly higher number of hits (34) compared to In-tr (15). There is no correlation between in vivo recovery of /sup 111/In-platelets (tropolone or oxine) and the platelet life span. These results show that even though the platelet life span is not significantly altered by labeling method, they are better preserved in circulation when labeled with In-tr.

  1. Tetra-aqua-bis(nicotinamide-κN)cobalt(II) bis-(2-fluoro-benzoate).

    PubMed

    Ozbek, F Elif; Tercan, Barış; Sahin, Ertan; Necefoğlu, Hacali; Hökelek, Tuncer

    2009-01-01

    The title complex, [Co(C(6)H(6)N(2)O)(2)(H(2)O)(4)](C(7)H(4)FO(2))(2), contains one Co(II) atom (site symmetry ), two monodentate nicotin-amide (NA) ligands, four coordinated water mol-ecules and two 2-fluoro-benzoate (FB) anions. The four O atoms in the equatorial plane around the Co atom form a slightly distorted square-planar arrangement, while the slightly distorted octa-hedral coordination is completed by the two N atoms of the NA ligands in the axial positions. The dihedral angle between the carboxyl group and the adjacent benzene ring is 29.8 (3)°, while the pyridine and benzene rings are oriented at a dihedral angle of 7.97 (12)°. In the crystal structure, mol-ecules are linked by O-H⋯O, N-H⋯O and N-H⋯F hydrogen bonds, forming an infinite three-dimensional network. π-π Contacts between the pyridine and benzene rings [centroid-centroid distance = 3.673 (3) Å] may further stabilize the crystal structure. PMID:21582108

  2. Electrochemical behavior of phytochelatins and related peptides at the hanging mercury drop electrode in the presence of cobalt(II) ions.

    PubMed

    Dorcák, Vlastimil; Sestáková, Ivana

    2006-01-01

    Direct current voltammetry and differential pulse voltammetry have been used to investigate the electrochemical behaviour of two phytochelatins: heptapeptide (gamma-Glu-Cys)3-Gly and pentapeptide (gamma-Glu-Cys)2-Gly, tripeptide glutathione gamma-Glu-Cys-Gly and its fragments: dipeptides Cys-Gly and gamma-Glu-Cys at the hanging mercury drop electrode in the presence of cobalt(II) ions. Most interesting results were obtained with direct current voltammetry in the potential region of -0.80 V up to -1.80 V. Differential pulse voltammetry of the same solutions of Co(II) with peptides gives more complicated voltammograms with overlapping peaks, probably in connection with the influence of adsorption at slow scan rates necessarily used in this method. However, in using Brdicka catalytic currents for analytical purposes, differential pulse voltammograms seem to be more helpful. Presented investigations have shown that particularly the prewave of cobalt(II) allows distinguishing among phytochelatins, glutathione, and its fragments.

  3. 1,2,4,5-benzenetetracarboxylate- and 2,2'-bipyrimidine-containing cobalt(II) coordination polymers: preparation, crystal structure, and magnetic properties.

    PubMed

    Fabelo, Oscar; Pasán, Jorge; Lloret, Francesc; Julve, Miguel; Ruiz-Pérez, Catalina

    2008-05-01

    Three new mixed-ligand cobalt(II) complexes of formula [Co2(H2O)6(bta)(bpym)]n.4nH2O (1), [Co2(H2O)2(bta)(bpym)]n (2), and [Co2(H2O)4(bta)(bpym)]n.2nH2O ( 3) (bpym = 2,2'-bipyrimidine and H 4bta = 1,2,4,5-benzenetretracaboxylic acid) have been synthesized and characterized by single crystal X-ray diffraction. 1 is a chain compound of mer-triaquacobalt(II) units which are linked through regular alternating bis-bidentate bpym and bis-monodentate bta groups. 2 and 3 are three-dimensional compounds where aquacobalt(II) ( 2) and cis-diaquacobalt(II) ( 3) entities are linked by bis-bidentate bpym ( 2 and 3) and tetrakis- ( 2 and 3) and octakis-monodentate ( 2) bta ligands. The cobalt atoms in 1- 3 exhibit somewhat distorted octahedral surroundings. Two bpym-nitrogen atoms ( 1- 3) and either two bta-oxygens ( 2) or one bta-oxygen and a water molecule ( 1 and 3) build the equatorial plane, whereas the axial positions are filled either by two water molecules ( 1) or by a bta-oxygen atom and a water molecule ( 2 and 3). The values of the cobalt-cobalt separation across the bridging bpym vary in the range 5.684(2)-5.7752(7) A, whereas those through the bta bridge cover the ranges 5.288(2)-5.7503(5) A (across the anti-syn carboxylate) and 7.715(3)-11.387(1) A (across the phenyl ring). The magnetic properties of 1- 3 have been investigated in the temperature range 1.9-290 K. They are all typical of an overall antiferromagnetic coupling with the maxima of the magnetic susceptibility at 14.5 ( 1) and 11.5 K ( 2 and 3). Although exchange pathways through bis-bidentate bpym and carboxylate-bta in different coordination modes are involved in 1- 3, their magnetic behavior is practically governed by that across the bpym bridge, the magnitude of the exchange coupling being J = -5.59(2) ( 1), -4.41(2) ( 2), and -4.49(2) ( 3) with the Hamiltonian H = - JS 1 S 2.

  4. Computational, electrochemical, and spectroscopic studies of two mononuclear cobaloximes: the influence of an axial pyridine and solvent on the redox behaviour and evidence for pyridine coordination to cobalt(i) and cobalt(ii) metal centres.

    PubMed

    Lawrence, Mark A W; Celestine, Michael J; Artis, Edward T; Joseph, Lorne S; Esquivel, Deisy L; Ledbetter, Abram J; Cropek, Donald M; Jarrett, William L; Bayse, Craig A; Brewer, Matthew I; Holder, Alvin A

    2016-06-21

    [Co(dmgBF2)2(H2O)2] (where dmgBF2 = difluoroboryldimethylglyoximato) was used to synthesize [Co(dmgBF2)2(H2O)(py)]·0.5(CH3)2CO (where py = pyridine) in acetone. The formulation of complex was confirmed by elemental analysis, high resolution MS, and various spectroscopic techniques. The complex [Co(dmgBF2)2(solv)(py)] (where solv = solvent) was readily formed in situ upon the addition of pyridine to complex . A spectrophotometric titration involving complex and pyridine proved the formation of such a species, with formation constants, log K = 5.5, 5.1, 5.0, 4.4, and 3.1 in 2-butanone, dichloromethane, acetone, 1,2-difluorobenzene/acetone (4 : 1, v/v), and acetonitrile, respectively, at 20 °C. In strongly coordinating solvents, such as acetonitrile, the lower magnitude of K along with cyclic voltammetry, NMR, and UV-visible spectroscopic measurements indicated extensive dissociation of the axial pyridine. In strongly coordinating solvents, [Co(dmgBF2)2(solv)(py)] can only be distinguished from [Co(dmgBF2)2(solv)2] upon addition of an excess of pyridine, however, in weakly coordinating solvents the distinctions were apparent without the need for excess pyridine. The coordination of pyridine to the cobalt(ii) centre diminished the peak current at the Epc value of the Co(I/0) redox couple, which was indicative of the relative position of the reaction equilibrium. Herein we report the first experimental and theoretical (59)Co NMR spectroscopic data for the formation of Co(i) species of reduced cobaloximes in the presence and absence of py (and its derivatives) in CD3CN. From spectroelectrochemical studies, it was found that pyridine coordination to a cobalt(i) metal centre is more favourable than coordination to a cobalt(ii) metal centre as evident by the larger formation constant, log K = 4.6 versus 3.1, respectively, in acetonitrile at 20 °C. The electrosynthesis of hydrogen by complexes and in various solvents demonstrated the dramatic effects of the axial

  5. Computational, electrochemical, and spectroscopic studies of two mononuclear cobaloximes: the influence of an axial pyridine and solvent on the redox behaviour and evidence for pyridine coordination to cobalt(i) and cobalt(ii) metal centres.

    PubMed

    Lawrence, Mark A W; Celestine, Michael J; Artis, Edward T; Joseph, Lorne S; Esquivel, Deisy L; Ledbetter, Abram J; Cropek, Donald M; Jarrett, William L; Bayse, Craig A; Brewer, Matthew I; Holder, Alvin A

    2016-06-21

    [Co(dmgBF2)2(H2O)2] (where dmgBF2 = difluoroboryldimethylglyoximato) was used to synthesize [Co(dmgBF2)2(H2O)(py)]·0.5(CH3)2CO (where py = pyridine) in acetone. The formulation of complex was confirmed by elemental analysis, high resolution MS, and various spectroscopic techniques. The complex [Co(dmgBF2)2(solv)(py)] (where solv = solvent) was readily formed in situ upon the addition of pyridine to complex . A spectrophotometric titration involving complex and pyridine proved the formation of such a species, with formation constants, log K = 5.5, 5.1, 5.0, 4.4, and 3.1 in 2-butanone, dichloromethane, acetone, 1,2-difluorobenzene/acetone (4 : 1, v/v), and acetonitrile, respectively, at 20 °C. In strongly coordinating solvents, such as acetonitrile, the lower magnitude of K along with cyclic voltammetry, NMR, and UV-visible spectroscopic measurements indicated extensive dissociation of the axial pyridine. In strongly coordinating solvents, [Co(dmgBF2)2(solv)(py)] can only be distinguished from [Co(dmgBF2)2(solv)2] upon addition of an excess of pyridine, however, in weakly coordinating solvents the distinctions were apparent without the need for excess pyridine. The coordination of pyridine to the cobalt(ii) centre diminished the peak current at the Epc value of the Co(I/0) redox couple, which was indicative of the relative position of the reaction equilibrium. Herein we report the first experimental and theoretical (59)Co NMR spectroscopic data for the formation of Co(i) species of reduced cobaloximes in the presence and absence of py (and its derivatives) in CD3CN. From spectroelectrochemical studies, it was found that pyridine coordination to a cobalt(i) metal centre is more favourable than coordination to a cobalt(ii) metal centre as evident by the larger formation constant, log K = 4.6 versus 3.1, respectively, in acetonitrile at 20 °C. The electrosynthesis of hydrogen by complexes and in various solvents demonstrated the dramatic effects of the axial

  6. Cobalt(II) phthalocyanine-sensitized hollow Fe3O4@SiO2@TiO2 hierarchical nanostructures: Fabrication and enhanced photocatalytic properties

    NASA Astrophysics Data System (ADS)

    Wu, Song-Hai; Wu, Jing-Long; Jia, Shao-Yi; Chang, Qiao-Wan; Ren, Hai-Tao; Liu, Yong

    2013-12-01

    Cobalt(II) phthalocyanine-sensitized hollow Fe3O4@SiO2@TiO2 hierarchical nanostructures had been successfully obtained by combination of solvothermal processing and dipping processing. The as-obtained products were characterized by field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectrum (FT-IR), UV-vis diffuse reflectance (DR) and vibrating sample magnetometer (VSM). The results revealed that the cobalt(II) phthalocyanine was successfully grown on the primary Fe3O4@SiO2@TiO2 nanostructures (Fe3O4@SiO2@TiO2@CoPcS). The hollow Fe3O4@SiO2@TiO2@CoPcS hierarchical nanostructure showed excellent photocatalytic efficiency for the degradation of methylene blue (MB) under UV-vis and visible light irradiation. More importantly, the photocatalyst could be effectively separated for reuse by simply applying an external magnetic field. A possible mechanism for the visible photocatalysis with the Fe3O4@SiO2@TiO2@CoPcS heterostructures was suggested.

  7. Characteristics of polyaniline cobalt supported catalysts for epoxidation reactions.

    PubMed

    Kowalski, Grzegorz; Pielichowski, Jan; Grzesik, Mirosław

    2014-01-01

    A study of polyaniline (PANI) doping with various cobalt compounds, that is, cobalt(II) chloride, cobalt(II) acetate, and cobalt(II) salen, is presented. The catalysts were prepared by depositing cobalt compounds onto the polymer surface. PANI powders containing cobalt ions were obtained by one- or two-step method suspending PANI in the following acetonitrile/acetic acid solution or acetonitrile and then acetic acid solution. Moreover different ratios of Co(II) : PANI were studied. Catalysts obtained with both methods and at all ratios were investigated using various techniques including AAS and XPS spectroscopy. The optimum conditions for preparation of PANI/Co catalysts were established. Catalytic activity of polyaniline cobalt(II) supported catalysts was tested in dec-1-ene epoxidation with molecular oxygen at room temperature. The relationship between the amount of cobalt species, measured with both AAS and XPS techniques, and the activity of PANI-Co catalysts has been established.

  8. Effect of acetaminophen on the leukocyte-labeling efficiency of indium oxine In 111

    SciTech Connect

    Augustine, S.C.; Schmelter, R.F.; Nelson, K.L.; Petersen, R.J.; Qualfe, M.A.

    1983-11-01

    The effect of acetaminophen on the labeling efficiency of leukocytes with indium oxine In 111 was studied. A blood sample was obtained from eight healthy men before and after they received acetaminophen 650 mg every four hours for 24 hours. After dividing the plasma from each sample into three portions, leukocytes were separated and labeled with indium oxine In 111. In an in vitro study, 200 ml of blood was obtained from one of the men, and the plasma was separated into four portions. Acetaminophen in 95% ethanol was added to three of the plasma fractions to produce acetaminophen concentrations of 4, 20, and 100 micrograms/ml; ethanol was added to the fourth fraction as a control. Each plasma fraction was then subdivided into three aliquots, and leukocytes were labeled as in the in vivo study. Mean leukocyte labeling efficiencies in both studies were calculated from the ratios of leukocyte radioactivity to initial radioactivity in the samples, expressed as percentages. Leukocyte labeling efficiencies before acetaminophen administration ranged from 79 to 85%; after administration, labeling efficiencies ranged from 70 to 87%. No significant differences in mean labeling efficiency before and after acetaminophen administration were noted in any of the subjects. Leukocyte labeling efficiencies in all in vitro plasma fractions were reduced, ranging from 54 to 63%, but no significant differences in labeling efficiency between any of the plasma fractions were found. Using the labeling procedures in this study, exposure of leukocytes from healthy men to acetaminophen in vivo or in vitro does not affect labeling efficiency with indium oxine In 111.

  9. Synthesis, structure and spectroscopic behaviors of a five- and six-coordinated tri-cobalt(II) cluster: [(CoL)2(OAc)2Co].2C2H5OH.

    PubMed

    Dong, Wen-Kui; Li, Li; Li, Cong-Fen; Xu, Li; Duan, Jin-Gui

    2008-11-15

    A tri-nuclear cobalt(II) cluster, [(CoL)2(OAc)2Co].2C2H5OH, has been synthesized by the reaction of cobalt(II) acetate tetrahydrate with a novel Salen-type bisoxime chelating ligand, 3,3'-dimethoxy-2,2'-[ethylenedioxybis(nitrilomethylidyne)]diphenol (H2L), and characterized by elemental analyses, IR spectra, TG-DTA and molar conductances. UV-vis spectroscopic titration in methanol solution clearly indicated the exclusive formation of the 3:2 [Co3L2]2+ cluster. The single-crystal X-ray diffraction determination of the Co(II) cluster shows that there are two acetate ions coordinate to three cobalt(II) ions through Co-O-C-O-Co bridges, and quadruple mu-phenoxo oxygen atoms from two [CoL] chelates also coordinate to cobalt(II) ions. Interestingly, different conformational central ions: five- and six-coordinated geometries were found in the cluster.

  10. Tc-99m hexamethylpropylene-amine oxine (HM-PAO) uptake in a bone metastasis

    SciTech Connect

    Hoshi, H.; Jinnouchi, S.; Sameshima, M.; Uwada, O.; Watanabe, K.

    1988-08-01

    Uptake of Tc-99m Hexamethylpropylene-amine Oxine (HM-PAO) was seen in bone metastases from carcinoma of the lung. The uptake was prominent when compared to Tc-99m MDP, I-123 IMP, and Ga-67 citrate. Brain imaging with Tc-99m HM-PAO and N-isopropyl-p-(I-123) iodoamphetamine (IMP) is now frequently performed. Uptake of these agents has been reported in brain tumors and melanomas. In this report, uptake of Tc-99m HM-PAO in a metastatic lesion in bone is discussed.

  11. Fine-Tuning of Electronic Structure of Cobalt(II) Ion in Nonplanar Porphyrins and Tracking of a Cross-Hybrid Stage: Implications for the Distortion of Natural Tetrapyrrole Macrocycles.

    PubMed

    Liu, Qiuhua; Zhang, Xi; Zeng, Wennan; Wang, Jianxiu; Zhou, Zaichun

    2015-11-01

    The core size of the porphyrin macrocycles was closely related to their stability of the different electron structure in the central metal ion. Cobalt(II) ions can undergo a conversion in electron configurations upon N4 core contraction of 0.05 Å in nonplanar porphyrins, and these ions still maintain low spin forms after and before conversion. The structural fine-tuning can induce the appearance of a cross-hybrid stage [d(x(2)-y(2))sp(2) ↔ d(z(2))sp(2)] based on quadrilateral coordination of the planar core. The results indicate that the configuration conversion plays a key role in electron transfer in redox catalysis involving cobalt complexes. The electronic properties of six monostrapped cobalt(II) porphyrins were investigated by spectral, paramagnetic, and electrochemical methods. The macrocyclic deformations and size parameters of Co-containing model compounds were directly obtained from their crystal structures. PMID:26461496

  12. Nanocellulose/nanobentonite composite anchored with multi-carboxyl functional groups as an adsorbent for the effective removal of Cobalt(II) from nuclear industry wastewater samples.

    PubMed

    Anirudhan, T S; Deepa, J R; Christa, J

    2016-04-01

    A novel adsorbent, poly(itaconic acid/methacrylic acid)-grafted-nanocellulose/nanobentonite composite [P(IA/MAA)-g-NC/NB] with multi carboxyl functional groups for the effective removal of Cobalt(II) [Co(II)] from aqueous solutions. The adsorbent was characterized using FTIR, XRD, SEM-EDS, AFM and potentiometric titrations before and after adsorption of Co(II) ions. FTIR spectra revealed that Co(II) adsorption on to the polymer may be due to the involvement of COOH groups. The surface morphological changes were observed by the SEM images. The pH was optimized as 6.0. An adsorbent dose of 2.0g/L found to be sufficient for the complete removal of Co(II) from 100mg/L at room temperature. Pseudo-first-order and pseudo-second-order models were tested to describe kinetic data and adsorption of Co(II) follows pseudo-second-order model. The equilibrium attained at 120min. Isotherm studies were conducted and data were analyzed using Langmuir, Freundlich and Sips isotherm models and best fit was Sips model. Thermodynamic study confirmed endothermic and physical nature of adsorption of the Co(II) onto the adsorbent. Desorption experiments were done with 0.1MHCl proved that without significant loss in performance adsorbent could be reused for six cycles. The practical efficacy and effectiveness of the adsorbent were tested using nuclear industrial wastewater. A double stage batch adsorption system was designed from the adsorption isotherm data of Co(II) by constructing operating lines. PMID:26844393

  13. Nanocellulose/nanobentonite composite anchored with multi-carboxyl functional groups as an adsorbent for the effective removal of Cobalt(II) from nuclear industry wastewater samples.

    PubMed

    Anirudhan, T S; Deepa, J R; Christa, J

    2016-04-01

    A novel adsorbent, poly(itaconic acid/methacrylic acid)-grafted-nanocellulose/nanobentonite composite [P(IA/MAA)-g-NC/NB] with multi carboxyl functional groups for the effective removal of Cobalt(II) [Co(II)] from aqueous solutions. The adsorbent was characterized using FTIR, XRD, SEM-EDS, AFM and potentiometric titrations before and after adsorption of Co(II) ions. FTIR spectra revealed that Co(II) adsorption on to the polymer may be due to the involvement of COOH groups. The surface morphological changes were observed by the SEM images. The pH was optimized as 6.0. An adsorbent dose of 2.0g/L found to be sufficient for the complete removal of Co(II) from 100mg/L at room temperature. Pseudo-first-order and pseudo-second-order models were tested to describe kinetic data and adsorption of Co(II) follows pseudo-second-order model. The equilibrium attained at 120min. Isotherm studies were conducted and data were analyzed using Langmuir, Freundlich and Sips isotherm models and best fit was Sips model. Thermodynamic study confirmed endothermic and physical nature of adsorption of the Co(II) onto the adsorbent. Desorption experiments were done with 0.1MHCl proved that without significant loss in performance adsorbent could be reused for six cycles. The practical efficacy and effectiveness of the adsorbent were tested using nuclear industrial wastewater. A double stage batch adsorption system was designed from the adsorption isotherm data of Co(II) by constructing operating lines.

  14. Low-temperature CVD of iron, cobalt, and nickel nitride thin films from bis[di(tert-butyl)amido]metal(II) precursors and ammonia

    SciTech Connect

    Cloud, Andrew N.; Abelson, John R.; Davis, Luke M.; Girolami, Gregory S.

    2014-03-15

    Thin films of late transition metal nitrides (where the metal is iron, cobalt, or nickel) are grown by low-pressure metalorganic chemical vapor deposition from bis[di(tert-butyl)amido]metal(II) precursors and ammonia. These metal nitrides are known to have useful mechanical and magnetic properties, but there are few thin film growth techniques to produce them based on a single precursor family. The authors report the deposition of metal nitride thin films below 300 °C from three recently synthesized M[N(t-Bu){sub 2}]{sub 2} precursors, where M = Fe, Co, and Ni, with growth onset as low as room temperature. Metal-rich phases are obtained with constant nitrogen content from growth onset to 200 °C over a range of feedstock partial pressures. Carbon contamination in the films is minimal for iron and cobalt nitride, but similar to the nitrogen concentration for nickel nitride. X-ray photoelectron spectroscopy indicates that the incorporated nitrogen is present as metal nitride, even for films grown at the reaction onset temperature. Deposition rates of up to 18 nm/min are observed. The film morphologies, growth rates, and compositions are consistent with a gas-phase transamination reaction that produces precursor species with high sticking coefficients and low surface mobilities.

  15. Effect of three bis-pyridyl-bis-amide ligands with various spacers on the structural diversity of new multifunctional cobalt(II) coordination polymers

    SciTech Connect

    Lin, Hong-Yan; Lu, Huizhe; Le, Mao; Luan, Jian; Wang, Xiu-Li; Liu, Guocheng; Zhang, Juwen

    2015-03-15

    Three new cobalt(II) coordination polymers [Co{sub 2}(1,4-NDC){sub 2}(3-bpye)(H{sub 2}O)] (1), [Co(1,4-NDC)(3-bpfp)(H{sub 2}O)] (2) and [Co(1,4-NDC)(3-bpcb)] (3) [3-bpye=N,N′-bis(3-pyridinecarboxamide)-1,2-ethane, 3-bpfp=bis(3-pyridylformyl)piperazine, 3-bpcb=N,N′-bis(3-pyridinecarboxamide)-1,4-benzene, and 1,4-H{sub 2}NDC=1,4-naphthalenedicarboxylic acid] have been hydrothermally synthesized. The structures of complexes 1–3 have been determined by X-ray single crystal diffraction analyses and further characterized by infrared spectroscopy (IR), powder X-ray diffraction (PXRD) and thermogravimetric analyses (TGA). Complex 1 is a 3D coordination structure with 8-connected (4{sup 20}.6{sup 8}) topology constructed from 3D [Co{sub 2}(1,4-NDC){sub 2}(H{sub 2}O)]{sub n} framework and bidentate 3-bpye ligands. Complex 2 shows 1D “cage+cage”-like chain formed by 1D [Co{sub 2}(1,4-NDC){sub 2}]{sub n} ribbon chains and [Co{sub 2}(3-bpfp){sub 2}] loops, which are further linked by hydrogen bonding interactions to form a 3D supramolecular network. Complex 3 displays a 3D coordination network with a 6-connected (4{sup 12}.6{sup 3}) topology based on 2D [Co{sub 2}(1,4-NDC){sub 2}]{sub n} layers and bidentate 3-bpcb bridging ligands. The influences of different bis-pyridyl-bis-amide ligands with various spacers on the structures of title complexes are studied. Moreover, the fluorescent properties, electrochemical behaviors and magnetic properties of complexes 1–3 have been investigated. - Graphical abstract: Three multifunctional cobalt(II) complexes constructed from three bis-pyridyl-bis-amide and 1,4-naphthalenedicarboxylic acid have been hydrothermally synthesized and characterized. The fluorescent, electrochemical and magnetic properties of 1–3 have been investigated. - Highlights: • Three multifunctional cobalt(II) complexes based on various bis-pyridyl-bis-amide ligands. • Complex 1 is a 3D coordination structure with 8-connected (4{sup 20}.6{sup 8

  16. Indium-111 platelet kinetics in normal human subjects: tropolone versus oxine methods

    SciTech Connect

    Vallabhajosula, S.; Machac, J.; Goldsmith, S.J.; Lipszyc, H.; Badimon, L.; Rand, J.; Fuster, V.

    1986-11-01

    The effect of labeling media on the kinetics of(/sup 111/In)platelets was evaluated by performing a paired crossover study in eight normal human subjects using tropolone and oxine methods. Platelets were labeled in autologous plasma with (/sup 111/In)tropolone (In-tr) and in ACD-saline with (/sup 111/In)oxine (In-ox) and reinjected. Starting at 1 hr, ten blood samples were obtained over an 8-day period. The in vivo platelet recovery was higher at 1 hr and throughout the 8 days of study with In-tr and the gamma camera images showed less uptake in liver and spleen than with In-ox. When platelet life-span (PLS) was estimated using all ten samples, only linear regression showed that the platelet life-span was longer with In-tr (10.7 +/- 1.5) than with In-ox (9.5 +/- 0.8). When the PLS was estimated excluding the 1-hr sample point, the life-span of platelets was significantly longer with In-tr than with In-ox based on three out of four models of curve fitting. These results demonstrate that platelets labeled with In-tr in plasma are preserved better in circulation and have equal or longer life-span than platelets labeled with In-ox in ACD-saline.

  17. Indium-111 platelet kinetics in normal human subjects: tropolone versus oxine methods.

    PubMed

    Vallabhajosula, S; Machac, J; Goldsmith, S J; Lipszyc, H; Badimon, L; Rand, J; Fuster, V

    1986-11-01

    The effect of labeling media on the kinetics of[111In]platelets was evaluated by performing a paired crossover study in eight normal human subjects using tropolone and oxine methods. Platelets were labeled in autologous plasma with [111In]tropolone (In-tr) and in ACD-saline with [111In]oxine (In-ox) and reinjected. Starting at 1 hr, ten blood samples were obtained over an 8-day period. The in vivo platelet recovery was higher at 1 hr and throughout the 8 days of study with In-tr and the gamma camera images showed less uptake in liver and spleen than with In-ox. When platelet life-span (PLS) was estimated using all ten samples, only linear regression showed that the platelet life-span was longer with In-tr (10.7 +/- 1.5) than with In-ox (9.5 +/- 0.8). When the PLS was estimated excluding the 1-hr sample point, the life-span of platelets was significantly longer with In-tr than with In-ox based on three out of four models of curve fitting. These results demonstrate that platelets labeled with In-tr in plasma are preserved better in circulation and have equal or longer life-span than platelets labeled with In-ox in ACD-saline.

  18. In vivo traffic of indium-111-oxine labeled human lymphocytes collected by automated apheresis

    SciTech Connect

    Read, E.J.; Keenan, A.M.; Carter, C.S.; Yolles, P.S.; Davey, R.J. )

    1990-06-01

    The in vivo traffic patterns of autologous lymphocytes were studied in five normal human volunteers using lymphocytes obtained by automated apheresis, separated on Ficoll-Hypaque gradients, and labeled ex vivo with {sup 111}In-oxine. Final lymphocyte infusions contained 1.8-3.1 X 10(9) cells and 270-390 microCi (9.99-14.43 MBq) {sup 111}In, or 11-17 microCi (0.41-0.63 MBq) per 10(8) lymphocytes. Gamma imaging showed transient lung uptake and significant retention of radioactivity in the liver and spleen. Progressive uptake of activity in normal, nonpalpable axillary and inguinal lymph nodes was seen from 24 to 96 hr. Accumulation of radioactivity also was demonstrated at the forearm skin test site, as well as in its associated epitrochlear and axillary lymph nodes, in a subject who had been tested for delayed hypersensitivity with tetanus toxoid. Indium-111-oxine labeled human lymphocytes may provide a useful tool for future studies of normal and abnormal lymphocyte traffic.

  19. The investigation of the solvent effect on coordination of nicotinato ligand with cobalt(II) complex containing tris(2-benzimidazolylmethyl)amine: A computational study

    NASA Astrophysics Data System (ADS)

    Sayin, Koray; Karakaş, Duran

    2014-11-01

    The electronic structure of [Co(ntb)(nic)]+ complex ion are optimized by using density functional theory (DFT) method with mix basis set. Where (ntb) represents tris(2-benzimidazolylmethyl)amine ligand and (nic) is the anion of nicotinic acids. Six different fields, vacuum, chloroform, butanonitrile, methanol, water and formamide solvents are used in these calculations. The calculated structural parameters indicate that (nic) ligand coordinates to cobalt(II) containing (ntb) ligand with one oxygen atom in butanonitrile, methanol, water and formamide solvents but coordinates with two oxygen atoms in vacuum. These results are supported with IR, UV and 1H NMR spectra. According to the calculated results, the geometry of [Co(ntb)(nic)]+ complex ion is distorted octahedral in vacuum while the geometry is distorted square pyramidal in the all other solvents. Distorted octahedral [Co(ntb)(nic)]+ complex ion have not been synthesized as experimentally and it is predicted with computational chemistry methods.

  20. Synthesis and structure of cobalt(II) complexes with hydroxyl derivatives of pyridinecarboxylic acids: Conformation analysis of ligands in the solid state

    NASA Astrophysics Data System (ADS)

    Kukovec, Boris-Marko; Popović, Zora; Pavlović, Gordana; Rajić Linarić, Maša

    2008-06-01

    Cobalt(II) complexes of 6-hydroxypicolinic acid (6-OHpicH), namely [Co(6-OHpic) 2(H 2O) 2] ( 1) and [Co(6-OHpic) 2(4-pic) 2]·4-pic ( 2), and of 2-hydroxynicotinic acid (2-OHnicH), [Co(2-OHnic) 2(H 2O) 2] ( 3) were prepared. The crystal structures of free 6-hydroxypicolinic acid monohydrate 6-OHpicH·H 2O ( 4), and the novel polymorph of 2-hydroxynicotinic acid 2-OHnicH ( 5) and complex 2 were determined by X-ray crystal structure analysis. All compounds were characterized by IR-spectroscopy and thermal methods (TGA/DSC) and data are in agreement with the structure analysis. It was established that 4 and 5 exist in solid state in keto tautomeric form. For 2, structure analysis revealed N,O-chelating mode of 6-hydroxypicolinic acid.

  1. Aqua­(imino­diacetato-κ3 O,N,O′)(1,10-phenanthroline-κ2 N,N′)cobalt(II) monohydrate

    PubMed Central

    Ng, Hwa Loong; Ng, Chew Hee; Ng, Seik Weng

    2009-01-01

    The imino­diacetate dianion in the title compound, [Co(C4H5NO4)(C12H8N2)(H2O)]·H2O, chelates to the cobalt(II) atom, its N and two O atoms occupying the fac sites of the distorted octa­hedron around the metal atom. The metal atom is also chelated by the N-heterocycle. The dianion, and coordinated and uncoordinated water mol­ecules inter­act through hydrogen bonds, generating a layer motif. The crystal studied was a racemic twin with a 0.62 (2):0.38 (2) domain ratio. PMID:21581514

  2. Experimental radiative lifetimes for highly excited states and calculated oscillator strengths for lines of astrophysical interest in singly ionized cobalt (Co II)

    NASA Astrophysics Data System (ADS)

    Quinet, P.; Fivet, V.; Palmeri, P.; Engström, L.; Hartman, H.; Lundberg, H.; Nilsson, H.

    2016-11-01

    This work reports new experimental radiative lifetimes and calculated oscillator strengths for transitions of astrophysical interest in singly ionized cobalt. More precisely, 19 radiative lifetimes in Co+ have been measured with the time-resolved laser-induced fluorescence technique using one- and two-step excitations. Out of these, seven belonging to the high lying 3d7(4F)4d configuration in the energy range 90 697-93 738 cm-1 are new, and the other 12 from the 3d7(4F)4p configuration with energies between 45 972 and 49 328 cm-1 are compared with previous measurements. In addition, a relativistic Hartree-Fock model including core-polarization effects has been employed to compute transition rates. Supported by the good agreement between theory and experiment for the lifetimes, new reliable transition probabilities and oscillator strengths have been deduced for 5080 Co II transitions in the spectral range 114-8744 nm.

  3. Growth mechanism of Cobalt(II) Phthalocyanine(CoPc) thin films on SiO{sub 2} and muscovite substrates

    SciTech Connect

    Gedda, Murali; Subbarao, Nimmakayala V. V.; Goswami, Dipak K.

    2014-01-28

    Thin films of Cobalt(II) Phthalocyanine (CoPc) were grown by thermal evaporation technique on two different substrates namely SiO{sub 2} and atomically cleaned muscovite mica(001) at various substrate temperatures. Deposition rate has been maintained to 0.3Å/sec during the growth of the films. The growth process is studied by means of atomic force microscopy (AFM). Films on SiO{sub 2} exhibit only three-dimensional islands and uniformity of these islands improved with substrate temperatures, whereas films on mica (001) consist of long oriented percolated structures. The results revealed that the growth mechanism of CoPc strongly depends on substrate temperatures as well as nature of substrate used. Optical properties were characterized by UV-Visible spectroscopy and structural properties were studied using X-ray diffraction.

  4. Synthesis, crystal structure, antibacterial activity and theoretical studies on a novel mononuclear cobalt(II) complex based on 2,4,6-tris(2-pyridyl)-1,3,5-triazine ligand

    NASA Astrophysics Data System (ADS)

    Maghami, Mahboobeh; Farzaneh, Faezeh; Simpson, Jim; Ghiasi, Mina; Azarkish, Mohammad

    2015-08-01

    A cobalt complex was prepared from CoCl2·6H2O and 2,4,6-tris(2-pyridyl)-1,3,5-triazine (tptz) in methanol and designated as [Co(tptz)(CH3OH)Cl2]·CH3OH·0.5H2O (1). It was characterized by several techniques including TGA analysis and FT-IR, UV-Vis and 1H NMR spectral studies. The crystal structure of 1 was determined by single-crystal X-ray diffraction. The Co(II) metal center in 1 is six coordinated with a distorted octahedral geometry. The tptz ligand is tridentate and coordinates to the cobalt through coplanar nitrogen atoms from the triazine and two pyridyl rings. Two chloride anions and a methanol molecule complete the inner coordination sphere of the metal ion. The optimized geometrical parameters obtained by DFT calculation are in good agreement with single XRD data. The in vitro antibacterial activity of various tptz complexes of Co(II), Ni(II), Cu(II), Mn(II) and Rh(III) were evaluated against Gram-positive (Bacillus subtilis, Staphylococcus aureus and Gram-negative (Escherichia coli and Pseudomonas aeruginosa) bacteria. Whereas all complexes exhibited good activity in comparison to standard antibacterial drugs, the inhibitory effects of complexes were found to be more than that of the parent ligand. Overall, the obtained results strongly suggest that the cobalt(II) complex is a suitable candidate for counteracting antibiotic resistant microorganisms.

  5. Synthesis, characterization, and photocatalytic activities of Cobalt(II)-Titanium dioxide nanorods, and electrophoretic deposition of Titanium dioxide nanoparticle/nanorod composite films for self-cleaning applications

    NASA Astrophysics Data System (ADS)

    Kang, Wonjun

    This dissertation consists of two projects. The first project is synthesis, characterization, and photocatalytic activities of Co(II)-TiO2 nanorods. We modified brookite TiO2 nanorods with cobalt(II) ions to design new photocatalysts with visible light absorption. X-ray absorption spectroscopy (XAS) and X-ray photoelectron spectroscopy (XPS) data indicated that the local structure of Co(II)-TiO2 nanorods was shown as tetrahedral and octahedral Co(II) sites at TiO2 nanorod surface. Dimethylglyoxime (DMG) has been used to remove surface Co(II) from Co(II)-TiO2 nanorods to determine single-site Co(II) ions selectively attached to the TiO 2 nanorod surface. We proposed a mechanism that the Co-Co bond of the precursor Co2(CO)8 undergoes heterolysis followed by disproportionation of Co(I) to produce Co(II) and Co(0) precipitate. Finally, the Co(II)-TiO2 nanorods showed greater activity than TiO 2 nanorods in the degradation of 5,8-dihydroxy-1,4-naphthoquinone (DHNQ) dye under visible light irradiation. The second project is electrophoretic deposition (EPD) of TiO2 nanoparticle/nanorod composite films for self-cleaning applications. We developed novel electrolyte system for EPD of TiO2 nanoparticle/nanorod composites for self-cleaning coatings. A mixture of TiO2 powder and TiO2 nanorods was used as EPD suspension in a mixture of THF and acetone. TiO2 nanoparticle/nanorod composite films were fabricated on aluminium substrates via the EPD method, and were characterized by scanning electron microscope (SEM). SEM images showed that TiO2 nanoparticle/nanorod composite films had a uniform pore structure. The hydrophobic properties of surfaces in TiO2 nanoparticle/nanorod composite films were evaluated by water contact angle measurements. It was found that the surfaces of TiO2 nanoparticle/nanorod composite films were hydrophobic with contact angle of 103°. These hydrophobic surfaces are expected to have potential applications for self-cleaning.

  6. A non-aqueous all-cobalt redox flow battery using 1,10-phenanthrolinecobalt(II) hexafluorophosphate as active species

    NASA Astrophysics Data System (ADS)

    Xing, Xueqi; Zhang, Dapeng; Li, Yongdan

    2015-04-01

    A non-aqueous all-cobalt redox flow battery, with a cobalt complex 1,10-phenanthrolinecobalt(II) hexafluorophosphate ([Co(phen)3](PF6)2) as the active species, acetonitrile as the solvent and tetraethylammonium hexafluorophosphate (TEAPF6) as the supporting electrolyte, has been investigated. The electrochemical behaviour of oxidation and reduction reactions is measured using cyclic voltammetry (CV). The [Co(phen)3]2+ can be oxidized to [Co(phen)3]3+ and reduced to [Co(phen)3]+. A theoretical cell potential of 1.45 V for one-electron disproportionation reaction is obtained. The electrode reactions show quasi-reversible behaviour and are diffusion controlled. The diffusion coefficients of [Co(phen)3] 2+ for oxidation and reduction reactions are calculated to be 1.35-2.34 × 10-6 cm2 s-1 and 2.50-4.35 × 10-6 cm2 s-1, respectively. The effect of the electrode material is also examined by experiments. The CV curves of [Co(phen)3]2+ on the graphite working electrode show superior peak current and diffusivity to those measured on the glassy-carbon electrode. The charge-discharge performance of the battery is accessed with an H-type glass cell. A coulomb efficiency of about 52% is achieved at 50% state-of-charge for an electrolyte containing of 0.01 M [Co(phen)3]2+ and 0.5 M TEAPF6 in acetonitrile.

  7. A non-aqueous all-cobalt redox flow battery using 1,10-phenanthrolinecobalt(II) hexafluorophosphate as active species

    NASA Astrophysics Data System (ADS)

    Xing, Xueqi; Zhang, Dapeng; Li, Yongdan

    2015-04-01

    A non-aqueous all-cobalt redox flow battery, with a cobalt complex 1,10-phenanthrolinecobalt(II) hexafluorophosphate ([Co(phen)3](PF6)2) as the active species, acetonitrile as the solvent and tetraethylammonium hexafluorophosphate (TEAPF6) as the supporting electrolyte, has been investigated. The electrochemical behaviour of oxidation and reduction reactions is measured using cyclic voltammetry (CV). The [Co(phen)3]2+ can be oxidized to [Co(phen)3]3+ and reduced to [Co(phen)3]+. A theoretical cell potential of 1.45 V for one-electron disproportionation reaction is obtained. The electrode reactions show quasi-reversible behaviour and are diffusion controlled. The diffusion coefficients of [Co(phen)3] 2+ for oxidation and reduction reactions are calculated to be 1.35-2.34 × 10-6 cm2 s-1 and 2.50-4.35 × 10-6 cm2 s-1, respectively. The effect of the electrode material is also examined by experiments. The CV curves of [Co(phen)3]2+ on the graphite working electrode show superior peak current and diffusivity to those measured on the glassy-carbon electrode. The charge-discharge performance of the battery is accessed with an H-type glass cell. A coulomb efficiency of about 52% is achieved at 50% state-of-charge for an electrolyte containing of 0.01 M [Co(phen)3]2+ and 0.5 M TEAPF6 in acetonitrile.

  8. Acetonitrile hydration and ethyl acetate hydrolysis by pyrazolate-bridged cobalt(II) dimers containing hydrogen-bond donors.

    PubMed

    Zinn, Paul J; Sorrell, Thomas N; Powell, Douglas R; Day, Victor W; Borovik, A S

    2007-11-26

    The preparation of new CoII-mu-OH-CoII dimers with the binucleating ligands 3,5-bis{bis[(N'-R-ureaylato)-N-ethyl]aminomethyl}-1H-pyrazolate ([H4PRbuam]5-, R=tBu, iPr) is described. The molecular structure of the isopropyl derivative reveals that each CoII center has a trigonal-bipyramidial coordination geometry, with a Co...Co separation of 3.5857(5) A. Structural and spectroscopic studies show that there are four hydrogen-bond (H-bond) donors near the CoII-micro-OH-CoII moiety; however, they are too far away to be form intramolecular H-bonds with the bridging hydroxo ligand. Treating [CoII2H4PRbuam(micro-OH)]2- with acetonitrile led to the formation of bridging acetamidato complexes, [CoII2H4PRbuam(micro-1,3-OC(NH)CH3)]2-; in addition, these CoII-micro-OH-CoII dimers hydrolyze ethyl acetate to form CoII complexes with bridging acetato ligands. The CoII-1,3-micro-X'-CoII complexes (X'=OAc-, [OC(NH)CH3]-) were prepared independently by reacting [CoII2H3PRbuam]2- with acetamide or [CoII2H4PRbuam]- with acetate. X-ray diffraction studies show that the orientation of the acetate ligand within the H-bonding cavity depends on the size of the R substituent appended from the urea groups. The tetradentate ligand 3-{bis[(N'-tert-butylureaylato)-N-ethyl]aminomethyl}-5-tert-butyl-1H-pyrazolato ([H2PtBuuam]3-) was also developed and its CoII-OH complex prepared. In the crystalline state, [CoIIH2PtBuuam(OH)]2- contains two intramolecular H-bonds between the urea groups of [H2PtBuuam]3- and the terminal hydroxo ligand. [nPr4N]2[CoIIH2PtBuuam(OH)] does not hydrate acetonitrile or hydrolyze ethyl acetate. In contrast, K2[CoIIH2PtBuuam(OH)] does react with ethyl acetate to produce KOAc; this enhanced reactivity is attributed to the presence of the K+ ions, which can possibly interact with the CoII-OH unit and ester substrate to assist in hydrolysis. However, K2[CoIIH2PtBuuam(OH)] was still unable to hydrate acetonitrile.

  9. Field-induced slow magnetic relaxation in a six-coordinate mononuclear cobalt(II) complex with a positive anisotropy.

    PubMed

    Vallejo, Julia; Castro, Isabel; Ruiz-García, Rafael; Cano, Joan; Julve, Miguel; Lloret, Francesc; De Munno, Giovanni; Wernsdorfer, Wolfgang; Pardo, Emilio

    2012-09-26

    The novel mononuclear Co(II) complex cis-[Co(II)(dmphen)(2)(NCS)(2)]·0.25EtOH (1) (dmphen = 2,9-dimethyl-1,10-phenanthroline) features a highly rhombically distorted octahedral environment that is responsible for the strong positive axial and rhombic magnetic anisotropy of the high-spin Co(II) ion (D = +98 cm(-1) and E = +8.4 cm(-1)). Slow magnetic relaxation effects were observed for 1 in the presence of a dc magnetic field, constituting the first example of field-induced single-molecule magnet behavior in a mononuclear six-coordinate Co(II) complex with a transverse anisotropy energy barrier.

  10. Technical considerations in the study of /sup 111/In-oxine labelled platelet survival patterns in dogs

    SciTech Connect

    Sharefkin, J.; Rich, N.M.

    1982-04-01

    A detailed technique for labelling canine platelets with /sup 111/In-oxine for the study of platelet survival patterns in four to six dogs at a time was developed. Useful modifications of earlier methods included splitting of the platelet rich plasma into multiple aliquots to improve pelleting efficiency at low gravity forces, use of saved platelet poor plasma to flush out injection syringes, and prompt use of commercial /sup 111/In-oxine sources 3 to 5 minutes after mixing with Ringer's Citrate Dextrose. Avoidable pitfalls of the method included excessive lengths of incubation time in plasma free medium and loss of labelling efficacy by exposure of the chelate to iron or other metal contaminants in glassware. The method was used to study changes in platelet survival time in dogs with large synthetic arterial prostheses, and gave results in good agreement with earlier studies using /sup 51/Cr labelled platelets.

  11. Decreased sensitivity of early imaging with In-111 oxine-labeled leukocytes in detection of occult infection: concise communication

    SciTech Connect

    Datz, F.L.; Jacobs, J.; Baker, W.; Landrum, W.; Alazraki, N.; Taylor, A. Jr.

    1984-03-01

    Imaging with leukocytes labeled with indium-111 oxine is a sensitive technique for detecting sites of occult infection. Traditionally, imaging is performed 24 hr after injection. The authors undertook a prospective study of 35 patients (40 studies) with possible occult infection to see whether a 24-hr delay in imaging is really necessary. Patients were imaged at 1-4 hr and again at 24 hr after injection. The early images had a sensitivity of only 33%, compared with 95% for the 24-hr images. Of the seven studies that were positive on both early and delayed images, 71% had more intense uptake at 24 hr. There were no false-positive early images. It was concluded that imaging 1-4 hr after injection with In-111 oxine-labeled leukocytes has a low sensitivity for detecting occult infection. However, a positive early image is specific for a site of infection.

  12. Synthesis, characterization and X-ray crystal structures of Vanadium(IV), Cobalt(III), Copper(II) and Zinc(II) complexes derived from an asymmetric bidentate Schiff-base ligand at ambient temperature

    NASA Astrophysics Data System (ADS)

    Khorshidifard, Mahsa; Amiri Rudbari, Hadi; Kazemi-Delikani, Zahra; Mirkhani, Valiollah; Azadbakht, Reza

    2015-02-01

    An asymmetric bidentate Schiff-base ligand (HL: 2-((allylimino)methyl)phenol) was prepared from reaction of salicylaldehyde and Allylamine. Vanadium(IV), Cobalt(III), Copper(II) and Zinc(II) complexes, VOL2, CoL3, CuL2 and ZnL2 were synthesized from the reaction of VO(acac)2, CoCl2·6H2O, CuCl2·2H2O and Zn(NO3)2·6H2O with the bidentate Schiff base ligand (HL: 2-allyliminomethyl-phenol) in methanol at ambient temperature. The ligand and its metal complexes were characterized by elemental analysis (CHN), FT-IR spectroscopy. In addition, 1H and 13C NMR techniques were employed for characterization of the ligand (HL) and diamagnetic complex ZnL2. The molecular structures of all complexes were determined by single crystal X-ray diffraction technique. In the ZnL2 and CuL2 complexes, the metal ion is coordinated by two nitrogen and two oxygen atoms from two Schiff base ligands in an approximately square planar trans-[MN2O2] coordination geometry. In the Vanadium(IV) complex, VOL2, the vanadium center in this structure has a distorted tetragonal pyramidal N2O3 coordination sphere and for Cobalt(III) complex, CoL3, the CoIII ion is six coordinated by three bidentate Schiff base ligands in a distorted octahedral environment.

  13. Crystal structure of poly[{μ-N,N'-bis[(pyridin-4-yl)meth-yl]oxalamide}-μ-oxalato-cobalt(II)].

    PubMed

    Zou, Hengye; Qi, Yanjuan

    2014-09-01

    In the polymeric title compound, [Co(C2O4)(C14H14N4O2)] n , the Co(II) atom is six-coordinated by two N atoms from symmetry-related bis-[(pyridin-4-yl)meth-yl]oxalamide (BPMO) ligands and four O atoms from two centrosymmetric oxalate anions in a distorted octa-hedral coordination geometry. The Co(II) atoms are linked by the oxalate anions into a chain running parallel to [100]. The chains are linked by the BPMO ligands into a three-dimensional architecture. In addition, N-H⋯O hydrogen bonds stabilize the crystal packing. PMID:25309173

  14. Spectrophotometric determination of some anti-tussive and anti-spasmodic drugs through ion-pair complex formation with thiocyanate and cobalt(II) or molybdenum(V)

    NASA Astrophysics Data System (ADS)

    El-Shiekh, Ragaa; Zahran, Faten; El-Fetouh Gouda, Ayman Abou

    2007-04-01

    Two rapid, simple and sensitive extractive specrophotometric methods has been developed for the determination of anti-tussive drugs, e.g., dextromethorphan hydrobromide (DEX) and pipazethate hydrochloride (PiCl) and anti-spasmodic drugs, e.g., drotaverine hydrochloride (DvCl) and trimebutine maleate (TM) in bulk and in their pharmaceutical formulations. The proposed methods depend upon the reaction of cobalt(II)-thiocyanate (method A) and molybdenum(V)-thiocyanate ions (method B) with the cited drugs to form stable ion-pair complexes which extractable with an n-butnol-dichloromethane solvent mixture (3.5:6.5) and methylene chloride for methods A and B, respectively. The blue and orange red color complexes are determined either colorimetrically at λmax 625 nm (using method A) and 467 or 470 nm for (DEX and PiCl) or (DvCl and TM), respectively (using method B). The concentration range is 20-400 and 2.5-50 μg mL -1 for methods A and B, respectively. The proposed method was successfully applied for the determination of the studied drugs in pure and in pharmaceutical formulations applying the standard additions technique and the results obtained in good agreement well with those obtained by the official method.

  15. Comparative cytotoxicity and genotoxicity of cobalt (II, III) oxide, iron (III) oxide, silicon dioxide, and aluminum oxide nanoparticles on human lymphocytes in vitro.

    PubMed

    Rajiv, S; Jerobin, J; Saranya, V; Nainawat, M; Sharma, A; Makwana, P; Gayathri, C; Bharath, L; Singh, M; Kumar, M; Mukherjee, A; Chandrasekaran, N

    2016-02-01

    Despite the extensive use of nanoparticles (NPs) in various fields, adequate knowledge of human health risk and potential toxicity is still lacking. The human lymphocytes play a major role in the immune system, and it can alter the antioxidant level when exposed to NPs. Identification of the hazardous NPs was done using in vitro toxicity tests and this study mainly focuses on the comparative in vitro cytotoxicity and genotoxicity of four different NPs including cobalt (II, III) oxide (Co3O4), iron (III) oxide (Fe2O3), silicon dioxide (SiO2), and aluminum oxide (Al2O3) on human lymphocytes. The Co3O4 NPs showed decrease in cellular viability and increase in cell membrane damage followed by Fe2O3, SiO2, and Al2O3 NPs in a dose-dependent manner after 24 h of exposure to human lymphocytes. The oxidative stress was evidenced in human lymphocytes by the induction of reactive oxygen species, lipid peroxidation, and depletion of catalase, reduced glutathione, and superoxide dismutase. The Al2O3 NPs showed the least DNA damage when compared with all the other NPs. Chromosomal aberration was observed at 100 µg/ml when exposed to Co3O4 NPs and Fe2O3 NPs. The alteration in the level of antioxidant caused DNA damage and chromosomal aberration in human lymphocytes.

  16. Spectrophotometric determination of some anti-tussive and anti-spasmodic drugs through ion-pair complex formation with thiocyanate and cobalt(II) or molybdenum(V).

    PubMed

    El-Shiekh, Ragaa; Zahran, Faten; El-Fetouh Gouda, Ayman Abou

    2007-04-01

    Two rapid, simple and sensitive extractive specrophotometric methods has been developed for the determination of anti-tussive drugs, e.g., dextromethorphan hydrobromide (DEX) and pipazethate hydrochloride (PiCl) and anti-spasmodic drugs, e.g., drotaverine hydrochloride (DvCl) and trimebutine maleate (TM) in bulk and in their pharmaceutical formulations. The proposed methods depend upon the reaction of cobalt(II)-thiocyanate (method A) and molybdenum(V)-thiocyanate ions (method B) with the cited drugs to form stable ion-pair complexes which extractable with an n-butnol-dichloromethane solvent mixture (3.5:6.5) and methylene chloride for methods A and B, respectively. The blue and orange red color complexes are determined either colorimetrically at lambdamax 625 nm (using method A) and 467 or 470 nm for (DEX and PiCl) or (DvCl and TM), respectively (using method B). The concentration range is 20-400 and 2.5-50 microg mL-1 for methods A and B, respectively. The proposed method was successfully applied for the determination of the studied drugs in pure and in pharmaceutical formulations applying the standard additions technique and the results obtained in good agreement well with those obtained by the official method. PMID:17142094

  17. Two isostructural cobalt(II) coordination polymers with both polyrotaxane and polycatenane features assembled with a V-shaped rigid ligand

    NASA Astrophysics Data System (ADS)

    Li, Yue; Yao, Xiao-Qiang; Xiao, Guo-Bin; Ma, Heng-Chang; Yang, Yun-Xia; Liu, Jia-Cheng

    2015-06-01

    Two novel cobalt(II) coordination polymers (CPs), [Co(BPFP)2(sca)]n (1), [Co(BPFP)2(sda)]n (2), [BPFP = 2,8-di(pyridin-4-yl)dibenzo[b,d]furan, H2sca = succinic acid, H2sda = thiophene-2,5-dicarboxylic acid], have been synthesized hydrothermally based on a V-shaped rigid ligand BPFP. Their structures were fully characterized by elemental analysis, FT-IR spectroscopy and X-ray single-crystal diffraction methods. Compound 1 is a 2-fold parallel interpenetrating network consist of two identical sets of 2D layer motifs and shows both polyrotaxane and polycatenane characters. Compound 2 has the same structural feature as compound 1, except that the sca2- anions are replaced by the sda2- anions. The Powder X-ray diffraction (PXRD) analyses and thermogravimetric analyses were carried out to confirm the phase purity and the thermal stabilities of the compounds 1 and 2. In addition, the solid-state UV-vis absorption spectra were also investigated.

  18. Polymer-inorganic coatings containing nanosized sorbents selective to radionuclides. 1. Latex/cobalt hexacyanoferrate(II) composites for cesium fixation.

    PubMed

    Bratskaya, Svetlana; Musyanovych, Anna; Zheleznov, Veniamin; Synytska, Alla; Marinin, Dmitry; Simon, Frank; Avramenko, Valentin

    2014-10-01

    Here we present a new approach to improve fixation of radionuclides on contaminated surfaces and eliminate their migration after nuclear accidents. The approach consists in fabrication of latex composite coatings, which combine properties of polymeric dust-suppressors preventing radionuclides migration with aerosols and selective inorganic sorbents blocking radionuclides leaching under contact with ground waters and atmospheric precipitates. Latex/cobalt hexacyanoferrate(II) (CoHCF) composites selective to cesium radionuclides were synthesized via "in situ" growth of CoHCF crystal on the surface of carboxylic or amino latexes using surface functional groups as ion-exchange centers for binding precursor ions Co(2+) and [Fe(CN)6](4-). Casting such composite dispersions with variable content of CoHCF on (137)Cs-contaminated sand has yielded protective coatings, which reduced cesium leaching to 0.4% compared to 70% leaching through original latex coatings. (137)Cs migration from the sand surface was efficiently minimized when the volume fraction of CoHCF in the composite film was as low as 0.46-1.7%. PMID:25203389

  19. Performance of tetramethoxyphenyl porphyrin cobalt(II) (CoTMPP) based stainless steel cathode in the electricigenic permeable reactive barrier for groundwater organic contamination remediation.

    PubMed

    Zhu, Shi-Kun; Fan, Bin; Wu, Jie-Wei; Feng, Yuan-Yuan; Zhang, Yun

    2009-01-01

    An electricigenic permeable reactive barrier (EPRB) technology was brought forward for remediation of organic-contaminated groundwater, with a benefit that it overcame the limitations of electron acceptor addition in other groundwater remediation methods. To investigate performances of constructions and materials used in EPRB system, several kinds of reactors were designed and prepared in laboratory. Stainless steel wires, a kind of nontoxic, inexpensive and conductive material, were used as basic material of electrode. In order to improve cathodic oxygen reduction capability, a cathode based on tetramethoxyphenyl porphyrin cobalt (II) (CoTMPP) was prepared and studied in this paper. Results showed that a high catalytic activity for oxygen reduction was exhibited by the CoTMPP based cathode, with an electricity generation 3 times as high as that of the naked stainless steel cathode. Some evidence indicated that by loading on the surface of stainless steel wires and heat-treated under anaerobic conditions, epoxy resin, with its curing agents, might have got a catalytic capability for oxygen reduction.

  20. Synthesis, characterization, antimicrobial activity and carbonic anhydrase enzyme inhibitor effects of salicilaldehyde-N-methyl p-toluenesulfonylhydrazone and its Palladium(II), Cobalt(II) complexes

    NASA Astrophysics Data System (ADS)

    Alyar, Saliha; Adem, Şevki

    2014-10-01

    We report the synthesis of the ligand, salicilaldehyde-N-methyl p-toluenesulfonylhydrazone (salptsmh) derived from p-toluenesulfonicacid-1-methylhydrazide (ptsmh) and its Pd(II) and Co(II) metal complexes were synthesized for the first time. The structure of the ligand and their complexes were investigated using elemental analysis, magnetic susceptibility, molar conductance and spectral (IR, NMR and LC-MS) measurements. Salptsmh has also been characterized by single crystal X-ray diffraction. 1H and 13C shielding tensors for crystal structure were calculated with GIAO/DFT/B3LYP/6-311++G(d,p) methods in CDCl3. The complexes were found to have general composition [ML2]. The results of elemental analysis showed 1:2 (metal/ligand) stoichiometry for all the complex. Magnetic and spectral data indicate a square planar geometry for Pd(II) complex and a distorted tetrahedral geometry for Co(II) complexes. The ligand and its metal chelates have been screened for their antimicrobial activities using the disk diffusion method against the selected Gram positive bacteria: Bacillus subtilis, Bacillus cereus, Staphylococcus aureus, Enterococcus faecalis, Gram negative bacteria: Eschericha coli, Pseudomonas aeruginosa, Klebsiella pneumonia. The inhibition activities of these compounds on carbonic anhydrase II (CA II) and carbonic anhydrase I (CA I) have been investigated by comparing IC50 and Ki values and it has been found that Pd(II) complex have more enzyme inhibition efficiency than salptsmh and Co(II) complex.

  1. Nickel acts as an adjuvant during cobalt sensitization.

    PubMed

    Bonefeld, Charlotte Menné; Nielsen, Morten Milek; Vennegaard, Marie T; Johansen, Jeanne Duus; Geisler, Carsten; Thyssen, Jacob P

    2015-03-01

    Metal allergy is the most frequent form of contact allergy with nickel and cobalt being the main culprits. Typically, exposure comes from metal-alloys where nickel and cobalt co-exist. Importantly, very little is known about how co-exposure to nickel and cobalt affects the immune system. We investigated these effects by using a recently developed mouse model. Mice were epicutaneously sensitized with i) nickel alone, ii) nickel in the presence of cobalt, iii) cobalt alone, or iv) cobalt in the presence of nickel, and then followed by challenge with either nickel or cobalt alone. We found that sensitization with nickel alone induced more local inflammation than cobalt alone as measured by increased ear-swelling. Furthermore, the presence of nickel during sensitization to cobalt led to a stronger challenge response to cobalt as seen by increased ear-swelling and increased B and T cell responses in the draining lymph nodes compared to mice sensitized with cobalt alone. In contrast, the presence of cobalt during nickel sensitization only induced an increased CD8(+) T cell proliferation during challenge to nickel. Thus, the presence of nickel during cobalt sensitization potentiated the challenge response against cobalt more than the presence of cobalt during sensitization to nickel affected the challenge response against nickel. Taken together, our study demonstrates that sensitization with a mixture of nickel and cobalt leads to an increased immune response to both nickel and cobalt, especially to cobalt, and furthermore that the adjuvant effect appears to correlate with the inflammatory properties of the allergen.

  2. Syntheses and magnetic properties of a pyrimidyl-substituted nitronyl nitroxide radical and its cobalt(ii) complexes.

    PubMed

    Wang, Jian; Li, Jia-Nan; Zhang, Shao-Liang; Zhao, Xin-Hua; Shao, Dong; Wang, Xin-Yi

    2016-04-11

    A new bis-bidentate nitronyl nitroxide radical with a pyrimidyl substituent group and two Co(ii) complexes of this ligand were synthesized and characterized. Field-induced single-molecule magnet behavior was firstly observed in the nitronyl nitroxide radical-bridged complexes.

  3. A cobalt(II) bis(salicylate)-based ionic liquid that shows thermoresponsive and selective water coordination

    SciTech Connect

    Kohno, Y; Cowan, MG; Masuda, M; Bhowmick, I; Shores, MP; Gin, DL; Noble, RD

    2014-01-01

    A metal-containing ionic liquid (MCIL) has been prepared in which the [CoII(salicylate)(2)](2-) anion is able to selectively coordinate two water molecules with a visible colour change, even in the presence of alcohols. Upon moderate heating or placement in vacuo, the hydrated MCIL undergoes reversible thermochromism by releasing the bound water molecules.

  4. Crystal structure and magnetic properties of two isomeric three-dimensional pyromellitate-containing cobalt(II) complexes.

    PubMed

    Fabelo, Oscar; Pasán, Jorge; Cañadillas-Delgado, Laura; Delgado, Fernando S; Lloret, Francesc; Julve, Miguel; Ruiz-Pérez, Catalina

    2008-09-15

    The hydrothermal preparation, crystal structure determination, and magnetic study of two isomers made up of 1,2,4,5-benzenetetracarboxylate and high-spin Co(II) ions of formula [Co2(bta)(H2O)4]n x 2n H2O (1 and 2; H4bta = 1,2,4,5-benzenetetracarboxylic acid) are reported. 1 and 2 are three-dimensional compounds whose structures can be described as (4,4) rectangular layers of trans-diaquacobalt(II) units with the bta(4-) anion acting as tetrakis-monodentate ligand through the four carboxylate groups, which are further connected through other trans-[Co(H2O)2](2+) (1) and planar [Co(H2O)4](2+) (2) entities, with the bridging units being a carboxylate group in either the anti-syn (1) or syn-syn (2) conformations and a water molecule (2). The study of the magnetic properties of 1 and 2 in the temperature range 1.9-300 K shows the occurrence of weak antiferromagnetic interactions between the high-spin Co(II) ions, with the strong decrease of chi(M)T upon cooling being mainly due to the depopulation of the higher energy Kramers doublets of the six-coordinated Co(II) ions. The computed values of the exchange coupling between the Co(II) ions across anti-syn carboxylate (1) and syn-syn carboxylate/water (2) bridges are J = -0.060 (1) and -1.90 (2) cm(-1) (with the Hamiltonian being defined as H = -Jsigma(i,j)S(i) x S(j)). These values follow the different conformations of the carboxylate bridge in 1 (anti-syn) and 2 (syn-syn) with the occurrence of a double bridge in 2 (water/carboxylate).

  5. Supramolecular control over molecular magnetic materials: γ-cyclodextrin-templated grid of cobalt(II) single-ion magnets.

    PubMed

    Nedelko, Natalia; Kornowicz, Arkadiusz; Justyniak, Iwona; Aleshkevych, Pavlo; Prochowicz, Daniel; Krupiński, Piotr; Dorosh, Orest; Ślawska-Waniewska, Anna; Lewiński, Janusz

    2014-12-15

    Single-ion magnets (SIMs) are potential building blocks of novel quantum computing devices. Unique magnetic properties of SIMs require effective separation of magnetic ions and can be tuned by even slight changes in their coordination sphere geometry. We show that an additional level of tailorability in the design of SIMs can be achieved by organizing magnetic ions into supramolecular architectures, resulting in gaining control over magnetic ion packing. Here, γ-cyclodextrin was used to template magnetic Co(II) and nonmagnetic auxiliary Li(+) ions to form a heterometallic {Co, Li, Li}4 ring. In the sandwich-type complex [(γ-CD)2Co4Li8(H2O)12] spatially separated Co(II) ions are prevented from superexchange magnetic coupling. Ac/dc magnetic and EPR studies demonstrated that individual Co(II) ions with positive zero-field splitting exhibit field-induced slow magnetic relaxation consistent with the SIMs' behavior, which is exceptional in complexes with easy-plane magnetic anisotropy. PMID:25494948

  6. Host spin-lattice relaxation narrowing and the electron paramagnetic resonance of Mn(II) in single crystals of hexakis(pyridine N-oxide)cobalt(II) complexes

    NASA Astrophysics Data System (ADS)

    Murugesan, R.; Thamaraichelvan, A.; Milton Franklin, A.; Ramakrishnan, V.

    The electron paramagnetic resonance spectra of Mn(C5H5NO)6. X2 (X ≡ ClO-4, BF-4 and NO-3) doped in single crystals of isomorphous paramagnetic Co(C5H5NO)6. X2 are studied at various temperatures. Zero-field splitting in all three crystals is axially symmetric and the magnitude of D is unusually large for an octahedral coordination polyhedron with all ligands identical. The sharp resonance of Mn(II) in the paramagnetic host observed at high temperatures is interpreted in terms of random modulation of the dipolar interaction between the guest Mn(II) and host Co(II) ions by the rapid spin-lattice relaxation of Co(II). The spin-lattice relaxation times of Co(II) ions at 300 K, estimated from the temperature dependent linewidth of the Mn(II) resonance, are 24 × 10-12, 28 × 10-12 and 23 × 10-12 s in perchlorate, fluoborate and nitrate crystals respectively. The temperature dependence of the relaxation is of the form 1/(at + bt5) and below 270 K the direct process dominates.

  7. In vitro effects on Indium-111-Oxine labeled leukocytes functions of N-etilmycin

    SciTech Connect

    Iacovo, R.D.; Perna, M.; Esposito, G.; Polese, C.; Frizzi, L.

    1985-05-01

    In order to study in vitro chemotaxis, phagocytosis and bactericydal efficiencies of granulocytes (PMN) and monocytes (Mo) of cancer patients with solid tumours, the authors have undertaken the evaluation of a method of measuring PMN and Mo chemotaxis with modified Boyden chambers, using In-111-oxine. The tests were performed in order to evaluate the interference of N-etilmycin with leukocyte functions, a currently fashionable antibiotic used in the treatment of gram-negative infections. The results both compare well with the visual method and are objective. Cancer patients, disease-free for a minimum of one year, were compared and evidenced normal chemotaxis and normal controls. No difference between the two groups was found (20.46% of those tested). The addition of N-etilmy-cin (6..mu..g/ml) to PMN and Mo further decreased the chemotaxis from 20.46% to 16.07% (t=2.81, P=0.0102). The addition of 30..mu..g/ml further decreased the chemotaxis from the mean control values to 5.925% (t=4.55,P 1%). The use of N-etilmycin in disease-free cancer patients should be avoided in the possible event of tumour enhancement.

  8. Endothelial cell labeling with indium-111-oxine as a marker of cell attachment to bioprosthetic surfaces

    SciTech Connect

    Sharefkin, J.B.; Lather, C.; Smith, M.; Rich, N.M.

    1983-03-01

    Canine vascular endothelium labeled with indium-111-oxine was used as a marker of cell attachment to vascular prosthetic surfaces with complex textures. Primarily cultured and freshly harvested endothelial cells both took up the label rapidly. An average of 72% of a 32 micro Ci labeling dose was taken up by 1.5 X 10(6) cells in 10 min in serum-free medium. Over 95% of freshly labeled cells were viable by trypan blue tests and only 5% of the label was released after 1 h incubations at 37 degrees C. Labeled and unlabeled cells had similar rates of attachment to plastic dishes. Scanning electron microscopic studies showed that labeled cells retained their ability to spread on tissue culture dishes even at low (1%) serum levels. Labeled endothelial cells seeded onto Dacron or expanded polytetrafluoroethylene vascular prostheses by methods used in current surgical models could be identified by autoradiography of microscopic sections of the prostheses, and the efficiency of cell attachment to the prosthesis could be measured by gamma counting. Indium-111 labeling affords a simple and rapid way to measure initial cell attachment to, and distribution on, vascular prosthetic materials. The method could also allow measurement of early cell loss from a flow surface in vivo by using external gamma imaging.

  9. Indium-111 oxine-labeled autologous leukocyte scans in the management of colorectal diseases

    SciTech Connect

    Crystal, R.F.; Palace, F.

    1984-04-01

    The accuracy and usefulness of indium-111 oxine-labeled autologous leukocyte scans in the management of infectious complications of colon and rectal surgery and of inflammatory diseases of the colon have been studied by review of the records of all patients undergoing such scans at Morristown Memorial Hospital during the first six months such scans were performed there. A total of 20 scans was performed on 18 patients. Twelve scans were performed on 11 patients being treated for diseases of the colon and rectum. Of these 12 scans, one was normal, four demonstrated intra-abdominal abscesses, three demonstrated wound infections (two abdominal, one perineal), one was positive for granulomatous colitis, one for pseudomembranous colitis, one for chronic diverticulitis, and one for enterocutaneous fistula. One allergic reaction to the labeled leukocytes occurred. Comparisons with other corroborative localizing diagnostic tests were made. Subsequent treatment was reviewed. Analysis of these cases indicates that the majority of all scans were performed to evaluate complications of colorectal surgery or inflammatory diseases of the colon and that these scans were highly accurate. In all instances where appropriate, delineation of a lesion in the colorectal cases was followed by corrective treatment.

  10. catena-Poly[[diaqua­cobalt(II)]-bis­(μ-4-fluoro­benzoato-κ2 O:O′)

    PubMed Central

    Zhou, Fu-Fu; Zhang, Bi-Song

    2009-01-01

    The hydro­thermal reaction of CoCO3 and 4-fluoro­benzoic acid afforded the title CoII complex, [Co(C7H4FO2)2(H2O)2]n. The CoII atom is located on an inversion center and is coordinated by six O atoms from two water mol­ecules and four μ2-carboxyl­ate groups of 4-fluoro­benzoate anions, forming a distorted CoO6 octa­hedron, with Co—O bond lengths in the range 2.071 (2)–2.130 (2) Å. All adjacent O—Co—O angles are in the range 84.78 (6)–95.22 (6)° and opposite angles are 180.0°. Each μ-carboxyl­ate group of the 4-fluoro­benzoate anions bridges two symmetry-related CoII atoms. Hydrogen-bonding inter­actions of the coordinated water mol­ecules further connect the cobalt–carboxyl­ate units, forming layers perpendicular to the a axis. The cobalt–oxygen layers are encased in a sandwich-like fashion by layers of π-stacked 4-fluoro­benzoate anions. Within these layers the benzene rings of the 4-fluoro­benzoate anions are π-stacked, with centroid–centroid distances of 3.432 (4) Å. PMID:21583812

  11. Microwave Mapping Demonstration Using the Thermochromic Cobalt Chloride Equilibrium

    ERIC Educational Resources Information Center

    Nguyen, Vu D.; Birdwhistell, Kurt R.

    2014-01-01

    An update to the thermochromic cobalt(II) chloride equilibrium demonstration is described. Filter paper that has been saturated with aqueous cobalt(II) chloride is heated for seconds in a microwave oven, producing a color change. The resulting pink and blue map is used to colorfully demonstrate Le Châtelier's principle and to illuminate the…

  12. Diaqua-bis-(2-chloro-benzoato-κO)bis-(nicotinamide-κN (1))cobalt(II).

    PubMed

    Dincel, Oznur; Tercan, Barış; Oztürkkan, Füreya Elif; Necefoğlu, Hacali; Hökelek, Tuncer

    2013-03-01

    In the title complex, [Co(C7H4ClO2)2(C6H6N2O)2(H2O)2], the Co(II) cation is located on an inversion center and is coord-inated by two 2-chloro-benzoate anions, two nicotin-amide (NA) ligands and two water mol-ecules. The four O atoms in the equatorial plane around the Co(II) cation form a slightly distorted square-planar arrangement, while the slightly distorted octa-hedral coordination is completed by the two pyridine N atoms of the NA ligands in the axial positions. The dihedral angle between the carboxyl-ate group and the adjacent benzene ring is 29.7 (4)°, while the pyridine and benzene rings are oriented at a dihedral angle of 83.17 (15)°. Intra-molecular O-H⋯O hydrogen bonding occurs between the carboxyl-ate group and coordinating water mol-ecule. In the crystal, inter-molecular N-H⋯O, O-H⋯O and weak C-H⋯O hydrogen bonds link the mol-ecules into a three-dimensional network. PMID:23476513

  13. Diaqua-bis-(2-iodo-benzoato-κO)bis-(nicotinamide-κN(1))cobalt(II).

    PubMed

    Aydın, Omür; Caylak Delibaş, Nagihan; Necefoğlu, Hacali; Hökelek, Tuncer

    2012-04-01

    In the title complex, [Co(C(7)H(4)IO(2))(2)(C(6)H(6)N(2)O)(2)(H(2)O)(2)], the Co(II) cation is located on an inversion center and is coordinated by two monodentate 2-iodo-benzoate (IB) anions, two nicotin-amide (NA) ligands and two water mol-ecules. The four O atoms in the equatorial plane around the Co(II) cation form a slightly distorted square-planar arrangement, while the slightly distorted octa-hedral coordination is completed by the two N atoms of the NA ligands in the axial positions. The dihedral angle between the carboxyl-ate group and the adjacent benzene ring is 22.3 (3)°, while the pyridine ring and the benzene ring are oriented at a dihedral angle of 84.59 (13)°. Intra-molecular O-H⋯O hydrogen bonding occurs between the carboxyl-ate group and coordinated water mol-ecule. In the crystal, N-H⋯O, O-H⋯O and weak C-H⋯O hydrogen bonds link the mol-ecules into a three-dimensional supra-molecular network. PMID:22589871

  14. Degradation of atrazine by cobalt-mediated activation of peroxymonosulfate: Different cobalt counteranions in homogenous process and cobalt oxide catalysts in photolytic heterogeneous process.

    PubMed

    Chan, K H; Chu, W

    2009-05-01

    The degradation of atrazine (ATZ) by cobalt-mediated activation of peroxymonosulfate (PMS) has been studied in this work. For the homogenous process, different cobalt counteranions: cobalt(II) nitrate Co(NO(3))(2), cobalt(II) sulfate CoSO(4), cobalt(II) chloride CoCl(2), and cobalt(II) acetate Co(CH(3)COO)(2), have been examined. The inhibitory effect was observed in the process initiated by CoCl(2). For the pH test, wide range of pH level (2-10) has been investigated. It was found that the higher rates were obtained in the normal pH levels. At extreme pH levels, the process was impeded by inactivation of PMS at acidic pH and prohibited by precipitation at basic pH. On the other hand, the recycling capability of cobalt oxide and the oxidative potential of cobalt-immobilized titanium dioxide Co-TiO(2) catalyst were analyzed in the heterogeneous process. It was found that the higher the cobalt content in the catalyst, the better the removal performance was resulted. At last, the Co-TiO(2) catalyst synthesized in this work was found to be very effective in transforming ATZ as well as its intermediate in the presence of UV-vis irradiation.

  15. Electron-transfer reactions of cobalt(III) complexes. 1. The kinetic investigation of the reduction of various surfactant cobalt(III) complexes by iron(II) in surface active ionic liquids.

    PubMed

    Nagaraj, Karuppiah; Senthil Murugan, Krishnan; Thangamuniyandi, Pilavadi; Sakthinathan, Subramanian

    2015-05-15

    The kinetics of outer sphere electron transfer reaction of surfactant cobalt(III) complex ions, cis-[Co(en)2(C12H25NH2)2](3+) (1), cis-[Co(dp)2(C12H25NH2)2](3+) (2), cis-[Co(trien)(C12H25NH2)2](3+) (3), cis-[Co(bpy)2(C12H25NH2)2](3+) (4) and cis-[Co(phen)2(C12H25NH2)2](3+) (5) (en: ethylenediamine, dp: diaminopropane, trien : triethylenetetramine, bpy: 2,2'-bipyridyl, phen: 1,10-phenanthroline and C12H25NH2 : dodecylamine) have been interrogated by Fe(2+) ion in ionic liquid (1-butyl-3-methylimidazoliumbromide) medium at different temperatures (298, 303, 308, 313, 318 and 323K) by the spectrophotometry method under pseudo first order conditions using an excess of the reductant. Experimentally the reactions were found to be of second order and the electron transfer as outer sphere. The second order rate constant for the electron transfer reaction in ionic liquids was found to increase with increase in the concentration of all these surfactant cobalt(III) complexes. Among these complexes (from en to phen ligand), complex containing the phenanthroline ligand rate is higher compared to other complexes. By assuming the outer sphere mechanism, the results have been explained based on the presence of aggregated structures containing cobalt(III) complexes at the surface of ionic liquids formed by the surfactant cobalt(III) complexes in the reaction medium. The activation parameters (enthalpy of activation ΔH(‡) and entropy of activation ΔS(‡)) of the reaction have been calculated which substantiate the kinetics of the reaction.

  16. Electron-transfer reactions of cobalt(III) complexes. 1. The kinetic investigation of the reduction of various surfactant cobalt(III) complexes by iron(II) in surface active ionic liquids

    NASA Astrophysics Data System (ADS)

    Nagaraj, Karuppiah; Senthil Murugan, Krishnan; Thangamuniyandi, Pilavadi; Sakthinathan, Subramanian

    2015-05-01

    The kinetics of outer sphere electron transfer reaction of surfactant cobalt(III) complex ions, cis-[Co(en)2(C12H25NH2)2]3+ (1), cis-[Co(dp)2(C12H25NH2)2]3+ (2), cis-[Co(trien)(C12H25NH2)2]3+ (3), cis-[Co(bpy)2(C12H25NH2)2]3+ (4) and cis-[Co(phen)2(C12H25NH2)2]3+ (5) (en: ethylenediamine, dp: diaminopropane, trien : triethylenetetramine, bpy: 2,2‧-bipyridyl, phen: 1,10-phenanthroline and C12H25NH2 : dodecylamine) have been interrogated by Fe2+ ion in ionic liquid (1-butyl-3-methylimidazoliumbromide) medium at different temperatures (298, 303, 308, 313, 318 and 323 K) by the spectrophotometry method under pseudo first order conditions using an excess of the reductant. Experimentally the reactions were found to be of second order and the electron transfer as outer sphere. The second order rate constant for the electron transfer reaction in ionic liquids was found to increase with increase in the concentration of all these surfactant cobalt(III) complexes. Among these complexes (from en to phen ligand), complex containing the phenanthroline ligand rate is higher compared to other complexes. By assuming the outer sphere mechanism, the results have been explained based on the presence of aggregated structures containing cobalt(III) complexes at the surface of ionic liquids formed by the surfactant cobalt(III) complexes in the reaction medium. The activation parameters (enthalpy of activation ΔH‡ and entropy of activation ΔS‡) of the reaction have been calculated which substantiate the kinetics of the reaction.

  17. Electron-transfer reactions of cobalt(III) complexes. 1. The kinetic investigation of the reduction of various surfactant cobalt(III) complexes by iron(II) in surface active ionic liquids.

    PubMed

    Nagaraj, Karuppiah; Senthil Murugan, Krishnan; Thangamuniyandi, Pilavadi; Sakthinathan, Subramanian

    2015-05-15

    The kinetics of outer sphere electron transfer reaction of surfactant cobalt(III) complex ions, cis-[Co(en)2(C12H25NH2)2](3+) (1), cis-[Co(dp)2(C12H25NH2)2](3+) (2), cis-[Co(trien)(C12H25NH2)2](3+) (3), cis-[Co(bpy)2(C12H25NH2)2](3+) (4) and cis-[Co(phen)2(C12H25NH2)2](3+) (5) (en: ethylenediamine, dp: diaminopropane, trien : triethylenetetramine, bpy: 2,2'-bipyridyl, phen: 1,10-phenanthroline and C12H25NH2 : dodecylamine) have been interrogated by Fe(2+) ion in ionic liquid (1-butyl-3-methylimidazoliumbromide) medium at different temperatures (298, 303, 308, 313, 318 and 323K) by the spectrophotometry method under pseudo first order conditions using an excess of the reductant. Experimentally the reactions were found to be of second order and the electron transfer as outer sphere. The second order rate constant for the electron transfer reaction in ionic liquids was found to increase with increase in the concentration of all these surfactant cobalt(III) complexes. Among these complexes (from en to phen ligand), complex containing the phenanthroline ligand rate is higher compared to other complexes. By assuming the outer sphere mechanism, the results have been explained based on the presence of aggregated structures containing cobalt(III) complexes at the surface of ionic liquids formed by the surfactant cobalt(III) complexes in the reaction medium. The activation parameters (enthalpy of activation ΔH(‡) and entropy of activation ΔS(‡)) of the reaction have been calculated which substantiate the kinetics of the reaction. PMID:25721780

  18. Crystal structure of bis­(di­methyl­ammonium) hexa­aqua­cobalt(II) bis­(sulfate) dihydrate

    PubMed Central

    Held, Peter

    2015-01-01

    The title salt, (C2H8N)2[Co(H2O)6)](SO4)2·2H2O, is isotypic with (C2H8N)2[Ni(H2O)6)](SO4)2·2H2O. The Co—O bond lengths in the [Co(H2O)6]2+ complex cation show very similar distances as in the related Tutton salt (NH4)2[Co(H2O)6)](SO4)2 [average 2.093 (17) Å], but are significantly longer than in the isotypic NiII compound (Δd ≃ 0.04 Å). The cobalt cation reaches an overall bond-valence sum of 1.97 valence units. The S—O distances are nearly equal, ranging from 1.454 (4) to 1.470 (3) Å [mean 1.465 (12) Å]; however, the O—S—O angles vary clearly from 108.1 (2) to 110.2 (2)° [average bond angle 109.5 (9)°]. The non-coordinating water mol­ecules and di­methyl­ammonium cations connect the sulfate tetrahedra and the [Co(H2O)6]2+ octa­hedron via O—H⋯O and N—H⋯O hydrogen bonds of weak up to medium strength into a three-dimensional framework whereby the complex metal cations and sulfate anions are arranged in sheets parallel to (001). PMID:26029410

  19. Effect of Dispersion on Surface Interactions of Cobalt(II) Octaethylporphyrin Monolayer on Au(111) and HOPG(0001) Substrates: a Comparative First Principles Study

    SciTech Connect

    Chilukuri, Bhaskar; Mazur, Ursula; Hipps, Kerry W.

    2014-07-21

    A density functional theory study of a cobalt(II) octaethylporphyrin (CoOEP) monolayer on Au(111) and HOPG(0001) surfaces was performed under periodic boundary conditions. Calculations with and without dispersion corrections are performed and the effect of van der Waals forces on the interface properties is analyzed. Calculations have determined that the CoOEP molecule tends to bind at the 3-fold and the 6-fold center sites on Au(111) and HOPG(0001), respectively. Geometric optimizations at the center binding sites have indicated that the porphyrin molecules (in the monolayer) lie flat on both substrates. Calculations also reveal that the CoOEP monolayer binds slightly more strongly to Au(111) than to HOPG(0001). Charge density difference plots disclose that charge is redistributed mostly around the porphyrin plane and the first layer of the substrates. Dispersion interactions cause a larger substrate to molecule charge pushback on Au(111) than on HOPG. CoOEP adsorption tends to lower the work functions of either substrate, qualitatively agreeing with the experimental photoelectron spectroscopic data. Comparison of the density of states (DOS) of the isolated CoOEP molecule with that on gold and HOPG substrates showed significant band shifts around the Fermi energy due to intermolecular orbital hybridization. Simulated STM images were plotted with the Tersoff–Hamann approach using the local density of states, which also agree with the experimental results. This study elucidates the role of dispersion for better describing porphyrin–substrate interactions. A DFT based overview of geometric, adsorption and electronic properties of a porphyrin monolayer on conductive surfaces is presented.

  20. Effect of dispersion on surface interactions of cobalt(II) octaethylporphyrin monolayer on Au(111) and HOPG(0001) substrates: a comparative first principles study.

    PubMed

    Chilukuri, Bhaskar; Mazur, Ursula; Hipps, K W

    2014-07-21

    A density functional theory study of a cobalt(II) octaethylporphyrin (CoOEP) monolayer on Au(111) and HOPG(0001) surfaces was performed under periodic boundary conditions. Calculations with and without dispersion corrections are performed and the effect of van der Waals forces on the interface properties is analyzed. Calculations have determined that the CoOEP molecule tends to bind at the 3-fold and the 6-fold center sites on Au(111) and HOPG(0001), respectively. Geometric optimizations at the center binding sites have indicated that the porphyrin molecules (in the monolayer) lie flat on both substrates. Calculations also reveal that the CoOEP monolayer binds slightly more strongly to Au(111) than to HOPG(0001). Charge density difference plots disclose that charge is redistributed mostly around the porphyrin plane and the first layer of the substrates. Dispersion interactions cause a larger substrate to molecule charge pushback on Au(111) than on HOPG. CoOEP adsorption tends to lower the work functions of either substrate, qualitatively agreeing with the experimental photoelectron spectroscopic data. Comparison of the density of states (DOS) of the isolated CoOEP molecule with that on gold and HOPG substrates showed significant band shifts around the Fermi energy due to intermolecular orbital hybridization. Simulated STM images were plotted with the Tersoff-Hamann approach using the local density of states, which also agree with the experimental results. This study elucidates the role of dispersion for better describing porphyrin-substrate interactions. A DFT based overview of geometric, adsorption and electronic properties of a porphyrin monolayer on conductive surfaces is presented.

  1. Synthesis of bis(N-arylcarboximidoylchloride)pyridine cobalt(II) complexes and their catalytic behavior for 1,3-butadiene polymerization.

    PubMed

    Liu, Heng; Jia, Xiangyu; Wang, Feng; Dai, Quanquan; Wang, Baolin; Bi, Jifu; Zhang, Chunyu; Zhao, Liping; Bai, Chenxi; Hu, Yanming; Zhang, Xuequan

    2013-10-01

    A new family of bis(N-arylcarboximidoylchloride)pyridine cobalt(II) complexes with the general formula [2,6-(ArN=CCl)2C5H3N]CoCl2 (Ar = 2,4,6-Me3C6H2, 4a; 2,6-(i)Pr2C6H3, 4b; 2,6-Me2C6H3, 4c; C6H5, 4d; 4-Cl-2,6-Me2C6H2, 4e) and a typical Brookhart-Gibson-type reference complex [2,6-(2,4,6-Me3C6H2N=CMe)2C5H3N]CoCl2 (5a) were synthesized and characterized. Determined by X-ray crystallographic analysis, complexes 4a, 4c-e, and 5a adopted a trigonal bipyramidal configuration, and 4b adopted a distorted square pyramidal geometry. In combination with ethylaluminum sesquichloride (EASC), all the complexes were highly active towards 1,3-butadiene polymerization, affording polybutadiene with predominant cis-1,4 content (up to 96%). 4a with chlorine atoms at the imine groups exhibited higher catalytic activity than did 5a, indicating that the incorporation of chlorine atoms into the ligand improves the activity. The activity of the complexes in 1,3-butadiene polymerization was in the order of 4a > 4c ∼ 4e ∼ 4b > 4d, which is consistent with the trend of spatial opening degree around the metal center in the complexes as revealed by crystallographic data. Screening polymerization conditions proved that EASC was the most efficient among the cocatalysts examined. PMID:23907329

  2. Synthesis, characterization and antitumoral activity of new cobalt(II)complexes: Effect of the ligand isomerism on the biological activity of the complexes.

    PubMed

    Morcelli, Samila R; Bull, Érika S; Terra, Wagner S; Moreira, Rafaela O; Borges, Franz V; Kanashiro, Milton M; Bortoluzzi, Adailton J; Maciel, Leide L F; de A Almeida, João Carlos; Júnior, Adolfo Horn; Fernandes, Christiane

    2016-08-01

    The synthesis, physico-chemical characterization and cytotoxicity against five human tumoral cell lines (THP-1, U937, Molt-4, Colo205 and H460) of three new cobalt(II) coordination compounds are reported (i.e. Co(HL1)Cl (1), Co(HL2)Cl (2) and [Co(HL3)Cl]0.0.5 (CH3)2CHOH (3)). H2L2 (2-{[[2-hydroxy-3-(1-naphthyloxy)propyl](pyridin-2-ylmethyl)amino]methyl}phenol) and H2L3 (2-{[[2-hydroxy-3-(2-naphthyloxy)propyl](pyridin-2-ylmethyl)amino]methyl}phenol) present α and β-naphthyl groups respectively, which is absent in H2L1 (N-(2-hydroxybenzyl)-N-(2-pyridylmethyl)[(3-chloro)(2-hydroxy)]propylamine. These compounds were characterized by a range of physico-chemical methods. X-ray diffraction studies were performed for complex (3), indicating the formation of a mononuclear complex. Complexes (2) and (3), which contain α and β-naphthyl groups respectively, have presented lower IC50 values than those exhibited by complex (1). Complex (3) presents IC50 values lower than cisplatin against Colo205 (90 and 196μmolL(-1), respectively) and H460 (147 and 197μmolL(-1), respectively). These human neoplastic cells under investigation were also more susceptible toward complex (3) than peripheral blood mononuclear cells. Transmission electron microscopy investigations are in agreement with the loss of mitochondrial membrane potential (ΔΨm) observed by JC-1 mitochondrial potential sensor and indicate that the activity of complex (3) against leukemic cell line (U937) is mediated by an apoptotic mechanism associated with mitochondrial dysfunction (intrinsic pathway).

  3. Solvent-induced synthesis of cobalt(II) coordination polymers based on a rigid ligand and flexible carboxylic acid ligands: syntheses, structures and magnetic properties.

    PubMed

    Wang, Ting; Zhang, Chuanlei; Ju, Zemin; Zheng, Hegen

    2015-04-21

    Five new cobalt(ii) coordination architectures, {[Co(L)2(H2O)2]·2H2O·2NO3}n (), {[Co(L)(ppda)]·2H2O}n (), {[Co2(L)(ppda)2]2·H2O}n (), {[Co(L)(nba)]·5H2O}n (), and {[Co(L)(oba)]2·3H2O}n (), have been constructed from the rigid ligand L [L = 2,8-di(1H-imidazol-1-yl)dibenzofuran] and different flexible carboxylic acid ligands [H2ppda = 4,4'-(perfluoropropane-2,2-diyl)dibenzoic acid, H2nba = 4,4'-azanediyldibenzoic acid, and H2oba = 4,4'-oxydibenzoic acid]. Depending on the nature of the solvent systems, these five different coordination polymers were synthesized and characterized by single-crystal X-ray diffraction, IR, PXRD and elemental analysis. Compounds , and were obtained by a one-pot method, and then we utilized the solvent-induced effect to obtain almost pure crystals of , respectively. Compound is an infinite 1D chain which is formed by L ligands and Co atoms. Compound contains a [Co2(CO2)4] secondary building unit (SBU), and can be topologically represented as a 6-connected 2-fold interpenetrating pcu net with the point symbol of {4(12)·6(3)}. Compound can be characterized as a 4-connected sql tetragonal planar network with the point symbol of {4(4)·6(2)}. In compounds and , there is a 1D chain which is formed by flexible carboxylic acid ligands and Co atoms; then the 1D chain is linked by L ligands in the tilting direction, leading to the formation of a 2D layer. Furthermore, UV-vis, TGA and magnetic properties have been investigated in detail. PMID:25778448

  4. Effect of three bis-pyridyl-bis-amide ligands with various spacers on the structural diversity of new multifunctional cobalt(II) coordination polymers

    NASA Astrophysics Data System (ADS)

    Lin, Hong-Yan; Lu, Huizhe; Le, Mao; Luan, Jian; Wang, Xiu-Li; Liu, Guocheng; Zhang, Juwen

    2015-03-01

    Three new cobalt(II) coordination polymers [Co2(1,4-NDC)2(3-bpye)(H2O)] (1), [Co(1,4-NDC)(3-bpfp)(H2O)] (2) and [Co(1,4-NDC)(3-bpcb)] (3) [3-bpye=N,N‧-bis(3-pyridinecarboxamide)-1,2-ethane, 3-bpfp=bis(3-pyridylformyl)piperazine, 3-bpcb=N,N‧-bis(3-pyridinecarboxamide)-1,4-benzene, and 1,4-H2NDC=1,4-naphthalenedicarboxylic acid] have been hydrothermally synthesized. The structures of complexes 1-3 have been determined by X-ray single crystal diffraction analyses and further characterized by infrared spectroscopy (IR), powder X-ray diffraction (PXRD) and thermogravimetric analyses (TGA). Complex 1 is a 3D coordination structure with 8-connected {420.68} topology constructed from 3D [Co2(1,4-NDC)2(H2O)]n framework and bidentate 3-bpye ligands. Complex 2 shows 1D "cage+cage"-like chain formed by 1D [Co2(1,4-NDC)2]n ribbon chains and [Co2(3-bpfp)2] loops, which are further linked by hydrogen bonding interactions to form a 3D supramolecular network. Complex 3 displays a 3D coordination network with a 6-connected {412.63} topology based on 2D [Co2(1,4-NDC)2]n layers and bidentate 3-bpcb bridging ligands. The influences of different bis-pyridyl-bis-amide ligands with various spacers on the structures of title complexes are studied. Moreover, the fluorescent properties, electrochemical behaviors and magnetic properties of complexes 1-3 have been investigated.

  5. Saddle-shaped macrocycle distortion and symmetry decrease in cobalt (II) meso-tetraphenylporphyrin: Structure of a dichloromethane solvate and DFT calculations

    NASA Astrophysics Data System (ADS)

    de Melo, Cristiane Cabral; Moreira, Wania da Conceição; Martins, Tássia Joi; Cordeiro, Márcia Regina; Ellena, Javier; Guimarães, Freddy Fernandes; Martins, Felipe Terra

    2014-11-01

    Many studies about porphyrins have emerged in recent years, including studies using porphyrins as building blocks for supramolecular assemblies. Understanding new solid state forms of porphyrins and the elucidation of their structures can have remarkable benefits for nanoscience and synthetic biology. In this study, a new pseudopolymorph of cobalt (II) meso-tetraphenylporphyrin, (CoTPP), was synthesized in a known one-pot reaction, rather than using many-step conventional methods, was isolated and was characterized for the first time by low-temperature single crystal X-ray diffraction. It is a nonstoichiometric solvate assembled into dichloromethane channels. The most striking feature of this structure is the conformation adopted by the porphyrin macrocycle. In contrast to the non-solvated form of CoTPP that exhibits a ruffled core distortion and crystallizes in the tetragonal space group I-42d, this solvated form has been crystallized in the triclinic space group Pī and shows a distinct saddle-shaped macrocycle distortion. In the triclinic form, the conformation of one of the four phenyl rings is remarkably different from the others. A potential energy surface scan of the torsional angles around the bonds between this phenyl moiety and the macrocycle of CoTPP in both the non-solvated and the solvate forms demonstrates that the saddle-shaped macrocycle distortion depends on the unusual phenyl conformation. The distortion is responsible for the symmetry decrease in the channel solvate form, causing a loss of the 4-fold rotoinversion axis observed in the non-solvated tetragonal phase, which has identical phenyl conformations.

  6. 3D chiral and 2D achiral cobalt(ii) compounds constructed from a 4-(benzimidazole-1-yl)benzoic ligand exhibiting field-induced single-ion-magnet-type slow magnetic relaxation.

    PubMed

    Wang, Yu-Ling; Chen, Lin; Liu, Cai-Ming; Du, Zi-Yi; Chen, Li-Li; Liu, Qing-Yan

    2016-05-01

    Organizing magnetically isolated 3d transition metal ions, which behave as single-ion magnet (SIM) units, in a coordination network is a promising approach to design novel single-molecule magnets (SMMs). Herein 3D chiral and 2D achiral cobalt(ii) coordination compounds based on single metal nodes with a 4-(benzimidazole-1-yl)benzoic acid (Hbmzbc) ligand, namely, [Co(bmzbc)2(1,2-etdio)]n () (1,2-etdio = 1,2-ethanediol) and [Co(bmzbc)2(Hbmzbc)]n (), have been synthesized and structurally characterized. The 3D chiral structure with 2-fold interpenetrating qtz topological nets consisting of totally achiral components was obtained via spontaneous resolution, while the achiral structure is a 2D (4,4) net. In both structures, individual cobalt(ii) ions are spatially well separated by the long organic ligands in the well-defined networks. Magnetic measurements on and showed field-induced slow magnetic relaxation resulting from single-ion anisotropy of the individual Co(ii) ions. Analysis of the dynamic ac susceptibilities with the Arrhenius law afforded an anisotropy energy barrier of 16.8(3) and 31.3(2) K under a 2 kOe static magnetic field for and , respectively. The distinct coordination environments of the Co(ii) ions in and lead to the different anisotropic energy barriers. PMID:27054774

  7. Synthesis and Reactivity of Four- and Five-Coordinate Low-Spin Cobalt(II) PCP Pincer Complexes and Some Nickel(II) Analogues

    PubMed Central

    2014-01-01

    Anhydrous CoCl2 or [NiCl2(DME)] reacts with the ligand PCPMe-iPr (1) in the presence of nBuLi to afford the 15e and 16e square planar complexes [Co(PCPMe-iPr)Cl] (2) and [Ni(PCPMe-iPr)Cl] (3), respectively. Complex 2 is a paramagnetic d7 low-spin complex, which is a useful precursor for a series of Co(I), Co(II), and Co(III) PCP complexes. Complex 2 reacts readily with CO and pyridine to afford the five-coordinate square-pyramidal 17e complexes [Co(PCPMe-iPr)(CO)Cl] (4) and [Co(PCPMe-iPr)(py)Cl] (5), respectively, while in the presence of Ag+ and CO the cationic complex [Co(PCPMe-iPr)(CO)2]+ (6) is afforded. The effective magnetic moments μeff of all Co(II) complexes were derived from the temperature dependence of the inverse molar magnetic susceptibility by SQUID measurements and are in the range 1.9 to 2.4 μB. This is consistent with a d7 low-spin configuration with some degree of spin–orbit coupling. Oxidation of 2 with CuCl2 affords the paramagnetic Co(III) PCP complex [Co(PCPMe-iPr)Cl2] (7), while the synthesis of the diamagnetic Co(I) complex [Co(PCPMe-iPr)(CO)2] (8) was achieved by stirring 2 in toluene with KC8 in the presence of CO. Finally, the cationic 16e Ni(II) PCP complex [Ni(PCPMe-iPr)(CO)]+ (10) was obtained by reacting complex 3 with 1 equiv of AgSbF6 in the presence of CO. The reactivity of CO addition to Co(I), Co(II), and Ni(II) PCP square planar complexes of the type [M(PCPMe-iPr)(CO)]n (n = +1, 0) was investigated by DFT calculations, showing that formation of the Co species, 6 and 8, is thermodynamically favorable, while Ni(II) maintains the 16e configuration since CO addition is unfavorable in this case. X-ray structures of most complexes are provided and discussed. A structural feature of interest is that the apical CO ligand in 4 deviates significantly from linearity, with a Co–C–O angle of 170.0(1)°. The DFT-calculated value is 172°, clearly showing that this is not a packing but an electronic effect.

  8. Synthesis and Reactivity of Four- and Five-Coordinate Low-Spin Cobalt(II) PCP Pincer Complexes and Some Nickel(II) Analogues

    PubMed Central

    2014-01-01

    Anhydrous CoCl2 or [NiCl2(DME)] reacts with the ligand PCPMe-iPr (1) in the presence of nBuLi to afford the 15e and 16e square planar complexes [Co(PCPMe-iPr)Cl] (2) and [Ni(PCPMe-iPr)Cl] (3), respectively. Complex 2 is a paramagnetic d7 low-spin complex, which is a useful precursor for a series of Co(I), Co(II), and Co(III) PCP complexes. Complex 2 reacts readily with CO and pyridine to afford the five-coordinate square-pyramidal 17e complexes [Co(PCPMe-iPr)(CO)Cl] (4) and [Co(PCPMe-iPr)(py)Cl] (5), respectively, while in the presence of Ag+ and CO the cationic complex [Co(PCPMe-iPr)(CO)2]+ (6) is afforded. The effective magnetic moments μeff of all Co(II) complexes were derived from the temperature dependence of the inverse molar magnetic susceptibility by SQUID measurements and are in the range 1.9 to 2.4 μB. This is consistent with a d7 low-spin configuration with some degree of spin–orbit coupling. Oxidation of 2 with CuCl2 affords the paramagnetic Co(III) PCP complex [Co(PCPMe-iPr)Cl2] (7), while the synthesis of the diamagnetic Co(I) complex [Co(PCPMe-iPr)(CO)2] (8) was achieved by stirring 2 in toluene with KC8 in the presence of CO. Finally, the cationic 16e Ni(II) PCP complex [Ni(PCPMe-iPr)(CO)]+ (10) was obtained by reacting complex 3 with 1 equiv of AgSbF6 in the presence of CO. The reactivity of CO addition to Co(I), Co(II), and Ni(II) PCP square planar complexes of the type [M(PCPMe-iPr)(CO)]n (n = +1, 0) was investigated by DFT calculations, showing that formation of the Co species, 6 and 8, is thermodynamically favorable, while Ni(II) maintains the 16e configuration since CO addition is unfavorable in this case. X-ray structures of most complexes are provided and discussed. A structural feature of interest is that the apical CO ligand in 4 deviates significantly from linearity, with a Co–C–O angle of 170.0(1)°. The DFT-calculated value is 172°, clearly showing that this is not a packing but an electronic effect. PMID:27642210

  9. In-vitro antibacterial, antifungal and cytotoxic activity of cobalt (II), copper (II), nickel (II) and zinc (II) complexes with furanylmethyl- and thienylmethyl-dithiolenes: [1, 3-dithiole- 2-one and 1,3-dithiole-2-thione].

    PubMed

    Chohan, Zahid H; Shaikh, Ali U; Supuran, Claudiu T

    2006-12-01

    Some antibacterial and antifungal furanylmethyl-and thienylmethyl dithiolenes and, their Co(II), Cu(II), Ni (II) and Zn (II) complexes have been synthesized, characterized and screened for their in vitro antibacterial activity against four Gram-negative; Escherichia coli, Pseudomonas aeruginosa, Salmonella typhi and Shigella flexeneri, and two Gram-positive; Bacillus subtilis and Staphylococcus aureus bacterial strains, and for in-vitro antifungal activity against Trichophyton longifusus, Candida albicans, Aspergillus flavus, Microsporum canis, Fusarium solani and Candida glaberata. All compounds showed significant antibacterial and antifungal activity. The metal complexes, however, were shown to possess better activity as compared to the simple ligands. The brine shrimp bioassay was also carried out to study their in-vitro cytotoxic properties. PMID:17252947

  10. Formation of bile pigments by coupled oxidation of cobalt-substituted haemoglobin and myoglobin.

    PubMed Central

    Vernon, D I; Brown, S B

    1984-01-01

    Treatment of cobalt-substituted haemoglobin and myoglobin with ascorbate and molecular O2 (coupled oxidation) resulted in biliverdin formation from the cobalt(II) derivatives but not from the cobalt(III) derivatives. This was apparently due to the inability of ascorbate to reduce cobalt(III) haemoproteins. Isomer analysis of the biliverdins produced from coupled oxidation of cobalt(II) oxyhaemoglobin suggested that the orientation of the cobalt protoporphyrin IX in the haem pocket differed slightly from that of the haem in native haemoglobin. PMID:6497839

  11. Tetra­aqua­bis­(piperazin-1-ium)cobalt(II) bis­(sulfate) dihydrate

    PubMed Central

    Sahbani, Thameur; Smirani Sta, Wajda; Rzaigui, Mohamed

    2013-01-01

    In the centrosymmetric title compound, [Co(C4H11N2)2(H2O)4](SO4)2·2H2O, the CoII atom is coordinated in a distorted octa­hedral geometry by four water O atoms and two piperazinium N atoms. These four water O atoms define an equatorial plane with a maximum deviation of 0.0384 (1) Å while the two piperazinium N atoms complete the octa­hedron in the axial positions. Neighboring complex mol­ecules and sulfate anions are connected through an extensive network of N—H⋯O and O—H⋯O hydrogen bonds, which link the different chemical species into layers in the ab plane. Additional Owater—H⋯O hydrogen bonds involving the non-coordinating water mol­ecules and C—H⋯O inter­actions connect these layers into a three-dimensional supra­molecular structure. PMID:24454163

  12. Aromatic carboxylate effect on dimensionality of three bis(benzimidazole)-based cobalt(II) coordination polymers: Syntheses, structures and properties

    NASA Astrophysics Data System (ADS)

    Zhang, Ju-Wen; Gong, Chun-Hua; Hou, Li-Li; Tian, Ai-Xiang; Wang, Xiu-Li

    2013-09-01

    Three new metal-organic coordination polymers [Co(4-bbc)2(bbbm)] (1), [Co(3,5-pdc)(bbbm)]·2H2O (2) and [Co(1,4-ndc)(bbbm)] (3) (4-Hbbc=4-bromobenzoic acid, 3,5-H2pdc=3,5-pyridinedicarboxylic acid, 1,4-H2ndc=1,4-naphthalenedicarboxylic acid and bbbm=1,1-(1,4-butanediyl)bis-1H-benzimidazole) were hydrothermally synthesized and structurally characterized. Polymer 1 is a 1D chain formed by the bbbm ligands and CoII ions. Polymer 2 exhibits a 2D network with a (3·4·5)(32·4·5·62·74) topology. Polymer 3 possesses a 3D three-fold interpenetrating framework. The versatile structures of title polymers indicate that the aromatic carboxylates have an important influence on the dimensionality of 1-3. Moreover, the thermal stability, electrochemical and luminescent properties of 1-3 were investigated.

  13. Magnetic structure and dynamics of a strongly one-dimensional cobaltII metal-organic framework

    NASA Astrophysics Data System (ADS)

    Sibille, Romain; Lhotel, Elsa; Mazet, Thomas; Malaman, Bernard; Ritter, Clemens; Ban, Voraksmy; François, Michel

    2014-03-01

    We investigate the magnetism of the CoII4(OH)2(C10H16O4)3 metal-organic framework, which displays complex inorganic chains separated from each other by distances of 1 to 2 nm and orders at 5.4 K. The zero-field magnetic structure is determined using neutron powder diffraction: it is mainly antiferromagnetic but possesses a ferromagnetic component along the c axis. This magnetic structure persists in presence of a magnetic field. Alternating current susceptibility measurements confirm the existence of a single thermally activated regime over seven decades in frequency (E /kB≈64 K), whereas time-dependent relaxation of the magnetization after saturation in an external field leads to a two times smaller energy barrier. These experiments probe the slow dynamics of domain walls within the chains: we propose that the ac measurements are sensitive to the motion of existing domain walls within the chains, while the magnetization measurements are governed by the creation of domain walls.

  14. Electrochemical-driven water splitting catalyzed by a water-soluble cobalt(II) complex supported by N,N‧-bis(2‧-pyridinecarboxamide)-1,2-benzene with high turnover frequency

    NASA Astrophysics Data System (ADS)

    Wang, Zhuo-Qiang; Tang, Ling-Zhi; Zhang, Yun-Xiao; Zhan, Shu-Zhong; Ye, Jian-Shan

    2015-08-01

    The oxidation and reduction of water is a key challenge in the production of chemical fuels from electricity. Reported here is a soluble cobalt (II) complex, [Co(bpbH2)Cl2] 1 (bpbH2: N,N‧-bis(2‧-pyridinecarboxamide)-1,2-benzene), a highly active homogeneous electrocatalyst for both electrolytic water oxidation and reduction in purely aqueous solution. Electrochemical studies indicate that the catalyst is a water-soluble molecular species, that is among the most rapid homogeneous catalysts for water oxidation, with a turnover frequency of ∼81.54 s-1 (at pH 8.6, the lowest pH among those of any reported electrocatalysts) at an overpotential of 560 mV. 1 also can catalyze hydrogen evolution from water with a TOF of 376 mol of hydrogen per mole of catalyst per hour at an overpotential of 687.6 mV (pH 7.0). This is attributed to the planar ligand (bpbH2), that coordinates strongly through four nitrogen atoms to the cobalt center, leaving two Cl- ions in axial position and making the Cl- ion ionize in organic solvents or water, and can stabilize both the high and low oxidation states of cobalt well.

  15. Synthesis, X-ray crystal structure and spectroscopy of a Werner-type host Co(II) complex, trans-bisisothiocyanatotetrakis( trans-4-styrylpyridine)cobalt(II)

    NASA Astrophysics Data System (ADS)

    Karunakaran, C.; Thomas, K. R. J.; Shunmugasundaram, A.; Murugesan, R.

    2000-05-01

    Single crystals of the title Co(II) complex, [Co(stpy) 4(NCS) 2] [stpy= trans-4-styrylpyridine] are prepared and characterized by elemental analysis, IR, and UV-visible spectroscopy and X-ray crystal structure determination. The complex crystallizes in the orthorhombic space group Pna2 1 with unit-cell parameters, a=32.058(3), b=15.362(5), c=9.818(5) Å, and Z=4. The structure consists of discrete monomeric units of [Co(stpy) 4(NCS) 2]. The equatorial positions of the Co(II) polyhedron are occupied by nitrogen atoms of the four stpy ligands and the axial positions are occupied by the nitrogen atoms of the two thiocyanate ions. The unit cell packing reveals interpenetration of styryl groups owing to conformational flexibility of phenyl and pyridyl rings in stpy ligands. Thus, it leads to efficient packing of the crystal lattice leaving no space available for guest inclusion. IR spectra reveal nitrogen coordination from stpy and terminal -NCS coordination of the thiocyanate group. The optical reflectance bands 475, 540 (shoulder) and 1022 nm suggest octahedral geometry in accordance with the X-ray data. However, the optical spectrum of acetonitrile solution shows an intense band at 615 nm and a weak shoulder at 570 nm suggesting participation of the solvent molecules in the coordination sphere. These bands indicate the presence of both tetrahedral and octahedral species in solution.

  16. Bis(pyridine-κN)bis-[4,4,4-trifluoro-1-(4-fluoro-phen-yl)butane-1,3-dionato-κO,O']cobalt(II).

    PubMed

    Fan, Ling; Wang, Dunjia; Peng, Lihong; Ke, Xiaocui

    2008-01-16

    In the structure of the title compound, [Co(C(10)H(5)F(4)O(2))(2)(C(5)H(5)N)(2)], cobalt(II) forms a complex with two 4,4,4-trifluoro-1-(4-fluoro-phen-yl)butane-1,3-dionate anions and two pyridine mol-ecules in an octa-hedral coordination environment, where the two dionate ligands are in equatorial positions and the two pyridine mol-ecules in axial positions. The complex is located on a crystallographic inversion centre.

  17. Comparison of technetium-99m-HM-PAO leukocytes with indium-111-oxine leukocytes for localizing intraabdominal sepsis

    SciTech Connect

    Mountford, P.J.; Kettle, A.G.; O'Doherty, M.J.; Coakley, A.J. )

    1990-03-01

    Technetium-99m-HM-PAO (({sup 99m}Tc)HM-PAO) leukocyte and indium-111-oxine (111In-oxine) leukocyte scanning were carried out simultaneously in 41 patients at 4 hr and 24 hr after reinjection to determine whether the 4-hr {sup 99m}Tc scan could replace the 24-hr {sup 111}In scan for detecting intraabdominal sepsis. Abdominal infection was confirmed in 12 cases. The 4-hr {sup 99}Tc-leukocyte scan, the 4-hr {sup 111}In-leukocyte scan, and the 24-hr {sup 111}In-leukocyte scan yielded a sensitivity of 100%, 67%, and 100%, respectively, and a specificity of 62%, 90%, and 86%, respectively. The 24-hr {sup 99m}Tc-leukocyte scan also produced a sensitivity of 100%, but it was falsely positive in all 29 cases without infection due to physiologic bowel uptake. False-positive 4-hr {sup 99m}Tc-leukocyte scans were also produced by physiologic bowel uptake in seven cases all of whom had true-negative 4-hr and 24-hr {sup 111}In-leukocyte scans. Because of the high incidence of false-positive 4-hr ({sup 99m}Tc)HM-PAO leukocyte scans, it was concluded that they could not replace 24-hr {sup 111}In-leukocyte scans for detecting intraabdominal sepsis, and that serial {sup 99m}Tc leukocyte scans starting earlier than 4 hr after reinjection must be evaluated.

  18. Study of multiphasic molybdate-based catalysts. II. Synergy effect between bismuth molybdates and mixed iron and cobalt molybdates in mild oxidation of propene

    SciTech Connect

    Millet, J.M.M.; Ponceblanc, H.; Coudurier, G.; Vedrine, J.C. ); Herrmann, J.M. )

    1993-08-01

    Results are reported concerning the synergy effect observed in the oxidation of propene to acrolein over bismuth and mixed iron and cobalt molybdates. The pure bismuth, iron, and cobalt molybdates and mixed cobalt and iron molybdates (solid solutions) have been prepared and individually tested as catalysts. Mechanical mixtures of these phases have been prepared and tested as catalysts. All the catalysts have been characterized before and after the catalytic reaction by several techniques such as ESR, XPS, EDX-STEM, TEM, XRD, and Moessbauer and UV spectroscopies. The synergy effect observed is tentatively explained as due to the deposition on the large bismuth molybdate particles of smaller mixed iron and cobalt molybdate particles with spreading of the bismuth molybdate over the latter particles. It is proposed that the Fe[sub x]Co[sub 1-x]MoO[sub 4] phase plays the role of the fast electron conducting material which enhances the electron mobility and the efficiency of the redox mechanism, the active and selective phase being the overlying bismuth molybdate compounds. 27 refs., 5 figs., 7 tabs.

  19. Bis(2-meth­oxy­benzyl­ammonium) di­aqua­bis­(di­hydrogen diphosphato-κ2 O,O′)cobaltate(II) dihydrate

    PubMed Central

    Elboulali, Adel; Selmi, Ahmed; Ratel-Ramond, Nicolas; Rzaigui, Mohamed; Akriche, Samah Toumi

    2014-01-01

    The title compound, (C8H12NO)2[Co(H2P2O7)2(H2O)2]·2H2O, crystallizes isotypically with its MnII analogue. It consists of alternating layers of organic cations and inorganic complex anions, extending parallel to (100). The complex cobaltate(II) anion exhibits -1 symmetry. Its Co2+ atom has an octa­hedral coordination sphere, defined by two water mol­ecules in apical positions and two H2P2O7 2− ligands in equatorial positions. The cohesion between inorganic and organic layers is accomplished by a set of O—H⋯O and N—H⋯O hydrogen bonds involving the organic cation, the inorganic anion and the remaining lattice water mol­ecules. PMID:24826105

  20. Copper catalysis for enhancement of cobalt leaching and acid utilization efficiency in microbial fuel cells.

    PubMed

    Liu, Yaxuan; Shen, Jingya; Huang, Liping; Wu, Dan

    2013-11-15

    Enhancement of both cobalt leaching from LiCoO2 and acid utilization efficiency (AUE) in microbial fuel cells (MFCs) was successfully achieved by the addition of Cu(II). A dosage of 10mg/L Cu(II) improved both cobalt leaching up to 308% and AUE of 171% compared to the controls with no presence of Cu(II). The apparent activation energy of cobalt leaching catalyzed by Cu(II) in MFCs was only 11.8 kJ/mol. These results demonstrate cobalt leaching in MFCs using Cu(II) as a catalyst may be an effective strategy for cobalt recovery and recycle of spent Li-ion batteries, and the evidence of influence factors including solid/liquid ratio, temperature, and pH and solution conductivity can contribute to improving understanding of and optimizing cobalt leaching catalyzed by Cu(II) in MFCs.

  1. Copper catalysis for enhancement of cobalt leaching and acid utilization efficiency in microbial fuel cells.

    PubMed

    Liu, Yaxuan; Shen, Jingya; Huang, Liping; Wu, Dan

    2013-11-15

    Enhancement of both cobalt leaching from LiCoO2 and acid utilization efficiency (AUE) in microbial fuel cells (MFCs) was successfully achieved by the addition of Cu(II). A dosage of 10mg/L Cu(II) improved both cobalt leaching up to 308% and AUE of 171% compared to the controls with no presence of Cu(II). The apparent activation energy of cobalt leaching catalyzed by Cu(II) in MFCs was only 11.8 kJ/mol. These results demonstrate cobalt leaching in MFCs using Cu(II) as a catalyst may be an effective strategy for cobalt recovery and recycle of spent Li-ion batteries, and the evidence of influence factors including solid/liquid ratio, temperature, and pH and solution conductivity can contribute to improving understanding of and optimizing cobalt leaching catalyzed by Cu(II) in MFCs. PMID:24007993

  2. Spectrophotometric titration of cobalt(II) with CaCl2 in mixed solvents of 2-propanol and water for the analysis of the extraction mechanism of cobalt(II) by salting-out in the presence of CaCl2.

    PubMed

    Chung, Nguyen Huu; Wu, Ying Guang; Tabata, Masaaki

    2005-11-01

    The spectrophotometric titration of cobalt(II) with CaCl2 was carried out in mixed solvents of 2-propanol and water at different solvent compositions of 2-propannol, water and CaCl2 to analyze the salting-out extraction mechanism of Co(II) by the addition of CaCl2 from the mixed solvents. The formation constants of betaCoCl4(2-) = [CoCl4(2-)][Co2+](-1)[Cl-](-4) in both the organic and aqueous phases were determined thorough non-linear regression of the spectrophotometric titration data by a computer program SPECFIT/32. The values of log betaCoCl4(2-) in the aqueous phases were -4.26 +/- 0.03, -4.03 +/- 0.07, -3.83 +/- 0.04, -3.69 +/- 0.03 and -3.46 +/- 0.01 at mole fractions of 2-propanol of 0.026, 0.023, 0.017, 0.014 and 0.012, respectively, and at [CaCl2]/mol dm(-3) values of 3.555 (I = 10.6), 4.276 (I = 12.8), 4.916 (I = 14.7) and 5.444 (I = 16.3), respectively. The formation constants of [CoCl4(2-)] in the organic phase were 5.70 +/- 0.06, 5.44 +/- 0.03, 5.36 +/- 0.06, 5.10 +/- 0.04 and 4.84 +/- 0.05 at mole fractions of water of 0.431, 0.441, 0.444, 0.447 and 0.451, respectively, and at [CaCl2]/mol dm(-3) of 0.941 (I = 2.8), 0.943 (I = 2.8), 1.013 (I = 3.0), 1.090 (I = 3.3) and 1.165 (I = 3.5), respectively. These results suggest the formation of [CoCl4(2-)] of 23-90% in the aqueous phase at the above mole fractions and the quantitative formation of [CoCl4(2-)] in the organic phase. The extraction percentage of [CoCl4(2-)] increased with an increase in [CaCl2]. The distribution constant, KD (= [CoCl4(2-)]org/[CoCl4(2-)]aq), however, decreased and became constant with [CaCl2]. The detailed extraction mechanism of Co(II) is discussed.

  3. Crystal structure of catena-poly[bis(formato-κO)bis-[μ2-1,1'-(1,4-phenyl-ene)bis-(1H-imidazole)-κ(2) N (3):N (3')]cobalt(II)].

    PubMed

    Xu, Guo-Wang; Wang, Ye-Nan; Xia, Hong-Xu; Wang, Zhong-Long

    2015-09-01

    A red block-shaped crystal of the title compound, [Co(HCOO)2(C12H10N4)2] n , was obtained by the reaction of cobalt(II) nitrate hexa-hydrate, formic acid and 1,1'-(1,4-phenyl-ene)bis-(1H-imidazole) (bib) mol-ecules. The asymmetric unit consists of one Co(II) cation, one formate ligand and two halves of a bib ligand. The central Co(II) cation, located on an inversion centre, is coordinated by two carboxyl-ate O atoms and four N atoms from bib ligands, completing an octa-hedral coordination geometry. The Co(II) centres are bridged by bib ligands, giving a two-dimensional net. Topologically, taking the Co(II) atoms as nodes and the bib ligands as linkers, the two-dimensional structure can be simplified as a typical sql/Shubnikov tetra-gonal plane network. The structure features C-H⋯O hydrogen-bonding inter-actions between formate and bib ligands, resulting in a three-dimensional supra-molecular network. PMID:26396863

  4. Characterization of exposures among cemented tungsten carbide workers. Part II: Assessment of surface contamination and skin exposures to cobalt, chromium and nickel.

    PubMed

    Day, Gregory A; Virji, M Abbas; Stefaniak, Aleksandr B

    2009-05-01

    Cobalt, chromium and nickel are among the most commonly encountered contact allergens in the workplace, all used in the production of cemented tungsten carbides (CTC). Exposures to these metal-containing dusts are frequently associated with skin sensitization and/or development of occupational asthma. The objectives of this study were to assess the levels of cobalt, chromium and nickel on work surfaces and on workers' skin in three CTC production facilities. At least one worker in each of 26 work areas (among all facilities) provided hand and neck wipe samples. Wipe samples were also collected from work surfaces frequently contacted by the 41 participating workers. Results indicated that all surfaces in all work areas were contaminated with cobalt and nickel, with geometric means (GMs) ranging from 4.1 to 3057 microg/100 cm(2) and 1.1-185 microg/100 cm(2), respectively; most surfaces were contaminated with chromium (GM=0.36-67 microg/100 cm(2)). The highest GM levels of all metals were found on control panels, containers and hand tools, whereas lowest levels were on office and telecommunication equipment. The highest GM levels of cobalt and nickel on skin were observed among workers in the powder-handling facility (hands: 388 and 24 microg; necks: 55 and 6 microg, respectively). Levels of chromium on workers' skin were generally low among all facilities. Geometric standard deviations associated with surface and skin wipe measurements among work areas were highly variable. Exposure assessment indicated widespread contamination of multiple sensitizing metals in these three facilities, suggesting potential transfer of contaminants from surfaces to skin. Specific action, including improved housekeeping and training workers on appropriate use and care of personal protective equipment, should be implemented to reduce pathways of skin exposure. Epidemiologic studies of associated adverse health effects will likely require more biologically relevant exposure metrics to

  5. Electrosynthesis and stabilization of α-cobalt hydroxide in the presence of trivalent cations

    NASA Astrophysics Data System (ADS)

    Dixit, Mridula; Vishnu Kamath, P.

    Layered double hydroxides (LDHs) of cobalt with aluminium and chromium, isostructural with α-cobalt(II) hydroxide, are electrosynthesized. This paves the way for their possible impregnation into porous metal plaques for ready use as electrodes in alkaline secondary cells. Unlike pure cobalt hydroxide, the LDHs of cobalt are not amphoteric and retain their α-like structure in strong alkali, even after prolonged ageing. In addition, they exhibit electrochemical activity as shown by cyclic voltammetric studies.

  6. Cobalt single-molecule magnet

    NASA Astrophysics Data System (ADS)

    Yang, En-Che; Hendrickson, David N.; Wernsdorfer, Wolfgang; Nakano, Motohiro; Zakharov, Lev N.; Sommer, Roger D.; Rheingold, Arnold L.; Ledezma-Gairaud, Marisol; Christou, George

    2002-05-01

    A cobalt molecule that functions as a single-molecule magnet, [Co4(hmp)4(MeOH)4Cl4], where hmp- is the anion of hydroxymethylpyridine, is reported. The core of the molecule consists of four Co(II) cations and four hmp- oxygen atom ions at the corners of a cube. Variable-field and variable-temperature magnetization data have been analyzed to establish that the molecule has a S=6 ground state with considerable negative magnetoanisotropy. Single-ion zero-field interactions (DSz2) at each cobalt ion are the origin of the negative magnetoanisotropy. A single crystal of the compound was studied by means of a micro-superconducting quantum interference device magnetometer in the range of 0.040-1.0 K. Hysteresis was found in the magnetization versus magnetic field response of this single crystal.

  7. Sperm-macrophage interaction in the mouse: a quantitative assay in vitro using 111indium oxine-labeled sperm

    SciTech Connect

    Olive, D.L.; Weinberg, J.B.; Haney, A.F.

    1987-12-01

    The role of reproductive tract macrophages in contraception and reproductive failure has become widely recognized. However, in vitro analysis of sperm phagocytosis by macrophages has relied upon a semi-quantitative method of sperm counting that is of limited accuracy and reproducibility. We have developed an assay using murine sperm labeled with /sup 111/indium oxine, and results indicate the labeling to be rapid and efficient. Incorporation of /sup 111/indium into sperm increased the dose and sperm concentration and reached 90% maximal uptake after 15 min incubation, with maximal uptake occurring at 30 min. No decrease in sperm motility was noted with levels of oxine in excess of those required for significant labeling. Maximal labeling efficiency occurred in phosphate-buffered saline (PBS), with Dulbecco's modified Eagle's medium (DMEM) + 10% adult bovine serum (ABS) producing significantly less uptake. Label dissociation was detectable in PBS at room temperature, but at 37 degrees C in DMEM + 10% ABS, loss of label occurred at a rate of 23.5%/h. Addition of labeled sperm to murine macrophage monolayers under optimal conditions resulted in uptake of /sup 111/indium by macrophages, while free label was unincorporated. Results indicated assay specificity for macrophage-limited uptake, with insignificant label uptake by nonphagocytic murine fibroblasts and better sensitivity than sperm counting. Macrophages from Bacillus Calmette-Guerin (BCG)-infected mice resulted in a decrease in sperm uptake. Female macrophages showed greater capacity for sperm uptake than those of the male mouse. These initial studies demonstrated the utility of this model system in enhancing the understanding of sperm-macrophage interaction in the female reproductive tract.

  8. Crystal structure of the salt bis-(tri-ethano-lamine-κ(3) N,O,O')cobalt(II) bis-[2-(2-oxo-2,3-di-hydro-1,3-benzo-thia-zol-3-yl)acetate].

    PubMed

    Ashurov, Jamshid M; Obidova, Nodira J; Abdireymov, Hudaybergen B; Ibragimov, Bakhtiyar T

    2016-03-01

    The reaction of 2-(2-oxo-2,3-di-hydro-1,3-benzo-thia-zol-3-yl)acetic acid (NBTA) and tri-ethano-lamine (TEA) with Co(NO3)2 results in the formation of the title complex, [Co(C6H15NO3)2](C9H6NO3S)2, which is formed as a result of the association of bis-(tri-ethano-lamine)-cobalt(II) and 2-(2-oxo-2,3-di-hydro-1,3-benzo-thia-zol-3-yl)acetate units. It crystallizes in the monoclinic centrosymmetric space group P21/c, with the Co(II) ion situated on an inversion centre. In the complex cation, the Co(II) ion is octa-hedrally coordinated by two N,O,O'-tridentate TEA mol-ecules with a facial distribution and the N atoms in a trans arrangement. Two ethanol groups of each TEA mol-ecule form two five-membered chelate rings around the Co(II) ion, while the third ethanol group does not coordinate to the metal. The free and coordinating hy-droxy groups of the TEA mol-ecules are involved in hydrogen bonding with the O atoms of NBTA anions, forming an infinite two-dimensional network extending parallel to the bc plane.

  9. Solvent extraction of cobalt from laterite-ammoniacal leach liquors

    SciTech Connect

    Nilsen, D.N.; Siemens, R.E.; Rhoads, S.C.

    1980-01-01

    The Bureau of Mines is developing a method to recover Ni, Co, and Cu from laterites containing less than 1.2% Ni and 0.25% Co. The method consists of the following basic unit operations: (1) reduction roasting, (2) leaching, (3) solvent extraction, and (4) electrowinning. The method reflects three Bureau of Mines objectives: (1) recovery of critical minerals that are domestically in short supply from low-grade domestic laterites, (2) lower processing energy requirements, and (3) solution recycling. This report deals with the extraction of cobalt and the preparation of a suitable cobalt electrolyte by solvent extraction from liquor produced by this method. Nickel and copper are coextracted with LIX64N from an ammoniacal ammonium sulfate leach liquor containing about 1.00 g/1 Ni, 0.30 g/1 Co, 0.03 g/1 Cu, and 0.02 g/1 Zn. Cobalt (III) in the nickel-copper barren raffinate is reduced to cobalt (II) with cobalt metal. Reduction of cobalt (III) to cobalt (II) greatly aids subsequent extraction. Commercially available XI-51 extracts about 94% of the cobalt from the treated raffinate in one stage in a laboratory mixer-settler continuous circuit. Ammonia loaded on the solvent is removed in two washing steps. About 94% of the cobalt then is stripped from the XI-51 in one stage with spent cobalt electrolyte containing about 77 g/1 Co and 18 g/1 sulfuric acid (H/sub 2/SO/sub 4/). Electrolytes containing less H/sub 2/SO/sub 4/ also may be used. Preliminary data indicate that coextracted zinc may be removed from pregnant cobalt electrolyte containing 3 g/1 or less H/sub 2/SO/sub 4/ with di-(2 ethylhexyl) phosphoric acid (D2EHPA).

  10. A redox-silent analogue of tocotrienol inhibits cobalt(II) chloride-induced VEGF expression via Yes signaling in mesothelioma cells.

    PubMed

    Sato, Ayami; Virgona, Nantiga; Ando, Akira; Ota, Masako; Yano, Tomohiro

    2014-01-01

    Vascular endothelial growth factor (VEGF) plays a crucial role in tumor angiogenesis and represents an attractive anticancer target. We have previously demonstrated that a redox-silent analogue of α-tocotrienol, 6-O-carboxypropyl-α-tocotrienol (T3E) exhibits potent anti-carcinogenic property in human malignant mesothelioma (MM) cells. However, inhibition of tumor growth by targeting VEGF pathway remains undetermined. In this study, we explored the inhibitory effect of T3E on the paracrine secretion of VEGF in MM cells under mimicked hypoxia by cobalt chloride (CoCl2). In this study we examine whether T3E can suppress the secretion of VEGF in MM cells exposed to mimic hypoxia by cobalt chloride (CoCl2). We found that CoCl2-induced hypoxia treatment leads to increased up-regulated hypoxia-inducible factor-2α (HIF-2α) and subsequently induced the secretion of VEGF in MM cells. This up-regulation activation mainly depended on the activation of Yes, a member of the Src family of kinases. Treatment of hypoxic MM cells with T3E effectively inhibited the secretion of VEGF, On the other hand, T3E inhibited CoCl2-induced gene expression of VEGF due to the inactivation of Yes/HIF-2α signaling. These data suggest that Yes/HIF2-α/VEGF could be a promising therapeutic target of T3E in MM cells.

  11. 111In-oxine and 99mTc-HMPAO labelling of antigen-loaded dendritic cells: in vivo imaging and influence on motility and actin content.

    PubMed

    Blocklet, Didier; Toungouz, Michel; Kiss, Robert; Lambermont, Micheline; Velu, Thierry; Duriau, Dominique; Goldman, Michel; Goldman, Serge

    2003-03-01

    In cancer vaccination trials, antigen-loaded dendritic cells (DCs) are usually injected intradermally and are expected to rapidly move to a regional lymph node where antigen presentation should occur. In this study we investigated the influence of indium-111 oxine (111In) and technetium-99m hexamethylpropylene amine oxime (99mTc-HMPAO) labelling on the motility and actin content of antigen-loaded DCs in parallel with in vivo migration in humans. Human autologous monocyte-derived DCs loaded with a tumour antigen were labelled with 111In (0.11, 0.37 or 0.74 MBq/10(7) DCs) or 99mTc-HMPAO (18.5 or 185 MBq/10(7) DCs). 111In labelling was much more stable than 99mTc-HMPAO labelling. Quantitative videomicroscopy showed that the mean distance of displacement of DCs increased in accordance with the 111In activity used for labelling. Monomeric (G) and filamentous (F) actin content of DCs evaluated by quantitative immunofluorescence demonstrated that the ratio of filamentous to globular actin content in labelled DCs increased significantly in accordance with the activity used for labelling with both tracers. Twelve patients enrolled in a phase I/II vaccination trial received injections of 10(7) antigen-loaded DCs labelled with either 0.74 MBq of 111In (group A, n=6/12) or 18.5 MBq of 99mTc-HMPAO (group B, n=6/12) in the proximal part of the legs, one intradermally on one side, one subcutaneously on the opposite side. In three of the six patients of each group, antigen-loaded DCs were incubated with monophosphoryl lipid A (MPL) just before the labelling, in order to initiate the maturation process (subgroup MPL+). Only one MPL+ patient of group A exhibited faint focal uptake in the inguinal region on the late images. Group B presented a more complex pattern of radioactivity distribution (early bladder activity without brain uptake) indicating that 99mTc-HMPAO is not a suitable radiopharmaceutical for labelling of loaded DCs. The activity cleared from DCs as a labelled molecule

  12. International strategic minerals inventory summary report; cobalt

    USGS Publications Warehouse

    Crockett, R.N.; Chapman, G.R.; Forrest, M.D.

    1987-01-01

    Major world resources of cobalt are described in this summary report of information in the International Strategic Minerals Inventory {ISMI}. ISMI is a cooperative data-collection effort of earth-science and mineral-resource agencies in Australia, Canada, the Federal Republic of Germany, the Republic of South Africa, and the United States of America. This report, designed to be of benefit to policy analysts, contains two parts. Part I presents an overview of the resources and potential supply of cobalt on the basis of inventory information. Part II contains tables of some of the geologic information and mineral-resource and production data that were collected by ISMI participants.

  13. Marine cobalt resources

    USGS Publications Warehouse

    Manheim, F. T.

    1986-01-01

    Ferromanganese oxides in the open oceans are more enriched in cobalt than any other widely distributed sediments or rocks. Concentrations of cobalt exceed 1 percent in ferromanganese crusts on seamounts, ocean ridges, and other raised areas of the ocean. The cobalt-rich crusts may be the slowest growing of any earth material, accumulating one molecular layer every 1 to 3 months. Attention has been drawn to crusts as potential resources because they contain cobalt, manganese, and platinum, three of the four priority strategic metals for the United States. Moreover, unlike abyssal nodules, whose recovery is complicated by their dominant location in international waters, some of the most cobalt-rich crusts occur within the exclusive economic zone of the United States and other nations. Environmental impact statements for crust exploitation are under current development by the Department of the Interior.

  14. Thrombus detection with a radiolabeled antiplatelet monoclonal antibody: Comparison with In-111-oxine technique in coronary and peripheral thrombi in dogs

    SciTech Connect

    Srivastava, S.C.; Esekowitz, M.D.; Meinken, G.E.; Lange, R.C.; Smith, E.; Carbo, P.; Scudder, L.E.; Coller, B.

    1985-05-01

    Platelets (P) labeled with low concentrations of an I-123 or In-111 labeled anti-P monoclonal antibody (7E3) were shown earlier to successfully image in-vivo thrombi. This study was carried out to compare this technique with In-111-oxine-P for localizing coronary and venous thrombi (CT and DVT) in dogs. Thrombi were induced using either transcatheter placement of a dacron pug, mechanical trauma, or electrocoagulation. 7E3 was labeled with I-131 in 70 +- 10% yield (labeling conditions: 100 ..mu..g 7E3; 5 ..mu..g chloramine T; I/sup -//7E3 less than or equal to1; 2 min reaction; 200 ..mu..l pH 7 phosphate buffer; Sp. act. 10-30 ..mu..Ci/..mu..g). Binding of I-131-7E3 to dog P was 75 +- 10% after 1 hr incubation with whole blood. The dogs were injected with 0.5 mCi In-111-oxine-P and 1 mCi I-131-7E3-P in quick succession and data (blood clearance and imaging) were collected for 4 hr. In one experiment, DVT were clearly imaged within 10 min and CT in 30-60 min with I-131-7E3-P. In contrast, In-oxine-P required at least 30 min for imaging DVT and CT were only faintly visualized at 3-4 hr. The DVT to blood and CT to blood ratios at 2.4 hr were 16 and 12.3 for I-131-7E3-P and 9.4 and 6.5 for In-111-oxine-P respectively. In these preliminary studies, I-131-7E3-P thus appears to be superior to In-oxine-P for imaging venous and coronary thrombi. Additionally, 7E3 can be labeled with Tc-99m and I-123 for reduced dose and better imaging properties.

  15. Study of a series of cobalt(II) sulfonamide complexes: Synthesis, spectroscopic characterization, and microbiological evaluation against M. tuberculosis. Crystal structure of [Co(sulfamethoxazole)2(H2O)2]·H2O

    NASA Astrophysics Data System (ADS)

    Mondelli, Melina; Pavan, Fernando; de Souza, Paula C.; Leite, Clarice Q.; Ellena, Javier; Nascimento, Otaciro R.; Facchin, Gianella; Torre, María H.

    2013-03-01

    Nowadays, the research for new and better antimicrobial compounds is an important field due to the increase of immunocompromised patients, the use of invasive medical procedures and extensive surgeries, among others, that can affect the incidence of infections. Another big problem associated is the occurrence of drug-resistant microbial strains that impels a ceaseless search for new antimicrobial agents. In this context, a series of heterocyclic-sulfonamide complexes with Co(II) was synthesized and characterized with the aim of obtaining new antimicrobial compounds. The structural characterization was performed using different spectroscopic methods (UV-Vis, IR, and EPR). In spite of the fact that the general stoichiometry for all the complexes was Co(sulfonamide)2·nH2O, the coordination atoms were different depending on the coordinated sulfonamide. The crystal structure of [Co(sulfamethoxazole)2(H2O)2]·H2O was obtained by X-ray diffraction showing that Co(II) is in a slightly tetragonal distorted octahedron where sulfamethoxazole molecules act as a head-to-tail bridges between two cobalt atoms, forming polymeric chains. Besides, the activity against Mycobacterium tuberculosis, one of the responsible for tuberculosis, and the cytotoxicity on J774A.1 macrophage cells were evaluated.

  16. A quantitative method to measure human platelet chemotaxis using indium-111-oxine-labeled gel-filtered platelets

    SciTech Connect

    Lowenhaupt, R.W.; Silberstein, E.B.; Sperling, M.I.; Mayfield, G.

    1982-12-01

    Human blood platelets have been shown to migrate directionally and specifically toward collagen in plasma in vitro. We have developed a new system to monitor this behavior using a linear 7-compartment chamber with /sup 111/In-oxine-labeled gel-filtered platelets. The compartments are separated by various Nuclepore and Millipore filter membranes. Radiolabeled platelets suspended in plasma are placed in the central compartment and the other compartments are filled with platelet-free plasma. When collagen is added to an end compartment, platelets migrate toward that end. The degree of this directed movement or chemotaxis can be measured by counting the radioactivity of the contents of each compartment and then comparing the counts from radiolabeled platelets that have moved to the end that holds the chemotactic inducer with those that have randomly migrated to the opposite end, containing only plasma. This assay system allows quantitative comparisons between the chemotaxis-inducing abilities of different substances and permits the study of soluble materials. Experiments to determine the optimal conditons for the procedure are reported, and the advantages of this new method for the investigation of platelet chemotaxis and the identification of chemotaxins are discussed.

  17. A quantitative method to measure human platelet chemotaxis using /sup 111/In-oxine-labeled gel-filtered platelets

    SciTech Connect

    Lowenhaupt, R.W.; Silberstein, E.B.; Sperling, M.I.; Mayfield, G.

    1982-12-01

    Human blood platelets have been shown to migrate directionally and specifically toward collagen in plasma in vitro. We have developed a new system to monitor this behavior using a linear 7-compartment chamber with /sup 111/In-oxine-labeled gel-filtered platelets. The compartments are separated by various Nuclepore and Millipore filter membranes. Radiolabeled platelets suspended in plasma are placed in the central compartment and the other compartments are filled with platelet-free plasma. When collagen is added to an end compartment, platelets migrate toward that end. The degree of this directed movement or chemotaxis can be measured by counting the radioactivity of the contents of each compartment and then comparing the counts from radiolabeled platelets that have moved to the end that holds the chemotactic inducer with those that have randomly migrated to the opposite end, containing only plasma. This assay system allows quantitative comparisons between the chemotaxis-inducing abilities of different substances and permits the study of soluble materials. Experiments to determine the optimal conditions for the procedure are reported, and the advantages of this new method for the investigation of platelet chemotaxis and the identification of chemotaxins are discussed.

  18. Total Dissolved Cobalt and Labile Cobalt in the North Atlantic

    NASA Astrophysics Data System (ADS)

    Saito, M. A.; Noble, A.

    2012-12-01

    This study presents the total and labile dissolved cobalt distributions from the North Atlantic GEOTRACES Zonal Transect expeditions of the fall of 2010 and 2011. Labile cobalt was detected in much of the water column below the euphotic zone, suggesting that strong cobalt binding ligands were not present in excess of the total cobalt concentration. Near complete complexation of cobalt was observed in surface waters, and linear relationships were observed when both total and labile cobalt were compared to phosphate in surface waters, indicative of a strong biological influence on cobalt cycling. Decoupling of cobalt and macronutrients in the surface waters was observed approaching the North American coast, and a relationship between cobalt and salinity was observed, suggesting that coastal inputs may dominate the distributions of cobalt there. In deep waters, both total and labile cobalt were generally lower in concentration than at intermediate depths, which is evidence of scavenging processes removing cobalt from the water column. Elevated concentrations of labile and total cobalt were observed in samples taken within the TAG hydrothermal plume, and a reverse relationship between cobalt and oxygen was observed in the western basin OMZ.

  19. Marine cobalt resources.

    PubMed

    Manheim, F T

    1986-05-01

    Ferromanganese oxides in the open oceans are more enriched in cobalt than any other widely distributed sediments or rocks. Concentrations of cobalt exceed 1 percent in ferromanganese crusts on seamounts, ocean ridges, and other raised areas of the ocean. The cobaltrich crusts may be the slowest growing of any earth material, accumulating one molecular layer every 1 to 3 months. Attention has been drawn to crusts as potential resources because they contain cobalt, manganese, and platinum, three of the four priority strategic metals for the United States. Moreover, unlike abyssal nodules, whose recovery is complicated by their dominant location in international waters, some of the most cobalt-rich crusts occur within the exclusive economic zone of the United States and other nations. Environmental impact statements for crust exploitation are under current development by the Department of the Interior. PMID:17781410

  20. Marine cobalt resources.

    PubMed

    Manheim, F T

    1986-05-01

    Ferromanganese oxides in the open oceans are more enriched in cobalt than any other widely distributed sediments or rocks. Concentrations of cobalt exceed 1 percent in ferromanganese crusts on seamounts, ocean ridges, and other raised areas of the ocean. The cobaltrich crusts may be the slowest growing of any earth material, accumulating one molecular layer every 1 to 3 months. Attention has been drawn to crusts as potential resources because they contain cobalt, manganese, and platinum, three of the four priority strategic metals for the United States. Moreover, unlike abyssal nodules, whose recovery is complicated by their dominant location in international waters, some of the most cobalt-rich crusts occur within the exclusive economic zone of the United States and other nations. Environmental impact statements for crust exploitation are under current development by the Department of the Interior.

  1. Samarium/Cobalt Magnets

    NASA Technical Reports Server (NTRS)

    Das, D.; Kumar, K.; Frost, R.; Chang, C.

    1985-01-01

    Intrinsic magnetic coercivities of samarium cobalt magnets made to approach theoretical limit of 350 kA/m by carefully eliminating oxygen from finished magnet by hot isostatic pressing (HIP). HIP process viable alternative to currently used sintering process.

  2. Synthesis and Characterization of a New Cobalt(II) Complex with 2-(2-Pyridyl)Imino-N-(2-Thiazolin-2-yl)Thiazolidine (PyTT)

    PubMed Central

    García-Barros, F. J.; Higes-Rolando, F. J.; Luna-Giles, F.; Pacheco-Rodríguez, M. M.; Viñuelas-Zahínos, E.

    2004-01-01

    The compound aquanitrate-кObis[2-(2-pyridy)-imin-кN-N-(2-thiazin-кN-2-y)thiazidine]cbat() nitrate has been isolated and characterized by single crystal X-ray diffraction, IR spectroscopy, UV-Vis-NIR diffuse reflectance and magnetic susceptibility measurements. The environment around the cobalt atom may be described as a distorted octahedral geometry with the ligand-metal-ligand bite angles varying between 84.07(8)° and 98.66(8)°.The metallic atom is coordinated to two thiazoline nitrogens [av. Co-N =2.067 Å], two imino nitrogens [av. Co-N =2.122 Å], one oxygen atom of the nitrate group monodentate [Co-O(1)= 2.249(2) Å] and the oxygen atom of the water molecule [Co-O(IW)= 2.105(2) Å]. Electronic UV-Vis-NIR spectral data and the calculated magnetic moment are indicative of octahedral Co(ll) complexes. In the same way as other PyTT complexes, the organic moiety preserves the imino-thiazolidine form detected in the structure of PyTT. PMID:18365082

  3. Syntheses, structures, and properties of six cobalt(II) complexes based on a tripodal tris(4-(1H-1,2,4-triazol-1-yl)phenyl)amine ligand.

    PubMed

    Shi, Zhenzhen; Pan, Zhaorui; Zhang, Chuanlei; Zheng, Hegen

    2015-10-14

    Six new cobalt(ii) metal-organic frameworks, {[Co1.5(TTPA)(BTC)(H2O)]2·13H2O}n (1), [Co(TTPA)(PA)]n (2), {[Co(TTPA)(BDA)0.5(NO3)]·3H2O}n (3), {[Co2(TTPA)3(OBA)2(H2O)3]·2CH3CN·4H2O}n (4), {[Co(TTPA)(AIP)(H2O)]·2H2O}n (5), and {[Co(TTPA)(MIP)(H2O)]·2H2O}n (6), have been prepared by the self-assembly of a tris(4-(1H-1,2,4-triazol-1-yl)phenyl)amine (TTPA) ligand with different aromatic carboxylate auxiliary ligands (H3BTC = 1,3,5-benzenetricarboxylic acid, H2PA = phthalic acid, H2BDA = (1,1'-biphenyl)-4,4'-dicarboxylic acid, H2OBA = 4,4'-oxydibenzoic acid, H2AIP = 5-aminoisophthalic acid, H2MIP = 5-methylisophthalic acid) and cobalt salts. Their structures have been characterized by infrared spectroscopy, elemental analysis, single crystal X-ray analysis, and powder X-ray diffraction. Complex 1 is an unusual 4-nodal (3,3,4,8)-connected three-dimensional (3D) new topological net with the point symbol of (4·6·8)4(4(4)·6(7)·8(15)·10(2))(6(2)·8(4)). Complex 2 has a 2-fold interpenetrating 3D dia framework. Complex 3 displays a rare binodal (3,4)-connected 4-fold interpenetrating 3D architecture with a fsc-3,4-C2/c topology with the point symbol of (4·6·8)(4·6(2)·8(3)). Complex 4 shows two distinct two-dimensional (2D) layers with hcb topologies, which are further packed into a 3D structure by O-HO hydrogen bonding interactions. Both complexes 5 and 6 feature similar 2D sheets with sql topologies, which can be further packed into a 3D structure by O-HO hydrogen bonding interactions. Moreover, the thermal stability and UV-visible spectra of these complexes are also discussed in detail. Meanwhile, the variable-temperature magnetic susceptibility measurement of complex 1 reveals antiferromagnetic interactions between Co(ii) ions. PMID:26348331

  4. Enhanced third-order nonlinear optical properties determined in thin films using the Z-scan technique: bis(μ-4,4'-oxydibenzoato)bis[(4'-phenyl-2,2':6',2''-terpyridine)cobalt(II)].

    PubMed

    Liu, Runqiang; Zhao, Ning; Liu, Ping; An, Caixia; Lian, Zhaoxun

    2016-05-01

    π-Conjugated organic materials exhibit high and tunable nonlinear optical (NLO) properties, and fast response times. 4'-Phenyl-2,2':6',2''-terpyridine (PTP) is an important N-heterocyclic ligand involving π-conjugated systems, however, studies concerning the third-order NLO properties of terpyridine transition metal complexes are limited. The title binuclear terpyridine Co(II) complex, bis(μ-4,4'-oxydibenzoato)-κ(3)O,O':O'';κ(3)O'':O,O'-bis[(4'-phenyl-2,2':6',2''-terpyridine-κ(3)N,N',N'')cobalt(II)], [Co2(C14H8O5)2(C21H15N3)2], (1), has been synthesized under hydrothermal conditions. In the crystal structure, each Co(II) cation is surrounded by three N atoms of a PTP ligand and three O atoms, two from a bidentate and one from a symmetry-related monodentate 4,4'-oxydibenzoate (ODA(2-)) ligand, completing a distorted octahedral coordination geometry. Neighbouring [Co(PTP)](2+) units are bridged by ODA(2-) ligands to form a ring-like structure. The third-order nonlinear optical (NLO) properties of (1) and PTP were determined in thin films using the Z-scan technique. The title compound shows a strong third-order NLO saturable absorption (SA), while PTP exhibits a third-order NLO reverse saturable absorption (RSA). The absorptive coefficient β of (1) is -37.3 × 10(-7) m W(-1), which is larger than that (8.96 × 10(-7) m W(-1)) of PTP. The third-order NLO susceptibility χ((3)) values are calculated as 6.01 × 10(-8) e.s.u. for (1) and 1.44 × 10(-8) e.s.u. for PTP. PMID:27146576

  5. Reversible deactivation radical polymerization mediated by cobalt complexes: recent progress and perspectives.

    PubMed

    Peng, Chi-How; Yang, Tsung-Yao; Zhao, Yaguang; Fu, Xuefeng

    2014-11-21

    Mediation of reversible deactivation radical polymerization (RDRP) by cobalt(II) complexes (CMRP) is the most highly developed subcategory of organometallic mediated RDRP (OMRP). Attention was paid to CMRP for its unusual high efficiency observed for the control of acrylate and vinyl acetate polymerization that produced homo- and block copolymers with narrow molecular weight distribution and a predictable molecular weight. The reactions of organic radicals with cobalt(II) metallo-radicals and organo-cobalt(III) complexes have a central role in the pathways that mediate this type of reversible deactivation radical polymerization. The reversible deactivation pathway dominates the polymerization when cobalt(II) complexes can reversibly deactivate the radicals to form organo-cobalt(III) complexes. Degenerative transfer becomes the major pathway when the cobalt(II) species fully convert to organo-cobalt(III) complexes and the radicals in solution rapidly exchange with radicals in organo-cobalt(III) complexes. This review describes the polymerization behavior and control mechanisms used by cobalt complexes in the mediation of reversible deactivation radical polymerization. The emerging developments for CMRP in the aqueous phase and with photo-initiation are also described, followed by the challenges and future applications of this method.

  6. V-shaped ligand 1,3-bis(1-ethylbenzimidazol-2-yl)-2-thiapropane and manganese(II), cobalt(II) and copper(II) complexes: Synthesis, crystal structure, DNA-binding properties and antioxidant activities.

    PubMed

    Wu, Huilu; Yang, Zaihui; Wang, Fei; Peng, Hongping; Zhang, Han; Wang, Cuiping; Wang, Kaitong

    2015-07-01

    A V-shaped ligand 1,3-bis(1-ethylbenzimidazol-2-yl)-2-thiapropane (bebt) and its transition metal complexes, [Mn(bebt)(pic)2]·CH3OH (pic=picrate) 1, [Co(bebt)2](pic)22 and [Cu(bebt)2](pic)2·2DMF 3, have been synthesized and characterized. The coordinate forms of complexes 1 and 2 are basically alike, which can be described as six-coordinated distorted octahedron. The geometric structure around Cu(II) atom can be described as distorted tetrahedral in complex 3. The DNA-binding properties of the ligand bebt and complexes have been investigated by electronic absorption, fluorescence, and viscosity measurements. The results suggest that bebt and complexes bind to DNA via an intercalative binding mode and the order of the binding affinity is 1<2<3

  7. Crystal structure of di-aqua-bis-(4-tert-butyl-benzoato-κO)bis-(nicotinamide-κN (1))cobalt(II) dihydrate.

    PubMed

    Aşkın, Gülçin Şefiye; Necefoğlu, Hacali; Özkaya, Safiye; Çatak Çelik, Raziye; Hökelek, Tuncer

    2016-07-01

    The asymmetric unit of the mononuclear cobalt complex, [Co(C11H13O2)2(C6H6N2O)2(H2O)2]·2H2O, contains one half of the complex mol-ecule, one coordinating and one non-coordinating water mol-ecule, one 4-tert-butyl-benzoate (TBB) ligand and one nicotinamide (NA) ligand; the Co atom lies on an inversion centre. All ligands coordinating to the Co atom are monodentate. The four nearest O atoms around the Co atom form a slightly distorted square-planar arrangement, with the distorted octa-hedral coordination completed by the two pyridine N atoms of the NA ligands at distances of 2.1638 (11) Å. The coordinating water mol-ecules are hydrogen bonded to the carboxyl O atoms [O ⋯ O = 2.6230 (17) Å], enclosing an S(6) hydrogen-bonding motif, while inter-molecular O-H⋯O hydrogen bonds link two of the non-coordinating water mol-ecules to the coordinating water mol-ecules and NA anions. The dihedral angle between the planar carboxyl-ate group and the adjacent benzene ring is 29.09 (10)°, while the benzene and pyridine rings are oriented at a dihedral angle of 88.53 (4)°. In the crystal, O-H⋯O and N-H⋯O hydrogen bonds link the mol-ecules, enclosing R 2 (2)(8), R 2 (2)(10) and R 4 (4)(12) ring motifs, forming layers parallel to (001). The C and H atoms of the tert-butyl group of the TBB ligand are disordered over two sets of sites with an occupancy ratio of 0.631 (5):0.369 (5). PMID:27555924

  8. Novel Cobalt(II) complexes containing N,N-di(2-picolyl)amine based ligands; Synthesis, characterization and application towards methyl methacrylate polymerisation

    NASA Astrophysics Data System (ADS)

    Ahn, Seoung Hyun; Choi, Sang-Il; Jung, Maeng Joon; Nayab, Saira; Lee, Hyosun

    2016-06-01

    The reaction of [CoCl2·6H2O] with N‧-substituted N,N-di(2-picolyl)amine ligands such as 1-cyclohexyl-N,N-bis(pyridin-2-ylmethyl)methanamine (LA), 2-methoxy-N,N-bis(pyridin-2-ylmethyl)ethan-1-amine (LB), and 3-methoxy-N,N-bis(pyridin-2-ylmethyl)propan-1-amine (LC), yielded [LnCoCl2] (Ln = LA, LB and LC), respectively. The Co(II) centre in [LnCoCl2] (Ln = LA, and LC) adopted distorted bipyramidal geometries through coordination of nitrogen atoms of di(2-picolyl)amine moiety to the Co(II) centre along with two chloro ligands. The 6-coordinated [LBCoCl2] showed a distorted octahedral geometry, achieved through coordination of the two pyridyl units, two chloro units, and bidentate coordination of nitrogen and oxygen in the N‧-methoxyethylamine to the Co(II) centre. [LCCoCl2] (6.70 × 104 gPMMA/molCo h) exhibited higher catalytic activity for the polymerisation of methyl methacrylate (MMA) in the presence of modified methylaluminoxane (MMAO) compared to rest of Co(II) complexes. The catalytic activity was considered as a function of steric properties of ligand architecture and increased steric bulk around the metal centre resulted in the decrease catalytic activity. All Co(II) initiators yielded syndiotactic poly(methylmethacrylate) (PMMA).

  9. A Green Preconcentration Method for Determination of Cobalt and Lead in Fresh Surface and Waste Water Samples Prior to Flame Atomic Absorption Spectrometry

    PubMed Central

    Naeemullah; Kazi, Tasneem Gul; Shah, Faheem; Afridi, Hassan Imran; Khan, Sumaira; Arian, Sadaf Sadia; Brahman, Kapil Dev

    2012-01-01

    Cloud point extraction (CPE) has been used for the preconcentration and simultaneous determination of cobalt (Co) and lead (Pb) in fresh and wastewater samples. The extraction of analytes from aqueous samples was performed in the presence of 8-hydroxyquinoline (oxine) as a chelating agent and Triton X-114 as a nonionic surfactant. Experiments were conducted to assess the effect of different chemical variables such as pH, amounts of reagents (oxine and Triton X-114), temperature, incubation time, and sample volume. After phase separation, based on the cloud point, the surfactant-rich phase was diluted with acidic ethanol prior to its analysis by the flame atomic absorption spectrometry (FAAS). The enhancement factors 70 and 50 with detection limits of 0.26 μg L−1 and 0.44 μg L−1 were obtained for Co and Pb, respectively. In order to validate the developed method, a certified reference material (SRM 1643e) was analyzed and the determined values obtained were in a good agreement with the certified values. The proposed method was applied successfully to the determination of Co and Pb in a fresh surface and waste water sample. PMID:23227429

  10. A green preconcentration method for determination of cobalt and lead in fresh surface and waste water samples prior to flame atomic absorption spectrometry.

    PubMed

    Naeemullah; Kazi, Tasneem Gul; Shah, Faheem; Afridi, Hassan Imran; Khan, Sumaira; Arian, Sadaf Sadia; Brahman, Kapil Dev

    2012-01-01

    Cloud point extraction (CPE) has been used for the preconcentration and simultaneous determination of cobalt (Co) and lead (Pb) in fresh and wastewater samples. The extraction of analytes from aqueous samples was performed in the presence of 8-hydroxyquinoline (oxine) as a chelating agent and Triton X-114 as a nonionic surfactant. Experiments were conducted to assess the effect of different chemical variables such as pH, amounts of reagents (oxine and Triton X-114), temperature, incubation time, and sample volume. After phase separation, based on the cloud point, the surfactant-rich phase was diluted with acidic ethanol prior to its analysis by the flame atomic absorption spectrometry (FAAS). The enhancement factors 70 and 50 with detection limits of 0.26 μg L(-1) and 0.44 μg L(-1) were obtained for Co and Pb, respectively. In order to validate the developed method, a certified reference material (SRM 1643e) was analyzed and the determined values obtained were in a good agreement with the certified values. The proposed method was applied successfully to the determination of Co and Pb in a fresh surface and waste water sample. PMID:23227429

  11. catena-Poly[[bis-[4-(dimethyl-amino)-pyridine-κN (1)]cobalt(II)]-di-μ-azido-κ(4) N (1):N (3)].

    PubMed

    Guenifa, Fatiha; Zeghouan, Ouahida; Hadjadj, Nasreddine; Bendjeddou, Lamia; Merazig, Hocine

    2013-03-01

    The title layered polymer, [Co(N3)2(C7H10N2)2] n , contains Co(II), azide and 4-(dimethyl-amino)-pyridine (4-DMAP) species with site symmetries m2m, 2 and m, respectively. The Co(2+) ion adopts an octa-hedral coordination geometry in which four N atoms from azide ligands lie in the equatorial plane and two 4-DMAP N atoms occupy the axial positions. The Co(II) atoms are connected by two bridging azide ligands, resulting in a chain parallel to the c axis.

  12. Constructions of a set of novel hydrogen-bonded supramolecules from reactions of cobalt(II) salt with bis(3,5-dimethylpyrazolyl)methane and different carboxylic acids

    NASA Astrophysics Data System (ADS)

    Li, Qiao-Yun; Tang, Xiao-Yan; Zhang, Wen-Hua; Wang, Jing; Ren, Zhi-Gang; Li, Hong-Xi; Zhang, Yong; Lang, Jian-Ping

    2008-05-01

    Reactions of CoX 2·6H 2O (X = Cl -, ClO 4-) with bis(3,5-dimethylpyrazolyl)methane (dmpzm) and formic acid, acetic acid, benzoic acid, salicylic acid, maleic acid, or fumaric acid under the presence of KOH solution produced a new family of Co(II)/dmpzm complexes, [Co(dmpzm) 2L]X· nH 2O ( 1: L = O 2CH, X = Cl, n = 2; 2: L = OAc, X = Cl, n = 3; 3: L = benzoate, X = ClO 4, n = 1/3; 4: L = salicylate, X = ClO 4, n = 1/3) and [Co 2(dmpzm) 4L](ClO 4) 2· nSolv ( 5: L = maleate, n = 3, Solv = H 2O; 6: L = fumarate, n = 2, Solv = MeOH). These compounds were structurally characterized by elemental analysis, IR spectroscopy, and single-crystal X-ray diffraction. Compounds 1- 4 are mononuclear while 5- 6 are binuclear. Each cobalt atom of 1- 6 is hexacoordinate, with a distorted octahedral CoN 4O 2 coordination geometry incorporating two N, N'-bidentate dmpzm ligands and one O, O'-bidentate carboxylate ligand. There are rich intra- and intermolecular hydrogen bonds in the crystals of 1- 6, thereby forming either 2D hydrogen-bonded networks ( 1 and 2) or 3D hydrogen-bonded networks ( 3- 6). In addition, the thermal behaviors of 1- 6 were also investigated.

  13. Mixed-ligand cobalt(II) complexes of bioinorganic and medicinal relevance, involving dehydroacetic acid and β-diketones: Their synthesis, hyphenated experimental-DFT, thermal and bactericidal facets

    NASA Astrophysics Data System (ADS)

    Maurya, R. C.; Malik, B. A.; Mir, J. M.; Vishwakarma, P. K.; Rajak, D. K.; Jain, N.

    2015-11-01

    The present report pertains to synthesis and combined experimental-DFT studies of a series of four novel mixed-ligand complexes of cobalt(II) of the general composition [Co(dha)(L)(H2O)2], where dhaH = dehydroacetic acid, LH = β-ketoenolates viz., o-acetoacetotoluidide (o-aatdH), o-acetoacetanisidide (o-aansH), acetylacetone (acacH) or 1-benzoylacetone (1-bac). The resulting complexes were formulated based on elemental analysis, molar conductance, magnetic measurements, mass spectrometric, IR, electronic, electron spin resonance and cyclic voltammetric studies. The TGA based thermal behavior of one representative complex was evaluated. Molecular geometry optimizations and vibrational frequency calculations have been performed with Gaussian 09 software package by using density functional theory (DFT) methods with B3LYP/LANL2MB combination for dhaH and one of its complexes, [Co(dha)(1-bac)(H2O)2]. Theoretical data has been found in an excellent agreement with the experimental results. Based on experimental and theoretical data, suitable trans-octahedral structure has been proposed for the present class of complexes. Moreover, the complexes also showed a satisfactory antibacterial activity.

  14. Zinc site redesign in T4 gene 32 protein: structure and stability of cobalt(II) complexes formed by wild-type and metal ligand substitution mutants.

    PubMed

    Guo, J; Giedroc, D P

    1997-01-28

    Phage T4 gene 32 protein (gp32) is a zinc metalloprotein which binds cooperatively and preferentially to single-stranded nucleic acids and functions as a replication and recombination accessory protein. Zn(II) coordination by gp32 employs a His-Cys3 metal ligand donor set derived from the His64-X12-Cys77-X9-Cys87-X2-Cys90 sequence in the ssDNA-binding core domain of the molecule. Crystallographic studies reveal that His64 and Cys77 are derived from two independent beta-strands within a distorted three-stranded beta-sheet and are relatively more buried from solvent than are Cys87 and Cys90, which are positioned immediately before and within, respectively, an alpha-helix. In an effort to understand the origin of the stability of the metal complex, we have employed an anaerobic optical spectroscopic, competitive metal binding assay to determine the coordination geometry and association constants (Ka) for the binding of Co(II) to wild-type gp32 and a series of zinc ligand substitution mutants. At pH 7.5, 25 degrees C, wild-type gp32 binds Co(II) with a Ka approximately 1 x 10(9) M-1. Competition experiments reveal that Ka for Zn(II) is 3.0 (+/-1.0) x 10(11) M-1. We find that all non-native metal complexes retain tetrahedral or distorted tetrahedral coordination geometry but are greatly destabilized in a manner essentially of whether a new protein-derived coordination bond is formed (e.g., in H64C gp32) or not. Co(II) binding isotherms obtained for three His64 substitution mutants, H64C, H64D, and H64N gp32s, suggest that each mutant forms a dimeric Cys4 tetrathiolate intermediate complex at limiting [Co(II)]f, each then rearranges at high [Co(II)]f to form a monomolecular site of the expected geometry and Ka approximately 1 x 10(4) M-1. Like the His64 mutants, C77A gp32 appears to form at least two types of complexes over the course of a Co(II) titration: one with octahedral coordination geometry formed at low [Co(II)]f, with a second tetrahedral or five

  15. Kinetics and sites of destruction of /sup 111/In-oxine-labeled platelets in idiopathic thrombocytopenic purpura: a quantitative study

    SciTech Connect

    Heyns, A.D.; Loetter, M.G.; Badenhorst, P.N.; de Kock, F.; Pieters, H.; Herbst, C.; van Reenen, O.R.; Kotze, H.; Minnaar, P.C.

    1982-04-01

    Kinetics and quantification of the sites of destruction of /sup 111/In-oxine-labeled autologous platelets were investigated in eight patients with idiopathic thrombocytopenic purpura. The mean platelet count was 17 +/- 9 X 10(9)/liter; platelets were separated by differential centrifugation and labeled with 5.6 +/- 2.5 MBq /sup 111/In. Whole body and organ /sup 111/In-platelet distribution was quantitated with a scintillation camera and a computer-assisted imaging system acquisition matrix. Areas of interest were selected with the computer and organ /sup 111/In-radioactivity expressed as a percentage of whole body activity. Mean platelet survival was 49.5 +/- 29.6 hr and the survival curves were exponential. Equilibrium percentage organ /sup 111/In-radioactivity was (normal values in parentheses): spleen 33.7 +/- 8.8 (31.1 +/- 10.2); liver 16.1 +/- 9.5 (13.1 +/- 1.3); thorax 22.8 +/- 3.7 (28.2 +/- 5.6). Percentage organ /sup 111/In-activity at the time when labeled platelets had disappeared from the circulation was: spleen 44.5 +/- 16.4 (40 +/- 16); liver 16.0 +/- 11.5 (32.4 +/- 7.2); thorax 19.7 +/- 6.0 (17.7 +/- 10.3). Thorax activity corresponds to bone marrow radioactivity. Three patterns of platelet sequestration were evident. Three patients had mainly splenic sequestration, two mainly hepatic sequestration, and three diffuse reticuloendothelial system sequestration with a major component of platelets destroyed in the bone marrow. Splenectomy was performed in two patients. The pattern of /sup 111/In-platelet sequestration was not predictive of response of glucocorticoid therapy or indicative of the necessity for splenectomy. Quantitative /sup 111/In-labeled autologous platelet kinetic studies provide a new tool for the investigation of platelet disorders.U

  16. Preparation of a Cobalt(II) Cage: An Undergraduate Laboratory Experiment That Produces a ParaSHIFT Agent for Magnetic Resonance Spectroscopy

    ERIC Educational Resources Information Center

    Burns, Patrick J.; Tsitovich, Pavel B.; Morrow, Janet R.

    2016-01-01

    Laboratory experiments that demonstrate the effect of paramagnetic complexes on chemical shifts and relaxation times of protons are a useful way to introduce magnetic resonance spectroscopy (MRS) probes or magnetic resonance imaging (MRI) contrast agents. In this undergraduate inorganic chemistry experiment, a paramagnetic Co(II) cage complex is…

  17. Catalysis: Cobalt gets in shape

    NASA Astrophysics Data System (ADS)

    Claeys, Michael

    2016-10-01

    Solid cobalt-based catalysts are used commercially to convert carbon monoxide and hydrogen into synthetic fuels. It emerges that much more valuable chemicals can be produced by using a different form of cobalt catalyst. See Letter p.84

  18. Crystal structure of di­aqua­bis­(N,N-di­ethyl­nicotinamide-κN 1)bis­(2,4,6-tri­methyl­benzoato-κO 1)cobalt(II)

    PubMed Central

    Aşkın, Gülçin Şefiye; Necefoğlu, Hacali; Özkaya, Safiye; Çatak Çelik, Raziye; Hökelek, Tuncer

    2016-01-01

    The centrosymmetric mol­ecule in the monomeric title cobalt complex, [Co(C10H11O2)2(C10H14N2O)2(H2O)2], contains two water mol­ecules, two 2,4,6-tri­methyl­benzoate (TMB) ligands and two di­ethyl­nicotinamide (DENA) ligands. All ligands coordinate to the CoII atom in a monodentate fashion. The four O atoms around the CoII atom form a slightly distorted square-planar arrangement, with the distorted octa­hedral coordination sphere completed by two pyridine N atoms of the DENA ligands. The dihedral angle between the planar carboxyl­ate group and the adjacent benzene ring is 84.2 (4)°, while the benzene and pyridine rings are oriented at a dihedral angle of 38.87 (10)°. The water mol­ecules exhibit both intra­molecular (to the non-coordinating carboxyl­ate O atom) and inter­molecular (to the amide carbonyl O atom) O—H⋯O hydrogen bonds. The latter lead to the formation of layers parallel to (100), enclosing R 4 4(32) ring motifs. These layers are further linked via weak C—H⋯O hydrogen bonds, resulting in a three-dimensional network. One of the two ethyl groups of the DENA ligand is disordered over two sets of sites with an occupancy ratio of 0.490 (13):0.510 (13). PMID:27375874

  19. Crystal structure of di-aqua-bis-(N,N-di-ethyl-nicotinamide-κN (1))bis-(2,4,6-tri-methyl-benzoato-κO (1))cobalt(II).

    PubMed

    Aşkın, Gülçin Şefiye; Necefoğlu, Hacali; Özkaya, Safiye; Çatak Çelik, Raziye; Hökelek, Tuncer

    2016-04-01

    The centrosymmetric mol-ecule in the monomeric title cobalt complex, [Co(C10H11O2)2(C10H14N2O)2(H2O)2], contains two water mol-ecules, two 2,4,6-tri-methyl-benzoate (TMB) ligands and two di-ethyl-nicotinamide (DENA) ligands. All ligands coordinate to the Co(II) atom in a monodentate fashion. The four O atoms around the Co(II) atom form a slightly distorted square-planar arrangement, with the distorted octa-hedral coordination sphere completed by two pyridine N atoms of the DENA ligands. The dihedral angle between the planar carboxyl-ate group and the adjacent benzene ring is 84.2 (4)°, while the benzene and pyridine rings are oriented at a dihedral angle of 38.87 (10)°. The water mol-ecules exhibit both intra-molecular (to the non-coordinating carboxyl-ate O atom) and inter-molecular (to the amide carbonyl O atom) O-H⋯O hydrogen bonds. The latter lead to the formation of layers parallel to (100), enclosing R 4 (4)(32) ring motifs. These layers are further linked via weak C-H⋯O hydrogen bonds, resulting in a three-dimensional network. One of the two ethyl groups of the DENA ligand is disordered over two sets of sites with an occupancy ratio of 0.490 (13):0.510 (13). PMID:27375874

  20. Crystal structure of poly[{μ-N,N′-bis[(pyridin-4-yl)meth­yl]oxalamide}-μ-oxalato-cobalt(II)

    PubMed Central

    Zou, Hengye; Qi, Yanjuan

    2014-01-01

    In the polymeric title compound, [Co(C2O4)(C14H14N4O2)]n, the CoII atom is six-coordinated by two N atoms from symmetry-related bis­[(pyridin-4-yl)meth­yl]oxalamide (BPMO) ligands and four O atoms from two centrosymmetric oxalate anions in a distorted octa­hedral coordination geometry. The CoII atoms are linked by the oxalate anions into a chain running parallel to [100]. The chains are linked by the BPMO ligands into a three-dimensional architecture. In addition, N—H⋯O hydrogen bonds stabilize the crystal packing. PMID:25309173

  1. catena-Poly[[[tetra-aqua-cobalt(II)]-μ-4,4'-bipyridine-κN:N'] 2-[4-(2-carboxyl-ato-eth-yl)phen-oxy]acetate].

    PubMed

    Wang, Xi-Fang; Liu, Chong-Bo; Huang, De-He; Xiong, Zhi-Qiang

    2009-06-13

    In the title complex, {[Co(C(10)H(8)N(2))(H(2)O)(4)](C(11)H(10)O(5))}(n), the unique Co(II) ion lies on an inversion center and is coordinated by two N atoms from two 4,4'-bipyridine ligands and four O atoms from four water mol-ecules in a slightly distorted octa-hedral coordination geometry. The 4,4'-bipyridine ligands bridge Co(II) ions into a one-dimensional chain structure. In the crystal structure, inter-molecular O-H⋯O hydrogen bonds link cations and anions into a three-dimensional network. The dianions are completely disordered about an inversion center.

  2. Crystal structure of bis-(2-{[(pyridin-2-yl)methyl-idene]amino}-benzoato-κ(3) N,N',O)cobalt(II) N,N-di-methyl-formamide sesquisolvate.

    PubMed

    Buvaylo, Elena A; Kokozay, Vladimir N; Vassilyeva, Olga Yu; Skelton, Brian W

    2014-10-01

    The title compound, [Co(C13H9N2O2)2]·1.5C3H7NO, is formed as a neutral Co(II) complex with di-methyl-formamide (DMF) solvent mol-ecules. The Co(II) atom has a distorted O2N4 octa-hedral coordination sphere defined by two tridentate anionic Schiff base ligands with the O atoms being cis. The coordination sphere around the Co(II) atom is geometrically different from that reported for the co-crystal [Co(C13H9N2O2)2]·AA·H2O (AA is anthranilic acid). One of the DMF solvent mol-ecules was modelled as being disordered about a crystallographic inversion centre with half-occupancy. The crystal structure is made up from alternating layers of complex mol-ecules and DMF mol-ecules parallel to (010). C-H⋯O hydrogen-bonding inter-actions between the complex mol-ecules and the solvent mol-ecules consolidate the crystal packing. PMID:25484642

  3. Some new chromogens for iron, cobalt, and copper Substituted hydrazidines and 1,2,4-triazines containing the ferroin group.

    PubMed

    Schilt, A A

    1966-07-01

    The spectral characteristics and solution conditions requisite for formation of the iron(II), cobalt(II), and copper(I) complexes of some newly synthesised compounds containing the ferroin functional grouping have been determined. These properties are useful for evaluation of the possible analytical effectiveness of the compounds as spectrophotometric reagents for the determination of iron, cobalt, and copper. PMID:18959951

  4. Some new chromogens for iron, cobalt, and copper Substituted hydrazidines and 1,2,4-triazines containing the ferroin group.

    PubMed

    Schilt, A A

    1966-07-01

    The spectral characteristics and solution conditions requisite for formation of the iron(II), cobalt(II), and copper(I) complexes of some newly synthesised compounds containing the ferroin functional grouping have been determined. These properties are useful for evaluation of the possible analytical effectiveness of the compounds as spectrophotometric reagents for the determination of iron, cobalt, and copper.

  5. Diaqua­bis­(2-iodo­benzoato-κO)bis­(nicotinamide-κN 1)cobalt(II)

    PubMed Central

    Aydın, Ömür; Çaylak Delibaş, Nagihan; Necefoğlu, Hacali; Hökelek, Tuncer

    2012-01-01

    In the title complex, [Co(C7H4IO2)2(C6H6N2O)2(H2O)2], the CoII cation is located on an inversion center and is coordinated by two monodentate 2-iodo­benzoate (IB) anions, two nicotin­amide (NA) ligands and two water mol­ecules. The four O atoms in the equatorial plane around the CoII cation form a slightly distorted square-planar arrangement, while the slightly distorted octa­hedral coordination is completed by the two N atoms of the NA ligands in the axial positions. The dihedral angle between the carboxyl­ate group and the adjacent benzene ring is 22.3 (3)°, while the pyridine ring and the benzene ring are oriented at a dihedral angle of 84.59 (13)°. Intra­molecular O—H⋯O hydrogen bonding occurs between the carboxyl­ate group and coordinated water mol­ecule. In the crystal, N—H⋯O, O—H⋯O and weak C—H⋯O hydrogen bonds link the mol­ecules into a three-dimensional supra­molecular network. PMID:22589871

  6. Diaqua­bis­(2-chloro­benzoato-κO)bis­(nicotinamide-κN 1)cobalt(II)

    PubMed Central

    Dincel, Öznur; Tercan, Barış; Öztürkkan, Füreya Elif; Necefoğlu, Hacali; Hökelek, Tuncer

    2013-01-01

    In the title complex, [Co(C7H4ClO2)2(C6H6N2O)2(H2O)2], the CoII cation is located on an inversion center and is coord­inated by two 2-chloro­benzoate anions, two nicotin­amide (NA) ligands and two water mol­ecules. The four O atoms in the equatorial plane around the CoII cation form a slightly distorted square-planar arrangement, while the slightly distorted octa­hedral coordination is completed by the two pyridine N atoms of the NA ligands in the axial positions. The dihedral angle between the carboxyl­ate group and the adjacent benzene ring is 29.7 (4)°, while the pyridine and benzene rings are oriented at a dihedral angle of 83.17 (15)°. Intra­molecular O—H⋯O hydrogen bonding occurs between the carboxyl­ate group and coordinating water mol­ecule. In the crystal, inter­molecular N—H⋯O, O—H⋯O and weak C—H⋯O hydrogen bonds link the mol­ecules into a three-dimensional network. PMID:23476513

  7. Crystal structure of tetra-kis-(isonicotinamide-κN)bis-(thio-cyanato-κN)cobalt(II)-isonicotinamide-ethanol (1/2/1).

    PubMed

    Neumann, Tristan; Jess, Inke; Näther, Christian

    2016-08-01

    The asymmetric unit of the title compound, [Co(NCS)2(C6H6N2O)4]·2C6H6N2O·C2H5OH, comprises one Co(II) cation, two thio-cyanate anions, four coordinating and two solvent isonicotinamide molecules and one ethanol solvent mol-ecule. The Co(II) cations are octa-hedrally coordinated by four N-coordinating isonicotinamide ligands and two terminally N-bonded thio-cyanate anions. These discrete complexes are linked by inter-molecular N-H⋯O and N-H⋯S hydrogen-bonding inter-actions into a three-dimensional network. The two isonicotinamide and the ethanol solvent mol-ecules are embedded in channels of this network and are linked through further N-H⋯O and N-H⋯N hydrogen bonds to the network. The ethanol solvent mol-ecule is disordered over two sets of sites (occupancy ratio 0.6:0.4). PMID:27536386

  8. Effect of substituent on structures and catalytic properties of cobalt(II) isophthalate coordination polymers with a semi-rigid bis(benzimidazole)

    NASA Astrophysics Data System (ADS)

    Zhang, Xu; Meng, Xiang-Li; Huang, Cui-Miao; Cui, Guang-Hua

    2015-11-01

    Three Co(II) coordination polymers based on flexible bis(2-dimethylbenzimidazole) and the derivatives of the familiar isophthalate co-ligands, namely [Co(L)(ip)]n (1), [Co2(L)2(nip)2]n (2) and [Co2(L)2(tbip)2·2H2O]n (3) (L = 1,2-bis(2-methylbenzimidazol-1-ylmethyl)benzene, H2ip = isophthalic acid, H2nip = 5-nitroisophthalic acid, H2tbip = 5-tert-butylisophthalic acid) have been synthesized by hydrothermal methods and characterized by elemental analyses, IR spectra, thermogravimetric analyses and single-crystal X-ray diffraction. Both complexes 1 and 2 exhibit a 2-fold interpenetrating 3D network with 66-dia topology, whereas complex 3 is bridged by the L and tbip2- ligands to form a rarely tri-nodal (3,3,5) layer with 3,3,5L18 topology. The results indicate that Co(II) mixed coordination polymers structurally modulated by the substituent effect of isophthalate-involved co-ligands. In addition, the fluorescence and catalytic activity of the complexes for the degradation of methyl orange by the sodium persulfate in a Fenton-like process have been investigated.

  9. Crystal structure of bis-[2-(1H-benzimid-azol-2-yl)-4-bromo-phenolato-κ(2) N (3),O]cobalt(II).

    PubMed

    Fan, Yan; Qu, Zhi-Rong

    2014-11-01

    The asymmetric unit of the title Co(II) complex, [Co(C13H8BrN2O)2], contains two independent mol-ecules (A and B). In both mol-ecules, the Co(II) cation is N,O-chelated by two 2-(1H-benzimidazol-2-yl)-4-bromo-phenolate anions in a distorted tetra-hedral geometry. In mol-ecule A, both chelating rings display an envelope conformation, with the flap Co atom lying 0.614 (6) and 0.483 (6) Å from the mean planes of the remaining atoms. In mol-ecule B, both chelating rings are approximately planar, the maximum deviations being 0.039 (4) and 0.076 (3) Å. In the crystal, mol-ecules are linked by classical N-H⋯O hydrogen bonds and weak C-H⋯O and C-H⋯Br hydrogen bonds into a three-dimensional supra-molecular network. Extensive π-π stacking is observed between nearly parallel aromatic rings of adjacent mol-ecules with centroid-centroid distances in the range 3.407 (3)-3.850 (4) Å. PMID:25484776

  10. Crystal structure of tetra­kis­(isonicotinamide-κN)bis­(thio­cyanato-κN)cobalt(II)–isonicotinamide–ethanol (1/2/1)

    PubMed Central

    Neumann, Tristan; Jess, Inke; Näther, Christian

    2016-01-01

    The asymmetric unit of the title compound, [Co(NCS)2(C6H6N2O)4]·2C6H6N2O·C2H5OH, comprises one CoII cation, two thio­cyanate anions, four coordinating and two solvent isonicotinamide molecules and one ethanol solvent mol­ecule. The CoII cations are octa­hedrally coordinated by four N-coordinating isonicotinamide ligands and two terminally N-bonded thio­cyanate anions. These discrete complexes are linked by inter­molecular N—H⋯O and N—H⋯S hydrogen-bonding inter­actions into a three-dimensional network. The two isonicotinamide and the ethanol solvent mol­ecules are embedded in channels of this network and are linked through further N—H⋯O and N—H⋯N hydrogen bonds to the network. The ethanol solvent mol­ecule is disordered over two sets of sites (occupancy ratio 0.6:0.4). PMID:27536386

  11. Two Polymorphic Forms of a Six-Coordinate Mononuclear Cobalt(II) Complex with Easy-Plane Anisotropy: Structural Features, Theoretical Calculations, and Field-Induced Slow Relaxation of the Magnetization.

    PubMed

    Roy, Subhadip; Oyarzabal, Itziar; Vallejo, Julia; Cano, Joan; Colacio, Enrique; Bauza, Antonio; Frontera, Antonio; Kirillov, Alexander M; Drew, Michael G B; Das, Subrata

    2016-09-01

    A mononuclear cobalt(II) complex [Co(3,5-dnb)2(py)2(H2O)2] {3,5-Hdnb = 3,5-dinitrobenzoic acid; py = pyridine} was isolated in two polymorphs, in space groups C2/c (1) and P21/c (2). Single-crystal X-ray diffraction analyses reveal that 1 and 2 are not isostructural in spite of having equal formulas and ligand connectivity. In both structures, the Co(II) centers adopt octahedral {CoN2O4} geometries filled by pairs of mutually trans terminal 3,5-dnb, py, and water ligands. However, the structures of 1 and 2 disclose distinct packing patterns driven by strong intermolecular O-H···O hydrogen bonds, leading to their 0D→2D (1) or 0D→1D (2) extension. The resulting two-dimensional layers and one-dimensional chains were topologically classified as the sql and 2C1 underlying nets, respectively. By means of DFT theoretical calculations, the energy variations between the polymorphs were estimated, and the binding energies associated with the noncovalent interactions observed in the crystal structures were also evaluated. The study of the direct-current magnetic properties, as well as ab initio calculations, reveal that both 1 and 2 present a strong easy-plane magnetic anisotropy (D > 0), which is larger for the latter polymorph (D is found to exhibit values between +58 and 117 cm(-1) depending on the method). Alternating current dynamic susceptibility measurements show that these polymorphs exhibit field-induced slow relaxation of the magnetization with Ueff values of 19.5 and 21.1 cm(-1) for 1 and 2, respectively. The analysis of the whole magnetic data allows the conclusion that the magnetization relaxation in these polymorphs mainly takes place through a virtual excited state (Raman process). It is worth noting that despite the notable difference between the supramolecular networks of 1 and 2, they exhibit almost identical magnetization dynamics. This fact suggests that the relaxation process is intramolecular in nature and that the virtual state involved in the

  12. Two Polymorphic Forms of a Six-Coordinate Mononuclear Cobalt(II) Complex with Easy-Plane Anisotropy: Structural Features, Theoretical Calculations, and Field-Induced Slow Relaxation of the Magnetization.

    PubMed

    Roy, Subhadip; Oyarzabal, Itziar; Vallejo, Julia; Cano, Joan; Colacio, Enrique; Bauza, Antonio; Frontera, Antonio; Kirillov, Alexander M; Drew, Michael G B; Das, Subrata

    2016-09-01

    A mononuclear cobalt(II) complex [Co(3,5-dnb)2(py)2(H2O)2] {3,5-Hdnb = 3,5-dinitrobenzoic acid; py = pyridine} was isolated in two polymorphs, in space groups C2/c (1) and P21/c (2). Single-crystal X-ray diffraction analyses reveal that 1 and 2 are not isostructural in spite of having equal formulas and ligand connectivity. In both structures, the Co(II) centers adopt octahedral {CoN2O4} geometries filled by pairs of mutually trans terminal 3,5-dnb, py, and water ligands. However, the structures of 1 and 2 disclose distinct packing patterns driven by strong intermolecular O-H···O hydrogen bonds, leading to their 0D→2D (1) or 0D→1D (2) extension. The resulting two-dimensional layers and one-dimensional chains were topologically classified as the sql and 2C1 underlying nets, respectively. By means of DFT theoretical calculations, the energy variations between the polymorphs were estimated, and the binding energies associated with the noncovalent interactions observed in the crystal structures were also evaluated. The study of the direct-current magnetic properties, as well as ab initio calculations, reveal that both 1 and 2 present a strong easy-plane magnetic anisotropy (D > 0), which is larger for the latter polymorph (D is found to exhibit values between +58 and 117 cm(-1) depending on the method). Alternating current dynamic susceptibility measurements show that these polymorphs exhibit field-induced slow relaxation of the magnetization with Ueff values of 19.5 and 21.1 cm(-1) for 1 and 2, respectively. The analysis of the whole magnetic data allows the conclusion that the magnetization relaxation in these polymorphs mainly takes place through a virtual excited state (Raman process). It is worth noting that despite the notable difference between the supramolecular networks of 1 and 2, they exhibit almost identical magnetization dynamics. This fact suggests that the relaxation process is intramolecular in nature and that the virtual state involved in the

  13. Porous cobalt spheres for high temperature gradient magnetically assisted fluidized beds

    SciTech Connect

    Atwater, James E.; Akse, James R.; Jovanovic, Goran N.; Wheeler, Richard R.; Sornchamni, Thana

    2003-02-20

    Porous metallic cobalt spheres have been prepared as high temperature capable media for employment in gradient magnetically assisted fluidization and filtration technologies. Cobalt impregnated alginate beads are first formed by extrusion of an aqueous suspension of Co{sub 3}O{sub 4} into a Co(II) chloride solution. The organic polymer is thermally decomposed yielding cobalt oxide spheres, followed by reduction to the metallic state, and densification. Cobalt beads have been produced with porosities ranging between 10 and 50%, depending upon sintering conditions. The product media have been characterized by scanning electron microscopy (SEM), nitrogen adsorption porosimetry, and vibrating sample magnetometry.

  14. Porous cobalt spheres for high temperature gradient magnetically assisted fluidized beds

    NASA Technical Reports Server (NTRS)

    Atwater, James E.; Akse, James R.; Jovanovic, Goran N.; Wheeler, Richard R Jr; Sornchamni, Thana

    2003-01-01

    Porous metallic cobalt spheres have been prepared as high temperature capable media for employment in gradient magnetically assisted fluidization and filtration technologies. Cobalt impregnated alginate beads are first formed by extrusion of an aqueous suspension of Co3O4 into a Co(II) chloride solution. The organic polymer is thermally decomposed yielding cobalt oxide spheres, followed by reduction to the metallic state, and densification. Cobalt beads have been produced with porosities ranging between 10 and 50%, depending upon sintering conditions. The product media have been characterized by scanning electron microscopy (SEM), nitrogen adsorption porosimetry, and vibrating sample magnetometry. c2003 Elsevier Science Ltd. All rights reserved.

  15. Halogenation of cobalt dicarbollide

    DOEpatents

    Hurlburt, P.K.; Abney, K.D.; Kinkead, S.A.

    1997-05-20

    A method for selectively adding chlorine, bromine, or iodine to cobalt dicarbollide anions by means of electrophilic substitution reactions. Halogens are added only to the B10 and B10{prime} positions of the anion. The process involves use of hypohalous acid or N-halosuccinimide or gaseous chlorine in the presence of iron. 1 fig.

  16. Halogenation of cobalt dicarbollide

    DOEpatents

    Hurlburt, Paul K.; Abney, Kent D.; Kinkead, Scott A.

    1997-01-01

    A method for selectively adding chlorine, bromine, or iodine to cobalt dicarbollide anions by means of electrophilic substitution reactions. Halogens are added only to the B10 and B10' positions of the anion. The process involves use of hypohalous acid or N-halosuccinimide or gaseous chlorine in the presence of iron.

  17. Coordination Complexes of Cobalt.

    ERIC Educational Resources Information Center

    Williams, Gregory M.; And Others

    1989-01-01

    Described is an experiment involving the synthesis and spectral studies of cobalt complexes that not only give general chemistry students an introduction to inorganic synthesis but allows them to conduct a systematic study on the effect of different ligands on absorption spectra. Background information, procedures, and experimental results are…

  18. Bis[μ-4-(4-carb­oxy­phen­oxy)phthalato]bis­[triaqua­cobalt(II)

    PubMed Central

    Wang, Liang

    2013-01-01

    The dinuclear title complex, [Co2(C15H8O7)2(H2O)6], lies across an inversion center. The unique CoII ion is coordinated in a slightly distorted octa­hedral coordination geometry by two O atoms from a chelating 4-(carb­oxy­phen­oxy)phthalate ligand, three water O atoms and a further O atom from a bridging carboxyl­ate group of a symmetry-related 4-(carb­oxy­phen­oxy)phthalate ligand. In the crystal, O—H⋯O hydrogen bonds link the mol­ecules into a three-dimensional network. PMID:23424399

  19. Crystal structure of di­chlorido­bis­(dimethyl N-cyano­dithio­imino­carbonate)cobalt(II)

    PubMed Central

    Diop, Mouhamadou Birame; Diop, Libasse; Oliver, Allen G.

    2016-01-01

    The structure of the mononuclear title complex, [{(H3CS)2C=NC  N}2CoCl2], consists of a CoII atom coordinated in a distorted tetra­hedral manner by two Cl− ligands and the terminal N atoms of two dimethyl N-cyano­dithio­imino­carbonate ligands. The two organic ligands are almost coplanar, with a dihedral angle of 5.99 (6)° between their least-squares planes. The crystal packing features pairs of inversion-related complexes that are held together through C—H⋯Cl and C—H⋯S inter­actions and π–π stacking [centroid-to-centroid distance = 3.515 (su?) Å]. Additional C—H⋯Cl and C—H⋯S inter­actions, as well as Cl⋯S contacts < 3.6 Å, consolidate the crystal packing. PMID:26870588

  20. Synthesis and structure elucidation of a cobalt(II) complex as topoisomerase I inhibitor: in vitro DNA binding, nuclease and RBC hemolysis.

    PubMed

    Ahmad, Musheer; Afzal, Mohd; Tabassum, Sartaj; Kalińska, Bożena; Mrozinski, Jerzy; Bharadwaj, Parimal K

    2014-03-01

    Metal-based cancer chemotherapeutic agent of the type Co(II) complex [Co(mpca)₂]·H₂O (1), where, Hmpca = 9-methyl-[1,10]phenanthroline-2-carboxylic acid was synthesized and characterized by various spectroscopic and analytical techniques and further authenticated by single crystal X-ray diffraction methods. In vitro DNA binding studies of complex 1 with CT DNA was carried out by several biophysical techniques in accordance with molecular docking technique which revealed that 1 binds to DNA via intercalation mode having GC-rich sequences. Complex 1 cleaves pBR322 DNA via hydrolytic pathway (validated by T4 DNA ligase assay). Furthermore, complex 1 exhibits significant inhibitory effects on the catalytic activity of Topo-I at 25 μM concentration and further validated by molecular docking studies.

  1. Bis[6-(1H-benzimidazol-2-yl-κN 3)pyridine-2-carboxyl­ato-κ2 N,O]cobalt(II) dihydrate

    PubMed Central

    Han, Liying; Sun, Dajun

    2012-01-01

    In the title compound, [Co(C13H8N3O2)2]·2H2O, the CoII atom has a distorted octa­hedral environment defined by four N atoms and two O atoms from two 6-(1H-benzimidazol-2-yl)pyridine-2-carboxyl­ate ligands. In the crystal, the complex mol­ecules and uncoordinated water mol­ecules are linked via N—H⋯O and O—H⋯O hydrogen bonds, forming a two-dimensional supra­molecular structure parallel to (010). π–π inter­actions are present between the imidazole, pyridine and benzene rings [centroid–centroid distances = 3.528 (2), 3.592 (2), 3.680 (2) and 3.732 (3) Å]. PMID:22259369

  2. Hexaaqua-cobalt(II) 5,5'-(propane-1,3-diyldithio)bis-(1H-tetra-zole-1-acetate).

    PubMed

    Liang, Wan-Ling; Yu, Qing; Zhang, Xiu-Qing; Qin, Jiang-Ke; Liang, Hong

    2009-07-29

    The asymmetric unit of the title complex, [Co(H(2)O)(6)](C(9)H(10)N(8)O(4)S(2)), contains one-half of a [Co(H(2)O)(6)](2+) cation and one-half of a 5,5'-(propane-1,3-diyldithio)bis-(1H-tetra-zole-1-acetate) (battp(2-)) anion. The Co(II) center is coordinated by six H(2)O mol-ecules in a distorted octa-hedral coordination environment. In the crystal structure, intra- and inter-molecular O-H⋯O and O-H⋯N hydrogen bonds link the cations and anions into a three-dimensional network. π-π contacts between the tetra-zole rings [centroid-centroid distance = 3.346 (1) Å] may further stabilize the structure.

  3. Diaqua-bis-(dihydrogen 3-aza-niumyl-1-hy-droxy-propyl-idene-1,1-di-phos-phon-ato-κO,O')cobalt(II).

    PubMed

    Tsaryk, Natalia V; Dudko, Anatolij V; Kozachkova, Alexandra N; Pekhnyo, Vasily I

    2011-12-01

    The asymmetric unit of title compound, [Co(C(3)H(10)NO(7)P(2))(2)(H(2)O)(2)], contains one half-mol-ecule of the complex. The Co(II) atom is located on an inversion centre and displays a distorted octa-hedral coordination geometry defined by four O atoms of two 3-aza-niumyl-1-hy-droxy-propyl-idene-1,1-bis-phospho-nato ligands in the equatorial plane and two water mol-ecules located in axial positions. The ligand mol-ecules, which exist in a zwitterionic state, form two six-membered chelate rings with chair conformations. In the crystal, mol-ecules are inter-linked by O-H⋯O and N-H⋯O hydrogen bonds, forming a three-dimensional supra-molecular structure. PMID:22199511

  4. Slow magnetic relaxation in octahedral cobalt(II) field-induced single-ion magnet with positive axial and large rhombic anisotropy.

    PubMed

    Herchel, Radovan; Váhovská, Lucia; Potočňák, Ivan; Trávníček, Zdeněk

    2014-06-16

    Pseudooctahedral mononuclear cobat(II) complex [Co(abpt)2(tcm)2] (1), where abpt = 4-amino-3,5-bis(2-pyridyl)-1,2,4-triazole and tcm = tricyanomethanide anion, shows field-induced slow relaxation of magnetization with U = 86.2 K and large axial and rhombic single-ion zero-field-splitting parameters, D = +48(2) cm(-1) and E/D = 0.27(2) (D = +53.7 cm(-1) and E/D = 0.29 from ab initio CASSCF/NEVPT2 calculations), thus presenting a new example of a field-induced single-ion magnet with transversal magnetic anisotropy. PMID:24853769

  5. Crystal structure of catena-poly[[aqua(2,2':6',2''-terpyridine-κ(3) N,N',N'')cobalt(II)]-μ-cyanido-κ(2) N:C-[dicyanidoplatinum(II)]-μ-cyanido-κ(2) C:N].

    PubMed

    White, Frankie; Sykora, Richard E

    2014-09-01

    The title compound, [Co(C15H11N3)(H2O){Pt(CN)4}] n , is a one-dimensional coordination polymer formed under hydro-thermal reaction conditions. The Co(II) site has sixfold coordination with a distorted octa-hedral geometry, while the Pt(II) ion is coordinated by four cyanide groups in an almost regular square-planar geometry. The compound contains twofold rotation symmetry about its Co(II) ion, the water molecule and the terpyridine ligand, and the Pt(II) atom resides on an inversion center. trans-Bridging by the tetra-cyanidoplatinate(II) anions links the Co(II) cations, forming chains parallel to [-101]. Additionally, each Co(II) atom is coordin-ated by one water mol-ecule and one tridentate 2,2':6',2''-terpyridine ligand. O-H⋯N hydrogen-bonding inter-actions are found between adjacent chains and help to consolidate the crystal packing. In addition, relatively weak π-π stacking inter-actions exist between the terpyridine ligands of adjacent chains [inter-planar distance = 3.464 (7) Å]. No Pt⋯Pt inter-actions are observed in the structure. PMID:25309181

  6. Cobalt catalysis involving π components in organic synthesis.

    PubMed

    Gandeepan, Parthasarathy; Cheng, Chien-Hong

    2015-04-21

    Over the last three decades, transition-metal-catalyzed organic transformations have been shown to be extremely important in organic synthesis. However, most of the successful reactions are associated with noble metals, which are generally toxic, expensive, and less abundant. Therefore, we have focused on catalysis using the abundant first-row transition metals, specifically cobalt. In this Account, we demonstrate the potential of cobalt catalysis in organic synthesis as revealed by our research. We have developed many useful catalytic systems using cobalt complexes. Overall, they can be classified into several broad types of reactions, specifically [2 + 2 + 2] and [2 + 2] cycloadditions; enyne reductive coupling; reductive [3 + 2] cycloaddition of alkynes/allenes with enones; reductive coupling of alkyl iodides with alkenes; addition of organoboronic acids to alkynes, alkenes, or aldehydes; carbocyclization of o-iodoaryl ketones/aldehydes with alkynes/electron-deficient alkenes; coupling of thiols with aryl and alkyl halides; enyne coupling; and C-H bond activation. Reactions relying on π components, specifically cycloaddition, reductive coupling, and enyne coupling, mostly afford products with excellent stereo- and regioselectivity and superior atom economy. We believe that these cobalt-catalyzed π-component coupling reactions proceed through five-membered cobaltacyclic intermediates formed by the oxidative cyclometalation of two coordinated π bonds of the substrates to the low-valent cobalt species. The high regio- and stereoselectivity of these reactions are achieved as a result of the electronic and steric effects of the π components. Mostly, electron-withdrawing groups and bulkier groups attached to the π bonds prefer to be placed near the cobalt center of the cobaltacycle. Most of these transformations proceed through low-valent cobalt complexes, which are conveniently generated in situ from air-stable Co(II) salts by Zn- or Mn-mediated reduction

  7. Crystal structure of di-bromido-bis-(1,3-dibenzyl-1,3-diazinan-2-one-κO)cobalt(II).

    PubMed

    Rais, Eduard; Flörke, Ulrich; Wilhelm, René

    2015-09-01

    The unit cell of the title complex, [CoBr2(C18H20N2O)2], contains 1.5 formula units per asymmetric unit with one mol-ecule sitting on a general site and a second one halved by a crystallographic twofold rotation axis passing through the Co(II) cation. Both Co(II) atoms are coordinated in a distorted tetra-hedral manner by two Br(-) ligands and two O atoms of the pyrimidinone (OPyr) groups. The Br-Co-Br coordination angles are similar [115.46 (4) and 115.20 (5)°], while the O-Co-O angles differ slightly more [102.26 (18) and 98.1 (2)°]. Similarly, the Co-Br bond lengths are almost identical [2.3721 (9), 2.3757 (10) and 2.3809 (10) Å], with a larger difference between the Co-O bond lengths [1.929 (4), 1.926 (4) and 1.955 (4) Å]. The three independent OPyr groups present envelope conformations, with three C and two N atoms lying in well defined planes with maximum deviations from the least-squares planes of 0.047, 0.031 and 0.036 Å, and the external-most C atoms protruding by 0.654 (6), 0.643 (7) and 0.656 (6) Å out of the planes. The dihedral angles between the planar fractions of the OPyr planes are 50.5 (1)° for the nonsymmetric mol-ecule and 49.7 (1)° for the symmetric one. Non-covalent inter-actions are of the C-H⋯Br type and they are weak, hardly shorter than van der Waals radii, with an H⋯Br distance range of 3.00-3.04 Å. The inter-molecular inter-actions define chains parallel to [101]. PMID:26396865

  8. Poly[[tetra­aquatetrakis­[μ3-5-(pyridine-4-carboxamido)­isophthalato]cobalt(II)digadolinium(III)] tetra­hydrate

    PubMed Central

    Deng, Yi-Fang; Chen, Man-Sheng; Zhang, Chun-Hua; Kuang, Dai-Zhi

    2011-01-01

    In the centrosymmetric polymeric title compound, {[CoGd2(C14H8N2O5)4(H2O)4]·4H2O}n, the GdIII cation is coordinated by one water mol­ecule and four pyridine-4-carboxamido­isophthalate (L) anions in a distorted square-anti­prismatic arrangement, while the CoII cation, located on an inversion center, is coordinated by two pyridyl-N atoms, two carboxyl­ate-O atoms and two water mol­ecules in a distorted octa­hedral geometry. The asymmetric unit contains two anionic L ligands: one bridges two Gd cations and one Co cation through two carboxyl groups and one pyridine-N atom; the other bridges two Gd cations and one Co cation through two carboxyl groups and the uncoordinated pyridine-N atom is hydrogen-bonded to the adjacent coordinated water mol­ecule. Extensive O—H⋯O and N—H⋯O hydrogen bonds are present in the crystal structure. PMID:22064912

  9. Crystal structure of tetraaquabis(8-chloro-9,10-dioxo-9,10-dihydroanthracene-1-carboxyl-ato-κO (1))cobalt(II) dihydrate.

    PubMed

    Cai, Wen-Juan; Liu, Bo; Liu, Feng-Yi; Kou, Jun-Feng

    2014-10-01

    In the title complex, [Co(C15H6ClO4)2(H2O)4]·2H2O, the Co(II) ion is bound by two carboxylate O atoms of two 5-chloro-9,10-anthra-quinone-1-carboxyl-ate anions and four water O atoms in a trans conformation, forming an irregular octa-hedral coordination geometry. This arrangement is stabilized by intra-molecular O-H⋯O hydrogen bonds between water and carboxyl-ate. Further O-H⋯O hydrogen bonds between coordinating and non-coordinating water and carboxyl-ate produce layers of mol-ecules that extend parallel to (001). The organic ligands project above and below the plane. Those ligands of adjacent planes are inter-digitated and there are π-π inter-actions between them with centroid-centroid distances of 3.552 (2) and 3.767 (2) Å that generate a three-dimensional supra-molecular structure. PMID:25484680

  10. Synthesis and characterization of a series of transition metal complexes with a new symmetrical polyoxaaza macroacyclic Schiff base ligand: X-ray crystal structure of cobalt(II) and nickel(II) complexes and their antibacterial properties

    NASA Astrophysics Data System (ADS)

    Keypour, Hassan; Shayesteh, Maryam; Rezaeivala, Majid; Chalabian, Firoozeh; Valencia, Laura

    2013-01-01

    A new symmetrical [N4O2] hexadentate Schiff base ligand, (E)-N-(pyridin-2-ylmethylene)-2-(3-(2-((E)-pyridin-2-lmethyleneamino)phenoxy)naphthalen-2-yloxy)benzenamine, abbreviated to L, and its complexes of Ni(II), Cu(II), Zn(II), Co(II), Cd(II) and Mn(II) have been synthesized in the presence of metal ions. The complexes were structurally characterized by elemental analyses, IR, UV-Vis, NMR and molar conductivity. The crystal structures of two complexes, [NiL(ONO2)2]·2H2O and [CoLCl2]CH3OH·0.5H2O, have been determined by a single crystal X-ray diffraction study. In these complexes, the ligand is coordinated in a neutral form via pyridine and azomethine nitrogen atoms. The metal ions complete their six coordination with two coordinated nitrate or chloride ions, forming a distorted octahedral geometry. The synthesized compounds have antibacterial activity against the three Gram-positive bacteria: Enterococcus faecalis, Bacillus cereus and Staphylococcus epid and also against the three Gram-negative bacteria: Citrobacter freundii, Enterobacter aerogenes and Salmonella typhi. The activity data show that the complexes are more potent antibacterials than the parent Schiff base.

  11. Trinuclear nickel and cobalt complexes containing unsymmetrical tripodal tetradentate ligands: syntheses, structural, magnetic, and catalytic properties.

    PubMed

    Shin, Jong Won; Jeong, Ah Rim; Lee, Sun Young; Kim, Cheal; Hayami, Shinya; Min, Kil Sik

    2016-09-28

    The coordination chemistries of the tetradentate N2O2-type ligands N-(2-pyridylmethyl)iminodiethanol (H2pmide) and N-(2-pyridylmethyl)iminodiisopropanol (H2pmidip) have been investigated with nickel(ii) and cobalt(ii/iii) ions. Three novel complexes prepared and characterized are [(Hpmide)2Ni3(CH3COO)4] (1), [(Hpmide)2Co3(CH3COO)4] (2), and [(pmidip)2Co3(CH3COO)4] (3). In 1 and 2, two terminal nickel(ii)/cobalt(ii) units are coordinated to one Hpmide(-) and two CH3CO2(-). The terminal units are each connected to a central nickel(ii)/cobalt(ii) cation through one oxygen atom of Hpmide(-) and two oxygen atoms of acetate ions, giving rise to nickel(ii) and cobalt(ii) trinuclear complexes, respectively. Trinuclear complexes 1 and 2 are isomorphous. In 3, two terminal cobalt(iii) units are coordinated to pmidip(2-) and two CH3CO2(-). The terminal units are each linked to a central cobalt(ii) cation through two oxygen atoms of pmidip(2-) and one oxygen atom of a bidentate acetate ion, resulting in a linear trinuclear mixed-valence cobalt complex. 1 shows a weak ferromagnetic interaction with the ethoxo and acetato groups between the nickel(ii) ions (g = 2.24, J = 2.35 cm(-1)). However, 2 indicates a weak antiferromagnetic coupling with the ethoxo and acetato groups between the cobalt(ii) ions (g = 2.37, J = -0.5 cm(-1)). Additionally, 3 behaves as a paramagnetic cobalt(ii) monomer, due to the diamagnetic cobalt(iii) ions in the terminal units (g = 2.53, |D| = 36.0 cm(-1)). No catalytic activity was observed in 1. However, 2 and 3 showed significant catalytic activities toward various olefins with modest to good yields. 3 was slightly less efficient toward olefin epoxidation reaction than 2. Also 2 was used for terminal olefin oxidation reaction and was oxidised to the corresponding epoxides in moderate yields (34-75%) with conversions ranging from 47-100%. The cobalt complexes 2 and 3 promoted the O-O bond cleavage to ∼75% heterolysis and ∼25% homolysis. PMID

  12. Trinuclear nickel and cobalt complexes containing unsymmetrical tripodal tetradentate ligands: syntheses, structural, magnetic, and catalytic properties.

    PubMed

    Shin, Jong Won; Jeong, Ah Rim; Lee, Sun Young; Kim, Cheal; Hayami, Shinya; Min, Kil Sik

    2016-09-28

    The coordination chemistries of the tetradentate N2O2-type ligands N-(2-pyridylmethyl)iminodiethanol (H2pmide) and N-(2-pyridylmethyl)iminodiisopropanol (H2pmidip) have been investigated with nickel(ii) and cobalt(ii/iii) ions. Three novel complexes prepared and characterized are [(Hpmide)2Ni3(CH3COO)4] (1), [(Hpmide)2Co3(CH3COO)4] (2), and [(pmidip)2Co3(CH3COO)4] (3). In 1 and 2, two terminal nickel(ii)/cobalt(ii) units are coordinated to one Hpmide(-) and two CH3CO2(-). The terminal units are each connected to a central nickel(ii)/cobalt(ii) cation through one oxygen atom of Hpmide(-) and two oxygen atoms of acetate ions, giving rise to nickel(ii) and cobalt(ii) trinuclear complexes, respectively. Trinuclear complexes 1 and 2 are isomorphous. In 3, two terminal cobalt(iii) units are coordinated to pmidip(2-) and two CH3CO2(-). The terminal units are each linked to a central cobalt(ii) cation through two oxygen atoms of pmidip(2-) and one oxygen atom of a bidentate acetate ion, resulting in a linear trinuclear mixed-valence cobalt complex. 1 shows a weak ferromagnetic interaction with the ethoxo and acetato groups between the nickel(ii) ions (g = 2.24, J = 2.35 cm(-1)). However, 2 indicates a weak antiferromagnetic coupling with the ethoxo and acetato groups between the cobalt(ii) ions (g = 2.37, J = -0.5 cm(-1)). Additionally, 3 behaves as a paramagnetic cobalt(ii) monomer, due to the diamagnetic cobalt(iii) ions in the terminal units (g = 2.53, |D| = 36.0 cm(-1)). No catalytic activity was observed in 1. However, 2 and 3 showed significant catalytic activities toward various olefins with modest to good yields. 3 was slightly less efficient toward olefin epoxidation reaction than 2. Also 2 was used for terminal olefin oxidation reaction and was oxidised to the corresponding epoxides in moderate yields (34-75%) with conversions ranging from 47-100%. The cobalt complexes 2 and 3 promoted the O-O bond cleavage to ∼75% heterolysis and ∼25% homolysis.

  13. Application of aqueous two-phase systems for the development of a new method of cobalt(II), iron(III) and nickel(II) extraction: a green chemistry approach.

    PubMed

    Patrício, Pamela da Rocha; Mesquita, Maiby Cabral; da Silva, Luis Henrique Mendes; da Silva, Maria C Hespanhol

    2011-10-15

    We have investigated the extraction behavior of the metallic ions Co(II), Fe(III) and Ni(II) as a function of the amount of potassium thiocyanate used as an extracting agent, using the following aqueous two-phase systems (ATPS): PEO + (NH(4))(2)SO(4) + H(2)O, PEO + Li(2)SO(4) + H(2)O, L35 + (NH(4))(2)SO(4) + H(2)O and L35 + (Li)(2)SO(4)+H(2)O. Metal extraction from the salt-rich phase to the polymer-rich phase is affected by the following parameters: amount of added extractant, pH, and the nature of the electrolyte and polymer that forms the ATPS. Maximal extraction percentages were obtained for Co(II) (99.8%), Fe(III) (12.7%) and Ni(II) (3.17%) when the ATPS was composed of PEO1500 + (NH(4))(2)SO(4) + H(2)O containing 1.4 mmol of KSCN at pH 4.0, providing separation factors as high as S(Co, Fe) = 3440 and S(Co, Ni) = 15,300. However, when the same ATPS was used at pH 2.0, the maximal extraction percentages for iron and nickel were 99.5% and 4.34%, respectively, with S(Fe, Ni) equal to 4380. The proposed technique was shown to be efficient in the extraction of Co(II) and Fe(III), with large viability for the selective separation of Co(II) and Fe(III) ions in the presence of Ni(II). PMID:21864977

  14. Application of aqueous two-phase systems for the development of a new method of cobalt(II), iron(III) and nickel(II) extraction: a green chemistry approach.

    PubMed

    Patrício, Pamela da Rocha; Mesquita, Maiby Cabral; da Silva, Luis Henrique Mendes; da Silva, Maria C Hespanhol

    2011-10-15

    We have investigated the extraction behavior of the metallic ions Co(II), Fe(III) and Ni(II) as a function of the amount of potassium thiocyanate used as an extracting agent, using the following aqueous two-phase systems (ATPS): PEO + (NH(4))(2)SO(4) + H(2)O, PEO + Li(2)SO(4) + H(2)O, L35 + (NH(4))(2)SO(4) + H(2)O and L35 + (Li)(2)SO(4)+H(2)O. Metal extraction from the salt-rich phase to the polymer-rich phase is affected by the following parameters: amount of added extractant, pH, and the nature of the electrolyte and polymer that forms the ATPS. Maximal extraction percentages were obtained for Co(II) (99.8%), Fe(III) (12.7%) and Ni(II) (3.17%) when the ATPS was composed of PEO1500 + (NH(4))(2)SO(4) + H(2)O containing 1.4 mmol of KSCN at pH 4.0, providing separation factors as high as S(Co, Fe) = 3440 and S(Co, Ni) = 15,300. However, when the same ATPS was used at pH 2.0, the maximal extraction percentages for iron and nickel were 99.5% and 4.34%, respectively, with S(Fe, Ni) equal to 4380. The proposed technique was shown to be efficient in the extraction of Co(II) and Fe(III), with large viability for the selective separation of Co(II) and Fe(III) ions in the presence of Ni(II).

  15. Synthesis and Characterization of Cobalt(III), Nickel(II) and Copper(II) Mononuclear Complexes with the Ligand 1,3-bis[(2-aminoethyl)amino]-2-propanol and Their Catalase-Like Activity

    PubMed Central

    Silva, Daniel M.; Visentin, Lorenzo C.; Rodrigues, Bernardo L.

    2015-01-01

    In this work, we present the synthesis and characterization of two new mononuclear complexes with the ligand 1,3-bis[(2-aminoethyl)amino]-2-propanol (HL), [Co(L)(H2O)](ClO4)2 (1), [Ni(HL)](ClO4)2 (2), as well as the known complex [Cu(HL)](ClO4)2 (3) for comparison. Their abilities to catalyze the dismutation of H2O2 and the oxidation of cyclohexane were investigated. The complexes were characterized by X-ray diffraction, elemental analysis, electronic and infrared spectroscopy, cyclic voltammetry, electrospray ionization mass spectrometry (ESI-MS) and conductivity measurements. The X-ray structures showed that the nickel (2) and copper (3) complexes are tetracoordinated, with the metal ion bound to the nitrogen atoms of the ligand. On the other hand, the cobalt complex (1) is hexacoordinated, possessing additional bonds to the alkoxo group of the ligand and to a water molecule. Neither of the complexes was able to catalyze the oxidation of cyclohexane, but all of them exhibited catalase-like activity, following Michaelis-Menten kinetics, which suggest resemblance with the catalase natural enzymes. The catalytic activity followed the order: [Ni(HL)](ClO4)2 (2) > [Cu(HL)](ClO4)2 (3) > [Co(L)(H2O)](ClO4)2 (1). As far as we know, this is the first description of a nickel complex presenting a significant catalase-like activity. PMID:26379038

  16. Isolation and (111)In-Oxine Labeling of Murine NK Cells for Assessment of Cell Trafficking in Orthotopic Lung Tumor Model.

    PubMed

    Malviya, Gaurav; Nayak, Tapan; Gerdes, Christian; Dierckx, Rudi A J O; Signore, Alberto; de Vries, Erik F J

    2016-04-01

    A noninvasive in vivo imaging method for NK cell trafficking is essential to gain further understanding of the pathogenesis of NK cell mediated immune response to the novel cancer treatment strategies, and to discover the homing sites and physiological distribution of NK cells. Although human NK cells can be labeled for in vivo imaging, little is known about the murine NK cell labeling and its application in animal models. This study describes the isolation and ex vivo radiolabeling of murine NK cells for the evaluation of cell trafficking in an orthotopic model of human lung cancer in mice. Scid-Tg(FCGR3A)Blt transgenic SCID mice were used to isolate NK cells from mouse splenocytes using the CD49b (DX5) MicroBeads positive selection method. The purity and viability of the isolated NK cells were confirmed by FACS analysis. Different labeling buffers and incubation times were evaluated to optimize (111)In-oxine labeling conditions. Functionality of the radiolabeled NK cell was assessed by (51)Cr-release assay. We evaluated physiological distribution of (111)In-oxine labeled murine NK cells in normal SCID mice and biodistribution in irradiated and nonirradiated SCID mice with orthotopic A549 human lung tumor lesions. Imaging findings were confirmed by histology. Results showed that incubation with 0.011 MBq of (111)In-oxine per million murine NK cells in PBS (pH 7.4) for 20 min is the best condition that provides optimum labeling efficiency without affecting cell viability and functionality. Physiological distribution in normal SCID mice demonstrated NK cells homing mainly in the spleen, while (111)In released from NK cells was excreted via kidneys into urine. Biodistribution studies demonstrated a higher lung uptake in orthotopic lung tumor-bearing mice than control mice. In irradiated mice, lung tumor uptake of radiolabeled murine NK cells decreased between 24 h and 72 h postinjection (p.i.), which was accompanied by tumor regression, while in nonirradiated mice

  17. Synthesis, structures and properties of the new lithium cobalt(II) phosphate Li{sub 4}Co(PO{sub 4}){sub 2}

    SciTech Connect

    Glaum, R.; Gerber, K.; Schulz-Dobrick, M.

    2012-04-15

    {alpha}-Li{sub 4}Co(PO{sub 4}){sub 2} has been synthesized and crystallized by solid-state reactions. The new phosphate crystallizes in the monoclinic system (P2{sub 1}/a, Z=4, a=8.117(3) Angstrom-Sign , b=10.303(8) Angstrom-Sign , c=8.118(8) Angstrom-Sign , {beta}=104.36(8) Angstrom-Sign ) and is isotypic to {alpha}-Li{sub 4}Zn(PO{sub 4}){sub 2}. The structure of {alpha}-Li{sub 4}Co(PO{sub 4}){sub 2} has been determined from single-crystal X-ray diffraction data {l_brace}R{sub 1}=0.040, wR{sub 2}=0.135, 2278 unique reflections with F{sub o}>4{sigma}(F{sub o}){r_brace}. The crystal structure, which might be regarded as a superstructure of the wurtzite structure type, is build of layers of regular CoO{sub 4}, PO{sub 4} and Li1O{sub 4} tetrahedra. Lithium atoms Li2, Li3 and Li4 are located between these layers. Thermal investigations by in-situ XRPD, DTA/TG and quenching experiments suggest decomposition followed by formation and phase transformation of Li{sub 4}Co(PO{sub 4}){sub 2}: {alpha}-Li{sub 4}Co(PO{sub 4}){sub 2} Long-Rightwards-Double-Arrow {sup 442 Degree-Sign C}{beta}-Li{sub 3}PO{sub 4}+LiCoPO{sub 4} Rightwards-Harpoon-Over-Leftwards-Harpoon {sup 773 Degree-Sign C}{beta}-Li{sub 4}Co(PO{sub 4}){sub 2} Long-Rightwards-Double-Arrow {sup quenchingto25 Degree-Sign C}{alpha}-Li{sub 4} Co(PO{sub 4}){sub 2} According to HT-XRPD at {theta}=850 Degree-Sign C{beta}-Li{sub 4}Co(PO{sub 4}){sub 2} (Pnma, Z=2, 10.3341(8) A, b=6.5829(5) A, c=5.0428(3) Angstrom-Sign ) is isostructural to {gamma}-Li{sub 3}PO{sub 4}. The powder reflectance spectrum of {alpha}-Li{sub 4}Co(PO{sub 4}){sub 2} shows the typical absorption bands for the tetrahedral chromophore [Co{sup II}O{sub 4}]. - Graphical abstract: The complex formation and decomposition behavior of Li{sub 4}Co(PO{sub 4}){sub 2} with temperature has been elucidated. The crystal structure of its {alpha}-phase was determined from single crystal data, HT-XRPD allowed derivation of a structure model for the {beta}-phase. Both

  18. Cobalt sorption in silica-pillared clays.

    PubMed

    Sampieri, A; Fetter, G; Bosch, P; Bulbulian, S

    2006-01-01

    Silicon pillared samples were prepared following conventional and microwave irradiation methods. The samples were characterized and tested in cobalt sorption. Ethylenediammine was added before cobalt addition to improve the amount of cobalt retained. The amount of cobalt introduced in the original clay in the presence of ethylenediammine was the highest. In calcined pillared clays the cobalt retention with ethylenediammine was lower (ca. 40%). In all cases the presence of ethylenediammine increased twice the amount of cobalt sorption measured for aqueous solutions.

  19. Cobalt exposure and cancer risk

    SciTech Connect

    Jensen, A.A.; Tuechsen, F. )

    1990-01-01

    Cobalt is a technically important metal, used mainly as a binder in the hard-metal industry and as a constituent of many alloys. Cobalt compounds are used as drying agents in paints and laquers. Since ancient times, cobalt compounds have been used as coloring agents for pottery, ceramics, and glass. Soluble cobalt salts interfere adversely with cell division, bind irreversibly to nucleic acids in the cell nucleus, induce chromosome aberrations in plants, and are weakly mutagenic in some in vitro tests with cultured animal cells, bacteria, and yeast. Injections or implantation of cobalt metal, cobalt alloys, and cobalt compounds induced local and sometimes metastasizing sarcomas in rats, rabbits, and mice. Mouse is the least susceptible animal. The only published inhalation study with hamsters exposed to CoO aerosols remained non-positive. Indication of possible carcinogenic effects of cobalt alloys or compounds in human populations has arisen from medical use, in hard-metal industries, and at cobalt production. Unfortunately, confounding by nickel and arsenic is a major problem, and the size of most of the investigated populations has been rather small, so none of the investigations alone gives sufficient evidence of a carcinogenic effect in humans, but taken together there is an indication of a carcinogenic potential that should be explored further. 92 references.

  20. Cobalt ion-containing epoxies

    NASA Technical Reports Server (NTRS)

    Stoakley, D. M.; St.clair, A. K.

    1983-01-01

    Varying concentrations of an organometallic cobalt complex were added to an epoxy system currently used by the aerospace industry as a composite matrix resin. Methods for combining cobalt (III) acetylacetonate with a tetraglycidyl 4,4 prime - diaminodiphenylmethane-based epoxy were investigated. The effects of increasing cobalt ion concentration on the epoxy cure were demonstrated by epoxy gel times and differential scanning calorimetry cure exotherms. Analysis on cured cobalt-containing epoxy castings included determination of glass transition temperatures by thermomechanical analysis, thermooxidative stabilities by thermogravimetric analysis, and densities in a density gradient column. Flexural strength and stiffness were also measured on the neat resin castings.

  1. Mononuclear, trinuclear, and hetero-trinuclear supramolecular complexes containing a new tri-sulfonate ligand and cobalt(II)/copper(II)-(1,10-phenanthroline){sub 2} building blocks

    SciTech Connect

    Yu Yunfang; Wei Yongqin; Broer, Ria; Sa Rongjian; Wu Kechen

    2008-03-15

    Novel mononuclear, trinuclear, and hetero-trinuclear supermolecular complexes, [Co(phen){sub 2}(H{sub 2}O)(HTST)].2H{sub 2}O (1), [Co{sub 3}(phen){sub 6}(H{sub 2}O){sub 2}(TST){sub 2}].7H{sub 2}O (2), and [Co{sub 2}Cu(phen){sub 6}(H{sub 2}O){sub 2}(TST){sub 2}].10H{sub 2}O (3), have been synthesized by the reactions of a new tri-sulfonate ligand (2,4,6-tris(4-sulfophenylamino)-1,3,5-triazine, H{sub 3}TST) with the M{sup 2+} (M=Co, Cu) and the second ligand 1,10-phenanthroline (phen). Complex 1 contains a cis-Co(II)(phen){sub 2} building block and an HTST as monodentate ligand; complex 2 consists of two TST as bidentate ligands connecting one trans- and two cis-Co(II)(phen){sub 2} building blocks; complex 3 is formed by replacing the trans-Co(II)(phen){sub 2} in 2 with a trans-Cu(II)(phen){sub 2}, which is the first reported hetero-trinuclear supramolecular complex containing both the Co(II)(phen){sub 2} and Cu(II)(phen){sub 2} as building blocks. The study shows the flexible multifunctional self-assembly capability of the H{sub 3}TST ligands presenting in these supramolecular complexes through coordinative, H-bonding and even {pi}-{pi} stacking interactions. The photoluminescent optical properties of these complexes are also investigated and discussed as well as the second-order nonlinear optical properties of 1. - Graphical abstract: Novel mononuclear, trinuclear, and hetero-trinuclear supermolecular complexes, [Co(phen){sub 2}(H{sub 2}O)(HTST)].2H{sub 2}O (1), [Co{sub 3}(phen){sub 6}(H{sub 2}O){sub 2}(TST){sub 2}].7H{sub 2}O (2), and [Co{sub 2}Cu(phen){sub 6}(H{sub 2}O){sub 2}(TST){sub 2}].10H{sub 2}O (3), have been synthesized by the reactions of a new tri-sulfonate ligand (2,4,6-tris(4-sulfophenylamino)-1,3,5-triazine, H{sub 3}TST) with the M{sup 2+} (M=Co, Cu) and the second ligand 1,10-phenanthroline (phen). The study shows the flexible multifunctional self-assembly capability of H{sub 3}TST ligand presenting in these supramolecular complexes.

  2. Protective Agent-Free Synthesis of Colloidal Cobalt Nanoparticles

    SciTech Connect

    Balela, M. D. L.; Lockman, Z.; Azizan, A.; Matsubara, E.; Amorsolo, A. V. Jr.

    2010-03-11

    Spherical colloidal cobalt (Co) nanoparticles of about 2-7 nm were synthesized by hydrazine reduction in ethylene glycol at 80 deg. C. The mean diameter of the Co nanoparticles was varied to some extent by changing the pH, temperature, Co(II) chloride hexahydrate concentration, and amount of hydrazine. The Co particle size was reduced by decreasing Co(II) chloride concentration and increasing amount of hydrazine.

  3. Cobalt-Catalyzed N-Alkylation of Amines with Alcohols.

    PubMed

    Zhang, Guoqi; Yin, Zhiwei; Zheng, Shengping

    2016-01-15

    A well-defined nonprecious metal cobalt(II) catalyst based on a pincer PNP ligand has been employed for the efficient N-alkylation of both aromatic and aliphatic amines with alcohols. A subtle change of reaction conditions (simply adding 4 Å molecular sieves) was observed to readily switch the resulting products (amines vs imines) with high chemoselectivity. A range of alcohols and amines including both aromatic and aliphatic substrates were efficiently converted to secondary amines in good-to-excellent yields when 2 mol % cobalt catalyst was used. Additional experiments indicate that a hydrogen-borrowing mechanism is responsible for the tandem acceptorless dehydrogenation/condensation/hydrogenation process. PMID:26695594

  4. Cobalt source calibration

    SciTech Connect

    Rizvi, H.M.

    1999-12-03

    The data obtained from these tests determine the dose rate of the two cobalt sources in SRTC. Building 774-A houses one of these sources while the other resides in room C-067 of Building 773-A. The data from this experiment shows the following: (1) The dose rate of the No.2 cobalt source in Building 774-A measured 1.073 x 10{sup 5} rad/h (June 17, 1999). The dose rate of the Shepherd Model 109 Gamma cobalt source in Building 773-A measured 9.27 x 10{sup 5} rad/h (June 25, 1999). These rates come from placing the graduated cylinder containing the dosimeter solution in the center of the irradiation chamber. (2) Two calibration tests in the 774-A source placed the graduated cylinder with the dosimeter solution approximately 1.5 inches off center in the axial direction. This movement of the sample reduced the measured dose rate 0.92% from 1.083 x 10{sup 5} rad/h to 1.073 x 10{sup 5} rad/h. and (3) A similar test in the cobalt source in 773-A placed the graduated cylinder approximately 2.0 inches off center in the axial direction. This change in position reduced the measured dose rate by 10.34% from 1.036 x 10{sup 6} to 9.27 x 10{sup 5}. This testing used chemical dosimetry to measure the dose rate of a radioactive source. In this method, one determines the dose by the chemical change that takes place in the dosimeter. For this calibration experiment, the author used a Fricke (ferrous ammonium sulfate) dosimeter. This solution works well for dose rates to 10{sup 7} rad/h. During irradiation of the Fricke dosimeter solution the Fe{sup 2+} ions ionize to Fe{sup 3+}. When this occurs, the solution acquires a slightly darker tint (not visible to the human eye). To determine the magnitude of the change in Fe ions, one places the solution in an UV-VIS Spectrophotometer. The UV-VIS Spectrophotometer measures the absorbency of the solution. Dividing the absorbency by the total time (in minutes) of exposure yields the dose rate.

  5. Crystal structure of an unknown solvate of {2,2'-[ethane-1,2-diylbis(nitrilo-methanylyl-idene)]diphenolato-κ(4) O,N,N',O'}(N-ferrocenylisonicotinamide-κN (1))cobalt(II): a Co(II)-salen complex that forms hydrogen-bonded dimers.

    PubMed

    Brautigam, Bryan; Herholdt, Chelsea; Farnsworth, William; Brudi, Ellen; McDonald, Eric; Wu, Guang; Contakes, Stephen

    2015-09-01

    The title compound, [CoFe(C5H5)(C16H14N2O2)(C11H9N2O)], was prepared as an air-stable red-brown solid by mixing equimolar amounts of {2,2'-[ethane-1,2-diylbis(nitrilo-methanylyl-idene)]diphenolato}cobalt(II) and N-ferrocenylisonicotinamide in dry di-chloro-methane under nitro-gen and was characterized by ESI-MS, IR, and single-crystal X-ray diffraction. The structure at 100 K has triclinic (P-1) symmetry and indicates that the complex crystallizes as a mixture of λ and δ conformers. It exhibits the expected square pyramidal geometry about Co, and forms hydrogen-bonded dimers through amide N-H groups and phenolate O atoms on an adjacent mol-ecule. The involvement of only half of the salen ring structure in hydrogen-bonding inter-actions results in slight folding of the salen ring away from the pyridine coordination site in the δ conformer with an inter-salicyl-idene fold angle of 9.9 (7)°. In contrast, the λ conformer is nearly planar. The dimers pack into an open structure containing channels filled with highly disordered solvent mol-ecules. These solvent molecules' contributions to the intensity data were removed with the SQUEEZE procedure [Spek (2015). Acta Cryst. C71, 9-18] available in PLATON.

  6. Crystal structure of an unknown solvate of {2,2'-[ethane-1,2-diylbis(nitrilo-methanylyl-idene)]diphenolato-κ(4) O,N,N',O'}(N-ferrocenylisonicotinamide-κN (1))cobalt(II): a Co(II)-salen complex that forms hydrogen-bonded dimers.

    PubMed

    Brautigam, Bryan; Herholdt, Chelsea; Farnsworth, William; Brudi, Ellen; McDonald, Eric; Wu, Guang; Contakes, Stephen

    2015-09-01

    The title compound, [CoFe(C5H5)(C16H14N2O2)(C11H9N2O)], was prepared as an air-stable red-brown solid by mixing equimolar amounts of {2,2'-[ethane-1,2-diylbis(nitrilo-methanylyl-idene)]diphenolato}cobalt(II) and N-ferrocenylisonicotinamide in dry di-chloro-methane under nitro-gen and was characterized by ESI-MS, IR, and single-crystal X-ray diffraction. The structure at 100 K has triclinic (P-1) symmetry and indicates that the complex crystallizes as a mixture of λ and δ conformers. It exhibits the expected square pyramidal geometry about Co, and forms hydrogen-bonded dimers through amide N-H groups and phenolate O atoms on an adjacent mol-ecule. The involvement of only half of the salen ring structure in hydrogen-bonding inter-actions results in slight folding of the salen ring away from the pyridine coordination site in the δ conformer with an inter-salicyl-idene fold angle of 9.9 (7)°. In contrast, the λ conformer is nearly planar. The dimers pack into an open structure containing channels filled with highly disordered solvent mol-ecules. These solvent molecules' contributions to the intensity data were removed with the SQUEEZE procedure [Spek (2015). Acta Cryst. C71, 9-18] available in PLATON. PMID:26396858

  7. Crystal structure of tetra­aqua­bis(3,5-di­amino-4H-1,2,4-triazol-1-ium)cobalt(II) bis­[bis­(pyridine-2,6-di­carboxyl­ato)cobaltate(II)] dihydrate

    PubMed Central

    Johnson, Atim; Mbonu, Justina; Hussain, Zahid; Loh, Wan-Sin; Fun, Hoong-Kun

    2015-01-01

    The asymmetric unit of the title compound, [Co(C2H6N5)2(H2O)4][Co(C7H3NO4)2]2·2H2O, features 1.5 CoII ions (one anionic complex and one half cationic complex) and one water mol­ecule. In the cationic complex, the CoII atom is located on an inversion centre and is coordinated by two triazolium cations and four water mol­ecules, adopting an octa­hedral geometry where the N atoms of the two triazolium cations occupy the axial positions and the O atoms of the four water mol­ecules the equatorial positions. The two triazole ligands are parallel offset (with a distance of 1.38 Å between their planes). In the anionic complex, the CoII ion is six-coordinated by two N and four O atoms of the two pyridine-2,6-di­carboxyl­ate anions, exhibiting a slightly distorted octa­hedral coordination geometry in which the mean plane of the two pyridine-2,6-di­carboxyl­ate anions are almost perpendicular to each other, making a dihedral angle of 85.87 (2)°. In the crystal, mol­ecules are linked into a three-dimensional network via C—H⋯O, C—H⋯N, O—H⋯O and N—H⋯O hydrogen bonds. PMID:26090171

  8. Enhancement of trichothecene production in Fusarium graminearum by cobalt chloride.

    PubMed

    Tsuyuki, Rie; Yoshinari, Tomoya; Sakamoto, Naoko; Nagasawa, Hiromichi; Sakuda, Shohei

    2011-03-01

    The effects of cobalt chloride on the production of trichothecene and ergosterol in Fusarium graminearum were examined. Incorporation experiments with (13)C-labeled acetate and leucine confirmed that both 3-acetyldeoxynivalenol and ergosterol were biosynthesized via a mevalonate pathway by the fungus, although hydroxymethyl-glutaryl CoA (HMG-CoA) from intact leucine was able to be partially used for ergosterol production. Addition of cobalt chloride at concentrations of 3-30 μM into liquid culture strongly enhanced 3-acetyldeoxynivalenol production by the fungus, whereas the amount of ergosterol and the mycelial weight of the fungus did not change. The mRNA levels of genes encoding trichothecene biosynthetic proteins (TRI4 and TRI6), ergosterol biosynthetic enzymes (ERG3 and ERG25), and enzymes involved in the mevalonate pathway (HMG-CoA synthase (HMGS) and HMG-CoA reductase (HMGR)) were all strongly up-regulated in the presence of cobalt chloride. Precocene II, a specific trichothecene production inhibitor, suppressed the effects of cobalt chloride on Tri4, Tri6, HMGS, and HMGR, but did not affect erg3 and erg25. These results indicate that cobalt chloride is useful for investigating regulatory mechanisms of trichothecene and ergosterol production in F. graminearum.

  9. Crystal structure of catena-poly[bis(formato-κO)bis­[μ2-1,1′-(1,4-phenyl­ene)bis­(1H-imidazole)-κ2 N 3:N 3′]cobalt(II)

    PubMed Central

    Xu, Guo-Wang; Wang, Ye-Nan; Xia, Hong-Xu; Wang, Zhong-Long

    2015-01-01

    A red block-shaped crystal of the title compound, [Co(HCOO)2(C12H10N4)2]n, was obtained by the reaction of cobalt(II) nitrate hexa­hydrate, formic acid and 1,1′-(1,4-phenyl­ene)bis­(1H-imidazole) (bib) mol­ecules. The asymmetric unit consists of one CoII cation, one formate ligand and two halves of a bib ligand. The central CoII cation, located on an inversion centre, is coordinated by two carboxyl­ate O atoms and four N atoms from bib ligands, completing an octa­hedral coordination geometry. The CoII centres are bridged by bib ligands, giving a two-dimensional net. Topologically, taking the CoII atoms as nodes and the bib ligands as linkers, the two-dimensional structure can be simplified as a typical sql/Shubnikov tetra­gonal plane network. The structure features C—H⋯O hydrogen-bonding inter­actions between formate and bib ligands, resulting in a three-dimensional supra­molecular network. PMID:26396863

  10. Cobalt: for strength and color

    USGS Publications Warehouse

    Boland, Maeve A.; Kropschot, S.J.

    2011-01-01

    Cobalt is a shiny, gray, brittle metal that is best known for creating an intense blue color in glass and paints. It is frequently used in the manufacture of rechargeable batteries and to create alloys that maintain their strength at high temperatures. It is also one of the essential trace elements (or "micronutrients") that humans and many other living creatures require for good health. Cobalt is an important component in many aerospace, defense, and medical applications and is a key element in many clean energy technologies. The name cobalt comes from the German word kobold, meaning goblin. It was given this name by medieval miners who believed that troublesome goblins replaced the valuable metals in their ore with a substance that emitted poisonous fumes when smelted. The Swedish chemist Georg Brandt isolated metallic cobalt-the first new metal to be discovered since ancient times-in about 1735 and identified some of its valuable properties.

  11. New gravimetric method for cobalt.

    PubMed

    Chatterjee, G P; Ray, H N; Biswas, K

    1966-10-01

    A new gravimetric method for the determination of cobalt is described, based on precipitation from acidic solution with a reagent prepared by heating alpha-nitroso-beta-naphthol in a mixture of glacial acetic acid, hydrogen peroxide and syrupy phosphoric acid. The cobalt is weighed, after ignition of the precipitate, as Co(3)O(4). Iron(III), copper, chromium(III), vanadium(V), tungsten(VI), aluminium, molybdenum, nickel, titanium, zirconium, uranium(VI) and cerium do not interfere. PMID:18960030

  12. [In vivo toxicity, lipid peroxide lowering, and glutathione, ascorbic acid and copper elevation induced in mouse liver by low dose of oxine-copper, a fungicide].

    PubMed

    Hojo, Y; Hashimoto, I; Miyamoto, Y; Kawazoe, S; Mizutani, T

    2000-03-01

    While oxine-copper (OxCu) is generally used as an agricultural fungicide and induces a harmful effect on ecosystems, little information is available regarding a toxic effect of OxCu on mammals. In this article, we examined in vivo induction of toxicity and change of levels of glutathione and ascorbic acid, major biological antioxidants, lipid peroxide and copper (Cu) in liver and kidney 4 h and 24 h after intraperitoneal administration of OxCu at a low dose (0.05 mmol/kg) to mice. Increased hepatic ascorbic acid and Cu levels were found at 4 h after the treatment. In addition, body weight change was lowered and serum glutamic pyruvic transaminase activity was elevated significantly compared to control at 24 h after the treatment, suggesting induction of systemic and hepatic toxicity respectively. These were accompanied by lowered lipid peroxide level and enhanced glutathione, ascorbic acid and Cu levels in the mouse liver. On the other hand, OxCu induced no elevation in serum urea nitrogen concentration 4 h and 24 h after the treatment, suggesting no induction of nephrotoxicity, accompanied by no change in renal lipid peroxide, glutathione, ascorbic acid and Cu levels. These results suggest that hepatic Cu elevation may induce hepatotoxicity and no renal Cu elevation may lead to no induction of nephrotoxicity after the treatment with OxCu.

  13. [Lead adsorption and arsenite oxidation by cobalt doped birnessite].

    PubMed

    Yin, Hui; Feng, Xiong-Han; Qiu, Guo-Hong; Tan, Wen-Feng; Liu, Fan

    2011-07-01

    In order to study the effects of transition metal ions on the physic-chemical properties of manganese dioxides as environmental friendly materials, three-dimensional nano-microsphere cobalt-doped birnessite was synthesized by reduction of potassium permanganate by mixtures of concentrated hydrochloride and cobalt (II) chloride. Powder X-ray diffraction, chemical analysis, N2 physical adsorption, field emission scanning electron microscopy (FE-SEM) and X-ray photoelectron spectra (XPS) were used to characterize the crystal structure, chemical composition and micro-morphologies of products. In the range of molar ratios from 0.05 to 0.20, birnessite was fabricated exclusively. It was observed that cobalt incorporated into the layers of birnessite and had little effect on the crystal structure and micromorpholgy, but crystallinity decreased after cobalt doping. Both chemical analysis and XPS results showed that manganese average oxidation state decreased after cobalt doping, and the percentage of Mn3+ increased. Co(III) OOH existed mainly in the structure. With the increase of cobalt, hydroxide oxygen percentage in molar increased from 12.79% for undoped birnessite to 13.05%, 17.69% and 17.79% for doped samples respectively. Adsorption capacity for lead and oxidation of arsenite of birnessite were enhanced by cobalt doping. The maximum capacity of Pb2+ adsorption increased in the order HB (2 538 mmol/kg) < CoB5 (2798 mmol/kg) < CoB10 (2932 mmol/kg) < CoB20 (3 146 mmol/kg). Oxidation percentage of arsenite in simulated waste water by undoped birnessite was 76.5%, those of doped ones increased by 2.0%, 12.8% and 18.9% respectively. Partial of Co3+ substitution for Mn4+ results in the increase of negative charge of the layer and the content of hydroxyl group, which could account for the improved adsorption capacity of Pb2+. After substitution of manganese by cobalt, oxidation capacity of arsenite by birnessite increases likely due to the higher standard redox potential of

  14. Bipyridyl cobalt complex mediators in dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Scott, Michael J.

    Dye-sensitization of semiconductor substrates allows for efficient charge injection into the semiconductor conduction band. Dye-sensitized solar cells (DSSCs) exploit this for conversion of light into electrical energy. By employing mesoporous TiO2 a significant portion of visible light can be absorbed. The mesoporous TiO2, deposited on a transparent conducting oxide (TCO) medium, constitutes the photoanode of the DSSC. A wide range of materials may be used as a cathode. A redox electrolyte solution completes the cell. Typically, the I-/I3- redox couple has been employed in DSSCs. The use of bipyridyl cobalt complexes allows for tuning of the cell's electrochemistry, exploration of diverse cathode materials, and investigation of mediator solution additives. Cobalt complexes with alkyl, ester, and amide functionalities were considered throughout this body of work. The cobalt complexes were investigated on the basis of time dependence and electrode dependence. The cobalt complexes are stable for at least a period of one week when dissolved in gamma-butyrolactone. Gold, carbon and modified TCO cathodes perform well in cells employing the alkyl substituted complex. Gold cathodes alone provide the best performance with cells employing the ester and amide substituted complex. An optically transparent cathode was developed for use in stacked DSSCs, allowing light that is not absorbed by the first DSSC in a stack to be absorbed by a second cell. A spectrally complementary dye in the second cell extends the light absorption to longer wavelengths. Spatial current images were obtained to investigate the local current behavior of cobalt mediated cells. Intentional electrode damage was visualized, and the effects of increased pressure on the cell were discussed. The use of phenothiazine (PTZ) moieties as co-mediators in cobalt mediated DSSCs was investigated. An anionic PTZ salt was most effective at reducing the photo-oxidized sensitizing dye. This PTZ salt enhanced the

  15. Orientational disorder in the one-dimensional coordination polymer catena-poly[[bis­(acetyl­acetonato-κ2 O,O′)cobalt(II)]-μ-1,4-di­aza­bicyclo­[2.2.2]octane-κ2 N 1:N 4

    PubMed Central

    Dumitru, Florina; Englert, Ulli; Braun, Beatrice

    2016-01-01

    The title compound, [Co(C5H7O2)2(C6H12N2)]n, was obtained as a one-dimensional coordination polymer from bis­(acetyl­acetonato)di­aqua­cobalt(II), [Co(acac)2(OH2)2], and 1,4-di­aza­bicyclo­[2.2.2]octane (DABCO), a di­amine with good bridging ability and rod-like spacer function. In the chain complex that extends along the c axis, the CoII atom is six-coordinated, the O-donor atoms of the chelating acac ligands occupying the equatorial positions and the bridging DABCO ligands being in trans-axial positions. In the crystal structure, the DABCO ligand is conformationally disordered in a 50:50 manner as a result of its location across a crystallographic mirror plane. The metal–metal distance is very close to that in a related compound exhibiting weak anti­ferromagnetic exchange between the CoII ions, and the title compound can thus be useful for obtaining more information about the contribution of different bridges to the magnetic coupling between paramagnetic ions. PMID:27375886

  16. Orientational disorder in the one-dimensional coordination polymer catena-poly[[bis-(acetyl-acetonato-κ(2) O,O')cobalt(II)]-μ-1,4-di-aza-bicyclo-[2.2.2]octane-κ(2) N (1):N (4)].

    PubMed

    Dumitru, Florina; Englert, Ulli; Braun, Beatrice

    2016-04-01

    The title compound, [Co(C5H7O2)2(C6H12N2)] n , was obtained as a one-dimensional coordination polymer from bis-(acetyl-acetonato)di-aqua-cobalt(II), [Co(acac)2(OH2)2], and 1,4-di-aza-bicyclo-[2.2.2]octane (DABCO), a di-amine with good bridging ability and rod-like spacer function. In the chain complex that extends along the c axis, the Co(II) atom is six-coordinated, the O-donor atoms of the chelating acac ligands occupying the equatorial positions and the bridging DABCO ligands being in trans-axial positions. In the crystal structure, the DABCO ligand is conformationally disordered in a 50:50 manner as a result of its location across a crystallographic mirror plane. The metal-metal distance is very close to that in a related compound exhibiting weak anti-ferromagnetic exchange between the Co(II) ions, and the title compound can thus be useful for obtaining more information about the contribution of different bridges to the magnetic coupling between paramagnetic ions.

  17. Cathodic reduction of oxygen and hydrogen peroxide at cobalt and iron crowned phthalocyanines adsorbed on highly oriented pyrolytic graphite electrodes

    SciTech Connect

    Kobayashi, N.; Janda, P.; Lever, A.B.P. )

    1992-12-09

    The surface electrochemistry of iron and cobalt crowned phthalocyanine (Fe[sup II]CRPc(-2) and Co[sup II]CRPc(-2)) adsorbed on a highly oriented pyrolytic graphite (HOPG) electrode has been explored under an argon atmosphere. The redox processes of surface bound Co[sup II]CRPc(-2)/[Co[sup I]CRPc(-2)][sup [minus

  18. Nano-Web Cobalt Modified Silica Nanoparticles Catalysts for Water Oxidation and MB Oxidative Degradation.

    PubMed

    Wang, Li; Chen, Qiuyun; Li, Chenghao; Fang, Fang

    2016-05-01

    Dioxygen generating materials, using water as oxygen source, can be used as catalysts in hypoxic environments. Cobalt(II) modified silica (SiO2@NPCo) nanoparticles were synthesized through coordination of cobalt(II) ions with nitrogen atoms from 2-acetylpyridine modified silica (SiO2@NP). The SiO2@NPCo nanoparticles further reacted with 1,3,5-benzenetricarboxylic acids, forming porous nano-web nanoparticles (SiO2@NPCoCOOH). The synthesized SiO2@NPCoCOOH nanoparticles were demonstrated as better white LED light driven photochemical catalysts for oxidation of water than individual nanoparticles (SiO2@NPCo). Moreover, the SiO2@NPCoCOOH/water system could decrease the content of methylene blue (MB) in solution and therefore, the nanoweb cobalt(II) modified silica nanoparticles can be environmentally friendly catalysts for oxidative degradation of MB, using water as the oxygen source. PMID:27483932

  19. Nano-Web Cobalt Modified Silica Nanoparticles Catalysts for Water Oxidation and MB Oxidative Degradation.

    PubMed

    Wang, Li; Chen, Qiuyun; Li, Chenghao; Fang, Fang

    2016-05-01

    Dioxygen generating materials, using water as oxygen source, can be used as catalysts in hypoxic environments. Cobalt(II) modified silica (SiO2@NPCo) nanoparticles were synthesized through coordination of cobalt(II) ions with nitrogen atoms from 2-acetylpyridine modified silica (SiO2@NP). The SiO2@NPCo nanoparticles further reacted with 1,3,5-benzenetricarboxylic acids, forming porous nano-web nanoparticles (SiO2@NPCoCOOH). The synthesized SiO2@NPCoCOOH nanoparticles were demonstrated as better white LED light driven photochemical catalysts for oxidation of water than individual nanoparticles (SiO2@NPCo). Moreover, the SiO2@NPCoCOOH/water system could decrease the content of methylene blue (MB) in solution and therefore, the nanoweb cobalt(II) modified silica nanoparticles can be environmentally friendly catalysts for oxidative degradation of MB, using water as the oxygen source.

  20. Microbial changes in clover rhizosphere after foliar and soil application of cobalt.

    PubMed

    Vraný, J

    1978-01-01

    Application of cobalt(II) nitrate to the leaves of red clover (Trifolium pratense L.) resulted in a pronounced increase of dry weight and the number of root nodules. Counts of bacteria in the rhizosphere, content of ammonia and production of carbon dioxide in rhizosphere soil were also higher, whereas the content of nitrates decreased. Differences in the counts of bacteria, actinomycetes, Azotobacter, anaerobic bacteria and cellulose decomposing bacteria in the rhizosphere of control and treated plants were not directly related to the way of application of cobalt. Genera Penicillium, Fusarium and Trichoderma predominated among fungi. The relative occurrence of penicillia was higher after the application of cobalt, the incidence of fusaria was lower. The effects of foliar and soil application of cobalt on rhizosphere microflora were not identical.

  1. [Fluorescence Resonance Energy Transfer Detection of Cobalt Ions by Silver Triangular Nanoplates and Rhodamine 6G].

    PubMed

    Zhang, Xiu-qing; Peng, Jun; Ling, Jian; Liu, Chao-juan; Cao, Qiu-e; Ding, Zhong-tao

    2015-04-01

    In the present paper, the authors studied fluorescence resonance energy transfer (FRET) phenomenon between silver triangular nanoplates and bovine serum albumin (BSA)/Rhodamine 6G fluorescence complex, and established a fluorescence method for the detection of cobalt ions. We found that when increasing the silver triangular nanoplates added to certain concentrations of fluorescent bovine serum albumin (BSA)/Rhodamine 6G complex, the fluorescence of Rhodamine 6G would be quenched up to 80% due to the FRET between the quencher and donor. However, in the presence of cobalt ions, the disassociation of the fluorescent complex from silver triangular nanoplates occurred and the fluorescence of the Rhodamine 6G recovered. The recovery of fluorescence intensity rate (I/I0) has a good relationship with the cobalt ion concentration (cCO2+) added. Thus, the authors developed a fluorescence method for the detection of cobalt ions based on the FRET of silver triangular nanoplates and Rhodamine 6G.

  2. Controlling the misuse of cobalt in horses.

    PubMed

    Ho, Emmie N M; Chan, George H M; Wan, Terence S M; Curl, Peter; Riggs, Christopher M; Hurley, Michael J; Sykes, David

    2015-01-01

    Cobalt is a well-established inducer of hypoxia-like responses, which can cause gene modulation at the hypoxia inducible factor pathway to induce erythropoietin transcription. Cobalt salts are orally active, inexpensive, and easily accessible. It is an attractive blood doping agent for enhancing aerobic performance. Indeed, recent intelligence and investigations have confirmed cobalt was being abused in equine sports. In this paper, population surveys of total cobalt in raceday samples were conducted using inductively coupled plasma mass spectrometry (ICP-MS). Urinary threshold of 75 ng/mL and plasma threshold of 2 ng/mL could be proposed for the control of cobalt misuse in raceday or in-competition samples. Results from administration trials with cobalt-containing supplements showed that common supplements could elevate urinary and plasma cobalt levels above the proposed thresholds within 24 h of administration. It would therefore be necessary to ban the use of cobalt-containing supplements on raceday as well as on the day before racing in order to implement and enforce the proposed thresholds. Since the abuse with huge quantities of cobalt salts can be done during training while the use of legitimate cobalt-containing supplements are also allowed, different urinary and plasma cobalt thresholds would be required to control cobalt abuse in non-raceday or out-of-competition samples. This could be achieved by setting the thresholds above the maximum urinary and plasma cobalt concentrations observed or anticipated from the normal use of legitimate cobalt-containing supplements. Urinary threshold of 2000 ng/mL and plasma threshold of 10 ng/mL were thus proposed for the control of cobalt abuse in non-raceday or out-of-competition samples.

  3. Use of indium-111 oxine to study pulmonary and hepatic leukocyte sequestration in endotoxin shock and effects of the beta-2 receptor agonist terbutaline

    SciTech Connect

    Sigurdsson, G.H.; Christenson, J.T.; al-Mousawi, M.; Owunwanne, A. )

    1989-01-01

    The dynamic behavior of indium-111 oxine-labeled leukocytes was simultaneously recorded in multiple organs during endotoxin shock in sheep. Also, the effects of the beta-2 receptor agonist terbutaline were studied. An experimental protocol was designed to mimic a clinical condition in an intensive care setting as far as possible. The animals were ventilated with 50% oxygen to avoid hypoxemia and were given large amounts of intravenous fluids to reduce adverse effects of hypovolemia. A moderate dose of E. coli endotoxin (10 micrograms/kg bwt) was given by intravenous infusion to 14 adult sheep, seven of them receiving continuous intravenous infusion of terbutaline (20 micrograms/kg/hr) during 4 hr, starting 30 min after endotoxin, when signs of lung injury had developed. The other seven acted as controls. A marked pulmonary and hepatic leukocyte sequestration together with a sharp drop in leukocyte counts in peripheral blood occurred within minutes after start of the endotoxin infusion in both groups. However, no changes were observed in the kidneys or the gut. After 60 min and until the end of the experiment, there was a significantly lower activity in the lungs and in the liver of the animals treated with terbutaline than in the controls (P less than .01). Furthermore, less marked hemodynamic and respiratory alterations occurred in the terbutaline group compared with the controls. This study confirms the results of other investigators showing that significant leukocyte sequestration occurs in the lungs during endotoxemia, but it also demonstrates that leukocytes sequestrate in the liver, although slightly less than in the lungs.

  4. A second monoclinic polymorph of {bis­[5-methyl-3-(trifluoro­meth­yl)pyrazol-1-yl]borato}{tris­[5-methyl-3-(trifluoro­meth­yl)pyrazol-1-yl]borato}cobalt(II): a structure containing a B—H⋯Co agostic inter­action

    PubMed Central

    Stibrany, Robert T.; Potenza, Joseph A.

    2011-01-01

    The title compound, [Co(C10H10BF6N4)(C15H13BF9N6)], is a polymorph of the previously reported neutral cobalt(II) complex [Stibrany & Potenza (2010 ▶). Acta Cryst. E66, m506–m507], which contains one each of the monoanionic ligands, bis­[5-methyl-3-(trifluoro­meth­yl)pyrazol-1-yl]borate (Bp) and tris­[5-methyl-3-(trifluoro­meth­yl)pyrazol-1-yl]borate (Tp). A distorted octahedral coordination geometry of the CoII atom results from ligation of an H atom, which is part of an agostic B—H⋯Co inter­action [H⋯Co = 2.12 (3) Å], and by five imine N atoms, two from a Bp ligand and three from a Tp ligand. Weak intra- and inter­molecular C—F⋯π inter­actions with F⋯centroid distances ranging from 3.025 (4) to 3.605 (4) Å are observed. PMID:21836897

  5. Electrosynthesis of highly transparent cobalt oxide water oxidation catalyst films from cobalt aminopolycarboxylate complexes.

    PubMed

    Bonke, Shannon A; Wiechen, Mathias; Hocking, Rosalie K; Fang, Xi-Ya; Lupton, David W; MacFarlane, Douglas R; Spiccia, Leone

    2015-04-24

    Efficient catalysis of water oxidation represents one of the major challenges en route to efficient sunlight-driven water splitting. Cobalt oxides (CoOx ) have been widely investigated as water oxidation catalysts, although the incorporation of these materials into photoelectrochemical devices has been hindered by a lack of transparency. Herein, the electrosynthesis of transparent CoOx catalyst films is described by utilizing cobalt(II) aminopolycarboxylate complexes as precursors to the oxide. These complexes allow control over the deposition rate and morphology to enable the production of thin, catalytic CoOx films on a conductive substrate, which can be exploited in integrated photoelectrochemical devices. Notably, under a bias of 1.0 V (vs. Ag/AgCl), the film deposited from [Co(NTA)(OH2 )2 ](-) (NTA=nitrilotriacetate) decreased the transmission by only 10 % at λ=500 nm, but still generated >80 % of the water oxidation current produced by a [Co(OH2 )6 ](2+) -derived oxide film whose transmission was only 40 % at λ=500 nm.

  6. Electrosynthesis of highly transparent cobalt oxide water oxidation catalyst films from cobalt aminopolycarboxylate complexes.

    PubMed

    Bonke, Shannon A; Wiechen, Mathias; Hocking, Rosalie K; Fang, Xi-Ya; Lupton, David W; MacFarlane, Douglas R; Spiccia, Leone

    2015-04-24

    Efficient catalysis of water oxidation represents one of the major challenges en route to efficient sunlight-driven water splitting. Cobalt oxides (CoOx ) have been widely investigated as water oxidation catalysts, although the incorporation of these materials into photoelectrochemical devices has been hindered by a lack of transparency. Herein, the electrosynthesis of transparent CoOx catalyst films is described by utilizing cobalt(II) aminopolycarboxylate complexes as precursors to the oxide. These complexes allow control over the deposition rate and morphology to enable the production of thin, catalytic CoOx films on a conductive substrate, which can be exploited in integrated photoelectrochemical devices. Notably, under a bias of 1.0 V (vs. Ag/AgCl), the film deposited from [Co(NTA)(OH2 )2 ](-) (NTA=nitrilotriacetate) decreased the transmission by only 10 % at λ=500 nm, but still generated >80 % of the water oxidation current produced by a [Co(OH2 )6 ](2+) -derived oxide film whose transmission was only 40 % at λ=500 nm. PMID:25826458

  7. Modification of Wide-Band-Gap Oxide Semiconductors with Cobalt Hydroxide Nanoclusters for Visible-Light Water Oxidation.

    PubMed

    Maeda, Kazuhiko; Ishimaki, Koki; Tokunaga, Yuki; Lu, Daling; Eguchi, Miharu

    2016-07-11

    Cobalt-based compounds, such as cobalt(II) hydroxide, are known to be good catalysts for water oxidation. Herein, we report that such cobalt species can also activate wide-band-gap semiconductors towards visible-light water oxidation. Rutile TiO2 powder, a well-known wide-band-gap semiconductor, was capable of harvesting visible light with wavelengths of up to 850 nm, and thus catalyzed water oxidation to produce molecular oxygen, when decorated with cobalt(II) hydroxide nanoclusters. To the best of our knowledge, this system constitutes the first example that a particulate photocatalytic material that is capable of water oxidation upon excitation by visible light can also operate at such long wavelengths, even when it is based on earth-abundant elements only. PMID:27225394

  8. Cobalt and antimony: genotoxicity and carcinogenicity.

    PubMed

    De Boeck, Marlies; Kirsch-Volders, Micheline; Lison, Dominique

    2003-12-10

    The purpose of this review is to summarise the data concerning genotoxicity and carcinogenicity of Co and Sb. Both metals have multiple industrial and/or therapeutical applications, depending on the considered species. Cobalt is used for the production of alloys and hard metal (cemented carbide), diamond polishing, drying agents, pigments and catalysts. Occupational exposure to cobalt may result in adverse health effects in different organs or tissues. Antimony trioxide is primarily used as a flame retardant in rubber, plastics, pigments, adhesives, textiles, and paper. Antimony potassium tartrate has been used worldwide as an anti-shistosomal drug. Pentavalent antimony compounds have been used for the treatment of leishmaniasis. Co(II) ions are genotoxic in vitro and in vivo, and carcinogenic in rodents. Co metal is genotoxic in vitro. Hard metal dust, of which occupational exposure is linked to an increased lung cancer risk, is proven to be genotoxic in vitro and in vivo. Possibly, production of active oxygen species and/or DNA repair inhibition are mechanisms involved. Given the recently provided proof for in vitro and in vivo genotoxic potential of hard metal dust, the mechanistic evidence of elevated production of active oxygen species and the epidemiological data on increased cancer risk, it may be advisable to consider the possibility of a new evaluation by IARC. Both trivalent and pentavalent antimony compounds are generally negative in non-mammalian genotoxicity tests, while mammalian test systems usually give positive results for Sb(III) and negative results for Sb(V) compounds. Assessment of the in vivo potential of Sb2O3 to induce chromosome aberrations (CA) gave conflicting results. Animal carcinogenicity data were concluded sufficient for Sb2O3 by IARC. Human carcinogenicity data is difficult to evaluate given the frequent co-exposure to arsenic. Possible mechanisms of action, including potential to produce active oxygen species and to interfere with

  9. Cosine (Cobalt Silicide Growth Through Nitrogen-Induced Epitaxy) Process For Epitaxial Cobalt Silicide Formation For High Performance Sha

    SciTech Connect

    Lim, Chong Wee; Shin, Chan Soo; Gall, Daniel; Petrov, Ivan Georgiev; Greene, Joseph E.

    2004-09-28

    A method for forming an epitaxial cobalt silicide layer on a MOS device includes sputter depositing cobalt in an ambient to form a first layer of cobalt suicide on a gate and source/drain regions of the MOS device. Subsequently, cobalt is sputter deposited again in an ambient of argon to increase the thickness of the cobalt silicide layer to a second thickness.

  10. Polytypic transformations during the thermal decomposition of cobalt hydroxide and cobalt hydroxynitrate

    SciTech Connect

    Ramesh, Thimmasandra Narayan

    2010-06-15

    The isothermal decomposition of cobalt hydroxide and cobalt hydroxynitrate at different intervals of temperature leads to the formation of Co{sub 3}O{sub 4}. The phase evolution during the decomposition process was monitored using powder X-ray diffraction. The transformation of cobalt hydroxide to cobalt oxide occurs via three phase mixture while cobalt hydroxynitrate to cobalt oxide occurs through a two phase mixture. The nature of the sample and its preparation method controls the decomposition mechanism. The comparison of topotactical relationship between the precursors to the decomposed product has been reported in relation to polytypism. - Graphical abstract: Isothermal thermal decomposition studies of cobalt hydroxide and cobalt hydroxynitrate at different intervals of temperature show the metastable phase formed prior to Co{sub 3}O{sub 4} phase.

  11. Synthesis of cobalt-containing mesoporous catalysts using the ultrasonic-assisted "pH-adjusting" method: Importance of cobalt species in styrene oxidation

    NASA Astrophysics Data System (ADS)

    Li, Baitao; Zhu, Yanrun; Jin, Xiaojing

    2015-01-01

    Cobalt-containing SBA-15 and MCM-41 (Co-SBA-15 and Co-MCM-41) mesoporous catalysts were prepared via ultrasonic-assisted "pH-adjusting" technique in this study. Their physiochemical structures were comprehensively characterized and correlated with catalytic activity in oxidation of styrene. The nature of cobalt species depended on the type of mesoporous silica as well as pH values. The different catalytic performance between Co-SBA-15 and Co-MCM-41 catalysts originated from cobalt species. Cobalt species were homogenously incorporated into the siliceous framework of Co-SBA-15 in single-site Co(II) state, while Co3O4 particles were loaded on Co-MCM-41 catalysts. The styrene oxidation tests showed that the single-site Co(II) state was more beneficial to the catalytic oxidation of styrene. The higher styrene conversion and benzaldehyde selectivity over Co-SBA-15 catalysts were mainly attributed to single-site Co(II) state incorporated into the framework of SBA-15. The highest conversion of styrene (34.7%) with benzaldehyde selectivity of 88.2% was obtained over Co-SBA-15 catalyst prepared at pH of 7.5, at the mole ratio of 1:1 (styrene to H2O2) at 70 °C.

  12. Electrochemical Detection of Transient Cobalt Hydride Intermediates of Electrocatalytic Hydrogen Production.

    PubMed

    Wiedner, Eric S; Bullock, R Morris

    2016-07-01

    A large variety of molecular cobalt complexes are used as electrocatalysts for H2 production, but the key cobalt hydride intermediates are frequently difficult to detect and characterize due to their high reactivity. We report that a combination of variable scan rate cyclic voltammetry and foot-of-the-wave analysis (FOWA) can be used to detect transient Co(III)H and Co(II)H intermediates of electrocatalytic H2 production by [Co(II)(P(tBu)2N(Ph)2)(CH3CN)3](2+) and Co(II)(dmgBF2)2(CH3CN)2. In both cases, reduction of a transient catalytic intermediate occurs at a potential that coincides with the Co(II/I) couple. Each reduction displays quasireversible electron-transfer kinetics, consistent with reduction of a Co(III)H intermediate to Co(II)H, which is then protonated by acid to generate H2. A bridge-protonated Co(I) species was ruled out as a catalytic intermediate for Co(II)(dmgBF2)2(CH3CN)2 from voltammograms recorded at 1000 psi of H2. Density functional theory was used to calculate Co(III)-H and Co(II)-H bond strengths for both catalysts. Despite having very different ligands, the cobalt hydrides of both catalysts possess nearly identical heterolytic and homolytic Co-H bond strengths for the Co(III)H and Co(II)H intermediates. PMID:27300721

  13. Mineral resource of the month: cobalt

    USGS Publications Warehouse

    Shedd, Kim B.

    2009-01-01

    Cobalt is a metal used in numerous commercial, industrial and military applications. On a global basis, the leading use of cobalt is in rechargeable lithium-ion, nickel-cadmium and nickel-metal hydride battery electrodes. Cobalt use has grown rapidly since the early 1990s, with the development of new battery technologies and an increase in demand for portable electronics such as cell phones, laptop computers and cordless power tools.

  14. Computational Characterization of Redox Non-Innocence in Cobalt-Bis(Diaryldithiolene)-Catalyzed Proton Reduction.

    PubMed

    Panetier, Julien A; Letko, Christopher S; Tilley, T Don; Head-Gordon, Martin

    2016-01-12

    Localized orbital bonding analysis (LOBA) was employed to probe the oxidation state in cobalt-bis(diaryldithiolene)-catalyzed proton reduction in nonaqueous media. LOBA calculations provide both the oxidation state and chemically intuitive views of bonding in cobalt-bis(diaryldithiolene) species and therefore allow characterization of the role of the redox non-innocent dithiolene ligand. LOBA results show that the reduction of the monoanion species [1Br](-) is metal-centered and gives a cobalt(II) ion species, [1Br](2-), coordinated to two dianionic ene-1,2-dithiolates. This electronic configuration is in agreement with the solution magnetic moment observed for the analogous salt [1F](2-) (μeff = 2.39 μB). Protonation of [1Br](2-) yields the cobalt(III)-hydride [1Br(CoH)](-) species in which the Co-H bond is computed to be highly covalent (Löwdin populations close to 0.50 on cobalt and hydrogen atoms). Further reduction of [1Br(CoH)](-) forms a more basic cobalt(II)-H intermediate [1Br(CoH)](2-) (S = 0) from which protonation at sulfur gives a S-H bond syn to the Co-H bond. Formation of a cobalt-dihydrogen [1Br(CoH2)](-) intermediate is calculated to occur via a homocoupling (H(•) + H(•) → H2) step with a free energy of activation of 5.9 kcal/mol in solution (via C-PCM approach). PMID:26598074

  15. Oxidation of low cobalt alloys

    NASA Technical Reports Server (NTRS)

    Barrett, C. A.

    1982-01-01

    Four high temperature alloys: U-700, Mar M-247, Waspaloy and PM/HIP U-700 were modified with various cobalt levels ranging from 0 percent to their nominal commercial levels. The alloys were then tested in cyclic oxidation in static air at temperatures ranging from 1000 to 1150 C at times from 500 to 100 1 hour cycles. Specific weight change with time and X-ray diffraction analyses of the oxidized samples were used to evaluate the alloys. The alloys tend to be either Al2O3/aluminate spinel or Cr2O3/chromite spinel formers depending on the Cr/Al ratio in the alloy. Waspaloy with a ratio of 15:1 is a strong Cr2O3 former while this U-700 with a ratio of 3.33:1 tends to form mostly Cr2O3 while Mar M-247 with a ratio of 1.53:1 is a strong Al2O3 former. The best cyclic oxidation resistance is associated with the Al2O3 formers. The cobalt levels appear to have little effect on the oxidation resistance of the Al2O3/aluminate spinel formers while any tendency to form Cr2O3 is accelerated with increased cobalt levels and leads to increased oxidation attack.

  16. Study of cobalt sorption on polyethylene

    SciTech Connect

    Kolics, A.; Varga, K. . Dept. of Radiochemistry)

    1994-12-01

    The accumulation of cobalt on various surfaces, especially on oxides, has been the subject of intensive research for decades. Part of these studies were devoted to the analysis of cobalt uptake on oxides, which are transported in the primary coolant of water-cooled nuclear reactors. Radioactive isotopes of cobalt ([sup 60]Co and [sup 58]Co) make a predominant contribution to the radioactivity of corrosion products. The investigation of cobalt accumulation on inert surfaces in solutions of well-defined composition may contribute to the better understanding of the results of contamination-decontamination experiments carried out on noninert adsorbents in various solutions. The results gained from the study of cobalt accumulation on polyethylene are presented in this paper. To clarify the role of colloid formation, the presence of borate species, and the surface properties of polyethylene in accumulation process, several independent techniques such as the in situ radiotracer method, centrifugation, FTIR, and Raman spectroscopy are used. From the results, it can be stated that the kinetics of cobalt accumulation is dependent on the pH and composition of the solution phase. The accumulation of cobalt proceeds in both colloid and ionic forms; however, the amount of sorbed ionic cobalt species increases with pH due to their accumulation on colloids. The lower cobalt accumulation in borate-containing solution is attributed to the lower amount of colloid formation.

  17. Cobalt Distribution and Speciation: Effect of Aging, Intermittent Submergence, In situ Rice Roots

    EPA Science Inventory

    The speciation and distribution of cobalt (Co) in soils is poorly understood. This study was conducted using X-ray absorption spectroscopy (XAS) techniques to examine the influence of soluble Co(II) aging, submergence-dried cycling, and the presence of in vivo rice roots on the...

  18. Improvements upon the "Colorful Cobalt Catalysis" Demonstration and Evidence for the Presence of an Autocatalytic Mechanism

    ERIC Educational Resources Information Center

    Wright, Stephen W.

    2010-01-01

    The oxidation of potassium sodium tartrate by hydrogen peroxide catalyzed by cobalt(II) chloride is a favorite lecture demonstration. I present conditions under which this experiment may be performed without need for 30% hydrogen peroxide and without need for controlled heating or any heating of the reaction mixture. I further show that this…

  19. Crystallization behaviour of hydroxide cobalt carbonates by aging: Environmental implications.

    NASA Astrophysics Data System (ADS)

    González-López, Jorge; Fernández-González, Angeles; Jimenez, Amalia

    2014-05-01

    Cobalt is a naturally occurring element widely distributed in water, sediments and air that is essential for living species, since it is a component of B12 vitamin and it is also a strategic and critical element used in a number of commercial, industrial and military applications. However, relatively high accumulations of cobalt in environment can be toxic for human and animal health. Cobalt usually occurs as Co2+ and Co3+ in aqueous solutions, where Co2+ is the most soluble and hence its mobility in water is higher. The study of the precipitation of cobalt carbonates is of great interest due to the abundance of carbonate minerals in contact with surface water and groundwater which can be polluted with Co2+. Previous works have demonstrated that the formation of Co-bearing calcium carbonates and Co-rich low crystallinity phases takes place at ambient conditions. With the aim of investigating the crystallization behavior of Co- bearing carbonates at ambient temperature, macroscopic batch-type experiments have been carried out by mixing aqueous solutions of CoCl2 (0.05M) and Na2CO3 (0.05M) during increasing reaction times (5 minutes and 1, 5, 24, 48, 96, 168, 720 and 1440 hours). The main goals of this work were (i) to analyse the physicochemical evolution of the system and (ii) to study the evolution of the crystallinity of the solid phases during aging. After a given reaction period, pH, alkalinity and dissolved Co2+ in the aqueous solutions were analysed. The evolution of the morphology and chemical composition of the solids with aging time was examined by SEM and TEM. The precipitates were also analyzed by X-ray powder diffraction (XRD) and the crystallinity degree was followed by the intensity and the full width at high medium (FWHM) of the main peaks. The results show that a low crystallinity phase was obtained at the very beginning of aging. This phase evolves progressively to form hydroxide carbonate cobalt (Co2CO3(OH)2) which crystallize with the spatial

  20. catena-Poly[[bis­(nitrato-κO)cobalt(II)]-bis­[μ-1,4-bis­(pyridin-3-ylmeth­oxy)benzene-κ2 N:N′

    PubMed Central

    Liu, Ying; Zhang, Hong-Sen; Hou, Guang-Feng; Gao, Jin-Sheng

    2011-01-01

    In the title compound, [Co(NO3)2(C18H16N2O2)2]n, the CoII ion is located on an inversion center and is six-coordinated in an octa­hedral environment defined by four N atoms of the pyridine rings and two O atoms of the nitrate anions. The ligands link the CoII ions into a linear chain running along [201]. One O atom of the nitrate ligand is disordered over two positions with site-occupancy factors of 0.59 (4) and 0.41 (4). PMID:21754669

  1. Preparation of cobalt-ferrite nanoparticles within a biopolymer template

    NASA Astrophysics Data System (ADS)

    Garza, Marco; González, Virgilio; Torres-Castro, Alejandro; Hinojosa, Moisés; Ortíz, Ubaldo

    2008-03-01

    Using an in-situ co-precipitation reaction from solid dissolutions of stoichiometric amounts of Fe (III) and Co (II) inorganic salts, it was prepared highly loaded nanocomposites (as high as 75% w/w) of cobalt-ferrite nanoparticles within a chitosan matrix, with particle size of about 7 nm, narrow particle size distribution and superparamagnetic character. Nanocomposite samples were characterized by high resolution transmission electron microscopy (HRTEM), UV-vis spectrometry and magnetic measurements by SQUID, using magnetization-field dependent, M(H), and magnetization-temperature dependent, M(T), studies.

  2. Late First-Row Transition-Metal Complexes Containing a 2-Pyridylmethyl Pendant-Armed 15-Membered Macrocyclic Ligand. Field-Induced Slow Magnetic Relaxation in a Seven-Coordinate Cobalt(II) Compound.

    PubMed

    Antal, Peter; Drahoš, Bohuslav; Herchel, Radovan; Trávníček, Zdeněk

    2016-06-20

    The 2-pyridylmethyl N-pendant-armed heptadentate macrocyclic ligand {3,12-bis(2-methylpyridine)-3,12,18-triaza-6,9-dioxabicyclo[12.3.1]octadeca-1,14,16-triene = L} and [M(L)](ClO4)2 complexes, where M = Mn(II) (1), Fe(II) (2), Co(II) (3), Ni(II) (4), and Cu(II) (5), were prepared and thoroughly characterized, including elucidation of X-ray structures of all the compounds studied. The complexes 1-5 crystallize in non-centrosymmetric Sohncke space groups as racemic compounds. The coordination numbers of 7, 6 + 1, and 5 were found in complexes 1-3, 4, and 5, respectively, with a distorted pentagonal bipyramidal (1-4) or square pyramidal (5) geometry. On the basis of the magnetic susceptibility experiments, a large axial zero-field splitting (ZFS) was found for 2, 3, and 4 (D(Fe) = -7.4(2) cm(-1), D(Co) = 34(1) cm(-1), and D(Ni) = -12.8(1) cm(-1), respectively) together with a rhombic ZFS (E/D = 0.136(3)) for 4. Despite the easy plane anisotropy (D > 0, E/D = 0) in 3, the slow relaxation of the magnetization below 8 K was observed and analyzed either with Orbach relaxation mechanism (the relaxation time τ0 = 9.90 × 10(-10) s and spin reversal barrier Ueff = 24.3 K (16.9 cm(-1))) or with Raman relaxation mechanism (C = 2.12 × 10(-5) and n = 2.84). Therefore, compound 3 enlarges the small family of field-induced single-molecule magnets with pentagonal-bipyramidal chromophore. The cyclic voltammetry in acetonitrile revealed reversible redox processes in 1-3 and 5, except for the Ni(II) complex 4, where a quasi-reversible process was dominantly observed. Presence of the two 2-pyridylmethyl pendant arms in L with a stronger σ-donor/π-acceptor ability had a great impact on the properties of all the complexes (1-5), concretely: (i) strong pyridine-metal bonds provided slight axial compression of the coordination sphere, (ii) substantial changes in magnetic anisotropy, and (iii) stabilization of lower oxidation states. PMID:27245288

  3. Cobalt-induced changes in the spleen of mice from different stages of development.

    PubMed

    Gluhcheva, Yordanka; Atanasov, Vasil; Ivanova, Juliana; Mitewa, Mariana

    2012-01-01

    Cobalt(II) accumulates in organs such as spleen, kidneys, heart, and liver. The aim of the present study was to investigate the effects of cobalt ethylenediamine tetraacetic acid (Co-EDTA) on spleen of developing mice. Pregnant BALB/c mice in late gestation were subjected to Co-EDTA treatment at daily doses of 75 or 125 mg/kg in drinking water, which continued until d 90 of the newborn pups. The newborn pups were sacrificed on d 18, 25, 30, 45, 60, and 90, which correspond to different stages of development. Spleens were excised, weighed, and processed for histological analysis. Spleen index (SI) was calculated as a ratio of spleen weight to body weight. Cobalt(II) bioaccumulation in spleen was determined using flame atomic absorption spectrometry (FAAS). Preliminary results showed that chronic treatment of mice with low- or high-dose Co-EDTA disturbed extramedullary hematopoiesis in the spleen. The number of megakaryocytes was reduced compared to controls. SI was also reduced in d 18 mice treated with low- or high-dose Co-EDTA. However, exposure to 75 mg/kg led to an increase of SI in all other experimental groups. FAAS analysis revealed significant cobalt(II) accumulation in spleen of treated mice. The Co(II) levels in spleens of d 18 mice were highest compared to other experimental groups, indicating that at this period mice are more sensitive to treatment. Exposure to cobalt-EDTA resulted in accumulation of Co(II) in spleen, altered SI, and hematopoiesis. Immature mice appear to be more sensitive to chronic treatment than adults. PMID:23095160

  4. Chemical and electronic characterization of cobalt in a lanthanum perovskite. Effects of strontium substitution

    SciTech Connect

    Hueso, Jose L.; Holgado, Juan P.; Pereniguez, Rosa; Mun, Simon; Salmeron, Miquel; Caballero, Alfonso

    2010-01-15

    Two different cobaltites, LaCoO{sub 3} and La{sub 0.5}Sr{sub 0.5}CoO{sub 3-{delta}}, have been prepared and characterized by means of high energy Co K-edge and low energy O K-edge X-ray absorption spectroscopy (XAS). Even though half of the La(III) is substituted by Sr(II), little or no changes can be detected in the formal oxidation state of cobalt atoms. The presence of strontium cations induces two main effects in the chemical and electronic state of the perovskite. The charge balance with Sr(II) species is reached by the formation of oxygen vacancies throughout the network, which explains the well-known increase in the reactivity of this substituted perovskite. O K-edge XAS experiments show that the Sr(II) species induce the transitions of d electrons of cobalt cations from low to high spin configuration. We propose that this change in spin multiplicity is induced by two cooperative effects: the oxygen vacancies, creating five coordinated cobalt atoms, and the bigger size of Sr(II) cations, aligning the Co-O-Co atoms, and favoring the overlapping of pi-symmetry cobalt and oxygen orbitals, reducing the splitting energy of e{sub g} and t{sub 2g} levels. - Graphical abstract: Change in spin multiplicity induced by the bigger size of Sr(II) cations, aligning the Co-O-Co atoms, and favoring the overlapping of pi-symmetry cobalt and oxygen orbitals.

  5. Synthesis, characterization, and reactivity of pentamethylcyclopentadienyl complexes of divalent cobalt and nickel

    SciTech Connect

    Smith, M.E.

    1993-10-01

    The thesis is divided into the following 4 chapters: synthesis, characterization, and reactivity of trinuclear pentamethylcyclopentadienyl cobalt and nickel clusters with triply-bridging methylidyne groups; chemical and physical properties of pentamethylcyclopentadienyl acetylacetonate complexes of Co(II) and Ni(II); synthesis, characterization, and reactivity of pentamethylcyclopentadienyl halide complexes of Co and Ni; and crystallographic studies of distortions in metallocenes with C{sub 5}-symmetrical cyclopentadienyl rings.

  6. Homonuclear Mixed-Valent Cobalt Imidazolate Framework for Oxygen-Evolution Electrocatalysis.

    PubMed

    Flügel, Erik A; Lau, Vincent W-H; Schlomberg, Hendrik; Glaum, Robert; Lotsch, Bettina V

    2016-03-01

    Herein, the synthesis and characterization of the first mixed-valent, purely cobalt-based zeolitic imidazolate framework, Co(II)3Co(III)2(C3H3N2)12 is presented. The material adopts the cubic garnet-type structure and combines high thermal stability of up to 350 °C with excellent chemical stability. Electrochemical characterization showed that the cobalt centres are redox active and efficiently support oxygen evolution, thus rendering this framework a potential candidate for single-site heterogeneous catalysis based on earth-abundant elements.

  7. Homonuclear Mixed-Valent Cobalt Imidazolate Framework for Oxygen-Evolution Electrocatalysis.

    PubMed

    Flügel, Erik A; Lau, Vincent W-H; Schlomberg, Hendrik; Glaum, Robert; Lotsch, Bettina V

    2016-03-01

    Herein, the synthesis and characterization of the first mixed-valent, purely cobalt-based zeolitic imidazolate framework, Co(II)3Co(III)2(C3H3N2)12 is presented. The material adopts the cubic garnet-type structure and combines high thermal stability of up to 350 °C with excellent chemical stability. Electrochemical characterization showed that the cobalt centres are redox active and efficiently support oxygen evolution, thus rendering this framework a potential candidate for single-site heterogeneous catalysis based on earth-abundant elements. PMID:26676066

  8. Cobalt Derivatives as Promising Therapeutic Agents

    PubMed Central

    Heffern, Marie C.; Yamamoto, Natsuho; Holbrook, Robert J.; Eckermann, Amanda L.; Meade, Thomas J.

    2013-01-01

    Inorganic complexes are versatile platforms for the development of potent and selective pharmaceutical agents. Cobalt possesses a diverse array of properties that can be manipulated to yield promising drug candidates. Investigations into the mechanism of cobalt therapeutic agents can provide valuable insight into the physicochemical properties that can be harnessed for drug development. This review presents examples of bioactive cobalt complexes with special attention to their mechanisms of action. Specifically, cobalt complexes that elicit biological effects through protein inhibition, modification of drug activity, and bioreductive activation are discussed. Insights gained from these examples reveal features of cobalt that can be rationally tuned to produce therapeutics with high specificity and improved efficacy for the biomolecule or pathway of interest. PMID:23270779

  9. Synthesis, structural characterization and theoretical approach of the tri(2-(2,6-dichlorophenyl)-1H-imidazo[4,5-f][1,10]phenanthroline) cobalt(II).

    PubMed

    Wang, Yiwei; Zhang, Yu; Zhu, Dunru; Ma, Kuirong; Ni, Haiwei; Tang, Guodong

    2015-08-01

    The crystal structure of a new coordination compound tri(2-(2,6-dichlorophenyl)-1H-imidazo[4,5-f][1,10]phenanthroline) Co(II) complex ([Co(dcpip)3]Cl2) was measured with X-ray diffraction measurements. The compound is crystallizes triclinic, Pī space group. The ligand, 2-(2,6-dichlorophenyl)-1H-imidazo[4,5-f][1,10]phenanthroline(dcpip), binds to Co(II) ions with a bis-dentate mode, and each Co(II) ion with a distorted octahedral coordination geometry. The calculated interaction energies of Co(II) with coordination atoms N are between 101.7-206.5 kJ/mol and 115.3-230.9 kJ/mol for B3LYP/6-31+G(∗) and PBE1PBE/6-31+G(∗) theoretical methods, respectively. The experimental Fourier transform infrared spectrum was assigned. The calculated IR based on B3LYP/6-31+G(∗) and PBE1PBE/6-31+G(∗) methods were performed and compared with experimental results. The UV-Vis experimental spectrum of [Co(dcpip)3]Cl2 was measured in methanol solution. The calculated electronic spectrum was performed with TD/B3LYP and TD/PBE1PBE methods with 6-31+G(∗) basis set. The first and second order hyperpolarizability for the compound was calculated. The calculated values of γtot are -1.5551344 × 10(-33) esu for B3LYP method and -1.3323259 × 10(-33) esu for PBE1PBE method. The nature bond orbital analysis and temperature dependence of the thermodynamic properties were calculated with the same methods.

  10. Crystal structure of catena-poly[[di-aqua-cobalt(II)]-bis-[μ-5-(4-carb-oxy-ylato-phenyl)picolinato]-κ(3) N,O (2):O (5);κ(3) O (5):N,O (2)-[di-aqua-cobalt(II)]-μ-1-[4-(1H-imidazol-1-yl)phen-yl]-1H-imidazole-κ(2) N (3):N (3')].

    PubMed

    Xu, Guo-Wang; Wang, Ye-Nan; Wang, Hai-Bing; Wang, Zhong-Long

    2015-07-01

    The asymmetric unit of the title polymeric Co(II) complex, [Co2(C13H7NO4)2(C12H10N4)(H2O)4] n , contains a Co(II) cation, a 5-(4-carboxyl-atophen-yl)picolinate dianion, two coordination water mol-ecules and half of 1-[4-(1H-imidazol-1-yl)phen-yl]-1H-imidazole ligand. The Co(II) cation is coordinated by two picolinate dianions, two water mol-ecules and one 1-[4-(1H-imidazol-1-yl)phen-yl]-1H-imidazole mol-ecule in a distorted N2O4 octa-hedral coordination geometry. The two picolinate dianions are related by an inversion centre and link two Co(II) cations, forming a binuclear unit, which is further bridged by the imidazole mol-ecules, located about an inversion centre, into the polymeric chain propagating along the [-1-11] direction. In the crystal, the three-dimensional supra-molecular architecture is constructed by O-H⋯O hydrogen bonds between the coordinating water mol-ecules and the non-coordinating carboxyl-ate O atoms of adjacent polymeric chains. PMID:26279894

  11. 21 CFR 189.120 - Cobaltous salts and its derivatives.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Cobaltous salts and its derivatives. 189.120... or Use as Human Food § 189.120 Cobaltous salts and its derivatives. (a) Cobaltous salts are the... and to prevent “gushing.” (b) Food containing any added cobaltous salts is deemed to be adulterated...

  12. Electronic transitions of cobalt monoboride

    NASA Astrophysics Data System (ADS)

    Ng, Y. W.; Pang, H. F.; Cheung, A. S.-C.

    2011-11-01

    Electronic transition spectrum of cobalt monoboride (CoB) in the visible region between 495 and 560 nm has been observed and analyzed using laser-induced fluorescence spectroscopy. CoB molecule was produced by the reaction of laser-ablated cobalt atom and diborane (B2H6) seeded in argon. Fifteen vibrational bands with resolved rotational structure have been recorded, which included transitions of both Co10B and Co11B isotopic species. Our analysis showed that the observed transition bands are ΔΩ = 0 transitions with Ω″ = 2 and Ω″ = 3 lower states. Four transition systems have been assigned, namely, the [18.1]3Π2-X3Δ2, the [18.3]3Φ3-X3Δ3, the [18.6]3- X3Δ3, and the [19.0]2-X3Δ2 systems. The bond length, ro, of the X 3Δ3 state of CoB is determined to be 1.705 Å. The observed rotational lines showed unresolved hyperfine structure arising from the nuclei, which conforms to the Hund's case (aβ) coupling scheme. This work represents the first experimental investigation of the CoB spectrum.

  13. Dipotassium tetra­aqua­bis­[3,5-bis­(dicyano­methyl­ene)cyclo­pentane-1,2,4-trionato(1−)-κN]cobaltate(II)

    PubMed Central

    Chagas, Luciano Honorato; Janczak, Jan; Machado, Flavia C.; de Oliveira, Luiz Fernando C.; Diniz, Renata

    2010-01-01

    The title structure, K2[Co(C11N4O3)2(H2O)4], is isotypic with K2[Fe(C11N4O3)2(H2O)4]. The CoII atom is in a distorted octa­hedral CoN2O4 geometry, forming a dianionic mononuclear entity. Each dianionic unit is associated with two potassium cations and inter­acts with adjacent units through O—H⋯N and O—H⋯O hydrogen bonds. PMID:21589332

  14. Advances in cobalt complexes as anticancer agents.

    PubMed

    Munteanu, Catherine R; Suntharalingam, Kogularamanan

    2015-08-21

    The evolution of resistance to traditional platinum-based anticancer drugs has compelled researchers to investigate the cytostatic properties of alternative transition metal-based compounds. The anticancer potential of cobalt complexes has been extensively studied over the last three decades, and much time has been devoted to understanding their mechanisms of action. This perspective catalogues the development of antiproliferative cobalt complexes, and provides an in depth analysis of their mode of action. Early studies on simple cobalt coordination complexes, Schiff base complexes, and cobalt-carbonyl clusters will be documented. The physiologically relevant redox properties of cobalt will be highlighted and the role this plays in the preparation of hypoxia selective prodrugs and imaging agents will be discussed. The use of cobalt-containing cobalamin as a cancer specific delivery agent for cytotoxins will also be described. The work summarised in this perspective shows that the biochemical and biophysical properties of cobalt-containing compounds can be fine-tuned to produce new generations of anticancer agents with clinically relevant efficacies.

  15. Prosthetic hip-associated cobalt toxicity.

    PubMed

    Pizon, Anthony F; Abesamis, Michael; King, Andrew M; Menke, Nathan

    2013-12-01

    Prosthetic hip-associated cobalt toxicity (PHACT) is gaining recognition due to the use of metal-on-metal total hip replacements. Identifying true toxicity from merely elevated cobalt levels can be extremely difficult due to the lack of available data. An extensive review of the medical literature was undertaken to characterize cobalt toxicity from prosthetic hips. As an objective approach to making the diagnosis of PHACT, we suggest the following criteria: (1) elevated serum or whole blood cobalt levels due to a prosthetic hip, (2) at least two test-confirmed findings consistent with cobalt toxicity, and (3) exclusion of other etiologies. Adhering to objective diagnostic data for PHACT is a realistic and prudent method by which to eliminate the subjectivity of vague or difficult to identify complaints. These diagnostic criteria are not meant to evaluate prosthetic hardware failure, but as a means to identify systemic cobalt toxicity. Finally, assessment of cobalt toxicity from prosthetic hips should be done in conjunction with a medical toxicologist. PMID:24258006

  16. Detection of boron, cobalt, and other weak interstellar lines toward Zeta Ophiuchi

    NASA Technical Reports Server (NTRS)

    Federman, S. R.; Sheffer, Y.; Lambert, D. L.; Gilliland, R. L.

    1993-01-01

    Numerous weak lines from interstellar atomic species toward Zeta Ophiuchi were observed with the Goddard High-Resolution Spectrograph. Of particular note are the first interstellar detection of cobalt and the detection of boron in this sight line. These measurements provide estimates for the amount of depletion for the two elements. Boron, a volatile, and cobalt, a refractory element, display the depletion pattern found by Savage et al. (1992). The abundance of phosphorus in the H II region associated with the star was obtained from a detection of P III. Additional weak lines from S I, C I, Ni II, and Cu II were detected for the first time; these lines provide the basis for refinements in oscillator strength and column density. Analysis of the neutral sulfur data indicates that the atomic gas is more widely distributed than the molecular material in the main component.

  17. Crystal structure, solvothermal synthesis, thermogravimetric studies and DFT calculations of a five-coordinate cobalt(II) compound based on the N,N-bis­(2-hy­droxy­eth­yl)glycine anion

    PubMed Central

    Zhou, Yanling; Liu, Xianrong; Wang, Qijun; Wang, Lisheng; Song, Baoling

    2016-01-01

    The reaction of CoCl2·6H2O, N,N-bis­(2-hy­droxy­eth­yl)glycine and tri­ethyl­amine (Et3N) in ethanol solution under solvothermal conditions produced crystals of [N,N-bis­(2-hy­droxy­eth­yl)glycinato]chloridocobalt(II), [Co(C6H12NO4)Cl]. The CoII ion is coordinated in a slightly distorted trigonal–bipyramidal environment which is defined by three O atoms occupying the equatorial plane and the N and Cl atoms in the apical sites. In the crystal, two types of O—H⋯O hydrogen bonds connect the mol­ecules, forming a two-dimensional network parallel to (001). The mol­ecular structure of the title compound confirms the findings of FTIR, elemental analysis, ESI–MS analysis and TG analysis. By using the density functional theory (DFT) (B3LYP) method with 6-31G(d) basis set, the molecular structure has been calculated and optimized. PMID:27746942

  18. Spectrophotometric estimation of cobalt with ninhydrin.

    PubMed

    Mahmood, Karamat; Wattoo, Feroza Hamid; Wattoo, Muhammad Hamid Sarwar; Imran, Muhammad; Asad, Muhammad Javaid; Tirmizi, Syed Ahmed; Wadood, Abdul

    2012-04-01

    A violet coloured complex was developed when cobalt metal reacts with ninhydrin at pH 8.2, using sodium acetate buffer solution. Absorbance of the complex was measured at 395 nm. Various factors, such as volume of the ligand used, solution pH, stability of the complex with time and interference of other metals, which effect the complex formation have been studied in detail. Present developed method can be used for the spectrophotometric estimation of cobalt with ninhydrin complex. The method is simple, selective and cheap for the determination of cobalt in very less time.

  19. Galvanic cells including cobalt-chromium alloys.

    PubMed

    Gjerdet, N R

    1980-01-01

    Galvanic cells may be created when dentures made of cobalt-chromium alloys are placed on teeth with metallic restorations. The power of such cells was evaluated in an in vitro galvanic using amalgams, gold alloy, and nickel-chromium alloys. The amalgams and one of the nickel-chromium alloys revealed high corrosion currents when placed in contact with cobalt-chromium alloy, the conventional amalgam showing the highest values. The gold alloy and another nickel-chromium alloy exhibited low corrosion currents and they were noble with respect to cobalt-chromium.

  20. Toxicology of wear particles of cobalt-chromium alloy metal-on-metal hip implants Part II: Importance of physicochemical properties and dose in animal and in vitro studies as a basis for risk assessment.

    PubMed

    Madl, Amy K; Kovochich, Michael; Liong, Monty; Finley, Brent L; Paustenbach, Dennis J; Oberdörster, Günter

    2015-07-01

    The objective of the Part II analysis was to evaluate animal and in vitro toxicology studies of CoCr particles with respect to their physicochemistry and dose relevance to metal-on-metal (MoM) implant patients as derived from Part I. In the various toxicology studies, physicochemical characteristics were infrequently considered and administered doses were orders of magnitude higher than what occurs in patients. Co was consistently shown to rapidly release from CoCr particles for distribution and elimination from the body. CoCr micron sized particles appear more biopersistent in vivo resulting in inflammatory responses that are not seen with similar mass concentrations of nanoparticles. We conclude, that in an attempt to obtain data for a complete risk assessment, future studies need to focus on physicochemical characteristics of nano and micron sized particles and on doses and dose metrics relevant to those generated in patients or in properly conducted hip simulator studies.

  1. [μ-6,9-Bis(carboxylatomethyl)-3,12-bis(car­boxymethyl)-3,6,9,12-tetraaza­tetradecanedioato]bis­[aqua­cobalt(II)] tetra­hydrate

    PubMed Central

    Qian, Qi-feng; Wu, Jin-hui; Qian, Jin-liang

    2013-01-01

    The binuclear title complex, [Co2(C18H26N4O12)(H2O)2]·4H2O, lies about a centre of inversion, the CoII atom being coordinated in a distorted octa­hedral arrangement defined by one water mol­ecule and N2O3 donors derived from one end of a 6,9-bis(carboxylatomethyl)-3,12-bis(car­boxy­methyl)-3,6,9,12-tetraaza­tetradecanedioate (H2TTHA4−) tetra­anion. In the crystal, numerous O—H⋯O hydrogen bonds link the mol­ecules into a three-dimensional network. PMID:23424439

  2. [μ-6,9-Bis(carboxylatomethyl)-3,12-bis(car-boxymethyl)-3,6,9,12-tetraaza-tetradecanedioato]bis-[aqua-cobalt(II)] tetra-hydrate.

    PubMed

    Qian, Qi-Feng; Wu, Jin-Hui; Qian, Jin-Liang

    2013-02-01

    The binuclear title complex, [Co(2)(C(18)H(26)N(4)O(12))(H(2)O)(2)]·4H(2)O, lies about a centre of inversion, the Co(II) atom being coordinated in a distorted octa-hedral arrangement defined by one water mol-ecule and N(2)O(3) donors derived from one end of a 6,9-bis(carboxylatomethyl)-3,12-bis(car-boxy-methyl)-3,6,9,12-tetraaza-tetradecanedioate (H(2)TTHA(4-)) tetra-anion. In the crystal, numerous O-H⋯O hydrogen bonds link the mol-ecules into a three-dimensional network. PMID:23424439

  3. Synthesis, structural characterization, antibacterial activity and computational studies of new cobalt (II) complexes with 1,1,3,3-tetrakis (3,5-dimethyl-1-pyrazolyl)propane ligand

    NASA Astrophysics Data System (ADS)

    Beheshti, Azizolla; Safaeiyan, Forough; Hashemi, Faeze; Motamedi, Hossein; Mayer, Peter; Bruno, Giuseppe; Rudbari, Hadi Amiri

    2016-11-01

    Two new mono- and dinuclear Co(II) complexes namely [Co(tdmpp)Cl2]2·H2O (1) and [Co2(tdmpp)Cl4] (2) (where tdmpp = 1,1,3,3-tetrakis(3,5-dimethyl-1-pyrazolyl)propane) were prepared by one-pot reactions in methanol as a solvent. These compounds have been characterized by single crystal X-ray diffraction, elemental analysis, infrared spectroscopy, antibacterial activity and computational studies. In both complexes, Co (II) atom is tetrahedrally coordinated by two N atoms from one of the chelating bidentate bis(3,5-dimethylpyrazolyl)methane units of the tdmpp ligand and two Cl as terminal ligands. In these structures, the neighboring [Co(tdmpp)Cl2]2·H2O (1) and [Co2(tdmpp)Cl4] (2) molecules are joined together by the intermolecular Csbnd H⋯Cl hydrogen bonds to form a 1D chain structure. As a consequence of the intermolecular Csbnd H⋯π interactions these chains are further linked to generate a two-dimensional non-covalent bonded structure. The in vitro antibacterial activity studies of the free tdmpp ligand, compounds 1 and 2 show that the ability of these compounds to inhibit growth of the tested bacteria increase progressively from tdmpp to the dinuclear complex 2. Molecular-docking investigations between the five standard antibiotic, free tdmpp ligand, title complexes and five biological macromolecule enzymes (receptors) were carried out from using Autodock vina function. The results of docking studies confirmed that the metal complexes are more active than the free ligand. This is consistent with the results obtained by the antibacterial activities of these compounds.

  4. Synthesis, spectroscopic and structural characterization of cobalt(II) complex with uracil-containing 2,6-diformylpyridine ligand: Theoretical studies on the ligand and pentagonal-bipyramidal [Co(L)(H 2O) 2] 2+ and [Zn(L)(H 2O) 2] 2+ cations

    NASA Astrophysics Data System (ADS)

    Koz, Gamze; Özdemir, Namık; Astley, Demet; Dinçer, Muharrem; Astley, Stephen T.

    2010-03-01

    The title complex, trans-diaqua{5,5'-[( E, E)-pyridine-2,6-diylbis(methylidynenitrilo)]bis-[pyrimidine-2,4(1 H,3 H)-dione]}cobalt(II) bis(hexafluorophosphate) dihydrate [Co(C 15H 11N 7O 4) (H 2O) 2]·2(PF 6)·2(H 2O), has been synthesized, and characterized by IR spectroscopy and single crystal X-ray diffraction. The compound crystallizes in the monoclinic space group P2 1/ c with a = 10.7301(4) Å, b = 12.0537(3) Å, c = 21.6030(9) Å and β = 109.392 (3)°. In the title complex, the Co 2+ centre is seven-coordinated in a slightly distorted pentagonal-bipyramidal geometry, with the two water O atoms located in the apical positions, and the pyridine N atom, the two imine N atoms and two carbonyl O atoms of the uracil groups located in the equatorial plane. The positions of fluorine atoms in the hexafluorophosphate groups were disordered. The charge is balanced by two PF 62- anions. In addition to the molecular geometry from X-ray experiment, theoretical studies have been carried out on the structures of the pentagonal-bipyramidal [Co(L)(H 2O) 2] 2+ and [Zn(L)(H 2O) 2] 2+ cations using the Hartree-Fock (HF) and density functional theory (DFT-B3LYP) methods in conjunction with effective core potential basis set (LANL2DZ) to clarify the solid state behaviour of these cations. Besides, frontier molecular orbitals (FMO) analysis and natural bond orbital (NBO) analysis of [Co(L)(H 2O) 2] 2+ cation are presented here together with vibrational frequencies and gauge including atomic orbital (GIAO) 1H and 13C NMR chemical shift values of the pentadentate ligand calculated at HF and DFT (B3LYP) levels with 6-31G(d) basis set.

  5. Synthesis and properties of cobalt(III) complexes of 4-substituted pyridine-capped dioxocyclams.

    PubMed

    Reiff, Angela L; Garcia-Frutos, Eva M; Gil, Jun Mo; Anderson, Oren P; Hegedus, Louis S

    2005-12-12

    Cobalt(III) acetate and cyanide complexes of a series of 5,12-dioxocyclams capped across the 1,8-position by 4-substituted pyridines or pyrazine were synthesized and fully characterized. Both the spectroscopic and structural parameters for these complexes were remarkably insensitive to the electronic nature of the capping group, which ranged from the pi-accepting pyrazine group to the sigma-donating 4-[(dimethylamino)phenyl]pyridyl group. All of the complexes underwent an irreversible, one-electron reduction [Co(III)-->Co(II)] at potentials ranging from -0.95 V vs saturated calomel electrode (SCE) for the pyrazine-capped cobalt acetate complex to -1.36 V vs SCE for the pyridine-capped cobalt cyanide complexes. Pyridine-capped cobalt(III) cyanide complex underwent reaction with Rh2(OAc)4 and ruthenium(II) phthalocyanine[bis(benzonitrile)] to form tetrametallic and trimetallic complexes through coordination bridging by the cyanide nitrogen lone pair. These complexes represent two quite different structural types for cyanide-bridged polymetallics. Complex has a relatively long (2.192 A) cyanide N-to-Rh bond, and the CN-Rh bond angle (157.6 degrees) is strongly distorted from linear. In contrast, complex has a substantially shortened cyanide N-to-Ru bond (2.017 A) and an almost linear arrangement along the entire bridging axis of the molecule.

  6. Bioextraction of cobalt from complex metal sulfides

    SciTech Connect

    Thompson, D.L.; Noah, K.S.; Wichlacz, P.L.; Torma, A.E.

    1993-05-01

    The present study has investigated the bioleachability of naturally occurring cobaltite and synthetic cobalt sulfides using 29 pedigree and ``wild type`` strains of Thiobacillus ferrooxidans. On the basis of a screening test, five strains of bacteria were selected for assessing the effects of leach parameters (pH, ferrous and ferric sulfates, ammonium sulfate, bipotassium hydrogen phosphate, and substrate concentrations) on cobalt extraction from Blackbird Mine ore and concentrate. The mechanisms of cobalt extraction were explained in terms of direct and indirect modes of bacterial activity, and the chemistry involved in these processes was identified. Using various size fractions of a high-grade cobaltite, the kinetic parameters of cobalt extraction were derived for the effect of specific surface area to be V{sub m} = 376 mg dm{sup {minus}3} h{sup {minus}1} and K 1.27 m{sup 2} g{sup {minus}1}.

  7. Bioextraction of cobalt from complex metal sulfides

    SciTech Connect

    Thompson, D.L.; Noah, K.S.; Wichlacz, P.L.; Torma, A.E.

    1993-01-01

    The present study has investigated the bioleachability of naturally occurring cobaltite and synthetic cobalt sulfides using 29 pedigree and wild type'' strains of Thiobacillus ferrooxidans. On the basis of a screening test, five strains of bacteria were selected for assessing the effects of leach parameters (pH, ferrous and ferric sulfates, ammonium sulfate, bipotassium hydrogen phosphate, and substrate concentrations) on cobalt extraction from Blackbird Mine ore and concentrate. The mechanisms of cobalt extraction were explained in terms of direct and indirect modes of bacterial activity, and the chemistry involved in these processes was identified. Using various size fractions of a high-grade cobaltite, the kinetic parameters of cobalt extraction were derived for the effect of specific surface area to be V[sub m] = 376 mg dm[sup [minus]3] h[sup [minus]1] and K 1.27 m[sup 2] g[sup [minus]1].

  8. Exploring the effect of chain length of bridging ligands in cobalt(II) coordination polymers based on flexible bis(5,6-dimethylbenzimidazole) ligands: Synthesis, crystal structures, fluorescence and catalytic properties

    NASA Astrophysics Data System (ADS)

    Qin, Li; Li, Yue-Hua; Ma, Pei-Juan; Cui, Guang-Hua

    2013-11-01

    Two Co(II) coordination polymers derived from a dicarboxylate and two flexible bis(5,6-dimethylbenzimidazole) ligands with varying chain lengths equipped, namely [Co(bdmbmm)(nip)]n (1) and [Co2(bdmbmb)2(nip)2ṡH2O]n (2) (bdmbmm = 1,1'-bis(5,6-dimethylbenzimidazole)methane, H2nip = 5-nitroisophthalic acid, bdmbmb = 1,4-bis(5,6-dimethylbenzimidazole)butane), have been synthesized by hydrothermal methods and characterized by elemental analyses, IR spectra, thermogravimetric analysis (TGA), X-ray powder diffraction (XRPD) and single-crystal X-ray diffraction. Complex 1 forms a 1D looped-like chain consisting of two kinds of macrocycles, which is further arranged into a 2D supramolecular layer through face-to-face π-π stacking interactions; whereas complex 2 exhibits a 3D framework with a twofold interpenetrating diamondoid topology. The fluorescence and catalytic properties of the complexes for the degradation of methyl orange by sodium persulfate have been investigated.

  9. Aqua-(dicyanamido-κN)(2,9-dimethyl-1,10-phenanthroline-κN,N')(nitrato-κO,O')cobalt(II)-2,9-dimethyl-1,10-phenanthroline-water (2/1/2).

    PubMed

    Cui, Feng-Hua; Zhao, Pei-Zheng

    2011-10-01

    In the title compound, 2[Co(C(2)N(3))(NO(3))(C(14)H(12)N(2))(H(2)O)]·C(14)H(12)N(2)·2H(2)O, the Co(II) ion is coordinated by a bidentate 2,9-dimethyl-1,10-phenanthroline (dmphen) ligand, a bidentate nitrate anion, a water mol-ecule and a monodentate dicyan-amide group in a distorted octa-hedral geometry. One uncoordinated dmphen mol-ecule is situated on a crystallographic twofold axis and the asymmetric unit is completed by one water mol-ecule. In the crystal, mol-ecules form a one-dimensional framework in the [001] direction through O-H⋯N and O-H⋯O hydrogen bonds. The crystal packing is further stabilized by π-π stacking inter-actions between the dmphen rings of neighboring mol-ecules, with a centroid-centroid separation of 3.5641 (8) Å and a partially overlapped arrangement of parallel dmphen rings with a distance of 3.407 (2) Å. PMID:22065101

  10. Role of cobalt in nickel base superalloys

    NASA Technical Reports Server (NTRS)

    Jarrett, R.; Barefoot, J.; Tien, J.; Sanchez, J.

    1982-01-01

    The effect of cobalt or substituting for cobalt on the mechanical properties of nickel-based superalloys is discussed. Waspaloy, UDIMET 700, and NIMONIC 115, which are representative of Ni-Cr-Co-Al-Ti-Mo superalloys having different gamma prime contents which are strengthened by a heavily alloyed matrix, coherent gamma prime precipitates, and carbides at the grain boundaries. Microstructure and in situ and extracted phase STEM micro-analysis were used to evaluate the three alloys.

  11. Cobalt-catalyzed oxidative isocyanide insertion to amine-based bisnucleophiles: diverse synthesis of substituted 2-aminobenzimidazoles, 2-aminobenzothiazoles, and 2-aminobenzoxazoles.

    PubMed

    Zhu, Tong-Hao; Wang, Shun-Yi; Wang, Gao-Nan; Ji, Shun-Jun

    2013-05-01

    Cobalt catalysis: Synthesis of substituted 2-aminobenzimidazoles, 2-aminobenzothiazoles, and 2-aminobenzoxazoles was achieved by using cobalt(II) acetate catalyzed isocyanide insertion to o-diaminobenzene, 2-aminobenzenethiol, and 2-aminophenol derivatives in 1,4-dioxane (see scheme). It was found that the reaction proceeded efficiently to give the desired products in up to 95 % isolated yields by C-N and C-S (O, N) formation in a single step.

  12. [Are the cobalt hip prosthesis dangerous?].

    PubMed

    Mistretta, Virginie; Kurth, William; Charlier, Corinne

    The placement of a hip prosthesis is one of the most common orthopedic surgical procedures. Some implants contain metal and are therefore capable of releasing metal particles like cobalt in patients who wear metal prostheses. Cobalt can be responsible of local toxicity (including metallosis, hypersensitivity reaction, and benign tumor) or systemic toxicity (including cardiomyopathy, polycythemia, hypothyroidism, and neurological disorders). To monitor potential toxicity of metal hip prostheses, an annual monitoring of patients implanted is recommended and includes clinical examination, radiological examination and blood cobalt determination. The cobalt concentration in blood allows to estimate the risk of toxicity and to evaluate the performance of the implant. The currently recommended threshold value is equal to 7 µg of cobalt per liter of blood. Our study, conducted on 251 patients over a period of 4 years, has shown that the cobalt concentration average was 2.51 µg/l in blood, with 51 patients having a cobaltemia higher than the threshold of 7 µg/l. PMID:27615181

  13. Intolerability of cobalt salt as erythropoietic agent.

    PubMed

    Ebert, Bastian; Jelkmann, Wolfgang

    2014-03-01

    Unfair athletes seek ways to stimulate erythropoiesis, because the mass of haemoglobin is a critical factor in aerobic sports. Here, the potential misuse of cobalt deserves special attention. Cobalt ions (Co(2+) ) stabilize the hypoxia-inducible transcription factors (HIFs) that increase the expression of the erythropoietin (Epo) gene. Co(2+) is orally active, easy to obtain, and inexpensive. However, its intake can bear risks to health. To elaborate this issue, a review of the pertinent literature was retrieved by a search with the keywords 'anaemia', 'cobalt', 'cobalt chloride', 'erythropoiesis', 'erythropoietin', 'Epo', 'side-effects' and 'treatment', amongst others. In earlier years, cobalt chloride was administered at daily doses of 25 to 300 mg for use as an anti-anaemic agent. Co(2+) therapy proved effective in stimulating erythropoiesis in both non-renal and renal anaemia, yet there were also serious medical adverse effects. The intake of inorganic cobalt can cause severe organ damage, concerning primarily the gastrointestinal tract, the thyroid, the heart and the sensory systems. These insights should keep athletes off taking Co(2+) to stimulate erythropoiesis.

  14. [Are the cobalt hip prosthesis dangerous?].

    PubMed

    Mistretta, Virginie; Kurth, William; Charlier, Corinne

    The placement of a hip prosthesis is one of the most common orthopedic surgical procedures. Some implants contain metal and are therefore capable of releasing metal particles like cobalt in patients who wear metal prostheses. Cobalt can be responsible of local toxicity (including metallosis, hypersensitivity reaction, and benign tumor) or systemic toxicity (including cardiomyopathy, polycythemia, hypothyroidism, and neurological disorders). To monitor potential toxicity of metal hip prostheses, an annual monitoring of patients implanted is recommended and includes clinical examination, radiological examination and blood cobalt determination. The cobalt concentration in blood allows to estimate the risk of toxicity and to evaluate the performance of the implant. The currently recommended threshold value is equal to 7 µg of cobalt per liter of blood. Our study, conducted on 251 patients over a period of 4 years, has shown that the cobalt concentration average was 2.51 µg/l in blood, with 51 patients having a cobaltemia higher than the threshold of 7 µg/l.

  15. COBALT COMPOUNDS AS ANTIDOTES FOR HYDROCYANIC ACID.

    PubMed

    EVANS, C L

    1964-12-01

    The antidotal potency of a cobalt salt (acetate), of dicobalt edetate, of hydroxocobalamin and of cobinamide against hydrocyanic acid was examined mainly on mice and rabbits. All the compounds were active antidotes for up to twice the LD50; under some conditions for larger doses. The most successful was cobalt acetate for rabbits (5xLD50), which was effective at a molar cyanide/cobalt (CN/Co) ratio of 5, but had as a side-effect intense purgation. Hydroxocobalamin was irregular in action, but on the whole was most effective for mice (4.5xLD50 at a molar ratio of 1), and had no apparent side effects. Dicobalt edetate, at molar ratios of up to 2, was more effective for rabbits (3xLD50) than for mice (2xLD50), but had fewer side effects than cobalt acetate. The effect of thiosulphate was to augment the efficacy of dicobalt edetate and, in mice, that of hydroxocobalamin; but, apparently, in rabbits, to reduce that of hydroxocobalamin. Cobinamide, at a molar ratio of 1, was slightly more effective than hydroxocobalamin on rabbits and also less irregular in its action. Cobalt acetate by mouth was effective against orally administered hydrocyanic acid. The oxygen uptake of the body, reduced by cyanide, is rapidly reinstated when one of the cobalt antidotes has been successfully administered.

  16. Cobalt(III), a probe of metal binding sites of Escherichia coli alkaline phosphatase.

    PubMed Central

    Anderson, R A; Vallee, B L

    1975-01-01

    To facilitate the study of individual metal binding sites of polymeric metalloproteins, conversion of exchange-labile Co(II) in E. coli alkaline phosphatase (EC 3.1.3.1) to exchange-inert Co(III) was examined. Oxidation of Co(II) alkaline phosphatase with hydrogen peroxide results in a single absorption maximum at 530 nm and loss both of the characteristic electron paramagnetic signal and of enzymatic activity. Zinc neither reactivates this enzyme nor displaces the oxidized cobalt atoms. Metal and amino-acid analyses demonstrate that oxidation alters neither cobalt binding nor amino-acid composition of the enzyme. Al data are consistent with the conclusion that hydrogen peroxide oxidizes Co(II) in alkaline phosphatase to Co(III). Polymeric metalloenzymes can contain different categories of metal atoms serving in catalysis, structure stabilization, and/or control and exerting their effects independently or interdependently. The in situ conversion of exchange-labile Co(II) to exchange-stable (Co(III) offers a method to selectively and differentially "freeze" cobalt atoms at their respective binding sites. The accompanying spectral changes and concomitant retardation in ligand exchange reactions may be used to differentiate between specific metal binding sites that serve different roles in polymeric metalloenzymes. PMID:164026

  17. Chemical and electronic characterization of cobalt in Lanthanumperovskites. Effects of Strontium substitution

    SciTech Connect

    Hueso, Jose L.; Holgado, Juan P.; Pereniguez, Rosa; Mun, Simon; Salmeron, Miquel; Caballero, Alfonso

    2009-02-06

    Two different cobaltites, LaCoO{sub 3} and La{sub 0.5}Sr{sub 0.5}CoO{sub 3-{delta}}, have been prepared and characterized by means of high energy Co K-edge and low energy O K-edge X-ray absorption spectroscopy (XAS). The partial substitution of La(III) by Sr(II) species induces important changes in the reactivity and electronic state of the perovskite, while little or no changes can be detected in the formal oxidation state of cobalt atoms. The presence of strontium cations induces two main effects in the chemical and electronic behavior of the perovskite. The charge balance with Sr(II) species is reached by the formation of oxygen vacancies throughout the network, which increases the reactivity of the perovskite, now more reducible than the original LaCoO{sub 3} perovskite. O K-edge XAS experiments indicate that the Sr(II) species cause d electrons of cobalt cations to change from low to high spin configuration. Our data allow us to propose that this change in spin multiplicity is induced by the bigger size of Sr(II) cations, which aligns the Co-O-Co atoms, and favors the overlapping of {pi}-symmetry cobalt and oxygen orbitals, reducing the splitting energy of e{sub g} and t{sub 2g} levels.

  18. Ligand Engineering for the Efficient Dye-Sensitized Solar Cells with Ruthenium Sensitizers and Cobalt Electrolytes.

    PubMed

    Aghazada, Sadig; Gao, Peng; Yella, Aswani; Marotta, Gabriele; Moehl, Thomas; Teuscher, Joël; Moser, Jacques-E; De Angelis, Filippo; Grätzel, Michael; Nazeeruddin, Mohammad Khaja

    2016-07-01

    Over the past 20 years, ruthenium(II)-based dyes have played a pivotal role in turning dye-sensitized solar cells (DSCs) into a mature technology for the third generation of photovoltaics. However, the classic I3(-)/I(-) redox couple limits the performance and application of this technique. Simply replacing the iodine-based redox couple by new types like cobalt(3+/2+) complexes was not successful because of the poor compatibility between the ruthenium(II) sensitizer and the cobalt redox species. To address this problem and achieve higher power conversion efficiencies (PCEs), we introduce here six new cyclometalated ruthenium(II)-based dyes developed through ligand engineering. We tested DSCs employing these ruthenium(II) complexes and achieved PCEs of up to 9.4% using cobalt(3+/2+)-based electrolytes, which is the record efficiency to date featuring a ruthenium-based dye. In view of the complicated liquid DSC system, the disagreement found between different characterizations enlightens us about the importance of the sensitizer loading on TiO2, which is a subtle but equally important factor in the electronic properties of the sensitizers. PMID:27322854

  19. 40 CFR 415.650 - Applicability; description of the cobalt salts production subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... cobalt salts production subcategory. 415.650 Section 415.650 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Cobalt Salts Production Subcategory § 415.650 Applicability; description of the cobalt... cobalt salts....

  20. 40 CFR 415.650 - Applicability; description of the cobalt salts production subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... cobalt salts production subcategory. 415.650 Section 415.650 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Cobalt Salts Production Subcategory § 415.650 Applicability; description of the cobalt... cobalt salts....

  1. 40 CFR 415.650 - Applicability; description of the cobalt salts production subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... cobalt salts production subcategory. 415.650 Section 415.650 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Cobalt Salts Production Subcategory § 415.650 Applicability; description of the cobalt... cobalt salts....

  2. 40 CFR 415.650 - Applicability; description of the cobalt salts production subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... cobalt salts production subcategory. 415.650 Section 415.650 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Cobalt Salts Production Subcategory § 415.650 Applicability; description of the cobalt... cobalt salts....

  3. 40 CFR 415.650 - Applicability; description of the cobalt salts production subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... cobalt salts production subcategory. 415.650 Section 415.650 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Cobalt Salts Production Subcategory § 415.650 Applicability; description of the cobalt... cobalt salts....

  4. Preparation and characterization of cobalt-substituted anthrax lethal factor

    SciTech Connect

    Saebel, Crystal E.; Carbone, Ryan; Dabous, John R.; Lo, Suet Y.; Siemann, Stefan

    2011-12-09

    Highlights: Black-Right-Pointing-Pointer Cobalt-substituted anthrax lethal factor (CoLF) is highly active. Black-Right-Pointing-Pointer CoLF can be prepared by bio-assimilation and direct exchange. Black-Right-Pointing-Pointer Lethal factor binds cobalt tightly. Black-Right-Pointing-Pointer The electronic spectrum of CoLF reveals penta-coordination. Black-Right-Pointing-Pointer Interaction of CoLF with thioglycolic acid follows a 2-step mechanism. -- Abstract: Anthrax lethal factor (LF) is a zinc-dependent endopeptidase involved in the cleavage of mitogen-activated protein kinase kinases near their N-termini. The current report concerns the preparation of cobalt-substituted LF (CoLF) and its characterization by electronic spectroscopy. Two strategies to produce CoLF were explored, including (i) a bio-assimilation approach involving the cultivation of LF-expressing Bacillus megaterium cells in the presence of CoCl{sub 2}, and (ii) direct exchange by treatment of zinc-LF with CoCl{sub 2}. Independent of the method employed, the protein was found to contain one Co{sup 2+} per LF molecule, and was shown to be twice as active as its native zinc counterpart. The electronic spectrum of CoLF suggests the Co{sup 2+} ion to be five-coordinate, an observation similar to that reported for other Co{sup 2+}-substituted gluzincins, but distinct from that documented for the crystal structure of native LF. Furthermore, spectroscopic studies following the exposure of CoLF to thioglycolic acid (TGA) revealed a sequential mechanism of metal removal from LF, which likely involves the formation of an enzyme: Co{sup 2+}:TGA ternary complex prior to demetallation of the active site. CoLF reported herein constitutes the first spectroscopic probe of LF's active site, which may be utilized in future studies to gain further insight into the enzyme's mechanism and inhibitor interactions.

  5. Loss of hypoxia-inducible factor 2 alpha in the lung alveolar epithelium of mice leads to enhanced eosinophilic inflammation in cobalt-induced lung injury.

    PubMed

    Proper, Steven P; Saini, Yogesh; Greenwood, Krista K; Bramble, Lori A; Downing, Nathaniel J; Harkema, Jack R; Lapres, John J

    2014-02-01

    Hard metal lung disease (HMLD) is an occupational lung disease specific to inhalation of cobalt-containing particles whose mechanism is largely unknown. Cobalt is a known hypoxia mimic and stabilizer of the alpha subunits of hypoxia-inducible factors (HIFs). Previous work revealed that though HIF1α contrib utes to cobalt toxicity in vitro, loss of HIF1α in the alveolar epithelial cells does not provide in vivo protection from cobalt-induced lung inflammation. HIF1α and HIF2α show unique tissue expression profiles, and HIF2α is known to be the predominant HIF mRNA isoform in the adult lung. Thus, if HIF2α activation by cobalt contributes to pathophysiology of HMLD, we hypothesized that loss of HIF2α in lung epithelium would provide protection from cobalt-induced inflammation. Mice with HIF2α-deficiency in Club and alveolar type II epithelial cells (ATIIs) (HIF2α(Δ/Δ)) were exposed to cobalt (60 µg/day) or saline using a subacute occupational exposure model. Bronchoalveolar lavage cellularity, cytokines, qRT-PCR, and histopathology were analyzed. Results show that loss of HIF2α leads to enhanced eosinophilic inflammation and increased goblet cell metaplasia. Additionally, control mice demonstrated a mild recovery from cobalt-induced lung injury compared with HIF2α(Δ/Δ) mice, suggesting a role for epithelial HIF2α in repair mechanisms. The expression of important cytokines, such as interleukin (IL)-5 and IL-10, displayed significant differences following cobalt exposure when HIF2α(Δ/Δ) and control mice were compared. In summary, our data suggest that although loss of HIF2α does not afford protection from cobalt-induced lung inflammation, epithelial HIF2α signaling does play an important role in modulating the inflammatory and repair response in the lung.

  6. Loss of hypoxia-inducible factor 2 alpha in the lung alveolar epithelium of mice leads to enhanced eosinophilic inflammation in cobalt-induced lung injury.

    PubMed

    Proper, Steven P; Saini, Yogesh; Greenwood, Krista K; Bramble, Lori A; Downing, Nathaniel J; Harkema, Jack R; Lapres, John J

    2014-02-01

    Hard metal lung disease (HMLD) is an occupational lung disease specific to inhalation of cobalt-containing particles whose mechanism is largely unknown. Cobalt is a known hypoxia mimic and stabilizer of the alpha subunits of hypoxia-inducible factors (HIFs). Previous work revealed that though HIF1α contrib utes to cobalt toxicity in vitro, loss of HIF1α in the alveolar epithelial cells does not provide in vivo protection from cobalt-induced lung inflammation. HIF1α and HIF2α show unique tissue expression profiles, and HIF2α is known to be the predominant HIF mRNA isoform in the adult lung. Thus, if HIF2α activation by cobalt contributes to pathophysiology of HMLD, we hypothesized that loss of HIF2α in lung epithelium would provide protection from cobalt-induced inflammation. Mice with HIF2α-deficiency in Club and alveolar type II epithelial cells (ATIIs) (HIF2α(Δ/Δ)) were exposed to cobalt (60 µg/day) or saline using a subacute occupational exposure model. Bronchoalveolar lavage cellularity, cytokines, qRT-PCR, and histopathology were analyzed. Results show that loss of HIF2α leads to enhanced eosinophilic inflammation and increased goblet cell metaplasia. Additionally, control mice demonstrated a mild recovery from cobalt-induced lung injury compared with HIF2α(Δ/Δ) mice, suggesting a role for epithelial HIF2α in repair mechanisms. The expression of important cytokines, such as interleukin (IL)-5 and IL-10, displayed significant differences following cobalt exposure when HIF2α(Δ/Δ) and control mice were compared. In summary, our data suggest that although loss of HIF2α does not afford protection from cobalt-induced lung inflammation, epithelial HIF2α signaling does play an important role in modulating the inflammatory and repair response in the lung. PMID:24218148

  7. Impairment of cobalt-induced riboflavin biosynthesis in a Debaryomyces hansenii mutant.

    PubMed

    Seda-Miró, Jasmine M; Arroyo-González, Nancy; Pérez-Matos, Ana; Govind, Nadathur S

    2007-11-01

    Flavinogenic yeasts such as Debaryomyces hansenii overproduce riboflavin (RF) in the presence of heavy metals. Growth and RF production were compared between wild-type D. hansenii and a RF production-impaired metal-tolerant ura3 mutant in the presence of sublethal cobalt(II) concentrations. Debaryomyces hansenii (wild type) exhibits an extended lag phase with an increase in RF synthesis. Supplementation of exogenous uracil shortened the lag phase at the highest concentration of cobalt(II) used, suggesting that uracil has a possible role in metal acclimation. The D. hansenii ura3 mutant isolated by chemical mutagenesis exhibited a higher level of metal tolerance, no extended lag phase, and no marked increase in RF synthesis. Transformation of the mutant with the URA3 gene isolated from Saccharyomyces cerevisiae or D. hansenii did not restore wild-type characteristics, suggesting a second mutation that impairs RF oversynthesis. Our results demonstrate that growth, metal sensitivity, and RF biosynthesis are linked. PMID:18026221

  8. Pro-oxidative interactions of cobalt with human neutrophils.

    PubMed

    Ramafi, Grace J; Theron, Annette J; Anderson, Ronald

    2004-08-01

    The primary objectives of this study were to investigate the effects of cobalt(II) chloride (Co, 1.5-25 microM) on the reactivity of hydrogen peroxide (H2O2, 100 microM) or oxidants generated by activated human neutrophils. The prooxidative interactions of Co with H2O2 or cells were measured by luminol-enhanced chemiluminescence (LECL), and according to the extent of oxidative inactivation of added alpha-1-proteinase inhibitor (API). Cobalt dramatically potentiated the oxidation of luminol and API by both H2O2 and neutrophils activated with phorbol 12-myristate 13-acetate (5 ng/ml), without affecting the assembly of NADPH oxidase or the magnitude of oxygen consumption by the cells. Using 5,5-dimethyl-pyrolline 1-oxide-based electron spin resonance spectroscopy we were unable to detect hydroxyl radical formation by Co in the presence of either H2O2 or activated neutrophils, while the corresponding LECL responses were unaffected by the hydroxyl radical scavengers benzoate and mannitol (50 mM). These observations indicate that Co potentiates the reactivity of neutrophil-derived oxidants, primarily H2O2, which if operative in vivo during exposure to the heavy metal may pose the risk of oxidant- and protease-mediated tissue injury.

  9. Synthesis of Samarium Cobalt Nanoblades

    SciTech Connect

    Darren M. Steele

    2010-08-25

    As new portable particle acceleration technologies become feasible the need for small high performance permanent magnets becomes critical. With particle accelerating cavities of a few microns, the photonic crystal fiber (PCF) candidate demands magnets of comparable size. To address this need, samarium cobalt (SmCo) nanoblades were attempted to be synthesized using the polyol process. Since it is preferable to have blades of 1-2 {micro}m in length, key parameters affecting size and morphology including method of stirring, reaction temperature, reaction time and addition of hydroxide were examined. Nanoparticles consisting of 70-200 nm spherical clusters with a 3-5 nm polyvinylpyrrolidone (PVP) coating were synthesized at 285 C and found to be ferromagnetic. Nanoblades of 25nm in length were observed at the surface of the nanoclusters and appeared to suggest agglomeration was occurring even with PVP employed. Morphology and size were characterized using a transmission electron microscope (TEM). Powder X-Ray Diffraction (XRD) analysis was conducted to determine composition but no supportive evidence for any particular SmCo phase has yet been observed.

  10. Synthesis of cobalt-containing mesoporous catalysts using the ultrasonic-assisted “pH-adjusting” method: Importance of cobalt species in styrene oxidation

    SciTech Connect

    Li, Baitao Zhu, Yanrun; Jin, Xiaojing

    2015-01-15

    Cobalt-containing SBA-15 and MCM-41 (Co-SBA-15 and Co-MCM-41) mesoporous catalysts were prepared via ultrasonic-assisted “pH-adjusting” technique in this study. Their physiochemical structures were comprehensively characterized and correlated with catalytic activity in oxidation of styrene. The nature of cobalt species depended on the type of mesoporous silica as well as pH values. The different catalytic performance between Co-SBA-15 and Co-MCM-41 catalysts originated from cobalt species. Cobalt species were homogenously incorporated into the siliceous framework of Co-SBA-15 in single-site Co(II) state, while Co{sub 3}O{sub 4} particles were loaded on Co-MCM-41 catalysts. The styrene oxidation tests showed that the single-site Co(II) state was more beneficial to the catalytic oxidation of styrene. The higher styrene conversion and benzaldehyde selectivity over Co-SBA-15 catalysts were mainly attributed to single-site Co(II) state incorporated into the framework of SBA-15. The highest conversion of styrene (34.7%) with benzaldehyde selectivity of 88.2% was obtained over Co-SBA-15 catalyst prepared at pH of 7.5, at the mole ratio of 1:1 (styrene to H{sub 2}O{sub 2}) at 70 °C. - Graphical abstract: Cobalt-containing mesoporous silica catalysts were developed via ultrasonic-assisted “pH-adjusting” technique. Compared with Co{sub 3}O{sub 4} in Co-MCM-41, the single-site Co(II) state in Co-SBA-15 was more efficient for the styrene oxidation. - Highlights: • Fast and cost-effective ultrasonic technique for preparing mesoporous materials. • Incorporation of Co via ultrasonic irradiation and “pH-adjusting”. • Physicochemical comparison between Co-SBA-15 and Co-MCM-41. • Correlation of styrene oxidation activity and catalyst structural property.

  11. Cobalt: A vital element in the aircraft engine industry

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.

    1981-01-01

    Recent trends in the United States consumption of cobalt indicate that superalloys for aircraft engine manufacture require increasing amounts of this strategic element. Superalloys consume a lion's share of total U.S. cobalt usage which was about 16 million pounds in 1980. In excess of 90 percent of the cobalt used in this country was imported, principally from the African countries of Zaire and Zambia. Early studies on the roles of cobalt as an alloying element in high temperature alloys concentrated on the simple Ni-Cr and Nimonic alloy series. The role of cobalt in current complex nickel base superalloys is not well defined and indeed, the need for the high concentration of cobalt in widely used nickel base superalloys is not firmly established. The current cobalt situation is reviewed as it applies to superalloys and the opportunities for research to reduce the consumption of cobalt in the aircraft engine industry are described.

  12. Exchange of organic radicals with organo-cobalt complexes formed in the living radical polymerization of vinyl acetate.

    PubMed

    Li, Shan; de Bruin, Bas; Peng, Chi-How; Fryd, Michael; Wayland, Bradford B

    2008-10-01

    Exchange of organic radicals between solution and organo-cobalt complexes is experimentally observed and the reaction pathway is probed through DFT calculations. Cyanoisopropyl radicals from AIBN (2,2'-azobisisobutyronitrile) enter solutions of cobalt(II) tetramesityl porphyrin ((TMP)Co(II)*, 1) and vinyl acetate (VAc) in benzene and react to produce transient hydride (TMP)Co-H and radicals (*CH(OAc)CH2C(CH3)2CN (R1*)) that proceed on to form organo-cobalt complexes (TMP)Co-CH(OAc)CH3 (4, Co-R2) and (TMP)Co-CH(OAc)CH2C(CH3)2CN (3, Co-R1), respectively. Rate constants for cyanoisopropyl radical addition with vinyl acetate and hydrogen atom transfer to (TMP)Co(II)* are reported through kinetic studies for the formation and transformation of organo-cobalt species in this system. Rate constants for near-degenerate exchanges of radicals in solution with organo-cobalt complexes are deduced from (1)H NMR studies and kinetic modeling. DFT computations revealed formation of an unsymmetrical adduct of (TMP)Co-CH(OAc)CH3 (4) with *CH(OAc)CH3 (R2*) and support an associative pathway for radical interchange through a three-centered three-electron transition state [R...Co...R]. Associative radical interchange of the latent radical groups in organo-cobalt porphyrin complexes with freely diffusing radicals in solution that is observed in this system provides a pathway for mediation of living radical polymerization of vinyl acetate.

  13. Catalytic dioxygen activation by Co(II) complexes employing a coordinatively versatile ligand scaffold.

    PubMed

    Sharma, Savita K; May, Philip S; Jones, Matthew B; Lense, Sheri; Hardcastle, Kenneth I; MacBeth, Cora E

    2011-02-14

    The ligand bis(2-isobutyrylamidophenyl)amine has been prepared and used to stabilize both mononuclear and dinuclear cobalt(II) complexes. The nuclearity of the cobalt product is regulated by the deprotonation state of the ligand. Both complexes catalytically oxidize triphenylphosphine to triphenylphosphine oxide in the presence of O(2).

  14. Equilibrium phase boundary between hcp-cobalt and fcc-cobalt

    NASA Astrophysics Data System (ADS)

    Cynn, Hyunchae; Lipp, Magnus J.; Evans, William J.; Baer, Bruce J.

    In 2000 (Yoo et al., PRL), fcc-cobalt was reported as a new high pressure phase transforming from ambient hcp-cobalt starting at around 105 GPa and 300 K. Both cobalts coexist up to 150 GPa and thereafter only fcc-cobalt was found to be the only stable phase to 200 GPa. Our recent synchrotron x-ray diffraction data on cobalt are at odds with the previous interpretation. We will present our new finding and elaborate on our understanding in terms of the equilibrium phase boundary of cobalt. We will also compare our previous work on xenon (Cynn et al., 2001, PRL) with our new results on cobalt. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Portions of this work were performed at HPCAT (Sector 16), APS, Argonne National Laboratory. HPCAT operations are supported by DOE-NNSA under Award No. DENA0001974 and DOE-BES under Award No. DE-FG02-99ER45775. The Advanced Photon Source is a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357.

  15. 21 CFR 73.1015 - Chromium-cobalt-aluminum oxide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Chromium-cobalt-aluminum oxide. 73.1015 Section 73... LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1015 Chromium-cobalt-aluminum oxide. (a) Identity. The color additive chromium-cobalt-aluminum oxide is a blue-green pigment obtained by calcining...

  16. 21 CFR 73.1015 - Chromium-cobalt-aluminum oxide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Chromium-cobalt-aluminum oxide. 73.1015 Section 73... LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1015 Chromium-cobalt-aluminum oxide. (a) Identity. The color additive chromium-cobalt-aluminum oxide is a blue-green pigment obtained by calcining...

  17. 21 CFR 73.1015 - Chromium-cobalt-aluminum oxide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Chromium-cobalt-aluminum oxide. 73.1015 Section 73... LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1015 Chromium-cobalt-aluminum oxide. (a) Identity. The color additive chromium-cobalt-aluminum oxide is a blue-green pigment obtained by calcining...

  18. 21 CFR 73.1015 - Chromium-cobalt-aluminum oxide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Chromium-cobalt-aluminum oxide. 73.1015 Section 73... LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1015 Chromium-cobalt-aluminum oxide. (a) Identity. The color additive chromium-cobalt-aluminum oxide is a blue-green pigment obtained by calcining...

  19. 21 CFR 73.1015 - Chromium-cobalt-aluminum oxide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Chromium-cobalt-aluminum oxide. 73.1015 Section 73... LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1015 Chromium-cobalt-aluminum oxide. (a) Identity. The color additive chromium-cobalt-aluminum oxide is a blue-green pigment obtained by calcining...

  20. Palladium-cobalt particles as oxygen-reduction electrocatalysts

    DOEpatents

    Adzic, Radoslav; Huang, Tao

    2009-12-15

    The present invention relates to palladium-cobalt particles useful as oxygen-reducing electrocatalysts. The invention also relates to oxygen-reducing cathodes and fuel cells containing these palladium-cobalt particles. The invention additionally relates to methods for the production of electrical energy by using the palladium-cobalt particles of the invention.

  1. Micromagnetic simulations of hysteresis in an array of cobalt nanotubes

    NASA Astrophysics Data System (ADS)

    Lebecki, K. M.; Kazakova, O.; Gutowski, M. W.

    2008-02-01

    Here we perform modeling of hysteresis measurements, described earlier by Crowley et al., of an array of cobalt nanotubes using a single infinite tube simulation. The modeling has been performed under the assumptions that (i) the long axis of the tube is the hard axis of the anisotropy and (ii) in the experiment we deal with a distribution of different tubes, each having a different anisotropy constant. The best fit to the experimental result is achieved using a log-normal anisotropy distribution, with a peak value close to -0.2 MJ/m 3. The distribution parameters are nearly the same for both experimental temperatures, Texp=1.8 and 300 K. These parameters are only weakly dependent on the tube-wall width and the material parameters.

  2. Controlled cobalt doping in biogenic magnetite nanoparticles

    PubMed Central

    Byrne, J. M.; Coker, V. S.; Moise, S.; Wincott, P. L.; Vaughan, D. J.; Tuna, F.; Arenholz, E.; van der Laan, G.; Pattrick, R. A. D.; Lloyd, J. R.; Telling, N. D.

    2013-01-01

    Cobalt-doped magnetite (CoxFe3 −xO4) nanoparticles have been produced through the microbial reduction of cobalt–iron oxyhydroxide by the bacterium Geobacter sulfurreducens. The materials produced, as measured by superconducting quantum interference device magnetometry, X-ray magnetic circular dichroism, Mössbauer spectroscopy, etc., show dramatic increases in coercivity with increasing cobalt content without a major decrease in overall saturation magnetization. Structural and magnetization analyses reveal a reduction in particle size to less than 4 nm at the highest Co content, combined with an increase in the effective anisotropy of the magnetic nanoparticles. The potential use of these biogenic nanoparticles in aqueous suspensions for magnetic hyperthermia applications is demonstrated. Further analysis of the distribution of cations within the ferrite spinel indicates that the cobalt is predominantly incorporated in octahedral coordination, achieved by the substitution of Fe2+ site with Co2+, with up to 17 per cent Co substituted into tetrahedral sites. PMID:23594814

  3. Nickel cobalt phosphorous low stress electroplating

    NASA Technical Reports Server (NTRS)

    Engelhaupt, Darell E. (Inventor); Ramsey, Brian D. (Inventor)

    2002-01-01

    An electrolytic plating process is provided for electrodepositing a nickel or nickel cobalt alloy which contains at least about 2% to 25% by atomic volume of phosphorous. The process solutions contains nickel and optionally cobalt sulfate, hypophosphorous acid or a salt thereof, boric acid or a salt thereof, a monodentate organic acid or a salt thereof, and a multidentate organic acid or a salt thereof. The pH of the plating bath is from about 3.0 to about 4.5. An electroplating process is also provided which includes electroplating from the bath a nickel or nickel cobalt phosphorous alloy. This process can achieve a deposit with high microyield of at least about 84 kg/mm.sup.2 (120 ksi) and a density lower than pure nickel of about 8.0 gm/cc. This process can be used to plate a deposit of essentially zero stress at plating temperatures from ambient to 70.degree. C.

  4. Cobalt Nanopartciles for Enhanced Raman Scattering

    NASA Astrophysics Data System (ADS)

    Dunmire, David; Romero, Danilo; Hight Walker, Angela

    2003-03-01

    Low-frequency Raman spectra of cobalt nanoparticles ( 10 nm) have been obtained. This optical characterization is supported by other methods such as TEM, AFM and SQUID magnetometry. A cryo-magnet coupled to a triple grating spectrometer enables the scattering measurements at a range of sample temperatures (4K to 300K) and magnetic field strengths (0T to 8T). Cobalt nanoparticles have a complicated phase diagram which reveals three unique crystal structures resulting in distinctive and tunable magnetic properties and a self-assembly capability well suited for building SERS-active substrates. Coating of the cobalt particles with a monolayer of gold is also being pursued to further enhance the Raman scattering signal while maintaining the unique magnetic properties of the particles.

  5. Rapid phase synthesis of nanocrystalline cobalt ferrite

    SciTech Connect

    Shanmugavel, T.; Raj, S. Gokul; Rajarajan, G.; Kumar, G. Ramesh

    2014-04-24

    Synthesis of single phase nanocrystalline Cobalt Ferrite (CoFe{sub 2}O{sub 4}) was achieved by single step autocombustion technique with the use of citric acid as a chelating agent in mono proportion with metal. Specimens prepared with this method showed significantly higher initial permeability's than with the conventional process. Single phase nanocrystalline cobalt ferrites were formed at very low temperature. Surface morphology identification were carried out by transmission electron microscopy (TEM) analysis. The average grain size and density at low temperature increased gradually with increasing the temperature. The single phase formation is confirmed through powder X-ray diffraction analysis. Magnetization measurements were obtained at room temperature by using a vibrating sample magnetometer (VSM), which showed that the calcined samples exhibited typical magnetic behaviors. Temperature dependent magnetization results showed improved behavior for the nanocrystalline form of cobalt ferrite when compared to the bulk nature of materials synthesized by other methods.

  6. Cobalt and marine redox evolution

    NASA Astrophysics Data System (ADS)

    Swanner, Elizabeth D.; Planavsky, Noah J.; Lalonde, Stefan V.; Robbins, Leslie J.; Bekker, Andrey; Rouxel, Olivier J.; Saito, Mak A.; Kappler, Andreas; Mojzsis, Stephen J.; Konhauser, Kurt O.

    2014-03-01

    Cobalt (Co) is a bio-essential trace element and limiting nutrient in some regions of the modern oceans. It has been proposed that Co was more abundant in poorly ventilated Precambrian oceans based on the greater utilization of Co by anaerobic microbes relative to plants and animals. However, there are few empirical or theoretical constraints on the history of seawater Co concentrations. Herein, we present a survey of authigenic Co in marine sediments (iron formations, authigenic pyrite and bulk euxinic shales) with the goal of tracking changes in the marine Co reservoir throughout Earth's history. We further provide an overview of the modern marine Co cycle, which we use as a platform to evaluate how changes in the redox state of Earth's surface were likely to have affected marine Co concentrations. Based on sedimentary Co contents and our understanding of marine Co sources and sinks, we propose that from ca. 2.8 to 1.8 Ga the large volume of hydrothermal fluids circulating through abundant submarine ultramafic rocks along with a predominantly anoxic ocean with a low capacity for Co burial resulted in a large dissolved marine Co reservoir. We tentatively propose that there was a decrease in marine Co concentrations after ca. 1.8 Ga resulting from waning hydrothermal Co sources and the expansion of sulfide Co burial flux. Changes in the Co reservoir due to deep-water ventilation in the Neoproterozoic, if they occurred, are not resolvable with the current dataset. Rather, Co enrichments in Phanerozoic euxinic shales deposited during ocean anoxic events (OAE) indicate Co mobilization from expanded anoxic sediments and enhanced hydrothermal sources. A new record of marine Co concentrations provides a platform from which we can reevaluate the role that environmental Co concentrations played in shaping biological Co utilization throughout Earth's history.

  7. Cobalt plaque therapy of posterior uveal melanomas

    SciTech Connect

    Shields, J.A.; Augsburger, J.J.; Brady, L.W.; Day, J.L.

    1982-10-01

    One hundred patients with choroidal melanomas who were treated by the authors with cobalt plaque radiotherapy were analyzed with regard to tumor regression, visual results, complications, and mortality rate. The follow-up period at the time of this writing ranged from one to five years. These preliminary observations indicate that cobalt plaque radiotherapy induces tumor regression in 96% of cases, preserves useful vision in many cases and has fewer complications during the one- to five-year follow-up period than previously believed.

  8. Alterations of histone modifications by cobalt compounds

    PubMed Central

    Li, Qin; Ke, Qingdong; Costa, Max

    2009-01-01

    In the present study, we examined the effects of CoCl2 on multiple histone modifications at the global level. We found that in both human lung carcinoma A549 cells and human bronchial epithelial Beas-2B cells, exposure to CoCl2 (≥200 μM) for 24 h increased H3K4me3, H3K9me2, H3K9me3, H3K27me3, H3K36me3, uH2A and uH2B but decreased acetylation at histone H4 (AcH4). Further investigation demonstrated that in A549 cells, the increase in H3K4me3 and H3K27me3 by cobalt ions exposure was probably through enhancing histone methylation processes, as methionine-deficient medium blocked the induction of H3K4me3 and H3K27me3 by cobalt ions, whereas cobalt ions increased H3K9me3 and H3K36me3 by directly inhibiting JMJD2A demethylase activity in vitro, which was probably due to the competition of cobalt ions with iron for binding to the active site of JMJD2A. Furthermore, in vitro ubiquitination and deubiquitination assays revealed that the cobalt-induced histone H2A and H2B ubiquitination is the result of inhibition of deubiquitinating enzyme activity. Microarray data showed that exposed to 200 μM of CoCl2 for 24 h, A549 cells not only increased but also decreased expression of hundreds of genes involved in different cellular functions, including tumorigenesis. This study is the first to demonstrate that cobalt ions altered epigenetic homeostasis in cells. It also sheds light on the possible mechanisms involved in cobalt-induced alteration of histone modifications, which may lead to altered programs of gene expression and carcinogenesis since cobalt at higher concentrations is a known carcinogen. PMID:19376846

  9. Cation distributions on rapidly solidified cobalt ferrite

    NASA Technical Reports Server (NTRS)

    De Guire, Mark R.; Kalonji, Gretchen; O'Handley, Robert C.

    1990-01-01

    The cation distributions in two rapidly solidified cobalt ferrites have been determined using Moessbauer spectroscopy at 4.2 K in an 8-T magnetic field. The samples were obtained by gas atomization of a Co0-Fe2O3-P2O5 melt. The degree of cation disorder in both cases was greater than is obtainable by cooling unmelted cobalt ferrite. The more rapidly cooled sample exhibited a smaller departure from the equilibrium cation distribution than did the more slowly cooled sample. This result is explained on the basis of two competing effects of rapid solidification: high cooling rate of the solid, and large undercooling.

  10. A Hyperactive Cobalt-Substituted Extradiol-Cleaving Catechol Dioxygenase

    PubMed Central

    Fielding, Andrew J.; Farquhar, Erik R.

    2011-01-01

    Homoprotocatechuate (HPCA) 2,3-dioxygenase from Brevibacterium fuscum (Fe-HPCD) has an Fe(II) center in its active site that can be replaced with Mn(II) or Co(II). While Mn-HPCD exhibits steady state kinetic parameters comparable to those of Fe-HPCD, Co-HPCD behaves somewhat differently exhibiting a significantly higher KMO2 and kcat. The high activity of Co-HPCD is surprising, given that cobalt has the highest standard M(III/II) redox potential of the three metals. Comparison of the X-ray crystal structures of the resting and substrate-bound forms of Fe-, Mn-, and Co-HPCD shows that metal-substitution has no effect on the local ligand environment, the conformational integrity of the active site, or the overall protein structure, suggesting that the protein structure does not differentially tune the potential of the metal center. Analysis of the steady state kinetics of Co-HPCD suggests that the Co(II) center alters the relative rate constants for the interconversion of intermediates in the catalytic cycle but still allows the dioxygenase reaction to proceed efficiently. When compared with the kinetic data for Fe- and Mn-HPCD, these results show that dioxygenase catalysis can proceed at high rates over a wide range of metal redox potentials. This is consistent with the proposed mechanism in which the metal mediates electron transfer between the catechol substrate and O2 to form the postulated [M(II)(semiquinone)superoxo] reactive species. These kinetic differences and the spectroscopic properties of Co-HPCD provide new tools with which to explore the unique O2 activation mechanism associated with the extradiol dioxygenase family. PMID:21153851

  11. The cytotoxicity and genotoxicity of soluble and particulate cobalt in human lung epithelial cells.

    PubMed

    Xie, Hong; Smith, Leah J; Holmes, Amie L; Zheng, Tongzhang; Pierce Wise, John

    2016-05-01

    Cobalt is a toxic metal used in various industrial applications leading to adverse lung effects by inhalation. Cobalt is considered a possible human carcinogen with the lung being a primary target. However, few studies have considered cobalt-induced toxicity in human lung cells, especially normal lung epithelial cells. Therefore, in this study, we sought to determine the cytotoxicity and genotoxicity of particulate and soluble cobalt in normal primary human lung epithelial cells. Cobalt oxide and cobalt chloride were used as representative particulate and soluble cobalt compounds, respectively. Exposure to both particulate and soluble cobalt induced a concentration-dependent increase in cytotoxicity, genotoxicity, and intracellular cobalt ion levels. Based on intracellular cobalt ion levels, we found that soluble and particulate cobalt induced similar cytotoxicity while soluble cobalt was more genotoxic than particulate cobalt. These data indicate that cobalt compounds are cytotoxic and genotoxic to human lung epithelial cells.

  12. Chemical vapor deposition of low reflective cobalt (II) oxide films

    NASA Astrophysics Data System (ADS)

    Amin-Chalhoub, Eliane; Duguet, Thomas; Samélor, Diane; Debieu, Olivier; Ungureanu, Elisabeta; Vahlas, Constantin

    2016-01-01

    Low reflective CoO coatings are processed by chemical vapor deposition from Co2(CO)8 at temperatures between 120 °C and 190 °C without additional oxygen source. The optical reflectivity in the visible and near infrared regions stems from 2 to 35% depending on deposition temperature. The combination of specific microstructural features of the coatings, namely a fractal "cauliflower" morphology and a grain size distribution more or less covering the near UV and IR wavelength ranges enhance light scattering and gives rise to a low reflectivity. In addition, the columnar morphology results in a density gradient in the vertical direction that we interpret as a refractive index gradient lowering reflectivity further down. The coating formed at 180 °C shows the lowest average reflectivity (2.9%), and presents an interesting deep black diffuse aspect.

  13. Cobalt(II) Ammine Complexes as Reversible Absorbers of Oxygen.

    ERIC Educational Resources Information Center

    Saito, Kazuo; Ogino, Kazuko

    1988-01-01

    Describes experiments designed to measure the oxygen content in the atmosphere and related areas in the high school laboratories. Considers the application of these activities to other programs. Includes a description of the binuclear complex and recommended procedures. (CW)

  14. Cobalt-ruthenium catalysts for Fischer-Tropsch synthesis

    SciTech Connect

    Iglesia, E.; Soled, S.L.; Fiato, R.A.

    1989-04-18

    A hydrocarbon synthesis process is described which comprises reacting hydrogen and carbon monoxide in the presence of a catalyst comprised of cobalt and ruthenium on titania, at reaction conditions suitable for the formation of higher hydrocarbons. The catalyst is prepared by impregnating titania with solutions of cobalt and ruthenium salts, drying the impregnated support, reducing the cobalt and ruthenium, treating the reduced metals with an oxygen containing stream at conditions sufficient to form oxides of cobalt and oxides of ruthenium and reducing the cobalt and ruthenium oxides.

  15. Cobalt pivalate complex as a catalyst for liquid phase oxidation of n-hexane

    NASA Astrophysics Data System (ADS)

    Moskovskaya, I. F.; Maerle, A. A.; Shvydkiy, N. V.; Romanovsky, B. V.; Ivanova, I. I.

    2015-09-01

    Catalytic properties of cobalt(II) pivalate complex as both individual and supported on mesoporous molecular sieves Si-KIT-6, Al-KIT-6, and Ce-KIT-6 were investigated in liquid-phase oxidation of n-hexane with molecular oxygen. This complex was shown to be an active and selective catalyst for the oxidation of n-C6H14 into C1-C4 carboxylic acids. The activity of Co(II) pivalate remains practically unchanged on heterogenizing the complex on molecular sieve supports. At the same time, its selectivity and resistance towards an oxidative degradation are slightly increased.

  16. Coordination chemistry of 6-thioguanine derivatives with cobalt: toward formation of electrical conductive one-dimensional coordination polymers.

    PubMed

    Amo-Ochoa, Pilar; Alexandre, Simone S; Hribesh, Samira; Galindo, Miguel A; Castillo, Oscar; Gómez-García, Carlos J; Pike, Andrew R; Soler, José M; Houlton, Andrew; Zamora, Félix; Harrington, Ross W; Clegg, William

    2013-05-01

    In this work we have synthetized and characterized by X-ray diffraction five cobalt complexes with 6-thioguanine (6-ThioGH), 6-thioguanosine (6-ThioGuoH), or 2'-deoxy-6-thioguanosine (2'-d-6-ThioGuoH) ligands. In all cases, these ligands coordinate to cobalt via N7 and S6 forming a chelate ring. However, independently of reagents ratio, 6-ThioGH provided monodimensional cobalt(II) coordination polymers, in which the 6-ThioG(-) acts as bridging ligand. However, for 2'-d-6-ThioGuoH and 6-ThioGuoH, the structure directing effect of the sugar residue gives rise to mononuclear cobalt complexes which form extensive H-bond interactions to generate 3D supramolecular networks. Furthermore, with 2'-d-6-ThioGuoH the cobalt ion remains in the divalent state, whereas with 6-ThioGuoH oxidation occurs and Co(III) is found. The electrical and magnetic properties of the coordination polymers isolated have been studied and the results discussed with the aid of DFT calculations, in the context of molecular wires.

  17. Crystal structure of poly[[hexa-qua-1κ(4) O,2κ(2) O-bis-(μ3-pyridine-2,4-di-car-box-ylato-1κO (2):2κ(2) N,O (2');1'κO (4))cobalt(II)-strontium(II)] dihydrate].

    PubMed

    Yu, Zhaojun; Jiang, Peng; Chen, Yanmei

    2015-09-01

    In the title polymeric complex, {[CoSr(C7H3NO4)2(H2O)6]·2H2O} n , the Co(II) ion, which is situated on a crystallographic centre of inversion, is six-coordinated by two O atoms and two N atoms from two pyridine-2,4-di-carboxyl-ate (pydc(2-)) ligands and two terminal water mol-ecules in a slightly distorted octa-hedral geometry, to form a trans-[Co(pydc)2(H2O)2](2-) unit. The Sr(II) ion, situated on a C 2 axis, is coordinated by four O atoms from four pydc(2-) ligands and four water mol-ecules. The coordination geometry of the Sr(II) atom can be best described as a distorted dodeca-hedron. Each Sr(II) ion bridges four [Co(pydc)2(H2O)2](2-) units by four COO(-) groups of four pydc(2-) ligands to form a three-dimensional network structure. Two additional solvent water mol-ecules are observed in the crystal structure and are connected to the three-dimensional coordination polymer by O-H⋯O hydrogen bonds. Further intra- and intermolecular O-H⋯O hydrogen bonds consolidate the overall structure. PMID:26396869

  18. Crystal structure of poly[[hexa­qua-1κ4 O,2κ2 O-bis­(μ3-pyridine-2,4-di­car­box­ylato-1κO 2:2κ2 N,O 2′;1′κO 4)cobalt(II)­strontium(II)] dihydrate

    PubMed Central

    Yu, Zhaojun; Jiang, Peng; Chen, Yanmei

    2015-01-01

    In the title polymeric complex, {[CoSr(C7H3NO4)2(H2O)6]·2H2O}n, the CoII ion, which is situated on a crystallographic centre of inversion, is six-coordinated by two O atoms and two N atoms from two pyridine-2,4-di­carboxyl­ate (pydc2−) ligands and two terminal water mol­ecules in a slightly distorted octa­hedral geometry, to form a trans-[Co(pydc)2(H2O)2]2− unit. The SrII ion, situated on a C 2 axis, is coordinated by four O atoms from four pydc2− ligands and four water mol­ecules. The coordination geometry of the SrII atom can be best described as a distorted dodeca­hedron. Each SrII ion bridges four [Co(pydc)2(H2O)2]2− units by four COO− groups of four pydc2− ligands to form a three-dimensional network structure. Two additional solvent water mol­ecules are observed in the crystal structure and are connected to the three-dimensional coordination polymer by O—H⋯O hydrogen bonds. Further intra- and intermolecular O—H⋯O hydrogen bonds consolidate the overall structure. PMID:26396869

  19. Exposure to cobalt causes transcriptomic and proteomic changes in two rat liver derived cell lines.

    PubMed

    Permenter, Matthew G; Dennis, William E; Sutto, Thomas E; Jackson, David A; Lewis, John A; Stallings, Jonathan D

    2013-01-01

    Cobalt is a transition group metal present in trace amounts in the human diet, but in larger doses it can be acutely toxic or cause adverse health effects in chronic exposures. Its use in many industrial processes and alloys worldwide presents opportunities for occupational exposures, including military personnel. While the toxic effects of cobalt have been widely studied, the exact mechanisms of toxicity remain unclear. In order to further elucidate these mechanisms and identify potential biomarkers of exposure or effect, we exposed two rat liver-derived cell lines, H4-II-E-C3 and MH1C1, to two concentrations of cobalt chloride. We examined changes in gene expression using DNA microarrays in both cell lines and examined changes in cytoplasmic protein abundance in MH1C1 cells using mass spectrometry. We chose to closely examine differentially expressed genes and proteins changing in abundance in both cell lines in order to remove cell line specific effects. We identified enriched pathways, networks, and biological functions using commercial bioinformatic tools and manual annotation. Many of the genes, proteins, and pathways modulated by exposure to cobalt appear to be due to an induction of a hypoxic-like response and oxidative stress. Genes that may be differentially expressed due to a hypoxic-like response are involved in Hif-1α signaling, glycolysis, gluconeogenesis, and other energy metabolism related processes. Gene expression changes linked to oxidative stress are also known to be involved in the NRF2-mediated response, protein degradation, and glutathione production. Using microarray and mass spectrometry analysis, we were able to identify modulated genes and proteins, further elucidate the mechanisms of toxicity of cobalt, and identify biomarkers of exposure and effect in vitro, thus providing targets for focused in vivo studies.

  20. Exposure to Cobalt Causes Transcriptomic and Proteomic Changes in Two Rat Liver Derived Cell Lines

    PubMed Central

    Permenter, Matthew G.; Dennis, William E.; Sutto, Thomas E.; Jackson, David A.; Lewis, John A.; Stallings, Jonathan D.

    2013-01-01

    Cobalt is a transition group metal present in trace amounts in the human diet, but in larger doses it can be acutely toxic or cause adverse health effects in chronic exposures. Its use in many industrial processes and alloys worldwide presents opportunities for occupational exposures, including military personnel. While the toxic effects of cobalt have been widely studied, the exact mechanisms of toxicity remain unclear. In order to further elucidate these mechanisms and identify potential biomarkers of exposure or effect, we exposed two rat liver-derived cell lines, H4-II-E-C3 and MH1C1, to two concentrations of cobalt chloride. We examined changes in gene expression using DNA microarrays in both cell lines and examined changes in cytoplasmic protein abundance in MH1C1 cells using mass spectrometry. We chose to closely examine differentially expressed genes and proteins changing in abundance in both cell lines in order to remove cell line specific effects. We identified enriched pathways, networks, and biological functions using commercial bioinformatic tools and manual annotation. Many of the genes, proteins, and pathways modulated by exposure to cobalt appear to be due to an induction of a hypoxic-like response and oxidative stress. Genes that may be differentially expressed due to a hypoxic-like response are involved in Hif-1α signaling, glycolysis, gluconeogenesis, and other energy metabolism related processes. Gene expression changes linked to oxidative stress are also known to be involved in the NRF2-mediated response, protein degradation, and glutathione production. Using microarray and mass spectrometry analysis, we were able to identify modulated genes and proteins, further elucidate the mechanisms of toxicity of cobalt, and identify biomarkers of exposure and effect in vitro, thus providing targets for focused in vivo studies. PMID:24386269

  1. The cytotoxicity and genotoxicity of soluble and particulate cobalt in human lung fibroblast cells.

    PubMed

    Smith, Leah J; Holmes, Amie L; Kandpal, Sanjeev Kumar; Mason, Michael D; Zheng, Tongzhang; Wise, John Pierce

    2014-08-01

    Cobalt exposure is increasing as cobalt demand rises worldwide due to its use in enhancing rechargeable battery efficiency, super-alloys, and magnetic products. Cobalt is considered a possible human carcinogen with the lung being a primary target. However, few studies have considered cobalt-induced toxicity in human lung cells. Therefore, in this study, we sought to determine the cytotoxicity and genotoxicity of particulate and soluble cobalt in human lung cells. Cobalt oxide and cobalt chloride were used as representative particulate and soluble cobalt compounds, respectively. Exposure to both particulate and soluble cobalt induced a concentration-dependent increase in cytotoxicity, genotoxicity, and intracellular cobalt ion levels. Based on intracellular cobalt ion levels, we found that soluble cobalt was more cytotoxic than particulate cobalt while particulate and soluble cobalt induced similar levels of genotoxicity. However, soluble cobalt induced cell cycle arrest indicated by the lack of metaphases at much lower intracellular cobalt concentrations compared to cobalt oxide. Accordingly, we investigated the role of particle internalization in cobalt oxide-induced toxicity and found that particle-cell contact was necessary to induce cytotoxicity and genotoxicity after cobalt exposure. These data indicate that cobalt compounds are cytotoxic and genotoxic to human lung fibroblasts, and solubility plays a key role in cobalt-induced lung toxicity.

  2. The cytotoxicity and genotoxicity of soluble and particulate cobalt in human lung fibroblast cells.

    PubMed

    Smith, Leah J; Holmes, Amie L; Kandpal, Sanjeev Kumar; Mason, Michael D; Zheng, Tongzhang; Wise, John Pierce

    2014-08-01

    Cobalt exposure is increasing as cobalt demand rises worldwide due to its use in enhancing rechargeable battery efficiency, super-alloys, and magnetic products. Cobalt is considered a possible human carcinogen with the lung being a primary target. However, few studies have considered cobalt-induced toxicity in human lung cells. Therefore, in this study, we sought to determine the cytotoxicity and genotoxicity of particulate and soluble cobalt in human lung cells. Cobalt oxide and cobalt chloride were used as representative particulate and soluble cobalt compounds, respectively. Exposure to both particulate and soluble cobalt induced a concentration-dependent increase in cytotoxicity, genotoxicity, and intracellular cobalt ion levels. Based on intracellular cobalt ion levels, we found that soluble cobalt was more cytotoxic than particulate cobalt while particulate and soluble cobalt induced similar levels of genotoxicity. However, soluble cobalt induced cell cycle arrest indicated by the lack of metaphases at much lower intracellular cobalt concentrations compared to cobalt oxide. Accordingly, we investigated the role of particle internalization in cobalt oxide-induced toxicity and found that particle-cell contact was necessary to induce cytotoxicity and genotoxicity after cobalt exposure. These data indicate that cobalt compounds are cytotoxic and genotoxic to human lung fibroblasts, and solubility plays a key role in cobalt-induced lung toxicity. PMID:24823294

  3. Cobalt processing - flask positioner location sensing system

    SciTech Connect

    Braun, P.F.

    1986-01-01

    Canada deuterium uranium (CANDU) reactors offer unique opportunities for economical production of /sup 60/Co in the adjuster rods used for xenon override and maximization of core output. Cobalt is effectively a by-product in CANDU reactors with the standards stainless steel adjuster rods replaced with cobalt adjuster rods. The Flask Positioner unit is a part of the cobalt adjuster element processing system (CAEPS) equipment which is used for removing irradiated cobalt adjuster elements from the reactor and safely transporting them to the irradiated fuel bay, where they are dismantled and prepared for shipment. The flask positioner equipment is similar to a crane, carries the CAEPS flask and locates it in an accurate position concentric with any adjuster site centerline. This enables the required operations for safe transfer of the irradiated adjuster element into the flask. The positioner is located above the reactivity mechanism deck. The CAEPS system has been made operational on several CANDU reactors. The location sensing system has been demonstrated to work very satisfactorily on all installations.

  4. Magnetization dynamics of cobalt grown on graphene

    SciTech Connect

    Berger, A. J.; White, S. P.; Adur, R.; Pu, Y.; Hammel, P. C.; Amamou, W.; Kawakami, R. K.

    2014-05-07

    Ferromagnetic resonance (FMR) spin pumping is a rapidly growing field which has demonstrated promising results in a variety of material systems. This technique utilizes the resonant precession of magnetization in a ferromagnet to inject spin into an adjacent non-magnetic material. Spin pumping into graphene is attractive on account of its exceptional spin transport properties. This article reports on FMR characterization of cobalt grown on chemical vapor deposition graphene and examines the validity of linewidth broadening as an indicator of spin pumping. In comparison to cobalt samples without graphene, direct contact cobalt-on-graphene exhibits increased FMR linewidth—an often used signature of spin pumping. Similar results are obtained in Co/MgO/graphene structures, where a 1 nm MgO layer acts as a tunnel barrier. However, magnetometry, magnetic force microscopy, and Kerr microscopy measurements demonstrate increased magnetic disorder in cobalt grown on graphene, perhaps due to changes in the growth process and an increase in defects. This magnetic disorder may account for the observed linewidth enhancement due to effects such as two-magnon scattering or mosaicity. As such, it is not possible to conclude successful spin injection into graphene from FMR linewidth measurements alone.

  5. Localized comedo formation after cobalt irradiation

    SciTech Connect

    Myskowski, P.L.; Safai, B.

    1981-10-01

    Following Cobalt-60 irradiation for a left frontotemporal tumor, a 61-year-old woman developed comedones on the forehead. These changes responded to conventional acne therapy with retinoic acid. Multiple acneigenic factors were implicated in the pathogenesis of her lesions.

  6. Water splitting: Taking cobalt in isolation

    NASA Astrophysics Data System (ADS)

    Wang, Aiqin; Zhang, Tao

    2016-01-01

    The sustainable production of hydrogen is key to the delivery of clean energy in a hydrogen economy; however, lower-cost alternatives to platinum electrocatalysts are needed. Now, isolated, earth-abundant cobalt atoms dispersed over nitrogen-doped graphene are shown to efficiently electrolyse water to generate hydrogen.

  7. Controlled cobalt doping of magnetosomes in vivo.

    PubMed

    Staniland, Sarah; Williams, Wyn; Telling, Neil; Van Der Laan, Gerrit; Harrison, Andrew; Ward, Bruce

    2008-03-01

    Magnetotactic bacteria biomineralize iron into magnetite (Fe3O4) nanoparticles that are surrounded by lipid vesicles. These 'magnetosomes' have considerable potential for use in bio- and nanotechnological applications because of their narrow size and shape distribution and inherent biocompatibility. The ability to tailor the magnetic properties of magnetosomes by chemical doping would greatly expand these applications; however, the controlled doping of magnetosomes has so far not been achieved. Here, we report controlled in vivo cobalt doping of magnetosomes in three strains of the bacterium Magnetospirillum. The presence of cobalt increases the coercive field of the magnetosomes--that is, the field necessary to reverse their magnetization--by 36-45%, depending on the strain and the cobalt content. With elemental analysis, X-ray absorption and magnetic circular dichroism, we estimate the cobalt content to be between 0.2 and 1.4%. These findings provide an important advance in designing biologically synthesized nanoparticles with useful highly tuned magnetic properties. PMID:18654488

  8. Sol-gel entrapped cobalt complex

    SciTech Connect

    Lima, Omar J. de; Papacidero, Andrea T.; Rocha, Lucas A.; Sacco, Herica C.; Nassar, Eduardo J.; Ciuffi, Katia J.; Bueno, Luciano A.; Messaddeq, Younes; Ribeiro, Sidney J.L

    2003-03-15

    This work describes optimized conditions for preparation of a cobalt complex entrapped in alumina amorphous materials in the form of powder. The hybrid materials, CoNHG, were obtained by a nonhydrolytic sol-gel route through condensation of aluminum chloride with diisopropylether in the presence of cobalt chloride. The materials were calcined at various temperatures. The presence of cobalt entrapped in the alumina matrix is confirmed by ultraviolet visible spectroscopy. The materials have been characterized by X-ray diffraction (XRD), surface area analysis, thermogravimetric analysis (TGA), differential thermal analyses (DTA) and transmission electron microscopy (TEM). The prepared alumina matrix materials are amorphous, even after heat treatment up to 750 deg. C. The XRD, TGA/DTA and TEM data support the increase of sample crystallization with increasing temperature. The specific surface area, pore size and pore diameter changed as a function of the heat treatment temperature employed. Different heat treatment temperatures result in materials with different compositions and structures, and influence their catalytic activity. The entrapped cobalt materials calcined at 750 deg. C efficiently catalyzed the epoxidation of (Z)-cyclooctene using iodozylbenzene as the oxygen donor.

  9. Electron transfer. 94. Internal redox in cobalt(III)-bound hypophosphite

    SciTech Connect

    Linn, D.E. Jr.; Gould, E.S.

    1988-09-07

    The hypophosphite derivative of Co(III), (NH/sub 3/)/sub 5/CoO/sub 2/PH/sub 2//sup 2+/, decomposes in basic media, yielding Co(II) quantitatively along with a 1:1 mixture of hypophosphite and phosphite. When this reaction is carried out in basic solution in the presence of Na/sub 4/EDTA, a strongly absorbing intermediate is formed and then undergoes decay. The results of reaction kinetic studies are reported, and isotope labelling with the PD/sub 2/ analog of the complex was used to determine the kinetic isotope effect. A reaction scheme in which the reaction is initiated by removal of a P-bound proton from the hypophosphite ligand to form a conjugate base I, which then reacts with a second OH/sup /minus// and undergoes a hydride shift from the phosphorus to cobalt(III) generating a cobalt(I) species, is suggested. This cobalt (I) species rapidly reduces an additional molecule of Co(III) reactant to Co(II). 30 references, 2 figures, 4 tables.

  10. Responses of two scleractinian corals to cobalt pollution and ocean acidification.

    PubMed

    Biscéré, Tom; Rodolfo-Metalpa, Riccardo; Lorrain, Anne; Chauvaud, Laurent; Thébault, Julien; Clavier, Jacques; Houlbrèque, Fanny

    2015-01-01

    The effects of ocean acidification alone or in combination with warming on coral metabolism have been extensively investigated, whereas none of these studies consider that most coral reefs near shore are already impacted by other natural anthropogenic inputs such as metal pollution. It is likely that projected ocean acidification levels will aggravate coral reef health. We first investigated how ocean acidification interacts with one near shore locally abundant metal on the physiology of two major reef-building corals: Stylophora pistillata and Acropora muricata. Two pH levels (pHT 8.02; pCO2 366 μatm and pHT 7.75; pCO2 1140 μatm) and two cobalt concentrations (natural, 0.03 μg L-1 and polluted, 0.2 μg L-1) were tested during five weeks in aquaria. We found that, for both species, cobalt input decreased significantly their growth rates by 28% while it stimulated their photosystem II, with higher values of rETRmax (relative Electron Transport Rate). Elevated pCO2 levels acted differently on the coral rETRmax values and did not affect their growth rates. No consistent interaction was found between pCO2 levels and cobalt concentrations. We also measured in situ the effect of higher cobalt concentrations (1.06 ± 0.16 μg L-1) on A. muricata using benthic chamber experiments. At this elevated concentration, cobalt decreased simultaneously coral growth and photosynthetic rates, indicating that the toxic threshold for this pollutant has been reached for both host cells and zooxanthellae. Our results from both aquaria and in situ experiments, suggest that these coral species are not particularly sensitive to high pCO2 conditions but they are to ecologically relevant cobalt concentrations. Our study reveals that some reefs may be yet subjected to deleterious pollution levels, and even if no interaction between pCO2 levels and cobalt concentration has been found, it is likely that coral metabolism will be weakened if they are subjected to additional threats such as

  11. Responses of two scleractinian corals to cobalt pollution and ocean acidification.

    PubMed

    Biscéré, Tom; Rodolfo-Metalpa, Riccardo; Lorrain, Anne; Chauvaud, Laurent; Thébault, Julien; Clavier, Jacques; Houlbrèque, Fanny

    2015-01-01

    The effects of ocean acidification alone or in combination with warming on coral metabolism have been extensively investigated, whereas none of these studies consider that most coral reefs near shore are already impacted by other natural anthropogenic inputs such as metal pollution. It is likely that projected ocean acidification levels will aggravate coral reef health. We first investigated how ocean acidification interacts with one near shore locally abundant metal on the physiology of two major reef-building corals: Stylophora pistillata and Acropora muricata. Two pH levels (pHT 8.02; pCO2 366 μatm and pHT 7.75; pCO2 1140 μatm) and two cobalt concentrations (natural, 0.03 μg L-1 and polluted, 0.2 μg L-1) were tested during five weeks in aquaria. We found that, for both species, cobalt input decreased significantly their growth rates by 28% while it stimulated their photosystem II, with higher values of rETRmax (relative Electron Transport Rate). Elevated pCO2 levels acted differently on the coral rETRmax values and did not affect their growth rates. No consistent interaction was found between pCO2 levels and cobalt concentrations. We also measured in situ the effect of higher cobalt concentrations (1.06 ± 0.16 μg L-1) on A. muricata using benthic chamber experiments. At this elevated concentration, cobalt decreased simultaneously coral growth and photosynthetic rates, indicating that the toxic threshold for this pollutant has been reached for both host cells and zooxanthellae. Our results from both aquaria and in situ experiments, suggest that these coral species are not particularly sensitive to high pCO2 conditions but they are to ecologically relevant cobalt concentrations. Our study reveals that some reefs may be yet subjected to deleterious pollution levels, and even if no interaction between pCO2 levels and cobalt concentration has been found, it is likely that coral metabolism will be weakened if they are subjected to additional threats such as

  12. Responses of Two Scleractinian Corals to Cobalt Pollution and Ocean Acidification

    PubMed Central

    Biscéré, Tom; Rodolfo-Metalpa, Riccardo; Lorrain, Anne; Chauvaud, Laurent; Thébault, Julien; Clavier, Jacques; Houlbrèque, Fanny

    2015-01-01

    The effects of ocean acidification alone or in combination with warming on coral metabolism have been extensively investigated, whereas none of these studies consider that most coral reefs near shore are already impacted by other natural anthropogenic inputs such as metal pollution. It is likely that projected ocean acidification levels will aggravate coral reef health. We first investigated how ocean acidification interacts with one near shore locally abundant metal on the physiology of two major reef-building corals: Stylophora pistillata and Acropora muricata. Two pH levels (pHT 8.02; pCO2 366 μatm and pHT 7.75; pCO2 1140 μatm) and two cobalt concentrations (natural, 0.03 μg L-1 and polluted, 0.2 μg L-1) were tested during five weeks in aquaria. We found that, for both species, cobalt input decreased significantly their growth rates by 28% while it stimulated their photosystem II, with higher values of rETRmax (relative Electron Transport Rate). Elevated pCO2 levels acted differently on the coral rETRmax values and did not affect their growth rates. No consistent interaction was found between pCO2 levels and cobalt concentrations. We also measured in situ the effect of higher cobalt concentrations (1.06 ± 0.16 μg L-1) on A. muricata using benthic chamber experiments. At this elevated concentration, cobalt decreased simultaneously coral growth and photosynthetic rates, indicating that the toxic threshold for this pollutant has been reached for both host cells and zooxanthellae. Our results from both aquaria and in situ experiments, suggest that these coral species are not particularly sensitive to high pCO2 conditions but they are to ecologically relevant cobalt concentrations. Our study reveals that some reefs may be yet subjected to deleterious pollution levels, and even if no interaction between pCO2 levels and cobalt concentration has been found, it is likely that coral metabolism will be weakened if they are subjected to additional threats such as

  13. Switching on oxygen activation by cobalt complexes of pentadentate ligands.

    PubMed

    Vad, Mads S; Nielsen, Anne; Lennartson, Anders; Bond, Andrew D; McGrady, John E; McKenzie, Christine J

    2011-10-28

    The monoanionic N(4)O ligand N-methyl-N,N'-bis(2-pyridylmethyl)ethylenediamine-N'-acetate (mebpena(-)) undergoes oxidative C-N bond cleavage in the presence of Co(II) and O(2). The two resultant fragments are coordinated to the metal ion in the product [Co(III)(2-pyridylformate)(mepena)]ClO(4) (mepena(-) = N-methyl-N'-(2-pyridylmethyl)ethylenediamine-N'-acetato). Bond cleavage does not occur in the presence of chloride ions and [Co(III)(mebpena)Cl](+), containing intact mebpena(-), can be isolated. The oxidative instability of the mebpena(-) in the presence of Co(II) and air stands in contrast to the oxidative stability of the family of very closely related penta- and hexa-dentate ligands in their cobalt complexes. Cyclic voltammetry on the matched pair [Co(III)Cl(mebpena)](+) and [Co(II)Cl(bztpen)](+), bztpen = N-benzyl-N,N',N'-tris(2-pyridylmethyl)ethylenediamine, shows that substitution of a pyridine donor for a carboxylato donor results in a relatively small cathodic shift of 150 mV in the E°(Co(II)/Co(III)) oxidation potential, presumably this is enough to determine the contrasting metal oxidation state in the complexes isolated under ambient conditions. DFT calculations support a proposal that [Co(II)(mebpena)](+) reacts with O(2) to form a Co(III)-superoxide complex which can abstract an H atom from a ligand methylene C atom as the initial step towards the observed oxidative C-N bond cleavage.

  14. Cobalt Biogeochemistry in the South Atlantic: A Full-Depth Zonal Ocean Section of Total Dissolved Cobalt, and Development of a High Throughput Cobalt ICP-MS Method

    NASA Astrophysics Data System (ADS)

    Noble, A. E.; Saito, M. A.; Goepfert, T. J.

    2008-12-01

    This study presents the first high-resolution full-depth zonal section of total dissolved cobalt from a recent cruise transecting the South Atlantic Ocean along approximately 11S. This section demonstrates that current electrochemical analytical techniques are capable of producing the high precision and high resolution datasets for total dissolved cobalt expected to be generated as a part of the international GEOTRACES Program. The micronutritive role of cobalt may affect community structure in different regions of the oceans, a compelling reason to include cobalt in the trace element analyses planned for the GEOTRACES Program. This cobalt section reveals an advective source of cobalt from the African coast near Namibia, which we propose to be due to the Benguela Current interacting with reducing shelf sediments. These high concentrations of cobalt were also observed within the oxygen minimum zone that extends across much of the South Atlantic basin in this section, and are likely indicative of redox cycling of cobalt in the water column. Nutrient-like vertical structure of cobalt was observed in the surface waters across the majority of the basin due to biological utilization, and the expected hybrid-type trend is observed at depth, with scavenging of cobalt below the nutricline. Deepwater concentrations of cobalt were around 50pM across the basin below 3000m. Analysis of the shelf-life of refrigerated filtered samples stored without acidification for electrochemical cobalt analysis demonstrated that those samples which were collected specifically within oxygen minimum zones may underestimate cobalt if not analyzed within a few weeks of collection. These results motivate our on-going development of a method to measure cobalt in acidified samples via inductively coupled plasma mass spectrometry (ICP-MS). The benefit of this technique would be twofold: acidification would extend the shelf-life of the samples significantly, and samples would be preserved identically

  15. Solar absorptance of copper-cobalt oxide thin film coatings with nano-size, grain-like morphology: Optimization and synchrotron radiation XPS studies

    NASA Astrophysics Data System (ADS)

    Amri, Amun; Duan, XiaoFei; Yin, Chun-Yang; Jiang, Zhong-Tao; Rahman, M. Mahbubur; Pryor, Trevor

    2013-06-01

    Copper-cobalt oxides thin films had been successfully coated on reflective aluminium substrates via a facile sol-gel dip-coating method for solar absorptance study. The optimum absorptance in the range of solar radiation is needed for further optimum design of this material for selective solar absorber application. Field emission scanning electron microscopy was used to characterize the surface morphology of the coating whereby nano-size, grain-like morphology was observed. Synchrotron radiation X-ray photoelectron spectroscopy was employed to analyze the electronic structure of the coated surface showing that the (i) oxygen consisted of lattice, surface and subsurface oxygen, (ii) copper consisted of octahedral and tetrahedral Cu+, as well as octahedral and paramagnetic Cu2+ oxidation states, and (iii) cobalt consisted of tetrahedral and paramagnetic Co(II), octahedral Co(III) as well as mixed Co(II,III) oxidation states. In order to optimize the solar absorptance of the coatings, relevant parameters such as concentrations of cobalt and copper, copper/cobalt concentration ratios and dip-speed were investigated. The optimal coating with α = 83.4% was produced using 0.25 M copper acetate and 0.25 M cobalt chloride (Cu/Co ratio = 1) with dip-speed 120 mm/min (four cycles). The operational simplicity of the dip-coating system indicated that it could be extended for coating of other mixed metal oxides as well.

  16. Alternative synthesis of cobalt monophosphide@C core-shell nanocables for electrochemical hydrogen production

    NASA Astrophysics Data System (ADS)

    Wang, Chunde; Jiang, Jun; Zhou, Xiaoli; Wang, Wenliang; Zuo, Jian; Yang, Qing

    2015-07-01

    Cobalt monophosphide@C (CoP@C) core-shell nanocables are successfully synthesized via a one-step fast reaction of cobalt(II) acetylacetonate [Co(acac)2] and triphenyl phosphine (PPh3) in a sealed tube at 400 °C for 1 h. The electrocatalytic property of the CoP@C nanocables towards the hydrogen evolution reaction (HER, for the production of molecular hydrogen from water) has been investigated in the current work and it is found that the CoP@C nanocables exhibit a high electrochemical performance and excellent cycling stability. Moreover, investigations show that the carbon coating ensures a fast electron transport and effective restriction of corrosion during the catalytic process. We believe that the CoP@C nanocables would be promising candidates for electrochemical hydrogen production catalyst.

  17. Sequential determination of lead and cobalt in tap water and foods samples by fluorescence.

    PubMed

    Talio, María Carolina; Alesso, Magdalena; Acosta, María Gimena; Acosta, Mariano; Fernández, Liliana P

    2014-09-01

    In this work, a new procedure was developed for the separation and preconcentration of lead(II) and cobalt(II) in several water and foods samples. Complexes of metal ions with 8-hydroxyquinolein (8-HQ) were formed in aqueous solution. The proposed methodology is based on the preconcentration/separation of Pb(II) by solid-phase extraction using paper filter, followed by spectrofluorimetric determination of both metals, on the solid support and the filtered aqueous solution, respectively. The solid surface fluorescence determination was carried out at λem=455 nm (λex=385 nm) for Pb(II)-8-HQ complex and the fluorescence of Co(II)-8-HQ was determined in aqueous solution using λem=355 nm (λex=225 nm). The calibration graphs are linear in the range 0.14-8.03×10(4) μg L(-1) and 7.3×10(-2)-4.12×10(3) μg L(-1), for Pb(II) and Co(II), respectively, with a detection limit of 4.3×10(-2) and 2.19×10(-2) μg L(-1) (S/N=3). The developed methodology showed good sensitivity and adequate selectivity and it was successfully applied to the determination of trace amounts of lead and cobalt in tap waters belonging of different regions of Argentina and foods samples (milk powder, express coffee, cocoa powder) with satisfactory results. The new methodology was validated by electrothermal atomic absorption spectroscopy with adequate agreement. The proposed methodology represents a novel application of fluorescence to Pb(II) and Co(II) quantification with sensitivity and accuracy similar to atomic spectroscopies.

  18. The cytotoxicity and genotoxicity of soluble and particulate cobalt in human lung fibroblast cells

    SciTech Connect

    Smith, Leah J.; Holmes, Amie L.; Kandpal, Sanjeev Kumar; Mason, Michael D.; Zheng, Tongzhang; Wise, John Pierce

    2014-08-01

    Cobalt exposure is increasing as cobalt demand rises worldwide due to its use in enhancing rechargeable battery efficiency, super-alloys, and magnetic products. Cobalt is considered a possible human carcinogen with the lung being a primary target. However, few studies have considered cobalt-induced toxicity in human lung cells. Therefore, in this study, we sought to determine the cytotoxicity and genotoxicity of particulate and soluble cobalt in human lung cells. Cobalt oxide and cobalt chloride were used as representative particulate and soluble cobalt compounds, respectively. Exposure to both particulate and soluble cobalt induced a concentration-dependent increase in cytotoxicity, genotoxicity, and intracellular cobalt ion levels. Based on intracellular cobalt ion levels, we found that soluble cobalt was more cytotoxic than particulate cobalt while particulate and soluble cobalt induced similar levels of genotoxicity. However, soluble cobalt induced cell cycle arrest indicated by the lack of metaphases at much lower intracellular cobalt concentrations compared to cobalt oxide. Accordingly, we investigated the role of particle internalization in cobalt oxide-induced toxicity and found that particle-cell contact was necessary to induce cytotoxicity and genotoxicity after cobalt exposure. These data indicate that cobalt compounds are cytotoxic and genotoxic to human lung fibroblasts, and solubility plays a key role in cobalt-induced lung toxicity. - Highlights: • Particulate and soluble cobalt are cytotoxic and genotoxic to human lung cells. • Soluble cobalt induces more cytotoxicity compared to particulate cobalt. • Soluble and particulate cobalt induce similar levels of genotoxicity. • Particle-cell contact is required for particulate cobalt-induced toxicity.

  19. Reducing the cobalt inventory in light water reactors

    SciTech Connect

    Ocken, H.

    1985-01-01

    Reducing the cobalt content of materials used in nuclear power plants is one approach to controlling the radiation fields responsible for occupational radiation exposure; corrosion of steam generator tubing is the primary source in pressurized water reactors (PWRs). Wear of the cobalt-base alloys used to hardface valves (especially feedwater regulator valves) and as pins and rollers in control blades are the primary boiling water reactor (BWR) sources. Routine valve maintenance can also be a significant source of cobalt. Wear, mechanical property, and corrosion measurements led to the selection of Nitronic-60/CFA and PH 13-8 Mo/Inconel X-750 as low-cobalt alloys for use as pin/roller combinations. These alloys are currently being tested in two commercial BWRs. Measurements show that Type 440C stainless steel wears less than the cobalt-base alloys in BWR feedwater regulator valves. Sliding wear tests performed at room temperature in simulated PWR water showed that Colmonoy 74 and 84, Deloro 40, and Vertx 4776 are attractive low-cobalt hardfacing alloys if the applied loads are less than or equal to103 MPa. The cobalt-base alloys performed best at high loads (207 MPa). Ongoing laboratory studies address the development and evaluation of cobalt-free iron-base hardfacing alloys and seek to improve the wear resistance of cobalt-base alloys by using lasers. Reducing cobalt impurity levels in core components that are periodically discharged should also help reduce radiation fields and disposal costs.

  20. Physical and electrochemical study of cobalt oxide nano- and microparticles

    SciTech Connect

    Alburquenque, D.; Vargas, E.; Denardin, J.C.; Escrig, J.; Marco, J.F.; Gautier, J.L.

    2014-07-01

    Cobalt oxide nanocrystals of size 17–21 nm were synthesized by a simple reaction between cobalt acetate (II) and dodecylamine. On the other hand, micrometric Co{sub 3}O{sub 4} was prepared using the ceramic method. The structural examination of these materials was performed using powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and transmission electron microscopy (TEM and HRTEM). XRD studies showed that the oxides were pure, well-crystallized, spinel cubic phases with a-cell parameter of 0.8049 nm and 0.8069 nm for the nano and micro-oxide, respectively. The average particle size was 19 nm (nano-oxide) and 1250 μm (micro-oxide). Morphological studies carried out by SEM and TEM analyses have shown the presence of octahedral particles in both cases. Bulk and surface properties investigated by X-ray photoelectron spectroscopy (XPS), point zero charge (pzc), FTIR and cyclic voltammetry indicated that there were no significant differences in the composition on both materials. The magnetic behavior of the samples was determined using a vibrating sample magnetometer. The compounds showed paramagnetic character and no coercivity and remanence in all cases. Galvanostatic measurements of electrodes formed with nanocrystals showed better performance than those built with micrometric particles. - Highlights: • Spinel Co{sub 3}O{sub 4} nanoparticles and microparticles with same structure but with different cell parameters, particle size and surface area were synthesized. • Oxide nanoparticles showed better electrochemical behavior than micrometric ones due to area effect.

  1. Effects of cobalt precursor on pyrolyzed carbon-supported cobalt-polypyrrole as electrocatalyst toward oxygen reduction reaction

    PubMed Central

    2013-01-01

    A series of non-precious metal electrocatalysts, namely pyrolyzed carbon-supported cobalt-polypyrrole, Co-PPy-TsOH/C, are synthesized with various cobalt precursors, including cobalt acetate, cobalt nitrate, cobalt oxalate, and cobalt chloride. The catalytic performance towards oxygen reduction reaction (ORR) is comparatively investigated with electrochemical techniques of cyclic voltammogram, rotating disk electrode and rotating ring-disk electrode. The results are analyzed and discussed employing physiochemical techniques of X-ray diffraction, transmission electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, inductively coupled plasma, elemental analysis, and extended X-ray absorption fine structure. It shows that the cobalt precursor plays an essential role on the synthesis process as well as microstructure and performance of the Co-PPy-TsOH/C catalysts towards ORR. Among the studied Co-PPy-TsOH/C catalysts, that prepared with cobalt acetate exhibits the best ORR performance. The crystallite/particle size of cobalt and its distribution as well as the graphitization degree of carbon in the catalyst greatly affects the catalytic performance of Co-PPy-TsOH/C towards ORR. Metallic cobalt is the main component in the active site in Co-PPy-TsOH/C for catalyzing ORR, but some other elements such as nitrogen are probably involved, too. PMID:24229351

  2. Effects of cobalt precursor on pyrolyzed carbon-supported cobalt-polypyrrole as electrocatalyst toward oxygen reduction reaction.

    PubMed

    Yuan, Xianxia; Hu, Xin-Xin; Ding, Xin-Long; Kong, Hai-Chuan; Sha, Hao-Dong; Lin, He; Wen, Wen; Shen, Guangxia; Guo, Zhi; Ma, Zi-Feng; Yang, Yong

    2013-11-14

    A series of non-precious metal electrocatalysts, namely pyrolyzed carbon-supported cobalt-polypyrrole, Co-PPy-TsOH/C, are synthesized with various cobalt precursors, including cobalt acetate, cobalt nitrate, cobalt oxalate, and cobalt chloride. The catalytic performance towards oxygen reduction reaction (ORR) is comparatively investigated with electrochemical techniques of cyclic voltammogram, rotating disk electrode and rotating ring-disk electrode. The results are analyzed and discussed employing physiochemical techniques of X-ray diffraction, transmission electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, inductively coupled plasma, elemental analysis, and extended X-ray absorption fine structure. It shows that the cobalt precursor plays an essential role on the synthesis process as well as microstructure and performance of the Co-PPy-TsOH/C catalysts towards ORR. Among the studied Co-PPy-TsOH/C catalysts, that prepared with cobalt acetate exhibits the best ORR performance. The crystallite/particle size of cobalt and its distribution as well as the graphitization degree of carbon in the catalyst greatly affects the catalytic performance of Co-PPy-TsOH/C towards ORR. Metallic cobalt is the main component in the active site in Co-PPy-TsOH/C for catalyzing ORR, but some other elements such as nitrogen are probably involved, too.

  3. Cobalt Clusters with Cubane-Type Topologies Based on Trivacant Polyoxometalate Ligands.

    PubMed

    Duan, Yan; Clemente-Juan, Juan M; Giménez-Saiz, Carlos; Coronado, Eugenio

    2016-01-19

    Four novel cobalt-substituted polyoxometalates having cobalt cores exhibiting cubane or dicubane topologies have been synthesized and characterized by IR, elemental analysis, electrochemistry, UV-vis spectroscopy, X-ray single-crystal analysis, and magnetic studies. The tetracobalt(II)-substituted polyoxometalate [Co4(OH)3(H2O)6(PW9O34)](4-) (1) consists of a trilacunary [B-α-PW9O34](9-) unit which accommodates a cubane-like {Co(II)4O4} core. In the heptacobalt(II,III)-containing polyoxometalates [Co7(OH)6(H2O)6(PW9O34)2](9-) (2), [Co7(OH)6(H2O)4(PW9O34)2]n(9n-) (3), and [Co7(OH)6(H2O)6(P2W15O56)2](15-) (4), dicubane-like {Co(II)6Co(III)O8} cores are encapsulated between two heptadentate [B-α-PW9O34](9-) (in 2 and 3) or [α-P2W15O56](15-) (in 4) ligands. While 1, 2, and 4 are discrete polyoxometalates, 3 exhibits a polymeric, chain-like structure that results from the condensation of polyoxoanions of type 2. The magnetic properties of these complexes have been fitted according to an anisotropic exchange model in the low-temperature regime and discussed on the basis of ferromagnetic interactions between Co(2+) ions with angles Co-L-Co (L = O, OH) close to orthogonality and weakly antiferromagnetic interactions between Co(2+) ions connected through central diamagnetic Co(3+) ion. Moreover, we will show the interest of the unique spin structures provided by these cubane and dicubane cobalt topologies in molecular spintronics (molecular spins addressed though an electric field) and quantum computing (spin qu-gates). PMID:26731303

  4. Biodegradation of cobalt citrate complexes: Implications for cobalt mobility in groundwater

    NASA Astrophysics Data System (ADS)

    Brooks, Scott C.; Herman, Janet S.; Hornberger, George M.; Mills, Aaron L.

    1998-07-01

    The bacterial consumption of chelating agents that are present in low-level radioactive and mixed wastes may help to immobilize chelated metals and radionuclides accidentally released to groundwater. We investigated the influence of the bacterial consumption of citrate complexed with cobalt on cobalt transport through packed sand columns. Experiments were conducted using each of three types of column packing material using minerals common to subsurface environments: clean quartz sand; ferric oxide (Fe(OH) 3)-coated sand; hausmannite (Mn 3O 4)-coated sand. Separate control column experiments were conducted to examine citrate's influence on cobalt transport without the bacterial consumption of citrate. The bacterial community consumed all the citrate; the pore water pH decreased by up to one unit before reaching a steady-state value of 6.9-7.1, which was lower than the influent pH (7.4). These results were in contrast to open batch experiments conducted with the same culture, where the pH increased by more than one unit. The dissolved oxygen exhibited similar dynamics, reaching a steady-state value of 3-4 mg/l, well below the influent value of 7.5 mg/l. The dynamics in pore water pH and dissolved oxygen were associated with the presence of the bacterial community because these parameters remained steady in control experiments in which the bacteria were not included. Cobalt transport was most rapid for the columns packed with quartz sand followed by the Fe-coated sand and finally the Mn-coated sand. Most of the cobalt retained by the quartz sand and Fe-coated sand was easily exchanged with Mg 2+ whereas most of the cobalt retained by the Mn-coated sand required an acetic acid solution for its removal. The bacterially mediated pH decrease, driven by the consumption of citrate, decreased cobalt sorption to the solid phase resulting in enhanced cobalt transport. The results of these experiments suggest that geochemical changes, driven by the bacterial consumption of

  5. Azido- and chlorido-cobalt complex as carrier-prototypes for antitumoral prodrugs.

    PubMed

    Pires, Bianca M; Giacomin, Letícia C; Castro, Frederico A V; Cavalcanti, Amanda dos S; Pereira, Marcos D; Bortoluzzi, Adailton J; Faria, Roberto B; Scarpellini, Marciela

    2016-04-01

    Cobalt(III) complexes are well-suited systems for cytotoxic drug release under hypoxic conditions. Here, we investigate the effect of cytotoxic azide release by cobalt-containing carrier-prototypes for antitumoral prodrugs. In addition, we study the species formed after reduction of Co(3+) → Co(2+) in the proposed models for these prodrugs. Three new complexes, [Co(III)(L)(N3)2]BF4(1), [{Co(II)(L)(N3)}2](ClO4)2(2), and [Co(II)(L)Cl]PF6(3), L=[(bis(1-methylimidazol-2-yl)methyl)(2-(pyridyl-2-yl)ethyl)amine], were synthesized and studied by several spectroscopic, spectrometric, electrochemical, and crystallographic methods. Reactivity and spectroscopic data reveal that complex 1 is able to release N3(-) either after reduction with ascorbic acid, or by ambient light irradiation, in aqueous phosphate buffer (pH6.2, 7.0 and 7.4) and acetonitrile solutions. The antitumoral activities of compounds 1-3 were tested in normoxia on MCF-7 (human breast adenocarcinoma), PC-3 (human prostate) and A-549 (human lung adenocarcinoma epithelial) cell lines, after 24h of exposure. Either complexes or NaN3 presented IC50 values higher than 200 μM, showing lower cytotoxicity than the clinical standard antitumoral complex cisplatin, under the same conditions. Complexes 1-3 were also evaluated in hypoxia on A-549 and results indicate high IC50 data (>200 μM) after 24h of exposure. However, an increase of cancer cell susceptibility to 1 and 2 was observed at 300 μM. Regarding complex 3, no cytotoxic activity was observed in the same conditions. The data presented here indicate that the tridentate ligand L is able to stabilize both oxidation states of cobalt (+3 and +2). In addition, the cobalt(III) complex generates the low cytotoxic cobalt(II) species after reduction, which supports their use as as carrier prototypes for antitumoral prodrugs.

  6. Cobalt recycling in the United States in 1998

    USGS Publications Warehouse

    Shedd, Kim B.

    2002-01-01

    This report is one of a series of reports on metals recycling. It defines and quantifies the 1998 flow of cobalt-bearing materials in the United States, from imports and stock releases through consumption and disposition, with particular emphasis on the recycling of industrial scrap (new scrap) and used products (old scrap). Because of cobalt?s many and diverse uses, numerous types of scrap were available for recycling by a wide variety of processes. In 1998, an estimated 32 percent of U.S. cobalt supply was derived from scrap. The ratio of cobalt consumed from new scrap to that from old scrap was estimated to be 50:50. Of all the cobalt in old scrap available for recycling, an estimated 68 percent was either consumed in the United States or exported to be recycled.

  7. Interfacial Structure Dependent Spin Mixing Conductance in Cobalt Thin Films.

    PubMed

    Tokaç, M; Bunyaev, S A; Kakazei, G N; Schmool, D S; Atkinson, D; Hindmarch, A T

    2015-07-31

    Enhancement of Gilbert damping in polycrystalline cobalt thin-film multilayers of various thicknesses, overlayered with copper or iridium, was studied in order to understand the role of local interface structure in spin pumping. X-ray diffraction indicates that cobalt films less than 6 nm thick have strong fcc(111) texture while thicker films are dominated by hcp(0001) structure. The intrinsic damping for cobalt thicknesses above 6 nm is weakly dependent on cobalt thickness for both overlayer materials, and below 6 nm the iridium overlayers show higher damping enhancement compared to copper overlayers, as expected due to spin pumping. The interfacial spin mixing conductance is significantly enhanced in structures where both cobalt and iridium have fcc(111) structure in comparison to those where the cobalt layer has subtly different hcp(0001) texture at the interface. PMID:26274431

  8. Interfacial Structure Dependent Spin Mixing Conductance in Cobalt Thin Films

    NASA Astrophysics Data System (ADS)

    Tokaç, M.; Bunyaev, S. A.; Kakazei, G. N.; Schmool, D. S.; Atkinson, D.; Hindmarch, A. T.

    2015-07-01

    Enhancement of Gilbert damping in polycrystalline cobalt thin-film multilayers of various thicknesses, overlayered with copper or iridium, was studied in order to understand the role of local interface structure in spin pumping. X-ray diffraction indicates that cobalt films less than 6 nm thick have strong fcc(111) texture while thicker films are dominated by hcp(0001) structure. The intrinsic damping for cobalt thicknesses above 6 nm is weakly dependent on cobalt thickness for both overlayer materials, and below 6 nm the iridium overlayers show higher damping enhancement compared to copper overlayers, as expected due to spin pumping. The interfacial spin mixing conductance is significantly enhanced in structures where both cobalt and iridium have fcc(111) structure in comparison to those where the cobalt layer has subtly different hcp(0001) texture at the interface.

  9. Are cobaltates conventional? An ARPES viewpoint

    SciTech Connect

    Hasan, M.Z. . E-mail: mzhasan@Princeton.edu; Qian, D.; Foo, M.L.; Cava, R.J.

    2006-07-15

    Recently discovered class of cobaltate superconductors (Na{sub 0.3}CoO{sub 2}.nH{sub 2}O) is a novel realization of interacting quantum electron system in a triangular network with low-energy degrees of freedom. We employ angle-resolved photoemission spectroscopy to study the quasiparticle parameters in the parent superconductors. Results reveal a large hole-like Fermi surface generated by the crossing of heavy quasiparticles. The measured quasiparticle parameters collectively suggest two orders of magnitude departure from the conventional weak coupling (such as Al) Bardeen-Cooper-Schrieffer electron dynamics paradigm and unveils cobaltates as a rather hidden class of relatively high temperature superconductors. These parameters also form the basis for a microscopic Hamiltonian of the system.

  10. Colloidal Synthesis of Hollow Cobalt Sulfide Nanocrystals

    SciTech Connect

    Yin, Yadong; Erdonmez, Can K.; Cabot, Andreu; Hughes, Steven; Alivisatos, A. Paul

    2006-03-16

    Formation of cobalt sulfide hollow nanocrystals through amechanism similar to the Kirkendall Effect has been investigated indetail. It was found that performing the reaction at>120oC leads tofast formation of a single void ins ide each shell, whereas at roomtemperature multiple voids are formed within each shell, which can beattributed to strongly temperature-dependent diffusivities for vacancies.The void formation process is dominated by outward diffusion of cobaltcations; still, significant inward transport of sulfur anions can beinferred to occur as the final voids are smaller in diameter than theoriginal cobalt nanocrystals. Comparison of volume distributions forinitial and final nanostructures indicates excess apparent volume inshells implying significant porosity and/or a defective structure.Indirect evidence for shells to fracture during growth at lowertemperatures was observed in shell size statisticsand TEM of as-grownshells. An idealized model of the diffusional process imposes two minimalrequirements on material parameters for shell growth to be obtainablewithin a specific synthetic system.

  11. Creep-fatigue of low cobalt superalloys

    NASA Technical Reports Server (NTRS)

    Halford, G. R.

    1982-01-01

    Testing for the low cycle fatigue and creep fatigue resistance of superalloys containing reduced amounts of cobalt is described. The test matrix employed involves a single high temperature appropriate for each alloy. A single total strain range, again appropriate to each alloy, is used in conducting strain controlled, low cycle, creep fatigue tests. The total strain range is based upon the level of straining that results in about 10,000 cycles to failure in a high frequency (0.5 Hz) continuous strain-cycling fatigue test. No creep is expected to occur in such a test. To bracket the influence of creep on the cyclic strain resistance, strain hold time tests with ore minute hold periods are introduced. One test per composition is conducted with the hold period in tension only, one in compression only, and one in both tension and compression. The test temperatures, alloys, and their cobalt compositions that are under study are given.

  12. Low-cobalt single crystal Rene 150

    NASA Technical Reports Server (NTRS)

    Scheuermann, C. M.

    1982-01-01

    The effects of cobalt content on a single crystal version of the advanced, high gamma prime content turbine airfoil alloy Rene 150 were investigated. Cobalt contents under investigation include 12 wt.% (composition level of Rene 150), 6 wt.%, and 0 wt.%. Preliminary test results are presented and compared with the properties of standard DS Rene 150. DTA results indicate that the liquidus goes through a maximum of about 1435 C near 6 wt.% Co. The solidus remains essentially constant at 1390 C with decreasing Co content. The gamma prime solvus appears to go through a minimum of about 1235 C near 6 wt.% Co content. Preliminary as-cast tensile and stress rupture results are presented along with heat treat schedules and future test plans.

  13. 21 CFR 189.120 - Cobaltous salts and its derivatives.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Cobaltous salts and its derivatives. 189.120... Generally Prohibited From Direct Addition or Use as Human Food § 189.120 Cobaltous salts and its derivatives. (a) Cobaltous salts are the chemicals, CoC4H6O4, CoCl2, and CoSO4.They have been used in...

  14. 21 CFR 189.120 - Cobaltous salts and its derivatives.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Cobaltous salts and its derivatives. 189.120... Generally Prohibited From Direct Addition or Use as Human Food § 189.120 Cobaltous salts and its derivatives. (a) Cobaltous salts are the chemicals, CoC4H6O4, CoCl2, and CoSO4.They have been used in...

  15. 21 CFR 189.120 - Cobaltous salts and its derivatives.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Cobaltous salts and its derivatives. 189.120... Generally Prohibited From Direct Addition or Use as Human Food § 189.120 Cobaltous salts and its derivatives. (a) Cobaltous salts are the chemicals, CoC4H6O4, CoCl2, and CoSO4.They have been used in...

  16. 21 CFR 189.120 - Cobaltous salts and its derivatives.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Cobaltous salts and its derivatives. 189.120... Generally Prohibited From Direct Addition or Use as Human Food § 189.120 Cobaltous salts and its derivatives. (a) Cobaltous salts are the chemicals, CoC4H6O4, CoCl2, and CoSO4.They have been used in...

  17. High-Spin Cobalt Hydrides for Catalysis

    SciTech Connect

    Holland, Patrick L.

    2013-08-29

    Organometallic chemists have traditionally used catalysts with strong-field ligands that give low-spin complexes. However, complexes with a weak ligand field have weaker bonds and lower barriers to geometric changes, suggesting that they may lead to more rapid catalytic reactions. Developing our understanding of high-spin complexes requires the use of a broader range of spectroscopic techniques, but has the promise of changing the mechanism and/or selectivity of known catalytic reactions. These changes may enable the more efficient utilization of chemical resources. A special advantage of cobalt and iron catalysts is that the metals are more abundant and cheaper than those currently used for major industrial processes that convert unsaturated organic molecules and biofeedstocks into useful chemicals. This project specifically evaluated the potential of high-spin cobalt complexes for small-molecule reactions for bond rearrangement and cleavage reactions relevant to hydrocarbon transformations. We have learned that many of these reactions proceed through crossing to different spin states: for example, high-spin complexes can flip one electron spin to access a lower-energy reaction pathway for beta-hydride elimination. This reaction enables new, selective olefin isomerization catalysis. The high-spin cobalt complexes also cleave the C-O bond of CO2 and the C-F bonds of fluoroarenes. In each case, the detailed mechanism of the reaction has been determined. Importantly, we have discovered that the cobalt catalysts described here give distinctive selectivities that are better than known catalysts. These selectivities come from a synergy between supporting ligand design and electronic control of the spin-state crossing in the reactions.

  18. DNA Cleavage, Cytotoxic Activities, and Antimicrobial Studies of Ternary Copper(II) Complexes of Isoxazole Schiff Base and Heterocyclic Compounds

    PubMed Central

    Chityala, Vijay Kumar; Sathish Kumar, K.; Macha, Ramesh; Tigulla, Parthasarathy; Shivaraj

    2014-01-01

    Novel mixed ligand bivalent copper complexes [Cu. L. A. ClO4] and [Cu. L. A] where “L” is Schiff bases, namely 2-((3,4-dimethylisoxazol-5-ylimino)methyl)-4-bromophenol (DMIIMBP)/2-((3,4-dimethylisoxazol-5-ylimino)methyl)-4-chlorophenol (DMIIMCP), and “A” is heterocyclic compound, such as 1,10-phenanthroline (phen)/2,21-bipyridyl (bipy)/8-hydroxyquinoline (oxine)/5-chloro-8-hydroxyquinoline (5-Cl-oxine), have been synthesized. These complexes have been characterized by IR, UV-Vis, ESR, elemental analysis, magnetic moments, TG, and DTA. On the basis of spectral studies and analytical data, five-coordinated square pyramidal/four-coordinated square planar geometry is assigned to all complexes. The ligands and their ternary complexes with Cu(II) have been screened for antimicrobial activity against bacteria and fungi by paper disc method. The antimicrobial studies of Schiff bases and their metal complexes showed significant activity and further it is observed that the metal complexes showed more activity than corresponding Schiff bases. In vitro antitumor activity of Cu(II) complexes was assayed against human cervical carcinoma (HeLa) cancer cells and it was observed that few complexes exhibit good antitumor activity on HeLa cell lines. The DNA cleavage studies have also been carried out on pBR 322 and it is observed that these Cu(II) complexes are capable of cleaving supercoiled plasmid DNA in the presence of H2O2 and UV light. PMID:24895493

  19. Ferromagnetism in cobalt-doped titanium dioxide

    NASA Astrophysics Data System (ADS)

    Lussier, Alexandre Francois

    Semiconductor spintronics is a promising new field of study in the ongoing quest to make electronic devices faster, cheaper, and more efficient. While current spintronics utilizes the spin property of electrons to achieve greater functionality, the integration of spintronics into conventional semiconductor electronics will lead to advances in opto-electronics, quantum computing, and other emerging fields of technology. This integration relies on effective generation, injection, transport, and detection of spin polarized electron currents. To these ends, the successful synthesis of room temperature ferromagnetic semiconductors is mandatory. In this work, we study the properties of cobalt-doped titanium dioxide, a room temperature dilute ferromagnetic semiconductor discovered in 2001. We characterize the Pulsed Laser Deposition (PLD) of Co-doped TiO2 thin films, including the substrate-induced stabilization of the anatase structure of TiO2. We also confirm the substitutional nature of cobalt on titanium sites by X-ray Absorption Spectroscopy (XAS) techniques. The ferromagnetic interaction mechanism remains controversial. Yet, we provide experimental evidence for the polaron mediated ferromagnetic coupling mechanism recently suggested to mediate ferromagnetic interactions in this, and other magnetically doped oxides, in the dilute regime (approximately 0 to 3%). Our evidence is related to a previously unobserved and unreported XAS spectral feature. Finally, we demonstrate the surprising absence of an X-ray Magnetic Circular Dichroism (XMCD) signature at the cobalt L edge.

  20. Biocorrosion study of titanium-cobalt alloys.

    PubMed

    Chern Lin, J H; Lo, S J; Ju, C P

    1995-05-01

    The present work provides experimental results of corrosion behaviour in Hank's physiological solution and some other properties of in-house fabricated titanium-cobalt alloys with cobalt ranging from 25-30% in weight. X-ray diffraction (XRD) shows that, in water-quenched (WQ) alloys, beta-titanium is largely retained, whereas in furnace-cooled (FC) alloys, little beta-titanium is found. Hardness of the alloys increases with increasing cobalt content, ranging from 455 VHN for WQ Ti-25 wt% Co to 525 VHN for WQ Ti-30 wt% Co. Differential thermal analysis (DTA) indicates that melting temperatures of the alloys are lower than that of pure titanium by about 600 degrees C. Potentiodynamic polarization results show that all measured break-down potentials in Hank's solution at 37 degrees C are higher than 800 mV. The breakdown potential for the FC Ti-25 Wt% Co alloy is even as high as nearly 1200 mV.

  1. Kinetics of cobalt cementation on zinc powder

    SciTech Connect

    Polcaro, A.M.; Palmas, S.; Dernini, S.

    1995-09-01

    The cementation process may be considered an interesting method to treat dilute solutions containing metal ions. The aim of the process may be either the removal of pollutant metals or the recovery of economically valuable metals such as Ag from spent photographic liquors. The kinetics of cobalt cementation on Zn powder from zinc sulfate concentrated solutions in the presence of copper and antimony ions was investigated in stirred tank reactors. The composition of the solutions was in the range usually utilized in industrial zinc electrowinning plants. The results showed that the reaction occurs by means of the formation of crystallization nuclei of noble metals on the zinc powder, followed by the cementation of cobalt ions on these newly-formed nuclei. Mass transfer to the reaction surface is shown to be the controlling step in copper and antimony reduction, and an equation correlating mass transfer coefficients has been determined. A kinetic equation, which interprets the influence of stirring speed and solution composition on cobalt cementation, has also been proposed.

  2. Hot corrosion of low cobalt alloys

    NASA Technical Reports Server (NTRS)

    Stearns, C. A.

    1982-01-01

    The hot corrosion attack susceptibility of various alloys as a function of strategic materials content are investigated. Preliminary results were obtained for two commercial alloys, UDIMET 700 and Mar-M 247, that were modified by varying the cobalt content. For both alloys the cobalt content was reduced in steps to zero. Nickel content was increased accordingly to make up for the reduced cobalt but all other constituents were held constant. Wedge bar test samples were produced by casting. The hot corrosion test consisted of cyclically exposing samples to the high velocity flow of combustion products from an air-fuel burner fueled with jet A-1 and seeded with a sodium chloride aqueous solution. The flow velocity was Mach 0.5 and the sodium level was maintained at 0.5 ppm in terms of fuel plus air. The test cycle consisted of holding the test samples at 900 C for 1 hour followed by 3 minutes in which the sample could cool to room temperature in an ambient temperature air stream.

  3. Cobalt exposure in a carbide tip grinding process.

    PubMed

    Stebbins, A I; Horstman, S W; Daniell, W E; Atallah, R

    1992-03-01

    Reports relating hard metal disease or nonspecific respiratory symptoms to tungsten or cobalt exposure have been published in the past 20 yr. This report discusses a work site investigation of a small company, employing approximately 50 workers, producing carbide tip saw blades for the woodworking industry. Cobalt exposure was characterized by ambient air monitoring (area and personnel), particle size determination, and biological monitoring. Area sampling for cadmium, cobalt, and tungsten indicated low ambient air levels in all manufacturing areas except the grinding department, which had cobalt air levels approaching the threshold limit value of 0.05 mg/m3. Area airborne cobalt exposure levels measured over six shifts in the grinding department ranged from 0.017 to 0.12 mg/m3 for the total collection method and 0.002 to 0.028 mg/m3 for the method collecting respirable particles. Cobalt content in the total and respirable fractions was similar. Urine monitoring indicated production workers have elevated cobalt levels, and the grinders' levels were higher than other production workers. The grinding coolant was found to have elevated cobalt concentrations. A survey of coolants from nine carbide grinding shops indicated the elevated cobalt concentrations may be common.

  4. The structure and activity of titania supported cobalt catalysts

    SciTech Connect

    Ho Suiwen; Houalla, M.; Hercules, D.M. ); Cruz, J.M. )

    1992-05-01

    A series of titania supported cobalt catalysts (0.5-6%) were prepared by incipient wetness impregnation, and were characterized by ESCA, XRD, and hydrogen chemisorption. After calcination at 400 C, a surface CoTiO[sub 3]-like phase was the main species present in the 0.5 and 1% cobalt catalysts. For higher cobalt loadings, discrete Co[sub 3]O[sub 4] particles were formed in addition to surface CoTiO[sub 3]. ESCA indicates that after reduction the cobalt metal particle size (6-13 nm) increases with increasing cobalt loadings, but does not vary with reduction temperature (400-500 C). Hydrogen chemisorption was found to be activated and suppressed. The extent of hydrogen chemisorption suppression increases with increasing reduction temperature and decreasing cobalt particle size. The turnover frequency (based on cobalt dispersion derived from ESCA) for benzene and CO hydrogenation decreases with increasing reduction temperature and decreasing cobalt particle size. The decline in activity correlates with the extent of suppression of H[sub 2] chemisorption. The results were interpreted in terms of a decrease in the fraction of exposed surface cobalt due to site blocking by reduced TiO[sub 3] moieties.

  5. Cobalt Ions Improve the Strength of Epoxy Resins

    NASA Technical Reports Server (NTRS)

    Stoakley, D. M.; St. Clair, A. K.

    1986-01-01

    Technique developed for improving mechanical strength of epoxy resins by adding cobalt ions in form of tris(acetylacetonato)cobalt (III) complex. Solid cast disks prepared from cobalt ion-containing epoxy resins tested for flexural strength and stiffness. Incorporation of cobalt ions into epoxies increased flexural strength of resins by 10 to 95 percent. Suitable resins for this technique include any liquid or solid TGMDA resins. Improved epoxy formulation proves useful as composite matrix resin, adhesive, or casting resin for applications on commercial and advanced aircraft.

  6. Cobalt-promoted Iron Oxide Nanoparticles for the Selective Oxidative Dehydrogenation of Cyclohexane

    NASA Astrophysics Data System (ADS)

    Rutter, Matthew

    -Ray Photoelectron Spectroscopy (XPS), BET N2 Physisorption, and CO Temperature Programmed Reduction (CO-TPR). These characterizations helped us to correlate the selectivity and activity data for each catalyst in an attempt to understand what roles the surface species played. It was found that iron oxide nanoparticles doped with 2-10 mol% cobalt formed a stable surface phase, enriched in Co (20 at%), independent of the bulk concentration. XPS measurements indicate this phase is rich in octahedral Co2+ cations. The selectivity to benzene was much higher in the Co-promoted iron oxide samples. This high concentration of octahedral cobalt(II) cations appear to have a strong promotional effect on the weakly held surface oxygen sites which have been shown previously to be the active sites for this reaction. Addition of cobalt also promoted the activity of the iron oxide nanoparticles; and stabilized them against particle growth under the reaction conditions, typically held at several different temperatures up to 370 °C, in a mixture of 0.4% cyclohexane and 4% oxygen, for several hours.

  7. Cobalt Complexes Containing Pendant Amines in the Second Coordination Sphere as Electrocatalysts for H2 Production

    SciTech Connect

    Fang, Ming; Wiedner, Eric S.; Dougherty, William G.; Kassel, W. S.; Liu, Tianbiao L.; DuBois, Daniel L.; Bullock, R. Morris

    2014-10-27

    A series of heteroleptic 17e- cobalt complexes, [CpCoII(PtBu2NPh2)](BF4), [CpC6F5CoII(PtBu2NPh2)](BF4), [CpC5F4NCoII(PtBu2NPh2)](BF4), [where P2tBuN2Ph = 1,5-diphenyl-3,7-di(tert-butyl)-1,5-diaza-3,7-diphosphacyclooctane, CpC6F5 = C5H4(C6F5), and CpC5F4N = C5H4(C5F4N)] were synthesized, and structures of all three were determined by X-ray crystallography. Electrochemical studies showed that the CoIII/II couple of [CpC5F4NCoII(PtBu2NPh2)]+ appears 250 mV positive of the CoIII/II couple of [CpCoII(PtBu2NPh2)] as a result of the strongly electron-withdrawing perfluorpyridyl substituent on the Cp ring. Reduction of these paramagnetic CoII complexes by KC8 led to the diamagnetic 18e- complexes CpICo(PtBu2NPh2), CpC6F5CoI(PtBu2NPh2), CpC5F4NCoI(PtBu2NPh2), which were also characterized by crystallography. Protonation of these neutral CoI complexes led to the cobalt hydrides [CpCoIII(PtBu2NPh2)H](BF4), [CpC6F5CoIII(PtBu2NPh2)H](BF4), and [CpC5F4NCoIII(PtBu2NPh2)H](BF4). The cobalt hydride with the most electron-withdrawing Cp ligand, [CpC5F4NCoIII(PtBu2NPh2)H]+ is an electrocatalyst for production of H2 using 4-MeOC6H4NH3BF4 (pKaMeCN = 11.86) with a turnover frequency of 350 s-1 and an overpotential of 0.75 V. Experimental measurement of thermochemical data provided further insights into the thermodynamics of H2 elimination. This research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy.

  8. The crystal structure of cobalt-substituted pseudoazurin from Alcaligenes faecalis.

    PubMed

    Gessmann, Renate; Kyvelidou, Christiana; Papadovasilaki, Maria; Petratos, Kyriacos

    2011-03-01

    The Cu(II) center at the active site of the blue copper protein pseudoazurin from Alcaligenes faecalis has been substituted by Co(II) via denaturing of the protein, chelation and removal of copper by EDTA and refolding of the apo-protein, followed by addition of an aqueous solution of CoCl(2). Sitting drop vapour diffusion experiments produced green hexagonal crystals, which belong to space group P6(5), with unit cell dimensions a = b = 50.03, c = 98.80 Å. Diffraction data, collected at 291 K on a copper rotating anode X-ray source, were phased by the anomalous signal of the cobalt atom. The structure was built automatically, fitted manually and subsequently refined to 1.86 Å resolution. The Co-substituted protein exhibits similar overall geometry to the native structure with copper. Cobalt binds more strongly to the axial Met86-Sδ and retains the tetrahedral arrangement with the four ligand atoms, His40-Nδ(1), Cys78-Sγ, His81-Nδ(1), and 86Met-Sδ, although the structure is less distorted than the native copper protein. The structure reported herein, is the first crystallographic structure of a Co(II)-substituted pseudoazurin.

  9. Interpreting cobalt blood concentrations in hip implant patients.

    PubMed

    Paustenbach, Dennis J; Galbraith, David A; Finley, Brent L

    2014-02-01

    INTRODUCTION. There has been some recent concern regarding possible systemic health effects resulting from elevated blood cobalt concentrations in patients with cobalt containing hip implants. To date there are no blood cobalt criteria to help guide physicians when evaluating an individual hip implant patient's risk of developing systemic health effects because historically there was little or no concern about systemic cobalt toxicity in implant patients. OBJECTIVE. Our purpose is to describe recently completed research regarding the relationship between blood cobalt concentrations and clinical health effects. We discuss the possibility of systemic health effects in patients with metal containing implants and propose various blood cobalt concentrations that are not associated with an increased risk of developing certain adverse effects. METHODOLOGY. The primary literature search was conducted using PubMed and Web of Science using the following search terms: cobalt AND (toxicity OR health effects OR cardiotoxicity OR hematological OR endocrine OR immunological OR reproductive OR testicular effects OR neurological OR case report OR cohort OR Roncovite). The searches identified 6786 papers of which 122 were considered relevant. The Agency for Toxic Substances and Disease Registry toxicological profile for cobalt and the U.S. Environmental Protection Agency Office of Research and Development's National Center for Environmental Assessment's documentation on the provisional peer-reviewed toxicity value for cobalt were also utilized to identify secondary literature sources. RESULTS. Our review of the toxicology and medical literature indicates that highly elevated blood cobalt concentrations can result in certain endocrine, hematological, cardiovascular, and neurological effects in animals and/or humans. These studies, in addition to historical clinical findings involving the therapeutic use of cobalt, indicate that significant systemic effects of cobalt will not occur

  10. Spectroscopic characterization and energy transfer process in cobalt and cobalt-iron co-doped ZnSe/ZnS crystals

    NASA Astrophysics Data System (ADS)

    Peppers, J.; Martyshkin, D. V.; Fedorov, V. V.; Mirov, S. B.

    2014-02-01

    Cobalt doped II-VI wide band semiconductors (e.g. ZnSe, ZnS, CdSe) are promising media for infrared (IR) laser applications. They could be utilized as effective passive Q-switches for cavities of Alexandrite as well as Nd and Er lasers operating over 0.7-0.8, 1.3-1.6, and ~2.8 μm spectral ranges. We report spectroscopic characterization of Co:ZnSe and Co:ZnS crystals. Absorption cross-sections were measured for 4A2(F) → 4T1(P), 4A2(F) → 4T1(F), and 4A2(F) → 4T2(F) transitions with maximum absorption at 768(726), 1615(1500), 2690(2740) nm for ZnSe(ZnS) crystals, respectively. The calculated absorption cross-sections of the above transitions were estimated to be 64(56)×1019, 7.5(7.8)×1019, and 0.52(0.49)×1019 cm2 for ZnSe(ZnS) crystal hosts. In addition to the above applications the cobalt ions could be utilized for excitation of Fe2+ ions via resonance energy transfer process. Tunable room temperature lasing of Fe 2+ doped binary and ternary chalcogenides has been successfully demonstrated over 3.5-6 μm spectral range. However, II-VI lasers based on Fe2+ active ions don't feature convenient commercially available pump sources (e.g. some Fe doped crystal hosts require pump wavelengths longer than 3 μm). Therefore, the process of energy transfer from Co2+ to Fe2+ ions could enable utilization of commercially available visible and near-infrared pump sources. We report a spectroscopic characterization of iron-cobalt co-doped ZnS and ZnSe crystals over 14-300K temperature range. Mid-IR laser oscillation at 3.9 μm(3.6 μm) via energy transfer in the Co:Fe:ZnSe (Co:Fe:ZnS) co-doped crystals was demonstrated under cobalt excitation at 4A2(F) → 4T1(P) (~0.7μm) and 4A2(F) → 4T1(F) (~1.56 μm) transitions.

  11. 40 CFR 721.10201 - Cobalt lithium manganese nickel oxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Cobalt lithium manganese nickel oxide... Specific Chemical Substances § 721.10201 Cobalt lithium manganese nickel oxide. (a) Chemical substance and... nickel oxide (PMN P-04-269; CAS No. 182442-95-1) is subject to reporting under this section for...

  12. 40 CFR 721.10201 - Cobalt lithium manganese nickel oxide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Cobalt lithium manganese nickel oxide... Specific Chemical Substances § 721.10201 Cobalt lithium manganese nickel oxide. (a) Chemical substance and... nickel oxide (PMN P-04-269; CAS No. 182442-95-1) is subject to reporting under this section for...

  13. 40 CFR 721.10201 - Cobalt lithium manganese nickel oxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Cobalt lithium manganese nickel oxide... Specific Chemical Substances § 721.10201 Cobalt lithium manganese nickel oxide. (a) Chemical substance and... nickel oxide (PMN P-04-269; CAS No. 182442-95-1) is subject to reporting under this section for...

  14. Comparative toxicity and carcinogenicity of soluble and insoluble cobalt compounds.

    PubMed

    Behl, Mamta; Stout, Matthew D; Herbert, Ronald A; Dill, Jeffrey A; Baker, Gregory L; Hayden, Barry K; Roycroft, Joseph H; Bucher, John R; Hooth, Michelle J

    2015-07-01

    Occupational exposure to cobalt is of widespread concern due to its use in a variety of industrial processes and the occurrence of occupational disease. Due to the lack of toxicity and carcinogenicity data following exposure to cobalt, and questions regarding bioavailability following exposure to different forms of cobalt, the NTP conducted two chronic inhalation exposure studies in rats and mice, one on soluble cobalt sulfate heptahydrate, and a more recent study on insoluble cobalt metal. Herein, we compare and contrast the toxicity profiles following whole-body inhalation exposures to these two forms of cobalt. In general, both forms were genotoxic in the Salmonella T98 strain in the absence of effects on micronuclei. The major sites of toxicity and carcinogenicity in both chronic inhalation studies were the respiratory tract in rats and mice, and the adrenal gland in rats. In addition, there were distinct sites of toxicity and carcinogenicity noted following exposure to cobalt metal. In rats, carcinogenicity was observed in the blood, and pancreas, and toxicity was observed in the testes of rats and mice. Taken together, these findings suggest that both forms of cobalt, soluble and insoluble, appear to be multi-site rodent carcinogens following inhalation exposure.

  15. The role of cobalt on the creep of Waspaloy

    NASA Technical Reports Server (NTRS)

    Jarrett, R. N.; Chin, L.; Tien, J. K.

    1984-01-01

    Cobalt was systematically replaced with nickel in Waspaloy (which normally contains 13% Co) to determine the effects of cobalt on the creep behavior of this alloy. Effects of cobalt were found to be minimal on tensile strengths and microstructure. The creep resistance and the stress rupture resistance determined in the range from 704 to 760 C (1300 to 1400 C) were found to decrease as cobalt was removed from the standard alloy at all stresses and temperatures. Roughly a ten-fold drop in rupture life and a corresponding increase in minimum creep rate were found under all test conditions. Both the apparent creep activation energy and the matrix contribution to creep resistance were found to increase with cobalt. These creep effects are attributed to cobalt lowering the stacking fault energy of the alloy matrix. The creep resistance loss due to the removal of cobalt is shown to be restored by slightly increasing the gamma' volume fraction. Results are compared to a previous study on Udimet 700, a higher strength, higher gamma' volume fraction alloy with similar phase chemistry, in which cobalt did not affect creep resistance. An explanation for this difference in behavior based on interparticle spacing and cross-slip is presented.

  16. Frequency-switching inversion-recovery for severely hyperfine-shifted NMR: evidence of asymmetric electron relaxation in high-spin Co(II).

    PubMed

    Riley, Erin A; Petros, Amy K; Smith, Karen Ann; Gibney, Brian R; Tierney, David L

    2006-12-11

    A new method for reliably measuring longitudinal relaxation rates for severely hyperfine-shifted NMR signals in aqueous solutions is presented. The method is illustrated for a well-defined cobalt tetracysteinate, with relevance to cobalt-substituted metalloproteins. The relaxation measurements are indicative of asymmetric electronic relaxation of the high-spin Co(II) ion.

  17. Cobalt ferrite nanoparticles under high pressure

    SciTech Connect

    Saccone, F. D.; Ferrari, S.; Grinblat, F.; Bilovol, V.; Errandonea, D.

    2015-08-21

    We report by the first time a high pressure X-ray diffraction and Raman spectroscopy study of cobalt ferrite (CoFe{sub 2}O{sub 4}) nanoparticles carried out at room temperature up to 17 GPa. In contrast with previous studies of nanoparticles, which proposed the transition pressure to be reduced from 20–27 GPa to 7.5–12.5 GPa (depending on particle size), we found that cobalt ferrite nanoparticles remain in the spinel structure up to the highest pressure covered by our experiments. In addition, we report the pressure dependence of the unit-cell parameter and Raman modes of the studied sample. We found that under quasi-hydrostatic conditions, the bulk modulus of the nanoparticles (B{sub 0} = 204 GPa) is considerably larger than the value previously reported for bulk CoFe{sub 2}O{sub 4} (B{sub 0} = 172 GPa). In addition, when the pressure medium becomes non-hydrostatic and deviatoric stresses affect the experiments, there is a noticeable decrease of the compressibility of the studied sample (B{sub 0} = 284 GPa). After decompression, the cobalt ferrite lattice parameter does not revert to its initial value, evidencing a unit cell contraction after pressure was removed. Finally, Raman spectroscopy provides information on the pressure dependence of all Raman-active modes and evidences that cation inversion is enhanced by pressure under non-hydrostatic conditions, being this effect not fully reversible.

  18. Unconventional magnetisation texture in graphene/cobalt hybrids

    PubMed Central

    Vu, A. D.; Coraux, J.; Chen, G.; N’Diaye, A. T.; Schmid, A. K.; Rougemaille, N.

    2016-01-01

    Magnetic domain structure and spin-dependent reflectivity measurements on cobalt thin films intercalated at the graphene/Ir(111) interface are investigated using spin-polarised low-energy electron microscopy. We find that graphene-covered cobalt films have surprising magnetic properties. Vectorial imaging of magnetic domains reveals an unusually gradual thickness-dependent spin reorientation transition, in which magnetisation rotates from out-of-the-film plane to the in-plane direction by less than 10° per cobalt monolayer. During this transition, cobalt films have a meandering spin texture, characterised by a complex, three-dimensional, wavy magnetisation pattern. In addition, spectroscopy measurements suggest that the electronic band structure of the unoccupied states is essentially spin-independent already a few electron-Volts above the vacuum level. These properties strikingly differ from those of pristine cobalt films and could open new prospects in surface magnetism. PMID:27114039

  19. The Structural and Dynamic Properties of Cobalt Metal Under Temperature

    NASA Astrophysics Data System (ADS)

    Kien, P. H.; Hung, P. K.

    2013-12-01

    In this paper, cobalt metal is investigated by molecular dynamics (MD) simulation with the Pak-Doyam potential. The models of cobalt metal are constructed in a wide temperature range. The simulation reveals that the cobalt metal may exist in three phases: amorphous, nano-crystalline and liquid in the temperature range from 200 K to 1500 K. The structure of obtained models Co is analyzed through the radial distribution function (RDF), coordination number distribution and dependence of the Wendt-Abraham ratio defined as gmin/gmax under temperature. The simulation found a large number of native vacancies depending on the relaxation degree. The number of these native vacancies can play a role of diffusion vehicle for cobalt atom in amorphous matrix. The diffusion coefficient of cobalt atom in liquid and amorphous phases is evaluated by Einstein equation and concentration of native vacancies.

  20. Unconventional magnetisation texture in graphene/cobalt hybrids.

    PubMed

    Vu, A D; Coraux, J; Chen, G; N'Diaye, A T; Schmid, A K; Rougemaille, N

    2016-01-01

    Magnetic domain structure and spin-dependent reflectivity measurements on cobalt thin films intercalated at the graphene/Ir(111) interface are investigated using spin-polarised low-energy electron microscopy. We find that graphene-covered cobalt films have surprising magnetic properties. Vectorial imaging of magnetic domains reveals an unusually gradual thickness-dependent spin reorientation transition, in which magnetisation rotates from out-of-the-film plane to the in-plane direction by less than 10° per cobalt monolayer. During this transition, cobalt films have a meandering spin texture, characterised by a complex, three-dimensional, wavy magnetisation pattern. In addition, spectroscopy measurements suggest that the electronic band structure of the unoccupied states is essentially spin-independent already a few electron-Volts above the vacuum level. These properties strikingly differ from those of pristine cobalt films and could open new prospects in surface magnetism. PMID:27114039

  1. Nitrogen oxides storage catalysts containing cobalt

    DOEpatents

    Lauterbach, Jochen; Snively, Christopher M.; Vijay, Rohit; Hendershot, Reed; Feist, Ben

    2010-10-12

    Nitrogen oxides (NO.sub.x) storage catalysts comprising cobalt and barium with a lean NO.sub.x storage ratio of 1.3 or greater. The NO.sub.x storage catalysts can be used to reduce NO.sub.x emissions from diesel or gas combustion engines by contacting the catalysts with the exhaust gas from the engines. The NO.sub.x storage catalysts can be one of the active components of a catalytic converter, which is used to treat exhaust gas from such engines.

  2. HYDROCARBON FORMATION ON POLYMER-SUPPORTED COBALT

    SciTech Connect

    Benner, Linda S.; Perkins, Patrick; Vollhardt, K.Peter C.

    1980-10-01

    In this report we detail the synthesis catalytic chemistry of polystyrene supported {eta}{sup 5} ~cyclopentadienyl- dicarbonyl cobalt, CpCo(CO){sub 2}. This material is active in the hydrogenation of CO to saturated linear hydrocarbons and appears to retain its "homogeneous", mononuclear character during the course of its catalysis, During ·the course of our work 18% and 20% crosslinked analogs of polystyrene supported CpCo(CO){sub 2} were shown to exhibit limited catalytic activity and no CO activation.

  3. Low-Cobalt Powder-Metallurgy Superalloy

    NASA Technical Reports Server (NTRS)

    Harf, F. H.

    1986-01-01

    Highly-stressed jet-engine parts made with less cobalt. Udimet 700* (or equivalent) is common nickel-based superalloy used in hot sections of jet engines for many years. This alloy, while normally used in wrought condition, also gas-atomized into prealloyed powder-metallurgy (PM) product. Product can be consolidated by hot isostatically pressing (HIPPM condition) and formed into parts such as turbine disk. Such jet-engine disks "see" both high stresses and temperatures to 1,400 degrees F (760 degrees C).

  4. Cold-Sprayed Nanostructured Pure Cobalt Coatings

    NASA Astrophysics Data System (ADS)

    Cavaliere, P.; Perrone, A.; Silvello, A.

    2016-08-01

    Cold-sprayed pure cobalt coatings were deposited on carbon-steel substrate. Submicrometer particles for spraying were produced via cryomilling. Deposits were produced using different processing conditions (gas temperature and pressure, nozzle-to-substrate distance) to evaluate the resulting variations in grain size dimension, microhardness, adhesion strength, and porosity. The coating mechanical properties improved greatly with higher temperature and carrying-gas pressure. The coating microstructure was analyzed as a function of spraying condition by transmission electron microscopy (TEM) observations, revealing many different microstructural features for coatings experiencing low or high strain rates during deposition.

  5. Microemulsion-mediated synthesis of cobalt (pure fcc and hexagonal phases) and cobalt-nickel alloy nanoparticles.

    PubMed

    Ahmed, Jahangeer; Sharma, Shudhanshu; Ramanujachary, Kandalam V; Lofland, Samuel E; Ganguli, Ashok K

    2009-08-15

    By choosing appropriate microemulsion systems, hexagonal cobalt (Co) and cobalt-nickel (1:1) alloy nanoparticles have been obtained with cetyltrimethylammonium bromide as a cationic surfactant at 500 degrees C. This method thus stabilizes the hcp cobalt even at sizes (<10 nm) at which normally fcc cobalt is predicted to be stable. On annealing the hcp cobalt nanoparticles in H(2) at 700 degrees C we could transform them to fcc cobalt nanoparticles. Microscopy studies show the formation of spherical nanoparticles of hexagonal and cubic forms of cobalt and Co-Ni (1:1) alloy nanoparticles with the average size of 4, 8 and 20 nm, respectively. Electrochemical studies show that the catalytic property towards oxygen evolution is dependent on the applied voltage. At low voltage (less than 0.65 V) the Co (hexagonal) nanoparticles are superior to the alloy (Co-Ni) nanoparticles while above this voltage the alloy nanoparticles are more efficient catalysts. The nanoparticles of cobalt (hcp and fcc) and alloy (Co-Ni) nanoparticles show ferromagnetism. The saturation magnetization of Co-Ni nanoparticles is reduced compared to the bulk possibly due to surface oxidation.

  6. New insights into atrazine degradation by cobalt catalyzed peroxymonosulfate oxidation: kinetics, reaction products and transformation mechanisms.

    PubMed

    Ji, Yuefei; Dong, Changxun; Kong, Deyang; Lu, Junhe

    2015-03-21

    The widespread occurrence of atrazine in waters poses potential risk to ecosystem and human health. In this study, we investigated the underlying mechanisms and transformation pathways of atrazine degradation by cobalt catalyzed peroxymonosulfate (Co(II)/PMS). Co(II)/PMS was found to be more efficient for ATZ elimination in aqueous solution than Fe(II)/PMS process. ATZ oxidation by Co(II)/PMS followed pseudo-first-order kinetics, and the reaction rate constant (k(obs)) increased appreciably with increasing Co(II) concentration. Increasing initial PMS concentration favored the decomposition of ATZ, however, no linear relationship between k(obs) and PMS concentration was observed. Higher efficiency of ATZ oxidation was observed around neutral pH, implying the possibility of applying Co(II)/PMS process under environmental realistic conditions. Natural organic matter (NOM), chloride (Cl(-)) and bicarbonate (HCO3(-)) showed detrimental effects on ATZ degradation, particularly at higher concentrations. Eleven products were identified by applying solid phase extraction-liquid chromatography-mass spectrometry (SPE-LC/MS) techniques. Major transformation pathways of ATZ included dealkylation, dechlorination-hydroxylation, and alkyl chain oxidation. Detailed mechanisms responsible for these transformation pathways were discussed. Our results reveal that Co(II)/PMS process might be an efficient technique for remediation of groundwater contaminated by ATZ and structurally related s-triazine herbicides.

  7. 40 CFR 421.230 - Applicability: Description of the primary nickel and cobalt subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... primary nickel and cobalt subcategory. 421.230 Section 421.230 Protection of Environment ENVIRONMENTAL... CATEGORY Primary Nickel and Cobalt Subcategory § 421.230 Applicability: Description of the primary nickel... production of nickel or cobalt by primary nickel and cobalt facilities processing ore concentrate...

  8. 40 CFR 421.230 - Applicability: Description of the primary nickel and cobalt subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... primary nickel and cobalt subcategory. 421.230 Section 421.230 Protection of Environment ENVIRONMENTAL... CATEGORY Primary Nickel and Cobalt Subcategory § 421.230 Applicability: Description of the primary nickel... production of nickel or cobalt by primary nickel and cobalt facilities processing ore concentrate...

  9. 40 CFR 421.230 - Applicability: Description of the primary nickel and cobalt subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... primary nickel and cobalt subcategory. 421.230 Section 421.230 Protection of Environment ENVIRONMENTAL... CATEGORY Primary Nickel and Cobalt Subcategory § 421.230 Applicability: Description of the primary nickel... production of nickel or cobalt by primary nickel and cobalt facilities processing ore concentrate...

  10. 40 CFR 421.230 - Applicability: Description of the primary nickel and cobalt subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... primary nickel and cobalt subcategory. 421.230 Section 421.230 Protection of Environment ENVIRONMENTAL... CATEGORY Primary Nickel and Cobalt Subcategory § 421.230 Applicability: Description of the primary nickel... production of nickel or cobalt by primary nickel and cobalt facilities processing ore concentrate...

  11. 40 CFR 421.230 - Applicability: Description of the primary nickel and cobalt subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... primary nickel and cobalt subcategory. 421.230 Section 421.230 Protection of Environment ENVIRONMENTAL... CATEGORY Primary Nickel and Cobalt Subcategory § 421.230 Applicability: Description of the primary nickel... production of nickel or cobalt by primary nickel and cobalt facilities processing ore concentrate...

  12. Cobalt distribution during copper matte smelting

    NASA Astrophysics Data System (ADS)

    Kho, T. S.; Swinbourne, D. R.; Lehner, T.

    2006-04-01

    Many smelter operators subscribe to the “precautionary principle” and wish to understand the behavior of the metals and impurities during smelting, especially how they distribute between product and waste phases and whether these phases lead to environmental, health, or safety issues. In copper smelting, copper and other elements are partitioned between copper matte, iron silicate slag, and possibly the waste gas. Many copper concentrates contain small amounts of cobalt, a metal of considerable value but also of some environmental interest. In this work, the matte/slag distribution ratio (weight percent) of cobalt between copper matte (55 wt pct) and iron silicate slag was thermodynamically modeled and predicted to be approximately 5. Experiments were performed using synthetic matte and slag at 1250 °C under a low oxygen partial pressure and the distribution ratio was found to be 4.3, while between industrial matte and slag, the ratio was found to be 1.8. Both values are acceptably close to each other and to the predicted value, given the errors inherent in such measurements. The implications of these results for increasingly sustainable copper production are discussed.

  13. Cataractogenesis after Cobalt-60 eye plaque radiotherapy

    SciTech Connect

    Kleineidam, M.; Augsburger, J.J. ); Hernandez, C.; Glennon, P.; Brady, L.W. )

    1993-07-15

    This study was designed to estimate the actuarial incidence of typical postirradiation cataracts and to identify prognostic factors related to their development in melanoma-containing eyes treated by Cobalt-60 plaque radiotherapy. A special interest was the impact of calculated radiation dose and dose-rate to the lens. The authors evaluated the actuarial occurrence of post-irradiation cataract in 365 patients with primary posterior uveal melanoma treated by Cobalt-60 plaque radiotherapy between 1976 and 1986. Only 22% (S.E. = 4.6%) of the patients who received a total dose of 6 to 20 Gy at the center of the lens developed a visually significant cataract attributable to the radiation within 5 years after treatment. Using multivariate Cox proportional hazards modeling, the authors identified thickness of the tumor, location of the tumor's anterior margin relative to the equatorward and the ora serrata, and diameter of the eye plaque used as the best combination of covariables for predicting length of time until development of cataract. Surprisingly, the dose of radiation delivered to the lens, which was strongly correlated to all of these covariables, was not a significant predictive factor in multivariate analysis. The results suggest that success of efforts to decrease the occurrence rate of post-irradiation cataracts by better treatment planning might be limited in patients with posterior uveal melanoma. 21 refs., 2 figs., 5 tabs.

  14. Laser Induced Fluorescence Spectroscopy of Cobalt Monoboride

    NASA Astrophysics Data System (ADS)

    Pang, H. F.; Ng, Y. W.; Cheung, A. S.-C.

    2011-06-01

    Laser induced fluorescence spectrum of cobalt monoboride (CoB) in the visible region between 465 and 560 nm has been observed. CoB molecule was produced by the reaction of laser ablated cobalt atom and diborane (B_2H_6) seeded in argon. Over twenty five vibronic bands have been recorded, and both Co10B and Co11B isotopic species have been observed and analyzed. Preliminary analysis of the rotational lines showed that the observed vibronic bands belong to two categories namely: the Ω' = 2 - Ω'' = 2 and the Ω' = 3 - Ω'' = 3 transitions, which indicated the ground state of CoB is consistent with an assignment of a ^3Δ_i state predicted from ab initio calculations. Unresolved hyperfine structure arising from the Co nucleus (I = 7/2) causes a broadening of spectral lines. This work represents the first experimental investigation of the spectrum of the CoB molecule. Financial support from the Research Grants Council of the Hong Kong Special Administrative Region, China (Project No. HKU 701008P) is gratefully acknowledged.

  15. Preparation and characterization of electrodeposited cobalt nanowires

    NASA Astrophysics Data System (ADS)

    Irshad, M. I.; Ahmad, F.; Mohamed, N. M.; Abdullah, M. Z.

    2014-10-01

    Electrochemical deposition technique has been used to deposit cobalt nanowires into the nano sized channels of Anodized Aluminium Oxide (AAO) templates. CoCl2˙6H 2 O salt solution was used, which was buffered with H3BO3 and acidified by dilute H2SO4 to increase the plating life and control pH of the solution. Thin film of copper around 150 nm thick on one side of AAO template coated by e-beam evaporation system served as cathode to create electrical contact. FESEM analysis shows that the as-deposited nanowires are highly aligned, parallel to one another and have high aspect ratio with a reasonably high pore-filing factor. The TEM results show that electrodeposited cobalt nanowires are crystalline in nature. The Hysteresis loop shows the magnetization properties for in and out of plane configuration. The in plane saturation magnetization (Ms) is lower than out of plane configuration because of the easy axis of magnetization is perpendicular to nanowire axis. These magnetic nanowires could be utilized for applications such as spintronic devices, high density magnetic storage, and magnetic sensor applications.

  16. Preparation and characterization of electrodeposited cobalt nanowires

    SciTech Connect

    Irshad, M. I. Mohamed, N. M.; Ahmad, F. Abdullah, M. Z.

    2014-10-24

    Electrochemical deposition technique has been used to deposit cobalt nanowires into the nano sized channels of Anodized Aluminium Oxide (AAO) templates. CoCl{sub 2}Ðœ‡6H2O salt solution was used, which was buffered with H{sub 3}BO{sub 3} and acidified by dilute H{sub 2}SO{sub 4} to increase the plating life and control pH of the solution. Thin film of copper around 150 nm thick on one side of AAO template coated by e-beam evaporation system served as cathode to create electrical contact. FESEM analysis shows that the as-deposited nanowires are highly aligned, parallel to one another and have high aspect ratio with a reasonably high pore-filing factor. The TEM results show that electrodeposited cobalt nanowires are crystalline in nature. The Hysteresis loop shows the magnetization properties for in and out of plane configuration. The in plane saturation magnetization (Ms) is lower than out of plane configuration because of the easy axis of magnetization is perpendicular to nanowire axis. These magnetic nanowires could be utilized for applications such as spintronic devices, high density magnetic storage, and magnetic sensor applications.

  17. Cobalt oxide silica membranes for desalination.

    PubMed

    Lin, Chun Xiang C; Ding, Li Ping; Smart, Simon; da Costa, João C Diniz

    2012-02-15

    This work shows for the first time the potential of cobalt oxide silica (CoO(x)Si) membranes for desalination of brackish (1 wt.% NaCl), seawater (3.5 wt.% NaCl) and brine (7.5-15 wt.% NaCl) concentrations at feed temperatures between 25 and 75 °C. CoO(x)Si xerogels were synthesised via a sol-gel method including TEOS, cobalt nitrate hydrate and peroxide. Initial hydrothermal exposure (<2 days) of xerogels prepared with various pH (3-6) resulted in densification of the xerogel via condensation reactions within the silica matrix, with the xerogel synthesised at pH 5 the most resistant. Subsequent exposure was not found to significantly alter the pore structure of the xerogels, suggesting they were hydrostable and that the pore sizes remained at molecular sieving dimensions. Membranes were then synthesised using identical sol-gel conditions to the xerogel samples and testing showed that elevated feed temperatures resulted in increased water fluxes, whilst increasing the saline feed concentration resulted in decreased water fluxes. The maximum flux observed was 1.8 kg m(-2) h(-1) at 75 °C for a 1 wt.% NaCl feed concentration. The salt rejection was consistently in excess of 99%, independent of either the testing temperature or salt feed concentration.

  18. Magnetic properties of 1:2 mixed cobalt(II) salicylaldehyde Schiff-base complexes with pyridine ligands carrying high-spin carbenes (Scar = 2/2, 4/2, 6/2, and 8/2) in dilute frozen solutions: role of organic spin in heterospin single-molecule magnets.

    PubMed

    Karasawa, Satoru; Nakano, Kimihiro; Yoshihara, Daisuke; Yamamoto, Noriko; Tanokashira, Jun-ichi; Yoshizaki, Takahito; Inagaki, Yuji; Koga, Noboru

    2014-06-01

    The 1:2 mixtures of Co(p-tolsal)2, p-tolsal = N-p-tolylsalicylideniminato, and diazo-pyridine ligands, DXpy; X = 1, 2, 3l, 3b, and 4, in MTHF solutions were irradiated at cryogenic temperature to form the corresponding 1:2 cobalt-carbene complexes Co(p-tolsal)2(CXpy)2, with Stotal = 5/2, 9/2, 13/2, 13/2, and 17/2, respectively. The resulting Co(p-tolsal)2(CXpy)2, X = 1, 2, 3l, 3b, and 4, showed magnetic behaviors characteristic of heterospin single-molecule magnets with effective activation barriers, Ueff/kB, of 40, 65, 73, 72, and 74 K, for reorientation of the magnetic moment and temperature-dependent hysteresis loops with a coercive force, Hc, of ∼0, 6.2, 10, 6.5, and 9.0 kOe at 1.9 K, respectively. The relaxation times, τQ, due to a quantum tunneling of magnetization (QTM) were estimated to be 1.6 s for Co(p-tolsal)2(C1py)2, ∼2.0 × 10(3) s for Co(p-tolsal)2(C2py)2, and >10(5) s for Co(p-tolsal)2(CXpy)2; X = 3b, 3l, and 4. In heterospin complexes, organic spins, carbenes interacted with the cobalt ion to suppress the QTM pathway, and the τQ value increased with increasing the Stotal values.

  19. A review of the health hazards posed by cobalt.

    PubMed

    Paustenbach, Dennis J; Tvermoes, Brooke E; Unice, Kenneth M; Finley, Brent L; Kerger, Brent D

    2013-04-01

    Cobalt (Co) is an essential element with ubiquitous dietary exposure and possible incremental exposure due to dietary supplements, occupation and medical devices. Adverse health effects, such as cardiomyopathy and vision or hearing impairment, were reported at peak blood Co concentrations typically over 700 µg/L (8-40 weeks), while reversible hypothyroidism and polycythemia were reported in humans at ~300 µg/L and higher (≥2 weeks). Lung cancer risks associated with certain inhalation exposures have not been observed following Co ingestion and Co alloy implants. The mode of action for systemic toxicity relates directly to free Co(II) ion interactions with various receptors, ion channels and biomolecules resulting in generally reversible effects. Certain dose-response anomalies for Co toxicity likely relate to rare disease states known to reduce systemic Co(II)-ion binding to blood proteins. Based on the available information, most people with clearly elevated serum Co, like supplement users and hip implant patients, have >90% of Co as albumin-bound, with considerable excess binding capacity to sequester Co(II) ions. This paper reviews the scientific literature regarding the chemistry, pharmacokinetics and systemic toxicology of Co, and the likely role of free Co(II) ions to explain dose-response relationships. Based on currently available data, it might be useful to monitor implant patients for signs of hypothyroidism and polycythemia starting at blood or serum Co concentrations above 100 µg/L. This concentration is derived by applying an uncertainty factor of 3 to the 300 µg/L point of departure and this should adequately account for the fact that persons in the various studies were exposed for less than one year. A higher uncertainty factor could be warranted but Co has a relatively fast elimination, and many of the populations studied were of children and those with kidney problems. Closer follow-up of patients who also exhibit chronic disease states

  20. A review of the health hazards posed by cobalt.

    PubMed

    Paustenbach, Dennis J; Tvermoes, Brooke E; Unice, Kenneth M; Finley, Brent L; Kerger, Brent D

    2013-04-01

    Cobalt (Co) is an essential element with ubiquitous dietary exposure and possible incremental exposure due to dietary supplements, occupation and medical devices. Adverse health effects, such as cardiomyopathy and vision or hearing impairment, were reported at peak blood Co concentrations typically over 700 µg/L (8-40 weeks), while reversible hypothyroidism and polycythemia were reported in humans at ~300 µg/L and higher (≥2 weeks). Lung cancer risks associated with certain inhalation exposures have not been observed following Co ingestion and Co alloy implants. The mode of action for systemic toxicity relates directly to free Co(II) ion interactions with various receptors, ion channels and biomolecules resulting in generally reversible effects. Certain dose-response anomalies for Co toxicity likely relate to rare disease states known to reduce systemic Co(II)-ion binding to blood proteins. Based on the available information, most people with clearly elevated serum Co, like supplement users and hip implant patients, have >90% of Co as albumin-bound, with considerable excess binding capacity to sequester Co(II) ions. This paper reviews the scientific literature regarding the chemistry, pharmacokinetics and systemic toxicology of Co, and the likely role of free Co(II) ions to explain dose-response relationships. Based on currently available data, it might be useful to monitor implant patients for signs of hypothyroidism and polycythemia starting at blood or serum Co concentrations above 100 µg/L. This concentration is derived by applying an uncertainty factor of 3 to the 300 µg/L point of departure and this should adequately account for the fact that persons in the various studies were exposed for less than one year. A higher uncertainty factor could be warranted but Co has a relatively fast elimination, and many of the populations studied were of children and those with kidney problems. Closer follow-up of patients who also exhibit chronic disease states