Science.gov

Sample records for cobalt oxide films

  1. Electrosynthesis of highly transparent cobalt oxide water oxidation catalyst films from cobalt aminopolycarboxylate complexes.

    PubMed

    Bonke, Shannon A; Wiechen, Mathias; Hocking, Rosalie K; Fang, Xi-Ya; Lupton, David W; MacFarlane, Douglas R; Spiccia, Leone

    2015-04-24

    Efficient catalysis of water oxidation represents one of the major challenges en route to efficient sunlight-driven water splitting. Cobalt oxides (CoOx ) have been widely investigated as water oxidation catalysts, although the incorporation of these materials into photoelectrochemical devices has been hindered by a lack of transparency. Herein, the electrosynthesis of transparent CoOx catalyst films is described by utilizing cobalt(II) aminopolycarboxylate complexes as precursors to the oxide. These complexes allow control over the deposition rate and morphology to enable the production of thin, catalytic CoOx films on a conductive substrate, which can be exploited in integrated photoelectrochemical devices. Notably, under a bias of 1.0 V (vs. Ag/AgCl), the film deposited from [Co(NTA)(OH2 )2 ](-) (NTA=nitrilotriacetate) decreased the transmission by only 10 % at λ=500 nm, but still generated >80 % of the water oxidation current produced by a [Co(OH2 )6 ](2+) -derived oxide film whose transmission was only 40 % at λ=500 nm.

  2. Electrosynthesis of highly transparent cobalt oxide water oxidation catalyst films from cobalt aminopolycarboxylate complexes.

    PubMed

    Bonke, Shannon A; Wiechen, Mathias; Hocking, Rosalie K; Fang, Xi-Ya; Lupton, David W; MacFarlane, Douglas R; Spiccia, Leone

    2015-04-24

    Efficient catalysis of water oxidation represents one of the major challenges en route to efficient sunlight-driven water splitting. Cobalt oxides (CoOx ) have been widely investigated as water oxidation catalysts, although the incorporation of these materials into photoelectrochemical devices has been hindered by a lack of transparency. Herein, the electrosynthesis of transparent CoOx catalyst films is described by utilizing cobalt(II) aminopolycarboxylate complexes as precursors to the oxide. These complexes allow control over the deposition rate and morphology to enable the production of thin, catalytic CoOx films on a conductive substrate, which can be exploited in integrated photoelectrochemical devices. Notably, under a bias of 1.0 V (vs. Ag/AgCl), the film deposited from [Co(NTA)(OH2 )2 ](-) (NTA=nitrilotriacetate) decreased the transmission by only 10 % at λ=500 nm, but still generated >80 % of the water oxidation current produced by a [Co(OH2 )6 ](2+) -derived oxide film whose transmission was only 40 % at λ=500 nm. PMID:25826458

  3. Fabrication of highly textured lithium cobalt oxide films by rapid thermal annealing

    DOEpatents

    Bates, John B.

    2003-04-29

    Systems and methods are described for fabrication of highly textured lithium cobalt oxide films by rapid thermal annealing. A method of forming a lithium cobalt oxide film includes depositing a film of lithium cobalt oxide on a substrate; rapidly heating the film of lithium cobalt oxide to a target temperature; and maintaining the film of lithium cobalt oxide at the target temperature for a target annealing time of at most, approximately 60 minutes. The systems and methods provide advantages because they require less time to implement and are, therefore less costly than previous techniques.

  4. Fabrication of highly textured lithium cobalt oxide films by rapid thermal annealing

    DOEpatents

    Bates, John B.

    2002-01-01

    Systems and methods are described for fabrication of highly textured lithium cobalt oxide films by rapid thermal annealing. A method of forming a lithium cobalt oxide film includes depositing a film of lithium cobalt oxide on a substrate; rapidly heating the film of lithium cobalt oxide to a target temperature; and maintaining the film of lithium cobalt oxide at the target temperature for a target annealing time of at most, approximately 60 minutes. The systems and methods provide advantages because they require less time to implement and are, therefore less costly than previous techniques.

  5. Fabrication of highly textured lithium cobalt oxide films by rapid thermal annealing

    DOEpatents

    Bates, John B.

    2003-05-13

    Systems and methods are described for fabrication of highly textured lithium cobalt oxide films by rapid thermal annealing. A method of forming a lithium cobalt oxide film includes depositing a film of lithium cobalt oxide on a substrate; rapidly heating the film of lithium cobalt oxide to a target temperature; and maintaining the film of lithium cobalt oxide at the target temperature for a target annealing time of at most, approximately 60 minutes. The systems and methods provide advantages because they require less time to implement and are, therefore less costly than previous techniques.

  6. Synthesis of Cobalt Oxides Thin Films Fractal Structures by Laser Chemical Vapor Deposition

    PubMed Central

    Haniam, P.; Kunsombat, C.; Chiangga, S.; Songsasen, A.

    2014-01-01

    Thin films of cobalt oxides (CoO and Co3O4) fractal structures have been synthesized by using laser chemical vapor deposition at room temperature and atmospheric pressure. Various factors which affect the density and crystallization of cobalt oxides fractal shapes have been examined. We show that the fractal structures can be described by diffusion-limited aggregation model and discuss a new possibility to control the fractal structures. PMID:24672354

  7. Synthesis of cobalt oxides thin films fractal structures by laser chemical vapor deposition.

    PubMed

    Haniam, P; Kunsombat, C; Chiangga, S; Songsasen, A

    2014-01-01

    Thin films of cobalt oxides (CoO and Co3O4) fractal structures have been synthesized by using laser chemical vapor deposition at room temperature and atmospheric pressure. Various factors which affect the density and crystallization of cobalt oxides fractal shapes have been examined. We show that the fractal structures can be described by diffusion-limited aggregation model and discuss a new possibility to control the fractal structures. PMID:24672354

  8. Electrochemical sensing chemical oxygen demand based on the catalytic activity of cobalt oxide film.

    PubMed

    Wang, Jinqi; Wu, Can; Wu, Kangbing; Cheng, Qin; Zhou, Yikai

    2012-07-29

    Cobalt oxide sensing film was in situ prepared on glassy carbon electrode surface via constant potential oxidation. Controlling at 0.8 V in NaOH solution, the high-valence cobalt catalytically oxidized the reduced compounds, decreasing its surface amount and current signal. The current decline was used as the response signal of chemical oxygen demand (COD) because COD represents the summation of reduced compounds in water. The surface morphology and electrocatalytic activity of cobalt oxide were readily tuned by variation of deposition potential, time, medium and Co(2+) concentration. As confirmed from the atomic force microscopy measurements, the cobalt oxide film, that prepared at 1.3 V for 40 s in pH 4.6 acetate buffer containing 10 mM Co(NO(3))(2), possesses large surface roughness and numerous three-dimensional structures. Electrochemical tests indicated that the prepared cobalt oxide exhibited high electrocatalytic activity to the reduced compounds, accompanied with strong COD signal enhancement. As a result, a novel electrochemical sensor with high sensitivity, rapid response and operational simplicity was developed for COD. The detection limit was as low as 1.1 mg L(-1). The analytical application was studied using a large number of lake water samples, and the accuracy was tested by standard method.

  9. Influence of precursors chemistry on ALD growth of cobalt-molybdenum oxide films.

    PubMed

    Diskus, Madeleine; Balasundaram, Murugan; Nilsen, Ola; Fjellvåg, Helmer

    2012-02-28

    Cobalt molybdenum compounds are important catalytic materials in many processes, e.g. in splitting of ammonia to form CO free hydrogen fuel. We here report on deposition of such cobalt molybdenum oxides by atomic layer deposition (ALD) using different types of metal precursors CoCp(2) (Cp = cyclopentadienyl), Co(thd)(2) (Hthd = 2,2,6,6-tetramethylheptan-3,5-dione), Mo(CO)(6) and oxygen precursors O(3), H(2)O, and (O(3) + H(2)O). The growth dynamics have been investigated using quartz crystal microbalance (QCM) methods. It is evident that mixing of the different precursor chemistries affect the growth patterns. When water is introduced to the reactions, a surface controlled mechanism takes place which guides the deposited stoichiometry towards the CoMoO(4) phase over a wide range of cobalt rich pulsed compositions. This is a rare example of how surface chemistry can control stoichiometry of depositions in ALD. The deposited films have been investigated by X-ray diffraction, Raman spectroscopy and atomic force microscopy. The catalytic activity of selected films have been characterized by temperature programmed ammonia decomposition, proving the films to be catalytically active and lowering the decomposition temperature by some 200 °C.

  10. High quality thin films of thermoelectric misfit cobalt oxides prepared by a chemical solution method.

    PubMed

    Rivas-Murias, Beatriz; Manuel Vila-Fungueiriño, José; Rivadulla, Francisco

    2015-07-08

    Misfit cobaltates ([Bi/Ba/Sr/Ca/CoO]n(RS)[CoO2]q) constitute the most promising family of thermoelectric oxides for high temperature energy harvesting. However, their complex structure and chemical composition makes extremely challenging their deposition by high-vacuum physical techniques. Therefore, many of them have not been prepared as thin films until now. Here we report the synthesis of high-quality epitaxial thin films of the most representative members of this family of compounds by a water-based chemical solution deposition method. The films show an exceptional crystalline quality, with an electrical conductivity and thermopower comparable to single crystals. These properties are linked to the epitaxial matching of the rock-salt layers of the structure to the substrate, producing clean interfaces free of amorphous phases. This is an important step forward for the integration of these materials with complementary n-type thermoelectric oxides in multilayer nanostructures.

  11. High quality thin films of thermoelectric misfit cobalt oxides prepared by a chemical solution method

    PubMed Central

    Rivas-Murias, Beatriz; Manuel Vila-Fungueiriño, José; Rivadulla, Francisco

    2015-01-01

    Misfit cobaltates ([Bi/Ba/Sr/Ca/CoO]nRS[CoO2]q) constitute the most promising family of thermoelectric oxides for high temperature energy harvesting. However, their complex structure and chemical composition makes extremely challenging their deposition by high-vacuum physical techniques. Therefore, many of them have not been prepared as thin films until now. Here we report the synthesis of high-quality epitaxial thin films of the most representative members of this family of compounds by a water-based chemical solution deposition method. The films show an exceptional crystalline quality, with an electrical conductivity and thermopower comparable to single crystals. These properties are linked to the epitaxial matching of the rock-salt layers of the structure to the substrate, producing clean interfaces free of amorphous phases. This is an important step forward for the integration of these materials with complementary n-type thermoelectric oxides in multilayer nanostructures. PMID:26153533

  12. Epitaxial cobalt oxide films on Ir(100)-the importance of crystallographic analyses.

    PubMed

    Heinz, K; Hammer, L

    2013-05-01

    Epitaxial cobalt oxide films on Ir(100) exhibit a rich scenario of different structural phases which are reviewed in this paper. The great majority of phases could be, as a rare case, crystallographically described by the joint application of atomically resolved STM and quantitative LEED, whereby structural surprises were more the rule than the exception. So, the oxide grows in the polar (111) orientation for both the Co3O4 and CoO stoichiometry on the bare Ir substrate in spite of the latter's square symmetry. Moreover, the film orientation can be tuned to non-polar (100) growth when one or several pseudomorphic Co layers are introduced as an interface between oxide and Ir substrate. By using the nanostructured Ir(100)-(5 × 1)-H phase as a template a nanostructured Co film can be formed whose oxidation leads to a nanostructured oxide. The nominally polar films circumvent the polarity problem by appropriate surface terminations. That of CoO(111) is, again as a surprise, realized by a switch from rocksalt-type to wurtzite-type stacking near the surface, by which the latter becomes metallic. The stepwise oxidation of a pseudomorphic Co layer on the bare Ir substrate leads to the sequential formation of rocksalt-type tetrahedral Co-O building blocks (with intermediate BN-type blocks) whereby the Co species more and more assume positions determined by the inner-oxidic binding.

  13. Impedance spectroscopy of the oxide films formed during high temperature oxidation of a cobalt-plated ferritic alloy

    NASA Astrophysics Data System (ADS)

    Velraj, S.; Zhu, J. H.; Painter, A. S.; Du, S. W.; Li, Y. T.

    2014-02-01

    Impedance spectroscopy was used to evaluate the oxide films formed on cobalt-coated Crofer 22 APU ferritic stainless steel after thermal oxidation at 800 °C in air for different times (i.e. 2, 50, 100 and 500 h). Impedance spectra of the oxide films exhibited two or three semicircles depending on the oxidation time, which correspond to the presence of two or three individual oxide layers. Coupled with scanning electron microscopy/energy-dispersive spectroscopy (SEM/EDS) and X-ray diffraction (XRD), the individual oxide layer corresponding to each semicircle was determined unambiguously. Impedance spectrum analysis of the oxide films formed on the sample after thermal exposure at 800 °C in air for 2 h led to the identification of the low-frequency and high-frequency semicircles as being from Cr2O3 and Co3O4, respectively. SEM/EDS and XRD analysis of the 500-h sample clearly revealed the presence of three oxide layers, analyzed to be Co3-xCrxO4, CoCr2O4, and Cr2O3. Although the SEM images of the 50-h and 100-h samples did not clearly show the CoCr2O4 layer, impedance plots implied their presence. The oxide scales were assigned to their respective semicircles and the electrical properties of Co3-xCrxO4, CoCr2O4 and Cr2O3 were determined from the impedance data.

  14. Electronic structure at transition metal phthalocyanine-transition metal oxide interfaces: Cobalt phthalocyanine on epitaxial MnO films

    SciTech Connect

    Glaser, Mathias; Peisert, Heiko Adler, Hilmar; Aygül, Umut; Ivanovic, Milutin; Chassé, Thomas; Nagel, Peter; Merz, Michael; Schuppler, Stefan

    2015-03-14

    The electronic structure of the interface between cobalt phthalocyanine (CoPc) and epitaxially grown manganese oxide (MnO) thin films is studied by means of photoemission (PES) and X-ray absorption spectroscopy (XAS). Our results reveal a flat-lying adsorption geometry of the molecules on the oxide surface which allows a maximal interaction between the π-system and the substrate. A charge transfer from MnO, in particular, to the central metal atom of CoPc is observed by both PES and XAS. The change of the shape of N-K XAS spectra at the interface points, however, to the involvement of the Pc macrocycle in the charge transfer process. As a consequence of the charge transfer, energetic shifts of MnO related core levels were observed, which are discussed in terms of a Fermi level shift in the semiconducting MnO films due to interface charge redistribution.

  15. Role of Amphiphilic Block Copolymer Composition on Pore Characteristics of Micelle-Templated Mesoporous Cobalt Oxide Films.

    PubMed

    Wang, Siyang; Tangvijitsakul, Pattarasai; Qiang, Zhe; Bhaway, Sarang M; Lin, Kehua; Cavicchi, Kevin A; Soucek, Mark D; Vogt, Bryan D

    2016-04-26

    Block copolymer templating is a versatile approach for the generation of well-defined porosity in a wide variety of framework chemistries. Here, we systematically investigate how the composition of a poly(methoxy poly[ethylene glycol] methacrylate)-block-poly(butyl acrylate) (PMPEG-PBA) template impacts the pore characteristics of mesoporous cobalt oxide films. Three templates with a constant PMPEG segment length and different hydrophilic block volume fractions of 17%, 51%, and 68% for the PMPEG-PBA are cooperatively assembled with cobalt nitrate hexahydrate and citric acid. Irrespective of template composition, a spherical nanostructure is templated and elliptical mesostructures are obtained on calcination due to uniaxial contraction of the film. The average pore size increases from 11.4 ± 2.8 to 48.5 ± 4.3 nm as the length of the PBA segment increases as determined from AFM. For all three templates examined, a maximum in porosity (∼35% in all cases) and surface area is obtained when the precursor solids contain 35-45 wt % PMPEG-PBA. This invariance suggests that the total polymer content drives the structure through interfacial assembly. The composition for maximizing porosity and surface area with the micelle-templating approach results from a general decrease in porosity with increasing cobalt nitrate hexahydrate content and the increasing mechanical integrity of the framework to resist collapse during template removal/crystallization as the cobalt nitrate hexahydrate content increases. Unlike typical evaporation induced self-assembly with sol-gel chemistry, the hydrophilic/hydrophobic composition of the block copolymer template is not a critical component to the mesostructure developed with micelle-templating using metal nitrate-citric acid as the precursor. PMID:27040316

  16. Solar absorptance of copper-cobalt oxide thin film coatings with nano-size, grain-like morphology: Optimization and synchrotron radiation XPS studies

    NASA Astrophysics Data System (ADS)

    Amri, Amun; Duan, XiaoFei; Yin, Chun-Yang; Jiang, Zhong-Tao; Rahman, M. Mahbubur; Pryor, Trevor

    2013-06-01

    Copper-cobalt oxides thin films had been successfully coated on reflective aluminium substrates via a facile sol-gel dip-coating method for solar absorptance study. The optimum absorptance in the range of solar radiation is needed for further optimum design of this material for selective solar absorber application. Field emission scanning electron microscopy was used to characterize the surface morphology of the coating whereby nano-size, grain-like morphology was observed. Synchrotron radiation X-ray photoelectron spectroscopy was employed to analyze the electronic structure of the coated surface showing that the (i) oxygen consisted of lattice, surface and subsurface oxygen, (ii) copper consisted of octahedral and tetrahedral Cu+, as well as octahedral and paramagnetic Cu2+ oxidation states, and (iii) cobalt consisted of tetrahedral and paramagnetic Co(II), octahedral Co(III) as well as mixed Co(II,III) oxidation states. In order to optimize the solar absorptance of the coatings, relevant parameters such as concentrations of cobalt and copper, copper/cobalt concentration ratios and dip-speed were investigated. The optimal coating with α = 83.4% was produced using 0.25 M copper acetate and 0.25 M cobalt chloride (Cu/Co ratio = 1) with dip-speed 120 mm/min (four cycles). The operational simplicity of the dip-coating system indicated that it could be extended for coating of other mixed metal oxides as well.

  17. The role of cobalt doping on magnetic and optical properties of indium oxide nanostructured thin film prepared by sol–gel method

    SciTech Connect

    Baqiah, H.; Ibrahim, N.B.; Halim, S.A.; Flaifel, Moayad Husein; Abdi, M.H.

    2015-03-15

    Highlights: • Cobalt doped indium oxide thin films have been prepared by a sol–gel method. • The films have a thickness less than 100 nm and grain size less than 10 nm. • The lattice parameters and grain size of films decrease as Co content increase. • The optical band gap of films increases as the grain size decrease. • The films' magnetic behaviour is sensitive to ratio of oxygen defects per Co ions. - Abstract: The effect of Co doping concentration, (x = 0.025–0.2), in In{sub 2−x}Co{sub x}O{sub 3} thin film was investigated by X-rays diffraction (XRD), transmission electron microscopy, X-ray photoelectron spectroscopy (XPS), Ultraviolet visible spectrophotometer (UV–vis) and vibrating sample magnetometer (VSM). All films were prepared by sol–gel technique followed by spin coating process. The XRD and XPS measurements indicate that Co{sup +2} has been successfully substituted in In{sup +3} site. The TEM measurement shows nanostructure morphology of the films. The doping of Co in indium oxide resulted in a decrease in the lattice parameters and grain size while the band gap increased with increasing Co concentration. Further, by comparing VSM and XPS results, the magnetic behaviour of the films were found to be sensitive to Co concentrations, oxygen vacancies and ratio of oxygen defects to Co concentrations. The magnetic behaviour of the prepared films was explained using bound magnetic polaron (BMP) model.

  18. Tuning the structural, electrical and optical properties of tin oxide thin films via cobalt doping and annealing

    NASA Astrophysics Data System (ADS)

    El Sayed, A. M.; Taha, S.; Shaban, Mohamed; Said, G.

    2016-07-01

    Pure and cobalt-doped SnO2 (Sn1-xCoxO2, 0 ≤ x ≤ 0.09) thin films were grown by dissolving SnCl2·2H2O in ethanol and spin coating on glass substrates. The X-ray diffraction and Raman analysis show that the films are polycrystalline and correspond to the rutile phase with a preferred orientation along (110) direction. The grain size and crystallinity of the films that annealed at 450 °C for 1.0 h are enhanced after annealing at 500 °C for 2.0 h. According to atomic force microscopy (AFM), the films consist of grains influenced by doping and annealing temperature and time. I-V measurements reveal non-Ohmic contacts of the films with the electrodes. Transmittance spectra, optical band gap (Eg), Urbach energy (EU), refractive index, film thickness, and the optical constants of the films are dependent on the Co content and annealing conditions. The obtained results illustrate the possibility of controlling the film's physical properties for the optoelectronic devices and applications.

  19. Oxidation of low cobalt alloys

    NASA Technical Reports Server (NTRS)

    Barrett, C. A.

    1982-01-01

    Four high temperature alloys: U-700, Mar M-247, Waspaloy and PM/HIP U-700 were modified with various cobalt levels ranging from 0 percent to their nominal commercial levels. The alloys were then tested in cyclic oxidation in static air at temperatures ranging from 1000 to 1150 C at times from 500 to 100 1 hour cycles. Specific weight change with time and X-ray diffraction analyses of the oxidized samples were used to evaluate the alloys. The alloys tend to be either Al2O3/aluminate spinel or Cr2O3/chromite spinel formers depending on the Cr/Al ratio in the alloy. Waspaloy with a ratio of 15:1 is a strong Cr2O3 former while this U-700 with a ratio of 3.33:1 tends to form mostly Cr2O3 while Mar M-247 with a ratio of 1.53:1 is a strong Al2O3 former. The best cyclic oxidation resistance is associated with the Al2O3 formers. The cobalt levels appear to have little effect on the oxidation resistance of the Al2O3/aluminate spinel formers while any tendency to form Cr2O3 is accelerated with increased cobalt levels and leads to increased oxidation attack.

  20. Metal-Organic Framework Thin Films as Platforms for Atomic Layer Deposition of Cobalt Ions To Enable Electrocatalytic Water Oxidation.

    PubMed

    Kung, Chung-Wei; Mondloch, Joseph E; Wang, Timothy C; Bury, Wojciech; Hoffeditz, William; Klahr, Benjamin M; Klet, Rachel C; Pellin, Michael J; Farha, Omar K; Hupp, Joseph T

    2015-12-30

    Thin films of the metal-organic framework (MOF) NU-1000 were grown on conducting glass substrates. The films uniformly cover the conducting glass substrates and are composed of free-standing sub-micrometer rods. Subsequently, atomic layer deposition (ALD) was utilized to deposit Co(2+) ions throughout the entire MOF film via self-limiting surface-mediated reaction chemistry. The Co ions bind at aqua and hydroxo sites lining the channels of NU-1000, resulting in three-dimensional arrays of separated Co ions in the MOF thin film. The Co-modified MOF thin films demonstrate promising electrocatalytic activity for water oxidation.

  1. Metal-Organic Framework Thin Films as Platforms for Atomic Layer Deposition of Cobalt Ions To Enable Electrocatalytic Water Oxidation.

    PubMed

    Kung, Chung-Wei; Mondloch, Joseph E; Wang, Timothy C; Bury, Wojciech; Hoffeditz, William; Klahr, Benjamin M; Klet, Rachel C; Pellin, Michael J; Farha, Omar K; Hupp, Joseph T

    2015-12-30

    Thin films of the metal-organic framework (MOF) NU-1000 were grown on conducting glass substrates. The films uniformly cover the conducting glass substrates and are composed of free-standing sub-micrometer rods. Subsequently, atomic layer deposition (ALD) was utilized to deposit Co(2+) ions throughout the entire MOF film via self-limiting surface-mediated reaction chemistry. The Co ions bind at aqua and hydroxo sites lining the channels of NU-1000, resulting in three-dimensional arrays of separated Co ions in the MOF thin film. The Co-modified MOF thin films demonstrate promising electrocatalytic activity for water oxidation. PMID:26636174

  2. Metal oxide films on metal

    DOEpatents

    Wu, Xin D.; Tiwari, Prabhat

    1995-01-01

    A structure including a thin film of a conductive alkaline earth metal oxide selected from the group consisting of strontium ruthenium trioxide, calcium ruthenium trioxide, barium ruthenium trioxide, lanthanum-strontium cobalt oxide or mixed alkaline earth ruthenium trioxides thereof upon a thin film of a noble metal such as platinum is provided.

  3. Bipolar charge storage characteristics in copper and cobalt co-doped zinc oxide (ZnO) thin film.

    PubMed

    Kumar, Amit; Herng, Tun Seng; Zeng, Kaiyang; Ding, Jun

    2012-10-24

    The bipolar charge phenomenon in Cu and Co co-doped zinc oxide (ZnO) film samples has been studied using scanning probe microscopy (SPM) techniques. Those ZnO samples are made using a pulsed laser deposition (PLD) technique. It is found that the addition of Cu and Co dopants suppresses the electron density in ZnO and causes a significant change in the work function (Fermi level) value of the ZnO film; this results in the ohmic nature of the contact between the electrode (probe tip) and codoped sample, whereas this contact exhibits a Schottky nature in the undoped and single-element-doped samples. These results are verified by Kelvin probe force microscopy (KPFM) and ultraviolet photoelectron spectroscopy (UPS) measurements. It is also found that the co-doping (Cu and Co) can stabilize the bipolar charge, whereas Cu doping only stabilizes the positive charge in ZnO thin films.

  4. The mechanical, electrochemical, and morphological characteristics of passivating oxide films covering cobalt-chromium-molybdenum alloys: A study of five microstructures

    NASA Astrophysics Data System (ADS)

    Megremis, Spiro John

    2001-07-01

    Cobalt-chromium-molybdenum (Co-Cr-Mo) alloys possess a combination of properties that make them well suited for employment as biomaterials, such as high-strength and excellent wear and corrosion resistance. They receive this excellent corrosion resistance from passive oxide films which cover their surface. Because of the important role these oxide films play in protecting Co-Cr Mo alloys used in biological applications, there is a need to better understand them. This thesis investigated the structural and physical properties of the passivating oxide films covering Co-Cr Mo alloys with five different microstructures. The Co-Cr-Mo alloys were separated into the following groups: cast, wrought high carbon, wrought high carbon aged, forged high carbon, and forged low carbon. Electrochemical scratch tests were performed which provided information on the electrochemical kinetics of oxide fracture and repassivation for the different Co-Cr-Mo alloys. Furthermore, the stability and mechanical integrity of the oxide films covering the alloys were also evaluated. Step-polarization impedance spectroscopy tests were also performed on the different Co-Cr-Mo alloys, which provided valuable information about their electrochemical behavior when immersed in phosphate buffered saline (PBS) solution. For instance, it was observed that the corrosion properties of the different alloy types did not vary significantly with respect to the behavior of their individual polarization curves. Likewise, impedance values (maximum early resistance, maximum polarization resistance, and minimum capacitance) for the five alloy groups did not reveal any statistically meaningful differences. The similar passive electrochemical behavior of the five alloy groups suggests that the oxide films covering them were not significantly altered by changes in carbon content and processing. This research also showed that it was possible to monitor changes in the surface morphology of the cast Co-Cr-Mo alloys over a

  5. Structural, morphological, and electrical characteristics of the electrodeposited cobalt oxide electrode for supercapacitor applications

    SciTech Connect

    Kandalkar, Sunil G.; Lee, Hae-Min; Chae, Heeyeop; Kim, Chang-Koo

    2011-01-15

    Cobalt oxide (Co{sub 3}O{sub 4}) thin films were prepared through electrodeposition on copper substrates using an ammonia-complexed cobalt chloride solution. The structural and morphological properties of the film were studied using an X-ray diffractometer and scanning electron microscopy, and the results showed that the electrodeposited cobalt oxide film had a nanocrystalline and porous structure. The electrochemical behavior of the electrodeposited cobalt oxide electrode was evaluated in a KOH solution using cyclic voltammetry, electrochemical impedance spectroscopy, and galvanostatic charge-discharge tests. The electrodeposited cobalt oxide electrode exhibited a specific capacitance of 235 F/g at a scan rate of 20 mV/s. The specific energy and the specific power of the electrode were 4.0 Wh/kg and 1.33 kW/kg, respectively.

  6. Water oxidation by amorphous cobalt-based oxides: volume activity and proton transfer to electrolyte bases.

    PubMed

    Klingan, Katharina; Ringleb, Franziska; Zaharieva, Ivelina; Heidkamp, Jonathan; Chernev, Petko; Gonzalez-Flores, Diego; Risch, Marcel; Fischer, Anna; Dau, Holger

    2014-05-01

    Water oxidation in the neutral pH regime catalyzed by amorphous transition-metal oxides is of high interest in energy science. Crucial determinants of electrocatalytic activity were investigated for a cobalt-based oxide film electrodeposited at various thicknesses on inert electrodes. For water oxidation at low current densities, the turnover frequency (TOF) per cobalt ion of the bulk material stayed fully constant for variation of the thickness of the oxide film by a factor of 100 (from about 15 nm to 1.5 μm). Thickness variation changed neither the nanostructure of the outer film surface nor the atomic structure of the oxide catalyst significantly. These findings imply catalytic activity of the bulk hydrated oxide material. Nonclassical dependence on pH was observed. For buffered electrolytes with pKa values of the buffer base ranging from 4.7 (acetate) to 10.3 (hydrogen carbonate), the catalytic activity reflected the protonation state of the buffer base in the electrolyte solution directly and not the intrinsic catalytic properties of the oxide itself. It is proposed that catalysis of water oxidation occurs within the bulk hydrated oxide film at the margins of cobalt oxide fragments of molecular dimensions. At high current densities, the availability of a proton-accepting base at the catalyst-electrolyte interface controls the rate of water oxidation. The reported findings may be of general relevance for water oxidation catalyzed at moderate pH by amorphous transition-metal oxides.

  7. Growth of iron cobalt oxides by atomic layer deposition.

    PubMed

    Lie, Martin; Barnholt Klepper, Karina; Nilsen, Ola; Fjellvåg, Helmer; Kjekshus, Arne

    2008-01-14

    Thin films of iron cobalt oxides with spinel-type structure are made by the atomic layer deposition (ALD) technique using Fe(thd)3 (Hthd = 2,2,6,6-tetramethylheptane-3,5-dione), Co(thd)2, and ozone as precursors. Pulse parameters for ALD-type growth are established and such growth can be achieved at deposition temperatures between 185 and 310 degrees C. Films have been deposited on amorphous soda-lime glass and single-crystalline substrates of Si(100), MgO(100), and alpha-Al2O3(001) which all provide crystalline films, but with various orientations and crystallite sizes. Application of an external magnetic field during the film growth does not influence film growth characteristics (growth rate, crystallinity, topography etc.). Magnetization data are reported for phase-pure films of spinel-type structure with composition Fe2CoO4.

  8. 21 CFR 73.1015 - Chromium-cobalt-aluminum oxide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Chromium-cobalt-aluminum oxide. 73.1015 Section 73... LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1015 Chromium-cobalt-aluminum oxide. (a) Identity. The color additive chromium-cobalt-aluminum oxide is a blue-green pigment obtained by calcining...

  9. 21 CFR 73.1015 - Chromium-cobalt-aluminum oxide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Chromium-cobalt-aluminum oxide. 73.1015 Section 73... LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1015 Chromium-cobalt-aluminum oxide. (a) Identity. The color additive chromium-cobalt-aluminum oxide is a blue-green pigment obtained by calcining...

  10. 21 CFR 73.1015 - Chromium-cobalt-aluminum oxide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Chromium-cobalt-aluminum oxide. 73.1015 Section 73... LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1015 Chromium-cobalt-aluminum oxide. (a) Identity. The color additive chromium-cobalt-aluminum oxide is a blue-green pigment obtained by calcining...

  11. 21 CFR 73.1015 - Chromium-cobalt-aluminum oxide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Chromium-cobalt-aluminum oxide. 73.1015 Section 73... LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1015 Chromium-cobalt-aluminum oxide. (a) Identity. The color additive chromium-cobalt-aluminum oxide is a blue-green pigment obtained by calcining...

  12. 21 CFR 73.1015 - Chromium-cobalt-aluminum oxide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Chromium-cobalt-aluminum oxide. 73.1015 Section 73... LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1015 Chromium-cobalt-aluminum oxide. (a) Identity. The color additive chromium-cobalt-aluminum oxide is a blue-green pigment obtained by calcining...

  13. Interfacial Structure Dependent Spin Mixing Conductance in Cobalt Thin Films.

    PubMed

    Tokaç, M; Bunyaev, S A; Kakazei, G N; Schmool, D S; Atkinson, D; Hindmarch, A T

    2015-07-31

    Enhancement of Gilbert damping in polycrystalline cobalt thin-film multilayers of various thicknesses, overlayered with copper or iridium, was studied in order to understand the role of local interface structure in spin pumping. X-ray diffraction indicates that cobalt films less than 6 nm thick have strong fcc(111) texture while thicker films are dominated by hcp(0001) structure. The intrinsic damping for cobalt thicknesses above 6 nm is weakly dependent on cobalt thickness for both overlayer materials, and below 6 nm the iridium overlayers show higher damping enhancement compared to copper overlayers, as expected due to spin pumping. The interfacial spin mixing conductance is significantly enhanced in structures where both cobalt and iridium have fcc(111) structure in comparison to those where the cobalt layer has subtly different hcp(0001) texture at the interface. PMID:26274431

  14. Interfacial Structure Dependent Spin Mixing Conductance in Cobalt Thin Films

    NASA Astrophysics Data System (ADS)

    Tokaç, M.; Bunyaev, S. A.; Kakazei, G. N.; Schmool, D. S.; Atkinson, D.; Hindmarch, A. T.

    2015-07-01

    Enhancement of Gilbert damping in polycrystalline cobalt thin-film multilayers of various thicknesses, overlayered with copper or iridium, was studied in order to understand the role of local interface structure in spin pumping. X-ray diffraction indicates that cobalt films less than 6 nm thick have strong fcc(111) texture while thicker films are dominated by hcp(0001) structure. The intrinsic damping for cobalt thicknesses above 6 nm is weakly dependent on cobalt thickness for both overlayer materials, and below 6 nm the iridium overlayers show higher damping enhancement compared to copper overlayers, as expected due to spin pumping. The interfacial spin mixing conductance is significantly enhanced in structures where both cobalt and iridium have fcc(111) structure in comparison to those where the cobalt layer has subtly different hcp(0001) texture at the interface.

  15. Fabrication of iron-doped cobalt oxide nanocomposite films by electrodeposition and application as electrocatalyst for oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Zhang, Jingxuan; Wang, Xuemei; Qin, Dongdong; Xue, Zhonghua; Lu, Xiaoquan

    2014-11-01

    In this work, Fe-doped Co3O4 nanofilms were fabricated by electrodeposition on FTO glass substrates for the first time. The structures of the as-prepared nanofilms were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). Characterization results demonstrate that Fe was doped homogeneously in the nanofilms. As the different concentration ratios of Fe2+/Co2+ were explored, nanofilm with the ratio of 1:5 exhibits the optimal performance in electrochemical properties assessments. It is considered that the difference in the catalytic activities for the ORR of the samples may be due to the fact that the joining of iron changed the catalyst surface's electric state and enhanced the acidity of cobalt centers, on the other hand, the doping process probably modified the absorption property of the nanofilms. The experimental results suggest that the Fe-doped Co3O4 nanofilms in this work exhibit favorable electrocatalytic activity toward ORR and appear to be promising cathodic electrocatalyst in alkaline fuel cells.

  16. Magnetoelastic properties of cobalt-nickel thin films

    NASA Astrophysics Data System (ADS)

    Anapolsky, Abraham

    Cobalt-nickel alloys show large values of magnetostriction, magnetocrystalline anisotropy, and a martensitic phase transformation at temperatures around 0 K. Collectively, these properties make Co-Ni alloys good candidates for the so-called giant magnetostrictive effect. Magnetostrictive (and giant magnetostrictive) alloys can be used to replace complex machinery (such as actuators) in micro-electromechanical systems (MEMS). For this reason, researchers have been investigating the magnetostrictive properties of thin films. I grew and characterized films in the composition range Co: 10 wt% Ni to Co: 35 wt% Ni. Films were grown by electron beam evaporation and a variety of techniques including SEM, TEM, x-ray diffraction, and SQUID magnetometry were used to characterize the films. A thorough background in elastic and non-elastic mechanisms of deformation (in relation to magnetostriction) is discussed. These topics include a semi-classical treatment of magnetoelasticity, superelasticity, and martensitic transformations. An important result of this thesis is the complete magnetic and physical characterization for the entire range of Co-Ni thin films that undergo martensitic transformation. Extensive analysis of morphology, microstructure, phase, and magnetic data, developed a consistent picture of Co-Ni polycrystalline thin films in the composition range mentioned above. Another important result was the development of a novel technique for measuring the value of the magnetostriction coefficient in thin films. The in-plane component of magnetostriction ( lips ) is determined by fitting a theoretical model (based on the Stoner-Wohlforth theory for uniaxial systems) to magnetization vs temperature (M vs T) data for cobalt-nickel thin films. My theoretical model predicts the effect of an imposed stress (or strain) on the in-plane component of saturation magnetization ( Mips ). The imposed stress (or strain) is due to a mismatch in the coefficient of thermal expansion

  17. 40 CFR 721.10201 - Cobalt lithium manganese nickel oxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Cobalt lithium manganese nickel oxide... Specific Chemical Substances § 721.10201 Cobalt lithium manganese nickel oxide. (a) Chemical substance and... nickel oxide (PMN P-04-269; CAS No. 182442-95-1) is subject to reporting under this section for...

  18. 40 CFR 721.10201 - Cobalt lithium manganese nickel oxide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Cobalt lithium manganese nickel oxide... Specific Chemical Substances § 721.10201 Cobalt lithium manganese nickel oxide. (a) Chemical substance and... nickel oxide (PMN P-04-269; CAS No. 182442-95-1) is subject to reporting under this section for...

  19. 40 CFR 721.10201 - Cobalt lithium manganese nickel oxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Cobalt lithium manganese nickel oxide... Specific Chemical Substances § 721.10201 Cobalt lithium manganese nickel oxide. (a) Chemical substance and... nickel oxide (PMN P-04-269; CAS No. 182442-95-1) is subject to reporting under this section for...

  20. Cobalt-free polycrystalline Ba0.95La0.05FeO3-δ thin films as cathodes for intermediate-temperature solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Chen, Dengjie; Chen, Chi; Dong, Feifei; Shao, Zongping; Ciucci, Francesco

    2014-03-01

    Ba0.95La0.05FeO3-δ (BLF) thin films as electrodes for intermediate-temperature solid oxide fuel cells are prepared on single-crystal yttria-stabilized zirconia (YSZ) substrates by pulsed laser deposition. The phase structure, surface morphology and roughness of the BLF thin films are characterized by X-ray diffraction, scanning electron microscopy and atomic force microscopy. X-ray photoelectron spectroscopy is used to analyze the compositions of the deposited thin film and the chemical state of transition metal. The dense thin film exhibits a polycrystalline perovskite structure with a low surface roughness and a high oxygen vacancy concentration on the surface. Ag (paste or strip) and Au (strip) are applied on both surfaces of the symmetric cells as current collectors to evaluate electrochemical performance of the thin films. The electrode polarization resistances of the symmetric cells are found to be lower than those of most cobalt-free thin-film electrodes, e.g., 0.437 Ω cm2 at 700 °C and 0.21 atm. The oxygen reduction reaction mechanism of the BLF cathode in symmetric cells is studied by electrochemical impedance spectroscopy thanks to the equivalent fitting analysis. Both the oxygen surface exchange reaction and charge transfer are shown to determine the overall oxygen reduction reaction.

  1. Nitrogen oxides storage catalysts containing cobalt

    DOEpatents

    Lauterbach, Jochen; Snively, Christopher M.; Vijay, Rohit; Hendershot, Reed; Feist, Ben

    2010-10-12

    Nitrogen oxides (NO.sub.x) storage catalysts comprising cobalt and barium with a lean NO.sub.x storage ratio of 1.3 or greater. The NO.sub.x storage catalysts can be used to reduce NO.sub.x emissions from diesel or gas combustion engines by contacting the catalysts with the exhaust gas from the engines. The NO.sub.x storage catalysts can be one of the active components of a catalytic converter, which is used to treat exhaust gas from such engines.

  2. Photoeffects in cobalt doped pyrite (FeS 2) films

    NASA Astrophysics Data System (ADS)

    Thomas, B.; Ellmer, K.; Bohne, W.; Röhrich, J.; Kunst, M.; Tributsch, H.

    1999-07-01

    By indiffusion of a thin metallic cobalt layer into a pyrite film deposited by metal organic chemical vapour deposition (MOCVD), cobalt doped pyrite (FeS 2) films have been prepared. The cobalt in these films acts as a donor and transforms the originally p-type into n-type conductivity. To our knowledge this is the first time that n-type pyrite films have been prepared. Compared to the undoped p-type pyrite films, the cobalt-diffused films exhibit a much higher photoconductivity, as revealed by time resolved microwave conductivity analysis. From Hall and conductivity measurements a charge carrier concentration of about 10 20 cm -3 and a Hall mobility of about 1.5 cm 2/(V s) was calculated. This has to be compared with p-type pyrite films which do not show a Hall mobility above 0.1 cm 2/(V s), the detection limit of our Hall system. By analytical techniques (Rutherford backscattering and photoelectron spectroscopy) it was confirmed that the increase of the photoactivity is a bulk property of the pyrite films and not merely due to a surface passivation (for instance, due to metallic CoS 2). The presented results stimulate further experiments on in-situ-doping of pyrite by MOCVD and open the opportunity for the preparation of pn-junctions and pn-solar cells with pyrite.

  3. Microstructure and Magnetic Properties of Electrodeposited Cobalt Film

    SciTech Connect

    Bhuiyan, Md S; Taylor, B. J.; Paranthaman, Mariappan Parans; Thompson, James R; Sinclair, J.

    2008-01-01

    Cobalt films were electrodeposited onto both iron and copper substrates from an aqueous solution containing a mixture of cobalt sulfate, boric acid, sodium citrate, and vanadyl sulfate. The structural, intermetallic diffusion and magnetic properties of the electrodeposited films were studied. Cobalt electrodeposition was carried out in a passively divided cell aided by addition of vanadyl sulfate to keep the counter electrode clean. The divided electrolytic cell with very negative current densities cause the electrodeposited Co to adopt a face-centered cubic (fcc) structure, which is more magnetically reversible than the hexagonally close-packed (hcp) structured Co. The coercive field is also significantly less in the fcc-electrodeposited cobalt than in the hcp. SEM images show dense, uniform Co films without any cracks or porosity. Beside the deposition current, thickness of the film was also found to affect the crystal orientation particularly on iron substrates. Diffusion of cobalt film into the iron substrate was studied under reduced environment and a fast process was observed.

  4. Elucidating the domain structure of the cobalt oxide water splitting catalyst by X-ray pair distribution function analysis.

    PubMed

    Du, Pingwu; Kokhan, Oleksandr; Chapman, Karena W; Chupas, Peter J; Tiede, David M

    2012-07-11

    Pair distribution function (PDF) analysis was applied for structural characterization of the cobalt oxide water-splitting catalyst films using high energy X-ray scattering. The catalyst was found to be composed of domains consistent with a cobalt dioxide lattice sheet structure, possibly containing a Co(4)O(4) cubane-type "defect". The analysis identifies the film to consist of domains composed of 13-14 cobalt atoms with distorted coordination geometries that can be modeled by alteration in terminal oxygen atom positions at the domain edge. Phosphate is seen as a disordered component in the films. This work establishes an approach that can be applied to study the structure of in situ cobalt oxide water-splitting film under functional catalytic conditions.

  5. Cobalt oxide silica membranes for desalination.

    PubMed

    Lin, Chun Xiang C; Ding, Li Ping; Smart, Simon; da Costa, João C Diniz

    2012-02-15

    This work shows for the first time the potential of cobalt oxide silica (CoO(x)Si) membranes for desalination of brackish (1 wt.% NaCl), seawater (3.5 wt.% NaCl) and brine (7.5-15 wt.% NaCl) concentrations at feed temperatures between 25 and 75 °C. CoO(x)Si xerogels were synthesised via a sol-gel method including TEOS, cobalt nitrate hydrate and peroxide. Initial hydrothermal exposure (<2 days) of xerogels prepared with various pH (3-6) resulted in densification of the xerogel via condensation reactions within the silica matrix, with the xerogel synthesised at pH 5 the most resistant. Subsequent exposure was not found to significantly alter the pore structure of the xerogels, suggesting they were hydrostable and that the pore sizes remained at molecular sieving dimensions. Membranes were then synthesised using identical sol-gel conditions to the xerogel samples and testing showed that elevated feed temperatures resulted in increased water fluxes, whilst increasing the saline feed concentration resulted in decreased water fluxes. The maximum flux observed was 1.8 kg m(-2) h(-1) at 75 °C for a 1 wt.% NaCl feed concentration. The salt rejection was consistently in excess of 99%, independent of either the testing temperature or salt feed concentration.

  6. Improved adhesion of ultra-hard carbon films on cobalt-chromium orthopaedic implant alloy.

    PubMed

    Catledge, Shane A; Vaid, Rishi; Diggins, Patrick; Weimer, Jeffrey J; Koopman, Mark; Vohra, Yogesh K

    2011-02-01

    While interfacial graphite formation and subsequent poor film adhesion is commonly reported for chemical vapor deposited hard carbon films on cobalt-based materials, we find the presence of O(2) in the feedgas mixture to be useful in achieving adhesion on a CoCrMo alloy. Nucleation studies of surface structure before formation of fully coalesced hard carbon films reveal that O(2) feedgas helps mask the catalytic effect of cobalt with carbon through early formation of chromium oxides and carbides. The chromium oxides, in particular, act as a diffusion barrier to cobalt, minimizing its migration to the surface where it would otherwise interact deleteriously with carbon to form graphite. When O(2) is not used, graphitic soot forms and films delaminate readily upon cooling to room temperature. Continuous 1 μm-thick nanostructured carbon films grown with O(2) remain adhered with measured hardness of 60 GPa and show stable, non-catastrophic circumferential micro-cracks near the edges of indent craters made using Rockwell indentation. PMID:21221739

  7. Thin films of tetrafluorosubstituted cobalt phthalocyanine: Structure and sensor properties

    NASA Astrophysics Data System (ADS)

    Klyamer, Darya D.; Sukhikh, Aleksandr S.; Krasnov, Pavel O.; Gromilov, Sergey A.; Morozova, Natalya B.; Basova, Tamara V.

    2016-05-01

    In this work, thin films of tetrafluorosubstituted cobalt phthalocyanine (CoPcF4) were prepared by organic molecular beam deposition and their structure was studied using UV-vis, polarization dependent Raman spectroscopy, XRD and atomic force microscopy. Quantum chemical calculations (DFT) have been employed in order to determine the detailed assignment of the bands in the CoPcF4 IR and Raman spectra. The electrical sensor response of CoPcF4 films to ammonia vapours was investigated and compared with that of unsubstituted cobalt phthalocyanine films. In order to explain the difference in sensitivity of the unsubstituted and fluorinated phthalocyanines to ammonia, the nature and properties of chemical binding between CoPc derivatives and NH3 were described by quantum-chemical calculations utilizing DFT method. The effect of post-deposition annealing on surface morphology and gas sensing properties of CoPcF4 films was also studied.

  8. Cobalt Oxide Hollow Nanoparticles Derived by Bio-Templating

    NASA Technical Reports Server (NTRS)

    Kim, Jae-Woo; Choi, Sang H.; Lillehei, Peter T.; Chu, Sang-Hyon; King, Glen C.; Watt, Gerald D.

    2005-01-01

    We present here the first fabrication of hollow cobalt oxide nanoparticles produced by a protein-regulated site-specific reconstitution process in aqueous solution and describe the metal growth mechanism in the ferritin interior.

  9. Annealing effects on microstrain of cobalt oxide nanoparticles

    SciTech Connect

    Deotale, Anjali Jain Nandedkar, R. V.; Sinha, A. K.; Singh, M. N.; Upadhyay, Anuj

    2014-04-24

    Cobalt oxide nanoparticles in different phases have been synthesized using ash supported method. The effect of isochronal annealing on micro-strain of cobalt oxide nanoparticles has been studied. The lattice strain contribution to the x-ray diffraction line broadening in the nanoparticles was analyzed using Williamson Hall (W-H) plot. It is observed that micro-strain was released at higher annealing temperature.

  10. Synthesis of cobalt stearate as oxidant additive for oxo-biodegradable polyethylene

    NASA Astrophysics Data System (ADS)

    Asriza, Ristika O.; Arcana, I. Made

    2015-09-01

    Cobalt stearate is an oxidant additives that can initiate a process of degradation in high density polyethylene (HDPE). To determine the effect of cobalt stearate in HDPE, oxo-biodegradable polyethylene film was given an irradiation with UV light or heating at various temperature. After given a heating, the FTIR spectra showed a new absorption peak at wave number 1712 cm-1 indicating the presence of carbonyl groups in polymers, whereas after irradiation with UV light is not visible the presence of this absorption peak. The increase concentration of cobalt stearate added in HDPE and the higher heating temperature, the intensity of the absorption peak of the carbonyl group increased. The increasing intensity of the carbonyl group absorption is caused the presence of damage in the film surface after heating, and this result is supported by analysis the surface properties of the film with using SEM. Biodegradation tests were performed on oxo-biodegradable polyethylene film which has been given heating or UV light with using activated sludge under optimal conditions the growth of microorganisms. After biodegradation, the maximum weight decreased by 23% in the oxo-biodegradable polyethylene film with a cobalt stearate concentration of 0.2% and after heating at a temperature of 75 °C for 10 days, and only 0.69% in the same film after irradiation UV light for 10 days. Based on the results above, cobalt stearate additive is more effective to initiate the oxidative degradation of HDPE when it is initiated by heating compared to irradiation with UV light.

  11. Synthesis of cobalt stearate as oxidant additive for oxo-biodegradable polyethylene

    SciTech Connect

    Asriza, Ristika O.; Arcana, I Made

    2015-09-30

    Cobalt stearate is an oxidant additives that can initiate a process of degradation in high density polyethylene (HDPE). To determine the effect of cobalt stearate in HDPE, oxo-biodegradable polyethylene film was given an irradiation with UV light or heating at various temperature. After given a heating, the FTIR spectra showed a new absorption peak at wave number 1712 cm{sup −1} indicating the presence of carbonyl groups in polymers, whereas after irradiation with UV light is not visible the presence of this absorption peak. The increase concentration of cobalt stearate added in HDPE and the higher heating temperature, the intensity of the absorption peak of the carbonyl group increased. The increasing intensity of the carbonyl group absorption is caused the presence of damage in the film surface after heating, and this result is supported by analysis the surface properties of the film with using SEM. Biodegradation tests were performed on oxo-biodegradable polyethylene film which has been given heating or UV light with using activated sludge under optimal conditions the growth of microorganisms. After biodegradation, the maximum weight decreased by 23% in the oxo-biodegradable polyethylene film with a cobalt stearate concentration of 0.2% and after heating at a temperature of 75 °C for 10 days, and only 0.69% in the same film after irradiation UV light for 10 days. Based on the results above, cobalt stearate additive is more effective to initiate the oxidative degradation of HDPE when it is initiated by heating compared to irradiation with UV light.

  12. Coordination tuning of cobalt phosphates towards efficient water oxidation catalyst

    PubMed Central

    Kim, Hyunah; Park, Jimin; Park, Inchul; Jin, Kyoungsuk; Jerng, Sung Eun; Kim, Sun Hee; Nam, Ki Tae; Kang, Kisuk

    2015-01-01

    The development of efficient and stable water oxidation catalysts is necessary for the realization of practically viable water-splitting systems. Although extensive studies have focused on the metal-oxide catalysts, the effect of metal coordination on the catalytic ability remains still elusive. Here we select four cobalt-based phosphate catalysts with various cobalt- and phosphate-group coordination as a platform to better understand the catalytic activity of cobalt-based materials. Although they exhibit various catalytic activities and stabilities during water oxidation, Na2CoP2O7 with distorted cobalt tetrahedral geometry shows high activity comparable to that of amorphous cobalt phosphate under neutral conditions, along with high structural stability. First-principles calculations suggest that the surface reorganization by the pyrophosphate ligand induces a highly distorted tetrahedral geometry, where water molecules can favourably bind, resulting in a low overpotential (∼0.42 eV). Our findings emphasize the importance of local cobalt coordination in the catalysis and suggest the possible effect of polyanions on the water oxidation chemistry. PMID:26365091

  13. Coordination tuning of cobalt phosphates towards efficient water oxidation catalyst

    NASA Astrophysics Data System (ADS)

    Kim, Hyunah; Park, Jimin; Park, Inchul; Jin, Kyoungsuk; Jerng, Sung Eun; Kim, Sun Hee; Nam, Ki Tae; Kang, Kisuk

    2015-09-01

    The development of efficient and stable water oxidation catalysts is necessary for the realization of practically viable water-splitting systems. Although extensive studies have focused on the metal-oxide catalysts, the effect of metal coordination on the catalytic ability remains still elusive. Here we select four cobalt-based phosphate catalysts with various cobalt- and phosphate-group coordination as a platform to better understand the catalytic activity of cobalt-based materials. Although they exhibit various catalytic activities and stabilities during water oxidation, Na2CoP2O7 with distorted cobalt tetrahedral geometry shows high activity comparable to that of amorphous cobalt phosphate under neutral conditions, along with high structural stability. First-principles calculations suggest that the surface reorganization by the pyrophosphate ligand induces a highly distorted tetrahedral geometry, where water molecules can favourably bind, resulting in a low overpotential (~0.42 eV). Our findings emphasize the importance of local cobalt coordination in the catalysis and suggest the possible effect of polyanions on the water oxidation chemistry.

  14. Coordination tuning of cobalt phosphates towards efficient water oxidation catalyst.

    PubMed

    Kim, Hyunah; Park, Jimin; Park, Inchul; Jin, Kyoungsuk; Jerng, Sung Eun; Kim, Sun Hee; Nam, Ki Tae; Kang, Kisuk

    2015-01-01

    The development of efficient and stable water oxidation catalysts is necessary for the realization of practically viable water-splitting systems. Although extensive studies have focused on the metal-oxide catalysts, the effect of metal coordination on the catalytic ability remains still elusive. Here we select four cobalt-based phosphate catalysts with various cobalt- and phosphate-group coordination as a platform to better understand the catalytic activity of cobalt-based materials. Although they exhibit various catalytic activities and stabilities during water oxidation, Na2CoP2O7 with distorted cobalt tetrahedral geometry shows high activity comparable to that of amorphous cobalt phosphate under neutral conditions, along with high structural stability. First-principles calculations suggest that the surface reorganization by the pyrophosphate ligand induces a highly distorted tetrahedral geometry, where water molecules can favourably bind, resulting in a low overpotential (∼0.42 eV). Our findings emphasize the importance of local cobalt coordination in the catalysis and suggest the possible effect of polyanions on the water oxidation chemistry. PMID:26365091

  15. Stabilized chromium oxide film

    DOEpatents

    Garwin, Edward L.; Nyaiesh, Ali R.

    1988-01-01

    Stabilized air-oxidized chromium films deposited on high-power klystron ceramic windows and sleeves having a thickness between 20 and 150.ANG. are useful in lowering secondary electron emission yield and in avoiding multipactoring and window failure due to overheating. The ceramic substrate for the film is chosen from alumina, sapphire or beryllium oxide.

  16. Stabilized chromium oxide film

    DOEpatents

    Nyaiesh, A.R.; Garwin, E.L.

    1986-08-04

    Stabilized air-oxidized chromium films deposited on high-power klystron ceramic windows and sleeves having a thickness between 20 and 150A are useful in lowering secondary electron emission yield and in avoiding multipactoring and window failure due to overheating. The ceramic substrate for the film is chosen from alumina, sapphire or beryllium oxide.

  17. Cobalt(I) Olefin Complexes: Precursors for Metal-Organic Chemical Vapor Deposition of High Purity Cobalt Metal Thin Films.

    PubMed

    Hamilton, Jeff A; Pugh, Thomas; Johnson, Andrew L; Kingsley, Andrew J; Richards, Stephen P

    2016-07-18

    We report the synthesis and characterization of a family of organometallic cobalt(I) metal precursors based around cyclopentadienyl and diene ligands. The molecular structures of the complexes cyclopentadienyl-cobalt(I) diolefin complexes are described, as determined by single-crystal X-ray diffraction analysis. Thermogravimetric analysis and thermal stability studies of the complexes highlighted the isoprene, dimethyl butadiene, and cyclohexadiene derivatives [(C5H5)Co(η(4)-CH2CHC(Me)CH2)] (1), [(C5H5)Co(η(4)-CH2C(Me)C(Me)CH2)] (2), and [(C5H5)Co(η(4)-C6H8)] (4) as possible cobalt metal organic chemical vapor deposition (MOCVD) precursors. Atmospheric pressure MOCVD was employed using precursor 1, to synthesize thin films of metallic cobalt on silicon substrates under an atmosphere (760 torr) of hydrogen (H2). Analysis of the thin films deposited at substrate temperatures of 325, 350, 375, and 400 °C, respectively, by scanning electron microscopy and atomic force microscopy reveal temperature-dependent growth features. Films grown at these temperatures are continuous, pinhole-free, and can be seen to be composed of hexagonal particles clearly visible in the electron micrograph. Powder X-ray diffraction and X-ray photoelectron spectroscopy all show the films to be highly crystalline, high-purity metallic cobalt. Raman spectroscopy was unable to detect the presence of cobalt silicides at the substrate/thin film interface. PMID:27348614

  18. Formation of Cobalt Silicide Films by Ion Beam Deposition

    SciTech Connect

    Zhang, Yanwen; McCready, David E.; Wang, Chong M.; Young, James S.; Mckinley, Mathew I.; Whitlow, Harry J.; Razpet, Alenka; Possnert, Göran; Zhang, Tonghe; Wu, Yuguang

    2006-01-01

    Thin films of cobalt silicide are widely used as metallization in very large-scale integrated electronic circuits. In this study, Co ions were deposited on Si (111) wafers by a high beam current filter metal vacuum arc deposition (FMEVAD) system. Surface silicide films were formed after annealing from 500 to 700 C for 30 minutes. Cobalt depth profiles and contaminations were determined using Rutherford backscattering spectrometry (RBS) and time-of-flight energy elastic recoil detection analysis (ToF-E ERDA). The polycrystalline cobalt silicide phases formed were characterized by grazing-incidence x-ray diffraction (GIXRD). The surface topography development and interfaces have been investigated by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The results show that a thin CoSi2 surface layer with both a smooth surface topography and sharp interface can be achieved by annealing at 700 C. The CoSi phase and O contamination were observed in the samples that were annealed at lower temperatures.

  19. 40 CFR 721.5315 - Nickel, cobalt mixed metal oxide (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Nickel, cobalt mixed metal oxide... Specific Chemical Substances § 721.5315 Nickel, cobalt mixed metal oxide (generic). (a) Chemical substance... nickel, cobalt mixed metal oxide. (PMN P-02-90) is subject to reporting under this section for...

  20. 40 CFR 721.5315 - Nickel, cobalt mixed metal oxide (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Nickel, cobalt mixed metal oxide... Specific Chemical Substances § 721.5315 Nickel, cobalt mixed metal oxide (generic). (a) Chemical substance... nickel, cobalt mixed metal oxide. (PMN P-02-90) is subject to reporting under this section for...

  1. 40 CFR 721.5315 - Nickel, cobalt mixed metal oxide (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Nickel, cobalt mixed metal oxide... Specific Chemical Substances § 721.5315 Nickel, cobalt mixed metal oxide (generic). (a) Chemical substance... nickel, cobalt mixed metal oxide. (PMN P-02-90) is subject to reporting under this section for...

  2. 40 CFR 721.5315 - Nickel, cobalt mixed metal oxide (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Nickel, cobalt mixed metal oxide... Specific Chemical Substances § 721.5315 Nickel, cobalt mixed metal oxide (generic). (a) Chemical substance... nickel, cobalt mixed metal oxide. (PMN P-02-90) is subject to reporting under this section for...

  3. 40 CFR 721.5315 - Nickel, cobalt mixed metal oxide (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Nickel, cobalt mixed metal oxide... Specific Chemical Substances § 721.5315 Nickel, cobalt mixed metal oxide (generic). (a) Chemical substance... nickel, cobalt mixed metal oxide. (PMN P-02-90) is subject to reporting under this section for...

  4. 21 CFR 73.3110a - Chromium-cobalt-aluminum oxide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Chromium-cobalt-aluminum oxide. 73.3110a Section... LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Medical Devices § 73.3110a Chromium-cobalt-aluminum oxide. (a) Identity. The color additive chromium-cobalt-aluminum oxide (Pigment Blue 36) (CAS Reg....

  5. 21 CFR 73.3110a - Chromium-cobalt-aluminum oxide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Chromium-cobalt-aluminum oxide. 73.3110a Section... LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Medical Devices § 73.3110a Chromium-cobalt-aluminum oxide. (a) Identity. The color additive chromium-cobalt-aluminum oxide (Pigment Blue 36) (CAS Reg....

  6. 21 CFR 73.3110a - Chromium-cobalt-aluminum oxide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Chromium-cobalt-aluminum oxide. 73.3110a Section... LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Medical Devices § 73.3110a Chromium-cobalt-aluminum oxide. (a) Identity. The color additive chromium-cobalt-aluminum oxide (Pigment Blue 36) (CAS Reg....

  7. 21 CFR 73.3110a - Chromium-cobalt-aluminum oxide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Chromium-cobalt-aluminum oxide. 73.3110a Section... LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Medical Devices § 73.3110a Chromium-cobalt-aluminum oxide. (a) Identity. The color additive chromium-cobalt-aluminum oxide (Pigment Blue 36) (CAS Reg....

  8. 21 CFR 73.3110a - Chromium-cobalt-aluminum oxide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Chromium-cobalt-aluminum oxide. 73.3110a Section... LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Medical Devices § 73.3110a Chromium-cobalt-aluminum oxide. (a) Identity. The color additive chromium-cobalt-aluminum oxide (Pigment Blue 36) (CAS Reg....

  9. 40 CFR 721.10529 - Cobalt iron manganese oxide, carboxylic acid-modified (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Cobalt iron manganese oxide... Significant New Uses for Specific Chemical Substances § 721.10529 Cobalt iron manganese oxide, carboxylic acid... substance identified generically as cobalt iron manganese oxide, carboxylic acid-modified (PMN P-12-35)...

  10. 40 CFR 721.10529 - Cobalt iron manganese oxide, carboxylic acid-modified (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Cobalt iron manganese oxide... Significant New Uses for Specific Chemical Substances § 721.10529 Cobalt iron manganese oxide, carboxylic acid... substance identified generically as cobalt iron manganese oxide, carboxylic acid-modified (PMN P-12-35)...

  11. Synthesis of cobalt oxide nanoparticles via homogeneous precipitation using different synthetic conditions.

    PubMed

    Kishore, P N R; Jeevanandam, P

    2013-04-01

    Cobalt oxide nanoparticles have been prepared via homogeneous precipitation using different synthetic conditions. The effect of using cobalt salts with different anions (nitrate, acetate, chloride and sulphate) and concentrations on the final products has been investigated. The precursors to the cobalt oxide nanoparticles, obtained by the homogeneous precipitation, were found to be alpha-cobalt hydroxides with different stoichiometries. Pink and blue coloured alpha-cobalt hydroxides were obtained depending on the anion and concentration of the cobalt salt used. Co3O4 nanoparticles were obtained by thermal decomposition of the cobalt hydroxides in air at 350 degrees C. The precursors and the cobalt oxide nanoparticles were characterized by a variety of analytical techniques and magnetic properties of the different cobalt oxide nanoparticles have also been investigated.

  12. Water Oxidation and Oxygen Monitoring by Cobalt-Modified Fluorine-Doped Tin Oxide Electrodes

    SciTech Connect

    Kent, CA; Concepcion, JJ; Dares, CJ; Torelli, DA; Rieth, AJ; Miller, AS; Hoertz, PG; Meyer, TJ

    2013-06-12

    Electrocatalytic water oxidation occurs at fluoride-doped tin oxide (FTO) electrodes that have been surface-modified by addition of Co(II). On the basis of X-ray photoelectron spectroscopy and transmission electron microscopy measurements, the active surface site appears to be a single site or small-molecule assembly bound as Co(II), with no evidence for cobalt oxide film or cluster formation. On the basis of cyclic voltammetry measurements, surface-bound Co(II) undergoes a pH-dependent 1e(-)/1H(+) oxidation to Co(III), which is followed by pH-dependent catalytic water oxidation. O-2 reduction at FTO occurs at -0.33 V vs NHE, allowing for in situ detection of oxygen as it is formed by water oxidation on the surface. Controlled-potential electrolysis at 1.61 V vs NHE at pH 7.2 resulted in sustained water oxidation catalysis at a current density of 0.16 mA/cm(2) with 29 000 turnovers per site over an electrolysis period of 2 h. The turnover frequency for oxygen production per Co site was 4 s(-1) at an overpotential of 800 mV at pH 7.2. Initial experiments with Co(II) on a mesoporous, high-surface-area nanoFTO electrode increased the current density by a factor of similar to 5

  13. [Lead adsorption and arsenite oxidation by cobalt doped birnessite].

    PubMed

    Yin, Hui; Feng, Xiong-Han; Qiu, Guo-Hong; Tan, Wen-Feng; Liu, Fan

    2011-07-01

    In order to study the effects of transition metal ions on the physic-chemical properties of manganese dioxides as environmental friendly materials, three-dimensional nano-microsphere cobalt-doped birnessite was synthesized by reduction of potassium permanganate by mixtures of concentrated hydrochloride and cobalt (II) chloride. Powder X-ray diffraction, chemical analysis, N2 physical adsorption, field emission scanning electron microscopy (FE-SEM) and X-ray photoelectron spectra (XPS) were used to characterize the crystal structure, chemical composition and micro-morphologies of products. In the range of molar ratios from 0.05 to 0.20, birnessite was fabricated exclusively. It was observed that cobalt incorporated into the layers of birnessite and had little effect on the crystal structure and micromorpholgy, but crystallinity decreased after cobalt doping. Both chemical analysis and XPS results showed that manganese average oxidation state decreased after cobalt doping, and the percentage of Mn3+ increased. Co(III) OOH existed mainly in the structure. With the increase of cobalt, hydroxide oxygen percentage in molar increased from 12.79% for undoped birnessite to 13.05%, 17.69% and 17.79% for doped samples respectively. Adsorption capacity for lead and oxidation of arsenite of birnessite were enhanced by cobalt doping. The maximum capacity of Pb2+ adsorption increased in the order HB (2 538 mmol/kg) < CoB5 (2798 mmol/kg) < CoB10 (2932 mmol/kg) < CoB20 (3 146 mmol/kg). Oxidation percentage of arsenite in simulated waste water by undoped birnessite was 76.5%, those of doped ones increased by 2.0%, 12.8% and 18.9% respectively. Partial of Co3+ substitution for Mn4+ results in the increase of negative charge of the layer and the content of hydroxyl group, which could account for the improved adsorption capacity of Pb2+. After substitution of manganese by cobalt, oxidation capacity of arsenite by birnessite increases likely due to the higher standard redox potential of

  14. Cobalt.

    PubMed

    Fowler, Joseph F

    2016-01-01

    Cobalt has been a recognized allergen capable of causing contact dermatitis for decades. Why, therefore, has it been named 2016 "Allergen of the Year"? Simply put, new information has come to light in the last few years regarding potential sources of exposure to this metallic substance. In addition to reviewing some background on our previous understanding of cobalt exposures, this article will highlight the recently recognized need to consider leather as a major site of cobalt and the visual cues suggesting the presence of cobalt in jewelry. In addition, a chemical spot test for cobalt now allows us to better identify its presence in suspect materials.

  15. 40 CFR 721.10600 - Calcium cobalt lead strontium titanium tungsten oxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Calcium cobalt lead strontium titanium... Specific Chemical Substances § 721.10600 Calcium cobalt lead strontium titanium tungsten oxide. (a... calcium cobalt lead strontium titanium tungsten oxide (PMN P-11-272; CAS No. 1262279-30-0) is subject...

  16. 40 CFR 721.10600 - Calcium cobalt lead strontium titanium tungsten oxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Calcium cobalt lead strontium titanium... Specific Chemical Substances § 721.10600 Calcium cobalt lead strontium titanium tungsten oxide. (a... calcium cobalt lead strontium titanium tungsten oxide (PMN P-11-272; CAS No. 1262279-30-0) is subject...

  17. 40 CFR 721.10599 - Calcium cobalt lead titanium tungsten oxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Calcium cobalt lead titanium tungsten... Specific Chemical Substances § 721.10599 Calcium cobalt lead titanium tungsten oxide. (a) Chemical... cobalt lead titanium tungsten oxide (PMN P-11-271; CAS No. 1262279-31-1) is subject to reporting...

  18. 40 CFR 721.10599 - Calcium cobalt lead titanium tungsten oxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Calcium cobalt lead titanium tungsten... Specific Chemical Substances § 721.10599 Calcium cobalt lead titanium tungsten oxide. (a) Chemical... cobalt lead titanium tungsten oxide (PMN P-11-271; CAS No. 1262279-31-1) is subject to reporting...

  19. Degradation of atrazine by cobalt-mediated activation of peroxymonosulfate: Different cobalt counteranions in homogenous process and cobalt oxide catalysts in photolytic heterogeneous process.

    PubMed

    Chan, K H; Chu, W

    2009-05-01

    The degradation of atrazine (ATZ) by cobalt-mediated activation of peroxymonosulfate (PMS) has been studied in this work. For the homogenous process, different cobalt counteranions: cobalt(II) nitrate Co(NO(3))(2), cobalt(II) sulfate CoSO(4), cobalt(II) chloride CoCl(2), and cobalt(II) acetate Co(CH(3)COO)(2), have been examined. The inhibitory effect was observed in the process initiated by CoCl(2). For the pH test, wide range of pH level (2-10) has been investigated. It was found that the higher rates were obtained in the normal pH levels. At extreme pH levels, the process was impeded by inactivation of PMS at acidic pH and prohibited by precipitation at basic pH. On the other hand, the recycling capability of cobalt oxide and the oxidative potential of cobalt-immobilized titanium dioxide Co-TiO(2) catalyst were analyzed in the heterogeneous process. It was found that the higher the cobalt content in the catalyst, the better the removal performance was resulted. At last, the Co-TiO(2) catalyst synthesized in this work was found to be very effective in transforming ATZ as well as its intermediate in the presence of UV-vis irradiation.

  20. Formation of bile pigments by coupled oxidation of cobalt-substituted haemoglobin and myoglobin.

    PubMed Central

    Vernon, D I; Brown, S B

    1984-01-01

    Treatment of cobalt-substituted haemoglobin and myoglobin with ascorbate and molecular O2 (coupled oxidation) resulted in biliverdin formation from the cobalt(II) derivatives but not from the cobalt(III) derivatives. This was apparently due to the inability of ascorbate to reduce cobalt(III) haemoproteins. Isomer analysis of the biliverdins produced from coupled oxidation of cobalt(II) oxyhaemoglobin suggested that the orientation of the cobalt protoporphyrin IX in the haem pocket differed slightly from that of the haem in native haemoglobin. PMID:6497839

  1. Water-induced Formation of Cobalt Oxides Over Supported Cobalt/Ceria-Zirconia Catalysts under Ethanol-Steam Conditions

    SciTech Connect

    Lin, Sean S.-Y.; Kim, Do Heui; Engelhard, Mark H.; Ha, Su Y.

    2010-07-28

    The formation of water-induced cobalt oxides by re-oxidizing the metallic cobalt in the pre-reduced 10% Co/CeO2-ZrO2 catalyst was verified by in-situ TPR and in-situ XPS studies under various ethanol-steam conditions. The formation and transformation of water-induced cobalt oxide species were affected by the pre-reduction conditions used for the catalysts and the feed stream composition used in the reaction. This result suggests that the surface composition of the cobalt species in 10% Co-CZ catalyst, initially governed by the catalyst pre-treatment, was changed toward an equilibrium state that governed by the feed stream composition as the reaction proceeds. In addition, the reducibility of the ceria sites may play a significant role in the redox process involved both cobalt and ceria sites under ethanol-steam environment. Finally, the effect of the water-induced cobalt oxides on the catalytic performance, in particular for the carbon-carbon bond cleavage of ethanol, is negligible. However, these water-induced oxides may show importance for the subsequent reaction steps that determine the product selectivity during ethanol steam reforming, as their coexistence with the metallic cobalt species was revealed by the in-situ study under ethanol-steam conditions.

  2. Polymer - supported cobalt (II) catalysts for the oxidation of alkenes.

    PubMed

    Błaz, Edyta; Pielichowski, Jan

    2006-01-31

    Polymer-supported heterogeneous catalysts in a form of complexes of 8-hydroxy- quinoline with cobalt acetate were synthesized. Conjugated polymers - polyaniline (PANI), poly-o-toluidine (POT), poly-o-anisidine (POA) - were used as supports. Oxidation reactions of aliphatic and aromatic hydrocarbons were carried out in the presence of molecular oxygen at atmospheric pressure and epoxides or ketones were obtained as the main products with high selectivity.

  3. Chemical Mechanical Polishing of Ruthenium, Cobalt, and Black Diamond Films

    NASA Astrophysics Data System (ADS)

    Peethala, Brown Cornelius

    Ta/TaN bilayer serves as the diffusion barrier as well as the adhesion promoter between Cu and the dielectric in 32 nm technology devices. A key concern of future technology devices (<32 nm) for Cu interconnects is the extendibility of TaN/Ta/Cu-seed to sustain the diffusion barrier performance without forming voids and meeting the requirements of low resistivity. These are very challenging requirements for the Ta/TaN bilayer at a thickness of < 5 nm. Hence, ruthenium (Ru) and cobalt (Co), among these, are being considered for replacing Ta/TaN as barrier materials for Cu interconnects in future technology devices. Both are very attractive for reasons such as the capability of direct electroplating of Cu, lower resistivity and for a single layer (vs. a bilayer of Ta/TaN) to act as a barrier. During patterning, they need to be planarized using conventional chemical mechanical polishing (CMP) to achieve a planar surface. However, CMP of these new barrier materials requires novel slurry compositions that provide adequate selectivity towards Cu and dielectric films, and minimize galvanic corrosion. Apart from the application as a barrier, Ru also has been proposed as a lower electrode material in metal-insulator-metal capacitors where high (> 50 nm/min) Ru removal rates (RRs) are required and as a stop layer in magnetic recording head fabrication where low (< 1 nm/min) Ru RRs are desired. A Ru removal rate of ˜60 nm/min was achieved with a colloidal silica-based slurry at pH 9 using potassium periodate (KIO4) as the oxidizer. At this pH, toxic RuO4 does not form eliminating a major challenge in Ru CMP. This removal rate was obtained by increasing the solubility of KIO4 by adding potassium hydroxide (KOH). It was also determined that increased the ionic strength is not responsible for the observed increase in Ru removal rate. Benzotirazole (BTA) and ascorbic acid were added to the slurry to reduce the open circuit potential (Eoc) difference between Cu and Ru to ˜20 m

  4. Dynamic Measurements of Hydrogen and Lithium Distributions in Lithium-Cobalt-Oxide Films with Charging and Heating Using Elastic Recoil Detection Techniques

    NASA Astrophysics Data System (ADS)

    Tsuchiya, B.; Morita, K.; Iriyama, Y.; Majima, T.; Tsuchida, H.

    The migrations of lithium (Li) as well as hydrogen (H) in multi-layers thin films of Au/LiCoO2 (thickness: approximately 42 nm/80 nm), deposited onto one face of Li1.4Ti2Si0.4P2.6O12-AlPO4 (LATP) substrates, were dynamically observed with electric charging as well as isochronal annealing in vacuum by combining elastic recoil detection (ERD) analysis with Rutherford backscattering spectrometry (RBS)with 9.0-MeV O4+ ion-probe beams. The ERD spectra clearly revealed that Li atoms of approximately 9.4 at% migrated from the LiCoO2 surface to the LiCoO2/LATP interface with H absorption by a charge of approximately 0.48 e/cm2, which the acquiredvoltage was1.65 V. In addition, the diffusion of Li atoms to the LATP bulk occurred with H release by isochronal annealing at only 323 K for 10 min.The presence of H significantly influences the Li+ ion conduction for the Li-battery systems.

  5. In situ oxidation of carbon-encapsulated cobalt nanocapsules creates highly active cobalt oxide catalysts for hydrocarbon combustion

    PubMed Central

    Wang, Han; Chen, Chunlin; Zhang, Yexin; Peng, Lixia; Ma, Song; Yang, Teng; Guo, Huaihong; Zhang, Zhidong; Su, Dang Sheng; Zhang, Jian

    2015-01-01

    Combustion catalysts have been extensively explored to reduce the emission of hydrocarbons that are capable of triggering photochemical smog and greenhouse effect. Palladium as the most active material is widely applied in exhaust catalytic converter and combustion units, but its high capital cost stimulates the tremendous research on non-noble metal candidates. Here we fabricate highly defective cobalt oxide nanocrystals via a controllable oxidation of carbon-encapsulated cobalt nanoparticles. Strain gradients induced in the nanoconfined carbon shell result in the formation of a large number of active sites featuring a considerable catalytic activity for the combustion of a variety of hydrocarbons (methane, propane and substituted benzenes). For methane combustion, the catalyst displays a unique activity being comparable or even superior to the palladium ones. PMID:26074206

  6. In situ oxidation of carbon-encapsulated cobalt nanocapsules creates highly active cobalt oxide catalysts for hydrocarbon combustion.

    PubMed

    Wang, Han; Chen, Chunlin; Zhang, Yexin; Peng, Lixia; Ma, Song; Yang, Teng; Guo, Huaihong; Zhang, Zhidong; Su, Dang Sheng; Zhang, Jian

    2015-01-01

    Combustion catalysts have been extensively explored to reduce the emission of hydrocarbons that are capable of triggering photochemical smog and greenhouse effect. Palladium as the most active material is widely applied in exhaust catalytic converter and combustion units, but its high capital cost stimulates the tremendous research on non-noble metal candidates. Here we fabricate highly defective cobalt oxide nanocrystals via a controllable oxidation of carbon-encapsulated cobalt nanoparticles. Strain gradients induced in the nanoconfined carbon shell result in the formation of a large number of active sites featuring a considerable catalytic activity for the combustion of a variety of hydrocarbons (methane, propane and substituted benzenes). For methane combustion, the catalyst displays a unique activity being comparable or even superior to the palladium ones.

  7. In situ oxidation of carbon-encapsulated cobalt nanocapsules creates highly active cobalt oxide catalysts for hydrocarbon combustion

    NASA Astrophysics Data System (ADS)

    Wang, Han; Chen, Chunlin; Zhang, Yexin; Peng, Lixia; Ma, Song; Yang, Teng; Guo, Huaihong; Zhang, Zhidong; Su, Dang Sheng; Zhang, Jian

    2015-06-01

    Combustion catalysts have been extensively explored to reduce the emission of hydrocarbons that are capable of triggering photochemical smog and greenhouse effect. Palladium as the most active material is widely applied in exhaust catalytic converter and combustion units, but its high capital cost stimulates the tremendous research on non-noble metal candidates. Here we fabricate highly defective cobalt oxide nanocrystals via a controllable oxidation of carbon-encapsulated cobalt nanoparticles. Strain gradients induced in the nanoconfined carbon shell result in the formation of a large number of active sites featuring a considerable catalytic activity for the combustion of a variety of hydrocarbons (methane, propane and substituted benzenes). For methane combustion, the catalyst displays a unique activity being comparable or even superior to the palladium ones.

  8. In situ oxidation of carbon-encapsulated cobalt nanocapsules creates highly active cobalt oxide catalysts for hydrocarbon combustion.

    PubMed

    Wang, Han; Chen, Chunlin; Zhang, Yexin; Peng, Lixia; Ma, Song; Yang, Teng; Guo, Huaihong; Zhang, Zhidong; Su, Dang Sheng; Zhang, Jian

    2015-01-01

    Combustion catalysts have been extensively explored to reduce the emission of hydrocarbons that are capable of triggering photochemical smog and greenhouse effect. Palladium as the most active material is widely applied in exhaust catalytic converter and combustion units, but its high capital cost stimulates the tremendous research on non-noble metal candidates. Here we fabricate highly defective cobalt oxide nanocrystals via a controllable oxidation of carbon-encapsulated cobalt nanoparticles. Strain gradients induced in the nanoconfined carbon shell result in the formation of a large number of active sites featuring a considerable catalytic activity for the combustion of a variety of hydrocarbons (methane, propane and substituted benzenes). For methane combustion, the catalyst displays a unique activity being comparable or even superior to the palladium ones. PMID:26074206

  9. Pro-oxidative interactions of cobalt with human neutrophils.

    PubMed

    Ramafi, Grace J; Theron, Annette J; Anderson, Ronald

    2004-08-01

    The primary objectives of this study were to investigate the effects of cobalt(II) chloride (Co, 1.5-25 microM) on the reactivity of hydrogen peroxide (H2O2, 100 microM) or oxidants generated by activated human neutrophils. The prooxidative interactions of Co with H2O2 or cells were measured by luminol-enhanced chemiluminescence (LECL), and according to the extent of oxidative inactivation of added alpha-1-proteinase inhibitor (API). Cobalt dramatically potentiated the oxidation of luminol and API by both H2O2 and neutrophils activated with phorbol 12-myristate 13-acetate (5 ng/ml), without affecting the assembly of NADPH oxidase or the magnitude of oxygen consumption by the cells. Using 5,5-dimethyl-pyrolline 1-oxide-based electron spin resonance spectroscopy we were unable to detect hydroxyl radical formation by Co in the presence of either H2O2 or activated neutrophils, while the corresponding LECL responses were unaffected by the hydroxyl radical scavengers benzoate and mannitol (50 mM). These observations indicate that Co potentiates the reactivity of neutrophil-derived oxidants, primarily H2O2, which if operative in vivo during exposure to the heavy metal may pose the risk of oxidant- and protease-mediated tissue injury.

  10. Cobalt-based nanocatalysts for green oxidation and hydrogenation processes.

    PubMed

    Jagadeesh, Rajenahally V; Stemmler, Tobias; Surkus, Annette-Enrica; Bauer, Matthias; Pohl, Marga-Martina; Radnik, Jörg; Junge, Kathrin; Junge, Henrik; Brückner, Angelika; Beller, Matthias

    2015-06-01

    This protocol describes the preparation of cobalt-based nanocatalysts and their applications in environmentally benign redox processes for fine chemical synthesis. The catalytically active material consists of nanoscale Co3O4 particles surrounded by nitrogen-doped graphene layers (NGrs), which have been prepared by pyrolysis of phenanthroline-ligated cobalt acetate on carbon. The resulting materials have been found to be excellent catalysts for the activation of both molecular oxygen and hydrogen; in all tested reactions, water was the only by-product. By applying these catalysts, green oxidations of alcohols and hydrogenation of nitroarenes for the synthesis of nitriles, esters and amines are demonstrated. The overall time required for catalyst preparation and for redox reactions is 35 h and 10-30 h, respectively.

  11. 76 FR 47996 - Cobalt Lithium Manganese Nickel Oxide; Significant New Use Rule

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-08

    ... AGENCY 40 CFR Parts 9 and 721 RIN 2070-AB27 Cobalt Lithium Manganese Nickel Oxide; Significant New Use... chemical substance identified as cobalt lithium manganese nickel oxide (CAS No. 182442-95-1), which was the... nickel oxide (PMN P-04-269; CAS No. 182442-95-1). This action requires persons who intend to...

  12. Cobalt Oxide Nanosheet and CNT Micro Carbon Monoxide Sensor Integrated with Readout Circuit on Chip

    PubMed Central

    Dai, Ching-Liang; Chen, Yen-Chi; Wu, Chyan-Chyi; Kuo, Chin-Fu

    2010-01-01

    The study presents a micro carbon monoxide (CO) sensor integrated with a readout circuit-on-a-chip manufactured by the commercial 0.35 μm complementary metal oxide semiconductor (CMOS) process and a post-process. The sensing film of the sensor is a composite cobalt oxide nanosheet and carbon nanotube (CoOOH/CNT) film that is prepared by a precipitation-oxidation method. The structure of the CO sensor is composed of a polysilicon resistor and a sensing film. The sensor, which is of a resistive type, changes its resistance when the sensing film adsorbs or desorbs CO gas. The readout circuit is used to convert the sensor resistance into the voltage output. The post-processing of the sensor includes etching the sacrificial layers and coating the sensing film. The advantages of the sensor include room temperature operation, short response/recovery times and easy post-processing. Experimental results show that the sensitivity of the CO sensor is about 0.19 mV/ppm, and the response and recovery times are 23 s and 34 s for 200 ppm CO, respectively. PMID:22294897

  13. Catalysis on cobalt oxide-based nanocatalysts

    NASA Astrophysics Data System (ADS)

    Zhang, Shiran

    Heterogeneous catalysis, being the focus of attention in the realm of catalysis, plays a vital role in modern chemical and energy industries. A prototype of heterogeneous catalyst consists of metal nanoparticles dispersed and supported on a substrate. Transition metal oxide is one of the key components of heterogeneous catalyst and is frequently used as catalyst support for noble metal nanoparticle catalysts due to low cost. As a result of the high cost of noble metal elements, it is particularly favorable to design and develop transition metal oxide-based nanocatalysts mainly made of earthabundant elements with no or less noble metal with comparable or better catalytic performance than noble metal-based nanocatalysts in a catalytic reaction. In some cases, surface chemistry and structure of nanocatalysts are not invariable during catalysis. They evolve in terms of surface restructuring or phase change, which contributes to the complexity of catalyst surface under different catalytic conditions. Transition metal oxides, especially reducible transition metal oxides, have multiple cationic valence states and crystallographic structures. New catalytic active phases or sites could be formed upon surface restructuring under certain catalytic conditions while they may not be preserved if exposed to ambient conditions. Thus, it is essential to characterize catalyst surface under reaction conditions so that chemistry and structure of catalyst surface could be correlated with the corresponding catalytic performance. It also suggests a new route to design nanocatalysts through restructuring catalyst precursor under certain catalytic conditions tracked with in-situ analytical techniques. Catalysis occurs on catalyst surface. For noble metal nanoparticle catalysts, only atoms exposed on surface participate in catalytic processes, while atoms in bulk do not. In order to make full use of noble metal atoms, it is crucial to maximize the dispersion. A configuration of noble metal

  14. Temperature-programmed sulfiding of precursor cobalt oxide genesis of highly active sites on sulfided cobalt catalyst for hydrogenation and isomerization

    SciTech Connect

    Inamura, Kazuhiro; Takyu, Toshiyuki ); Okamoto, Yasuaki; Nagata, Kozo; Imanaka, Toshinobu )

    1992-02-01

    It was found that the method of sulfidation of cobalt oxide strongly affects the catalytic activities and selectivities of the resultant cobalt sulfide catalyst, as well as the calcination temperature of the cobalt oxide. When cobalt oxide was sulfided at 673 K by a temperature-programmed sulfiding method (a heating rate of 6 K/min), catalytic activities for the hydrogenation of butadiene and the isomerization of 1-butene were considerably enhanced compared with those for cobalt sulfide prepared by isothermal sulfidation at 673 K. Results of temperature-programmed sulfiding (TPS), temperature-programmed reduction (TPR), and X-ray diffraction (XRD) suggest that the catalysts showing high catalytic activities after sulfidation are partially sulfided at 673 K and consist of the unsulfided cobalt core phases (CoO or metallic Co). The sulfidation property of precursor cobalt oxides has been studied using TPS, simulating the sulfidation process of the cobalt sulfide catalysts. Two distinctly different kinds of sulfidation process are estimated by TPS measurements of the cobalt oxides. The calcination temperature of the precursor cobalt oxides strongly affects the sulfidation paths. They are differentiated in terms of the presence of a metallic Co intermediate. The relationship of the mechanism of sulfidation of the cobalt oxides to the generation of highly active sites is discussed.

  15. Lindqvist Polyoxoniobate Ion-Assisted Electrodeposition of Cobalt and Nickel Water Oxidation Catalysts.

    PubMed

    Liu, YuPing; Guo, Si-Xuan; Ding, Liang; Ohlin, C André; Bond, Alan M; Zhang, Jie

    2015-08-01

    A method has been developed for the efficient electrodeposition of cobalt and nickel nanostructures with the assistance of the Lindqvist ion [Nb6O19](8-). Scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), Raman spectroscopy, inductively coupled plasma mass spectrometry (ICP-MS), inductively coupled plasma optical emission spectrometry, and a range of electrochemical techniques have been used to characterize the morphology, composition, catalytic water oxidation activity and stability of the films in alkaline solution. SEM images show that films consisting of nanoparticles with diameters of ca. 30 to 40 nm are formed after 40-50 potential cycles of deposition. Nb and Co/Ni are detected in the films by EDX. ICP-MS results show an elemental ratio of 1:1 for Co:Nb and 1:3 for Ni:Nb, respectively. Raman spectra reveal the presence of both [Nb6O19](8-) and Co(OH)2/Ni(OH)2. The films exhibit excellent stability and efficiency for electrocatalytic water oxidation in alkaline solution. Turnover frequencies of 12.9 and 13.2 s(-1) were determined by rotating ring disk electrode voltammetry at an overpotential of 480 mV for Co and Ni films, respectively. Fourier transformed large amplitude alternating current (FTAC) voltammetry reveals an additional underlying oxidation process for Co under catalytic turnover conditions, which indicates that a Co(IV) species is involved in the efficient catalytic water oxidation reactions. FTAC voltammetric data also suggest that the Ni films undergoes a clear phase transformation upon aging in aqueous 1 M NaOH and the electrogenerated higher oxidation state Ni from β-NiOOH is the more active form of the catalyst.

  16. Lindqvist Polyoxoniobate Ion-Assisted Electrodeposition of Cobalt and Nickel Water Oxidation Catalysts.

    PubMed

    Liu, YuPing; Guo, Si-Xuan; Ding, Liang; Ohlin, C André; Bond, Alan M; Zhang, Jie

    2015-08-01

    A method has been developed for the efficient electrodeposition of cobalt and nickel nanostructures with the assistance of the Lindqvist ion [Nb6O19](8-). Scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), Raman spectroscopy, inductively coupled plasma mass spectrometry (ICP-MS), inductively coupled plasma optical emission spectrometry, and a range of electrochemical techniques have been used to characterize the morphology, composition, catalytic water oxidation activity and stability of the films in alkaline solution. SEM images show that films consisting of nanoparticles with diameters of ca. 30 to 40 nm are formed after 40-50 potential cycles of deposition. Nb and Co/Ni are detected in the films by EDX. ICP-MS results show an elemental ratio of 1:1 for Co:Nb and 1:3 for Ni:Nb, respectively. Raman spectra reveal the presence of both [Nb6O19](8-) and Co(OH)2/Ni(OH)2. The films exhibit excellent stability and efficiency for electrocatalytic water oxidation in alkaline solution. Turnover frequencies of 12.9 and 13.2 s(-1) were determined by rotating ring disk electrode voltammetry at an overpotential of 480 mV for Co and Ni films, respectively. Fourier transformed large amplitude alternating current (FTAC) voltammetry reveals an additional underlying oxidation process for Co under catalytic turnover conditions, which indicates that a Co(IV) species is involved in the efficient catalytic water oxidation reactions. FTAC voltammetric data also suggest that the Ni films undergoes a clear phase transformation upon aging in aqueous 1 M NaOH and the electrogenerated higher oxidation state Ni from β-NiOOH is the more active form of the catalyst. PMID:26158219

  17. Unusual dielectric response in cobalt doped reduced graphene oxide

    SciTech Connect

    Akhtar, Abu Jahid; Gupta, Abhisek; Kumar Shaw, Bikash; Saha, Shyamal K.

    2013-12-09

    Intensive research on cobalt doped reduced graphene oxide (Co-RGO) to investigate the modification in graphene magnetism and spin polarization due to presence of transition metal atom has been carried out, however, its dielectric spectroscopy, particularly, how capacitance changes with impurity levels in graphene is relatively unexplored. In the present work, dielectric spectroscopy along with magneto-dielectric effect are investigated in Co-RGO. Contrary to other materials, here permittivity increases abruptly with frequency in the low frequency region and continues to increase till 10{sup 7} Hz. This unusual behavior is explained on the basis of trap induced capacitance created due to impurity levels.

  18. Tailoring the properties and the reactivity of the spinel cobalt oxide.

    PubMed

    Bahlawane, Naoufal; Ngamou, Patrick Herve Tchoua; Vannier, Vincent; Kottke, Tilman; Heberle, Joachim; Kohse-Höinghaus, Katharina

    2009-10-28

    Pulsed spray evaporation chemical vapor deposition (PSE-CVD) was employed for the synthesis of cobalt-based spinel oxide thin films, Co(3-x)Fe(x)O4 with x = 0-1.56. XRD, Raman scattering and FTIR emission spectroscopy show that the normal spinel structure was retained for 0 < or = x < or = 0.65 by the selective insertion of Fe3+ in the octahedral sites. The spinel inversion was noticed above this range, whereas the insertion of Fe2+ was first indicated with x > or = 1. The room-temperature electrical resistivity of the thin films was controlled between 9 and 0.007 Omega cm by the adjustment of iron doping concentration. Furthermore an improvement of the thermal stability of the spinel was noticed upon doping by iron. The reducibility of the spinel in the presence of molecular hydrogen was efficiently adjusted by a shift of the reduction temperature by up to 110 degrees C upon the controlled insertion of iron in the octahedral sites of the spinel. The investigation of the catalytic oxidation of CO and ethanol over Co(3-x)Fe(x)O4 films with controlled structural modification enabled the confirmation of the Mars-van Krevelen mechanism for the oxidation of CO and the tight correlation between the selectivity of the conversion of ethanol to acetaldehyde and the abundance of surface basic sites. The controlled iron doping was demonstrated to be an efficient strategy to tune the reactivity and the selectivity of the cobalt-based spinel oxide. The doping-induced transition from normal to inverse spinel was observed to induce a clear discontinuity in the trend of all investigated physicochemical properties.

  19. Direct evidence for charge stripes in a layered cobalt oxide

    PubMed Central

    Babkevich, P.; Freeman, P. G.; Enderle, M.; Prabhakaran, D.; Boothroyd, A. T.

    2016-01-01

    Recent experiments indicate that static stripe-like charge order is generic to the hole-doped copper oxide superconductors and competes with superconductivity. Here we show that a similar type of charge order is present in La5/3Sr1/3CoO4, an insulating analogue of the copper oxide superconductors containing cobalt in place of copper. The stripe phase we have detected is accompanied by short-range, quasi-one-dimensional, antiferromagnetic order, and provides a natural explanation for the distinctive hourglass shape of the magnetic spectrum previously observed in neutron-scattering measurements of La2−xSrxCoO4 and many hole-doped copper oxide superconductors. The results establish a solid empirical basis for theories of the hourglass spectrum built on short-range, quasi-static, stripe correlations. PMID:27212023

  20. Physical and electrochemical study of cobalt oxide nano- and microparticles

    SciTech Connect

    Alburquenque, D.; Vargas, E.; Denardin, J.C.; Escrig, J.; Marco, J.F.; Gautier, J.L.

    2014-07-01

    Cobalt oxide nanocrystals of size 17–21 nm were synthesized by a simple reaction between cobalt acetate (II) and dodecylamine. On the other hand, micrometric Co{sub 3}O{sub 4} was prepared using the ceramic method. The structural examination of these materials was performed using powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and transmission electron microscopy (TEM and HRTEM). XRD studies showed that the oxides were pure, well-crystallized, spinel cubic phases with a-cell parameter of 0.8049 nm and 0.8069 nm for the nano and micro-oxide, respectively. The average particle size was 19 nm (nano-oxide) and 1250 μm (micro-oxide). Morphological studies carried out by SEM and TEM analyses have shown the presence of octahedral particles in both cases. Bulk and surface properties investigated by X-ray photoelectron spectroscopy (XPS), point zero charge (pzc), FTIR and cyclic voltammetry indicated that there were no significant differences in the composition on both materials. The magnetic behavior of the samples was determined using a vibrating sample magnetometer. The compounds showed paramagnetic character and no coercivity and remanence in all cases. Galvanostatic measurements of electrodes formed with nanocrystals showed better performance than those built with micrometric particles. - Highlights: • Spinel Co{sub 3}O{sub 4} nanoparticles and microparticles with same structure but with different cell parameters, particle size and surface area were synthesized. • Oxide nanoparticles showed better electrochemical behavior than micrometric ones due to area effect.

  1. Chitosan-modified cobalt oxide nanoparticles stimulate TNF-α-mediated apoptosis in human leukemic cells.

    PubMed

    Chattopadhyay, Sourav; Dash, Sandeep Kumar; Kar Mahapatra, Santanu; Tripathy, Satyajit; Ghosh, Totan; Das, Balaram; Das, Debasis; Pramanik, Panchanan; Roy, Somenath

    2014-03-01

    The objective of this study was to develop chitosan-based delivery of cobalt oxide nanoparticles to human leukemic cells and investigate their specific induction of apoptosis. The physicochemical properties of the chitosan-coated cobalt oxide nanoparticles were characterized using transmission electron microscopy, dynamic light scattering, X-ray diffraction, and Fourier transform infrared spectroscopy. The solubility of chitosan-coated cobalt oxide nanoparticles was higher at acidic pH, which helps to release more cobalt ions into the medium. Chitosan-coated cobalt oxide nanoparticles showed good compatibility with normal cells. However, our results showed that exposure of leukemic cells (Jurkat cells) to chitosan-coated cobalt oxide nanoparticles caused an increase in reactive oxygen species generation that was abolished by pretreatment of cells with the reactive oxygen species scavenger N-acetyl-L-cysteine. The apoptosis of Jurkat cells was confirmed by flow-cytometric analysis. Induction of TNF-α secretion was observed from stimulation of Jurkat cells with chitosan-coated cobalt oxide nanoparticles. We also tested the role of TNF-α in the induction of Jurkat cell death in the presence of TNF-α and caspase inhibitors. Treatment of leukemic cells with a blocker had a greater effect on cancer cell viability. From our findings, oxidative stress and caspase activation are involved in cancer cell death induced by chitosan-coated cobalt oxide nanoparticles.

  2. Topochemical synthesis of cobalt oxide-based porous nanostructures for high-performance lithium-ion batteries.

    PubMed

    Li, Cheng Chao; Yin, Xiao Ming; Li, Qiu Hong; Chen, Li Bao; Wang, Tai Hong

    2011-02-01

    Two kinds of topochemical conversion routes from cobalt hydroxide precursors to cobalt oxide-based porous nanostructures are presented: pyrolysis in air and hydrothermal treatment by the Kirkendall diffusion effect. These cobalt hydroxide precursors were synthesized by a simple hydrothermal approach with sodium acetate as mineralizer at 200 °C. Detailed proof indicates that the process of cobalt hydroxide precursor growth is dominated by a nucleation, dissolution, renucleation, growth, and exfoliation mechanism. By the topochemical conversion processes several Co(3)O(4) nanostructures, such as cobalt oxide-coated cobalt hydroxide carbonate nanowires, cobalt oxide nanotubes, hollow cobalt oxide spheres, and porous cobalt oxide nanowires, have been synthesized. The obtained Co(3)O(4) nanostructures have also been evaluated as the anode materials in lithium-ion batteries. It was found that the as-prepared Co(3)O(4) nanostructures exhibited high reversible capacity and good cycle performance due to their porous structure and small size.

  3. Nitrous oxide activation by a cobalt(ii) complex for aldehyde oxidation under mild conditions.

    PubMed

    Corona, Teresa; Company, Anna

    2016-10-01

    Nitrous oxide (N2O) is a waste gas produced in many industrial processes with an important environmental impact. Thus, its application as an oxidant is highly desirable because it produces innocuous N2 as a by-product. In this work we report a new cobalt(ii) complex that reacts with N2O under mild conditions and the catalytic application of this system to carry out the oxidation of aldehydes. PMID:27445004

  4. Nitrous oxide activation by a cobalt(ii) complex for aldehyde oxidation under mild conditions.

    PubMed

    Corona, Teresa; Company, Anna

    2016-10-01

    Nitrous oxide (N2O) is a waste gas produced in many industrial processes with an important environmental impact. Thus, its application as an oxidant is highly desirable because it produces innocuous N2 as a by-product. In this work we report a new cobalt(ii) complex that reacts with N2O under mild conditions and the catalytic application of this system to carry out the oxidation of aldehydes.

  5. Nano-Web Cobalt Modified Silica Nanoparticles Catalysts for Water Oxidation and MB Oxidative Degradation.

    PubMed

    Wang, Li; Chen, Qiuyun; Li, Chenghao; Fang, Fang

    2016-05-01

    Dioxygen generating materials, using water as oxygen source, can be used as catalysts in hypoxic environments. Cobalt(II) modified silica (SiO2@NPCo) nanoparticles were synthesized through coordination of cobalt(II) ions with nitrogen atoms from 2-acetylpyridine modified silica (SiO2@NP). The SiO2@NPCo nanoparticles further reacted with 1,3,5-benzenetricarboxylic acids, forming porous nano-web nanoparticles (SiO2@NPCoCOOH). The synthesized SiO2@NPCoCOOH nanoparticles were demonstrated as better white LED light driven photochemical catalysts for oxidation of water than individual nanoparticles (SiO2@NPCo). Moreover, the SiO2@NPCoCOOH/water system could decrease the content of methylene blue (MB) in solution and therefore, the nanoweb cobalt(II) modified silica nanoparticles can be environmentally friendly catalysts for oxidative degradation of MB, using water as the oxygen source. PMID:27483932

  6. Nano-Web Cobalt Modified Silica Nanoparticles Catalysts for Water Oxidation and MB Oxidative Degradation.

    PubMed

    Wang, Li; Chen, Qiuyun; Li, Chenghao; Fang, Fang

    2016-05-01

    Dioxygen generating materials, using water as oxygen source, can be used as catalysts in hypoxic environments. Cobalt(II) modified silica (SiO2@NPCo) nanoparticles were synthesized through coordination of cobalt(II) ions with nitrogen atoms from 2-acetylpyridine modified silica (SiO2@NP). The SiO2@NPCo nanoparticles further reacted with 1,3,5-benzenetricarboxylic acids, forming porous nano-web nanoparticles (SiO2@NPCoCOOH). The synthesized SiO2@NPCoCOOH nanoparticles were demonstrated as better white LED light driven photochemical catalysts for oxidation of water than individual nanoparticles (SiO2@NPCo). Moreover, the SiO2@NPCoCOOH/water system could decrease the content of methylene blue (MB) in solution and therefore, the nanoweb cobalt(II) modified silica nanoparticles can be environmentally friendly catalysts for oxidative degradation of MB, using water as the oxygen source.

  7. Sputtering of cobalt film with perpendicular magnetic anisotropy on disorder-free graphene

    SciTech Connect

    Jamali, Mahdi; Lv, Yang; Zhao, Zhengyang; Wang, Jian-Ping

    2014-10-15

    Growth of thin cobalt film with perpendicular magnetic anisotropy has been investigated on pristine graphene for spin logic and memory applications. By reduction of the kinetic energy of the sputtered atoms using indirect sputtered deposition, deposition induced defects in the graphene layer have been controlled. Cobalt film on graphene with perpendicular magnetic anisotropy has been developed. Raman spectroscopy of the graphene surface shows very little disorder induced in the graphene by the sputtering process. In addition, upon increasing the cobalt film thickness, the disorder density increases on the graphene and saturates for thicknesses of Co layers above 1 nm. The AFM image indicates a surface roughness of about 0.86 nm. In addition, the deposited film forms a granular structure with a grain size of about 40 nm.

  8. Characterization of cobalt(II) chloride-modified condensation polyimide films

    NASA Technical Reports Server (NTRS)

    Rancourt, J. D.; Taylor, L. T.

    1988-01-01

    The effect of solvent extraction on the properties of cobalt(II) chloride-modified polyimide films was investigated. Solvent-cast films were prepared from solutions of cobalt chloride in poly(amide acid)/N,N-dimethylacetamide (DMAc) and were subsequently dried and cured in static air, forced air, or inert gas ovens with controlled humidity. The films were extracted by either of the three processes (1) soaking in a tray with distilled water at room temperature, (2) soxhlett extraction with distilled water, or (3) soxhell extraction with DMAc. Extraction with DMAc was found to remove both cobalt and chlorine from the films and to slightly increase bulk thermal stability and both surface resistivity and electrical resistivity.

  9. Unification of catalytic water oxidation and oxygen reduction reactions: amorphous beat crystalline cobalt iron oxides.

    PubMed

    Indra, Arindam; Menezes, Prashanth W; Sahraie, Nastaran Ranjbar; Bergmann, Arno; Das, Chittaranjan; Tallarida, Massimo; Schmeißer, Dieter; Strasser, Peter; Driess, Matthias

    2014-12-17

    Catalytic water splitting to hydrogen and oxygen is considered as one of the convenient routes for the sustainable energy conversion. Bifunctional catalysts for the electrocatalytic oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) are pivotal for the energy conversion and storage, and alternatively, the photochemical water oxidation in biomimetic fashion is also considered as the most useful way to convert solar energy into chemical energy. Here we present a facile solvothermal route to control the synthesis of amorphous and crystalline cobalt iron oxides by controlling the crystallinity of the materials with changing solvent and reaction time and further utilize these materials as multifunctional catalysts for the unification of photochemical and electrochemical water oxidation as well as for the oxygen reduction reaction. Notably, the amorphous cobalt iron oxide produces superior catalytic activity over the crystalline one under photochemical and electrochemical water oxidation and oxygen reduction conditions.

  10. Cobalt-promoted Iron Oxide Nanoparticles for the Selective Oxidative Dehydrogenation of Cyclohexane

    NASA Astrophysics Data System (ADS)

    Rutter, Matthew

    Recent work has shown that both cobalt and iron oxide nanoparticles are active for the oxidative dehydrogenation (ODH) of cyclohexane to benzene, the former more active than the latter. Further study has shown that the addition of gold species as a minority component into iron oxide nanocrystals increases the selectivity of the reaction to benzene. Since a primary motivation for this work is the addition of catalysts in jet fuels to facilitate the dehydrogenation and cracking reactions preceding their combustion, a low-cost, sacrificial catalyst is sought after. In this application, catalyst nanoparticles suspended in the fuel stream will dehydrogenate cyclic alkanes (cyclohexane) to their aromatic counterparts (benzene). Alkenes and aromatics have a much higher rate of combustion, which decreases the amount of uncombusted fuel in the exhaust, thereby increasing performance. As these catalysts are not recyclable, there is significant impetus to substitute cheaper base metals for expensive noble metals. In this work, iron oxide nanoparticles are doped with varying levels of cobalt to examine the effect of cobalt content and oxidation state on the selectivity and activity of the iron oxide for the oxidative dehydrogenation of cyclohexane, used as a model cyclic alkane in jet fuel. We have shown previously that small (˜5nm) cobalt oxide nanoparticles favor the production of benzene over the partial dehydrogenation products cyclohexene and cyclohexadiene, or the complete oxidation product carbon dioxide. It is the aim of this work to examine the surface of these cobalt-iron oxide nanoparticles to determine the conditions most favorable for this selective oxidative dehydrogenation. Cobalt-doped iron nanoparticles were prepared by a surfactant-free hydrothermal co-precipitation technique that enabled a high degree of composition control and size control. These samples were characterized via Transmission Electron Microscopy (TEM), powder X-Ray Diffraction (XRD), X

  11. In situ formation of cobalt oxide nanocubanes as efficient oxygen evolution catalysts.

    PubMed

    Hutchings, Gregory S; Zhang, Yan; Li, Jian; Yonemoto, Bryan T; Zhou, Xinggui; Zhu, Kake; Jiao, Feng

    2015-04-01

    Oxygen evolution from water poses a significant challenge in solar fuel production because it requires an efficient catalyst to bridge the one-electron photon capture process with the four-electron oxygen evolution reaction (OER). Here, a new strategy was developed to synthesize nonsupported ultrasmall cobalt oxide nanocubanes through an in situ phase transformation mechanism using a layered Co(OH)(OCH3) precursor. Under sonication, the precursor was exfoliated and transformed into cobalt oxide nanocubanes in the presence of NaHCO3-Na2SiF6 buffer solution. The resulting cobalt catalyst with an average particle size less than 2 nm exhibited a turnover frequency of 0.023 per second per cobalt in photocatalytic water oxidation. X-ray absorption results suggested a unique nanocubane structure, where 13 cobalt atoms fully coordinated with oxygen in an octahedral arrangement to form 8 Co4O4 cubanes, which may be responsible for the exceptionally high OER activity.

  12. Magnetic and microwave absorption properties of self-assemblies composed of core-shell cobalt-cobalt oxide nanocrystals.

    PubMed

    Wang, Zhongzhu; Bi, Hong; Wang, Peihong; Wang, Min; Liu, Zhiwei; Shen, Lei; Liu, Xiansong

    2015-02-01

    Core-shell structure cobalt-cobalt oxide nanocomposites were directly synthesized via annealing Co nanocrystals in air at 300 °C. Their microstructure and magnetic properties were characterized by XRD, TEM, XPS and VSM, respectively. The microwave absorbing properties of the nanocomposite powders by dispersing them in wax were investigated in the 2-18 GHz frequency range. The sample that was annealed for 1 h exhibits the maximum reflection loss of -30.5 dB and a bandwidth of less than -10 dB covering the 12.6-17.3 GHz range with the coating thickness of only 1.7 mm. At the same thickness, the sample annealed for 3 h exhibits the maximum reflection loss of -24 dB and a bandwidth that almost covers the whole X-band (8-11.5 GHz). With increase in the insulating cobalt oxide shell, the enhanced permeability could contribute to the decrease of eddy current loss, and the permittivity could be easily adjusted; thus, the microwave absorption properties of the cobalt oxide nanocrystals could be easily adjusted. PMID:25559407

  13. Formation of Semimetallic Cobalt Telluride Nanotube Film via Anion Exchange Tellurization Strategy in Aqueous Solution for Electrocatalytic Applications.

    PubMed

    Patil, Supriya A; Kim, Eun-Kyung; Shrestha, Nabeen K; Chang, Jinho; Lee, Joong Kee; Han, Sung-Hwan

    2015-11-25

    Metal telluride nanostructures have demonstrated several potential applications particularly in harvesting and storing green energy. Metal tellurides are synthesized by tellurization process performed basically at high temperature in reducing gas atmosphere, which makes the process expensive and complicated. The development of a facile and economical process for desirable metal telluride nanostructures without complicated manipulation is still a challenge. In an effort to develop an alternative strategy of tellurization, herein we report a thin film formation of self-standing cobalt telluride nanotubes on various conducting and nonconducting substrates using a simple binder-free synthetic strategy based on anion exchange transformation from a thin film of cobalt hydroxycarbonate nanostructures in aqueous solution at room temperature. The nanostructured films before and after ion exchange transformation reaction are characterized using field emission scanning electron microscope, energy dispersive X-ray analyzer, X-ray photoelectron spectroscopy, thin film X-ray diffraction technique, high resolution transmission electron microscope, and selected area electron diffraction analysis technique. After the ion exchange transformation of nanostructures, the film shows conversion from insulator to highly electrical conductive semimetallic characteristic. When used as a counter electrode in I3(-)/I(-) redox electrolyte based dye-sensitized solar cells, the telluride film exhibits an electrocatalytic reduction activity for I3(-) with a demonstration of solar-light to electrical power conversion efficiency of 8.10%, which is highly competitive to the efficiency of 8.20% exhibited by a benchmarked Pt-film counter electrode. On the other hand, the telluride film electrode also demonstrates electrocatalytic activity for oxygen evolution reaction from oxidation of water.

  14. Combinatorial studies for determining properties of thin-film gold-cobalt alloys

    SciTech Connect

    Ramirez, Ainissa G.; Saha, Ranjana

    2004-11-29

    A library of gold-cobalt alloys was synthesized by combinatorial methods to explore potential contact materials for microfabricated microrelays. After a compositionally graded film was deposited, it was subjected to heat treatments to create precipitates and to promote precipitation hardening. Using a high-throughput screening method, the film was then characterized for mechanical hardness, sheet resistance, composition, and microstructure by using nanoindentation, four-point probe, x-ray photoelectron spectroscopy, and transmission electron microscopy. The hardness exhibited a linear behavior from pure gold to pure cobalt from 2 to 9 GPa. The microstructure included a metastable gold-silicide with a grain size that seems dependent on the amount of cobalt. From this combinatorial method, we gain an understanding of the material's structure-property relationship and can illuminate the link between mechanical and electrical properties to composition. This work presents the experiments and techniques for mapping material properties.

  15. Cobalt Oxide Nanoflowers for Electrochemical Determination of Glucose

    NASA Astrophysics Data System (ADS)

    Balouch, Quratulain; Ibupoto, Zafar Hussain; Khaskheli, Ghulam Qadir; Soomro, Razium Ali; Sirajuddin; Samoon, Muhammad Kashif; Deewani, Vinod Kumar

    2015-10-01

    This study reports a simple, economic, and efficient approach for synthesis of cobalt oxide (Co3O4) nanostructures by a low-temperature aqueous chemical growth method. The synthesized Co3O4 nanostructures were characterized by various techniques such as x-ray diffraction, x-ray photoelectron spectroscopy, and scanning electron microscopy. The synthesized nanostructures exhibited flower-shaped morphology with thickness of each pellet in the range of 200 to 300 nm. The synthesized Co3O4 nanostructures with excellent structural features exhibited high electrocatalytic activity towards the oxidation of glucose in alkaline solution. This enabled development of a highly sensitive (1618.71 µA mM-1 cm-2), stable and reproducible non-enzymatic glucose sensor. The developed sensor demonstrated high anti-interference capability against common interferents such as dopamine, ascorbic acid and uric acid. Furthermore, the applicability of the developed sensor for the determination of glucose from human blood serum provides an alternative approach for the routine glucose analysis.

  16. Supported, Alkali-Promoted Cobalt Oxide Catalysts for NOx Removal from Coal Combustion Flue Gases

    SciTech Connect

    Morris D. Argyle

    2005-12-31

    A series of cobalt oxide catalysts supported on alumina ({gamma}-Al{sub 2}O{sub 3}) were synthesized with varying contents of cobalt and of added alkali metals, including lithium, sodium, potassium, rubidium, and cesium. Unsupported cobalt oxide catalysts and several cobalt oxide catalysts supported ceria (CeO{sub 2}) with varying contents of cobalt with added potassium were also prepared. The catalysts were characterized with UV-visible spectroscopy and were examined for NO{sub x} decomposition activity. The CoO{sub x}/Al{sub 2}O{sub 3} catalysts and particularly the CoO{sub x}/CeO{sub 2} catalysts show N{sub 2}O decomposition activity, but none of the catalysts (unsupported Co{sub 3}O{sub 4} or those supported on ceria or alumina) displayed significant, sustained NO decomposition activity. For the Al{sub 2}O{sub 3}-supported catalysts, N{sub 2}O decomposition activity was observed over a range of reaction temperatures beginning about 723 K, but significant (>50%) conversions of N{sub 2}O were observed only for reaction temperatures >900 K, which are too high for practical commercial use. However, the CeO{sub 2}-supported catalysts display N{sub 2}O decomposition rates similar to the Al{sub 2}O{sub 3}-supported catalysts at much lower reaction temperatures, with activity beginning at {approx}573 K. Conversions of >90% were achieved at 773 K for the best catalysts. Catalytic rates per cobalt atom increased with decreasing cobalt content, which corresponds to increasing edge energies obtained from the UV-visible spectra. The decrease in edge energies suggests that the size and dimensionality of the cobalt oxide surface domains increase with increasing cobalt oxide content. The rate data normalized per mass of catalyst that shows the activity of the CeO{sub 2}-supported catalysts increases with increasing cobalt oxide content. The combination of these data suggest that supported cobalt oxide species similar to bulk Co{sub 3}O{sub 4} are inherently more active than

  17. Modification of Wide-Band-Gap Oxide Semiconductors with Cobalt Hydroxide Nanoclusters for Visible-Light Water Oxidation.

    PubMed

    Maeda, Kazuhiko; Ishimaki, Koki; Tokunaga, Yuki; Lu, Daling; Eguchi, Miharu

    2016-07-11

    Cobalt-based compounds, such as cobalt(II) hydroxide, are known to be good catalysts for water oxidation. Herein, we report that such cobalt species can also activate wide-band-gap semiconductors towards visible-light water oxidation. Rutile TiO2 powder, a well-known wide-band-gap semiconductor, was capable of harvesting visible light with wavelengths of up to 850 nm, and thus catalyzed water oxidation to produce molecular oxygen, when decorated with cobalt(II) hydroxide nanoclusters. To the best of our knowledge, this system constitutes the first example that a particulate photocatalytic material that is capable of water oxidation upon excitation by visible light can also operate at such long wavelengths, even when it is based on earth-abundant elements only. PMID:27225394

  18. Effect of deposition pressure on the structural and magnetic properties of cobalt ferrite thin films

    SciTech Connect

    Nongjai, R.; Khan, S.; Ahmad, H.; Khan, I.; Asokan, K.

    2013-06-03

    We present the influence of deposition pressure on the structural and magnetic properties of cobalt ferrite thin films. Thin films of Co ferrite were deposited by rf sputtering on Si (100) substrate and characterized by X - Ray Diffraction (XRD), Atomic Force Microscopy (AFM) and Vibrating Sample Magnetometer (VSM). The XRD patterns showed the formation of crystalline single phase of the films. The particle size and surface roughness of the films were strongly influence by gas pressure. Hysteresis loops measured at room temperature showed the enhancement of magnetic properties with the increase of gas pressure which is attributed to the decrease of particle size.

  19. Deposition and properties of cobalt- and ruthenium-based ultra-thin films

    NASA Astrophysics Data System (ADS)

    Henderson, Lucas Benjamin

    Future copper interconnect systems will require replacement of the materials that currently comprise both the liner layer(s) and the capping layer. Ruthenium has previously been considered as a material that could function as a single material liner, however its poor ability to prevent copper diffusion makes it incompatible with liner requirements. A recently described chemical vapor deposition route to amorphous ruthenium-phosphorus alloy films could correct this problem by eliminating the grain boundaries found in pure ruthenium films. Bias-temperature stressing of capacitor structures using 5 nm ruthenium-phosphorus film as a barrier to copper diffusion and analysis of the times-to-failure at accelerated temperature and field conditions implies that ruthenium-phosphorus performs acceptably as a diffusion barrier for temperatures above 165°C. The future problems associated with the copper capping layer are primarily due to the poor adhesion between copper and the current Si-based capping layers. Cobalt, which adheres well to copper, has been widely proposed to replace the Si-based materials, but its ability to prevent copper diffusion must be improved if it is to be successfully implemented in the interconnect. Using a dual-source chemistry of dicobaltoctacarbonyl and trimethylphosphine at temperatures from 250-350°C, amorphous cobalt-phosphorus can be deposited by chemical vapor deposition. The films contain elemental cobalt and phosphorus, plus some carbon impurity, which is incorporated in the film as both graphitic and carbidic (bonded to cobalt) carbon. When deposited on copper, the adhesion between the two materials remains strong despite the presence of phosphorus and carbon at the interface, but the selectivity for growth on copper compared to silicon dioxide is poor and must be improved prior to consideration for application in interconnect systems. A single molecule precursor containing both cobalt and phosphorus atoms, tetrakis(trimethylphosphine)cobalt

  20. Electrochemical Water Oxidation of Ultrathin Cobalt Oxide-Based Catalyst Supported onto Aligned ZnO Nanorods.

    PubMed

    Koteeswara Reddy, Nandanapalli; Winkler, Stefanie; Koch, Norbert; Pinna, Nicola

    2016-02-10

    A stable and durable electrochemical water oxidation catalyst based on CoO functionalized ZnO nanorods (NRs) is introduced. ZnO NRs were grown on fluorine-doped tin oxide (FTO) by using a low-temperature chemical solution method and were functionalized with cobalt oxide by electrochemical deposition. The electrochemical water oxidation performance of cobalt oxide functionalized ZnO NRs was studied under alkaline (pH = 10) conditions. From these studies, it is noticed that cobalt oxide functionalized ZnO NRs show electrocatalytic activity toward water oxidation with current density on the order of several mA cm(-2). Further, 30 s CoO deposited ZnO nanorods exhibited excellent galvanostatic stability at a current density of 1 mA cm(-2) and potentiostatic stability at 1.25 V vs Ag/AgCl over an electrolysis period of 1 h. PMID:26784675

  1. Tailoring the oxidation state of cobalt through halide functionality in sol-gel silica

    PubMed Central

    Olguin, Gianni; Yacou, Christelle; Smart, Simon; Diniz da Costa, João C.

    2013-01-01

    The functionality or oxidation state of cobalt within a silica matrix can be tailored through the use of cationic surfactants and their halide counter ions during the sol-gel synthesis. Simply by adding surfactant we could significantly increase the amount of cobalt existing as Co3O4 within the silica from 44% to 77%, without varying the cobalt precursor concentration. However, once the surfactant to cobalt ratio exceeded 1, further addition resulted in an inhibitory mechanism whereby the altered pyrolysis of the surfactant decreased Co3O4 production. These findings have significant implications for the production of cobalt/silica composites where maximizing the functional Co3O4 phase remains the goal for a broad range of catalytic, sensing and materials applications. PMID:24022785

  2. Microanalysis of an oxidized cobalt oxide: Zirconia eutectic

    SciTech Connect

    Bentley, J.; McKernan, S.; Carter, C.B.; Revcolevschi, A.

    1993-12-31

    The compositions of CoO, Co{sub 3}O{sub 4}, and Ca-stabilized cubic ZrO{sub 2} in an oxidized directionally solidified CoO-ZrO{sub 2} eutectic were determined by PEELS and EDS. An oxygen gradient exists across the Co{sub 3}O{sub 4} with highest levels near the ZrO{sub 2} interface. Oxygen ELNES for CoO and Co{sub 3}O{sub 4} are quite different; published oxygen ELNES have been incorrectly attributed to CoO. Normalized Co-L{sub 23} white line intensity (WLI) ratios for CoO and Co{sub 3}O{sub 4} are similar (0.53 {plus_minus} 0.02) but L{sub 3}/L{sub 2} WLI ratios are 3.88 and 2.58, respectively. ELCE data suggest Co{sub 3}O{sub 4} has the inverse spinel structure.

  3. Kinetic phase evolution of spinel cobalt oxide during lithiation

    DOE PAGESBeta

    Li, Jing; He, Kai; Meng, Qingping; Li, Xin; Zhu, Yizhou; Hwang, Sooyeon; Sun, Ke; Gan, Hong; Zhu, Yimei; Mo, Yifei; et al

    2016-09-15

    Spinel cobalt oxide has been proposed to undergo a multiple-step reaction during the electrochemical lithiation process. Understanding the kinetics of the lithiation process in this compound is crucial to optimize its performance and cyclability. In this work, we have utilized a low-angle annular dark-field scanning transmission electron microscopy method to visualize the dynamic reaction process in real time and study the reaction kinetics at different rates. We show that the particles undergo a two-step reaction at the single-particle level, which includes an initial intercalation reaction followed by a conversion reaction. At low rates, the conversion reaction starts after the intercalationmore » reaction has fully finished, consistent with the prediction of density functional theoretical calculations. At high rates, the intercalation reaction is overwhelmed by the subsequently nucleated conversion reaction, and the reaction speeds of both the intercalation and conversion reactions are increased. Phase-field simulations show the crucial role of surface diffusion rates of lithium ions in controlling this process. Furthermore, this work provides microscopic insights into the reaction dynamics in non-equilibrium conditions and highlights the effect of lithium diffusion rates on the overall reaction homogeneity as well as the performance.« less

  4. High pressure μSR study on cobalt oxide spinel

    NASA Astrophysics Data System (ADS)

    Ikedo, Yutaka; Sugiyama, Jun; Nozaki, Hiroshi; Mukai, Kazuhiko; Itahara, Hiroshi; Russo, Peter L.; Andreica, Daniel; Amato, Alex

    2009-04-01

    The magnetic nature of the cobalt oxide spinel Co 3O 4 has been studied under hydrostatic pressure up to 1.34 GPa by means of zero field (ZF) and weak transverse field (wTF) μ+SR techniques using a polycrystalline sample. At ambient pressure, Co 3O 4 enters into an antiferromagnetic (AF) phase below 30 K, as evidenced by two distinct spontaneous muon-spin precessions in its ZF spectrum. wTF measurements show that AF transition temperature (TN) clearly increases with increasing pressure. Since only the Co ions at the tetrahedral site (A site) in the spinel lattice are magnetic, this indicates that the AF interaction between the Co ions at A site is enhanced by applying pressure through the decrease in the distance between the adjacent A-site ions. On the other hand, ZF measurements show that the frequency of spontaneous muon-spin precession is almost independent of pressure. This could suggest that the AF structure is not altered by pressure at least up to 1.34 GPa.

  5. Magnetic Transparent Conducting Oxide Film And Method Of Making

    DOEpatents

    Windisch, Jr., Charles F.; Exarhos, Gregory J.; Sharma, Shiv K.

    2006-03-14

    Cobalt-nickel oxide films of nominal 100 nm thickness, and resistivity as low as 0.06 O·cm have been deposited by spin-casting from both aqueous and organic precursor solutions followed by annealing at 450° C. in air. An increase in film resistivity was found upon substitution of other cations (e.g., Zn2+, Al3+) for Ni in the spinel structure. However, some improvement in the mechanical properties of the films resulted. On the other hand, addition of small amounts of Li decreased the resistivity. A combination of XRD, XPS, UV/Vis and Raman spectroscopy indicated that NiCo2O4 is the primary conducting component and that the conductivity reaches a maximum at this stoichiometry. When x<0.67, NiO forms leading to an increase in resistivity; when x>0.67, the oxide was all spinel but the increased Co content lowered the conductivity.

  6. Selective Area Band Engineering of Graphene using Cobalt-Mediated Oxidation.

    PubMed

    Bazylewski, Paul F; Nguyen, Van Luan; Bauer, Robert P C; Hunt, Adrian H; McDermott, Eamon J G; Leedahl, Brett D; Kukharenko, Andrey I; Cholakh, Seif O; Kurmaev, Ernst Z; Blaha, Peter; Moewes, Alexander; Lee, Young Hee; Chang, Gap Soo

    2015-01-01

    This study reports a scalable and economical method to open a band gap in single layer graphene by deposition of cobalt metal on its surface using physical vapor deposition in high vacuum. At low cobalt thickness, clusters form at impurity sites on the graphene without etching or damaging the graphene. When exposed to oxygen at room temperature, oxygen functional groups form in proportion to the cobalt thickness that modify the graphene band structure. Cobalt/Graphene resulting from this treatment can support a band gap of 0.30 eV, while remaining largely undamaged to preserve its structural and electrical properties. A mechanism of cobalt-mediated band opening is proposed as a two-step process starting with charge transfer from metal to graphene, followed by formation of oxides where cobalt has been deposited. Contributions from the formation of both CoO and oxygen functional groups on graphene affect the electronic structure to open a band gap. This study demonstrates that cobalt-mediated oxidation is a viable method to introduce a band gap into graphene at room temperature that could be applicable in electronics applications. PMID:26486966

  7. Selective Area Band Engineering of Graphene using Cobalt-Mediated Oxidation

    PubMed Central

    Bazylewski, Paul F.; Nguyen, Van Luan; Bauer, Robert P.C.; Hunt, Adrian H.; McDermott, Eamon J. G.; Leedahl, Brett D.; Kukharenko, Andrey I.; Cholakh, Seif O.; Kurmaev, Ernst Z.; Blaha, Peter; Moewes, Alexander; Lee, Young Hee; Chang, Gap Soo

    2015-01-01

    This study reports a scalable and economical method to open a band gap in single layer graphene by deposition of cobalt metal on its surface using physical vapor deposition in high vacuum. At low cobalt thickness, clusters form at impurity sites on the graphene without etching or damaging the graphene. When exposed to oxygen at room temperature, oxygen functional groups form in proportion to the cobalt thickness that modify the graphene band structure. Cobalt/Graphene resulting from this treatment can support a band gap of 0.30 eV, while remaining largely undamaged to preserve its structural and electrical properties. A mechanism of cobalt-mediated band opening is proposed as a two-step process starting with charge transfer from metal to graphene, followed by formation of oxides where cobalt has been deposited. Contributions from the formation of both CoO and oxygen functional groups on graphene affect the electronic structure to open a band gap. This study demonstrates that cobalt-mediated oxidation is a viable method to introduce a band gap into graphene at room temperature that could be applicable in electronics applications. PMID:26486966

  8. Selective Area Band Engineering of Graphene using Cobalt-Mediated Oxidation.

    PubMed

    Bazylewski, Paul F; Nguyen, Van Luan; Bauer, Robert P C; Hunt, Adrian H; McDermott, Eamon J G; Leedahl, Brett D; Kukharenko, Andrey I; Cholakh, Seif O; Kurmaev, Ernst Z; Blaha, Peter; Moewes, Alexander; Lee, Young Hee; Chang, Gap Soo

    2015-10-21

    This study reports a scalable and economical method to open a band gap in single layer graphene by deposition of cobalt metal on its surface using physical vapor deposition in high vacuum. At low cobalt thickness, clusters form at impurity sites on the graphene without etching or damaging the graphene. When exposed to oxygen at room temperature, oxygen functional groups form in proportion to the cobalt thickness that modify the graphene band structure. Cobalt/Graphene resulting from this treatment can support a band gap of 0.30 eV, while remaining largely undamaged to preserve its structural and electrical properties. A mechanism of cobalt-mediated band opening is proposed as a two-step process starting with charge transfer from metal to graphene, followed by formation of oxides where cobalt has been deposited. Contributions from the formation of both CoO and oxygen functional groups on graphene affect the electronic structure to open a band gap. This study demonstrates that cobalt-mediated oxidation is a viable method to introduce a band gap into graphene at room temperature that could be applicable in electronics applications.

  9. Selective Area Band Engineering of Graphene using Cobalt-Mediated Oxidation

    NASA Astrophysics Data System (ADS)

    Bazylewski, Paul F.; Nguyen, Van Luan; Bauer, Robert P. C.; Hunt, Adrian H.; McDermott, Eamon J. G.; Leedahl, Brett D.; Kukharenko, Andrey I.; Cholakh, Seif O.; Kurmaev, Ernst Z.; Blaha, Peter; Moewes, Alexander; Lee, Young Hee; Chang, Gap Soo

    2015-10-01

    This study reports a scalable and economical method to open a band gap in single layer graphene by deposition of cobalt metal on its surface using physical vapor deposition in high vacuum. At low cobalt thickness, clusters form at impurity sites on the graphene without etching or damaging the graphene. When exposed to oxygen at room temperature, oxygen functional groups form in proportion to the cobalt thickness that modify the graphene band structure. Cobalt/Graphene resulting from this treatment can support a band gap of 0.30 eV, while remaining largely undamaged to preserve its structural and electrical properties. A mechanism of cobalt-mediated band opening is proposed as a two-step process starting with charge transfer from metal to graphene, followed by formation of oxides where cobalt has been deposited. Contributions from the formation of both CoO and oxygen functional groups on graphene affect the electronic structure to open a band gap. This study demonstrates that cobalt-mediated oxidation is a viable method to introduce a band gap into graphene at room temperature that could be applicable in electronics applications.

  10. An hydrothermal experimental study of the cobalt-cobalt oxide redox buffer

    USGS Publications Warehouse

    Lemke, K.H.; Rosenbauer, R.J.; Bischoff, J.L.; Bird, D.K.

    2008-01-01

    Equilibrium aqueous hydrogen concentration and corresponding energies of reaction, ??Grxno(T, P), for the reaction Co(s) + H2O(l) = CoO(s) + H2(aq) have been determined at temperatures between 256 and 355 ??C and at 400 bar. Steady-state concentrations of hydrogen were approached in experiments under conditions of both H2 excess and deficiency containing the solids Co, CoO and liquid water. All experiments were carried out in flexible gold and titanium reactors with the capability of on-line fluid sampling. Measured equilibrium molal concentrations of H2(aq) at 256, 274, 300, 324 and 355 ??C are 0.81(?? 0.01) ?? 10- 3 1.11(?? 0.01) ?? 10- 3, 1.92(?? 0.01) ?? 10- 3, 3.71(?? 0.06) ?? 10- 3, 7.54(?? 0.12) ?? 10- 3, respectively, and corresponding values of ??Grxno(T, P) in units kJ ?? mol- 1 are 31.4(?? 0.1), 31.0(?? 0.1), 29.8(?? 0.1), 27.7(?? 0.5) and 25.5(?? 0.9), respectively. Using published heat capacity data for Co(s) and CoO(s) and - 79.6 J ?? mol- 1 ?? K- 1 for the entropy of formation of CoO we calculated for this study a value for ??GCoO,Tr,Pro = - 214.5(?? 0.9) kJ ?? mol- 1 and ??HCoO,Tr,Pro = - 238.3(?? 0.9) kJ ?? mol- 1 at 25 ??C and 1 bar. The value of ??HCoO,Tr,Pro determined in this study compares well with the reported calorimetric value of - 238.9(?? 1.2) kJ ?? mol- 1 [Boyle, B.J., King, E.G., Conway, K.C., 1954. Heats of formation of nickel and cobalt oxides (NiO and CoO) by combustion calorimetry. Journal of the American Chemical Society, 76, 3835-3837]. ?? 2008 Elsevier B.V. All rights reserved.

  11. Magnetic Anisotropies in Samarium-Cobalt Thin Films

    NASA Astrophysics Data System (ADS)

    Chen, Kailai

    A systemic study of the deposition processes and magnetic properties for the Sm-Co film system has been carried out. Films of Sm-Co system with various magnetic anisotropies have been synthesized through sputter deposition in both crystalline and amorphous phases. The origins of various anisotropies have been studied. Thermallized sputter deposition process control was used to synthesize Fe enriched Sm-Co films with rhombohedral Th_2Zn_{17} type structure. The film exhibited unusually strong textures with the crystallographic c axes of the crystallites aligned in the film plane. A large anisotropy was resulted with easy axis in the film plane. A well defined and large in-the-film-plane anisotropy of exceptionally high value of 3.3 times 10^6 erg/cm^3 has been obtained in the amorphous SmCo films by applying a magnetic field in the film plane during deposition. It was found that the in-the-film-plane anisotropy depended essentially on the applied field and Sm concentration. For films not synthesized through thermallized sputtering, the easy axis of the film could be reoriented through post deposition annealing. In contrast, in-plane easy axes of films synthesized through thermallized sputtering deposition could not be reoriented. A perpendicular anisotropy was also presented in the film synthesized through thermallized sputtering deposition. A large in-plane anisotropy was obtained in films deposited above ambient temperatures. It was concluded that the surface induced short range ordering was the origin of the in-the-film-plane anisotropy observed in amorphous film deposited in the presence of a magnetic field. The formation mechanism was different from that of the short range ordering induced by field annealing. The perpendicular anisotropy was shown to be growth induced. Large in-plane anisotropy in amorphous films was resulted from partial crystallization in the film. Both the formation of growth induced structure and partial crystallization in the film

  12. Cobalt oxide nanoparticles can enter inside the cells by crossing plasma membranes

    PubMed Central

    Bossi, Elena; Zanella, Daniele; Gornati, Rosalba; Bernardini, Giovanni

    2016-01-01

    The ability of nanoparticles (NPs) to be promptly uptaken by the cells makes them both dangerous and useful to human health. It was recently postulated that some NPs might cross the plasma membrane also by a non-endocytotic pathway gaining access to the cytoplasm. To this aim, after having filled mature Xenopus oocytes with Calcein, whose fluorescence is strongly quenched by divalent metal ions, we have exposed them to different cobalt NPs quantifying quenching as evidence of the increase of the concentration of Co2+ released by the NPs that entered into the cytoplasm. We demonstrated that cobalt oxide NPs, but not cobalt nor cobalt oxide NPs that were surrounded by a protein corona, can indeed cross plasma membranes. PMID:26924527

  13. Electrodeposited nanostructured cobalt film and its dual modulation of both superhydrophobic property and adhesiveness

    NASA Astrophysics Data System (ADS)

    Xiao, Han; Hu, Anmin; Hang, Tao; Li, Ming

    2015-01-01

    We report a novel shell-like cobalt nanostructure prepared by galvanostatic electrochemical deposition which exhibit prominent superhydrophobic property. By adjusting the electroplating conditions, cobalt nanocrystals with different morphologies like nanocones and fluffy shells can be obtained while the hydrophobic and adhesive behavior of each after surface modification is observed. After a brief discussion on the growth mechanism of those shapes, we explained the lotus effect presented on such structures which would probably provide a strong evidence to the existing models of superhydrophobic surfaces. Based on the above, we propose a novel approach to modulate both adhesiveness and wettability of Co film by tuning of deposition parameters along with a simple heat treatment and dipping. With cobalt's anisotropic magnetic properties, such facile surface coating would be used in a wide range of applications such as commercial fabrication of tunable anti-corrosive magnetic devices.

  14. Electrochemically tunable thermal conductivity of lithium cobalt oxide.

    PubMed

    Cho, Jiung; Losego, Mark D; Zhang, Hui Gang; Kim, Honggyu; Zuo, Jianmin; Petrov, Ivan; Cahill, David G; Braun, Paul V

    2014-06-03

    Using time-domain thermoreflectance, the thermal conductivity and elastic properties of a sputter deposited LiCoO2 film, a common lithium-ion cathode material, are measured as a function of the degree of lithiation. Here we report that via in situ measurements during cycling, the thermal conductivity of a LiCoO2 cathode reversibly decreases from ~5.4 to 3.7 W m(-1) K(-1), and its elastic modulus decreases from 325 to 225 GPa, as it is delithiated from Li1.0CoO2 to Li0.6CoO2. The dependence of the thermal conductivity on lithiation appears correlated with the lithiation-dependent phase behaviour. The oxidation-state-dependent thermal conductivity of electrolytically active transition metal oxides provides opportunities for dynamic control of thermal conductivity and is important to understand for thermal management in electrochemical energy storage devices.

  15. Atomic layer deposition of cobalt carbide films and their magnetic properties using propanol as a reducing agent

    NASA Astrophysics Data System (ADS)

    Sarr, Mouhamadou; Bahlawane, Naoufal; Arl, Didier; Dossot, Manuel; McRae, Edward; Lenoble, Damien

    2016-08-01

    The investigation of highly conformal thin films using Atomic Layer Deposition (ALD) is driven by a variety of applications in modern technologies. In particular, the emergence of 3D memory device architectures requires conformal materials with tuneable magnetic properties. Here, nanocomposites of carbon, cobalt and cobalt carbide are deposited by ALD using cobalt acetylacetonate with propanol as a reducing agent. Films were grown by varying the ALD deposition parameters including deposition temperature and propanol exposure time. The morphology, the chemical composition and the crystalline structure of the cobalt carbide film were investigated. Vibrating Sample Magnetometer (VSM) measurements revealed magnetic hysteresis loops with a coercivity reaching 500 Oe and a maximal saturation magnetization of 0.9 T with a grain size less than 15 nm. Magnetic properties are shown to be tuneable by adjusting the deposition parameters that significantly affect the microstructure and the composition of the deposited films.

  16. Structure and valency of a cobalt-phosphate water oxidation catalyst determined by in situ X-ray spectroscopy.

    PubMed

    Kanan, Matthew W; Yano, Junko; Surendranath, Yogesh; Dincă, Mircea; Yachandra, Vittal K; Nocera, Daniel G

    2010-10-01

    A water oxidation catalyst generated via electrodeposition from aqueous solutions containing phosphate and Co(2+) (Co-Pi) has been studied by in situ X-ray absorption spectroscopy. Spectra were obtained for Co-Pi films of two different thicknesses at an applied potential supporting water oxidation catalysis and at open circuit. Extended X-ray absorption fine structure (EXAFS) spectra indicate the presence of bis-oxo/hydroxo-bridged Co subunits incorporated into higher nuclearity clusters in Co-Pi. The average cluster nuclearity is greater in a relatively thick film (∼40-50 nmol Co ions/cm(2)) deposited at 1.25 V vs NHE than in an extremely thin film (∼3 nmol Co ions/cm(2)) deposited at 1.1 V. X-ray absorption near edge structure (XANES) spectra and electrochemical data support a Co valency greater than 3 for both Co-Pi samples when catalyzing water oxidation at 1.25 V. Upon switching to open circuit, Co-Pi undergoes a continuous reduction due to residual water oxidation catalysis, as indicated by the negative shift of the edge energy. The rate of reduction depends on the average cluster size. On the basis of structural parameters extracted from fits to the EXAFS data of Co-Pi with two different thicknesses and comparisons with EXAFS spectra of Co oxide compounds, a model is proposed wherein the Co oxo/hydroxo clusters of Co-Pi are composed of edge-sharing CoO(6) octahedra, the structural motif found in cobaltates. Whereas cobaltates contain extended planes of CoO(6) octahedra, the Co-Pi clusters are of molecular dimensions.

  17. Characterization of air-formed surface oxide film on a Co-Ni-Cr-Mo alloy (MP35N) and its change in Hanks' solution

    NASA Astrophysics Data System (ADS)

    Nagai, Akiko; Tsutsumi, Yusuke; Suzuki, Yuta; Katayama, Keiichi; Hanawa, Takao; Yamashita, Kimihiro

    2012-05-01

    The air-formed surface oxide films used for stents were characterized to determine their composition and chemical state on a Co-Ni-Cr-Mo alloy. The change of the films in Hanks' solution was used to estimate the reconstruction of the film in the human body. Angle-resolved X-ray photoelectron spectroscopy was used to characterize the composition of the film and substrate, as well as the film's thickness. The surface oxide film on the Co-Ni-Cr-Mo alloy (when mechanically polished) consists of oxide species of cobalt, nickel, chromium, and molybdenum, contains a large amount of OH-, and has a thickness of approximately 2.5 nm. Cations exist in the oxide as Co2+, Ni2+, Cr3+, Mo4+, Mo5+, and Mo6+. Chromium is enriched and cobalt and nickel are depleted in the oxide; however, nickel is enriched and cobalt is depleted in the substrate alloy just under the surface oxide film. Concentration of chromium was low and that of nickel was high at small take-off angles. This indicates that distribution of chromium is greater in the inner layer, but nickel is distributed more in the outer layer of the surface oxide film. During immersion in Hanks' solution, cobalt and nickel dissolved, and the film composition changed to mostly chromium oxide (Cr3+), along with small amounts of cobalt, nickel, and molybdenum oxides, and calcium phosphate containing magnesium, potassium, and carbonate. After immersion in Hanks' solution, the thickness of the surface layer containing calcium phosphate increased to more than 4 nm, while the amount of OH- increased. The amount of cobalt and nickel in the surface oxide film and in the substrate alloy just below the oxide decreased during immersion.

  18. Electronic structure description of a [Co(III)3Co(IV)O4] cluster: a model for the paramagnetic intermediate in cobalt-catalyzed water oxidation.

    PubMed

    McAlpin, J Gregory; Stich, Troy A; Ohlin, C André; Surendranath, Yogesh; Nocera, Daniel G; Casey, William H; Britt, R David

    2011-10-01

    Multifrequency electron paramagnetic resonace (EPR) spectroscopy and electronic structure calculations were performed on [Co(4)O(4)(C(5)H(5)N)(4)(CH(3)CO(2))(4)](+) (1(+)), a cobalt tetramer with total electron spin S = 1/2 and formal cobalt oxidation states III, III, III, and IV. The cuboidal arrangement of its cobalt and oxygen atoms is similar to that of proposed structures for the molecular cobaltate clusters of the cobalt-phosphate (Co-Pi) water-oxidizing catalyst. The Davies electron-nuclear double resonance (ENDOR) spectrum is well-modeled using a single class of hyperfine-coupled (59)Co nuclei with a modestly strong interaction (principal elements of the hyperfine tensor are equal to [-20(±2), 77(±1), -5(±15)] MHz). Mims (1)H ENDOR spectra of 1(+) with selectively deuterated pyridine ligands confirm that the amount of unpaired spin on the cobalt-bonding partner is significantly reduced from unity. Multifrequency (14)N ESEEM spectra (acquired at 9.5 and 34.0 GHz) indicate that four nearly equivalent nitrogen nuclei are coupled to the electron spin. Cumulatively, our EPR spectroscopic findings indicate that the unpaired spin is delocalized almost equally across the eight core atoms, a finding corroborated by results from DFT calculations. Each octahedrally coordinated cobalt ion is forced into a low-spin electron configuration by the anionic oxo and carboxylato ligands, and a fractional electron hole is localized on each metal center in a Co 3d(xz,yz)-based molecular orbital for this essentially [Co(+3.125)(4)O(4)] system. Comparing the EPR spectrum of 1(+) with that of the catalyst film allows us to draw conclusions about the electronic structure of this water-oxidation catalyst.

  19. Investigations of nanocomposite magnetic materials based on the oxides of iron, nickel, cobalt and silicon dioxide

    NASA Astrophysics Data System (ADS)

    Gracheva, Irina E.; Olchowik, Grazyna; Gareev, Kamil G.; Moshnikov, Vyatcheslav A.; Kuznetsov, Vladimir V.; Olchowik, Jan M.

    2013-05-01

    This paper is concerned with the study of magnetic nanocomposites containing silicon, iron, nickel, and cobalt oxides. These materials were produced in the form of thin films based on Fe-Si-O, Ni-Co-Si-O and Fe-Ni-Co-Si-O systems and powders based on Fe-Si-O, Ni-Si-O, Co-Si-O and Fe-Ni-Co-Si-O systems using sol-gel technology, through centrifugation, and deposition of ammonia solution. The morphology and magnetic properties of materials in the form of thin films were studied by using the atomic force microscopy. The phase composition, specific surface area and magnetic properties of materials in the form of powders were studied by using the X-ray phase analysis, thermal desorption, vibrational magnetometry and immittance measurements. The dependencies of the main parameters were derived for the magnetic materials from their structure and manufacturing conditions. Ways to optimise the technological processes were proposed, aimed at reducing the size of the magnetic particles in an amorphous lattice.

  20. Two dimensionality in quasi-one-dimensional cobalt oxides

    NASA Astrophysics Data System (ADS)

    Sugiyama, J.; Nozaki, H.; Brewer, J. H.; Ansaldo, E. J.; Morris, G. D.; Takami, T.; Ikuta, H.; Mizutani, U.

    2006-03-01

    Magnetism of quasi-one-dimensional (1D) cobalt oxides ACoO ( A=Ca, Sr and Ba, n=1-5 and ∞) was investigated by μ+SR using polycrystalline samples, at temperatures from 300 K down to 1.8 K. The wTF- μ+SR experiments showed the existence of a magnetic transition in all six samples investigated. The onset temperature of the transition (Tcon) was found to decrease with n; that is, 100±25, 90±10, 85±10, 65±10 50±10, and 15±1 K for n=1-5, and ∞, respectively. In particular, for the samples with n=2-5, Tcon was detected only by the present μ+SR measurements. A muon spin oscillation was clearly observed in both Ca 3Co 2O 6(n=1) and BaCoO 3(n=∞), whereas only a fast relaxation is apparent even at 1.8 K in the other four samples ( n=2-5). Taking together with the fact that the paramagnetic Curie temperature ranges from -150 to -200 K for the compound with n=2 and 3, the μ+SR result indicates that a two-dimensional (2D) short-range antiferromagnetic (AF) order, which has been thought to be unlikely to exist at high T due to a relatively strong 1D F interaction, appears below Tcon for all compounds with n=1-5; but quasi-static long-range AF order formed only in Ca 3Co 2O 6, below 25 K. For BaCoO 3(n=∞), as T decreased from 300 K, 1D F order appeared below 53 K, and a sharp 2D AF transition occurred at 15 K.

  1. Atomic-Scale Study Of Complex Cobalt Oxide Using Scanning Transmission Electron Microscope

    NASA Astrophysics Data System (ADS)

    Gulec, Ahmet

    Cobalt oxides offer a rich ?eld for the formation of novel phases, including superconductors and exotic magnetic phases, involving a mixed valence state for cobalt and/or the presence of oxygen vacancies. Having spin states, such as, low spin (LS), high spin (HS), and intermediate spin (IS), cobalt oxides differ from other 3d metal oxides The presence of such spin states make the physics of the cobalt oxides so complicated that it has not yet been completely understood. In order to improve our understanding of the various phase transitions observed in Cobalt oxides and to comprehend the relationship between crystal and electronic structure, both high energy resolution and high spatial resolution are essential. Fortunately, transmission electron microscopy (TEM) is a technique which is capable of ful?lling both of these requirements. In this thesis, I have utilized unique techniques in a scanning transmission electron microscope (STEM) to analyze the atomic-scale structure-property relationship, both at room temperature and through insitu cooling to liquid nitrogen (LN2) temperature. In particular, by using correlated Z-contrast imaging, electron energy loss spectrum (EELS) and electron energy loss magnetic circular dichroism (EMCD), the structure, composition, bonding and magnetic behavior are characterized directly on the atomic scale.

  2. Electrochemically formed 3D hierarchical thin films of cobalt-manganese (Co-Mn) hexacyanoferrate hybrids for electrochemical applications

    NASA Astrophysics Data System (ADS)

    Alam Venugopal, Narendra Kumar; Joseph, James

    2016-02-01

    Here we report the feasibility of forming 3D nanostructured hexacyanoferates of Cobalt and Manganese (Co-MnHCF) on GC surface by a facile electrochemical method. This 3D architecture on glassy carbon electrode characterised systematically by voltammetry and other physical characterisation techniques like Field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD) and Fourier transform Infrared spectroscopy (FTIR) etc,. Electrochemical Quartz crystal microbalance (EQCM) studies helped out to calculate the total mass change during Co-MnHCF formation. Electrochemical studies reveal that the formal redox potentials of both Co and MnHCF films remained close to that of newly formed Co-MnHCF hybrid films. These 3D modified films were successfully applied for two different electrochemical applications i) For pseudocapacitor studies in KNO3 medium ii) Investigated the electrocatalytic behaviour of redox film towards water oxidation reaction in alkaline medium. Electrochemical performances of newly formed Co-MnHCF are compared with their individual transition metal (Co, Mn) hexacyanoferrates. The resulting material shows a specific capacitance of 350 F g-1 through its fast reversible redox reaction of electrochemically formed Co-MnHCF modified film. Interestingly we showed the overpotential of 450 mV (from its thermodynamic voltage 1.2 V) to attain its optimum current density of 10 mA cm-2 for O2 evolution in alkaline medium.

  3. Thermal-fatigue and oxidation resistance of cobalt-modified Udimet 700 alloy

    NASA Technical Reports Server (NTRS)

    Bizon, P. T.; Barrow, B. J.

    1986-01-01

    Comparative thermal-fatigue and oxidation resistances of cobalt-modified wrought Udimet 700 alloy (obtained by reducing the cobalt level by direct substitution of nickel) were determined from fluidized-bed tests. Bed temperatures were 1010 and 288 C (1850 and 550 C) for the first 5500 symmetrical 6-min cycles. From cycle 5501 to the 14000-cycle limit of testing, the heating bed temperature was increased to 1050 C (1922 F). Cobalt levels between 0 and 17 wt% were studied in both the bare and NiCrAlY overlay coated conditions. A cobalt level of about 8 wt% gave the best thermal-fatigue life. The conventional alloy specification is for 18.5% cobalt, and hence, a factor of 2 in savings of cobalt could be achieved by using the modified alloy. After 13500 cycles, all bare cobalt-modified alloys lost 10 to 13 percent of their initial weight. Application of the NiCrAlY overlay coating resulted in weight losses of 1/20 to 1/100 of that of the corresponding bare alloy.

  4. Spin waves in ultrathin hexagonal cobalt films on W(110), Cu(111), and Au(111) surfaces

    NASA Astrophysics Data System (ADS)

    Michel, E.; Ibach, H.; Schneider, C. M.

    2015-07-01

    Spin wave spectra of ultrathin epitaxial cobalt films deposited on W(110), Cu(111), and Au(111) surfaces are studied in the wave-vector regime between 0.1 Å-1 and 0.7 Å-1 using inelastic electron scattering with 6 meV energy resolution. Up to three different spin wave modes are resolved for wave vectors q∥<0.35 Å-1 . The modes are identified as the acoustic mode and standing modes with one and two nodes inside the film. The relative weight of the modes in a particular spectrum may depend critically on the electron impact energy. For larger wave vectors beyond q∥>0.35 Å-1 and layers thicker than five atom layers the separate modes merge into a single, broad loss feature. Since the shape and position of the loss feature depend on the electron impact energy, a separation into different modes is nevertheless possible for not too large wave vectors. The spin wave dispersion curves of films grown on W(110) agree with those observed on Cu(111) if one takes into account that on copper the cobalt grows in islands so that the mean height of the islands is higher than the nominal coverage. On films grown on Au(111) the low wave vector spin waves are buried in the high elastic diffuse scattering caused by the considerable disorder in the films. The broader appearance of the spectra at higher wave vectors compared to films grown on W(110) and Cu(111) is quantitatively accounted for by disorder-induced kinematic broadening. Because of the granular growth on copper and gold primarily the spin wave spectrum of cobalt films on W(110) is amenable to quantitative theoretical analysis. Such an analysis is not available at present. We show however, that the dispersion curves are incompatible with the Heisenberg model as long as only a single, layer-independent exchange coupling constant is invoked.

  5. Thermal NF3 fluorination/oxidation of cobalt, yttrium, zirconium, and selected lanthanide oxides

    SciTech Connect

    Scheele, Randall D.; McNamara, Bruce K.; Casella, Andrew M.; Kozelisky, Anne E.; Neiner, Doinita

    2013-02-01

    This paper presents results of our continuing investigation on the use of nitrogen trifluoride as a fluorination or fluorination/oxidation agent for separating valuable constituents from used nuclear fuels by exploiting the different volatilities of the constituent fission product and actinide fluorides. This article focuses on fission products that do not have volatile fluorides or oxyfluorides at expected operations temperatures. Our thermodynamic calculations show that nitrogen trifluoride has the potential to completely fluorinate fission product oxides to their fluorides. Simultaneous thermogravimetric and differential thermal analyses show that the oxides of cobalt, zirconium, and the lanthanides are fluorinated but do not form volatile fluorides when treated with nitrogen trifluoride at temperatures up to 550°C. Our studies of gadolinium-doped commercial nuclear fuel indicate that nitrogen trifluoride can extract uranium from the non-volatile gadolinium.

  6. Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel.

    PubMed

    Gao, Shan; Lin, Yue; Jiao, Xingchen; Sun, Yongfu; Luo, Qiquan; Zhang, Wenhua; Li, Dianqi; Yang, Jinlong; Xie, Yi

    2016-01-01

    Electroreduction of CO2 into useful fuels, especially if driven by renewable energy, represents a potentially 'clean' strategy for replacing fossil feedstocks and dealing with increasing CO2 emissions and their adverse effects on climate. The critical bottleneck lies in activating CO2 into the CO2(•-) radical anion or other intermediates that can be converted further, as the activation usually requires impractically high overpotentials. Recently, electrocatalysts based on oxide-derived metal nanostructures have been shown to enable CO2 reduction at low overpotentials. However, it remains unclear how the electrocatalytic activity of these metals is influenced by their native oxides, mainly because microstructural features such as interfaces and defects influence CO2 reduction activity yet are difficult to control. To evaluate the role of the two different catalytic sites, here we fabricate two kinds of four-atom-thick layers: pure cobalt metal, and co-existing domains of cobalt metal and cobalt oxide. Cobalt mainly produces formate (HCOO(-)) during CO2 electroreduction; we find that surface cobalt atoms of the atomically thin layers have higher intrinsic activity and selectivity towards formate production, at lower overpotentials, than do surface cobalt atoms on bulk samples. Partial oxidation of the atomic layers further increases their intrinsic activity, allowing us to realize stable current densities of about 10 milliamperes per square centimetre over 40 hours, with approximately 90 per cent formate selectivity at an overpotential of only 0.24 volts, which outperforms previously reported metal or metal oxide electrodes evaluated under comparable conditions. The correct morphology and oxidation state can thus transform a material from one considered nearly non-catalytic for the CO2 electroreduction reaction into an active catalyst. These findings point to new opportunities for manipulating and improving the CO2 electroreduction properties of metal systems

  7. Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel

    NASA Astrophysics Data System (ADS)

    Gao, Shan; Lin, Yue; Jiao, Xingchen; Sun, Yongfu; Luo, Qiquan; Zhang, Wenhua; Li, Dianqi; Yang, Jinlong; Xie, Yi

    2016-01-01

    Electroreduction of CO2 into useful fuels, especially if driven by renewable energy, represents a potentially ‘clean’ strategy for replacing fossil feedstocks and dealing with increasing CO2 emissions and their adverse effects on climate. The critical bottleneck lies in activating CO2 into the CO2•- radical anion or other intermediates that can be converted further, as the activation usually requires impractically high overpotentials. Recently, electrocatalysts based on oxide-derived metal nanostructures have been shown to enable CO2 reduction at low overpotentials. However, it remains unclear how the electrocatalytic activity of these metals is influenced by their native oxides, mainly because microstructural features such as interfaces and defects influence CO2 reduction activity yet are difficult to control. To evaluate the role of the two different catalytic sites, here we fabricate two kinds of four-atom-thick layers: pure cobalt metal, and co-existing domains of cobalt metal and cobalt oxide. Cobalt mainly produces formate (HCOO-) during CO2 electroreduction; we find that surface cobalt atoms of the atomically thin layers have higher intrinsic activity and selectivity towards formate production, at lower overpotentials, than do surface cobalt atoms on bulk samples. Partial oxidation of the atomic layers further increases their intrinsic activity, allowing us to realize stable current densities of about 10 milliamperes per square centimetre over 40 hours, with approximately 90 per cent formate selectivity at an overpotential of only 0.24 volts, which outperforms previously reported metal or metal oxide electrodes evaluated under comparable conditions. The correct morphology and oxidation state can thus transform a material from one considered nearly non-catalytic for the CO2 electroreduction reaction into an active catalyst. These findings point to new opportunities for manipulating and improving the CO2 electroreduction properties of metal systems

  8. Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel.

    PubMed

    Gao, Shan; Lin, Yue; Jiao, Xingchen; Sun, Yongfu; Luo, Qiquan; Zhang, Wenhua; Li, Dianqi; Yang, Jinlong; Xie, Yi

    2016-01-01

    Electroreduction of CO2 into useful fuels, especially if driven by renewable energy, represents a potentially 'clean' strategy for replacing fossil feedstocks and dealing with increasing CO2 emissions and their adverse effects on climate. The critical bottleneck lies in activating CO2 into the CO2(•-) radical anion or other intermediates that can be converted further, as the activation usually requires impractically high overpotentials. Recently, electrocatalysts based on oxide-derived metal nanostructures have been shown to enable CO2 reduction at low overpotentials. However, it remains unclear how the electrocatalytic activity of these metals is influenced by their native oxides, mainly because microstructural features such as interfaces and defects influence CO2 reduction activity yet are difficult to control. To evaluate the role of the two different catalytic sites, here we fabricate two kinds of four-atom-thick layers: pure cobalt metal, and co-existing domains of cobalt metal and cobalt oxide. Cobalt mainly produces formate (HCOO(-)) during CO2 electroreduction; we find that surface cobalt atoms of the atomically thin layers have higher intrinsic activity and selectivity towards formate production, at lower overpotentials, than do surface cobalt atoms on bulk samples. Partial oxidation of the atomic layers further increases their intrinsic activity, allowing us to realize stable current densities of about 10 milliamperes per square centimetre over 40 hours, with approximately 90 per cent formate selectivity at an overpotential of only 0.24 volts, which outperforms previously reported metal or metal oxide electrodes evaluated under comparable conditions. The correct morphology and oxidation state can thus transform a material from one considered nearly non-catalytic for the CO2 electroreduction reaction into an active catalyst. These findings point to new opportunities for manipulating and improving the CO2 electroreduction properties of metal systems

  9. Facile preparation of highly-dispersed cobalt-silicon mixed oxide nanosphere and its catalytic application in cyclohexane selective oxidation

    PubMed Central

    2011-01-01

    Highly dispersed cobalt-silicon mixed oxide [Co-SiO2] nanosphere was successfully prepared with a modified reverse-phase microemulsion method. This material was characterized in detail by X-ray diffraction, transmission electron microscopy, Fourier transform infrared, ultraviolet-visible diffuse reflectance spectra, X-ray absorption spectroscopy near-edge structure, and N2 adsorption-desorption measurements. High valence state cobalt could be easily obtained without calcination, which is fascinating for the catalytic application for its strong oxidation ability. In the selective oxidation of cyclohexane, Co-SiO2 acted as an efficient catalyst, and good activity could be obtained under mild conditions. PMID:22067075

  10. Flexible cobalt-phthalocyanine thin films with high charge carrier mobility

    SciTech Connect

    Singh, Ajay; Kumar, Arvind; Kumar, Ashwini; Samanta, Soumen; Debnath, Anil K.; Jha, Purushottam; Prasad, Rajeshwar; Aswal, Dinesh K.; Gupta, Shiv K.; Salmi, Zakaria; Nowak, Sophie; Chehimi, Mohamed M.

    2012-11-26

    The structural and charge transport characteristics of cobalt phthalocyanine (CoPc) films deposited on flexible bi-axially oriented polyethylene terephthalate (BOPET) substrates are investigated. CoPc films exhibited a preferential (200) orientation with charge carrier mobility of {approx}118 cm{sup 2} V{sup -1} s{sup -1} (at 300 K). These films exhibited a reversible resistance changes upon bending them to different radius of curvature. The charge transport in CoPc films is governed by a bias dependent crossover from ohmic (J-V) to trap-free space-charge limited conduction (J-V{sup 2}). These results demonstrate that CoPc films on flexible BOPET having high mobility and high mechanical flexibility are a potential candidate for flexible electronic devices.

  11. Three-dimensional cobalt oxide microstructures with brush-like morphology via surfactant-dependent assembly.

    PubMed

    Dam, Duc Tai; Lee, Jong-Min

    2014-12-10

    In this study, three-dimensional cobalt oxide microstructures were developed. Cobalt oxide microdumbbells and microspheres, assembled by nanowires and primary particles, were successfully synthesized by a multistep hydrothermal method. Of all of the structures, the cobalt oxide microdumbbell electrode possesses the largest surface area of 70.8 m(2) g(-1) and the highest specific capacitance of 407.5 F g(-1). The as-prepared electrode also demonstrates excellent electrochemical stability and retains 97.5% of the initial capacitance after 2000 charge-discharge cycles. This performance is attributed to the desirable morphology, uniform microarchitecture stability, and high surface area. The results show that the as-fabricated Co3O4 is a promising electrode material for supercapacitor applications. PMID:25415605

  12. Characterization of electrochemically deposited films from aqueous and ionic liquid cobalt precursors toward hydrogen evolution reactions

    NASA Astrophysics Data System (ADS)

    Dushatinski, Thomas; Huff, Clay; Abdel-Fattah, Tarek M.

    2016-11-01

    Electrodepositions of cobalt films were achieved using an aqueous or an ethylene glycol based non-aqueous solution containing choline chloride (vitamin B4) with cobalt chloride hexahydrate precursor toward hydrogen evolution reactions from sodium borohydride (NaBH4) as solid hydrogen feedstock (SHF). The resulting cobalt films had reflectivity at 550 nm of 2.2% for aqueously deposited films (ACoF) and 1.3% for non-aqueously deposited films (NCoF). Surface morphology studied by scanning electron microscopy showed a positive correlation between particle size and thickness. The film thicknesses were tunable between >100 μm and <300 μm for each film. The roughness (Ra) value measurements by Dektak surface profiling showed that the NCoF (Ra = 165 nm) was smoother than the ACoF (Ra = 418 nm). The NCoFs and ACoFs contained only α phase (FCC) crystallites. The NCoFs were crystalline while the ACoFs were largely amorphous from X-ray diffraction analysis. The NCoF had an average Vickers hardness value of 84 MPa as compared to 176 MPa for ACoF. The aqueous precursor has a single absorption maximum at 510 nm and the non-aqueous precursor had three absorption maxima at 630, 670, and 695 nm. The hydrogen evolution reactions over a 1 cm2 catalytic surface with aqueous NaBH4 solutions generated rate constants (K) = equal to 4.9 × 10-3 min-1, 4.6 × 10-3 min-1, and 3.3 × 10-3 min-1 for ACoF, NCoF, and copper substrate respectively.

  13. Electroplated thick-film cobalt platinum permanent magnets

    NASA Astrophysics Data System (ADS)

    Oniku, Ololade D.; Qi, Bin; Arnold, David P.

    2016-10-01

    The material and magnetic properties of multi-micron-thick (up to 6 μm) L10 CoPt magnetic films electroplated onto silicon substrates are investigated as candidate materials for integration in silicon-based microsystems. The influence of various process conditions on the structure and magnetic properties of electroplated CoPt thick-films is studied in order to better understand the complex process/structure/property relationships associated with the electroplated films. Process variables studied here include different seed layers, electroplating current densities (ranging from 25-200 mA/cm2), deposition times (up to 60 min), and post-deposition annealing times and temperatures. Analyses include film morphology, film thickness, composition, surface roughness, grain size, phase volume fractions, and L10 ordering parameter. Key correlations are found relating process and structure variations to the extrinsic magnetic properties (remanence, coercivity, squareness, and energy product). Strong hard magnetic properties (Br ~0.8 T, Hci ~800 kA/m, squareness close to 0.9, and BHmax of 100 kJ/m3) are obtained for films deposited on Si/TiN/Ti/Cu at current densities of 100 mA/cm2, pH of 7, and subsequently annealed at 675 °C for 30 min.

  14. High power density aqueous hybrid supercapacitor combining activated carbon and highly conductive spinel cobalt oxide

    NASA Astrophysics Data System (ADS)

    Godillot, G.; Taberna, P.-L.; Daffos, B.; Simon, P.; Delmas, C.; Guerlou-Demourgues, L.

    2016-11-01

    The remarkable electrochemical behavior of complete activated carbon/cobalt oxide cells is reported in the present work. Among the various weight ratios between the positive and negative electrodes evaluated, the best features are obtained with an overcapacitive cobalt oxide electrode. The energy densities obtained by this system (20 Wh kg-1 for a power density of 209 W kg-1) are twice higher than those measured for a activated carbon/activated carbon symmetric cell, in the same operating conditions. With discharge capacities around 62 F g-1, this system is among the best ones reported in the literature for this category.

  15. Process for fabrication of metal oxide films

    SciTech Connect

    Tracy, C.E.; Benson, D.; Svensson, S.

    1990-07-17

    This invention is comprised of a method of fabricating metal oxide films from a plurality of reactants by inducing a reaction by plasma deposition among the reactants. The plasma reaction is effective for consolidating the reactants and producing thin films of metal oxides, e.g. electro-optically active transition metal oxides, at a high deposition rate. The presence of hydrogen during the plasma reaction enhances the deposition rate of the metal oxide. Various types of metal oxide films can be produced.

  16. Catalytic Decomposition of N2O at Low Temperature by Reduced Cobalt Oxides.

    PubMed

    Eom, Won-Hyun; Ayoub, Muhammad; Yoo, Kyung-Seun

    2016-05-01

    Various forms of cobalt oxide (Co3O4 and C0203) were subsequently prepared and tested for decomposition of N2O at low temperature in a fix bed differential reactor at steady state conditions. These different types of oxides were prepared by precipitation method (PM) and by calcination of commercially available CoCO3. Commercially available cobalt oxides C03O4 and C02O3 were also tested for N2O decomposition at different temperatures. All types of prepared and commercially available cobalt oxide were found inactive for N2O decomposition in the presence of oxygen at temperature less than 300 degrees C. Similar unsatisfactory results were found at low temperature N2O decomposition after impregnation of alkali metal (10% Na) and alkaline earth metal (10% Ba) over Co3O4. These catalysts were then reduced under reduction media (H2 gas). It was found that after reduction cobalt oxide catalysts became active for N2O decomposition for short time in the presence of oxygen at low temperature. The reduced form of Co3O4 catalyst showed enormous efficiency i.e., 98% at temperature (300 degrees C) under the same conditions. From results it seems that Co3O4 itself is not active for N2O decomposition but its reduced form is highly active for this reaction due to oxidation state change of C03O4 during reduction process. PMID:27483805

  17. Catalytic Decomposition of N2O at Low Temperature by Reduced Cobalt Oxides.

    PubMed

    Eom, Won-Hyun; Ayoub, Muhammad; Yoo, Kyung-Seun

    2016-05-01

    Various forms of cobalt oxide (Co3O4 and C0203) were subsequently prepared and tested for decomposition of N2O at low temperature in a fix bed differential reactor at steady state conditions. These different types of oxides were prepared by precipitation method (PM) and by calcination of commercially available CoCO3. Commercially available cobalt oxides C03O4 and C02O3 were also tested for N2O decomposition at different temperatures. All types of prepared and commercially available cobalt oxide were found inactive for N2O decomposition in the presence of oxygen at temperature less than 300 degrees C. Similar unsatisfactory results were found at low temperature N2O decomposition after impregnation of alkali metal (10% Na) and alkaline earth metal (10% Ba) over Co3O4. These catalysts were then reduced under reduction media (H2 gas). It was found that after reduction cobalt oxide catalysts became active for N2O decomposition for short time in the presence of oxygen at low temperature. The reduced form of Co3O4 catalyst showed enormous efficiency i.e., 98% at temperature (300 degrees C) under the same conditions. From results it seems that Co3O4 itself is not active for N2O decomposition but its reduced form is highly active for this reaction due to oxidation state change of C03O4 during reduction process.

  18. Preliminary study of a solar selective coating system using black cobalt oxide for high temperature solar collectors

    NASA Technical Reports Server (NTRS)

    Mcdonald, G.

    1980-01-01

    Black cobalt oxide coatings were deposited on thin layers of silver or gold which had been deposited on oxidized stainless steel substrates. The reflectance properties of these coatings were measured at various thicknesses of cobalt oxide for integrated values of the solar and infrared spectrum. The values of absorptance and emittance were calculated from the measured reflectance values before and after exposure in air at 650 C for 1000 hours. Also, these cobalt oxide/noble metal/oxide diffusion barrier coatings have absorptances greater than 0.90 and emittances of approximately 0.20 even after about 1000 hours at 650 C.

  19. Electroless (autocatalytic) nickel-cobalt thin films as solar control coatings

    SciTech Connect

    John, S.; Srinivasan, K.N.; Selvam, M.; Anuradha, S.; Rajendran, S.

    1994-12-31

    This paper describes the deposition of nickel-cobalt-phosphorus coatings by the electroless deposition technique for use as solar control coatings in architectural glazing of buildings. Electroless deposition is characterized by the autocatalytic deposition of a metal/alloy from an aqueous solution of its ions by interaction with a chemical reducing agent. The reducing agent provides electrons for the metal ions to be neutralized. The reduction is initiated by the catalyzed surface of the substrate and continued by the self catalytic activity of the deposited metal/alloy as long as the substrate is immersed in the electroless bath and operating conditions are maintained. Electroless nickel-cobalt-phosphorus thin films were deposited from a solution containing 15 g/l nickel sulphate, 5 g/l cobalt sulphate, 60 g/l ammonium citrate and 25 g/l sodium hypophosphite operating at 30 C, at a pH of 9.5 for two minutes. Electroless nickel-cobalt-phosphorus coatings are found to satisfy the basic requirements of solar control coatings. Autocatalytic deposition technique offers the possibilities of producing large area coatings with low capital investment, stability and good adhesion to glass substrates.

  20. Electrodeposited reduced-graphene oxide/cobalt oxide electrodes for charge storage applications

    NASA Astrophysics Data System (ADS)

    García-Gómez, A.; Eugénio, S.; Duarte, R. G.; Silva, T. M.; Carmezim, M. J.; Montemor, M. F.

    2016-09-01

    In the present work, electrochemically reduced-graphene oxide/cobalt oxide composites for charge storage electrodes were prepared by a one-step pulsed electrodeposition route on stainless steel current collectors and after that submitted to a thermal treatment at 200 °C. A detailed physico-chemical characterization was performed by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and Raman spectroscopy. The electrochemical response of the composite electrodes was studied by cyclic voltammetry and charge-discharge curves and related to the morphological and phase composition changes induced by the thermal treatment. The results revealed that the composites were promising materials for charge storage electrodes for application in redox supercapacitors, attaining specific capacitances around 430 F g-1 at 1 A g-1 and presenting long-term cycling stability.

  1. Synthesis of nano-sized lithium cobalt oxide via a sol-gel method

    NASA Astrophysics Data System (ADS)

    Li, Guangfen; Zhang, Jing

    2012-07-01

    In this study, nano-structured LiCoO2 thin film were synthesized by coupling a sol-gel process with a spin-coating method using polyacrylic acid (PAA) as chelating agent. The optimized conditions for obtaining a better gel formulation and subsequent homogenous dense film were investigated by varying the calcination temperature, the molar mass of PAA, and the precursor's molar ratios of PAA, lithium, and cobalt ions. The gel films on the silicon substrate surfaces were deposited by multi-step spin-coating process for either increasing the density of the gel film or adjusting the quantity of PAA in the film. The gel film was calcined by an optimized two-step heating procedure in order to obtain regular nano-structured LiCoO2 materials. Both atomic force microscopy (AFM) and scanning electron microscopy (SEM) were utilized to analyze the crystalline and the morphology of the films, respectively.

  2. Catalytic Aerobic Dehydrogenation of Nitrogen Heterocycles Using Heterogeneous Cobalt Oxide Supported on Nitrogen-Doped Carbon.

    PubMed

    Iosub, Andrei V; Stahl, Shannon S

    2015-09-18

    Dehydrogenation of (partially) saturated heterocycles provides an important route to heteroaromatic compounds. A heterogeneous cobalt oxide catalyst, previously employed for aerobic oxidation of alcohols and amines, is shown to be effective for aerobic dehydrogenation of various 1,2,3,4-tetrahydroquinolines to the corresponding quinolines. The reactions proceed in good yields under mild conditions. Other N-heterocycles are also successfully oxidized to their aromatic counterparts.

  3. A Bioinspired Molecular Polyoxometalate Catalyst with Two Cobalt(II) Oxide Cores for Photocatalytic Water Oxidation.

    PubMed

    Wei, Jie; Feng, Yingying; Zhou, Panpan; Liu, Yan; Xu, Jingyin; Xiang, Rui; Ding, Yong; Zhao, Chongchao; Fan, Linyuan; Hu, Changwen

    2015-08-24

    To overcome the bottleneck of water splitting, the exploration of efficient, selective, and stable water oxidation catalysts (WOCs) is crucial. We report an all-inorganic, oxidatively and hydrolytically stable WOC based on a polyoxometalate [(A-α-SiW9 O34)2Co8(OH)6(H2O)2(CO3)3](16-) (Co8 POM). As a cobalt(II)-based cubane water oxidation catalyst, Co8POM embeds double Co(II)4O3 cores. The self-assembled catalyst is similar to the oxygen evolving complex (OEC) of photosystem II (PS II). Using [Ru(bpy)3](2+) as a photosensitizer and persulfate as a sacrificial electron acceptor, Co8POM exhibits excellent water oxidation activity with a turnover number (TON) of 1436, currently the highest among bioinspired catalysts with a cubical core, and a high initial turnover frequency (TOF). Investigation by several spectroscopy, spectrometry, and other techniques confirm that Co8POM is a stable and efficient catalyst for visible light-driven water oxidation. The results offer a useful insight into the design of water oxidation catalysts.

  4. Angular tuning of the magnetic birefringence in rippled cobalt films

    SciTech Connect

    Arranz, Miguel A.; Colino, José M.

    2015-06-22

    We report the measurement of magnetically induced birefringence in rippled Co films. For this purpose, the magneto-optical properties of ion beam eroded ferromagnetic films were studied using Kerr magnetometry and magnetic birefringence in the transmitted light intensity. Upon sufficient ion sculpting, these ripple surface nanostructures developed a defined uniaxial anisotropy in the in-plane magnetization, finely tuning the magnetic birefringence effect. We have studied its dependence on the relative orientation between the ripple direction and the magnetic field, and found this effect to be dramatically correlated with the capability to neatly distinguish the mechanisms for the in-plane magnetization reversal, i.e., rotation and nucleation. This double refraction corresponds univocally to the two magnetization axes, parallel and perpendicular to the ripples direction. We have also observed that tuned birefringence in stack assemblies of rippled Co films, which enables us to technically manipulate the number and direction of refraction axes.

  5. High-performance hybrid oxide catalyst of manganese and cobalt for low-pressure methanol synthesis

    NASA Astrophysics Data System (ADS)

    Li, Cheng-Shiuan; Melaet, Gérôme; Ralston, Walter T.; An, Kwangjin; Brooks, Christopher; Ye, Yifan; Liu, Yi-Sheng; Zhu, Junfa; Guo, Jinghua; Alayoglu, Selim; Somorjai, Gabor A.

    2015-03-01

    Carbon dioxide capture and use as a carbon feedstock presents both environmental and industrial benefits. Here we report the discovery of a hybrid oxide catalyst comprising manganese oxide nanoparticles supported on mesoporous spinel cobalt oxide, which catalyses the conversion of carbon dioxide to methanol at high yields. In addition, carbon-carbon bond formation is observed through the production of ethylene. We document the existence of an active interface between cobalt oxide surface layers and manganese oxide nanoparticles by using X-ray absorption spectroscopy and electron energy-loss spectroscopy in the scanning transmission electron microscopy mode. Through control experiments, we find that the catalyst’s chemical nature and architecture are the key factors in enabling the enhanced methanol synthesis and ethylene production. To demonstrate the industrial applicability, the catalyst is also run under high conversion regimes, showing its potential as a substitute for current methanol synthesis technologies.

  6. Hierarchical cobalt-based hydroxide microspheres for water oxidation.

    PubMed

    Zhang, Ye; Cui, Bai; Derr, Olivia; Yao, Zhibo; Qin, Zhaotong; Deng, Xiangyun; Li, Jianbao; Lin, Hong

    2014-03-21

    3D hierarchical cobalt hydroxide carbonate hydrate (Co(CO3)0.5(OH)·0.11H2O) has been synthesized featuring a hollow urchin-like structure by a one-step hydrothermal method at modest temperature on FTO glass substrates. The functionalities of precursor surfactants were isolated and analyzed. A plausible formation mechanism of the spherical urchin-like microclusters has been furnished through time-dependent investigations. Introduction of other transitional metal doping (Cu, Ni) would give rise to a substantial morphological change associated with a surface area drop. The directly grown cobalt-based hydroxide composite electrodes were found to be capable of catalyzing oxygen evolution reaction (OER) under both neutral pH and alkaline conditions. The favorable 3D dendritic morphology and porous structure provide large surface areas and possible defect sites that are likely responsible for their robust electrochemical activity.

  7. Oxidation behaviour and electrical properties of cobalt/cerium oxide composite coatings for solid oxide fuel cell interconnects

    NASA Astrophysics Data System (ADS)

    Harthøj, Anders; Holt, Tobias; Møller, Per

    2015-05-01

    This work evaluates the performance of cobalt/cerium oxide (Co/CeO2) composite coatings and pure Co coatings to be used for solid oxide fuel cell (SOFC) interconnects. The coatings are electroplated on the ferritic stainless steels Crofer 22 APU and Crofer 22H. Coated and uncoated samples are exposed in air at 800 °C for 3000 h and oxidation rates are measured and oxide scale microstructures are investigated. Area-specific resistances (ASR) in air at 850 °C of coated and uncoated samples are also measured. A dual layered oxide scale formed on all coated samples. The outer layer consisted of Co, Mn, Fe and Cr oxide and the inner layer consisted of Cr oxide. The CeO2 was present as discrete particles in the outer oxide layer after exposure. The Cr oxide layer thicknesses and oxidations rates were significantly reduced for Co/CeO2 coated samples compared to for Co coated and uncoated samples. The ASR of all Crofer 22H samples increased significantly faster than of Crofer 22 APU samples which was likely due to the presence of SiO2 in the oxide/metal interface of Crofer 22H.

  8. Cobalt-Based Hard Magnets, Thin Films and Multilayers

    NASA Astrophysics Data System (ADS)

    Gao, Chuan

    1991-02-01

    Co-based magnetic materials including bulk, thin film and magnetic multilayers have been studied. The purpose of the first part of this work is to study a Co -based transition metal alloy to be processed to result in significant enhancement of its magnetic properties (coercivity, magnetization, and energy product) in the absence rare earths. CoZr(Hf)BSi alloys have been studied. Rapidly quenched Co_ {78}Zr_{16}B_3Si_3 and Co_{76}Hf_ {76}B_3Si_3 showed the highest coercivity (6.7 kOe and 6.5 kOe respectively). This is the highest room temperature coercivity reported in a non -rare-earth containing magnet up to now. This system has excellent thermal stability. Co-based thin film alloys were also studied and we obtain coercivities as high as 700 Oe for sputtered thin films. This lies in between the maximum value obtained for as-cast bulk alloys (50 Oe) and rapidly quenched alloys (6.7 kOe). Multilayers were studied with the objective of determining the effect of interfaces on the magnetic properties of Co alloys. Multilayers of the form Co/Cu, Co_{95}B _5/Cu and Co/Al were studied and the interface anisotropy was found to favor a magnetization perpendicular to the film. Very thin magnetic layers led to very small coercivities since the size of magnetic domains was restricted. We also noted some interesting layer-layer magnetic interactions. Finally some unusual magnetization reversal behavior was noted in which the magnetic moment goes to zero and reverses before the applied field goes to zero.

  9. Effect of Co/Ni ratios in cobalt nickel mixed oxide catalysts on methane combustion

    SciTech Connect

    Lim, Tae Hwan; Cho, Sung June; Yang, Hee Sung; Engelhard, Mark H.; Kim, Do Heui

    2015-07-31

    A series of cobalt nickel mixed oxide catalysts with the varying ratios of Co to Ni, prepared by co-precipitation method, were applied to methane combustion. Among the various ratios, cobalt nickel mixed oxides having the ratios of Co to Ni of (50:50) and (67:33) demonstrate the highest activity for methane combustion. Structural analysis obtained from X-ray diffraction (XRD) and extended X-ray absorption fine structure (EXAFS) evidently demonstrates that CoNi (50:50) and (67:33) samples consist of NiCo2O4and NiO phase and, more importantly, NiCo2O4spinel structure is largely distorted, which is attributed to the insertion of Ni2+ions into octahedral sites in Co3O4spinel structure. Such structural dis-order results in the enhanced portion of surface oxygen species, thus leading to the improved reducibility of the catalysts in the low temperature region as evidenced by temperature programmed reduction by hydrogen (H2TPR) and X-ray photoelectron spectroscopy (XPS) O 1s results. They prove that structural disorder in cobalt nickel mixed oxides enhances the catalytic performance for methane combustion. Thus, it is concluded that a strong relationship between structural property and activity in cobalt nickel mixed oxide for methane combustion exists and, more importantly, distorted NiCo2O4spinel structure is found to be an active site for methane combustion.

  10. Cobalt carbonate/ and cobalt oxide/graphene aerogel composite anodes for high performance Li-ion batteries.

    PubMed

    Garakani, Mohammad Akbari; Abouali, Sara; Zhang, Biao; Takagi, Curtis Alton; Xu, Zheng-Long; Huang, Jian-qiu; Huang, Jiaqiang; Kim, Jang-Kyo

    2014-11-12

    Nanocomposites consisting of ultrafine, cobalt carbonate nanoneedles and 3D porous graphene aerogel (CoCO3/GA) are in situ synthesized based on a one-step hydrothermal route followed by freeze-drying. A further heat treatment produces cobalt oxide nanoparticles embedded in the conductive GA matrix (Co(3)O(4)/GA). Both the composite anodes deliver excellent specific capacities depending on current density employed: the CoCO(3)/GA anode outperforms the Co(3)O(4)/GA anode at low current densities, and vice versa at current densities higher than 500 mA g(-1). Their electrochemical performances are considered among the best of similar composite anodes consisting of CoCO(3) or Co(3)O(4) active particles embedded in a graphene substrate. The stable multistep electrochemical reactions of the carbonate compound with a unique nanoneedle structure contribute to the excellent cyclic stability of the CoCO(3)/GA electrode, whereas the highly conductive networks along with low charge transfer resistance are responsible for the high rate performance of the Co(3)O(4)/GA electrode.

  11. Cobalt(II) Oxidation by the Marine Manganese(II)-Oxidizing Bacillus sp. Strain SG-1

    PubMed Central

    Lee, Yoon; Tebo, Bradley M.

    1994-01-01

    The geochemical cycling of cobalt (Co) has often been considered to be controlled by the scavenging and oxidation of Co(II) on the surface of manganese [Mn(III,IV)] oxides or manganates. Because Mn(II) oxidation in the environment is often catalyzed by bacteria, we have investigated the ability of Mn(II)-oxidizing bacteria to bind and oxidize Co(II) in the absence of Mn(II) to determine whether some Mn(II)-oxidizing bacteria also oxidize Co(II) independently of Mn oxidation. We used the marine Bacillus sp. strain SG-1, which produces mature spores that oxidize Mn(II), apparently due to a protein in their spore coats (R.A. Rosson and K. H. Nealson, J. Bacteriol. 151:1027-1034, 1982; J. P. M. de Vrind et al., Appl. Environ. Microbiol. 52:1096-1100, 1986). A method to measure Co(II) oxidation using radioactive 57Co as a tracer and treatments with nonradioactive (cold) Co(II) and ascorbate to discriminate bound Co from oxidized Co was developed. SG-1 spores were found to oxidize Co(II) over a wide range of pH, temperature, and Co(II) concentration. Leucoberbelin blue, a reagent that reacts with Mn(III,IV) oxides forming a blue color, was found to also react with Co(III) oxides and was used to verify the presence of oxidized Co in the absence of added Mn(II). Co(II) oxidation occurred optimally around pH 8 and between 55 and 65°C. SG-1 spores oxidized Co(II) at all Co(II) concentrations tested from the trace levels found in seawater to 100 mM. Co(II) oxidation was found to follow Michaelis-Menten kinetics. An Eadie-Hofstee plot of the data suggests that SG-1 spores have two oxidation systems, a high-affinity-low-rate system (Km, 3.3 × 10-8 M; Vmax, 1.7 × 10-15 M · spore-1 · h-1) and a low-affinity-high-rate system (Km, 5.2 × 10-6 M; Vmax, 8.9 × 10-15 M · spore-1 · h-1). SG-1 spores did not oxidize Co(II) in the absence of oxygen, also indicating that oxidation was not due to abiological Co(II) oxidation on the surface of preformed Mn(III,IV) oxides. These

  12. Tailoring the optical bandgap and magnetization of cobalt ferrite thin films through controlled zinc doping

    NASA Astrophysics Data System (ADS)

    Sharma, Deepanshu; Khare, Neeraj

    2016-08-01

    In this report, the tuning of the optical bandgap and saturation magnetization of cobalt ferrite (CFO) thin films through low doping of zinc (Zn) has been demonstrated. The Zn doped CFO thin films with doping concentrations (0 to 10%) have been synthesized by ultrasonic assisted chemical vapour deposition technique. The optical bandgap varies from 1.48 to 1.88 eV and saturation magnetization varies from 142 to 221 emu/cc with the increase in the doping concentration and this change in the optical and magnetic properties is attributed to the change in the relative population of the Co2+ at the tetrahedral and octahedral sites. Raman study confirms the decrease in the population of Co2+ at tetrahedral sites with controlled Zn doping in CFO thin films. A quantitative analysis has been presented to explain the observed variation in the optical bandgap and saturation magnetization.

  13. Lightweight polyaniline-cobalt coated fly ash cenosphere composite film for electromagnetic interference shielding

    NASA Astrophysics Data System (ADS)

    Bora, Pritom J.; Vinoy, K. J.; Ramamurthy, Praveen C.; Kishore; Madras, Giridhar

    2016-09-01

    Thermal power plant's solid environmental waste fly ash cenosphere (FAC) is cobalt coated chemically and functionalized by in situ synthesis of polyaniline (PANI) under nitrogen atmosphere at -30 ± 2 °C and characterized by various techniques. The electromagnetic interference shielding effectiveness (EMI SE) of free standing PANI/Co-FAC (PCC) films prepared by solution casting indicates an appreciable shielding. The most effective average EMI SE of ~ 30 dB was obtained for 89 ± 3 μm thicker flexible film over the frequency range of 12.4-18 GHz (Ku-band). Mechanistically, EMI shielding due to absorption was found to be dominant. The obtained shielding effectiveness due to absorbance ( SE A ) of PCC film is nearly two times higher than PC film. The microwave conductivity (σ) of PCC film (157-184 Sm-1) is much higher than PC film (118-142 Sm-1). Moreover, the high EM attenuation constant ( α) value of PCC film indicates excellent suitability of EMI shielding due to absorption.

  14. Lightweight polyaniline-cobalt coated fly ash cenosphere composite film for electromagnetic interference shielding

    NASA Astrophysics Data System (ADS)

    Bora, Pritom J.; Vinoy, K. J.; Ramamurthy, Praveen C.; Kishore; Madras, Giridhar

    2016-07-01

    Thermal power plant's solid environmental waste fly ash cenosphere (FAC) is cobalt coated chemically and functionalized by in situ synthesis of polyaniline (PANI) under nitrogen atmosphere at -30 ± 2 °C and characterized by various techniques. The electromagnetic interference shielding effectiveness (EMI SE) of free standing PANI/Co-FAC (PCC) films prepared by solution casting indicates an appreciable shielding. The most effective average EMI SE of ~ 30 dB was obtained for 89 ± 3 µm thicker flexible film over the frequency range of 12.4-18 GHz (Ku-band). Mechanistically, EMI shielding due to absorption was found to be dominant. The obtained shielding effectiveness due to absorbance (SE A) of PCC film is nearly two times higher than PC film. The microwave conductivity (s) of PCC film (157-184 Sm-1) is much higher than PC film (118-142 Sm-1). Moreover, the high EM attenuation constant (α) value of PCC film indicates excellent suitability of EMI shielding due to absorption.

  15. Ion-beam mixed ultra-thin cobalt suicide (CoSi2) films by cobalt sputtering and rapid thermal annealing

    NASA Astrophysics Data System (ADS)

    Kal, S.; Kasko, I.; Ryssel, H.

    1995-10-01

    The influence of ion-beam mixing on ultra-thin cobalt silicide (CoSi2) formation was investigated by characterizing the ion-beam mixed and unmixed CoSi2 films. A Ge+ ion-implantation through the Co film prior to silicidation causes an interface mixing of the cobalt film with the silicon substrate and results in improved silicide-to-silicon interface roughness. Rapid thermal annealing was used to form Ge+ ion mixed and unmixed thin CoSi2 layer from 10 nm sputter deposited Co film. The silicide films were characterized by secondary neutral mass spectroscopy, x-ray diffraction, tunneling electron microscopy (TEM), Rutherford backscattering, and sheet resistance measurements. The experi-mental results indicate that the final rapid thermal annealing temperature should not exceed 800°C for thin (<50 nm) CoSi2 preparation. A comparison of the plan-view and cross-section TEM micrographs of the ion-beam mixed and unmixed CoSi2 films reveals that Ge+ ion mixing (45 keV, 1 × 1015 cm-2) produces homogeneous silicide with smooth silicide-to-silicon interface.

  16. Self-organized single crystal mixed magnetite/cobalt ferrite films grown by infrared pulsed-laser deposition

    NASA Astrophysics Data System (ADS)

    de la Figuera, Juan; Quesada, Adrián; Martín-García, Laura; Sanz, Mikel; Oujja, Mohamed; Rebollar, Esther; Castillejo, Marta; Prieto, Pilar; Muñoz-Martín, Ángel; Aballe, Lucía; Marco, José F.

    2015-12-01

    We have grown mixed magnetite/cobalt ferrite epitaxial films on SrTiO3 by infrared pulsed-laser deposition. Diffraction experiments indicate epitaxial growth with a relaxed lattice spacing. The films are flat with two distinct island types: nanometric rectangular mounds in two perpendicular orientations, and larger square islands, attributed to the two main components of the film as determined by Mössbauer spectroscopy. The origin of the segregation is suggested to be the oxygen-deficiency during growth.

  17. DBS investigation on films of cobalt chloride doped PVA-PVP blend

    NASA Astrophysics Data System (ADS)

    Hammannavar, Preeti B.; Baraker, Basavarajeshwari M.; Bhajantri, R. F.; Ravindrachary, V.; Lobo, Blaise

    2015-06-01

    Films of Cobalt Chloride (CoCl2) doped polyvinylalcohol(PVA)- polyvinylpyrrolidone(PVP) blend (doped from 0.5 wt% up to 28 wt%) were prepared by solution casting, and characterized by XRD, DSC, UV-Visible Spectrometry TGA, FTIR and electrical measurements. In this paper, the results of Doppler Broadening Spectroscopy (DBS) in CoCl2 doped PVA-PVP blend is discussed. An increase in crystallinity of PVA-PVP blend, is observed, on doping it with CoCl2. The DBS results are complemented by XRD and DSC scans.

  18. Nanotubes from Oxide-Based Misfit Family: The Case of Calcium Cobalt Oxide.

    PubMed

    Panchakarla, Leela S; Lajaunie, Luc; Ramasubramaniam, Ashwin; Arenal, Raul; Tenne, Reshef

    2016-06-28

    Misfit layered compounds (MLCs) have generated significant interest in recent years as potential thermoelectric materials. MLC nanotubes could reveal behavior that is entirely different from the bulk material. Recently, new chemical strategies were exploited for the synthesis of nanotubular forms of chalcogenide-based MLCs, which are promising candidates for thermoelectric materials. However, analogous synthesis of oxide-based MLC nanotubes has not been demonstrated until now. Here, we report a chemical strategy for synthesis of cobalt-oxide-based misfit nanotubes. A combination of high-resolution (scanning) transmission electron microscopy (including image simulations), spatially resolved electron energy-loss spectroscopy, electron diffraction, and density functional theory (DFT) calculations is used to discover the formation of a phase within these nanotubes that differs significantly from bulk calcium cobaltite MLCs. Furthermore, DFT calculations show that this phase is semiconducting with a band gap in excess of 1 eV, unlike bulk calcium cobaltite MLCs, which are known to be metallic. Through systematic experiments, we propose a formation mechanism for these nanotubes that could also apply more generally to realizing other oxide-based MLC nanotubes. PMID:27215812

  19. Phase equilibria in the iron oxide-cobalt oxide-phosphorus oxide system

    NASA Technical Reports Server (NTRS)

    De Guire, Mark R.; Prasanna, T. R. S.; Kalonji, Gretchen; O'Handley, Robert C.

    1987-01-01

    Two novel ternary compounds are noted in the present study of 1000 C solid-state equilibria in the Fe-Co-P-O system's Fe2O3-FePO4-Co3(Po4)2-CoO region: CoFe(PO4)O, which undergoes incongruent melting at 1130 C, and Co3Fe4(PO4)6, whose incongruent melting occurs at 1080 C. The liquidus behavior-related consequences of rapidly solidified cobalt ferrite formation from cobalt ferrite-phosphate melts are discussed with a view to spinel formation. It is suggested that quenching from within the spinel-plus-liquid region may furnish an alternative to quenching a homogeneous melt.

  20. Water oxidation by electrodeposited cobalt oxides--role of anions and redox-inert cations in structure and function of the amorphous catalyst.

    PubMed

    Risch, Marcel; Klingan, Katharina; Ringleb, Franziska; Chernev, Petko; Zaharieva, Ivelina; Fischer, Anna; Dau, Holger

    2012-03-12

    For the production of nonfossil fuels, water oxidation by inexpensive cobalt-based catalysts is of high interest. Films for the electrocatalysis of water oxidation were obtained by oxidative self-assembly (electrodeposition) from aqueous solutions containing, apart from Co, either K, Li or Ca with either a phosphate, acetate or chloride anion. X-ray absorption spectroscopy (XAS) at the Co K-edge revealed clusters of edge-sharing CoO(6) octahedra in all films, but the size or structural disorder of the Co-oxido clusters differed. Whereas potassium binding is largely unspecific, CaCo(3) O(4) cubanes, which resemble the CaMn(3) O(4) cubane of the biological catalyst in oxygenic photosynthesis, may form, as suggested by XAS at the Ca K-edge. Cyclic voltammograms in a potassium phosphate buffer at pH 7 revealed that no specific combination of anions and redox-inactive cations is required for catalytic water oxidation. However, the anion type modulates not only the size (or order) of the Co-oxido clusters, but also electrodeposition rates, redox potentials, the capacity for oxidative charging, and catalytic currents. On these grounds, structure-activity relations are discussed.

  1. Preliminary study of a solar selective coating system using black cobalt oxide for high temperature solar collectors

    NASA Technical Reports Server (NTRS)

    Mcdonald, G.

    1980-01-01

    Black cobalt oxide coatings (high solar absorptance layer) were deposited on thin layers of silver or gold (low emittance layer) which had been previously deposited on oxidized (diffusion barrier layer) stainless steel substrates. The reflectance properties of these coatings were measured at various thicknesses of cobalt for integrated values of the solar and infrared spectrum. The values of absorptance and emittance were calculated from the measured reflectance values, before and after exposure in air at 650 C for approximately 1000 hours. Absorptance and emittance were interdependent functions of the weight of cobalt oxide. Also, these cobalt oxide/noble metal/oxide diffusion barrier coatings have absorptances greater than 0.90 and emittances of approximately 0.20 even after about 1000 hours at 650 C.

  2. Magnetic and Structural Properties of Ultra-Thin Cobalt Films

    NASA Astrophysics Data System (ADS)

    Wiedmann, Michael Helmut

    In situ polar Kerr effect measurements have been used to study the magnetic anisotropy of Au(111)/Co/X, Pd(111)/Co/X, Cu(111)/Co/X, and Pd(100)/Co/X sandwiches, where X is the nonmagnetic metal Ag, Au, Cu, Ir, and Pd or the insulator MgO. The films were grown by molecular beam epitaxy (MBE). For the metals, we found that the magnitude of the Co/X perpendicular interface anisotropy is strongly peaked at ~1 atomic layer (1.5-2.5 A) coverage. To investigate structural influences on the anisotropy, we have used reflection high energy diffraction (RHEED) and low energy electron diffraction (LEED) to measure changes resulting from overlayer coverage. Analysis of digitized RHEED images captured every ~ 1 A during metal overlayer coverage shows no abrupt change of the in-plane lattice constant. We have also investigated the out-of-plane lattice spacing as a function of nonmagnetic metal coverage by measuring LEED I-V curves along the (0,0) rod. In the case of Cu, where the LEED behavior is nearly kinematic, we see no evidence of any abrupt structural changes at ~1 atomic layer coverage. These results suggest the observed peak in magnetic anisotropy is not structural in origin. The influence of an insulating overlayer, MgO, on the perpendicular magnetic properties was also investigated.

  3. Cobalt (hydro)oxide electrodes under electrochemical conditions: a first principle study

    NASA Astrophysics Data System (ADS)

    Chen, Jia; Selloni, Annabella

    2013-03-01

    There is currently much interest in photoelectrochemical water splitting as a promising pathway towards sustainable energy production. A major issue of such photoelectrochemical devices is the limited efficiency of the anode, where the oxygen evolution reaction (OER) takes place. Cobalt (hydro)oxides, particularly Co3O4 and Co(OH)2, have emerged as promising candidates for use as OER anode materials. Interestingly, recent in-situ Raman spectroscopy studies have shown that Co3O4 electrodes undergo progressive oxidation and transform into oxyhydroxide, CoO(OH), under electrochemical working conditions. (Journal of the American Chemical Society 133, 5587 (2011))Using first principle electronic structure calculations, we provide insight into these findings by presenting results on the structural, thermodynamic, and electronic properties of cobalt oxide, hydroxide and oxydroxide CoO(OH), and on their relative stabilities when in contact with water under external voltage.

  4. Some new aspects of low-temperature lithium cobalt oxides prepared through citric acid precursor route

    SciTech Connect

    Adhikary, K.; Takahashi, Masao; Kikkawa, Shinichi

    1998-12-01

    Low-temperature (LT) lithium cobalt oxides were prepared at 300 C by the solid-state reaction between Li{sub 2}CO{sub 3} and Co{sub 3}O{sub 4}, having various starting compositions Li{sub 1+x}CoO{sub 2} with x = {minus}0.2, 0.0, 0.2, and 0.4. A finely mixed precursor of the reacting compounds was obtained in molten citric acid. The morphology observed by scanning electron microscopy (SEM) showed the homogeneous observed by scanning electron microscopy (SEM) showed the homogeneous and fluffy nature of the specimens, with a BET specific surface as high as 19 m{sup 2}g{sup {minus}1}. The cubic crystal lattice was found to decrease from a = 7.990 to 7.984 {angstrom} against Li/Co = 0.62 to 0.90 in molar ratio of the water-leached products. The resistivity and open circuit voltage (OCV) against lithium metal were found to be sensitive to the initial lithium content of the samples. Chemical titration showed that all of the samples contained an appreciable amount of Co{sup 2+} in addition to trivalent cobalt. XANES spectra supported the presence of tetrahedrally coordinated divalent cobalt. A model is proposed in which oxidation of divalent cobalt explains the electrochemical charge-discharge irreversibility in the initial cycle.

  5. Electrocatalytic Properties of Nanocrystalline Calcium-Doped Lanthanum Cobalt Oxide for Bifunctional Oxygen Electrodes

    SciTech Connect

    Malkhandi, S; Yang, B; Manohar, AK; Manivannan, A; Prakash, GKS; Narayanan, SR

    2012-04-19

    Calcium-doped lanthanum cobalt oxide is a promising electrocatalyst for oxygen evolution and oxygen reduction in rechargeable metal air batteries and water electrolyzers operating with alkaline electrolyte. Nanocrystalline perovskite of composition La0.6Ca0.4CoO3 with a unique cellular internal structure was prepared at 350 degrees C and then annealed in air at progressively higher temperatures in the range of 600-750 degrees C. The samples were characterized by electrochemical techniques and X-ray photoelectron spectroscopy. The area-specific electrocatalytic activity for oxygen evolution/oxygen reduction, the oxidation state of cobalt, and the crystallite size increased with annealing temperature, while the Tafel slope remained constant. These trends provide new insights into the role of the cobalt center in oxygen evolution and oxygen reduction, and how preparation conditions can be altered to tune the activity of the cobalt center for electrocatalysis. We expect these findings to guide the design of electrocatalysts for bifunctional oxygen electrodes, in general.

  6. Oxidation of epitaxial Ce films

    NASA Astrophysics Data System (ADS)

    Vescovo, E.; Carbone, C.

    1996-02-01

    Single-crystal Ce films of more than 300 Å thickness have been epitaxially grown on W(110). Their interaction with molecular oxygen at room temperature has been studied by angle-resolved photoemission, low-energy electron diffraction, and Auger spectroscopy. As a function of the oxygen exposure, the reaction is found to proceed through a sequence of three distinct stages: (i) ordered dissociative surface adsorption; (ii) formation of an ordered Ce2O3-like surface oxide; and (iii) gradual conversion of the sesquioxide into a disordered surface dioxide CeO2-x. A structurally different Ce2O3 oxide is obtained after high oxygen exposures followed by heating at 450 K. The formation of the epitaxial surface sesquioxides is favored by the good lattice match with the Ce substrate. The same type of structural relation might lead to the formation of ordered sesquioxides on other rare-earth surfaces exposing hexagonal planes.

  7. Stability of phosphonic self assembled monolayers (SAMs) on cobalt chromium (Co-Cr) alloy under oxidative conditions

    NASA Astrophysics Data System (ADS)

    Bhure, Rahul; Abdel-Fattah, Tarek M.; Bonner, Carl; Hall, Felicia; Mahapatro, Anil

    2011-04-01

    Cobalt chromium (Co-Cr) alloys have been widely used in the biomedical arena for cardiovascular, orthopedic and dental applications. Surface modification of the alloy allows us to tailor the interfacial properties to address critical challenges of Co-Cr alloy in medical applications. Self assembled monolayers (SAMs) of Octadecylphosphonic acid (ODPA) have been used to form thin films on the oxide layer of the Co-Cr alloy surface by solution deposition technique. The SAMs formed were investigated for their stability to oxidative conditions of ambient laboratory environment over periods of 1, 3, 7 and 14 days. The samples were then characterized for their stability using X-ray Photoelectron Spectroscopy (XPS), Atomic Force Microscopy (AFM) and contact angle measurements. Detailed high energy XPS elemental scans confirmed the presence of the phosphonic monolayer after oxidative exposure which suggested that the SAMs were firmly attached to the oxide layer of Co-Cr alloy. AFM images gave topographical data of the surface and showed islands of SAMs on Co-Cr alloy surface, before and after SAM formation and also over the duration of the oxidative exposure. Contact angle measurements confirmed the hydrophobicity of the surface over 14 days. Thus the SAMs were found to be stable for the duration of the study. These SAMs could be subsequently tailored by modifying the terminal functional groups and could be used for various potential biomedical applications such as drug delivery, biocompatibility and tissue integration.

  8. Cobalt-phosphate-assisted photoelectrochemical water oxidation by arrays of molybdenum-doped zinc oxide nanorods.

    PubMed

    Lin, Yan-Gu; Hsu, Yu-Kuei; Chen, Ying-Chu; Lee, Bing-Wei; Hwang, Jih-Shang; Chen, Li-Chyong; Chen, Kuei-Hsien

    2014-09-01

    We report the first demonstration of cobalt phosphate (Co-Pi)-assisted molybdenum-doped zinc oxide nanorods (Zn(1-x)Mo(x)O NRs) as visible-light-sensitive photofunctional electrodes to fundamentally improve the performance of ZnO NRs for photoelectrochemical (PEC) water splitting. A maximum photoconversion efficiency as high as 1.05% was achieved, at a photocurrent density of 1.4 mA cm(-2). More importantly, in addition to achieve the maximum incident photon to current conversion efficiency (IPCE) value of 86%, it could be noted that the IPCE of Zn(1-x)Mo(x)O photoanodes under monochromatic illumination (450 nm) is up to 12%. Our PEC performances are comparable to those of many oxide-based photoanodes in recent reports. The improvement in photoactivity of PEC water splitting may be attributed to the enhanced visible-light absorption, increased charge-carrier densities, and improved interfacial charge-transfer kinetics due to the combined effect of molybdenum incorporation and Co-Pi modification, contributing to photocatalysis. The new design of constructing highly photoactive Co-Pi-assisted Zn(1-x)Mo(x)O photoanodes enriches knowledge on doping and advances the development of high-efficiency photoelectrodes in the solar-hydrogen field.

  9. Facile synthesis of cobalt oxide/reduced graphene oxide composites for electrochemical capacitor and sensor applications

    NASA Astrophysics Data System (ADS)

    Nguyen, Thi Toan; Nguyen, Van Hoa; Deivasigamani, Ranjith Kumar; Kharismadewi, Dian; Iwai, Yoshio; Shim, Jae-Jin

    2016-03-01

    Reduced graphene oxide sheets decorated with cobalt oxide nanoparticles (Co3O4/rGO) were produced using a hydrothermal method without surfactants. Both the reduction of GO and the formation of Co3O4 nanoparticles occurred simultaneously under this condition. At the same current density of 0.5 A g-1, the Co3O4/rGO nanocomposites exhibited much a higher specific capacitance (545 F g-1) than that of bare Co3O4 (100 F g-1). On the other hand, for the detection of H2O2, the peak current of Co3O4/rGO was 4 times higher than that of Co3O4. Moreover, the resulting composite displayed a low detection limit of 0.62 μM and a high sensitivity of 28,500 μA mM-1cm-2 for the H2O2 sensor. These results suggest that the Co3O4/rGO nanocomposite is a promising material for both supercapacitor and non-enzymatic H2O2 sensor applications.

  10. Controllable Cobalt Oxide/Au Hierarchically Nanostructured Electrode for Nonenzymatic Glucose Sensing.

    PubMed

    Su, Yingying; Luo, Binbin; Zhang, Jin Zhong

    2016-02-01

    By electrodeposition and galvanic replacement reaction, we developed a facile, time-saving, cost-effective, and environmentally friendly, two-step synthesis route to obtain a controllable cobalt oxide/Au hierarchically nanostructured electrode for glucose sensing. The nanomaterials were characterized by transmission electron microscopy, scanning electron microscopy, Raman spectroscopy, energy-dispersive spectrometry, and X-ray photoelectron spectroscopy, meanwhile, the sensing performance was investigated by cyclic voltammetry and amperometric response. The results revealed that this novel electrode exhibited excellent electrocatalytic performance toward glucose oxidation, with a wide double-linear range from 0.2 μM to 20 mM and a low detection limit of 0.1 μM based on a signal-to-noise ratio of 3, which was mainly attributed to the ability of loading a small amount of Au with good electron conductivity on the surface of cobalt oxide nanosheets with large active surface area and synergistic electrocatalytic activity of Au and cobalt oxide toward glucose electrooxidation. This facile, sensitive, and selective glucose sensor is also proven to be suitable for the detection of glucose in human serum.

  11. Controllable Cobalt Oxide/Au Hierarchically Nanostructured Electrode for Nonenzymatic Glucose Sensing.

    PubMed

    Su, Yingying; Luo, Binbin; Zhang, Jin Zhong

    2016-02-01

    By electrodeposition and galvanic replacement reaction, we developed a facile, time-saving, cost-effective, and environmentally friendly, two-step synthesis route to obtain a controllable cobalt oxide/Au hierarchically nanostructured electrode for glucose sensing. The nanomaterials were characterized by transmission electron microscopy, scanning electron microscopy, Raman spectroscopy, energy-dispersive spectrometry, and X-ray photoelectron spectroscopy, meanwhile, the sensing performance was investigated by cyclic voltammetry and amperometric response. The results revealed that this novel electrode exhibited excellent electrocatalytic performance toward glucose oxidation, with a wide double-linear range from 0.2 μM to 20 mM and a low detection limit of 0.1 μM based on a signal-to-noise ratio of 3, which was mainly attributed to the ability of loading a small amount of Au with good electron conductivity on the surface of cobalt oxide nanosheets with large active surface area and synergistic electrocatalytic activity of Au and cobalt oxide toward glucose electrooxidation. This facile, sensitive, and selective glucose sensor is also proven to be suitable for the detection of glucose in human serum. PMID:26745577

  12. Nanoporous gold supported cobalt oxide microelectrodes as high-performance electrochemical biosensors.

    PubMed

    Lang, Xing-You; Fu, Hong-Ying; Hou, Chao; Han, Gao-Feng; Yang, Ping; Liu, Yong-Bing; Jiang, Qing

    2013-01-01

    Tremendous demands for electrochemical biosensors with high sensitivity and reliability, fast response and excellent selectivity have stimulated intensive research on developing versatile materials with ultrahigh electrocatalytic activity. Here we report flexible and self-supported microelectrodes with a seamless solid/nanoporous gold/cobalt oxide hybrid structure for electrochemical nonenzymatic glucose biosensors. As a result of synergistic electrocatalytic activity of the gold skeleton and cobalt oxide nanoparticles towards glucose oxidation, amperometric glucose biosensors based on the hybrid microelectrodes exhibit multi-linear detection ranges with ultrahigh sensitivities at a low potential of 0.26 V (versus Ag/AgCl). The sensitivity up to 12.5 mA mM⁻¹ cm⁻² with a short response time of less than 1 s gives rise to ultralow detection limit of 5 nM. The outstanding performance originates from a novel nanoarchitecture in which the cobalt oxide nanoparticles are incorporated into pore channels of the seamless solid/nanoporous Au microwires, providing excellent electronic/ionic conductivity and mass transport for the enhanced electrocatalysis.

  13. Elaboration of ammonia gas sensors based on electrodeposited polypyrrole--cobalt phthalocyanine hybrid films.

    PubMed

    Patois, Tilia; Sanchez, Jean-Baptiste; Berger, Franck; Fievet, Patrick; Segut, Olivier; Moutarlier, Virginie; Bouvet, Marcel; Lakard, Boris

    2013-12-15

    The electrochemical incorporation of a sulfonated cobalt phthalocyanine (sCoPc) in conducting polypyrrole (PPy) was done, in the presence or absence of LiClO4, in order to use the resulting hybrid material for the sensing of ammonia. After electrochemical deposition, the morphological features and structural properties of polypyrrole/phthalocyanine hybrid films were investigated and compared to those of polypyrrole films. A gas sensor consisting in platinum microelectrodes arrays was fabricated using silicon microtechnologies, and the polypyrrole and polypyrrole/phthalocyanine films were electrochemically deposited on the platinum microelectrodes arrays of this gas sensor. When exposed to ammonia, polymer-based gas sensors exhibited a decrease in conductance due to the electron exchange between ammonia and sensitive polymer-based layer. The characteristics of the gas sensors (response time, response amplitude, reversibility) were studied for ammonia concentrations varying from 1 ppm to 100 ppm. Polypyrrole/phthalocyanine films exhibited a high sensitivity and low detection limit to ammonia as well as a fast and reproducible response at room temperature. The response to ammonia exposition of polypyrrole films was found to be strongly enhanced thanks to the incorporation of the phthalocyanine in the polypyrrole matrix.

  14. Cobalt pivalate complex as a catalyst for liquid phase oxidation of n-hexane

    NASA Astrophysics Data System (ADS)

    Moskovskaya, I. F.; Maerle, A. A.; Shvydkiy, N. V.; Romanovsky, B. V.; Ivanova, I. I.

    2015-09-01

    Catalytic properties of cobalt(II) pivalate complex as both individual and supported on mesoporous molecular sieves Si-KIT-6, Al-KIT-6, and Ce-KIT-6 were investigated in liquid-phase oxidation of n-hexane with molecular oxygen. This complex was shown to be an active and selective catalyst for the oxidation of n-C6H14 into C1-C4 carboxylic acids. The activity of Co(II) pivalate remains practically unchanged on heterogenizing the complex on molecular sieve supports. At the same time, its selectivity and resistance towards an oxidative degradation are slightly increased.

  15. Thin film hydrous metal oxide catalysts

    DOEpatents

    Dosch, Robert G.; Stephens, Howard P.

    1995-01-01

    Thin film (<100 nm) hydrous metal oxide catalysts are prepared by 1) synthesis of a hydrous metal oxide, 2) deposition of the hydrous metal oxide upon an inert support surface, 3) ion exchange with catalytically active metals, and 4) activating the hydrous metal oxide catalysts.

  16. Microstructures and Thermoelectric Properties of Sintered Misfit-Layered Cobalt Oxide

    NASA Astrophysics Data System (ADS)

    Morimura, Takao; Yamaguchi, Takahiro; Kojima, Takuya; Matsuya, Noriki; Kondo, Shin-ichiro; Nakashima, Hiromichi

    2014-06-01

    Misfit-layered cobalt oxide Ca3Co4O9 is considered to be a prospective material for thermoelectric conversion. The thermoelectric properties are anisotropic owing to its anisotropic crystal structure. The crystal has preferred thermoelectric properties along the a- b plane. Therefore, the thermoelectric properties are improved and controlled by the degree of orientation of the sintered sample. In the present work, Sr-doped misfit cobalt oxide Ca2.7Sr0.3Co4O9 was prepared by solid-phase reaction, followed by uniaxial compression molding and sintering at 1173 K. The Seebeck coefficient α, electrical resistivity ρ, and dimensionless figure of merit ZT were measured as a function of the compression pressure applied in the uniaxial molding. α, ρ, and ZT as functions of the degree of orientation and the relative density are experimentally clarified and explained by calculations using the compound model.

  17. Controllable fabrication and magnetic properties of double-shell cobalt oxides hollow particles

    PubMed Central

    Zhang, Dan; Zhu, Jianyu; Zhang, Ning; Liu, Tao; Chen, Limiao; Liu, Xiaohe; Ma, Renzhi; Zhang, Haitao; Qiu, Guanzhou

    2015-01-01

    Double-shell cobalt monoxide (CoO) hollow particles were successfully synthesized by a facile and effective one-pot solution-based synthetic route. The inner architecture and outer structure of the double-shell CoO hollow particles could be readily created through controlling experimental parameters. A possible formation mechanism was proposed based on the experimental results. The current synthetic strategy has good prospects for the future production of other transition-metal oxides particles with hollow interior. Furthermore, double-shell cobalt oxide (Co3O4) hollow particles could also be obtained through calcinating corresponding CoO hollow particles. The magnetic measurements revealed double-shell CoO and Co3O4 hollow particles exhibit ferromagnetic and antiferromagnetic behaviour, respectively. PMID:25736824

  18. Adsorption of microbial esterases on Bacillus subtilis-templated cobalt oxide nanoparticles.

    PubMed

    Jang, Eunjin; Ryu, Bum Han; Shim, Hyun-Woo; Ju, Hansol; Kim, Dong-Wan; Kim, T Doohun

    2014-04-01

    Due to low diffusion rates and large surface areas, nanomaterials have received great interest as supporting materials for enzyme immobilization. Here, the preparation of a cobalt oxide nanoparticle using Bacillus subtilis as a biological template and use of the nanostructure for microbial esterase immobilization is described. Morphological features and size distributions were investigated using electron microscopy (EM) and dynamic light scattering (DLS). Catalytic properties of enzyme-coated nanostructures were investigated using 4-methylumbelliferyl acetate and p-nitrophenyl (PNP) acetate as model substrates. Enzyme-coated nanostructures were observed to retain ∼85% of the initial activity after 15 successive reaction cycles, and enzyme immobilization processes could be repeated four times without a loss of immobilization potential. The present work demonstrates that B. subtilis-templated cobalt oxide nanoparticles have the potential to be used as biocompatible immobilization materials, and are promising candidates for the preparation of effective nanobiocatalysts.

  19. Calcium- and Cobalt-doped Yttrium Chromites as an Interconnect Material for Solid Oxide Fuel Cells

    SciTech Connect

    Yoon, Kyung J.; Cramer, Carolyn N.; Thomsen, Edwin C.; Coyle, Christopher A.; Coffey, Greg W.; Marina, Olga A.

    2010-04-23

    The structural, thermal and electrical characteristics of calcium- and cobalt-doped yttrium chromites were studied for a potential use as the interconnect material in high temperature solid oxide fuel cells (SOFCs) as well as other high temperature electrochemical and thermoelectric devices. The Y0.8Ca0.2Cr1-xCoxO3±δ (x=0, 0.1, 0.2, 0.3) compositions had single phase orthorhombic perovskite structures in the wide range of oxygen pressures. Sintering behavior was remarkably enhanced upon cobalt doping and densities 95% and 97% of theoretical density were obtained after sintering at 1300oC in air, when x was 0.2 and 0.3, respectively. The electrical conductivity in both oxidizing and reducing atmospheres was significantly improved with cobalt content, and values of 49 and 10 S/cm at 850oC and 55 and 14 S/cm at 950oC in air and forming gas, respectively, were reported for x=0.2. The conductivity increase was attributed to the charge carrier density increase upon cobalt substitution for chromium confirmed with Seebeck measurements. The thermal expansion coefficient (TEC) was increased with cobalt content and closely matched to that of an 8 mol% yttria-stabilized zirconia (YSZ) electrolyte for 0.1 ≤ x ≤ 0.2. The chemical compatibility between Y0.8Ca0.2Cr1-xCoxO3±δ and YSZ was evaluated firing the two at 1400oC and no reaction products were found if x value was kept lower than 0.2.

  20. Synthesis of cobalt-containing mesoporous catalysts using the ultrasonic-assisted "pH-adjusting" method: Importance of cobalt species in styrene oxidation

    NASA Astrophysics Data System (ADS)

    Li, Baitao; Zhu, Yanrun; Jin, Xiaojing

    2015-01-01

    Cobalt-containing SBA-15 and MCM-41 (Co-SBA-15 and Co-MCM-41) mesoporous catalysts were prepared via ultrasonic-assisted "pH-adjusting" technique in this study. Their physiochemical structures were comprehensively characterized and correlated with catalytic activity in oxidation of styrene. The nature of cobalt species depended on the type of mesoporous silica as well as pH values. The different catalytic performance between Co-SBA-15 and Co-MCM-41 catalysts originated from cobalt species. Cobalt species were homogenously incorporated into the siliceous framework of Co-SBA-15 in single-site Co(II) state, while Co3O4 particles were loaded on Co-MCM-41 catalysts. The styrene oxidation tests showed that the single-site Co(II) state was more beneficial to the catalytic oxidation of styrene. The higher styrene conversion and benzaldehyde selectivity over Co-SBA-15 catalysts were mainly attributed to single-site Co(II) state incorporated into the framework of SBA-15. The highest conversion of styrene (34.7%) with benzaldehyde selectivity of 88.2% was obtained over Co-SBA-15 catalyst prepared at pH of 7.5, at the mole ratio of 1:1 (styrene to H2O2) at 70 °C.

  1. Three-dimensional nanoporous gold-cobalt oxide electrode for high-performance electroreduction of hydrogen peroxide in alkaline medium

    NASA Astrophysics Data System (ADS)

    Li, Zhihao; He, Yanghua; Ke, Xi; Gan, Lin; Zhao, Jie; Cui, Guofeng; Wu, Gang

    2015-10-01

    Using a simple hydrothermal method combined with a post-annealing treatment, cobalt oxide (Co3O4) nanosheet arrays are grown on three-dimensional (3D) nanoporous gold (NPG) film supported on Ni foam substrates, in which NPG is fabricated by chemically dealloying electrodeposited Au-Sn alloy films. The morphology and structure of the Co3O4@NPG/Ni foam hybrids are characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The electrochemical activity of the Co3O4@NPG/Ni foam electrode toward hydrogen peroxide electroreduction in alkaline medium is studied by cyclic voltammetry (CV), linear sweep voltammetry (LSV), and chronoamperometry (CA). The results demonstrate that the Co3O4@NPG/Ni foam electrode possesses exceptionally high catalytic activity and excellent stability for the peroxide electroreduction, resulting mainly from the unique electrode architecture. The combined 3D hierarchical porous structures of NPG/Ni foam with the open and porous structures of Co3O4 nanosheet arrays facilitate the mass transport and charge transfer. Therefore, the metal oxides supported on 3D hierarchical porous NPG/Ni foam framework may hold great promise to be effective electrodes for electrocatalytic reduction of peroxide and other electrochemical reactions.

  2. Ten-Year Comparison of Oxidized Zirconium and Cobalt-Chromium Femoral Components in Total Knee Arthroplasty

    PubMed Central

    Roe, Justin; Vioreanu, Mihai; Salmon, Lucy; Waller, Alison; Pinczewski, Leo

    2016-01-01

    Objective: The purpose of this study was to determine if oxidized zirconium femoral components had better outcomes than cobalt-chromium in vivo at medium and long term and if the use of oxidized zirconium components had clinical adverse effects. Methods: Forty consecutive patients (eighty knees) underwent simultaneous bilateral cruciate-retaining total knee arthroplasty for primary osteoarthritis from January 2002 to December 2003. For each patient, the knees were randomized to receive the oxidized zirconium femoral component, with the contralateral knee receiving the cobalt-chromium component. Outcome measures included the Western Ontario and McMaster Universities Osteoarthritis Index, Knee Injury and Osteoarthritis Outcome Score, Knee Society score, and British Orthopaedic Association patient satisfaction scale. Radiographic outcomes include the Knee Society total knee arthroplasty roentgenographic evaluation and scoring system and measurement of radiographic wear. Patients and assessors were blinded to the treatment groups and results. Results: There were no significant differences in clinical, subjective, and radiographic outcomes between the two implants at ten years postoperatively. Ten years following surgery, 36% of the patients preferred the cobalt-chromium knee compared with 11% who preferred the oxidized zirconium knee (p = 0.02) and 53% had no preference. Conclusions: Ten-year outcomes after total knee arthroplasty with oxidized zirconium and cobalt-chromium femoral components showed no significant differences in clinical, subjective, and radiographic outcomes. Patients had no preference or preferred the cobalt chromium prosthesis to the oxidized zirconium prosthesis. There were no adverse effects associated with the use of oxidized zirconium femoral implants.

  3. Mechanistic Investigations of Water Oxidation by a Molecular Cobalt Oxide Analogue: Evidence for a Highly Oxidized Intermediate and Exclusive Terminal Oxo Participation.

    PubMed

    Nguyen, Andy I; Ziegler, Micah S; Oña-Burgos, Pascual; Sturzbecher-Hohne, Manuel; Kim, Wooyul; Bellone, Donatela E; Tilley, T Don

    2015-10-14

    Artificial photosynthesis (AP) promises to replace society's dependence on fossil energy resources via conversion of sunlight into sustainable, carbon-neutral fuels. However, large-scale AP implementation remains impeded by a dearth of cheap, efficient catalysts for the oxygen evolution reaction (OER). Cobalt oxide materials can catalyze the OER and are potentially scalable due to the abundance of cobalt in the Earth's crust; unfortunately, the activity of these materials is insufficient for practical AP implementation. Attempts to improve cobalt oxide's activity have been stymied by limited mechanistic understanding that stems from the inherent difficulty of characterizing structure and reactivity at surfaces of heterogeneous materials. While previous studies on cobalt oxide revealed the intermediacy of the unusual Co(IV) oxidation state, much remains unknown, including whether bridging or terminal oxo ligands form O2 and what the relevant oxidation states are. We have addressed these issues by employing a homogeneous model for cobalt oxide, the [Co(III)4] cubane (Co4O4(OAc)4py4, py = pyridine, OAc = acetate), that can be oxidized to the [Co(IV)Co(III)3] state. Upon addition of 1 equiv of sodium hydroxide, the [Co(III)4] cubane is regenerated with stoichiometric formation of O2. Oxygen isotopic labeling experiments demonstrate that the cubane core remains intact during this stoichiometric OER, implying that terminal oxo ligands are responsible for forming O2. The OER is also examined with stopped-flow UV-visible spectroscopy, and its kinetic behavior is modeled, to surprisingly reveal that O2 formation requires disproportionation of the [Co(IV)Co(III)3] state to generate an even higher oxidation state, formally [Co(V)Co(III)3] or [Co(IV)2Co(III)2]. The mechanistic understanding provided by these results should accelerate the development of OER catalysts leading to increasingly efficient AP systems.

  4. Optical properties and electrical transport of thin films of terbium(III) bis(phthalocyanine) on cobalt.

    PubMed

    Robaschik, Peter; Siles, Pablo F; Bülz, Daniel; Richter, Peter; Monecke, Manuel; Fronk, Michael; Klyatskaya, Svetlana; Grimm, Daniel; Schmidt, Oliver G; Ruben, Mario; Zahn, Dietrich R T; Salvan, Georgeta

    2014-01-01

    The optical and electrical properties of terbium(III) bis(phthalocyanine) (TbPc2) films on cobalt substrates were studied using variable angle spectroscopic ellipsometry (VASE) and current sensing atomic force microscopy (cs-AFM). Thin films of TbPc2 with a thickness between 18 nm and 87 nm were prepared by organic molecular beam deposition onto a cobalt layer grown by electron beam evaporation. The molecular orientation of the molecules on the metallic film was estimated from the analysis of the spectroscopic ellipsometry data. A detailed analysis of the AFM topography shows that the TbPc2 films consist of islands which increase in size with the thickness of the organic film. Furthermore, the cs-AFM technique allows local variations of the organic film topography to be correlated with electrical transport properties. Local current mapping as well as local I-V spectroscopy shows that despite the granular structure of the films, the electrical transport is uniform through the organic films on the microscale. The AFM-based electrical measurements allow the local charge carrier mobility of the TbPc2 thin films to be quantified with nanoscale resolution. PMID:25551034

  5. Photocatalytic water oxidation by molecular assemblies based on cobalt catalysts.

    PubMed

    Zhou, Xu; Li, Fei; Li, Hua; Zhang, Biaobiao; Yu, Fengshou; Sun, Licheng

    2014-09-01

    Chromophore-catalyst molecular assemblies towards visible light-driven water oxidation were synthesized by covalent integration of a light-harvesting complex [Ru(bpy)3](2+) (bpy=2,2'-bipyridine) and a Co4O4 cubane water oxidation catalyst. The two components were assembled either in linear or macrocyclic configurations. In the presence of the sacrificial reagent, the Ru-Co metallocycle exhibits remarkable photocatalytic activity for oxygen evolution, which is one order of magnitude higher than that of a multicomponent system and exceeds that of a linear assembly by a factor of five, offering access to highly active photocatalyst through molecular design. PMID:25111070

  6. Intra- and interparticle magnetism of cobalt-doped iron-oxide nanoparticles encapsulated in a synthetic ferritin cage

    NASA Astrophysics Data System (ADS)

    Skoropata, E.; Desautels, R. D.; Falvo, E.; Ceci, P.; Kasyutich, O.; Freeland, J. W.; van Lierop, J.

    2014-11-01

    We present an in-depth examination of the composition and magnetism of cobalt (Co2 +)-doped iron-oxide nanoparticles encapsulated in Pyrococcus furiosus ferritin shells. We show that the Co2 + dopant ions were incorporated into the γ -Fe2O3/Fe3O4 core, with small paramagnetic-like clusters likely residing on the surface of the nanoparticle that were observed for all cobalt-doped samples. In addition, element-specific characterization using Mössbauer spectroscopy and polarized x-ray absorption indicated that Co2 + was incorporated exclusively into the octahedral B sites of the spinel-oxide nanoparticle. Comparable superparamagnetic blocking temperatures, coercivities, and effective anisotropies were obtained for 7%, 10%, and 12% cobalt-doped nanoparticles, and were only slightly reduced for 3% cobalt, indicating a strong effect of cobalt incorporation, with a lesser effect of cobalt content. Due to the regular particle size and separation that result from the use of the ferritin cage, a comparison of the effects of interparticle interactions on the disordered assembly of nanoparticles was also obtained that indicated significantly different behaviors between undoped and cobalt-doped nanoparticles.

  7. Supported cobalt oxide on graphene oxide: highly efficient catalysts for the removal of Orange II from water.

    PubMed

    Shi, Penghui; Su, Ruijing; Zhu, Shaobo; Zhu, Mincong; Li, Dengxin; Xu, Shihong

    2012-08-30

    The current paper investigated the removal of the azo dye Orange II from water using advanced oxidation processes based on sulfate radicals. The cobalt oxide catalyst immobilized on graphene oxide (GO) can activate peroxymonosulfate (PMS) for the degradation of Orange II in water. The Co(3)O(4)/GO catalyst system was characterized via X-ray diffraction, Fourier transform infrared spectroscopy, Raman spectroscopy, scanning electron microscopy, and X-ray spectroscopy. Results showed that Co(3)O(4) was distributed on GO. The Co(3)O(4)/GO catalyst system exhibited high activity in Orange II oxidation when the Co(3)O(4)/GO catalyst has an optimum Co(3)O(4) loading. In addition, 100% decomposition could be achieved within 6 min with 0.2mM Orange II, 0.1 g L(-1) catalyst, and 2mM PMS. Meanwhile, inductively coupled plasma analysis revealed that the leach of cobalt ions was low. The catalyst also exhibited stable performance after several rounds of regeneration. Several operational parameters, such as catalyst amount, oxidant amount, pH, temperature, and oxidation rate, affected the degradation of Orange II. PMID:22738772

  8. Phase formation, thermal stability and magnetic moment of cobalt nitride thin films

    SciTech Connect

    Gupta, Rachana; Pandey, Nidhi; Tayal, Akhil; Gupta, Mukul E-mail: dr.mukul.gupta@gmail.com

    2015-09-15

    Cobalt nitride (Co-N) thin films prepared using a reactive magnetron sputtering process are studied in this work. During the thin film deposition process, the relative nitrogen gas flow (R{sub N{sub 2}}) was varied. As R{sub N{sub 2}} increases, Co(N), Co{sub 4}N, Co{sub 3}N and CoN phases are formed. An incremental increase in R{sub N{sub 2}}, after emergence of Co{sub 4}N phase at R{sub N{sub 2}} = 10%, results in a linear increase of the lattice constant (a) of Co{sub 4}N. For R{sub N{sub 2}} = 30%, a maximizes and becomes comparable to its theoretical value. An expansion in a of Co{sub 4}N, results in an enhancement of the magnetic moment, to the extent that it becomes even larger than pure Co. Such larger than pure metal magnetic moment for tetra-metal nitrides (M{sub 4}N) have been theoretically predicted. Incorporation of N atoms in M{sub 4}N configuration results in an expansion of a (relative to pure metal) and enhances the itinerary of conduction band electrons leading to larger than pure metal magnetic moment for M{sub 4}N compounds. Though a higher (than pure Fe) magnetic moment for Fe{sub 4}N thin films has been evidenced experimentally, higher (than pure Co) magnetic moment is evidenced in this work.

  9. Electrochromism in copper oxide thin films

    SciTech Connect

    Richardson, T.J.; Slack, J.L.; Rubin, M.D.

    2000-08-15

    Transparent thin films of copper(I) oxide prepared on conductive SnO2:F glass substrates by anodic oxidation of sputtered copper films or by direct electrodeposition of Cu2O transformed reversibly to opaque metallic copper films when reduced in alkaline electrolyte. In addition, the same Cu2O films transform reversibly to black copper(II) oxide when cycled at more anodic potentials. Copper oxide-to-copper switching covered a large dynamic range, from 85% and 10% photopic transmittance, with a coloration efficiency of about 32 cm2/C. Gradual deterioration of the switching range occurred over 20 to 100 cycles. This is tentatively ascribed to coarsening of the film and contact degradation caused by the 65% volume change on conversion of Cu to Cu2O. Switching between the two copper oxides (which have similar volumes) was more stable and more efficient (CE = 60 cm2/C), but covered a smaller transmittance range (60% to 44% T). Due to their large electrochemical storage capacity and tolerance for alkaline electrolytes, these cathodically coloring films may be useful as counter electrodes for anodically coloring electrode films such as nickel oxide or metal hydrides.

  10. Microbially mediated cobalt oxidation in seawater revealed by radiotracer experiments

    SciTech Connect

    Lee, B.G.; Fisher, N.S. )

    1993-12-01

    The influence of microbial activity on Co and Mn oxidation in decomposing diatom cultures was determined with radiotracer techniques. Adding a consortium of microorganisms collected from coastal seawater (0.2-3-[mu]m size fraction) to the cultures increased particulate Co formation rates at 18[degrees]C by an order of magnitude (to 3.8% d[sup [minus]1]) and particulate Mn formation rates 3-fold (to 7.9% d[sup [minus

  11. Cobalt vanadium oxide thin nanoplates: primary electrochemical capacitor application.

    PubMed

    Zhang, Youjuan; Liu, Yuanying; Chen, Jing; Guo, Qifei; Wang, Ting; Pang, Huan

    2014-01-01

    Co3V2O8 thin nanoplates are firstly described as a kind of electrode material for supercapacitors. More importantly, from electrochemical measurements, the obtained Co3V2O8 nanoplate electrode shows a good specific capacitance (0.5 A g(-1), 739 F g(-1)) and cycling stability (704 F g(-1) retained after 2000 cycles). This study essentially offers a new kind of metal vanadium oxides as electrochemical active material for the development of supercapacitors. PMID:25023373

  12. Cobalt vanadium oxide thin nanoplates: primary electrochemical capacitor application

    NASA Astrophysics Data System (ADS)

    Zhang, Youjuan; Liu, Yuanying; Chen, Jing; Guo, Qifei; Wang, Ting; Pang, Huan

    2014-07-01

    Co3V2O8 thin nanoplates are firstly described as a kind of electrode material for supercapacitors. More importantly, from electrochemical measurements, the obtained Co3V2O8 nanoplate electrode shows a good specific capacitance (0.5 A g-1, 739 F g-1) and cycling stability (704 F g-1 retained after 2000 cycles). This study essentially offers a new kind of metal vanadium oxides as electrochemical active material for the development of supercapacitors.

  13. Magnetic transparent conducting oxide film and method of making

    DOEpatents

    Windisch, Jr., Charles F.; Exarhos, Gregory J.; Sharma, Shiv K.

    2004-07-13

    Cobalt-nickel oxide films of nominal 100 nm thickness, and resistivity as low as 0.06 .OMEGA..multidot.cm have been deposited by spin-casting from both aqueous and organic precursor solutions followed by annealing at 450.degree. C. in air. Films deposited on sapphire substrates exhibit a refractive index of about 1.7 and are relatively transparent in the wavelength region from 0.6 to 10.0 .mu.m. They are also magnetic. The electrical and spectroscopic properties of the oxides have been studied as a function of x=Co/(Co+Ni) ratio. An increase in film resistivity was found upon substitution of other cations (e.g., Zn.sup.2+, Al.sup.3+) for Ni in the spinel structure. However, some improvement in the mechanical properties of the films resulted. On the other hand, addition of small amounts of Li decreased the resistivity. A combination of XRD, XPS, UV/Vis and Raman spectroscopy indicated that NiCo.sub.2 O.sub.4 is the primary conducting component and that the conductivity reaches a maximum at this stoichiometry. When x<0.67, NiO forms leading to an increase in resistivity; when x>0.67, the oxide was all spinel but the increased Co content lowered the conductivity. The influence of cation charge state and site occupancy in the spinel structure markedly affects calculated electron band structures and contributes to a reduction of p-type conductivity, the formation of polarons, and the reduction in population of mobile charge carriers that tend to limit transmission in the infrared.

  14. [Preparation of cobalt oxide mesoporous metallic oxide-clay composites and their catalytic performance in the oxidation of benzene].

    PubMed

    Mu, Zhen; Ma, Chun-Yan; Cheng, Jie; Li, Jin-Jun

    2014-10-01

    Laponite clays composited with alumina, ceria and zirconia etc. were prepared using polyoxocations or simple metal ions as precursors, and then cobalt oxide was loaded onto them to obtain the catalysts. The results showed that compared with laponite clays, the as-prepared laponite had wide range of pore size distribution and increased pore volume. The pore volumes of laponite clays composited with alumina and ceria were more than 0.75 cm3 · g(-1). N2 isotherm type was maintained after Co3O4 loading, however, the N2 adsorption decreased with the increase of Co3 O4 loading, indicating the decrease of pore volume, which was caused by the blockage of metallic oxide/clay composites support. Furthermore, dispersion and catalytic performance of the catalysts were significantly influenced by the composited metallic elements. It was shown that according to the diffraction peak half-width of 311 crystal facet and scherrer equation, when the Co loading was 21.3% at laponite clays composited with Fe, Zr, Ce, Al, the average sizes of Co3O4 were 17.2, 16.0, 16.5 and 18.0 nm, respectively. Alumina composited clay with 21.3% Co loading showed high catalytic activity, the complete conversion temperature of benzene was 350°C. Among metallic oxide/laponite composites, the ZrO composited laponite with 21.3% Co loading exhibited the best catalytic performance, which could completely convert benzene at 310°C.

  15. CVD diamond film oxidation resistance research

    NASA Astrophysics Data System (ADS)

    Jing, Longwei; Wang, Xiaoping; Wang, Lijun; Pan, Xiufang; Sun, Yiqing; Wang, Jinye; Sun, Hongtao

    2013-12-01

    Diamond films were deposited on a silicon substrate by microwave plasma chemical vapor deposition system, and its oxidation experiments were carried out in atmospheric environmental condition by using a muffle furnace. Inatmospheric environment (the temperature is from 400°C to 900°C) the oxidation resistance of diamond thin films was investigated. The results indicate that under the atmospheric environment diamond thin film surface morphology did not change after 6 hours at 400°C. Diamond thin film surface morphology began to change after 2 hours at 600°C, and when time was extended to 4 hours, the diamond thin film surface morphology changed significantly. The surface morphology of diamond films began to change after 15 minutes at a 700°C condition and when time was extended to 6 hours diamond films were all destroyed. All the diamond films on the silicon substrate disappeared completely in 20 minutes at 900°C. The intact crystal face is the reason that natural diamond has stable chemical property. The crystal face of synthetic diamond film has a lot of defects, especially on the side. Oxidation of the diamond films begin with the grain boundary and defects.

  16. Platinum-induced structural collapse in layered oxide polycrystalline films

    SciTech Connect

    Wang, Jianlin; Liu, Changhui; Huang, Haoliang; Fu, Zhengping; Peng, Ranran E-mail: yllu@ustc.edu.cn; Zhai, Xiaofang; Lu, Yalin E-mail: yllu@ustc.edu.cn

    2015-03-30

    Effect of a platinum bottom electrode on the SrBi{sub 5}Fe{sub 1−x}Co{sub x}Ti{sub 4}O{sub 18} layered oxide polycrystalline films was systematically studied. The doped cobalt ions react with the platinum to form a secondary phase of PtCoO{sub 2}, which has a typical Delafossite structure with a weak antiferromagnetism and an exceptionally high in-plane electrical conductivity. Formation of PtCoO{sub 2} at the interface partially consumes the cobalt dopant and leads to the structural collapsing from 5 to 4 layers, which was confirmed by X-ray diffraction and high resolution transmission electron microscopy measurements. Considering the weak magnetic contribution from PtCoO{sub 2}, the observed ferromagnetism should be intrinsic of the Aurivillius compounds. Ferroelectric properties were also indicated by the piezoresponse force microscopy. In this work, the platinum induced secondary phase at the interface was observed, which has a strong impact on Aurivillius structural configuration and thus the ferromagnetic and ferroelectric properties.

  17. Template-free hydrothermal derived cobalt oxide nanopowders: Synthesis, characterization, and removal of organic dyes

    SciTech Connect

    Nassar, Mostafa Y.; Ahmed, Ibrahim S.

    2012-09-15

    Graphical abstract: XRD patterns of the products obtained by hydrothermal treatment at 160 °C for 24 h, and at different [Co{sup 2+}]/[CO{sub 3}{sup 2−}] ratios: (a) 1:6, (b) 1:3, (c) 1:1.5, (d) 1:1, (e) 1:0.5. Highlights: ► Spinel cobalt oxide nanoparticles with different morphologies were prepared by hydrothermal approach. ► The optical characteristics of the as-prepared cobalt oxide revealed the presence of two band gaps. ► Adsorption of methylene blue dye on Co{sub 3}O{sub 4} was investigated and the percent uptake was found to be >99% in 24 h. -- Abstract: Pure spinel cobalt oxide nanoparticles were prepared through hydrothermal approach using different counter ions. First, the pure and uniform cobalt carbonate (with particle size of 21.8–29.8 nm) were prepared in high yield (94%) in an autoclave in absence unfriendly organic surfactants or solvents by adjusting different experimental parameters such as: pH, reaction time, temperature, counter ions, and (Co{sup 2+}:CO{sub 3}{sup 2−}) molar ratios. Thence, the spinel Co{sub 3}O{sub 4} (with mean particle size of 30.5–47.35 nm) was produced by thermal decomposition of cobalt carbonate in air at 500 °C for 3 h. The products were characterized by powder X-ray diffraction (XRD), Fourier transform infrared (FTIR), transmission electron microscope (TEM), scanning electron microscope (SEM), and thermal analysis (TA). Also, the optical characteristics of the as-prepared Co{sub 3}O{sub 4} nanoparticles revealed the presence of two band gaps (1.45–1.47, and 1.83–1.93 eV). Additionally, adsorption of methylene blue dye on Co{sub 3}O{sub 4} nanoparticles was investigated and the uptake% was found to be >99% in 24 h.

  18. Sol-gel derived mesoporous cobalt silica catalyst: Synthesis, characterization and its activity in the oxidation of phenol

    NASA Astrophysics Data System (ADS)

    Andas, Jeyashelly; Adam, Farook; Rahman, Ismail Ab.

    2014-10-01

    Highly mesoporous cobalt silica rice husk catalysts with (5-15 wt.%) Co2+ loading were prepared via a simple sol-gel technique at room temperature. The successful insertion of cobalt ions into silica matrix was evidenced from FT-IR, NMR, XPS and AAS analyses. Preservation of the mesoporosity nature of silica upon incorporating Co2+ was confirmed from the N2-sorption studies. The topography and morphology viewed by TEM analysis differs as the cobalt concentration varies from 5 to 15 wt.%. Parallel pore channels and spherical nanoparticles of 9.44 nm were achieved for cobalt silica catalysts with 10 and 15 wt.% respectively. Cobalt catalysts were active in the liquid-phase oxidation of phenol with H2O2 as an oxygen source. The performances of the catalysts were greatly influenced by various parameters such as reaction temperature, catalyst amount, molar ratio of substrate to oxidant, nature of solvent, metal loading and homogeneous precursor salt. Water served as the best reaction medium for this oxidation system. The regeneration studies confirmed cobalt catalyst could be reused for five cycles without experiencing large loss in the conversion. Both leaching and reusability studies testified that the catalysts were truly heterogeneous.

  19. Toxicity of cobalt oxide nanoparticles to normal cells; an in vitro and in vivo study.

    PubMed

    Chattopadhyay, Sourav; Dash, Sandeep Kumar; Tripathy, Satyajit; Das, Balaram; Mandal, Debasis; Pramanik, Panchanan; Roy, Somenath

    2015-01-25

    The aim of this study was to find out the intracellular signaling transduction pathways involved in cobalt oxide nanoparticles (CoO NPs) mediated oxidative stress in vitro and in vivo system. Cobalt oxide nanoparticles released excess Co++ ions which could activated the NADPH oxidase and helps in generating the reactive oxygen species (ROS). Our results showed that CoO NPs elicited a significant (p<0.05) amount of ROS in lymphocytes. In vitro pretreatment with N-acetylene cystine had a protective role on lymphocytes death induced by CoO NPs. In vitro and in vivo results showed the elevated level of TNF-α after CoO NPs treatment. This TNF-α phosphorylated the p38 mitogen-activated protein kinase followed by activation of caspase 8 and caspase 3 which could induce cell death. This study showed that CoO NPs induced oxidative stress and activated the signaling pathway of TNF-α-caspase-8-p38-caspase-3 to primary immune cells. This study suggested that bare CoO NPs are a toxic for primary human immune cells that deals directly with human health. Surface modification or surface functionalization may open the gateway for further use of CoO NPs in different industrial use or in biomedical sciences.

  20. Cobalt vanadium oxide thin nanoplates: primary electrochemical capacitor application

    PubMed Central

    Zhang, Youjuan; Liu, Yuanying; Chen, Jing; Guo, Qifei; Wang, Ting; Pang, Huan

    2014-01-01

    Co3V2O8 thin nanoplates are firstly described as a kind of electrode material for supercapacitors. More importantly, from electrochemical measurements, the obtained Co3V2O8 nanoplate electrode shows a good specific capacitance (0.5 A g−1, 739 F g−1) and cycling stability (704 F g−1 retained after 2000 cycles). This study essentially offers a new kind of metal vanadium oxides as electrochemical active material for the development of supercapacitors. PMID:25023373

  1. High quality oxide films on substrates

    DOEpatents

    Ruckman, M.W.; Strongin, M.; Gao, Y.L.

    1994-02-01

    A method is described for providing an oxide film of a material on the surface of a substrate using a reactive deposition of the material onto the substrate surface in the presence of a solid or liquid layer of an oxidizing gas. The oxidizing gas is provided on the substrate surface in an amount sufficient to dissipate the latent heat of condensation occurring during deposition as well as creating a favorable oxidizing environment for the material. 4 figures.

  2. High quality oxide films on substrates

    DOEpatents

    Ruckman, Mark W.; Strongin, Myron; Gao, Yong L.

    1994-01-01

    A method for providing an oxide film of a material on the surface of a substrate using a reactive deposition of the material onto the substrate surface in the presence of a solid or liquid layer of an oxidizing gas. The oxidizing gas is provided on the substrate surface in an amount sufficient to dissipate the latent heat of condensation occurring during deposition as well as creating a favorable oxidizing environment for the material.

  3. Ascorbic Acid Assisted Synthesis of Cobalt Oxide Nanostructures, Their Electrochemical Sensing Application for the Sensitive Determination of Hydrazine

    NASA Astrophysics Data System (ADS)

    Tahira, Aneela; Nafady, Ayman; Baloach, Quarratulain; Sirajuddin; Sherazi, Syed Tufail Hussain; Shaikh, Tayyaba; Arain, Munazza; Willander, Magnus; Ibupoto, Zafar Hussain

    2016-07-01

    This study describes, the synthesis of cobalt oxide nanostructures using ascorbic acid as a growth directing agent by the hydrothermal method. Ascorbic acid is used for the first time for the synthesis of cobalt oxide nanostructures and a unique morphology is prepared in the present study. The cobalt oxide nanostructures were characterized by scanning electron microcopy, x-ray diffraction, and x-ray photoelectron spectroscopy techniques. These analytical techniques demonstrated well defined morphology, good crystalline quality, and high purity of as prepared cobalt oxide nanostructures. The glassy carbon electrode was modified with cobalt oxide nanostructures for the development of a sensitive and selective electrochemical hydrazine sensor. The developed hydrazine sensor exhibits a linear range of 2-24 μM. The sensitivity and limit of detection of presented hydrazine sensors are 12,734 μA/mM/cm2 and 0.1 μM respectively. The developed hydrazine sensor is highly selective, stable, and reproducible. The proposed sensor is successfully applied for the detection of hydrazine from different water samples. The present study provides the development of an alternative tool for the reliable monitoring of hydrazine from environmental and biological samples.

  4. Preparation and electrochemical performances of nanoporous/cracked cobalt oxide layer for supercapacitors

    NASA Astrophysics Data System (ADS)

    Gobal, Fereydoon; Faraji, Masoud

    2014-12-01

    Nanoporous/cracked structures of cobalt oxide (Co3O4) electrodes were successfully fabricated by electroplating of zinc-cobalt onto previously formed TiO2 nanotubes by anodizing of titanium, leaching of zinc in a concentrated alkaline solution and followed by drying and annealing at 400 °C. The structure and morphology of the obtained Co3O4 electrodes were characterized by X-ray diffraction, EDX analysis and scanning electron microscopy. The results showed that the obtained Co3O4 electrodes were composed of the nanoporous/cracked structures with an average pore size of about 100 nm. The electrochemical capacitive behaviors of the nanoporous Co3O4 electrodes were investigated by cyclic voltammetry, galvanostatic charge-discharge studies and electrochemical impedance spectroscopy in 1 M NaOH solution. The electrochemical data demonstrated that the electrodes display good capacitive behavior with a specific capacitance of 430 F g-1 at a current density of 1.0 A g-1 and specific capacitance retention of ca. 80 % after 10 days of being used in electrochemical experiments, indicating to be promising electroactive materials for supercapacitors. Furthermore, in comparison with electrodes prepared by simple cathodic deposition of cobalt onto TiO2 nanotubes(without dealloying procedure), the impedance studies showed improved performances likely due to nanoporous/cracked structures of electrodes fabricated by dealloying of zinc, which provide fast ion and electron transfer routes and large reaction surface area with the ensued fast reaction kinetics.

  5. Selective synthesis of pure cobalt disulfide on reduced graphene oxide sheets and its high electrocatalytic activity for hydrogen evolution reaction

    NASA Astrophysics Data System (ADS)

    Ahn, Seongjoon; Yang, Jieun; Lim, Hyunseob; Shin, Hyeon Suk

    2016-01-01

    We synthesized single-phase CoS2 on a large scale by adding graphene oxide of sufficient quantity via the hydrothermal method using cobalt acetate and thioacetamide as precursors; this produced the hybrid of CoS2 with reduced graphene oxide which exhibited high electrocatalytic activity in the hydrogen evolution reaction.

  6. Solar selective black cobalt: preparation, structure, and thermal stability

    SciTech Connect

    Smith, G.B.; Ignatiev, A.; Zajac, G.

    1980-08-01

    In the quest for an electroplated selective black coating stable to 500 /sup 0/C in air, black cobalts have been prepared by three techniques to yield (a) plated cobalt sulphides, (b) plated cobalt oxide-hydroxide, and (c) cobalt oxide prepared by thermal oxidation of electropolated cobalt metal. The optical properties of the various coatings are analyzed before and after exposure to air for extended periods of time at temperatures in the 300 /sup 0/--500 /sup 0/C range. The sulfide black cobalt is not acceptable as a high-temperature selective absorber due to severe thermal degradation. The plated oxide is a good selective absorber to about 400 /sup 0/C, and the thermally oxidized black to a slightly higher temperature, but degrades at 500 /sup 0/C. Structure studies via scanning electron microscopy (SEM), Auger electron spectroscopy (AES), and x-ray photoemission spectroscopy (XPS) are reported which yield a full account of the coating chemistry before and after heating. The studies reveal that the high solar absorptance of the acceptable black cobalt coatings is due to a continuation of a porous outer layer grading into nondense oxides of cobalt; either CoO or Co/sub 3/O/sub 4/, depending on the film. Absorption is intrinsic but not due to metal particles as in black chrome. A limited amount of optical degradation occurs upon heating the oxide black cobalt in air due to oxidation of hydroxide. However, the major degradation problem is shown to be substrate oxidation in contrast to black chrome where film oxidation is the principal problem.

  7. Solution Grown Antimony Doped Zinc Oxide Films

    NASA Astrophysics Data System (ADS)

    Riley, Conor T.

    Zinc oxide is an extensively studied semiconducting material due to its versatile properties applicable to many technologies such as electronics, optoelectronics, sensing and renewable energy. Although zinc oxide films have been created for device fabrication, the methods used to synthesize them are expensive and unrealistic for affordable commercial devices. In addition, zinc oxide is intrinsically n-type making the realization of stable p-type materials a great challenge for light emitting diodes, solar cells and UV lasing. In this thesis zinc oxide films are created using low cost solution methods. To accomplish this, a previously unreported surfactant, tert-butanol, is used. Several controlled experiments vary the concentration of tert-butanol, zinc and oxygen sources to demonstrate the ability of tert-butanol to create low cost films. Further, small amounts of antimony glycolate are added to the reaction solution, to create antimony doped zinc oxide films on sapphire and silicon substrates. Although hall measurements indicate that the films are n-type, a discussion of antimony activation provides a feasible path for the realization of low cost, p-type zinc oxide films.

  8. Zinc oxide thin film acoustic sensor

    SciTech Connect

    Mohammed, Ali Jasim; Salih, Wafaa Mahdi; Hassan, Marwa Abdul Muhsien; Nusseif, Asmaa Deiaa; Kadhum, Haider Abdullah; Mansour, Hazim Louis

    2013-12-16

    This paper reports the implementation of (750 nm) thickness of Zinc Oxide (ZnO) thin film for the piezoelectric pressure sensors. The film was prepared and deposited employing the spray pyrolysis technique. XRD results show that the growth preferred orientation is the (002) plane. A polycrystalline thin film (close to mono crystallite like) was obtained. Depending on the Scanning Electron Microscopy photogram, the film homogeneity and thickness were shown. The resonance frequency measured (about 19 kHz) and the damping coefficient was calculated and its value was found to be about (2.5538), the thin film be haves as homogeneous for under and over damped. The thin film pressure sensing was approximately exponentially related with frequency, the thin film was observed to has a good response for mechanical stresses also it is a good material for the piezoelectric properties.

  9. Influence of Cr doping on the stability and structure of small cobalt oxide clusters

    SciTech Connect

    Tung, Nguyen Thanh; Lievens, Peter; Janssens, Ewald; Tam, Nguyen Minh; Nguyen, Minh Tho

    2014-07-28

    The stability of mass-selected pure cobalt oxide and chromium doped cobalt oxide cluster cations, Co{sub n}O{sub m}{sup +} and Co{sub n−1}CrO{sub m}{sup +} (n = 2, 3; m = 2–6 and n = 4; m = 3–8), has been investigated using photodissociation mass spectrometry. Oxygen-rich Co{sub n}O{sub m}{sup +} clusters (m ⩾ n + 1 for n = 2, 4 and m ⩾ n + 2 for n = 3) prefer to photodissociate via the loss of an oxygen molecule, whereas oxygen poorer clusters favor the evaporation of oxygen atoms. Substituting a single Co atom by a single Cr atom alters the dissociation behavior. All investigated Co{sub n−1}CrO{sub m}{sup +} clusters, except CoCrO{sub 2}{sup +} and CoCrO{sub 3}{sup +}, prefer to decay by eliminating a neutral oxygen molecule. Co{sub 2}O{sub 2}{sup +}, Co{sub 4}O{sub 3}{sup +}, Co{sub 4}O{sub 4}{sup +}, and CoCrO{sub 2}{sup +} are found to be relatively difficult to dissociate and appear as fragmentation product of several larger clusters, suggesting that they are particularly stable. The geometric structures of pure and Cr doped cobalt oxide species are studied using density functional theory calculations. Dissociation energies for different evaporation channels are calculated and compared with the experimental observations. The influence of the dopant atom on the structure and the stability of the clusters is discussed.

  10. The Structure and Properties of Plasma Sprayed Iron Oxide Doped Manganese Cobalt Oxide Spinel Coatings for SOFC Metallic Interconnectors

    NASA Astrophysics Data System (ADS)

    Puranen, Jouni; Lagerbom, Juha; Hyvärinen, Leo; Kylmälahti, Mikko; Himanen, Olli; Pihlatie, Mikko; Kiviaho, Jari; Vuoristo, Petri

    2011-01-01

    Manganese cobalt oxide spinel doped with Fe2O3 was studied as a protective coating on ferritic stainless steel interconnects. Chromium alloying causes problems at high operation temperatures in such oxidizing conditions where chromium compounds evaporate and poison the cathode active area, causing the degradation of the solid oxide fuel cell. In order to prevent chromium evaporation, these interconnectors need a protective coating to block the chromium evaporation and to maintain an adequate electrical conductivity. Thermal spraying is regarded as a promising way to produce dense and protective layers. In the present work, the ceramic Mn-Co-Fe oxide spinel coatings were produced by using the atmospheric plasma spray process. Coatings with low thickness and low amount of porosity were produced by optimizing deposition conditions. The original spinel structure decomposed because of the fast transformation of solid-liquid-solid states but was partially restored by using post-annealing treatment.

  11. Direct deposition of cubic boron nitride films on tungsten carbide-cobalt.

    PubMed

    Teii, Kungen; Matsumoto, Seiichiro

    2012-10-24

    Thick cubic boron nitride (cBN) films in micrometer-scale are deposited on tungsten carbide-cobalt (WC-Co) substrates without adhesion interlayers by inductively coupled plasma-enhanced chemical vapor deposition (ICP-CVD) using the chemistry of fluorine. The residual film stress is reduced because of very low ion-impact energies (a few eV to ∼25 eV) controlled by the plasma sheath potential. Two types of substrate pretreatment are used successively; the removal of surface Co binder using an acid solution suppresses the catalytic effect of Co and triggers cBN formation, and the surface roughening using mechanical scratching and hydrogen plasma etching increases both the in-depth cBN fraction and deposition rate. The substrate surface condition is evaluated by the wettability of the probe liquids with different polarities and quantified by the apparent surface free energy calculated from the contact angle. The surface roughening enhances the compatibility in energy between the cBN and substrate, which are bridged by the interfacial sp(2)-bonded hexagonal BN buffer layer, and then, the cBN overlayer is nucleated and evolved easier.

  12. Chemical vapor deposition of low reflective cobalt (II) oxide films

    NASA Astrophysics Data System (ADS)

    Amin-Chalhoub, Eliane; Duguet, Thomas; Samélor, Diane; Debieu, Olivier; Ungureanu, Elisabeta; Vahlas, Constantin

    2016-01-01

    Low reflective CoO coatings are processed by chemical vapor deposition from Co2(CO)8 at temperatures between 120 °C and 190 °C without additional oxygen source. The optical reflectivity in the visible and near infrared regions stems from 2 to 35% depending on deposition temperature. The combination of specific microstructural features of the coatings, namely a fractal "cauliflower" morphology and a grain size distribution more or less covering the near UV and IR wavelength ranges enhance light scattering and gives rise to a low reflectivity. In addition, the columnar morphology results in a density gradient in the vertical direction that we interpret as a refractive index gradient lowering reflectivity further down. The coating formed at 180 °C shows the lowest average reflectivity (2.9%), and presents an interesting deep black diffuse aspect.

  13. Cobalt phosphide nanowall array as an efficient 3D catalyst electrode for methanol electro-oxidation

    NASA Astrophysics Data System (ADS)

    Liu, Danni; Lu, Wenbo; Wang, Kunyang; Du, Gu; Asiri, Abdullah M.; Lu, Qun; Sun, Xuping

    2016-11-01

    In this letter, we report on the use of a cobalt phosphide nanowall array on conductive carbon cloth (CoP NA/CC) as an efficient catalyst electrode for methanol electro-oxidation under alkaline conditions. This CoP NA/CC achieves a current density of 96 mA cm–2 toward 0.5 M methanol at 0.5 V (versus a saturated calomel electrode (SCE)) in 1 M KOH. Moreover, this electrode exhibits superior stability and 93% of the initial anodic current density can be retained after 1000 cyclic voltammetry cycles when re-measured in new electrolyte.

  14. The anion-binding polyanion: a molecular cobalt vanadium oxide with anion-sensitive visual response.

    PubMed

    Seliverstov, Andrey; Forster, Johannes; Heiland, Magdalena; Unfried, Johannes; Streb, Carsten

    2014-07-25

    An anionic molecular cobalt vanadium oxide cluster, (n-Bu4N)3[Co(AcO)V4O12] and its use as anion binding site is reported. Cluster formation is controlled by an anion-dependent dynamic solution equilibrium. Reversible anion binding in solution leads to significant spectral changes, allowing the ratiometric optical detection of the anion concentration in situ, even under harsh thermal conditions (T = 90 °C). Comparative studies showed that the spectral response is dependent on the type of anion so that carboxylates, weakly coordinating anions and halides can be distinguished.

  15. Long cycle life lithium ion battery with lithium nickel cobalt manganese oxide (NCM) cathode

    NASA Astrophysics Data System (ADS)

    Liu, Shuang; Xiong, L.; He, C.

    2014-09-01

    Lithium ion batteries with lithium nickel cobalt manganese oxide (NCM) cathode were characterized by extensive cycling (>2000 cycles), discharge rate test, hybrid pulse power characterization test (HPPC), and electrochemical impedance spectroscopy (EIS). The crystal structure, morphology and particle size of cathode materials were characterized by X-ray diffraction and scanning electron microscopy (SEM). It was demonstrated that the rate performance and cycle life of battery are closely related to the cathode material composition and electrode design. With proper selection of cathode composition and electrode design, the lithium ion battery cell achieved close to 3500 cycles with 85% capacity retention at 1C current.

  16. Cobalt phosphide nanowall array as an efficient 3D catalyst electrode for methanol electro-oxidation.

    PubMed

    Liu, Danni; Lu, Wenbo; Wang, Kunyang; Du, Gu; Asiri, Abdullah M; Lu, Qun; Sun, Xuping

    2016-11-01

    In this letter, we report on the use of a cobalt phosphide nanowall array on conductive carbon cloth (CoP NA/CC) as an efficient catalyst electrode for methanol electro-oxidation under alkaline conditions. This CoP NA/CC achieves a current density of 96 mA cm(-2) toward 0.5 M methanol at 0.5 V (versus a saturated calomel electrode (SCE)) in 1 M KOH. Moreover, this electrode exhibits superior stability and 93% of the initial anodic current density can be retained after 1000 cyclic voltammetry cycles when re-measured in new electrolyte. PMID:27671347

  17. Cobalt phosphide nanowall array as an efficient 3D catalyst electrode for methanol electro-oxidation.

    PubMed

    Liu, Danni; Lu, Wenbo; Wang, Kunyang; Du, Gu; Asiri, Abdullah M; Lu, Qun; Sun, Xuping

    2016-11-01

    In this letter, we report on the use of a cobalt phosphide nanowall array on conductive carbon cloth (CoP NA/CC) as an efficient catalyst electrode for methanol electro-oxidation under alkaline conditions. This CoP NA/CC achieves a current density of 96 mA cm(-2) toward 0.5 M methanol at 0.5 V (versus a saturated calomel electrode (SCE)) in 1 M KOH. Moreover, this electrode exhibits superior stability and 93% of the initial anodic current density can be retained after 1000 cyclic voltammetry cycles when re-measured in new electrolyte.

  18. High-pressure and high-temperature equation of state of cobalt oxide: Implications for redox relations in Earth's mantle

    SciTech Connect

    Armentrout, Matthew M.; Rainey, Emma S.G.; Kavner, Abby

    2013-07-30

    The high-pressure and high-temperature equation of state of rock salt-structured cobalt oxide was measured up to 65 GPa and 2600 K using synchrotron X-ray diffraction in conjunction with the laser heated diamond-anvil cell. Fitting a Mie-Grüneisen-Debye model to the data we find best-fit parameters V0 = 77.4 (fixed) Å3, K0 = 190 (1) GPa, K' = 3.49 (4), γ0 = 1.54 (4), q = 2.87 (15), and θ0 = 517.8 K (fixed). We use this newly determined equation of state in conjunction with existing measurements of the thermoelastic parameters of cobalt metal to calculate the Gibbs free-energy difference between the cobalt oxide and cobalt metal phases as a function of pressure and temperature. A comparison of the energetics of the Co/CoO system with the Ni/NiO system predicts that below 58 GPa CoO+Ni is stable relative to NiO+Co, while above 58 GPa the reverse is true. This tipping point in energy can be mapped as a crossing point in the electrochemical potential of the two metal ions, suggesting that cobalt becomes more siderophile than nickel with increasing pressure. This result is in qualitative agreement with existing measurements of nickel and cobalt partition coefficients between mantle and core materials.

  19. Porous nickel MCFC cathode coated by potentiostatically deposited cobalt oxide. I. A structural and morphological study

    NASA Astrophysics Data System (ADS)

    Escudero, M. J.; Rodrigo, T.; Mendoza, L.; Cassir, M.; Daza, L.

    Porous nickel cathode was protected by potentiostatically deposited cobalt at different experimental conditions: oxidation potential and electrolysis duration. The deposition growth increased with the oxidation potential yielding a more developed granular structure with smaller grains. Thin layers of Co 3O 4 were identified by X-ray diffraction (XRD) and Raman spectroscopy. CoOOH was detected by X-ray photoelectron spectroscopy (XPS) before annealing treatment and Co 3O 4 after heating the sample at 500 °C during 4 h in air. After this treatment, some morphological changes were observed on the coated samples due to grain compaction and oxidation of the nickel substrate. The porosity of the coated samples was relatively close to that of the sole porous nickel. These coatings exhibited an appropriate dual-pore structure with macro and micro pores, a basic MCFC requirement.

  20. Synthesis of cobalt-containing mesoporous catalysts using the ultrasonic-assisted “pH-adjusting” method: Importance of cobalt species in styrene oxidation

    SciTech Connect

    Li, Baitao Zhu, Yanrun; Jin, Xiaojing

    2015-01-15

    Cobalt-containing SBA-15 and MCM-41 (Co-SBA-15 and Co-MCM-41) mesoporous catalysts were prepared via ultrasonic-assisted “pH-adjusting” technique in this study. Their physiochemical structures were comprehensively characterized and correlated with catalytic activity in oxidation of styrene. The nature of cobalt species depended on the type of mesoporous silica as well as pH values. The different catalytic performance between Co-SBA-15 and Co-MCM-41 catalysts originated from cobalt species. Cobalt species were homogenously incorporated into the siliceous framework of Co-SBA-15 in single-site Co(II) state, while Co{sub 3}O{sub 4} particles were loaded on Co-MCM-41 catalysts. The styrene oxidation tests showed that the single-site Co(II) state was more beneficial to the catalytic oxidation of styrene. The higher styrene conversion and benzaldehyde selectivity over Co-SBA-15 catalysts were mainly attributed to single-site Co(II) state incorporated into the framework of SBA-15. The highest conversion of styrene (34.7%) with benzaldehyde selectivity of 88.2% was obtained over Co-SBA-15 catalyst prepared at pH of 7.5, at the mole ratio of 1:1 (styrene to H{sub 2}O{sub 2}) at 70 °C. - Graphical abstract: Cobalt-containing mesoporous silica catalysts were developed via ultrasonic-assisted “pH-adjusting” technique. Compared with Co{sub 3}O{sub 4} in Co-MCM-41, the single-site Co(II) state in Co-SBA-15 was more efficient for the styrene oxidation. - Highlights: • Fast and cost-effective ultrasonic technique for preparing mesoporous materials. • Incorporation of Co via ultrasonic irradiation and “pH-adjusting”. • Physicochemical comparison between Co-SBA-15 and Co-MCM-41. • Correlation of styrene oxidation activity and catalyst structural property.

  1. Mesoscopically structured nanocrystalline metal oxide thin films

    NASA Astrophysics Data System (ADS)

    Carretero-Genevrier, Adrian; Drisko, Glenna L.; Grosso, David; Boissiere, Cédric; Sanchez, Clement

    2014-11-01

    This review describes the main successful strategies that are used to grow mesostructured nanocrystalline metal oxide and SiO2 films via deposition of sol-gel derived solutions. In addition to the typical physicochemical forces to be considered during crystallization, mesoporous thin films are also affected by the substrate-film relationship and the mesostructure. The substrate can influence the crystallization temperature and the obtained crystallographic orientation due to the interfacial energies and the lattice mismatch. The mesostructure can influence the crystallite orientation, and affects nucleation and growth behavior due to the wall thickness and pore curvature. Three main methods are presented and discussed: templated mesoporosity followed by thermally induced crystallization, mesostructuration of already crystallized metal oxide nanobuilding units and substrate-directed crystallization with an emphasis on very recent results concerning epitaxially grown piezoelectric structured α-quartz films via crystallization of amorphous structured SiO2 thin films.

  2. Tailoring the energy level alignment at the Co/Alq{sub 3} interface by controlled cobalt oxidation

    SciTech Connect

    Haag, Norman; Steil, Sabine; Großmann, Nicolas; Fetzer, Roman; Cinchetti, Mirko; Aeschlimann, Martin

    2013-12-16

    We have studied the influence of oxygen exposure at the prototypical interface between cobalt and the organic semiconductor tris(8-hydroxyquinoline)aluminum (III) (Alq{sub 3}) by photoemission spectroscopy. We find that oxidation of the cobalt leads to a gradual suppression of hybrid interface states, to a progressive change in the work function and to a continuous energetic shift of the molecular orbitals towards higher binding energies. Based on these observations, we propose controlled oxidation of the ferromagnetic electrode as an easy and effective possibility to tune the performance of organic spintronics devices.

  3. Surface and redox properties of cobalt-ceria binary oxides: On the effect of Co content and pretreatment conditions

    NASA Astrophysics Data System (ADS)

    Konsolakis, Michalis; Sgourakis, Michalis; Carabineiro, Sónia A. C.

    2015-06-01

    Ceria-based transition metal catalysts have recently received considerable attention both in heterogeneous catalysis and electro-catalysis fields, due to their unique physicochemical characteristics. Their catalytic performance is greatly affected by the surface local chemistry and oxygen vacancies. The present study aims at investigating the impact of Co/Ce ratio and pretreatment conditions on the surface and redox properties of cobalt-ceria binary oxides. Co-ceria mixed oxides with different Co content (0, 20, 30, 60, 100 wt.%) were prepared by impregnation method and characterized by means of N2 adsorption at -196 °C, X-ray diffraction (XRD), H2 temperature-programmed reduction (H2-TPR) and X-ray photoelectron spectroscopy (XPS). The results shown the improved reducibility of Co/CeO2 mixed oxides compared to single oxides, due to a synergistic interaction between cobalt and cerium. Oxidation pretreatment results in a preferential localization of cerium species on the outer surface. In contrast, a uniform distribution of cobalt and cerium species over the entire catalyst surface is obtained by the reduction process, which facilitates the formation of oxygen vacancies though Co3+/Co2+ and Ce3+/Ce4+ redox cycles. Fundamental insights toward tuning the surface chemistry of cobalt-ceria binary oxides are provided, paving the way for real-life industrial applications.

  4. Cobalt (hydr)oxide/graphite oxide composites: importance of surface chemical heterogeneity for reactive adsorption of hydrogen sulfide.

    PubMed

    Mabayoje, Oluwaniyi; Seredych, Mykola; Bandosz, Teresa J

    2012-07-15

    Composites of cobalt (hydr)oxide and graphite oxide (GO) were obtained and evaluated as adsorbents of hydrogen sulfide at ambient conditions. The surface properties of the initial and exhausted samples were studied by FTIR, TEM, SEM/EDX, XRD, adsorption of nitrogen, potentiometric titration, and thermal analysis. The results obtained show a significant improvement in their adsorption capacities compared to parent compounds. The importance of the OH groups of cobalt (hydr)oxide/GO composites and new interface chemistry for the adsorption of hydrogen sulfide on these materials is revealed. The oxygen activation by the carbonaceous component resulted in formation of sulfites. Water enhanced the removal process. This is the result of the basic environment promoting dissociation of H(2)S and acid-base reactions. Finally, the differences in the performance of the materials with different mass ratios of GO were linked to the availability of active sites on the surface of the adsorbents, dispersion of these sites, their chemical heterogeneity, and location in the pore system.

  5. Cobalt-Schiff base complex catalyzed oxidation of para-substituted phenolics. Preparation of benzoquinones

    SciTech Connect

    Bozell, J.J.; Hames, B.R.; Dimmel, D.R.

    1995-04-21

    Para-substituted phenolics, serving as models for lignin (a renewable source of carbon), are oxidized to the corresponding benzoquinone with oxygen in the presence of catalytic amounts of Co-Schiff base complexes. The reaction products observed depend on the structure of the catalyst. The 5-coordinate catalysts (pyridine)[bis(salicylidene)ethylenediamine]cobalt[(pyr)Co(salen)]and[bis(salicylideneamino)ethylamine]cobalt [Co(n-Me salpr)] convert syringyl alcohol (3,5-dimethoxy-4-hydroxybenzyl alcohol) to 2,6-dimethoxybenzoquinone in high yield. In contrast, syringaldehyde (3,5-dimethoxy-4-hydroxybenzaldehyde) is unreactive toward these catalysts. However, the 4-coordinate Co(salen) converts syringaldehyde to 2,6-dimethoxybenzoiquinone in 72% isolated yield. Phenols bearing a single methoxy group on the ring are unreactive toward any catalyst in MeOH. However, vanillyl alcohol (3-methoxy-4-hydroxybenzyl alcohol) is converted to 2-methoxybenzo-quinone with Co(N-Me salpr) and oxygen in 43% yield in CH{sub 2}Cl{sub 2} and 58% yield in CH{sub 2}Cl{sub 2} in the presence of 1% CuCl{sub 2}. The success of the oxidations appears to be related to the ease of removal of the phenolic hydrogen by the Co/O{sub 2} complex. Competitive deactivation of the catalyst occurs with substrates of lower reactivity. 84 tabs.

  6. Current-direction dependence of the transport properties in single-crystalline face-centered-cubic cobalt films

    SciTech Connect

    Xiao, X.; Liang, J. H.; Chen, B. L.; Li, J. X.; Ding, Z.; Wu, Y. Z.; Ma, D. H.

    2015-07-28

    Face-centered-cubic cobalt films are epitaxially grown on insulating LaAlO{sub 3}(001) substrates by molecular beam epitaxy. Transport measurements are conducted in different current directions relative to the crystal axes. We find that the temperature dependent anisotropic magnetoresistance ratio strongly depends on the current direction. However, the anomalous Hall effect shows isotropic behavior independent of the current direction. Our results demonstrate the interplay between the current direction and the crystalline lattice in single-crystalline ferromagnetic films. A phenomenological analysis is presented to interpret the experimental data.

  7. Morphological impact on the reaction kinetics of size-selected cobalt oxide nanoparticles

    SciTech Connect

    Bartling, Stephan Meiwes-Broer, Karl-Heinz; Barke, Ingo; Pohl, Marga-Martina

    2015-09-21

    Apart from large surface areas, low activation energies are essential for efficient reactions, particularly in heterogeneous catalysis. Here, we show that not only the size of nanoparticles but also their detailed morphology can crucially affect reaction kinetics, as demonstrated for mass-selected, soft-landed, and oxidized cobalt clusters in a 6 nm to 18 nm size range. The method of reflection high-energy electron diffraction is extended to the quantitative determination of particle activation energies which is applied for repeated oxidation and reduction cycles at the same particles. We find unexpectedly small activation barriers for the reduction reaction of the largest particles studied, despite generally increasing barriers for growing sizes. We attribute these observations to the interplay of reaction-specific material transport with a size-dependent inner particle morphology.

  8. Incommensurate spin correlations in highly oxidized cobaltates La2−xSrxCoO4

    PubMed Central

    Li, Z. W.; Drees, Y.; Kuo, C. Y.; Guo, H.; Ricci, A.; Lamago, D.; Sobolev, O.; Rütt, U.; Gutowski, O.; Pi, T. W.; Piovano, A.; Schmidt, W.; Mogare, K.; Hu, Z.; Tjeng, L. H.; Komarek, A. C.

    2016-01-01

    We observe quasi-static incommensurate magnetic peaks in neutron scattering experiments on layered cobalt oxides La2−xSrxCoO4 with high Co oxidation states that have been reported to be paramagnetic. This enables us to measure the magnetic excitations in this highly hole-doped incommensurate regime and compare our results with those found in the low-doped incommensurate regime that exhibit hourglass magnetic spectra. The hourglass shape of magnetic excitations completely disappears given a high Sr doping. Moreover, broad low-energy excitations are found, which are not centered at the incommensurate magnetic peak positions but around the quarter-integer values that are typically exhibited by excitations in the checkerboard charge ordered phase. Our findings suggest that the strong inter-site exchange interactions in the undoped islands are critical for the emergence of hourglass spectra in the incommensurate magnetic phases of La2−xSrxCoO4. PMID:27117928

  9. Application of Two Cobalt-Based Metal-Organic Frameworks as Oxidative Desulfurization Catalysts.

    PubMed

    Masoomi, Mohammad Yaser; Bagheri, Minoo; Morsali, Ali

    2015-12-01

    Two new porous cobalt-based metal-organic frameworks, [Co6(oba)5(OH)2(H2O)2(DMF)4]n · 5DMF (TMU-10) and [Co3(oba)3(O) (Py)0.5] n · 4DMF · Py (TMU-12) have been synthesized by solvothermal method using a nonlinear dicarboxylate ligand. Under mild reaction conditions, these compounds exhibited good catalytic activity and reusability in oxidative desulfurization (ODS) reaction of model oil which was prepared by dissolving dibenzothiophene (DBT) in n-hexane. FT-IR and Mass analysis showed that the main product of DBT oxidation is its corresponding sulfone, which was adsorbed on the surfaces of catalysts. The activation energy was obtained as 13.4 kJ/mol. PMID:26571113

  10. Porous cubes constructed by cobalt oxide nanocrystals with graphene sheet coatings for enhanced lithium storage properties.

    PubMed

    Geng, Hongbo; Guo, Yuanyuan; Ding, Xianguang; Wang, Huangwen; Zhang, Yufei; Wu, Xinglong; Jiang, Jiang; Zheng, Junwei; Yang, Yonggang; Gu, Hongwei

    2016-04-14

    In this manuscript, graphene-encapsulated porous cobalt oxide cubes (Co3O4@G) are fabricated through a facile precipitation reaction with subsequent calcination and a self-assembly process. The synthesized porous Co3O4 cubes anchored in the conductive graphene network can realize superior electrical conductivity, withstand volume variation upon prolonged cycling and shorten the diffusion path of lithium ions. When evaluated as anode materials, the Co3O4@G electrode shows excellent electrochemical properties in terms of both stable cycling performance and good rate capabilities. For example, a reversible discharge capacity of 980 mA h g(-1) is delivered after 80 cycles at a current density of 200 mA g(-1). Introducing a conductive graphene network to modify other metal oxides with poor electric conductivity and large volume excursions is of great interest in the development of lithium ion battery technologies. PMID:26997536

  11. Porous cubes constructed by cobalt oxide nanocrystals with graphene sheet coatings for enhanced lithium storage properties.

    PubMed

    Geng, Hongbo; Guo, Yuanyuan; Ding, Xianguang; Wang, Huangwen; Zhang, Yufei; Wu, Xinglong; Jiang, Jiang; Zheng, Junwei; Yang, Yonggang; Gu, Hongwei

    2016-04-14

    In this manuscript, graphene-encapsulated porous cobalt oxide cubes (Co3O4@G) are fabricated through a facile precipitation reaction with subsequent calcination and a self-assembly process. The synthesized porous Co3O4 cubes anchored in the conductive graphene network can realize superior electrical conductivity, withstand volume variation upon prolonged cycling and shorten the diffusion path of lithium ions. When evaluated as anode materials, the Co3O4@G electrode shows excellent electrochemical properties in terms of both stable cycling performance and good rate capabilities. For example, a reversible discharge capacity of 980 mA h g(-1) is delivered after 80 cycles at a current density of 200 mA g(-1). Introducing a conductive graphene network to modify other metal oxides with poor electric conductivity and large volume excursions is of great interest in the development of lithium ion battery technologies.

  12. Electro-deposition of superconductor oxide films

    SciTech Connect

    Bhattacharya, Raghu N.

    2001-01-01

    Methods for preparing high quality superconducting oxide precursors which are well suited for further oxidation and annealing to form superconducting oxide films. The method comprises forming a multilayered superconducting precursor on a substrate by providing an electrodeposition bath comprising an electrolyte medium and a substrate electrode, and providing to the bath a plurality of precursor metal salts which are capable of exhibiting superconducting properties upon subsequent treatment. The superconducting precursor is then formed by electrodepositing a first electrodeposited (ED) layer onto the substrate electrode, followed by depositing a layer of silver onto the first electrodeposited (ED) layer, and then electrodepositing a second electrodeposited (ED) layer onto the Ag layer. The multilayered superconducting precursor is suitable for oxidation at a sufficient annealing temperature in air or an oxygen-containing atmosphere to form a crystalline superconducting oxide film.

  13. Porous cubes constructed by cobalt oxide nanocrystals with graphene sheet coatings for enhanced lithium storage properties

    NASA Astrophysics Data System (ADS)

    Geng, Hongbo; Guo, Yuanyuan; Ding, Xianguang; Wang, Huangwen; Zhang, Yufei; Wu, Xinglong; Jiang, Jiang; Zheng, Junwei; Yang, Yonggang; Gu, Hongwei

    2016-03-01

    In this manuscript, graphene-encapsulated porous cobalt oxide cubes (Co3O4@G) are fabricated through a facile precipitation reaction with subsequent calcination and a self-assembly process. The synthesized porous Co3O4 cubes anchored in the conductive graphene network can realize superior electrical conductivity, withstand volume variation upon prolonged cycling and shorten the diffusion path of lithium ions. When evaluated as anode materials, the Co3O4@G electrode shows excellent electrochemical properties in terms of both stable cycling performance and good rate capabilities. For example, a reversible discharge capacity of 980 mA h g-1 is delivered after 80 cycles at a current density of 200 mA g-1. Introducing a conductive graphene network to modify other metal oxides with poor electric conductivity and large volume excursions is of great interest in the development of lithium ion battery technologies.In this manuscript, graphene-encapsulated porous cobalt oxide cubes (Co3O4@G) are fabricated through a facile precipitation reaction with subsequent calcination and a self-assembly process. The synthesized porous Co3O4 cubes anchored in the conductive graphene network can realize superior electrical conductivity, withstand volume variation upon prolonged cycling and shorten the diffusion path of lithium ions. When evaluated as anode materials, the Co3O4@G electrode shows excellent electrochemical properties in terms of both stable cycling performance and good rate capabilities. For example, a reversible discharge capacity of 980 mA h g-1 is delivered after 80 cycles at a current density of 200 mA g-1. Introducing a conductive graphene network to modify other metal oxides with poor electric conductivity and large volume excursions is of great interest in the development of lithium ion battery technologies. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01024e

  14. Effects of Cobalt on Manganese Oxidation by Pseudomonas putida MnB1

    NASA Astrophysics Data System (ADS)

    Pena, J.; Bargar, J.; Sposito, G.

    2005-12-01

    The oxidation of Mn(II) in the environment is thought to occur predominantly through biologically mediated pathways. During the stationary phase of growth, the well-characterized freshwater and soil bacterium Pseudomonas putida MnB1 oxidizes soluble Mn(II) to a poorly crystalline layer type Mn(IV) oxide. These Mn oxide particles (2 - 5 nm thickness) are deposited in a matrix of extracellular polymeric substances (EPS) surrounding the cell, creating a multi-component system distinct from commonly studied synthetic Mn oxides. Accurate characterization of the reactivity of these biomineral assemblages is essential to understanding trace metal biogeochemistry in natural waters and sediments. Moreover, these biogenic oxides may potentially be used for the remediation of surface and ground waters impacted by mining, industrial pollution, and other anthropogenic activities. In this study, we consider the interactions between Co, P. putida MnB1, and its biogenic Mn oxide. Cobalt is a redox-active transition metal which exists in the environment as Co(II) and Co(III). While Co is not generally found in the environment at toxic concentrations, it may be released as a byproduct of mining activities (e.g. levels of up to 20 μM are found in Pinal Creek, AZ, a stream affected by copper mining). In addition, the radionuclide 60Co, formed by neutron activation in nuclear reactors, is of concern at Department of Energy sites, such as that at Hanford, and has several industrial applications, including radiotherapy. We address the following questions: Do high levels of Co inhibit enzymatic processes such as Mn(II) oxidation? Can the multicopper oxidase enzyme involved in Mn(II) oxidation facilitate Co(II) oxidation? Lastly, does the organic matter surrounding the oxides affect Co or Mn oxide reactivity? These issues were approached via wet chemical analysis, synchrotron radiation X-ray diffraction (SR-XRD), and extended X-ray absorption fine structure (EXAFS) spectroscopy. In the

  15. Electrodeposition of silver(II) oxide films

    SciTech Connect

    Breyfogle, B.E.; Hung, C.J.; Shumsky, M.G.; Switzer, J.A.

    1996-09-01

    AgO has been studied extensively for its use as the cathode material in zinc-silver oxide batteries. Continuous films of silver(II) oxide (AgO) have been electrodeposited directly from aqueous solutions of 50 mM silver acetate/25 mM sodium acetate onto 430 stainless steel, polycrystalline platinum, and indium-tin oxide-coated glass. Current efficiencies for the electrodeposition process ranged from 62 to 95% and were a function of the applied current density. X-ray diffraction of the electrodeposited films reveals a [010] texture when the thickness is greater than 1 {micro}m. Freshly ground films or powders exhibit only reflections consistent with the monoclinic AgO structure. Rietveld analysis confirms the ground films are single-phase AgO with a P 2{sub 1}/c space group. The films were imaged and film thickness was measured by atomic force microscopy. Thermogravimetric analysis shows that the films begin to decompose in air above 130 C, with an abrupt weight loss between 180 and 200 C. The total weight loss of 6.4 to 6.5% corresponds to thermal decomposition of AgO to Ag{sub 2}O with loss of oxygen. A direct optical bandgap of 1.1 eV was measured. The black AgO films absorb strongly in the near infrared and throughout the visible region. The four-point resistivity of the AgO films was 12 {+-} 1 {Omega} cm.

  16. On the kinetics of the absorption of nitric oxide into ammoniacal cobalt(II) solutions.

    PubMed

    Yu, Hesheng; Tan, Zhongchao

    2014-02-18

    Experiments were conducted using a custom double-stirred tank reactor to determine the rate constants of reactions between nitric oxide (NO) and both pentaaminecobalt(II) and hexaaminecobalt(II) at temperatures of 298.2 and 303.2 K and pH levels between 8.50 and 9.87 under atmospheric pressure. The NO concentration of simulated flue gas stream ranged from 400 to 1400 ppmv. Ammoniacal cobalt(II) solutions were prepared by adding aqueous ammonia into a cobalt(II) nitrate solution in the presence of concentrated ammonium nitrate. The reaction rate constants were calculated with an enhancement factor for gas absorption associated with parallel chemical reactions. The results showed that the reaction between NO and pentaaminecobalt(II) was first order with respect to both the NO and the pentaamminecobalt(II) ion. Similarly, the reaction between NO and hexaamminecobalt(II) was first order with respect to both the NO and the hexaamminecobalt(II) ion. The forward reaction rate constants of these two reactions were 6.43 × 10(6) and 1.00 × 10(7) L · mol(-1) · s(-1) at 298.2 K, respectively, and increased to 7.57 × 10(6) and 1.12 × 10(7) L · mol(-1) · s(-1) at 303.2 K, respectively. Ammoniacal cobalt(II) solutions also have the potential to simultaneously remove CO2, SO2, and NOx from postcombustion flue gas.

  17. Topotactic synthesis of strontium cobalt oxyhydride thin film with perovskite structure

    SciTech Connect

    Katayama, Tsukasa; Chikamatsu, Akira Kamisaka, Hideyuki; Yokoyama, Yuichi; Hirata, Yasuyuki; Wadati, Hiroki; Fukumura, Tomoteru; Hasegawa, Tetsuya

    2015-10-15

    The substitution of hydride anions (H{sup −}) into transition metal oxides has recently become possible through topotactic reactions or high-pressure synthesis methods. However, the fabrication of oxyhydrides is still difficult because of their inherently less-stable frameworks. In this study, we successfully fabricated perovskite SrCoO{sub x}H{sub y} thin films via the topotactic hydride doping of brownmillerite SrCoO{sub 2.5} epitaxial thin films with CaH{sub 2}. The perovskite-type cation framework was maintained during the topotactic treatment owing to epitaxial stabilization. Structural and chemical analyses accompanied by X-ray absorption spectroscopy measurements revealed that the doped hydride ions form a two-dimensional network of Co-H{sup −}-Co bonds, in contrast to other reported perovskite oxyhydrides, SrMO{sub 3−x}H{sub x} (M = Cr, Ti, V). The SrCoO{sub x}H{sub y} thin film exhibited insulating behavior and had a direct band gap of 2.1 eV. Thus, topotactic hydride doping of transition-metal-oxide thin films on suitable substrates is a promising method for the synthesis of new transition metal oxyhydrides.

  18. Graphene oxide film as solid lubricant.

    PubMed

    Liang, Hongyu; Bu, Yongfeng; Zhang, Junyan; Cao, Zhongyue; Liang, Aimin

    2013-07-10

    As a layered material, graphene oxide (GO) film is a good candidate for improving friction and antiwear performance of silicon-based MEMS devices. Via a green electrophoretic deposition (EPD) approach, GO films with tunable thickness in nanoscale are fabricated onto silicon wafer in a water solution. The morphology, microstructure, and mechanical properties as well as the friction coefficient and wear resistance of the films were investigated. The results indicated that the friction coefficient of silicon wafer was reduced to 1/6 its value, and the wear volume was reduced to 1/24 when using GO film as solid lubricant. These distinguished tribology performances suggest that GO films are expected to be good solid lubricants for silicon-based MEMS/NEMS devices. PMID:23786494

  19. The effect of variations of cobalt content on the cyclic oxidation resistance of selected Ni-base superalloys

    NASA Technical Reports Server (NTRS)

    Barrett, Charles A.

    1987-01-01

    Cobalt levels were systematically varied in the Ni-base turbine alloys U-700 (cast), U-700m (PM/HIP), Waspaloy, Mar-M-247, In-738, Nimonic-115, U-720, and SX-R-150. the cobalt levels ranged from 0 wt pct to the nominal commercial content in each alloy. the alloys were tested in cyclic oxidation in static air at 1000, 1100 and 1150 C for 500, 200, and 100 hr, respectively. An oxidation attack parameter, Ka, derived from the specific weight change versus time data was used to evaluate the oxidation behavior of the alloys along with X-ray diffraction analysis of the surface oxides. The alloys tend to form either Cr2O3/chromite spinel or Al2O3/aluminate spinel depending on the Cr/Al ratio in the alloys. Alloys with a ratio of 3.5 or higher tend to favor the Cr oxides while those under 3.0 form mostly Al oxides. In general the Al2O3/aluminate spinel forming alloys have the better oxidation resistance. Increased cobalt content lowers the scaling resistance of the higher Cr allys while a 5.0 wt pct Co content is optimum for the Al controlling alloys. The refractory metals, particularly Ta, appear beneficial to both types of oxides, perhaps due to the formation of the omnipresent trirutile Ni(Ta, Cb, Mo, W)2O6. Both scales break down as increasing amounts of NiO are formed.

  20. The effect of variations of cobalt content on the cyclic oxidation resistance of selected Ni-base superalloys

    NASA Technical Reports Server (NTRS)

    Barrett, C. A.

    1986-01-01

    Cobalt levels were systematically varied in the Ni-base turbine alloys U-700 (cast), U-700m(PM/HIP), Waspaloy, Mar-M-247, In-738, Nimonic-115, U-720, and SX-R-150. The cobalt levels ranged from 0 wt % to the nominal commercial content in each alloy. The alloys were tested in cyclic oxidation in static air at 1000, 1100 and 1150 C for 500, 200 and 100 hr respectively. An oxidation attack parameter, Ka derived from the specific weight change versus time data was used to evaluate the oxidation behavior of the alloys along with X-ray diffraction analysis of the surface oxides. The alloys tend to form either Cr2O3/chromite spinel or Al2O3/aluminate spinel depending on the CR/Al ratio in the alloys. Alloys with a ratio of 3.5 or higher tend to favor the Cr oxides while those under 3.0 form mostly Al oxides. In general the Al2O3/aluminate spinel forming alloys have the better oxidation resistance. Increased cobalt content lowers the scaling resistance of the higher Cr alloys while a 5.0 wt % Co content is optimum for the Al controlling alloys. The refractory metals, particularly Ta, appear beneficial to both types of oxides perhaps due to the formation of the omni-present trirutile Ni(Ta,Cb,Mo,W)2O6. Both scales break down as increasing amounts of NiO is formed.

  1. Nickel cobalt oxide nanowire-reduced graphite oxide composite material and its application for high performance supercapacitor electrode material.

    PubMed

    Wang, Xu; Yan, Chaoyi; Sumboja, Afriyanti; Lee, Pooi See

    2014-09-01

    In this paper, we report a facile synthesis method of mesoporous nickel cobalt oxide (NiCo2O4) nanowire-reduced graphite oxide (rGO) composite material by urea induced hydrolysis reaction, followed by sintering at 300 degrees C. P123 was used to stabilize the GO during synthesis, which resulted in a uniform coating of NiCo2O4 nanowire on rGO sheet. The growth mechanism of the composite material is discussed in detail. The NiCo2O4-rGO composite material showed an outstanding electrochemical performance of 873 F g(-1) at 0.5 A g(-1) and 512 F g(-1) at 40 A g(-1). This method provides a promising approach towards low cost and large scale production of supercapacitor electrode material.

  2. High quality transparent conducting oxide thin films

    DOEpatents

    Gessert, Timothy A.; Duenow, Joel N.; Barnes, Teresa; Coutts, Timothy J.

    2012-08-28

    A transparent conducting oxide (TCO) film comprising: a TCO layer, and dopants selected from the elements consisting of Vanadium, Molybdenum, Tantalum, Niobium, Antimony, Titanium, Zirconium, and Hafnium, wherein the elements are n-type dopants; and wherein the transparent conducting oxide is characterized by an improved electron mobility of about 42 cm.sup.2/V-sec while simultaneously maintaining a high carrier density of .about.4.4e.times.10.sup.20 cm.sup.-3.

  3. Patterning of Indium Tin Oxide Films

    NASA Technical Reports Server (NTRS)

    Immer, Christopher

    2008-01-01

    A relatively rapid, economical process has been devised for patterning a thin film of indium tin oxide (ITO) that has been deposited on a polyester film. ITO is a transparent, electrically conductive substance made from a mixture of indium oxide and tin oxide that is commonly used in touch panels, liquid-crystal and plasma display devices, gas sensors, and solar photovoltaic panels. In a typical application, the ITO film must be patterned to form electrodes, current collectors, and the like. Heretofore it has been common practice to pattern an ITO film by means of either a laser ablation process or a photolithography/etching process. The laser ablation process includes the use of expensive equipment to precisely position and focus a laser. The photolithography/etching process is time-consuming. The present process is a variant of the direct toner process an inexpensive but often highly effective process for patterning conductors for printed circuits. Relative to a conventional photolithography/ etching process, this process is simpler, takes less time, and is less expensive. This process involves equipment that costs less than $500 (at 2005 prices) and enables patterning of an ITO film in a process time of less than about a half hour.

  4. Formation of brominated disinfection by-products and bromate in cobalt catalyzed peroxymonosulfate oxidation of phenol.

    PubMed

    Liu, Kuo; Lu, Junhe; Ji, Yuefei

    2015-11-01

    Formation of halogenated disinfection by-products (DBPs) in sulfate radical [Formula: see text] based oxidation processes attracted considerable attention recently. However, the underlying reaction pathways have not been well explored. This study focused on the transformation of Br(-) in cobalt activated peroxymonosulfate (Co(2+)/PMS) oxidation process. Phenol was added as a model compound to mimic the reactivity of natural organic matter (NOM). It was revealed that Br(-) was efficiently transformed to reactive bromine species (RBS) including free bromine and bromine radicals (Br, [Formula: see text] , etc.) in Co(2+)/PMS system. [Formula: see text] played a principal role during this process. RBS thus generated resulted in the bromination of phenol and formation brominated DBPs (Br-DBPs) including bromoform and bromoacetic acids, during which brominated phenols were detected as the intermediates. Br-DBPs were further degraded by excessive [Formula: see text] and transformed to bromate ultimately. Free bromine was also formed in the absence of Co(2+), suggesting Br(-) could be oxidized by PMS per se. Free bromine was incorporated to phenol sequentially leading to Br-DBPs as well. However, Br-DBPs could not be further transformed in the absence of [Formula: see text] . This is the first study that elucidated the comprehensive transformation map of Br(-) in PMS oxidation systems, which should be taken into consideration when PMS was applied to eliminate contamination in real practice.

  5. Aluminum oxide film thickness and emittance

    SciTech Connect

    Thomas, J.K.; Ondrejcin, R.S.

    1991-11-01

    Aluminum reactor components which are not actively cooled could be subjected to high temperatures due to gamma heating after the core coolant level dropped during the ECS phase of a hypothetical LOCA event. Radiative heat transfer is the dominant heat transfer process in this scenario and therefore the emittance of these components is of interest. Of particular interest are the safety rod thimbles and Mark 60B blanket assemblies; for the K Reactor, these components have been exposed to low temperature (< 55{degrees}C) moderator for about a year. The average moderator temperature was assumed to be 30{degrees}C. The Al oxide film thickness at this temperature, after one year of exposure, is predicted to be 6.4 {mu}m {plus minus} 10%; insensitive to exposure time. Dehydration of the film during the gamma heating accident would result in a film thickness of 6.0 {mu}m {plus minus} 11%. Total hemispherical emittance is predicted to be 0.69 at 96{degrees}C, decreasing to 0.45 at 600{degrees}C. Some phenomena which would tend to yield thicker oxide films in the reactor environment relative to those obtained under experimental conditions were neglected and the predicted film thickness values are therefore conservative. The emittance values predicted for a given film thickness are also conservative. The conservativisms inherent in the predicted emittance are particularly relevant for uncertainty analysis of temperatures generated using these values.

  6. Aluminum oxide film thickness and emittance

    SciTech Connect

    Thomas, J.K.; Ondrejcin, R.S.

    1991-11-01

    Aluminum reactor components which are not actively cooled could be subjected to high temperatures due to gamma heating after the core coolant level dropped during the ECS phase of a hypothetical LOCA event. Radiative heat transfer is the dominant heat transfer process in this scenario and therefore the emittance of these components is of interest. Of particular interest are the safety rod thimbles and Mark 60B blanket assemblies; for the K Reactor, these components have been exposed to low temperature (< 55{degrees}C) moderator for about a year. The average moderator temperature was assumed to be 30{degrees}C. The Al oxide film thickness at this temperature, after one year of exposure, is predicted to be 6.4 {mu}m {plus_minus} 10%; insensitive to exposure time. Dehydration of the film during the gamma heating accident would result in a film thickness of 6.0 {mu}m {plus_minus} 11%. Total hemispherical emittance is predicted to be 0.69 at 96{degrees}C, decreasing to 0.45 at 600{degrees}C. Some phenomena which would tend to yield thicker oxide films in the reactor environment relative to those obtained under experimental conditions were neglected and the predicted film thickness values are therefore conservative. The emittance values predicted for a given film thickness are also conservative. The conservativisms inherent in the predicted emittance are particularly relevant for uncertainty analysis of temperatures generated using these values.

  7. Thin-Film Solid Oxide Fuel Cells

    NASA Technical Reports Server (NTRS)

    Chen, Xin; Wu, Nai-Juan; Ignatiev, Alex

    2009-01-01

    The development of thin-film solid oxide fuel cells (TFSOFCs) and a method of fabricating them have progressed to the prototype stage. This can result in the reduction of mass, volume, and the cost of materials for a given power level.

  8. Metal current collect protected by oxide film

    DOEpatents

    Jacobson, Craig P.; Visco, Steven J.; DeJonghe, Lutgard C.

    2004-05-25

    Provided are low-cost, mechanically strong, highly electronically conductive current collects and associated structures for solid-state electrochemical devices, techniques for forming these structures, and devices incorporating the structures. The invention provides solid state electrochemical devices having as current interconnects a ferritic steel felt or screen coated with a protective oxide film.

  9. Cobalt oxide nanosheets wrapped onto nickel foam for non-enzymatic detection of glucose

    NASA Astrophysics Data System (ADS)

    Meng, Shangjun; Wu, Meiyan; Wang, Qian; Dai, Ziyang; Si, Weili; Huang, Wei; Dong, Xiaochen

    2016-08-01

    Ultra-sensitive and highly selective detection of glucose is essential for the clinical diagnosis of diabetes. In this paper, an ultra-sensitive glucose sensor was successfully fabricated based on cobalt oxide (Co3O4) nanosheets directly grown on nickel foam through a simple hydrothermal method. Characterizations indicated that the Co3O4 nanosheets are completely and uniformly wrapped onto the surface of nickel foam to form a three-dimensional heterostructure. The resulting self-standing electrochemical electrode presents a high performance for the non-enzymatic detection of glucose, including short response time (<10 s), ultra-sensitivity (12.97 mA mM‑1 cm‑2), excellent selectivity and low detection limit (0.058 μM, S/N = 3). These results indicate that Co3O4 nanosheets wrapped onto nickel foam are a low-cost, practical, and high performance electrochemical electrode for bio sensing.

  10. Engineering surface atomic structure of single-crystal cobalt (II) oxide nanorods for superior electrocatalysis

    PubMed Central

    Ling, Tao; Yan, Dong-Yang; Jiao, Yan; Wang, Hui; Zheng, Yao; Zheng, Xueli; Mao, Jing; Du, Xi-Wen; Hu, Zhenpeng; Jaroniec, Mietek; Qiao, Shi-Zhang

    2016-01-01

    Engineering the surface structure at the atomic level can be used to precisely and effectively manipulate the reactivity and durability of catalysts. Here we report tuning of the atomic structure of one-dimensional single-crystal cobalt (II) oxide (CoO) nanorods by creating oxygen vacancies on pyramidal nanofacets. These CoO nanorods exhibit superior catalytic activity and durability towards oxygen reduction/evolution reactions. The combined experimental studies, microscopic and spectroscopic characterization, and density functional theory calculations reveal that the origins of the electrochemical activity of single-crystal CoO nanorods are in the oxygen vacancies that can be readily created on the oxygen-terminated {111} nanofacets, which favourably affect the electronic structure of CoO, assuring a rapid charge transfer and optimal adsorption energies for intermediates of oxygen reduction/evolution reactions. These results show that the surface atomic structure engineering is important for the fabrication of efficient and durable electrocatalysts. PMID:27650485

  11. Engineering surface atomic structure of single-crystal cobalt (II) oxide nanorods for superior electrocatalysis.

    PubMed

    Ling, Tao; Yan, Dong-Yang; Jiao, Yan; Wang, Hui; Zheng, Yao; Zheng, Xueli; Mao, Jing; Du, Xi-Wen; Hu, Zhenpeng; Jaroniec, Mietek; Qiao, Shi-Zhang

    2016-09-21

    Engineering the surface structure at the atomic level can be used to precisely and effectively manipulate the reactivity and durability of catalysts. Here we report tuning of the atomic structure of one-dimensional single-crystal cobalt (II) oxide (CoO) nanorods by creating oxygen vacancies on pyramidal nanofacets. These CoO nanorods exhibit superior catalytic activity and durability towards oxygen reduction/evolution reactions. The combined experimental studies, microscopic and spectroscopic characterization, and density functional theory calculations reveal that the origins of the electrochemical activity of single-crystal CoO nanorods are in the oxygen vacancies that can be readily created on the oxygen-terminated {111} nanofacets, which favourably affect the electronic structure of CoO, assuring a rapid charge transfer and optimal adsorption energies for intermediates of oxygen reduction/evolution reactions. These results show that the surface atomic structure engineering is important for the fabrication of efficient and durable electrocatalysts.

  12. Nickel-cobalt oxides/carbon nanoflakes as anode materials for lithium-ion batteries

    SciTech Connect

    NuLi, Yanna Zhang Peng; Guo Zaiping Liu Huakun; Yang Jun; Wang Jiulin

    2009-01-08

    Novel nickel-cobalt oxides/carbon nanoflakes with Ni/Co molar ratio = 1:1 and 1:2 have been synthesized by a convenient hydrothermal method followed by a simple calcination process. X-ray diffraction results showed that the composites were composed of NiO, Co{sub 3}O{sub 4}, and carbon. Scanning electron microscope measurements demonstrated that the composites were flakes less than 100 nm in thickness, and the corresponding energy dispersive spectroscopy mapping showed that the carbon was distributed homogeneously in the composites. The electrochemical results showed that the composite electrodes exhibited low initial coulombic efficiency and excellent charge-discharge cycling stability. Additionally, the effect of different Ni/Co molar ratios on the electrochemical properties of the composites was investigated, and better performance was obtained for the sample with a Ni/Co molar ratio of 1:2.

  13. Engineering surface atomic structure of single-crystal cobalt (II) oxide nanorods for superior electrocatalysis.

    PubMed

    Ling, Tao; Yan, Dong-Yang; Jiao, Yan; Wang, Hui; Zheng, Yao; Zheng, Xueli; Mao, Jing; Du, Xi-Wen; Hu, Zhenpeng; Jaroniec, Mietek; Qiao, Shi-Zhang

    2016-01-01

    Engineering the surface structure at the atomic level can be used to precisely and effectively manipulate the reactivity and durability of catalysts. Here we report tuning of the atomic structure of one-dimensional single-crystal cobalt (II) oxide (CoO) nanorods by creating oxygen vacancies on pyramidal nanofacets. These CoO nanorods exhibit superior catalytic activity and durability towards oxygen reduction/evolution reactions. The combined experimental studies, microscopic and spectroscopic characterization, and density functional theory calculations reveal that the origins of the electrochemical activity of single-crystal CoO nanorods are in the oxygen vacancies that can be readily created on the oxygen-terminated {111} nanofacets, which favourably affect the electronic structure of CoO, assuring a rapid charge transfer and optimal adsorption energies for intermediates of oxygen reduction/evolution reactions. These results show that the surface atomic structure engineering is important for the fabrication of efficient and durable electrocatalysts. PMID:27650485

  14. In Vivo Wear Performance of Cobalt-Chromium Versus Oxidized Zirconium Femoral Total Knee Replacements.

    PubMed

    Gascoyne, Trevor C; Teeter, Matthew G; Guenther, Leah E; Burnell, Colin D; Bohm, Eric R; Naudie, Douglas R

    2016-01-01

    This study examines the damage and wear on the polyethylene (PE) inserts from 52 retrieved Genesis II total knee replacements to identify differences in tribological performance between matched pairs of cobalt-chromium (CoCr) and oxidized zirconium (OxZr) femoral components. Observer damage scoring and microcomputed tomography were used to quantify PE damage and wear, respectively. No significant differences were found between CoCr and OxZr groups in terms of PE insert damage, surface penetration, or wear. No severe damage such as cracking or delamination was noted on any of the 52 PE inserts. Observer damage scoring did not correlate with penetrative or volumetric PE wear. The more costly OxZr femoral component does not demonstrate clear tribological benefit over the standard CoCr component in the short term with this total knee replacement design.

  15. Light-induced water oxidation at silicon electrodes functionalized with a cobalt oxygen-evolving catalyst.

    PubMed

    Pijpers, Joep J H; Winkler, Mark T; Surendranath, Yogesh; Buonassisi, Tonio; Nocera, Daniel G

    2011-06-21

    Integrating a silicon solar cell with a recently developed cobalt-based water-splitting catalyst (Co-Pi) yields a robust, monolithic, photo-assisted anode for the solar fuels process of water splitting to O(2) at neutral pH. Deposition of the Co-Pi catalyst on the Indium Tin Oxide (ITO)-passivated p-side of a np-Si junction enables the majority of the voltage generated by the solar cell to be utilized for driving the water-splitting reaction. Operation under neutral pH conditions fosters enhanced stability of the anode as compared to operation under alkaline conditions (pH 14) for which long-term stability is much more problematic. This demonstration of a simple, robust construct for photo-assisted water splitting is an important step towards the development of inexpensive direct solar-to-fuel energy conversion technologies.

  16. Light-induced water oxidation at silicon electrodes functionalized with a cobalt oxygen-evolving catalyst

    PubMed Central

    Pijpers, Joep J. H.; Winkler, Mark T.; Surendranath, Yogesh; Buonassisi, Tonio; Nocera, Daniel G.

    2011-01-01

    Integrating a silicon solar cell with a recently developed cobalt-based water-splitting catalyst (Co-Pi) yields a robust, monolithic, photo-assisted anode for the solar fuels process of water splitting to O2 at neutral pH. Deposition of the Co-Pi catalyst on the Indium Tin Oxide (ITO)-passivated p-side of a np-Si junction enables the majority of the voltage generated by the solar cell to be utilized for driving the water-splitting reaction. Operation under neutral pH conditions fosters enhanced stability of the anode as compared to operation under alkaline conditions (pH 14) for which long-term stability is much more problematic. This demonstration of a simple, robust construct for photo-assisted water splitting is an important step towards the development of inexpensive direct solar-to-fuel energy conversion technologies. PMID:21646536

  17. Cobalt oxide nanosheets wrapped onto nickel foam for non-enzymatic detection of glucose

    NASA Astrophysics Data System (ADS)

    Meng, Shangjun; Wu, Meiyan; Wang, Qian; Dai, Ziyang; Si, Weili; Huang, Wei; Dong, Xiaochen

    2016-08-01

    Ultra-sensitive and highly selective detection of glucose is essential for the clinical diagnosis of diabetes. In this paper, an ultra-sensitive glucose sensor was successfully fabricated based on cobalt oxide (Co3O4) nanosheets directly grown on nickel foam through a simple hydrothermal method. Characterizations indicated that the Co3O4 nanosheets are completely and uniformly wrapped onto the surface of nickel foam to form a three-dimensional heterostructure. The resulting self-standing electrochemical electrode presents a high performance for the non-enzymatic detection of glucose, including short response time (<10 s), ultra-sensitivity (12.97 mA mM-1 cm-2), excellent selectivity and low detection limit (0.058 μM, S/N = 3). These results indicate that Co3O4 nanosheets wrapped onto nickel foam are a low-cost, practical, and high performance electrochemical electrode for bio sensing.

  18. Low-solubility particles and a Trojan-horse type mechanism of toxicity: the case of cobalt oxide on human lung cells

    PubMed Central

    2014-01-01

    Background The mechanisms of toxicity of metal oxide particles towards lung cells are far from being understood. In particular, the relative contribution of intracellular particulate versus solubilized fractions is rarely considered as it is very challenging to assess, especially for low-solubility particles such as cobalt oxide (Co3O4). Methods This study was possible owing to two highly sensitive, independent, analytical techniques, based on single-cell analysis, using ion beam microanalysis, and on bulk analysis of cell lysates, using mass spectrometry. Results Our study shows that cobalt oxide particles, of very low solubility in the culture medium, are readily incorporated by BEAS-2B human lung cells through endocytosis via the clathrin-dependent pathway. They are partially solubilized at low pH within lysosomes, leading to cobalt ions release. Solubilized cobalt was detected within the cytoplasm and the nucleus. As expected from these low-solubility particles, the intracellular solubilized cobalt content is small compared with the intracellular particulate cobalt content, in the parts-per-thousand range or below. However, we were able to demonstrate that this minute fraction of intracellular solubilized cobalt is responsible for the overall toxicity. Conclusions Cobalt oxide particles are readily internalized by pulmonary cells via the endo-lysosomal pathway and can lead, through a Trojan-horse mechanism, to intracellular release of toxic metal ions over long periods of time, involving specific toxicity. PMID:24669904

  19. Structural and magnetic properties of cobalt-doped iron oxide nanoparticles prepared by solution combustion method for biomedical applications

    PubMed Central

    Venkatesan, Kaliyamoorthy; Rajan Babu, Dhanakotti; Kavya Bai, Mane Prabhu; Supriya, Ravi; Vidya, Radhakrishnan; Madeswaran, Saminathan; Anandan, Pandurangan; Arivanandhan, Mukannan; Hayakawa, Yasuhiro

    2015-01-01

    Cobalt-doped iron oxide nanoparticles were prepared by solution combustion technique. The structural and magnetic properties of the prepared samples were also investigated. The average crystallite size of cobalt ferrite (CoFe2O4) magnetic nanoparticle was calculated using Scherrer equation, and it was found to be 16±5 nm. The particle size was measured by transmission electron microscope. This value was found to match with the crystallite size calculated by Scherrer equation corresponding to the prominent intensity peak (311) of X-ray diffraction. The high-resolution transmission electron microscope image shows clear lattice fringes and high crystallinity of cobalt ferrite magnetic nanoparticles. The synthesized magnetic nanoparticles exhibited the saturation magnetization value of 47 emu/g and coercivity of 947 Oe. The anti-microbial activity of cobalt ferrite nanoparticles showed better results as an anti-bacterial agent. The affinity constant was determined for the nanoparticles, and the cytotoxicity studies were conducted for the cobalt ferrite nanoparticles at different concentrations and the results are discussed. PMID:26491320

  20. Structural and magnetic properties of cobalt-doped iron oxide nanoparticles prepared by solution combustion method for biomedical applications.

    PubMed

    Venkatesan, Kaliyamoorthy; Rajan Babu, Dhanakotti; Kavya Bai, Mane Prabhu; Supriya, Ravi; Vidya, Radhakrishnan; Madeswaran, Saminathan; Anandan, Pandurangan; Arivanandhan, Mukannan; Hayakawa, Yasuhiro

    2015-01-01

    Cobalt-doped iron oxide nanoparticles were prepared by solution combustion technique. The structural and magnetic properties of the prepared samples were also investigated. The average crystallite size of cobalt ferrite (CoFe2O4) magnetic nanoparticle was calculated using Scherrer equation, and it was found to be 16±5 nm. The particle size was measured by transmission electron microscope. This value was found to match with the crystallite size calculated by Scherrer equation corresponding to the prominent intensity peak (311) of X-ray diffraction. The high-resolution transmission electron microscope image shows clear lattice fringes and high crystallinity of cobalt ferrite magnetic nanoparticles. The synthesized magnetic nanoparticles exhibited the saturation magnetization value of 47 emu/g and coercivity of 947 Oe. The anti-microbial activity of cobalt ferrite nanoparticles showed better results as an anti-bacterial agent. The affinity constant was determined for the nanoparticles, and the cytotoxicity studies were conducted for the cobalt ferrite nanoparticles at different concentrations and the results are discussed.

  1. Oxyanion induced variations in domain structure for amorphous cobalt oxide oxygen evolving catalysts, resolved by X-ray pair distribution function analysis.

    PubMed

    Kwon, Gihan; Kokhan, Oleksandr; Han, Ali; Chapman, Karena W; Chupas, Peter J; Du, Pingwu; Tiede, David M

    2015-12-01

    Amorphous thin film oxygen evolving catalysts, OECs, of first-row transition metals show promise to serve as self-assembling photoanode materials in solar-driven, photoelectrochemical `artificial leaf' devices. This report demonstrates the ability to use high-energy X-ray scattering and atomic pair distribution function analysis, PDF, to resolve structure in amorphous metal oxide catalyst films. The analysis is applied here to resolve domain structure differences induced by oxyanion substitution during the electrochemical assembly of amorphous cobalt oxide catalyst films, Co-OEC. PDF patterns for Co-OEC films formed using phosphate, Pi, methylphosphate, MPi, and borate, Bi, electrolyte buffers show that the resulting domains vary in size following the sequence Pi < MPi < Bi. The increases in domain size for CoMPi and CoBi were found to be correlated with increases in the contributions from bilayer and trilayer stacked domains having structures intermediate between those of the LiCoOO and CoO(OH) mineral forms. The lattice structures and offset stacking of adjacent layers in the partially stacked CoMPi and CoBi domains were best matched to those in the LiCoOO layered structure. The results demonstrate the ability of PDF analysis to elucidate features of domain size, structure, defect content and mesoscale organization for amorphous metal oxide catalysts that are not readily accessed by other X-ray techniques. PDF structure analysis is shown to provide a way to characterize domain structures in different forms of amorphous oxide catalysts, and hence provide an opportunity to investigate correlations between domain structure and catalytic activity.

  2. Oxyanion induced variations in domain structure for amorphous cobalt oxide oxygen evolving catalysts, resolved by X-ray pair distribution function analysis

    PubMed Central

    Kwon, Gihan; Kokhan, Oleksandr; Han, Ali; Chapman, Karena W.; Chupas, Peter J.; Du, Pingwu; Tiede, David M.

    2015-01-01

    Amorphous thin film oxygen evolving catalysts, OECs, of first-row transition metals show promise to serve as self-assembling photoanode materials in solar-driven, photoelectrochemical ‘artificial leaf’ devices. This report demonstrates the ability to use high-energy X-ray scattering and atomic pair distribution function analysis, PDF, to resolve structure in amorphous metal oxide catalyst films. The analysis is applied here to resolve domain structure differences induced by oxyanion substitution during the electrochemical assembly of amorphous cobalt oxide catalyst films, Co-OEC. PDF patterns for Co-OEC films formed using phosphate, Pi, methylphosphate, MPi, and borate, Bi, electrolyte buffers show that the resulting domains vary in size following the sequence Pi < MPi < Bi. The increases in domain size for CoMPi and CoBi were found to be correlated with increases in the contributions from bilayer and trilayer stacked domains having structures intermediate between those of the LiCoOO and CoO(OH) mineral forms. The lattice structures and offset stacking of adjacent layers in the partially stacked CoMPi and CoBi domains were best matched to those in the LiCoOO layered structure. The results demonstrate the ability of PDF analysis to elucidate features of domain size, structure, defect content and mesoscale organization for amorphous metal oxide catalysts that are not readily accessed by other X-ray techniques. PDF structure analysis is shown to provide a way to characterize domain structures in different forms of amorphous oxide catalysts, and hence provide an opportunity to investigate correlations between domain structure and catalytic activity. PMID:26634728

  3. Oxyanion Induced Variations in Domain Structure for Amorphous Cobalt Oxide Oxygen Evolving Catalysts, Resolved by X-ray Pair Distribution Function Analysis

    SciTech Connect

    Kwon, Gihan; Kokhan, Oleksandr; Han, Ali; Chapman, Karena W.; Chupas, Peter J.; Du, Pingwu; Tiede, David M.

    2015-12-01

    Amorphous thin film oxygen evolving catalysts, OECs, of first-row transition metals show promise to serve as self-assembling photoanode materials in solar-driven, photoelectrochemical `artificial leaf' devices. This report demonstrates the ability to use high-energy X-ray scattering and atomic pair distribution function analysis, PDF, to resolve structure in amorphous metal oxide catalyst films. The analysis is applied here to resolve domain structure differences induced by oxyanion substitution during the electrochemical assembly of amorphous cobalt oxide catalyst films, Co-OEC. PDF patterns for Co-OEC films formed using phosphate, Pi, methylphosphate, MPi, and borate, Bi, electrolyte buffers show that the resulting domains vary in size following the sequence Pi < MPi < Bi. The increases in domain size for CoMPi and CoBi were found to be correlated with increases in the contributions from bilayer and trilayer stacked domains having structures intermediate between those of the LiCoOO and CoO(OH) mineral forms. The lattice structures and offset stacking of adjacent layers in the partially stacked CoMPi and CoBi domains were best matched to those in the LiCoOO layered structure. The results demonstrate the ability of PDF analysis to elucidate features of domain size, structure, defect content and mesoscale organization for amorphous metal oxide catalysts that are not readily accessed by other X-ray techniques. Finally, PDF structure analysis is shown to provide a way to characterize domain structures in different forms of amorphous oxide catalysts, and hence provide an opportunity to investigate correlations between domain structure and catalytic activity.

  4. Oxyanion Induced Variations in Domain Structure for Amorphous Cobalt Oxide Oxygen Evolving Catalysts, Resolved by X-ray Pair Distribution Function Analysis

    DOE PAGESBeta

    Kwon, Gihan; Kokhan, Oleksandr; Han, Ali; Chapman, Karena W.; Chupas, Peter J.; Du, Pingwu; Tiede, David M.

    2015-12-01

    Amorphous thin film oxygen evolving catalysts, OECs, of first-row transition metals show promise to serve as self-assembling photoanode materials in solar-driven, photoelectrochemical `artificial leaf' devices. This report demonstrates the ability to use high-energy X-ray scattering and atomic pair distribution function analysis, PDF, to resolve structure in amorphous metal oxide catalyst films. The analysis is applied here to resolve domain structure differences induced by oxyanion substitution during the electrochemical assembly of amorphous cobalt oxide catalyst films, Co-OEC. PDF patterns for Co-OEC films formed using phosphate, Pi, methylphosphate, MPi, and borate, Bi, electrolyte buffers show that the resulting domains vary in sizemore » following the sequence Pi < MPi < Bi. The increases in domain size for CoMPi and CoBi were found to be correlated with increases in the contributions from bilayer and trilayer stacked domains having structures intermediate between those of the LiCoOO and CoO(OH) mineral forms. The lattice structures and offset stacking of adjacent layers in the partially stacked CoMPi and CoBi domains were best matched to those in the LiCoOO layered structure. The results demonstrate the ability of PDF analysis to elucidate features of domain size, structure, defect content and mesoscale organization for amorphous metal oxide catalysts that are not readily accessed by other X-ray techniques. Finally, PDF structure analysis is shown to provide a way to characterize domain structures in different forms of amorphous oxide catalysts, and hence provide an opportunity to investigate correlations between domain structure and catalytic activity.« less

  5. Microheterogeneity of ruthenium oxide film anodes

    SciTech Connect

    Roginskaya, Yu.E.; Belova, I.D.; Galyamov, B.S.; Popkov, Yu.M.; Zakhar'in, D.S.

    1988-03-01

    Following an analysis of x-ray diffraction, differential thermal analysis, and infrared and x-ray photoelectron spectroscopy data for ruthenium hydroxide and ruthenium oxide films heat-treated at temperatures between 300 and 600 degrees C, the composition and structure of the ruthenium hydroxide was determined and it was shown that the ruthenium oxide film electrodes (up to 600 degrees C) are inhomogeneous in their composition and structure; they contain regions measuring 15-20 nm with long-rage order which in their composition and structure correspond to the anhydrous rutile phase of ruthenium dioxide, and amorphous regions identical with ruthenium hydroxide. The relation between the electrochemical behavior of the ruthenium oxide electrodes and the results obtained is discussed.

  6. Cobalt-Catalyzed Oxidative C-H/C-H Cross-Coupling between Two Heteroarenes.

    PubMed

    Tan, Guangying; He, Shuang; Huang, Xiaolei; Liao, Xingrong; Cheng, Yangyang; You, Jingsong

    2016-08-22

    The first example of cobalt-catalyzed oxidative C-H/C-H cross-coupling between two heteroarenes is reported, which exhibits a broad substrate scope and a high tolerance level for sensitive functional groups. When the amount of Co(OAc)2 ⋅4 H2 O is reduced from 6.0 to 0.5 mol %, an excellent yield is still obtained at an elevated temperature with a prolonged reaction time. The method can be extended to the reaction between an arene and a heteroarene. It is worth noting that the Ag2 CO3 oxidant is renewable. Preliminary mechanistic studies by radical trapping experiments, hydrogen/deuterium exchange experiments, kinetic isotope effect, electron paramagnetic resonance (EPR), and high resolution mass spectrometry (HRMS) suggest that a single electron transfer (SET) pathway is operative, which is distinctly different from the dual C-H bond activation pathway that the well-described oxidative C-H/C-H cross-coupling reactions between two heteroarenes typically undergo. PMID:27460406

  7. New insights into atrazine degradation by cobalt catalyzed peroxymonosulfate oxidation: kinetics, reaction products and transformation mechanisms.

    PubMed

    Ji, Yuefei; Dong, Changxun; Kong, Deyang; Lu, Junhe

    2015-03-21

    The widespread occurrence of atrazine in waters poses potential risk to ecosystem and human health. In this study, we investigated the underlying mechanisms and transformation pathways of atrazine degradation by cobalt catalyzed peroxymonosulfate (Co(II)/PMS). Co(II)/PMS was found to be more efficient for ATZ elimination in aqueous solution than Fe(II)/PMS process. ATZ oxidation by Co(II)/PMS followed pseudo-first-order kinetics, and the reaction rate constant (k(obs)) increased appreciably with increasing Co(II) concentration. Increasing initial PMS concentration favored the decomposition of ATZ, however, no linear relationship between k(obs) and PMS concentration was observed. Higher efficiency of ATZ oxidation was observed around neutral pH, implying the possibility of applying Co(II)/PMS process under environmental realistic conditions. Natural organic matter (NOM), chloride (Cl(-)) and bicarbonate (HCO3(-)) showed detrimental effects on ATZ degradation, particularly at higher concentrations. Eleven products were identified by applying solid phase extraction-liquid chromatography-mass spectrometry (SPE-LC/MS) techniques. Major transformation pathways of ATZ included dealkylation, dechlorination-hydroxylation, and alkyl chain oxidation. Detailed mechanisms responsible for these transformation pathways were discussed. Our results reveal that Co(II)/PMS process might be an efficient technique for remediation of groundwater contaminated by ATZ and structurally related s-triazine herbicides.

  8. Cobalt-Catalyzed Oxidative C-H/C-H Cross-Coupling between Two Heteroarenes.

    PubMed

    Tan, Guangying; He, Shuang; Huang, Xiaolei; Liao, Xingrong; Cheng, Yangyang; You, Jingsong

    2016-08-22

    The first example of cobalt-catalyzed oxidative C-H/C-H cross-coupling between two heteroarenes is reported, which exhibits a broad substrate scope and a high tolerance level for sensitive functional groups. When the amount of Co(OAc)2 ⋅4 H2 O is reduced from 6.0 to 0.5 mol %, an excellent yield is still obtained at an elevated temperature with a prolonged reaction time. The method can be extended to the reaction between an arene and a heteroarene. It is worth noting that the Ag2 CO3 oxidant is renewable. Preliminary mechanistic studies by radical trapping experiments, hydrogen/deuterium exchange experiments, kinetic isotope effect, electron paramagnetic resonance (EPR), and high resolution mass spectrometry (HRMS) suggest that a single electron transfer (SET) pathway is operative, which is distinctly different from the dual C-H bond activation pathway that the well-described oxidative C-H/C-H cross-coupling reactions between two heteroarenes typically undergo.

  9. Processes of nickel and cobalt uptake by a manganese oxide forming sediment in Pinal Creek, Globe mining district, Arizona

    USGS Publications Warehouse

    Kay, J.T.; Conklin, M.H.; Fuller, C.C.; O'Day, P. A.

    2001-01-01

    A series of column experiments was conducted using manganese oxide coated sediments collected from the hyporheic zone in Pinal Creek (AZ), a metal-contaminated stream, to study the uptake and retention of Mn, Ni, and Co. Experimental variables included the absence (abiotic) and presence (biotic) of active Mn-oxidizing bacteria, the absence and presence of dissolved Mn, and sediment manganese oxide content. Uptake of Mn under biotic conditions was between 8 and 39% higher than under abiotic conditions. Continuous uptake of Mn due to biotic oxidation was evident from extraction of column sediments. Manganese uptake is hypothesized to initially occur as adsorption, which led to subsequent surface and/or microbial oxidation. Complete breakthrough of Ni within 100 pore volumes indicated no process of continuous uptake and was modeled as an equilibrium adsorption process. Nickel uptake in the presence of dissolved Mn was 67-100% reversible. Sediment extractions suggest that Ni uptake occurred through weak and strong adsorption. Continuous uptake of cobalt increased with sediment manganese oxide content, and Co uptake was up to 75% greater under biotic than abiotic conditions. Cobalt uptake was controlled by both existing and newly formed manganese oxides. Only a small amount of Co uptake was reversible (10-25%). XANES spectral analysis indicated that most Co(II) was oxidized to Co(III) and probably incorporated structurally into manganese oxides. Although manganese oxides were the primary phase controlling uptake and retention of Mn, Ni, and Co, the mechanisms varied among the metals.

  10. Amperometric Determination of Ascorbic Acid in Pharmaceutical Formulations by a Reduced Graphene Oxide-cobalt Hexacyanoferrate Nanocomposite

    PubMed Central

    Heli, Hossein

    2015-01-01

    Investigation of the redox properties of drugs and their determination are performed by electrochemical techniques. Data obtained from electrochemical techniques are often correlated with molecular structure and pharmacological activity of drugs. In this regard, different modified electrodes were applied as sensors for quantification of different drugs. A nanocomposite of reduced graphene oxide-cobalt hexacyanoferrate was synthesized by a simple precipitation route. Scanning electron microscopy revealed that the nanocomposite comprised nanoparticles of cobalt hexacyanoferrate attached to the reduced graphene oxide nanosheets. A nanocomposite-modified carbon paste electrode was then fabricated. It represented prominent activity toward the electrocatalytic oxidation of ascorbic acid, and the kinetics of the electrooxidation process was evaluated. Finally, an amperometric method was developed for the quantification of ascorbic acid in different pharmaceutical formulations. PMID:25901152

  11. Humidity Sensing Using Gelatin and Cobalt Chloride Coating on Indium Tin Oxide-Coated Long-Period Grating

    NASA Astrophysics Data System (ADS)

    Nidhi; Kaler, R. S.; Kapur, Pawan

    2014-01-01

    In this article, humidity sensing using gelatin and cobalt chloride on indium tin oxide coated long-period gratings was proposed and demonstrated. First, a thin overlay of indium tin oxide was deposited on a long-period grating by using a simple dip coating methodology. Similarly, a combination of gelatin and cobalt chloride was deposited onto the indium tin oxide layer. A field emission scanning electron microscope provided detailed evidence of the attachment of amalgamation on long-period gratings. The designed sensor showed a significant shift in the resonance wavelength when the relative humidity varied from 40% to 95%, with a sensitivity of 0.12 nm/% relative humidity and an accuracy of 98.45%.

  12. Stability of cobalt oxide infiltrated LSM/TZ8Y cathode for solid oxide fuel cells at intermediate temperatures

    NASA Astrophysics Data System (ADS)

    Chen, Xuan

    The performance of a La0.4Sr0.6MnO3/8wt% Y2O3-stabilized ZrO2 (LSM/YZ8Y) composite cathode was observed to increase by post-firing doping (infiltration) of cobalt nitrate into the pores of an LSM/TZ8Y cathode in solid oxide fuel cells. Results demonstrated that cobalt nitrate decomposed into nano-sized spinel structures of Co3O4 of sizes ranging from 40 to 60 nm. The stability of a Co3O4 infiltrated LSM/TZ8Y cathode was studied under both oxidizing and reducing environments at 700°C. This dissertation studied the coarsening effects of Co3O 4 nano-particles in the pores of LSM/TZ8Y cathodes and its chemical interaction between LSM and TZ8Y during 1000 hours of exposure to air. A scanning electron microscopy (SEM) was used to observe the microstructure. Polarization curves and electrochemical impedance spectroscopy were used to electrochemically characterize LSM/TZ8Y half cells (oxygen pump) with applied cathodic currents before and after Co3O4 infiltration. The chemical interactions of Co3O4 and an LSM/TZ8Y cathode were studied under the effects of a reducing atmosphere at various currents applied to the cathode, e.g., 500mA/cm2, 1500mA/cm2 and 3A/cm 2. The corresponding partial pressure of oxygen (P O2) at the cathode was observed and calculated from a built-in oxygen sensor which monitored applied cathodic currents. Chemical reactions were characterized through the use scanning transmission electron microscopy (STEM), energy dispersive spectrometry (EDS), and X-ray diffraction (XRD) analysis.

  13. Structural and Mechanical Characteristics of Anodic Oxide Films on Titanium

    SciTech Connect

    Pang, Mengzhi; Eakins, Daniel E; Norton, Murray G; Bahr, David F

    2001-01-01

    Oxide films were grown electrochemically on polycrystalline titanium in 0.1 M sulfuric acid (H2SO4) from open-circuit potential to a final potential of 9.4 V (vs silver-silver chloride [Ag-AgCl]) using three anodization rates: a step polarization, growth at 200 mV/s, and growth at 1 mV/s. Anodic polarization curves showed various degrees of oxygen evolution above 5.4 VAg-AgCl, indicating that the extent of oxide film breakdown depends on film growth rate, with slower growth rates undergoing more severe film breakdown. In-situ characterization of mechanical behavior of oxide films by nanoindentation revealed that the oxide film can sustain a tensile stress up to 2.5 GPa prior to film fracture. Among these three anodization rates, the oxide film formed by step polarization exhibited the highest film-strengthening effect. At applied potentials prior to oxide film breakdown, all films exhibited a strength of ≈1 GPa. The films ranged from amorphous titanium dioxide (TiO2) to anatase, with the extent of crystallization increasing with decreasing film growth rate. Correlations between electrochemical polarization, structural characteristics, and the mechanical behavior of these anodic films are discussed in relationship to electrostrictive stresses, which may lead to the breakdown of passive films. KEY WORDS: anodic polarization, films, nanoindentation, titanium, transmission electron microscopy.

  14. Interfacial Assembly of Graphene Oxide Films

    NASA Astrophysics Data System (ADS)

    Valtierrez, Cain; Ismail, Issam; Macosko, Christopher; Stottrup, Benjamin

    Controlled assembly of monolayer graphene-oxide (GO) films at the air/water interface is of interest for the development of transparent conductive thin films of chemically-derived graphene. We present experimental results from investigations of the assembly of polydisperse GO sheets at the air-water interface. GO nanosheets with lateral dimensions of greater than 10 microns were created using a modified Tour synthesis (Dimiev and Tour, 2014). GO films were generated with conventional Langmuir trough techniques to control lateral packing density. Film morphology was characterized in situ with Brewster angle microscopy. Films were transferred unto a substrate via the Langmuir-Blodgett deposition technique and imaged with fluorescence quenching microscopy. Through pH modulation of the aqueous subphase, it was found that GO's intrinsic surface activity to the interface increased with increasing subphase acidity. Finally, we found a dominant elastic contribution during uniaxial film deformation as measured by anisotropic pressure measurements. A. M. Dimiev, and J. M. Tour, ``Mechanism of GO Formation,'' ACS Nano, 8, (2014)

  15. Electronic structure and reactivity of cobalt oxide dimers and their hexacarbonyl complexes: a density functional study.

    PubMed

    Uzunova, Ellie L; Mikosch, Hans

    2012-03-29

    The dimers of cobalt oxide (CoO)(2) with cyclic and open bent structure are studied with the B1LYP density functional; the ordering of states is validated by the CCSD(T) method. The D(2h)-symmetry rhombic dioxide Co(2)O(2) with antiferromagnetically ordered electrons on cobalt centers is the global minimum. The cyclic peroxide Co(2)(O(2)) with side-on-bonded dioxygen in (7)B(2) ground state is separated from the global minimum by an energy gap of 3.15 eV. The dioxide is highly reactive as indicated by the high value of proton affinity and chemical reactivity indices. The four-member ring structures are more stable than those with three-member ring or chain configuration. The thermodynamic stability toward dissociation to CoO increases upon carbonylation, whereas proton affinity and reactivity with release of molecular oxygen also increase. The global minimum of Co(2)O(2)(CO)(6) corresponds to a triplet state (3)A" with oxygen atoms shifted above the molecular plane of the rhombic dioxide Co(2)O(2). The SOMO-LUMO gap in the ground-state carbonylated dioxide is wider, compared to the same gap in the bare dicobalt dioxide. The peroxo-isomer Co(2)(O(2))(CO)(6) retains the planar Co(2)(O(2)) ring and is only stable in a high-spin state (7)A". The carbonylated clusters have increased reactivity in both redox and nucleophilic reactions, as a result of the increased electron density in the Co(2)O(2)-ring area. PMID:22397598

  16. Synthesis and oxidation catalysis of [tris(oxazolinyl)borato]cobalt(II) scorpionates

    DOE PAGESBeta

    Reinig, Regina R.; Mukherjee, Debabrata; Weinstein, Zachary B.; Xie, Weiwei; Albright, Toshia; Baird, Benjamin; Gray, Tristan S.; Ellern, Arkady; Miller, Gordon J.; Winter, Arthur H.; et al

    2016-04-28

    The reaction of CoCl2·THF and thallium tris(4,4-dimethyl-2-oxazolinyl)phenylborate (TlToM) in tetrahydrofuran (THF) provides ToMCoCl (1) in 95 % yield; however, appropriate solvents and starting materials are required to favor 1 over two other readily formed side-products, (ToM)2Co (2) and {HToM}CoCl2 (3). ESR, NMR, FTIR, and UV/Vis spectroscopies were used to distinguish these cobalt(II) products and probe their electronic and structural properties. Even after the structures indicated by these methods were confirmed by X-ray crystallography, the spectroscopic identification of trace contaminants in the material was challenging. The recognition of possible contaminants in the synthesis of ToMCoCl in combination with the paramagnetic naturemore » of these complexes provided impetus for the utilization of X-ray powder diffraction to measure the purity of the ToMCoCl bulk sample. Furthermore, the X-ray powder diffraction results provide support for the bulk-phase purity of ToMCoCl in preparations that avoid 2 and 3. Thus, 1 is a precursor for new [tris(oxazolinyl)borato]cobalt chemistry, as exemplified by its reactions with KOtBu and NaOAc to give ToMCoOtBu (4) and ToMCoOAc (5), respectively. Compound 5 is a catalyst for the oxidation of cyclohexane with meta-chloroperoxybenzoic acid (mCPBA), and the rate constants and selectivity for cyclohexanol versus cyclohexanone and ϵ-caprolactone were assessed.« less

  17. Strain-Induced Electrical Properties of Lead Zirconate Titanate Thin Films on a Si wafer with Controlled Oxide Electrode Structure

    NASA Astrophysics Data System (ADS)

    Ohno, Tomoya; Ishiduka, Masaaki; Arai, Takashi; Yanagida, Hiroaki; Matsuda, Takeshi; Sakamoto, Naonori; Wakiya, Naoki; Suzuki, Hisao

    2012-09-01

    This paper shows the electrical properties of ferroelectric thin films with large compressive residual stress. In this study, the large compressive strain was applied to lead zirconate titanate (PZT) thin films by designing the bottom electrode structure on a Si wafer. The materials selected for the bottom electrode were lanthanum nickel oxide (LNO) and lanthanum strontium cobalt oxide [LSCO; (La0.5Sr0.5)CoO3] from the viewpoint of thermal expansion coefficients. As a result, the PZT thin films with morphotropic phase boundary (MPB) composition received compressive residual stress up to approximately 0.8 GPa from the bottom electrode even on a Si wafer. The compressive residual stress concomitantly increased with increasing LSCO layer thickness. In addition, the remanent polarization of the PZT thin films increased with increasing compressive residual stress.

  18. The local environment of cobalt in amorphous, polycrystalline and epitaxial anatase TiO{sub 2}:Co films produced by cobalt ion implantation

    SciTech Connect

    Yildirim, O.; Cornelius, S.; Hübner, R.; Potzger, K.; Smekhova, A.; Zykov, G.; Gan'shina, E. A.; Granovsky, A. B.; Bähtz, C.

    2015-05-14

    Amorphous, polycrystalline anatase and epitaxial anatase TiO{sub 2} films have been implanted with 5 at. % Co{sup +}. The magnetic and structural properties of different microstructures of TiO{sub 2}:Co, along with the local coordination of the implanted Co atoms within the host lattice are investigated. In amorphous TiO{sub 2}:Co film, Co atoms are in the (II) oxidation state with a complex coordination and exhibit a paramagnetic response. However, for the TiO{sub 2}:Co epitaxial and polycrystalline anatase films, Co atoms have a distorted octahedral (II) oxygen coordination assigned to a substitutional environment with traces of metallic Co clusters, which gives a rise to a superparamagnetic behavior. Despite the incorporation of the implanted atoms into the host lattice, high temperature ferromagnetism is absent in the films. On the other hand, it is found that the concentration and size of the implantation-induced nanoclusters and the magnetic properties of TiO{sub 2}:Co films have a strong dependency on the initial microstructure of TiO{sub 2}. Consequently, metallic nanocluster formation within ion implantation prepared transition metal doped TiO{sub 2} can be suppressed by tuning the film microstructure.

  19. Applications of x ray absorption fine structure to the in situ study of the effect of cobalt in nickel hydrous oxide electrodes for fuel cells and rechargeable batteries

    NASA Technical Reports Server (NTRS)

    Kim, Sunghyun; Tryk, Donald A.; Scherson, Daniel A.; Antonio, Mark R.

    1993-01-01

    Electronic and structural aspects of composite nickel-cobalt hydrous oxides have been examined in alkaline solutions using in situ X-ray absorption fine structure (XAFS). The results obtained have indicated that cobalt in this material is present as cobaltic ions regardless of the oxidation state of nickel in the lattice. Furthermore, careful analysis of the Co K-edge Extended X-ray absorption fine structure data reveals that the co-electrodeposition procedure generates a single phase, mixed metal hydrous oxide, in which cobaltic ions occupy nickel sites in the NiO2 sheet-like layers and not two intermixed phases each consisting of a single metal hydrous oxide.

  20. Mercury Adsorption and Oxidation over Cobalt Oxide Loaded Magnetospheres Catalyst from Fly Ash in Oxyfuel Combustion Flue Gas.

    PubMed

    Yang, Jianping; Zhao, Yongchun; Chang, Lin; Zhang, Junying; Zheng, Chuguang

    2015-07-01

    Cobalt oxide loaded magnetospheres catalyst from fly ash (Co-MF catalyst) showed good mercury removal capacity and recyclability under air combustion flue gas in our previous study. In this work, the Hg(0) removal behaviors as well as the involved reactions mechanism were investigated in oxyfuel combustion conditions. Further, the recyclability of Co-MF catalyst in oxyfuel combustion atmosphere was also evaluated. The results showed that the Hg(0) removal efficiency in oxyfuel combustion conditions was relative high compared to that in air combustion conditions. The presence of enriched CO2 (70%) in oxyfuel combustion atmosphere assisted the mercury oxidation due to the oxidation of function group of C-O formed from CO2. Under both atmospheres, the mercury removal efficiency decreased with the addition of SO2, NO, and H2O. However, the enriched CO2 in oxyfuel combustion atmosphere could somewhat weaken the inhibition of SO2, NO, and H2O. The multiple capture-regeneration cycles demonstrated that the Co-MF catalyst also present good regeneration performance in oxyfuel combustion atmosphere.

  1. Mercury Adsorption and Oxidation over Cobalt Oxide Loaded Magnetospheres Catalyst from Fly Ash in Oxyfuel Combustion Flue Gas.

    PubMed

    Yang, Jianping; Zhao, Yongchun; Chang, Lin; Zhang, Junying; Zheng, Chuguang

    2015-07-01

    Cobalt oxide loaded magnetospheres catalyst from fly ash (Co-MF catalyst) showed good mercury removal capacity and recyclability under air combustion flue gas in our previous study. In this work, the Hg(0) removal behaviors as well as the involved reactions mechanism were investigated in oxyfuel combustion conditions. Further, the recyclability of Co-MF catalyst in oxyfuel combustion atmosphere was also evaluated. The results showed that the Hg(0) removal efficiency in oxyfuel combustion conditions was relative high compared to that in air combustion conditions. The presence of enriched CO2 (70%) in oxyfuel combustion atmosphere assisted the mercury oxidation due to the oxidation of function group of C-O formed from CO2. Under both atmospheres, the mercury removal efficiency decreased with the addition of SO2, NO, and H2O. However, the enriched CO2 in oxyfuel combustion atmosphere could somewhat weaken the inhibition of SO2, NO, and H2O. The multiple capture-regeneration cycles demonstrated that the Co-MF catalyst also present good regeneration performance in oxyfuel combustion atmosphere. PMID:26024429

  2. Influence of doping with third group oxides on properties of zinc oxide thin films

    SciTech Connect

    Palimar, Sowmya Bangera, Kasturi V.; Shivakumar, G. K.

    2013-03-15

    The study of modifications in structural, optical and electrical properties of vacuum evaporated zinc oxide thin films on doping with III group oxides namely aluminum oxide, gallium oxide and indium oxide are reported. It was observed that all the films have transmittance ranging from 85 to 95%. The variation in optical properties with dopants is discussed. On doping the film with III group oxides, the conductivity of the films showed an excellent improvement of the order of 10{sup 3} {Omega}{sup -1} cm{sup -1}. The measurements of activation energy showed that all three oxide doped films have 2 donor levels below the conduction band.

  3. Sensitivity of Interfibrillar and Subsarcolemmal Mitochondria to Cobalt Chloride-induced Oxidative Stress and Hydrogen Sulfide Treatment.

    PubMed

    Ayswarya, A; Kurian, G A

    2016-01-01

    Oxidative stress plays a significant role not only in cardiovascular disease but also in non-communicable diseases, where it plays a significant role the mortality rate. Hydrogen sulfide, the biological gaseous signaling molecule that preserves mitochondria in its mode of action, is an effective cardioprotective drug. However, cardiac mitochondria comprise of two distinct populations, namely interfibrillar and subsarcolemmal mitochondria, which respond distinctly in cardiovascular disease. This study was designed to determine the direct impact of cobalt chloride-induced oxidative stress in isolated mitochondrial subpopulations with an intention to examine the efficacy of hydrogen sulfide in preserving interfibrillar and subsarcolemmal mitochondria functional activities when they were incubated as pretreated, co-treated and post-treated agent. Mitochondrial subpopulations were isolated from the heart of male Wistar rats and subjected to cobalt chloride treatment (500 μM) for 20 min, followed by incubation with 10 μM sodium hydrosulfide in three different ways (Pre, Co, and Post-cobalt chloride treatment). Mitochondrial oxidative stress was measured by the concentration of thiobarbituric acid reactive species, reduced glutathione and the activities of enzymes like superoxide dismutase, catalase and glutathione peroxidase. Mitochondrial membrane potential, swelling behavior and enzyme activities were measured to assess its function. The increased level of lipid peroxidation and the decreased level of reduced glutathione in cobalt chloride-induced group confirm the induction of oxidative stress and were more predominant in the subsarcolemmal mitochondria. Hydrogen sulfide treatment to interfibrillar and subsarcolemmal mitochondria preserved their functional activities, but the effect was prominent only with co-treated group. In conclusion, the present study demonstrated that subsarcolemmal mitochondria are more prone to oxidative stress and the co-treatment of the

  4. Sensitivity of Interfibrillar and Subsarcolemmal Mitochondria to Cobalt Chloride-induced Oxidative Stress and Hydrogen Sulfide Treatment

    PubMed Central

    Ayswarya, A.; Kurian, G. A.

    2016-01-01

    Oxidative stress plays a significant role not only in cardiovascular disease but also in non-communicable diseases, where it plays a significant role the mortality rate. Hydrogen sulfide, the biological gaseous signaling molecule that preserves mitochondria in its mode of action, is an effective cardioprotective drug. However, cardiac mitochondria comprise of two distinct populations, namely interfibrillar and subsarcolemmal mitochondria, which respond distinctly in cardiovascular disease. This study was designed to determine the direct impact of cobalt chloride-induced oxidative stress in isolated mitochondrial subpopulations with an intention to examine the efficacy of hydrogen sulfide in preserving interfibrillar and subsarcolemmal mitochondria functional activities when they were incubated as pretreated, co-treated and post-treated agent. Mitochondrial subpopulations were isolated from the heart of male Wistar rats and subjected to cobalt chloride treatment (500 μM) for 20 min, followed by incubation with 10 μM sodium hydrosulfide in three different ways (Pre, Co, and Post-cobalt chloride treatment). Mitochondrial oxidative stress was measured by the concentration of thiobarbituric acid reactive species, reduced glutathione and the activities of enzymes like superoxide dismutase, catalase and glutathione peroxidase. Mitochondrial membrane potential, swelling behavior and enzyme activities were measured to assess its function. The increased level of lipid peroxidation and the decreased level of reduced glutathione in cobalt chloride-induced group confirm the induction of oxidative stress and were more predominant in the subsarcolemmal mitochondria. Hydrogen sulfide treatment to interfibrillar and subsarcolemmal mitochondria preserved their functional activities, but the effect was prominent only with co-treated group. In conclusion, the present study demonstrated that subsarcolemmal mitochondria are more prone to oxidative stress and the co-treatment of the

  5. Sensitivity of Interfibrillar and Subsarcolemmal Mitochondria to Cobalt Chloride-induced Oxidative Stress and Hydrogen Sulfide Treatment.

    PubMed

    Ayswarya, A; Kurian, G A

    2016-01-01

    Oxidative stress plays a significant role not only in cardiovascular disease but also in non-communicable diseases, where it plays a significant role the mortality rate. Hydrogen sulfide, the biological gaseous signaling molecule that preserves mitochondria in its mode of action, is an effective cardioprotective drug. However, cardiac mitochondria comprise of two distinct populations, namely interfibrillar and subsarcolemmal mitochondria, which respond distinctly in cardiovascular disease. This study was designed to determine the direct impact of cobalt chloride-induced oxidative stress in isolated mitochondrial subpopulations with an intention to examine the efficacy of hydrogen sulfide in preserving interfibrillar and subsarcolemmal mitochondria functional activities when they were incubated as pretreated, co-treated and post-treated agent. Mitochondrial subpopulations were isolated from the heart of male Wistar rats and subjected to cobalt chloride treatment (500 μM) for 20 min, followed by incubation with 10 μM sodium hydrosulfide in three different ways (Pre, Co, and Post-cobalt chloride treatment). Mitochondrial oxidative stress was measured by the concentration of thiobarbituric acid reactive species, reduced glutathione and the activities of enzymes like superoxide dismutase, catalase and glutathione peroxidase. Mitochondrial membrane potential, swelling behavior and enzyme activities were measured to assess its function. The increased level of lipid peroxidation and the decreased level of reduced glutathione in cobalt chloride-induced group confirm the induction of oxidative stress and were more predominant in the subsarcolemmal mitochondria. Hydrogen sulfide treatment to interfibrillar and subsarcolemmal mitochondria preserved their functional activities, but the effect was prominent only with co-treated group. In conclusion, the present study demonstrated that subsarcolemmal mitochondria are more prone to oxidative stress and the co-treatment of the

  6. The effect of zinc addition on the oxidation state of cobalt in Co/ZrO2 catalysts.

    PubMed

    Lebarbier, Vanessa M; Karim, Ayman M; Engelhard, Mark H; Wu, Yu; Xu, Bo-Qing; Petersen, Eric J; Datye, Abhaya K; Wang, Yong

    2011-11-18

    The effect of zinc promotion on the oxidation state of cobalt in Co/ZrO(2) catalysts was investigated and correlated with the activity and selectivity for ethanol steam reforming (ESR). Catalysts were synthesized by applying incipient wetness impregnation and characterized by using Brunauer-Emmett-Teller (BET), temperature-programmed reduction (TPR) measurements, X-ray diffraction (XRD), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). Higher ethanol conversion and lower CH(4) selectivity are observed for the Co/ZrO(2) catalyst promoted with Zn as compared to the Co/ZrO(2) catalyst alone. Addition of Zn inhibits the oxidation of metallic cobalt (Co(0) ) particles and results in a higher ratio of Co(0) /Co(2+) in the Zn-promoted Co/ZrO(2) catalyst. These results suggest that metallic cobalt (Co(0) ) is more active than Co(2+) in the ethanol conversion through dehydrogenation and that Co(2+) may play a role in the CH(4) formation. TPR measurements, on the other hand, reveal that Zn addition inhibits the reduction of Co(2+) and Co(3+) , which would lead to the false conclusion that oxidized Co is required to reduce the CH(4) formation. Therefore, TPR measurements may not be appropriate to correlate the degree of metal reducibility (in this case Co(0)) with the catalyst activity for reactions, such as ESR, where oxidizing conditions exist. PMID:21919212

  7. Metallic oxide switches using thick film technology

    NASA Technical Reports Server (NTRS)

    Patel, D. N.; Williams, L., Jr.

    1974-01-01

    Metallic oxide thick film switches were processed on alumina substrates using thick film technology. Vanadium pentoxide in powder form was mixed with other oxides e.g., barium, strontium copper and glass frit, ground to a fine powder. Pastes and screen printable inks were made using commercial conductive vehicles and appropriate thinners. Some switching devices were processed by conventional screen printing and firing of the inks and commercial cermet conductor terminals on 96% alumina substrates while others were made by applying small beads or dots of the pastes between platinum wires. Static, and dynamic volt-ampere, and pulse tests indicate that the switching and self-oscillatory characteristics of these devices could make them useful in memory element, oscillator, and automatic control applications.

  8. Galvanostatic Ion Detrapping Rejuvenates Oxide Thin Films.

    PubMed

    Arvizu, Miguel A; Wen, Rui-Tao; Primetzhofer, Daniel; Klemberg-Sapieha, Jolanta E; Martinu, Ludvik; Niklasson, Gunnar A; Granqvist, Claes G

    2015-12-01

    Ion trapping under charge insertion-extraction is well-known to degrade the electrochemical performance of oxides. Galvanostatic treatment was recently shown capable to rejuvenate the oxide, but the detailed mechanism remained uncertain. Here we report on amorphous electrochromic (EC) WO3 thin films prepared by sputtering and electrochemically cycled in a lithium-containing electrolyte under conditions leading to severe loss of charge exchange capacity and optical modulation span. Time-of-flight elastic recoil detection analysis (ToF-ERDA) documented pronounced Li(+) trapping associated with the degradation of the EC properties and, importantly, that Li(+) detrapping, caused by a weak constant current drawn through the film for some time, could recover the original EC performance. Thus, ToF-ERDA provided direct and unambiguous evidence for Li(+) detrapping. PMID:26599729

  9. Magnetic properties of nickel and cobalt catalysts supported on nanoporous oxides.

    PubMed

    Gómez-Polo, C; Gil, A; Korili, S A; Pérez-Landazabal, J I; Recarte, V; Trujillano, R; Vicente, M A

    2008-06-01

    The aim of this work is to use magnetic measurements as a research tool in the study of possible metal-support interactions in nickel and cobalt nanoporous catalysts. Several physicochemical techniques, namely nitrogen adsorption, X-ray diffraction, temperature-programmed reduction and chemical analysis, were used to analyze the role of the preparation method and the nature of the support on the existence of such metal-support interactions and to relate them with the magnetic response of these nanoporous systems. The catalysts were prepared by incipient wetness impregnation and precipitation-deposition with two commercial oxides, gamma-Al2O3 and SiO2, as supports. The magnetic behavior of the catalysts is drastically affected by the existence of interactions between the metal and the support during the preparation procedure. The samples with weak metal-support interactions have characteristic magnetic behavior of antiferromagnetic metal oxide nanoparticles, while the ones having strong interactions display spin-glass like behavior.

  10. Graphene-Encapsulated Nanosheet-Assembled Zinc-Nickel-Cobalt Oxide Microspheres for Enhanced Lithium Storage.

    PubMed

    Zhang, Qiaobao; Chen, Huixin; Han, Xiang; Cai, Junjie; Yang, Yong; Liu, Meilin; Zhang, Kaili

    2016-01-01

    The appropriate combination of hierarchical transition-metal oxide (TMO) micro-/nanostructures constructed from porous nanobuilding blocks with graphene sheets (GNS) in a core/shell geometry is highly desirable for high-performance lithium-ion batteries (LIBs). A facile and scalable process for the fabrication of 3D hierarchical porous zinc-nickel-cobalt oxide (ZNCO) microspheres constructed from porous ultrathin nanosheets encapsulated by GNS to form a core/shell geometry is reported for improved electrochemical performance of the TMOs as an anode in LIBs. By virtue of their intriguing structural features, the produced ZNCO/GNS core/shell hybrids exhibit an outstanding reversible capacity of 1015 mA h g(-1) at 0.1 C after 50 cycles. Even at a high rate of 1 C, a stable capacity as high as 420 mA h g(-1) could be maintained after 900 cycles, which suggested their great potential as efficient electrodes for high-performance LIBs.

  11. Graphene-Encapsulated Nanosheet-Assembled Zinc-Nickel-Cobalt Oxide Microspheres for Enhanced Lithium Storage.

    PubMed

    Zhang, Qiaobao; Chen, Huixin; Han, Xiang; Cai, Junjie; Yang, Yong; Liu, Meilin; Zhang, Kaili

    2016-01-01

    The appropriate combination of hierarchical transition-metal oxide (TMO) micro-/nanostructures constructed from porous nanobuilding blocks with graphene sheets (GNS) in a core/shell geometry is highly desirable for high-performance lithium-ion batteries (LIBs). A facile and scalable process for the fabrication of 3D hierarchical porous zinc-nickel-cobalt oxide (ZNCO) microspheres constructed from porous ultrathin nanosheets encapsulated by GNS to form a core/shell geometry is reported for improved electrochemical performance of the TMOs as an anode in LIBs. By virtue of their intriguing structural features, the produced ZNCO/GNS core/shell hybrids exhibit an outstanding reversible capacity of 1015 mA h g(-1) at 0.1 C after 50 cycles. Even at a high rate of 1 C, a stable capacity as high as 420 mA h g(-1) could be maintained after 900 cycles, which suggested their great potential as efficient electrodes for high-performance LIBs. PMID:26676945

  12. Oxidation of formic acid on platinum surfaces decorated with cobalt(III) macrocyclic complexes

    NASA Astrophysics Data System (ADS)

    Stevanović, S.; Babić-Samardžija, K.; Sovilj, S. P.; Tripković, A.; Jovanović, V. M.

    2009-09-01

    Platinum electrode decorated with three different mixed-ligand cobalt(III) complexes of the general formula [Co(Rdtc)cyclam](ClO4)2 [cyclam = 1,4,8,11-tetraazacyclotetradecane, Rdtc- = morpholine-(Morphdtc), piperidine-(Pipdtc), and 4-methylpiperidine-(4-Mepipdtc) dithiocarbamates, respectively] was used to study oxidation of formic acid in acidic solution. The complexes were adsorbed on differently prepared Pt surfaces, at open circuit potential. The preliminary results show increased catalytic activity of Pt for formic acid oxidation with complex ion adsorbed on the polycrystalline surfaces. The increase in catalytic activity depends on the structure of the complex applied and follows the order of metal-coordinated bidentate ligand as Morphdtc > Pipdtc > 4-Mepipdtc. Based on IR and NMR data, the main characteristics of the Rdtc ligands do not vary dramatically, but high symmetry of the corresponding complexes decreases in the same order. Accordingly, the complexes are distinctively more mobile, causing chemical interactions to occur on the surface with appreciable speed and enhanced selectivity. The effect of the complexes on catalytic activity presumably depends on structural changes on Pt surfaces caused by their adsorption.

  13. Synthesis of lithium cobalt oxide by single-step soft hydrothermal method

    SciTech Connect

    Kumar Bokinala, Kiran; Pollet, M.; Artemenko, A.; Miclau, M.; Grozescu, I

    2013-02-15

    Lithium cobalt double oxide LiCoO{sub 2} was synthesized at 220 Degree-Sign C by soft hydrothermal method using Co(OH){sub 2} and LiOH as precursors, LiOH/NaOH as mineralizers and H{sub 2}O{sub 2} as oxidant. The soft hydrothermal synthesis method offers the dual advantage of a much lower synthesis time and a higher purity in comparison with other synthesis methods. The compound was identified by X-ray diffraction and its purity was checked by magnetic and electron magnetic resonance measurements. The grain morphology was studied by Scanning Electron Microscopy and an exponential growth of particle size with synthesis time was observed. - Graphical abstract: Concave cuboctohedrons obtained after 60 h reaction time. Highlights: Black-Right-Pointing-Pointer An optimized soft hydrothermal method for a fast synthesis of high purity LiCoO{sub 2} compound is reported. Black-Right-Pointing-Pointer Both lamellar and cuboctahedral particles could be stabilized. Black-Right-Pointing-Pointer Secondary phases content is lower than 0.1%. Black-Right-Pointing-Pointer Close to surface defects were evidenced using EMR.

  14. Magnetic properties of nickel and cobalt catalysts supported on nanoporous oxides.

    PubMed

    Gómez-Polo, C; Gil, A; Korili, S A; Pérez-Landazabal, J I; Recarte, V; Trujillano, R; Vicente, M A

    2008-06-01

    The aim of this work is to use magnetic measurements as a research tool in the study of possible metal-support interactions in nickel and cobalt nanoporous catalysts. Several physicochemical techniques, namely nitrogen adsorption, X-ray diffraction, temperature-programmed reduction and chemical analysis, were used to analyze the role of the preparation method and the nature of the support on the existence of such metal-support interactions and to relate them with the magnetic response of these nanoporous systems. The catalysts were prepared by incipient wetness impregnation and precipitation-deposition with two commercial oxides, gamma-Al2O3 and SiO2, as supports. The magnetic behavior of the catalysts is drastically affected by the existence of interactions between the metal and the support during the preparation procedure. The samples with weak metal-support interactions have characteristic magnetic behavior of antiferromagnetic metal oxide nanoparticles, while the ones having strong interactions display spin-glass like behavior. PMID:18681026

  15. Composition-induced structural, electrical, and magnetic phase transitions in AX-type mixed-valence cobalt oxynitride epitaxial thin films

    SciTech Connect

    Takahashi, Jumpei; Oka, Daichi; Hirose, Yasushi Yang, Chang; Fukumura, Tomoteru; Hasegawa, Tetsuya; Nakao, Shoichiro; Harayama, Isao; Sekiba, Daiichiro

    2015-12-07

    Synthesis of mid- to late-transition metal oxynitrides is generally difficult by conventional thermal ammonolysis because of thermal instability. In this letter, we synthesized epitaxial thin films of AX-type phase-pure cobalt oxynitrides (CoO{sub x}N{sub y}) by using nitrogen-plasma-assisted pulsed laser deposition and investigated their structural, electrical, and magnetic properties. The CoO{sub x}N{sub y} thin films with 0 ≤ y/(x + y) ≤ 0.63 grown on MgO (100) substrates showed a structural phase transition from rock salt (RS) to zinc blend at the nitrogen content y/(x + y) ∼ 0.5. As the nitrogen content increased, the room-temperature electrical resistivity of the CoO{sub x}N{sub y} thin films monotonically decreased from the order of 10{sup 5} Ω cm to 10{sup −4} Ω cm. Furthermore, we observed an insulator-to-metal transition at y/(x + y) ∼ 0.34 in the RS-CoO{sub x}N{sub y} phase, which has not yet been reported in Co{sup 2+}/Co{sup 3+} mixed-valence cobalt oxides with octahedral coordination. The low resistivity in the RS-CoO{sub x}N{sub y} phase, on the 10{sup −3} Ω cm order, may have originated from the intermediate spin state of Co{sup 3+} stabilized by the lowered crystal field symmetry of the CoO{sub 6−n}N{sub n} octahedra (n = 1, 2,…5). Magnetization measurements suggested that a magnetic phase transition occurred in the RS-CoO{sub x}N{sub y} films during the insulator-to-metal transition. These results demonstrate that low-temperature epitaxial growth is a promising approach for exploring novel electronic functionalities in oxynitrides.

  16. Water clustering on nanostructured iron oxide films

    NASA Astrophysics Data System (ADS)

    Merte, Lindsay R.; Bechstein, Ralf; Peng, Guowen; Rieboldt, Felix; Farberow, Carrie A.; Zeuthen, Helene; Knudsen, Jan; Lægsgaard, Erik; Wendt, Stefan; Mavrikakis, Manos; Besenbacher, Flemming

    2014-06-01

    The adhesion of water to solid surfaces is characterized by the tendency to balance competing molecule-molecule and molecule-surface interactions. Hydroxyl groups form strong hydrogen bonds to water molecules and are known to substantially influence the wetting behaviour of oxide surfaces, but it is not well-understood how these hydroxyl groups and their distribution on a surface affect the molecular-scale structure at the interface. Here we report a study of water clustering on a moiré-structured iron oxide thin film with a controlled density of hydroxyl groups. While large amorphous monolayer islands form on the bare film, the hydroxylated iron oxide film acts as a hydrophilic nanotemplate, causing the formation of a regular array of ice-like hexameric nanoclusters. The formation of this ordered phase is localized at the nanometre scale; with increasing water coverage, ordered and amorphous water are found to coexist at adjacent hydroxylated and hydroxyl-free domains of the moiré structure.

  17. Water Clustering on Nanostructured Iron Oxide Films

    SciTech Connect

    Merte, L. R.; Bechstein, Ralf; Peng, Guowen; Rieboldt, Felix; Farberow, Carrie A.; Zeuthen, Helene; Knudsen, Jan; Laegsgaard, E.; Wendt, Stefen; Mavrikakis, Manos; Besenbacher, Fleming

    2014-06-30

    The adhesion of water to solid surfaces is characterized by the tendency to balance competing molecule–molecule and molecule–surface interactions. Hydroxyl groups form strong hydrogen bonds to water molecules and are known to substantially influence the wetting behaviour of oxide surfaces, but it is not well-understood how these hydroxyl groups and their distribution on a surface affect the molecular-scale structure at the interface. Here we report a study of water clustering on a moire´-structured iron oxide thin film with a controlled density of hydroxyl groups. While large amorphous monolayer islands form on the are film, the hydroxylated iron oxide film acts as a hydrophilic nanotemplate, causing the formation of a regular array of ice-like hexameric nanoclusters. The formation of this ordered phase is localized at the nanometre scale; with increasing water coverage, ordered and amorphous water are found to coexist at adjacent hydroxylated and hydroxyl-free domains of the moire´ structure.

  18. Electrolyte-dependent electrosynthesis and activity of cobalt-based water oxidation catalysts.

    PubMed

    Surendranath, Yogesh; Dinca, Mircea; Nocera, Daniel G

    2009-02-25

    Electrolysis of Co(2+) in phosphate, methylphosphonate, and borate electrolytes effects the electrodeposition of an amorphous highly active water oxidation catalyst as a thin film on an inert anode. Electrodeposition of a catalytically competent species immediately follows oxidation of Co(2+) to Co(3+) in solution. Methylphosphonate and borate electrolytes support catalyst activity comparable to that observed for phosphate. Catalytic activity for O(2) generation in aqueous solutions containing 0.5 M NaCl is retained for catalysts grown from phosphate electrolyte.

  19. Spinel-type lithium cobalt oxide as a bifunctional electrocatalyst for the oxygen evolution and oxygen reduction reactions.

    PubMed

    Maiyalagan, Thandavarayan; Jarvis, Karalee A; Therese, Soosairaj; Ferreira, Paulo J; Manthiram, Arumugam

    2014-05-27

    Development of efficient, affordable electrocatalysts for the oxygen evolution reaction and the oxygen reduction reaction is critical for rechargeable metal-air batteries. Here we present lithium cobalt oxide, synthesized at 400 °C (designated as LT-LiCoO2) that adopts a lithiated spinel structure, as an inexpensive, efficient electrocatalyst for the oxygen evolution reaction. The catalytic activity of LT-LiCoO2 is higher than that of both spinel cobalt oxide and layered lithium cobalt oxide synthesized at 800 °C (designated as HT-LiCoO2) for the oxygen evolution reaction. Although LT-LiCoO2 exhibits poor activity for the oxygen reduction reaction, the chemically delithiated LT-Li1-xCoO2 samples exhibit a combination of high oxygen reduction reaction and oxygen evolution reaction activities, making the spinel-type LT-Li0,5CoO2 a potential bifunctional electrocatalyst for rechargeable metal-air batteries. The high activities of these delithiated compositions are attributed to the Co4O4 cubane subunits and a pinning of the Co(3+/4+):3d energy with the top of the O(2-):2p band.

  20. Metallic phases of cobalt-based catalysts in ethanol steam reforming: The effect of cerium oxide

    SciTech Connect

    Lin, Sean S.-Y.; Kim, Do Heui; Ha, Su Y.

    2009-02-28

    The catalytic activity of cobalt in the production of hydrogen via ethanol steam reforming has been investigated in its relation to the crystalline structure of metallic cobalt. At a reaction temperature of 350 8C, the specific hydrogen production rates show that hexagonal close-packed (hcp) cobalt possesses higher activity than face-centered cubic (fcc) cobalt. However, at typical reaction temperatures (400– 500 8C) for ethanol steam reforming, hcp cobalt is transformed to less active fcc cobalt, as confirmed by in situ X-ray diffractometry (XRD). The addition of CeO2 promoter (10 wt.%) stabilizes the hcp cobalt structure at reforming temperatures up to 600 8C. Moreover, during the pre-reduction process, CeO2 promoter prevents sintering during the transformation of Co3O4 to hcp cobalt. Both reforming experiments and in situ diffuse-reflectance infrared Fourier transform spectroscopy (DRIFTS) showed that the surface reactions were modified by CeO2 promoter on 10% Ce–Co (hcp) to give a lower CO selectivity and a higher H2 yield as compared with the unpromoted hcp Co.

  1. Oxidation behavior of nanostructured cobalt nickel chromium aluminum yttrium and nickel cobalt chromium aluminum yttrium sprayed by HVOF

    NASA Astrophysics Data System (ADS)

    Mercier, Dominic

    In recent years, much development has been made in the world of nanotechnologies. Hence, nanomaterials, which possess unique characteristics and excellent mechanical properties, are now being used in innovative and advanced applications. Despite the incredible potential of nanomaterials, their use is still at an embryonic stage as a result of the difficulty to mass-produce them. Among the potentially viable application remains the fabrication of nanostructured powders to produce high temperature oxidation resistance coatings. Nanostructured coatings were obtained by thermally spraying cryomilled CoNiCrAlY and NiCoCrAlY feedstock using the HVOF technique. It was found that the milling process used to prepare the powder significantly altered the microstructure of the alloy. In addition to achieving grain size refinement, significant aluminum segregation at grain boundaries was observed. Upon oxidation experiments up to 96 hours in static air at 1000°C an oxide scale composed of an adherent and dense alpha-Al2O3 inner layer with a top layer of fast growing oxides such as NiO, Cr2O3, CoAl2O4 and NiAl2O4 evolved from the coatings. It was found that the formation of a two-layer scale could be prevented through surface grinding prior to oxidation. Moreover, the comparison of the oxidation results of the powders and those of the coatings revealed that the spraying process has a considerable influence on the oxidation behavior of MCrAlYs attributable to the formation of oxide seeds during the spraying process.

  2. Cobalt iron-oxide nanoparticle modified poly(methyl methacrylate) nanodielectrics. Dielectric and electrical insulation properties

    NASA Astrophysics Data System (ADS)

    Tuncer, Enis; Rondinone, Adam J.; Woodward, Jonathan; Sauers, Isidor; James, D. Randy; Ellis, Alvin R.

    2009-03-01

    In this paper, we report the dielectric properties of composite systems (nanodielectrics) made of small amounts of mono dispersed magnetic nanoparticles embedded in a polymer matrix. It is observed from the transmission electron microscope images that the matrix polymeric material is confined in approximately 100 nm size cages between particle clusters. The particle clusters are composed of separated spherical particles which comprise unconnected networks in the matrix. The dielectric relaxation and breakdown characteristics of the matrix polymeric material are altered with the addition of nanometer size cobalt iron-oxide particles. The dielectric breakdown measurements performed at 77 K showed that these nanodielectrics are potentially useful as an electrical insulation material for cryogenic high voltage applications. Finally, structural and dielectric properties of nanocomposite dielectrics are discussed to present plausible reasons for the observed low effective dielectric permittivity values in the present and similar nanodielectric systems. It is concluded that polymeric nanoparticle composites would have low dielectric permittivity regardless of the permittivity of nanoparticles are when the particles are coordinated with a low dielectric permittivity surfactant.

  3. In vitro evaluation of anticancer and antibacterial activities of cobalt oxide nanoparticles.

    PubMed

    Khan, Shahanavaj; Ansari, Anees A; Khan, Abdul Arif; Ahmad, Rehan; Al-Obaid, Omar; Al-Kattan, Wael

    2015-12-01

    Cobalt oxide nanoparticles (Co3O4-NPs) were synthesized using simple urea-based thermal decomposition method. Phase purity and particle size of as-synthesized nanoparticles were characterized through X-ray diffraction pattern (XRD) and transmission electron microscopy. Through XRD morphology of the Co3O4-NPs was found to be variable in size with range of 36 nm. In our present study, we explored the potential cytotoxic and antibacterial effects of Co3O4-NPs in human colorectal types of cancerous cells (HT29 and SW620) and also nine Gram-positive and Gram-negative bacteria. Co3O4-NPs showed promising anticancer activity against HT29 and SW620 cells with IC50 value of 2.26 and 394.5 μg/mL, respectively. However, no significant effect of Co3O4-NPs was observed against bacterial strains. Furthermore, a detailed study has been carried out to investigate the possible mechanism of cell death in HT29 cancer cell line through the analysis of expression level of anti-apoptotic Bcl2 and BclxL markers. Western blot analysis results suggested significant role of Co3O4-NPs exposure in cell death due to apoptosis.

  4. Analysis of geometric and electrochemical characteristics of lithium cobalt oxide electrode with different packing densities

    NASA Astrophysics Data System (ADS)

    Lim, Cheolwoong; Yan, Bo; Kang, Huixiao; Song, Zhibin; Lee, Wen Chao; De Andrade, Vincent; De Carlo, Francesco; Yin, Leilei; Kim, Youngsik; Zhu, Likun

    2016-10-01

    To investigate geometric and electrochemical characteristics of Li ion battery electrode with different packing densities, lithium cobalt oxide (LiCoO2) cathode electrodes were fabricated from a 94:3:3 (wt%) mixture of LiCoO2, polymeric binder, and super-P carbon black and calendered to different densities. A synchrotron X-ray nano-computed tomography system with a spatial resolution of 58.2 nm at the Advanced Photon Source of the Argonne National Laboratory was employed to obtain three dimensional morphology data of the electrodes. The morphology data were quantitatively analyzed to characterize their geometric properties, such as porosity, tortuosity, specific surface area, and pore size distribution. The geometric and electrochemical analysis reveal that high packing density electrodes have smaller average pore size and narrower pore size distribution, which improves the electrical contact between carbon-binder matrix and LiCoO2 particles. The better contact improves the capacity and rate capability by reducing the possibility of electrically isolated LiCoO2 particles and increasing the electrochemically active area. The results show that increase of packing density results in higher tortuosity, but electrochemically active area is more crucial to cell performance than tortuosity at up to 3.6 g/cm3 packing density and 4 C rate.

  5. Nitrite Oxidation with Copper-Cobalt Nanoparticles on Carbon Nanotubes Doped Conducting Polymer PEDOT Composite.

    PubMed

    Wang, Junjie; Xu, Guiyun; Wang, Wei; Xu, Shenghao; Luo, Xiliang

    2015-09-01

    Copper-cobalt bimetal nanoparticles (Cu-Co) have been electrochemically prepared on glassy carbon electrodes (GCEs), which were electrodeposited with conducting polymer nanocomposites of poly(3,4-ethylenedioxythiophene) (PEDOT) doped with carbon nanotubes (CNTs). Owing to their good conductivity, high mechanical strength, and large surface area, the PEDOT/CNTs composites offered excellent substrates for the electrochemical deposition of Cu-Co nanoparticles. As a result of their nanostructure and the synergic effect between Cu and Co, the Cu-Co/PEDOT/CNTs composites exhibited significantly enhanced catalytic activity towards the electrochemical oxidation of nitrite. Under optimized conditions, the nanocomposite-modified electrodes had a fast response time within 2 s and a linear range from 0.5 to 430 μm for the detection of nitrite, with a detection limit of 60 nm. Moreover, the Cu-Co/PEDOT/CNTs composites were highly stable, and the prepared nitrite sensors could retain more than 96 % of their initial response after 30 days.

  6. Reduced Graphene Oxide Functionalized with Cobalt Ferrite Nanocomposites for Enhanced Efficient and Lightweight Electromagnetic Wave Absorption.

    PubMed

    Ding, Yi; Liao, Qingliang; Liu, Shuo; Guo, Huijing; Sun, Yihui; Zhang, Guangjie; Zhang, Yue

    2016-01-01

    In this paper, reduced graphene oxide functionalized with cobalt ferrite nanocomposites (CoFe@rGO) as a novel type of electromagnetic wave (EW) absorbing materials was successfully prepared by a three-step chemical method including hydrothermal synthesis, annealing process and mixing with paraffin. The effect of the sample thickness and the amount of paraffin on the EW absorption properties of the composites was studied, revealing that the absorption peaks shifted toward the low frequency regions with the increasing thickness while other conditions had little or no effect. It is found that the CoFe@rGO enhanced both dielectric losses and magnetic losses and had the best EW absorption properties and the wide wavelength coverage of the hole Ku-Band when adding only 5wt% composites to paraffin. Therefore, CoFe@rGO could be used as an efficient and lightweight EW absorber. Compared with the research into traditional absorbing materials, this figures of merit are typically of the same order of magnitude, but given the lightweight nature of the material and the high level of compatibility with mass production standards, making use of CoFe@rGO as an electromagnetic absorber material shows great potential for real product applications. PMID:27587001

  7. Reduced Graphene Oxide Functionalized with Cobalt Ferrite Nanocomposites for Enhanced Efficient and Lightweight Electromagnetic Wave Absorption

    NASA Astrophysics Data System (ADS)

    Ding, Yi; Liao, Qingliang; Liu, Shuo; Guo, Huijing; Sun, Yihui; Zhang, Guangjie; Zhang, Yue

    2016-09-01

    In this paper, reduced graphene oxide functionalized with cobalt ferrite nanocomposites (CoFe@rGO) as a novel type of electromagnetic wave (EW) absorbing materials was successfully prepared by a three-step chemical method including hydrothermal synthesis, annealing process and mixing with paraffin. The effect of the sample thickness and the amount of paraffin on the EW absorption properties of the composites was studied, revealing that the absorption peaks shifted toward the low frequency regions with the increasing thickness while other conditions had little or no effect. It is found that the CoFe@rGO enhanced both dielectric losses and magnetic losses and had the best EW absorption properties and the wide wavelength coverage of the hole Ku-Band when adding only 5wt% composites to paraffin. Therefore, CoFe@rGO could be used as an efficient and lightweight EW absorber. Compared with the research into traditional absorbing materials, this figures of merit are typically of the same order of magnitude, but given the lightweight nature of the material and the high level of compatibility with mass production standards, making use of CoFe@rGO as an electromagnetic absorber material shows great potential for real product applications.

  8. Reduced Graphene Oxide Functionalized with Cobalt Ferrite Nanocomposites for Enhanced Efficient and Lightweight Electromagnetic Wave Absorption

    PubMed Central

    Ding, Yi; Liao, Qingliang; Liu, Shuo; Guo, Huijing; Sun, Yihui; Zhang, Guangjie; Zhang, Yue

    2016-01-01

    In this paper, reduced graphene oxide functionalized with cobalt ferrite nanocomposites (CoFe@rGO) as a novel type of electromagnetic wave (EW) absorbing materials was successfully prepared by a three-step chemical method including hydrothermal synthesis, annealing process and mixing with paraffin. The effect of the sample thickness and the amount of paraffin on the EW absorption properties of the composites was studied, revealing that the absorption peaks shifted toward the low frequency regions with the increasing thickness while other conditions had little or no effect. It is found that the CoFe@rGO enhanced both dielectric losses and magnetic losses and had the best EW absorption properties and the wide wavelength coverage of the hole Ku-Band when adding only 5wt% composites to paraffin. Therefore, CoFe@rGO could be used as an efficient and lightweight EW absorber. Compared with the research into traditional absorbing materials, this figures of merit are typically of the same order of magnitude, but given the lightweight nature of the material and the high level of compatibility with mass production standards, making use of CoFe@rGO as an electromagnetic absorber material shows great potential for real product applications. PMID:27587001

  9. Photo-catalytic Degradation and Sorption of Radio-cobalt from EDTA-Co Complexes Using Manganese Oxide Materials - 12220

    SciTech Connect

    Koivula, Risto; Harjula, Risto; Tusa, Esko

    2012-07-01

    The synthesised cryptomelane-type α-MnO{sub 2} was tested for its Co-57 uptake properties in UV-photo-reactor filled with 10 μM Co-EDTA solution with a background of 10 mM NaNO{sub 3}. High cobalt uptake of 96% was observed after 1 hour of UV irradiation. As for comparison, a well-known TiO{sub 2} (Degussa P25) was tested as reference material that showed about 92% cobalt uptake after six hours of irradiation in identical experiment conditions. It was also noted that the cobalt uptake on cryptomelane with out UV irradiation was modest, only about 10%. Decreasing the pH of the Co-EDTA solution had severe effects on the cobalt uptake mainly due to the rather high point of zero charge of the MnO{sub 2} surface (pzc at pH ∼4.5). Modifying the synthesis procedure we were able to produce a material that functioned well even in solution of pH 3 giving cobalt uptake of almost 99%. The known properties, catalytic and ion exchange, of manganese oxides were simultaneously used for the separation of EDTA complexed Co-57. Tunnel structured cryptomelane -type showed very fast and efficient Co uptake properties outperforming the well known and widely used Degussa P25 TiO{sub 2} in both counts. The layered structured manganese oxide, birnessite, reached also as high Co removal level as the reference material Degussa did but the reaction rate was considerably faster. Since the decontamination solutions are typically slightly acidic and the point of zero charge of the manganese oxides are rather high > pH 4.5 the material had to be modified. This modified material had tolerance to acidic solutions and it's Co uptake performance remained high in the solutions of lower pH (pH 3). Increasing the ion concentration of test solutions, background concentration, didn't affect the final Co uptake level; however, some changes in the uptake kinetics could be seen. The increase in EDTA/MoMO ratio was clearly reflected in the Co uptake curves. The obtained results of manganese oxide were

  10. Mid-term survivorship and clinical outcomes of cobalt-chrome and oxidized zirconium on highly crosslinked polyethylene

    PubMed Central

    Petis, Stephen M.; Vasarhelyi, Edward M.; Lanting, Brent A.; Howard, James L.; Naudie, Douglas D.R.; Somerville, Lyndsay E.; McCalden, Richard W.

    2016-01-01

    Background The choice of bearing articulation for total hip arthroplasty in younger patients is amenable to debate. We compared mid-term patient-reported outcomes and survivorship across 2 different bearing articulations in a young patient cohort. Methods We reviewed patients with cobalt-chrome or oxidized zirconium on highly crosslinked polyethylene who were followed prospectively between 2004 and 2012. Kaplan–Meier analysis was used to determine predicted cumulative survivorship at 5 years with all-cause and aseptic revisions as the outcome. We compared patient-reported outcomes, including the Harris hip score (HHS), Western Ontario and McMaster University Osteoarthritis Index (WOMAC) and Short-form 12 (SF-12) scores. Results A total of 622 patients were followed during the study period. Mean follow-up was 8.2 (range 2.0–10.6) years for cobalt-chrome and 7.8 (range 2.1–10.7) years for oxidized zirconium. Mean age was 54.9 ± 10.6 years for cobalt-chrome and 54.8 ± 10.7 years for oxidized zirconium. Implant survivorship was 96.0% (95% confidence interval [CI] 94.9%–97.1%) for cobalt-chrome and 98.7% (95% CI 98.0%–99.4%) for oxidized zirconium on highly crosslinked polyethylene for all-cause revisions, and 97.2% (95% CI 96.2%–98.2%) for cobalt-chrome and 99.0% (95% CI 98.4%–99.6%) for oxidized zirconium for aseptic revisions. An age-, sex- and diagnosis-matched comparison of the HHS, WOMAC and SF-12 scores demonstrated no significant changes in clinical outcomes across the groups. Conclusion Both bearing surface couples demonstrated excellent mid-term survivorship and outcomes in young patient cohorts. Future analyses on wear and costs are warranted to elicit differences between the groups at long-term follow-up. PMID:26812409

  11. Cobalt Oxide Nanoparticles: Behavior towards Intact and Impaired Human Skin and Keratinocytes Toxicity

    PubMed Central

    Mauro, Marcella; Crosera, Matteo; Pelin, Marco; Florio, Chiara; Bellomo, Francesca; Adami, Gianpiero; Apostoli, Piero; De Palma, Giuseppe; Bovenzi, Massimo; Campanini, Marco; Larese Filon, Francesca

    2015-01-01

    Skin absorption and toxicity on keratinocytes of cobalt oxide nanoparticles (Co3O4NPs) have been investigated. Co3O4NPs are commonly used in industrial products and biomedicine. There is evidence that these nanoparticles can cause membrane damage and genotoxicity in vitro, but no data are available on their skin absorption and cytotoxicity on keratinocytes. Two independent 24 h in vitro experiments were performed using Franz diffusion cells, using intact (experiment 1) and needle-abraded human skin (experiment 2). Co3O4NPs at a concentration of 1000 mg/L in physiological solution were used as donor phase. Cobalt content was evaluated by Inductively Coupled–Mass Spectroscopy. Co permeation through the skin was demonstrated after 24 h only when damaged skin protocol was used (57 ± 38 ng·cm−2), while no significant differences were shown between blank cells (0.92 ± 0.03 ng cm−2) and those with intact skin (1.08 ± 0.20 ng·cm−2). To further investigate Co3O4NPs toxicity, human-derived HaCaT keratinocytes were exposed to Co3O4NPs and cytotoxicity evaluated by MTT, Alamarblue® and propidium iodide (PI) uptake assays. The results indicate that a long exposure time (i.e., seven days) was necessary to induce a concentration-dependent cell viability reduction (EC50 values: 1.3 × 10−4 M, 95% CL = 0.8–1.9 × 10−4 M, MTT essay; 3.7 × 10−5 M, 95% CI = 2.2–6.1 × 10−5 M, AlamarBlue® assay) that seems to be associated to necrotic events (EC50 value: 1.3 × 10−4 M, 95% CL = 0.9–1.9 × 10−4 M, PI assay). This study demonstrated that Co3O4NPs can penetrate only damaged skin and is cytotoxic for HaCat cells after long term exposure. PMID:26193294

  12. Cobalt Oxide Nanoparticles: Behavior towards Intact and Impaired Human Skin and Keratinocytes Toxicity.

    PubMed

    Mauro, Marcella; Crosera, Matteo; Pelin, Marco; Florio, Chiara; Bellomo, Francesca; Adami, Gianpiero; Apostoli, Piero; De Palma, Giuseppe; Bovenzi, Massimo; Campanini, Marco; Filon, Francesca Larese

    2015-07-17

    Skin absorption and toxicity on keratinocytes of cobalt oxide nanoparticles (Co3O4NPs) have been investigated. Co3O4NPs are commonly used in industrial products and biomedicine. There is evidence that these nanoparticles can cause membrane damage and genotoxicity in vitro, but no data are available on their skin absorption and cytotoxicity on keratinocytes. Two independent 24 h in vitro experiments were performed using Franz diffusion cells, using intact (experiment 1) and needle-abraded human skin (experiment 2). Co3O4NPs at a concentration of 1000 mg/L in physiological solution were used as donor phase. Cobalt content was evaluated by Inductively Coupled-Mass Spectroscopy. Co permeation through the skin was demonstrated after 24 h only when damaged skin protocol was used (57 ± 38 ng·cm⁻²), while no significant differences were shown between blank cells (0.92 ± 0.03 ng cm⁻²) and those with intact skin (1.08 ± 0.20 ng·cm⁻²). To further investigate Co3O4NPs toxicity, human-derived HaCaT keratinocytes were exposed to Co3O4NPs and cytotoxicity evaluated by MTT, Alamarblue and propidium iodide (PI) uptake assays. The results indicate that a long exposure time (i.e., seven days) was necessary to induce a concentration-dependent cell viability reduction (EC50 values: 1.3 × 10-4 M, 95% CL = 0.8-1.9 × 10⁻⁴ M, MTT essay; 3.7 × 10⁻⁵ M, 95% CI = 2.2-6.1 × 10⁻⁵ M, AlamarBlue assay) that seems to be associated to necrotic events (EC50 value: 1.3 × 10⁻⁴ M, 95% CL = 0.9-1.9 × 10⁻⁴ M, PI assay). This study demonstrated that Co3O4NPs can penetrate only damaged skin and is cytotoxic for HaCat cells after long term exposure.

  13. Enhanced magneto-optical Kerr effect in rare earth substituted nanostructured cobalt ferrite thin film prepared by sol-gel method

    NASA Astrophysics Data System (ADS)

    Avazpour, L.; Toroghinejad, M. R.; Shokrollahi, H.

    2016-11-01

    A series of rare-earth (RE)-doped nanocrystalline Cox RE(1-x) Fe2O4 (x = 0, 0.1, 0.2 and RE: Nd, Eu) thin films were prepared on silicon substrates by a sol-gel process, and the influences of different RE3+ ions on the microstructure, magnetism and polar magneto-optical Kerr effect of the deposited films were investigated. Also this research presents the optimization process of cobalt ferrite thin films deposited via spin coating, by studying their structural and morphological properties at different thicknesses (200, 350 nm) and various heat treatment temperatures 300-850 °C. Nanoparticulate polycrystalline thin film were formed with heat treatment above 400 °C but proper magnetic properties due to well crystallization of the film were achieved at about 650 °C. AFM results indicated that the deposited thin films were crack-free exhibiting a dense nanogranular structure. The root-mean square (RMS) roughness of the thin films was in the range of 0.2-3.2 nm. The results revealed that both of the magnetism and magneto optical Kerr (MOKE) spectra of Cox RE(1-x) Fe2O4 films could be mediated by doping with various RE ions. The Curie temperature of substituted samples was lower than pristine cobalt ferrite thin films. In MOKE spectra both dominant peaks were blue shifted with addition of RE ions. For low concentration dopant the inter-valence charge transfer related rotation was enhanced and for higher concentration dopant the crystal field rotation peak was enhanced. The MOKE enhancement for Eu3+ substituted samples was more than Nd3+ doped cobalt ferrite films. The enhanced MOKEs in nanocrystalline thin films might promise their applications for magneto-optical sensors in adopted wavelengths.

  14. New misfit-layered cobalt oxide (CaOH){sub 1.14}CoO{sub 2}

    SciTech Connect

    Shizuya, Mitsuyuki; Isobe, Masaaki Baba, Yuji; Nagai, Takuro; Osada, Minoru; Kosuda, Kosuke; Takenouchi, Satoshi; Matsui, Yoshio; Takayama-Muromachi, Eiji

    2007-01-15

    We synthesized a new cobalt oxide (CaOH){sub 1.14}CoO{sub 2} by utilizing a high-pressure technique. X-ray and electron diffraction studies revealed that the compound has a layered structure that consists of CdI{sub 2}-type CoO{sub 2} layers and rock-salt-type double CaOH atomic layers. The two subcells have incommensurate periodicity along the a-axis, resulting in a misfit-layered structure. From resistivity and Seebeck coefficient measurements, we have shown that the two-dimensional (2-D) variable-range hopping (VRH) regime with hole conduction is dominant at low temperature for this compound. As temperature increases, the conduction mechanism undergoes crossover from the 2-D VRH regime to a thermal activation-energy-type regime. - Graphical abstract: Crystal-structure model of the misfit-layered cobalt oxide (CaOH){sub 1.14}CoO{sub 2}. The rectangles indicate unit cells of the two subsystems. The open circles and squares represent the cobalt atoms situated at different positions along the projected coordinate.

  15. Thin zinc oxide and cuprous oxide films for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Jeong, Seongho

    Metal oxide semiconductors and heterojunctions made from thin films of metal oxide semiconductors have broad range of functional properties and high potential in optical, electrical and magnetic devices such as light emitting diodes, spintronic devices and solar cells. Among the oxide semiconductors, zinc oxide (ZnO) and cuprous oxide (Cu2O) are attractive because they are inexpensive, abundant and nontoxic. As synthesized ZnO is usually an intrinsic n - type semiconductor with wide band gap (3.4 eV) and can be used as the transparent conducting window layer in solar cells. As synthesized Cu2O is usually a p - type semiconductor with a band gap of 2.17 eV and has been considered as a potential material for the light absorbing layer in solar cells. I used various techniques including metal organic chemical vapor deposition, magnetron sputtering and atomic layer deposition to grow thin films of ZnO and Cu2O and fabricated Cu2O/ZnO heterojunctions. I specifically investigated the optical and electrical properties of Cu 2O thin films deposited on ZnO by MOCVD and showed that Cu2O thin films grow as single phase with [110] axis aligned perpendicular to the ZnO surface which is (0001) plane and with in-plane rotational alignment due to (220) Cu2O || (0002)ZnO; [001]Cu2O || [12¯10]ZnO epitaxy. Moreover, I fabricated solar cells based on these Cu2O/ZnO heterojunctions and characterized them. Electrical characterization of these solar cells as a function of temperature between 100 K and 300 K under illumination revealed that interface recombination and tunneling at the interface are the factors that limit the solar cell performance. To date solar cells based on Cu2O/ZnO heterojunctions had low open circuit voltages (~ 0.3V) even though the expected value is around 1V. I achieved open circuit voltages approaching 1V at low temperature (~ 100 K) and showed that if interfacial recombination is reduced these cells can achieve their predicted potential.

  16. Thermoelectric misfit-layered cobalt oxides with interlayers of hydroxide and peroxide species

    SciTech Connect

    Chou, Ta-Lei; Lybeck, Jenni; Chan, Ting-Shan; Hsu, Ying-Ya; Tewari, Girish C.; Rautama, Eeva-Leena; Yamauchi, Hisao; Karppinen, Maarit

    2013-12-15

    Among the thermoelectric misfit-layered cobalt oxides, [M{sub m}A{sub 2}O{sub m+2}]{sub q}CoO{sub 2}, the parent m=0 phases exhibit divergent chemical features but are less understood than the more common m>0 members of the series. Here we synthesize Sr-for-Ca substituted [(Ca{sub 1−x}Sr{sub x}){sub z}(O,OH){sub 2}]{sub q}CoO{sub 2} zero phases up to x=0.2 through low-temperature hydrothermal conversion of precursor powders of the m=1 misfit system, [Co(Ca{sub 1−x}Sr{sub x}){sub 2}O{sub 3}]{sub q}CoO{sub 2}. In the zero-phase [(Ca{sub 1−x}Sr{sub x}){sub z}(O,OH){sub 2}]{sub q}CoO{sub 2} system, as the Sr content x increases the lattice expands anisotropically along the c axis such that the ab-plane dimension and the misfit parameter q remain essentially constant. X-ray absorption spectroscopy data suggest the presence of peroxide-type oxygen species in the (Ca{sub 1−x}Sr{sub x}){sub z}(O,OH){sub 2} rock-salt block and together with infrared spectroscopy, thermogravimetric and low-temperature resistivity and thermopower measurements evidence that the isovalent Sr-for-Ca substitution controls the balance between the peroxide and hydroxide species in the (Ca{sub 1−x}Sr{sub x}){sub z}(O,OH){sub 2} block but leaves the valence of Co essentially intact in the CoO{sub 2} block. The higher electrical conductivity of the Sr-substituted phases is explained as a consequence of increased carrier mobility. - Graphical abstract: Among the thermoelectric misfit-layered cobalt oxides, [M{sub m}A{sub 2}O{sub m+2}]{sub q}CoO{sub 2}, the parent zero (m=0) phases exhibit divergent chemical features. For [(Ca{sub 1−x}Sr{sub x}){sub z}(O,OH){sub 2}]{sub q}CoO{sub 2}, X-ray absorption spectroscopy data suggest the presence of peroxide-type oxygen species in the (Ca{sub 1−x}Sr{sub x}){sub z}(O,OH){sub 2} rock-salt block and together with thermogravimetric and low-temperature transport-property measurements evidence that the isovalent Sr-for-Ca substitution controls the

  17. Compositional Inhomogeneity and Saturation Magnetization Variation in Cobalt-Chromium Sputtered Films

    NASA Astrophysics Data System (ADS)

    Snyder, John Evan

    CoCr sputtered films appear to be single-phase when probed by x-ray and electron diffraction. However, their saturation magnetization (M_{ rm S}) values can be considerably higher than bulk material, and can show large consistent variation with sputtering conditions. This paradox has puzzled researchers for years. Apparently the films are compositionally inhomogeneous in some non-obvious way. The central task of this thesis has been to describe and explain this phenomenon. Eight different models are outlined: oxidation, incomplete mixing, grain boundary segregation, phase separation--Co_3Cr phase, phase separation--sigma phase, phase separation--fcc phase, magnetic phase separation, and short range atomic arrangement. These models were tested through a combination of experimental and theoretical investigations, and seven of them were ruled-out as the major explanation. Only the magnetic phase separation model can explain all the unusual features of the experimental results. Particular emphasis is given to the high temperature thermomagnetic analysis (TMA) results which not only demonstrate the phase separation, but also show unusual features which indicate why it occurs. Varying amounts of two distinct magnetic phases are observed: a high-Curie temperature (T_{rm c}) Co-rich phase, and a bulk-like phase which is metastable, and increasingly stable with increasing substrate temperature (in the 250 ^circC to 450^ circC range). A non-magnetic third phase is inferred. All three phases appear to have the same crystal structure, and phase separation appears to take place coherently. High-temperature annealing (750 ^circC or more) homogenizes the films irreversibly. These features can be explained by a model of phase separation driven by magnetic exchange energy. Using this model and the TMA results, the CoCr phase diagram was determined for a region of great interest for magnetic recording media. Apparently this is the first and to this date, the only experimental

  18. High pseudocapacitive cobalt carbonate hydroxide films derived from CoAl layered double hydroxides

    NASA Astrophysics Data System (ADS)

    Lu, Zhiyi; Zhu, Wei; Lei, Xiaodong; Williams, Gareth R.; O'Hare, Dermot; Chang, Zheng; Sun, Xiaoming; Duan, Xue

    2012-05-01

    A thin nanosheet of mesoporous cobalt carbonate hydroxide (MPCCH) has been fabricated from a CoAl-LDH nanosheet following removal of the Al cations by alkali etching. The basic etched electrode exhibits enhanced specific capacitance (1075 F g-1 at 5 mA cm-2) and higher rate capability and cycling stability (92% maintained after 2000 cycles).A thin nanosheet of mesoporous cobalt carbonate hydroxide (MPCCH) has been fabricated from a CoAl-LDH nanosheet following removal of the Al cations by alkali etching. The basic etched electrode exhibits enhanced specific capacitance (1075 F g-1 at 5 mA cm-2) and higher rate capability and cycling stability (92% maintained after 2000 cycles). Electronic supplementary information (ESI) available: Detailed experimental procedure, specific capacitance calculation, EDS and FTIR results, electrochemical results of CoAl-LDH and SEM image. See DOI: 10.1039/c2nr30617d

  19. An acetate bound cobalt oxide catalyst for water oxidation: role of monovalent anions and cations in lowering overpotential.

    PubMed

    Dey, Subal; Mondal, Biswajit; Dey, Abhishek

    2014-06-28

    A homogeneous solution of Co(II) in acetate buffer at pH 7 is found to be an efficient water oxidation catalyst (WOC) showing significantly greater current density than Co(II) in phosphate buffer (Co-Pi) under identical conditions owing to the higher solubility of the former. When electrodeposited on ITO/FTO electrodes it forms acetate bound cobalt(II)-oxide materials (Co-Ac-WOC) showing a catalytic current density of 0.1 mA cm(-2) at 830 mV and 1 mA cm(-2) at 1 V in a pH 7 buffer solution. The morphology of Co-Ac-WOC and its evolution with time and deposition potential is investigated with AFM, HR-TEM and SEM. The chemical composition of Co-Ac-WOC is investigated using XPS, EDX, ATR-FTIR and combustion analysis which indicate that this material has a CoO core with chloride and acetate anions bound to the Co center. Sodium is found to be integrated in the Co-Ac-WOC. The presence of the sodium and chloride ions lowers the onset potential for the oxygen evolution reaction (OER) by 240 mV relative to the classic Co-Pi at pH 7. The lower onset potential and higher OER current lowers the exchange current density to 10(-6.7) A cm(-2) in Co-Ac-WOC relative to 10(-8)-10(-10) A cm(-2) in Co-Pi and its derivatives.

  20. Formation of double ring patterns on Co{sub 2}MnSi Heusler alloy thin film by anodic oxidation under scanning probe microscope

    SciTech Connect

    Toutam, Vijaykumar; Singh, Sandeep; Pandey, Himanshu; Budhani, R. C.

    2013-02-15

    Double ring formation on Co{sub 2}MnSi (CMS) films is observed at electrical breakdown voltage during local anodic oxidation (LAO) using atomic force microscope (AFM). Corona effect and segregation of cobalt in the vicinity of the rings is studied using magnetic force microscopy and energy dispersive spectroscopy. Double ring formation is attributed to the interaction of ablated material with the induced magnetic field during LAO. Steepness of forward bias transport characteristics from the unperturbed region of the CMS film suggest a non equilibrium spin contribution. Such mesoscopic textures in magnetic films by AFM tip can be potentially used for memory storage applications.

  1. Mechanism for Limiting Thickness of Thin Oxide Films on Aluminum

    NASA Astrophysics Data System (ADS)

    Baran, Jakub D.; Grönbeck, Henrik; Hellman, Anders

    2014-04-01

    A first-principles account of the observed limiting thickness of oxide films formed on aluminum during oxidizing conditions is presented. The results uncover enhanced bonding of oxygen to thin alumina films in contact with metallic aluminum that stems from charge transfer between a reconstructed oxide-metal interface and the adsorbed molecules. The first-principles results are compared with the traditional Cabrera-Mott (CM) model, which is a classical continuum model. Within the CM model, charged surface oxygen species and metal ions generate a (Mott) potential that drives oxidation. An apparent limiting thickness is observed as the oxidation rate decreases rapidly with film growth. The present results support experimental estimates of the Mott potential and film thicknesses. In contrast to the CM model, however, the calculations reveal a real limiting thickness that originates from a diminishing oxygen adsorption energy beyond a certain oxide film thickness.

  2. Corrosion Investigations of Black Chromite Films on Zn and Zn-Co Coatings with Low Cobalt Content

    NASA Astrophysics Data System (ADS)

    Boshkov, Nikolai; Boshkova, Neli; Bachvarov, Vasil; Peshova, Miglena; Lutov, Ludmil

    2015-12-01

    The corrosion resistance and protective ability of black-colored chromite (Cr3+ based) and chromium-free conversion films (CFs) on electrodeposited zinc and Zn-Co alloy coatings having low cobalt content in a neutral model medium of 3% NaCl solution have been investigated and characterized. Test methods such as polarization resistance measurements, scanning electron microscopy, EDS, x-ray diffraction analysis, and x-ray photoelectron spectroscopy analyses have been applied in order to scrutinize the actual protective characteristics of these films as well as to determine the composition of the corrosion products appearing as a result of the treatment in the corrosion medium. The experimental results revealed better protective characteristics, consequently superior performance of the electrodeposits with chromite films compared to these with chromium free or without any additional CF. The processes occurring on the sample's surface during the immersion in the chemical conversion solutions as well as the influence of the H3PO4 in the course of the treatment are also commented on and discussed.

  3. One-dimensional manganese-cobalt oxide nanofibres as bi-functional cathode catalysts for rechargeable metal-air batteries

    NASA Astrophysics Data System (ADS)

    Jung, Kyu-Nam; Hwang, Soo Min; Park, Min-Sik; Kim, Ki Jae; Kim, Jae-Geun; Dou, Shi Xue; Kim, Jung Ho; Lee, Jong-Won

    2015-01-01

    Rechargeable metal-air batteries are considered a promising energy storage solution owing to their high theoretical energy density. The major obstacles to realising this technology include the slow kinetics of oxygen reduction and evolution on the cathode (air electrode) upon battery discharging and charging, respectively. Here, we report non-precious metal oxide catalysts based on spinel-type manganese-cobalt oxide nanofibres fabricated by an electrospinning technique. The spinel oxide nanofibres exhibit high catalytic activity towards both oxygen reduction and evolution in an alkaline electrolyte. When incorporated as cathode catalysts in Zn-air batteries, the fibrous spinel oxides considerably reduce the discharge-charge voltage gaps (improve the round-trip efficiency) in comparison to the catalyst-free cathode. Moreover, the nanofibre catalysts remain stable over the course of repeated discharge-charge cycling; however, carbon corrosion in the catalyst/carbon composite cathode degrades the cycling performance of the batteries.

  4. One-dimensional manganese-cobalt oxide nanofibres as bi-functional cathode catalysts for rechargeable metal-air batteries.

    PubMed

    Jung, Kyu-Nam; Hwang, Soo Min; Park, Min-Sik; Kim, Ki Jae; Kim, Jae-Geun; Dou, Shi Xue; Kim, Jung Ho; Lee, Jong-Won

    2015-01-07

    Rechargeable metal-air batteries are considered a promising energy storage solution owing to their high theoretical energy density. The major obstacles to realising this technology include the slow kinetics of oxygen reduction and evolution on the cathode (air electrode) upon battery discharging and charging, respectively. Here, we report non-precious metal oxide catalysts based on spinel-type manganese-cobalt oxide nanofibres fabricated by an electrospinning technique. The spinel oxide nanofibres exhibit high catalytic activity towards both oxygen reduction and evolution in an alkaline electrolyte. When incorporated as cathode catalysts in Zn-air batteries, the fibrous spinel oxides considerably reduce the discharge-charge voltage gaps (improve the round-trip efficiency) in comparison to the catalyst-free cathode. Moreover, the nanofibre catalysts remain stable over the course of repeated discharge-charge cycling; however, carbon corrosion in the catalyst/carbon composite cathode degrades the cycling performance of the batteries.

  5. One-dimensional manganese-cobalt oxide nanofibres as bi-functional cathode catalysts for rechargeable metal-air batteries.

    PubMed

    Jung, Kyu-Nam; Hwang, Soo Min; Park, Min-Sik; Kim, Ki Jae; Kim, Jae-Geun; Dou, Shi Xue; Kim, Jung Ho; Lee, Jong-Won

    2015-01-01

    Rechargeable metal-air batteries are considered a promising energy storage solution owing to their high theoretical energy density. The major obstacles to realising this technology include the slow kinetics of oxygen reduction and evolution on the cathode (air electrode) upon battery discharging and charging, respectively. Here, we report non-precious metal oxide catalysts based on spinel-type manganese-cobalt oxide nanofibres fabricated by an electrospinning technique. The spinel oxide nanofibres exhibit high catalytic activity towards both oxygen reduction and evolution in an alkaline electrolyte. When incorporated as cathode catalysts in Zn-air batteries, the fibrous spinel oxides considerably reduce the discharge-charge voltage gaps (improve the round-trip efficiency) in comparison to the catalyst-free cathode. Moreover, the nanofibre catalysts remain stable over the course of repeated discharge-charge cycling; however, carbon corrosion in the catalyst/carbon composite cathode degrades the cycling performance of the batteries. PMID:25563733

  6. One-dimensional manganese-cobalt oxide nanofibres as bi-functional cathode catalysts for rechargeable metal-air batteries

    PubMed Central

    Jung, Kyu-Nam; Hwang, Soo Min; Park, Min-Sik; Kim, Ki Jae; Kim, Jae-Geun; Dou, Shi Xue; Kim, Jung Ho; Lee, Jong-Won

    2015-01-01

    Rechargeable metal-air batteries are considered a promising energy storage solution owing to their high theoretical energy density. The major obstacles to realising this technology include the slow kinetics of oxygen reduction and evolution on the cathode (air electrode) upon battery discharging and charging, respectively. Here, we report non-precious metal oxide catalysts based on spinel-type manganese-cobalt oxide nanofibres fabricated by an electrospinning technique. The spinel oxide nanofibres exhibit high catalytic activity towards both oxygen reduction and evolution in an alkaline electrolyte. When incorporated as cathode catalysts in Zn-air batteries, the fibrous spinel oxides considerably reduce the discharge-charge voltage gaps (improve the round-trip efficiency) in comparison to the catalyst-free cathode. Moreover, the nanofibre catalysts remain stable over the course of repeated discharge-charge cycling; however, carbon corrosion in the catalyst/carbon composite cathode degrades the cycling performance of the batteries. PMID:25563733

  7. Dysprosium oxide and dysprosium-oxide-doped titanium oxide thin films grown by atomic layer deposition

    SciTech Connect

    Tamm, Aile Kozlova, Jekaterina; Aarik, Lauri; Aarik, Jaan; Kukli, Kaupo; Link, Joosep; Stern, Raivo

    2015-01-15

    Dysprosium oxide and dysprosium-oxide-doped titanium oxide thin films were grown by atomic layer deposition on silicon substrates. For depositing dysprosium and titanium oxides Dy(thd){sub 3}-O{sub 3} and TiCl{sub 4}-O{sub 3} were used as precursors combinations. Appropriate parameters for Dy(thd){sub 3}-O{sub 3} growth process were obtained by using a quartz crystal microbalance system. The Dy{sub 2}O{sub 3} films were deposited on planar substrates and on three-dimensional substrates with aspect ratio 1:20. The Dy/Ti ratio of Dy{sub 2}O{sub 3}-doped TiO{sub 2} films deposited on a planar silicon substrate ranged from 0.04 to 0.06. Magnetometry studies revealed that saturation of magnetization could not be observed in planar Dy{sub 2}O{sub 3} films, but it was observable in Dy{sub 2}O{sub 3} films on 3D substrates and in doped TiO{sub 2} films with a Dy/Ti atomic ratio of 0.06. The latter films exhibited saturation magnetization 10{sup −6} A cm{sup 2} and coercivity 11 kA/m at room temperature.

  8. The chemistry of nitrogen oxides on small size-selected cobalt clusters, Co{sub n}{sup +}

    SciTech Connect

    Anderson, Marie L.; Lacz, Agnieszka; Drewello, Thomas; Derrick, Peter J.; Woodruff, D. Phil; Mackenzie, Stuart R.

    2009-02-14

    Fourier transform ion cyclotron resonance mass spectrometry has been employed to study the reactions of gas-phase cationic cobalt clusters, Co{sub n}{sup +} (n=4-30), with nitric oxide, NO, and nitrous oxide, N{sub 2}O, under single collision conditions. Isolation of the initial cluster permits detailed investigation of fragmentation channels which characterize the reactions of all but the largest clusters studied. In reaction with N{sub 2}O, most clusters generate the monoxides Co{sub n}O{sup +} without fragmentation, cobalt atom loss accompanying only subsequent reactions. By contrast, chemisorption of even a single NO molecule is accompanied by fragmentation of the cluster. The measured rate coefficients for the Co{sub n}{sup +}+N{sub 2}O reaction as a function of cluster size are significantly smaller than those calculated using the surface charge capture model, while for NO the rates are comparable. The reactions have been studied under high coverage conditions by storing clusters for extended periods to permit multiple reactions to occur. This leads to interesting chemistry on the surface of the cluster resulting in the formation of stable oxide clusters and/or the decomposition of nitric oxide on the cluster with the resulting loss of molecular nitrogen.

  9. Adsorption of cobalt ferrite nanoparticles within layer-by-layer films: a kinetic study carried out using quartz crystal microbalance.

    PubMed

    Alcantara, Gustavo B; Paterno, Leonardo G; Afonso, André S; Faria, Ronaldo C; Pereira-da-Silva, Marcelo A; Morais, Paulo C; Soler, Maria A G

    2011-12-28

    The paper reports on the successful use of the quartz crystal microbalance technique to assess accurate kinetics and equilibrium parameters regarding the investigation of in situ adsorption of nanosized cobalt ferrite particles (CoFe(2)O(4)--10.5 nm-diameter) onto two different surfaces. Firstly, a single layer of nanoparticles was deposited onto the surface provided by the gold-coated quartz resonator functionalized with sodium 3-mercapto propanesulfonate (3-MPS). Secondly, the layer-by-layer (LbL) technique was used to build multilayers in which the CoFe(2)O(4) nanoparticle-based layer alternates with the sodium sulfonated polystyrene (PSS) layer. The adsorption experiments were conducted by modulating the number of adsorbed CoFe(2)O(4)/PSS bilayers (n) and/or by changing the CoFe(2)O(4) nanoparticle concentration while suspended as a stable colloidal dispersion. Adsorption of CoFe(2)O(4) nanoparticles onto the 3-MPS-functionalized surface follows perfectly a first order kinetic process in a wide range (two orders of magnitude) of nanoparticle concentrations. These data were used to assess the equilibrium constant and the adsorption free energy. Alternatively, the Langmuir adsorption constant was obtained while analyzing the isotherm data at the equilibrium. Adsorption of CoFe(2)O(4) nanoparticles while growing multilayers of CoFe(2)O(4)/PSS was conducted using colloidal suspensions with CoFe(2)O(4) concentration in the range of 10(-8) to 10(-6) (moles of cobalt ferrite per litre) and for different numbers of cycles n = 1, 3, 5, and 10. We found the adsorption of CoFe(2)O(4) nanoparticles within the CoFe(2)O(4)/PSS bilayers perfectly following a first order kinetic process, with the characteristic rate constant growing with the increase of CoFe(2)O(4) nanoparticle concentration and decreasing with the rise of the number of LbL cycles (n). Additionally, atomic force microscopy was employed for assessing the LbL film roughness and thickness. We found the film

  10. Study of the formation process of titanium oxides containing micro arc oxidation film on Mg alloys

    NASA Astrophysics Data System (ADS)

    Song, Yingwei; Dong, Kaihui; Shan, Dayong; Han, En-Hou

    2014-09-01

    A novel micro arc oxidation (MAO) film is developed to protect Mg alloys from corrosion. This film contains plenty of titanium oxides, which exhibits higher chemical stability than traditional MAO films. Especially, the micropores on the surface of the film are in situ sealed during the film formation process instead of the sealing pores post treatment. The film formation process is investigated by the observation of surface and cross-section morphologies and analysis of chemical composition. It is found that the sizes of micropores increase but the quantities decrease with increasing oxidation voltages. The micropores are open in the initial stage of oxidation and then they are sealed gradually. The growth direction of the film takes place change at different oxidation voltages. The elements of F and Ti play a significant role in the film growth process.

  11. Substrate dependent self-organization of mesoporous cobalt oxide nanowires with remarkable pseudocapacitance.

    PubMed

    Rakhi, R B; Chen, Wei; Cha, Dongkyu; Alshareef, H N

    2012-05-01

    A scheme of current collector dependent self-organization of mesoporous cobalt oxide nanowires has been used to create unique supercapacitor electrodes, with each nanowire making direct contact with the current collector. The fabricated electrodes offer the desired properties of macroporosity to allow facile electrolyte flow, thereby reducing device resistance and nanoporosity with large surface area to allow faster reaction kinetics. Co(3)O(4) nanowires grown on carbon fiber paper collectors self-organize into a brush-like morphology with the nanowires completely surrounding the carbon microfiber cores. In comparison, Co(3)O(4) nanowires grown on planar graphitized carbon paper collectors self-organize into a flower-like morphology. In three electrode configuration, brush-like and flower-like morphologies exhibited specific capacitance values of 1525 and 1199 F/g, respectively, at a constant current density of 1 A/g. In two electrode configuration, the brush-like nanowire morphology resulted in a superior supercapacitor performance with high specific capacitances of 911 F/g at 0.25 A/g and 784 F/g at 40 A/g. In comparison, the flower-like morphology exhibited lower specific capacitance values of 620 F/g at 0.25 A/g and 423 F/g at 40 A/g. The Co(3)O(4) nanowires with brush-like morphology exhibited high values of specific power (71 kW/kg) and specific energy (81 Wh/kg). Maximum energy and power densities calculated for Co(3)O(4) nanowires with flower-like morphology were 55 Wh/kg and 37 kW/kg respectively. Both electrode designs exhibited excellent cycling stability by retaining ∼91-94% of their maximum capacitance after 5000 cycles of continuous charge-discharge. PMID:22494065

  12. Thermoelectric misfit-layered cobalt oxides with interlayers of hydroxide and peroxide species

    NASA Astrophysics Data System (ADS)

    Chou, Ta-Lei; Lybeck, Jenni; Chan, Ting-Shan; Hsu, Ying-Ya; Tewari, Girish C.; Rautama, Eeva-Leena; Yamauchi, Hisao; Karppinen, Maarit

    2013-12-01

    Among the thermoelectric misfit-layered cobalt oxides, [MmA2Om+2]qCoO2, the parent m=0 phases exhibit divergent chemical features but are less understood than the more common m>0 members of the series. Here we synthesize Sr-for-Ca substituted [(Ca1-xSrx)z(O,OH)2]qCoO2 zero phases up to x=0.2 through low-temperature hydrothermal conversion of precursor powders of the m=1 misfit system, [Co(Ca1-xSrx)2O3]qCoO2. In the zero-phase [(Ca1-xSrx)z(O,OH)2]qCoO2 system, as the Sr content x increases the lattice expands anisotropically along the c axis such that the ab-plane dimension and the misfit parameter q remain essentially constant. X-ray absorption spectroscopy data suggest the presence of peroxide-type oxygen species in the (Ca1-xSrx)z(O,OH)2 rock-salt block and together with infrared spectroscopy, thermogravimetric and low-temperature resistivity and thermopower measurements evidence that the isovalent Sr-for-Ca substitution controls the balance between the peroxide and hydroxide species in the (Ca1-xSrx)z(O,OH)2 block but leaves the valence of Co essentially intact in the CoO2 block. The higher electrical conductivity of the Sr-substituted phases is explained as a consequence of increased carrier mobility.

  13. Cycling-Induced Changes in the Entropy Profiles of Lithium Cobalt Oxide Electrodes

    SciTech Connect

    Hudak, N. S.; Davis, L. E.; Nagasubramanian, G.

    2014-12-09

    Entropy profiles of lithium cobalt oxide (LiCoO2) electrodes were measured at various stages in the cycle life to examine performance degradation and cycling-induced changes, or lack thereof, in thermodynamics. LiCoO2 electrodes were cycled at C/2 rate in half-cells (vs. lithium anodes) up to 20 cycles or C/5 rate in full cells (vs. MCMB anodes) up to 500 cycles. The electrodes were then subjected to entropy measurements (∂E/∂T, where E is open-circuit potential and T is temperature) in half-cells at regular intervals over the approximate range 0.5 ≤ x ≤ 1 in LixCoO2. Despite significant losses in capacity upon cycling, neither cycling rate resulted in any change to the overall shape of the entropy profile relative to an uncycled electrode, indicating retention of the basic LiCoO2 structure, lithium insertion mechanism, and thermodynamics. This confirms that cycling-induced performance degradation in LiCoO2 electrodes is primarily caused by kinetic barriers that increase with cycling. In the case of electrodes cycled at C/5, there was a subtle, quantitative, and gradual change in the entropy profile in the narrow potential range of the hexagonal-to-monoclinic phase transition. The observed change is indicative of a decrease in the intralayer lithium ordering that occurs at these potentials, and it demonstrates that a cyclinginduced structural disorder accompanies the kinetic degradation mechanisms.

  14. Cycling-Induced Changes in the Entropy Profiles of Lithium Cobalt Oxide Electrodes

    DOE PAGESBeta

    Hudak, N. S.; Davis, L. E.; Nagasubramanian, G.

    2014-12-09

    Entropy profiles of lithium cobalt oxide (LiCoO2) electrodes were measured at various stages in the cycle life to examine performance degradation and cycling-induced changes, or lack thereof, in thermodynamics. LiCoO2 electrodes were cycled at C/2 rate in half-cells (vs. lithium anodes) up to 20 cycles or C/5 rate in full cells (vs. MCMB anodes) up to 500 cycles. The electrodes were then subjected to entropy measurements (∂E/∂T, where E is open-circuit potential and T is temperature) in half-cells at regular intervals over the approximate range 0.5 ≤ x ≤ 1 in LixCoO2. Despite significant losses in capacity upon cycling, neithermore » cycling rate resulted in any change to the overall shape of the entropy profile relative to an uncycled electrode, indicating retention of the basic LiCoO2 structure, lithium insertion mechanism, and thermodynamics. This confirms that cycling-induced performance degradation in LiCoO2 electrodes is primarily caused by kinetic barriers that increase with cycling. In the case of electrodes cycled at C/5, there was a subtle, quantitative, and gradual change in the entropy profile in the narrow potential range of the hexagonal-to-monoclinic phase transition. The observed change is indicative of a decrease in the intralayer lithium ordering that occurs at these potentials, and it demonstrates that a cyclinginduced structural disorder accompanies the kinetic degradation mechanisms.« less

  15. High energy and power density asymmetric supercapacitors using electrospun cobalt oxide nanowire anode

    NASA Astrophysics Data System (ADS)

    Vidyadharan, Baiju; Aziz, Radhiyah Abd; Misnon, Izan Izwan; Anil Kumar, Gopinathan M.; Ismail, Jamil; Yusoff, Mashitah M.; Jose, Rajan

    2014-12-01

    Electrochemical materials are under rigorous search for building advanced energy storage devices. Herein, supercapacitive properties of highly crystalline and ultrathin cobalt oxide (Co3O4) nanowires (diameter ∼30-60 nm) synthesized using an aqueous polymeric solution based electrospinning process are reported. These nanowire electrodes show a specific capacitance (CS) of ∼1110 F g-1 in 6 M KOH at a current density of 1 A g-1 with coulombic efficiency ∼100%. Asymmetric supercapacitors (ASCs) (CS ∼175 F g-1 at 2 A g-1 galvanostatic cycling) are fabricated using the Co3O4 as anode and commercial activated carbon (AC) as cathode and compared their performance with symmetric electrochemical double layer capacitors (EDLCs) fabricated using AC (CS ∼31 F g-1 at 2 A g-1 galvanostatic cycling). The Co3O4//AC ASCs deliver specific energy densities (ES) of 47.6, 35.4, 20 and 8 Wh kg-1 at specific power densities (PS) 1392, 3500, 7000 and 7400 W kg-1, respectively. The performance of ASCs is much superior to the control EDLCs, which deliver ES of 9.2, 8.9, 8.4 and 6.8 Wh kg-1 at PS 358, 695, 1400 and 3500 W kg-1, respectively. The ASCs show nearly six times higher energy density (∼47.6 Wh kg-1) than EDLC (8.4 Wh kg-1) without compromising its power density (∼1400 W kg-1) at similar galvanostatic cycling conditions (2 A g-1).

  16. High carrier concentration p-type transparent conducting oxide films

    DOEpatents

    Yan, Yanfa; Zhang, Shengbai

    2005-06-21

    A p-type transparent conducting oxide film is provided which is consisting essentially of, the transparent conducting oxide and a molecular doping source, the oxide and doping source grown under conditions sufficient to deliver the doping source intact onto the oxide.

  17. Doping in zinc oxide thin films

    NASA Astrophysics Data System (ADS)

    Yang, Zheng

    Doping in zinc oxide (ZnO) thin films is discussed in this dissertation. The optimizations of undoped ZnO thin film growth using molecular-beam epitaxy (MBE) are discussed. The effect of the oxygen ECR plasma power on the growth rate, structural, electrical, and optical properties of the ZnO thin films were studied. It was found that larger ECR power leads to higher growth rate, better crystallinity, lower electron carrier concentration, larger resistivity, and smaller density of non-radiative luminescence centers in the ZnO thin films. Low-temperature photoluminescence (PL) measurements were carried out in undoped and Ga-doped ZnO thin films grown by molecular-beam epitaxy. As the carrier concentration increases from 1.8 x 1018 to 1.8 x 1020 cm-3, the dominant PL line at 9 K changes from I1 (3.368--3.371 eV), to IDA (3.317--3.321 eV), and finally to I8 (3.359 eV). The dominance of I1, due to ionized-donor bound excitons, is unexpected in n-type samples, but is shown to be consistent with the temperature-dependent Hall fitting results. We also show that IDA has characteristics of a donor-acceptor-pair transition, and use a detailed, quantitative analysis to argue that it arises from GaZn donors paired with Zn-vacancy (VZn) acceptors. In this analysis, the GaZn0/+ energy is well-known from two-electron satellite transitions, and the VZn0/- energy is taken from a recent theoretical calculation. Typical behaviors of Sb-doped p-type ZnO are presented. The Sb doping mechanisms and preference in ZnO are discussed. Diluted magnetic semiconducting ZnO:Co thin films with above room-temperature TC were prepared. Transmission electron microscopy and x-ray diffraction studies indicate the ZnO:Co thin films are free of secondary phases. The magnetization of the ZnO:Co thin films shows a free electron carrier concentration dependence, which increases dramatically when the free electron carrier concentration exceeds ˜1019 cm -3, indicating a carrier-mediated mechanism for

  18. Thermal properties of rare earth cobalt oxides and of La1- x Gd x CoO3 solid solutions

    NASA Astrophysics Data System (ADS)

    Orlov, Yu. S.; Dudnikov, V. A.; Gorev, M. V.; Vereshchagin, S. N.; Solov'ev, L. A.; Ovchinnikov, S. G.

    2016-05-01

    Powder X-ray diffraction data for the crystal structure, phase composition, and molar specific heat for La1‒ x Gd x CoO3 cobaltites in the temperature range of 300-1000 K have been analyzed. The behavior of the volume thermal expansion coefficient in cobaltites with isovalent doping in the temperature range of 100-1000 K is studied. It is found that the β( T) curve exhibits two peaks at some doping levels. The rate of the change in the occupation number for the high-spin state of cobalt ions is calculated for the compounds under study taking into account the spin-orbit interaction. With the Birch-Murnaghan equation of state, it is demonstrated that the low-temperature peak in the thermal expansion shifts with the growth of the pressure toward higher temperatures and at pressure P ˜ 7 GPa coincides with the second peak. The similarity in the behavior of the thermal expansion coefficient in the La1- x Gd x CoO3 compounds with the isovalent substitution and the undoped LnCoO3 compound (Ln is a lanthanide) is considered. For the whole series of rare earth cobalt oxides, the nature of two specific features in the temperature dependence of the specific heat and thermal expansion is revealed and their relation to the occupation number for the high-spin state of cobalt ions and to the insulator-metal transition is established.

  19. CW laser compaction of aqueous solution deposited metal oxide films

    SciTech Connect

    Exarhos, G.J.; Dennis, T.

    1997-12-01

    Zirconium dioxide films were spin cast onto silica or silicon substrates from an aqueous solution comprised of the precursor metal nitrate and an organic complexant such as glycine. The hydrated films so derived consist of an amorphous organic phase in which the metal cations and nitrate anions are homogeneously dispersed. Heating to temperatures above 200 {degrees}C leads to film dehydration followed by an auto-catalyzed oxidation reaction whereby the bound nitrate oxidizes the organic matrix leaving behind an intact stoichiometric and crystalline metal oxide film. Films are characterized using AFM, XRD, and optical methods. Transformation processes in these films have been studied in detail by means of spectroscopic ellipsometry and laser induced fluorescence from films doped with a suitable rare earth probe ion such as SM{sup +3}. In the latter case, the measured fluorescence emission spectra are used to identify the hydrated, dehydrated, amorphous and crystalline metal oxide phases which evolve during processing. These transformations also have been induced upon visible CW laser irradiation at fluences in excess of 1 MW/cm{sup 2}. Under these conditions, the film dehydrates and compacts within the footprint of the incident laser beam rendering this region of the film water insoluble. Post irradiation washing of the film with water removes all vestiges of the film outside of the beam footprint suggesting a possible use of this technique for lithography applications. Films subjected to laser irradiation and post irradiation heating have been characterized with respect to thickness, phase composition, crystallite size and optical constants.

  20. p-type conduction in sputtered indium oxide films

    SciTech Connect

    Stankiewicz, Jolanta; Alcala, Rafael; Villuendas, Francisco

    2010-05-10

    We report p-type conductivity in intrinsic indium oxide (IO) films deposited by magnetron sputtering on fused quartz substrates under oxygen-rich ambient. Highly oriented (111) films were studied by x-ray diffraction, optical absorption, and Hall effect measurements. We fabricated p-n homojunctions on these films.

  1. Polymer-assisted aqueous deposition of metal oxide films

    DOEpatents

    Li, DeQuan; Jia, Quanxi

    2003-07-08

    An organic solvent-free process for deposition of metal oxide thin films is presented. The process includes aqueous solutions of necessary metal precursors and an aqueous solution of a water-soluble polymer. After a coating operation, the resultant coating is fired at high temperatures to yield optical quality metal oxide thin films.

  2. Effects of oxidative treatments on human hair keratin films.

    PubMed

    Fujii, T; Ito, Y; Watanabe, T; Kawasoe, T

    2012-01-01

    The effects of hydrogen peroxide and commercial bleach on hair and human hair keratin films were examined by protein solubility, scanning electron microscopy (SEM), immunofluorescence microscopy, immunoblotting, and Fourier-transform infrared spectroscopy. Protein solubility in solutions containing urea decreased when the keratin films were treated with hydrogen peroxide or bleach. Oxidative treatments promoted the urea-dependent morphological change by turning films from opaque to transparent in appearance. Immunofluorescence microscopy and immunoblotting showed that the oxidation of amino acids and proteins occurred due to the oxidative treatments, and such occurrence was more evident in the bleach-treated films than in the hydrogen peroxide-treated films. Compared with hair samples, the formation of cysteic acid was more clearly observed in the keratin films after the oxidative treatments.

  3. Effects of oxidative treatments on human hair keratin films.

    PubMed

    Fujii, T; Ito, Y; Watanabe, T; Kawasoe, T

    2012-01-01

    The effects of hydrogen peroxide and commercial bleach on hair and human hair keratin films were examined by protein solubility, scanning electron microscopy (SEM), immunofluorescence microscopy, immunoblotting, and Fourier-transform infrared spectroscopy. Protein solubility in solutions containing urea decreased when the keratin films were treated with hydrogen peroxide or bleach. Oxidative treatments promoted the urea-dependent morphological change by turning films from opaque to transparent in appearance. Immunofluorescence microscopy and immunoblotting showed that the oxidation of amino acids and proteins occurred due to the oxidative treatments, and such occurrence was more evident in the bleach-treated films than in the hydrogen peroxide-treated films. Compared with hair samples, the formation of cysteic acid was more clearly observed in the keratin films after the oxidative treatments. PMID:22487448

  4. The Influence of Fe Substitution in Lanthanum Calcium Cobalt Oxide on the Oxygen Evolution Reaction in Alkaline Media

    DOE PAGESBeta

    Abreu-Sepulveda, Maria A.; Dhital, Chetan; Huq, Ashfia; Li, Ling; Bridges, Craig A.; Paranthaman, M. Parans; Narayanan, S. R.; Quesnel, David J.; Tryk, Donald A.; Manivannan, A.

    2016-07-30

    The effect due to systematic substitution of cobalt by iron in La0.6Ca0.4Co1-xFexO3 towards the oxygen evolution reaction(OER) in alkaline media has been investigated. We synthesized these compounds by a facile glycine-nitrate synthesis and the phase formation was confirmed by X-ray diffraction and Neutron Diffraction elemental analysis. The apparent OER activity was evaluated by quasi steady state current measurements in alkaline media using a traditional three-electrode cell. X-ray photoelectron spectroscopy shows iron substitution causes an increase in the surface concentration of various cobalt oxidation states. Tafel slope in the vicinity of 60 mV/decade and electrochemical reaction order towards OH- near unitymore » were achieved for the unsubstituted La0.6Ca0.4CoO3. Moreover, a decrease in the Tafel slope to 49 mV/decade was observed when iron is substituted in high amounts in the perovskite structure. The area specific current density showed dependence on the Fe fraction, however the relationship of specific current density with Fe fraction is not linear. High Fe substitutions, La0.6Ca0.4Co0.2Fe0.8O3 and La0.6Ca0.4Co0.1Fe0.9O3 showed higher area specific activity towards OER than La0.6Ca0.4CoO3 or La0.6Ca0.4FeO3. Finally, we believe iron inclusion in the cobalt sites of the perovskite helps decrease the electron transfer barrier and facilitates the formation of cobalt-hydroxide at the surface. Possible OER mechanisms based on the observed kinetic parameters will be discussed.« less

  5. Flexible electrostatic nanogenerator using graphene oxide film

    NASA Astrophysics Data System (ADS)

    Tian, He; Ma, Shuo; Zhao, Hai-Ming; Wu, Can; Ge, Jie; Xie, Dan; Yang, Yi; Ren, Tian-Ling

    2013-09-01

    Recently, graphene oxide (GO) super capacitors with ultra-high energy densities have received significant attention. In addition to their use in energy storage, GO capacitors might also have broad applications in renewable energy engineering, such as energy harvesting. Here, a flexible nanogenerator based on GO film is designed. A multilayer structure Al/PI/GO/PI/ITO is made on a flexible PET substrate. The GO nanogenerator could generate a peak voltage of 2 V with a current of 30 nA upon the repetitive application of a 15 N force with a frequency of 1 Hz. Moreover, the output voltage was increased to 34.4 V upon increasing the frequency of force application to 10 Hz. Compared with control samples, embedding GO film with a release structure into the device could significantly enhance the output voltage from 0.1 V to 2.0 V. The mechanism of our nanogenerator can be explained by an electrostatic effect, which is fundamentally different from that of previously reported piezoelectric and triboelectric generators. In this manuscript, we demonstrate flexible nanogenerators with large-area graphene based materials, which may open up new avenues of research with regard to applications in energy harvesting.Recently, graphene oxide (GO) super capacitors with ultra-high energy densities have received significant attention. In addition to their use in energy storage, GO capacitors might also have broad applications in renewable energy engineering, such as energy harvesting. Here, a flexible nanogenerator based on GO film is designed. A multilayer structure Al/PI/GO/PI/ITO is made on a flexible PET substrate. The GO nanogenerator could generate a peak voltage of 2 V with a current of 30 nA upon the repetitive application of a 15 N force with a frequency of 1 Hz. Moreover, the output voltage was increased to 34.4 V upon increasing the frequency of force application to 10 Hz. Compared with control samples, embedding GO film with a release structure into the device could

  6. Comparative cytotoxicity and genotoxicity of cobalt (II, III) oxide, iron (III) oxide, silicon dioxide, and aluminum oxide nanoparticles on human lymphocytes in vitro.

    PubMed

    Rajiv, S; Jerobin, J; Saranya, V; Nainawat, M; Sharma, A; Makwana, P; Gayathri, C; Bharath, L; Singh, M; Kumar, M; Mukherjee, A; Chandrasekaran, N

    2016-02-01

    Despite the extensive use of nanoparticles (NPs) in various fields, adequate knowledge of human health risk and potential toxicity is still lacking. The human lymphocytes play a major role in the immune system, and it can alter the antioxidant level when exposed to NPs. Identification of the hazardous NPs was done using in vitro toxicity tests and this study mainly focuses on the comparative in vitro cytotoxicity and genotoxicity of four different NPs including cobalt (II, III) oxide (Co3O4), iron (III) oxide (Fe2O3), silicon dioxide (SiO2), and aluminum oxide (Al2O3) on human lymphocytes. The Co3O4 NPs showed decrease in cellular viability and increase in cell membrane damage followed by Fe2O3, SiO2, and Al2O3 NPs in a dose-dependent manner after 24 h of exposure to human lymphocytes. The oxidative stress was evidenced in human lymphocytes by the induction of reactive oxygen species, lipid peroxidation, and depletion of catalase, reduced glutathione, and superoxide dismutase. The Al2O3 NPs showed the least DNA damage when compared with all the other NPs. Chromosomal aberration was observed at 100 µg/ml when exposed to Co3O4 NPs and Fe2O3 NPs. The alteration in the level of antioxidant caused DNA damage and chromosomal aberration in human lymphocytes.

  7. Interwoven three-dimensional architecture of cobalt oxide nanobrush-graphene@Ni(x)Co(2x)(OH)(6x) for high-performance supercapacitors.

    PubMed

    Qu, Longbing; Zhao, Yunlong; Khan, Aamir Minhas; Han, Chunhua; Hercule, Kalele Mulonda; Yan, Mengyu; Liu, Xingyu; Chen, Wei; Wang, Dandan; Cai, Zhengyang; Xu, Wangwang; Zhao, Kangning; Zheng, Xiaolin; Mai, Liqiang

    2015-03-11

    Development of pseudocapacitor electrode materials with high comprehensive electrochemical performance, such as high capacitance, superior reversibility, excellent stability, and good rate capability at the high mass loading level, still is a tremendous challenge. To our knowledge, few works could successfully achieve the above comprehensive electrochemical performance simultaneously. Here we design and synthesize one interwoven three-dimensional (3D) architecture of cobalt oxide nanobrush-graphene@Ni(x)Co(2x)(OH)(6x) (CNG@NCH) electrode with high comprehensive electrochemical performance: high specific capacitance (2550 F g(-1) and 5.1 F cm(-2)), good rate capability (82.98% capacitance retention at 20 A g(-1) vs 1 A g(-1)), superior reversibility, and cycling stability (92.70% capacitance retention after 5000 cycles at 20 A g(-1)), which successfully overcomes the tremendous challenge for pseudocapacitor electrode materials. The asymmetric supercapacitor of CNG@NCH//reduced-graphene-oxide-film exhibits good rate capability (74.85% capacitance retention at 10 A g(-1) vs 0.5 A g(-1)) and high energy density (78.75 Wh kg(-1) at a power density of 473 W kg(-1)). The design of this interwoven 3D frame architecture can offer a new and appropriate idea for obtaining high comprehensive performance electrode materials in the energy storage field.

  8. Interwoven three-dimensional architecture of cobalt oxide nanobrush-graphene@Ni(x)Co(2x)(OH)(6x) for high-performance supercapacitors.

    PubMed

    Qu, Longbing; Zhao, Yunlong; Khan, Aamir Minhas; Han, Chunhua; Hercule, Kalele Mulonda; Yan, Mengyu; Liu, Xingyu; Chen, Wei; Wang, Dandan; Cai, Zhengyang; Xu, Wangwang; Zhao, Kangning; Zheng, Xiaolin; Mai, Liqiang

    2015-03-11

    Development of pseudocapacitor electrode materials with high comprehensive electrochemical performance, such as high capacitance, superior reversibility, excellent stability, and good rate capability at the high mass loading level, still is a tremendous challenge. To our knowledge, few works could successfully achieve the above comprehensive electrochemical performance simultaneously. Here we design and synthesize one interwoven three-dimensional (3D) architecture of cobalt oxide nanobrush-graphene@Ni(x)Co(2x)(OH)(6x) (CNG@NCH) electrode with high comprehensive electrochemical performance: high specific capacitance (2550 F g(-1) and 5.1 F cm(-2)), good rate capability (82.98% capacitance retention at 20 A g(-1) vs 1 A g(-1)), superior reversibility, and cycling stability (92.70% capacitance retention after 5000 cycles at 20 A g(-1)), which successfully overcomes the tremendous challenge for pseudocapacitor electrode materials. The asymmetric supercapacitor of CNG@NCH//reduced-graphene-oxide-film exhibits good rate capability (74.85% capacitance retention at 10 A g(-1) vs 0.5 A g(-1)) and high energy density (78.75 Wh kg(-1) at a power density of 473 W kg(-1)). The design of this interwoven 3D frame architecture can offer a new and appropriate idea for obtaining high comprehensive performance electrode materials in the energy storage field. PMID:25710223

  9. Pulsed organometallic beam epitaxy of complex oxide films

    NASA Astrophysics Data System (ADS)

    Duray, S. J.; Buchholz, D. B.; Song, S. N.; Richeson, D. S.; Ketterson, J. B.; Marks, T. J.; Chang, R. P. H.

    1991-09-01

    The results are reported of a pulsed organometallic beam epitaxy (POMBE) process for growing complex oxide films at low background gas pressure and low substrate temperature using organometallic precursors in an oxygen plasma environment. The results show that POMBE can extend the capability of organometallic chemical vapor deposition to growing complex oxide films with high precision both in composition and structure without the need for post-deposition oxidation and heat treatments. The growth of phase-pure, highly oriented Y-Ba-Cu-O superconducting oxide films is given as an example. Similar to the pulsed laser deposition process, the POMBE method has the potential for in situ processing of multilayer structures.

  10. Electrocatalytic oxidation of salicylic acid by a cobalt hydrotalcite-like compound modified Pt electrode.

    PubMed

    Gualandi, Isacco; Scavetta, Erika; Zappoli, Sergio; Tonelli, Domenica

    2011-03-15

    In this paper a study of the electrocatalytic oxidation of salicylic acid (SA) at a Pt electrode coated with a Co/Al hydrotalcite-like compound (Co/Al HTLC coated-Pt) film is presented. The voltammetric behaviour of the modified electrode in 0.1M NaOH shows two different redox couples: Co(II)/Co(III) and Co(III)/Co(IV). The electrocatalysis occurs at the same potential of the latter couple, showing that Co(IV) centers act as the oxidant. The CV investigation demonstrates that the process is controlled both by mass and charge transfer and that the Co(IV) centers involved in the oxidation are two for each SA molecule. The estimated value of the catalytic constant is 4×10(4) M(-1) s(-1). The determination of salicylic acid was performed both by DPV and chronoamperometry. The linearity ranges and the LOD values resulted 1×10(-5) to 5×10(-4), 5×10(-7) to 1×10(-4), 6×10(-6) and 2×10(-7) M, respectively. The Co/Al HTLC electrode has been used for SA determination in BAYER Aspirina® and the obtained results are consistent with an independent HPLC analysis. PMID:21237633

  11. Electrocatalytic oxidation of salicylic acid by a cobalt hydrotalcite-like compound modified Pt electrode.

    PubMed

    Gualandi, Isacco; Scavetta, Erika; Zappoli, Sergio; Tonelli, Domenica

    2011-03-15

    In this paper a study of the electrocatalytic oxidation of salicylic acid (SA) at a Pt electrode coated with a Co/Al hydrotalcite-like compound (Co/Al HTLC coated-Pt) film is presented. The voltammetric behaviour of the modified electrode in 0.1M NaOH shows two different redox couples: Co(II)/Co(III) and Co(III)/Co(IV). The electrocatalysis occurs at the same potential of the latter couple, showing that Co(IV) centers act as the oxidant. The CV investigation demonstrates that the process is controlled both by mass and charge transfer and that the Co(IV) centers involved in the oxidation are two for each SA molecule. The estimated value of the catalytic constant is 4×10(4) M(-1) s(-1). The determination of salicylic acid was performed both by DPV and chronoamperometry. The linearity ranges and the LOD values resulted 1×10(-5) to 5×10(-4), 5×10(-7) to 1×10(-4), 6×10(-6) and 2×10(-7) M, respectively. The Co/Al HTLC electrode has been used for SA determination in BAYER Aspirina® and the obtained results are consistent with an independent HPLC analysis.

  12. DC electrical, thermal, and spectroscopic properties of various condensation polyimides containing surface cobalt oxide

    NASA Technical Reports Server (NTRS)

    Rancourt, J. D.; Boggess, R. K.; Horning, L. S.; Taylor, L. T.

    1987-01-01

    Doping polyimides with cobalt ion causes the room temperature direct current electrical resistivity to decrease relative to the polymer alone, the reduction being most pronounced for the air-side of the cobalt modified polyimides. At a constant electrical field, resistivity for the volume, air-side and glass-side modes decreases yet further with an increase in temperature as expected for semiconductors and insulators. X-ray photoelectron spectroscopy indicates the air-side of the cobalt modified polyimides is predominantly Co3O4. The bulk resistivity of the air-side and activation energy of conduction for this surface are comparable to high purity sintered Co3O4. Charging characteristics at room temperature indicate a substantial polymer matrix contribution to both the glass-side and volume mode measurements but a negligible contribution to the air-side electrical properties. Volume electrical resistivity for similar additive levels is reduced by increasing the molecular flexibility of the host polymer.

  13. Heterogenite vs asbolane: a mineralogical study of cobalt oxides from the DRC (Democratic Republic of the Congo)

    NASA Astrophysics Data System (ADS)

    Burlet, Christian; Vanbrabant, Yves; Decree, Sophie

    2014-05-01

    The largest cobalt ore reserves are located in DRC, the Democratic Republic of Congo. Most of cobalt is observed as black cobaltic oxide minerals: heterogenite [HCoO2] and asbolane [(Ni,Co)2-xMn(O,OH)4.nH2O] which are hardly differentiable since they exhibit similar macroscopic habit and textures. These minerals are frequently observed in similar environment (oxidized horizon of ore deposits) and they are commonly poorly-crystallized limiting their study with XRD. Their chemical composition is also not very well-constrained since they exhibit significant chemical substitutions with cations as Cu, Co, Ni, Mn. Our observations on a set of heterogenite and asbolane samples from DRC combined with samples from other localities shows that each phase, even under an amorphous form, can be readily distinguished by Raman microspectrometry. This technique is therefore attractive during ore deposit characterization campaigns or during the follow-up extraction operations where it is important to distinguish the main constituting Co-phase(s). The main advantage of this technique is its speed since no sample preparation is required during the collection Raman spectra that usually last few tens of seconds. The method provides information at a μm-scale and several points are thus required to fully characterize ore batches composed of different mineralogical phases. Our petrographical observations show also that asbolane and heterogenite mineralogical phases can coexist at a μm-scale as two distinct phases into 'heterogenite' ore. The distinction between heterogenite and asbolane from our sample set can also be conducted on a chemical base showing that heterogenite represents the richer Co-phase with variable Cu concentrations. By contrast, only Mn traces are usually observed in heterogenite minerals from DRC except in few samples, but always in lower concentration than in asbolane. The latter shows variable Mn/(Mn+Co) ratio between 0.85 and 0.3 and the decrease of this value is

  14. Amorphous tin-cadmium oxide films and the production thereof

    SciTech Connect

    Li, Xiaonan; Gessert, Timothy A

    2013-10-29

    A tin-cadmium oxide film having an amorphous structure and a ratio of tin atoms to cadmium atoms of between 1:1 and 3:1. The tin-cadmium oxide film may have an optical band gap of between 2.7 eV and 3.35 eV. The film may also have a charge carrier concentration of between 1.times.10.sup.20 cm.sup.-3 and 2.times.10.sup.20 cm.sup.-3. The tin cadmium oxide film may also exhibit a Hall mobility of between 40 cm.sup.2V.sup.-1 s.sup.-1 and 60 cm.sup.2V.sup.-1 s.sup.-1. Also disclosed is a method of producing an amorphous tin-cadmium oxide film as described and devices using same.

  15. Graphene-Inorganic Hybrids with Cobalt Oxide Polymorphs for Electrochemical Energy Systems and Electrocatalysis: Synthesis, Processing and Properties

    NASA Astrophysics Data System (ADS)

    Gupta, Sanju; Carrizosa, Sara B.

    2015-11-01

    We report on the synthesis and physical property characterization of graphene-inorganic `hybrid' nanomaterials coupled with nano-/microscale transition metal oxide polymorphs namely, cobalt oxides, i.e. CoO [Co(II)] and Co3O4 [Co(II, III)]), for alternative energy storage and conversion devices. Their demand is owed to higher specific capacitance, wide operational potential window, stability through charge-discharge cycling, environmentally benignity, easily processability, reproducibility and manufacturability. To accomplish this, we strategically designed these hybrids by direct anchoring or physisorption of CoO and CO3O4 on two different variants of graphene: graphene oxide which is semiconducting, and its reduced form showing conducting behavior via mixing dispersions of the constituents under mild ultrasonication and drop-cast (or spray-cast) resulting in different combinations. This facile approach affords strong chemical/physical attachment and is expected to have coupling between the pseudocapacitive transition metal oxides and supercapacitive graphene showing enhanced surface activity/reactivity and reasonable areal density of tailored interfaces. We used a range of complementary tools to establish microscopic structure-property-function correlations including scanning electron microscopy combined with energy dispersive x-ray spectroscopy, atomic force microscopy, x-ray diffraction, transmission electron microscopy in conjunction with selected-area electron diffraction, and resonance Raman spectroscopy combined with elemental Raman mapping. They reveal surface morphology, local (lattice dynamical) and average structure and surface charge transfer/doping due to physically (or chemically) adsorbed cobalt oxide and highlight the surface structure and interfaces. This lays the groundwork to further investigate the electrochemical properties as high-performance supercapacitor cathodes, rechargeable secondary battery anodes and electrocatalytical platforms.

  16. Low-temperature CVD of iron, cobalt, and nickel nitride thin films from bis[di(tert-butyl)amido]metal(II) precursors and ammonia

    SciTech Connect

    Cloud, Andrew N.; Abelson, John R.; Davis, Luke M.; Girolami, Gregory S.

    2014-03-15

    Thin films of late transition metal nitrides (where the metal is iron, cobalt, or nickel) are grown by low-pressure metalorganic chemical vapor deposition from bis[di(tert-butyl)amido]metal(II) precursors and ammonia. These metal nitrides are known to have useful mechanical and magnetic properties, but there are few thin film growth techniques to produce them based on a single precursor family. The authors report the deposition of metal nitride thin films below 300 °C from three recently synthesized M[N(t-Bu){sub 2}]{sub 2} precursors, where M = Fe, Co, and Ni, with growth onset as low as room temperature. Metal-rich phases are obtained with constant nitrogen content from growth onset to 200 °C over a range of feedstock partial pressures. Carbon contamination in the films is minimal for iron and cobalt nitride, but similar to the nitrogen concentration for nickel nitride. X-ray photoelectron spectroscopy indicates that the incorporated nitrogen is present as metal nitride, even for films grown at the reaction onset temperature. Deposition rates of up to 18 nm/min are observed. The film morphologies, growth rates, and compositions are consistent with a gas-phase transamination reaction that produces precursor species with high sticking coefficients and low surface mobilities.

  17. Tailoring of in-plane magnetic anisotropy in polycrystalline cobalt thin films by external stress

    NASA Astrophysics Data System (ADS)

    Kumar, Dileep; Singh, Sadhana; Vishawakarma, Pramod; Dev, Arun Singh; Reddy, V. R.; Gupta, Ajay

    2016-11-01

    Polycrystalline Co films of nominal thickness ~180 Å were deposited on intentionally curved Si substrates. Tensile and compressive stresses of 100 MPa and 150 MPa were induced in the films by relieving the curvature. It has been found that, within the elastic limit, presence of stress leads to an in-plane magnetic anisotropy in the film and its strength increases with increasing stress. Easy axis of magnetization in the films is found to be parallel/ transverse to the compressive /tensile stresses respectively. The origin of magnetic anisotropy in the stressed films is understood in terms of magneto- elastic coupling, where the stress try to align the magnetic moments in order to minimize the magneto-elastic as well as anisotropy energy. Tensile stress is also found to be responsible for the surface smoothening of the films, which is attributed to the movement of the atoms associated with the applied stress. The present work provides a possible way to tailor the magnetic anisotropy and its direction in polycrystalline and amorphous films using external stress.

  18. Regenerable cobalt oxide loaded magnetosphere catalyst from fly ash for mercury removal in coal combustion flue gas.

    PubMed

    Yang, Jianping; Zhao, Yongchun; Zhang, Junying; Zheng, Chuguang

    2014-12-16

    To remove Hg(0) in coal combustion flue gas and eliminate secondary mercury pollution of the spent catalyst, a new regenerable magnetic catalyst based on cobalt oxide loaded magnetospheres from fly ash (Co-MF) was developed. The catalyst, with an optimal loading of 5.8% cobalt species, attained approximately 95% Hg(0) removal efficiency at 150 °C under simulated flue gas atmosphere. O2 could enhance the Hg(0) removal activity of magnetospheres catalyst via the Mars-Maessen mechanism. SO2 displayed an inhibitive effect on Hg(0) removal capacity. NO with lower concentration could promote the Hg(0) removal efficiency. However, when increasing the NO concentration to 300 ppm, a slightly inhibitive effect of NO was observed. In the presence of 10 ppm of HCl, greater than 95.5% Hg(0) removal efficiency was attained, which was attributed to the formation of active chlorine species on the surface. H2O presented a seriously inhibitive effect on Hg(0) removal efficiency. Repeated oxidation-regeneration cycles demonstrated that the spent Co-MF catalyst could be regenerated effectively via thermally treated at 400 °C for 2 h.

  19. Effect of oxidation heat treatment on the bond strength between a ceramic and cast and milled cobalt-chromium alloys.

    PubMed

    Li, Jieyin; Ye, Xiuhua; Li, Bohua; Liao, Juankun; Zhuang, Peilin; Ye, Jiantao

    2015-08-01

    There is a dearth of dental scientific literature on the effect of different oxidation heat treatments (OHTs) (as surface pretreatments) on the bonding performance of cast and milled cobalt-chromium (CoCr) alloys. The objective of this study was to evaluate the effect of different OHTs on the bond strength between a ceramic and cast and milled CoCr alloys. Cobalt-chromium metallic specimens were prepared using either a cast or a milled method. Specimens were subjected to four different OHT methods: without OHT; OHT under normal atmospheric pressure; OHT under vacuum; and OHT under vacuum followed by sandblasting. The metal-ceramic bond strength was evaluated using a three-point bending test according to ISO9693. Scanning electron microscopy and energy-dispersive spectroscopy were used to study the specimens' microstructure and elemental composition. The bond strength was not affected by the CoCr manufacturing method. Oxidation heat treatment performed under normal atmospheric pressure resulted in the highest bond strength. The concentration of oxygen on the alloy surfaces varied with the different pretreatment methods in the following order: OHT under normal atmospheric pressure > OHT under vacuum > without OHT ≈ OHT under vacuum followed by sandblasting. PMID:26104804

  20. The influence of manganese-cobalt oxide/graphene on reducing fire hazards of poly(butylene terephthalate).

    PubMed

    Wang, Dong; Zhang, Qiangjun; Zhou, Keqing; Yang, Wei; Hu, Yuan; Gong, Xinglong

    2014-08-15

    By means of direct nucleation and growth on the surface of graphene and element doping of cobalt oxide (Co3O4) nano-particles, manganese-cobalt oxide/graphene hybrids (MnCo2O4-GNS) were synthesized to reduce fire hazards of poly(butylene terephthalate) (PBT). The structure, elemental composition and morphology of the obtained hybrids were surveyed by X-ray diffraction, X-ray photoelectron spectrometer and transmission electron microscopy, respectively. Thermogravimetric analysis was applied to simulate and study the influence of MnCo2O4-GNS hybrids on thermal degradation of PBT during combustion. The fire hazards of PBT and its composites were assessed by the cone calorimeter. The cone test results had showed that peak HRR and SPR values of MnCo2O4-GNS/PBT composites were lower than that of pure PBT and Co3O4-GNS/PBT composites. Furthermore, the incorporation of MnCo2O4-GNS hybrids gave rise to apparent decrease of pyrolysis products containing aromatic compounds, carbonyl compounds, carbon monoxide and carbon dioxide, attributed to combined impact of physical barrier for graphene and cat O4 for organic volatiles and carbon monoxide. PMID:24997255

  1. Cesium and cobalt adsorption on synthetic nano manganese oxide: A two dimensional infra-red correlation spectroscopic investigation

    NASA Astrophysics Data System (ADS)

    Al Lafi, Abdul G.; Al Abdullah, Jamal

    2015-08-01

    Molecular scale information is of prime importance to understand ions coordination to mineral surfaces and consequently to aid in the design of improved ion exchange materials. This paper reports on the use of two-dimensional correlation infra-red spectroscopy (2D-COS-IR) to investigate the time dependent adsorptions of cesium and cobalt ions onto nano manganese oxide (NMO). The metal ions uptake was driven mainly by inner-sphere complex formation as demonstrated by the production of new absorption bands at 1160, 1100, 585 and 525 cm-1, which were assigned to the O-O bond vibration and the coupled vibrations of M-O and Mn-O bonds. The progressive development of the 3100 cm-1 band, which is attributed to the stretching vibration of the lattice-OH group, indicates an M+/H+ ion-exchange reaction. The new bands at 700 and 755 cm-1 in the case of cobalt ion adsorption and at 800 and 810 cm-1 in the case of cesium ion adsorption, and the splitting of other bands at 1135 and 875 cm-1 indicate the presence of different O-O bond lengths. This suggests different coordination of the two metal ions with oxygen. The infrared spectroscopy combined with 2D-COS provides a powerful tool to investigate the mechanism of interaction between heavy metals and manganese oxide.

  2. Cobalt doped antimony oxide nano-particles based chemical sensor and photo-catalyst for environmental pollutants

    NASA Astrophysics Data System (ADS)

    Jamal, Aslam; Rahman, Mohammed M.; Khan, Sher Bahadar; Faisal, Mohd.; Akhtar, Kalsoom; Rub, Malik Abdul; Asiri, Abdullah M.; Al-Youbi, Abdulrahman O.

    2012-11-01

    Cobalt doped antimony oxide nano-particles (NPs) have been synthesized by hydrothermal process and structurally characterized by utilizing X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) and Fourier transforms infrared spectrophotometer (FT-IR) which revealed that the synthesized cobalt antimony oxides (CoSb2O6) are well crystalline nano-particles with an average particles size of 26 ± 10 nm. UV-visible absorption spectra (˜286 nm) were used to investigate the optical properties of CoSb2O6. The chemical sensing of CoSb2O6 NPs have been primarily investigated by I-V technique, where dichloromethane is used as a model compound. The analytical performance of dichloromethane chemical sensor exhibits high sensitivity (1.2432 μA cm-2 mM-1) and a large linear dynamic range (1.0 μM-0.01 M) in short response time (10 s). The photo catalytic activity of the synthesized CoSb2O6 nano-particles was evaluated by degradation of acridine orange (AO), which degraded 58.37% in 200 min. These results indicate that CoSb2O6 nano-particles can play an excellent research impact in the environmental field.

  3. The influence of manganese-cobalt oxide/graphene on reducing fire hazards of poly(butylene terephthalate).

    PubMed

    Wang, Dong; Zhang, Qiangjun; Zhou, Keqing; Yang, Wei; Hu, Yuan; Gong, Xinglong

    2014-08-15

    By means of direct nucleation and growth on the surface of graphene and element doping of cobalt oxide (Co3O4) nano-particles, manganese-cobalt oxide/graphene hybrids (MnCo2O4-GNS) were synthesized to reduce fire hazards of poly(butylene terephthalate) (PBT). The structure, elemental composition and morphology of the obtained hybrids were surveyed by X-ray diffraction, X-ray photoelectron spectrometer and transmission electron microscopy, respectively. Thermogravimetric analysis was applied to simulate and study the influence of MnCo2O4-GNS hybrids on thermal degradation of PBT during combustion. The fire hazards of PBT and its composites were assessed by the cone calorimeter. The cone test results had showed that peak HRR and SPR values of MnCo2O4-GNS/PBT composites were lower than that of pure PBT and Co3O4-GNS/PBT composites. Furthermore, the incorporation of MnCo2O4-GNS hybrids gave rise to apparent decrease of pyrolysis products containing aromatic compounds, carbonyl compounds, carbon monoxide and carbon dioxide, attributed to combined impact of physical barrier for graphene and cat O4 for organic volatiles and carbon monoxide.

  4. Regenerable cobalt oxide loaded magnetosphere catalyst from fly ash for mercury removal in coal combustion flue gas.

    PubMed

    Yang, Jianping; Zhao, Yongchun; Zhang, Junying; Zheng, Chuguang

    2014-12-16

    To remove Hg(0) in coal combustion flue gas and eliminate secondary mercury pollution of the spent catalyst, a new regenerable magnetic catalyst based on cobalt oxide loaded magnetospheres from fly ash (Co-MF) was developed. The catalyst, with an optimal loading of 5.8% cobalt species, attained approximately 95% Hg(0) removal efficiency at 150 °C under simulated flue gas atmosphere. O2 could enhance the Hg(0) removal activity of magnetospheres catalyst via the Mars-Maessen mechanism. SO2 displayed an inhibitive effect on Hg(0) removal capacity. NO with lower concentration could promote the Hg(0) removal efficiency. However, when increasing the NO concentration to 300 ppm, a slightly inhibitive effect of NO was observed. In the presence of 10 ppm of HCl, greater than 95.5% Hg(0) removal efficiency was attained, which was attributed to the formation of active chlorine species on the surface. H2O presented a seriously inhibitive effect on Hg(0) removal efficiency. Repeated oxidation-regeneration cycles demonstrated that the spent Co-MF catalyst could be regenerated effectively via thermally treated at 400 °C for 2 h. PMID:25403026

  5. Evidence of a reduction reaction of oxidized iron/cobalt by boron atoms diffused toward naturally oxidized surface of CoFeB layer during annealing

    SciTech Connect

    Sato, Soshi Honjo, Hiroaki; Niwa, Masaaki; Ikeda, Shoji; Ohno, Hideo; Endoh, Tetsuo

    2015-04-06

    We have investigated the redox reaction on the surface of Ta/CoFeB/MgO/CoFeB magnetic tunnel junction stack samples after annealing at 300, 350, and 400 °C for 1 h using angle-resolved X-ray photoelectron spectroscopy for precise analysis of the chemical bonding states. At a capping tantalum layer thickness of 1 nm, both the capping tantalum layer and the surface of the underneath CoFeB layer in the as-deposited stack sample were naturally oxidized. By comparison of the Co 2p and Fe 2p spectra among the as-deposited and annealed samples, reduction of the naturally oxidized cobalt and iron atoms occurred on the surface of the CoFeB layer. The reduction reaction was more significant at higher annealing temperature. Oxidized cobalt and iron were reduced by boron atoms that diffused toward the surface of the top CoFeB layer. A single CoFeB layer was prepared on SiO{sub 2}, and a confirmatory evidence of the redox reaction with boron diffusion was obtained by angle-resolved X-ray photoelectron spectroscopy analysis of the naturally oxidized surface of the CoFeB single layer after annealing. The redox reaction is theoretically reasonable based on the Ellingham diagram.

  6. Earth-Abundant Cobalt Pyrite (CoS2) Thin Film on Glass as a Robust, High-Performance Counter Electrode for Quantum Dot-Sensitized Solar Cells.

    PubMed

    Faber, Matthew S; Park, Kwangsuk; Cabán-Acevedo, Miguel; Santra, Pralay K; Jin, Song

    2013-06-01

    We report a cobalt pyrite (cobalt disulfide, CoS2) thin film on glass as a robust, high-performance, low-cost, earth-abundant counter electrode for liquid-junction quantum dot-sensitized solar cells (QDSSCs) that employ the aqueous sulfide/polysulfide (S(2-)/Sn(2-)) redox electrolyte as the hole-transporting medium. The metallic CoS2 thin film electrode is prepared via thermal sulfidation of a cobalt film deposited on glass and has been characterized by powder X-ray diffraction and electron microscopy. Using the CoS2 counter electrode, CdS/CdSe-sensitized QDSSCs display improved short-circuit photocurrent density and fill factor, achieving solar light-to-electricity conversion efficiencies as high as 4.16%, with an average efficiency improvement of 54 (±14)% over equivalent devices assembled with a traditional platinum counter electrode. Electrochemical measurements verify that CoS2 shows high electrocatalytic activity toward polysulfide reduction, rationalizing the improved QDSSC performance. CoS2 is also less susceptible to poisoning by the sulfide/polysulfide electrolyte, a problem that plagues platinum electrodes in this application; furthermore, CoS2 exhibits excellent stability in sulfide/polysulfide electrolyte, resulting in highly reproducible performance.

  7. Cobalt salophen complex supported on imidazole functionalized magnetic nanoparticles as a recoverable catalyst for oxidation of alkenes

    NASA Astrophysics Data System (ADS)

    Afshari, Mozhgan; Gorjizadeh, Maryam; Nazari, Simin; Naseh, Mohammad

    2014-08-01

    A new magnetically separable catalyst consisting of Co(II) salophen complex covalently supported on imidazole functionalized silica coated cobalt ferrite was prepared. The synthesized catalyst was characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), vibrating sample magnetometry (VSM), thermogravimetric analysis (TGA), inductively coupled plasma atomic emission spectroscopy (ICP-AES) and Fourier transform infrared (FT-IR). The immobilized catalyst was shown to be an efficient heterogeneous catalyst for the oxidation of some alkenes using hydrogen peroxide (H2O2) as oxidant. The catalyst could be easily and efficiently isolated from the final product solution by magnetic decantation and be reused for 5 consecutive reactions without showing any significant activity degradation.

  8. The formation of volatile corrosion products during the mixed oxidation-chlorination of cobalt at 650 C

    NASA Technical Reports Server (NTRS)

    Jacobson, N. S.; Mcnallan, M. J.; Lee, Y. Y.

    1986-01-01

    The reaction of cobalt with 1 pct Cl2 in 1, 10, and 50 pct O2/Ar atmospheres has been studied at 650 C with thermogravimetry and mass spectrometry. The principal vapor species appear to be CoCl2 and CoCl3. In all cases, CoCl2(s) forms at the oxide/metal interface and equilibration of the volatile chlorides with Co3O4 does not occur in the early stages of the reaction. In the 1 pct Cl2 1 pct O2-Ar case, continuous volatilization occurs. In the 1 pct Cl2-10 pct O2-Ar and 1 pct CL2-50 pct O2-Ar cases, volatilization occurs only in the first few minutes of reaction. Afterwards, the reaction is predominantly oxidation.

  9. Electrodeposition of high magnetostrictive cobalt-iron alloy films for smart tags and sensor applications

    SciTech Connect

    Pillars, Jamin Ryan

    2015-12-01

    Magnetostrictive CoFe films were investigated for use as magnetoelastic tags or sensors. The ability to electrodeposit these films enables batch fabrication processes to pattern a variety of geometries while controlling the film stoichiometry and crystallography. In current research looking at CoFe, improved magnetostriction was achieved using a co-sputtering, annealing, and quenching method1. Other current research has reported electrodeposited CoFe films using a sulfate based chemistry resulting in film compositions that are Fe rich in the range of Co0.3-0.4Fe0.7-0.6 and have problems of codeposition of undesirables that can have a negative impact on magnetic properties. The research presented here focused on maximizing magnetostriction at the optimal stoichiometry range of Co0.7-0.75Fe0.3-0.25, targeting the (fcc+bcc)/bcc phase boundary, and using a novel chemistry and plating parameters to deposit films without being limited to “line of sight” deposition.

  10. Films based on oxidized starch and cellulose from barley.

    PubMed

    El Halal, Shanise Lisie Mello; Colussi, Rosana; Deon, Vinícius Gonçalves; Pinto, Vânia Zanella; Villanova, Franciene Almeida; Carreño, Neftali Lenin Villarreal; Dias, Alvaro Renato Guerra; Zavareze, Elessandra da Rosa

    2015-11-20

    Starch and cellulose fibers were isolated from grains and the husk from barley, respectively. Biodegradable films of native starch or oxidized starches and glycerol with different concentrations of cellulose fibers (0%, 10% and 20%) were prepared. The films were characterized by morphological, mechanical, barrier, and thermal properties. Cellulose fibers isolated from the barley husk were obtained with 75% purity and high crystallinity. The morphology of the films of the oxidized starches, regardless of the fiber addition, was more homogeneous as compared to the film of the native starch. The addition of cellulose fibers in the films increased the tensile strength and decreased elongation. The water vapor permeability of the film of oxidized starch with 20% of cellulose fibers was lower than the without fibers. However the films with cellulose fibers had the highest decomposition with the initial temperature and thermal stability. The oxidized starch and cellulose fibers from barley have a good potential for use in packaging. The addition of cellulose fibers in starch films can contribute to the development of films more resistant that can be applied in food systems to maintain its integrity.

  11. Marine cobalt resources

    USGS Publications Warehouse

    Manheim, F. T.

    1986-01-01

    Ferromanganese oxides in the open oceans are more enriched in cobalt than any other widely distributed sediments or rocks. Concentrations of cobalt exceed 1 percent in ferromanganese crusts on seamounts, ocean ridges, and other raised areas of the ocean. The cobalt-rich crusts may be the slowest growing of any earth material, accumulating one molecular layer every 1 to 3 months. Attention has been drawn to crusts as potential resources because they contain cobalt, manganese, and platinum, three of the four priority strategic metals for the United States. Moreover, unlike abyssal nodules, whose recovery is complicated by their dominant location in international waters, some of the most cobalt-rich crusts occur within the exclusive economic zone of the United States and other nations. Environmental impact statements for crust exploitation are under current development by the Department of the Interior.

  12. Aerosol chemical vapor deposition of metal oxide films

    DOEpatents

    Ott, Kevin C.; Kodas, Toivo T.

    1994-01-01

    A process of preparing a film of a multicomponent metal oxide including: forming an aerosol from a solution comprised of a suitable solvent and at least two precursor compounds capable of volatilizing at temperatures lower than the decomposition temperature of said precursor compounds; passing said aerosol in combination with a suitable oxygen-containing carrier gas into a heated zone, said heated zone having a temperature sufficient to evaporate the solvent and volatilize said precursor compounds; and passing said volatilized precursor compounds against the surface of a substrate, said substrate having a sufficient temperature to decompose said volatilized precursor compounds whereby metal atoms contained within said volatilized precursor compounds are deposited as a metal oxide film upon the substrate is disclosed. In addition, a coated article comprising a multicomponent metal oxide film conforming to the surface of a substrate selected from the group consisting of silicon, magnesium oxide, yttrium-stabilized zirconium oxide, sapphire, or lanthanum gallate, said multicomponent metal oxide film characterized as having a substantially uniform thickness upon said FIELD OF THE INVENTION The present invention relates to the field of film coating deposition techniques, and more particularly to the deposition of multicomponent metal oxide films by aerosol chemical vapor deposition. This invention is the result of a contract with the Department of Energy (Contract No. W-7405-ENG-36).

  13. Low reflectance sputtered vanadium oxide thin films on silicon

    NASA Astrophysics Data System (ADS)

    Esther, A. Carmel Mary; Dey, Arjun; Rangappa, Dinesh; Sharma, Anand Kumar

    2016-07-01

    Vanadium oxide thin films on silicon (Si) substrate are grown by pulsed radio frequency (RF) magnetron sputtering technique at RF power in the range of 100-700 W at room temperature. Deposited thin films are characterized by field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) techniques to investigate microstructural, phase, electronic structure and oxide state characteristics. The reflectance and transmittance spectra of the films and the Si substrate are recorded at the solar region (200-2300 nm) of the spectral window. Substantial reduction in reflectance and increase in transmittance is observed for the films grown beyond 200 W. Further, optical constants viz. absorption coefficient, refractive index and extinction coefficient of the deposited vanadium oxide films are evaluated.

  14. Improved Photoelectrocatalytic Performance for Water Oxidation by Earth-Abundant Cobalt Molecular Porphyrin Complex-Integrated BiVO4 Photoanode.

    PubMed

    Liu, Bin; Li, Jian; Wu, Hao-Lin; Liu, Wen-Qiang; Jiang, Xin; Li, Zhi-Jun; Chen, Bin; Tung, Chen-Ho; Wu, Li-Zhu

    2016-07-20

    An earth-abundant, low-cost cobalt porphyrin complex (CoTCPP) is designed as a molecular catalyst to work on three-dimensional BiVO4 film electrode for water oxidation for the first time. Under illumination of a 100 mW cm(-2) Xe lamp, the CoTCPP-functionalized BiVO4 photoanode exhibits a 2-fold enhancement in photocurrent density at 1.23 V vs RHE and nearly a 450 mV cathodic shift at 0.5 mA cm(-2) photocurrent density relative to bare BiVO4 in 0.1 M Na2SO4 (pH = 6.8). Simultaneously, stoichiometric oxygen and hydrogen are generated with a faradic efficiency of 80% over 4 h. The activity and stability of the BiVO4 photoanode are dramatically increased by molecular CoTCPP, giving rise to higher performance than previously reported noble metal ruthenium complex-modified BiVO4 photoanode. By using hydrogen peroxide as the hole scavenger, we demonstrate that molecular CoTCPP catalyst greatly suppresses the hole-electron recombination on the surface of BiVO4 semiconductor, which offers a promising route toward high efficiency, low cost, practical solar fuel generation device. PMID:27359374

  15. Effect of cobalt precursors on the dispersion, reduction, and CO oxidation of CoO(x)/γ-Al2O3 catalysts calcined in N2.

    PubMed

    Zhang, Lingling; Dong, Lihui; Yu, Wujiang; Liu, Lianjun; Deng, Yu; Liu, Bin; Wan, Haiqin; Gao, Fei; Sun, Keqin; Dong, Lin

    2011-03-15

    The present work tentatively investigated the effect of cobalt precursors (cobalt acetate and cobalt nitrate) on the physicochemical properties of CoO(x)/γ-Al(2)O(3) catalysts calcined in N(2). XRD, Raman, XPS, FTIR, and UV-vis DRS results suggested that CoO/γ-Al(2)O(3) was obtained from cobalt acetate precursors and CoO was dispersed on γ-Al(2)O(3) below its dispersion capacity of 1.50 mmol/(100 m(2) γ-Al(2)O(3)), whereas Co(3)O(4)/γ-Al(2)O(3) was obtained from cobalt nitrate precursors and Co(3)O(4) preferred to agglomerate above the dispersion capacity of 0.15 mmol/(100m(2) γ-Al(2)O(3)). Compared with Co(3)O(4)/γ-Al(2)O(3), CoO/γ-Al(2)O(3) catalysts were difficult to be reduced and easy to desorb oxygen species at low temperatures and presented high activities for CO oxidation as proved by H(2)-TPR, O(2)-TPD, and CO oxidation model reaction results. A surface incorporation model was proposed to explain the dispersion and reduction properties of CoO/γ-Al(2)O(3) catalysts.

  16. Effect of cobalt precursors on the dispersion, reduction, and CO oxidation of CoO(x)/γ-Al2O3 catalysts calcined in N2.

    PubMed

    Zhang, Lingling; Dong, Lihui; Yu, Wujiang; Liu, Lianjun; Deng, Yu; Liu, Bin; Wan, Haiqin; Gao, Fei; Sun, Keqin; Dong, Lin

    2011-03-15

    The present work tentatively investigated the effect of cobalt precursors (cobalt acetate and cobalt nitrate) on the physicochemical properties of CoO(x)/γ-Al(2)O(3) catalysts calcined in N(2). XRD, Raman, XPS, FTIR, and UV-vis DRS results suggested that CoO/γ-Al(2)O(3) was obtained from cobalt acetate precursors and CoO was dispersed on γ-Al(2)O(3) below its dispersion capacity of 1.50 mmol/(100 m(2) γ-Al(2)O(3)), whereas Co(3)O(4)/γ-Al(2)O(3) was obtained from cobalt nitrate precursors and Co(3)O(4) preferred to agglomerate above the dispersion capacity of 0.15 mmol/(100m(2) γ-Al(2)O(3)). Compared with Co(3)O(4)/γ-Al(2)O(3), CoO/γ-Al(2)O(3) catalysts were difficult to be reduced and easy to desorb oxygen species at low temperatures and presented high activities for CO oxidation as proved by H(2)-TPR, O(2)-TPD, and CO oxidation model reaction results. A surface incorporation model was proposed to explain the dispersion and reduction properties of CoO/γ-Al(2)O(3) catalysts. PMID:21216407

  17. Altering properties of cerium oxide thin films by Rh doping

    SciTech Connect

    Ševčíková, Klára; Nehasil, Václav; Vorokhta, Mykhailo; Haviar, Stanislav; Matolín, Vladimír; and others

    2015-07-15

    Highlights: • Thin films of ceria doped by rhodium deposited by RF magnetron sputtering. • Concentration of rhodium has great impact on properties of Rh–CeO{sub x} thin films. • Intensive oxygen migration in films with low concentration of rhodium. • Oxygen migration suppressed in films with high amount of Rh dopants. - Abstract: Ceria containing highly dispersed ions of rhodium is a promising material for catalytic applications. The Rh–CeO{sub x} thin films with different concentrations of rhodium were deposited by RF magnetron sputtering and were studied by soft and hard X-ray photoelectron spectroscopies, Temperature programmed reaction and X-ray powder diffraction techniques. The sputtered films consist of rhodium–cerium mixed oxide where cerium exhibits a mixed valency of Ce{sup 4+} and Ce{sup 3+} and rhodium occurs in two oxidation states, Rh{sup 3+} and Rh{sup n+}. We show that the concentration of rhodium has a great influence on the chemical composition, structure and reducibility of the Rh–CeO{sub x} thin films. The films with low concentrations of rhodium are polycrystalline, while the films with higher amount of Rh dopants are amorphous. The morphology of the films strongly influences the mobility of oxygen in the material. Therefore, varying the concentration of rhodium in Rh–CeO{sub x} thin films leads to preparing materials with different properties.

  18. Method for producing high quality oxide films on substrates

    DOEpatents

    Ruckman, M.W.; Strongin, M.; Gao, Y.L.

    1993-11-23

    A method is described for providing an oxide film of a material on the surface of a substrate using a reactive deposition of the material onto the substrate surface in the presence of a solid or liquid layer of an oxidizing gas. The oxidizing gas is provided on the substrate surface in an amount sufficient to dissipate the latent heat of condensation occurring during deposition as well as creating a favorable oxidizing environment for the material. 4 figures.

  19. Method for producing high quality oxide films on substrates

    DOEpatents

    Ruckman, Mark W.; Strongin, Myron; Gao, Yong L.

    1993-01-01

    A method for providing an oxide film of a material on the surface of a substrate using a reactive deposition of the material onto the substrate surface in the presence of a solid or liquid layer of an oxidizing gas. The oxidizing gas is provided on the substrate surface in an amount sufficient to dissipate the latent heat of condensation occurring during deposition as well as creating a favorable oxidizing environment for the material.

  20. Power generation using spinel manganese-cobalt oxide as a cathode catalyst for microbial fuel cell applications.

    PubMed

    Mahmoud, Mohamed; Gad-Allah, Tarek A; El-Khatib, K M; El-Gohary, Fatma

    2011-11-01

    This study focused on the use of spinel manganese-cobalt (Mn-Co) oxide, prepared by a solid state reaction, as a cathode catalyst to replace platinum in microbial fuel cells (MFCs) applications. Spinel Mn-Co oxides, with an Mn/Co atomic ratios of 0.5, 1, and 2, were prepared and examined in an air cathode MFCs which was fed with a molasses-laden synthetic wastewater and operated in batch mode. Among the three Mn-Co oxide cathodes and after 300 h of operation, the Mn-Co oxide catalyst with Mn/Co atomic ratio of 2 (MnCo-2) exhibited the highest power generation 113 mW/m2 at cell potential of 279 mV, which were lower than those for the Pt catalyst (148 mW/m2 and 325 mV, respectively). This study indicated that using spinel Mn-Co oxide to replace platinum as a cathodic catalyst enhances power generation, increases contaminant removal, and substantially reduces the cost of MFCs.

  1. Effect of cobalt doping on structural, optical and redox properties cerium oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Ansari, Anees A.; Labis, J.; Alam, M.; Ramay, Shahid M.; Ahmad, N.; Mahmood, Asif

    2016-03-01

    Cobalt-doped ceria nanoparticles were synthesized using the polyol method under co-precipitation hydrolysis. The structural, morphological, optical and redox properties were observed to investigate the influence of different concentration of cobalt ion doping on the prepared CeO2 nanomaterials in terms of X-ray diffraction, field-emission transmission electron microscopy, thermogravimetric analysis, Fourier-transform infrared spectroscopy, UV/vis absorption spectroscopy and temperature program reduction techniques. The optical band gap energy was calculated from the optical absorption spectra for doped ceria nanoparticles, which have been found to be 2.68, 2.77, and 2.82 eV for the 2, 4, and 7 mol% Co ion-doped CeO2 nanoparticles, respectively. As observed, the band gap energies increases as the doping Co ion concentrations increased, which could be due to significant increased oxygen vacancies with Co doping. The synergistic interaction between Co and CeO2 was the main factor responsible for high catalytic activity of cobalt-doped CeO2 model catalysts.

  2. Nanoscale magnetization reversal caused by electric field-induced ion migration and redistribution in cobalt ferrite thin films.

    PubMed

    Chen, Xinxin; Zhu, Xiaojian; Xiao, Wen; Liu, Gang; Feng, Yuan Ping; Ding, Jun; Li, Run-Wei

    2015-04-28

    Reversible nanoscale magnetization reversal controlled merely by electric fields is still challenging at the moment. In this report, first-principles calculation indicates that electric field-induced magnetization reversal can be achieved by the appearance of unidirectional magnetic anisotropy along the (110) direction in Fe-deficient cobalt ferrite (CoFe(2-x)O4, CFO), as a result of the migration and local redistribution of the Co(2+) ions adjacent to the B-site Fe vacancies. In good agreement with the theoretical model, we experimentally observed that in the CFO thin films the nanoscale magnetization can be reversibly and nonvolatilely reversed at room temperature via an electrical ion-manipulation approach, wherein the application of electric fields with appropriate polarity and amplitude can modulate the size of magnetic domains with different magnetizations up to 70%. With the low power consumption (subpicojoule) characteristics and the elimination of external magnetic field, the observed electric field-induced magnetization reversal can be used for the construction of energy-efficient spintronic devices, e.g., low-power electric-write and magnetic-read memories. PMID:25794422

  3. Growth mechanism of Cobalt(II) Phthalocyanine(CoPc) thin films on SiO{sub 2} and muscovite substrates

    SciTech Connect

    Gedda, Murali; Subbarao, Nimmakayala V. V.; Goswami, Dipak K.

    2014-01-28

    Thin films of Cobalt(II) Phthalocyanine (CoPc) were grown by thermal evaporation technique on two different substrates namely SiO{sub 2} and atomically cleaned muscovite mica(001) at various substrate temperatures. Deposition rate has been maintained to 0.3Å/sec during the growth of the films. The growth process is studied by means of atomic force microscopy (AFM). Films on SiO{sub 2} exhibit only three-dimensional islands and uniformity of these islands improved with substrate temperatures, whereas films on mica (001) consist of long oriented percolated structures. The results revealed that the growth mechanism of CoPc strongly depends on substrate temperatures as well as nature of substrate used. Optical properties were characterized by UV-Visible spectroscopy and structural properties were studied using X-ray diffraction.

  4. Nonenzymatic amperometric organic peroxide sensor based on nano-cobalt phthalocyanine loaded functionalized graphene film.

    PubMed

    Cui, Lin; Chen, Lijian; Xu, Minrong; Su, Haichao; Ai, Shiyun

    2012-01-27

    An enzyme-free amperometric method was established for the electrochemical reduction tert-butyl hydroperoxide (TBHP) on the utilization of nano-cobalt phthalocyanine (CoPc) loaded functionalized graphene (FGR) and to create a highly responsive organic peroxide sensor. FGR was synthesized with a simple and fast method of electrolysis with potassium hexafluorophosphate (KPF(6)) solution as electrolyte under the static current of 0.2A. In the present work, FGR was dispersed in the solution of CoPc to fabricate chemical modified electrode to detect TBHP. The electro-reduction of TBHP can be catalyzed by FGR-CoPc, which has an excellent electrocatalytical activity due to the synergistic effect of the FGR with CoPc. The sensor can be applied to the quantification of TBHP with a linear range covering from 0.0260 to 4.81 mM, a high sensitivity of 13.64 A M(-1), and a low detection limit of 5 μM. This proposed sensor was designed as a simple, robust, and cheap analytical device for the determination of TBHP in body lotion.

  5. Observation of longitudinal spin-Seebeck effect in cobalt-ferrite epitaxial thin films

    SciTech Connect

    Niizeki, Tomohiko; Kikkawa, Takashi; Uchida, Ken-ichi; Oka, Mineto; Suzuki, Kazuya Z.; Yanagihara, Hideto; Kita, Eiji; Saitoh, Eiji

    2015-05-15

    The longitudinal spin-Seebeck effect (LSSE) has been investigated in cobalt ferrite (CFO), an exceptionally hard magnetic spinel ferrite. A bilayer of a polycrystalline Pt and an epitaxially-strained CFO(110) exhibiting an in-plane uniaxial anisotropy was prepared by reactive rf sputtering technique. Thermally generated spin voltage in the CFO layer was measured via the inverse spin-Hall effect in the Pt layer. External-magnetic-field (H) dependence of the LSSE voltage (V{sub LSSE}) in the Pt/CFO(110) sample with H ∥ [001] was found to exhibit a hysteresis loop with a high squareness ratio and high coercivity, while that with H∥[11{sup -}0] shows a nearly closed loop, reflecting the different anisotropies induced by the epitaxial strain. The magnitude of V{sub LSSE} has a linear relationship with the temperature difference (ΔT), giving the relatively large V{sub LSSE} /ΔT of about 3 μV/K for CFO(110) which was kept even at zero external field.

  6. Hierarchical nanostructures with unique Y-shaped interconnection networks in manganese substituted cobalt oxides: the enhancement effect on electrochemical sensing performance.

    PubMed

    Lan, Wen-Jie; Kuo, Cheng-Chi; Chen, Chun-Hu

    2013-04-14

    A general redox procedure was successfully developed for the controlled synthesis of substituted cobalt oxides with hierarchical flower-like nanostructures comprising unique Y-shaped interconnections. The substitution and nanostructures synergistically enhance the material's electrochemical activities for highly efficient sensing of H2O2.

  7. The Effect of Zn Addition on the Oxidation State of Cobalt in Co/ZrO2 Catalysts

    SciTech Connect

    Lebarbier, Vanessa MC; Karim, Ayman M.; Engelhard, Mark H.; Wu, Yu; Xu, Bo-Qing; Petersen, Eric J.; Datye, Abhaya K.; Wang, Yong

    2011-09-01

    The effect of Zn promotion on the activity and selectivity of Co/ZrO{sub 2} catalysts for ethanol steam reforming was investigated. The catalysts were synthesized by incipient wetness impregnation and characterized using BET measurements, temperature programmed reduction, X-ray diffraction, transmission electron microscopy, and X-ray electron spectroscopy. Compared to Co/ZrO{sub 2} catalyst, a higher ethanol conversion and a lower CH{sub 4} selectivity were observed for the Co/ZrO{sub 2} catalyst promoted with Zn. It was found that addition of Zn inhibits the oxidation of metallic cobalt (Co{sup 0}) particles, which results in a higher ratio of Co{sup 0}/Co{sup 2+} present in the Zn promoted Co/ZrO{sub 2} catalyst. These results suggest that metallic cobalt (Co{sup 0}) is responsible for ethanol conversion via ethanol dehydrogenation whereas Co{sup 2+} plays a role in the CH{sub 4} formation. For both catalysts, the experimental results show that CH4 is mainly produced via CO and/or CO{sub 2} methanation. TPR measurements, on the other hand, show Zn addition inhibits the reduction of Co{sup 2+} and Co{sup 3+}, which would mislead the conclusion that oxidized Co is required to reduce the CH{sub 4} formation. Therefore, TPR may not be appropriate to correlate the degree of metal reducibility (in this case Co{sup 0}) with the catalyst activity for reactions such as ethanol steam reforming where oxidizing conditions exist.

  8. Characterization of High-Velocity Solution Precursor Flame-Sprayed Manganese Cobalt Oxide Spinel Coatings for Metallic SOFC Interconnectors

    NASA Astrophysics Data System (ADS)

    Puranen, Jouni; Laakso, Jarmo; Kylmälahti, Mikko; Vuoristo, Petri

    2013-06-01

    A modified high-velocity oxy-fuel spray (HVOF) thermal spray torch equipped with liquid feeding hardware was used to spray manganese-cobalt solutions on ferritic stainless steel grade Crofer 22 APU substrates. The HVOF torch was modified in such a way that the solution could be fed axially into the combustion chamber through 250- and 300-μm-diameter liquid injector nozzles. The solution used in this study was prepared by diluting nitrates of manganese and cobalt, i.e., Mn(NO3)2·4H2O and Co(NO3)2·6H2O, respectively, in deionized water. The as-sprayed coatings were characterized by X-ray diffraction and field-emission scanning electron microscopy operating in secondary electron mode. Chemical analyses were performed on an energy dispersive spectrometer. Coatings with remarkable density could be prepared by the novel high-velocity solution precursor flame spray (HVSPFS) process. Due to finely sized droplet formation in the HVSPFS process and the use of as delivered Crofer 22 APU substrate material having very low substrate roughness ( R a < 0.5 μm), thin and homogeneous coatings, with thicknesses lower than 10 μm could be prepared. The coatings were found to have a crystalline structure equivalent to MnCo2O4 spinel with addition of Co-oxide phases. Crystallographic structure was restored back to single-phase spinel structure by heat treatment.

  9. Exploration of spin state and exchange integral of cobalt ions in stoichiometric ZnCo2O4 spinel oxides

    NASA Astrophysics Data System (ADS)

    Che, Xiangli; Li, Liping; Li, Guangshe

    2016-04-01

    This work reports on spin state and exchange integral of cobalt ions in stoichiometric ZnCo2O4 nanoparticles with varying particle size from about 24 to 105 nm. Cobalt ions in ZnCo2O4 nanoparticles are present as trivalence in mixed spin state. The effective magnetic moment is distributed in the range of 2.1 ˜ 1.31 μB at room temperature with coarsening of nanoparticles. Further, it is demonstrated that stoichiometric ZnCo2O4 undergoes a magnetic transition from paramagnetism to antiferromagnetism with decrease of temperature, showing a transition temperature of about 5 K. The standard molar entropy and enthalpy for 24 nm ZnCo2O4 are 170.6 ± 1.7 J K-1 mol-1 and 28.2 ± 0.3 kJ mol-1 at 298.15 K, respectively. Based on the heat capacity data, the exchange integral is determined to be 4.16 × 10-22 J. The results report here are really important for further understanding the magnetic and electronic properties of spinel oxides.

  10. Corrosion behaviour of super-hydrophobic electrodeposited nickel-cobalt alloy film

    NASA Astrophysics Data System (ADS)

    Khorsand, S.; Raeissi, K.; Ashrafizadeh, F.; Arenas, M. A.; Conde, A.

    2016-02-01

    Hierarchical super-hydrophobic Ni-Co film with enhanced corrosion resistance was fabricated on a copper substrate by one-step electrodeposition process. The contact angle and water repellence properties of the Ni-Co film were measured to determine its wettability. The Ni-Co film exhibited excellent super-hydrophobic properties with a static water contact angle of 158° and a sliding angle of ≤5°. The corrosion performance of the super-hydrophobic surface (SHS) was investigated by electrochemical potentiodynamic measurements and electrochemical impedance spectroscopy in NaCl solution (3.5 wt.%). Moreover, to study the long-term stability of the super-hydrophobic film, SHS samples were immersed into NaCl solution and their corrosion behaviour was investigated by the electrochemical impedance spectroscopy. Additionally, the changes of surface wettability were also monitored over the whole immersion time up to 11 days. Experimental results indicated that super-hydrophobic samples had much more corrosion resistance in comparison with freshly prepared samples or the bare substrate.

  11. Mesoscopic organization of cobalt thin films on clean and oxygen-saturated Fe(001) surfaces

    NASA Astrophysics Data System (ADS)

    Riva, M.; Picone, A.; Giannotti, D.; Brambilla, A.; Fratesi, G.; Bussetti, G.; Duò, L.; Ciccacci, F.; Finazzi, M.

    2015-09-01

    The different morphologies of Co films grown on either the clean Fe(001) surface and the oxygen-saturated Fe(001)-p (1 ×1 ) O substrate are investigated by means of scanning tunneling microscopy, Auger electron spectroscopy, and density functional theory. The considered Co coverage range extends beyond the thickness at which layer-by-layer growth is destabilized by plastic deformations induced by the relaxation of the strain accumulated in the film. Our findings indicate that the oxygen overlayer of the Fe(001)-p (1 ×1 ) O surface floats on top of the growing Co film and strongly influences both the Co nucleation process and the film structural evolution. The layer-dependent islands nucleation of Co films grown on clean Fe(001) substrates, recently associated with a thickness-dependent adatom mobility [A. Picone et al., Phys. Rev. Lett. 113, 046102 (2014), 10.1103/PhysRevLett.113.046102], is found to be suppressed by the oxygen overlayer. The latter also significantly delays the layer-by-layer instability with respect to the oxygen-free growth. Furthermore, the body-centered-tetragonal/hexagonal-close-packed transition is not observed in the case of Co/Fe(001)-p (1 ×1 ) O sample, replaced by the development of highly ordered surface undulations. These form a mesoscopic square pattern with the sides aligned to the Fe <110 > directions, while the surface atomic structure retains the square p (1 ×1 ) symmetry in registry with the substrate. Such undulations are likely generated by a highly ordered array of interfacial misfit dislocations running along the Fe <110 > directions.

  12. Unidirectional oxide hetero-interface thin-film diode

    SciTech Connect

    Park, Youngmin; Lee, Eungkyu; Lee, Jinwon; Lim, Keon-Hee; Kim, Youn Sang

    2015-10-05

    The unidirectional thin-film diode based on oxide hetero-interface, which is well compatible with conventional thin-film fabrication process, is presented. With the metal anode/electron-transporting oxide (ETO)/electron-injecting oxide (EIO)/metal cathode structure, it exhibits that electrical currents ohmically flow at the ETO/EIO hetero-interfaces for only positive voltages showing current density (J)-rectifying ratio of ∼10{sup 5} at 5 V. The electrical properties (ex, current levels, and working device yields) of the thin-film diode (TFD) are systematically controlled by changing oxide layer thickness. Moreover, we show that the oxide hetero-interface TFD clearly rectifies an AC input within frequency (f) range of 10{sup 2} Hz < f < 10{sup 6} Hz, providing a high feasibility for practical applications.

  13. Two kinds of composite films: Graphene oxide/carbon nanotube film and graphene oxide/activated carbon film via a self-assemble preparation process

    NASA Astrophysics Data System (ADS)

    Zou, Li-feng; Ma, Nan; Sun, Mei; Ji, Tian-hao

    2014-11-01

    Two kinds of free-standing composite films, including graphene oxide and activated carbon film as well as graphene oxide and carbon nanotube film, were fabricated through a simple suspension mixing and then natural deposition process. The films were characterized by various measurement techniques in detail. The results show that the composite films without any treatment almost still remain the original properties of the corresponding precursors, and exhibit loose structure, which can be easily broken in water; whereas after treated at 200 °C in air, the films become relatively more dense, and even if immersed into concentrated strong alkali or acid for five days, they still keep the film-morphologies, but regretfully, they show obvious brittleness and slight hydrophilicity. As soon as the treated films are performed in high concentrated strong alkali for about one day, their brittleness and wettability can be improved and became good flexibility and complete hydrophilicity.

  14. Influence of film thickness on laser ablation threshold of transparent conducting oxide thin-films

    NASA Astrophysics Data System (ADS)

    Rung, S.; Christiansen, A.; Hellmann, R.

    2014-06-01

    We report on a comprehensive study of the laser ablation threshold of transparent conductive oxide thin films. The ablation threshold is determined for both indium tin oxide and gallium zinc oxide as a function of film thickness and for different laser wavelengths. By using a pulsed diode pumped solid state laser at 1064 nm, 532 nm, 355 nm and 266 nm, respectively, the relationship between optical absorption length and film thickness is studied. We find that the ablation threshold decreases with increasing film thickness in a regime where the absorption length is larger than the film thickness. In turn, the ablation threshold increases in case the absorption length is smaller than the film thickness. In particular, we observe a minimum of the ablation threshold in a region where the film thickness is comparable to the absorption length. To the best of our knowledge, this behaviour previously predicted for thin metal films, has been unreported for all three regimes in case of transparent conductive oxides, yet. For industrial laser scribing processes, these results imply that the efficiency can be optimized by using a laser where the optical absorption length is close to the film thickness.

  15. Cobalt (II) chloride promoted formation of honeycomb patterned cellulose acetate films.

    PubMed

    Naboka, Olga; Sanz-Velasco, Anke; Lundgren, Per; Enoksson, Peter; Gatenholm, Paul

    2012-02-01

    CoCl(2) containing honeycomb patterned films were prepared from cellulose acetate (CA)/CoCl(2)/acetone solutions by the breath figure method in a wide range of humidities. Size and pore regularity depend on the CA/CoCl(2) molar ratio and humidity. When replacing CoCl(2) with Co(NO(3))(2) or CoBr(2), no formation of ordered porosity in the cellulose acetate films is observed. According to data from scanning electron microscopy (SEM), Energy Dispersive X-ray Microanalysis (EDX), X-ray Diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy, the key role in the formation of honeycomb structures can be attributed to the physical and chemical properties of CoCl(2) - hygroscopicity, low interaction with CA, and extraction from CA/CoCl(2)/acetone solution by water droplets condensed on the surface of the CA/CoCl(2) solution. Obtained films are prospective for using in catalysis, hydrogen fuel cells, and optical sensing materials.

  16. Structure, magnetism, and dissociation energy of small bimetallic cobalt-chromium oxide cluster cations: A density-functional-theory study

    NASA Astrophysics Data System (ADS)

    Pham, Hung Tan; Cuong, Ngo Tuan; Tam, Nguyen Minh; Lam, Vu Dinh; Tung, Nguyen Thanh

    2016-01-01

    We study CoxCryOm+ (x + y = 2, 3 and 1 ≤ m ≤ 4) clusters by means of density-functional-theory calculations. It is found that the clusters grow preferentially through maximizing the number of metal-oxygen bonds with a favor on Cr sites. The size- and composition-dependent magnetic behavior is discussed in relation with the local atomic magnetic moments. While doped species show an oscillatory magnetic behavior, the total magnetic moment of pure cobalt and chromium oxide clusters tends to enhance or reduce as increasing the oxygen content, respectively. The dissociation energies for different evaporation channels are also calculated to suggest the stable patterns, as fingerprints for future photofragmentation experiments.

  17. Cobalt oxide 2D nano-assemblies from infinite coordination polymer precursors mediated by a multidentate pyridyl ligand.

    PubMed

    Li, Guo-Rong; Xie, Chen-Chao; Shen, Zhu-Rui; Chang, Ze; Bu, Xian-He

    2016-05-01

    In this work, the construction of Co3O4 two dimensional (2D) nano-assemblies utilizing infinite coordination polymers (ICPs) as precursors was investigated, aiming at the morphology targeted fabrication and utilization of 2D materials. Based on the successful modulation of morphology, a rose-like Co based ICP precursor was obtained, which was further transformed into porous Co3O4 nanoflake assemblies with a well-preserved 2D morphology and a large surface area. The mechanism of the morphology modulation was illustrated by systematic investigation, which demonstrated the crucial role of a modulating agent in the formation of 2D nano-assemblies. In addition, the cobalt oxide 2D nano-assemblies are fabricated into a lithium anode combined with graphene, and the remarkable capacity and stability (900 mA h g(-1) after 50 cycles) of the resulting Co3O4/G nanocomposite indicates its potential in lithium battery applications. PMID:27064264

  18. Development and operation of gold and cobalt oxide nanoparticles containing polypropylene based enzymatic fuel cell for renewable fuels.

    PubMed

    Kilic, Muhammet Samet; Korkut, Seyda; Hazer, Baki; Erhan, Elif

    2014-11-15

    Newly synthesized gold and cobalt oxide nanoparticle embedded Polypropylene-g-Polyethylene glycol was used for a compartment-less enzymatic fuel cell. Glucose oxidase and bilirubin oxidase were selected as anodic and cathodic enzymes, respectively. Electrode fabrication and EFC operation parameters were optimized to achieve high power output. Maximum power density of 23.5 µW cm(-2) was generated at a cell voltage of +560 mV vs Ag/AgCl, in 100mM PBS pH 7.4 with the addition of 20mM of synthetic glucose solution. 20 µg of polymer amount with 185 µg of glucose oxidase and 356 µg of bilirubin oxidase was sufficient to get maximum performance. The working electrodes could harvest glucose, produced during photosynthesis reaction of Carpobrotus Acinaciformis plant, and readily found in real domestic wastewater of Zonguldak City in Turkey.

  19. Cobalt oxide 2D nano-assemblies from infinite coordination polymer precursors mediated by a multidentate pyridyl ligand.

    PubMed

    Li, Guo-Rong; Xie, Chen-Chao; Shen, Zhu-Rui; Chang, Ze; Bu, Xian-He

    2016-05-01

    In this work, the construction of Co3O4 two dimensional (2D) nano-assemblies utilizing infinite coordination polymers (ICPs) as precursors was investigated, aiming at the morphology targeted fabrication and utilization of 2D materials. Based on the successful modulation of morphology, a rose-like Co based ICP precursor was obtained, which was further transformed into porous Co3O4 nanoflake assemblies with a well-preserved 2D morphology and a large surface area. The mechanism of the morphology modulation was illustrated by systematic investigation, which demonstrated the crucial role of a modulating agent in the formation of 2D nano-assemblies. In addition, the cobalt oxide 2D nano-assemblies are fabricated into a lithium anode combined with graphene, and the remarkable capacity and stability (900 mA h g(-1) after 50 cycles) of the resulting Co3O4/G nanocomposite indicates its potential in lithium battery applications.

  20. Study of indium tin oxide films exposed to atomic axygen

    NASA Technical Reports Server (NTRS)

    Snyder, Paul G.; De, Bhola N.; Woollam, John A.; Coutts, T. J.; Li, X.

    1989-01-01

    A qualitative simulation of the effects of atomic oxygen has been conducted on indium tin oxide (ITO) films prepared by dc sputtering onto room-temperature substrates, by exposing them to an RF-excited oxygen plasma and characterizing the resulting changes in optical, electrical, and structural properties as functions of exposure time with ellipsometry, spectrophotometry, resistivity, and X-ray measurements. While the films thus exposed exhibit reduced resistivity and optical transmission; both of these effects, as well as partial crystallization of the films, may be due to sample heating by the plasma. Film resistivity is found to stabilize after a period of exposure.

  1. Structural characterization of impurified zinc oxide thin films

    SciTech Connect

    Trinca, L. M.; Galca, A. C. Stancu, V. Chirila, C. Pintilie, L.

    2014-11-05

    Europium doped zinc oxide (Eu:ZnO) thin films have been obtained by pulsed laser deposition (PLD). 002 textured thin films were achieved on glass and silicon substrates, while hetero-epilayers and homo-epilayers have been attained on single crystal SrTiO{sub 3} and ZnO, respectively. X-ray Diffraction (XRD) was employed to characterize the Eu:ZnO thin films. Extended XRD studies confirmed the different thin film structural properties as function of chosen substrates.

  2. A novel Graphene Oxide film: Synthesis and Dielectric properties

    NASA Astrophysics Data System (ADS)

    Canimkurbey, Betul; San, Sait Eren; Yasin, Muhammad; Köse, Muhammet Erkan

    In this work, we used Hummers method to synthesize Graphene Oxide (GO) and its parallel plate impedance spectroscopic technique to investigate dielectric properties. Graphene Oxide films were coated using drop casting method on ITO substrate. To analyze film morphology, atomic force microscopy was used. Dielectrics measurements of the samples were performed using impedance analyzer (HP-4194) in frequency range (100 Hz to 10MHz) at different temperatures. It was observed that the films' AC conductivity σac varied with angular frequency, ω as ωS, with S<1. The electrical properties of GO showed changes depending on both frequency and temperature. We observed GO film contains direct current (DC) and Correlated Barrier Hopping (CBH) conductivity mechanisms at low and high frequency ranges, respectively. Using solution processed Graphene Oxide will provide potential for organic electronic applications through its photon absorption and transmittance capability in the visible range and excellent electrical parameters.

  3. Ordered fragmentation of oxide thin films at submicron scale

    PubMed Central

    Guo, L.; Ren, Y.; Kong, L. Y.; Chim, W. K.; Chiam, S. Y.

    2016-01-01

    Crack formation is typically undesirable as it represents mechanical failure that compromises strength and integrity. Recently, there have also been numerous attempts to control crack formation in materials with the aim to prevent or isolate crack propagation. In this work, we utilize fragmentation, at submicron and nanometre scales, to create ordered metal oxide film coatings. We introduce a simple method to create modified films using electroplating on a prepatterned substrate. The modified films undergo preferential fragmentation at locations defined by the initial structures on the substrate, yielding ordered structures. In thicker films, some randomness in the characteristic sizes of the fragments is introduced due to competition between crack propagation and crack creation. The method presented allows patterning of metal oxide films over relatively large areas by controlling the fragmentation process. We demonstrate use of the method to fabricate high-performance electrochromic structures, yielding good coloration contrast and high coloration efficiency. PMID:27748456

  4. Ordered fragmentation of oxide thin films at submicron scale

    NASA Astrophysics Data System (ADS)

    Guo, L.; Ren, Y.; Kong, L. Y.; Chim, W. K.; Chiam, S. Y.

    2016-10-01

    Crack formation is typically undesirable as it represents mechanical failure that compromises strength and integrity. Recently, there have also been numerous attempts to control crack formation in materials with the aim to prevent or isolate crack propagation. In this work, we utilize fragmentation, at submicron and nanometre scales, to create ordered metal oxide film coatings. We introduce a simple method to create modified films using electroplating on a prepatterned substrate. The modified films undergo preferential fragmentation at locations defined by the initial structures on the substrate, yielding ordered structures. In thicker films, some randomness in the characteristic sizes of the fragments is introduced due to competition between crack propagation and crack creation. The method presented allows patterning of metal oxide films over relatively large areas by controlling the fragmentation process. We demonstrate use of the method to fabricate high-performance electrochromic structures, yielding good coloration contrast and high coloration efficiency.

  5. Synthesis and controllable oxidation of monodisperse cobalt-doped wüstite nanoparticles and their core-shell stability and exchange-bias stabilization.

    PubMed

    Chen, Chih-Jung; Chiang, Ray-Kuang; Kamali, Saeed; Wang, Sue-Lein

    2015-09-14

    Cobalt-doped wüstite (CWT), Co0.33Fe0.67O, nanoparticles were prepared via the thermal decomposition of CoFe2-oleate complexes in organic solvents. A controllable oxidation process was then performed to obtain Co0.33Fe0.67O/CoFe2O4 core-shell structures with different core-to-shell volume ratios and exchange bias properties. The oxidized core-shell samples with a ∼4 nm CoFe2O4 shell showed good resistance to oxygen transmission. Thus, it is inferred that the cobalt ferrite shell provides a better oxidation barrier performance than magnetite in the un-doped case. The hysteresis loops of the oxidized 19 nm samples exhibited a high exchange bias field (H(E)), an enhanced coercivity field (H(C)), and a pronounced vertical shift, thus indicating the presence of a strong exchange bias coupling effect. More importantly, the onset temperature of H(E) was found to be higher than 200 K, which suggests that cobalt doping increases the Néel temperature (T(N)) of the CWT core. In general, the results show that the homogeneous dispersion of Co in iron precursors improves the stability of the final CWT nanoparticles. Moreover, the CoFe2O4 shells formed following oxidation increase the oxidation resistance of the CWT cores and enhance their anisotropy energy.

  6. Synthesis and controllable oxidation of monodisperse cobalt-doped wüstite nanoparticles and their core-shell stability and exchange-bias stabilization.

    PubMed

    Chen, Chih-Jung; Chiang, Ray-Kuang; Kamali, Saeed; Wang, Sue-Lein

    2015-09-14

    Cobalt-doped wüstite (CWT), Co0.33Fe0.67O, nanoparticles were prepared via the thermal decomposition of CoFe2-oleate complexes in organic solvents. A controllable oxidation process was then performed to obtain Co0.33Fe0.67O/CoFe2O4 core-shell structures with different core-to-shell volume ratios and exchange bias properties. The oxidized core-shell samples with a ∼4 nm CoFe2O4 shell showed good resistance to oxygen transmission. Thus, it is inferred that the cobalt ferrite shell provides a better oxidation barrier performance than magnetite in the un-doped case. The hysteresis loops of the oxidized 19 nm samples exhibited a high exchange bias field (H(E)), an enhanced coercivity field (H(C)), and a pronounced vertical shift, thus indicating the presence of a strong exchange bias coupling effect. More importantly, the onset temperature of H(E) was found to be higher than 200 K, which suggests that cobalt doping increases the Néel temperature (T(N)) of the CWT core. In general, the results show that the homogeneous dispersion of Co in iron precursors improves the stability of the final CWT nanoparticles. Moreover, the CoFe2O4 shells formed following oxidation increase the oxidation resistance of the CWT cores and enhance their anisotropy energy. PMID:26243163

  7. Electrochromic lithium nickel oxide thin film by pulsed laser deposition

    SciTech Connect

    Wen, S.J.; Rottkay, K. von; Rubin, M.

    1996-10-01

    * Thin films of lithium nickel oxide were deposited by pulsed laser deposition (PLD) from targets of pressed LiNiO{sub 2} powder with layered structure. The composition, structure and surface air sensitivity of these films were analyzed using a variety of techniques, such as nuclear reaction analysis, Rutherford backscattering spectrometry (RBS), x-ray diffraction, infrared spectroscopy, and atomic force microscopy. Optical properties were measured using a combination of variable angle spectroscopic ellipsometry and IP spectroradiometry. Crystalline structure, surface morphology and chemical composition of Li{sub x}Ni{sub 1-x}O thin films depend strongly on deposition oxygen pressure, temperature as well as substrate target distance. The films produced at temperatures lower than 600 degrees C spontaneously absorb CO{sub 2} and H{sub 2}O at their surface once they are exposed to the air. The films deposited at 600 degrees C proved to be stable in air over a long period. Even when deposited at room temperature the PLD films are denser and more stable than sputtered films. RBS determined that the best electrochromic films had the stoichiometric composition L{sub 0.5}Ni{sub 0.5}O when deposited at 60 mTorr O{sub 2} pressure. Electrochemical tests show that the films exhibit excellent reversibility in the range 1.0 V to 3.4 V versus lithium and long cyclic life stability in a liquid electrolyte half cell. Electrochemical formatting which is used to develop electrochromism in other films and nickel oxide films is not needed for these stoichiometric films. The optical transmission range is almost 70% at 550 nm for 120 nm thick films.

  8. Determination of oxygen diffusion kinetics during thin film ruthenium oxidation

    SciTech Connect

    Coloma Ribera, R. Kruijs, R. W. E. van de; Yakshin, A. E.; Bijkerk, F.

    2015-08-07

    In situ X-ray reflectivity was used to reveal oxygen diffusion kinetics for thermal oxidation of polycrystalline ruthenium thin films and accurate determination of activation energies for this process. Diffusion rates in nanometer thin RuO{sub 2} films were found to show Arrhenius behaviour. However, a gradual decrease in diffusion rates was observed with oxide growth, with the activation energy increasing from about 2.1 to 2.4 eV. Further exploration of the Arrhenius pre-exponential factor for diffusion process revealed that oxidation of polycrystalline ruthenium joins the class of materials that obey the Meyer-Neldel rule.

  9. Determination of oxygen diffusion kinetics during thin film ruthenium oxidation

    NASA Astrophysics Data System (ADS)

    Coloma Ribera, R.; van de Kruijs, R. W. E.; Yakshin, A. E.; Bijkerk, F.

    2015-08-01

    In situ X-ray reflectivity was used to reveal oxygen diffusion kinetics for thermal oxidation of polycrystalline ruthenium thin films and accurate determination of activation energies for this process. Diffusion rates in nanometer thin RuO2 films were found to show Arrhenius behaviour. However, a gradual decrease in diffusion rates was observed with oxide growth, with the activation energy increasing from about 2.1 to 2.4 eV. Further exploration of the Arrhenius pre-exponential factor for diffusion process revealed that oxidation of polycrystalline ruthenium joins the class of materials that obey the Meyer-Neldel rule.

  10. Photo-oxidation Behaviour of EVA Antimicrobial Films

    NASA Astrophysics Data System (ADS)

    Botta, L.; Scaffaro, R.; La Mantia, F. P.

    2010-06-01

    In this work the photo-oxidation of neat EVA and antimicrobial EVA/Nisin films was studied. Two EVA samples—containing two different vinyl acetate levels—were added with different amounts of nisin. The influence of the matrix type and of the nisin content on the photo-oxidation behaviour was evaluated. The photo-oxidation has been followed by monitoring the change of the mechanical and spectroscopic properties upon artificial exposure to UV-B light. The results revealed that the films incorporating nisin show a better photo resistance with respect to the neat polymer. This improvement becomes weaker with decreasing the amount of nisin incorporated. Moreover the EVA 28 based films showed a much slower photo-oxidation rate in comparison with the EVA 14 based ones.

  11. High stability mechanisms of quinary indium gallium zinc aluminum oxide multicomponent oxide films and thin film transistors

    SciTech Connect

    Lee, Ching-Ting Lin, Yung-Hao; Lin, Jhong-Ham

    2015-01-28

    Quinary indium gallium zinc aluminum oxide (IGZAO) multicomponent oxide films were deposited using indium gallium zinc oxide (IGZO) target and Al target by radio frequency magnetron cosputtering system. An extra carrier transport pathway could be provided by the 3 s orbitals of Al cations to improve the electrical properties of the IGZO films, and the oxygen instability could be stabilized by the strong Al-O bonds in the IGZAO films. The electron concentration change and the electron mobility change of the IGZAO films for aging time of 10 days under an air environment at 40 °C and 75% humidity were 20.1% and 2.4%, respectively. The experimental results verified the performance stability of the IGZAO films. Compared with the thin film transistors (TFTs) using conventional IGZO channel layer, in conducting the stability of TFTs with IGZAO channel layer, the transconductance g{sub m} change, threshold voltage V{sub T} change, and the subthreshold swing S value change under the same aging condition were improved to 7.9%, 10.5%, and 14.8%, respectively. Furthermore, the stable performances of the IGZAO TFTs were also verified by the positive gate bias stress. In this research, the quinary IGZAO multicomponent oxide films and that applied in TFTs were the first studied in the literature.

  12. High stability mechanisms of quinary indium gallium zinc aluminum oxide multicomponent oxide films and thin film transistors

    NASA Astrophysics Data System (ADS)

    Lee, Ching-Ting; Lin, Yung-Hao; Lin, Jhong-Ham

    2015-01-01

    Quinary indium gallium zinc aluminum oxide (IGZAO) multicomponent oxide films were deposited using indium gallium zinc oxide (IGZO) target and Al target by radio frequency magnetron cosputtering system. An extra carrier transport pathway could be provided by the 3 s orbitals of Al cations to improve the electrical properties of the IGZO films, and the oxygen instability could be stabilized by the strong Al-O bonds in the IGZAO films. The electron concentration change and the electron mobility change of the IGZAO films for aging time of 10 days under an air environment at 40 °C and 75% humidity were 20.1% and 2.4%, respectively. The experimental results verified the performance stability of the IGZAO films. Compared with the thin film transistors (TFTs) using conventional IGZO channel layer, in conducting the stability of TFTs with IGZAO channel layer, the transconductance gm change, threshold voltage VT change, and the subthreshold swing S value change under the same aging condition were improved to 7.9%, 10.5%, and 14.8%, respectively. Furthermore, the stable performances of the IGZAO TFTs were also verified by the positive gate bias stress. In this research, the quinary IGZAO multicomponent oxide films and that applied in TFTs were the first studied in the literature.

  13. Oxygen partial pressure dependence of magnetic, optical and magneto-optical properties of epitaxial cobalt-substituted SrTiO₃ films.

    PubMed

    Onbaşlı, Mehmet C; Goto, Taichi; Tang, Astera; Pan, Annia; Battal, Enes; Okyay, Ali K; Dionne, Gerald F; Ross, C A

    2015-05-18

    Cobalt-substituted SrTiO3 films (SrTi0.70Co0.30O(3-δ)) were grown on SrTiO3 substrates using pulsed laser deposition under oxygen pressures ranging from 1 μTorr to 20 mTorr. The effect of oxygen pressure on structural, magnetic, optical, and magneto-optical properties of the films was investigated. The film grown at 3 μTorr has the highest Faraday rotation (FR) and magnetic saturation moment (M(s)). Increasing oxygen pressure during growth reduced M(s), FR and optical absorption in the near-infrared. This trend is attributed to decreasing Co2+ ion concentration and oxygen vacancy concentration with higher oxygen partial pressure during growth. PMID:26074589

  14. Nitrogen doped zinc oxide thin film

    SciTech Connect

    Li, Sonny X.

    2003-12-15

    To summarize, polycrystalline ZnO thin films were grown by reactive sputtering. Nitrogen was introduced into the films by reactive sputtering in an NO{sub 2} plasma or by N{sup +} implantation. All ZnO films grown show n-type conductivity. In unintentionally doped ZnO films, the n-type conductivities are attributed to Zn{sub i}, a native shallow donor. In NO{sub 2}-grown ZnO films, the n-type conductivity is attributed to (N{sub 2}){sub O}, a shallow double donor. In NO{sub 2}-grown ZnO films, 0.3 atomic % nitrogen was found to exist in the form of N{sub 2}O and N{sub 2}. Upon annealing, N{sub 2}O decomposes into N{sub 2} and O{sub 2}. In furnace-annealed samples N{sub 2} redistributes diffusively and forms gaseous N{sub 2} bubbles in the films. Unintentionally doped ZnO films were grown at different oxygen partial pressures. Zni was found to form even at oxygen-rich condition and led to n-type conductivity. N{sup +} implantation into unintentionally doped ZnO film deteriorates the crystallinity and optical properties and leads to higher electron concentration. The free electrons in the implanted films are attributed to the defects introduced by implantation and formation of (N{sub 2}){sub O} and Zni. Although today there is still no reliable means to produce good quality, stable p-type ZnO material, ZnO remains an attractive material with potential for high performance short wavelength optoelectronic devices. One may argue that gallium nitride was in a similar situation a decade ago. Although we did not obtain any p-type conductivity, we hope our research will provide a valuable reference to the literature.

  15. Oxide film on metal substrate reduced to form metal-oxide-metal layer structure

    NASA Technical Reports Server (NTRS)

    Youngdahl, C. A.

    1967-01-01

    Electrically conductive layer of zirconium on a zirconium-oxide film residing on a zirconium substrate is formed by reducing the oxide in a sodium-calcium solution. The reduced metal remains on the oxide surface as an adherent layer and seems to form a barrier that inhibits further reaction.

  16. Multishelled Nickel-Cobalt Oxide Hollow Microspheres with Optimized Compositions and Shell Porosity for High-Performance Pseudocapacitors.

    PubMed

    Li, Xiangcun; Wang, Le; Shi, Jianhang; Du, Naixu; He, Gaohong

    2016-07-13

    Nickel-cobalt oxides/hydroxides have been considered as promising electrode materials for a high-performance supercapacitor. However, their energy density and cycle stability are still very poor at high current density. Moreover, there are few reports on the fabrication of mixed transition-metal oxides with multishelled hollow structures. Here, we demonstrate a new and flexible strategy for the preparation of hollow Ni-Co-O microspheres with optimized Ni/Co ratios, controlled shell porosity, shell numbers, and shell thickness. Owing to its high effective electrode area and electron transfer number (n(3/2) A), mesoporous shells, and fast electron/ion transfer, the triple-shelled Ni-Co1.5-O electrode exhibits an ultrahigh capacitance (1884 F/g at 3A/g) and rate capability (77.7%, 3-30A/g). Moreover, the assembled sandwiched Ni-Co1.5-O//RGO@Fe3O4 asymmetric supercapacitor (ACS) retains 79.4% of its initial capacitance after 10 000 cycles and shows a high energy density of 41.5 W h kg(-1) at 505 W kg(-1). Importantly, the ACS device delivers a high energy density of 22.8 W h kg(-1) even at 7600 W kg(-1), which is superior to most of the reported asymmetric capacitors. This study has provided a facile and general approach to fabricate Ni/Co mixed transition-metal oxides for energy storage. PMID:27327877

  17. Growth of Epitaxial Oxide Thin Films on Graphene

    NASA Astrophysics Data System (ADS)

    Zou, Bin; Walker, Clementine; Wang, Kai; Tileli, Vasiliki; Shaforost, Olena; Harrison, Nicholas M.; Klein, Norbert; Alford, Neil M.; Petrov, Peter K.

    2016-08-01

    The transfer process of graphene onto the surface of oxide substrates is well known. However, for many devices, we require high quality oxide thin films on the surface of graphene. This step is not understood. It is not clear why the oxide should adopt the epitaxy of the underlying oxide layer when it is deposited on graphene where there is no lattice match. To date there has been no explanation or suggestion of mechanisms which clarify this step. Here we show a mechanism, supported by first principles simulation and structural characterisation results, for the growth of oxide thin films on graphene. We describe the growth of epitaxial SrTiO3 (STO) thin films on a graphene and show that local defects in the graphene layer (e.g. grain boundaries) act as bridge-pillar spots that enable the epitaxial growth of STO thin films on the surface of the graphene layer. This study, and in particular the suggestion of a mechanism for epitaxial growth of oxides on graphene, offers new directions to exploit the development of oxide/graphene multilayer structures and devices.

  18. Growth of Epitaxial Oxide Thin Films on Graphene

    PubMed Central

    Zou, Bin; Walker, Clementine; Wang, Kai; Tileli, Vasiliki; Shaforost, Olena; Harrison, Nicholas M.; Klein, Norbert; Alford, Neil M.; Petrov, Peter K.

    2016-01-01

    The transfer process of graphene onto the surface of oxide substrates is well known. However, for many devices, we require high quality oxide thin films on the surface of graphene. This step is not understood. It is not clear why the oxide should adopt the epitaxy of the underlying oxide layer when it is deposited on graphene where there is no lattice match. To date there has been no explanation or suggestion of mechanisms which clarify this step. Here we show a mechanism, supported by first principles simulation and structural characterisation results, for the growth of oxide thin films on graphene. We describe the growth of epitaxial SrTiO3 (STO) thin films on a graphene and show that local defects in the graphene layer (e.g. grain boundaries) act as bridge-pillar spots that enable the epitaxial growth of STO thin films on the surface of the graphene layer. This study, and in particular the suggestion of a mechanism for epitaxial growth of oxides on graphene, offers new directions to exploit the development of oxide/graphene multilayer structures and devices. PMID:27515496

  19. Growth of Epitaxial Oxide Thin Films on Graphene.

    PubMed

    Zou, Bin; Walker, Clementine; Wang, Kai; Tileli, Vasiliki; Shaforost, Olena; Harrison, Nicholas M; Klein, Norbert; Alford, Neil M; Petrov, Peter K

    2016-01-01

    The transfer process of graphene onto the surface of oxide substrates is well known. However, for many devices, we require high quality oxide thin films on the surface of graphene. This step is not understood. It is not clear why the oxide should adopt the epitaxy of the underlying oxide layer when it is deposited on graphene where there is no lattice match. To date there has been no explanation or suggestion of mechanisms which clarify this step. Here we show a mechanism, supported by first principles simulation and structural characterisation results, for the growth of oxide thin films on graphene. We describe the growth of epitaxial SrTiO3 (STO) thin films on a graphene and show that local defects in the graphene layer (e.g. grain boundaries) act as bridge-pillar spots that enable the epitaxial growth of STO thin films on the surface of the graphene layer. This study, and in particular the suggestion of a mechanism for epitaxial growth of oxides on graphene, offers new directions to exploit the development of oxide/graphene multilayer structures and devices. PMID:27515496

  20. Studies on visible light photocatalytic and antibacterial activities of nanostructured cobalt doped ZnO thin films prepared by sol-gel spin coating method.

    PubMed

    Poongodi, G; Anandan, P; Kumar, R Mohan; Jayavel, R

    2015-09-01

    Nanostructured cobalt doped ZnO thin films were deposited on glass substrate by sol-gel spin coating technique and characterized by X-ray diffraction, X-ray photoelectron spectroscopy, field-emission scanning electron microscopy, energy-dispersive X-ray spectroscopy and UV-Vis spectroscopy. The XRD results showed that the thin films were well crystalline with hexagonal wurtzite structure. The results of EDAX and XPS revealed that Co was doped into ZnO structure. FESEM images revealed that the films possess granular morphology without any crack and confirm that Co doping decreases the grain size. UV-Vis transmission spectra show that the substitution of Co in ZnO leads to band gap narrowing. The Co doped ZnO films were found to exhibit improved photocatalytic activity for the degradation of methylene blue dye under visible light in comparison with the undoped ZnO film. The decrease in grain size and extending light absorption towards the visible region by Co doping in ZnO film contribute equally to the improved photocatalytic activity. The bactericidal efficiency of Co doped ZnO films were investigated against a Gram negative (Escherichia coli) and a Gram positive (Staphylococcus aureus) bacteria. The optical density (OD) measurement showed better bactericidal activity at higher level of Co doping in ZnO.

  1. Studies on visible light photocatalytic and antibacterial activities of nanostructured cobalt doped ZnO thin films prepared by sol-gel spin coating method

    NASA Astrophysics Data System (ADS)

    Poongodi, G.; Anandan, P.; Kumar, R. Mohan; Jayavel, R.

    2015-09-01

    Nanostructured cobalt doped ZnO thin films were deposited on glass substrate by sol-gel spin coating technique and characterized by X-ray diffraction, X-ray photoelectron spectroscopy, field-emission scanning electron microscopy, energy-dispersive X-ray spectroscopy and UV-Vis spectroscopy. The XRD results showed that the thin films were well crystalline with hexagonal wurtzite structure. The results of EDAX and XPS revealed that Co was doped into ZnO structure. FESEM images revealed that the films possess granular morphology without any crack and confirm that Co doping decreases the grain size. UV-Vis transmission spectra show that the substitution of Co in ZnO leads to band gap narrowing. The Co doped ZnO films were found to exhibit improved photocatalytic activity for the degradation of methylene blue dye under visible light in comparison with the undoped ZnO film. The decrease in grain size and extending light absorption towards the visible region by Co doping in ZnO film contribute equally to the improved photocatalytic activity. The bactericidal efficiency of Co doped ZnO films were investigated against a Gram negative (Escherichia coli) and a Gram positive (Staphylococcus aureus) bacteria. The optical density (OD) measurement showed better bactericidal activity at higher level of Co doping in ZnO.

  2. Crossed ferric oxide nanosheets supported cobalt oxide on 3-dimensional macroporous Ni foam substrate used for diesel soot elimination under self-capture contact mode

    NASA Astrophysics Data System (ADS)

    Cao, Chunmei; Li, Xingang; Zha, Yuqing; Zhang, Jing; Hu, Tiandou; Meng, Ming

    2016-03-01

    Crossed Fe2O3 nanosheets supported cobalt oxide nanoparticles on three-dimensionally macroporous nickel foam substrate (xCo/Fe-NF) was designed and successfully prepared through a facile hydrothermal and impregnation route. These catalysts showed high catalytic soot combustion activities under self-capture contact mode. The three-dimensional macroporous structures of Ni foam and the crossed Fe2O3 nanosheets constituted macroporous voids can greatly increase the contact efficiency between soot particulates and catalysts. The interaction between Co and Fe facilitated the activation of the Fe-O bond and increased the amounts of active oxygen species, thus improving the redox property of the catalysts. The 0.6Co/Fe-NF catalyst exhibited the highest turnover frequency (TOF) for soot combustion, which is in good accordance with the largest amount of active oxygen species. Based upon the catalytic performance and multiple characterization results, two reaction pathways for soot oxidation are identified, namely, the direct oxidation by the activated oxygen species via oxygen vacancies and the NOx-aided soot oxidation.Crossed Fe2O3 nanosheets supported cobalt oxide nanoparticles on three-dimensionally macroporous nickel foam substrate (xCo/Fe-NF) was designed and successfully prepared through a facile hydrothermal and impregnation route. These catalysts showed high catalytic soot combustion activities under self-capture contact mode. The three-dimensional macroporous structures of Ni foam and the crossed Fe2O3 nanosheets constituted macroporous voids can greatly increase the contact efficiency between soot particulates and catalysts. The interaction between Co and Fe facilitated the activation of the Fe-O bond and increased the amounts of active oxygen species, thus improving the redox property of the catalysts. The 0.6Co/Fe-NF catalyst exhibited the highest turnover frequency (TOF) for soot combustion, which is in good accordance with the largest amount of active oxygen

  3. Synthesis and Oxidation Resistance of h-BN Thin Films

    NASA Astrophysics Data System (ADS)

    Stewart, David; Meulenberg, Robert; Lad, Robert

    Hexagonal boron nitride (h-BN) is an exciting 2D material for use in sensors and other electronic devices that operate in harsh, high temperature environments. Not only is h-BN a wide band gap material with excellent wear resistance and high temperature stability, but recent reports indicate that h-BN can prevent metallic substrates from oxidizing above 600°C in low O2 pressures. However, the PVD of highly crystalline h-BN films required for this oxidation protection has proven challenging. In this work, we have explored the growth of h-BN thin films by reactive RF magnetron sputtering from an elemental B target in an Ar/N2 atmosphere. The film growth rate is extremely slow and the resulting films are atomically smooth and homogeneous. Using DC biasing during deposition and high temperature annealing treatments, the degree of film crystallinity can be controlled. The oxidation resistance of h-BN films deposited on inert sapphire and reactive metal substrates such as Zr and ZrB2 has been examined by techniques such as XPS, XRD, and SEM after oxidation between 600 and 1200°C under varying oxygen pressures. The success of h-BN as a passivation layer for metallic substrates in harsh environments is shown to depend greatly on its crystalline quality and defects. Supported by the NSF SusChEM program.

  4. Oxidation and growth of Mg thin films on Ru(001)

    NASA Astrophysics Data System (ADS)

    Huang, H. H.; Jiang, X.; Siew, H. L.; Chin, W. S.; Sim, W. S.; Xu, G. Q.

    1999-08-01

    The oxidation and growth of ultra-thin Mg films on a Ru(001) substrate have been studied using X-ray photoelectron spectroscopy (XPS) and thermal desorption spectroscopy (TDS) in the temperature range of 300-1500 K. Our results suggest that the growth of Mg thin films follows a layer-by-layer mode. Upon oxygen adsorption at 300 K, two O 1s peaks were detected on the Mg film. The peak at 532.2-532.6 eV could be attributed to either dioxygen or partially reduced species (O δ-, δ<2), whereas that at 530.1-530.6 eV is due to lattice oxygen in MgO. Annealing of the oxidized film to 800 K causes the conversion of the dioxygen or partially reduced species to the oxide state. Thermal desorption peaks of MgO were directly detected at 1000-1127 and 1350-1380 K, respectively. However, initial evaporation of Mg atoms onto an oxygen pre-adsorbed surface yields a fully oxidized MgO. Further Mg deposition results in the formation of a partially oxidized film with the observation of an O 1s peak at 532.2 eV.

  5. Stress and phase transformation phenomena in oxide films

    SciTech Connect

    Exarhos, G.J.; Hess, N.J.

    1992-04-01

    In situ optical methods are reviewed for characterization of phase transformation processes and evaluation of residual stress in solution- deposited metastable oxide films. Such low density films most often are deposited as disordered phases making them prone to crystallization and attendant densification when subjected to increased temperature and/or applied pressure. Inherent stress imparted during film deposition and its evolution during the transformation are evaluated from phonon frequency shifts seen in Raman spectra (TiO{sub 2}) or from changes in the laser-induced fluorescence emission spectra for films containing rare earth (Sm{sup +3}:Y{sub 3}Al{sub 5}O{sub 12}) or transition metal (Cr{sup +3}:Al{sub 2}O{sub 3}) dopants. The data in combination with measured increases in line intensities intrinsic to the evolving phase are used to follow crystallization processes in thin films. In general, film deposition parameters are found to influence the crystallite ingrowth kinetics and the magnitude of stress and stress relaxation in the film during the transformation. The utility of these methods to probe crystallization phenomena in oxide films will be addressed.

  6. Growth control of the oxidation state in vanadium oxide thin films

    SciTech Connect

    Lee, Shinbuhm; Meyer, Tricia L.; Park, Sungkyun; Lee, Ho Nyung

    2014-12-05

    Precise control of the chemical valence or oxidation state of vanadium in vanadium oxide thin films is highly desirable for not only fundamental research, but also technological applications that utilize the subtle change in the physical properties originating from the metalinsulator transition (MIT) near room temperature. However, due to the multivalent nature of vanadium and the lack of a good understanding on growth control of the oxidation state, stabilization of phase pure vanadium oxides with a single oxidation state is extremely challenging. Here, we systematically varied the growth conditions to clearly map out the growth window for preparing phase pure epitaxial vanadium oxides by pulsed laser deposition for providing a guideline to grow high quality thin films with well-defined oxidation states of V₂⁺²O₃, V⁺⁴O₂, and V₂⁺⁵O₅. A well pronounced MIT was only observed in VO₂ films grown in a very narrow range of oxygen partial pressure P(O₂). The films grown either in lower (< 10 mTorr) or higher P(O₂) (> 25 mTorr) result in V₂O₃ and V₂O₅ phases, respectively, thereby suppressing the MIT for both cases. We have also found that the resistivity ratio before and after the MIT of VO₂ thin films can be further enhanced by one order of magnitude when the films are further oxidized by post-annealing at a well-controlled oxidizing ambient. This result indicates that stabilizing vanadium into a single valence state has to compromise with insufficient oxidation of an as grown thin film and, thereby, a subsequent oxidation is required for an 3 improved MIT behavior.

  7. Growth control of the oxidation state in vanadium oxide thin films

    DOE PAGESBeta

    Lee, Shinbuhm; Meyer, Tricia L.; Park, Sungkyun; Lee, Ho Nyung

    2014-12-05

    Precise control of the chemical valence or oxidation state of vanadium in vanadium oxide thin films is highly desirable for not only fundamental research, but also technological applications that utilize the subtle change in the physical properties originating from the metalinsulator transition (MIT) near room temperature. However, due to the multivalent nature of vanadium and the lack of a good understanding on growth control of the oxidation state, stabilization of phase pure vanadium oxides with a single oxidation state is extremely challenging. Here, we systematically varied the growth conditions to clearly map out the growth window for preparing phase puremore » epitaxial vanadium oxides by pulsed laser deposition for providing a guideline to grow high quality thin films with well-defined oxidation states of V₂⁺²O₃, V⁺⁴O₂, and V₂⁺⁵O₅. A well pronounced MIT was only observed in VO₂ films grown in a very narrow range of oxygen partial pressure P(O₂). The films grown either in lower (< 10 mTorr) or higher P(O₂) (> 25 mTorr) result in V₂O₃ and V₂O₅ phases, respectively, thereby suppressing the MIT for both cases. We have also found that the resistivity ratio before and after the MIT of VO₂ thin films can be further enhanced by one order of magnitude when the films are further oxidized by post-annealing at a well-controlled oxidizing ambient. This result indicates that stabilizing vanadium into a single valence state has to compromise with insufficient oxidation of an as grown thin film and, thereby, a subsequent oxidation is required for an 3 improved MIT behavior.« less

  8. Growth control of the oxidation state in vanadium oxide thin films

    SciTech Connect

    Lee, Shinbuhm; Meyer, Tricia L.; Lee, Ho Nyung; Park, Sungkyun; Egami, Takeshi

    2014-12-01

    Precise control of the chemical valence or oxidation state of vanadium in vanadium oxide thin films is highly desirable for not only fundamental research but also technological applications that utilize the subtle change in the physical properties originating from the metal-insulator transition (MIT) near room temperature. However, due to the multivalent nature of vanadium and the lack of a good understanding on growth control of the oxidation state, stabilization of phase pure vanadium oxides with a single oxidation state is extremely challenging. Here, we systematically varied the growth conditions to clearly map out the growth window for preparing phase pure epitaxial vanadium oxides by pulsed laser deposition for providing a guideline to grow high quality thin films with well-defined oxidation states of V{sub 2}{sup +3}O{sub 3}, V{sup +4}O{sub 2}, and V{sub 2}{sup +5}O{sub 5}. A well pronounced MIT was only observed in VO{sub 2} films grown in a very narrow range of oxygen partial pressure P(O{sub 2}). The films grown either in lower (<10 mTorr) or higher P(O{sub 2}) (>25 mTorr) result in V{sub 2}O{sub 3} and V{sub 2}O{sub 5} phases, respectively, thereby suppressing the MIT for both cases. We have also found that the resistivity ratio before and after the MIT of VO{sub 2} thin films can be further enhanced by one order of magnitude when the films are further oxidized by post-annealing at a well-controlled oxidizing ambient. This result indicates that stabilizing vanadium into a single valence state has to compromise with insufficient oxidation of an as grown thin film and, thereby, a subsequent oxidation is required for an improved MIT behavior.

  9. Geodynamic and climate controls in the formation of Mio-Pliocene world-class oxidized cobalt and manganese ores in the Katanga province, DR Congo

    NASA Astrophysics Data System (ADS)

    Decrée, Sophie; Deloule, Étienne; Ruffet, Gilles; Dewaele, Stijn; Mees, Florias; Marignac, Christian; Yans, Johan; de Putter, Thierry

    2010-10-01

    The Katanga province, Democratic Republic of Congo, hosts world-class cobalt deposits accounting for ~50% of the world reserves. They originated from sediment-hosted stratiform copper and cobalt sulfide deposits within Neoproterozoic metasedimentary rocks. Heterogenite, the main oxidized cobalt mineral, is concentrated as “cobalt caps” along the top of silicified dolomite inselbergs. The supergene cobalt enrichment process is part of a regional process of residual ore formation that also forms world-class “manganese cap” deposits in western Katanga, i.e., the “black earths” that are exploited by both industrial and artisanal mining. Here, we provide constraints on the genesis and the timing of these deposits. Ar-Ar analyses of oxidized Mn ore and in situ U-Pb SIMS measurements of heterogenite yield Mio-Pliocene ages. The Ar-Ar ages suggest a multi-phase process, starting in the Late Miocene (10-5 Ma), when the metal-rich substratum was exposed to the action of meteoric fluids, due to major regional uplift. Further oxidation took place in the Pliocene (3.7-2.3 Ma) and formed most of the observed deposits under humid conditions: Co- and Mn-caps on metal-rich substrata, and coeval Fe laterites on barren areas. These deposits formed prior to the regional shift toward more arid conditions in Central Africa. Arid conditions still prevailed during the Quaternary and resulted in erosion and valley incision, which dismantled the metal-bearing caps and led to ore accumulation in valleys and along foot slopes.

  10. Marine cobalt resources.

    PubMed

    Manheim, F T

    1986-05-01

    Ferromanganese oxides in the open oceans are more enriched in cobalt than any other widely distributed sediments or rocks. Concentrations of cobalt exceed 1 percent in ferromanganese crusts on seamounts, ocean ridges, and other raised areas of the ocean. The cobaltrich crusts may be the slowest growing of any earth material, accumulating one molecular layer every 1 to 3 months. Attention has been drawn to crusts as potential resources because they contain cobalt, manganese, and platinum, three of the four priority strategic metals for the United States. Moreover, unlike abyssal nodules, whose recovery is complicated by their dominant location in international waters, some of the most cobalt-rich crusts occur within the exclusive economic zone of the United States and other nations. Environmental impact statements for crust exploitation are under current development by the Department of the Interior. PMID:17781410

  11. Marine cobalt resources.

    PubMed

    Manheim, F T

    1986-05-01

    Ferromanganese oxides in the open oceans are more enriched in cobalt than any other widely distributed sediments or rocks. Concentrations of cobalt exceed 1 percent in ferromanganese crusts on seamounts, ocean ridges, and other raised areas of the ocean. The cobaltrich crusts may be the slowest growing of any earth material, accumulating one molecular layer every 1 to 3 months. Attention has been drawn to crusts as potential resources because they contain cobalt, manganese, and platinum, three of the four priority strategic metals for the United States. Moreover, unlike abyssal nodules, whose recovery is complicated by their dominant location in international waters, some of the most cobalt-rich crusts occur within the exclusive economic zone of the United States and other nations. Environmental impact statements for crust exploitation are under current development by the Department of the Interior.

  12. Rapid photo-degradation of 2-chlorophenol under visible light irradiation using cobalt oxide-loaded TiO2/reduced graphene oxide nanocomposite from aqueous media.

    PubMed

    Sharma, Ajit; Lee, Byeong-Kyu

    2016-01-01

    The photocatalytic removal of 2-chlorophenol (2-CP) from water environment was investigated by TiO2-RGO-CoO. Cobalt oxide-loaded TiO2 (TiO2-CoO) supported with reduced graphene oxide (RGO) was synthesized using a sol-gel method and then annealed at 500 °C for 5 min. The material characteristics were analyzed by UV-Vis analysis, Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) spectroscopy. Incorporation of cobalt oxide and RGO into the TiO2 system (TiO2-RGO-CoO) lowered the band gap energy to 2.83 eV, which greatly enhanced the visible light absorption. The TiO2-RGO-CoO photocatalyst showed complete removal of 20 mg/L 2-CP within 8 h with the addition of 0.01% H2O2 under 100 W visible light irradiation. The photo-degradation efficiency of 2-CP (10 mg/L) was 35.2, 48.9, 58.9 and 98.2% for TiO2, TiO2-RGO, TiO2-CoO and TiO2-RGO-CoO, respectively, in the presence of visible light irradiation at solution pH of 6.0. The TiO2-RGO-CoO photocatalyst retained its high removal efficiency even after five photocatalytic cycles.

  13. Multifunctional oxide thin films for magnetoelectric and electromechanical applications

    NASA Astrophysics Data System (ADS)

    Baek, Seung Hyub

    Epitaxial multifunctional oxide thin films have been extensively researched to understand and exploit a variety of their physical properties. In order to integrate such versatile properties into real devices, there are several critical issues: (1) high-quality thin film growth, (2) fundamental understanding on reliable performance, and (3) device fabrication process preserving functionality of oxides. We have investigated all these issues, employing two different materials: multiferroic BiFeO3 and piezoelectric Pb(Mg1/3 Nb2/3)O3-PbTiO3 (PMN-PT) epitaxial thin films. For the high-quality thin film growth, we have chosen both BiFeO 3 and PMN-PT thin films as a model system. Bi2O3and PbO are the volatile species in these oxides, which makes it hard to grow phase-pure stoichiometric thin films. Because the properties of oxides are sensitive to stoichiometry and defects, it is highly required to fix such volatile elements during thin film growth. We have grown high-quality epitaxial thin films using a fast-rate off-axis sputtering method and vicinal substrates. In addition, we were able to control domain structures of BiFeO3 thin films using vicinal substrates. For the study on the reliability issues in oxides, we have used BiFeO 3 thin films within the framework of magnetoelectric device applications. For reliable magnetoelectric performance of BiFeO3, polarization switching path has to be (1) deterministic, and to be retained along with (2) time---retention, and (3) cycles--- fatigue. We have used monodomain BiFeO3 thin films as a model system. Based on theoretical predictions, we have studied polarization switching paths, and achieved both selective polarization switching and retention problems using island BiFeO3 structure. We have also investigated polarization fatigue, dependent on switching path. For the demonstration of working devices preserving the original functionality of oxides, we have fabricated micro-cantilevers using PMN-PT heterostructure on Si. The

  14. SPH based modelling of oxide and oxide film formation in gravity die castings

    NASA Astrophysics Data System (ADS)

    Ellingsen, K.; Coudert, T.; M'Hamdi, M.

    2015-06-01

    Gravity die casting is an important casting process which has the capability of making complicated, high-integrity components for e.g. the automotive industry. Oxides and oxide films formed during filling affect the cast product quality. The Smoothed particle hydrodynamics (SPH) method is particularly suited to follow complex flows. The SPH method has been used to study filling of a gravity die including the formation and transport of oxides and oxide films for two different filling velocities. A low inlet velocity leads to a higher amount of oxides and oxide films in the casting. The study demonstrates the usefulness of the SPH method for an increased understanding of the effect of different filling procedures on the cast quality.

  15. Synthesis and characterization of cobalt oxide nanocomposite based on the Co3O4-zeolite Y

    NASA Astrophysics Data System (ADS)

    Davar, Fatemeh; Fereshteh, Zeinab; Shoja Razavi, Hadi; Razavi, Reza Shoja; Loghman-Estarki, Mohammad Reza

    2014-02-01

    The Co3O4 nanocomposite was synthesized by an ion-exchange of cobalt ions and Y zeolite in the presence of sodium hydroxide and calcination treatment. The products were characterized by X-ray diffraction (XRD), Raman analysis, scanning electron microscope (SEM), transmission electron microscope (TEM), BET, Energy-dispersive X-ray spectroscopy (EDX) and Fourier transform infrared (FTIR) spectroscopy. The sizes of the migrated Co3O4 particles out of Y zeolite super cage were in the range of 29 ± 5 nm. Finally, the magnetic property of as-obtained product was investigated in a vibrating sample magnetometer (VSM). This nanocomposite showed a paramagnetic behavior at room temperature.

  16. Investigation on cobalt-oxide nanoparticles cyto-genotoxicity and inflammatory response in two types of respiratory cells.

    PubMed

    Cavallo, Delia; Ciervo, Aureliano; Fresegna, Anna Maria; Maiello, Raffaele; Tassone, Paola; Buresti, Giuliana; Casciardi, Stefano; Iavicoli, Sergio; Ursini, Cinzia Lucia

    2015-10-01

    The increasing use of cobalt oxide (Co3 O4 ) nanoparticles (NPs) in several applications and the suggested genotoxic potential of Co-oxide highlight the importance of evaluating Co3 O4 NPs toxicity. Cyto-genotoxic and inflammatory effects induced by Co3 O4 NPs were investigated in human alveolar (A549), and bronchial (BEAS-2B) cells exposed to 1-40 µg ml(-1) . The physicochemical properties of tested NPs were analysed by transmission electron microscopy (TEM) and dynamic light scattering (DLS). Cytotoxicity was studied to analyze cell viability (WST1 test) and membrane damage (LDH assay), direct/oxidative DNA damage was assessed by the Formamido-pyrimidine glycosylase (Fpg)-modified comet assay and inflammation by interleukin (IL)-6, IL-8 and tumor necrosis factor-alpha (TNF-α) release (ELISA). In A549 cells, no cytotoxicity was found, whereas BEAS-2B cells showed a viability reduction at 40 µg ml(-1) and early membrane damage at 1, 5 and 40 µg ml-1. In A549 cells, direct and oxidative DNA damage at 20 and 40 µg ml(-1) were detected without any effects on cytokine release. In BEAS-2B cells, significant direct DNA damage at 40 µg ml(-1) and significant oxidative DNA damage with a peak at 5 µg ml(-1) , that was associated with increased TNF-α release at 1 µg ml(-1) after 2 h and increased IL-8 release at 20 µg ml(-1) after 24 h, were detected. The findings show in the transformed alveolar cells no cytotoxicity and genotoxic/oxidative effects at 20 and 40 µg ml(-1) . In normal bronchial cells, moderate cytotoxicity, direct DNA damage only at the highest concentration and significant oxidative-inflammatory effects at lower concentrations were detected. The findings confirm the genotoxic-oxidative potential of Co3 O4 NPs and show greater sensitivity of BEAS-2B cells to cytotoxic and oxidative-inflammatory effects suggesting the use of different cell lines and multiple end-points to elucidate Co3 O4 NPs toxicity.

  17. Aerosol chemical vapor deposition of metal oxide films

    DOEpatents

    Ott, K.C.; Kodas, T.T.

    1994-01-11

    A process of preparing a film of a multicomponent metal oxide including: forming an aerosol from a solution comprised of a suitable solvent and at least two precursor compounds capable of volatilizing at temperatures lower than the decomposition temperature of said precursor compounds; passing said aerosol in combination with a suitable oxygen-containing carrier gas into a heated zone, said heated zone having a temperature sufficient to evaporate the solvent and volatilize said precursor compounds; and passing said volatilized precursor compounds against the surface of a substrate, said substrate having a sufficient temperature to decompose said volatilized precursor compounds whereby metal atoms contained within said volatilized precursor compounds are deposited as a metal oxide film upon the substrate is disclosed. In addition, a coated article comprising a multicomponent metal oxide film conforming to the surface of a substrate selected from the group consisting of silicon, magnesium oxide, yttrium-stabilized zirconium oxide, sapphire, or lanthanum gallate, said multicomponent metal oxide film characterized as having a substantially uniform thickness upon said substrate.

  18. Electrochemical formation of a composite polymer-aluminum oxide film

    NASA Astrophysics Data System (ADS)

    Runge-Marchese, Jude Mary

    1997-10-01

    The formation of polymer films through electrochemical techniques utilizing electrolytes which include conductive polymer is of great interest to the coatings and electronics industries as a means for creating electrically conductive and corrosion resistant finishes. One of these polymers, polyamino-benzene (polyaniline), has been studied for this purpose for over ten years. This material undergoes an insulator-to-metal transition upon doping with protonic acids in an acid/base type reaction. Review of prior studies dealing with polyaniline and working knowledge of aluminum anodization has led to the development of a unique process whereby composite polymer-aluminum oxide films are formed. The basis for the process is a modification of the anodizing electrolyte which results in the codeposition of polyaniline during aluminum anodization. A second process, which incorporates electrochemical sealing of the anodic layer with polyaniline was also developed. The formation of these composite films is documented through experimental processing, and characterized by way of scientific analysis and engineering tests. Analysis results revealed the formation of unique dual phase anodic films with fine microstructures which exhibited full intrusion of the columnar aluminum oxide structure with polyaniline, indicating the polymer was deposited as the metal oxidation proceeded. An aromatic amine derivative of polyaniline with aluminum sulfate was determined to be the reaction product within the aluminum oxide phase of the codeposited films. Scientific characterization determined the codeposition process yields completely chemically and metallurgically bound composite films. Engineering studies determined the films, obtained through a single step, exhibited superior wear and corrosion resistance to conventionally anodized and sealed films processed through two steps, demonstrating the increased manufacturing process efficiency that can be realized with the modification of the

  19. Graphene Oxide Transparent Hybrid Film and Its Ultraviolet Shielding Property.

    PubMed

    Xie, Siyuan; Zhao, Jianfeng; Zhang, Bowu; Wang, Ziqiang; Ma, Hongjuan; Yu, Chuhong; Yu, Ming; Li, Linfan; Li, Jingye

    2015-08-19

    Herein, we first reported a facile strategy to prepare functional Poly(vinyl alcohol) (PVA) hybrid film with well ultraviolet (UV) shielding property and visible light transmittance using graphene oxide nanosheets as UV-absorber. The absorbance of ultraviolet light at 300 nm can be up to 97.5%, while the transmittance of visible light at 500 nm keeps 40% plus. This hybrid film can protect protein from UVA light induced photosensitive damage, remarkably. PMID:26226281

  20. In situ Oxidation of Ultrathin Silver Films on Ni(111)

    SciTech Connect

    A Meyer; I Flege; S Senanayake; B Kaemena; R Rettew; F Alamgir; J Falta

    2011-12-31

    Oxidation of silver films of one- and two-monolayer thicknesses on the Ni(111) surface was investigated by low-energy electron microscopy at temperatures of 500 and 600 K. Additionally, intensity-voltage curves were measured in situ during oxidation to reveal the local film structure on a nanometer scale. At both temperatures, we find that exposure to molecular oxygen leads to the destabilization of the Ag film with subsequent relocation of the silver atoms to small few-layer-thick silver patches and concurrent evolution of NiO(111) regions. Subsequent exposure of the oxidized surface to ethylene initiates the transformation of bilayer islands back into monolayer islands, demonstrating at least partial reversibility of the silver relocation process at 600 K.

  1. The physical and chemical properties of ultrathin oxide films.

    PubMed

    Street, S C; Xu, C; Goodman, D W

    1997-01-01

    Thin oxide films (from one to tens of monolayers) of SiO2, MgO, NiO, Al2O3, FexOy, and TiO2 supported on refractory metal substrates have been prepared by depositing the oxide metal precursor in a background of oxygen (ca 1 x 10(-5) Torr). The thinness of these oxide samples facilitates investigation by an array of surface techniques, many of which are precluded when applied to the corresponding bulk oxide. Layered and mixed binary oxides have been prepared by sequential synthesis of dissimilar oxide layers or co-deposition of two different oxides. Recent work has shown that the underlying oxide substrate can markedly influence the electronic and chemical properties of the overlayer oxide. The structural, electronic, and chemical properties of these ultrathin oxide films have been probed using Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), electron energy loss spectroscopy (ELS), ion-scattering spectroscopy (ISS), high-resolution electron energy loss spectroscopy (HREELS), infrared reflectance absorption spectroscopy (IRAS), temperature-programmed desorption (TPD), scanning tunneling microscopy (STM), and scanning tunneling spectroscopy (STS).

  2. Investigation of solution-processed bismuth-niobium-oxide films

    SciTech Connect

    Inoue, Satoshi; Ariga, Tomoki; Matsumoto, Shin; Onoue, Masatoshi; Miyasako, Takaaki; Tokumitsu, Eisuke; Shimoda, Tatsuya; Chinone, Norimichi; Cho, Yasuo

    2014-10-21

    The characteristics of bismuth-niobium-oxide (BNO) films prepared using a solution process were investigated. The BNO film annealed at 550°C involving three phases: an amorphous phase, Bi₃NbO₇ fluorite microcrystals, and Nb-rich cubic pyrochlore microcrystals. The cubic pyrochlore structure, which was the main phase in this film, has not previously been reported in BNO films. The relative dielectric constant of the BNO film was approximately 140, which is much higher than that of a corresponding film prepared using a conventional vacuum sputtering process. Notably, the cubic pyrochlore microcrystals disappeared with increasing annealing temperature and were replaced with triclinic β-BiNbO₄ crystals at 590°C. The relative dielectric constant also decreased with increasing annealing temperature. Therefore, the high relative dielectric constant of the BNO film annealed at 550°C is thought to result from the BNO cubic pyrochlore structure. In addition, the BNO films annealed at 500°C contained approximately 6.5 atm.% carbon, which was lost at approximately 550°C. This result suggests that the carbon in the BNO film played an important role in the formation of the cubic pyrochlore structure.

  3. Cobalt ferrite nanoparticles decorated on exfoliated graphene oxide, application for amperometric determination of NADH and H2O2.

    PubMed

    Ensafi, Ali A; Alinajafi, Hossein A; Jafari-Asl, M; Rezaei, B; Ghazaei, F

    2016-03-01

    Here, cobalt ferrite nanohybrid decorated on exfoliated graphene oxide (CoFe2O4/EGO) was synthesized. The nanohybrid was characterized by different methods such as X-ray diffraction spectroscopy, scanning electron microscopy, energy dispersive X-ray diffraction microanalysis, transmission electron microscopy, FT-IR, Raman spectroscopy and electrochemical methods. The CoFe2O4/EGO nanohybrid was used to modify glassy carbon electrode (GCE). The voltammetric investigations showed that CoFe2O4/EGO nanohybrid has synergetic effect towards the electro-reduction of H2O2 and electro-oxidation of nicotinamide adenine dinucleotide (NADH). Rotating disk chronoamperometry was used for their quantitative analysis. The calibration curves were observed in the range of 0.50 to 100.0 μmol L(-1) NADH and 0.9 to 900.0 μmol L(-1) H2O2 with detections limit of 0.38 and 0.54 μmol L(-1), respectively. The repeatability, reproducibility and selectivity of the electrochemical sensor for analysis of the analytes were studied. The new electrochemical sensor was successfully applied for the determination of NADH and H2O2 in real samples with satisfactory results.

  4. High performance cobalt-free Cu1.4Mn1.6O4 spinel oxide as an intermediate temperature solid oxide fuel cell cathode

    NASA Astrophysics Data System (ADS)

    Zhen, Shuying; Sun, Wang; Li, Peiqian; Tang, Guangze; Rooney, David; Sun, Kening; Ma, Xinxin

    2016-05-01

    In this work Cu1.4Mn1.6O4 (CMO) spinel oxide is prepared and evaluated as a novel cobalt-free cathode for intermediate temperature solid oxide fuel cells (IT-SOFCs). Single phase CMO powder with cubic structure is identified using XRD. XPS results confirm that mixed Cu+/Cu2+ and Mn3+/Mn4+ couples exist in the CMO sample, and a maximum conductivity of 78 S cm-1 is achieved at 800 °C. Meanwhile, CMO oxide shows good thermal and chemical compatibility with a 10 mol% Sc2O3 stabilized ZrO2 (ScSZ) electrolyte material. Impedance spectroscopy measurements reveals that CMO exhibits a low polarization resistance of 0.143 Ω cm2 at 800 °C. Furthermore, a Ni-ScSZ/ScSZ/CMO single cell demonstrates a maximum power density of 1076 mW cm-2 at 800 °C under H2 (3% H2O) as the fuel and ambient air as the oxidant. These results indicate that Cu1.4Mn1.6O4 is a superior and promising cathode material for IT-SOFCs.

  5. Cobalt oxide nanoparticles induced oxidative stress linked to activation of TNF-α/caspase-8/p38-MAPK signaling in human leukemia cells.

    PubMed

    Chattopadhyay, Sourav; Dash, Sandeep Kumar; Tripathy, Satyajit; Das, Balaram; Kar Mahapatra, Santanu; Pramanik, Panchanan; Roy, Somenath

    2015-06-01

    The purpose of this study was to determine the intracellular signaling transduction pathways involved in oxidative stress induced by nanoparticles in cancer cells. Activation of reactive oxygen species (ROS) has some therapeutic benefits in arresting the growth of cancer cells. Cobalt oxide nanoparticles (CoO NPs) are an interesting compound for oxidative cancer therapy. Our results showed that CoO NPs elicited a significant (P <0.05) amount of ROS in cancer cells. Co-treatment with N-aceyltine cystine (an inhibitor of ROS) had a protective role in cancer cell death induced by CoO NPs. In cultured cells, the elevated level of tumor necrosis factor-alpha (TNF-α) was noted after CoO NPs treatment. This TNF-α persuaded activation of caspase-8 followed by phosphorylation of p38 mitogen-activated protein kinase and induced cell death. This study showed that CoO NPs induced oxidative stress and activated the signaling pathway of TNF-α-Caspase-8-p38-Caspase-3 to cancer cells.

  6. Metal-organic chemical vapor deposition of cerium oxide, gallium-indium-oxide, and magnesium oxide thin films: Precursor design, film growth, and film characterization

    NASA Astrophysics Data System (ADS)

    Edleman, Nikki Lynn

    A new class of volatile, low-melting, fluorine-free lanthanide metal-organic chemical vapor deposition (MOCVD) precursors has been developed. The neutral, monomeric cerium, neodymium, gadolinium, and erbium complexes are coordinatively saturated by a versatile, multidentate, ether-functionalized beta-ketoiminate ligand, and complex melting point and volatility characteristics can be tuned by altering the alkyl substituents on the ligand periphery. Direct comparison with lanthanide beta-diketonate complexes reveals that the present precursor class is a superior choice for lanthanide oxide MOCVD. Epitaxial CeO 2 buffer layer films have been grown on (001) YSZ substrates by MOCVD at significantly lower temperatures than previously reported using one of the newly developed cerium precursors. High-quality YBCO films grown on these CeO2 buffer layers by POMBE exhibit very good electrical transport properties. The cerium complex has therefore been explicitly demonstrated to be a stable and volatile precursor and is attractive for low-temperature growth of coated conductor multilayer structures by MOCVD. Gallium-indium-oxide thin films (GaxIn2-xO 3), x = 0.0˜1.1, have been grown by MOCVD using the volatile metal-organic precursors In(dpm)3 and Ga(dpm)3. The films have a homogeneously Ga-substituted, cubic In2O3 microstructure randomly oriented on quartz or heteroepitaxial on (100) YSZ single-crystal substrates. The highest conductivity of the as-grown films is found at x = 0.12. The optical transmission window and absolute transparency of the films rivals or exceeds that of the most transparent conductive oxides known. Reductive annealing results in improved charge transport characteristics with little loss of optical transparency. No significant difference in electrical properties is observed between randomly oriented and heteroepitaxial films, thus arguing that carrier scattering effects at high-angle grain boundaries play a minor role in the film conductivity mechanism

  7. Chemical fabrication of superconducting Y-Ba-Cu oxide films

    NASA Astrophysics Data System (ADS)

    Hussain, A. A.; Sayer, M.

    1992-02-01

    High-Tc superconducting films of Y-Ba-Cu oxide were prepared on 100-plane MgO substrates by a sol-gel method. A procedure is described for preparing a superconducting film using acetate compounds dissolved in salicylic or lactic acids in the presence of ethylene glycol. This solution has superior qualities in terms of homogeneity, viscosity, and stability against atmospheric hydration. The results indicate that the nature of the solvent influences the microstructure and superconducting properties of Y-Ba-Cu-O films. X-ray diffraction analysis reveals that the annealed films are textured and had orthorhombic orientation. A correlation between the crystal structure and the superconducting properties of the Y-Ba-Cu-O films is presented.

  8. Large and pristine films of reduced graphene oxide

    PubMed Central

    Ahn, Sung Il; Kim, Kukjoo; Jung, Jura; Choi, Kyung Cheol

    2015-01-01

    A new self-assembly concept is introduced to form large and pristine films (15 cm in diameter) of reduced graphene oxide (RGO). The resulting film has different degrees of polarity on its two different sides due to the characteristic nature of the self-assembly process. The RGO film can be easily transferred from a glass substrate onto water and a polymer substrate after injection of water molecules between the RGO film and glass substrate using an electric steamer. The RGO film can also be easily patterned into various shapes with a resolution of around ±10 μm by a simple taping method, which is suitable for mass production of printed electronics at low cost. PMID:26689267

  9. Electrochemically deposited cobalt/platinum (Co/Pt) film into porous silicon: Structural investigation and magnetic properties

    NASA Astrophysics Data System (ADS)

    Harraz, F. A.; Salem, A. M.; Mohamed, B. A.; Kandil, A.; Ibrahim, I. A.

    2013-01-01

    A nanostructured CoPt magnetic film was deposited from a single electrolyte into porous silicon layer by an electrochemical technique, followed by annealing at 600 °C in Ar atmosphere during which the CoPt alloy was converted to L10 ordered phase. Porous silicon with pore diameter between 5 and 100 nm was firstly fabricated by galvanostatic anodization of n-type silicon wafer in the presence of CrO3 as oxidizing agent and ethanol or sodium lauryl sulfate as surfactants. The role of the surfactant on the produced pore size and morphology was investigated by means of UV-vis spectra. As-formed porous silicon was consequently used as a template for the electrodeposition of magnetic CoPt film. The phase formation, microstructure and the magnetic properties were fully analyzed by XRD, FE-SEM, EDS and VSM measurements. It was found that, upon annealing the coercivity was significantly increased due to the transformation to the L10 ordered structure. The saturation magnetization and remanence ratio were also found to increase, indicating no loss of Co content or oxidation reaction after the annealing. Results of synthesis and characterization of CoPt/porous silicon nanocomposite are addressed and thoroughly discussed.

  10. Mechanisms of polarization switching in graphene oxides and poly(vinylidene fluoride)-graphene oxide films

    NASA Astrophysics Data System (ADS)

    Jiang, Zhiyuan; Zheng, Guangping; Zhan, Ke; Han, Zhuo; Wang, Hao

    2016-04-01

    Polarization switching in graphene oxides (GOs) and poly(vinylidene fluoride) (PVDF)-GO nanocomposite is investigated by piezoelectric force microscopy (PFM). The dynamical switching results reveal that GO films exhibit ferroelectric and piezoelectric properties with two-dimensional characteristics. Abnormal polarization switching is observed in PVDF-GO films, which is promising for electronic applications.

  11. Comparison of topotactic fluorination methods for complex oxide films

    SciTech Connect

    Moon, E. J. Choquette, A. K.; Huon, A.; Kulesa, S. Z.; May, S. J.; Barbash, D.

    2015-06-01

    We have investigated the synthesis of SrFeO{sub 3−α}F{sub γ} (α and γ ≤ 1) perovskite films using topotactic fluorination reactions utilizing poly(vinylidene fluoride) as a fluorine source. Two different fluorination methods, a spin-coating and a vapor transport approach, were performed on as-grown SrFeO{sub 2.5} films. We highlight differences in the structural, compositional, and optical properties of the oxyfluoride films obtained via the two methods, providing insight into how fluorination reactions can be used to modify electronic and optical behavior in complex oxide heterostructures.

  12. Peculiarities of jumping electroconductivity in bismuth oxide films

    NASA Astrophysics Data System (ADS)

    Vidadi, Yu. A.; Guseinov, Ya. Yu.; Bagiev, V. E.; Rafiev, T. Yu.

    1991-11-01

    The electrical properties of bismuth oxide films with direct and alternating current have been studied. A charge carrier transfer is shown to be dominant in these films both at low temperatures and at high frequencies due to the carrier jumps between the localized states with the energy near the Fermi level N( EF). The value of N( EF) at the localization radius α -1 = 8Å, the angular coefficient in Mott's law for jumping conductivity B = 93 K {1}/{4} and the average length of jumping at 230 K, R = 70 Å, have been calculated by two independent methods for τ-Bi 2O 3 films.

  13. Surface and sub-surface thermal oxidation of thin ruthenium films

    SciTech Connect

    Coloma Ribera, R.; Kruijs, R. W. E. van de; Yakshin, A. E.; Bijkerk, F.; Kokke, S.; Zoethout, E.

    2014-09-29

    A mixed 2D (film) and 3D (nano-column) growth of ruthenium oxide has been experimentally observed for thermally oxidized polycrystalline ruthenium thin films. Furthermore, in situ x-ray reflectivity upon annealing allowed the detection of 2D film growth as two separate layers consisting of low density and high density oxides. Nano-columns grow at the surface of the low density oxide layer, with the growth rate being limited by diffusion of ruthenium through the formed oxide film. Simultaneously, with the growth of the columns, sub-surface high density oxide continues to grow limited by diffusion of oxygen or ruthenium through the oxide film.

  14. Passivation of thin film oxide superconductors

    SciTech Connect

    Josefowicz, J.Y.; Rensch, D.B.; Nieh, K.W.

    1992-05-19

    This patent describes a passivation coating for oxide superconductors. It comprises a first layer of a Group II oxide encapsulating the oxide superconductor, the Group II having a substantially amorphous structure and having a thickness ranging from about 500 {Angstrom} to 2 {mu}m; and a second layer of a polymer covering the Group II oxide, the polymer comprising a composition selected from the group consisting of polyimide, polybenzyl methacrylate, polybutyl methacrylate, polybutyl styrene, polybutadiene, styrenes, polyamide resins, polyacrylics, polyacrylamides, polystyrenes, polyethylene, polyisoprene, polymethyl pentenes, polymethyl methacrylates, and polyvinyls.

  15. Combinatorial measurements of Hall effect and resistivity in oxide films.

    PubMed

    Clayhold, J A; Kerns, B M; Schroer, M D; Rench, D W; Logvenov, G; Bollinger, A T; Bozovic, I

    2008-03-01

    A system for the simultaneous measurement of the Hall effect in 31 different locations as well as the measurement of the resistivity in 30 different locations on a single oxide thin film grown with a composition gradient is described. Considerations for designing and operating a high-throughput system for characterizing highly conductive oxides with Hall coefficients as small as 10(-10) m3/C are discussed. Results from measurements on films grown using combinatorial molecular beam epitaxy show the usefulness of characterizing combinatorial libraries via both the resistivity and the Hall effect. PMID:18377026

  16. Plasmon polaritons in conducting-metal-oxide films

    NASA Astrophysics Data System (ADS)

    Efremenko, A.; Rhodes, C.; Cerutti, M.; Losego, M.; Aspnes, D. E.; Maria, J.-P.; Franzen, S.

    2008-10-01

    We report the evolution with thickness of p-polarized reflectance spectra of indium tin oxide (ITO) films deposited on BK-7 glass. ITO is one of the most common examples of the class of conducting metal oxides. Due to the low charge carrier density, ˜10-21/cm^3, the spectral features of the plasmon are observed in the near infrared. The spectra are dominated by two plasmon polariton structures, which we show are associated with the screened bulk plasmon (SBP) for very thin films and the surface plasmon for thick films. The conductor skin depth is the cut-off between the thin and thick film behavior. Remarkably, all features of these complex spectra are accurately described using only the three-phase model and the Drude free-electron representation of the dielectric function of the films. This first observation of the SBP is made possible by the unique features of these films, which include continuity for even the thinnest films and an absence of complications from bulk absorption in the spectral region of interest. The observation of the SBP is possible due to the fact that ITO behaves as a free electron conductor. Specifically, ITO has no band-to-band transitions that would obscure the intrinsic screed bulk plasmons.

  17. Characterization of reliability of printed indium tin oxide thin films.

    PubMed

    Hong, Sung-Jei; Kim, Jong-Woong; Jung, Seung-Boo

    2013-11-01

    Recently, decreasing the amount of indium (In) element in the indium tin oxide (ITO) used for transparent conductive oxide (TCO) thin film has become necessary for cost reduction. One possible approach to this problem is using printed ITO thin film instead of sputtered. Previous studies showed potential for printed ITO thin films as the TCO layer. However, nothing has been reported on the reliability of printed ITO thin films. Therefore, in this study, the reliability of printed ITO thin films was characterized. ITO nanoparticle ink was fabricated and printed onto a glass substrate followed by heating at 400 degrees C. After measurement of the initial values of sheet resistance and optical transmittance of the printed ITO thin films, their reliabilities were characterized with an isothermal-isohumidity test for 500 hours at 85 degrees C and 85% RH, a thermal shock test for 1,000 cycles between 125 degrees C and -40 degrees C, and a high temperature storage test for 500 hours at 125 degrees C. The same properties were investigated after the tests. Printed ITO thin films showed stable properties despite extremely thermal and humid conditions. Sheet resistances of the printed ITO thin films changed slightly from 435 omega/square to 735 omega/square 507 omega/square and 442 omega/square after the tests, respectively. Optical transmittances of the printed ITO thin films were slightly changed from 84.74% to 81.86%, 88.03% and 88.26% after the tests, respectively. These test results suggest the stability of printed ITO thin film despite extreme environments. PMID:24245331

  18. First-principles density functional theory study of cobalt (hydr)oxides and titanium dioxide for electrochemical oxygen evolution

    NASA Astrophysics Data System (ADS)

    Chen, Jia

    The spinel cobalt oxide Co3O4 is a magnetic semiconductor containing cobalt ions in Co2+ and Co3+ oxidation states. We have studied the electronic, magnetic and bonding properties of Co3O4 using density functional theory (DFT) at the Generalized Gradient Approximation (GGA), GGA+U, and PBE0 hybrid functional levels. (110) is a frequently exposed surface in Co3O4 nanomaterials. We employed DFT+U to study the atomic structures, energetics, magnetic and electronic properties of the two possible terminations, A and B, of this surface. These calculations predict A as the stable termination in a wide range of oxygen chemical potentials, consistent with recent experimental observations. The Co3+ ions do not have a magnetic moment in the bulk, but become magnetic at the surface, which leads to surface magnetic orderings different from the one in the bulk. Surface electronic states are present in the lower half of the bulk band gap and cause partial metallization of both surface terminations. These states are responsible for the charge compensation mechanism stabilizing both polar terminations. We also carried out DFT+U to study the interaction of water with the (110) surface of Co3O4, a widely used oxidation catalyst. Dissociative water adsorption is preferred from low coverage up to one monolayer on the A termination and up to one-half monolayer coverage on the B termination. On the latter, a mixed molecular and dissociated monolayer is more stable at full coverage. The computed structures are used to investigate the free energy changes during water oxidation on both surface terminations. Using first-principles density functional theory (DFT) calculations we determine the relative Gibbs free energies of CoO, Co(OH)2, Co 3O4, CoO(OH) and CoO2 in electrochemical environment. We find that CoO(OH) and CoO2 are the stable phases under oxidation conditions. These results, combined with surface structure studies of CoO(OH) (0001), show that a CoO2x-- (x=0~0.5) layer is present

  19. Tungsten oxide proton conducting films for low-voltage transparent oxide-based thin-film transistors

    SciTech Connect

    Zhang, Hongliang; Wan, Qing; Wan, Changjin; Wu, Guodong; Zhu, Liqiang

    2013-02-04

    Tungsten oxide (WO{sub x}) electrolyte films deposited by reactive magnetron sputtering showed a high room temperature proton conductivity of 1.38 Multiplication-Sign 10{sup -4} S/cm with a relative humidity of 60%. Low-voltage transparent W-doped indium-zinc-oxide thin-film transistors gated by WO{sub x}-based electrolytes were self-assembled on glass substrates by one mask diffraction method. Enhancement mode operation with a large current on/off ratio of 4.7 Multiplication-Sign 10{sup 6}, a low subthreshold swing of 108 mV/decade, and a high field-effect mobility 42.6 cm{sup 2}/V s was realized. Our results demonstrated that WO{sub x}-based proton conducting films were promising gate dielectric candidates for portable low-voltage oxide-based devices.

  20. Tungsten oxide proton conducting films for low-voltage transparent oxide-based thin-film transistors

    NASA Astrophysics Data System (ADS)

    Zhang, Hongliang; Wan, Qing; Wan, Changjin; Wu, Guodong; Zhu, Liqiang

    2013-02-01

    Tungsten oxide (WOx) electrolyte films deposited by reactive magnetron sputtering showed a high room temperature proton conductivity of 1.38 × 10-4 S/cm with a relative humidity of 60%. Low-voltage transparent W-doped indium-zinc-oxide thin-film transistors gated by WOx-based electrolytes were self-assembled on glass substrates by one mask diffraction method. Enhancement mode operation with a large current on/off ratio of 4.7 × 106, a low subthreshold swing of 108 mV/decade, and a high field-effect mobility 42.6 cm2/V s was realized. Our results demonstrated that WOx-based proton conducting films were promising gate dielectric candidates for portable low-voltage oxide-based devices.

  1. Plasma enhanced chemical vapor deposition (PECVD) method of forming vanadium oxide films and vanadium oxide thin-films prepared thereby

    DOEpatents

    Zhang, Ji-Guang; Tracy, C. Edwin; Benson, David K.; Turner, John A.; Liu, Ping

    2000-01-01

    A method is disclosed of forming a vanadium oxide film on a substrate utilizing plasma enhanced chemical vapor deposition. The method includes positioning a substrate within a plasma reaction chamber and then forming a precursor gas comprised of a vanadium-containing chloride gas in an inert carrier gas. This precursor gas is then mixed with selected amounts of hydrogen and oxygen and directed into the reaction chamber. The amounts of precursor gas, oxygen and hydrogen are selected to optimize the final properties of the vanadium oxide film An rf plasma is generated within the reaction chamber to chemically react the precursor gas with the hydrogen and the oxygen to cause deposition of a vanadium oxide film on the substrate while the chamber deposition pressure is maintained at about one torr or less. Finally, the byproduct gases are removed from the plasma reaction chamber.

  2. Oxidized film structure and method of making epitaxial metal oxide structure

    DOEpatents

    Gan, Shupan [Richland, WA; Liang, Yong [Richland, WA

    2003-02-25

    A stable oxidized structure and an improved method of making such a structure, including an improved method of making an interfacial template for growing a crystalline metal oxide structure, are disclosed. The improved method comprises the steps of providing a substrate with a clean surface and depositing a metal on the surface at a high temperature under a vacuum to form a metal-substrate compound layer on the surface with a thickness of less than one monolayer. The compound layer is then oxidized by exposing the compound layer to essentially oxygen at a low partial pressure and low temperature. The method may further comprise the step of annealing the surface while under a vacuum to further stabilize the oxidized film structure. A crystalline metal oxide structure may be subsequently epitaxially grown by using the oxidized film structure as an interfacial template and depositing on the interfacial template at least one layer of a crystalline metal oxide.

  3. Self-Assembled Hierarchical Formation of Conjugated 3D Cobalt Oxide Nanobead-CNT-Graphene Nanostructure Using Microwaves for High-Performance Supercapacitor Electrode.

    PubMed

    Kumar, Rajesh; Singh, Rajesh Kumar; Dubey, Pawan Kumar; Singh, Dinesh Pratap; Yadav, Ram Manohar

    2015-07-15

    Here we report the electrochemical performance of a interesting three-dimensional (3D) structures comprised of zero-dimensional (0D) cobalt oxide nanobeads, one-dimensional (1D) carbon nanotubes and two-dimensional (2D) graphene, stacked hierarchically. We have synthesized 3D self-assembled hierarchical nanostructure comprised of cobalt oxide nanobeads (Co-nb), carbon nanotubes (CNTs), and graphene nanosheets (GNSs) for high-performance supercapacitor electrode application. This 3D self-assembled hierarchical nanostructure Co3O4 nanobeads-CNTs-GNSs (3D:Co-nb@CG) is grown at a large scale (gram) through simple, facile, and ultrafast microwave irradiation (MWI). In 3D:Co-nb@CG nanostructure, Co3O4 nanobeads are attached to the CNT surfaces grown on GNSs. Our ultrafast, one-step approach not only renders simultaneous growth of cobalt oxide and CNTs on graphene nanosheets but also institutes the intrinsic dispersion of carbon nanotubes and cobalt oxide within a highly conductive scaffold. The 3D:Co-nb@CG electrode shows better electrochemical performance with a maximum specific capacitance of 600 F/g at the charge/discharge current density of 0.7A/g in KOH electrolyte, which is 1.56 times higher than that of Co3O4-decorated graphene (Co-np@G) nanostructure. This electrode also shows a long cyclic life, excellent rate capability, and high specific capacitance. It also shows high stability after few cycles (550 cycles) and exhibits high capacitance retention behavior. It was observed that the supercapacitor retained 94.5% of its initial capacitance even after 5000 cycles, indicating its excellent cyclic stability. The synergistic effect of the 3D:Co-nb@CG appears to contribute to the enhanced electrochemical performances.

  4. High-rate lithium storage capability of cupric-cobaltous oxalate induced by unavoidable crystal water and functionalized graphene oxide

    NASA Astrophysics Data System (ADS)

    Feng, Fan; Kang, Wenpei; Yu, Faqi; Zhang, He; Shen, Qiang

    2015-05-01

    The combination of co-precipitation and dehydration is used to prepare hydrated and dehydrated cupric-cobaltous oxalates (Cu1/3Co2/3C2O4·xH2O, x = 1.4; Cu1/3Co2/3C2O4). Then, the hydrothermal treatment of these binary oxalates with freshly prepared graphene oxide (GO) and then dehydration are subsequently adopted to combine the hydrated or dehydrated oxalate with functionalized graphene oxide (FGO), resulting in another two targets of Cu1/3Co2/3C2O4·xH2O/FGO and Cu1/3Co2/3C2O4/FGO composites. These facilitate the comparative studies on the lithium storage capability of cupric oxalate-containing anode materials enhanced by unavoidable crystal water. As a lithium-ion battery anode, Cu1/3Co2/3C2O4·xH2O possesses a reversible capacity of 565.0 mAh g-1 at 1000 mA g-1 over 200 discharge-charge cycles, higher than that of the dehydrated counterpart (246.1 mAh g-1) but lower than those of FGO-based composites (Cu1/3Co2/3C2O4/FGO ∼ 951.2 mAh g-1; Cu1/3Co2/3C2O4·xH2O/FGO ∼ 1134.9 mAh g-1) continuously cycled at the exactly same conditions. At an ultra-high current density of 2000 or 5000 mA g-1, anode Cu1/3Co2/3C2O4·xH2O/FGO delivers a constant discharge capacity of 935.6 mAh g-1 in the 100th cycle or 388.9 mAh g-1 in the 1000th cycle, indicating a jointly positive effect of crystal water and FGO on the high-rate electrochemical performance of cupric-cobaltous oxalate for the first time.

  5. Ambient-Temperature Sputtering Of Composite Oxide Films

    NASA Technical Reports Server (NTRS)

    Thakoor, Sarita

    1992-01-01

    Technique for deposition of homogeneous films of multicomponent oxides on substrates at ambient temperature based on sequential sputter deposition of individual metal components, as alternating ultra-thin layers, from multiple targets. Substrates rotated over sputtering targets of lead, zirconium, and titanium. Dc-magnetron sputtering of constituent metals in reactive ambient of argon and oxygen leads to formation of the respective metal oxides intermixed on extremely fine scale in desired composition. Compatible with low-temperature microelectronic processing.

  6. Manganese oxide nanowires, films, and membranes and methods of making

    DOEpatents

    Suib, Steven Lawrence; Yuan, Jikang

    2011-02-15

    Nanowires, films, and membranes comprising ordered porous manganese oxide-based octahedral molecular sieves and methods of making the same are disclosed. A method for forming nanowires includes hydrothermally treating a chemical precursor composition in a hydrothermal treating solvent to form the nanowires, wherein the chemical precursor composition comprises a source of manganese cations and a source of counter cations, and wherein the nanowires comprise ordered porous manganese oxide-based octahedral molecular sieves.

  7. Ion beam-based characterization of multicomponent oxide thin films and thin film layered structures

    SciTech Connect

    Krauss, A.R.; Rangaswamy, M.; Lin, Yuping; Gruen, D.M. ); Schultz, J.A. ); Schmidt, H.K. ); Chang, R.P.H. . Dept. of Materials Science)

    1992-01-01

    Fabrication of thin film layered structures of multi-component materials such as high temperature superconductors, ferroelectric and electro-optic materials, and alloy semiconductors, and the development of hybrid materials requires understanding of film growth and interface properties. For High Temperature Superconductors, the superconducting coherence length is extremely short (5--15 [Angstrom]), and fabrication of reliable devices will require control of film properties at extremely sharp interfaces; it will be necessary to verify the integrity of thin layers and layered structure devices over thicknesses comparable to the atomic layer spacing. Analytical techniques which probe the first 1--2 atomic layers are therefore necessary for in-situ characterization of relevant thin film growth processes. However, most surface-analytical techniques are sensitive to a region within 10--40 [Angstrom] of the surface and are physically incompatible with thin film deposition and are typically restricted to ultra high vacuum conditions. A review of ion beam-based analytical methods for the characterization of thin film and multi-layered thin film structures incorporating layers of multicomponent oxides is presented. Particular attention will be paid to the use of time-of-flight techniques based on the use of 1- 15 key ion beams which show potential for use as nondestructive, real-time, in-situ surface diagnostics for the growth of multicomponent metal and metal oxide thin films.

  8. Ion beam-based characterization of multicomponent oxide thin films and thin film layered structures

    SciTech Connect

    Krauss, A.R.; Rangaswamy, M.; Lin, Yuping; Gruen, D.M.; Schultz, J.A.; Schmidt, H.K.; Chang, R.P.H.

    1992-11-01

    Fabrication of thin film layered structures of multi-component materials such as high temperature superconductors, ferroelectric and electro-optic materials, and alloy semiconductors, and the development of hybrid materials requires understanding of film growth and interface properties. For High Temperature Superconductors, the superconducting coherence length is extremely short (5--15 {Angstrom}), and fabrication of reliable devices will require control of film properties at extremely sharp interfaces; it will be necessary to verify the integrity of thin layers and layered structure devices over thicknesses comparable to the atomic layer spacing. Analytical techniques which probe the first 1--2 atomic layers are therefore necessary for in-situ characterization of relevant thin film growth processes. However, most surface-analytical techniques are sensitive to a region within 10--40 {Angstrom} of the surface and are physically incompatible with thin film deposition and are typically restricted to ultra high vacuum conditions. A review of ion beam-based analytical methods for the characterization of thin film and multi-layered thin film structures incorporating layers of multicomponent oxides is presented. Particular attention will be paid to the use of time-of-flight techniques based on the use of 1- 15 key ion beams which show potential for use as nondestructive, real-time, in-situ surface diagnostics for the growth of multicomponent metal and metal oxide thin films.

  9. Transport properties of lead phosphate glass doped by cobalt, vanadium and chromium oxides

    NASA Astrophysics Data System (ADS)

    Roumaih, Kh.; Kaiser, M.; Elbatal, Fatma H.; Ali, I. S.

    2011-10-01

    The electrical transport properties were investigated of a glass system of basic composition 50 mol. % Pb3O4-50 mol. % P2O5 containing CoO, Cr2O3 or V2O5 dopanys. The ac conductivity and the thermoelectric power were measured as a function of temperature. Properties such as dielectric constant, loss factor tangent and electrical conductivity are reported in the frequency range 200 Hz-100 kHz and temperature range 300-450 K. The variation in electrical conductivity with temperature was found to depend on the types of transition metal ions involved. The temperature dependence of the frequency exponent, s, was analyzed using different theoretical models. The variation of the thermoelectric power with temperature indicated the presence of more than one conduction mechanism for the investigated samples. This result was confirmed with the results of the dielectric properties at different frequencies. The introduction of cobalt ions in glass formers improves the electrical properties of non-crystalline ionic conductors.

  10. Response of Lemna minor L. to short-term cobalt exposure: The effect on photosynthetic electron transport chain and induction of oxidative damage.

    PubMed

    Begović, Lidija; Mlinarić, Selma; Antunović Dunić, Jasenka; Katanić, Zorana; Lončarić, Zdenko; Lepeduš, Hrvoje; Cesar, Vera

    2016-06-01

    The effect of two concentrations of cobalt (Co(2+)) on photosynthetic activity and antioxidative response in Lemna minor L. were assessed 24, 48 and 72h after the start of the exposure. Higher concentration of cobalt (1mM) induced growth inhibition while lower concentration (0.01mM) increased photosynthetic pigments content. Analysis of chlorophyll a fluorescence transients revealed high sensitivity of photosystem II primary photochemistry to excess of Co(2+) especially at the higher concentration where decreased electron transport beyond primary quinone acceptor QA(-) and impaired function of oxygen evolving complex (OEC) was observed. Due to impairment of OEC, oxygen production was decreased at higher Co(2+) concentration. Activity of superoxide dismutase was mainly inhibited while lipid peroxidation increased, at both concentrations, indicating that cobalt-induced oxidative damage after short exposure and moreover, susceptibility of the membranes in the cell to cobalt toxicity. Results obtained in this study suggest possible application of used parameters as tools in assessment of early damage caused by metals.

  11. Study of multiphasic molybdate-based catalysts. II. Synergy effect between bismuth molybdates and mixed iron and cobalt molybdates in mild oxidation of propene

    SciTech Connect

    Millet, J.M.M.; Ponceblanc, H.; Coudurier, G.; Vedrine, J.C. ); Herrmann, J.M. )

    1993-08-01

    Results are reported concerning the synergy effect observed in the oxidation of propene to acrolein over bismuth and mixed iron and cobalt molybdates. The pure bismuth, iron, and cobalt molybdates and mixed cobalt and iron molybdates (solid solutions) have been prepared and individually tested as catalysts. Mechanical mixtures of these phases have been prepared and tested as catalysts. All the catalysts have been characterized before and after the catalytic reaction by several techniques such as ESR, XPS, EDX-STEM, TEM, XRD, and Moessbauer and UV spectroscopies. The synergy effect observed is tentatively explained as due to the deposition on the large bismuth molybdate particles of smaller mixed iron and cobalt molybdate particles with spreading of the bismuth molybdate over the latter particles. It is proposed that the Fe[sub x]Co[sub 1-x]MoO[sub 4] phase plays the role of the fast electron conducting material which enhances the electron mobility and the efficiency of the redox mechanism, the active and selective phase being the overlying bismuth molybdate compounds. 27 refs., 5 figs., 7 tabs.

  12. Response of Lemna minor L. to short-term cobalt exposure: The effect on photosynthetic electron transport chain and induction of oxidative damage.

    PubMed

    Begović, Lidija; Mlinarić, Selma; Antunović Dunić, Jasenka; Katanić, Zorana; Lončarić, Zdenko; Lepeduš, Hrvoje; Cesar, Vera

    2016-06-01

    The effect of two concentrations of cobalt (Co(2+)) on photosynthetic activity and antioxidative response in Lemna minor L. were assessed 24, 48 and 72h after the start of the exposure. Higher concentration of cobalt (1mM) induced growth inhibition while lower concentration (0.01mM) increased photosynthetic pigments content. Analysis of chlorophyll a fluorescence transients revealed high sensitivity of photosystem II primary photochemistry to excess of Co(2+) especially at the higher concentration where decreased electron transport beyond primary quinone acceptor QA(-) and impaired function of oxygen evolving complex (OEC) was observed. Due to impairment of OEC, oxygen production was decreased at higher Co(2+) concentration. Activity of superoxide dismutase was mainly inhibited while lipid peroxidation increased, at both concentrations, indicating that cobalt-induced oxidative damage after short exposure and moreover, susceptibility of the membranes in the cell to cobalt toxicity. Results obtained in this study suggest possible application of used parameters as tools in assessment of early damage caused by metals. PMID:27015565

  13. Mesoporous composite nickel cobalt oxide/graphene oxide synthesized via a template-assistant co-precipitation route as electrode material for supercapacitors

    NASA Astrophysics Data System (ADS)

    Xu, Yanjie; Wang, Lincai; Cao, Peiqi; Cai, Chuanlin; Fu, Yanbao; Ma, Xiaohua

    2016-02-01

    A simple co-precipitation method utilizing SDS (sodium dodecyl sulfate) as template and ammonia as precipitant is successfully employed to synthesize nickel cobalt oxide/graphene oxide (NiCo2O4/GO) composite. The as-prepared composite (NCG-10) exhibits a high capacitance of 1211.25 F g-1, 687 F g-1 at the current density of 1 A g-1, 10 A g-1 and good cycling ability which renders NCG-10 as promising electrode material for supercapacitors. An asymmetric supercapacitor (ASC) (full button cell) has been constructed with NCG-10 as positive electrode and lab-made reduced graphene oxide (rGO) as negative electrode. The fabricated NCG-10//rGO with an extended stable operational voltage of 1.6 V can deliver a high specific capacitance of 144.45 F g-1 at a current density of 1 A g-1. The as-prepared NCG-10//rGO demonstrates remarkable energy density (51.36 W h kg-1 at 1 A g-1), high power density (50 kW kg-1 at 20 A g-1). The retention of capacitance is 88.6% at the current density of 8 A g-1 after 2000 cycles. The enhanced capacitive performance can be attributed to the improved specific surface area and 3D open area of NCG-10 generated by the pores and channels with the substantial function of SDS.

  14. Growth of ultrathin vanadium oxide films on Ag(100)

    NASA Astrophysics Data System (ADS)

    Nakamura, Takuya; Sugizaki, Yuichi; Ishida, Shuhei; Edamoto, Kazuyuki; Ozawa, Kenichi

    2016-07-01

    Vanadium oxide films were grown on Ag(100) by vanadium deposition in O2 and subsequent annealing at 450 °C. It was found that at least three types of ordered V oxide films, which showed (1 × 1), hexagonal, and (4 × 1) LEED patterns, were formed on Ag(100) depending on the O2 pressure during deposition and conditions during postannealing. The films with the hexagonal and (1 × 1) periodicities were characterized by photoelectron spectroscopy (PES) and near-edge X-ray absorption fine structure (NEXAFS) analysis. The film with the (1 × 1) periodicity was ascribed to a VO(100) film. On the other hand, the film with the hexagonal periodicity was found to be composed of V2O3, and the analysis of the LEED pattern revealed that the lattice parameter of the hexagonal lattice is 0.50 nm, which is very close to that of corundum V2O3(0001) (0.495 nm).

  15. Electrosynthesis and characterization of lead oxide thin films

    SciTech Connect

    Mahalingam, T. . E-mail: maha51@rediffmail.com; Velumani, S.; Raja, M.; Thanikaikarasan, S.; Chu, J.P.; Wang, S.F.; Kim, Y.D.

    2007-08-15

    Lead dioxide (PbO{sub 2}) is an important oxide material used extensively as anode material in batteries and fuel cells and its study has now taken new strides beyond the wide field of battery research. In the present study, lead dioxide films were electrodeposited onto precleaned copper substrate from nitrate baths. The film composition, morphology and structure were investigated using Energy Dispersive X-ray Analysis (EDX), scanning electron microscopy and X-ray diffraction techniques. The oxidation and reduction potential regions and the mechanism of lead dioxide film formation are discussed using cyclic voltammetry studies. X-ray diffraction results revealed tetragonal [{alpha}-PbO{sub 2} + {beta}-PbO{sub 2}] structures of the films which are influenced by bath temperature and solution pH value. EDAX studies show that the films deposited at higher bath temperatures and low solution pH values are rich in lead content and low in oxygen content. The effects of bath temperature and solution pH on the morphological features of lead dioxide films are also described.

  16. Multiferroic oxide thin films and heterostructures

    NASA Astrophysics Data System (ADS)

    Lu, Chengliang; Hu, Weijin; Tian, Yufeng; Wu, Tom

    2015-06-01

    Multiferroic materials promise a tantalizing perspective of novel applications in next-generation electronic, memory, and energy harvesting technologies, and at the same time they also represent a grand scientific challenge on understanding complex solid state systems with strong correlations between multiple degrees of freedom. In this review, we highlight the opportunities and obstacles in growing multiferroic thin films with chemical and structural integrity and integrating them in functional devices. Besides the magnetoelectric effect, multiferroics exhibit excellent resistant switching and photovoltaic properties, and there are plenty opportunities for them to integrate with other ferromagnetic and superconducting materials. The challenges include, but not limited, defect-related leakage in thin films, weak magnetism, and poor control on interface coupling. Although our focuses are Bi-based perovskites and rare earth manganites, the insights are also applicable to other multiferroic materials. We will also review some examples of multiferroic applications in spintronics, memory, and photovoltaic devices.

  17. Multiferroic oxide thin films and heterostructures

    SciTech Connect

    Lu, Chengliang E-mail: Tao.Wu@kaust.edu.sa; Hu, Weijin; Wu, Tom E-mail: Tao.Wu@kaust.edu.sa; Tian, Yufeng

    2015-06-15

    Multiferroic materials promise a tantalizing perspective of novel applications in next-generation electronic, memory, and energy harvesting technologies, and at the same time they also represent a grand scientific challenge on understanding complex solid state systems with strong correlations between multiple degrees of freedom. In this review, we highlight the opportunities and obstacles in growing multiferroic thin films with chemical and structural integrity and integrating them in functional devices. Besides the magnetoelectric effect, multiferroics exhibit excellent resistant switching and photovoltaic properties, and there are plenty opportunities for them to integrate with other ferromagnetic and superconducting materials. The challenges include, but not limited, defect-related leakage in thin films, weak magnetism, and poor control on interface coupling. Although our focuses are Bi-based perovskites and rare earth manganites, the insights are also applicable to other multiferroic materials. We will also review some examples of multiferroic applications in spintronics, memory, and photovoltaic devices.

  18. Synthesis and controllable oxidation of monodisperse cobalt-doped wüstite nanoparticles and their core-shell stability and exchange-bias stabilization

    NASA Astrophysics Data System (ADS)

    Chen, Chih-Jung; Chiang, Ray-Kuang; Kamali, Saeed; Wang, Sue-Lein

    2015-08-01

    Cobalt-doped wüstite (CWT), Co0.33Fe0.67O, nanoparticles were prepared via the thermal decomposition of CoFe2-oleate complexes in organic solvents. A controllable oxidation process was then performed to obtain Co0.33Fe0.67O/CoFe2O4 core-shell structures with different core-to-shell volume ratios and exchange bias properties. The oxidized core-shell samples with a ~4 nm CoFe2O4 shell showed good resistance to oxygen transmission. Thus, it is inferred that the cobalt ferrite shell provides a better oxidation barrier performance than magnetite in the un-doped case. The hysteresis loops of the oxidized 19 nm samples exhibited a high exchange bias field (HE), an enhanced coercivity field (HC), and a pronounced vertical shift, thus indicating the presence of a strong exchange bias coupling effect. More importantly, the onset temperature of HE was found to be higher than 200 K, which suggests that cobalt doping increases the Néel temperature (TN) of the CWT core. In general, the results show that the homogeneous dispersion of Co in iron precursors improves the stability of the final CWT nanoparticles. Moreover, the CoFe2O4 shells formed following oxidation increase the oxidation resistance of the CWT cores and enhance their anisotropy energy.Cobalt-doped wüstite (CWT), Co0.33Fe0.67O, nanoparticles were prepared via the thermal decomposition of CoFe2-oleate complexes in organic solvents. A controllable oxidation process was then performed to obtain Co0.33Fe0.67O/CoFe2O4 core-shell structures with different core-to-shell volume ratios and exchange bias properties. The oxidized core-shell samples with a ~4 nm CoFe2O4 shell showed good resistance to oxygen transmission. Thus, it is inferred that the cobalt ferrite shell provides a better oxidation barrier performance than magnetite in the un-doped case. The hysteresis loops of the oxidized 19 nm samples exhibited a high exchange bias field (HE), an enhanced coercivity field (HC), and a pronounced vertical shift, thus

  19. Perovskite Oxide Thin Film Growth, Characterization, and Stability

    NASA Astrophysics Data System (ADS)

    Izumi, Andrew

    Studies into a class of materials known as complex oxides have evoked a great deal of interest due to their unique magnetic, ferroelectric, and superconducting properties. In particular, materials with the ABO3 perovskite structure have highly tunable properties because of the high stability of the structure, which allows for large scale doping and strain. This also allows for a large selection of A and B cations and valences, which can further modify the material's electronic structure. Additionally, deposition of these materials as thin films and superlattices through techniques such as pulsed laser deposition (PLD) results in novel properties due to the reduced dimensionality of the material. The novel properties of perovskite oxide heterostructures can be traced to a several sources, including chemical intermixing, strain and defect formation, and electronic reconstruction. The correlations between microstructure and physical properties must be investigated by examining the physical and electronic structure of perovskites in order to understand this class of materials. Some perovskites can undergo phase changes due to temperature, electrical fields, and magnetic fields. In this work we investigated Nd0.5Sr 0.5MnO3 (NSMO), which undergoes a first order magnetic and electronic transition at T=158K in bulk form. Above this temperature NSMO is a ferromagnetic metal, but transitions into an antiferromagnetic insulator as the temperature is decreased. This rapid transition has interesting potential in memory devices. However, when NSMO is deposited on (001)-oriented SrTiO 3 (STO) or (001)-oriented (LaAlO3)0.3-(Sr 2AlTaO6)0.7 (LSAT) substrates, this transition is lost. It has been reported in the literature that depositing NSMO on (110)-oriented STO allows for the transition to reemerge due to the partial epitaxial growth, where the NSMO film is strained along the [001] surface axis and partially relaxed along the [11¯0] surface axis. This allows the NSMO film enough

  20. Indium oxide inverse opal films synthesized by structure replication method

    NASA Astrophysics Data System (ADS)

    Amrehn, Sabrina; Berghoff, Daniel; Nikitin, Andreas; Reichelt, Matthias; Wu, Xia; Meier, Torsten; Wagner, Thorsten

    2016-04-01

    We present the synthesis of indium oxide (In2O3) inverse opal films with photonic stop bands in the visible range by a structure replication method. Artificial opal films made of poly(methyl methacrylate) (PMMA) spheres are utilized as template. The opal films are deposited via sedimentation facilitated by ultrasonication, and then impregnated by indium nitrate solution, which is thermally converted to In2O3 after drying. The quality of the resulting inverse opal film depends on many parameters; in this study the water content of the indium nitrate/PMMA composite after drying is investigated. Comparison of the reflectance spectra recorded by vis-spectroscopy with simulated data shows a good agreement between the peak position and calculated stop band positions for the inverse opals. This synthesis is less complex and highly efficient compared to most other techniques and is suitable for use in many applications.