Science.gov

Sample records for cobalt-based oxygen evolving

  1. Cobalt-based layered double hydroxides as oxygen evolving electrocatalysts in neutral electrolyte

    NASA Astrophysics Data System (ADS)

    Lin, Hong; Zhang, Ye; Wang, Gang; Li, Jian-Bao

    2012-06-01

    Co-M (M= Co, Ni, Fe, Mn) layered double hydroxides (LDHs) were successfully fabricated by a hexamethylenetetramine (HMT) pyrolysis method. Composite electrodes were made using a self-assembly fashion at inorganic/organic surface binder-free and were used to catalyze oxygen evolution reaction. Water oxidation can take place in neutral electrolyte operating with modest overpotential. The doping of other transitional metal cations affords mix valences and thus more intimate electronic interactions for reversible chemisorption of dioxygen molecules. The application of employing LDH materials in water oxidation process bodes well to facilitate future hydrogen utilization.

  2. Cobalt-phosphate oxygen-evolving compound.

    PubMed

    Kanan, Matthew W; Surendranath, Yogesh; Nocera, Daniel G

    2009-01-01

    The utilization of solar energy on a large scale requires efficient storage. Solar-to-fuels has the capacity to meet large scale storage needs as demonstrated by natural photosynthesis. This process uses sunlight to rearrange the bonds of water to furnish O2 and an H2-equivalent. We present a tutorial review of our efforts to develop an amorphous cobalt-phosphate catalyst that oxidizes water to O2. The use of earth-abundant materials, operation in water at neutral pH, and the formation of the catalyst in situ captures functional elements of the oxygen evolving complex of Photosystem II.

  3. Oxygen evolving complex in photosystem II: better than excellent.

    PubMed

    Najafpour, Mohammad Mahdi; Govindjee

    2011-09-28

    The Oxygen Evolving Complex in photosystem II, which is responsible for the oxidation of water to oxygen in plants, algae and cyanobacteria, contains a cluster of one calcium and four manganese atoms. This cluster serves as a model for the splitting of water by energy obtained from sunlight. The recent published data on the mechanism and the structure of photosystem II provide a detailed architecture of the oxygen-evolving complex and the surrounding amino acids. Biomimetically, we expect to learn some strategies from this natural system to synthesize an efficient catalyst for water oxidation, that is necessary for artificial photosynthesis.

  4. Homogeneously dispersed, multimetal oxygen-evolving catalysts

    SciTech Connect

    Zhang, Bo; Zheng, Xueli; Voznyy, Oleksandr; Comin, Riccardo; Bajdich, Michal; Garcia-Melchor, Max; Han, Lili; Xu, Jixian; Liu, Min; Zheng, Lirong; F. Pelayo Garcia de Arquer; Dinh, Cao Thang; Fan, Fengjia; Yuan, Mingjian; Yassitepe, Emre; Chen, Ning; Regier, Tom; Liu, Pengfei; Li, Yuhang; De Luna, Phil; Janmohamed, Alyf; Xin, Huolin L.; Yang, Huagui; Vojvodic, Aleksandra; Sargent, Edward H.

    2016-03-24

    Earth-abundant first-row (3d) transition-metal-based catalysts have been developed for the oxygen-evolution reaction (OER); however, they operate at overpotentials significantly above thermodynamic requirements. Density functional theory suggested that non-3d high-valency metals such as tungsten can modulate 3d metal oxides, providing near-optimal adsorption energies for OER intermediates. We developed a room-temperature synthesis to produce gelled oxy-hydroxide materials with an atomically homogeneous metal distribution. These gelled FeCoW oxy-hydroxide exhibits the lowest overpotential (191 mV) reported at 10 mA per square centimeter in alkaline electrolyte. Here, the catalyst shows no evidence of degradation following more than 500 hours of operation. X-ray absorption and computational studies reveal a synergistic interplay between W, Fe and Co in producing a favorable local coordination environment and electronic structure that enhance the energetics for OER.

  5. Homogeneously dispersed, multimetal oxygen-evolving catalysts

    DOE PAGES

    Zhang, Bo; Zheng, Xueli; Voznyy, Oleksandr; ...

    2016-03-24

    Earth-abundant first-row (3d) transition-metal-based catalysts have been developed for the oxygen-evolution reaction (OER); however, they operate at overpotentials significantly above thermodynamic requirements. Density functional theory suggested that non-3d high-valency metals such as tungsten can modulate 3d metal oxides, providing near-optimal adsorption energies for OER intermediates. We developed a room-temperature synthesis to produce gelled oxy-hydroxide materials with an atomically homogeneous metal distribution. These gelled FeCoW oxy-hydroxide exhibits the lowest overpotential (191 mV) reported at 10 mA per square centimeter in alkaline electrolyte. Here, the catalyst shows no evidence of degradation following more than 500 hours of operation. X-ray absorption and computationalmore » studies reveal a synergistic interplay between W, Fe and Co in producing a favorable local coordination environment and electronic structure that enhance the energetics for OER.« less

  6. Catalytic Oxygen Evolution by a Bioinorganic Model of the Photosystem II Oxygen-Evolving Complex

    ERIC Educational Resources Information Center

    Howard, Derrick L.; Tinoco, Arthur D.; Brudvig, Gary W.; Vrettos, John S.; Allen, Bertha Connie

    2005-01-01

    Bioinorganic models of the manganese Mn4 cluster are important not only as aids in understanding the structure and function of the oxygen-evolving complex (OEC), but also in developing artificial water-oxidation catalysts. The mechanism of water oxidation by photosystem II (PSII) is thought to involve the formation of a high-valent terminal Mn-oxo…

  7. Cobalt-Base Alloy Gun Barrel Study

    DTIC Science & Technology

    2014-07-01

    Cobalt -Base Alloy Gun Barrel Study by William S. de Rosset and Jonathan S. Montgomery ARL-RP-0491 July 2014 A reprint...21005-5069 ARL-RP-0491 July 2014 Cobalt -Base Alloy Gun Barrel Study William S. de Rosset and Jonathan S. Montgomery Weapons and Materials...DATE (DD-MM-YYYY) July 2014 2. REPORT TYPE Reprint 3. DATES COVERED (From - To) October–November 2013 4. TITLE AND SUBTITLE Cobalt -Base Alloy

  8. Evolving Oxygen Landscape of the Early Atmosphere and Oceans

    NASA Astrophysics Data System (ADS)

    Lyons, T. W.; Reinhard, C. T.; Planavsky, N. J.

    2013-12-01

    The past decade has witnessed remarkable advances in our understanding of oxygen on the early Earth, and a new framework, the topic of this presentation, is now in place to address the controls on spatiotemporal distributions of oxygen and their potential relationships to deep-Earth processes. Recent challenges to the Archean biomarker record have put an added burden on inorganic geochemistry to fingerprint and quantify the early production, accumulation, and variation of biospheric oxygen. Fortunately, a wide variety of techniques now point convincingly to photosynthetic oxygen production and dynamic accumulation well before the canonical Great Oxidation Event (GOE). Recent modeling of sulfur recycling over this interval allows for transient oxygen accumulation in the atmosphere without the disappearance of non-mass-dependent (NMD) sulfur isotope anomalies from the stratigraphic record and further allows for persistent accumulation in the atmosphere well before the permanent disappearance of NMD signals. This recent work suggests that the initial rise of oxygen may have occurred in fits and starts rather than a single step, and that once permanently present in the atmosphere, oxygen likely rose to high levels and then plummeted, in phase with the Paleoproterozoic Lomagundi positive carbon isotope excursion. More than a billion years of oxygen-free conditions in the deep ocean followed and set a challenging course for life, including limited abundances and diversity of eukaryotic organisms. Despite this widespread anoxia, sulfidic (euxinic) conditions were likely limited to productive ocean margins. Nevertheless, euxinia was sufficiently widespread to impact redox-dependent nutrient relationships, particularly the availability of bioessential trace metals critical in the nitrogen cycle, which spawned feedbacks that likely maintained oxygen at very low levels in the ocean and atmosphere and delayed the arrival of animals. Then, in the mid, pre-glacial Neoproterozoic

  9. An energetic comparison of different models for the oxygen evolving complex of photosystem II.

    PubMed

    Siegbahn, Per E M

    2009-12-30

    The computed total energy from a cluster model DFT calculation is used to discriminate between different suggested models for the oxygen evolving complex of photosystem II. The comparison between different structures rules out several suggestions. Only one suggested structure remains.

  10. Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices.

    PubMed

    McCrory, Charles C L; Jung, Suho; Ferrer, Ivonne M; Chatman, Shawn M; Peters, Jonas C; Jaramillo, Thomas F

    2015-04-08

    Objective comparisons of electrocatalyst activity and stability using standard methods under identical conditions are necessary to evaluate the viability of existing electrocatalysts for integration into solar-fuel devices as well as to help inform the development of new catalytic systems. Herein, we use a standard protocol as a primary screen for evaluating the activity, short-term (2 h) stability, and electrochemically active surface area (ECSA) of 18 electrocatalysts for the hydrogen evolution reaction (HER) and 26 electrocatalysts for the oxygen evolution reaction (OER) under conditions relevant to an integrated solar water-splitting device in aqueous acidic or alkaline solution. Our primary figure of merit is the overpotential necessary to achieve a magnitude current density of 10 mA cm(-2) per geometric area, the approximate current density expected for a 10% efficient solar-to-fuels conversion device under 1 sun illumination. The specific activity per ECSA of each material is also reported. Among HER catalysts, several could operate at 10 mA cm(-2) with overpotentials <0.1 V in acidic and/or alkaline solutions. Among OER catalysts in acidic solution, no non-noble metal based materials showed promising activity and stability, whereas in alkaline solution many OER catalysts performed with similar activity achieving 10 mA cm(-2) current densities at overpotentials of ~0.33-0.5 V. Most OER catalysts showed comparable or better specific activity per ECSA when compared to Ir and Ru catalysts in alkaline solutions, while most HER catalysts showed much lower specific activity than Pt in both acidic and alkaline solutions. For select catalysts, additional secondary screening measurements were conducted including Faradaic efficiency and extended stability measurements.

  11. A synthetic model for the oxygen-evolving complex in Sr(2+)-containing photosystem II.

    PubMed

    Chen, Changhui; Zhang, Chunxi; Dong, Hongxing; Zhao, Jingquan

    2014-08-25

    A novel heterometallic MnSr complex containing the Mn3SrO4 cuboidal moiety and all types of μ-O(2-) moieties observed in the oxygen-evolving complex (OEC) in Sr(2+)-containing photosystem II (PSII) has been synthesized and characterized, which provides a new synthetic model of the OEC.

  12. Unveiling the Reactivity of a Synthetic Mimic of the Oxygen Evolving Complex.

    PubMed

    Raucci, Umberto; Ciofini, Ilaria; Adamo, Carlo; Rega, Nadia

    2016-12-15

    We simulated for the first time the oxygen-oxygen bond formation in a synthetic calcium-tetra manganese complex recently developed by Zhang and co-workers. In spite of promising structural similarities to the native oxygen evolving complex (OEC) in Photosystem II, several uncertainties on the mimic stability in water and on its potential catalytic activity still persist. Here, we characterized at density functional theory level the electronic and structural features of the Sn states of the complex, along with the oxygen-oxygen bond formation reaction, proposing a reasonable model for the hydrate complex. As a main finding, both the synthetic compound and the natural OEC show very close energetic barriers for the oxo-oxyl coupling process, suggesting that key electronic features of the natural OEC reactivity are well reproduced. This result strongly encourages the use of this synthetic complex in combination with other molecular assemblies for the design of successful artificial leaves.

  13. A ligand field chemistry of oxygen generation by the oxygen-evolving complex and synthetic active sites.

    PubMed

    Betley, Theodore A; Surendranath, Yogesh; Childress, Montana V; Alliger, Glen E; Fu, Ross; Cummins, Christopher C; Nocera, Daniel G

    2008-03-27

    Oxygen-oxygen bond formation and O2 generation occur from the S4 state of the oxygen-evolving complex (OEC). Several mechanistic possibilities have been proposed for water oxidation, depending on the formal oxidation state of the Mn atoms. All fall under two general classifications: the AB mechanism in which nucleophilic oxygen (base, B) attacks electrophilic oxygen (acid, A) of the Mn4Ca cluster or the RC mechanism in which radical-like oxygen species couple within OEC. The critical intermediate in either mechanism involves a metal oxo, though the nature of this oxo for AB and RC mechanisms is disparate. In the case of the AB mechanism, assembly of an even-electron count, high-valent metal-oxo proximate to a hydroxide is needed whereas, in an RC mechanism, two odd-electron count, high-valent metal oxos are required. Thus the two mechanisms give rise to very different design criteria for functional models of the OEC active site. This discussion presents the electron counts and ligand geometries that support metal oxos for AB and RC O-O bond-forming reactions. The construction of architectures that bring two oxygen functionalities together under the purview of the AB and RC scenarios are described.

  14. N-doped nanoporous Co3O4 nanosheets with oxygen vacancies as oxygen evolving electrocatalysts.

    PubMed

    Xu, Lei; Wang, Zhimin; Wang, Jialu; Xiao, Zhaohui; Huang, Xiaobing; Liu, Zhigang; Wang, Shuangyin

    2017-04-21

    Developing highly active electrocatalysts for the oxygen evolution reaction (OER) with a high surface area, high catalytic activity, low cost and high conductivity is a big challenge for various energy technologies. Herein, for the first time, we realized the simultaneous nitrogen doping and etching of Co3O4 nanosheets to produce N-doped nanoporous Co3O4 nanosheets with oxygen vacancies by N2 plasma. The increase in active sites in N-doped Co3O4 nanosheets and improved electronic conductivity with N doping and oxygen vacancies results in excellent electrocatalytic activity for the OER. Compared with pristine Co3O4 nanosheets, the N-doped Co3O4 nanosheets with oxygen vacancies have a much lower required potential of 1.54 V versus a reversible hydrogen electrode than the pristine Co3O4 nanosheets (1.79 V) to reach the current density of 10 mA cm(-2). The N-doped and etched Co3O4 nanosheets have a much lower Tafel slope of 59 mV dec(-1) than pristine Co3O4 nanosheets (234 mV dec(-1)). The enhanced electrocatalytic activity for the OER is caused by the increased surface area, N doping and the produced oxygen vacancies.

  15. N-doped nanoporous Co3O4 nanosheets with oxygen vacancies as oxygen evolving electrocatalysts

    NASA Astrophysics Data System (ADS)

    Xu, Lei; Wang, Zhimin; Wang, Jialu; Xiao, Zhaohui; Huang, Xiaobing; Liu, Zhigang; Wang, Shuangyin

    2017-04-01

    Developing highly active electrocatalysts for the oxygen evolution reaction (OER) with a high surface area, high catalytic activity, low cost and high conductivity is a big challenge for various energy technologies. Herein, for the first time, we realized the simultaneous nitrogen doping and etching of Co3O4 nanosheets to produce N-doped nanoporous Co3O4 nanosheets with oxygen vacancies by N2 plasma. The increase in active sites in N-doped Co3O4 nanosheets and improved electronic conductivity with N doping and oxygen vacancies results in excellent electrocatalytic activity for the OER. Compared with pristine Co3O4 nanosheets, the N-doped Co3O4 nanosheets with oxygen vacancies have a much lower required potential of 1.54 V versus a reversible hydrogen electrode than the pristine Co3O4 nanosheets (1.79 V) to reach the current density of 10 mA cm‑2. The N-doped and etched Co3O4 nanosheets have a much lower Tafel slope of 59 mV dec‑1 than pristine Co3O4 nanosheets (234 mV dec‑1). The enhanced electrocatalytic activity for the OER is caused by the increased surface area, N doping and the produced oxygen vacancies.

  16. Digalactosyldiacylglycerol is required for stabilization of the oxygen-evolving complex in photosystem II.

    PubMed

    Sakurai, Isamu; Mizusawa, Naoki; Wada, Hajime; Sato, Naoki

    2007-12-01

    The galactolipid digalactosyldiacylglycerol (DGDG) is present in the thylakoid membranes of oxygenic photosynthetic organisms such as higher plants and cyanobacteria. Recent x-ray crystallographic analysis of protein-cofactor supercomplexes in thylakoid membranes revealed that DGDG molecules are present in the photosystem II (PSII) complex (four molecules per monomer), suggesting that DGDG molecules play important roles in folding and assembly of subunits in the PSII complex. However, the specific role of DGDG in PSII has not been fully clarified. In this study, we identified the dgdA gene (slr1508, a ycf82 homolog) of Synechocystis sp. PCC6803 that presumably encodes a DGDG synthase involved in the biosynthesis of DGDG by comparison of genomic sequence data. Disruption of the dgdA gene resulted in a mutant defective in DGDG synthesis. Despite the lack of DGDG, the mutant cells grew as rapidly as the wild-type cells, indicating that DGDG is not essential for growth in Synechocystis. However, we found that oxygen-evolving activity of PSII was significantly decreased in the mutant. Analyses of the PSII complex purified from the mutant cells indicated that the extrinsic proteins PsbU, PsbV, and PsbO, which stabilize the oxygen-evolving complex, were substantially dissociated from the PSII complex. In addition, we found that heat susceptibility but not dark-induced inactivation of oxygen-evolving activity was notably increased in the mutant cells in comparison to the wild-type cells, suggesting that the PsbU subunit is dissociated from the PSII complex even in vivo. These results demonstrate that DGDG plays important roles in PSII through the binding of extrinsic proteins required for stabilization of the oxygen-evolving complex.

  17. Inorganic chemistry. A synthetic Mn₄Ca-cluster mimicking the oxygen-evolving center of photosynthesis.

    PubMed

    Zhang, Chunxi; Chen, Changhui; Dong, Hongxing; Shen, Jian-Ren; Dau, Holger; Zhao, Jingquan

    2015-05-08

    Photosynthetic splitting of water into oxygen by plants, algae, and cyanobacteria is catalyzed by the oxygen-evolving center (OEC). Synthetic mimics of the OEC, which is composed of an asymmetric manganese-calcium-oxygen cluster bound to protein groups, may promote insight into the structural and chemical determinants of biological water oxidation and lead to development of superior catalysts for artificial photosynthesis. We synthesized a Mn4Ca-cluster similar to the native OEC in both the metal-oxygen core and the binding protein groups. Like the native OEC, the synthetic cluster can undergo four redox transitions and shows two magnetic resonance signals assignable to redox and structural isomerism. Comparison with previously synthesized Mn3CaO4-cubane clusters suggests that the fourth Mn ion determines redox potentials and magnetic properties of the native OEC.

  18. Functional Models for the Oxygen-Evolving Complex of Photosystem II

    PubMed Central

    Cady, Clyde W.; Crabtree, Robert H.; Brudvig, Gary W.

    2010-01-01

    In the last ten years, a number of advances have been made in the study of the oxygen-evolving complex (OEC) of photosystem II (PSII). Along with this new understanding of the natural system has come rapid advance in chemical models of this system. The advance of PSII model chemistry is seen most strikingly in the area of functional models where the few known systems available when this topic was last reviewed has grown into two families of model systems. In concert with this work, numerous mechanistic proposals for photosynthetic water oxidation have been proposed. Here, we review the recent efforts in functional model chemistry of the oxygen-evolving complex of photosystem II. PMID:21037800

  19. Ammonia Binds to the Dangler Manganese of the Photosystem II Oxygen-Evolving Complex.

    PubMed

    Oyala, Paul H; Stich, Troy A; Debus, Richard J; Britt, R David

    2015-07-15

    High-resolution X-ray structures of photosystem II reveal several potential substrate binding sites at the water-oxidizing/oxygen-evolving 4MnCa cluster. Aspartate-61 of the D1 protein hydrogen bonds with one such water (W1), which is bound to the dangler Mn4A of the oxygen-evolving complex. Comparison of pulse EPR spectra of (14)NH3 and (15)NH3 bound to wild-type Synechocystis PSII and a D1-D61A mutant lacking this hydrogen-bonding interaction demonstrates that ammonia binds as a terminal NH3 at this dangler Mn4A site and not as a partially deprotonated bridge between two metal centers. The implications of this finding on identifying the binding sites of the substrate and the subsequent mechanism of dioxygen formation are discussed.

  20. Evidence for an oxygen evolving iron-oxo-cerium intermediate in iron-catalysed water oxidation.

    PubMed

    Codolà, Zoel; Gómez, Laura; Kleespies, Scott T; Que, Lawrence; Costas, Miquel; Lloret-Fillol, Julio

    2015-01-22

    The non-haem iron complex α-[Fe(II)(CF3SO3)2(mcp)] (mcp=(N,N'-dimethyl-N,N'-bis(2-pyridylmethyl)-1,2-cis-diaminocyclohexane) reacts with Ce(IV) to oxidize water to O2, representing an iron-based functional model for the oxygen evolving complex of photosystem II. Here we trap an intermediate, characterized by cryospray ionization high resolution mass spectrometry and resonance Raman spectroscopy, and formulated as [(mcp)Fe(IV)(O)(μ-O)Ce(IV)(NO3)3](+), the first example of a well-characterized inner-sphere complex to be formed in cerium(IV)-mediated water oxidation. The identification of this reactive Fe(IV)-O-Ce(IV) adduct may open new pathways to validate mechanistic notions of an analogous Mn(V)-O-Ca(II) unit in the oxygen evolving complex that is responsible for carrying out the key O-O bond forming step.

  1. Cobalt-based nanocatalysts for green oxidation and hydrogenation processes.

    PubMed

    Jagadeesh, Rajenahally V; Stemmler, Tobias; Surkus, Annette-Enrica; Bauer, Matthias; Pohl, Marga-Martina; Radnik, Jörg; Junge, Kathrin; Junge, Henrik; Brückner, Angelika; Beller, Matthias

    2015-06-01

    This protocol describes the preparation of cobalt-based nanocatalysts and their applications in environmentally benign redox processes for fine chemical synthesis. The catalytically active material consists of nanoscale Co3O4 particles surrounded by nitrogen-doped graphene layers (NGrs), which have been prepared by pyrolysis of phenanthroline-ligated cobalt acetate on carbon. The resulting materials have been found to be excellent catalysts for the activation of both molecular oxygen and hydrogen; in all tested reactions, water was the only by-product. By applying these catalysts, green oxidations of alcohols and hydrogenation of nitroarenes for the synthesis of nitriles, esters and amines are demonstrated. The overall time required for catalyst preparation and for redox reactions is 35 h and 10-30 h, respectively.

  2. Synthetic Model of the Oxygen-Evolving Center: Photosystem II under the Spotlight.

    PubMed

    Yu, Yang; Hu, Cheng; Liu, Xiaohong; Wang, Jiangyun

    2015-09-21

    The oxygen-evolving center (OEC) in photosystem II catalyzes a water splitting reaction. Great efforts have already been made to artificially synthesize the OEC, in order to elucidate the structure-function relationship and the mechanism of the reaction. Now, a new synthetic model makes the best mimic yet of the OEC. This recent study opens up the possibility to study the mechanism of photosystem II and photosynthesis in general for applications in renewable energy and synthetic biology.

  3. Hot Corrosion of Cobalt-Base Alloys

    DTIC Science & Technology

    1975-06-01

    Cast Alloys : NASA VIA, B-1900, 713C and 738X", Report NASA TN D-7682, Lewis Research Center, Cleveland, Ohio, August 1974. 36. Giggins, C.S. and...resistance of cobalt-base and nickel-base alloys . The contract was accomplished under the technical direction of Dr. H. C. Graham of the Aerospace Research...Interpretation of Results 3. SODIUM SULFATE INDUCED HOT CORROSION OF Co-25Al AND Co-35Cr ALLOYS a. Introduction b. Experimental Co-25Al c. Experimental

  4. A model for the water-oxidation and recovery systems of the oxygen-evolving complex.

    PubMed

    Yatabe, Takeshi; Kikkawa, Mitsuhiro; Matsumoto, Takahiro; Nakai, Hidetaka; Kaneko, Kenji; Ogo, Seiji

    2014-02-28

    We propose a model for the water-oxidation and recovery systems of the oxygen-evolving complex (OEC) of the photosystem II (PSII) enzyme. The whole system is constructed from two catalytic cycles, conducted as a tandem reaction: (i) a water-oxidation loop uses cerium(IV) ammonium nitrate as an oxidant to activate a dimanganese complex for water-oxidation and thereby liberate a molecule of O2 and (ii) a recovery loop begins with photoinhibition of the dimanganese complex but then uses O2 to reactivate the manganese centre. The net result is a catalytic water-oxidation catalyst that can use self-generated O2 for recovery.

  5. Purification and crystallization of oxygen-evolving photosystem II core complex from thermophilic cyanobacteria.

    PubMed

    Shen, Jian-Ren; Kawakami, Keisuke; Koike, Hiroyuki

    2011-01-01

    This chapter describes the purification and crystallization of oxygen-evolving photosystem II core dimer complex from a thermophilic cyanobacterium Thermosynechococcus vulcanus. Procedures used for purification of photosystem II from the cyanobacterium involves cultivation of cells, isolation of thylakoid membranes, purification of crude and pure photosystem II core complexes by detergent solubilization, followed by differential centrifugation and column chromatography. The purified core dimer particles were successfully used for crystallization, and the methods and conditions used for crystallization are presented. These purification and crystallization procedures can be applied for another thermophilic cyanobacterium T. elongatus.

  6. Evidence for an oxygen evolving iron–oxo–cerium intermediate in iron-catalysed water oxidation

    PubMed Central

    Codolà, Zoel; Gómez, Laura; Kleespies, Scott T.; Que, Lawrence; Costas, Miquel; Lloret-Fillol, Julio

    2016-01-01

    The non-haem iron complex α-[FeII(CF3SO3)2(mcp)] (mcp = (N,N′-dimethyl-N,N′-bis(2-pyridylmethyl)-1,2-cis-diaminocyclohexane) reacts with CeIV to oxidize water to O2, representing an iron-based functional model for the oxygen evolving complex of photosystem II. Here we trap an intermediate, characterized by cryospray ionization high resolution mass spectrometry and resonance Raman spectroscopy, and formulated as [(mcp)FeIV(O) (μ-O)CeIV(NO3)3]+, the first example of a well-characterized inner-sphere complex to be formed in cerium(IV)-mediated water oxidation. The identification of this reactive FeIV–O–CeIV adduct may open new pathways to validate mechanistic notions of an analogous MnV–O–CaII unit in the oxygen evolving complex that is responsible for carrying out the key O–O bond forming step. PMID:25609387

  7. On the silicate crystallinities of oxygen-rich evolved stars and their mass-loss rates

    NASA Astrophysics Data System (ADS)

    Liu, Jiaming; Jiang, B. W.; Li, Aigen; Gao, Jian

    2017-04-01

    For decades ever since the early detection in the 1990s of the emission spectral features of crystalline silicates in oxygen-rich evolved stars, there is a long-standing debate on whether the crystallinity of the silicate dust correlates with the stellar mass-loss rate. To investigate the relation between the silicate crystallinities and the mass-loss rates of evolved stars, we carry out a detailed analysis of 28 nearby oxygen-rich stars. We derive the mass-loss rates of these sources by modelling their spectral energy distributions from the optical to the far-infrared. Unlike previous studies in which the silicate crystallinity was often measured in terms of the crystalline-to-amorphous silicate mass ratio, we characterize the silicate crystallinities of these sources with the flux ratios of the emission features of crystalline silicates to that of amorphous silicates. This does not require the knowledge of the silicate dust temperatures, which are the major source of uncertainties in estimating the crystalline-to-amorphous silicate mass ratio. With a Pearson correlation coefficient of ∼-0.24, we find that the silicate crystallinities and the mass-loss rates of these sources are not correlated. This supports the earlier findings that the dust shells of low mass-loss rate stars can contain a significant fraction of crystalline silicates without showing the characteristic features in their emission spectra.

  8. Heat-induced reorganization of the structure of photosystem II membranes: role of oxygen evolving complex.

    PubMed

    Busheva, Mira; Tzonova, Iren; Stoitchkova, Katerina; Andreeva, Atanaska

    2012-12-05

    The sensitivity of the green plants' photosystem II (PSII) to high temperatures is investigated in PSII enriched membranes and in membranes, from which the oxygen evolving complex is removed. Using steady-state 77 K fluorescence and resonance Raman spectroscopy we analyze the interdependency between the temperature-driven changes in structure and energy distribution in the PSII supercomplex. The results show that the heat treatment induces different reduction of the 77 K fluorescence emission in both types of investigated membranes: (i) an additional considerable decrease of the overall fluorescence emission in Tris-washed membranes as compared to the native membranes; (ii) a transition point at 42°C(,) observed only in native membranes; (iii) a sharp reduction of the PSII core fluorescence in Tris-washed membranes at temperatures higher than 50°C; (iv) a 3 nm red-shift of F700 band's maximum in Tris-washed membranes already at 20°C and its further shift by 1 nm at temperature increase. Both treatments intensified their action by increasing the aggregation and dissociation of the peripheral light harvesting complexes. The oxygen-evolving complex, in addition to its main function to produce O(2), increases the thermal stability of PSII core by strengthening the connection between the core and the peripheral antenna proteins and by keeping their structural integrity.

  9. Sequence variation at the oxygen-evolving centre of photosystem II: a new class of 'rogue' cyanobacterial D1 proteins.

    PubMed

    Murray, James W

    2012-02-01

    Photosystem II is the oxygen-evolving enzyme of photosynthesis. It is a membrane-bound protein-pigment complex. The oxygen is produced at the oxygen-evolving centre (OEC), a Mn(4)CaO(5) metallocluster, which is largely ligated by amino acids of the D1 protein. The OEC-ligating residues are invariant between most cyanobacteria and higher plants. In this study, a new class of cyanobacterial D1 proteins has been identified in which the OEC metal-ligating residues are very different to the consensus. This new class of 'rogue' D1 proteins is associated with diazotrophic cyanobacteria. Their function, activity and origins are discussed.

  10. A study of QM/Langevin-MD simulation for oxygen-evolving center of photosystem II

    SciTech Connect

    Uchida, Waka; Kimura, Yoshiro; Wakabayashi, Masamitsu; Hatakeyama, Makoto; Ogata, Koji; Nakamura, Shinichiro; Yokojima, Satoshi

    2013-12-10

    We have performed three QM/Langevin-MD simulations for oxygen-evolving complex (OEC) and surrounding residues, which are different configurations of the oxidation numbers on Mn atoms in the Mn{sub 4}O{sub 5}Ca cluster. By analyzing these trajectories, we have observed sensitivity of the change to the configuration of Mn oxidation state on O atoms of carboxyl on three amino acids, Glu354, Ala344, and Glu333. The distances from Mn to O atoms in residues contacting with the Mn{sub 4}O{sub 5}Ca cluster were analyzed for the three trajectories. We found the good correlation of the distances among the simulations. However, the distances with Glu354, Ala344, and Glu333 have not shown the correlation. These residues can be sensitive index of the changes of Mn oxidation numbers.

  11. Purification and characterization of an oxygen-evolving photosystem II from Leptolyngbya sp. strain O-77.

    PubMed

    Nakamori, Harutaka; Yatabe, Takeshi; Yoon, Ki-Seok; Ogo, Seiji

    2014-08-01

    A new cyanobacterium of strain O-77 was isolated from a hot spring at Aso-Kuju National Park, Kumamoto, Japan. According to the phylogenetic analysis determined by 16S rRNA gene sequence, the strain O-77 belongs to the genus Leptolyngbya, classifying into filamentous non-heterocystous cyanobacteria. The strain O-77 showed the thermophilic behavior with optimal growth temperature of 55°C. Moreover, we have purified and characterized the oxygen-evolving photosystem II (PSII) from the strain O-77. The O2-evolving activity of the purified PSII from strain O-77 (PSIIO77) was 1275 ± 255 μmol O2 (mg Chl a)(-1) h(-1). Based on the results of MALDI-TOF mass spectrometry and urea-SDS-PAGE analysis, the purified PSIIO77 was composite of the typical PSII components of CP47, CP43, PsbO, D2, D1, PsbV, PsbQ, PsbU, and several low molecular mass subunits. Visible absorption and 77 K fluorescence spectra of the purified PSIIO77 were almost identical to those of other purified PSIIs from cyanobacteria. This report provides the successful example for the purification and characterization of an active PSII from thermophilic, filamentous non-heterocystous cyanobacteria.

  12. Structural changes of the oxygen-evolving complex in photosystem II during the catalytic cycle.

    PubMed

    Glöckner, Carina; Kern, Jan; Broser, Matthias; Zouni, Athina; Yachandra, Vittal; Yano, Junko

    2013-08-02

    The oxygen-evolving complex (OEC) in the membrane-bound protein complex photosystem II (PSII) catalyzes the water oxidation reaction that takes place in oxygenic photosynthetic organisms. We investigated the structural changes of the Mn4CaO5 cluster in the OEC during the S state transitions using x-ray absorption spectroscopy (XAS). Overall structural changes of the Mn4CaO5 cluster, based on the manganese ligand and Mn-Mn distances obtained from this study, were incorporated into the geometry of the Mn4CaO5 cluster in the OEC obtained from a polarized XAS model and the 1.9-Å high resolution crystal structure. Additionally, we compared the S1 state XAS of the dimeric and monomeric form of PSII from Thermosynechococcus elongatus and spinach PSII. Although the basic structures of the OEC are the same for T. elongatus PSII and spinach PSII, minor electronic structural differences that affect the manganese K-edge XAS between T. elongatus PSII and spinach PSII are found and may originate from differences in the second sphere ligand atom geometry.

  13. Destabilization of the oxygen evolving complex of photosystem II by Al3+.

    PubMed

    Hasni, Imed; Hamdani, Saber; Carpentier, Robert

    2013-01-01

    The inhibitory effect of Al(3+) on photosynthetic electron transport was investigated in isolated thylakoid membranes of spinach. A combination of oxygen evolution, chlorophyll fluorescence induction (FI) and decay and thermoluminescence measurements have been used to characterize photosystem II (PSII) electron transport in the presence of this toxic metal cation. Our results show that below 3 mm, Al(3+) already caused a destabilization of the Mn4 O5 Ca cluster of the oxygen evolving complex (OEC). At these concentrations, an increase in the relative amplitude of the first phase (OJ) of FI curve and retardation of the fluorescence decay kinetics following excitation with a single turnover flash were also observed. A transmembrane structural modification of PSII polypeptides due to the interaction of Al(3+) at the OEC is proposed to retard electron transfer between the quinones QA and QB . Above 3 mm, Al(3+) strongly retarded fluorescence induction and significantly reduced Fv /Fm together with the maximal amplitude of chlorophyll fluorescence induced by a single turnover flash. This chlorophyll fluorescence quenching was attributed to the formation of P680(+) due to inhibition of electron transfer between tyrosine 161 of D1 subunit and P680.

  14. Calcium and the Hydrogen-Bonded Water Network in the Photosynthetic Oxygen-Evolving Complex.

    PubMed

    Polander, Brandon C; Barry, Bridgette A

    2013-03-07

    In photosynthesis, photosystem II evolves oxygen from water at a Mn4CaO5 cluster (OEC). Calcium is required for biological oxygen evolution. In the OEC, a water network, extending from the calcium to four peptide carbonyl groups, has recently been predicted by a high-resolution crystal structure. Here, we use carbonyl vibrational frequencies as reporters of electrostatic changes to test the presence of this water network. A single flash, oxidizing Mn(III) to Mn(IV) (the S1 to S2 transition), upshifted the frequencies of peptide C═O bands. The spectral change was attributable to a decrease in C═O hydrogen bonding. Strontium, which supports a lower level of steady state activity, also led to an oxidation-induced shift in C═O frequencies, but treatment with barium and magnesium, which do not support activity, did not. This work provides evidence that calcium maintains an electrostatically responsive water network in the OEC and shows that OEC peptide carbonyl groups can be used as solvatochromic markers.

  15. Light-induced water oxidation at silicon electrodes functionalized with a cobalt oxygen-evolving catalyst

    PubMed Central

    Pijpers, Joep J. H.; Winkler, Mark T.; Surendranath, Yogesh; Buonassisi, Tonio; Nocera, Daniel G.

    2011-01-01

    Integrating a silicon solar cell with a recently developed cobalt-based water-splitting catalyst (Co-Pi) yields a robust, monolithic, photo-assisted anode for the solar fuels process of water splitting to O2 at neutral pH. Deposition of the Co-Pi catalyst on the Indium Tin Oxide (ITO)-passivated p-side of a np-Si junction enables the majority of the voltage generated by the solar cell to be utilized for driving the water-splitting reaction. Operation under neutral pH conditions fosters enhanced stability of the anode as compared to operation under alkaline conditions (pH 14) for which long-term stability is much more problematic. This demonstration of a simple, robust construct for photo-assisted water splitting is an important step towards the development of inexpensive direct solar-to-fuel energy conversion technologies. PMID:21646536

  16. Time-resolved X-Ray Absorption Spectroscopy of a Cobalt-Based Hydrogen Evolution System for Artificial Photosynthesis

    NASA Astrophysics Data System (ADS)

    Moonshiram, Dooshaye; Gimbert, Carolina; Lehmann, Carl; Southworth, Stephen; Llobet, Antoni; Argonne National Laboratory Team; Institut Català d'Investigació Química Collaboration

    2015-03-01

    Production of cost-effective hydrogen gas through solar power is an important challenge of the Department of Energy among other global industry initiatives. In natural photosynthesis, the oxygen evolving complex(OEC) can carry out four-electron water splitting to hydrogen with an efficiency of around 60%. Although, much progress has been carried out in determining mechanistic pathways of the OEC, biomimetic approaches have not duplicated Nature's efficiency in function. Over the past years, we have witnessed progress in developments of light harvesting modules, so called chromophore/catalytic assemblies. In spite of reportedly high catalytic activity of these systems, quantum yields of hydrogen production are below 40 % when using monochromatic light. Proper understanding of kinetics and bond making/breaking steps has to be achieved to improve efficiency of hydrogen evolution systems. This project shows the timing implementation of ultrafast X-ray absorption spectroscopy to visualize in ``real time'' the photo-induced kinetics accompanying a sequence of redox reactions in a cobalt-based molecular photocatalytic system. Formation of a Co(I) species followed by a Co(III) hydride species all the way towards hydrogen evolution is shown through time-resolved XANES.

  17. Insusceptibility of oxygen-evolving complex to high light in Betula platyphylla.

    PubMed

    Huang, Wei; Zhang, Shi-Bao; Hu, Hong

    2015-03-01

    High mountain plants growing at high altitude have to regularly cope with high light and high UV radiation that can lead to photodamage of oxygen-evolving complex (OEC). However, the underlying mechanism of photoprotection for OEC in high mountain plants is unclear. Sun leaves of Betula platyphylla were used to examine whether cyclic electron flow (CEF) around photosystem I (PSI) plays an important role in photoprotection for OEC. Our results indicated that the value of ETRI/ETRII ratio significantly increased under high light. With increasing light intensity, non-photochemical quenching (NPQ) gradually increased, and the fraction of P700 that is oxidized in a given state gradually increased. These results indicated that CEF was significantly activated under high light. After treatment with a high light of 1600 μmol photons m(-2) s(-1) for 8 h, the OEC activity did not decline, but the maximum quantum yield of PSII (F v /F m ) ratio significantly decreased. These results suggested that CEF-dependent generation of proton gradient across thylakoid membrane protected OEC activity against high light. Furthermore, the stability of PSI activity during exposure to high light suggested that the high CEF activity in B. platyphylla played an important role in photoprotection for PSI activity.

  18. Photodamage to the oxygen evolving complex of photosystem II by visible light.

    PubMed

    Zavafer, Alonso; Cheah, Mun Hon; Hillier, Warwick; Chow, Wah Soon; Takahashi, Shunichi

    2015-11-12

    Light damages photosynthetic machinery, primarily photosystem II (PSII), and it results in photoinhibition. A new photodamage model, the two-step photodamage model, suggests that photodamage to PSII initially occurs at the oxygen evolving complex (OEC) by light energy absorbed by manganese and that the PSII reaction center is subsequently damaged by light energy absorbed by photosynthetic pigments due to the limitation of electrons to the PSII reaction center. However, it is still uncertain whether this model is applicable to photodamage to PSII under visible light as manganese absorbs visible light only weakly. In the present study, we identified the initial site of photodamage to PSII upon illumination of visible light using PSII membrane fragments isolated from spinach leaves. When PSII samples were exposed to visible light in the presence of an exogenous electron acceptor, both PSII total activity and the PSII reaction centre activity declined due to photodamage. The supplemental addition of an electron donor to the PSII reaction centre alleviated the decline of the reaction centre activity but not the PSII total activity upon the light exposure. Our results demonstrate that visible light damages OEC prior to photodamage to the PSII reaction center, consistent with two-step photodamage model.

  19. Radiation Damage in XFEL: Case study from the oxygen-evolving complex of Photosystem II

    NASA Astrophysics Data System (ADS)

    Amin, Muhamed; Badawi, Ashraf; Obayya, S. S.

    2016-11-01

    Structural changes induced by radiation damage in X-ray crystallography hinder the ability to understand the structure/function relationship in chemical reactions. Serial femtosecond crystallography overcomes this problem by exposing the sample to very short and intense laser pulse leading to measurement before destruction. Here we use molecular modeling to map the radiation damage during the 10–50 fs to the intensity, the energy and the time duration of the laser pulse on the oxygen-evolving complex (OEC) of photosystem II. In the model, the nuclei move classically in a fully quantum potential created by electron density under the effect of strong laser pulse in the Ehrenfest dynamics regime. The results show that the Mn-Mn and Mn-Ca distances are less affected by radiation damage due to the their heavy masses, while one μ-oxo bridge (O5) moves significantly. The radiation damage may induce conformational changes of the water ligands but only bond elongation for the amino acids ligands. These effects are relatively intensity independent from 1016 to 1017 W/cm2, but changes increase dramatically if the beam intensity is increased to 1018 W/cm2. In addition, the self amplified spontaneous emission (SASE) nature of the laser beam does not affect the dynamics of the ions.

  20. Fluorescence kinetics of PSII crystals containing Ca(2+) or Sr(2+) in the oxygen evolving complex.

    PubMed

    van Oort, Bart; Kargul, Joanna; Maghlaoui, Karim; Barber, James; van Amerongen, Herbert

    2014-02-01

    Photosystem II (PSII) is the pigment-protein complex which converts sunlight energy into chemical energy by catalysing the process of light-driven oxidation of water into reducing equivalents in the form of protons and electrons. Three-dimensional structures from x-ray crystallography have been used extensively to model these processes. However, the crystal structures are not necessarily identical to those of the solubilised complexes. Here we compared picosecond fluorescence of solubilised and crystallised PSII core particles isolated from the thermophilic cyanobacterium Thermosynechococcus elongatus. The fluorescence of the crystals is sensitive to the presence of artificial electron acceptors (K3Fe(CN)3) and electron transport inhibitors (DCMU). In PSII with reaction centres in the open state, the picosecond fluorescence of PSII crystals and solubilised PSII is indistinguishable. Additionally we compared picosecond fluorescence of native PSII with PSII in which Ca(2) in the oxygen evolving complex (OEC) is biosynthetically replaced by Sr(2+). With the Sr(2+) replaced OEC the average fluorescence decay slows down slightly (81ps to 85ps), and reaction centres are less readily closed, indicating that both energy transfer/trapping and electron transfer are affected by the replacement.

  1. Photodamage to the oxygen evolving complex of photosystem II by visible light

    PubMed Central

    Zavafer, Alonso; Cheah, Mun Hon; Hillier, Warwick; Chow, Wah Soon; Takahashi, Shunichi

    2015-01-01

    Light damages photosynthetic machinery, primarily photosystem II (PSII), and it results in photoinhibition. A new photodamage model, the two-step photodamage model, suggests that photodamage to PSII initially occurs at the oxygen evolving complex (OEC) by light energy absorbed by manganese and that the PSII reaction center is subsequently damaged by light energy absorbed by photosynthetic pigments due to the limitation of electrons to the PSII reaction center. However, it is still uncertain whether this model is applicable to photodamage to PSII under visible light as manganese absorbs visible light only weakly. In the present study, we identified the initial site of photodamage to PSII upon illumination of visible light using PSII membrane fragments isolated from spinach leaves. When PSII samples were exposed to visible light in the presence of an exogenous electron acceptor, both PSII total activity and the PSII reaction centre activity declined due to photodamage. The supplemental addition of an electron donor to the PSII reaction centre alleviated the decline of the reaction centre activity but not the PSII total activity upon the light exposure. Our results demonstrate that visible light damages OEC prior to photodamage to the PSII reaction center, consistent with two-step photodamage model. PMID:26560020

  2. Radiation Damage in XFEL: Case study from the oxygen-evolving complex of Photosystem II

    PubMed Central

    Amin, Muhamed; Badawi, Ashraf; Obayya, S. S.

    2016-01-01

    Structural changes induced by radiation damage in X-ray crystallography hinder the ability to understand the structure/function relationship in chemical reactions. Serial femtosecond crystallography overcomes this problem by exposing the sample to very short and intense laser pulse leading to measurement before destruction. Here we use molecular modeling to map the radiation damage during the 10–50 fs to the intensity, the energy and the time duration of the laser pulse on the oxygen-evolving complex (OEC) of photosystem II. In the model, the nuclei move classically in a fully quantum potential created by electron density under the effect of strong laser pulse in the Ehrenfest dynamics regime. The results show that the Mn-Mn and Mn-Ca distances are less affected by radiation damage due to the their heavy masses, while one μ-oxo bridge (O5) moves significantly. The radiation damage may induce conformational changes of the water ligands but only bond elongation for the amino acids ligands. These effects are relatively intensity independent from 1016 to 1017 W/cm2, but changes increase dramatically if the beam intensity is increased to 1018 W/cm2. In addition, the self amplified spontaneous emission (SASE) nature of the laser beam does not affect the dynamics of the ions. PMID:27827423

  3. Artificial synthetic Mn(IV)Ca-oxido complexes mimic the oxygen-evolving complex in photosystem II.

    PubMed

    Chen, Changhui; Zhang, Chunxi; Dong, Hongxing; Zhao, Jingquan

    2015-03-14

    A novel family of heteronuclear Mn(IV)Ca-oxido complexes containing Mn(IV)Ca-oxido cuboidal moieties and reactive water molecules on Ca(2+) have been synthesized and characterized to mimic the oxygen-evolving complex (OEC) of photosystem II (PSII) in nature.

  4. Activation of oxygen evolving perovskites for oxygen reduction by functionalization with Fe-N(x)/C groups.

    PubMed

    Rincón, Rosalba A; Masa, Justus; Mehrpour, Sara; Tietz, Frank; Schuhmann, Wolfgang

    2014-12-07

    The incorporation of Fe-Nx/C moieties into perovskites remarkably activates them for the oxygen reduction reaction (ORR) and also leads to notable improvement of their activity towards the oxygen evolution reaction (OER) thus presenting a new route for realizing high performance, low cost bifunctional catalysts for reversible oxygen electrodes.

  5. Inhibition of the oxygen-evolving complex of photosystem II and depletion of extrinsic polypeptides by nickel.

    PubMed

    Boisvert, Steve; Joly, David; Leclerc, Sébastien; Govindachary, Sridharan; Harnois, Johanne; Carpentier, Robert

    2007-12-01

    The toxic effect of Ni(2+) on photosynthetic electron transport was studied in a photosystem II submembrane fraction. It was shown that Ni(2+) strongly inhibits oxygen evolution in the millimolar range of concentration. The inhibition was insensitive to NaCl but significantly decreased in the presence of CaCl(2). Maximal chlorophyll fluorescence, together with variable fluorescence, maximal quantum yield of photosystem II, and flash-induced fluorescence decays were all significantly declined by Ni(2+). Further, the extrinsic polypeptides of 16 and 24 kDa associated with the oxygen-evolving complex of photosystem II were depleted following Ni(2+) treatment. It was deduced that interaction of Ni(2+) with these polypeptides caused a conformational change that induced their release together with Ca(2+) from the oxygen-evolving complex of photosystem II with consequent inhibition of the electron transport activity.

  6. Microstructure and abrasive wear of cobalt-based laser coatings

    SciTech Connect

    de Mol van Otterloo, J.L.; De Hosson, J.T.M.

    1997-01-15

    Cobalt-based alloys are used as wear-resistant materials for hardfacing cheap steel substrates. A substantial enhancement in mechanical properties of cobalt-based superalloys is attributed to the martensitic fcc {yields} hcp phase transformation. Alloying elements can be classified as phase modifiers (Ni and Fe stabilize fcc whereas W and Cr stabilize hcp), solid-solution strengtheners (W and Mo), which affect only the matrix, and elements that form carbides (Cr-rich M{sub 7}C{sub 3} and M{sub 23}C{sub 6}, M = metal). Of the different depositing techniques such as plasma spray, tungsten inert gas, oxyacetylene flame and laser cladding, the latter delivers coatings with a low dilution with the substrate material and no pores. Moreover, the laser cladding process has the advantage of being well controllable. This paper reports on the deposition of five different cobalt-based Stellite alloys on steel substrates by laser cladding.

  7. Oxygen-evolving complex of photosystem II: correlating structure with spectroscopy.

    PubMed

    Pokhrel, Ravi; Brudvig, Gary W

    2014-06-28

    Water oxidation at the oxygen-evolving complex (OEC) of photosystem II (PSII) involves multiple redox states called Sn states (n = 0-4). The S1 → S2 redox transition of the OEC has been studied extensively using various forms of spectroscopy, including electron paramagnetic resonance (EPR) and Fourier transform infrared (FTIR) spectroscopy. In the S2 state, two isomers of the OEC are observed by EPR: a ST = 1/2 form and a ST = 5/2 form. DFT-based structural models of the OEC have been proposed for the two spin isomers in the S2 state, but the factors that determine the stability of one form or the other are not known. Using structural information on the OEC and its surroundings, in conjunction with spectroscopic information available on the S1 → S2 transition for a variety of site-directed mutations, Ca(2+) and Cl(-) substitutions, and small molecule inhibitors, we propose that the hydrogen-bonding network encompassing D1-D61 and the OEC-bound waters plays an important role in stabilizing one spin isomer over the other. In the presence of ammonia, PSII centers can be trapped in either the ST = 5/2 form after a 200 K illumination procedure or an ammonia-altered ST = 1/2 form upon annealing at 273 K. We propose a mechanism for ammonia binding to the OEC in the S2 state that takes into account the hydrogen-binding requirements for ammonia binding and the specificity for binding of ammonia but not methylamine. A discussion regarding the possibility of spin isomers of the OEC in the S1 state, analogous to the spin isomers of the S2 state, is also presented.

  8. Evidence for the role of cyclic electron flow in photoprotection for oxygen-evolving complex.

    PubMed

    Huang, Wei; Yang, Ying-Jie; Hu, Hong; Zhang, Shi-Bao; Cao, Kun-Fang

    2016-05-01

    Cyclic electron flow (CEF) alleviates PSII photo-inhibition under high light by at least two different mechanisms: one is liked to thermal energy dissipation (qE) and the other one is independent of qE. However, the latter mechanism is unclear. Because the photodamage to PSII primarily occurred at the oxygen-evolving complex (OEC), and the stability of OEC is dependent on proton gradient across thylakoid membrane (ΔpH), we hypothesize that the CEF-dependent generation of ΔpH can alleviate photodamage to OEC. To test this hypothesis, we determined the effects of antimycin A (AA), methyl viologen (MV), chloramphenicol (CM), nigericin (Nig) on PSII activity and the stability of OEC for leaves of a light-demanding tropical tree species Erythrophleum guineense by the analysis of OKJIP chlorophyll a fluorescence transient. After high light treatment, the stronger decrease in Fv/Fm in the AA-, CM-, MV-, and Nig-treated samples was accompanied with larger photo damage of OEC. The AA-treated samples significantly showed lower CEF activity than the H2O-treated samples. Although the AA-treated leaves significantly showed stronger PSII photo-inhibition and photo-damage of OEC compared to the H2O-treated leaves, the value of non-photochemical quenching did not differ between them. Therefore, CEF activity was partly inhibited in the AA-treated samples, and the stronger PSII photo-inhibition in the AA-treated leaves was independent of qE. Taking together, we propose a hypothesis that CEF-dependent generation of ΔpH under high light plays an important role in photoprotection for the OEC activity.

  9. What computational chemistry and magnetic resonance reveal concerning the oxygen evolving centre in Photosystem II.

    PubMed

    Terrett, Richard; Petrie, Simon; Stranger, Rob; Pace, Ron J

    2016-09-01

    Density Functional Theory (DFT) computational studies of the Mn4/Ca Oxygen Evolving Complex (OEC) region of Photosystem II in the paramagnetic S2 and S3 states of the water oxdizing catalytic cycle are described. These build upon recent advances in computationally understanding the detailed S1 state OEC geometries, revealed by the recent high resolution Photosystem II crystal structures of Shen et al., at 1.90Å and 1.95Å (Petrie et al., 2015, Angew. Chem. Int. Ed., 54, 7120). The models feature a 'Low Oxidation Paradigm' assumption for the mean Mn oxidation states in the functional enzyme, with the mean oxidation levels being 3.0, 3.25 and 3.5 in S1, S2 and S3, respectively. These calculations are used to infer magnetic exchange interactions within the coupled OEC cluster, particularly in the Electron Paramagnetic Resonance (EPR)-visible S2 and S3 states. Detailed computational estimates of the intrinsic magnitudes and molecular orientations of the (55)Mn hyperfine tensors in the S2 state are presented. These parameters, together with the resultant spin projected hyperfine values are compared with recent appropriate experimental EPR data (Continuous Wave (CW), Electron-Nuclear Double Resonance (ENDOR) and ELDOR (Electron-Electron Double Resonance)-Detected Nuclear Magnetic Resonance (EDNMR)) from the OEC. It is found that an effective Coupled Dimer magnetic organization of the four Mn in the OEC cluster in the S2 and S3 states is able to quantitatively rationalize the observed (55)Mn hyperfine data. This is consistent with structures we propose to represent the likely state of the OEC in the catalytically active form of the enzyme.

  10. The role of calcium in the oxygen evolving center of photosystem II

    SciTech Connect

    Latimer, Matthew John

    1995-05-01

    The photosynthetic oxygen evolving complex (OEC) contains a cluster of four manganese atoms and requires both Ca and Cl for activity. Ca can be replaced by Sr with retention of activity. The role of Ca in the OEC has been investigated by performing Mn X-ray absorption experiments on Ca-depleted samples of photosystem II (PS II) and on PS II samples depleted of Ca and reconstituted by either Ca or Sr. Mn X-ray K-edge spectra exhibit no significant differences in oxidation state or symmetry between Ca- and Sr-reactivated preparations, but differences are observed in the extended X-ray absorption fine structure (EXAFS). The amplitude of a Fourier transform peak arising from scatterers at distances greater than 3 A is larger for samples reactivated with strontium relative to calcium. Curve-fitting analyses of the EXAFS data using FEFF 5-calculated parameters favor a model where both manganese and calcium (or strontium) scatterers contribute to the ~3 Å Fourier peak (Mn-Mn at 3.3Å and Mn-Ca(Sr) at 3.4--3.5 Å). Possible structural arrangements for a calcium binding site are discussed. Analysis of Mn K-edge spectra from Ca-depleted samples in the S1, S2, and S3 states shows an edge shift on the S1-S2 transition, but no edge shift on the S2-S3 transition, supporting a model where the oxidizing equivalent from the S2 to S3 transition is stored on a ligand or nearby protein residue rather than on the Mn cluster. Parallels between Ca-depleted and native samples are discussed.

  11. In-situ formation of cobalt-phosphate oxygen-evolving complex-anchored reduced graphene oxide nanosheets for oxygen reduction reaction.

    PubMed

    Zhao, Zhi-Gang; Zhang, Jing; Yuan, Yinyin; Lv, Hong; Tian, Yuyu; Wu, Dan; Li, Qing-Wen

    2013-01-01

    Oxygen conversion process between O₂ and H₂O by means of electrochemistry or photochemistry has lately received a great deal of attention. Cobalt-phosphate (Co-Pi) catalyst is a new type of cost-effective artificial oxygen-evolving complex (OEC) with amorphous features during photosynthesis. However, can such Co-Pi OEC also act as oxygen reduction reaction (ORR) catalyst in electrochemical processes? The question remains unanswered. Here for the first time we demonstrate that Co-Pi OEC does be rather active for the ORR. Particularly, Co-Pi OEC anchoring on reduced graphite oxide (rGO) nanosheet is shown to possess dramatically improved electrocatalytic activities. Differing from the generally accepted role of rGO as an "electron reservoir", we suggest that rGO serves as "peroxide cleaner" in enhancing the electrocatalytic behaviors. The present study may bridge the gap between photochemistry and electrochemistry towards oxygen conversion.

  12. Mechanism of light induced water splitting in Photosystem II of oxygen evolving photosynthetic organisms.

    PubMed

    Renger, Gernot

    2012-08-01

    The reactions of light induced oxidative water splitting were analyzed within the framework of the empirical rate constant-distance relationship of non-adiabatic electron transfer in biological systems (C. C. Page, C. C. Moser, X. Chen , P. L. Dutton, Nature 402 (1999) 47-52) on the basis of structure information on Photosystem II (PS II) (A. Guskov, A. Gabdulkhakov, M. Broser, C. Glöckner, J. Hellmich, J. Kern, J. Frank, W. Saenger, A. Zouni, Chem. Phys. Chem. 11 (2010) 1160-1171, Y. Umena, K. Kawakami, J-R Shen, N. Kamiya, Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9Å. Nature 47 (2011) 55-60). Comparison of these results with experimental data leads to the following conclusions: 1) The oxidation of tyrosine Y(z) by the cation radical P680(+·) in systems with an intact water oxidizing complex (WOC) is kinetically limited by the non-adiabatic electron transfer step and the extent of this reaction is thermodynamically determined by relaxation processes in the environment including rearrangements of hydrogen bond network(s). In marked contrast, all Y(z)(ox) induced oxidation steps in the WOC up to redox state S(3) are kinetically limited by trigger reactions which are slower by orders of magnitude than the rates calculated for non-adiabatic electron transfer. 3) The overall rate of the triggered reaction sequence of Y(z)(ox) reduction by the WOC in redox state S(3) eventually leading to formation and release of O(2) is kinetically limited by an uphill electron transfer step. Alternative models are discussed for this reaction. The protein matrix of the WOC and bound water molecules provide an optimized dynamic landscape of hydrogen bonded protons for catalyzing oxidative water splitting energetically driven by light induced formation of the cation radical P680(+·). In this way the PS II core acts as a molecular machine formed during a long evolutionary process. This article is part of a Special Issue entitled: Photosynthesis Research

  13. What Can We Learn from a Biomimetic Model of Nature's Oxygen-Evolving Complex?

    PubMed

    Paul, Satadal; Cox, Nicholas; Pantazis, Dimitrios A

    2017-04-03

    A recently reported synthetic complex with a Mn4CaO4 core represents a remarkable structural mimic of the Mn4CaO5 cluster in the oxygen-evolving complex (OEC) of photosystem II (Zhang et al., Science 2015, 348, 690). Oxidized samples of the complex show electron paramagnetic resonance (EPR) signals at g ≈ 4.9 and 2, similar to those associated with the OEC in its S2 state (g ≈ 4.1 from an S = (5)/2 form and g ≈ 2 from an S = (1)/2 form), suggesting similarities in the electronic as well as geometric structure. We use quantum-chemical methods to characterize the synthetic complex in various oxidation states, to compute its magnetic and spectroscopic properties, and to establish connections with reported data. Only one energetically accessible form is found for the oxidized "S2 state" of the complex. It has a ground spin state of S = (5)/2, and EPR simulations confirm it can be assigned to the g ≈ 4.9 signal. However, no valence isomer with an S = (1)/2 ground state is energetically accessible, a conclusion supported by a wide range of methods, including density matrix renormalization group with full valence active space. Alternative candidates for the g ≈ 2 signal were explored, but no low-spin/low-energy structure was identified. Therefore, our results suggest that despite geometric similarities the synthetic model does not mimic the valence isomerism that is the hallmark of the OEC in its S2 state, most probably because it lacks a coordinatively flexible oxo bridge. Only one of the observed EPR signals can be explained by a structurally intact high-spin one-electron-oxidized form, while the other originates from an as-yet-unidentified rearrangement product. Nevertheless, this model provides valuable information for understanding the high-spin EPR signals of both the S1 and S2 states of the OEC in terms of the coordination number and Jahn-Teller axis orientation of the Mn ions, with important consequences for the development of magnetic spectroscopic

  14. Structural oxidation state studies of the manganese cluster in the oxygen evolving complex of photosystem II

    SciTech Connect

    Liang, Wenchuan

    1994-11-01

    X-ray absorption spectroscopy (XAS) was performed on Photosystem II (PSII)-enriched membranes prepared from spinach to explore: (1) the correlation between structure and magnetic spin state of the Mn cluster in the oxygen evolving complex (OEC) in the S2 state; and (2) the oxidation state changes of the Mn cluster in the flash-induced S-states. The structure of the Mn cluster in the S2 state with the g~4 electron paramagnetic resonance (EPR) signal (S2-g4 state) was compared with that in the S2 state with multiline signal (S2-MLS state) and the S1 state. The S2-g4 state has a higher XAS inflection point energy than that of the S1 state, indicating the oxidation of Mn in the advance from the S1 to the S2-g4 state. Differences in the edge shape and in the extended X-ray absorption fine structure (EXAFS) show that the structure of the Mn cluster in the S2-g4 state is different from that in the S2-MLS or the S1 state. In the S2-g4 state, the second shell of backscatterers from the Mn absorber contains two Mn-Mn distances of 2.73 Å and 2.85 Å. Very little distance disorder exists in the second shell of the S1 or S2-MLS states. The third shell of the S2-g4 state at about 3.3 Å also contains increased heterogeneity relative to that of the S2-MLS or the S1 state. Various S-states were prepared at room-temperature by saturating, single-turnover flashes. The flash-dependent oscillation in the amplitude of the MLS was used to characterize the S-state composition and to construct "pure" S-state Mn K-edge spectra. The edge position shifts to higher energy by 1.8 eV upon the S1 → S2 transition.

  15. Isolation of photosystem II-enriched membranes and the oxygen-evolving complex subunit proteins from higher plants.

    PubMed

    Yamamoto, Yasusi; Leng, Jing; Shen, Jian-Ren

    2011-01-01

    We describe methods to isolate highly active oxygen-evolving photosystem II (PSII) membranes and core complexes from higher plants, and to purify subunits of the oxygen-evolving complex (OEC). The membrane samples used as the material for various in vitro studies of PSII are prepared by solubilizing thylakoid membranes with the nonionic detergent Triton X-100, and the core complexes are prepared by further solubilization of the PSII membranes with n-dodecyl-β-D-maltoside (β-DDM). The OEC subunit proteins are dissociated from the PSII-enriched membranes by alkaline or salt treatment, and are then purified by ion-exchange chromatography using an automated high performance liquid chromatography system.

  16. Calcium-manganese oxides as structural and functional models for active site in oxygen evolving complex in photosystem II: lessons from simple models.

    PubMed

    Najafpour, Mohammad Mahdi

    2011-01-01

    The oxygen evolving complex in photosystem II which induces the oxidation of water to dioxygen in plants, algae and certain bacteria contains a cluster of one calcium and four manganese ions. It serves as a model to split water by sunlight. Reports on the mechanism and structure of photosystem II provide a more detailed architecture of the oxygen evolving complex and the surrounding amino acids. One challenge in this field is the development of artificial model compounds to study oxygen evolution reaction outside the complicated environment of the enzyme. Calcium-manganese oxides as structural and functional models for the active site of photosystem II are explained and reviewed in this paper. Because of related structures of these calcium-manganese oxides and the catalytic centers of active site of the oxygen evolving complex of photosystem II, the study may help to understand more about mechanism of oxygen evolution by the oxygen evolving complex of photosystem II.

  17. XANES, EXAFS and Kbeta spectroscopic studies of the oxygen-evolving complex in Photosystem II

    SciTech Connect

    Robblee, John Henry

    2000-12-01

    A key question for the understanding of photosynthetic water oxidation is whether the four oxidizing equivalents necessary to oxidize water to dioxygen are accumulated on the four Mn ions of the oxygen evolving complex (OEC), or whether some ligand-centered oxidations take place before the formation and release of dioxygen during the S3 → [S4] → S0 transition. Progress in instrumentation and flash sample preparation allowed us to apply Mn Kβ X-ray emission spectroscopy (Kb XES) to this problem for the first time. The Kβ XES results, in combination with Mn X-ray absorption near-edge structure (XANES) and electron paramagnetic resonance (EPR) data obtained from the same set of samples, show that the S2 → S3 transition, in contrast to the S0 → S1 and S1 → S2 transitions, does not involve a Mn-centered oxidation. This is rationalized by manganese μ-oxo bridge radical formation during the S2 → S3 transition. Using extended X-ray absorption fine structure (EXAFS) spectroscopy, the local environment of the Mn atoms in the S0 state has been structurally characterized. These results show that the Mn-Mn distance in one of the di-μ-oxo-bridged Mn-Mn moieties increases from 2.7 Å in the S1} state to 2.85 Å in the S0 state. Furthermore, evidence is presented that shows three di-μ-oxo binuclear Mn2 clusters may be present in the OEC, which is contrary to the widely held theory that two such clusters are present in the OEC. The EPR properties of the S0 state have been investigated and a characteristic ''multiline'' signal in the S0 state has been discovered in the presence of methanol. This provides the first direct confirmation that the native S0 state is paramagnetic. In addition, this signal was simulated using parameters derived from three possible oxidation

  18. Purification and characterization of a stable oxygen-evolving Photosystem II complex from a marine centric diatom, Chaetoceros gracilis.

    PubMed

    Nagao, Ryo; Tomo, Tatsuya; Noguchi, Eri; Nakajima, Saori; Suzuki, Takehiro; Okumura, Akinori; Kashino, Yasuhiro; Mimuro, Mamoru; Ikeuchi, Masahiko; Enami, Isao

    2010-02-01

    Oxygen-evolving Photosystem II particles (crude PSII) retaining a high oxygen-evolving activity have been prepared from a marine centric diatom, Chaetoceros gracilis (Nagao et al., 2007). The crude PSII, however, contained a large amount of fucoxanthin chlorophyll a/c-binding proteins (FCP). In this study, a purified PSII complex which was deprived of major components of FCP was isolated by one step of anion exchange chromatography from the crude PSII treated with Triton X-100. The purified PSII was still associated with the five extrinsic proteins of PsbO, PsbQ', PsbV, Psb31 and PsbU, and showed a high oxygen-evolving activity of 2135 micromol O2 (mg Chl a)(-1) h(-1) in the presence of phenyl-p-benzoquinone which was virtually independent of the addition of CaCl2. This activity is more than 2.5-fold higher than the activity of the crude PSII. The activity was completely inhibited by 3-(3,4)-dichlorophenyl-(1,1)-dimethylurea (DCMU). The purified PSII contained 42 molecules of Chl a, 2 molecules of diadinoxanthin and 2 molecules of Chl c on the basis of two molecules of pheophytin a, and showed typical absorption and fluorescence spectra similar to those of purified PSIIs from the other organisms. In this study, we also found that the crude PSII was significantly labile, as a significant inactivation of oxygen evolution, chlorophyll bleaching and degradation of PSII subunits were observed during incubation at 25 degrees C in the dark. In contrast, these inactivation, bleaching and degradation were scarcely detected in the purified PSII. Thus, we succeeded for the first time in preparation of a stable PSII from diatom cells.

  19. Oxygen evolving reactions catalysed by manganese-oxo-complexes adsorbed on clays.

    PubMed

    Kurz, Philipp

    2009-08-21

    A series of dinuclear manganese-oxo-complexes was prepared and adsorbed on kaolinite and montmorillonite clays. As indicated by UV-Vis spectroscopy, immobilization of the manganese compounds greatly altered the electronic properties due to strong interactions with the clay surfaces. When studied for their ability to catalyze oxygen formation upon reactions with the strong oxygen-transferring oxidants H(2)O(2) and oxone, it was found that surface adsorption yielded catalysts of improved performance for oxygen formation in aqueous media. Both the rates of oxygen evolution and catalyst stabilities were significantly increased for the clay hybrids of most complexes in comparison to homogeneous solutions of the compounds. Additionally, four heterogeneous systems were also found to catalyze the evolution of O(2) in reactions with the non-oxygen transferring, single- electron oxidation agent Ce(IV)--a reaction not observed for any dinuclear manganese complex in homogeneous reaction. Implications of these observations concerning the mechanism of oxygen formation and the development of manganese-based water oxidation catalysts are discussed.

  20. Oxygen-evolving complex of Photosystem II: an analysis of second-shell residues and hydrogen-bonding networks.

    PubMed

    Vogt, Leslie; Vinyard, David J; Khan, Sahr; Brudvig, Gary W

    2015-04-01

    The oxygen-evolving complex (OEC) is a Mn4O5Ca cluster embedded in the Photosystem II (PSII) protein complex. As the site of water oxidation, the OEC is connected to the lumen by channels that conduct water, oxygen, and/or protons during the catalytic cycle. The hydrogen-bond networks found in these channels also serve to stabilize the oxidized intermediates, known as the S states. We review recent developments in characterizing these networks via protein mutations, molecular inhibitors, and computational modeling. On the basis of these results, we highlight regions of the PSII protein in which changes have indirect effects on the S1, S2, and S3 oxidation states of the OEC while still allowing photosynthetic activity.

  1. Oxygen tolerance of an in silico-designed bioinspired hydrogen-evolving catalyst in water.

    PubMed

    Sit, Patrick H-L; Car, Roberto; Cohen, Morrel H; Selloni, Annabella

    2013-02-05

    Certain bacterial enzymes, the diiron hydrogenases, have turnover numbers for hydrogen production from water as large as 10(4)/s. Their much smaller common active site, composed of earth-abundant materials, has a structure that is an attractive starting point for the design of a practical catalyst for electrocatalytic or solar photocatalytic hydrogen production from water. In earlier work, our group has reported the computational design of [FeFe](P)/FeS(2), a hydrogenase-inspired catalyst/electrode complex, which is efficient and stable throughout the production cycle. However, the diiron hydrogenases are highly sensitive to ambient oxygen by a mechanism not yet understood in detail. An issue critical for practical use of [FeFe](P)/FeS(2) is whether this catalyst/electrode complex is tolerant to the ambient oxygen. We report demonstration by ab initio simulations that the complex is indeed tolerant to dissolved oxygen over timescales long enough for practical application, reducing it efficiently. This promising hydrogen-producing catalyst, composed of earth-abundant materials and with a diffusion-limited rate in acidified water, is efficient as well as oxygen tolerant.

  2. Oxygen isotope systematics in an evolving geothermal system: Coso Hot Springs, California

    NASA Astrophysics Data System (ADS)

    Etzel, Thomas M.; Bowman, John R.; Moore, Joseph N.; Valley, John W.; Spicuzza, Michael J.; McCulloch, Jesse M.

    2017-01-01

    Oxygen isotope and clay mineralogy studies have been made on whole rock samples and feldspar separates from three wells along the high temperature West Flank of the Coso geothermal system, California. The reservoir rocks have experienced variable 18O/16O depletion, with δ18O values ranging from primary values of + 7.5‰ down to - 4.6‰. Spatial patterns of clay mineral distributions in the three wells are not closely correlated with the distributions expected from measured, pre-production temperature profiles, but do correlate with spatial patterns of 18O/16O depletion, indicating that the stability of clay minerals in the three wells is a function of fluid-rock interaction in addition to temperature. Detailed δ18O measurements in the three wells identify a limited number of localized intervals of extensive 18O/16O depletion. These intervals document localized zones of higher permeability in the geothermal system that have experienced significant fluid infiltration, water-rock interaction and oxygen isotopic exchange with the geothermal fluids. The local zones of maximum 18O/16O depletion in each well correspond closely with current hot water production zones. Most feldspar separates have measured δ18O values too high to have completely attained oxygen isotope exchange equilibrium with the reservoir fluid at pre-production temperatures. In general, the lower the δ18O value of the feldspar, the closer the feldspar approaches exchange equilibrium with the geothermal fluid. This correlation suggests that fracture-induced increases in permeability increase both fluid infiltration and the surface area of the host rock exposed to geothermal fluid, promoting fluid-rock interaction and oxygen isotope exchange. The two most 18O/16O-depleted feldspar samples have δ18O values too low to be in exchange equilibrium with the pre-production reservoir fluid at pre-production temperatures. These discrepancies suggest that the reservoir fluid in the West Flank of the Coso

  3. Influence of iron doping on tetravalent nickel content in catalytic oxygen evolving films.

    PubMed

    Li, Nancy; Bediako, D Kwabena; Hadt, Ryan G; Hayes, Dugan; Kempa, Thomas J; von Cube, Felix; Bell, David C; Chen, Lin X; Nocera, Daniel G

    2017-02-14

    Iron doping of nickel oxide films results in enhanced activity for promoting the oxygen evolution reaction (OER). Whereas this enhanced activity has been ascribed to a unique iron site within the nickel oxide matrix, we show here that Fe doping influences the Ni valency. The percent of Fe(3+) doping promotes the formation of formal Ni(4+), which in turn directly correlates with an enhanced activity of the catalyst in promoting OER. The role of Fe(3+) is consistent with its behavior as a superior Lewis acid.

  4. Damage to the oxygen-evolving complex by superoxide anion, hydrogen peroxide, and hydroxyl radical in photoinhibition of photosystem II.

    PubMed

    Song, Yu Guang; Liu, Bin; Wang, Lan Fen; Li, Mai He; Liu, Yang

    2006-10-01

    Under strong illumination of a photosystem II (PSII) membrane, endogenous superoxide anion, hydrogen peroxide, and hydroxyl radical were successively produced. These compounds then cooperatively resulted in a release of manganese from the oxygen-evolving complex (OEC) and an inhibition of oxygen evolution activity. The OEC inactivation was initiated by an acceptor-side generated superoxide anion, and hydrogen peroxide was most probably responsible for the transportation of reactive oxygen species (ROS) across the PSII membrane from the acceptor-side to the donor-side. Besides ROS being generated in the acceptor-side induced manganese loss; there may also be a ROS-independent manganese loss in the OEC of PSII. Both superoxide anion and hydroxyl radical located inside the PSII membrane were directly identified by a spin trapping-electron spin resonance (ESR) method in combination with a lipophilic spin trap, 5-(diethoxyphosphoryl)-5-phenethyl-1-pyrroline N-oxide (DEPPEPO). The endogenous hydrogen peroxide production was examined by oxidation of thiobenzamide.

  5. First site-specific incorporation of a noncanonical amino acid into the photosynthetic oxygen-evolving complex.

    PubMed

    Offenbacher, Adam R; Pagba, Cynthia V; Polander, Brandon C; Brahmachari, Udita; Barry, Bridgette A

    2014-04-18

    In photosystem II (PSII), water is oxidized at the oxygen-evolving complex. This process occurs through a light-induced cycle that produces oxygen and protons. While coupled proton and electron transfer reactions play an important role in PSII and other proteins, direct detection of internal proton transfer reactions is challenging. Here, we demonstrate that the unnatural amino acid, 7-azatryptophan (7AW), has unique, pH-sensitive vibrational frequencies, which are sensitive markers of proton transfer. The intrinsically disordered, PSII subunit, PsbO, which contains a single W residue (Trp241), was engineered to contain 7AW at position 241. Fluorescence shows that 7AW-241 is buried in a hydrophobic environment. Reconstitution of 7AW(241)PsbO to PSII had no significant impact on oxygen evolution activity or flash-dependent protein dynamics. We conclude that directed substitution of 7AW into other structural domains is likely to provide a nonperturbative spectroscopic probe, which can be used to define internal proton pathways in PsbO.

  6. Hot corrosion of S-57, 1 cobalt-base alloy

    NASA Technical Reports Server (NTRS)

    Santoro, G. J.

    1977-01-01

    A cobalt base alloy, S-57, was hot corrosion tested in Mach 0.3 burner rig combustion gases at maximum alloy temperatures of 900 and 1000 C. Various salt concentrations were injected into the burner: 0.5, 2, 5, and 10 ppm synthetic sea salt and 4 ppm sodium sulfate (Na2SO4). S-57 underwent accelerated corrosion only under the most severe test conditions, for example, 4 ppm Na2SO4 at 900 C. The process of the accelerated corrosion was primarily sulfidation.

  7. A synthetic model of the Mn₃Ca subsite of the oxygen-evolving complex in photosystem II.

    PubMed

    Kanady, Jacob S; Tsui, Emily Y; Day, Michael W; Agapie, Theodor

    2011-08-05

    Within photosynthetic organisms, the oxygen-evolving complex (OEC) of photosystem II generates dioxygen from water using a catalytic Mn(4)CaO(n) cluster (n varies with the mechanism and nature of the intermediate). We report here the rational synthesis of a [Mn(3)CaO(4)](6+) cubane that structurally models the trimanganese-calcium-cubane subsite of the OEC. Structural and electrochemical comparison between Mn(3)CaO(4) and a related Mn(4)O(4) cubane alongside characterization of an intermediate calcium-manganese multinuclear complex reveals potential roles of calcium in facilitating high oxidation states at manganese and in the assembly of the biological cluster.

  8. The effect of backbone constraints: the case of water oxidation by the oxygen-evolving complex in PSII.

    PubMed

    Siegbahn, Per E M

    2011-12-09

    The procedure for fixing atoms of amino acid residues in cluster model calculations on enzymes is reviewed. Examples from recent calculations on photosystem II (PSII) and Mo,Cu-dependent CO dehydrogenase are given. In this context, the cluster model work on finding a mechanism for O-O bond formation and a structure of the oxygen-evolving complex in PSII is also reviewed. In that work, fixing certain atoms played an important role. The main part of the present study concerns the mechanism in PSII using models based on the new high-resolution (1.9 Å) X-ray structure, which is compared to that using the old, theoretically suggested, structure. It is concluded that the mechanism remains the same, with a similar barrier height. Finally, a connection between the OEC structure and Mn,Ca-containing minerals is also briefly discussed.

  9. CARBON CHEMISTRY IN THE ENVELOPE OF VY CANIS MAJORIS: IMPLICATIONS FOR OXYGEN-RICH EVOLVED STARS

    SciTech Connect

    Ziurys, L. M.; Tenenbaum, E. D.; Pulliam, R. L.; Woolf, N. J.; Milam, S. N. E-mail: emilyt@as.arizona.edu E-mail: nwoolf@as.arizona.edu

    2009-04-20

    Observations of the carbon-bearing molecules CO, HCN, CS, HNC, CN, and HCO{sup +} have been conducted toward the circumstellar envelope of the oxygen-rich red supergiant star, VY Canis Majoris (VY CMa), using the Arizona Radio Observatory (ARO). CO and HCN were also observed toward the O-rich shells of NML Cyg, TX Cam, IK Tau, and W Hya. Rotational transitions of these species at 1 mm, 0.8 mm, and 0.4 mm were measured with the ARO Submillimeter Telescope, including the J = 6 {yields} 5 line of CO at 691 GHz toward TX Cam and W Hya. The ARO 12 m was used for 2 mm and 3 mm observations. Four transitions were observed for HCO{sup +} in VY CMa, the first definitive identification of this ion in a circumstellar envelope. Molecular line profiles from VY CMa are complex, indicating three separate outflows: a roughly spherical flow and separate red- and blueshifted winds, as suggested by earlier observations. Spectra from the other sources appear to trace a single outflow component. The line data were modeled with a radiative transfer code to establish molecular abundances relative to H{sub 2} and source distributions. Abundances for CO derived for these objects vary over an order of magnitude, f {approx} 0.4-5 x 10{sup -4}, with the lower values corresponding to the supergiants. For HCN, a similar range in abundance is found (f {approx} 0.9-9 x 10{sup -6}), with no obvious dependence on the mass-loss rate. In VY CMa, HCO{sup +} is present in all three outflows with f {approx} 0.4-1.6 x 10{sup -8} and a spatial extent similar to that of CO. HNC is found only in the red- and blueshifted components with [HCN]/[HNC] {approx} 150-190, while [CN]/[HCN] {approx} 0.01 in the spherical flow. All three velocity components are traced in CS, which has a confined spatial distribution and f {approx} 2-6 x 10{sup -7}. These observations suggest that carbon-bearing molecules in O-rich shells are produced by a combination of photospheric shocks and photochemistry. Shocks may play a more

  10. Proton-Coupled Electron Transfer During the S-State Transitions of the Oxygen-Evolving Complex of Photosystem II.

    PubMed

    Amin, Muhamed; Vogt, Leslie; Szejgis, Witold; Vassiliev, Serguei; Brudvig, Gary W; Bruce, Doug; Gunner, M R

    2015-06-18

    The oxygen-evolving complex (OEC) of photosystem II (PSII) is a unique Mn4O5Ca cluster that catalyzes water oxidation via four photoactivated electron transfer steps. As the protein influence on the redox and protonation chemistry of the OEC remains an open question, we present a classical valence model of the OEC that allows the redox state of each Mn and the protonation state of bridging μ-oxos and terminal waters to remain in equilibrium with the PSII protein throughout the redox cycle. We find that the last bridging oxygen loses its proton during the transition from S0 to S1. Two possible S2 states are found depending on the OEC geometry: S2 has Mn4(IV) with a proton lost from a terminal water (W1) trapped by the nearby D1-D61 if O5 is closer to Mn4, or Mn1(IV), with partial deprotonation of D1-H337 and D1-E329 if O5 is closer to Mn1. In S3, the OEC is Mn4(IV) with W2 deprotonated. The estimated OEC Em's range from +0.7 to +1.3 V, enabling oxidation by P680(+), the primary electron donor in PSII. In chloride-depleted PSII, the proton release increases during the S1 to S2 transition, leaving the OEC unable to properly advance through the water-splitting cycle.

  11. Substrate water exchange for the oxygen evolving complex in PSII in the S1, S2, and S3 states.

    PubMed

    Siegbahn, Per E M

    2013-06-26

    Detailed mechanisms for substrate water exchange in the oxygen evolving complex in photosystem II have been determined with DFT methods for large models. Existing interpretations of the experimental water exchange results have been quite different. By many groups, these results have been the main argument against the water oxidation mechanism suggested by DFT, in which the oxygen molecule is formed between a bridging oxo and an oxyl radical ligand in the center of the OEC. That mechanism is otherwise in line with most experiments. The problem has been that the mechanism requires a rather fast exchange of a bridging oxo ligand, which is not a common finding for smaller Mn-containing model systems. However, other groups have actually favored a substrate derived oxo ligand partly based on the same experiments. In the present study, three S-states have been studied, and the rates have been well reproduced by the calculations. The surprising experimental finding that water exchange in S1 is slower than the one in S2 is reproduced and explained. The key to this rate difference is the ease by which one of the manganese centers (Mn3) is reduced. This reduction has to occur to release the substrate water from Mn3. The similar rate of the slow exchange in S2 and S3 has been rationalized on the basis of earlier experiments combined with the present calculations. The results strongly support the previous DFT-suggested water oxidation mechanism.

  12. Insights into substrate binding to the oxygen-evolving complex of photosystem II from ammonia inhibition studies.

    PubMed

    Vinyard, David J; Brudvig, Gary W

    2015-01-20

    Water oxidation in Photosystem II occurs at the oxygen-evolving complex (OEC), which cycles through distinct intermediates, S0-S4. The inhibitor ammonia selectively binds to the S2 state at an unresolved site that is not competitive with substrate water. By monitoring the yields of flash-induced oxygen production, we show that ammonia decreases the net efficiency of OEC turnover and slows the decay kinetics of S2 to S1. The temperature dependence of biphasic S2 decay kinetics provides activation energies that do not vary in control and ammonia conditions. We interpret our data in the broader context of previous studies by introducing a kinetic model for both the formation and decay of ammonia-bound S2. The model predicts ammonia binds to S2 rapidly (t1/2 = 1 ms) with a large equilibrium constant. This finding implies that ammonia decreases the reduction potential of S2 by at least 2.7 kcal mol(-1) (>120 mV), which is not consistent with ammonia substitution of a terminal water ligand of Mn(IV). Instead, these data support the proposal that ammonia binds as a bridging ligand between two Mn atoms. Implications for the mechanism of O-O bond formation are discussed.

  13. Chemical Equilibrium Models for the S3 State of the Oxygen-Evolving Complex of Photosystem II.

    PubMed

    Isobe, Hiroshi; Shoji, Mitsuo; Shen, Jian-Ren; Yamaguchi, Kizashi

    2016-01-19

    We have performed hybrid density functional theory (DFT) calculations to investigate how chemical equilibria can be described in the S3 state of the oxygen-evolving complex in photosystem II. For a chosen 340-atom model, 1 stable and 11 metastable intermediates have been identified within the range of 13 kcal mol(-1) that differ in protonation, charge, spin, and conformational states. The results imply that reversible interconversion of these intermediates gives rise to dynamic equilibria that involve processes with relocations of protons and electrons residing in the Mn4CaO5 cluster, as well as bound water ligands, with concomitant large changes in the cluster geometry. Such proton tautomerism and redox isomerism are responsible for reversible activation/deactivation processes of substrate oxygen species, through which Mn-O and O-O bonds are transiently ruptured and formed. These results may allow for a tentative interpretation of kinetic data on substrate water exchange on the order of seconds at room temperature, as measured by time-resolved mass spectrometry. The reliability of the hybrid DFT method for the multielectron redox reaction in such an intricate system is also addressed.

  14. Combinatorial Development of Water Splitting Catalysts Based on the Oxygen Evolving Complex of Photosystem II

    SciTech Connect

    Woodbury, Neal

    2010-03-31

    The use of methods to create large arrays of potential catalysts for the reaction H2O ½ O2 + 2H+ on the anode of an electrolysis system were investigated. This reaction is half of the overall reaction involved in the splitting of water into hydrogen and oxygen gas. This method consisted of starting with an array of electrodes and developing patterned electrochemical approaches for creating a different, defined peptide at each position in the array. Methods were also developed for measuring the rate of reaction at each point in the array. In this way, the goal was to create and then tests many thousands of possible catalysts simultaneously. This type of approach should lead to an ability to optimize catalytic activity systematically, by iteratively designing and testing new libraries of catalysts. Optimization is important to decrease energy losses (over-potentials) associated with the water splitting reaction and thus for the generation of hydrogen. Most of the efforts in this grant period were focused on developing the chemistry and analytical methods required to create pattern peptide formation either using a photolithography approach or an electrochemical approach for dictating the positions of peptide bond formation. This involved testing a large number of different reactions and conditions. We have been able to find conditions that have allowed us to pattern peptide bond formation on both glass slides using photolithographic methods and on electrode arrays made by the company Combimatrix. Part of this effort involved generating novel approaches for performing mass spectroscopy directly from the patterned arrays. We have also been able to demonstrate the ability to measure current at each electrode due to electrolysis of water. This was performed with customized instrumentation created in collaboration with Combimatrix. In addition, several different molecular designs for peptides that bound metals (primarily Mn) were developed and synthesized and metal

  15. Proton coupled electron transfer and redox-active tyrosine Z in the photosynthetic oxygen-evolving complex.

    PubMed

    Keough, James M; Jenson, David L; Zuniga, Ashley N; Barry, Bridgette A

    2011-07-27

    Proton coupled electron transfer (PCET) reactions play an essential role in many enzymatic processes. In PCET, redox-active tyrosines may be involved as intermediates when the oxidized phenolic side chain deprotonates. Photosystem II (PSII) is an excellent framework for studying PCET reactions, because it contains two redox-active tyrosines, YD and YZ, with different roles in catalysis. One of the redox-active tyrosines, YZ, is essential for oxygen evolution and is rapidly reduced by the manganese-catalytic site. In this report, we investigate the mechanism of YZ PCET in oxygen-evolving PSII. To isolate YZ(•) reactions, but retain the manganese-calcium cluster, low temperatures were used to block the oxidation of the metal cluster, high microwave powers were used to saturate the YD(•) EPR signal, and YZ(•) decay kinetics were measured with EPR spectroscopy. Analysis of the pH and solvent isotope dependence was performed. The rate of YZ(•) decay exhibited a significant solvent isotope effect, and the rate of recombination and the solvent isotope effect were pH independent from pH 5.0 to 7.5. These results are consistent with a rate-limiting, coupled proton electron transfer (CPET) reaction and are contrasted to results obtained for YD(•) decay kinetics at low pH. This effect may be mediated by an extensive hydrogen-bond network around YZ. These experiments imply that PCET reactions distinguish the two PSII redox-active tyrosines.

  16. Geometric and electronic structures of the synthetic Mn₄CaO₄ model compound mimicking the photosynthetic oxygen-evolving complex.

    PubMed

    Shoji, Mitsuo; Isobe, Hiroshi; Shen, Jian-Ren; Yamaguchi, Kizashi

    2016-04-28

    Water oxidation by photosystem II (PSII) converts light energy into chemical energy with the concomitant production of molecular oxygen, both of which are indispensable for sustaining life on Earth. This reaction is catalyzed by an oxygen-evolving complex (OEC) embedded in the huge PSII complex, and its mechanism remains elusive in spite of the extensive studies of the geometric and electronic structures. In order to elucidate the water-splitting mechanism, synthetic approaches have been extensively employed to mimic the native OEC. Very recently, a synthetic complex [Mn4CaO4(Bu(t)COO)8(py)(Bu(t)COOH)2] (1) closely mimicking the structure of the native OEC was obtained. In this study, we extensively examined the geometric, electronic and spin structures of 1 using the density functional theory method. Our results showed that the geometric structure of 1 can be accurately reproduced by theoretical calculations, and revealed many similarities in the ground valence and spin states between 1 and the native OEC. We also revealed two different valence states in the one-electron oxidized state of 1 (corresponding to the S2 state), which lie in the lower and higher ground spin states (S = 1/2 and S = 5/2), respectively. One remarkable difference between 1 and the native OEC is the presence of a non-negligible antiferromagnetic interaction between the Mn1 and Mn4 sites, which slightly influenced their ground spin structures (spin alignments). The major reason causing the difference can be attributed to the short Mn1-O5 and Mn1-Mn4 distances in 1. The introduction of the missing O4 atom and the reorientation of the Ca coordinating ligands improved the Mn1-O5 and Mn1-Mn4 distances comparable to the native OEC. These modifications will therefore be important for the synthesis of further advanced model complexes more closely mimicking the native OEC beyond 1.

  17. On ammonia binding to the oxygen-evolving complex of photosystem II: a quantum chemical study.

    PubMed

    Schraut, Johannes; Kaupp, Martin

    2014-06-10

    A recent EPR study (M. Perrez Navarro et al., Proc. Natl. Acad. Sci. 2013, 110, 15561) provided evidence that ammonia binding to the oxygen-evolving complex (OEC) of photosystem II in its S2 state takes place at a terminal-water binding position (W1) on the "dangler" manganese center MnA. This contradicted earlier interpretations of (14)N electron-spin-echo envelope modulation (ESEEM) and extended X-ray absorption fine-structure (EXAFS) data, which were taken to indicate replacement of a bridging oxo ligand by an NH2 unit. Here we have used systematic broken-symmetry density functional theory calculations on large (ca. 200 atom) model clusters of an extensive variety of substitution patterns and core geometries to examine these contradictory pieces of evidence. Computed relative energies clearly favor the terminal substitution pattern over bridging-ligand arrangements (by about 20-30 kcal mol(-1)) and support W1 as the preferred binding site. Computed (14)N EPR nuclear-quadrupole coupling tensors confirm previous assumptions that the appreciable asymmetry may be accounted for by strong, asymmetric hydrogen bonding to the bound terminal NH3 ligand (mainly by Asp61). Indeed, bridging NH2 substitution would lead to exaggerated asymmetries. Although our computed structures confirm that the reported elongation of an Mn-Mn distance by about 0.15 Å inferred from EXAFS experiments may only be reproduced by bridging NH2 substitution, it seems possible that the underlying EXAFS data were skewed by problems due to radiation damage. Overall, the present data clearly support the suggested terminal NH3 coordination at the W1 site. The finding is significant for the proposed mechanistic scenarios of OEC catalysis, as this is not a water substrate site, and effects of this ammonia binding on catalysis thus must be due to more indirect influences on the likely substrate binding site at the O5 bridging-oxygen position.

  18. Two-step mechanism of photodamage to photosystem II: step 1 occurs at the oxygen-evolving complex and step 2 occurs at the photochemical reaction center.

    PubMed

    Ohnishi, Norikazu; Allakhverdiev, Suleyman I; Takahashi, Shunichi; Higashi, Shoichi; Watanabe, Masakatsu; Nishiyama, Yoshitaka; Murata, Norio

    2005-06-14

    Under strong light, photosystem II (PSII) of oxygenic photosynthetic organisms is inactivated, and this phenomenon is called photoinhibition. In a widely accepted model, photoinhibition is induced by excess light energy, which is absorbed by chlorophyll but not utilized in photosynthesis. Using monochromatic light from the Okazaki Large Spectrograph and thylakoid membranes from Thermosynechococcus elongatus, we observed that UV and blue light inactivated the oxygen-evolving complex much faster than the photochemical reaction center of PSII. These observations suggested that the light-induced damage was associated with a UV- and blue light-absorbing center in the oxygen-evolving complex of PSII. The action spectrum of the primary event in photodamage to PSII revealed the strong effects of UV and blue light and differed considerably from the absorption spectra of chlorophyll and thylakoid membranes. By contrast to the photoinduced inactivation of the oxygen-evolving complex in untreated thylakoid membranes, red light efficiently induced inactivation of the PSII reaction center in Tris-treated thylakoid membranes, and the action spectrum resembled the absorption spectrum of chlorophyll. Our observations suggest that photodamage to PSII occurs in two steps. Step 1 is the light-induced inactivation of the oxygen-evolving complex. Step 2, occurring after step 1 is complete, is the inactivation of the PSII reaction center by light absorbed by chlorophyll. We confirmed our model by illumination of untreated thylakoid membranes with blue and UV light, which inactivated the oxygen-evolving complex, and then with red light, which inactivated the photochemical reaction center.

  19. Energetics of the S2 State Spin Isomers of the Oxygen-Evolving Complex of Photosystem II.

    PubMed

    Vinyard, David J; Khan, Sahr; Askerka, Mikhail; Batista, Victor S; Brudvig, Gary W

    2017-02-09

    The S2 redox intermediate of the oxygen-evolving complex in photosystem II is present as two spin isomers. The S = 1/2 isomer gives rise to a multiline electron paramagnetic resonance (EPR) signal at g = 2.0, whereas the S = 5/2 isomer exhibits a broad EPR signal at g = 4.1. The electronic structures of these isomers are known, but their role in the catalytic cycle of water oxidation remains unclear. We show that formation of the S = 1/2 state from the S = 5/2 state is exergonic at temperatures above 160 K. However, the S = 1/2 isomer decays to S1 more slowly than the S = 5/2 isomer. These differences support the hypotheses that the S3 state is formed via the S2 state S = 5/2 isomer and that the stabilized S2 state S = 1/2 isomer plays a role in minimizing S2QA(-) decay under light-limiting conditions.

  20. Alternative mechanisms for O2 release and O-O bond formation in the oxygen evolving complex of photosystem II.

    PubMed

    Li, Xichen; Siegbahn, Per E M

    2015-05-14

    In a previous detailed study of all the steps of water oxidation in photosystem II, it was surprisingly found that O2 release is as critical for the rate as O-O bond formation. A new mechanism for O2 release has now been found, which can be described as an opening followed by a closing of the interior of the oxygen evolving complex. A transition state for peroxide rotation forming a superoxide radical, missed in the previous study, and a structural change around the outside manganese are two key steps in the new mechanism. However, O2 release may still remain rate-limiting. Additionally, for the step forming the O-O bond, an alternative, experimentally suggested, mechanism was investigated. The new model calculations can rule out the precise use of that mechanism. However, a variant with a rotation of the ligands around the outer manganese by about 30° will give a low barrier, competitive with the old DFT mechanism. Both these mechanisms use an oxyl-oxo mechanism for O-O bond formation involving the same two manganese atoms and the central oxo group (O5).

  1. Two Different Structures of the Oxygen-Evolving Complex in the Same Polypeptide Frameworks of Photosystem II.

    PubMed

    Tanaka, Ayako; Fukushima, Yoshimasa; Kamiya, Nobuo

    2017-02-08

    The oxygen-evolving complex (OEC) forms the heart of photosystem II (PSII) in photosynthesis. The crystal structure of PSII from Thermosynechococcus vulcanus has been reported at a resolution of 1.9 Å and at an averaged X-ray dose of 0.43 MGy. The OEC structure is suggested to be partially reduced to Mn(II) by EXAFS and DFT computational studies. Recently, the "radiation-damage-free" structures have been published at 1.95 Å resolution using XFEL, but reports continued to appear that the OEC is reduced to the S0-state of the Kok cycle. To elucidate much more precise structure of the OEC, in this study two structures were determined at extremely low X-ray doses of 0.03 and 0.12 MGy using conventional synchrotron radiation source. The results indicated that the X-ray reduction effects on the OEC were very small in the low dose region below 0.12 MGy, that is, a threshold existed for the OEC structural changes caused by X-ray exposure. The OEC structures of the two identical monomers in the crystal were clearly different under the threshold of the radiation dose, although the surrounding polypeptide frameworks of PSII were the same. The assumption that the OECs in the crystal were in the dark-stable S1-state of the Kok cycle should be re-evaluated.

  2. Electronic structural changes of Mn in the oxygen-evolving complex of photosystem II during the catalytic cycle.

    PubMed

    Glatzel, Pieter; Schroeder, Henning; Pushkar, Yulia; Boron, Thaddeus; Mukherjee, Shreya; Christou, George; Pecoraro, Vincent L; Messinger, Johannes; Yachandra, Vittal K; Bergmann, Uwe; Yano, Junko

    2013-05-20

    The oxygen-evolving complex (OEC) in photosystem II (PS II) was studied in the S0 through S3 states using 1s2p resonant inelastic X-ray scattering spectroscopy. The spectral changes of the OEC during the S-state transitions are subtle, indicating that the electrons are strongly delocalized throughout the cluster. The result suggests that, in addition to the Mn ions, ligands are also playing an important role in the redox reactions. A series of Mn(IV) coordination complexes were compared, particularly with the PS II S3 state spectrum to understand its oxidation state. We find strong variations of the electronic structure within the series of Mn(IV) model systems. The spectrum of the S3 state best resembles those of the Mn(IV) complexes Mn3(IV)Ca2 and saplnMn2(IV)(OH)2. The current result emphasizes that the assignment of formal oxidation states alone is not sufficient for understanding the detailed electronic structural changes that govern the catalytic reaction in the OEC.

  3. Systematic investigation of the catalytic cycle of a single site ruthenium oxygen evolving complex using density functional theory.

    PubMed

    Hughes, Thomas F; Friesner, Richard A

    2011-07-28

    The mechanism of water oxidation by a single site ruthenium oxygen evolving complex is investigated using fully unrestricted pseudospectral B3LYP with the effective core potential LACV3P in continuum solvent with some quantum mechanical waters. Guess wave functions have been used that allow greater flexibility in sampling different electronic configurations of the complex. Systematic comparison with experiment is improved using these guesses because they provide a complete analysis of the low energy manifold and help to alleviate the formal disconnect between theory and experiment in assigning Lewis structures for transition metal complexes. In agreement with results from the literature, the challenging 4e(-)and 4H(+) oxidation of water is accomplished using a mechanism that features three proton coupled electron transfers, one electron transfer, one atom proton transfer (APT), and one ligand exchange (LE). Calculations on a large database of ruthenium complexes allows us to benchmark the computation of reduction half potentials and free energies of activation and to investigate systematic ligand variations and their effect on the reaction mechanism. Mean unsigned errors of reduction half potentials in comparison to experiment are generally small (100-200 mV). The APT and LE steps are found to be rate limiting with free energy barriers of 19.27 and 19.53 kcal/mol respectively, which is in excellent agreement with the ∼20 kcal/mol barrier obtained from experimental rate constants using classical transition state theory.

  4. QM/MM computational studies of substrate water binding to the oxygen-evolving centre of photosystem II

    PubMed Central

    Sproviero, Eduardo M; Shinopoulos, Katherine; Gascón, José A; McEvoy, James P; Brudvig, Gary W; Batista, Victor S

    2007-01-01

    This paper reports computational studies of substrate water binding to the oxygen-evolving centre (OEC) of photosystem II (PSII), completely ligated by amino acid residues, water, hydroxide and chloride. The calculations are based on quantum mechanics/molecular mechanics hybrid models of the OEC of PSII, recently developed in conjunction with the X-ray crystal structure of PSII from the cyanobacterium Thermosynechococcus elongatus. The model OEC involves a cuboidal Mn3CaO4Mn metal cluster with three closely associated manganese ions linked to a single μ4-oxo-ligated Mn ion, often called the ‘dangling manganese’. Two water molecules bound to calcium and the dangling manganese are postulated to be substrate molecules, responsible for dioxygen formation. It is found that the energy barriers for the Mn(4)-bound water agree nicely with those of model complexes. However, the barriers for Ca-bound waters are substantially larger. Water binding is not simply correlated to the formal oxidation states of the metal centres but rather to their corresponding electrostatic potential atomic charges as modulated by charge-transfer interactions. The calculations of structural rearrangements during water exchange provide support for the experimental finding that the exchange rates with bulk 18O-labelled water should be smaller for water molecules coordinated to calcium than for water molecules attached to the dangling manganese. The models also predict that the S1→S2 transition should produce opposite effects on the two water-exchange rates. PMID:17971333

  5. Energetics of the S2 state spin isomers of the oxygen-evolving complex of Photosystem II

    DOE PAGES

    Vinyard, David J.; Khan, Sahr; Askerka, Mikhail; ...

    2017-01-12

    Here, the S2 redox intermediate of the oxygen-evolving complex in Photosystem II is present as two spin isomers. The S = 1/2 isomer gives rise to a multiline EPR signal at g = 2, while the S = 5/2 isomer exhibits a broad EPR signal at g = 4.1. The electronic structures of these isomers are known, but their role in the catalytic cycle of water oxidation remains unclear. We show that formation of the S = 1/2 state from the S = 5/2 state is exergonic at temperatures above 160 K. However, the S = 1/2 isomer decays tomore » S1 more slowly than the S = 5/2 isomer. These differences support the hypotheses that the S3 state is formed via the S2 state S = 5/2 isomer and that the stabilized S2 state S = 1/2 isomer plays a role in minimizing S2QA- decay in light-limiting conditions.« less

  6. Comparison of the EXAFS Spectra of Heteronuclear MnCa/Sr Model Complexes to the Oxygen-Evolving Mn(4)Ca Complex of Photosystem II

    SciTech Connect

    Mishra, A.; Yano, J.; Pushkar, Y.; Abboud, K.A.; Yachandra, V.K.; Christou, G.

    2009-06-03

    Heterometallic Mn-Ca and Mn-Sr complexes have been prepared and employed as model complexes for Ca and Sr EXAFS spectral comparisons with the Oxygen-Evolving Complex (OEC) of Photosystem II (PS II); these have revealed similarities that support the presence of at least one O atom bridge between the Mn and Ca/Sr in the OEC.

  7. Heteronuclear Mn-Ca/Sr Complexes, and Ca/Sr EXAFS SpectralComparisons with the Oxygen-Evolving Complex of Photosystem II

    SciTech Connect

    Mishra, A.; Yano, J.; Pushkar, Y.; Yachandra, V.K.; Abboud, K.A.; Christou, G.

    2007-12-19

    HeterometallicMn Ca and Mn Sr complexes have been preparedand employed as model complexes for Ca and Sr EXAFS spectral comparisonswith the Oxygen-Evolving Complex (OEC) of Photosystem II (PS II); thesehave revealed similarities that support the presence of at least one Oatom bridge between the Mn and Ca/Sr in the OEC.

  8. Effect of protein modification by malondialdehyde on the interaction between the oxygen-evolving complex 33 kDa protein and photosystem II core proteins.

    PubMed

    Yamauchi, Yasuo; Sugimoto, Yukihiro

    2010-04-01

    Previously we observed that the oxygen-evolving complex 33 kDa protein (OEC33) which stabilizes the Mn cluster in photosystem II (PSII), was modified with malondialdehyde (MDA), an end-product of peroxidized polyunsaturated fatty acids, and the modification increased in heat-stressed plants (Yamauchi et al. 2008). In this study, we examined whether the modification of OEC33 with MDA affects its binding to the PSII complex and causes inactivation of the oxygen-evolving complex. Purified OEC33 and PSII membranes that had been removed of extrinsic proteins of the oxygen-evolving complex (PSIIOEE) of spinach (Spinacia oleracea) were separately treated with MDA. The binding was diminished when both OEC33 and PSIIOEE were modified, but when only OEC33 or PSIIOEE was treated, the binding was not impaired. In the experiment using thylakoid membranes, release of OEC33 from PSII and corresponding loss of oxygen-evolving activity were observed when thylakoid membranes were treated with MDA at 40 degrees C but not at 25 degrees C. In spinach leaves treated at 40 degrees C under light, maximal efficiency of PSII photochemistry (F(v)/F(m) ratio of chlorophyll fluorescence) and oxygen-evolving activity decreased. Simultaneously, MDA contents in heat-stressed leaves increased, and OEC33 and PSII core proteins including 47 and 43 kDa chlorophyll-binding proteins were modified with MDA. In contrast, these changes were to a lesser extent at 40 degrees C in the dark. These results suggest that MDA modification of PSII proteins causes release of OEC33 from PSII and it is promoted in heat and oxidative conditions.

  9. X-ray and vibrational spectroscopy of manganese complexes relevant to the oxygen-evolving complex of photosynthesis

    SciTech Connect

    Visser, Hendrik

    2001-01-01

    Manganese model complexes, relevant to the oxygen-evolving complex (OEC) in photosynthesis, were studied with Mn K-edge X-ray absorption near-edge spectroscopy (XANES), Mn Kb X-ray emission spectroscopy (XES), and vibrational spectroscopy. A more detailed understanding was obtained of the influence of nuclearity, overall structure, oxidation state, and ligand environment of the Mn atoms on the spectra from these methods. This refined understanding is necessary for improving the interpretation of spectra of the OEC. Mn XANES and Kb XES were used to study a di-(mu)-oxo and a mono-(mu)-oxo di-nuclear Mn compound in the (III,III), (III,IV), and (IV,IV) oxidation states. XANES spectra show energy shifts of 0.8 - 2.2 eV for 1-electron oxidation-state changes and 0.4 - 1.8 eV for ligand-environment changes. The shifts observed for Mn XES spectra were approximately 0.21 eV for oxidation state-changes and only approximately 0.04 eV for ligand-environment changes. This indicates that Mn Kb XES i s more sensitive to the oxidation state and less sensitive to the ligand environment of the Mn atoms than XANES. These complimentary methods provide information about the oxidation state and the ligand environment of Mn atoms in model compounds and biological systems. A versatile spectroelectrochemical apparatus was designed to aid the interpretation of IR spectra of Mn compounds in different oxidation states. The design, based on an attenuated total reflection device, permits the study of a wide spectral range: 16,700 (600 nm) - 225

  10. Protons bound to the Mn cluster in photosystem II oxygen evolving complex detected by proton matrix ENDOR.

    PubMed

    Yamada, Hiroiku; Mino, Hiroyuki; Itoh, Shigeru

    2007-03-01

    Protons in the vicinity of the oxygen-evolving manganese cluster in photosystem II were studied by proton matrix ENDOR. Six pairs of proton ENDOR signals were detected in both the S(0) and S(2) states of the Mn-cluster. Two pairs of signals that show hyperfine constants of 2.3/2.2 and 4.0 MHz, respectively, disappeared after D(2)O incubation in both states. The signals with 2.3/2.2 MHz hyperfine constants in S(0) and S(2) state multiline disappeared after 3 h of D(2)O incubation in the S(0) and S(1) states, respectively. The signal with 4.0 MHz hyperfine constants in S(0) state multiline disappeared after 3 h of D(2)O incubation in the S(0) state, while the similar signal in S(2) state multiline disappeared only after 24 h of D(2)O incubation in the S(1) state. The different proton exchange rates seem to be ascribable to the change in affinities of water molecules to the variation in oxidation state of the Mn cluster during the water oxidation cycle. Based on the point dipole approximation, the distances between the center of electronic spin of the Mn cluster and the exchangeable protons were estimated to be 3.3/3.2 and 2.7 A, respectively. These short distances suggest the protons belong to the water molecules ligated to the manganese cluster. We propose a model for the binding of water to the manganese cluster based on these results.

  11. Gas metal arc welding in refurbishment of cobalt base superalloys

    NASA Astrophysics Data System (ADS)

    Shahriary, M. S.; Miladi Gorji, Y.; Kolagar, A. M.

    2017-01-01

    Refurbishments of superalloys which are used in manufacturing gas turbine hot components usually consists of removing cracks and other defects by blending and then repair welding in order to reconstruct damaged area. In this study, the effects of welding parameters on repair of FSX-414 superalloy, as the most applicable cobalt base superalloy in order to manufacture gas turbine nozzles, by use of Gas Metal Arc Welding (GMAW) technic were investigated. Results then were compared by Gas Tungsten Arc Welding (GTAW). Metallographic and SEM studies of the microstructure of the weld and HAZ showed that there are no noticeable defects in the microstructure by use of GMAW. Also, chemical analysis and morphologies of carbide in both methods are similar. Hardness profile of the GM AW structure then also compared with GTAW and no noticeable difference was observed between the profiles. Also, proper tensile properties, compared with GTAW, can be achieved by use of optimum parameters that can be obtained by examining the current and welding speed. Tensile properties of optimized condition of the GMAW then were compared with GTAW. It was seen that the room and high temperature tensile properties of the GMAW structure is very similar and results confirmed that changing the technic did not have any significant influence on the properties.

  12. Electrostatic effects on proton coupled electron transfer in oxomanganese complexes inspired by the oxygen-evolving complex of photosystem II.

    PubMed

    Amin, Muhamed; Vogt, Leslie; Vassiliev, Serguei; Rivalta, Ivan; Sultan, Mohammad M; Bruce, Doug; Brudvig, Gary W; Batista, Victor S; Gunner, M R

    2013-05-23

    The influence of electrostatic interactions on the free energy of proton coupled electron transfer in biomimetic oxomanganese complexes inspired by the oxygen-evolving complex (OEC) of photosystem II (PSII) are investigated. The reported study introduces an enhanced multiconformer continuum electrostatics (MCCE) model, parametrized at the density functional theory (DFT) level with a classical valence model for the oxomanganese core. The calculated pKa's and oxidation midpoint potentials (E(m)'s) match experimental values for eight complexes, indicating that purely electrostatic contributions account for most of the observed couplings between deprotonation and oxidation state transitions. We focus on pKa's of terminal water ligands in [Mn(II/III)(H2O)6](2+/3+) (1), [Mn(III)(P)(H2O)2](3-) (2, P = 5,10,15,20-tetrakis(2,6-dichloro-3-sulfonatophenyl)porphyrinato), [Mn2(IV,IV)(μ-O)2(terpy)2(H2O)2](4+) (3, terpy = 2,2':6',2″-terpyridine), and [Mn3(IV,IV,IV)(μ-O)4(phen)4(H2O)2](4+) (4, phen = 1,10-phenanthroline) and the pKa's of μ-oxo bridges and Mn E(m)'s in [Mn2(μ-O)2(bpy)4] (5, bpy = 2,2'-bipyridyl), [Mn2(μ-O)2(salpn)2] (6, salpn = N,N'-bis(salicylidene)-1,3-propanediamine), [Mn2(μ-O)2(3,5-di(Cl)-salpn)2] (7), and [Mn2(μ-O)2(3,5-di(NO2)-salpn)2] (8). The analysis of complexes 6-8 highlights the strong coupling between electron and proton transfers, with any Mn oxidation lowering the pKa of an oxo bridge by 10.5 ± 0.9 pH units. The model also accounts for changes in the E(m)'s by ligand substituents, such as found in complexes 6-8, due to the electron withdrawing Cl (7) and NO2 (8). The reported study provides the foundation for analysis of electrostatic effects in other oxomanganese complexes and metalloenzymes, where proton coupled electron transfer plays a fundamental role in redox-leveling mechanisms.

  13. Merging Structural Information from X-ray Crystallography, Quantum Chemistry, and EXAFS Spectra: The Oxygen-Evolving Complex in PSII.

    PubMed

    Chernev, Petko; Zaharieva, Ivelina; Rossini, Emanuele; Galstyan, Artur; Dau, Holger; Knapp, Ernst-Walter

    2016-10-12

    Structural data of the oxygen-evolving complex (OEC) in photosystem II (PSII) determined by X-ray crystallography, quantum chemistry (QC), and extended X-ray absorption fine structure (EXAFS) analyses are presently inconsistent. Therefore, a detailed study of what information can be gained about the OEC through a comparison of QC and crystallographic structure information combined with the information from range-extended EXAFS spectra was undertaken. An analysis for determining the precision of the atomic coordinates of the OEC by QC is carried out. OEC model structures based on crystallographic data that are obtained by QC from different research groups are compared with one another and with structures obtained by high-resolution crystallography. The theory of EXAFS spectra is summarized, and the application of EXAFS spectra to the experimental determination of the structure of the OEC is detailed. We discriminate three types of parameters entering the formula for the EXAFS spectrum: (1) model-independent, predefined, and fixed; (2) model-dependent that can be computed or adjusted; and (3) model-dependent that must be adjusted. The information content of EXAFS spectra is estimated and is related to the precision of atomic coordinates and resolution power to discriminate different atom-pair distances of the OEC. It is demonstrated how a precise adjustment of atomic coordinates can yield a nearly perfect representation of the experimental OEC EXAFS spectrum, but at the expense of overfitting and losing the knowledge of the initial OEC model structure. Introducing a novel type of penalty function, it is shown that moderate adjustment of atomic coordinates to the EXAFS spectrum limited by constraints avoids overfitting and can be used to validate different OEC model structures. This technique is used to identify the OEC model structures whose computed OEC EXAFS spectra agree best with the measured spectrum. In this way, the most likely S-state and protonation pattern

  14. Towards models of the oxygen-evolving complex (OEC) of photosystem II: a Mn4Ca cluster of relevance to low oxidation states of the OEC.

    PubMed

    Koumousi, Evangelia S; Mukherjee, Shreya; Beavers, Christine M; Teat, Simon J; Christou, George; Stamatatos, Theocharis C

    2011-10-21

    Synthetic access has been achieved into high oxidation state Mn/Ca chemistry with the 4 : 1 Mn : Ca stoichiometry of the oxygen-evolving complex (OEC) of plants and cyanobacteria; the anion of (Et(3)NH)(2)[Mn(III)(4)Ca(O(2)CPh)(4)(shi)(4)] has a square pyramidal metal topology and an S = 0 ground state.

  15. In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+.

    PubMed

    Kanan, Matthew W; Nocera, Daniel G

    2008-08-22

    The utilization of solar energy on a large scale requires its storage. In natural photosynthesis, energy from sunlight is used to rearrange the bonds of water to oxygen and hydrogen equivalents. The realization of artificial systems that perform "water splitting" requires catalysts that produce oxygen from water without the need for excessive driving potentials. Here we report such a catalyst that forms upon the oxidative polarization of an inert indium tin oxide electrode in phosphate-buffered water containing cobalt (II) ions. A variety of analytical techniques indicates the presence of phosphate in an approximate 1:2 ratio with cobalt in this material. The pH dependence of the catalytic activity also implicates the hydrogen phosphate ion as the proton acceptor in the oxygen-producing reaction. This catalyst not only forms in situ from earth-abundant materials but also operates in neutral water under ambient conditions.

  16. Photosynthesis. Electronic structure of the oxygen-evolving complex in photosystem II prior to O-O bond formation.

    PubMed

    Cox, Nicholas; Retegan, Marius; Neese, Frank; Pantazis, Dimitrios A; Boussac, Alain; Lubitz, Wolfgang

    2014-08-15

    The photosynthetic protein complex photosystem II oxidizes water to molecular oxygen at an embedded tetramanganese-calcium cluster. Resolving the geometric and electronic structure of this cluster in its highest metastable catalytic state (designated S3) is a prerequisite for understanding the mechanism of O-O bond formation. Here, multifrequency, multidimensional magnetic resonance spectroscopy reveals that all four manganese ions of the catalyst are structurally and electronically similar immediately before the final oxygen evolution step; they all exhibit a 4+ formal oxidation state and octahedral local geometry. Only one structural model derived from quantum chemical modeling is consistent with all magnetic resonance data; its formation requires the binding of an additional water molecule. O-O bond formation would then proceed by the coupling of two proximal manganese-bound oxygens in the transition state of the cofactor.

  17. Structural changes in the oxygen-evolving complex of photosystem II induced by the S1 to S2 transition: A combined XRD and QM/MM study.

    PubMed

    Askerka, Mikhail; Wang, Jimin; Brudvig, Gary W; Batista, Victor S

    2014-11-11

    The S1 → S2 transition of the oxygen-evolving complex (OEC) of photosystem II does not involve the transfer of a proton to the lumen and occurs at cryogenic temperatures. Therefore, it is commonly thought to involve only Mn oxidation without any significant change in the structure of the OEC. Here, we analyze structural changes upon the S1 → S2 transition, as revealed by quantum mechanics/molecular mechanics methods and the isomorphous difference Fourier method applied to serial femtosecond X-ray diffraction data. We find that the main structural change in the OEC is in the position of the dangling Mn and its coordination environment.

  18. Effect of Chloride Depletion on the Magnetic Properties and the Redox Leveling of the Oxygen-Evolving Complex in Photosystem II.

    PubMed

    Amin, Muhamed; Pokhrel, Ravi; Brudvig, Gary W; Badawi, Ashraf; Obayya, S S A

    2016-05-12

    Chloride is an essential cofactor in the oxygen-evolution reaction that takes place in photosystem II (PSII). The oxygen-evolving complex (OEC) is oxidized in a linear four-step photocatalytic cycle in which chloride is required for the OEC to advance beyond the S2 state. Here, using density functional theory, we compare the energetics and spin configuration of two different states of the Mn4CaO5 cluster in the S2 state: state A with Mn1(3+) and B with Mn4(3+) with and without chloride. The calculations suggest that model B with an S = 5/2 ground state occurs in the chloride-depleted PSII, which may explain the presence of the EPR signal at g = 4.1. Moreover, we use multiconformer continuum electrostatics to study the effect of chloride depletion on the redox potential associated with the S1/S2 and S2/S3 transitions.

  19. Pulse EPR, 55Mn-ENDOR and ELDOR-detected NMR of the S2-state of the oxygen evolving complex in photosystem II.

    PubMed

    Kulik, Leonid; Epel, Boris; Messinger, Johannes; Lubitz, Wolfgang

    2005-06-01

    Pulse EPR, 55Mn-ENDOR and ELDOR-detected NMR experiments were performed on the S2-state of the oxygen-evolving complex from spinach Photosystem II. The novel technique of random acquisition in ENDOR was used to suppress heating artefacts. Our data unambiguously shows that four Mn ions have significant hyperfine coupling constants. Numerical simulation of the 55Mn-ENDOR spectrum allowed the determination of the principal values of the hyperfine interaction tensors for all four Mn ions of the oxygen-evolving complex. The results of our 55Mn-ENDOR experiments are in good agreement with previously published data [Peloquin JM et al. (2000) J Am Chem Soc 122: 10926-10942]. For the first time ELDOR-detected NMR was applied to the S2-state and revealed a broad peak that can be simulated numerically with the same parameters that were used for the simulation of the 55Mn-ENDOR spectrum. This provides strong independent support for the assigned hyperfine parameters.

  20. Conversion of photosystem II dimer to monomers during photoinhibition is tightly coupled with decrease in oxygen-evolving activity in the diatom Chaetoceros gracilis.

    PubMed

    Nagao, Ryo; Tomo, Tatsuya; Narikawa, Rei; Enami, Isao; Ikeuchi, Masahiko

    2016-12-01

    The rapid turnover of photosystem II (PSII) in diatoms is thought to be at an exceptionally high rate compared with other oxyphototrophs; however, its molecular mechanisms are largely unknown. In this study, we examined the photodamage and repair processes of PSII in the marine centric diatom Chaetoceros gracilis incubated at 30 or 300 μmol photons m(-2) s(-1) in the presence of a de novo protein-synthesis inhibitor. When de novo protein synthesis was blocked by chloramphenicol (Cm), oxygen-evolving activity gradually decreased even at 30 μmol photons m(-2) s(-1) and could not be detected at 12 h. PSII inactivation was enhanced by higher illumination. Using Cm-treated cells, the conversion of PSII dimer to monomers was observed by blue native PAGE. The rate of PSII monomerization was very similar to that of the decrease in oxygen-evolving activity under both light conditions. Immunological detection of D1 protein in the Cm-treated cells showed that the rate of D1 degradation was slower than that of the former two events, although it was more rapid than that observed in other oxyphototrophs. Thus, the three accelerated events, especially PSII monomerization, appear to cause the unusually high rate of PSII turnover in diatoms.

  1. Reactive Pendant Mn═O in a Synthetic Structural Model of a Proposed S4 State in the Photosynthetic Oxygen Evolving Complex.

    PubMed

    Vaddypally, Shivaiah; Kondaveeti, Sandeep K; Karki, Santosh; Van Vliet, Megan M; Levis, Robert J; Zdilla, Michael J

    2017-03-24

    The molecular mechanism of the Oxygen Evolving Center of photosystem II has been under debate for decades. One frequently cited proposal is the nucleophilic attack by water hydroxide on a pendant Mn═O moiety, though no chemical example of this reactivity at a manganese cubane cluster has been reported. We describe here the preparation, characterization, and a reactivity study of a synthetic manganese cubane cluster with a pendant manganese-oxo moiety. Reaction of this cluster with alkenes results in oxygen and hydrogen atom transfer reactions to form alcohol- and ketone-based oxygen-containing products. Nitrene transfer from core imides is negligible. The inorganic product is a cluster identical to the precursor, but with the pendant Mn═O moiety replaced by a hydrogen abstracted from the organic substrate, and is isolated in quantitative yield. (18)O and (2)H isotopic labeling studies confirm the transfer of atoms between the cluster and the organic substrate. The results suggest that the core cubane structure of this model compound remains intact, and that the pendant Mn═O moiety is preferentially reactive.

  2. Calcium EXAFS establishes the Mn-Ca cluster in the oxygen-evolving complex of photosystem II.

    PubMed

    Cinco, Roehl M; McFarlane Holman, Karen L; Robblee, John H; Yano, Junko; Pizarro, Shelly A; Bellacchio, Emanuele; Sauer, Kenneth; Yachandra, Vittal K

    2002-10-29

    The proximity of Ca to the Mn cluster of the photosynthetic water-oxidation complex is demonstrated by X-ray absorption spectroscopy. We have collected EXAFS data at the Ca K-edge using active PS II membrane samples that contain approximately 2 Ca per 4 Mn. These samples are much less perturbed than previously investigated Sr-substituted samples, which were prepared after Ca depletion. The new Ca EXAFS clearly shows backscattering from Mn at 3.4 A, a distance that agrees with that surmised from previously recorded Mn EXAFS. This result is also consistent with earlier related experiments at the Sr K-edge, using samples that contained functional Sr, that show Mn is approximately 3.5 A distant from Sr. The totality of the evidence clearly advances the notion that the catalytic center of oxygen evolution is a Mn-Ca heteronuclear cluster.

  3. Calcium EXAFS establishes the Mn-Ca cluster in the oxygen-evolving complex of Photosystem II

    SciTech Connect

    Cinco, Roehl M.; McFarlane Holman, Karen L.; Robblee, John H.; Yano, Junko; Pizarro, Shelly A.; Bellacchio, Emanuele; Sauer, Kenneth; Yachandra, Vittal K.

    2002-08-02

    The proximity of Ca to the Mn cluster of the photosynthetic water-oxidation complex is demonstrated by X-ray absorption spectroscopy. We have collected EXAFS data at the Ca K-edge using active PS II membrane samples that contain approximately 2 Ca per 4 Mn. These samples are much less perturbed than previously investigated Sr-substituted samples, which were prepared subsequent to Ca depletion. The new Ca EXAFS clearly shows backscattering from Mn at 3.4 angstroms, a distance that agrees with that surmised from previously recorded Mn EXAFS. This result is also consistent with earlier related experiments at the Sr K-edge, using samples that contained functional Sr, that show Mn is {approx}; 3.5 angstroms distant from Sr. The totality of the evidence clearly advances the notion that the catalytic center of oxygen evolution is a Mn-Ca heteronuclear cluster.

  4. Structure of the catalytic, inorganic core of oxygen-evolving photosystem II at 1.9 Å resolution.

    PubMed

    Kawakami, Keisuke; Umena, Yasufumi; Kamiya, Nobuo; Shen, Jian-Ren

    2011-01-01

    The catalytic center for photosynthetic water-splitting consists of 4 Mn atoms and 1 Ca atom and is located near the lumenal surface of photosystem II. So far the structure of the Mn(4)Ca-cluster has been studied by a variety of techniques including X-ray spectroscopy and diffraction, and various structural models have been proposed. However, its exact structure is still unknown due to the limited resolution of crystal structures of PSII achieved so far, as well as possible radiation damages that might have occurred. Very recently, we have succeeded in solving the structure of photosystem II at 1.9 Å, which yielded a detailed picture of the Mn(4)CaO(5)-cluster for the first time. In the high resolution structure, the Mn(4)CaO(5)-cluster is arranged in a distorted chair form, with a cubane-like structure formed by 3 Mn and 1 Ca, 4 oxygen atoms as the distorted base of the chair, and 1 Mn and 1 oxygen atom outside of the cubane as the back of the chair. In addition, four water molecules were associated with the cluster, among which, two are associated with the terminal Mn atom and two are associated with the Ca atom. Some of these water molecules may therefore serve as the substrates for water-splitting. The high resolution structure of the catalytic center provided a solid basis for elucidation of the mechanism of photosynthetic water splitting. We review here the structural features of the Mn(4)CaO(5)-cluster analyzed at 1.9 Å resolution, and compare them with the structures reported previously.

  5. Ammonia binding to the oxygen-evolving complex of photosystem II identifies the solvent-exchangeable oxygen bridge (μ-oxo) of the manganese tetramer

    PubMed Central

    Pérez Navarro, Montserrat; Ames, William M.; Nilsson, Håkan; Lohmiller, Thomas; Pantazis, Dimitrios A.; Rapatskiy, Leonid; Nowaczyk, Marc M.; Neese, Frank; Boussac, Alain; Messinger, Johannes; Lubitz, Wolfgang; Cox, Nicholas

    2013-01-01

    The assignment of the two substrate water sites of the tetra-manganese penta-oxygen calcium (Mn4O5Ca) cluster of photosystem II is essential for the elucidation of the mechanism of biological O-O bond formation and the subsequent design of bio-inspired water-splitting catalysts. We recently demonstrated using pulsed EPR spectroscopy that one of the five oxygen bridges (μ-oxo) exchanges unusually rapidly with bulk water and is thus a likely candidate for one of the substrates. Ammonia, a water analog, was previously shown to bind to the Mn4O5Ca cluster, potentially displacing a water/substrate ligand [Britt RD, et al. (1989) J Am Chem Soc 111(10):3522–3532]. Here we show by a combination of EPR and time-resolved membrane inlet mass spectrometry that the binding of ammonia perturbs the exchangeable μ-oxo bridge without drastically altering the binding/exchange kinetics of the two substrates. In combination with broken-symmetry density functional theory, our results show that (i) the exchangable μ-oxo bridge is O5 {using the labeling of the current crystal structure [Umena Y, et al. (2011) Nature 473(7345):55–60]}; (ii) ammonia displaces a water ligand to the outer manganese (MnA4-W1); and (iii) as W1 is trans to O5, ammonia binding elongates the MnA4-O5 bond, leading to the perturbation of the μ-oxo bridge resonance and to a small change in the water exchange rates. These experimental results support O-O bond formation between O5 and possibly an oxyl radical as proposed by Siegbahn and exclude W1 as the second substrate water. PMID:24023065

  6. Ammonia binding to the oxygen-evolving complex of photosystem II identifies the solvent-exchangeable oxygen bridge (μ-oxo) of the manganese tetramer.

    PubMed

    Pérez Navarro, Montserrat; Ames, William M; Nilsson, Håkan; Lohmiller, Thomas; Pantazis, Dimitrios A; Rapatskiy, Leonid; Nowaczyk, Marc M; Neese, Frank; Boussac, Alain; Messinger, Johannes; Lubitz, Wolfgang; Cox, Nicholas

    2013-09-24

    The assignment of the two substrate water sites of the tetra-manganese penta-oxygen calcium (Mn4O5Ca) cluster of photosystem II is essential for the elucidation of the mechanism of biological O-O bond formation and the subsequent design of bio-inspired water-splitting catalysts. We recently demonstrated using pulsed EPR spectroscopy that one of the five oxygen bridges (μ-oxo) exchanges unusually rapidly with bulk water and is thus a likely candidate for one of the substrates. Ammonia, a water analog, was previously shown to bind to the Mn4O5Ca cluster, potentially displacing a water/substrate ligand [Britt RD, et al. (1989) J Am Chem Soc 111(10):3522-3532]. Here we show by a combination of EPR and time-resolved membrane inlet mass spectrometry that the binding of ammonia perturbs the exchangeable μ-oxo bridge without drastically altering the binding/exchange kinetics of the two substrates. In combination with broken-symmetry density functional theory, our results show that (i) the exchangable μ-oxo bridge is O5 {using the labeling of the current crystal structure [Umena Y, et al. (2011) Nature 473(7345):55-60]}; (ii) ammonia displaces a water ligand to the outer manganese (MnA4-W1); and (iii) as W1 is trans to O5, ammonia binding elongates the MnA4-O5 bond, leading to the perturbation of the μ-oxo bridge resonance and to a small change in the water exchange rates. These experimental results support O-O bond formation between O5 and possibly an oxyl radical as proposed by Siegbahn and exclude W1 as the second substrate water.

  7. Biosynthetic exchange of bromide for chloride and strontium for calcium in the photosystem II oxygen-evolving enzymes.

    PubMed

    Ishida, Naoko; Sugiura, Miwa; Rappaport, Fabrice; Lai, Thanh-Lan; Rutherford, A William; Boussac, Alain

    2008-05-09

    The active site for water oxidation in photosystem II goes through five sequential oxidation states (S(0) to S(4)) before O(2) is evolved. It consists of a Mn(4)Ca cluster close to a redox-active tyrosine residue (Tyr(Z)). Cl(-) is also required for enzyme activity. To study the role of Ca(2+) and Cl(-) in PSII, these ions were biosynthetically substituted by Sr(2+) and Br(-), respectively, in the thermophilic cyanobacterium Thermosynechococcus elongatus. Irrespective of the combination of the non-native ions used (Ca/Br, Sr/Cl, Sr/Br), the enzyme could be isolated in a state that was fully intact but kinetically limited. The electron transfer steps affected by the exchanges were identified and then investigated by using time-resolved UV-visible absorption spectroscopy, time-resolved O(2) polarography, and thermoluminescence spectroscopy. The effect of the Ca(2+)/Sr(2+) and Cl(-)/Br(-) exchanges was additive, and the magnitude of the effect varied in the following order: Ca/Cl < Ca/Br < Sr/Cl < Sr/Br. In all cases, the rate of O(2) release was similar to that of the S(3)Tyr(Z)(.) to S(0)Tyr(Z) transition, with the slowest kinetics (i.e. the Sr/Br enzyme) being approximately 6-7 slower than in the native Ca/Cl enzyme. This slowdown in the kinetics was reflected in a decrease in the free energy level of the S(3) state as manifest by thermoluminescence. These observations indicate that Cl(-) is involved in the water oxidation mechanism. The possibility that Cl(-) is close to the active site is discussed in terms of recent structural models.

  8. Correlation between pH dependence of O2 evolution and sensitivity of Mn cations in the oxygen-evolving complex to exogenous reductants.

    PubMed

    Semin, Boris K; Davletshina, Lira N; Rubin, Andrei B

    2015-08-01

    Effects of pH, Ca(2+), and Cl(-) ions on the extraction of Mn cations from oxygen-evolving complex (OEC) in Ca-depleted photosystem II (PSII(-Ca)) by exogenous reductants hydroquinone (H2Q) and H2O2 were studied. Two of 4 Mn cations are released by H2Q and H2O2 at pHs 5.7, 6.5, and 7.5, and their extraction does not depend on the presence of Ca(2+) and Cl(-) ions. One of Mn cations ("resistant" Mn cation) cannot be extracted by H2Q and H2O2 at any pH. Extraction of 4th Mn ion ("flexible" Mn cation) is sensitive to pH, Ca(2+), and Cl(-). This Mn cation is released by reductants at pH 6.5 but not at pHs 5.7 and 7.5. A pH dependence curve of the oxygen-evolving activity in PSII(-Ca) membranes (in the presence of exogenous Ca(2+)) has a bell-shaped form with the maximum at pH 6.5. Thus, the increase in the resistance of flexible Mn cation in OEC to the action of reductants at acidic and alkaline pHs coincides with the decrease in oxygen evolution activity at these pHs. Exogenous Ca(2+) protects the extraction of flexible Mn cation at pH 6.5. High concentration of Cl(-) anions (100 mM) shifts the pH optimum of oxygen evolution to alkaline region (around pH 7.5), while the pH of flexible Mn extraction is also shifted to alkaline pH. This result suggests that flexible Mn cation plays a key role in the water-splitting reaction. The obtained results also demonstrate that only one Mn cation in Mn4 cluster is under strong control of calcium. The change in the flexible Mn cation resistance to exogenous reductants in the presence of Ca(2+) suggests that Ca(2+) can control the redox potential of this cation.

  9. QM/MM study of the S2 to S3 transition reaction in the oxygen-evolving complex of photosystem II

    NASA Astrophysics Data System (ADS)

    Shoji, Mitsuo; Isobe, Hiroshi; Yamaguchi, Kizashi

    2015-09-01

    Catalytic reactions of the proton and electron transfers occurring at the oxygen-evolving complex (OEC) of photosystem II during the S2-S3 transition were investigated by the quantum mechanics/molecular mechanics (QM/MM) methodology. Two favorable reaction pathways were elucidated. Both reactions start by moving the Ca-bound water (W3) to the vacant Mn(III) coordination at the left-opened (L) or right-opened (R) form. The former reaction pathway, in which W3 coordinates to the Mn4 at the S2-L form, has lower activation barriers than the latter. Thus, easier proton transfers from W3 to the Tyr161 phenol anion can be performed.

  10. Improving the efficiency of dissolved oxygen control using an on-line control system based on a genetic algorithm evolving FWNN software sensor.

    PubMed

    Ruan, Jujun; Zhang, Chao; Li, Ya; Li, Peiyi; Yang, Zaizhi; Chen, Xiaohong; Huang, Mingzhi; Zhang, Tao

    2017-02-01

    This work proposes an on-line hybrid intelligent control system based on a genetic algorithm (GA) evolving fuzzy wavelet neural network software sensor to control dissolved oxygen (DO) in an anaerobic/anoxic/oxic process for treating papermaking wastewater. With the self-learning and memory abilities of neural network, handling the uncertainty capacity of fuzzy logic, analyzing local detail superiority of wavelet transform and global search of GA, this proposed control system can extract the dynamic behavior and complex interrelationships between various operation variables. The results indicate that the reasonable forecasting and control performances were achieved with optimal DO, and the effluent quality was stable at and below the desired values in real time. Our proposed hybrid approach proved to be a robust and effective DO control tool, attaining not only adequate effluent quality but also minimizing the demand for energy, and is easily integrated into a global monitoring system for purposes of cost management.

  11. The Mn-binding proteins of the photosystem II oxygen-evolving complex are decreased in date palms affected by brittle leaf disease.

    PubMed

    Marqués, Jorge; Duran-Vila, Nuria; Daròs, José-Antonio

    2011-04-01

    Brittle leaf disease or maladie des feuilles cassantes (MFC) is a disorder affecting date palms (Phoenix dactylifera L.) which after a long declining process eventually leads to the death of the plant. No causal agent for the disease has been found so far but leaflets of affected palms are Mn-deficient despite the existence of adequate exchangeable Mn in the soils in which affected palms grow. The disease is specifically associated with an increase in a series of chloroplastic RNAs. A proteomic analysis of leaflets of affected and unaffected date palms showed differences in quantities of several proteins. Mn-binding PSBO and PSBP proteins, components of the oxygen-evolving complex of photosystem II, were decreased in affected tissue, reinforcing the relation between MFC and Mn deficiency. The quantities of other proteins were increased by disease suggesting a response to stress.

  12. Full geometry optimizations of the CaMn4O4 model cluster for the oxygen evolving complex of photosystem II

    NASA Astrophysics Data System (ADS)

    Shoji, Mitsuo; Isobe, Hiroshi; Nakajima, Takahito; Yamaguchi, Kizashi

    2015-11-01

    Full geometry optimizations of ([CaMn4O4(CH3COO)8(py)(CH3COOH)2], (py: pyridine) (1)) were performed at the UB3LYP theoretical level. 1 is a theoretical model for the synthetic model ([CaMn4O4(ButCOO)8(py)(ButCOOH)2], (But: t-butyl) (2)) which closely mimicks the native oxygen evolving complex (OEC) in photosystem II. It was shown that the X-ray structure of 2 was well reproduced by 1 in the (Mn1(III), Mn2(IV), Mn3(IV), Mn4(III)) valence state with the unprotonated O5 (O5 = O2-), and two different valence states were obtained in the one-electron oxidized state. Importance of the Jahn-Teller effect of the Mn(III) site for the structural deformations was presented.

  13. High-spin Mn-oxo complexes and their relevance to the oxygen-evolving complex within photosystem II.

    PubMed

    Gupta, Rupal; Taguchi, Taketo; Lassalle-Kaiser, Benedikt; Bominaar, Emile L; Yano, Junko; Hendrich, Michael P; Borovik, A S

    2015-04-28

    The structural and electronic properties of a series of manganese complexes with terminal oxido ligands are described. The complexes span three different oxidation states at the manganese center (III-V), have similar molecular structures, and contain intramolecular hydrogen-bonding networks surrounding the Mn-oxo unit. Structural studies using X-ray absorption methods indicated that each complex is mononuclear and that oxidation occurs at the manganese centers, which is also supported by electron paramagnetic resonance (EPR) studies. This gives a high-spin Mn(V)-oxo complex and not a Mn(IV)-oxy radical as the most oxidized species. In addition, the EPR findings demonstrated that the Fermi contact term could experimentally substantiate the oxidation states at the manganese centers and the covalency in the metal-ligand bonding. Oxygen-17-labeled samples were used to determine spin density within the Mn-oxo unit, with the greatest delocalization occurring within the Mn(V)-oxo species (0.45 spins on the oxido ligand). The experimental results coupled with density functional theory studies show a large amount of covalency within the Mn-oxo bonds. Finally, these results are examined within the context of possible mechanisms associated with photosynthetic water oxidation; specifically, the possible identity of the proposed high valent Mn-oxo species that is postulated to form during turnover is discussed.

  14. Cyclic axial-torsional deformation behavior of a cobalt-base superalloy

    NASA Technical Reports Server (NTRS)

    Bonacuse, Peter J.; Kalluri, Sreeramesh

    1992-01-01

    Multiaxial loading, especially at elevated temperature, can cause the inelastic response of a material to differ significantly from that predicted by simple flow rules, i.e., von Mises or Tresca. To quantify some of these differences, the cyclic high-temperature, deformation behavior of a wrought cobalt-based superalloy, Haynes 188, is investigated under combined axial and torsional loads. Haynes 188 is currently used in many aerospace gas turbine and rocket engine applications, e.g., the combustor liner for the T800 turboshaft engine for the RAH-66 Comanche helicopter and the liquid oxygen posts in the main injector of the space shuttle main engine. The deformation behavior of this material is assessed through the examination of hysteresis loops generated from a biaxial fatigue test program. A high-temperature axial, torsional, and combined axial-torsional fatigue data base has been generated on Haynes 188 at 760 C. Cyclic loading tests have been conducted on uniform gauge section tubular specimens in a servohydraulic axial-torsional test rig. Test control and data acquisition were accomplished with a minicomputer. In this paper, the cyclic hardening characteristics and typical hysteresis loops in the axial stress versus axial strain, shear stress versus engineering shear strain, axial strain versus engineering shear strain, and axial stress versus shear stress spaces are presented for cyclic, in-phase and out-of-phase, axial torsional tests. For in-phase tests three different values of the proportionality constant, lambda (ratio of engineering shear strain amplitude to axial strain amplitude), are examined, viz., 0.86, 1.73, and 3.46. In the out-of-phase tests, three different values of the phase angle, phi (between the axial and engineering shear strain waveforms), are studied, viz., 30, 60, and 90 deg with lambda = 1.73. The cyclic hardening behaviors of all the tests conducted on Haynes 188 at 760 C are evaluated using the von Mises equivalent stress

  15. Artificial model of photosynthetic oxygen evolving complex: catalytic O2 production from water by di-mu-oxo manganese dimers supported by clay compounds.

    PubMed

    Yagi, Masayuki; Narita, Komei; Maruyama, Syou; Sone, Koji; Kuwabara, Takayuki; Shimizu, Ken-ichi

    2007-06-01

    Adsorption of [(OH(2))(terpy)Mn(mu-O)(2)Mn(terpy)(OH(2))](3+) (terpy=2,2':6',2"-terpyridine) (1) onto montmorillonite K10 (MK10) yielded catalytic dioxygen (O(2)) evolution from water using a Ce(IV) oxidant. The Mn K-edge X-ray absorption near edge structure (XANES) of the 1/MK10 hybrid suggested that the oxidation state of the di-mu-oxo Mn(2) core could be Mn(III)-Mn(IV). However the pre-edge peak in the XANES spectrum of 1 adsorbed on MK10 is different from the neat 1 powder. The kinetic analysis of O(2) evolution showed that the catalysis requires cooperation of two equivalents of 1 adsorbed on MK10. The reaction of the [(bpy)(2)Mn(mu-O)(2)Mn(bpy)(2)](3+) (bpy=2,2'-bipyridine) (2)/MK10 hybrid with a Ce(IV) oxidant evolved O(2). However, the turnover number value was less than unity for 2/MK10, showing that 2 adsorbed on MK10 does not work as a catalyst. The terminal water ligands could be an important for the catalysis by adsorbed 1. The mechanism of O(2) production by photosynthetic oxygen evolving complex is discussed based on catalytic O(2) evolution by 1 adsorbed on MK10.

  16. Tyrosyl radicals in dehaloperoxidase: how nature deals with evolving an oxygen-binding globin to a biologically relevant peroxidase.

    PubMed

    Dumarieh, Rania; D'Antonio, Jennifer; Deliz-Liang, Alexandria; Smirnova, Tatyana; Svistunenko, Dimitri A; Ghiladi, Reza A

    2013-11-15

    Dehaloperoxidase (DHP) from Amphitrite ornata, having been shown to catalyze the hydrogen peroxide-dependent oxidation of trihalophenols to dihaloquinones, is the first oxygen binding globin that possesses a biologically relevant peroxidase activity. The catalytically competent species in DHP appears to be Compound ES, a reactive intermediate that contains both a ferryl heme and a tyrosyl radical. By simulating the EPR spectra of DHP activated by H2O2, Thompson et al. (Thompson, M. K., Franzen, S., Ghiladi, R. A., Reeder, B. J., and Svistunenko, D. A. (2010) J. Am. Chem. Soc. 132, 17501-17510) proposed that two different radicals, depending on the pH, are formed, one located on either Tyr-34 or Tyr-28 and the other on Tyr-38. To provide additional support for these simulation-based assignments and to deduce the role(s) that tyrosyl radicals play in DHP, stopped-flow UV-visible and rapid-freeze-quench EPR spectroscopic methods were employed to study radical formation in DHP when three tyrosine residues, Tyr-28, Tyr-34, and Tyr-38, were replaced either individually or in combination with phenylalanines. The results indicate that radicals form on all three tyrosines in DHP. Evidence for the formation of DHP Compound I in several tyrosine mutants was obtained. Variants that formed Compound I showed an increase in the catalytic rate for substrate oxidation but also an increase in heme bleaching, suggesting that the tyrosines are necessary for protecting the enzyme from oxidizing itself. This protective role of tyrosines is likely an evolutionary adaptation allowing DHP to avoid self-inflicted damage in the oxidative environment.

  17. The Mass Loss Return from Evolved Stars to the Large Magellanic Cloud: Oxygen-Rich Asymptotic Giant Branch Stars

    NASA Astrophysics Data System (ADS)

    Sargent, Benjamin A.; Srinivasan, S.; Meixner, M.; Kemper, F.; Tielens, X.; Speck, A.; Matsuura, M.; Bernard, J.; Hony, S.; Gordon, K.; Indebetouw, R.; Marengo, M.; Sloan, G.; Woods, P.; Vijh, U. P.

    2010-01-01

    The Spitzer Space Telescope Legacy program Surveying the Agents of a Galaxy's Evolution (SAGE; PI: M. Meixner) has observed over 6 million stars in the Large Magellanic Cloud with both the Infrared Array Camera (IRAC) and Multiband Imaging Photometer for Spitzer (MIPS) instruments to explore the life-cycle of matter in a galaxy. Over 17000 of these stars were found to be candidate Oxygen-rich Asymptotic Giant Branch (O-rich AGB) stars. We combine photometry from Spitzer and elsewhere in constructing Spectral Energy Distributions (SEDs) for the SAGE candidate O-rich AGB stars. These SEDs are then modeled using the radiative transfer program 2Dust, with the goal of determining the O-rich AGB star candidates' mass-loss rates. Spitzer Infrared Spectrograph (IRS) spectra are available as part of the Spitzer Legacy program SAGE-Spectroscopy (PI: F. Kemper) for a number of SAGE O-rich AGB star candidates; for two of these, IRS spectra in addition to the photometry are modeled with 2Dust to determine reasonable dust grain parameters to use for the candidate O-rich AGB stars in the rest of the SAGE sample. Using these dust grain properties, a grid of radiative transfer models was computed using 2Dust, varying stellar effective temperature and luminosity, dust shell inner radius, and dust shell optical depth at 10 microns wavelength. Synthetic photometry from models and observed photometry are plotted on color-color and color-magnitude diagrams, and model SEDs are directly compared to observed SEDs. The mass-loss rates from all O-rich AGB stars, especially those with the highest mass-loss rates, in the LMC are estimated and compared to its mass budget. Dust composition is also discussed in light of the results of the model grids.

  18. Two tetranuclear Mn-complexes as biomimetic models of the oxygen evolving complex in Photosystem II. A synthesis, characterisation and reactivity study.

    PubMed

    Berggren, Gustav; Thapper, Anders; Huang, Ping; Kurz, Philipp; Eriksson, Lars; Styring, Stenbjörn; Anderlund, Magnus F

    2009-12-07

    In this work we report the preparation of two metallamacrocyclic tetranuclear manganese(II) complexes, [L1(4)Mn4](ClO4)4 and [L2(4)Mn4](ClO4)4 where L1 and L2 are the anions of the heptadentate ligands 2-((2-(bis(pyridin-2-ylmethyl)amino)ethyl)(methyl)amino)acetic acid and 2-(benzyl(2-(bis(pyridin-2-ylmethyl)amino)ethyl)amino)acetic acid), respectively. The complexes have been fully characterized by ESI-MS, elemental analysis, single-crystal X-ray diffraction, magnetic susceptibility, and EPR spectroscopy. Electrochemical reactions as well as reactions with different chemical redox reagents have been performed and a reversible two electron oxidation per manganese ion has been identified. The reaction of [L1(4)Mn4](ClO4)4 with oxone or cerium(IV) results in the evolution of oxygen which makes this system interesting for future studies in the search for a functional mimic of the oxygen evolving complex in Photosystem II.

  19. The amino-terminal conserved domain of 4-hydroxy-3-methylbut-2-enyl diphosphate reductase is critical for its function in oxygen-evolving photosynthetic organisms

    PubMed Central

    Hsieh, Wei-Yu; Hsieh, Ming-Hsiun

    2015-01-01

    4-hydroxy-3-methylbut-2-enyl diphosphate reductase (HDR), also known as isoprenoid synthesis H (IspH) or lysis-tolerant B (LytB), catalyzes the last step of the methylerythritol phosphate pathway to synthesize isopentenyl diphosphate and dimethylallyl diphosphate. The structure and reaction mechanism of IspH have been actively investigated in Escherichia coli but little is known in plants. Compared with the bacterial IspH, cyanobacterial and plant HDRs all contain an extra N-terminal conserved domain (NCD) that is essential for their function. Tyr72 in the NCD and several plant-specific residues around the central active site are critical for Arabidopsis HDR function. These results suggest that the structure and reaction mechanism of HDR/IspH may be different between plants and bacteria. The E. coli IspH is an iron-sulfur protein that is sensitive to oxygen. It is possible that the cyanobacterial HDR may independently evolve from the common ancestor of prokaryotes to obtain the NCD, which may protect the enzyme from high concentration of oxygen during photosynthesis. PMID:25723575

  20. Thermal Decomposition of Calcium Perchlorate/Iron-Mineral Mixtures: Implications of the Evolved Oxygen from the Rocknest Eolian Deposit in Gale Crater, Mars

    NASA Technical Reports Server (NTRS)

    Bruck, A. M.; Sutter, B.; Ming, D. W.; Mahaffy, P.

    2014-01-01

    A major oxygen release between 300 and 500 C was detected by the Mars Curiosity Rover Sample Analysis at Mars (SAM) instrument at the Rocknest eolian deposit. Thermal decomposition of perchlorate (ClO4-) salts in the Rocknest samples are a possible explanation for this evolved oxygen release. Releative to Na-, K-, Mg-, and Fe-perchlorate, the thermal decomposition of Ca-perchlorate in laboratory experiments released O2 in the temperature range (400-500degC) closest to the O2 release temperatures observed for the Rocknest material. Furthermore, calcium perchlorate could have been the source of Cl in the chlorinated-hydrocarbons species that were detected by SAM. Different components in the Martian soil could affect the decomposition temperature of calcium per-chlorate or another oxychlorine species. This interaction of the two components in the soil could result in O2 release temperatures consistent with those detected by SAM in the Rocknest materials. The decomposition temperatures of various alkali metal perchlorates are known to decrease in the presence of a catalyst. The objective of this work is to investigate catalytic interactions on calcium perchlorate from various iron-bearing minerals known to be present in the Rocknest material

  1. Characterization of the Sr(2+)- and Cd(2+)-Substituted Oxygen-Evolving Complex of Photosystem II by Quantum Mechanics/Molecular Mechanics Calculations.

    PubMed

    Pitari, Fabio; Bovi, Daniele; Narzi, Daniele; Guidoni, Leonardo

    2015-09-29

    The Mn4CaO5 cluster in the oxygen-evolving complex is the catalytic core of the Photosystem II (PSII) enzyme, responsible for the water splitting reaction in oxygenic photosynthesis. The role of the redox-inactive ion in the cluster has not yet been fully clarified, although several experimental data are available on Ca2+-depleted and Ca2+-substituted PSII complexes, indicating Sr2+-substituted PSII as the only modification that preserves oxygen evolution. In this work, we investigated the structural and electronic properties of the PSII catalytic core with Ca2+ replaced with Sr2+ and Cd2+ in the S2 state of the Kok−Joliot cycle by means of density functional theory and ab initio molecular dynamics based on a quantum mechanics/ molecular mechanics approach. Our calculations do not reveal significant differences between the substituted and wild-type systems in terms of geometries, thermodynamics, and kinetics of two previously identified intermediate states along the S2 to S3 transition, namely, the open cubane S2 A and closed cubane S2 B conformers. Conversely, our calculations show different pKa values for the water molecule bound to the three investigated heterocations. Specifically, for Cd-substituted PSII, the pKa value is 5.3 units smaller than the respective value in wild type Ca-PSII. On the basis of our results, we conclude that, assuming all the cations sharing the same binding site, the induced difference in the acidity of the binding pocket might influence the hydrogen bonding network and the redox levels to prevent the further evolution of the cycle toward the S3 state.

  2. Axial and torsional fatigue behavior of a cobalt-base alloy

    NASA Technical Reports Server (NTRS)

    Bonacuse, Peter J.; Kalluri, Sreeramesh

    1991-01-01

    In order to develop elevated temperature multiaxial fatigue life prediction models for the wrought cobalt-base alloy, Haynes 188, a multiaxial fatigue data base is required. To satisfy this need, an elevated temperature experimental program on Haynes 188 consisting of axial, torsional, inphase and out of phase axial-torsional fatigue experiments was designed. Elevated temperature axial and torsional fatigue experiments were conducted under strain control on thin wall tubular specimens of Haynes 188 in air. Test results are given.

  3. Development of wear-resistant coatings for cobalt-base alloys

    SciTech Connect

    Cockeram, B.V.

    1999-10-22

    The level of nuclear plant radiation exposure due to activated cobalt wear debris could potentially be reduced by covering the cobalt-base materials with a wear resistant coating. Laboratory pin-on-disc and rolling contact wear tests were used to evaluate the wear performance of several coatings. Based on the results of these tests, multilayer Cr-nitride coatings and ion nitriding are the most promising approaches.

  4. Development of wear-resistant coatings for cobalt-base alloys

    SciTech Connect

    Cockeram, B.V.

    1999-03-01

    The costs and hazards resulting from nuclear plant radiation exposure with activated cobalt wear debris could potentially be reduced by covering the cobalt-base materials with a wear resistant coating. However, the hardnesses of many cobalt-base wear alloys are significantly lower than conventional PVD hard coatings, and mechanical support of the hard coating is a concern. Four approaches have been taken to minimize the hardness differences between the substrate and PVD hard coating: (1) use a thin Cr-nitride hard coating with layers that are graded with respect to hardness, (2) use a thicker, multilayered coating (Cr-nitride or Zr-nitride) with graded layers, (3) use nitriding to harden the alloy subsurface followed by application of a multilayered coating of Cr-nitride, and (4) use of nitriding alone. Since little work has been done on application of PVD hard coatings to cobalt-base alloys, some details on process development and characterization of the coatings is presented. Scratch testing was used to evaluate the adhesion of the different coatings. A bench-top rolling contact test was used to evaluate the wear resistance of the coatings. The test results are discussed, and the more desirable coating approaches are identified.

  5. Facile electrospinning preparation of phosphorus and nitrogen dual-doped cobalt-based carbon nanofibers as bifunctional electrocatalyst

    NASA Astrophysics Data System (ADS)

    Wang, Zhuang; Zuo, Pengjian; Fan, Liquan; Han, Jianan; Xiong, Yueping; Yin, Geping

    2016-04-01

    A novel electrochemical catalyst of phosphorus and nitrogen dual-doped cobalt-based carbon nanofibers (Cosbnd Nsbnd P-CNFs) is prepared by a facile and cost-effective electrospinning technique. Excellent features of the porous carbon nanofibers with large amounts of Co atoms, N/P-doping effect, abundant pyridinic-N and Cosbnd Nx clusters as catalytic active sites, and the advantages of the structure and composition result in a high catalytic efficiency. In alkaline or acidic media, Cosbnd Nsbnd P-CNFs exhibits remarkable electrocatalytic activities and kinetics for oxygen reduction reaction (ORR), superior methanol tolerance and stability, and a similar four-electron pathway. In addition, Cosbnd Nsbnd P-CNFs also shows excellent performance for hydrogen evolution reaction (HER), offering a low onset potential of -0.216 V and a stable current density of 10 mA cm-2 at potential of -0.248 V. The mechanism of ORR and HER catalytic active site arises from the doping of N/P atoms in the Co-based CNFs, which is responsible for the excellent electrocatalytic performance. Due to the excellent catalytic efficiencies, Cosbnd Nsbnd P-CNFs act as a promising catalyst material for fuel cells and water splitting technologies.

  6. Redox control and hydrogen bonding networks: proton-coupled electron transfer reactions and tyrosine Z in the photosynthetic oxygen-evolving complex.

    PubMed

    Keough, James M; Zuniga, Ashley N; Jenson, David L; Barry, Bridgette A

    2013-02-07

    In photosynthetic oxygen evolution, redox active tyrosine Z (YZ) plays an essential role in proton-coupled electron transfer (PCET) reactions. Four sequential photooxidation reactions are necessary to produce oxygen at a Mn(4)CaO(5) cluster. The sequentially oxidized states of this oxygen-evolving cluster (OEC) are called the S(n) states, where n refers to the number of oxidizing equivalents stored. The neutral radical, YZ•, is generated and then acts as an electron transfer intermediate during each S state transition. In the X-ray structure, YZ, Tyr161 of the D1 subunit, is involved in an extensive hydrogen bonding network, which includes calcium-bound water. In electron paramagnetic resonance experiments, we measured the YZ• recombination rate, in the presence of an intact Mn(4)CaO(5) cluster. We compared the S(0) and S(2) states, which differ in Mn oxidation state, and found a significant difference in the YZ• decay rate (t(1/2) = 3.3 ± 0.3 s in S(0); t(1/2) = 2.1 ± 0.3 s in S(2)) and in the solvent isotope effect (SIE) on the reaction (1.3 ± 0.3 in S(0); 2.1 ± 0.3 in S(2)). Although the YZ site is known to be solvent accessible, the recombination rate and SIE were pH independent in both S states. To define the origin of these effects, we measured the YZ• recombination rate in the presence of ammonia, which inhibits oxygen evolution and disrupts the hydrogen bond network. We report that ammonia dramatically slowed the YZ• recombination rate in the S(2) state but had a smaller effect in the S(0) state. In contrast, ammonia had no significant effect on YD•, the stable tyrosyl radical. Therefore, the alterations in YZ• decay, observed with S state advancement, are attributed to alterations in OEC hydrogen bonding and consequent differences in the YZ midpoint potential/pK(a). These changes may be caused by activation of metal-bound water molecules, which hydrogen bond to YZ. These observations document the importance of redox control in proton

  7. Effects of ammonia on the structure of the oxygen-evolving complex in photosystem II as revealed by light-induced FTIR difference spectroscopy.

    PubMed

    Hou, Li-Hsiu; Wu, Chia-Ming; Huang, Hsin-Ho; Chu, Hsiu-An

    2011-11-01

    NH(3) is a structural analogue of substrate H(2)O and an inhibitor to the water oxidation reaction in photosystem II. To test whether or not NH(3) is able to replace substrate water molecules on the oxygen-evolving complex in photosystem II, we studied the effects of NH(3) on the high-frequency region (3750-3550 cm(-1)) of the S(2)Q(A)(-)/S(1)Q(A) FTIR difference spectra (pH 7.5 at 250 K), where OH stretch modes of weak hydrogen-bonded active water molecules occur. Our results showed that NH(3) did not replace the active water molecule on the oxygen-evolving complex that gave rise to the S(1) mode at ~3586 cm(-1) and the S(2) mode at ~3613 cm(-1) in the S(2)Q(A)(-)/S(1)Q(A) FTIR difference spectrum of PSII. In addition, our mid-frequency FTIR results showed a clear difference between pH 6.5 and 7.5 on the concentration dependence of the NH(4)Cl-induced upshift of the S(2) state carboxylate mode at 1365 cm(-1) in the S(2)Q(A)(-)/S(1)Q(A) spectra of NH(4)Cl-treated PSII samples. Our results provided strong evidence that NH(3) induced this upshift in the spectra of NH(4)Cl-treated PSII samples at 250 K. Moreover, our low-frequency FTIR results showed that the Mn-O-Mn cluster vibrational mode at 606 cm(-1) in the S(2)Q(A)(-)/S(1)Q(A) spectrum of the NaCl control PSII sample was diminished in those samples treated with NH(4)Cl. Our results suggest that NH(3) induced a significant alteration on the core structure of the Mn(4)CaO(5) cluster in PSII. The implication of our findings on the structure of the NH(3)-binding site on the OEC in PSII will be discussed.

  8. An alternative method for calcium depletion of the oxygen evolving complex of photosystem II as revealed by the dark-stable multiline EPR signal.

    PubMed

    Haddy, Alice; Ore, Brandon M

    2010-05-11

    The dark-stable multiline EPR signal of photosystem II (PSII) is associated with a slow-decaying S(2) state that is due to Ca(2+) loss from the oxygen evolving complex. Formation of the signal was observed in intact PSII in the presence of 100-250 mM NaCl at pH 5.5. Both moderately high NaCl concentration and decreased pH were required for its appearance in intact PSII. It was estimated that only a portion of oxygen evolving complexes was responsible for the signal (about 20% in 250 mM NaCl), based on the loss of the normal S(2)-state multiline signal. The formation of the dark-stable multiline signal in intact PSII at pH 5.5 could be reversed by addition of 15 mM Ca(2+) in the presence of moderately high NaCl, confirming that it was the absence of Ca(2+) that led to its appearance. Formation of the dark-stable multiline signal in NaCl-washed PSII, which lacks the PsbP (23 kDa) and PsbQ (17 kDa) subunits, was observed in about 80% of the sample in the presence of 150 mM NaCl at pH 5.5, but some signal was also observed under normal buffer conditions. In both intact and NaCl-washed PSII, the S(2)Y(Z). signal, which is also characteristic of Ca(2+) depletion, appeared upon subsequent illumination. Formation of the dark-stable multiline signal took place in the absence of Ca(2+) chelator or polycarboxylic acids, indicating that the signal did not require their direct binding as has been proposed previously. The conditions used here were milder than those used to produce the signal in previous studies and included a preillumination protocol to maximize the dark-stable S(2) state. Based on these conditions, it is suggested that Ca(2+) release occurred through protonation of key residues that coordinate Ca(2+) at low pH, followed by displacement of Ca(2+) with Na(+) by mass action at the moderately high NaCl concentration.

  9. Strong Coupling between the Hydrogen Bonding Environment and Redox Chemistry during the S2 to S3 Transition in the Oxygen-Evolving Complex of Photosystem II.

    PubMed

    Isobe, Hiroshi; Shoji, Mitsuo; Shen, Jian-Ren; Yamaguchi, Kizashi

    2015-10-29

    We have studied the early phase of the S2 → S3 transition in the oxygen-evolving complex (OEC) of photosystem II using the hybrid density functional theory with a quantum mechanical model composed of 338-341 atoms. Special attention is given to the vital role of water molecules in the vicinity of the Mn4CaO5 core. Our results demonstrate how important the dynamic behavior of surrounding water molecules is in mediating critical chemical transformations such as binding and deprotonation of substrates and hydration of the catalytic site and identify a strong coupling of water-chain relocation near the redox-active tyrosine residue Tyr161 (TyrZ) with oxidation of the Mn4CaO5 cluster by TyrZ(•+). The oxidation reaction is further promoted when the catalytic site is more solvated by water. These results indicate the importance of surrounding water molecules in biological catalysts as they ultimately lead to effective catalytic function and/or favorable electron-transfer dynamics.

  10. Computational insights on crystal structures of the oxygen-evolving complex of photosystem II with either Ca(2+) or Ca(2+) substituted by Sr(2+).

    PubMed

    Vogt, Leslie; Ertem, Mehmed Z; Pal, Rhitankar; Brudvig, Gary W; Batista, Victor S

    2015-01-27

    The oxygen-evolving complex of photosystem II can function with either Ca(2+) or Sr(2+) as the heterocation, but the reason for different turnover rates remains unresolved despite reported X-ray crystal structures for both forms. Using quantum mechanics/molecular mechanics (QM/MM) calculations, we optimize structures with each cation in both the resting state (S1) and in a series of reduced states (S0, S-1, and S-2). Through comparison with experimental data, we determine that the X-ray crystal structures with either Ca(2+) or Sr(2+) are most consistent with the S-2 state (i.e., Mn4[III,III,III,II] with O4 and O5 protonated). As expected, the QM/MM models show that Ca(2+)/Sr(2+) substitution results in the elongation of the heterocation bonds and the displacement of terminal waters W3 and W4. The optimized structures also show that hydrogen-bonded W5 is displaced in all S states with Sr(2+) as the heterocation, suggesting that this water may play a critical role during water oxidation.

  11. Theoretical study on OH{sup −} site and electronic spin state of oxygen-evolving complex in photosystem II at the dark S{sub 1} state

    SciTech Connect

    Hatakeyama, Makoto; Ogata, Koji; Nakamura, Shinichiro; Uchida, Waka

    2013-12-10

    Possible protonation and electronic-spin states of oxygen-evolving complex (OEC) in photosystem II have been investigated by using QM(DFT-UB3LYP)/MM(Amber) calculation, in order to elucidate which OEC state satisfies the known experimental results at the dark stable state (S{sub 1}), i.e. OEC involves Mn{sub 4}(III{sub 2},IV{sub 4})-cluster and a S=0 state as the lowest energy electronic-spin state at S{sub 1}. The configuration of Mn oxidation numbers and the lowest energy spin state within the Mn{sub 4}-cluster depend on the protonation state of one oxo-anion bridging three Mn ions. When all water-ligands and oxo-bridges form H{sub 2}O and O{sup 2−}, respectively, the resulting OEC model involved Mn{sub 4}(III{sub 2},IV{sub 2})-cluster and one S=0 state as the lowest energy spin state. To rationalize the O{sup 2−}-bridge model at S{sub 1} state, a new H{sup +}-release scheme during the H{sub 2}O-splitting reaction is proposed.

  12. Two-dimensional (14)N HYSCORE spectroscopy of the coordination geometry of ligands in dimanganese di-μ-oxo mimics of the oxygen evolving complex of photosystem II.

    PubMed

    Chatterjee, Ruchira; Milikisiyants, Sergey; Lakshmi, K V

    2012-05-21

    We use two-dimensional hyperfine sublevel correlation (HYSCORE) spectroscopy to investigate the coordination geometry of the nitrogen ligands of biomimetic models of the oxygen-evolving complex of photosystem II. In the 2D HYSCORE spectroscopy study, [(bpy)2Mn(III)(μ-O)2Mn(IV)(bpy)2](ClO4)3 (bpy, 2,2'-bipyridine) (1) and [H2O(terpy)Mn(III)(μ-O)2Mn(IV)(terpy)OH2](NO3)3 (terpy = 2,2':6',2″-terpyridine) (2) exhibit electron-nuclear hyperfine interactions that depend on both the oxidation state of the manganese ion and the geometry of the nitrogen ligand. We observe four types of (14)N hyperfine interactions corresponding to the Mn(iii) and Mn(iv) ion of each mixed-valence complex and the equatorial and axial geometry of the ligand, respectively. The strongest and the weakest hyperfine interactions arise from the axial and equatorial ligands of the Mn(iii) ion, respectively. The hyperfine interactions of intermediate strength are due to the axial and equatorial ligands of the Mn(iv) ion. Based on the results of this study, we assign the location and ligand geometry of the Mn(iii) ion of the tetranuclear manganese-calcium-oxo cluster in the S2 state of photosystem II.

  13. In situ characterization of cofacial Co(IV) centers in Co4O4 cubane: Modeling the high-valent active site in oxygen-evolving catalysts.

    PubMed

    Brodsky, Casey N; Hadt, Ryan G; Hayes, Dugan; Reinhart, Benjamin J; Li, Nancy; Chen, Lin X; Nocera, Daniel G

    2017-04-11

    The Co4O4 cubane is a representative structural model of oxidic cobalt oxygen-evolving catalysts (Co-OECs). The Co-OECs are active when residing at two oxidation levels above an all-Co(III) resting state. This doubly oxidized Co(IV)2 state may be captured in a Co(III)2(IV)2 cubane. We demonstrate that the Co(III)2(IV)2 cubane may be electrochemically generated and the electronic properties of this unique high-valent state may be probed by in situ spectroscopy. Intervalence charge-transfer (IVCT) bands in the near-IR are observed for the Co(III)2(IV)2 cubane, and spectroscopic analysis together with electrochemical kinetics measurements reveal a larger reorganization energy and a smaller electron transfer rate constant for the doubly versus singly oxidized cubane. Spectroelectrochemical X-ray absorption data further reveal systematic spectral changes with successive oxidations from the cubane resting state. Electronic structure calculations correlated to experimental data suggest that this state is best represented as a localized, antiferromagnetically coupled Co(IV)2 dimer. The exchange coupling in the cofacial Co(IV)2 site allows for parallels to be drawn between the electronic structure of the Co4O4 cubane model system and the high-valent active site of the Co-OEC, with specific emphasis on the manifestation of a doubly oxidized Co(IV)2 center on O-O bond formation.

  14. Comparison of the manganese oxygen-evolving complex in photosystem II of spinach and Synechococcus sp. with multinuclear manganese model compounds by X-ray absorption spectroscopy

    SciTech Connect

    DeRose, V.J.; Mukerji, I.; Latimer, M.J. ); Yachandra, V.K.; Klein, M.P. ); Sauer, K. Lawrence Berkeley Lab., CA )

    1994-06-15

    The evaluation of Mn X-ray absorption fine structure (EXAFS) studies on the oxygen-evolving complex (OEC) from photosystem II is described for preparations from both spinach and the cyanobacterium Synechococcus sp. poised in the S[sub 1] and S[sub 2] states. In addition to reproducing previous results suggesting the presence of bis([mu]-oxo)-bridged Mn centers in the OEC, a Fourier transform peak due to scatterers at an average distance of > 3 [angstrom] is detected in both types of preparation. In addition, subtle but reproducible changes are found in the relative amplitudes of the Fourier transform peaks due to mainly O ([approximately]1.8 [angstrom]) and Mn ([approximately] 2.7 [angstrom]) neighbors upon cryogenic advance from the S[sub 1] to the S[sub 2] state. Analysis of the peak due to scatterers at [approximately] 3 [angstrom] favors assignment to (per 4 Mn in the OEC) 1-2 heavy atom (Mn, Ca) scatterers at an average distance of 3.3-3.4 [angstrom]. The EXAFS data of several multinuclear Mn model compounds containing such scattering interactions are analyzed and compared with the data for the OEC. Structural models for the OEC are evaluated on the basis of these results. 40 refs., 9 figs., 5 tabs.

  15. What spectroscopy reveals concerning the Mn oxidation levels in the oxygen evolving complex of photosystem II: X-ray to near infra-red.

    PubMed

    Pace, Ron J; Jin, Lu; Stranger, Rob

    2012-08-28

    Photosystem II (PS II), found in oxygenic photosynthetic organisms, catalyses the most energetically demanding reaction in nature, the oxidation of water to molecular oxygen and protons. The water oxidase in PS II contains a Mn(4)Ca cluster (oxygen evolving complex, OEC), whose catalytic mechanism has been extensively investigated but is still unresolved. In particular the precise Mn oxidation levels through which the cluster cycles during functional turnover are still contentious. In this, the first of several planned parts, we examine a broad range of published data relating to this question, while considering the recent atomic resolution PS II crystal structure of Umena et al. (Nature, 2011, 473, 55). Results from X-ray, UV-Vis and NIR spectroscopies are considered, using an approach that is mainly empirical, by comparison with published data from known model systems, but with some reliance on computational or other theoretical considerations. The intention is to survey the extent to which these data yield a consistent picture of the Mn oxidation states in functional PS II - in particular, to test their consistency with two current proposals for the mean redox levels of the OEC during turnover; the so called 'high' and 'low' oxidation state paradigms. These systematically differ by two oxidation equivalents throughout the redox accumulating catalytic S state cycle (states S(0)···S(3)). In summary, we find that the data, in total, substantially favor the low oxidation proposal, particularly as a result of the new analyses we present. The low oxidation state scheme is able to resolve a number of previously 'anomalous' results in the observed UV-Visible S state turnover spectral differences and in the resonant inelastic X-ray spectroscopy (RIXS) of the Mn pre-edge region of the S(1) and S(2) states. Further, the low oxidation paradigm is able to provide a 'natural' explanation for the known sensitivity of the OEC Mn cluster to cryogenic near infra-red (NIR

  16. Theoretical evaluation of structural models of the S2 state in the oxygen evolving complex of Photosystem II: protonation states and magnetic interactions.

    PubMed

    Ames, William; Pantazis, Dimitrios A; Krewald, Vera; Cox, Nicholas; Messinger, Johannes; Lubitz, Wolfgang; Neese, Frank

    2011-12-14

    Protonation states of water ligands and oxo bridges are intimately involved in tuning the electronic structures and oxidation potentials of the oxygen evolving complex (OEC) in Photosystem II, steering the mechanistic pathway, which involves at least five redox state intermediates S(n) (n = 0-4) resulting in the oxidation of water to molecular oxygen. Although protons are practically invisible in protein crystallography, their effects on the electronic structure and magnetic properties of metal active sites can be probed using spectroscopy. With the twin purpose of aiding the interpretation of the complex electron paramagnetic resonance (EPR) spectroscopic data of the OEC and of improving the view of the cluster at the atomic level, a complete set of protonation configurations for the S(2) state of the OEC were investigated, and their distinctive effects on magnetic properties of the cluster were evaluated. The most recent X-ray structure of Photosystem II at 1.9 Å resolution was used and refined to obtain the optimum structure for the Mn(4)O(5)Ca core within the protein pocket. Employing this model, a set of 26 structures was constructed that tested various protonation scenarios of the water ligands and oxo bridges. Our results suggest that one of the two water molecules that are proposed to coordinate the outer Mn ion (Mn(A)) of the cluster is deprotonated in the S(2) state, as this leads to optimal experimental agreement, reproducing the correct ground state spin multiplicity (S = 1/2), spin expectation values, and EXAFS-derived metal-metal distances. Deprotonation of Ca(2+)-bound water molecules is strongly disfavored in the S(2) state, but dissociation of one of the two water ligands appears to be facile. The computed isotropic hyperfine couplings presented here allow distinctions between models to be made and call into question the assumption that the largest coupling is always attributable to Mn(III). The present results impose limits for the total charge

  17. Production of hydrogen in non oxygen-evolving systems: co-produced hydrogen as a bonus in the photodegradation of organic pollutants and hydrogen sulfide

    SciTech Connect

    Sartoretti, C. Jorand; Ulmann, M.; Augustynski, J. ); Linkous, C.A. )

    2000-01-01

    This report was prepared as part of the documentation of Annex 10 (Photoproduction of Hydrogen) of the IEA Hydrogen Agreement. Subtask A of this Annex concerned photo-electrochemical hydrogen production, with an emphasis on direct water splitting. However, studies of non oxygen-evolving systems were also included in view of their interesting potential for combined hydrogen production and waste degradation. Annex 10 was operative from 1 March 1995 until 1 October 1998. One of the collaborative projects involved scientists from the Universities of Geneva and Bern, and the Federal Institute of Technology in Laussane, Switzerland. A device consisting of a photoelectrochemical cell (PEC) with a WO{sub 3} photoanode connected in series with a so-called Grazel cell (a dye sensitized liquid junction photovoltaic cell) was developed and studied in this project. Part of these studies concerned the combination of hydrogen production with degradation of organic pollutants, as described in Chapter 3 of this report. For completeness, a review of the state of the art of organic waste treatment is included in Chapter 2. Most of the work at the University of Geneva, under the supervision of Prof. J. Augustynski, was focused on the development and testing of efficient WO{sub 3} photoanodes for the photoelectrochemical degradation of organic waste solutions. Two types of WO{sub 3} anodes were developed: non transparent bulk photoanodes and non-particle-based transparent film photoanodes. Both types were tested for degradation and proved to be very efficient in dilute solutions. For instance, a solar-to-chemical energy conversion efficiency of 9% was obtained by operating the device in a 0.01M solution of methanol (as compared to about 4% obtained for direct water splitting with the same device). These organic compounds are oxidized to CO{sub 2} by the photocurrent produced by the photoanode. The advantages of this procedure over conventional electrolytic degradation are that much (an

  18. Oxyanion Induced Variations in Domain Structure for Amorphous Cobalt Oxide Oxygen Evolving Catalysts, Resolved by X-ray Pair Distribution Function Analysis

    SciTech Connect

    Kwon, Gihan; Kokhan, Oleksandr; Han, Ali; Chapman, Karena W.; Chupas, Peter J.; Du, Pingwu; Tiede, David M.

    2015-12-01

    Amorphous thin film oxygen evolving catalysts, OECs, of first-row transition metals show promise to serve as self-assembling photoanode materials in solar-driven, photoelectrochemical `artificial leaf' devices. This report demonstrates the ability to use high-energy X-ray scattering and atomic pair distribution function analysis, PDF, to resolve structure in amorphous metal oxide catalyst films. The analysis is applied here to resolve domain structure differences induced by oxyanion substitution during the electrochemical assembly of amorphous cobalt oxide catalyst films, Co-OEC. PDF patterns for Co-OEC films formed using phosphate, Pi, methylphosphate, MPi, and borate, Bi, electrolyte buffers show that the resulting domains vary in size following the sequence Pi < MPi < Bi. The increases in domain size for CoMPi and CoBi were found to be correlated with increases in the contributions from bilayer and trilayer stacked domains having structures intermediate between those of the LiCoOO and CoO(OH) mineral forms. The lattice structures and offset stacking of adjacent layers in the partially stacked CoMPi and CoBi domains were best matched to those in the LiCoOO layered structure. The results demonstrate the ability of PDF analysis to elucidate features of domain size, structure, defect content and mesoscale organization for amorphous metal oxide catalysts that are not readily accessed by other X-ray techniques. Finally, PDF structure analysis is shown to provide a way to characterize domain structures in different forms of amorphous oxide catalysts, and hence provide an opportunity to investigate correlations between domain structure and catalytic activity.

  19. Electronic structure of the oxygen evolving complex in photosystem II, as revealed by 55Mn Davies ENDOR studies at 2.5 K.

    PubMed

    Jin, Lu; Smith, Paul; Noble, Christopher J; Stranger, Rob; Hanson, Graeme R; Pace, Ron J

    2014-05-07

    We report the first (55)Mn pulsed ENDOR studies on the S2 state multiline spin ½ centre of the oxygen evolving complex (OEC) in Photosystem II (PS II), at temperatures below 4.2 K. These were performed on highly active samples of spinach PS II core complexes, developed previously in our laboratories for photosystem spectroscopic use, at temperatures down to 2.5 K. Under these conditions, relaxation effects which have previously hindered observation of most of the manganese ENDOR resonances from the OEC coupled Mn cluster are suppressed. (55)Mn ENDOR hyperfine couplings ranging from ∼50 to ∼680 MHz are now seen on the S2 state multiline EPR signal. These, together with complementary high resolution X-band CW EPR measurements and detailed simulations, reveal that at least two and probably three Mn hyperfine couplings with large anisotropy are seen, indicating that three Mn(III) ions are likely present in the functional S2 state of the enzyme. This suggests a low oxidation state paradigm for the OEC (mean Mn oxidation level 3.0 in the S1 state) and unexpected Mn exchange coupling in the S2 state, with two Mn ions nearly magnetically silent. Our results rationalize a number of previous ligand ESEEM/ENDOR studies and labelled water exchange experiments on the S2 state of the photosystem, in a common picture which is closely consistent with recent photo-assembly (Kolling et al., Biophys. J. 2012, 103, 313-322) and large scale computational studies on the OEC (Gatt et al., Angew. Chem., Int. Ed. 2012, 51, 12025-12028, Kurashige et al. Nat. Chem. 2013, 5, 660-666).

  20. Structure, ligands and substrate coordination of the oxygen-evolving complex of photosystem II in the S2 state: a combined EPR and DFT study.

    PubMed

    Lohmiller, Thomas; Krewald, Vera; Navarro, Montserrat Pérez; Retegan, Marius; Rapatskiy, Leonid; Nowaczyk, Marc M; Boussac, Alain; Neese, Frank; Lubitz, Wolfgang; Pantazis, Dimitrios A; Cox, Nicholas

    2014-06-28

    The S2 state of the oxygen-evolving complex of photosystem II, which consists of a Mn4O5Ca cofactor, is EPR-active, typically displaying a multiline signal, which arises from a ground spin state of total spin ST = 1/2. The precise appearance of the signal varies amongst different photosynthetic species, preparation and solvent conditions/compositions. Over the past five years, using the model species Thermosynechococcus elongatus, we have examined modifications that induce changes in the multiline signal, i.e. Ca(2+)/Sr(2+)-substitution and the binding of ammonia, to ascertain how structural perturbations of the cluster are reflected in its magnetic/electronic properties. This refined analysis, which now includes high-field (W-band) data, demonstrates that the electronic structure of the S2 state is essentially invariant to these modifications. This assessment is based on spectroscopies that examine the metal centres themselves (EPR, (55)Mn-ENDOR) and their first coordination sphere ligands ((14)N/(15)N- and (17)O-ESEEM, -HYSCORE and -EDNMR). In addition, extended quantum mechanical models from broken-symmetry DFT now reproduce all EPR, (55)Mn and (14)N experimental magnetic observables, with the inclusion of second coordination sphere ligands being crucial for accurately describing the interaction of NH3 with the Mn tetramer. These results support a mechanism of multiline heterogeneity reported for species differences and the effect of methanol [Biochim. Biophys. Acta, Bioenerg., 2011, 1807, 829], involving small changes in the magnetic connectivity of the solvent accessible outer MnA4 to the cuboidal unit Mn3O3Ca, resulting in predictable changes of the measured effective (55)Mn hyperfine tensors. Sr(2+) and NH3 replacement both affect the observed (17)O-EDNMR signal envelope supporting the assignment of O5 as the exchangeable μ-oxo bridge and it acting as the first site of substrate inclusion.

  1. Hydration of the oxygen-evolving complex of photosystem II probed in the dark-stable S1 state using proton NMR dispersion profiles.

    PubMed

    Han, Guangye; Huang, Yang; Koua, Faisal Hammad Mekky; Shen, Jian-Ren; Westlund, Per-Olof; Messinger, Johannes

    2014-06-28

    The hydration of the oxygen-evolving complex (OEC) was characterized in the dark stable S1 state of photosystem II using water R1(ω) NMR dispersion (NMRD) profiles. The R1(ω) NMRD profiles were recorded over a frequency range from 0.01 MHz to 40 MHz for both intact and Mn-depleted photosystem II core complexes from Thermosynechococcus vulcanus (T. vulcanus). The intact-minus-(Mn)-depleted difference NMRD profiles show a characteristic dispersion from approximately 0.03 MHz to 1 MHz, which is interpreted on the basis of the Solomon-Bloembergen-Morgan (SBM) and the slow motion theories as being due to a paramagnetic enhanced relaxation (PRE) of water protons. Both theories are qualitatively consistent with the ST = 1, g = 4.9 paramagnetic state previously described for the S1 state of the OEC; however, an alternative explanation involving the loss of a separate class of long-lived internal waters due to the Mn-depletion procedure can presently not be ruled out. Using a point-dipole approximation the PRE-NMRD effect can be described as being caused by 1-2 water molecules that are located about 10 Å away from the spin center of the Mn4CaO5 cluster in the OEC. The application of the SBM theory to the dispersion observed for PSII in the S1 state is questionable, because the parameters extracted do not fulfil the presupposed perturbation criterion. In contrast, the slow motion theory gives a consistent picture indicating that the water molecules are in fast chemical exchange with the bulk (τw < 1 μs). The modulation of the zero-field splitting (ZFS) interaction suggests a (restricted) reorientation/structural equilibrium of the Mn4CaO5 cluster with a characteristic time constant of τZFS = 0.6-0.9 μs.

  2. Dynamic properties of photosystem II membranes at physiological temperatures characterized by elastic incoherent neutron scattering. Increased flexibility associated with the inactivation of the oxygen evolving complex.

    PubMed

    Nagy, Gergely; Pieper, Jörg; Krumova, Sashka B; Kovács, László; Trapp, Marcus; Garab, Győző; Peters, Judith

    2012-03-01

    Elastic incoherent neutron scattering (EINS), a non-invasive technique which is capable of measuring the mean square displacement of atoms in the sample, has been widely used in biology for exploring the dynamics of proteins and lipid membranes but studies on photosynthetic systems are scarce. In this study we investigated the dynamic characteristics of Photosystem II (PSII) membrane fragments between 280 and 340 K, i.e., in the physiological temperature range and in the range of thermal denaturation of some of the protein complexes. The mean square displacement values revealed the presence of a hydration-sensitive transition in the sample between 310 and 320 K, suggesting that the oxygen evolving complex (OEC) plays an important role in the transition. Indeed, in samples in which the OEC had been removed by TRIS- or heat-treatments (323 and 333 K) no such transition was found. Further support on the main role of OEC in these reorganizations is provided by data obtained from differential scanning calorimetry experiments, showing marked differences between the untreated and TRIS-treated samples. In contrast, circular dichroism spectra exhibited only minor changes in the excitonic interactions below 323 K, showing that the molecular organization of the pigment-protein complexes remains essentially unaffected. Our data, along with earlier incoherent neutron scattering data on PSII membranes at cryogenic temperatures (Pieper et al., Biochemistry 46:11398-11409, 2007), demonstrate that this technique can be applied to characterize the dynamic features of PSII membranes, and can be used to investigate photosynthetic membranes under physiologically relevant experimental conditions.

  3. The basic properties of the electronic structure of the oxygen-evolving complex of photosystem II are not perturbed by Ca2+ removal.

    PubMed

    Lohmiller, Thomas; Cox, Nicholas; Su, Ji-Hu; Messinger, Johannes; Lubitz, Wolfgang

    2012-07-13

    Ca(2+) is an integral component of the Mn(4)O(5)Ca cluster of the oxygen-evolving complex in photosystem II (PS II). Its removal leads to the loss of the water oxidizing functionality. The S(2)' state of the Ca(2+)-depleted cluster from spinach is examined by X- and Q-band EPR and (55)Mn electron nuclear double resonance (ENDOR) spectroscopy. Spectral simulations demonstrate that upon Ca(2+) removal, its electronic structure remains essentially unaltered, i.e. that of a manganese tetramer. No redistribution of the manganese valence states and only minor perturbation of the exchange interactions between the manganese ions were found. Interestingly, the S(2)' state in spinach PS II is very similar to the native S(2) state of Thermosynechococcus elongatus in terms of spin state energies and insensitivity to methanol addition. These results assign the Ca(2+) a functional as opposed to a structural role in water splitting catalysis, such as (i) being essential for efficient proton-coupled electron transfer between Y(Z) and the manganese cluster and/or (ii) providing an initial binding site for substrate water. Additionally, a novel (55)Mn(2+) signal, detected by Q-band pulse EPR and ENDOR, was observed in Ca(2+)-depleted PS II. Mn(2+) titration, monitored by (55)Mn ENDOR, revealed a specific Mn(2+) binding site with a submicromolar K(D). Ca(2+) titration of Mn(2+)-loaded, Ca(2+)-depleted PS II demonstrated that the site is reversibly made accessible to Mn(2+) by Ca(2+) depletion and reconstitution. Mn(2+) is proposed to bind at one of the extrinsic subunits. This process is possibly relevant for the formation of the Mn(4)O(5)Ca cluster during photoassembly and/or D1 repair.

  4. Altered structure of the Mn4Ca cluster in the oxygen-evolving complex of photosystem II by a histidine ligand mutation.

    PubMed

    Yano, Junko; Walker, Lee M; Strickler, Melodie A; Service, Rachel J; Yachandra, Vittal K; Debus, Richard J

    2011-03-18

    The effect of replacing a histidine ligand on the properties of the oxygen-evolving complex (OEC) and the structure of the Mn(4)Ca cluster in Photosystem II (PSII) is studied by x-ray absorption spectroscopy using PSII core complexes from the Synechocystis sp. PCC 6803 D1 polypeptide mutant H332E. In the x-ray crystallographic structures of PSII, D1-His(332) has been assigned as a direct ligand of a manganese ion, and the mutation of this histidine ligand to glutamate has been reported to prevent the advancement of the OEC beyond the S(2)Yz(•) intermediate state. The manganese K-edge (1s core electron to 4p) absorption spectrum of D1-H332E shifts to a lower energy compared with that of the native WT samples, suggesting that the electronic structure of the manganese cluster is affected by the presence of the additional negative charge on the OEC of the mutant. The extended x-ray absorption spectrum shows that the geometric structure of the cluster is altered substantially from that of the native WT state, resulting in an elongation of manganese-ligand and manganese-manganese interactions in the mutant. The strontium-H332E mutant, in which calcium is substituted by strontium, confirms that strontium (calcium) is a part of the altered cluster. The structural perturbations caused by the D1-H332E mutation are much larger than those produced by any biochemical treatment or mutation examined previously with x-ray absorption spectroscopy. The substantial structural changes provide an explanation not only for the altered properties of the D1-H332E mutant but also the importance of the histidine ligand for proper assembly of the Mn(4)Ca cluster.

  5. Two-dimensional 1H HYSCORE spectroscopy of dimanganese di-μ-oxo mimics of the oxygen-evolving complex of photosystem II.

    PubMed

    Milikisiyants, Sergey; Chatterjee, Ruchira; Lakshmi, K V

    2011-10-27

    The solar water-splitting protein complex, photosystem II, catalyzes one of the most energetically demanding reactions in nature by using light energy to drive water oxidation. The four-electron water oxidation reaction occurs at the tetranuclear manganese-calcium-oxo cluster that is present in the oxygen-evolving complex of photosystem II. The tetranuclear manganese-calcium-oxo cluster is comprised of mixed-valence Mn(III) and Mn(IV) ions in the ground state. The oxo-manganese dimer, [H(2)O(terpy)Mn(III)(μ-O)(2)Mn(IV)(terpy)OH(2)](NO(3))(3) (terpy = 2,2':6',2″-terpyridine) (1), is an excellent biomimetic model that has been extensively used to gain insight on the molecular structure and mechanism of water oxidation in photosystem II. In this work, weak magnetic interactions between the protons of the two terminal water ligands and the paramagnetic dimanganese "di-μ-oxo" core of 1 are quantitatively characterized using two-dimensional hyperfine sublevel correlation (HYSCORE) spectroscopy. For the water molecule that is directly coordinated at the Mn(III) ion, the two protons are found to be magnetically equivalent and exhibit near axial hyperfine anisotropy. In contrast, for the first time, we demonstrate that the two protons of the water molecule that is directly coordinated at the Mn(IV) ion are inequivalent. We obtain the isotropic and anisotropic components of the hyperfine interaction for each proton. A comparison of the HYSCORE spectra measured in the presence and absence of acetate ions provides unambiguous evidence that only one molecule of acetate binds to 1 by replacing a terminal water molecule that is coordinated at the Mn(III) ion.

  6. Synthetic model of the asymmetric [Mn3CaO4] cubane core of the oxygen-evolving complex of photosystem II.

    PubMed

    Mukherjee, Shreya; Stull, Jamie A; Yano, Junko; Stamatatos, Theocharis C; Pringouri, Konstantina; Stich, Troy A; Abboud, Khalil A; Britt, R David; Yachandra, Vittal K; Christou, George

    2012-02-14

    The laboratory synthesis of the oxygen-evolving complex (OEC) of photosystem II has been the objective of synthetic chemists since the early 1970s. However, the absence of structural information on the OEC has hampered these efforts. Crystallographic reports on photosystem II that have been appearing at ever-improving resolution over the past ten years have finally provided invaluable structural information on the OEC and show that it comprises a [Mn(3)CaO(4)] distorted cubane, to which is attached a fourth, external Mn atom, and the whole unit attached to polypeptides primarily by aspartate and glutamate carboxylate groups. Such a heterometallic Mn/Ca cubane with an additional metal attached to it has been unknown in the literature. This paper reports the laboratory synthesis of such an asymmetric cubane-containing compound with a bound external metal atom, [(1)]. All peripheral ligands are carboxylate or carboxylic acid groups. Variable-temperature magnetic susceptibility data have established 1 to possess an S = 9/2 ground state. EPR spectroscopy confirms this, and the Davies electron nuclear double resonance data reveal similar hyperfine couplings to those of other Mn(IV) species, including the OEC S(2) state. Comparison of the X-ray absorption data with those for the OEC reveal 1 to possess structural parameters that make it a close structural model of the asymmetric-cubane OEC unit. This geometric and electronic structural correspondence opens up a new front in the multidisciplinary study of the properties and function of this important biological unit.

  7. How Accurately Can Extended X-ray Absorption Spectra Be Predicted from First Principles? Implications for Modeling the Oxygen-Evolving Complex in Photosystem II.

    PubMed

    Beckwith, Martha A; Ames, William; Vila, Fernando D; Krewald, Vera; Pantazis, Dimitrios A; Mantel, Claire; Pécaut, Jacques; Gennari, Marcello; Duboc, Carole; Collomb, Marie-Noëlle; Yano, Junko; Rehr, John J; Neese, Frank; DeBeer, Serena

    2015-10-14

    First principle calculations of extended X-ray absorption fine structure (EXAFS) data have seen widespread use in bioinorganic chemistry, perhaps most notably for modeling the Mn4Ca site in the oxygen evolving complex (OEC) of photosystem II (PSII). The logic implied by the calculations rests on the assumption that it is possible to a priori predict an accurate EXAFS spectrum provided that the underlying geometric structure is correct. The present study investigates the extent to which this is possible using state of the art EXAFS theory. The FEFF program is used to evaluate the ability of a multiple scattering-based approach to directly calculate the EXAFS spectrum of crystallographically defined model complexes. The results of these parameter free predictions are compared with the more traditional approach of fitting FEFF calculated spectra to experimental data. A series of seven crystallographically characterized Mn monomers and dimers is used as a test set. The largest deviations between the FEFF calculated EXAFS spectra and the experimental EXAFS spectra arise from the amplitudes. The amplitude errors result from a combination of errors in calculated S0(2) and Debye-Waller values as well as uncertainties in background subtraction. Additional errors may be attributed to structural parameters, particularly in cases where reliable high-resolution crystal structures are not available. Based on these investigations, the strengths and weaknesses of using first-principle EXAFS calculations as a predictive tool are discussed. We demonstrate that a range of DFT optimized structures of the OEC may all be considered consistent with experimental EXAFS data and that caution must be exercised when using EXAFS data to obtain topological arrangements of complex clusters.

  8. Orientation of the oxygen-evolving manganese complex in a photosystem II membrane preparation: an X-ray absorption spectroscopy study.

    PubMed

    Mukerji, I; Andrews, J C; DeRose, V J; Latimer, M J; Yachandra, V K; Sauer, K; Klein, M P

    1994-08-16

    X-ray absorption spectroscopy has been performed on oriented photosystem II membrane particles isolated from spinach. Structural features of the tetranuclear Mn cluster and the orientation of the cluster with respect to the lipid bilayer were determined in both the S1 and S2 states of the Kok cycle. Variation of the sample orientation with respect to the X-ray e-vector yields highly dichroic K-edge and extended X-ray absorption fine structure spectra (EXAFS), indicative of an asymmetric tetranuclear cluster. Mn-Mn vectors at 2.72 and 3.38 A can be resolved from these measurements using quantitative analysis. The 2.72-A vector, consisting of at least two component vectors, is oriented at an average angle of 60 degrees +/- 7 degrees to the membrane normal, with an average of 1.1 +/- 0.1 interactions per Mn atom. The 3.38-A vector, most probably an average of two vectors, makes an angle of 43 degrees +/- 10 degrees with respect to the membrane normal, with an average of 0.45 +/- 0.07 backscatterer per Mn atom. Upon advance to the S2 state, the orientation of these vectors and the average numbers of backscatterers are approximately invariant. Analysis of more subtle features of the EXAFS reveals changes accompanying this S-state advance that are consistent with the oxidation of Mn during this transition. However, the dominant structural features of the oxygen-evolving complex remain constant in the S1 and S2 states. The structure of the Mn complex and the orientation of the complex in the membrane within the context of dichroism of the X-ray absorption data are discussed.

  9. Theoretical modelling of biomolecular systems I. Large-scale QM/MM calculations of hydrogen-bonding networks of the oxygen evolving complex of photosystem II

    NASA Astrophysics Data System (ADS)

    Shoji, Mitsuo; Isobe, Hiroshi; Yamanaka, Shusuke; Umena, Yasufumi; Kawakami, Keisuke; Kamiya, Nobuo; Shen, Jian-Ren; Nakajima, Takahito; Yamaguchi, Kizashi

    2015-02-01

    Quantum mechanical (QM)/molecular mechanics (MM) calculations by the use of a large-scale QM model (QM Model V) have been performed to elucidate hydrogen-bonding networks and proton wires for proton release pathways (PRP) of water oxidation reaction in the oxygen evolving complex (OEC) of photosystem II (PSII). Full geometry optimisations of PRP by the QM/MM model have been carried out starting from the geometry of heavy atoms determined by the recent high-resolution X-ray diffraction (XRD) experiment of PSII refined to 1.9 Å resolution. Computational results by the QM/MM calculations have elucidated the hydrogen-bonding O...O(N) and O...H distances and O(N)-H...O angles in PRP, together with the Cl-O(N) and Cl...H distances and O(N)-H...Cl angles for chloride anions. The optimised hydrogen-bonding networks are well consistent with the XRD results and available experiments such as extended X-ray absorption fine structure, showing the reliability of channel structures of OEC of PSII revealed by the XRD experiment. The QM/MM computations have elucidated possible roles of chloride anions in the OEC of PSII. The QM/MM computational results have provided useful information for understanding and explanation of accumulated mutation experiments of key amino acid residues in the OEC of PSII. Implications of the present results are discussed in relation to three steps for theoretical modelling of water oxidation in the OEC of PSII and bio-inspired working hypotheses for developments of artificial water oxidation systems by use of 3d transition-metal complexes.

  10. Oxyanion Induced Variations in Domain Structure for Amorphous Cobalt Oxide Oxygen Evolving Catalysts, Resolved by X-ray Pair Distribution Function Analysis

    DOE PAGES

    Kwon, Gihan; Kokhan, Oleksandr; Han, Ali; ...

    2015-12-01

    Amorphous thin film oxygen evolving catalysts, OECs, of first-row transition metals show promise to serve as self-assembling photoanode materials in solar-driven, photoelectrochemical `artificial leaf' devices. This report demonstrates the ability to use high-energy X-ray scattering and atomic pair distribution function analysis, PDF, to resolve structure in amorphous metal oxide catalyst films. The analysis is applied here to resolve domain structure differences induced by oxyanion substitution during the electrochemical assembly of amorphous cobalt oxide catalyst films, Co-OEC. PDF patterns for Co-OEC films formed using phosphate, Pi, methylphosphate, MPi, and borate, Bi, electrolyte buffers show that the resulting domains vary in sizemore » following the sequence Pi < MPi < Bi. The increases in domain size for CoMPi and CoBi were found to be correlated with increases in the contributions from bilayer and trilayer stacked domains having structures intermediate between those of the LiCoOO and CoO(OH) mineral forms. The lattice structures and offset stacking of adjacent layers in the partially stacked CoMPi and CoBi domains were best matched to those in the LiCoOO layered structure. The results demonstrate the ability of PDF analysis to elucidate features of domain size, structure, defect content and mesoscale organization for amorphous metal oxide catalysts that are not readily accessed by other X-ray techniques. Finally, PDF structure analysis is shown to provide a way to characterize domain structures in different forms of amorphous oxide catalysts, and hence provide an opportunity to investigate correlations between domain structure and catalytic activity.« less

  11. Characterization of fabricated cobalt-based alloy/nano bioactive glass composites.

    PubMed

    Bafandeh, Mohammad Reza; Gharahkhani, Raziyeh; Fathi, Mohammad Hossein

    2016-12-01

    In this work, cobalt-based alloy/nano bioactive glass (NBG) composites with 10, 15 and 20wt% NBG were prepared and their bioactivity after immersion in simulated body fluid (SBF) for 1 to 4weeks was studied. Scanning electron microscopy images of two- step sintered composites revealed relatively dense microstructure. The results showed that density of composite samples decreased with increase in NBG amount. The microstructure analysis as well as energy dispersive X-ray analysis (EDX) revealed that small amount of calcium phosphate phases precipitates on the surface of composite samples after 1week immersion in SBF. After 2weeks immersion, considerable amounts of cauliflower-like shaped precipitations were seen on the surface of the composites. Based on EDX analysis, these precipitations were composed mainly from Ca, P and Si. The observed bands in the Fourier transform infrared spectroscopy of immersed composites samples for 4weeks in SBF, were characteristic bands of hydroxyapatite. Therefore it is possible to form hydroxyapatite layer on the surface of composite samples during immersion in SBF. The results indicated that prepared composites unlike cobalt-based alloy are bioactive, promising their possibility for implant applications.

  12. The resistance of selected high strength alloys to embrittlement by a hydrogen environment. [iron and cobalt base alloys

    NASA Technical Reports Server (NTRS)

    Benson, R. B., Jr.

    1974-01-01

    Selected high strength iron base and cobalt base alloys were resistant to degradation of mechanical properties in a one atmosphere hydrogen environment at ambient temperature. These alloys were strengthened initially by cold working which produced strain induced martensite and fcc mechanical twins in an fcc matrix. Heat treatment of the cobalt base alloy after cold working produced carbide precipitates with retention of an hcp epsilon phase which increased the yield strength level. High strength alloys can be produced which have some resistance to degradation of mechanical properties by a hydrogen environment under certain conditions.

  13. Electronic Structure of the Mn[subscript 4]Ca Cluster in the Oxygen-Evolving Complex of Photosystem II Studied by Resonant Inelastic X-Ray Scattering

    SciTech Connect

    Yano, Junko; Pushkar, Yulia; Messinger, Johannes; Bergmann, Uwe; Glatzel, Pieter; Yachandra, Vittal K.

    2007-11-12

    Oxygen-evolving complex (Mn{sub 4}Ca cluster) of Photosystem II cycles through five intermediate states (S{sub i}-states, i = 0-4) before a molecule of dioxygen is released. During the S-state transitions, electrons are extracted from the OEC, either from Mn or alternatively from a Mn ligand. The oxidation state of Mn is widely accepted as Mn{sub 4}(III{sub 2},IV{sub 2}) and Mn{sub 4}(III,IV{sub 3}) for S{sub 1} and S{sub 2} states, while it is still controversial for the S{sub 0} and S{sub 3} states. We used resonant inelastic X-ray scattering (RIXS) to study the electronic structure of Mn{sub 4}Ca complex in the OEC. The RIXS data yield two-dimensional plots that provide a significant advantage by obtaining both K-edge pre-edge and L-edge-like spectra simultaneously. The second energy dimension separates the pre-edge (1s to 3d) transitions from the main K-edge (1s to 4p), and thus more precise analysis is possible. The 1s2p RIXS final state electron configuration along the energy transfer axis is identical to conventional L-edge absorption spectroscopy and the RIXS spectra are therefore sensitive to the metal spin state. We have collected data from PS II samples in the each of the S-states and compared them with data from various inorganic Mn complexes. The spectral changes in the Mn 1s2p{sub 3/2} RIXS spectra between the S-states are small compared to those of the oxides of Mn and coordination complexes. The results indicate strong covalency for the electronic configuration in the OEC, and we conclude that the electron is transferred from a strongly delocalized orbital, compared to those in Mn oxides or coordination complexes. The magnitude for the S{sub 0} to S{sub 1}, and S{sub 1} to S{sub 2} transitions is twice as large as that during the S{sub 2} to S{sub 3} transition, indicating that the electron for this transition is extracted from a highly delocalized orbital with little change in charge density at the Mn atoms. The RIXS spectra of S{sub 0} and S{sub 3

  14. Electronic Structure of the Mn(4)Ca Cluster in the Oxygen-Evolving Complex of Photosystem Ii Studied By Resonant Inelastic X-Ray Scattering

    SciTech Connect

    Yano, J.; Pushkar, Y.; Messinger, J.; Bergmann, U.; Glatzel, P.; Yachandra, V.K.

    2009-06-04

    Oxygen-evolving complex (Mn{sub 4}Ca cluster) of Photosystem II cycles through five intermediate states (S{sub i}-states, i=0--4) before a molecule of dioxygen is released. During the S-state transitions, electrons are extracted from the OEC, either from Mn or alternatively from a Mn ligand. The oxidation state of Mn is widely accepted as Mn{sub 4}(III{sub 2},IV{sub 2}) and Mn{sub 4}(III,IV{sub 3}) for S{sub 1} and S{sub 2} states, while it is still controversial for the S{sub 0} and S{sub 3} states. We used resonant inelastic X-ray scattering (RIXS) to study the electronic structure of Mn{sub 4}Ca complex in the OEC. The RIXS data yield two-dimensional plots that provide a significant advantage by obtaining both K-edge pre-edge and L-edge-like spectra simultaneously. The second energy dimension separates the pre-edge (1s to 3d) transitions from the main K-edge (1s to 4p), and thus more precise analysis is possible. The 1s2p RIXS final state electron configuration along the energy transfer axis is identical to conventional L-edge absorption spectroscopy and the RIXS spectra are therefore sensitive to the metal spin state. We have collected data from PS II samples in the each of the S-states and compared them with data from various inorganic Mn complexes. The spectral changes in the Mn 1s2p{sub 3/2} RIXS spectra between the S-states are small compared to those of the oxides of Mn and coordination complexes. The results indicate strong covalency for the electronic configuration in the OEC, and we conclude that the electron is transferred from a strongly delocalized orbital, compared to those in Mn oxides or coordination complexes. The magnitude for the S{sub 0} to S{sub 1}, and S{sub 1} to S{sub 2} transitions is twice as large as that during the S{sub 2} to S{sub 3} transition, indicating that the electron for this transition is extracted from a highly delocalized orbital with little change in charge density at the Mn atoms. The RIXS spectra of S{sub 0} and S{sub 3

  15. Structure of the oxygen-evolving complex of photosystem II: information on the S(2) state through quantum chemical calculation of its magnetic properties.

    PubMed

    Pantazis, Dimitrios A; Orio, Maylis; Petrenko, Taras; Zein, Samir; Lubitz, Wolfgang; Messinger, Johannes; Neese, Frank

    2009-08-21

    Twelve structural models for the S(2) state of the oxygen-evolving complex (OEC) of photosystem II are evaluated in terms of their magnetic properties. The set includes ten models based on the 'fused twist' core topology derived by polarized EXAFS spectra and two related models proposed in recent mechanistic investigations. Optimized geometries and spin population analyses suggest that Mn(iii), which is most often identified with the manganese ion at site D, is always associated with a penta-coordinate environment, unless a chloride is directly ligated to the metal. Exchange coupling constants were determined by broken-symmetry density functional theory calculations and the complete spectrum of magnetic sublevels was obtained by direct diagonalization of the Heisenberg Hamiltonian. Seven models display a doublet ground state and are considered spectroscopic models for the ground state corresponding to the multiline signal (MLS) of the S(2) state of the OEC, whereas the remaining five models display a sextet ground state and could be related to the g = 4.1 signal of the S(2) state. It is found that the sign of the exchange coupling constant between the Mn centres at positions A and B of the cluster is directly related to the ground state multiplicity, implying that interconversion between the doublet and sextet can be induced by only small structural perturbations. The recently proposed quantum chemical method for the calculation of (55)Mn hyperfine coupling constants is subsequently applied to the S(2) MLS state models and the quantities that enter into the individual steps of the procedure (site-spin expectation values, intrinsic site isotropic hyperfine parameters and projected (55)Mn isotropic hyperfine constants) are analyzed and discussed in detail with respect to the structural and electronic features of each model. The current approach performs promisingly. It reacts sensitively to structural distortions and hence may be able to distinguish between different

  16. Low Cycle Fatigue Behavior and Life Prediction of a Cast Cobalt-Based Superalloy

    NASA Astrophysics Data System (ADS)

    Yang, Ho-Young; Kim, Jae-Hoon; Yoo, Keun-Bong

    Co-base superalloys have been applied in the stationary components of gas turbine owing to their excellent high temperature properties. Low cycle fatigue data on ECY-768 reported in a companion paper were used to evaluate fatigue life prediction models. In this study, low cycle fatigue tests are performed as the variables of total strain range and temperatures. The relations between plastic and total strain energy densities and number of cycles to failure are examined in order to predict the low cycle fatigue life of Cobalt-based super alloy at different temperatures. The fatigue lives is evaluated using predicted by Coffin-Manson method and strain energy methods is compared with the measured fatigue lives at different temperatures. The microstructure observing was performed for how affect able to low-cycle fatigue life by increasing the temperature.

  17. Cobalt-based particles formed upon electrocatalytic hydrogen production by a cobalt pyridine oxime complex.

    PubMed

    Ghachtouli, Sanae El; Guillot, Regis; Brisset, Francois; Aukauloo, Ally

    2013-12-01

    An open-coordination-sphere cobalt(III) oximato-based complex was designed as a putative catalyst for the hydrogen evolution reaction (HER). Electrochemical alteration in the presence of acid occurs, leading to the formation of cobalt-based particles that act as an efficient catalyst for HER at pH 7. The exact chemical nature of these particles is yet to be determined. This study thus raises interesting issues regarding the fate of molecular-based complexes designed for the HER, and points to the challenging task of identifying the real catalytic species. Moreover, understanding and rationalizing the alteration pathways can be seen as a new route to reach catalytic particulates.

  18. Nucleophilic attack of hydroxide on a Mn(V) oxo complex: a model of the O-O bond formation in the oxygen evolving complex of photosystem II.

    PubMed

    Gao, Yan; Akermark, Torbjörn; Liu, Jianhui; Sun, Licheng; Akermark, Björn

    2009-07-01

    A manganese(III) corrole complex, 1, has been synthesized and used to study a potential mechanism for oxidation of water to molecular oxygen. Oxidation by t-BuOOH gave the Mn(V)=O complex 2. Addition of hydroxide led to release of oxygen via the Mn(IV) complex 4 and regeneration of complex 1. It could be shown that the oxygen from (18)O-labeled water was incorporated in both the formed molecular oxygen and the peroxy intermediate 4.

  19. Long-term stability for cobalt-based dye-sensitized solar cells obtained by electrolyte optimization.

    PubMed

    Gao, Jiajia; Bhagavathi Achari, Muthuraaman; Kloo, Lars

    2014-06-14

    A significant improvement in the long-term stability for cobalt-based dye-sensitized solar cells (DSCs) under light-soaking conditions has been achieved by optimization of the composition of tris(2,2'-bipyridine) Co(ii)/Co(iii) electrolytes. The effects of component exchanges and changes were also studied during the optimization process.

  20. MNA for Chlorinated Solvents and Fuel Oxygenates: Why It Occurs, How It Evolved, and Using Stable Carbon Isotopes to Predict Plume Behavior

    EPA Science Inventory

    The organisms that degrade MtBE under anaerobic conditions are evolved to acquire energy for growth by using molecular hydrogen and carbonate ion to cleave methyl ether bonds. Methyl ether bonds are common in nature and the bond also occurs in MTBE. MTBE in contaminated ground...

  1. Biodegradation – Monitored Natural Attenuation (MNA) for Oxygenates: How it Evolved, why it Occurs and Using Stable Carbon Isotopes to Predict Plume Behavior

    EPA Science Inventory

    The organisms that degrade MtBE under anaerobic conditions are evolved to acquire energy for growth by using molecular hydrogen and carbonate ion to cleave methyl ether bonds. Methyl ether bonds are common in nature and the bond also occurs in MTBE. MTBE in contaminated ground...

  2. MNA of Chlorinated Solvents and Fuel Oxygenates: Why it occurs, how it evolved, and using stable carbon isotopes to predict plume behavior

    EPA Science Inventory

    The organisms that degrade MTBE under anaerobic conditions are evolved to acquire energy for growth by using molecular hydrogen and carbonate ion to cleave methyl ether bonds. Methyl ether bonds are common in nature and the bond also occurs in MTBE. MTBE in contaminated ground...

  3. Arabidopsis plants lacking PsbQ and PsbR subunits of the oxygen-evolving complex show altered PSII super-complex organization and short-term adaptive mechanisms.

    PubMed

    Allahverdiyeva, Yagut; Suorsa, Marjaana; Rossi, Fabio; Pavesi, Andrea; Kater, Martin M; Antonacci, Alessia; Tadini, Luca; Pribil, Mathias; Schneider, Anja; Wanner, Gerhard; Leister, Dario; Aro, Eva-Mari; Barbato, Roberto; Pesaresi, Paolo

    2013-08-01

    The oxygen-evolving complex of eukaryotic photosystem II (PSII) consists of four extrinsic subunits, PsbO (33 kDa), PsbP (23 kDa), PsbQ (17 kDa) and PsbR (10 kDa), encoded by seven nuclear genes, PsbO1 (At5g66570), PsbO2 (At3g50820), PsbP1 (At1g06680), PsbP2 (At2g30790), PsbQ1 (At4g21280), PsbQ2 (At4g05180) and PsbR (At1g79040). Using Arabidopsis insertion mutant lines, we show that PsbP1, but not PsbP2, is essential for photoautotrophic growth, whereas plants lacking both forms of PsbQ and/or PsbR show normal growth rates. Complete elimination of PsbQ has a minor effect on PSII function, but plants lacking PsbR or both PsbR and PsbQ are characterized by more pronounced defects in PSII activity. Gene expression and immunoblot analyses indicate that accumulation of each of these proteins is highly dependent on the presence of the others, and is controlled at the post-transcriptional level, whereas PsbO stability appears to be less sensitive to depletion of other subunits of the oxygen-evolving complex. In addition, comparison of levels of the PSII super-complex in wild-type and mutant leaves reveals the importance of the individual subunits of the oxygen-evolving complex for the supramolecular organization of PSII and their influence on the rate of state transitions.

  4. The Detection of Evolved Oxygen from the Rocknest Eolian Bedform Material by the Sample Analysis at Mars(SAM) instrument at the Mars Curiosity Landing Site

    NASA Technical Reports Server (NTRS)

    Sutter, B.; Archer, D.; Ming, D.; Eigenbrode, J. L.; Franz, H.; Glavin, D. P.; McAdam, A.; Mahaffy, P.; Stern, J.; Navarro-Gonzalex, R.; McKay, C.

    2013-01-01

    The Sample Analysis at Mars (SAM) instrument onboard the Curiosity rover detected an O2 gas release from the Rocknest eolain bedform (Fig. 1). The detection of perchlorate (ClO4-) by the Mars Phoenix Lander s Wet Chemistry Laboratory (WCL) [1] suggests that perchlorate is a possible candidate for evolved O2 release detected by SAM. The perchlorate would also serve as a source of chlorine in the chlorinated hydrocarbons detected by the SAM quadrupole mass spectrometer (QMS) and gas chromatography/mass spectrometer (GCMS) [2,3]. Chlorates (ClO3-) [4,5] and/or superoxides [6] may also be sources of evolved O2 from the Rocknest materials. The work objectives are to 1) evaluate the O2 release temperatures from Rocknest materials, 2) compare these O2 release temperatures with a series of perchlorates and chlorates, and 3) evaluate superoxide O2- sources and possible perchlorate interactions with other Rocknest phases during QMS analysis.

  5. Corrosion considerations in the brazing repair of cobalt-based partial dentures.

    PubMed

    Luthy, H; Marinello, C P; Reclaru, L; Scharer, P

    1996-05-01

    Cobalt-based alloys (Co-Cr-Mo) are usually used in dentistry as frameworks for removable partial dentures. In their basic form these structures function successfully. However, modifications or repairs of the frameworks may reduce their resistance to corrosion and, as a consequence, may provoke biologic reactions in the soft tissues. These reactions may be the result of different types of alloys that contact each other and, in the presence of saliva (based on potential differences), produce a galvanic cell. In this study, a clinical situation after repair of a removable partial denture was examined. The metallographic study of the prosthesis revealed a brazed zone where a gold braze was joining the Co-Cr-Mo framework with a Co-Cr-Ni type alloy (without Mo). The latter revealed signs of corrosion. Various electrochemical parameters (Ecorr, Ecouple, icorr, icouple) of these alloys were analyzed in the laboratory. The Co-Cr-Ni alloy had the lowest nobility and underwent galvanic corrosion in a galvanic couple with gold braze.

  6. Microstructural features and mechanical properties of a cobalt-based laser coating

    SciTech Connect

    Otterloo, J.L. de mol van; Hosson, J.T.M. de

    1997-03-01

    Electron microscopy, mechanical hardness measurements and pin-on-disc wear experiments were carried out on a laser-coated cobalt based Stellite alloy. It was found that with optimum laser parameters a poreless coating with a hardness of 11.3 GPa can be attained. The mechanical properties of the coating are explained from a rather detailed investigation of the microstructural features by transmission electron microscopy. The analysis indicates that solid solution hardening by tungsten and chromium, dislocation-dislocation interactions, impenetrable particle hardening due to the metal-carbides and due to the Co{sub 3}W precipitates are responsible for its high hardness. In accordance with theoretical predictions, cutting of the DO{sub 19} ordered Co{sub 3}W precipitates--which creates planar faults like anti-phase boundaries of super lattice intrinsic stacking faults--was not observed. All these microstructural features contribute in their own way to the mechanical properties, on the basis of which the hardness could be explained rather well.

  7. Location and function of the high-affinity chloride in the oxygen-evolving complex--implications from comparing studies on Cl(-)/Br(-)/I(-)-substituted photosystem II prepared using two different methods.

    PubMed

    Wang, Luan; Zhang, Chunxi; Zhao, Jingquan

    2014-09-05

    The high-affinity chloride ion (Cl(-)) is known to play a key role in water oxidation in photosystem II (PSII). Recent crystallographic studies revealed two Cl(-) binding sites in PSII. To examine whether these two Cl(-) ions are correlated to the high-affinity Cl(-), we prepared Cl(-)/Br(-)/I(-)-substituted PSII samples from both higher plants and cyanobacteria by using two different protocols: one was the method used in the crystallographic study (Type 1) and the other was a method developed recently to ensure the efficient replacement of Cl(-) (Type 2). While only minor effects were observed in the Type 1 preparation, efficient Br(-)/I(-)substitution by the Type 2 protocol led to significant changes in the EPR properties of the oxygen-evolving complex (OEC) and the TyrZ, as well as in oxygen-evolving activities. These results are discussed in terms of the binding site of the high-affinity Cl(-) relative to the two Cl(-) ions revealed by the recent X-ray structural data.

  8. Reorganization of substrate waters between the closed and open cubane conformers during the S2 to S3 transition in the oxygen evolving complex.

    PubMed

    Capone, Matteo; Bovi, Daniele; Narzi, Daniele; Guidoni, Leonardo

    2015-10-27

    A crucial step in the mechanism for oxygen evolution in the Photosystem II complex resides in the transition from the S2 state to the S3 state of Kok–Joliot’s cycle, in which an additional water molecule binds to the cluster. On the basis of computational chemistry calculations on Photosystem II models, we propose a reorganization mechanism involving a hydroxyl (W2) and a μ2-oxo bridge (O5) that is able to link the closed cubane S2B intermediate conformer to the S3 open cubane structure. This mechanism can reconcile the apparent conflict between recently reported water exchange and electron paramagnetic resonance experiments, and theoretical studies.

  9. Two-electron reactions S2QB -->S0QB and S3QB -->S1QB are involved in deactivation of higher S states of the oxygen-evolving complex of Photosystem II.

    PubMed

    Antal, Taras K; Sarvikas, Päivi; Tyystjärvi, Esa

    2009-06-03

    The oxygen-evolving complex of Photosystem II cycles through five oxidation states (S(0)-S(4)), and dark incubation leads to 25% S(0) and 75% S(1). This distribution cannot be reached with charge recombination reactions between the higher S states and the electron acceptor Q(B)(-). We measured flash-induced oxygen evolution to understand how S(3) and S(2) are converted to lower S states when the electron required to reduce the manganese cluster does not come from Q(B)(-). Thylakoid samples preconditioned to make the concentration of the S(1) state 100% and to oxidize tyrosine Y(D) were illuminated by one or two laser preflashes, and flash-induced oxygen evolution sequences were recorded at various time intervals after the preflashes. The distribution of the S states was calculated from the flash-induced oxygen evolution pattern using an extended Kok model. The results suggest that S(2) and S(3) are converted to lower S states via recombination from S(2)Q(B)(-) and S(3)Q(B)(-) and by a slow change of the state of oxygen-evolving complex from S(3) and S(2) to S(1) and S(0) in reactions with unspecified electron donors. The slow pathway appears to contain two-electron routes, S(2)Q(B) -->S(0)Q(B), and S(3)Q(B) -->S(1)Q(B). The two-electron reactions dominate in intact thylakoid preparations in the absence of chemical additives. The two-electron reaction was replaced by a one-electron-per-step pathway, S(3)Q(B) -->S(2)Q(B) -->S(1)Q(B) in PS II-enriched membrane fragments and in thylakoids measured in the presence of artificial electron acceptors. A catalase effect suggested that H(2)O(2) acts as an electron donor for the reaction S(2)Q(B) -->S(0)Q(B) but added H(2)O(2) did not enhance this reaction.

  10. Toward models for the full oxygen-evolving complex of photosystem II by ligand coordination to lower the symmetry of the Mn3CaO4 cubane: demonstration that electronic effects facilitate binding of a fifth metal.

    PubMed

    Kanady, Jacob S; Lin, Po-Heng; Carsch, Kurtis M; Nielsen, Robert J; Takase, Michael K; Goddard, William A; Agapie, Theodor

    2014-10-15

    Synthetic model compounds have been targeted to benchmark and better understand the electronic structure, geometry, spectroscopy, and reactivity of the oxygen-evolving complex (OEC) of photosystem II, a low-symmetry Mn4CaOn cluster. Herein, low-symmetry Mn(IV)3GdO4 and Mn(IV)3CaO4 cubanes are synthesized in a rational, stepwise fashion through desymmetrization by ligand substitution, causing significant cubane distortions. As a result of increased electron richness and desymmetrization, a specific μ3-oxo moiety of the Mn3CaO4 unit becomes more basic allowing for selective protonation. Coordination of a fifth metal ion, Ag(+), to the same site gives a Mn3CaAgO4 cluster that models the topology of the OEC by displaying both a cubane motif and a "dangler" transition metal. The present synthetic strategy provides a rational roadmap for accessing more accurate models of the biological catalyst.

  11. Large-scale QM/MM calculations of the CaMn4O5 cluster in the S3 state of the oxygen evolving complex of photosystem II. Comparison between water-inserted and no water-inserted structures.

    PubMed

    Shoji, Mitsuo; Isobe, Hiroshi; Nakajima, Takahito; Shigeta, Yasuteru; Suga, Michihiro; Akita, Fusamichi; Shen, Jian-Ren; Yamaguchi, Kizashi

    2017-03-09

    Large-scale QM/MM calculations were performed to elucidate an optimized geometrical structure of a CaMn4O5 cluster with and without water insertion in the S3 state of the oxygen evolving complex (OEC) of photosystem II (PSII). The left (L)-opened structure was found to be stable under the assumption of no hydroxide anion insertion in the S3 state, whereas the right (R)-opened structure became more stable if one water molecule is inserted to the Mn4Ca cluster. The optimized Mna(4)-Mnd(1) distance determined by QM/MM was about 5.0 Å for the S3 structure without an inserted hydroxide anion, but this is elongated by 0.2-0.3 Å after insertion. These computational results are discussed in relation to the possible mechanisms of O-O bond formation in water oxidation by the OEC of PSII.

  12. Large-scale QM/MM calculations of the CaMn4O5 cluster in the oxygen-evolving complex of photosystem II: Comparisons with EXAFS structures

    NASA Astrophysics Data System (ADS)

    Shoji, Mitsuo; Isobe, Hiroshi; Nakajima, Takahito; Yamaguchi, Kizashi

    2016-08-01

    Large-scale QM/MM calculations including hydrogen-bonding networks in the oxygen evolving complex (OEC) of photosystem II (PSII) were performed to elucidate the geometric structures of the CaMn4O5 cluster in the key catalytic states (Si (i = 0-3)). The optimized Mn-Mn, Ca-Mn and Mn-O distances by the large-scale QM/MM starting from the high-resolution XRD structure were consistent with those of the EXAFS experiments in the dark stable S1 state by the Berkeley and Berlin groups. The optimized geometrical parameters for other Si (i = 0, 2, 3) states were also consistent with those of EXAFS, indicating the importance of the large-scale QM/MM calculations for the PSII-OEC.

  13. In-Situ Generation of Oxide Nanowire Arrays from AgCuZn Alloy Sulfide with Enhanced Electrochemical Oxygen-Evolving Performance.

    PubMed

    Xie, Minghao; Ai, Shiqi; Yang, Jian; Yang, Yudi; Chen, Yihan; Jin, Yong

    2015-08-12

    In this study, AgCuZn sulfide is fabricated on the surface of AgCuZn alloys by hydrothermal sulfuration. This ternary metal sulfide is equipped with enhanced activity toward oxygen evolution reaction (OER) in an alkaline electrolyte. Through comparison of the alloys with diverse compositions, we find out the best electrochemical property of a particular alloy sulfide forming on a AgCuZn substrate (Ag:Cu:Zn=43:49:8). The alloy sulfide exhibits an onset overpotential (η) of 0.27 V with a Tafel slope of 95±2 mV dec(-1) and a current density of 130 mA cm(-2) at η of 0.57 V. Moreover, the obtained AgCuZn sulfide displays excellent stability, where the current density can increase to 130% of the initial value after a water electrolysis test for 100,000 s (27.7 h). Through investigating the electrode before and after the electrocatalysis, we find a remarkable activated process during which self-supported copper-silver oxide nanowire (CuO-Ag2O NW) arrays in situ form on the surface of the electrode. This work provides a feasible strategy for synthesis of high performance nonprecious metal electrocatalysts for water splitting.

  14. Hierarchically porous Co3O4 architectures with honeycomb-like structures for efficient oxygen generation from electrochemical water splitting

    NASA Astrophysics Data System (ADS)

    Li, Lili; Tian, Tian; Jiang, Jing; Ai, Lunhong

    2015-10-01

    The development of efficient and cheap anode materials for the utilization in the oxygen evolution reaction (OER) is essential for energy-conversion technologies. In this study, hierarchically porous Co3O4 architectures with honeycomb-like structures are synthesized by employing cobalt-based zeolitic imidazolate framework (ZIF-67-Co) as metal source and sacrificial template. After a simple one-step calcination process, the ZIF-67-Co precursor can be chemically transformed into the Co3O4 architectures with abundant porosity and oxygen vacancy. These easily obtained and earth-abundant Co3O4 architectures present high performance toward the electrochemical water splitting for evolving molecular oxygen, affording a small OER onset potential, large anodic current and long-term durability in 0.1 M KOH solution, which are comparable to the electroactive noble- and transition-metal oxygen evolution catalysts previously reported. These merits suggest that the ZIF-derived Co3O4 architectures are promising electrocatalysts for OER from water splitting.

  15. Cyclic Axial-Torsional Deformation Behavior of a Cobalt-Base Superalloy

    NASA Technical Reports Server (NTRS)

    Bonacuse, Peter J.; Kalluri, Sreeramesh

    1995-01-01

    The cyclic, high-temperature deformation behavior of a wrought cobalt-base super-alloy, Haynes 188, is investigated under combined axial and torsional loads. This is accomplished through the examination of hysteresis loops generated from a biaxial fatigue test program. A high-temperature axial, torsional, and combined axial-torsional fatigue database has been generated on Haynes 188 at 760 C. Cyclic loading tests have been conducted on uniform gage section tubular specimens in a servohydraulic axial-torsional test rig. Test control and data acquisition were accomplished with a minicomputer. The fatigue behavior of Haynes 188 at 760 C under axial, torsional, and combined axial-torsional loads and the monotonic and cyclic deformation behaviors under axial and torsional loads have been previously reported. In this paper, the cyclic hardening characteristics and typical hysteresis loops in the axial stress versus axial strain, shear stress ,versus engineering shear strain, axial strain versus engineering shear strain. and axial stress versus shear stress spaces are presented for cyclic in-phase and out-of-phase axial-torsional tests. For in-phase tests, three different values of the proportionality constant lambda (the ratio of engineering shear strain amplitude to axial strain amplitude, are examined, viz. 0.86, 1.73, and 3.46. In the out-of-phase tests, three different values of the phase angle, phi (between the axial and engineering shear strain waveforms), are studied, viz., 30, 60, and 90 degrees with lambda equals 1.73. The cyclic hardening behaviors of all the tests conducted on Haynes 188 at 760 C are evaluated using the von Mises equivalent stress-strain and the maximum shear stress-maximum engineering shear strain (Tresca) curves. Comparisons are also made between the hardening behaviors of cyclic axial, torsional, and combined in-phase (lambda = 1.73 and phi = 0) and out-of-phase (lambda = 1.73 and phi = 90') axial-torsional fatigue tests. These comparisons

  16. An Assessment of Cumulative Axial and Torsional Fatigue in a Cobalt-Base Superalloy

    NASA Technical Reports Server (NTRS)

    Kalluri, Sreeramesh; Bonacuse, Peter J.

    2010-01-01

    Cumulative fatigue under axial and torsional loading conditions can include both load-order (higMow and low/high) as well as load-type sequence (axial/torsional and torsional/axial) effects. Previously reported experimental studies on a cobalt-base superalloy, Haynes 188 at 538 C, addressed these effects. These studies characterized the cumulative axial and torsional fatigue behavior under high amplitude followed by low amplitude (Kalluri, S. and Bonacuse, P. J., "Cumulative Axial and Torsional Fatigue: An Investigation of Load-Type Sequance Effects," in Multiaxial Fatigue and Deformation: Testing and Prediction, ASTM STP 1387, S. Kalluri, and P. J. Bonacuse, Eds., American Society for Testing and Materials, West Conshohocken, PA, 2000, pp. 281-301) and low amplitude followed by high amplitude (Bonacuse, P. and Kalluri, S. "Sequenced Axial and Torsional Cumulative Fatigue: Low Amplitude Followed by High Amplitude Loading," Biaxial/Multiaxial Fatigue and Fracture, ESIS Publication 31, A. Carpinteri, M. De Freitas, and A. Spagnoli, Eds., Elsevier, New York, 2003, pp. 165-182) conditions. In both studies, experiments with the following four load-type sequences were performed: (a) axial/axial, (b) torsional/torsional, (c) axial/torsional, and (d) torsional/axial. In this paper, the cumulative axial and torsional fatigue data generated in the two previous studies are combined to generate a comprehensive cumulative fatigue database on both the load-order and load-type sequence effects. This comprehensive database is used to examine applicability of the Palmgren-langer-Miner linear damage rule and a nonlinear damage curve approach for Haynes 188 subjected to the load-order and load-type sequencing described above. Summations of life fractions from the experiments are compared to the predictions from both the linear and nonlinear cumulative fatigue damage approaches. The significance of load-order versus load-type sequence effects for axial and torsional loading conditions

  17. Modelling hourly dissolved oxygen concentration (DO) using dynamic evolving neural-fuzzy inference system (DENFIS)-based approach: case study of Klamath River at Miller Island Boat Ramp, OR, USA.

    PubMed

    Heddam, Salim

    2014-01-01

    In this study, we present application of an artificial intelligence (AI) technique model called dynamic evolving neural-fuzzy inference system (DENFIS) based on an evolving clustering method (ECM), for modelling dissolved oxygen concentration in a river. To demonstrate the forecasting capability of DENFIS, a one year period from 1 January 2009 to 30 December 2009, of hourly experimental water quality data collected by the United States Geological Survey (USGS Station No: 420853121505500) station at Klamath River at Miller Island Boat Ramp, OR, USA, were used for model development. Two DENFIS-based models are presented and compared. The two DENFIS systems are: (1) offline-based system named DENFIS-OF, and (2) online-based system, named DENFIS-ON. The input variables used for the two models are water pH, temperature, specific conductance, and sensor depth. The performances of the models are evaluated using root mean square errors (RMSE), mean absolute error (MAE), Willmott index of agreement (d) and correlation coefficient (CC) statistics. The lowest root mean square error and highest correlation coefficient values were obtained with the DENFIS-ON method. The results obtained with DENFIS models are compared with linear (multiple linear regression, MLR) and nonlinear (multi-layer perceptron neural networks, MLPNN) methods. This study demonstrates that DENFIS-ON investigated herein outperforms all the proposed techniques for DO modelling.

  18. THE MASS-LOSS RETURN FROM EVOLVED STARS TO THE LARGE MAGELLANIC CLOUD. II. DUST PROPERTIES FOR OXYGEN-RICH ASYMPTOTIC GIANT BRANCH STARS

    SciTech Connect

    Sargent, Benjamin A.; Meixner, M.; Gordon, Karl D.; Srinivasan, S.; Kemper, F.; Woods, Paul M.; Tielens, A. G. G. M.; Speck, A. K.; Matsuura, M.; Bernard, J.-Ph.; Hony, S.; Marengo, M.; Sloan, G. C.

    2010-06-10

    We model multi-wavelength broadband UBVIJHK{sub s} and Spitzer IRAC and MIPS photometry and Infrared Spectrograph spectra from the SAGE and SAGE-Spectroscopy observing programs of two oxygen-rich asymptotic giant branch (O-rich AGB) stars in the Large Magellanic Cloud (LMC) using radiative transfer (RT) models of dust shells around stars. We chose a star from each of the bright and faint O-rich AGB populations found by earlier studies of the SAGE sample in order to derive a baseline set of dust properties to be used in the construction of an extensive grid of RT models of the O-rich AGB stars found in the SAGE surveys. From the bright O-rich AGB population, we chose HV 5715, and from the faint O-rich AGB population we chose SSTISAGE1C J052206.92-715017.6 (SSTSAGE052206). We found the complex indices of refraction of oxygen-deficient silicates from Ossenkopf et al. and a power law with exponential decay grain size distribution like what Kim et al. used but with {gamma} of -3.5, a {sub min} of 0.01 {mu}m, and a {sub 0} of 0.1 {mu}m to be reasonable dust properties for these models. There is a slight indication that the dust around the faint O-rich AGB may be more silica-rich than that around the bright O-rich AGB. Simple models of gas emission suggest a relatively extended gas envelope for the faint O-rich AGB star modeled, consistent with the relatively large dust shell inner radius for the same model. Our models of the data require the luminosity of SSTSAGE052206 and HV 5715 to be {approx}5100 L {sub sun} and {approx}36,000 L {sub sun}, respectively. This, combined with the stellar effective temperatures of 3700 K and 3500 K, respectively, that we find best fit the optical and near-infrared data, suggests stellar masses of {approx}3 M {sub sun} and {approx}7 M {sub sun}. This, in turn, suggests that HV 5715 is undergoing hot-bottom burning and that SSTSAGE052206 is not. Our models of SSTSAGE052206 and HV 5715 require dust shells of inner radius {approx}17 and

  19. Effect of autoclave heat treatments on the mechanical properties of the prealloyed powder cobalt-base alloy HS-31

    NASA Technical Reports Server (NTRS)

    Freche, J. C.; Ashbrook, R. L.

    1973-01-01

    The cobalt-base alloy HS-31 was atomized into powder and then consolidated by extrusion or by hot isostatic pressing (HIP) in an autoclave over a range of temperatures spanning the solidus, approximately 2340 F. Extrusions were subsequently autoclaved at the same conditions. Extrusions autoclaved at 2420 F had a life of 300 hours at 1200 F and 30 hours at 1800 F at stresses that result in a 10-hour life with cast HS-31. Superior stress rupture lives of autoclaved material are probably related to the solidification structure at the grain boundaries as well as to the increased grain size.

  20. Photodamage of a Mn(III/IV)-oxo mixed-valence compound and photosystem II: evidence that a high-valent manganese species is responsible for UV-induced photodamage of the oxygen-evolving complex in photosystem II.

    PubMed

    Wei, Zi; Cady, Clyde W; Brudvig, Gary W; Hou, Harvey J M

    2011-01-01

    The Mn cluster in photosystem II (PS II) is believed to play an important role in the UV photoinhibition of green plants, but the mechanism is still not clear at a molecular level. In this work, the photochemical stability of [Mn(III)(O)(2)Mn(IV)(H(2)O)(2)(Terpy)(2)](NO(3))(3) (Terpy=2,2':6',2''-terpyridine), designated as Mn-oxo mixed-valence dimer, a well characterized functional model of the oxygen-evolving complex in PS II, was examined in aqueous solution by exposing the complex to excess light irradiation at six different wavelengths in the range of 250 to 700 nm. The photodamage of the Mn-oxo mixed-valence dimer was confirmed by the decrease of its oxygen-evolution activity measured in the presence of the chemical oxidant oxone. Ultraviolet light irradiation induced a new absorption peak at around 400-440 nm of the Mn-oxo mixed-valence dimer. Visible light did not have the same effect on the Mn-oxo mixed-valence dimer. We speculate that the spectral change may be caused by conversion of the Mn(III)O(2)Mn(IV) dimer into a new structure--Mn(IV)O(2)Mn(IV). In the processes, the appearance of a 514 nm fluorescence peak was observed in the solution and may be linked to the hydration or protonation of Terpy ligand in the Mn-oxo dimer. In comparing the response of the PS II functional model compound and the PS II complex to excess light radiation, our results support the idea that UV photoinhibition is triggered at the Mn(4)Ca center of the oxygen-evolution complex in PS II by forming a modified structure, possibly a Mn(IV) species, and that the reaction of Mn ions is likely the initial step.

  1. Thermodynamic Considerations of Contamination by Alloying Elements of Remelted End-of-Life Nickel- and Cobalt-Based Superalloys

    NASA Astrophysics Data System (ADS)

    Lu, Xin; Matsubae, Kazuyo; Nakajima, Kenichi; Nakamura, Shinichiro; Nagasaka, Tetsuya

    2016-06-01

    Cobalt and nickel are high-value commodity metals and are mostly used in the form of highly alloyed materials. The alloying elements used may cause contamination problems during recycling. To ensure maximum resource efficiency, an understanding of the removability of these alloying elements and the controllability of some of the primary alloying elements is essential with respect to the recycling of end-of-life (EoL) nickel- and cobalt-based superalloys by remelting. In this study, the distribution behaviors of approximately 30 elements that are usually present in EoL nickel- and cobalt-based superalloys in the solvent metal (nickel, cobalt, or nickel-cobalt alloy), oxide slag, and gas phases during the remelting were quantitatively evaluated using a thermodynamic approach. The results showed that most of the alloying elements can be removed either in the slag phase or into the gas phase. However, the removal of copper, tin, arsenic, and antimony by remelting is difficult, and they remain as tramp elements during the recycling. On the other hand, the distribution tendencies of iron, molybdenum, and tungsten can be controlled by changing the remelting conditions. To increase the resource efficiency of recycling, preventing contamination by the tramp elements and identifying the alloying compositions of EoL superalloys are significantly essential, which will require the development of efficient prior alloy-sorting systems and advanced separation technologies.

  2. Regolith Evolved Gas Analyzer

    NASA Technical Reports Server (NTRS)

    Hoffman, John H.; Hedgecock, Jud; Nienaber, Terry; Cooper, Bonnie; Allen, Carlton; Ming, Doug

    2000-01-01

    The Regolith Evolved Gas Analyzer (REGA) is a high-temperature furnace and mass spectrometer instrument for determining the mineralogical composition and reactivity of soil samples. REGA provides key mineralogical and reactivity data that is needed to understand the soil chemistry of an asteroid, which then aids in determining in-situ which materials should be selected for return to earth. REGA is capable of conducting a number of direct soil measurements that are unique to this instrument. These experimental measurements include: (1) Mass spectrum analysis of evolved gases from soil samples as they are heated from ambient temperature to 900 C; and (2) Identification of liberated chemicals, e.g., water, oxygen, sulfur, chlorine, and fluorine. REGA would be placed on the surface of a near earth asteroid. It is an autonomous instrument that is controlled from earth but does the analysis of regolith materials automatically. The REGA instrument consists of four primary components: (1) a flight-proven mass spectrometer, (2) a high-temperature furnace, (3) a soil handling system, and (4) a microcontroller. An external arm containing a scoop or drill gathers regolith samples. A sample is placed in the inlet orifice where the finest-grained particles are sifted into a metering volume and subsequently moved into a crucible. A movable arm then places the crucible in the furnace. The furnace is closed, thereby sealing the inner volume to collect the evolved gases for analysis. Owing to the very low g forces on an asteroid compared to Mars or the moon, the sample must be moved from inlet to crucible by mechanical means rather than by gravity. As the soil sample is heated through a programmed pattern, the gases evolved at each temperature are passed through a transfer tube to the mass spectrometer for analysis and identification. Return data from the instrument will lead to new insights and discoveries including: (1) Identification of the molecular masses of all of the gases

  3. Thermal cooling effects in the microstructure and properties of cast cobalt-base biomedical alloys

    NASA Astrophysics Data System (ADS)

    Vega Valer, Vladimir

    Joint replacement prosthesis is widely used in the biomedical field to provide a solution for dysfunctional human body joints. The demand for orthopedic knee and hip implants motivate scientists and manufacturers to develop novel materials or to increase the life of service and efficiency of current materials. Cobalt-base alloys have been investigated by various researchers for biomedical implantations. When these alloys contain Chromium, Molybdenum, and Carbon, they exhibit good tribological and mechanical properties, as well as excellent biocompatibility and corrosion resistance. In this study, the microstructure of cast Co-Cr-Mo-C alloy is purposely modified by inducing rapid solidification through fusion welding processes and solution annealing heat treatment (quenched in water at room temperature. In particular the effect of high cooling rates on the athermal phase transformation FCC(gamma)↔HCP(epsilon) on the alloy hardness and corrosion resistance is investigated. The Co-alloy microstructures were characterized using metallography and microscopy techniques. It was found that the as cast sample typically dendritic with dendritic grain sizes of approximately 150 microm and containing Cr-rich coarse carbide precipitates along the interdendritic boundaries. Solution annealing gives rise to a refined microstructure with grain size of 30 microm, common among Co-Cr-Mo alloys after heat treating. Alternatively, an ultrafine grain structure (between 2 and 10 microm) was developed in the fusion zone for specimens melted using Laser and TIG welding methods. When laser surface modification treatments were implemented, the developed solidification microstructure shifted from dendritic to a fine cellular morphology, with possible nanoscale carbide precipitates along the cellular boundaries. In turn, the solidified regions exhibited high hardness values (461.5HV), which exceeds by almost 110 points from the alloy in the as-cast condition. The amount of developed athermal

  4. FTIR spectra and normal-mode analysis of a tetranuclear Manganese adamantane-like complex in two electrochemically prepared oxidation states: Relevance to the oxygen-evolving complex of Photosystem II

    SciTech Connect

    Visser, Hendrik; Dube, Christopher E.; Armstrong, William H.; Sauer, Kenneth; Yachandra, Vittal K.

    2002-03-19

    The IR spectra and normal-mode analysis of the adamantane-like compound [Mn4O6(bpea)4]n+ in two oxidation states, MnIV4 and MnIIIMnIV3, that are relevant to the oxygen-evolving complex of photosystem II are presented. Mn-O vibrational modes are identified with isotopic exchange, 16O->18O, of the mono-(mu)-oxo bridging atoms in the complex. IR spectra of the MnIIIMnIV3 species are obtained by electrochemical reduction of the MnIV4 species using a spectroelectrochemical cell, based on attenuated total reflection [Visser et al. Anal Chem 2001, 73, 4374-4378]. A novel method of subtraction is used to reduce background contributions from solvent and ligand modes, and the difference and double-difference spectra are used in identifying Mn-O bridging modes that are sensitive to oxidation state change. Two strong IR bands are observed for the MnIV4 species at 745 and 707 cm-1 and a weaker band at 510 cm-1. Upon reduction, the MnIIIMnIV3 species exhibits two strong IR bands at 745 and 680 cm-1, and several weaker bands are observed in the 510 - 425 cm-1 range. A normal mode analysis is performed to assign all the relevant bridging modes in the oxidized MnIV4 and reduced MnIIIMnIV3 species. The calculated force constants for the MnIV4 species are = 3.15 mdynAngstrom, = 0.55 mdyn/Angstrom, and = 0.20 mdyn/Angstrom. The force constants for the MnIIIMnIV3 species are = 3.10 mdyn/Angstrom, = 2.45 mdyn/Angstrom, = 0.40, and = 0.15 mdyn/Angstrom. This study provides insights for the identification of Mn-O modes in the IR spectra of the photosynthetic oxygen-evolving complex during its catalytic cycle.

  5. FTIR Spectra and Normal-Mode Analysis of a Tetranuclear Manganese Adamantane-like Complex in Two Electrochemically Prepared Oxidation States: Relevance to the Oxygen-Evolving Complex of Photosystem II

    PubMed Central

    Visser, Hendrik; Dubé, Christopher E.; Armstrong, William H.; Sauer, Kenneth; Yachandra, Vittal K.

    2014-01-01

    The IR spectra and normal-mode analysis of the adamantane-like compound [Mn4O6(bpea)4]n+ (bpea = N,N-bis(2-pyridylmethyl)ethylamine) in two oxidation states, MnIV4 and MnIIIMnIV3, that are relevant to the oxygen-evolving complex of photosystem II are presented. Mn–O vibrational modes are identified with isotopic exchange, 16O→18O, of the mono-μ-oxo bridging atoms in the complex. IR spectra of the MnIIIMnIV3 species are obtained by electrochemical reduction of the MnIV4 species using a spectroelectrochemical cell, based on attenuated total reflection [Visser, H.; et al. Anal. Chem. 2001, 73, 4374–4378]. A novel method of subtraction is used to reduce background contributions from solvent and ligand modes, and the difference and double-difference spectra are used in identifying Mn–O bridging modes that are sensitive to oxidation state change. Two strong IR bands are observed for the MnIV4 species at 745 and 707 cm−1, and a weaker band is observed at 510 cm−1. Upon reduction, the MnIIIMnIV3 species exhibits two strong IR bands at 745 and 680 cm−1, and several weaker bands are observed in the 510–425 cm−1 range. A normal-mode analysis is performed to assign all the relevant bridging modes in the oxidized MnIV4 and reduced MnIIIMnIV3 species. The calculated force constants for the MnIV4 species are frIV = 3.15 mdyn/Å, frOr = 0.55 mdyn/Å, and frMnr = 0.20 mdyn/Å. The force constants for the MnIIIMnIV3 species are frIV = 3.10 mdyn/Å, frIII = 2.45 mdyn/Å, frOr = 0.40 mdyn/Å, and frMnr = 0.15 mdyn/Å. This study provides insights for the identification of Mn–O modes in the IR spectra of the photosynthetic oxygen-evolving complex during its catalytic cycle. PMID:12224948

  6. FTIR spectra and normal-mode analysis of a tetranuclear manganese adamantane-like complex in two electrochemically prepared oxidation states: relevance to the oxygen-evolving complex of photosystem II.

    PubMed

    Visser, Hendrik; Dubé, Christopher E; Armstrong, William H; Sauer, Kenneth; Yachandra, Vittal K

    2002-09-18

    The IR spectra and normal-mode analysis of the adamantane-like compound [Mn(4)O(6)(bpea)(4)](n+) (bpea = N,N-bis(2-pyridylmethyl)ethylamine) in two oxidation states, Mn(IV)(4) and Mn(III)Mn(IV)(3), that are relevant to the oxygen-evolving complex of photosystem II are presented. Mn-O vibrational modes are identified with isotopic exchange, (16)O-->(18)O, of the mono-micro-oxo bridging atoms in the complex. IR spectra of the Mn(III)Mn(IV)(3) species are obtained by electrochemical reduction of the Mn(IV)(4) species using a spectroelectrochemical cell, based on attenuated total reflection [Visser, H.; et al. Anal. Chem. 2001, 73, 4374-4378]. A novel method of subtraction is used to reduce background contributions from solvent and ligand modes, and the difference and double-difference spectra are used in identifying Mn-O bridging modes that are sensitive to oxidation state change. Two strong IR bands are observed for the Mn(IV)(4) species at 745 and 707 cm(-1), and a weaker band is observed at 510 cm(-1). Upon reduction, the Mn(III)Mn(IV)(3) species exhibits two strong IR bands at 745 and 680 cm(-1), and several weaker bands are observed in the 510-425 cm(-1) range. A normal-mode analysis is performed to assign all the relevant bridging modes in the oxidized Mn(IV)(4) and reduced Mn(III)Mn(IV)(3) species. The calculated force constants for the Mn(IV)(4) species are f(r)(IV)= 3.15 mdyn/A, f(rOr) = 0.55 mdyn/A, and f(rMnr) = 0.20 mdyn/A. The force constants for the Mn(III)Mn(IV)(3) species are f(r)(IV)= 3.10 mdyn/A, f(r)(III)= 2.45 mdyn/A, f(rOr) = 0.40 mdyn/A, and f(rMnr) = 0.15 mdyn/A. This study provides insights for the identification of Mn-O modes in the IR spectra of the photosynthetic oxygen-evolving complex during its catalytic cycle.

  7. Solid-State 55Mn NMR Spectroscopy of bis(μ-oxo)dimanganese(IV) [Mn2O2(salpn)2], a Model for the Oxygen Evolving Complex in Photosystem II

    SciTech Connect

    Ellis, Paul D.; Sears, Jesse A.; Yang, Ping; Dupuis, Michel; Boron, Ted; Pecoraro, Vince; Stich, Troy; Britt, R. David; Lipton, Andrew S.

    2010-12-01

    Given the obvious global energy needs, it has become imperative to develop a catalytic process for converting water to molecular oxygen and protons. Many have sought to understand the details of photosynthesis and in particular the water splitting reaction to help in the development of the appropriate catalysis.1-3 While the scientific community has made great strides towards this goal, it has fallen short at the critical stage of the determination of the structure associated with the oxygen evolving complex (OEC) within photosystem II (PSII).4,5 Despite the existence of x-ray structures of PSII,6-8 the best data we have for the structure of the OEC comes from models derived from EPR and EXAFS measurements.9-14 This experimental situation has led to collaborations with theoreticians to enable the development of models for the structure of the OEC where the experimental observables (EXAFS and magnetic resonance parameters) serve as constraints to the theoretical calculations. Of particular interest to this study is the observation of the S1 state of the Kok cycle15 where the core of the OEC can be described as a tetranuclear manganese cluster composed of Mn4OxCa. The simplest model for the OEC can be thought of as two Mn-pairs and a Ca2+ where each Mn-pair is antiferromagnetically coupled to its partner. We utilize the term "pair" to describe the Mn atoms within the OEC with the same oxidation state, which for the S1 state is (Mn2(III, III) and Mn2(IV, IV)).16 It is unclear as to the degree of interaction between the pairs as well as the role of the Ca2+. At cryogenic temperatures the S1 state of the OEC is diamagnetic and in principle amenable to solid-state NMR experiments.

  8. Computational insights on crystal structures of the oxygen-evolving complex of photosystem II with either Ca²⁺ or Ca²⁺ substituted by Sr²⁺

    DOE PAGES

    Vogt, Leslie; Ertem, Mehmed Z.; Pal, Rhitankar; ...

    2015-01-15

    The oxygen-evolving complex of photosystem II can function with either Ca²⁺ or Sr²⁺ as the heterocation, but the reason for differing turnover rates remains unresolved despite reported X-ray crystal structures for both forms. Using quantum mechanics/molecular mechanics (QM/MM) calculations, we optimize structures with each cation in both the resting state (S₁) and in a series of reduced states (S₀, S₋₁, and S-₂). Through comparison with experimental data, we determine that X-ray crystal structures with either Ca²⁺ or Sr²⁺ are most consistent with the S-₂ state, Mn₄[III,III,III,II] with O4 and O5 protonated. As expected, the QM/MM models show that Ca²⁺/Sr²⁺ substitutionmore » results in elongation of the heterocation bonds and displaces terminal waters W3 and W4. The optimized structures also show that hydrogen-bonded W5 is displaced in all S states with Sr²⁺ as the heterocation, suggesting that this water may play a critical role during water oxidation.« less

  9. Computational insights on crystal structures of the oxygen-evolving complex of photosystem II with either Ca²⁺ or Ca²⁺ substituted by Sr²⁺

    SciTech Connect

    Vogt, Leslie; Ertem, Mehmed Z.; Pal, Rhitankar; Brudvig, Gary W.; Batista, Victor S.

    2015-01-15

    The oxygen-evolving complex of photosystem II can function with either Ca²⁺ or Sr²⁺ as the heterocation, but the reason for differing turnover rates remains unresolved despite reported X-ray crystal structures for both forms. Using quantum mechanics/molecular mechanics (QM/MM) calculations, we optimize structures with each cation in both the resting state (S₁) and in a series of reduced states (S₀, S₋₁, and S-₂). Through comparison with experimental data, we determine that X-ray crystal structures with either Ca²⁺ or Sr²⁺ are most consistent with the S-₂ state, Mn₄[III,III,III,II] with O4 and O5 protonated. As expected, the QM/MM models show that Ca²⁺/Sr²⁺ substitution results in elongation of the heterocation bonds and displaces terminal waters W3 and W4. The optimized structures also show that hydrogen-bonded W5 is displaced in all S states with Sr²⁺ as the heterocation, suggesting that this water may play a critical role during water oxidation.

  10. Probing the topography of the photosystem II oxygen evolving complex: PsbO is required for efficient calcium protection of the manganese cluster against dark-inhibition by an artificial reductant.

    PubMed

    Popelkova, Hana; Boswell, Nicholas; Yocum, Charles

    2011-12-01

    The photosystem II (PSII) manganese-stabilizing protein (PsbO) is known to be the essential PSII extrinsic subunit for stabilization and retention of the Mn and Cl(-) cofactors in the oxygen evolving complex (OEC) of PSII, but its function relative to Ca(2+) is less clear. To obtain a better insight into the relationship, if any, between PsbO and Ca(2+) binding in the OEC, samples with altered PsbO-PSII binding properties were probed for their potential to promote the ability of Ca(2+) to protect the Mn cluster against dark-inhibition by an exogenous artificial reductant, N,N-dimethylhydroxylamine. In the absence of the PsbP and PsbQ extrinsic subunits, Ca(2+) and its surrogates (Sr(2+), Cd(2+)) shield Mn atoms from inhibitory reduction (Kuntzleman et al., Phys Chem Chem Phys 6:4897, 2004). The results presented here show that PsbO exhibits a positive effect on Ca(2+) binding in the OEC by facilitating the ability of the metal to prevent inhibition of activity by the reductant. The data presented here suggest that PsbO may have a role in the formation of the OEC-associated Ca(2+) binding site by promoting the equilibrium between bound and free Ca(2+) that favors the bound metal.

  11. Evolvable synthetic neural system

    NASA Technical Reports Server (NTRS)

    Curtis, Steven A. (Inventor)

    2009-01-01

    An evolvable synthetic neural system includes an evolvable neural interface operably coupled to at least one neural basis function. Each neural basis function includes an evolvable neural interface operably coupled to a heuristic neural system to perform high-level functions and an autonomic neural system to perform low-level functions. In some embodiments, the evolvable synthetic neural system is operably coupled to one or more evolvable synthetic neural systems in a hierarchy.

  12. Removal of Ca(2+) from the Oxygen-Evolving Complex in Photosystem II Has Minimal Effect on the Mn4O5 Core Structure: A Polarized Mn X-ray Absorption Spectroscopy Study.

    PubMed

    Lohmiller, Thomas; Shelby, Megan L; Long, Xi; Yachandra, Vittal K; Yano, Junko

    2015-10-29

    Ca(2+)-depleted and Ca(2+)-reconstituted spinach photosystem II was studied using polarized X-ray absorption spectroscopy of oriented PS II preparations to investigate the structural and functional role of the Ca(2+) ion in the Mn4O5Ca cluster of the oxygen-evolving complex (OEC). Samples were prepared by low pH/citrate treatment as one-dimensionally ordered membrane layers and poised in the Ca(2+)-depleted S1 (S1') and S2 (S2') states, the S2'YZ(•) state, at which point the catalytic cycle of water oxidation is inhibited, and the Ca(2+)-reconstituted S1 state. Polarized Mn K-edge XANES and EXAFS spectra exhibit pronounced dichroism. Polarized EXAFS data of all states of Ca(2+)-depleted PS II investigated show only minor changes in distances and orientations of the Mn-Mn vectors compared to the Ca(2+)-containing OEC, which may be attributed to some loss of rigidity of the core structure. Thus, removal of the Ca(2+) ion does not lead to fundamental distortion or rearrangement of the tetranuclear Mn cluster, which indicates that the Ca(2+) ion in the OEC is not critical for structural maintenance of the cluster, at least in the S1 and S2 states, but fulfills a crucial catalytic function in the mechanism of the water oxidation reaction. On the basis of this structural information, reasons for the inhibitory effect of Ca(2+) removal are discussed, attributing to the Ca(2+) ion a fundamental role in organizing the surrounding (substrate) water framework and in proton-coupled electron transfer to YZ(•) (D1-Tyr161).

  13. Conversion of the g=4.1 EPR signal to the multiline conformation during the S(2) to S(3) transition of the oxygen evolving complex of Photosystem II.

    PubMed

    Chrysina, Maria; Zahariou, Georgia; Ioannidis, Nikolaos; Petrouleas, Vasili

    2010-04-01

    The oxygen evolving complex of Photosystem II undergoes four light-induced oxidation transitions, S(0)-S(1),...,S(3)-(S(4))S(0) during its catalytic cycle. The oxidizing equivalents are stored at a (Mn)(4)Ca cluster, the site of water oxidation. EPR spectroscopy has yielded valuable information on the S states. S(2) shows a notable heterogeneity with two spectral forms; a g=2 (S=1/2) multiline, and a g=4.1 (S=5/2) signal. These oscillate in parallel during the period-four cycle. Cyanobacteria show only the multiline signal, but upon advancement to S(3) they exhibit the same characteristic g=10 (S=3) absorption with plant preparations, implying that this latter signal results from the multiline configuration. The fate of the g=4.1 conformation during advancement to S(3) is accordingly unknown. We searched for light-induced transient changes in the EPR spectra at temperatures below and above the half-inhibition temperature for the S(2) to S(3) transition (ca 230K). We observed that, above about 220K the g=4.1 signal converts to a multiline form prior to advancement to S(3). We cannot exclude that the conversion results from visible-light excitation of the Mn cluster itself. The fact however, that the conversion coincides with the onset of the S(2) to S(3) transition, suggests that it is triggered by the charge-separation process, possibly the oxidation of tyr Z and the accompanying proton relocations. It therefore appears that a configuration of (Mn)(4)Ca with a low-spin ground state advances to S(3).

  14. Density functional calculations of (55)Mn, (14)N and (13)C electron paramagnetic resonance parameters support an energetically feasible model system for the S(2) state of the oxygen-evolving complex of photosystem II.

    PubMed

    Schinzel, Sandra; Schraut, Johannes; Arbuznikov, Alexei V; Siegbahn, Per E M; Kaupp, Martin

    2010-09-10

    Metal and ligand hyperfine couplings of a previously suggested, energetically feasible Mn(4)Ca model cluster (SG2009(-1)) for the S(2) state of the oxygen-evolving complex (OEC) of photosystem II (PSII) have been studied by broken-symmetry density functional methods and compared with other suggested structural and spectroscopic models. This was carried out explicitly for different spin-coupling patterns of the S=1/2 ground state of the Mn(III)(Mn(IV))(3) cluster. By applying spin-projection techniques and a scaling of the manganese hyperfine couplings, computation of the hyperfine and nuclear quadrupole coupling parameters allows a direct evaluation of the proposed models in comparison with data obtained from the simulation of EPR, ENDOR, and ESEEM spectra. The computation of (55)Mn hyperfine couplings (HFCs) for SG2009(-1) gives excellent agreement with experiment. However, at the current level of spin projection, the (55)Mn HFCs do not appear sufficiently accurate to distinguish between different structural models. Yet, of all the models studied, SG2009(-1) is the only one with the Mn(III) site at the Mn(C) center, which is coordinated by histidine (D1-His332). The computed histidine (14)N HFC anisotropy for SG2009(-1) gives much better agreement with ESEEM data than the other models, in which Mn(C) is an Mn(IV) site, thus supporting the validity of the model. The (13)C HFCs of various carboxylates have been compared with (13)C ENDOR data for PSII preparations with (13)C-labelled alanine.

  15. Visible light induction of an electron paramagnetic resonance split signal in Photosystem II in the S(2) state reveals the importance of charges in the oxygen-evolving center during catalysis: a unifying model.

    PubMed

    Sjöholm, Johannes; Styring, Stenbjörn; Havelius, Kajsa G V; Ho, Felix M

    2012-03-13

    Cryogenic illumination of Photosystem II (PSII) can lead to the trapping of the metastable radical Y(Z)(•), the radical form of the redox-active tyrosine residue D1-Tyr161 (known as Y(Z)). Magnetic interaction between this radical and the CaMn(4) cluster of PSII gives rise to so-called split electron paramagnetic resonance (EPR) signals with characteristics that are dependent on the S state. We report here the observation and characterization of a split EPR signal that can be directly induced from PSII centers in the S(2) state through visible light illumination at 10 K. We further show that the induction of this split signal takes place via a Mn-centered mechanism, in the same way as when using near-infrared light illumination [Koulougliotis, D., et al. (2003) Biochemistry 42, 3045-3053]. On the basis of interpretations of these results, and in combination with literature data for other split signals induced under a variety of conditions (temperature and light quality), we propose a unified model for the mechanisms of split signal induction across the four S states (S(0), S(1), S(2), and S(3)). At the heart of this model is the stability or instability of the Y(Z)(•)(D1-His190)(+) pair that would be formed during cryogenic oxidation of Y(Z). Furthermore, the model is closely related to the sequence of transfers of protons and electrons from the CaMn(4) cluster during the S cycle and further demonstrates the utility of the split signals in probing the immediate environment of the oxygen-evolving center in PSII.

  16. Removal of Ca2+ from the Oxygen-Evolving Complex in Photosystem II Has Minimal Effect on the Mn4O5 Core Structure: A Polarized Mn X-ray Absorption Spectroscopy Study

    DOE PAGES

    Lohmiller, Thomas; Shelby, Megan L.; Long, Xi; ...

    2015-05-19

    We studied Ca2+ -depleted and Ca2+ -reconstituted spinach photosystem II using polarized X-ray absorption spectroscopy of oriented PS II preparations to investigate the structural and functional role of the Ca2+ ion in the Mn4O5Ca cluster of the oxygen-evolving complex (OEC). Samples were prepared by low pH/citrate treatment as one-dimensionally ordered membrane layers and poised in the Ca2+ -depleted S1 (S1') and S2 (S2') states, the S2'YZ• state, at which point the catalytic cycle of water oxidation is inhibited, and the Ca2+ -reconstituted S1 state. Polarized Mn K-edge XANES and EXAFS spectra exhibit pronounced dichroism. Polarized EXAFS data of all statesmore » of Ca2+ -depleted PS II investigated show only minor changes in distances and orientations of the Mn-Mn vectors compared to the Ca2+ -containing OEC, which may be attributed to some loss of rigidity of the core structure. Thus, removal of the Ca2+ ion does not lead to fundamental distortion or rearrangement of the tetranuclear Mn cluster, which indicates that the Ca2+ ion in the OEC is not critical for structural maintenance of the cluster, at least in the S1 and S2 states, but fulfills a crucial catalytic function in the mechanism of the water oxidation reaction. On the basis of this structural information, reasons for the inhibitory effect of Ca2+ removal are discussed, attributing to the Ca2+ ion a fundamental role in organizing the surrounding (substrate) water framework and in proton-coupled electron transfer to YZ• (D1-Tyr161).« less

  17. Thermal and evolved gas analyzer

    NASA Technical Reports Server (NTRS)

    Williams, M. S.; Boynton, W. V.; James, R. L.; Verts, W. T.; Bailey, S. H.; Hamara, D. K.

    1998-01-01

    The Thermal and Evolved Gas Analyzer (TEGA) instrument will perform calorimetry and evolved gas analysis on soil samples collected from the Martian surface. TEGA is one of three instruments, along with a robotic arm, that form the Mars Volatile and Climate Survey (MVACS) payload. The other instruments are a stereo surface imager, built by Peter Smith of the University of Arizona and a meteorological station, built by JPL. The MVACS lander will investigate a Martian landing site at approximately 70 deg south latitude. Launch will take place from Kennedy Space Center in January, 1999. The TEGA project started in February, 1996. In the intervening 24 months, a flight instrument concept has been designed, prototyped, built as an engineering model and flight model, and tested. The instrument performs laboratory-quality differential-scanning calorimetry (DSC) over the temperature range of Mars ambient to 1400K. Low-temperature volatiles (water and carbon dioxide ices) and the carbonates will be analyzed in this temperature range. Carbonates melt and evolve carbon dioxide at temperatures above 600 C. Evolved oxygen (down to a concentration of 1 ppm) is detected, and C02 and water vapor and the isotopic variations of C02 and water vapor are detected and their concentrations measured. The isotopic composition provides important tests of the theory of solar system formation.

  18. Efficient hydrogen production from ethanol and glycerol by vapour-phase reforming processes with new cobalt-based catalysts.

    PubMed

    Pereira, Evandro Brum; de la Piscina, Pilar Ramírez; Homs, Narcís

    2011-02-01

    The aim of this study was to investigate biohydrogen production from biofuel-reforming processes using new multi-component bulk-type cobalt-based catalysts. The addition of different components to improve the catalytic performance was studied. Monometallic cobalt catalyst and catalysts containing Ru (ca. 1%) and/or Na (ca. 0.5%) were characterized and tested in the 623-673 K temperature range in ethanol steam reforming (ESR) with a steam/carbon ratio (S/C) of 3. The catalysts showed a high performance for hydrogen production and, except for H(2) and CO(2), only small amounts of by-products were obtained, depending on the temperature and the catalyst used. The catalyst containing both Ru and Na (Co-Ru(Na)) showed the best catalytic behavior in ESR. It operated stably for at least 12 days under cycles of oxidative steam reforming of glycerol/ethanol mixtures (S/C=2) and activation under O(2).

  19. Evidence from FTIR difference spectroscopy that D1-Asp61 influences the water reactions of the oxygen-evolving Mn4CaO5 cluster of photosystem II.

    PubMed

    Debus, Richard J

    2014-05-13

    Understanding the mechanism of photosynthetic water oxidation requires characterizing the reactions of the water molecules that serve as substrate or that otherwise interact with the oxygen-evolving Mn4CaO5 cluster. FTIR difference spectroscopy is a powerful tool for studying the structural changes of hydrogen bonded water molecules. For example, the O-H stretching mode of water molecules having relatively weak hydrogen bonds can be monitored near 3600 cm(-1), the D-O-D bending mode can be monitored near 1210 cm(-1), and highly polarizable networks of hydrogen bonds can be monitored as broad features between 3000 and 2000 cm(-1). The two former regions are practically devoid of overlapping vibrational modes from the protein. In Photosystem II, water oxidation requires a precisely choreographed sequence of proton and electron transfer steps in which proton release is required to prevent the redox potential of the Mn4CaO5 cluster from rising to levels that would prevent its subsequent oxidation. Proton release takes place via one or more proton egress pathways leading from the Mn4CaO5 cluster to the thylakoid lumen. There is growing evidence that D1-D61 is the initial residue of one dominant proton egress pathway. This residue interacts directly with water molecules in the first and second coordination spheres of the Mn4CaO5 cluster. In this study, we explore the influence of D1-D61 on the water reactions accompanying oxygen production by characterizing the FTIR properties of the D1-D61A mutant of the cyanobacterium, Synechocystis sp. PCC 6803. On the basis of mutation-induced changes to the carbonyl stretching region near 1747 cm(-1), we conclude that D1-D61 participates in the same extensive networks of hydrogen bonds that have been identified previously by FTIR studies. On the basis of mutation-induced changes to the weakly hydrogen-bonded O-H stretching region, we conclude that D1-D61 interacts with water molecules that are located near the Cl(-)(1) ion and that

  20. Magnetic and Electrical Characteristics of Cobalt-Based Amorphous Materials and Comparison to a Permalloy Type Polycrystalline Material

    NASA Technical Reports Server (NTRS)

    Wieserman, William R.; Schwarze, Gene E.; Niedra, Janis M.

    2005-01-01

    Magnetic component designers are always looking for improved soft magnetic core materials to increase the efficiency, temperature rating and power density of transformers, motors, generators and alternators, and energy density of inductors. In this paper, we report on the experimental investigation of commercially available cobalt-based amorphous alloys which, in their processing, were subjected to two different types of magnetic field anneals: A longitudinal magnetic field anneal or a transverse magnetic field anneal. The longitudinal field annealed material investigated was Metglas 2714A. The electrical and magnetic characteristics of this material were investigated over the frequency range of 1 to 200 kHz and temperature range of 23 to 150 C for both sine and square wave voltage excitation. The specific core loss was lower for the square than the sine wave voltage excitation for the same maximum flux density, frequency and temperature. The transverse magnetic field annealed core materials include Metglas 2714AF and Vacuumschmelze 6025F. These two materials were experimentally characterized over the frequency range of 10 to 200 kHz for sine wave voltage excitation and 23 C only. A comparison of the 2174A to 2714AF found that 2714AF always had lower specific core loss than 2714A for any given magnetic flux density and frequency and the ratio of specific core loss of 2714A to 2714AF was dependent on both magnetic flux density and frequency. A comparison was also made of the 2714A, 2714AF, and 6025F materials to two different tape thicknesses of the polycrystalline Supermalloy material and the results show that 2714AF and 6025F have the lowest specific core loss at 100 kHz over the magnetic flux density range of 0.1 to 0.4 Tesla.

  1. Analyzing Evolving Social Network 2 (EVOLVE2)

    DTIC Science & Technology

    2015-04-01

    over time, and how changes in topology affect evolution of influence and groups -Understand the impact of dynamics and network flows on the...incorporate time. The research had two major threads: • Understand how networks evolve over time, and how changes in topology affect evolution of...1958 14 Meissner Effect 1958 307 Random-Phase Approximation ... Superconductivity 1959 40 Evidence for Anisotropy of the Superconducting Energy... 1989

  2. Genomic medicine: evolving science, evolving ethics

    PubMed Central

    Soden, Sarah E; Farrow, Emily G; Saunders, Carol J; Lantos, John D

    2012-01-01

    Genomic medicine is rapidly evolving. Next-generation sequencing is changing the diagnostic paradigm by allowing genetic testing to be carried out more quickly, less expensively and with much higher resolution; pushing the envelope on existing moral norms and legal regulations. Early experience with implementation of next-generation sequencing to diagnose rare genetic conditions in symptomatic children suggests ways that genomic medicine might come to be used and some of the ethical issues that arise, impacting test design, patient selection, consent, sequencing analysis and communication of results. The ethical issues that arise from use of new technologies cannot be satisfactorily analyzed until they are understood and they cannot be understood until the technologies are deployed in the real world. PMID:23173007

  3. Investigation of electrodeposited cobalt sulphide counter electrodes and their application in next-generation dye sensitized solar cells featuring organic dyes and cobalt-based redox electrolytes

    NASA Astrophysics Data System (ADS)

    Swami, Sanjay Kumar; Chaturvedi, Neha; Kumar, Anuj; Kapoor, Raman; Dutta, Viresh; Frey, Julien; Moehl, Thomas; Grätzel, Michael; Mathew, Simon; Nazeeruddin, Mohammad Khaja

    2015-02-01

    Cobalt sulphide (CoS) films are potentiodynamically deposited on fluorine-doped tin oxide (FTO) coated glass substrates employing one, three and five sweep cycles (CoS-I, CoS-III and CoS-V respectively). Analysis of the CoS-III film by impedance spectroscopy reveals a lower charge transfer resistance (RCT) than that measured for Pt CE (0.75 Ω cm-2 and 0.85 Ω cm-2, respectively). The CoS films are used as counter electrodes (CE) in dye-sensitized solar cells (DSSCs) featuring the combination of a high absorption coefficient organic dye (C218) and the cobalt-based redox electrolyte [Co(bpy)3]2/3+. DSSCs fabricated with the CoS-III CE yield the highest short-circuit current density (JSC) of 12.84 mA cm-2, open circuit voltage (VOC) of 805 mV and overall power conversion efficiency (PCE) of 6.72% under AM 1.5G illumination (100 mW cm-2). These values are comparable to the performance of an analogous cell fabricated with the Pt CE (PCE = 6.94%). Owing to relative lower cost (due to the inherit earth abundance of Co) and non-toxicity, CoS can be considered as a promising alternative to the more expensive Pt as a CE material for next-generation DSSCs that utilize organic dyes and cobalt-based redox electrolytes.

  4. Bimetallic Cobalt-Based Phosphide Zeolitic Imidazolate Framework: CoP x Phase-Dependent Electrical Conductivity and Hydrogen Atom Adsorption Energy for Efficient Overall Water Splitting

    SciTech Connect

    Song, Junhua; Zhu, Chengzhou; Xu, Bo Z.; Fu, Shaofang; Engelhard, Mark H.; Ye, Ranfeng; Du, Dan; Beckman, Scott P.; Lin, Yuehe

    2016-10-25

    Cobalt-based bimetallic phosphide encapsulated in carbonized zeolitic imadazolate frameworks has been successfully synthesized and showed excellent activities toward both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Density functional theory calculation and electrochemical measurements reveal that the electrical conductivity and electrochemical activity are closely associated with the Co2P/CoP mixed phase behaviors upon Cu metal doping. This relationship is found to be the decisive factor for enhanced electrocatalytic performance. Moreover, the precise control of Cu content in Co-host lattice effectively alters the Gibbs free energy for H* adsorption, which is favorable for facilitating reaction kinetics. Impressively, an optimized performance has been achieved with mild Cu doping in Cu0.3Co2.7P/nitrogen-doped carbon (NC) which exhibits an ultralow overpotential of 0.19 V at 10 mA cm–2 and satisfying stability for OER. Cu0.3Co2.7P/NC also shows excellent HER activity, affording a current density of 10 mA cm–2 at a low overpotential of 0.22 V. In addition, a homemade electrolyzer with Cu0.3Co2.7P/NC paired electrodes shows 60% larger current density than Pt/ RuO2 couple at 1.74 V, along with negligible catalytic deactivation after 50 h operation. The manipulation of electronic structure by controlled incorporation of second metal sheds light on understanding and synthesizing bimetallic transition metal phosphides for electrolysis-based energy conversion.

  5. Methods Evolved by Observation

    ERIC Educational Resources Information Center

    Montessori, Maria

    2016-01-01

    Montessori's idea of the child's nature and the teacher's perceptiveness begins with amazing simplicity, and when she speaks of "methods evolved," she is unveiling a methodological system for observation. She begins with the early childhood explosion into writing, which is a familiar child phenomenon that Montessori has written about…

  6. Self Evolving Modular Network

    NASA Astrophysics Data System (ADS)

    Tokunaga, Kazuhiro; Kawabata, Nobuyuki; Furukawa, Tetsuo

    We propose a novel modular network called the Self-Evolving Modular Network (SEEM). The SEEM has a modular network architecture with a graph structure and these following advantages: (1) new modules are added incrementally to allow the network to adapt in a self-organizing manner, and (2) graph's paths are formed based on the relationships between the models represented by modules. The SEEM is expected to be applicable to evolving functions of an autonomous robot in a self-organizing manner through interaction with the robot's environment and categorizing large-scale information. This paper presents the architecture and an algorithm for the SEEM. Moreover, performance characteristic and effectiveness of the network are shown by simulations using cubic functions and a set of 3D-objects.

  7. Evolvable Neural Software System

    NASA Technical Reports Server (NTRS)

    Curtis, Steven A.

    2009-01-01

    The Evolvable Neural Software System (ENSS) is composed of sets of Neural Basis Functions (NBFs), which can be totally autonomously created and removed according to the changing needs and requirements of the software system. The resulting structure is both hierarchical and self-similar in that a given set of NBFs may have a ruler NBF, which in turn communicates with other sets of NBFs. These sets of NBFs may function as nodes to a ruler node, which are also NBF constructs. In this manner, the synthetic neural system can exhibit the complexity, three-dimensional connectivity, and adaptability of biological neural systems. An added advantage of ENSS over a natural neural system is its ability to modify its core genetic code in response to environmental changes as reflected in needs and requirements. The neural system is fully adaptive and evolvable and is trainable before release. It continues to rewire itself while on the job. The NBF is a unique, bilevel intelligence neural system composed of a higher-level heuristic neural system (HNS) and a lower-level, autonomic neural system (ANS). Taken together, the HNS and the ANS give each NBF the complete capabilities of a biological neural system to match sensory inputs to actions. Another feature of the NBF is the Evolvable Neural Interface (ENI), which links the HNS and ANS. The ENI solves the interface problem between these two systems by actively adapting and evolving from a primitive initial state (a Neural Thread) to a complicated, operational ENI and successfully adapting to a training sequence of sensory input. This simulates the adaptation of a biological neural system in a developmental phase. Within the greater multi-NBF and multi-node ENSS, self-similar ENI s provide the basis for inter-NBF and inter-node connectivity.

  8. Analysis of thermoelectric properties of high-temperature complex alloys of nickel-base, iron-base and cobalt-base groups

    NASA Technical Reports Server (NTRS)

    Holanda, R.

    1984-01-01

    The thermoelectric properties alloys of the nickel-base, iron-base, and cobalt-base groups containing from 1% to 25% 106 chromium were compared and correlated with the following material characteristics: atomic percent of the principle alloy constituent; ratio of concentration of two constituents; alloy physical property (electrical resistivity); alloy phase structure (percent precipitate or percent hardener content); alloy electronic structure (electron concentration). For solid-solution-type alloys the most consistent correlation was obtained with electron concentration, for precipitation-hardenable alloys of the nickel-base superalloy group, the thermoelectric potential correlated with hardener content in the alloy structure. For solid-solution-type alloys, no problems were found with thermoelectric stability to 1000; for precipitation-hardenable alloys, thermoelectric stability was dependent on phase stability. The effects of the compositional range of alloy constituents on temperature measurement uncertainty are discussed.

  9. Effect of heat treatment in air and a chemically active environment on the magnetic properties of cobalt-based soft magnetic amorphous alloys

    NASA Astrophysics Data System (ADS)

    Skulkina, N. A.; Ivanov, O. A.; Stepanova, E. A.; Blinova, O. V.; Kuznetsov, P. A.; Mazeeva, A. K.

    2016-10-01

    The influence of heat treatment in air on the level of magnetic properties has been studied on the example of a ribbon of an amorphous cobalt-based (Co-Fe-Ni-Cr-Si-B) soft-magnetic alloy with a nearzero saturation magnetostriction. The investigation of the interaction of the ribbon surface with water and water vapor and its influence on the magnetization distribution showed the possibility of applying surface treatment to determine the sign of saturation magnetostriction. The sign of saturation magnetostriction in the initial (quenched) state confirmed the presence of a negative magnetostriction in the ribbon. Based on the results obtained, the dependence of the sign of saturation magnetostriction on the structural state that is obtained upon heat treatment has been revealed.

  10. Outcome Study of Cobalt Based Stereotactic Body Radiation Therapy for Patients with Inoperable Stage III Non-small Cell Lung Cancer.

    PubMed

    Wang, Yingjie; Lan, Fengming; Kang, Xiaoli; Shao, Yinjian; Li, Hongqi; Li, Ping; Wu, Weizhang; Wang, Jidong; Chang, Dongshu; Wang, Yong; Xia, Tingyi

    2015-10-01

    Aim of this paper is to retrospectively evaluate the efficacy and toxicity of specialized Body Cobalt based system (BCBS) treatment in the senior patients group (.65 years) with Stage III non-small cell lung carcinoma (NSCLC). A total of 49 patients (41 males and 8 females) with Stage III NSCLC according to UICC TNM classification (6(th) edition) were treated using OUR-QGD™ BCBS which was designed and manufactured in China. Post treatment evaluation with follow-up information was collected from April 2001 to December 2006 in our department. Median age of enrolled patients was 71 years old (65-85). Among those patients, 36 patients were pathologically identified with squamous cell carcinoma, and the other 13 patients were confirmed as adenocarcinoma. All patients were immobilized by vacuum based immobilization mold and then performed slow CT scan without any respiration gating devices. The daily radiation prescription dose was defined at 50% isodose line covering primary lesions and metastatic lymph nodes with doses from 2.5 to 6 Gy in 5 fractions per week according to the tumor stage and internally approved treatment protocols by the Institutional Review Board (IRB). Median daily dose and total delivery dose of 50% isodose line were 4 Gy and 41 Gy, respectively. In this study group, total of 3 patients received neoadjuvant cisplatin-based chemotherapy. Tumor response evaluated 12 weeks after radiation has demonstrated 13 complete responses (26.5%), 21 partial responses (42.9%). The overall survival (OS) rate of 1-year, 2-year and 3-year was 63.3%, 40.8% and 20.4%, respectively. The median and mean survival time was 22 and 24 months. All 49 patients tolerated the treatment well and have completed the planned therapy regiment. Body Cobalt based system treatment of those over 65 years old patients with Stage III NSCLC had reasonable and superior curative effect as well as local control, and at the same time without severe radiation side effects.

  11. Submillimeter observations of evolved stars

    SciTech Connect

    Sopka, R.J.; Hildebrand, R.; Jaffe, D.T.; Gatley, I.; Roellig, T.; Werner, M.; Jura, M.; Zuckerman, B.

    1985-07-01

    Broad-band submillimeter observations of the thermal emission from evolved stars have been obtained with the United Kingdom Infrared Telescope on Mauna Kea, Hawaii. These observations, at an effective wavelength of 400 ..mu..m, provide the most direct method for estimating the mass loss rate in dust from these stars and also help to define the long-wavelength thermal spectrum of the dust envelopes. The mass loss rates in dust that we derive range from 10/sup -9/ to 10/sup -6/ M/sub sun/ yr/sup -1/ and are compared with mass loss rates derived from molecular line observations to estimate gas-to-dust ratios in outflowing envelopes. These values are found to be generally compatible with the interstellar gas-to-dust ratio of approx.100 if submillimeter emissivities appropriate to amorphous grain structures are assumed. Our analysis of the spectrum of IRC+10216 confirms previous suggestions that the grain emissivity varies as lambda/sup -1.2/ rather than as lambda/sup -2/ for 10oxygen-rich objects indicates that our submillimeter fluxes for IRC+10011 and NML Cyg are greater than those predicted by previous modeling. This, we argue, is the result of a slower decline in grain emissivity with wavelength than is seen in published silicate grain models. We are not able to distinguish a systematic difference in the dust masses of carbon-rich and oxygen-rich envelopes. We find the largest mass loss rates in dust in the bipolar objects OH 231.8+4.2, CRL 2688, and CRL 618 and in NGC 7027 and VY CMa.

  12. Highly-evolved stars

    NASA Technical Reports Server (NTRS)

    Heap, S. R.

    1981-01-01

    The ways in which the IUE has proved useful in studying highly evolved stars are reviewed. The importance of high dispersion spectra for abundance analyses of the sd0 stars and for studies of the wind from the central star of NGC 6543 and the wind from the 0 type component of Vela X-1 is shown. Low dispersion spectra are used for absolute spectrophotometry of the dwarf nova, Ex Hya. Angular resolution is important for detecting and locating UV sources in globular clusters.

  13. Generalized approximate spin projection calculations of effective exchange integrals of the CaMn4O5 cluster in the S1 and S3 states of the oxygen evolving complex of photosystem II.

    PubMed

    Isobe, H; Shoji, M; Yamanaka, S; Mino, H; Umena, Y; Kawakami, K; Kamiya, N; Shen, J-R; Yamaguchi, K

    2014-06-28

    Full geometry optimizations followed by the vibrational analysis were performed for eight spin configurations of the CaMn4O4X(H2O)3Y (X = O, OH; Y = H2O, OH) cluster in the S1 and S3 states of the oxygen evolution complex (OEC) of photosystem II (PSII). The energy gaps among these configurations obtained by vertical, adiabatic and adiabatic plus zero-point-energy (ZPE) correction procedures have been used for computation of the effective exchange integrals (J) in the spin Hamiltonian model. The J values are calculated by the (1) analytical method and the (2) generalized approximate spin projection (AP) method that eliminates the spin contamination errors of UB3LYP solutions. Using J values derived from these methods, exact diagonalization of the spin Hamiltonian matrix was carried out, yielding excitation energies and spin densities of the ground and lower-excited states of the cluster. The obtained results for the right (R)- and left (L)-opened structures in the S1 and S3 states are found to be consistent with available optical and magnetic experimental results. Implications of the computational results are discussed in relation to (a) the necessity of the exact diagonalization for computations of reliable energy levels, (b) magneto-structural correlations in the CaMn4O5 cluster of the OEC of PSII, (c) structural symmetry breaking in the S1 and S3 states, and (d) the right- and left-handed scenarios for the O-O bond formation for water oxidation.

  14. [(H2O)(terpy)Mn(mu-O)2Mn(terpy)(OH2)](NO3)3 (terpy = 2,2':6,2''-terpyridine) and its relevance to the oxygen-evolving complex of photosystem II examined through pH dependent cyclic voltammetry.

    PubMed

    Cady, Clyde W; Shinopoulos, Katherine E; Crabtree, Robert H; Brudvig, Gary W

    2010-04-28

    Photosynthetic water oxidation occurs naturally at a tetranuclear manganese center in the photosystem II protein complex. Synthetically mimicking this tetramanganese center, known as the oxygen-evolving complex (OEC), has been an ongoing challenge of bioinorganic chemistry. Most past efforts have centered on water-oxidation catalysis using chemical oxidants. However, solar energy applications have drawn attention to electrochemical methods. In this paper, we examine the electrochemical behavior of the biomimetic water-oxidation catalyst [(H(2)O)(terpy)Mn(mu-O)(2)Mn(terpy)(H(2)O)](NO(3))(3) [terpy = 2,2':6',2''-terpyridine] (1) in water under a variety of pH and buffered conditions and in the presence of acetate that binds to 1 in place of one of the terminal water ligands. These experiments show that 1 not only exhibits proton-coupled electron-transfer reactivity analogous to the OEC, but also may be capable of electrochemical oxidation of water to oxygen.

  15. Cobalt based layered perovskites as cathode material for intermediate temperature Solid Oxide Fuel Cells: A brief review

    NASA Astrophysics Data System (ADS)

    Pelosato, Renato; Cordaro, Giulio; Stucchi, Davide; Cristiani, Cinzia; Dotelli, Giovanni

    2015-12-01

    Nowadays, the cathode is the most studied component in Intermediate Temperature-Solid Oxide Fuel Cells (IT-SOFCs). Decreasing SOFCs operating temperature implies slow oxygen reduction kinetics and large polarization losses. Double perovskites with general formula REBaCo2O5+δ are promising mixed ionic-electronic conductors, offering a remarkable enhancement of the oxygen diffusivity and surface exchange respect to disordered perovskites. In this review, more than 250 compositions investigated in the literature were analyzed. The evaluation was performed in terms of electrical conductivity, Area Specific Resistance (ASR), chemical compatibility with electrolytes and Thermal Expansion Coefficient (TEC). The most promising materials have been identified as those bearing the mid-sized rare earths (Pr, Nd, Sm, Gd). Doping strategies have been analyzed: Sr doping on A site promotes higher electrical conductivity, but worsen ASR and TECs; B-site doping (Fe, Ni, Mn) helps lowering TECs, but is detrimental for the electrochemical properties. A promising boost of the electrochemical activity is obtained by simply introducing a slight Ba under-stoichiometry. Still, the high sensitivity of the electrochemical properties against slight changes in the stoichiometry hamper a conclusive comparison of all the investigated compounds. Opportunities for an improvement of double perovskite cathodes performance is tentatively foreseen in combining together the diverse effective doping strategies.

  16. Why did heterospory evolve?

    PubMed

    Petersen, Kurt B; Burd, Martin

    2016-10-11

    The primitive land plant life cycle featured the production of spores of unimodal size, a condition called homospory. The evolution of bimodal size distributions with small male spores and large female spores, known as heterospory, was an innovation that occurred repeatedly in the history of land plants. The importance of desiccation-resistant spores for colonization of the land is well known, but the adaptive value of heterospory has never been well established. It was an addition to a sexual life cycle that already involved male and female gametes. Its role as a precursor to the evolution of seeds has received much attention, but this is an evolutionary consequence of heterospory that cannot explain the transition from homospory to heterospory (and the lack of evolutionary reversal from heterospory to homospory). Enforced outcrossing of gametophytes has often been mentioned in connection to heterospory, but we review the shortcomings of this argument as an explanation of the selective advantage of heterospory. Few alternative arguments concerning the selective forces favouring heterospory have been proposed, a paucity of attention that is surprising given the importance of this innovation in land plant evolution. In this review we highlight two ideas that may lead us to a better understanding of why heterospory evolved. First, models of optimal resource allocation - an approach that has been used for decades in evolutionary ecology to help understand parental investment and other life-history patterns - suggest that an evolutionary increase in spore size could reach a threshold at which small spores yielding small, sperm-producing gametophytes would return greater fitness per unit of resource investment than would large spores and bisexual gametophytes. With the advent of such microspores, megaspores would evolve under frequency-dependent selection. This argument can account for the appearance of heterospory in the Devonian, when increasingly tall and complex

  17. Evolving a photosynthetic organelle.

    PubMed

    Nakayama, Takuro; Archibald, John M

    2012-04-24

    The evolution of plastids from cyanobacteria is believed to represent a singularity in the history of life. The enigmatic amoeba Paulinella and its 'recently' acquired photosynthetic inclusions provide a fascinating system through which to gain fresh insight into how endosymbionts become organelles.The plastids, or chloroplasts, of algae and plants evolved from cyanobacteria by endosymbiosis. This landmark event conferred on eukaryotes the benefits of photosynthesis--the conversion of solar energy into chemical energy--and in so doing had a huge impact on the course of evolution and the climate of Earth 1. From the present state of plastids, however, it is difficult to trace the evolutionary steps involved in this momentous development, because all modern-day plastids have fully integrated into their hosts. Paulinella chromatophora is a unicellular eukaryote that bears photosynthetic entities called chromatophores that are derived from cyanobacteria and has thus received much attention as a possible example of an organism in the early stages of organellogenesis. Recent studies have unlocked the genomic secrets of its chromatophore 23 and provided concrete evidence that the Paulinella chromatophore is a bona fide photosynthetic organelle 4. The question is how Paulinella can help us to understand the process by which an endosymbiont is converted into an organelle.

  18. Evolving synergetic interactions

    PubMed Central

    Wu, Bin; Arranz, Jordi; Du, Jinming; Zhou, Da; Traulsen, Arne

    2016-01-01

    Cooperators forgo their own interests to benefit others. This reduces their fitness and thus cooperators are not likely to spread based on natural selection. Nonetheless, cooperation is widespread on every level of biological organization ranging from bacterial communities to human society. Mathematical models can help to explain under which circumstances cooperation evolves. Evolutionary game theory is a powerful mathematical tool to depict the interactions between cooperators and defectors. Classical models typically involve either pairwise interactions between individuals or a linear superposition of these interactions. For interactions within groups, however, synergetic effects may arise: their outcome is not just the sum of its parts. This is because the payoffs via a single group interaction can be different from the sum of any collection of two-player interactions. Assuming that all interactions start from pairs, how can such synergetic multiplayer games emerge from simpler pairwise interactions? Here, we present a mathematical model that captures the transition from pairwise interactions to synergetic multiplayer ones. We assume that different social groups have different breaking rates. We show that non-uniform breaking rates do foster the emergence of synergy, even though individuals always interact in pairs. Our work sheds new light on the mechanisms underlying such synergetic interactions. PMID:27466437

  19. Oxygen Therapy

    MedlinePlus

    Oxygen therapy is a treatment that provides you with extra oxygen. Oxygen is a gas that your body needs to function. Normally, your lungs absorb oxygen from the air you breathe. But some conditions ...

  20. Novel Blue Organic Dye for Dye-Sensitized Solar Cells Achieving High Efficiency in Cobalt-Based Electrolytes and by Co-Sensitization.

    PubMed

    Hao, Yan; Saygili, Yasemin; Cong, Jiayan; Eriksson, Anna; Yang, Wenxing; Zhang, Jinbao; Polanski, Enrico; Nonomura, Kazuteru; Zakeeruddin, Shaik Mohammed; Grätzel, Michael; Hagfeldt, Anders; Boschloo, Gerrit

    2016-12-07

    Blue and green dyes as well as NIR-absorbing dyes have attracted great interest because of their excellent ability of absorbing the incident photons in the red and near-infrared range region. A novel blue D-π-A dye (Dyenamo Blue), based on the diketopyrrolopyrrole (DPP)-core, has been designed and synthesized. Assembled with the cobalt bipyridine-based electrolytes, the device with Dyenamo Blue achieved a satisfying efficiency of 7.3% under one sun (AM1.5 G). The co-sensitization strategy was further applied on this blue organic dye together with a red D-π-A dye (D35). The successful co-sensitization outperformed a panchromatic light absorption and improved the photocurrent density; this in addition to the open-circuit potential result in an efficiency of 8.7%. The extended absorption of the sensitization and the slower recombination reaction between the blue dye and TiO2 surface inhibited by the additional red sensitizer could be the two main reasons for the higher performance. In conclusion, from the results, the highly efficient cobalt-based DSSCs could be achieved with the co-sensitization between red and blue D-π-A organic dyes with a proper design, which showed us the possibility of applying this strategy for future high-performance solar cells.

  1. X-ray absorption spectroscopy on layered photosystem II membrane particles suggests manganese-centered oxidation of the oxygen-evolving complex for the S0-S1, S1-S2, and S2-S3 transitions of the water oxidation cycle.

    PubMed

    Iuzzolino, L; Dittmer, J; Dörner, W; Meyer-Klaucke, W; Dau, H

    1998-12-08

    By application of microsecond light flashes the oxygen-evolving complex (OEC) was driven through its functional cycle, the S-state cycle. The S-state population distribution obtained by the application of n flashes (n = 0. 6) was determined by analysis of EPR spectra; Mn K-edge X-ray absorption spectra were collected. Taking into consideration the likely statistical error in the data and the variability stemming from the use of three different approaches for the determination of edge positions, we obtained an upshift of the edge position by 0.8-1.5, 0.5-0.9, and 0.6-1.3 eV for the S0-S1, S1-S2, and S2-S3 transitions, respectively, and a downshift by 2.3-3.1 eV for the S3-S0 transition. These results are highly suggestive of Mn oxidation state changes for all four S-state transitions. In the S0-state spectrum, a clearly resolved shoulder in the X-ray spectrum around 6555 eV points toward the presence of Mn(II). We propose that photosynthetic oxygen evolution involves cycling of the photosystem II manganese complex through four distinct oxidation states of this tetranuclear complex: Mn(II)-Mn(III)-Mn(IV)2 in the S0-state, Mn(III)2-Mn(IV)2 in the S1-state, Mn(III)1-Mn(IV)3 in the S2-state, and Mn(IV)4 in the S3-state.

  2. Disgust: Evolved Function and Structure

    ERIC Educational Resources Information Center

    Tybur, Joshua M.; Lieberman, Debra; Kurzban, Robert; DeScioli, Peter

    2013-01-01

    Interest in and research on disgust has surged over the past few decades. The field, however, still lacks a coherent theoretical framework for understanding the evolved function or functions of disgust. Here we present such a framework, emphasizing 2 levels of analysis: that of evolved function and that of information processing. Although there is…

  3. Evolving virtual creatures and catapults.

    PubMed

    Chaumont, Nicolas; Egli, Richard; Adami, Christoph

    2007-01-01

    We present a system that can evolve the morphology and the controller of virtual walking and block-throwing creatures (catapults) using a genetic algorithm. The system is based on Sims' work, implemented as a flexible platform with an off-the-shelf dynamics engine. Experiments aimed at evolving Sims-type walkers resulted in the emergence of various realistic gaits while using fairly simple objective functions. Due to the flexibility of the system, drastically different morphologies and functions evolved with only minor modifications to the system and objective function. For example, various throwing techniques evolved when selecting for catapults that propel a block as far as possible. Among the strategies and morphologies evolved, we find the drop-kick strategy, as well as the systematic invention of the principle behind the wheel, when allowing mutations to the projectile.

  4. 18O/16O in CO2 evolved from goethite during some unusually rapid solid state α-FeOOH to α-Fe2O3 phase transitions: Test of an exchange model for possible use in oxygen isotope analyses of goethite

    NASA Astrophysics Data System (ADS)

    Yapp, Crayton J.

    2015-12-01

    The initial ∼60% of an isothermal vacuum dehydration of goethite can commonly be approximated by first order kinetics. Also, natural goethites contain small amounts of an Fe(CO3)OH component in apparent solid solution. The 18O/16O of CO2 evolved from the Fe(CO3)OH during isothermal vacuum dehydrations is related to the 18O/16O of the goethite by an apparent fractionation factor (αapp) that is, in turn, correlated with a first order rate constant, |m|. A kinetic exchange model predicts that αapp should decrease as |m| increases for a range of |m| that corresponds to relatively slow rates of dehydration. This pattern has been observed in published results. In contrast, for rapid rates of dehydration, αapp is predicted to increase with increasing |m|. Isothermal vacuum dehydrations of two natural goethites had unusually large values of |m| and provided serendipitous tests of this rapid-rate prediction. For these experiments, the measured values of αapp were consistent with patterns of variation predicted by the model. This allowed an estimate of the activation energy (E2) of a model parameter, K2, which is the rate constant for oxygen isotope exchange between CO2 and H2O during the solid-state goethite to hematite phase transition. The estimated value of E2 is only ∼9 kJ/mol. Heterogeneous catalysis tends to decrease the activation energies of gas reactions. Consequently, the inferred value of E2 suggests that goethite and/or hematite catalyze oxygen isotope exchange between CO2 and H2O during the solid-state phase change. Yield, δ13C, and δ18O values are routinely measured for increments of CO2 evolved from the Fe(CO3)OH component during isothermal vacuum dehydration of goethite. Model-predicted values of αapp can be combined with plateau δ18O values of the evolved CO2 to estimate the δ18O of the goethite with a less than optimal, but potentially useful, precision of about ±0.8‰. Therefore, a single analytical procedure (incremental dehydration

  5. Fischer-Tropsch Synthesis: XANES Investigation of Hydrogen Chloride Poisoned Iron and Cobalt-Based Catalysts at the K-Edges of Cl, Fe, and Co

    DOE PAGES

    Pendyala, Venkat Ramana Rao; Jacobs, Gary; Ma, Wenping; ...

    2016-07-23

    The effect of co-fed hydrogen chloride (HCl) in syngas on the performance of iron and cobalt-based Fischer-Tropsch (FT) catalysts was investigated in our earlier studies [ACS Catal. 5 (2015) 3124-3136 and DOE final report 2011; Catal. Lett. 144 (2014) 1127-1133]. For an iron catalyst, lower HCl concentrations (< 2.0 ppmw of HCl)) in syngas did not significantly affect the activity, whereas rapid deactivation occurred at higher concentrations (~20 ppmw). With cobalt catalysts, even low concentrations of HCl (100 ppbw) caused catalyst deactivation, and the deactivation rate increased with increasing HCl concentration in the syngas. The deactivation of the catalysts ismore » explained by the chloride being adsorbed on the catalyst surface to (1) block the active sites and/or (2) electronically modify the sites. In this study, XANES spectroscopy was employed to investigate HCl poisoning mechanism on the iron and cobalt catalysts. Cl K-edge normalized XANES results indicate that Cl is indeed present on the catalyst following HCl poisoning and exhibits a structure similar to the family of compounds MCl; two main peaks are formed, with the second peak consisting of a main peak and a higher energy shoulder. At the Co K and Fe K edges, the white line was observed to be slightly increased relative to the same catalyst under clean conditions. There is then the additional possibility that Cl adsorption may act in part to intercept electron density from the FT metallic function (e.g.,cobalt or iron carbide). If so, this would result in less back-donation and therefore hinder the scission of molecules such as CO.« less

  6. Fischer-Tropsch Synthesis: XANES Investigation of Hydrogen Chloride Poisoned Iron and Cobalt-Based Catalysts at the K-Edges of Cl, Fe, and Co

    SciTech Connect

    Pendyala, Venkat Ramana Rao; Jacobs, Gary; Ma, Wenping; Sparks, Dennis E.; Shafer, Wilson D.; Khalid, Syed; Xiao, Qunfeng; Hu, Yongfeng; Davis, Burtron H.

    2016-07-23

    The effect of co-fed hydrogen chloride (HCl) in syngas on the performance of iron and cobalt-based Fischer-Tropsch (FT) catalysts was investigated in our earlier studies [ACS Catal. 5 (2015) 3124-3136 and DOE final report 2011; Catal. Lett. 144 (2014) 1127-1133]. For an iron catalyst, lower HCl concentrations (< 2.0 ppmw of HCl)) in syngas did not significantly affect the activity, whereas rapid deactivation occurred at higher concentrations (~20 ppmw). With cobalt catalysts, even low concentrations of HCl (100 ppbw) caused catalyst deactivation, and the deactivation rate increased with increasing HCl concentration in the syngas. The deactivation of the catalysts is explained by the chloride being adsorbed on the catalyst surface to (1) block the active sites and/or (2) electronically modify the sites. In this study, XANES spectroscopy was employed to investigate HCl poisoning mechanism on the iron and cobalt catalysts. Cl K-edge normalized XANES results indicate that Cl is indeed present on the catalyst following HCl poisoning and exhibits a structure similar to the family of compounds MCl; two main peaks are formed, with the second peak consisting of a main peak and a higher energy shoulder. At the Co K and Fe K edges, the white line was observed to be slightly increased relative to the same catalyst under clean conditions. There is then the additional possibility that Cl adsorption may act in part to intercept electron density from the FT metallic function (e.g.,cobalt or iron carbide). If so, this would result in less back-donation and therefore hinder the scission of molecules such as CO.

  7. How did the cilium evolve?

    PubMed

    Satir, Peter; Mitchell, David R; Jékely, Gáspár

    2008-01-01

    The cilium is a characteristic organelle of eukaryotes constructed from over 600 proteins. Bacterial flagella are entirely different. 9 + 2 motile cilia evolved before the divergence of the last eukaryotic common ancestor (LECA). This chapter explores, compares, and contrasts two potential pathways of evolution: (1) via invasion of a centriolar-like virus and (2) via autogenous formation from a pre-existing microtubule-organizing center (MTOC). In either case, the intraflagellar transport (IFT) machinery that is nearly universally required for the assembly and maintenance of cilia derived from the evolving intracellular vesicular transport system. The sensory function of cilia evolved first and the ciliary axoneme evolved gradually with ciliary motility, an important selection mechanism, as one of the driving forces.

  8. Natural selection promotes antigenic evolvability.

    PubMed

    Graves, Christopher J; Ros, Vera I D; Stevenson, Brian; Sniegowski, Paul D; Brisson, Dustin

    2013-01-01

    The hypothesis that evolvability - the capacity to evolve by natural selection - is itself the object of natural selection is highly intriguing but remains controversial due in large part to a paucity of direct experimental evidence. The antigenic variation mechanisms of microbial pathogens provide an experimentally tractable system to test whether natural selection has favored mechanisms that increase evolvability. Many antigenic variation systems consist of paralogous unexpressed 'cassettes' that recombine into an expression site to rapidly alter the expressed protein. Importantly, the magnitude of antigenic change is a function of the genetic diversity among the unexpressed cassettes. Thus, evidence that selection favors among-cassette diversity is direct evidence that natural selection promotes antigenic evolvability. We used the Lyme disease bacterium, Borrelia burgdorferi, as a model to test the prediction that natural selection favors amino acid diversity among unexpressed vls cassettes and thereby promotes evolvability in a primary surface antigen, VlsE. The hypothesis that diversity among vls cassettes is favored by natural selection was supported in each B. burgdorferi strain analyzed using both classical (dN/dS ratios) and Bayesian population genetic analyses of genetic sequence data. This hypothesis was also supported by the conservation of highly mutable tandem-repeat structures across B. burgdorferi strains despite a near complete absence of sequence conservation. Diversification among vls cassettes due to natural selection and mutable repeat structures promotes long-term antigenic evolvability of VlsE. These findings provide a direct demonstration that molecular mechanisms that enhance evolvability of surface antigens are an evolutionary adaptation. The molecular evolutionary processes identified here can serve as a model for the evolution of antigenic evolvability in many pathogens which utilize similar strategies to establish chronic infections.

  9. Synthetic carriers of oxygen.

    PubMed

    Dellacherie, E; Labrude, P; Vigneron, C; Riess, J G

    1987-01-01

    During the last decade, construction of artificial carriers of oxygen for transfusion purposes has evolved in three main directions, which can be reviewed as follows. The first approach consists of modifying hemoglobin (Hb), the natural oxygen carrier, in order to lower its oxygen affinity and increase its intravascular persistence. To achieve this aim, two basic procedures have been used: molecular and environmental modification. In the first case, Hb is modified with chemical reagents; the second requires encapsulation of Hb to obtain artificial erythrocytes. The second approach is based on the use of synthetic oxygen-carrying chelates that mimic the oxygenation function of Hb. The main products in this class are metalloporphyrins, whose chemical environment is designed to render them efficient as reversible carriers of oxygen in vivo. Finally, the third approach deals with the perfluorochemicals used in emulsified form. Perfluorochemical liquids are excellent gas solvents, but some problems remain unsolved with regard to their development as oxygen carriers in vivo: low O2 dissolving capacity, toxicity, and excretion.

  10. Robustness to Faults Promotes Evolvability: Insights from Evolving Digital Circuits.

    PubMed

    Milano, Nicola; Nolfi, Stefano

    2016-01-01

    We demonstrate how the need to cope with operational faults enables evolving circuits to find more fit solutions. The analysis of the results obtained in different experimental conditions indicates that, in absence of faults, evolution tends to select circuits that are small and have low phenotypic variability and evolvability. The need to face operation faults, instead, drives evolution toward the selection of larger circuits that are truly robust with respect to genetic variations and that have a greater level of phenotypic variability and evolvability. Overall our results indicate that the need to cope with operation faults leads to the selection of circuits that have a greater probability to generate better circuits as a result of genetic variation with respect to a control condition in which circuits are not subjected to faults.

  11. Theoretical illumination of water-inserted structures of the CaMn4O5 cluster in the S2 and S3 states of oxygen-evolving complex of photosystem II: full geometry optimizations by B3LYP hybrid density functional.

    PubMed

    Isobe, H; Shoji, M; Yamanaka, S; Umena, Y; Kawakami, K; Kamiya, N; Shen, J-R; Yamaguchi, K

    2012-11-28

    Full geometry optimizations of several inorganic model clusters, CaMn(4)O(4)XYZ(H(2)O)(2) (X, Y, Z = H(2)O, OH(-) or O(2-)), by the use of the B3LYP hybrid density functional theory (DFT) have been performed to illuminate plausible molecular structures of the catalytic site for water oxidation in the S(0), S(1), S(2) and S(3) states of the Kok cycle for the oxygen-evolving complex (OEC) of photosystem II (PSII). Optimized geometries obtained by the energy gradient method have revealed the degree of symmetry breaking of the unstable three-center Mn(a)-X-Mn(d) bond in CaMn(4)O(4)XYZ(H(2)O)(2). The right-elongated (R) Mn(a)-X···Mn(d) and left-elongated (L) Mn(a)···X-Mn(d) structures appear to occupy local minima on a double-well potential for several key intermediates in these states. The effects of insertion of one extra water molecule to the vacant coordination site, Mn(d) (Mn(a)), for R (L) structures have also been examined in detail. The greater stability of the L-type structure over the R-type has been concluded for key intermediates in the S(2) and S(3) states. Implications of the present DFT structures are discussed in relation to previous DFT and related results, together with recent X-ray diffraction results for model compounds of cubane-like OEC cluster of PSII.

  12. Using oxygen at home

    MedlinePlus

    Oxygen - home use; COPD - home oxygen; Chronic obstructive airways disease - home oxygen; Chronic obstructive lung disease - home oxygen; Chronic bronchitis - home oxygen; Emphysema - home oxygen; Chronic respiratory ...

  13. Evolving Sensitivity Balances Boolean Networks

    PubMed Central

    Luo, Jamie X.; Turner, Matthew S.

    2012-01-01

    We investigate the sensitivity of Boolean Networks (BNs) to mutations. We are interested in Boolean Networks as a model of Gene Regulatory Networks (GRNs). We adopt Ribeiro and Kauffman’s Ergodic Set and use it to study the long term dynamics of a BN. We define the sensitivity of a BN to be the mean change in its Ergodic Set structure under all possible loss of interaction mutations. Insilico experiments were used to selectively evolve BNs for sensitivity to losing interactions. We find that maximum sensitivity was often achievable and resulted in the BNs becoming topologically balanced, i.e. they evolve towards network structures in which they have a similar number of inhibitory and excitatory interactions. In terms of the dynamics, the dominant sensitivity strategy that evolved was to build BNs with Ergodic Sets dominated by a single long limit cycle which is easily destabilised by mutations. We discuss the relevance of our findings in the context of Stem Cell Differentiation and propose a relationship between pluripotent stem cells and our evolved sensitive networks. PMID:22586459

  14. Slippery Texts and Evolving Literacies

    ERIC Educational Resources Information Center

    Mackey, Margaret

    2007-01-01

    The idea of "slippery texts" provides a useful descriptor for materials that mutate and evolve across different media. Eight adult gamers, encountering the slippery text "American McGee's Alice," demonstrate a variety of ways in which players attempt to manage their attention as they encounter a new text with many resonances. The range of their…

  15. Signing Apes and Evolving Linguistics.

    ERIC Educational Resources Information Center

    Stokoe, William C.

    Linguistics retains from its antecedents, philology and the study of sacred writings, some of their apologetic and theological bias. Thus it has not been able to face squarely the question how linguistic function may have evolved from animal communication. Chimpanzees' use of signs from American Sign Language forces re-examination of language…

  16. How evolvable are polarization machines?

    NASA Astrophysics Data System (ADS)

    Laan, Liedewij; Murray, Andrew

    2012-02-01

    In many different cell types proper polarization is essential for cell function. Polarization mechanisms however, differ between cell types and even closely related species use a variety of polarization machines. Budding yeast, for example, depends on several parallel mechanisms to establish polarity. One mechanism (i) depends on reaction and diffusion of proteins in the membrane. Another one (ii) depends on reorganization of the actin cytoskeleton. So why does yeast use several mechanisms simultaneously? Can yeast also polarize robustly in the absence of one of them? We addressed these questions by evolving budding yeast in the absence of mechanism (i) or (ii). We deleted a mechanism by deleting one or two genes that are essential for its function. After the deletion of either mechanism the growth rate of cells was highly decreased (2-5 fold) and their cell shape was highly perturbed. Subsequently, we evolved these cells for 10 days. Surprisingly, the evolved cells rapidly overcame most of their polarity defects. They grow at 0.9x wildtype growth rate and their cell shape is signifigantly less perturbed. Now we will study how these cells rescued polarization. Did they fix the deleted mechanism, strengthen other mechanisms or evolve a completely new one?

  17. Non-uniform Evolving Hypergraphs and Weighted Evolving Hypergraphs

    PubMed Central

    Guo, Jin-Li; Zhu, Xin-Yun; Suo, Qi; Forrest, Jeffrey

    2016-01-01

    Firstly, this paper proposes a non-uniform evolving hypergraph model with nonlinear preferential attachment and an attractiveness. This model allows nodes to arrive in batches according to a Poisson process and to form hyperedges with existing batches of nodes. Both the number of arriving nodes and that of chosen existing nodes are random variables so that the size of each hyperedge is non-uniform. This paper establishes the characteristic equation of hyperdegrees, calculates changes in the hyperdegree of each node, and obtains the stationary average hyperdegree distribution of the model by employing the Poisson process theory and the characteristic equation. Secondly, this paper constructs a model for weighted evolving hypergraphs that couples the establishment of new hyperedges, nodes and the dynamical evolution of the weights. Furthermore, what is obtained are respectively the stationary average hyperdegree and hyperstrength distributions by using the hyperdegree distribution of the established unweighted model above so that the weighted evolving hypergraph exhibits a scale-free behavior for both hyperdegree and hyperstrength distributions. PMID:27845334

  18. Removal of Ca2+ from the Oxygen-Evolving Complex in Photosystem II Has Minimal Effect on the Mn4O5 Core Structure: A Polarized Mn X-ray Absorption Spectroscopy Study

    SciTech Connect

    Lohmiller, Thomas; Shelby, Megan L.; Long, Xi; Yachandra, Vittal K.; Yano, Junko

    2015-05-19

    We studied Ca2+ -depleted and Ca2+ -reconstituted spinach photosystem II using polarized X-ray absorption spectroscopy of oriented PS II preparations to investigate the structural and functional role of the Ca2+ ion in the Mn4O5Ca cluster of the oxygen-evolving complex (OEC). Samples were prepared by low pH/citrate treatment as one-dimensionally ordered membrane layers and poised in the Ca2+ -depleted S1 (S1') and S2 (S2') states, the S2'YZ• state, at which point the catalytic cycle of water oxidation is inhibited, and the Ca2+ -reconstituted S1 state. Polarized Mn K-edge XANES and EXAFS spectra exhibit pronounced dichroism. Polarized EXAFS data of all states of Ca2+ -depleted PS II investigated show only minor changes in distances and orientations of the Mn-Mn vectors compared to the Ca2+ -containing OEC, which may be attributed to some loss of rigidity of the core structure. Thus, removal of the Ca2+ ion does not lead to fundamental distortion or rearrangement of the tetranuclear Mn cluster, which indicates that the Ca2+ ion in the OEC is not critical for structural maintenance of the cluster, at least in the S1 and S2 states, but fulfills a crucial catalytic function in the mechanism of the water oxidation reaction. On the basis of this structural information, reasons for the inhibitory effect of Ca2+ removal are discussed, attributing to the Ca2+ ion a fundamental role in organizing the surrounding (substrate) water framework and in proton-coupled electron transfer to YZ• (D1-Tyr161).

  19. Oxygen analyzer

    DOEpatents

    Benner, William H.

    1986-01-01

    An oxygen analyzer which identifies and classifies microgram quantities of oxygen in ambient particulate matter and for quantitating organic oxygen in solvent extracts of ambient particulate matter. A sample is pyrolyzed in oxygen-free nitrogen gas (N.sub.2), and the resulting oxygen quantitatively converted to carbon monoxide (CO) by contact with hot granular carbon (C). Two analysis modes are made possible: (1) rapid determination of total pyrolyzable oxygen obtained by decomposing the sample at 1135.degree. C., or (2) temperature-programmed oxygen thermal analysis obtained by heating the sample from room temperature to 1135.degree. C. as a function of time. The analyzer basically comprises a pyrolysis tube containing a bed of granular carbon under N.sub.2, ovens used to heat the carbon and/or decompose the sample, and a non-dispersive infrared CO detector coupled to a mini-computer to quantitate oxygen in the decomposition products and control oven heating.

  20. Oxygen Therapy

    MedlinePlus

    ... stored as a gas or liquid in special tanks. These tanks can be delivered to your home and contain ... they won’t run out of oxygen. Portable tanks and oxygen concentrators may make it easier for ...

  1. Coupled oscillators on evolving networks

    NASA Astrophysics Data System (ADS)

    Singh, R. K.; Bagarti, Trilochan

    2016-12-01

    In this work we study coupled oscillators on evolving networks. We find that the steady state behavior of the system is governed by the relative values of the spread in natural frequencies and the global coupling strength. For coupling strong in comparison to the spread in frequencies, the system of oscillators synchronize and when coupling strength and spread in frequencies are large, a phenomenon similar to amplitude death is observed. The network evolution provides a mechanism to build inter-oscillator connections and once a dynamic equilibrium is achieved, oscillators evolve according to their local interactions. We also find that the steady state properties change by the presence of additional time scales. We demonstrate these results based on numerical calculations studying dynamical evolution of limit-cycle and van der Pol oscillators.

  2. Evolvable Hardware for Space Applications

    NASA Technical Reports Server (NTRS)

    Lohn, Jason; Globus, Al; Hornby, Gregory; Larchev, Gregory; Kraus, William

    2004-01-01

    This article surveys the research of the Evolvable Systems Group at NASA Ames Research Center. Over the past few years, our group has developed the ability to use evolutionary algorithms in a variety of NASA applications ranging from spacecraft antenna design, fault tolerance for programmable logic chips, atomic force field parameter fitting, analog circuit design, and earth observing satellite scheduling. In some of these applications, evolutionary algorithms match or improve on human performance.

  3. Evolving Systems and Adaptive Key Component Control

    NASA Technical Reports Server (NTRS)

    Frost, Susan A.; Balas, Mark J.

    2009-01-01

    We propose a new framework called Evolving Systems to describe the self-assembly, or autonomous assembly, of actively controlled dynamical subsystems into an Evolved System with a higher purpose. An introduction to Evolving Systems and exploration of the essential topics of the control and stability properties of Evolving Systems is provided. This chapter defines a framework for Evolving Systems, develops theory and control solutions for fundamental characteristics of Evolving Systems, and provides illustrative examples of Evolving Systems and their control with adaptive key component controllers.

  4. [Apneic oxygenation].

    PubMed

    Alekseev, A V; Vyzhigina, M A; Parshin, V D; Fedorov, D S

    2013-01-01

    Recent technological advances in thoracic and tracheal surgery make the anaesthesiologist use different respiratory techniques during the operation. Apneic oxygenation is a one of alternative techniques. This method is relatively easy in use, does not require special expensive equipment and is the only possible technique in several clinical situations when other respiratory methods are undesirable or cannot be used. However there is no enough information about apneic oxygenation in Russian. This article reviews publications about apneic oxygenation. The review deals with experiments on diffusion respiration in animals, physiological changes during apneic oxygenation in man and defines clinical cases when apneic oxygenation can be used.

  5. Improved chlorate candle provides concentrated oxygen source

    NASA Technical Reports Server (NTRS)

    Haug, R. D.; Myers, D. A.; Tanzar, G. F.

    1967-01-01

    Improved chlorate candle is used as a solid, portable source of oxygen in emergency situations. It contains sodium chlorate, iron, barium peroxide, and glass mixed in powdered form. The oxygen evolves from the decomposition of the sodium chlorate when an ignition pellet is electrically initiated.

  6. Oxygen analyzer

    DOEpatents

    Benner, W.H.

    1984-05-08

    An oxygen analyzer which identifies and classifies microgram quantities of oxygen in ambient particulate matter and for quantitating organic oxygen in solvent extracts of ambient particulate matter. A sample is pyrolyzed in oxygen-free nitrogen gas (N/sub 2/), and the resulting oxygen quantitatively converted to carbon monoxide (CO) by contact with hot granular carbon (C). Two analysis modes are made possible: (1) rapid determination of total pyrolyzable obtained by decomposing the sample at 1135/sup 0/C, or (2) temperature-programmed oxygen thermal analysis obtained by heating the sample from room temperature to 1135/sup 0/C as a function of time. The analyzer basically comprises a pyrolysis tube containing a bed of granular carbon under N/sub 2/, ovens used to heat the carbon and/or decompose the sample, and a non-dispersive infrared CO detector coupled to a mini-computer to quantitate oxygen in the decomposition products and control oven heating.

  7. Evolved Expendable Launch Vehicle (EELV)

    DTIC Science & Technology

    2015-12-15

    potential NSS mission processing timelines. SpaceX is now eligible for an award of specified NSS missions to include the GPS III-2 launch service... SpaceX has also evolved their Falcon 9v1.1 configuration into the Falcon 9 Upgrade. To update the certification baseline, SpaceX and AF built Joint Work...9 v1.1 commercial launch experienced an in-flight mishap resulting in loss of vehicle on June 28, 2015. An official investigation was led by a SpaceX

  8. The 'E' factor -- evolving endodontics.

    PubMed

    Hunter, M J

    2013-03-01

    Endodontics is a constantly developing field, with new instruments, preparation techniques and sealants competing with trusted and traditional approaches to tooth restoration. Thus general dental practitioners must question and understand the significance of these developments before adopting new practices. In view of this, the aim of this article, and the associated presentation at the 2013 British Dental Conference & Exhibition, is to provide an overview of endodontic methods and constantly evolving best practice. The presentation will review current preparation techniques, comparing rotary versus reciprocation, and question current trends in restoration of the endodontically treated tooth.

  9. Regolith Evolved Gas Analyzer (REGA)

    NASA Technical Reports Server (NTRS)

    Allen, Carlton C.; McKay, David S.

    1997-01-01

    The instrument consists of five subsystems: (1) a programmable furnace which can be loaded with samples of regolith, (2) a mass spectrometer which detects and measures atmospheric gases or gases evolved during heating, (3) a tank of pressurized gas which can be introduced to the regolith material while detecting and measuring volatile reaction products, (4) a mechanism for dumping the regolith sample and repeating the experiment on a fresh sample, and (5) a data system which controls and monitors the furnace, gas system, and mass spectrometer.

  10. Evolving Robust Gene Regulatory Networks

    PubMed Central

    Noman, Nasimul; Monjo, Taku; Moscato, Pablo; Iba, Hitoshi

    2015-01-01

    Design and implementation of robust network modules is essential for construction of complex biological systems through hierarchical assembly of ‘parts’ and ‘devices’. The robustness of gene regulatory networks (GRNs) is ascribed chiefly to the underlying topology. The automatic designing capability of GRN topology that can exhibit robust behavior can dramatically change the current practice in synthetic biology. A recent study shows that Darwinian evolution can gradually develop higher topological robustness. Subsequently, this work presents an evolutionary algorithm that simulates natural evolution in silico, for identifying network topologies that are robust to perturbations. We present a Monte Carlo based method for quantifying topological robustness and designed a fitness approximation approach for efficient calculation of topological robustness which is computationally very intensive. The proposed framework was verified using two classic GRN behaviors: oscillation and bistability, although the framework is generalized for evolving other types of responses. The algorithm identified robust GRN architectures which were verified using different analysis and comparison. Analysis of the results also shed light on the relationship among robustness, cooperativity and complexity. This study also shows that nature has already evolved very robust architectures for its crucial systems; hence simulation of this natural process can be very valuable for designing robust biological systems. PMID:25616055

  11. Transport on randomly evolving trees

    NASA Astrophysics Data System (ADS)

    Pál, L.

    2005-11-01

    The time process of transport on randomly evolving trees is investigated. By introducing the notions of living and dead nodes, a model of random tree evolution is constructed which describes the spreading in time of objects corresponding to nodes. It is assumed that at t=0 the tree consists of a single living node (root), from which the evolution may begin. At a certain time instant τ⩾0 , the root produces ν⩾0 living nodes connected by lines to the root which becomes dead at the moment of the offspring production. In the evolution process each of the new living nodes evolves further like a root independently of the others. By using the methods of the age-dependent branching processes we derive the joint distribution function of the numbers of living and dead nodes, and determine the correlation between these node numbers as a function of time. It is proved that the correlation function converges to 3/2 independently of the distributions of ν and τ when q1→1 and t→∞ . Also analyzed are the stochastic properties of the end nodes; and the correlation between the numbers of living and dead end nodes is shown to change its character suddenly at the very beginning of the evolution process. The survival probability of random trees is investigated and expressions are derived for this probability.

  12. Transport on randomly evolving trees.

    PubMed

    Pál, L

    2005-11-01

    The time process of transport on randomly evolving trees is investigated. By introducing the notions of living and dead nodes, a model of random tree evolution is constructed which describes the spreading in time of objects corresponding to nodes. It is assumed that at t=0 the tree consists of a single living node (root), from which the evolution may begin. At a certain time instant tau> or =0, the root produces v> or =0 living nodes connected by lines to the root which becomes dead at the moment of the offspring production. In the evolution process each of the new living nodes evolves further like a root independently of the others. By using the methods of the age-dependent branching processes we derive the joint distribution function of the numbers of living and dead nodes, and determine the correlation between these node numbers as a function of time. It is proved that the correlation function converges to square root of 3/2 independently of the distributions of v and tau when q1-->1 and t-->infinity. Also analyzed are the stochastic properties of the end nodes; and the correlation between the numbers of living and dead end nodes is shown to change its character suddenly at the very beginning of the evolution process. The survival probability of random trees is investigated and expressions are derived for this probability.

  13. Appreciating Oxygen

    ERIC Educational Resources Information Center

    Weiss, Hilton M.

    2008-01-01

    Photosynthetic flora and microfauna utilize light from the sun to convert carbon dioxide and water into carbohydrates and oxygen. While these carbohydrates and their derivative hydrocarbons are generally considered to be fuels, it is the thermodynamically energetic oxygen molecule that traps, stores, and provides almost all of the energy that…

  14. Rapidly evolving homing CRISPR barcodes.

    PubMed

    Kalhor, Reza; Mali, Prashant; Church, George M

    2017-02-01

    We present an approach for engineering evolving DNA barcodes in living cells. A homing guide RNA (hgRNA) scaffold directs the Cas9-hgRNA complex to the DNA locus of the hgRNA itself. We show that this homing CRISPR-Cas9 system acts as an expressed genetic barcode that diversifies its sequence and that the rate of diversification can be controlled in cultured cells. We further evaluate these barcodes in cell populations and show that they can be used to record lineage history and that the barcode RNA can be amplified in situ, a prerequisite for in situ sequencing. This integrated approach will have wide-ranging applications, such as in deep lineage tracing, cellular barcoding, molecular recording, dissecting cancer biology, and connectome mapping.

  15. The evolving Gleason grading system.

    PubMed

    Chen, Ni; Zhou, Qiao

    2016-02-01

    The Gleason grading system for prostate adenocarcinoma has evolved from its original scheme established in the 1960s-1970s, to a significantly modified system after two major consensus meetings conducted by the International Society of Urologic Pathology (ISUP) in 2005 and 2014, respectively. The Gleason grading system has been incorporated into the WHO classification of prostate cancer, the AJCC/UICC staging system, and the NCCN guidelines as one of the key factors in treatment decision. Both pathologists and clinicians need to fully understand the principles and practice of this grading system. We here briefly review the historical aspects of the original scheme and the recent developments of Gleason grading system, focusing on major changes over the years that resulted in the modern Gleason grading system, which has led to a new "Grade Group" system proposed by the 2014 ISUP consensus, and adopted by the 2016 WHO classification of tumours of the prostate.

  16. [The evolving of cardiac interventions].

    PubMed

    Billinger, Michael

    2014-12-01

    Treatment modalities for heart diseases have considerable evolved during the last 20 years. Coronary and valvular heart disease are treated increasingly by less invasive percutaneous catheter based procedures instead of open-heart surgery. In addition, new cutting-edge interventions allow to cure heart disease for which until recently only medical treatment options were available. Whilst many patients benefit from these innovative therapies, rapidly developing technologies potentially carry the risk of overtreatment. In order to select patients for the most appropriate treatment, an intensive interdisciplinary teamwork between cardiologists and cardiac surgeons is a mandatory requirement. Additionally, knowledge transfer between cardiologists, their growing subspecialties and practitioners should be encouraged. Finally, timely scientific evaluation of new therapies and subsequent incorporation in guidelines remains crucial.

  17. Isotopic Analysis and Evolved Gases

    NASA Technical Reports Server (NTRS)

    Swindle, Timothy D.; Boynton, William V.; Chutjian, Ara; Hoffman, John H.; Jordan, Jim L.; Kargel, Jeffrey S.; McEntire, Richard W.; Nyquist, Larry

    1996-01-01

    Precise measurements of the chemical, elemental, and isotopic composition of planetary surface material and gases, and observed variations in these compositions, can contribute significantly to our knowledge of the source(s), ages, and evolution of solar system materials. The analyses discussed in this paper are mostly made by mass spectrometers or some other type of mass analyzer, and address three broad areas of interest: (1) atmospheric composition - isotopic, elemental, and molecular, (2) gases evolved from solids, and (3) solids. Current isotopic data on nine elements, mostly from in situ analysis, but also from meteorites and telescopic observations are summarized. Potential instruments for isotopic analysis of lunar, Martian, Venusian, Mercury, and Pluto surfaces, along with asteroid, cometary and icy satellites, surfaces are discussed.

  18. Evolving networks by merging cliques

    NASA Astrophysics Data System (ADS)

    Takemoto, Kazuhiro; Oosawa, Chikoo

    2005-10-01

    We propose a model for evolving networks by merging building blocks represented as complete graphs, reminiscent of modules in biological system or communities in sociology. The model shows power-law degree distributions, power-law clustering spectra, and high average clustering coefficients independent of network size. The analytical solutions indicate that a degree exponent is determined by the ratio of the number of merging nodes to that of all nodes in the blocks, demonstrating that the exponent is tunable, and are also applicable when the blocks are classical networks such as Erdös-Rényi or regular graphs. Our model becomes the same model as the Barabási-Albert model under a specific condition.

  19. Evolving phenotype of Marfan's syndrome

    PubMed Central

    Lipscomb, K.; Clayton-Smith, J.; Harris, R.

    1997-01-01

    Accepted 20 August 1996
 AIM—To examine evolution of the physical characteristics of Marfan's syndrome throughout childhood.
METHODS—40 children were ascertained during the development of a regional register for Marfan's syndrome. Evolution of the clinical characteristics was determined by repeat evaluation of 10 patients with sporadic Marfan's syndrome and 30 with a family history of the condition. DNA marker studies were used to facilitate diagnosis in those with the familial condition.
RESULTS—Musculoskeletal features predominated and evolved throughout childhood. Gene tracking enabled early diagnosis in children with familial Marfan's syndrome.
CONCLUSIONS—These observations may aid the clinical diagnosis of Marfan's syndrome in childhood, especially in those with the sporadic condition. Gene tracking has a role in the early diagnosis of familial Marfan's syndrome, allowing appropriate follow up and preventive care.

 PMID:9059160

  20. A Quantitative Approach to Assessing System Evolvability

    NASA Technical Reports Server (NTRS)

    Christian, John A., III

    2004-01-01

    When selecting a system from multiple candidates, the customer seeks the one that best meets his or her needs. Recently the desire for evolvable systems has become more important and engineers are striving to develop systems that accommodate this need. In response to this search for evolvability, we present a historical perspective on evolvability, propose a refined definition of evolvability, and develop a quantitative method for measuring this property. We address this quantitative methodology from both a theoretical and practical perspective. This quantitative model is then applied to the problem of evolving a lunar mission to a Mars mission as a case study.

  1. Pilot Plant Makes Oxygen Difluoride

    NASA Technical Reports Server (NTRS)

    Humphrey, Marshall F.; Lawton, Emil A.

    1989-01-01

    Pilot plant makes oxygen difluoride highly-energetic, space-storable oxidizer not made commercially. Designed to handle reactants, product, and byproduct, most of which highly reactive, corrosive, and toxic. Oxygen difluoride evolves continuously from reactor containing potassium hydroxide in water at 10 degree C. Collection tanks alternated; one filled while other drained to storage cylinder. Excess OF2 and F2 dissipated in combustion of charcoal in burn barrel. Toxic byproduct, potassium fluoride, reacted with calcium hydroxide to form nontoxic calcium fluoride and to regenerate potassium hydroxide. Equipment processes toxic, difficult-to-make substance efficiently and safely.

  2. Oxygen safety

    MedlinePlus

    ... with electric motors Electric baseboard or space heaters Wood stoves, fireplaces, candles Electric blankets Hairdryers, electric razors, ... Therapy.aspx . Accessed February 9, 2016. National Fire Protection Association. Medical oxygen. Updated July 2013. www.nfpa. ...

  3. Increased longevity evolves from grandmothering.

    PubMed

    Kim, Peter S; Coxworth, James E; Hawkes, Kristen

    2012-12-22

    Postmenopausal longevity may have evolved in our lineage when ancestral grandmothers subsidized their daughters' fertility by provisioning grandchildren, but the verbal hypothesis has lacked mathematical support until now. Here, we present a formal simulation in which life spans similar to those of modern chimpanzees lengthen into the modern human range as a consequence of grandmother effects. Greater longevity raises the chance of living through the fertile years but is opposed by costs that differ for the sexes. Our grandmother assumptions are restrictive. Only females who are no longer fertile themselves are eligible, and female fertility extends to age 45 years. Initially, there are very few eligible grandmothers and effects are small. Grandmothers can support only one dependent at a time and do not care selectively for their daughters' offspring. They must take the oldest juveniles still relying on mothers; and infants under the age of 2 years are never eligible for subsidy. Our model includes no assumptions about brains, learning or pair bonds. Grandmother effects alone are sufficient to propel the doubling of life spans in less than sixty thousand years.

  4. Idiopathic pulmonary fibrosis: evolving concepts.

    PubMed

    Ryu, Jay H; Moua, Teng; Daniels, Craig E; Hartman, Thomas E; Yi, Eunhee S; Utz, James P; Limper, Andrew H

    2014-08-01

    Idiopathic pulmonary fibrosis (IPF) occurs predominantly in middle-aged and older adults and accounts for 20% to 30% of interstitial lung diseases. It is usually progressive, resulting in respiratory failure and death. Diagnostic criteria for IPF have evolved over the years, and IPF is currently defined as a disease characterized by the histopathologic pattern of usual interstitial pneumonia occurring in the absence of an identifiable cause of lung injury. Understanding of the pathogenesis of IPF has shifted away from chronic inflammation and toward dysregulated fibroproliferative repair in response to alveolar epithelial injury. Idiopathic pulmonary fibrosis is likely a heterogeneous disorder caused by various interactions between genetic components and environmental exposures. High-resolution computed tomography can be diagnostic in the presence of typical findings such as bilateral reticular opacities associated with traction bronchiectasis/bronchiolectasis in a predominantly basal and subpleural distribution, along with subpleural honeycombing. In other circumstances, a surgical lung biopsy may be needed. The clinical course of IPF can be unpredictable and may be punctuated by acute deteriorations (acute exacerbation). Although progress continues in unraveling the mechanisms of IPF, effective therapy has remained elusive. Thus, clinicians and patients need to reach informed decisions regarding management options including lung transplant. The findings in this review were based on a literature search of PubMed using the search terms idiopathic pulmonary fibrosis and usual interstitial pneumonia, limited to human studies in the English language published from January 1, 2000, through December 31, 2013, and supplemented by key references published before the year 2000.

  5. Increased longevity evolves from grandmothering

    PubMed Central

    Kim, Peter S.; Coxworth, James E.; Hawkes, Kristen

    2012-01-01

    Postmenopausal longevity may have evolved in our lineage when ancestral grandmothers subsidized their daughters' fertility by provisioning grandchildren, but the verbal hypothesis has lacked mathematical support until now. Here, we present a formal simulation in which life spans similar to those of modern chimpanzees lengthen into the modern human range as a consequence of grandmother effects. Greater longevity raises the chance of living through the fertile years but is opposed by costs that differ for the sexes. Our grandmother assumptions are restrictive. Only females who are no longer fertile themselves are eligible, and female fertility extends to age 45 years. Initially, there are very few eligible grandmothers and effects are small. Grandmothers can support only one dependent at a time and do not care selectively for their daughters' offspring. They must take the oldest juveniles still relying on mothers; and infants under the age of 2 years are never eligible for subsidy. Our model includes no assumptions about brains, learning or pair bonds. Grandmother effects alone are sufficient to propel the doubling of life spans in less than sixty thousand years. PMID:23097518

  6. Multicopy Suppression Underpins Metabolic Evolvability

    PubMed Central

    Patrick, Wayne M.; Quandt, Erik M.; Swartzlander, Dan B.; Matsumura, Ichiro

    2009-01-01

    Our understanding of the origins of new metabolic functions is based upon anecdotal genetic and biochemical evidence. Some auxotrophies can be suppressed by overexpressing substrate-ambiguous enzymes (i.e., those that catalyze the same chemical transformation on different substrates). Other enzymes exhibit weak but detectable catalytic promiscuity in vitro (i.e., they catalyze different transformations on similar substrates). Cells adapt to novel environments through the evolution of these secondary activities, but neither their chemical natures nor their frequencies of occurrence have been characterized en bloc. Here, we systematically identified multifunctional genes within the Escherichia coli genome. We screened 104 single-gene knockout strains and discovered that many (20%) of these auxotrophs were rescued by the overexpression of at least one noncognate E. coli gene. The deleted gene and its suppressor were generally unrelated, suggesting that promiscuity is a product of contingency. This genome-wide survey demonstrates that multifunctional genes are common and illustrates the mechanistic diversity by which their products enhance metabolic robustness and evolvability. PMID:17884825

  7. How do drumlin patterns evolve?

    NASA Astrophysics Data System (ADS)

    Ely, Jeremy; Clark, Chris; Spagnolo, Matteo; Hughes, Anna

    2016-04-01

    The flow of a geomorphic agent over a sediment bed creates patterns in the substrate composed of bedforms. Ice is no exception to this, organising soft sedimentary substrates into subglacial bedforms. As we are yet to fully observe their initiation and evolution beneath a contemporary ice mass, little is known about how patterns in subglacial bedforms develop. Here we study 36,222 drumlins, divided into 72 flowsets, left behind by the former British-Irish Ice sheet. These flowsets provide us with 'snapshots' of drumlin pattern development. The probability distribution functions of the size and shape metrics of drumlins within these flowsets were analysed to determine whether behaviour that is common of other patterned phenomena has occurred. Specifically, we ask whether drumlins i) are printed at a specific scale; ii) grow or shrink after they initiate; iii) stabilise at a specific size and shape; and iv) migrate. Our results indicate that drumlins initiate at a minimum size and spacing. After initiation, the log-normal distribution of drumlin size and shape metrics suggests that drumlins grow, or possibly shrink, as they develop. We find no evidence for stabilisation in drumlin length, supporting the idea of a subglacial bedform continuum. Drumlin migration is difficult to determine from the palaeo-record. However, there are some indications that a mixture of static and mobile drumlins occurs, which could potentially lead to collisions, cannibalisation and coarsening. Further images of modern drumlin fields evolving beneath ice are required to capture stages of drumlin pattern evolution.

  8. Magnetic fields around evolved stars

    NASA Astrophysics Data System (ADS)

    Leal-Ferreira, M.; Vlemmings, W.; Kemball, A.; Amiri, N.; Maercker, M.; Ramstedt, S.; Olofsson, G.

    2014-04-01

    A number of mechanisms, such as magnetic fields, (binary) companions and circumstellar disks have been suggested to be the cause of non-spherical PNe and in particular collimated outflows. This work investigates one of these mechanisms: the magnetic fields. While MHD simulations show that the fields can indeed be important, few observations of magnetic fields have been done so far. We used the VLBA to observe five evolved stars, with the goal of detecting the magnetic field by means of water maser polarization. The sample consists in four AGB stars (IK Tau, RT Vir, IRC+60370 and AP Lyn) and one pPN (OH231.8+4.2). In four of the five sources, several strong maser features were detected allowing us to measure the linear and/or circular polarization. Based on the circular polarization detections, we infer the strength of the component of the field along the line of sight to be between ~30 mG and ~330 mG in the water maser regions of these four sources. When extrapolated to the surface of the stars, the magnetic field strength would be between a few hundred mG and a few Gauss when assuming a toroidal field geometry and higher when assuming more complex magnetic fields. We conclude that the magnetic energy we derived in the water maser regions is higher than the thermal and kinetic energy, leading to the conclusion that, indeed, magnetic fields probably play an important role in shaping Planetary Nebulae.

  9. Circumstellar Crystalline Silicates: Evolved Stars

    NASA Astrophysics Data System (ADS)

    Tartar, Josh; Speck, A. K.

    2008-05-01

    One of the most exciting developments in astronomy in the last 15 years was the discovery of crystalline silicate stardust by the Short Wavelength Spectrometer (SWS) on board of ISO; discovery of the crystalline grains was indeed one of the biggest surprises of the ISO mission. Initially discovered around AGB stars (evolved stars in the range of 0.8 > M/M¤>8) at far-infrared (IR) wavelengths, crystalline silicates have since been seen in many astrophysical environments including young stellar objects (T Tauri and Herbig Ae/Be), comets and Ultra Luminous Infrared Galaxies. Low and intermediate mass stars (LIMS) comprise 95% of the contributors to the ISM, so study of the formation of crystalline silicates is critical to our understanding of the ISM, which is thought to be primarily amorphous (one would expect an almost exact match between the composition of AGB dust shells and the dust in the ISM). Whether the crystalline dust is merely undetectable or amorphized remains a mystery. The FORCAST instrument on SOFIA as well as the PACS instrument on Herschel will provide exciting observing opportunities for the further study of crystalline silicates.

  10. Multiscale modelling of evolving foams

    NASA Astrophysics Data System (ADS)

    Saye, R. I.; Sethian, J. A.

    2016-06-01

    We present a set of multi-scale interlinked algorithms to model the dynamics of evolving foams. These algorithms couple the key effects of macroscopic bubble rearrangement, thin film drainage, and membrane rupture. For each of the mechanisms, we construct consistent and accurate algorithms, and couple them together to work across the wide range of space and time scales that occur in foam dynamics. These algorithms include second order finite difference projection methods for computing incompressible fluid flow on the macroscale, second order finite element methods to solve thin film drainage equations in the lamellae and Plateau borders, multiphase Voronoi Implicit Interface Methods to track interconnected membrane boundaries and capture topological changes, and Lagrangian particle methods for conservative liquid redistribution during rearrangement and rupture. We derive a full set of numerical approximations that are coupled via interface jump conditions and flux boundary conditions, and show convergence for the individual mechanisms. We demonstrate our approach by computing a variety of foam dynamics, including coupled evolution of three-dimensional bubble clusters attached to an anchored membrane and collapse of a foam cluster.

  11. Evolved expendable launch vehicle system: RS-68 main engine development

    NASA Astrophysics Data System (ADS)

    Conley, David; Lee, Norman Y.; Portanova, Peter L.; Wood, Byron K.

    2003-08-01

    Delta IV is one of two competing Evolved Expendable Launch Vehicle (EELV) systems being developed in an industry/United States Government partnership to meet the needs of the new era of space launch for the early decades of the 21 st Century. The Rocketdyne Division of The Boeing Company and the United States Air Force have developed a 650 Klbf sea-level (2.9 MN) class liquid hydrogen/liquid oxygen main engine for the Delta IV family of EELV. The purpose of this paper is to present the innovative approach to the design, development, testing and certification of the RS-68 engine.

  12. A photoemission study of the effectiveness of nickel, manganese, and cobalt based corrosion barriers for silicon photo-anodes during water oxidation

    NASA Astrophysics Data System (ADS)

    O'Connor, Robert; Bogan, Justin; McCoy, Anthony; Byrne, Conor; Hughes, Greg

    2016-05-01

    Silicon is an attractive material for solar water splitting applications due to its abundance and its capacity to absorb a large fraction of incident solar radiation. However, it has not received as much attention as other materials due to its tendency to oxidize very quickly in aqueous environments, particularly when it is employed as the anode where it drives the oxygen evolution reaction. In recent years, several works have appeared in the literature examining the suitability of thin transition metal oxide films grown on top of the silicon to act as a corrosion barrier. The film should be transparent to solar radiation, allow hole transport from the silicon surface to the electrolyte, and stop the diffusion of oxygen from the electrolyte back to the silicon. In this work, we compare Mn-oxide, Co-oxide, and Ni-oxide thin films grown using physical vapor deposition in order to evaluate which material offers the best combination of photocurrent and corrosion protection. In addition to the electrochemical data, we also present a detailed before-and-after study of the surface chemistry of the films using x-ray photoelectron spectroscopy. This approach allows for a comprehensive analysis of the mechanisms by which the corrosion barriers protect the underlying silicon, and how they degrade during the water oxidation reaction.

  13. The oxygen paradox of neurovascular coupling

    PubMed Central

    Leithner, Christoph; Royl, Georg

    2014-01-01

    The coupling of cerebral blood flow (CBF) to neuronal activity is well preserved during evolution. Upon changes in the neuronal activity, an incompletely understood coupling mechanism regulates diameter changes of supplying blood vessels, which adjust CBF within seconds. The physiologic brain tissue oxygen content would sustain unimpeded brain function for only 1 second if continuous oxygen supply would suddenly stop. This suggests that the CBF response has evolved to balance oxygen supply and demand. Surprisingly, CBF increases surpass the accompanying increases of cerebral metabolic rate of oxygen (CMRO2). However, a disproportionate CBF increase may be required to increase the concentration gradient from capillary to tissue that drives oxygen delivery. However, the brain tissue oxygen content is not zero, and tissue pO2 decreases could serve to increase oxygen delivery without a CBF increase. Experimental evidence suggests that CMRO2 can increase with constant CBF within limits and decreases of baseline CBF were observed with constant CMRO2. This conflicting evidence may be viewed as an oxygen paradox of neurovascular coupling. As a possible solution for this paradox, we hypothesize that the CBF response has evolved to safeguard brain function in situations of moderate pathophysiological interference with oxygen supply. PMID:24149931

  14. Evolving evolutionary algorithms using linear genetic programming.

    PubMed

    Oltean, Mihai

    2005-01-01

    A new model for evolving Evolutionary Algorithms is proposed in this paper. The model is based on the Linear Genetic Programming (LGP) technique. Every LGP chromosome encodes an EA which is used for solving a particular problem. Several Evolutionary Algorithms for function optimization, the Traveling Salesman Problem and the Quadratic Assignment Problem are evolved by using the considered model. Numerical experiments show that the evolved Evolutionary Algorithms perform similarly and sometimes even better than standard approaches for several well-known benchmarking problems.

  15. Acquiring Evolving Technologies: Web Services Standards

    DTIC Science & Technology

    2016-06-30

    2006 Carnegie Mellon University Acquiring Evolving Technologies : Web Services Standards Harry L. Levinson Software Engineering Institute Carnegie...Acquiring Evolving Technologies : Web Services Standards 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT...298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 2 Acquiring Evolving Technologies : Web Services Standards © 2006 Carnegie Mellon University Acquiring

  16. Water in evolved lunar rocks

    NASA Astrophysics Data System (ADS)

    Robinson, Katharine Lynn

    The Moon was thought to be completely anhydrous until indigenous water was found in lunar samples in 2008. This discovery raised two fundamental questions about the Moon: how much water is present in the bulk Moon and is water uniformly distributed in the lunar interior? To address these questions, I studied a suite of lunar samples rich in a chemical component called KREEP (K, Rare Earth Elements, P), all of which are incompatible elements. Water behaves as an incompatible element in magmas, so KREEP-rich lunar samples are potentially water rich. In this dissertation, I present the results of a petrologic study of KREEP-rich lunar rocks, measurements of their water contents and deuterium (D) to hydrogen (H) ratios (D/H), and examined where these rocks fit into our understanding of water in the Moon as a whole. We performed a study of highly evolved, KREEP-rich lunar rocks called felsites and determined that they contain quartz. Using cooling rates derived from quartz-Ti thermometry, we show the felsites originated at a minimum pressure of ˜1 kbar, corresponding to a minimum depth of 20-25 km in the lunar crust. We calculate that at that pressure water would have been soluble in the melt, indicating that degassing of H2O from the felsite parental melts was likely minimal and hydrogen isotopes in intrusive rocks are likely unfractionated. We then measured D/H in apatite in KREEP-rich intrusive rocks to clarify the solar system source of the Moon's water. When viewed in the context of other lunar D/H studies, our results indicate there are at least three distinctive reservoirs in the lunar interior, including an ultra-low D reservoir that could represent a primitive component in the Moon's interior. Furthermore, our measurements of residual glass in a KREEP basalt show that the KREEP basaltic magmas contained 10 times less water than the source of the Apollo 17 pyroclastic glass beads, indicating that, though wetter than previously thought, the concentration of

  17. The origin and evolution of oxygenic photosynthesis

    NASA Technical Reports Server (NTRS)

    Blankenship, R. E.; Hartman, H.

    1998-01-01

    The evolutionary developments that led to the ability of photosynthetic organisms to oxidize water to molecular oxygen are discussed. Two major changes from a more primitive non-oxygen-evolving reaction center are required: a charge-accumulating system and a reaction center pigment with a greater oxidizing potential. Intermediate stages are proposed in which hydrogen peroxide was oxidized by the reaction center, and an intermediate pigment, similar to chlorophyll d, was present.

  18. The oxygen isotopes

    NASA Astrophysics Data System (ADS)

    Brown, B. Alex

    The properties of the oxygen isotopes provide diverse examples of progress made in experiments and theory. This chain of isotopes has been studied from beyond the proton drip line in 12O to beyond the neutron drip line in 25,26O. This short survey starts with the microscopic G matrix approach for 18O of Kuo and Brown in the 1960’s and shows how theory has evolved. The nuclear structure around the doubly-magic nucleus 24O is particularly simple in terms of the nuclear shell model. The nuclear structure around the doubly-magic nucleus 16O exhibits the coexistence of single-particle and collective structure.

  19. What Technology? Reflections on Evolving Services

    ERIC Educational Resources Information Center

    Collins, Sharon

    2009-01-01

    Each year, the members of the EDUCAUSE Evolving Technologies Committee identify and research the evolving technologies that are having--or are predicted to have--the most direct impact on higher education institutions. The committee members choose the relevant topics, write white papers, and present their findings at the EDUCAUSE annual…

  20. Directional Communication in Evolved Multiagent Teams

    DTIC Science & Technology

    2013-06-10

    only a fraction of the observable state of the environment. In such tasks, communication facilitates sharing information among team members to...architecture is becoming increasingly important for evolving autonomous multiagent systems. Directional reception of signals, a design feature of communication ...Title ABSTRACT How to best design a communication architecture is becoming increasingly important for evolving autonomous multiagent systems. Directional

  1. Evolving Technologies: A View to Tomorrow

    ERIC Educational Resources Information Center

    Tamarkin, Molly; Rodrigo, Shelley

    2011-01-01

    Technology leaders must participate in strategy creation as well as operational delivery within higher education institutions. The future of higher education--the view to tomorrow--is irrevocably integrated and intertwined with evolving technologies. This article focuses on two specific evolving technologies: (1) alternative IT sourcing; and (2)…

  2. Oxygen vacancy promoted methane partial oxidation over iron oxide oxygen carriers in the chemical looping process.

    PubMed

    Cheng, Zhuo; Qin, Lang; Guo, Mengqing; Xu, Mingyuan; Fan, Jonathan A; Fan, Liang-Shih

    2016-11-30

    We perform ab initio DFT+U calculations and experimental studies of the partial oxidation of methane to syngas on iron oxide oxygen carriers to elucidate the role of oxygen vacancies in oxygen carrier reactivity. In particular, we explore the effect of oxygen vacancy concentration on sequential processes of methane dehydrogenation, and oxidation with lattice oxygen. We find that when CH4 adsorbs onto Fe atop sites without neighboring oxygen vacancies, it dehydrogenates with CHx radicals remaining on the same site and evolves into CO2via the complete oxidation pathway. In the presence of oxygen vacancies, on the other hand, the formed methyl (CH3) prefers to migrate onto the vacancy site while the H from CH4 dehydrogenation remains on the original Fe atop site, and evolves into CO via the partial oxidation pathway. The oxygen vacancies created in the oxidation process can be healed by lattice oxygen diffusion from the subsurface to the surface vacancy sites, and it is found that the outward diffusion of lattice oxygen atoms is more favorable than the horizontal diffusion on the same layer. Based on the proposed mechanism and energy profile, we identify the rate-limiting steps of the partial oxidation and complete oxidation pathways. Also, we find that increasing the oxygen vacancy concentration not only lowers the barriers of CH4 dehydrogenation but also the cleavage energy of Fe-C bonds. However, the barrier of the rate-limiting step cannot further decrease when the oxygen vacancy concentration reaches 2.5%. The fundamental insight into the oxygen vacancy effect on CH4 oxidation with iron oxide oxygen carriers can help guide the design and development of more efficient oxygen carriers and CLPO processes.

  3. BUBBLE DYNAMICS AT GAS-EVOLVING ELECTRODES

    SciTech Connect

    Sides, Paul J.

    1980-12-01

    Nucleation of bubbles, their growth by diffusion of dissolved gas to the bubble surface and by coalescence, and their detachment from the electrode are all very fast phenomena; furthermore, electrolytically generated bubbles range in size from ten to a few hundred microns; therefore, magnification and high speed cinematography are required to observe bubbles and the phenomena of their growth on the electrode surface. Viewing the action from the front side (the surface on which the bubbles form) is complicated because the most important events occur close to the surface and are obscured by other bubbles passing between the camera and the electrode; therefore, oxygen was evolved on a transparent tin oxide "window" electrode and the events were viewed from the backside. The movies showed that coalescence of bubbles is very important for determining the size of bubbles and in the chain of transport processes; growth by diffusion and by coalescence proceeds in series and parallel; coalescing bubbles cause significant fluid motion close to the electrode; bubbles can leave and reattach; and bubbles evolve in a cycle of growth by diffusion and different modes of coalescence. An analytical solution for the primary potential and current distribution around a spherical bubble in contact with a plane electrode is presented. Zero at the contact point, the current density reaches only one percent of its undisturbed value at 30 percent of the radius from that point and goes through a shallow maximum two radii away. The solution obtained for spherical bubbles is shown to apply for the small bubbles of electrolytic processes. The incremental resistance in ohms caused by sparse arrays of bubbles is given by {Delta}R = 1.352 af/kS where f is the void fraction of gas in the bubble layer, a is the bubble layer thickness, k is the conductivity of gas free electrolyte, and S is the electrode area. A densely populated gas bubble layer on an electrode was modeled as a hexagonal array of

  4. Effect of molybdenum plus chromium on the corrosion of iron-, nickel-, and cobalt-base alloys in basaltic lava and simulated magmatic gas at 1150/sup 0/C

    SciTech Connect

    Ehrlich, S.A.; Douglass, D.L.

    1982-06-01

    The compatibility of several binary and ternary alloys in a magma environment was studied. Binary alloys containing molybdenum and ternary alloys containing chromium and molybdenum were exposed to basaltic lava at 1150/sup 0/C for periods of 24 and 96 hours. A cover gas was used to produce oxygen and sulfur fugacities corresponding to those of the gases dissolved in basaltic melts. Three base metals were used. These included iron, nickel, and cobalt. The primary reactions in binary alloys were found to be sulfidation. Oxide scales with a spinel layer formed on ternary alloys. The synergistic effect of molybdenum and chromium additions in ternary alloys exhibited superior corrosion resistance to binary alloys which formed base-metal sulfides down grain-boundaries. Extensive analyses of the reaction products by scanning electron microscopy, X-ray energy dispersive analysis, electron microprobe analysis, and metallography are presented for each alloys. The products formed are discussed with reference to thermodynamic stability diagrams, and the reaction path concept is used to explain some of the corrosion.

  5. Warning signals evolve to disengage Batesian mimics.

    PubMed

    Franks, Daniel W; Ruxton, Graeme D; Sherratt, Thomas N

    2009-01-01

    Prey that are unprofitable to attack are typically conspicuous in appearance. Conventional theory assumes that these warning signals have evolved in response to predator receiver biases. However, such biases might be a symptom rather than a cause of warning signals. We therefore examine an alternative theory: that conspicuousness evolves in unprofitable prey to avoid confusion with profitable prey. One might wonder why unprofitable prey do not find a cryptic means to be distinct from profitable prey, reducing both their risk of confusion with profitable prey and their rate of detection by predators. Here we present the first coevolutionary model to allow for Batesian mimicry and signals with different levels of detectability. We find that unprofitable prey do indeed evolve ways of distinguishing themselves using cryptic signals, particularly when appearance traits can evolve in multiple dimensions. However, conspicuous warning signals readily evolve in unprofitable prey when there are more ways to look different from the background than to match it. Moreover, the more unprofitable the prey species, the higher its evolved conspicuousness. Our results provide strong support for the argument that unprofitable species evolve conspicuous signals to avoid confusion with profitable prey and indicate that peak shift in conspicuousness-linked traits is a major factor in its establishment.

  6. Reversible Oxygenation of Oxygen Transport Proteins.

    ERIC Educational Resources Information Center

    Drain, C. M.; Corden, Barry B.

    1987-01-01

    Describes a lecture demonstration which illustrates changes in the visible spectra of oxygen transport proteins upon reversible oxygen binding. Provides a comparison of the physical characteristics of oxygen storage and transport proteins. Reviews essentials for preparation of the materials. (ML)

  7. Evolved Expandable Launch Vehicle System: RS-68 Main Engine Development

    NASA Astrophysics Data System (ADS)

    Portanova, P. L.; Conley, D. S., , Capt; Lee, N. Y.; Wood, B. K.

    2002-01-01

    Delta IV is one of two competing Evolved Expendable Launch Vehicle (EELV) systems being developed in an industry/United States Government partnership to meet the need for the new era of space transportation for the early decades of the 21st Century. The Boeing Company, Rocketdyne, and United States Air Force have developed a 650 Klbf (2.9 NM) class liquid hydrogen/liquid oxygen main engine for the Delta IV family of EELV. The purpose of this paper is to present the innovative approach to the design, development, testing, and certification of the RS-68 engine over the last several years. With the initial production process underway, RS-68 is implementing additional innovative concepts to produce an affordable main engine, and provide assured access to space. 1) The Aerospace Corporation3) The Aerospace Corporation 2) Captain, United States Air Force4) The Boeing Company/Rocketdyne

  8. Quantifying evolvability in small biological networks

    SciTech Connect

    Nemenman, Ilya; Mugler, Andrew; Ziv, Etay; Wiggins, Chris H

    2008-01-01

    The authors introduce a quantitative measure of the capacity of a small biological network to evolve. The measure is applied to a stochastic description of the experimental setup of Guet et al. (Science 2002, 296, pp. 1466), treating chemical inducers as functional inputs to biochemical networks and the expression of a reporter gene as the functional output. The authors take an information-theoretic approach, allowing the system to set parameters that optimise signal processing ability, thus enumerating each network's highest-fidelity functions. All networks studied are highly evolvable by the measure, meaning that change in function has little dependence on change in parameters. Moreover, each network's functions are connected by paths in the parameter space along which information is not significantly lowered, meaning a network may continuously change its functionality without completely losing it along the way. This property further underscores the evolvability of the networks.

  9. JavaGenes: Evolving Graphs with Crossover

    NASA Technical Reports Server (NTRS)

    Globus, Al; Atsatt, Sean; Lawton, John; Wipke, Todd

    2000-01-01

    Genetic algorithms usually use string or tree representations. We have developed a novel crossover operator for a directed and undirected graph representation, and used this operator to evolve molecules and circuits. Unlike strings or trees, a single point in the representation cannot divide every possible graph into two parts, because graphs may contain cycles. Thus, the crossover operator is non-trivial. A steady-state, tournament selection genetic algorithm code (JavaGenes) was written to implement and test the graph crossover operator. All runs were executed by cycle-scavagging on networked workstations using the Condor batch processing system. The JavaGenes code has evolved pharmaceutical drug molecules and simple digital circuits. Results to date suggest that JavaGenes can evolve moderate sized drug molecules and very small circuits in reasonable time. The algorithm has greater difficulty with somewhat larger circuits, suggesting that directed graphs (circuits) are more difficult to evolve than undirected graphs (molecules), although necessary differences in the crossover operator may also explain the results. In principle, JavaGenes should be able to evolve other graph-representable systems, such as transportation networks, metabolic pathways, and computer networks. However, large graphs evolve significantly slower than smaller graphs, presumably because the space-of-all-graphs explodes combinatorially with graph size. Since the representation strongly affects genetic algorithm performance, adding graphs to the evolutionary programmer's bag-of-tricks should be beneficial. Also, since graph evolution operates directly on the phenotype, the genotype-phenotype translation step, common in genetic algorithm work, is eliminated.

  10. A Stefan problem on an evolving surface

    PubMed Central

    Alphonse, Amal; Elliott, Charles M.

    2015-01-01

    We formulate a Stefan problem on an evolving hypersurface and study the well posedness of weak solutions given L1 data. To do this, we first develop function spaces and results to handle equations on evolving surfaces in order to give a natural treatment of the problem. Then, we consider the existence of solutions for data; this is done by regularization of the nonlinearity. The regularized problem is solved by a fixed point theorem and then uniform estimates are obtained in order to pass to the limit. By using a duality method, we show continuous dependence, which allows us to extend the results to L1 data. PMID:26261364

  11. Surveying The Digital Landscape: Evolving Technologies 2004. The EDUCAUSE Evolving Technologies Committee

    ERIC Educational Resources Information Center

    EDUCAUSE Review, 2004

    2004-01-01

    Each year, the members of the EDUCAUSE Evolving Technologies Committee identify and research the evolving technologies that are having the most direct impact on higher education institutions. The committee members choose the relevant topics, write white papers, and present their findings at the EDUCAUSE annual conference. This year, under the…

  12. Thermal and Evolved-Gas Analyzer Illustration

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This is a computer-aided drawing of the Thermal and Evolved-Gas Analyzer, or TEGA, on NASA's Phoenix Mars Lander.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  13. Evolving Neural Networks for Nonlinear Control.

    DTIC Science & Technology

    1996-09-30

    An approach to creating Amorphous Recurrent Neural Networks (ARNN) using Genetic Algorithms (GA) called 2pGA has been developed and shown to be...effective in evolving neural networks for the control and stabilization of both linear and nonlinear plants, the optimal control for a nonlinear regulator

  14. The Evolving Leadership Path of Visual Analytics

    SciTech Connect

    Kluse, Michael; Peurrung, Anthony J.; Gracio, Deborah K.

    2012-01-02

    This is a requested book chapter for an internationally authored book on visual analytics and related fields, coordianted by a UK university and to be published by Springer in 2012. This chapter is an overview of the leadship strategies that PNNL's Jim Thomas and other stakeholders used to establish visual analytics as a field, and how those strategies may evolve in the future.

  15. Toward an Evolved Concept of Landrace.

    PubMed

    Casañas, Francesc; Simó, Joan; Casals, Joan; Prohens, Jaime

    2017-01-01

    The term "landrace" has generally been defined as a cultivated, genetically heterogeneous variety that has evolved in a certain ecogeographical area and is therefore adapted to the edaphic and climatic conditions and to its traditional management and uses. Despite being considered by many to be inalterable, landraces have been and are in a constant state of evolution as a result of natural and artificial selection. Many landraces have disappeared from cultivation but are preserved in gene banks. Using modern selection and breeding technology tools to shape these preserved landraces together with the ones that are still cultivated is a further step in their evolution in order to preserve their agricultural significance. Adapting historical landraces to present agricultural conditions using cutting-edge breeding technology represents a challenging opportunity to use them in a modern sustainable agriculture, as an immediate return on the investment is highly unlikely. Consequently, we propose a more inclusive definition of landraces, namely that they consist of cultivated varieties that have evolved and may continue evolving, using conventional or modern breeding techniques, in traditional or new agricultural environments within a defined ecogeographical area and under the influence of the local human culture. This includes adaptation of landraces to new management systems and the unconscious or conscious selection made by farmers or breeders using available technology. In this respect, a mixed selection system might be established in which farmers and other social agents develop evolved landraces from the variability generated by public entities.

  16. Did Language Evolve Like the Vertebrate Eye?

    ERIC Educational Resources Information Center

    Botha, Rudolf P.

    2002-01-01

    Offers a critical appraisal of the way in which the idea that human language or some of its features evolved like the vertebrate eye by natural selection is articulated in Pinker and Bloom's (1990) selectionist account of language evolution. Argues that this account is less than insightful because it fails to draw some of the conceptual…

  17. Apollo 16 Evolved Lithology Sodic Ferrogabbro

    NASA Technical Reports Server (NTRS)

    Zeigler, Ryan; Jolliff, B. L.; Korotev, R. L.

    2014-01-01

    Evolved lunar igneous lithologies, often referred to as the alkali suite, are a minor but important component of the lunar crust. These evolved samples are incompatible-element rich samples, and are, not surprisingly, most common in the Apollo sites in (or near) the incompatible-element rich region of the Moon known as the Procellarum KREEP Terrane (PKT). The most commonly occurring lithologies are granites (A12, A14, A15, A17), monzogabbro (A14, A15), alkali anorthosites (A12, A14), and KREEP basalts (A15, A17). The Feldspathic Highlands Terrane is not entirely devoid of evolved lithologies, and rare clasts of alkali gabbronorite and sodic ferrogabbro (SFG) have been identified in Apollo 16 station 11 breccias 67915 and 67016. Curiously, nearly all pristine evolved lithologies have been found as small clasts or soil particles, exceptions being KREEP basalts 15382/6 and granitic sample 12013 (which is itself a breccia). Here we reexamine the petrography and geochemistry of two SFG-like particles found in a survey of Apollo 16 2-4 mm particles from the Cayley Plains 62283,7-15 and 62243,10-3 (hereafter 7-15 and 10-3 respectively). We will compare these to previously reported SFG samples, including recent analyses on the type specimen of SFG from lunar breccia 67915.

  18. Toward an Evolved Concept of Landrace

    PubMed Central

    Casañas, Francesc; Simó, Joan; Casals, Joan; Prohens, Jaime

    2017-01-01

    The term “landrace” has generally been defined as a cultivated, genetically heterogeneous variety that has evolved in a certain ecogeographical area and is therefore adapted to the edaphic and climatic conditions and to its traditional management and uses. Despite being considered by many to be inalterable, landraces have been and are in a constant state of evolution as a result of natural and artificial selection. Many landraces have disappeared from cultivation but are preserved in gene banks. Using modern selection and breeding technology tools to shape these preserved landraces together with the ones that are still cultivated is a further step in their evolution in order to preserve their agricultural significance. Adapting historical landraces to present agricultural conditions using cutting-edge breeding technology represents a challenging opportunity to use them in a modern sustainable agriculture, as an immediate return on the investment is highly unlikely. Consequently, we propose a more inclusive definition of landraces, namely that they consist of cultivated varieties that have evolved and may continue evolving, using conventional or modern breeding techniques, in traditional or new agricultural environments within a defined ecogeographical area and under the influence of the local human culture. This includes adaptation of landraces to new management systems and the unconscious or conscious selection made by farmers or breeders using available technology. In this respect, a mixed selection system might be established in which farmers and other social agents develop evolved landraces from the variability generated by public entities. PMID:28228769

  19. Home Oxygen Therapy

    MedlinePlus

    ... oxygen is rarely delivered in the older large, steel gas cylinders any longer since frequent and costly ... just like the compressed oxygen in the older steel cylinders. An important advantage of liquid oxygen is ...

  20. Lunar production of oxygen by electrolysis

    NASA Technical Reports Server (NTRS)

    Keller, Rudolf

    1991-01-01

    Two approaches to prepare oxygen from lunar resources by direct electrolysis are discussed. Silicates can be melted or dissolved in a fused salt and electrolyzed with oxygen evolved at the anode. Direct melting and electrolysis is potentially a very simple process, but high temperatures of 1400-1500 C are required, which aggravates materials problems. Operating temperatures can be lowered to about 1000 C by employing a molten salt flux. In this case, however, losses of electrolyte components must be avoided. Experimentation on both approaches is progressing.

  1. Cobalt nanoparticles embedded in N-doped carbon as an efficient bifunctional electrocatalyst for oxygen reduction and evolution reactions

    NASA Astrophysics Data System (ADS)

    Su, Yunhe; Zhu, Yihua; Jiang, Hongliang; Shen, Jianhua; Yang, Xiaoling; Zou, Wenjian; Chen, Jianding; Li, Chunzhong

    2014-11-01

    Cobalt based catalysts are promising bifunctional electrocatalysts for both oxygen reduction and oxygen evolution reactions (ORR and OER) in unitized regenerative fuel cells (URFCs) operating with alkaline electrolytes. Here we report a hybrid composite of cobalt nanoparticles embedded in nitrogen-doped carbon (Co/N-C) via a solvothermal carbonization strategy. With the synergistic effect arising from the N-doped carbon and cobalt nanoparticles in the composite, the Co/N-C hybrid catalyst exhibits highly efficient bifunctional catalytic activity and excellent stability toward both ORR and OER. The ΔE (oxygen electrode activity parameter for judging the overall electrocatalytic activity of a bifunctional electrocatalyst) value for Co/N-C is 0.859 V, which is smaller than those of Pt/C and most of the non-precious metal catalysts in previous studies. Furthermore, the Co/N-C composite also shows better bifunctional catalytic activity than its oxidative counterparts, which could be attributed to the high specific surface area and the efficient charge transfer ability of the composite, as well as the good synergistic effect between N-doped carbon and the Co nanoparticles in the Co/N-C composite.Cobalt based catalysts are promising bifunctional electrocatalysts for both oxygen reduction and oxygen evolution reactions (ORR and OER) in unitized regenerative fuel cells (URFCs) operating with alkaline electrolytes. Here we report a hybrid composite of cobalt nanoparticles embedded in nitrogen-doped carbon (Co/N-C) via a solvothermal carbonization strategy. With the synergistic effect arising from the N-doped carbon and cobalt nanoparticles in the composite, the Co/N-C hybrid catalyst exhibits highly efficient bifunctional catalytic activity and excellent stability toward both ORR and OER. The ΔE (oxygen electrode activity parameter for judging the overall electrocatalytic activity of a bifunctional electrocatalyst) value for Co/N-C is 0.859 V, which is smaller than those

  2. Evolved gas analysis of secondary organic aerosols

    SciTech Connect

    Grosjean, D.; Williams, E.L. II; Grosjean, E. ); Novakov, T. )

    1994-11-01

    Secondary organic aerosols have been characterized by evolved gas analysis (EGA). Hydrocarbons selected as aerosol precursors were representative of anthropogenic emissions (cyclohexene, cyclopentene, 1-decene and 1-dodecene, n-dodecane, o-xylene, and 1,3,5-trimethylbenzene) and of biogenic emissions (the terpenes [alpha]-pinene, [beta]-pinene and d-limonene and the sesquiterpene trans-caryophyllene). Also analyzed by EGA were samples of secondary, primary (highway tunnel), and ambient (urban) aerosols before and after exposure to ozone and other photochemical oxidants. The major features of the EGA thermograms (amount of CO[sub 2] evolved as a function of temperature) are described. The usefulness and limitations of EGA data for source apportionment of atmospheric particulate carbon are briefly discussed. 28 refs., 7 figs., 4 tabs.

  3. Dust obscuration by an evolving galaxy population

    NASA Technical Reports Server (NTRS)

    Najita, Joan; Silk, Joseph; Wachter, Kenneth W.

    1990-01-01

    The effect of an evolving luminosity function (LF) on the ability of foreground galaxies to obscure background sources is discussed, using the Press-Schechter/CDM standard evolving LF model. Galaxies are modeled as simplified versions of local spirals and Poisson statistics are used to estimate the fraction of sky covered by intervening dusty galaxies and the mean optical depths due to these galaxies. The results are compared to those obtained in the case of nonevolving luminosity function in a low-density universe. It is found that evolution of the galaxy LF does not allow the quasar dust obscuration hypothesis to be sustained for dust disks with plausible sizes. Even in a low-density universe, where evolution at z = less than 10 is unimportant, large disk radii are needed to achieve the desired obscuring effect. The mean fraction of sky covered is presented as a function of the redshift z along with adequate diagram illustrations.

  4. Design Space Issues for Intrinsic Evolvable Hardware

    NASA Technical Reports Server (NTRS)

    Hereford, James; Gwaltney, David

    2004-01-01

    This paper discusses the problem of increased programming time for intrinsic evolvable hardware (EM) as the complexity of the circuit grows. As the circuit becomes more complex, then more components will be required and a longer programming string, L, is required. We develop equations for the size of the population, n, and the number of generations required for the population to converge, based on L. Our analytical results show that even though the design search space grows as 2L (assuming a binary programming string), the number of circuit evaluations, n*ngen, only grows as O(Lg3), or slightly less than O(L). This makes evolvable techniques a good tool for exploring large design spaces. The major hurdle for intrinsic EHW is evaluation time for each possible circuit. The evaluation time involves downloading the bit string to the device, updating the device configuration, measuring the output and then transferring the output data to the control processor. Each of these steps must be done for each member of the population. The processing time of the computer becomes negligible since the selection/crossover/mutation steps are only done once per generation. Evaluation time presently limits intrinsic evolvable hardware techniques to designing only small or medium-sized circuits. To evolve large or complicated circuits, several researchers have proposed using hierarchical design or reuse techniques where submodules are combined together to form complex circuits. However, these practical approaches limit the search space of available designs and preclude utilizing parasitic coupling or other effects within the programmable device. The practical approaches also raise the issue of why intrinsic EHW techniques do not easily apply to large design spaces, since the analytical results show only an O(L) complexity growth.

  5. Quantum games on evolving random networks

    NASA Astrophysics Data System (ADS)

    Pawela, Łukasz

    2016-09-01

    We study the advantages of quantum strategies in evolutionary social dilemmas on evolving random networks. We focus our study on the two-player games: prisoner's dilemma, snowdrift and stag-hunt games. The obtained result show the benefits of quantum strategies for the prisoner's dilemma game. For the other two games, we obtain regions of parameters where the quantum strategies dominate, as well as regions where the classical strategies coexist.

  6. Continuous Evaluation of Evolving Behavioral Intervention Technologies

    PubMed Central

    Mohr, David C.; Cheung, Ken; Schueller, Stephen M.; Brown, C. Hendricks; Duan, Naihua

    2013-01-01

    Behavioral intervention technologies (BITs) are web-based and mobile interventions intended to support patients and consumers in changing behaviors related to health, mental health, and well-being. BITs are provided to patients and consumers in clinical care settings and commercial marketplaces, frequently with little or no evaluation. Current evaluation methods, including RCTs and implementation studies, can require years to validate an intervention. This timeline is fundamentally incompatible with the BIT environment, where technology advancement and changes in consumer expectations occur quickly, necessitating rapidly evolving interventions. However, BITs can routinely and iteratively collect data in a planned and strategic manner and generate evidence through systematic prospective analyses, thereby creating a system that can “learn.” A methodologic framework, Continuous Evaluation of Evolving Behavioral Intervention Technologies (CEEBIT), is proposed that can support the evaluation of multiple BITs or evolving versions, eliminating those that demonstrate poorer outcomes, while allowing new BITs to be entered at any time. CEEBIT could be used to ensure the effectiveness of BITs provided through deployment platforms in clinical care organizations or BIT marketplaces. The features of CEEBIT are described, including criteria for the determination of inferiority, determination of BIT inclusion, methods of assigning consumers to BITs, definition of outcomes, and evaluation of the usefulness of the system. CEEBIT offers the potential to collapse initial evaluation and postmarketing surveillance, providing ongoing assurance of safety and efficacy to patients and consumers, payers, and policymakers. PMID:24050429

  7. Continuous evaluation of evolving behavioral intervention technologies.

    PubMed

    Mohr, David C; Cheung, Ken; Schueller, Stephen M; Hendricks Brown, C; Duan, Naihua

    2013-10-01

    Behavioral intervention technologies (BITs) are web-based and mobile interventions intended to support patients and consumers in changing behaviors related to health, mental health, and well-being. BITs are provided to patients and consumers in clinical care settings and commercial marketplaces, frequently with little or no evaluation. Current evaluation methods, including RCTs and implementation studies, can require years to validate an intervention. This timeline is fundamentally incompatible with the BIT environment, where technology advancement and changes in consumer expectations occur quickly, necessitating rapidly evolving interventions. However, BITs can routinely and iteratively collect data in a planned and strategic manner and generate evidence through systematic prospective analyses, thereby creating a system that can "learn." A methodologic framework, Continuous Evaluation of Evolving Behavioral Intervention Technologies (CEEBIT), is proposed that can support the evaluation of multiple BITs or evolving versions, eliminating those that demonstrate poorer outcomes, while allowing new BITs to be entered at any time. CEEBIT could be used to ensure the effectiveness of BITs provided through deployment platforms in clinical care organizations or BIT marketplaces. The features of CEEBIT are described, including criteria for the determination of inferiority, determination of BIT inclusion, methods of assigning consumers to BITs, definition of outcomes, and evaluation of the usefulness of the system. CEEBIT offers the potential to collapse initial evaluation and postmarketing surveillance, providing ongoing assurance of safety and efficacy to patients and consumers, payers, and policymakers.

  8. Transistor Level Circuit Experiments using Evolvable Hardware

    NASA Technical Reports Server (NTRS)

    Stoica, A.; Zebulum, R. S.; Keymeulen, D.; Ferguson, M. I.; Daud, Taher; Thakoor, A.

    2005-01-01

    The Jet Propulsion Laboratory (JPL) performs research in fault tolerant, long life, and space survivable electronics for the National Aeronautics and Space Administration (NASA). With that focus, JPL has been involved in Evolvable Hardware (EHW) technology research for the past several years. We have advanced the technology not only by simulation and evolution experiments, but also by designing, fabricating, and evolving a variety of transistor-based analog and digital circuits at the chip level. EHW refers to self-configuration of electronic hardware by evolutionary/genetic search mechanisms, thereby maintaining existing functionality in the presence of degradations due to aging, temperature, and radiation. In addition, EHW has the capability to reconfigure itself for new functionality when required for mission changes or encountered opportunities. Evolution experiments are performed using a genetic algorithm running on a DSP as the reconfiguration mechanism and controlling the evolvable hardware mounted on a self-contained circuit board. Rapid reconfiguration allows convergence to circuit solutions in the order of seconds. The paper illustrates hardware evolution results of electronic circuits and their ability to perform under 230 C temperature as well as radiations of up to 250 kRad.

  9. Evolving specialization of the arthropod nervous system.

    PubMed

    Jarvis, Erin; Bruce, Heather S; Patel, Nipam H

    2012-06-26

    The diverse array of body plans possessed by arthropods is created by generating variations upon a design of repeated segments formed during development, using a relatively small "toolbox" of conserved patterning genes. These attributes make the arthropod body plan a valuable model for elucidating how changes in development create diversity of form. As increasingly specialized segments and appendages evolved in arthropods, the nervous systems of these animals also evolved to control the function of these structures. Although there is a remarkable degree of conservation in neural development both between individual segments in any given species and between the nervous systems of different arthropod groups, the differences that do exist are informative for inferring general principles about the holistic evolution of body plans. This review describes developmental processes controlling neural segmentation and regionalization, highlighting segmentation mechanisms that create both ectodermal and neural segments, as well as recent studies of the role of Hox genes in generating regional specification within the central nervous system. We argue that this system generates a modular design that allows the nervous system to evolve in concert with the body segments and their associated appendages. This information will be useful in future studies of macroevolutionary changes in arthropod body plans, especially in understanding how these transformations can be made in a way that retains the function of appendages during evolutionary transitions in morphology.

  10. Design of a lunar oxygen production plant

    NASA Technical Reports Server (NTRS)

    Radhakrishnan, Ramalingam

    1990-01-01

    To achieve permanent human presence and activity on the moon, oxygen is required for both life support and propulsion. Lunar oxygen production using resources existing on the moon will reduce or eliminate the need to transport liquid oxygen from earth. In addition, the co-products of oxygen production will provide metals, structural ceramics, and other volatile compounds. This will enable development of even greater self-sufficiency as the lunar outpost evolves. Ilmenite is the most abundant metal-oxide mineral in the lunar regolith. A process involving the reaction of ilmenite with hydrogen at 1000 C to produce water, followed by the electrolysis of this water to provide oxygen and recycle the hydrogen has been explored. The objective of this 1990 Summer Faculty Project was to design a lunar oxygen-production plant to provide 5 metric tons of liquid oxygen per year from lunar soil. The results of this study describe the size and mass of the equipment, the power needs, feedstock quantity and the engineering details of the plant.

  11. Properties of evolved mass-losing stars in the Milky Way and variations in the interstellar dust composition

    NASA Technical Reports Server (NTRS)

    Thronson, Harley A., Jr.; Latter, William B.; Black, John H.; Bally, John; Hacking, Perry

    1987-01-01

    A large sample of evolved carbon-rich and oxygen-rich objects has been studied using data from the IRAS Point Source Catalog. The number density of infrared-emitting 'carbon' stars shows no variation with Galactocentric radius, while the evolved 'oxygen' star volume density can be well fitted by a given law. A law is given for the number of carbon stars; a total is found in the Galaxy of 48,000 highly evolved oxygen stars. The mass-return rate for all evolved stars is found to be 0.35 solar mass/yr, with a small percentage contribution from carbon stars. The mass-loss rates for both types of stars are dominated by the small number of objects with the smallest rates. A mean lifetime of about 200,000 yr is obtained for both carbon and oxygen stars. Main-sequence stars in the mass range of three to five solar masses are the probable precursors of the carbon stars.

  12. Properties of evolved mass-losing stars in the Milky Way and variations in the interstellar dust composition

    SciTech Connect

    Thronson, H.A. Jr.; Latter, W.B.; Black, J.H.; Bally, J.; Hacking, P.

    1987-11-01

    A large sample of evolved carbon-rich and oxygen-rich objects has been studied using data from the IRAS Point Source Catalog. The number density of infrared-emitting carbon stars shows no variation with Galactocentric radius, while the evolved oxygen star volume density can be well fitted by a given law. A law is given for the number of carbon stars; a total is found in the Galaxy of 48,000 highly evolved oxygen stars. The mass-return rate for all evolved stars is found to be 0.35 solar mass/yr, with a small percentage contribution from carbon stars. The mass-loss rates for both types of stars are dominated by the small number of objects with the smallest rates. A mean lifetime of about 200,000 yr is obtained for both carbon and oxygen stars. Main-sequence stars in the mass range of three to five solar masses are the probable precursors of the carbon stars. 53 references.

  13. Artificial oxygen transport protein

    DOEpatents

    Dutton, P. Leslie

    2014-09-30

    This invention provides heme-containing peptides capable of binding molecular oxygen at room temperature. These compounds may be useful in the absorption of molecular oxygen from molecular oxygen-containing atmospheres. Also included in the invention are methods for treating an oxygen transport deficiency in a mammal.

  14. Evolvability Is an Evolved Ability: The Coding Concept as the Arch-Unit of Natural Selection

    NASA Astrophysics Data System (ADS)

    Janković, Srdja; Ćirković, Milan M.

    2016-03-01

    Physical processes that characterize living matter are qualitatively distinct in that they involve encoding and transfer of specific types of information. Such information plays an active part in the control of events that are ultimately linked to the capacity of the system to persist and multiply. This algorithmicity of life is a key prerequisite for its Darwinian evolution, driven by natural selection acting upon stochastically arising variations of the encoded information. The concept of evolvability attempts to define the total capacity of a system to evolve new encoded traits under appropriate conditions, i.e., the accessible section of total morphological space. Since this is dependent on previously evolved regulatory networks that govern information flow in the system, evolvability itself may be regarded as an evolved ability. The way information is physically written, read and modified in living cells (the "coding concept") has not changed substantially during the whole history of the Earth's biosphere. This biosphere, be it alone or one of many, is, accordingly, itself a product of natural selection, since the overall evolvability conferred by its coding concept (nucleic acids as information carriers with the "rulebook of meanings" provided by codons, as well as all the subsystems that regulate various conditional information-reading modes) certainly played a key role in enabling this biosphere to survive up to the present, through alterations of planetary conditions, including at least five catastrophic events linked to major mass extinctions. We submit that, whatever the actual prebiotic physical and chemical processes may have been on our home planet, or may, in principle, occur at some time and place in the Universe, a particular coding concept, with its respective potential to give rise to a biosphere, or class of biospheres, of a certain evolvability, may itself be regarded as a unit (indeed the arch-unit) of natural selection.

  15. Evolvability Is an Evolved Ability: The Coding Concept as the Arch-Unit of Natural Selection.

    PubMed

    Janković, Srdja; Ćirković, Milan M

    2016-03-01

    Physical processes that characterize living matter are qualitatively distinct in that they involve encoding and transfer of specific types of information. Such information plays an active part in the control of events that are ultimately linked to the capacity of the system to persist and multiply. This algorithmicity of life is a key prerequisite for its Darwinian evolution, driven by natural selection acting upon stochastically arising variations of the encoded information. The concept of evolvability attempts to define the total capacity of a system to evolve new encoded traits under appropriate conditions, i.e., the accessible section of total morphological space. Since this is dependent on previously evolved regulatory networks that govern information flow in the system, evolvability itself may be regarded as an evolved ability. The way information is physically written, read and modified in living cells (the "coding concept") has not changed substantially during the whole history of the Earth's biosphere. This biosphere, be it alone or one of many, is, accordingly, itself a product of natural selection, since the overall evolvability conferred by its coding concept (nucleic acids as information carriers with the "rulebook of meanings" provided by codons, as well as all the subsystems that regulate various conditional information-reading modes) certainly played a key role in enabling this biosphere to survive up to the present, through alterations of planetary conditions, including at least five catastrophic events linked to major mass extinctions. We submit that, whatever the actual prebiotic physical and chemical processes may have been on our home planet, or may, in principle, occur at some time and place in the Universe, a particular coding concept, with its respective potential to give rise to a biosphere, or class of biospheres, of a certain evolvability, may itself be regarded as a unit (indeed the arch-unit) of natural selection.

  16. Oxygen Isotopes in Meteorites

    NASA Astrophysics Data System (ADS)

    Clayton, R. N.

    2003-12-01

    types of stellar sources, corresponding to the r-process, s-process, and p-process. Presolar silicon carbide grains, extracted from primitive meteorites, contain molybdenum that has been subject to s-process neutron capture in red-giant stars, resulting in large enrichments of isotopes at masses 95, 96, 97, 98, and severe depletions (up to 100%) of isotopes at masses 92 and 94 (p-process) and 100 (r-process) (Nicolussi et al., 1998). Complementary patterns have been found in whole-rock samples of several meteorites, with >1,000-fold smaller amplitude, suggesting the preservation of a small fraction of the initial isotopic heterogeneity ( Yin et al., 2002; Dauphas et al., 2002). Oxygen is another element for which primordial isotopic heterogeneity might be preserved. This is discussed further below.It would be highly desirable to have samples of oxygen-rich mineral grains that have formed in stellar atmospheres and have recorded the nucleosynthetic processes in individual stars. Similar samples are already available for carbon-rich grains, in the form of SiC and graphite, primarily from asymptotic giant branch (AGB) stars and supernovae (Anders and Zinner, 1993). These presolar grains have provided a wealth of detailed information concerning nucleosynthesis of carbon, nitrogen, silicon, calcium, titanium, and heavier elements (see Chapter 1.02). It is thought that such carbon-rich minerals should form only in environments with C/O>1, as in the late stages of AGB evolution, or in carbon-rich layers of supernovae. By analogy, one would expect to form oxide and silicate minerals in environments with C/O<1, as is common for most stars. Indeed there is evidence in infrared spectra for the formation of Al2O3 (corundum) and silicates, such as olivine (Speck et al., 2000) around evolved oxygen-rich stars. However, searches for such grains in meteorites have yielded only a very small population of corundum grains, a few grains of spinel and hibonite, and no silicates ( Nittler et

  17. Risky prey behavior evolves in risky habitats.

    PubMed

    Urban, Mark C

    2007-09-04

    Longstanding theory in behavioral ecology predicts that prey should evolve decreased foraging rates under high predation threat. However, an alternative perspective suggests that growth into a size refuge from gape-limited predation and the future benefits of large size can outweigh the initial survival costs of intense foraging. Here, I evaluate the relative contributions of selection from a gape-limited predator (Ambystoma opacum) and spatial location to explanations of variation in foraging, growth, and survival in 10 populations of salamander larvae (Ambystoma maculatum). Salamander larvae from populations naturally exposed to intense A. opacum predation risk foraged more actively under common garden conditions. Higher foraging rates were associated with low survival in populations exposed to free-ranging A. opacum larvae. Results demonstrate that risky foraging activity can evolve in high predation-risk habitats when the dominant predators are gape-limited. This finding invites the further exploration of diverse patterns of prey foraging behavior that depends on natural variation in predator size-selectivity. In particular, prey should adopt riskier behaviors under predation threat than expected under existing risk allocation models if foraging effort directly reduces the duration of risk by growth into a size refuge. Moreover, evidence from this study suggests that foraging has evolved over microgeographic scales despite substantial modification by regional gene flow. This interaction between local selection and spatial location suggests a joint role for adaptation and maladaptation in shaping species interactions across natural landscapes, which is a finding with implications for dynamics at the population, community, and metacommunity levels.

  18. Production and decay of evolving horizons

    NASA Astrophysics Data System (ADS)

    Nielsen, Alex B.; Visser, Matt

    2006-07-01

    We consider a simple physical model for an evolving horizon that is strongly interacting with its environment, exchanging arbitrarily large quantities of matter with its environment in the form of both infalling material and outgoing Hawking radiation. We permit fluxes of both lightlike and timelike particles to cross the horizon, and ask how the horizon grows and shrinks in response to such flows. We place a premium on providing a clear and straightforward exposition with simple formulae. To be able to handle such a highly dynamical situation in a simple manner we make one significant physical restriction—that of spherical symmetry—and two technical mathematical restrictions: (1) we choose to slice the spacetime in such a way that the spacetime foliations (and hence the horizons) are always spherically symmetric. (2) Furthermore, we adopt Painlevé Gullstrand coordinates (which are well suited to the problem because they are nonsingular at the horizon) in order to simplify the relevant calculations. Of course physics results are ultimately independent of the choice of coordinates, but this particular coordinate system yields a clean physical interpretation of the relevant physics. We find particularly simple forms for surface gravity, and for the first and second law of black hole thermodynamics, in this general evolving horizon situation. Furthermore, we relate our results to Hawking's apparent horizon, Ashtekar and co-worker's isolated and dynamical horizons, and Hayward's trapping horizon. The evolving black hole model discussed here will be of interest, both from an astrophysical viewpoint in terms of discussing growing black holes and from a purely theoretical viewpoint in discussing black hole evaporation via Hawking radiation.

  19. Cerebral Tissue Oxygenation during Immediate Neonatal Transition and Resuscitation

    PubMed Central

    Pichler, Gerhard; Schmölzer, Georg M.; Urlesberger, Berndt

    2017-01-01

    This article provides a review of cerebral tissue oxygenation during immediate transition after birth in human neonates. Recommended routine monitoring, especially if resuscitation is needed, during this period includes arterial oxygen saturation and heart rate measured by pulse oximetry and electrocardiogram. However, there is increasing interest to monitor in addition with near-infrared spectroscopy (NIRS) the oxygenation of the brain. There is a different pattern of increase between cerebral tissue oxygenation and arterial oxygen saturation during the immediate transition, with cerebral tissue oxygenation reaching a plateau faster than arterial oxygen saturation. Differences can be explained, since cerebral tissue oxygenation is not only affected by arterial oxygen saturation but also by cerebral blood flow, hemoglobin content, and cerebral oxygen consumption. Normal values have already been established for different devices, gestational ages, and modes of delivery in neonates without any medical support. Cerebral hypoxia during immediate transition might cause brain damage. In preterm neonates with cerebral hemorrhage evolving in the first week after birth, the cerebral tissue oxygenation is already lower in the first minutes after birth compared to preterm neonates without cerebral hemorrhage. Using cerebral NIRS in combination with intervention guidelines has been shown to reduce the burden of cerebral hypoxia in preterm neonates. Cerebral tissue oxygenation during immediate transition seems to have an impact on outcome, whereby NIRS monitoring is feasible and has the advantage of continuous, non-invasive recording. The impact of NIRS monitoring and interventions on short- and long-term outcomes still need to be evaluated. PMID:28280719

  20. Cerebral Tissue Oxygenation during Immediate Neonatal Transition and Resuscitation.

    PubMed

    Pichler, Gerhard; Schmölzer, Georg M; Urlesberger, Berndt

    2017-01-01

    This article provides a review of cerebral tissue oxygenation during immediate transition after birth in human neonates. Recommended routine monitoring, especially if resuscitation is needed, during this period includes arterial oxygen saturation and heart rate measured by pulse oximetry and electrocardiogram. However, there is increasing interest to monitor in addition with near-infrared spectroscopy (NIRS) the oxygenation of the brain. There is a different pattern of increase between cerebral tissue oxygenation and arterial oxygen saturation during the immediate transition, with cerebral tissue oxygenation reaching a plateau faster than arterial oxygen saturation. Differences can be explained, since cerebral tissue oxygenation is not only affected by arterial oxygen saturation but also by cerebral blood flow, hemoglobin content, and cerebral oxygen consumption. Normal values have already been established for different devices, gestational ages, and modes of delivery in neonates without any medical support. Cerebral hypoxia during immediate transition might cause brain damage. In preterm neonates with cerebral hemorrhage evolving in the first week after birth, the cerebral tissue oxygenation is already lower in the first minutes after birth compared to preterm neonates without cerebral hemorrhage. Using cerebral NIRS in combination with intervention guidelines has been shown to reduce the burden of cerebral hypoxia in preterm neonates. Cerebral tissue oxygenation during immediate transition seems to have an impact on outcome, whereby NIRS monitoring is feasible and has the advantage of continuous, non-invasive recording. The impact of NIRS monitoring and interventions on short- and long-term outcomes still need to be evaluated.

  1. Oxygen sensing and signaling.

    PubMed

    van Dongen, Joost T; Licausi, Francesco

    2015-01-01

    Oxygen is an indispensable substrate for many biochemical reactions in plants, including energy metabolism (respiration). Despite its importance, plants lack an active transport mechanism to distribute oxygen to all cells. Therefore, steep oxygen gradients occur within most plant tissues, which can be exacerbated by environmental perturbations that further reduce oxygen availability. Plants possess various responses to cope with spatial and temporal variations in oxygen availability, many of which involve metabolic adaptations to deal with energy crises induced by low oxygen. Responses are induced gradually when oxygen concentrations decrease and are rapidly reversed upon reoxygenation. A direct effect of the oxygen level can be observed in the stability, and thus activity, of various transcription factors that control the expression of hypoxia-induced genes. Additional signaling pathways are activated by the impact of oxygen deficiency on mitochondrial and chloroplast functioning. Here, we describe the molecular components of the oxygen-sensing pathway.

  2. Investigating Evolved Compositions Around Wolf Crater

    NASA Technical Reports Server (NTRS)

    Greenhagen, B. T.; Cahill, J. T. S.; Jolliff, B. L.; Lawrence, S. J.; Glotch, T. D.

    2017-01-01

    Wolf crater is an irregularly shaped, approximately 25 km crater in the south-central portion of Mare Nubium on the lunar nearside. While not previously identified as a lunar "red spot", Wolf crater was identified as a Th anomaly by Lawrence and coworkers. We have used data from the Lunar Reconnaissance Orbiter (LRO) to determine the area surrounding Wolf crater has composition more similar to highly evolved, non-mare volcanic structures than typical lunar crustal lithology. In this presentation, we will investigate the geomorphology and composition of the Wolf crater and discuss implications for the origin of the anomalous terrain.

  3. Evolvable circuit with transistor-level reconfigurability

    NASA Technical Reports Server (NTRS)

    Stoica, Adrian (Inventor); Salazar-Lazaro, Carlos Harold (Inventor)

    2004-01-01

    An evolvable circuit includes a plurality of reconfigurable switches, a plurality of transistors within a region of the circuit, the plurality of transistors having terminals, the plurality of transistors being coupled between a power source terminal and a power sink terminal so as to be capable of admitting power between the power source terminal and the power sink terminal, the plurality of transistors being coupled so that every transistor terminal to transistor terminal coupling within the region of the circuit comprises a reconfigurable switch.

  4. An evolving paradigm for the secretory pathway?

    PubMed Central

    Lippincott-Schwartz, Jennifer

    2011-01-01

    The paradigm that the secretory pathway consists of a stable endoplasmic reticulum and Golgi apparatus, using discrete transport vesicles to exchange their contents, gained important support from groundbreaking biochemical and genetic studies during the 1980s. However, the subsequent development of new imaging technologies with green fluorescent protein introduced data on dynamic processes not fully accounted for by the paradigm. As a result, we may be seeing an example of how a paradigm is evolving to account for the results of new technologies and their new ways of describing cellular processes. PMID:22039065

  5. Mobile computing acceptance grows as applications evolve.

    PubMed

    Porn, Louis M; Patrick, Kelly

    2002-01-01

    Handheld devices are becoming more cost-effective to own, and their use in healthcare environments is increasing. Handheld devices currently are being used for e-prescribing, charge capture, and accessing daily schedules and reference tools. Future applications may include education on medications, dictation, order entry, and test-results reporting. Selecting the right handheld device requires careful analysis of current and future applications, as well as vendor expertise. It is important to recognize the technology will continue to evolve over the next three years.

  6. Oxygen Sensing and Homeostasis

    PubMed Central

    Semenza, Gregg L.

    2015-01-01

    The discovery of carotid bodies as sensory receptors for detecting arterial blood oxygen levels, and the identification and elucidation of the roles of hypoxia-inducible factors (HIFs) in oxygen homeostasis have propelled the field of oxygen biology. This review highlights the gas-messenger signaling mechanisms associated with oxygen sensing, as well as transcriptional and non-transcriptional mechanisms underlying the maintenance of oxygen homeostasis by HIFs and their relevance to physiology and pathology. PMID:26328879

  7. Where is the oxygen in protostellar outflows?

    NASA Astrophysics Data System (ADS)

    Kristensen, Lars

    2014-10-01

    Oxygen (O) is the third-most abundant element in the Universe after hydrogen and helium. Despite its high elemental abundance, a good picture of where oxygen is located in low-mass protostellar outflows and jets is missing: we cannot account for > 60% of the oxygen budget in these objects. This hole in our picture means that we currently do not have a good understanding of the dominant cooling processes in outflows jets, despite the fact that [O I] emission at 63 micron is one of the dominant cooling lines, nor how cooling processes evolve with protostellar evolution. To shed light on these processes, we propose to observe the [O I] 63 micron line with SOFIA-GREAT toward five low-mass protostars. As a first step, the velocity-resolved line profile will be decomposed into its constituent components to isolate the relative contributions from the jet and the irradiated outflow. Second, the [O I] line profile will be compared to those of H2O, OH and CO to obtain the relative atomic O abundance with respect to CO, H2O, and OH. Third, the effects of evolution will be examined by observing protostars at different evolutionary stages. These three approaches will allow us to quantify: the oxygen chemistry in warm and hot gas, the relative amounts of material in the outflow and the jet, and finally to start tracing the evolutionary sequence of how feedback evolves with time.

  8. Where is the oxygen in protostellar outflows?

    NASA Astrophysics Data System (ADS)

    Kristensen, Lars

    Oxygen (O) is the third-most abundant element in the Universe after hydrogen and helium. Despite its high elemental abundance, a good picture of where oxygen is located in low-mass protostellar outflows and jets is missing: we cannot account for > 60% of the oxygen budget in these objects. This hole in our picture means that we currently do not have a good understanding of the dominant cooling processes in outflows jets, despite the fact that [O I] emission at 63 micron is one of the dominant cooling lines, nor how cooling processes evolve with protostellar evolution. To shed light on these processes, we propose to observe the [O I] 63 micron line with SOFIA-GREAT toward seven low-mass protostars. As a first step, the velocity-resolved line profile will be decomposed into its constituent components to isolate the relative contributions from the jet and the irradiated outflow. Second, the [O I] line profile will be compared to those of H2O, OH and CO to obtain the relative atomic O abundance with respect to CO, H2O, and OH. Third, the effects of evolution will be examined by observing protostars at different evolutionary stages. These three approaches will allow us to quantify: the oxygen chemistry in warm and hot gas, the relative amounts of material in the outflow and the jet, and finally to start tracing the evolutionary sequence of how feedback evolves with time.

  9. The emotion system promotes diversity and evolvability

    PubMed Central

    Giske, Jarl; Eliassen, Sigrunn; Fiksen, Øyvind; Jakobsen, Per J.; Aksnes, Dag L.; Mangel, Marc; Jørgensen, Christian

    2014-01-01

    Studies on the relationship between the optimal phenotype and its environment have had limited focus on genotype-to-phenotype pathways and their evolutionary consequences. Here, we study how multi-layered trait architecture and its associated constraints prescribe diversity. Using an idealized model of the emotion system in fish, we find that trait architecture yields genetic and phenotypic diversity even in absence of frequency-dependent selection or environmental variation. That is, for a given environment, phenotype frequency distributions are predictable while gene pools are not. The conservation of phenotypic traits among these genetically different populations is due to the multi-layered trait architecture, in which one adaptation at a higher architectural level can be achieved by several different adaptations at a lower level. Our results emphasize the role of convergent evolution and the organismal level of selection. While trait architecture makes individuals more constrained than what has been assumed in optimization theory, the resulting populations are genetically more diverse and adaptable. The emotion system in animals may thus have evolved by natural selection because it simultaneously enhances three important functions, the behavioural robustness of individuals, the evolvability of gene pools and the rate of evolutionary innovation at several architectural levels. PMID:25100697

  10. Have plants evolved to self-immolate?

    PubMed Central

    Bowman, David M. J. S.; French, Ben J.; Prior, Lynda D.

    2014-01-01

    By definition fire prone ecosystems have highly combustible plants, leading to the hypothesis, first formally stated by Mutch in 1970, that community flammability is the product of natural selection of flammable traits. However, proving the “Mutch hypothesis” has presented an enormous challenge for fire ecologists given the difficulty in establishing cause and effect between landscape fire and flammable plant traits. Individual plant traits (such as leaf moisture content, retention of dead branches and foliage, oil rich foliage) are known to affect the flammability of plants but there is no evidence these characters evolved specifically to self-immolate, although some of these traits may have been secondarily modified to increase the propensity to burn. Demonstrating individual benefits from self-immolation is extraordinarily difficult, given the intersection of the physical environmental factors that control landscape fire (fuel production, dryness and ignitions) with community flammability properties that emerge from numerous traits of multiple species (canopy cover and litter bed bulk density). It is more parsimonious to conclude plants have evolved mechanisms to tolerate, but not promote, landscape fire. PMID:25414710

  11. Evolvability of an Optimal Recombination Rate.

    PubMed

    Lobkovsky, Alexander E; Wolf, Yuri I; Koonin, Eugene V

    2015-12-10

    Evolution and maintenance of genetic recombination and its relation to the mutational process is a long-standing, fundamental problem in evolutionary biology that is linked to the general problem of evolution of evolvability. We explored a stochastic model of the evolution of recombination using additive fitness and infinite allele assumptions but no assumptions on the sign or magnitude of the epistasis and the distribution of mutation effects. In this model, fluctuating negative epistasis and predominantly deleterious mutations arise naturally as a consequence of the additive fitness and a reservoir from which new alleles arrive with a fixed distribution of fitness effects. Analysis of the model revealed a nonmonotonic effect of recombination intensity on fitness, with an optimal recombination rate value which maximized fitness in steady state. The optimal recombination rate depended on the mutation rate and was evolvable, that is, subject to selection. The predictions of the model were compatible with the observations on the dependence between genome rearrangement rate and gene flux in microbial genomes.

  12. The Comet Cometh: Evolving Developmental Systems.

    PubMed

    Jaeger, Johannes; Laubichler, Manfred; Callebaut, Werner

    In a recent opinion piece, Denis Duboule has claimed that the increasing shift towards systems biology is driving evolutionary and developmental biology apart, and that a true reunification of these two disciplines within the framework of evolutionary developmental biology (EvoDevo) may easily take another 100 years. He identifies methodological, epistemological, and social differences as causes for this supposed separation. Our article provides a contrasting view. We argue that Duboule's prediction is based on a one-sided understanding of systems biology as a science that is only interested in functional, not evolutionary, aspects of biological processes. Instead, we propose a research program for an evolutionary systems biology, which is based on local exploration of the configuration space in evolving developmental systems. We call this approach-which is based on reverse engineering, simulation, and mathematical analysis-the natural history of configuration space. We discuss a number of illustrative examples that demonstrate the past success of local exploration, as opposed to global mapping, in different biological contexts. We argue that this pragmatic mode of inquiry can be extended and applied to the mathematical analysis of the developmental repertoire and evolutionary potential of evolving developmental mechanisms and that evolutionary systems biology so conceived provides a pragmatic epistemological framework for the EvoDevo synthesis.

  13. Evolving MEMS Resonator Designs for Fabrication

    NASA Technical Reports Server (NTRS)

    Hornby, Gregory S.; Kraus, William F.; Lohn, Jason D.

    2008-01-01

    Because of their small size and high reliability, microelectromechanical (MEMS) devices have the potential to revolution many areas of engineering. As with conventionally-sized engineering design, there is likely to be a demand for the automated design of MEMS devices. This paper describes our current status as we progress toward our ultimate goal of using an evolutionary algorithm and a generative representation to produce designs of a MEMS device and successfully demonstrate its transfer to an actual chip. To produce designs that are likely to transfer to reality, we present two ways to modify evaluation of designs. The first is to add location noise, differences between the actual dimensions of the design and the design blueprint, which is a technique we have used for our work in evolving antennas and robots. The second method is to add prestress to model the warping that occurs during the extreme heat of fabrication. In future we expect to fabricate and test some MEMS resonators that are evolved in this way.

  14. Early formation of evolved asteroidal crust.

    PubMed

    Day, James M D; Ash, Richard D; Liu, Yang; Bellucci, Jeremy J; Rumble, Douglas; McDonough, William F; Walker, Richard J; Taylor, Lawrence A

    2009-01-08

    Mechanisms for the formation of crust on planetary bodies remain poorly understood. It is generally accepted that Earth's andesitic continental crust is the product of plate tectonics, whereas the Moon acquired its feldspar-rich crust by way of plagioclase flotation in a magma ocean. Basaltic meteorites provide evidence that, like the terrestrial planets, some asteroids generated crust and underwent large-scale differentiation processes. Until now, however, no evolved felsic asteroidal crust has been sampled or observed. Here we report age and compositional data for the newly discovered, paired and differentiated meteorites Graves Nunatak (GRA) 06128 and GRA 06129. These meteorites are feldspar-rich, with andesite bulk compositions. Their age of 4.52 +/- 0.06 Gyr demonstrates formation early in Solar System history. The isotopic and elemental compositions, degree of metamorphic re-equilibration and sulphide-rich nature of the meteorites are most consistent with an origin as partial melts from a volatile-rich, oxidized asteroid. GRA 06128 and 06129 are the result of a newly recognized style of evolved crust formation, bearing witness to incomplete differentiation of their parent asteroid and to previously unrecognized diversity of early-formed materials in the Solar System.

  15. Novel cooperation experimentally evolved between species.

    PubMed

    Harcombe, William

    2010-07-01

    Cooperation violates the view of "nature red in tooth and claw" that prevails in our understanding of evolution, yet examples of cooperation abound. Most work has focused on maintenance of cooperation within a single species through mechanisms such as kin selection. The factors necessary for the evolutionary origin of aiding unrelated individuals such as members of another species have not been experimentally tested. Here, I demonstrate that cooperation between species can be evolved in the laboratory if (1) there is preexisting reciprocation or feedback for cooperation, and (2) reciprocation is preferentially received by cooperative genotypes. I used a two species system involving Salmonella enterica ser. Typhimurium and an Escherichia coli mutant unable to synthesize an essential amino acid. In lactose media Salmonella consumes metabolic waste from E. coli, thus creating a mechanism of reciprocation for cooperation. Growth in a spatially structured environment assured that the benefits of cooperation were preferentially received by cooperative genotypes. Salmonella evolved to aid E. coli by excreting a costly amino acid, however this novel cooperation disappeared if the waste consumption or spatial structure were removed. This study builds on previous work to demonstrate an experimental origin of interspecific cooperation, and to test the factors necessary for such interactions to arise.

  16. Collapse of cooperation in evolving games

    PubMed Central

    Stewart, Alexander J.; Plotkin, Joshua B.

    2014-01-01

    Game theory provides a quantitative framework for analyzing the behavior of rational agents. The Iterated Prisoner’s Dilemma in particular has become a standard model for studying cooperation and cheating, with cooperation often emerging as a robust outcome in evolving populations. Here we extend evolutionary game theory by allowing players’ payoffs as well as their strategies to evolve in response to selection on heritable mutations. In nature, many organisms engage in mutually beneficial interactions and individuals may seek to change the ratio of risk to reward for cooperation by altering the resources they commit to cooperative interactions. To study this, we construct a general framework for the coevolution of strategies and payoffs in arbitrary iterated games. We show that, when there is a tradeoff between the benefits and costs of cooperation, coevolution often leads to a dramatic loss of cooperation in the Iterated Prisoner’s Dilemma. The collapse of cooperation is so extreme that the average payoff in a population can decline even as the potential reward for mutual cooperation increases. Depending upon the form of tradeoffs, evolution may even move away from the Iterated Prisoner’s Dilemma game altogether. Our work offers a new perspective on the Prisoner’s Dilemma and its predictions for cooperation in natural populations; and it provides a general framework to understand the coevolution of strategies and payoffs in iterated interactions. PMID:25422421

  17. Caterpillars evolved from onychophorans by hybridogenesis.

    PubMed

    Williamson, Donald I

    2009-11-24

    I reject the Darwinian assumption that larvae and their adults evolved from a single common ancestor. Rather I posit that, in animals that metamorphose, the basic types of larvae originated as adults of different lineages, i.e., larvae were transferred when, through hybridization, their genomes were acquired by distantly related animals. "Caterpillars," the name for eruciforms with thoracic and abdominal legs, are larvae of lepidopterans, hymenopterans, and mecopterans (scorpionflies). Grubs and maggots, including the larvae of beetles, bees, and flies, evolved from caterpillars by loss of legs. Caterpillar larval organs are dismantled and reconstructed in the pupal phase. Such indirect developmental patterns (metamorphoses) did not originate solely by accumulation of random mutations followed by natural selection; rather they are fully consistent with my concept of evolution by hybridogenesis. Members of the phylum Onychophora (velvet worms) are proposed as the evolutionary source of caterpillars and their grub or maggot descendants. I present a molecular biological research proposal to test my thesis. By my hypothesis 2 recognizable sets of genes are detectable in the genomes of all insects with caterpillar grub- or maggot-like larvae: (i) onychophoran genes that code for proteins determining larval morphology/physiology and (ii) sequentially expressed insect genes that code for adult proteins. The genomes of insects and other animals that, by contrast, entirely lack larvae comprise recognizable sets of genes from single animal common ancestors.

  18. BOOK REVIEW: OPENING SCIENCE, THE EVOLVING GUIDE ...

    EPA Pesticide Factsheets

    The way we get our funding, collaborate, do our research, and get the word out has evolved over hundreds of years but we can imagine a more open science world, largely facilitated by the internet. The movement towards this more open way of doing and presenting science is coming, and it is not taking hundreds of years. If you are interested in these trends, and would like to find out more about where this is all headed and what it means to you, consider downloding Opening Science, edited by Sönke Bartling and Sascha Friesike, subtitled The Evolving Guide on How the Internet is Changing Research, Collaboration, and Scholarly Publishing. In 26 chapters by various authors from a range of disciplines the book explores the developing world of open science, starting from the first scientific revolution and bringing us to the next scientific revolution, sometimes referred to as “Science 2.0”. Some of the articles deal with the impact of the changing landscape of how science is done, looking at the impact of open science on Academia, or journal publishing, or medical research. Many of the articles look at the uses, pitfalls, and impact of specific tools, like microblogging (think Twitter), social networking, and reference management. There is lots of discussion and definition of terms you might use or misuse like “altmetrics” and “impact factor”. Science will probably never be completely open, and Twitter will probably never replace the journal article,

  19. Collapse of cooperation in evolving games.

    PubMed

    Stewart, Alexander J; Plotkin, Joshua B

    2014-12-09

    Game theory provides a quantitative framework for analyzing the behavior of rational agents. The Iterated Prisoner's Dilemma in particular has become a standard model for studying cooperation and cheating, with cooperation often emerging as a robust outcome in evolving populations. Here we extend evolutionary game theory by allowing players' payoffs as well as their strategies to evolve in response to selection on heritable mutations. In nature, many organisms engage in mutually beneficial interactions and individuals may seek to change the ratio of risk to reward for cooperation by altering the resources they commit to cooperative interactions. To study this, we construct a general framework for the coevolution of strategies and payoffs in arbitrary iterated games. We show that, when there is a tradeoff between the benefits and costs of cooperation, coevolution often leads to a dramatic loss of cooperation in the Iterated Prisoner's Dilemma. The collapse of cooperation is so extreme that the average payoff in a population can decline even as the potential reward for mutual cooperation increases. Depending upon the form of tradeoffs, evolution may even move away from the Iterated Prisoner's Dilemma game altogether. Our work offers a new perspective on the Prisoner's Dilemma and its predictions for cooperation in natural populations; and it provides a general framework to understand the coevolution of strategies and payoffs in iterated interactions.

  20. The Leeuwenhoek Lecture, 1995. Adaptation to life without oxygen.

    PubMed

    Guest, J R

    1995-11-29

    The Earth was populated by anaerobic organisms for at least a thousand million years before the atmosphere became oxygenated and aerobes could evolve. Many bacteria like Escherichia coli retain the ability to grow under both aerobic and anaerobic conditions. Recent studies have revealed some global regulatory mechanisms for activating or repressing the expression of relevant genes in response to oxygen availability. These mechanisms ensure that the appropriate metabolic mode is adopted when bacteria switch between aerobic and anaerobic environments.

  1. X-Ray Spectroscopy of the Photosynthetic Oxygen-Evolving Complex

    SciTech Connect

    Sauer, K.; Yano, J.; Yachandra, V.K.

    2009-05-27

    Water oxidation to dioxygen in photosynthesis is catalyzed by a Mn{sub 4}Ca cluster with O bridging in Photosystem II (PS II) of plants, algae and cyanobacteria. A variety of spectroscopic methods have been applied to analyzing the participation of the complex. X-ray spectroscopy is particularly useful because it is element-specific, and because it can reveal important structural features of the complex with high accuracy and identify the participation of Mn in the redox chemistry. Following a brief history of the application of X-ray spectroscopy to PS II, an overview of newer results will be presented and a description of the present state of our knowledge based on this approach.

  2. Structural changes in the S3 state of the oxygen evolving complex in photosystem II

    NASA Astrophysics Data System (ADS)

    Hatakeyama, Makoto; Ogata, Koji; Fujii, Katsushi; Yachandra, Vittal K.; Yano, Junko; Nakamura, Shinichiro

    2016-05-01

    The S3 state of the Mn4CaO5-cluster in photosystem II was investigated by DFT calculations and compared with EXAFS data. Considering previously proposed mechanism; a water molecule is inserted into an open coordination site of Mn upon S2 to S3 transition that becomes a substrate water, we examined if the water insertion is essential for the S3 formation, or if one cannot eliminate other possible routes that do not require a water insertion at the S3 stage. The novel S3 state structure consisting of only short 2.7-2.8 Å Mnsbnd Mn distances was discussed.

  3. Diffusion of Oxygen Isotopes in Thermally Evolving Planetesimals and Size Ranges of Presolar Silicate Grains

    NASA Astrophysics Data System (ADS)

    Wakita, Shigeru; Nozawa, Takaya; Hasegawa, Yasuhiro

    2017-02-01

    Presolar grains are small particles found in meteorites through their isotopic compositions, which are considerably different from those of materials in the solar system. If some isotopes in presolar grains diffused out beyond their grain sizes when they were embedded in parent bodies of meteorites, their isotopic compositions could be washed out, and hence the grains could no longer be identified as presolar grains. We explore this possibility for the first time by self-consistently simulating the thermal evolution of planetesimals and the diffusion length of 18O in presolar silicate grains. Our results show that presolar silicate grains smaller than ∼0.03 μm cannot keep their original isotopic compositions even if the host planetesimals experienced a maximum temperature as low as 600 °C. Since this temperature corresponds to that experienced by petrologic type 3 chondrites, isotopic diffusion can constrain the size of presolar silicate grains discovered in such chondrites to be larger than ∼0.03 μm. We also find that the diffusion length of 18O reaches ∼0.3–2 μm in planetesimals that were heated up to 700–800°C. This indicates that, if the original size of presolar grains spans a range from ∼0.001 μm to ∼0.3 μm like that in the interstellar medium, then the isotopic records of the presolar grains may be almost completely lost in such highly thermalized parent bodies. We propose that isotopic diffusion could be a key process to control the size distribution and abundance of presolar grains in some types of chondrites.

  4. X-ray spectroscopy of the photosynthetic oxygen-evolving complex

    SciTech Connect

    Sauer, Ken; Yano, Junko; Yachandra, Vittal K

    2007-04-05

    Water oxidation to dioxygen in photosynthesis is catalyzed by a Mn4Ca cluster with O bridging in Photosystem II (PS II) of plants, algae and cyanobacteria. A variety of spectroscopic methods have been applied to analyzing the participation of the complex. X-ray spectroscopy is particularly useful because it is element-specific, and because it can reveal important structural features of the complex with high accuracy and identify the participation of Mn in the redox chemistry. Following a brief history of the application of X-ray spectroscopy to PS II, an overview of newer results will be presented and a description of the present state of our knowledge based on this approach.

  5. Nanostructured Cobalt Oxide Clusters in Mesoporous Silica as Efficient Oxygen-Evolving Catalysts

    SciTech Connect

    Jiao, Feng; Frei, Heinz

    2009-01-01

    The development of integrated artificial photosynthetic systems for the direct conversion of carbon dioxide and water to fuel depends on the availability of efficient and robust catalysts for the chemical transformations. Catalysts need to exhibit turnover frequency (TOF) and density (hence size) commensurate with the solar flux at ground level (1000Wm2, airmass (AM) 1.5)[1]to avoid wasting of incidentsolar photons. For example, a catalyst with a TOF of 100 s1 requires a density of one catalytic site per square nanometer. Catalysts with lower rates or taking up a larger space will require a high-surface-area, nanostructured support that affords tens to hundreds of catalytic sites per square nanometer. Furthermore, catalysts need to operate close to the thermodynamic potential of the redox reaction so that amaximum fraction of the solar photon energy is converted to chemical energy. Stability considerations favor all-inorganic oxide materials, as does avoidance of harsh reaction conditions of pH value or temperature.

  6. No surviving evolved companions of the progenitor of SN 1006.

    PubMed

    González Hernández, Jonay I; Ruiz-Lapuente, Pilar; Tabernero, Hugo M; Montes, David; Canal, Ramon; Méndez, Javier; Bedin, Luigi R

    2012-09-27

    Type Ia supernovae are thought to occur when a white dwarf made of carbon and oxygen accretes sufficient mass to trigger a thermonuclear explosion. The accretion could be slow, from an unevolved (main-sequence) or evolved (subgiant or giant) star (the single-degenerate channel), or rapid, as the primary star breaks up a smaller orbiting white dwarf (the double-degenerate channel). A companion star will survive the explosion only in the single-degenerate channel. Both channels might contribute to the production of type Ia supernovae, but the relative proportions of their contributions remain a fundamental puzzle in astronomy. Previous searches for remnant companions have revealed one possible case for SN 1572 (refs 8, 9), although that has been questioned. More recently, observations have restricted surviving companions to be small, main-sequence stars, ruling out giant companions but still allowing the single-degenerate channel. Here we report the results of a search for surviving companions of the progenitor of SN 1006 (ref. 14). None of the stars within 4 arc minutes of the apparent site of the explosion is associated with the supernova remnant, and we can firmly exclude all giant and subgiant stars from being companions of the progenitor. In combination with previous results, our findings indicate that fewer than 20 per cent of type Ia supernovae occur through the single-degenerate channel.

  7. Mitochondrial formation of reactive oxygen species

    PubMed Central

    Turrens, Julio F

    2003-01-01

    The reduction of oxygen to water proceeds via one electron at a time. In the mitochondrial respiratory chain, Complex IV (cytochrome oxidase) retains all partially reduced intermediates until full reduction is achieved. Other redox centres in the electron transport chain, however, may leak electrons to oxygen, partially reducing this molecule to superoxide anion (O2−•). Even though O2−• is not a strong oxidant, it is a precursor of most other reactive oxygen species, and it also becomes involved in the propagation of oxidative chain reactions. Despite the presence of various antioxidant defences, the mitochondrion appears to be the main intracellular source of these oxidants. This review describes the main mitochondrial sources of reactive species and the antioxidant defences that evolved to prevent oxidative damage in all the mitochondrial compartments. We also discuss various physiological and pathological scenarios resulting from an increased steady state concentration of mitochondrial oxidants. PMID:14561818

  8. Oxygen chemisorption cryogenic refrigerator

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor)

    1987-01-01

    The present invention relates to a chemisorption compressor cryogenic refrigerator which employs oxygen to provide cooling at 60 to 100 K. The invention includes dual vessels containing an oxygen absorbent material, alternately heated and cooled to provide a continuous flow of high pressure oxygen, multiple heat exchangers for precooling the oxygen, a Joule-Thomson expansion valve system for expanding the oxygen to partially liquefy it and a liquid oxygen pressure vessel. The primary novelty is that, while it was believed that once oxygen combined with an element or compound the reaction could not reverse to release gaseous oxygen, in this case oxygen will indeed react in a reversible fashion with certain materials and will do so at temperatures and pressures which make it practical for incorporation into a cryogenic refrigeration system.

  9. Electrochemical Sensing for a Rapidly Evolving World

    NASA Astrophysics Data System (ADS)

    Mullen, Max Robertson

    This dissertation focuses on three projects involving the development of harsh environment gas sensors. The first project discusses the development of a multipurpose oxygen sensor electrode for use in sealing with the common electrolyte yttria stabilized zirconia. The purpose of the sealing function is to produce an internal reference environment maintained by a metal/metal oxide mixture, a criteria for miniaturization of potentiometric oxygen sensing technology. This sensor measures a potential between the internal reference and a sensing environment. The second project discusses the miniaturization of an oxygen sensor and the fabrication of a more generalized electrochemical sensing platform. The third project discusses the discovery of a new mechanism in the electrochemical sensing of ammonia through molecular recognition and the utilization of a sensor taking advantage of the new mechanism. An initial study involving the development of a microwave synthesized La0.8Sr0.2Al0.9Mn0.1O3 sensor electrode material illustrates the ability of the material developed to meet ionic and electronic conducting requirements for effective and Nernstian oxygen sensing. In addition the material deforms plastically under hot isostatic pressing conditions in a similar temperature and pressure regime with yttria stabilized zirconia to produce a seal and survive temperatures up to 1350 °C. In the second project we show novel methods to seal an oxygen environment inside a device cavity to produce an electrochemical sensor body using room temperature plasma-activated bonding and low temperature and pressure assisted plasma-activated bonding with silicon bodies, both in a clean room environment. The evolution from isostatic hot pressing methods towards room temperature complementary metal oxide semiconductor (CMOS) compatible technologies using single crystal silicon substrates in the clean room allows the sealing of devices on a much larger scale. Through this evolution in bonding

  10. Solid state oxygen sensor

    DOEpatents

    Garzon, F.H.; Chung, B.W.; Raistrick, I.D.; Brosha, E.L.

    1996-08-06

    Solid state oxygen sensors are provided with a yttria-doped zirconia as an electrolyte and use the electrochemical oxygen pumping of the zirconia electrolyte. A linear relationship between oxygen concentration and the voltage arising at a current plateau occurs when oxygen accessing the electrolyte is limited by a diffusion barrier. A diffusion barrier is formed herein with a mixed electronic and oxygen ion-conducting membrane of lanthanum-containing perovskite or zirconia-containing fluorite. A heater may be used to maintain an adequate oxygen diffusion coefficient in the mixed conducting layer. 4 figs.

  11. Solid state oxygen sensor

    DOEpatents

    Garzon, Fernando H.; Chung, Brandon W.; Raistrick, Ian D.; Brosha, Eric L.

    1996-01-01

    Solid state oxygen sensors are provided with a yttria-doped zirconia as an electrolyte and use the electrochemical oxygen pumping of the zirconia electrolyte. A linear relationship between oxygen concentration and the voltage arising at a current plateau occurs when oxygen accessing the electrolyte is limited by a diffusion barrier. A diffusion barrier is formed herein with a mixed electronic and oxygen ion-conducting membrane of lanthanum-containing perovskite or zirconia-containing fluorite. A heater may be used to maintain an adequate oxygen diffusion coefficient in the mixed conducting layer.

  12. Analysis of an evolving email network

    NASA Astrophysics Data System (ADS)

    Zhu, Chaopin; Kuh, Anthony; Wang, Juan; de Wilde, Philippe

    2006-10-01

    In this paper we study an evolving email network model first introduced by Wang and De Wilde, to the best of our knowledge. The model is analyzed by formulating the network topology as a random process and studying the dynamics of the process. Our analytical results show a number of steady state properties about the email traffic between different nodes and the aggregate networking behavior (i.e., degree distribution, clustering coefficient, average path length, and phase transition), and also confirm the empirical results obtained by Wang and De Wilde. We also conducted simulations confirming the analytical results. Extensive simulations were run to evaluate email traffic behavior at the link and network levels, phase transition phenomena, and also studying the behavior of email traffic in a hierarchical network. The methods established here are also applicable to many other practical networks including sensor networks and social networks.

  13. Pulmonary Sporotrichosis: An Evolving Clinical Paradigm.

    PubMed

    Aung, Ar K; Spelman, Denis W; Thompson, Philip J

    2015-10-01

    In recent decades, sporotrichosis, caused by thermally dimorphic fungi Sporothrix schenckii complex, has become an emerging infection in many parts of the world. Pulmonary infection with S. schenckii still remains relatively uncommon, possibly due to underrecognition. Pulmonary sporotrichosis presents with distinct clinical and radiological patterns in both immunocompetent and immunocompromised hosts and can often result in significant morbidity and mortality despite treatment. Current understanding regarding S. schenckii biology, epidemiology, immunopathology, clinical diagnostics, and treatment options has been evolving in the recent years with increased availability of molecular sequencing techniques. However, this changing knowledge has not yet been fully translated into a better understanding of the clinical aspects of pulmonary sporotrichosis, as such current management guidelines remain unsupported by high-level clinical evidence. This article examines recent advances in the knowledge of sporotrichosis and its application to the difficult challenges of managing pulmonary sporotrichosis.

  14. Evolving resistance among Gram-positive pathogens.

    PubMed

    Munita, Jose M; Bayer, Arnold S; Arias, Cesar A

    2015-09-15

    Antimicrobial therapy is a key component of modern medical practice and a cornerstone for the development of complex clinical interventions in critically ill patients. Unfortunately, the increasing problem of antimicrobial resistance is now recognized as a major public health threat jeopardizing the care of thousands of patients worldwide. Gram-positive pathogens exhibit an immense genetic repertoire to adapt and develop resistance to virtually all antimicrobials clinically available. As more molecules become available to treat resistant gram-positive infections, resistance emerges as an evolutionary response. Thus, antimicrobial resistance has to be envisaged as an evolving phenomenon that demands constant surveillance and continuous efforts to identify emerging mechanisms of resistance to optimize the use of antibiotics and create strategies to circumvent this problem. Here, we will provide a broad perspective on the clinical aspects of antibiotic resistance in relevant gram-positive pathogens with emphasis on the mechanistic strategies used by these organisms to avoid being killed by commonly used antimicrobial agents.

  15. The distances of highly evolved planetary nebulae

    NASA Astrophysics Data System (ADS)

    Phillips, J. P.

    2005-02-01

    The central stars of highly evolved planetary nebulae (PNe) are expected to have closely similar absolute visual magnitudes MV. This enables us to determine approximate distances to these sources where one knows their central star visual magnitudes, and levels of extinction. We find that such an analysis implies values of D which are similar to those determined by Phillips; Cahn, Kaler & Stanghellin; Acker, and Daub. However, our distances are very much smaller than those of Zhang; Bensby & Lundstrom, and van de Steene & Zijlstra. The reasons for these differences are discussed, and can be traced to errors in the assumed relation between brightness temperature and radius. Finally, we determine that the binary companions of such stars can be no brighter than MV~ 6mag, implying a spectral type of K0 or later in the case of main-sequence stars.

  16. Synchronization in evolving snowdrift game model

    NASA Astrophysics Data System (ADS)

    Huang, Y.; Wu, L.; Zhu, S. Q.

    2009-06-01

    The interaction between the evolution of the game and the underlying network structure with evolving snowdrift game model is investigated. The constructed network follows a power-law degree distribution typically showing scale-free feature. The topological features of average path length, clustering coefficient, degree-degree correlations and the dynamical feature of synchronizability are studied. The synchronizability of the constructed networks changes by the interaction. It will converge to a certain value when sufficient new nodes are added. It is found that initial payoffs of nodes greatly affect the synchronizability. When initial payoffs for players are equal, low common initial payoffs may lead to more heterogeneity of the network and good synchronizability. When initial payoffs follow certain distributions, better synchronizability is obtained compared to equal initial payoff. The result is also true for phase synchronization of nonidentical oscillators.

  17. Design Space Issues for Intrinsic Evolvable Hardware

    NASA Technical Reports Server (NTRS)

    Hereford, James; Gwaltney, David

    2004-01-01

    This paper discuss the problem of increased programming time for intrinsic evolvable hardware (EHW) as the complexity of the circuit grows. We develop equations for the size of the population, n, and the number of generations required for the population to converge, ngen, based on L, the length of the programming string. We show that the processing time of the computer becomes negligible for intrinsic EHW since the selection/crossover/mutation steps are only done once per generation, suggesting there is room for use of more complex evolutionary algorithms m intrinsic EHW. F i y , we review the state of the practice and discuss the notion of a system design approach for intrinsic EHW.

  18. Evolving unipolar memristor spiking neural networks

    NASA Astrophysics Data System (ADS)

    Howard, David; Bull, Larry; De Lacy Costello, Ben

    2015-10-01

    Neuromorphic computing - brain-like computing in hardware - typically requires myriad complimentary metal oxide semiconductor spiking neurons interconnected by a dense mesh of nanoscale plastic synapses. Memristors are frequently cited as strong synapse candidates due to their statefulness and potential for low-power implementations. To date, plentiful research has focused on the bipolar memristor synapse, which is capable of incremental weight alterations and can provide adaptive self-organisation under a Hebbian learning scheme. In this paper, we consider the unipolar memristor synapse - a device capable of non-Hebbian switching between only two states (conductive and resistive) through application of a suitable input voltage - and discuss its suitability for neuromorphic systems. A self-adaptive evolutionary process is used to autonomously find highly fit network configurations. Experimentation on two robotics tasks shows that unipolar memristor networks evolve task-solving controllers faster than both bipolar memristor networks and networks containing constant non-plastic connections whilst performing at least comparably.

  19. Life cycle planning: An evolving concept

    SciTech Connect

    Moore, P.J.R.; Gorman, I.G.

    1994-12-31

    Life-cycle planning is an evolving concept in the management of oil and gas projects. BHP Petroleum now interprets this idea to include all development planning from discovery and field appraisal to final abandonment and includes safety, environmental, technical, plant, regulatory, and staffing issues. This article describes in the context of the Timor Sea, how despite initial successes and continuing facilities upgrades, BHPP came to perceive that current operations could be the victim of early development successes, particularly in the areas of corrosion and maintenance. The search for analogies elsewhere lead to the UK North Sea, including the experiences of Britoil and BP, both of which performed detailed Life of Field studies in the later eighties. These materials have been used to construct a format and content for total Life-cycle plans in general and the social changes required to ensure their successful application in Timor Sea operations and deployment throughout Australia.

  20. Modelling of the Evolving Stable Boundary Layer

    NASA Astrophysics Data System (ADS)

    Sorbjan, Zbigniew

    2014-06-01

    A single-column model of the evolving stable boundary layer (SBL) is tested for self-similar properties of the flow and effects of ambient forcing. The turbulence closure of the model is diagnostic, based on the K-theory approach, with a semi-empirical form of the mixing length, and empirical stability functions of the Richardson number. The model results, expressed in terms of local similarity scales, are universal functions, satisfied in the entire SBL. Based on similarity expression, a realizability condition is derived for the minimum allowable turbulent heat flux in the SBL. Numerical experiments show that the development of "horse-shoe" shaped, fixed-elevation hodographs in the interior of the SBL around sunrise is controlled by effects imposed by surface thermal forcing.

  1. Language as a coordination tool evolves slowly

    PubMed Central

    2016-01-01

    Social living ultimately depends on coordination between group members, and communication is necessary to make this possible. We suggest that this might have been the key selection pressure acting on the evolution of language in humans and use a behavioural coordination model to explore the impact of communication efficiency on social group coordination. We show that when language production is expensive but there is an individual benefit to the efficiency with which individuals coordinate their behaviour, the evolution of efficient communication is selected for. Contrary to some views of language evolution, the speed of evolution is necessarily slow because there is no advantage in some individuals evolving communication abilities that much exceed those of the community at large. However, once a threshold competence has been achieved, evolution of higher order language skills may indeed be precipitate. PMID:28083091

  2. Regulatory mechanisms link phenotypic plasticity to evolvability.

    PubMed

    van Gestel, Jordi; Weissing, Franz J

    2016-04-18

    Organisms have a remarkable capacity to respond to environmental change. They can either respond directly, by means of phenotypic plasticity, or they can slowly adapt through evolution. Yet, how phenotypic plasticity links to evolutionary adaptability is largely unknown. Current studies of plasticity tend to adopt a phenomenological reaction norm (RN) approach, which neglects the mechanisms underlying plasticity. Focusing on a concrete question - the optimal timing of bacterial sporulation - we here also consider a mechanistic approach, the evolution of a gene regulatory network (GRN) underlying plasticity. Using individual-based simulations, we compare the RN and GRN approach and find a number of striking differences. Most importantly, the GRN model results in a much higher diversity of responsive strategies than the RN model. We show that each of the evolved strategies is pre-adapted to a unique set of unseen environmental conditions. The regulatory mechanisms that control plasticity therefore critically link phenotypic plasticity to the adaptive potential of biological populations.

  3. Studying evolved stars with Herschel observations

    NASA Astrophysics Data System (ADS)

    da Silva Santos, João Manuel

    2016-07-01

    A systematic inspection of the far-infrared (FIR) properties of evolved stars allows not only to constrain physical models, but also to understand the chemical evolution that takes place in the end of their lives. In this work we intend to study the circumstellar envelopes (CSE) on a sample of stars in the THROES catalogue from AGB/post-AGB stars to planetary nebulae using photometry and spectroscopy provided by the PACS instrument on-board Herschel telescope. In the first part we are interested in obtaining an estimate of the size of FIR emitting region and to sort our targets in two classes: point-like and extended. Secondly, we focus on the molecular component of the envelope traced by carbon monoxide (CO) rotational lines. We conduct a line survey on a sample of evolved stars by identifying and measuring flux of both 12CO and 13CO isotopologues in the PACS range, while looking at the overall properties of the sample. Lastly, we will be interested in obtaining physical parameters of the CSE, namely gas temperature, mass and mass-loss rate on a sample of carbon stars. For that, we make use of PACS large wavelength coverage, which enables the simultaneous study of a large number of CO transitions, to perform the rotational diagram analysis. We report the detection of CO emission in a high number of stars from the catalogue, which were mostly classified as point-like targets with a few exceptions of planetary nebulae. High J rotational number transitions were detected in a number of targets, revealing the presence of a significant amount of hot gas (T ˜ 400-900 K) and high mass-loss rates. We conclude that Herschel/PACS is in a privileged position to detect a new population of warmer gas, typically missed in sub-mm/mm observations.

  4. Evolving surgical approaches in liver transplantation.

    PubMed

    Petrowsky, Henrik; Busuttil, Ronald W

    2009-02-01

    The growing discrepancy between the need and the availability of donor livers has resulted in evolving surgical approaches in liver transplantation during the last two decades to expand the donor pool. One approach is to transplant partial grafts, obtained either from a living donor or splitting a cadaveric donor liver. For both surgical methods, it is important to obtain a minimal viable graft volume to prevent small-for-size syndrome and graft failure. This minimal volume, expressed as graft-to-whole body ratio, must be between 0.8 and 1%. Living donor liver transplantation (LDLT) became the primary transplant option in many Asian countries and is increasingly performed as an adjunct transplant option in countries with low donation rates. Split liver transplantation (SLT) is a surgical method that creates two allografts from one deceased donor. The most widely used splitting technique is the division of the liver into a left lateral sectoral graft (segments 2 and 3) for a pediatric patient and a right trisegmental graft (segments 1 and 4 to 8) for an adult patient. Both LDLT and SLT are also important and established methods for the treatment of pediatric patients. Another evolving surgical approach is auxiliary liver transplantation, which describes the transplanting a whole or partial graft with preservation of the partial native liver. This bridging technique is applied in patients with fulminate liver failure and should allow the regeneration of the injured liver with the potential to discontinue immunosuppression. Other methods such as xenotransplantation, as well as hepatocyte and stem cell transplantation, are promising approaches that are still in experimental phases.

  5. Factors controlling oxygen utilization.

    PubMed

    Biaglow, John; Dewhirst, Mark; Leeper, Dennis; Burd, Randy; Tuttle, Steve

    2005-01-01

    We demonstrate, theoretically, that oxygen diffusion distance is related to the metabolic rate of tumors (QO2) as well as the oxygen tension. The difference in QO2 rate between tumors can vary by as much as 80-fold. Inhibition of oxygen utilization by glucose or chemical inhibitors can improve the diffusion distance. Combining respiratory inhibitors with increased availability of oxygen will further improve the oxygen diffusion distance for all tumors. A simple means for inhibiting oxygen consumption is the use of glucose (the Crabtree effect). The inhibition of tumor oxygen utilization by glucose occurs in R323OAc mammary carcinoma and 9L glioma cells. However, stimulation of oxygen consumption is observed with glucose in the Q7 hepatoma cell line. MIBG, a known inhibitor of oxygen utilization, blocks oxygen consumption in 9L, but is weakly inhibitory with the Q7. Q7 tumor cells demonstrate an anomalous behavior of glucose and MIBG on oxygen consumption. Our results clearly demonstrate the necessity for comparing effects of different agents on different tumor cells. Generalizations cannot be made with respect to the choice of inhibitor for in vivo use. Our work shows that oxygen consumption also can be inhibited with malonate and chlorosuccinate. These substrates may be effective in vivo, where glucose is low and glutamine is the major substrate. Our results indicate that information about individual tumor substrate-linked metabolic controls may be necessary before attempting to inhibit oxygen utilization in vivo for therapeutic benefit.

  6. How evolved psychological mechanisms empower cultural group selection.

    PubMed

    Henrich, Joseph; Boyd, Robert

    2016-01-01

    Driven by intergroup competition, social norms, beliefs, and practices can evolve in ways that more effectively tap into a wide variety of evolved psychological mechanisms to foster group-beneficial behavior. The more powerful such evolved mechanisms are, the more effectively culture can potentially harness and manipulate them to generate greater phenotypic variation across groups, thereby fueling cultural group selection.

  7. Cobalt nanoparticles embedded in N-doped carbon as an efficient bifunctional electrocatalyst for oxygen reduction and evolution reactions.

    PubMed

    Su, Yunhe; Zhu, Yihua; Jiang, Hongliang; Shen, Jianhua; Yang, Xiaoling; Zou, Wenjian; Chen, Jianding; Li, Chunzhong

    2014-12-21

    Cobalt based catalysts are promising bifunctional electrocatalysts for both oxygen reduction and oxygen evolution reactions (ORR and OER) in unitized regenerative fuel cells (URFCs) operating with alkaline electrolytes. Here we report a hybrid composite of cobalt nanoparticles embedded in nitrogen-doped carbon (Co/N-C) via a solvothermal carbonization strategy. With the synergistic effect arising from the N-doped carbon and cobalt nanoparticles in the composite, the Co/N-C hybrid catalyst exhibits highly efficient bifunctional catalytic activity and excellent stability toward both ORR and OER. The ΔE (oxygen electrode activity parameter for judging the overall electrocatalytic activity of a bifunctional electrocatalyst) value for Co/N-C is 0.859 V, which is smaller than those of Pt/C and most of the non-precious metal catalysts in previous studies. Furthermore, the Co/N-C composite also shows better bifunctional catalytic activity than its oxidative counterparts, which could be attributed to the high specific surface area and the efficient charge transfer ability of the composite, as well as the good synergistic effect between N-doped carbon and the Co nanoparticles in the Co/N-C composite.

  8. Hyperbaric oxygen therapy

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/002375.htm Hyperbaric oxygen therapy To use the sharing features on this page, please enable JavaScript. Hyperbaric oxygen therapy uses a special pressure chamber to increase ...

  9. Oxygen control with microfluidics.

    PubMed

    Brennan, Martin D; Rexius-Hall, Megan L; Elgass, Laura Jane; Eddington, David T

    2014-11-21

    Cellular function and behavior are affected by the partial pressure of O2, or oxygen tension, in the microenvironment. The level of oxygenation is important, as it is a balance of oxygen availability and oxygen consumption that is necessary to maintain normoxia. Changes in oxygen tension, from above physiological oxygen tension (hyperoxia) to below physiological levels (hypoxia) or even complete absence of oxygen (anoxia), trigger potent biological responses. For instance, hypoxia has been shown to support the maintenance and promote proliferation of regenerative stem and progenitor cells. Paradoxically, hypoxia also contributes to the development of pathological conditions including systemic inflammatory response, tumorigenesis, and cardiovascular disease, such as ischemic heart disease and pulmonary hypertension. Current methods to study cellular behavior in low levels of oxygen tension include hypoxia workstations and hypoxia chambers. These culture systems do not provide oxygen gradients that are found in vivo or precise control at the microscale. Microfluidic platforms have been developed to overcome the inherent limits of these current methods, including lack of spatial control, slow equilibration, and unachievable or difficult coupling to live-cell microscopy. The various applications made possible by microfluidic systems are the topic of this review. In order to understand how the microscale can be leveraged for oxygen control of cells and tissues within microfluidic systems, some background understanding of diffusion, solubility, and transport at the microscale will be presented in addition to a discussion on the methods for measuring the oxygen tension in microfluidic channels. Finally the various methods for oxygen control within microfluidic platforms will be discussed including devices that rely on diffusion from liquid or gas, utilizing on-or-off-chip mixers, leveraging cellular oxygen uptake to deplete the oxygen, relying on chemical reactions in

  10. Solid state oxygen sensor

    DOEpatents

    Garzon, Fernando H.; Brosha, Eric L.

    1997-01-01

    A potentiometric oxygen sensor is formed having a logarithmic response to a differential oxygen concentration while operating as a Nernstian-type sensor. Very thin films of mixed conducting oxide materials form electrode services while permitting diffusional oxygen access to the interface between the zirconia electrolyte and the electrode. Diffusion of oxygen through the mixed oxide is not rate-limiting. Metal electrodes are not used so that morphological changes in the electrode structure do not occur during extended operation at elevated temperatures.

  11. Oxygen evolution reaction catalysis

    DOEpatents

    Haber, Joel A.; Jin, Jian; Xiang, Chengxiang; Gregoire, John M.; Jones, Ryan J.; Guevarra, Dan W.; Shinde, Aniketa A.

    2016-09-06

    An Oxygen Evolution Reaction (OER) catalyst includes a metal oxide that includes oxygen, cerium, and one or more second metals. In some instances, the cerium is 10 to 80 molar % of the metals in the metal oxide and/or the catalyst includes two or more second metals. The OER catalyst can be included in or on an electrode. The electrode can be arranged in an oxygen evolution system such that the Oxygen Evolution Reaction occurs at the electrode.

  12. Historical reconstructions of evolving physiological complexity: O2 secretion in the eye and swimbladder of fishes.

    PubMed

    Berenbrink, Michael

    2007-05-01

    The ability of some fishes to inflate their compressible swimbladder with almost pure oxygen to maintain neutral buoyancy, even against the high hydrostatic pressure several thousand metres below the water surface, has fascinated physiologists for more than 200 years. This review shows how evolutionary reconstruction of the components of such a complex physiological system on a phylogenetic tree can generate new and important insights into the origin of complex phenotypes that are difficult to obtain with a purely mechanistic approach alone. Thus, it is shown that oxygen secretion first evolved in the eyes of fishes, presumably for improved oxygen supply to an avascular, metabolically active retina. Evolution of this system was facilitated by prior changes in the pH dependence of oxygen-binding characteristics of haemoglobin (the Root effect) and in the specific buffer value of haemoglobin. These changes predisposed teleost fishes for the later evolution of swimbladder oxygen secretion, which occurred at least four times independently and can be associated with increased auditory sensitivity and invasion of the deep sea in some groups. It is proposed that the increasing availability of molecular phylogenetic trees for evolutionary reconstructions may be as important for understanding physiological diversity in the postgenomic era as the increase of genomic sequence information in single model species.

  13. Active oxygen doctors the evidence.

    PubMed

    Castelló, Ana; Francès, Francesc; Corella, Dolores; Verdú, Fernando

    2009-02-01

    Investigation at the scene of a crime begins with the search for clues. In the case of bloodstains, the most frequently used reagents are luminol and reduced phenolphthalein (or phenolphthalin that is also known as the Kastle-Meyer colour test). The limitations of these reagents have been studied and are well known. Household cleaning products have evolved with the times, and new products with active oxygen are currently widely used, as they are considered to be highly efficient at removing all kinds of stains on a wide range of surfaces. In this study, we investigated the possible effects of these new cleaning products on latent bloodstains that may be left at a scene of a crime. To do so, various fabrics were stained with blood and then washed using cleaning agents containing active oxygen. The results of reduced phenolphthalein, luminol and human haemoglobin tests on the washed fabrics were negative. The conclusion is that these new products alter blood to such an extent that it can no longer be detected by currently accepted methods employed in criminal investigations. This inability to locate bloodstains means that highly important evidence (e.g. a DNA profile) may be lost. Consequently, it is important that investigators are aware of this problem so as to compensate for it.

  14. Oxygen boost pump study

    NASA Technical Reports Server (NTRS)

    1975-01-01

    An oxygen boost pump is described which can be used to charge the high pressure oxygen tank in the extravehicular activity equipment from spacecraft supply. The only interface with the spacecraft is the +06 6.205 Pa supply line. The breadboard study results and oxygen tank survey are summarized and the results of the flight-type prototype design and analysis are presented.

  15. Oxygen sensitive microwells.

    PubMed

    Sinkala, Elly; Eddington, David T

    2010-12-07

    Oxygen tension is critical in a number of cell pathways but is often overlooked in cell culture. One reason for this is the difficulty in modulating and assessing oxygen tensions without disturbing the culture conditions. Toward this end, a simple method to generate oxygen-sensitive microwells was developed through embossing polystyrene (PS) and platinum(ii) octaethylporphyrin ketone (PtOEPK) thin films. In addition to monitoring the oxygen tension, microwells were employed in order to isolate uniform clusters of cells in microwells. The depth and width of the microwells can be adapted to different experimental parameters easily by altering the thin film processing or embossing stamp geometries. The thin oxygen sensitive microwell substrate is also compatible with high magnification modalities such as confocal imaging. The incorporation of the oxygen sensor into the microwells produces measurements of the oxygen tension near the cell surface. The oxygen sensitive microwells were calibrated and used to monitor oxygen tensions of Madin-Darby Canine Kidney Cells (MDCKs) cultured at high and low densities as a proof of concept. Wells 500 µm in diameter seeded with an average of 330 cells exhibited an oxygen level of 12.6% whereas wells seeded with an average of 20 cells per well exhibited an oxygen level of 19.5%, a 35.7% difference. This platform represents a new tool for culturing cells in microwells in a format amenable to high magnification imaging while monitoring the oxygen state of the culture media.

  16. Indicators: Dissolved Oxygen

    EPA Pesticide Factsheets

    Dissolved oxygen (DO) is the amount of oxygen that is present in water. It is an important measure of water quality as it indicates a water body's ability to support aquatic life. Water bodies receive oxygen from the atmosphere and from aquatic plants.

  17. Hypoxemia (Low Blood Oxygen)

    MedlinePlus

    Symptoms Hypoxemia (low blood oxygen) By Mayo Clinic Staff Hypoxemia is a below-normal level of oxygen in your blood, specifically in the arteries. Hypoxemia ... of breath. Hypoxemia is determined by measuring the oxygen level in a blood sample taken from an ...

  18. Hydrogen Production Using Hydrogenase-Containing Oxygenic Photosynthetic Organisms

    DOEpatents

    Melis, A.; Zhang, L.; Benemann, J. R.; Forestier, M.; Ghirardi, M.; Seibert, M.

    2006-01-24

    A reversible physiological process provides for the temporal separation of oxygen evolution and hydrogen production in a microorganism, which includes the steps of growing a culture of the microorganism in medium under illuminated conditions to accumulate an endogenous substrate, depleting from the medium a nutrient selected from the group consisting of sulfur, iron, and/or manganese, sealing the culture from atmospheric oxygen, incubating the culture in light whereby a rate of light-induced oxygen production is equal to or less than a rate of respiration, and collecting an evolved gas. The process is particularly useful to accomplish a sustained photobiological hydrogen gas production in cultures of microorganisms, such as Chlamydomonas reinhardtii.

  19. Hydrogen production using hydrogenase-containing oxygenic photosynthetic organisms

    DOEpatents

    Melis, Anastasios; Zhang, Liping; Benemann, John R.; Forestier, Marc; Ghirardi, Maria; Seibert, Michael

    2006-01-24

    A reversible physiological process provides for the temporal separation of oxygen evolution and hydrogen production in a microorganism, which includes the steps of growing a culture of the microorganism in medium under illuminated conditions to accumulate an endogenous substrate, depleting from the medium a nutrient selected from the group consisting of sulfur, iron, and/or manganese, sealing the culture from atmospheric oxygen, incubating the culture in light whereby a rate of light-induced oxygen production is equal to or less than a rate of respiration, and collecting an evolved gas. The process is particularly useful to accomplish a sustained photobiological hydrogen gas production in cultures of microorganisms, such as Chlamydomonas reinhardtii.

  20. Liquefaction and Storage of In-Situ Oxygen on the Surface of Mars

    NASA Technical Reports Server (NTRS)

    Hauser, Daniel M.; Johnson, Wesley L.; Sutherlin, Steven G.

    2016-01-01

    ISRU is currently base-lined for the production of oxygen on the Martian surface in the Evolvable Mars Campaign Over 50 of return vehicle mass is oxygen for propulsion. There are two key cryogenic fluid-thermal technologies that need to be investigated to enable these architectures. High lift refrigeration systems. Thermal Insulation systems, either lightweight vacuum jackets of soft vacuum insulation systems.

  1. Epidemic spreading on evolving signed networks

    NASA Astrophysics Data System (ADS)

    Saeedian, M.; Azimi-Tafreshi, N.; Jafari, G. R.; Kertesz, J.

    2017-02-01

    Most studies of disease spreading consider the underlying social network as obtained without the contagion, though epidemic influences people's willingness to contact others: A "friendly" contact may be turned to "unfriendly" to avoid infection. We study the susceptible-infected disease-spreading model on signed networks, in which each edge is associated with a positive or negative sign representing the friendly or unfriendly relation between its end nodes. In a signed network, according to Heider's theory, edge signs evolve such that finally a state of structural balance is achieved, corresponding to no frustration in physics terms. However, the danger of infection affects the evolution of its edge signs. To describe the coupled problem of the sign evolution and disease spreading, we generalize the notion of structural balance by taking into account the state of the nodes. We introduce an energy function and carry out Monte Carlo simulations on complete networks to test the energy landscape, where we find local minima corresponding to the so-called jammed states. We study the effect of the ratio of initial friendly to unfriendly connections on the propagation of disease. The steady state can be balanced or a jammed state such that a coexistence occurs between susceptible and infected nodes in the system.

  2. The evolved function of the oedipal conflict.

    PubMed

    Josephs, Lawrence

    2010-08-01

    Freud based his oedipal theory on three clinical observations of adult romantic relationships: (1) Adults tend to split love and lust; (2) There tend to be sex differences in the ways that men and women split love and lust; (3) Adult romantic relationships are unconsciously structured by the dynamics of love triangles in which dramas of seduction and betrayal unfold. Freud believed that these aspects of adult romantic relationships were derivative expressions of a childhood oedipal conflict that has been repressed. Recent research conducted by evolutionary psychologists supports many of Freud's original observations and suggests that Freud's oedipal conflict may have evolved as a sexually selected adaptation for reproductive advantage. The evolution of bi-parental care based on sexually exclusive romantic bonds made humans vulnerable to the costs of sexual infidelity, a situation of danger that seriously threatens monogamous bonds. A childhood oedipal conflict enables humans to better adapt to this longstanding evolutionary problem by providing the child with an opportunity to develop working models of love triangles. On the one hand, the oedipal conflict facilitates monogamous resolutions by creating intense anxiety about the dangers of sexual infidelity and mate poaching. On the other hand, the oedipal conflict in humans may facilitate successful cheating and mate poaching by cultivating a talent for hiding our true sexual intentions from others and even from ourselves. The oedipal conflict in humans may be disguised by evolutionary design in order to facilitate tactical deception in adult romantic relationships.

  3. Evolving role of MRI in Crohn's disease.

    PubMed

    Yacoub, Joseph H; Obara, Piotr; Oto, Aytekin

    2013-06-01

    MR enterography is playing an evolving role in the evaluation of small bowel Crohn's disease (CD). Standard MR enterography includes a combination of rapidly acquired T2 sequence, balanced steady-state acquisition, and contrast enhanced T1-weighted gradient echo sequence. The diagnostic performance of these sequences has been shown to be comparable, and in some respects superior, to other small bowel imaging modalities. The findings of CD on MR enterography have been well described in the literature. New and emerging techniques such as diffusion-weighted imaging (DWI), dynamic contrast enhanced MRI (DCE-MRI), cinematography, and magnetization transfer, may lead to improved accuracy in characterizing the disease. These advanced techniques can provide quantitative parameters that may prove to be useful in assessing disease activity, severity, and response to treatment. In the future, MR enterography may play an increasing role in management decisions for patients with small bowel CD; however, larger studies are needed to validate these emerging MRI parameters as imaging biomarkers.

  4. Evolving application of biomimetic nanostructured hydroxyapatite

    PubMed Central

    Roveri, Norberto; Iafisco, Michele

    2010-01-01

    By mimicking Nature, we can design and synthesize inorganic smart materials that are reactive to biological tissues. These smart materials can be utilized to design innovative third-generation biomaterials, which are able to not only optimize their interaction with biological tissues and environment, but also mimic biogenic materials in their functionalities. The biomedical applications involve increasing the biomimetic levels from chemical composition, structural organization, morphology, mechanical behavior, nanostructure, and bulk and surface chemical–physical properties until the surface becomes bioreactive and stimulates cellular materials. The chemical–physical characteristics of biogenic hydroxyapatites from bone and tooth have been described, in order to point out the elective sides, which are important to reproduce the design of a new biomimetic synthetic hydroxyapatite. This review outlines the evolving applications of biomimetic synthetic calcium phosphates, details the main characteristics of bone and tooth, where the calcium phosphates are present, and discusses the chemical–physical characteristics of biomimetic calcium phosphates, methods of synthesizing them, and some of their biomedical applications. PMID:24198477

  5. Evolving Galaxies in a Hierachical Universe

    NASA Astrophysics Data System (ADS)

    Hahn, Changhoon

    2017-01-01

    Observations of galaxies using large surveys (SDSS, COSMOS, PRIMUS, etc.) have firmly established a global view of galaxy properties out to z~1. Galaxies are broadly divided into two classes: blue, typically disk-like star forming galaxies and red, typically elliptical quiescent ones with little star formation. The star formation rates (SFR) and stellar masses of star forming galaxies form an empirical relationship referred to as the "star formation main sequence". Over cosmic time, this sequence undergoes significant decline in SFR and causes the overall cosmic star formation decline. Simultaneously, physical processes cause significant fractions of star forming galaxies to "quench" their star formation. Hierarchical structure formation and cosmological models provide precise predictions of the evolution of the underying dark matter, which serve as the foundation for these detailed trends and their evolution. Whatever trends we observe in galaxy properties can be interpreted within the narrative of the underlying dark matter and halo occupation framework. More importantly, through careful statistical treatment and precise measurements, this connection can be utilized to better constrain and understand key elements of galaxy evolution. In this spirit, for my dissertation I connect observations of evolving galaxy properties to the framework of the hierarchical Universe and use it to better understand physical processes responsible for the cessation of star formation in galaxies. For instance, through this approach, I constrain the quenching timescale of central galaxies and find that they are significantly longer than the quenching timescale of satellite galaxies.

  6. On the Discovery of Evolving Truth.

    PubMed

    Li, Yaliang; Li, Qi; Gao, Jing; Su, Lu; Zhao, Bo; Fan, Wei; Han, Jiawei

    2015-08-01

    In the era of big data, information regarding the same objects can be collected from increasingly more sources. Unfortunately, there usually exist conflicts among the information coming from different sources. To tackle this challenge, truth discovery, i.e., to integrate multi-source noisy information by estimating the reliability of each source, has emerged as a hot topic. In many real world applications, however, the information may come sequentially, and as a consequence, the truth of objects as well as the reliability of sources may be dynamically evolving. Existing truth discovery methods, unfortunately, cannot handle such scenarios. To address this problem, we investigate the temporal relations among both object truths and source reliability, and propose an incremental truth discovery framework that can dynamically update object truths and source weights upon the arrival of new data. Theoretical analysis is provided to show that the proposed method is guaranteed to converge at a fast rate. The experiments on three real world applications and a set of synthetic data demonstrate the advantages of the proposed method over state-of-the-art truth discovery methods.

  7. Women's oral health: the evolving science.

    PubMed

    Sinkford, Jeanne C; Valachovic, Richard W; Harrison, Sonja G

    2008-02-01

    The evidence base for women's oral health is emerging from legislative action, clinical research, and survey documentation. The Women's Health in the Dental School Curriculum study (1999) followed a similar study (1996) of medical school curricula. Both of these major efforts resulted from statutory mandates in the National Institutes of Health Revitalization Act of 1993 (updated October 2000). A major study of the Institute of Medicine (IOM) National Academy of Sciences in 2001 concluded that "the study of sex differences is evolving into a mature science." This IOM study documented the scientific basis for gender-related policy and research and challenged the dental research enterprise to conduct collaborative, cross-disciplinary research on gender-related issues in oral health, disease, and disparities. This report chronicles some of the factors that have and continue to influence concepts of women's oral health in dental education, research, and practice. Gender issues related to women's health are no longer restricted to reproductive issues but are being considered across the life span and include psychosocial factors that impact women's health and treatment outcomes.

  8. Speciation genetics: current status and evolving approaches

    PubMed Central

    Wolf, Jochen B. W.; Lindell, Johan; Backström, Niclas

    2010-01-01

    The view of species as entities subjected to natural selection and amenable to change put forth by Charles Darwin and Alfred Wallace laid the conceptual foundation for understanding speciation. Initially marred by a rudimental understanding of hereditary principles, evolutionists gained appreciation of the mechanistic underpinnings of speciation following the merger of Mendelian genetic principles with Darwinian evolution. Only recently have we entered an era where deciphering the molecular basis of speciation is within reach. Much focus has been devoted to the genetic basis of intrinsic postzygotic isolation in model organisms and several hybrid incompatibility genes have been successfully identified. However, concomitant with the recent technological advancements in genome analysis and a newfound interest in the role of ecology in the differentiation process, speciation genetic research is becoming increasingly open to non-model organisms. This development will expand speciation research beyond the traditional boundaries and unveil the genetic basis of speciation from manifold perspectives and at various stages of the splitting process. This review aims at providing an extensive overview of speciation genetics. Starting from key historical developments and core concepts of speciation genetics, we focus much of our attention on evolving approaches and introduce promising methodological approaches for future research venues. PMID:20439277

  9. Extreme insular dwarfism evolved in a mammoth.

    PubMed

    Herridge, Victoria L; Lister, Adrian M

    2012-08-22

    The insular dwarfism seen in Pleistocene elephants has come to epitomize the island rule; yet our understanding of this phenomenon is hampered by poor taxonomy. For Mediterranean dwarf elephants, where the most extreme cases of insular dwarfism are observed, a key systematic question remains unresolved: are all taxa phyletic dwarfs of a single mainland species Palaeoloxodon antiquus (straight-tusked elephant), or are some referable to Mammuthus (mammoths)? Ancient DNA and geochronological evidence have been used to support a Mammuthus origin for the Cretan 'Palaeoloxodon' creticus, but these studies have been shown to be flawed. On the basis of existing collections and recent field discoveries, we present new, morphological evidence for the taxonomic status of 'P'. creticus, and show that it is indeed a mammoth, most probably derived from Early Pleistocene Mammuthus meridionalis or possibly Late Pliocene Mammuthus rumanus. We also show that Mammuthus creticus is smaller than other known insular dwarf mammoths, and is similar in size to the smallest dwarf Palaeoloxodon species from Sicily and Malta, making it the smallest mammoth species known to have existed. These findings indicate that extreme insular dwarfism has evolved to a similar degree independently in two elephant lineages.

  10. Consensus in evolving networks of mobile agents

    NASA Astrophysics Data System (ADS)

    Baronchelli, Andrea; Díaz-Guilera, Albert

    2012-02-01

    Populations of mobile and communicating agents describe a vast array of technological and natural systems, ranging from sensor networks to animal groups. Here, we investigate how a group-level agreement may emerge in the continuously evolving networks defined by the local interactions of the moving individuals. We adopt a general scheme of motion in two dimensions and we let the individuals interact through the minimal naming game, a prototypical scheme to investigate social consensus. We distinguish different regimes of convergence determined by the emission range of the agents and by their mobility, and we identify the corresponding scaling behaviors of the consensus time. In the same way, we rationalize also the behavior of the maximum memory used during the convergence process, which determines the minimum cognitive/storage capacity needed by the individuals. Overall, we believe that the simple and general model presented in this talk can represent a helpful reference for a better understanding of the behavior of populations of mobile agents.

  11. Metapopulation capacity of evolving fluvial landscapes

    NASA Astrophysics Data System (ADS)

    Bertuzzo, Enrico; Rodriguez-Iturbe, Ignacio; Rinaldo, Andrea

    2015-04-01

    The form of fluvial landscapes is known to attain stationary network configurations that settle in dynamically accessible minima of total energy dissipation by landscape-forming discharges. Recent studies have highlighted the role of the dendritic structure of river networks in controlling population dynamics of the species they host and large-scale biodiversity patterns. Here, we systematically investigate the relation between energy dissipation, the physical driver for the evolution of river networks, and the ecological dynamics of their embedded biota. To that end, we use the concept of metapopulation capacity, a measure to link landscape structures with the population dynamics they host. Technically, metapopulation capacity is the leading eigenvalue λM of an appropriate "landscape" matrix subsuming whether a given species is predicted to persist in the long run. λM can conveniently be used to rank different landscapes in terms of their capacity to support viable metapopulations. We study how λM changes in response to the evolving network configurations of spanning trees. Such sequence of configurations is theoretically known to relate network selection to general landscape evolution equations through imperfect searches for dynamically accessible states frustrated by the vagaries of Nature. Results show that the process shaping the metric and the topological properties of river networks, prescribed by physical constraints, leads to a progressive increase in the corresponding metapopulation capacity and therefore on the landscape capacity to support metapopulations—with implications on biodiversity in fluvial ecosystems.

  12. Tearing Mode Stability of Evolving Toroidal Equilibria

    NASA Astrophysics Data System (ADS)

    Pletzer, A.; McCune, D.; Manickam, J.; Jardin, S. C.

    2000-10-01

    There are a number of toroidal equilibrium (such as JSOLVER, ESC, EFIT, and VMEC) and transport codes (such as TRANSP, BALDUR, and TSC) in our community that utilize differing equilibrium representations. There are also many heating and current drive (LSC and TORRAY), and stability (PEST1-3, GATO, NOVA, MARS, DCON, M3D) codes that require this equilibrium information. In an effort to provide seamless compatibility between the codes that produce and need these equilibria, we have developed two Fortran 90 modules, MEQ and XPLASMA, that serve as common interfaces between these two classes of codes. XPLASMA provides a common equilibrium representation for the heating and current drive applications while MEQ provides common equilibrium and associated metric information needed by MHD stability codes. We illustrate the utility of this approach by presenting results of PEST-3 tearing stability calculations of an NSTX discharge performed on profiles provided by the TRANSP code. Using the MEQ module, the TRANSP equilibrium data are stored in a Fortran 90 derived type and passed to PEST3 as a subroutine argument. All calculations are performed on the fly, as the profiles evolve.

  13. Origins of stereoselectivity in evolved ketoreductases.

    PubMed

    Noey, Elizabeth L; Tibrewal, Nidhi; Jiménez-Osés, Gonzalo; Osuna, Sílvia; Park, Jiyong; Bond, Carly M; Cascio, Duilio; Liang, Jack; Zhang, Xiyun; Huisman, Gjalt W; Tang, Yi; Houk, Kendall N

    2015-12-22

    Mutants of Lactobacillus kefir short-chain alcohol dehydrogenase, used here as ketoreductases (KREDs), enantioselectively reduce the pharmaceutically relevant substrates 3-thiacyclopentanone and 3-oxacyclopentanone. These substrates differ by only the heteroatom (S or O) in the ring, but the KRED mutants reduce them with different enantioselectivities. Kinetic studies show that these enzymes are more efficient with 3-thiacyclopentanone than with 3-oxacyclopentanone. X-ray crystal structures of apo- and NADP(+)-bound selected mutants show that the substrate-binding loop conformational preferences are modified by these mutations. Quantum mechanical calculations and molecular dynamics (MD) simulations are used to investigate the mechanism of reduction by the enzyme. We have developed an MD-based method for studying the diastereomeric transition state complexes and rationalize different enantiomeric ratios. This method, which probes the stability of the catalytic arrangement within the theozyme, shows a correlation between the relative fractions of catalytically competent poses for the enantiomeric reductions and the experimental enantiomeric ratio. Some mutations, such as A94F and Y190F, induce conformational changes in the active site that enlarge the small binding pocket, facilitating accommodation of the larger S atom in this region and enhancing S-selectivity with 3-thiacyclopentanone. In contrast, in the E145S mutant and the final variant evolved for large-scale production of the intermediate for the antibiotic sulopenem, R-selectivity is promoted by shrinking the small binding pocket, thereby destabilizing the pro-S orientation.

  14. Origins of stereoselectivity in evolved ketoreductases

    PubMed Central

    Noey, Elizabeth L.; Tibrewal, Nidhi; Jiménez-Osés, Gonzalo; Osuna, Sílvia; Park, Jiyong; Bond, Carly M.; Cascio, Duilio; Liang, Jack; Zhang, Xiyun; Huisman, Gjalt W.; Tang, Yi; Houk, Kendall N.

    2015-01-01

    Mutants of Lactobacillus kefir short-chain alcohol dehydrogenase, used here as ketoreductases (KREDs), enantioselectively reduce the pharmaceutically relevant substrates 3-thiacyclopentanone and 3-oxacyclopentanone. These substrates differ by only the heteroatom (S or O) in the ring, but the KRED mutants reduce them with different enantioselectivities. Kinetic studies show that these enzymes are more efficient with 3-thiacyclopentanone than with 3-oxacyclopentanone. X-ray crystal structures of apo- and NADP+-bound selected mutants show that the substrate-binding loop conformational preferences are modified by these mutations. Quantum mechanical calculations and molecular dynamics (MD) simulations are used to investigate the mechanism of reduction by the enzyme. We have developed an MD-based method for studying the diastereomeric transition state complexes and rationalize different enantiomeric ratios. This method, which probes the stability of the catalytic arrangement within the theozyme, shows a correlation between the relative fractions of catalytically competent poses for the enantiomeric reductions and the experimental enantiomeric ratio. Some mutations, such as A94F and Y190F, induce conformational changes in the active site that enlarge the small binding pocket, facilitating accommodation of the larger S atom in this region and enhancing S-selectivity with 3-thiacyclopentanone. In contrast, in the E145S mutant and the final variant evolved for large-scale production of the intermediate for the antibiotic sulopenem, R-selectivity is promoted by shrinking the small binding pocket, thereby destabilizing the pro-S orientation. PMID:26644568

  15. Evolving paradigms in multifocal breast cancer.

    PubMed

    Salgado, Roberto; Aftimos, Philippe; Sotiriou, Christos; Desmedt, Christine

    2015-04-01

    The 7th edition of the TNM defines multifocal breast cancer as multiple simultaneous ipsilateral and synchronous breast cancer lesions, provided they are macroscopically distinct and measurable using current traditional pathological and clinical tools. According to the College of American Pathologists (CAP), the characterization of only the largest lesion is considered sufficient, unless the grade and/or histology are different between the lesions. Here, we review three potentially clinically relevant aspects of multifocal breast cancers: first, the importance of a different intrinsic breast cancer subtype of the various lesions; second, the emerging awareness of inter-lesion heterogeneity; and last but not least, the potential introduction of bias in clinical trials due to the unrecognized biological diversity of these cancers. Although the current strategy to assess the lesion with the largest diameter has clearly its advantages in terms of costs and feasibility, this recommendation may not be sustainable in time and might need to be adapted to be compliant with new evolving paradigms in breast cancer.

  16. Speciation genetics: current status and evolving approaches.

    PubMed

    Wolf, Jochen B W; Lindell, Johan; Backström, Niclas

    2010-06-12

    The view of species as entities subjected to natural selection and amenable to change put forth by Charles Darwin and Alfred Wallace laid the conceptual foundation for understanding speciation. Initially marred by a rudimental understanding of hereditary principles, evolutionists gained appreciation of the mechanistic underpinnings of speciation following the merger of Mendelian genetic principles with Darwinian evolution. Only recently have we entered an era where deciphering the molecular basis of speciation is within reach. Much focus has been devoted to the genetic basis of intrinsic postzygotic isolation in model organisms and several hybrid incompatibility genes have been successfully identified. However, concomitant with the recent technological advancements in genome analysis and a newfound interest in the role of ecology in the differentiation process, speciation genetic research is becoming increasingly open to non-model organisms. This development will expand speciation research beyond the traditional boundaries and unveil the genetic basis of speciation from manifold perspectives and at various stages of the splitting process. This review aims at providing an extensive overview of speciation genetics. Starting from key historical developments and core concepts of speciation genetics, we focus much of our attention on evolving approaches and introduce promising methodological approaches for future research venues.

  17. An evolving model of online bipartite networks

    NASA Astrophysics Data System (ADS)

    Zhang, Chu-Xu; Zhang, Zi-Ke; Liu, Chuang

    2013-12-01

    Understanding the structure and evolution of online bipartite networks is a significant task since they play a crucial role in various e-commerce services nowadays. Recently, various attempts have been tried to propose different models, resulting in either power-law or exponential degree distributions. However, many empirical results show that the user degree distribution actually follows a shifted power-law distribution, the so-called Mandelbrot’s law, which cannot be fully described by previous models. In this paper, we propose an evolving model, considering two different user behaviors: random and preferential attachment. Extensive empirical results on two real bipartite networks, Delicious and CiteULike, show that the theoretical model can well characterize the structure of real networks for both user and object degree distributions. In addition, we introduce a structural parameter p, to demonstrate that the hybrid user behavior leads to the shifted power-law degree distribution, and the region of power-law tail will increase with the increment of p. The proposed model might shed some lights in understanding the underlying laws governing the structure of real online bipartite networks.

  18. How does cognition evolve? Phylogenetic comparative psychology.

    PubMed

    MacLean, Evan L; Matthews, Luke J; Hare, Brian A; Nunn, Charles L; Anderson, Rindy C; Aureli, Filippo; Brannon, Elizabeth M; Call, Josep; Drea, Christine M; Emery, Nathan J; Haun, Daniel B M; Herrmann, Esther; Jacobs, Lucia F; Platt, Michael L; Rosati, Alexandra G; Sandel, Aaron A; Schroepfer, Kara K; Seed, Amanda M; Tan, Jingzhi; van Schaik, Carel P; Wobber, Victoria

    2012-03-01

    Now more than ever animal studies have the potential to test hypotheses regarding how cognition evolves. Comparative psychologists have developed new techniques to probe the cognitive mechanisms underlying animal behavior, and they have become increasingly skillful at adapting methodologies to test multiple species. Meanwhile, evolutionary biologists have generated quantitative approaches to investigate the phylogenetic distribution and function of phenotypic traits, including cognition. In particular, phylogenetic methods can quantitatively (1) test whether specific cognitive abilities are correlated with life history (e.g., lifespan), morphology (e.g., brain size), or socio-ecological variables (e.g., social system), (2) measure how strongly phylogenetic relatedness predicts the distribution of cognitive skills across species, and (3) estimate the ancestral state of a given cognitive trait using measures of cognitive performance from extant species. Phylogenetic methods can also be used to guide the selection of species comparisons that offer the strongest tests of a priori predictions of cognitive evolutionary hypotheses (i.e., phylogenetic targeting). Here, we explain how an integration of comparative psychology and evolutionary biology will answer a host of questions regarding the phylogenetic distribution and history of cognitive traits, as well as the evolutionary processes that drove their evolution.

  19. Fast evolving pair-instability supernovae

    DOE PAGES

    Kozyreva, Alexandra; Gilmer, Matthew; Hirschi, Raphael; ...

    2016-10-06

    With an increasing number of superluminous supernovae (SLSNe) discovered the ques- tion of their origin remains open and causes heated debates in the supernova commu- nity. Currently, there are three proposed mechanisms for SLSNe: (1) pair-instability supernovae (PISN), (2) magnetar-driven supernovae, and (3) models in which the su- pernova ejecta interacts with a circumstellar material ejected before the explosion. Based on current observations of SLSNe, the PISN origin has been disfavoured for a number of reasons. Many PISN models provide overly broad light curves and too reddened spectra, because of massive ejecta and a high amount of nickel. In themore » cur- rent study we re-examine PISN properties using progenitor models computed with the GENEC code. We calculate supernova explosions with FLASH and light curve evolu- tion with the radiation hydrodynamics code STELLA. We find that high-mass models (200 M⊙ and 250 M⊙) at relatively high metallicity (Z=0.001) do not retain hydro- gen in the outer layers and produce relatively fast evolving PISNe Type I and might be suitable to explain some SLSNe. We also investigate uncertainties in light curve modelling due to codes, opacities, the nickel-bubble effect and progenitor structure and composition.« less

  20. Fast evolving pair-instability supernovae

    SciTech Connect

    Kozyreva, Alexandra; Gilmer, Matthew; Hirschi, Raphael; Frohlich, Carla; Blinnikov, Sergey; Wollaeger, Ryan Thomas; Noebauer, Ulrich M.; van Rossum, Daniel R.; Heger, Alexander; Even, Wesley Paul; Waldman, Roni; Tolstov, Alexey; Chatzopoulos, Emmanouil; Sorokina, Elena

    2016-10-06

    With an increasing number of superluminous supernovae (SLSNe) discovered the ques- tion of their origin remains open and causes heated debates in the supernova commu- nity. Currently, there are three proposed mechanisms for SLSNe: (1) pair-instability supernovae (PISN), (2) magnetar-driven supernovae, and (3) models in which the su- pernova ejecta interacts with a circumstellar material ejected before the explosion. Based on current observations of SLSNe, the PISN origin has been disfavoured for a number of reasons. Many PISN models provide overly broad light curves and too reddened spectra, because of massive ejecta and a high amount of nickel. In the cur- rent study we re-examine PISN properties using progenitor models computed with the GENEC code. We calculate supernova explosions with FLASH and light curve evolu- tion with the radiation hydrodynamics code STELLA. We find that high-mass models (200 M⊙ and 250 M⊙) at relatively high metallicity (Z=0.001) do not retain hydro- gen in the outer layers and produce relatively fast evolving PISNe Type I and might be suitable to explain some SLSNe. We also investigate uncertainties in light curve modelling due to codes, opacities, the nickel-bubble effect and progenitor structure and composition.

  1. On the Discovery of Evolving Truth

    PubMed Central

    Li, Yaliang; Li, Qi; Gao, Jing; Su, Lu; Zhao, Bo; Fan, Wei; Han, Jiawei

    2015-01-01

    In the era of big data, information regarding the same objects can be collected from increasingly more sources. Unfortunately, there usually exist conflicts among the information coming from different sources. To tackle this challenge, truth discovery, i.e., to integrate multi-source noisy information by estimating the reliability of each source, has emerged as a hot topic. In many real world applications, however, the information may come sequentially, and as a consequence, the truth of objects as well as the reliability of sources may be dynamically evolving. Existing truth discovery methods, unfortunately, cannot handle such scenarios. To address this problem, we investigate the temporal relations among both object truths and source reliability, and propose an incremental truth discovery framework that can dynamically update object truths and source weights upon the arrival of new data. Theoretical analysis is provided to show that the proposed method is guaranteed to converge at a fast rate. The experiments on three real world applications and a set of synthetic data demonstrate the advantages of the proposed method over state-of-the-art truth discovery methods. PMID:26705502

  2. Extreme insular dwarfism evolved in a mammoth

    PubMed Central

    Herridge, Victoria L.; Lister, Adrian M.

    2012-01-01

    The insular dwarfism seen in Pleistocene elephants has come to epitomize the island rule; yet our understanding of this phenomenon is hampered by poor taxonomy. For Mediterranean dwarf elephants, where the most extreme cases of insular dwarfism are observed, a key systematic question remains unresolved: are all taxa phyletic dwarfs of a single mainland species Palaeoloxodon antiquus (straight-tusked elephant), or are some referable to Mammuthus (mammoths)? Ancient DNA and geochronological evidence have been used to support a Mammuthus origin for the Cretan ‘Palaeoloxodon’ creticus, but these studies have been shown to be flawed. On the basis of existing collections and recent field discoveries, we present new, morphological evidence for the taxonomic status of ‘P’. creticus, and show that it is indeed a mammoth, most probably derived from Early Pleistocene Mammuthus meridionalis or possibly Late Pliocene Mammuthus rumanus. We also show that Mammuthus creticus is smaller than other known insular dwarf mammoths, and is similar in size to the smallest dwarf Palaeoloxodon species from Sicily and Malta, making it the smallest mammoth species known to have existed. These findings indicate that extreme insular dwarfism has evolved to a similar degree independently in two elephant lineages. PMID:22572206

  3. Evolving the ingredients for reciprocity and spite

    PubMed Central

    Hauser, Marc; McAuliffe, Katherine; Blake, Peter R.

    2009-01-01

    Darwin never provided a satisfactory account of altruism, but posed the problem beautifully in light of the logic of natural selection. Hamilton and Williams delivered the necessary satisfaction by appealing to kinship, and Trivers showed that kinship was not necessary as long as the originally altruistic act was conditionally reciprocated. From the late 1970s to the present, the kinship theories in particular have been supported by considerable empirical data and elaborated to explore a number of other social interactions such as cooperation, selfishness and punishment, giving us what is now a rich description of the nature of social relationships among organisms. There are, however, two forms of theoretically possible social interactions—reciprocity and spite—that appear absent or nearly so in non-human vertebrates, despite considerable research efforts on a wide diversity of species. We suggest that the rather weak comparative evidence for these interactions is predicted once we consider the requisite socioecological pressures and psychological mechanisms. That is, a consideration of ultimate demands and proximate prerequisites leads to the prediction that reciprocity and spite should be rare in non-human animals, and common in humans. In particular, reciprocity and spite evolved in humans because of adaptive demands on cooperation among unrelated individuals living in large groups, and the integrative capacities of inequity detection, future-oriented decision-making and inhibitory control. PMID:19805432

  4. Evolving dynamic web pages using web mining

    NASA Astrophysics Data System (ADS)

    Menon, Kartik; Dagli, Cihan H.

    2003-08-01

    The heterogeneity and the lack of structure that permeates much of the ever expanding information sources on the WWW makes it difficult for the user to properly and efficiently access different web pages. Different users have different needs from the same web page. It is necessary to train the system to understand the needs and demands of the users. In other words there is a need for efficient and proper web mining. In this paper issues and possible ways of training the system and providing high level of organization for semi structured data available on the web is discussed. Web pages can be evolved based on history of query searches, browsing, links traversed and observation of the user behavior like book marking and time spent on viewing. Fuzzy clustering techniques help in grouping natural users and groups, neural networks, association rules and web traversals patterns help in efficient sequential anaysis based on previous searches and queries by the user. In this paper we analyze web server logs using above mentioned techniques to know more about user interactions. Analyzing these web server logs help to closely understand the user behavior and his/her web access pattern.

  5. Generative Representations for Evolving Families of Designs

    NASA Technical Reports Server (NTRS)

    Hornby, Gregory S.

    2003-01-01

    Since typical evolutionary design systems encode only a single artifact with each individual, each time the objective changes a new set of individuals must be evolved. When this objective varies in a way that can be parameterized, a more general method is to use a representation in which a single individual encodes an entire class of artifacts. In addition to saving time by preventing the need for multiple evolutionary runs, the evolution of parameter-controlled designs can create families of artifacts with the same style and a reuse of parts between members of the family. In this paper an evolutionary design system is described which uses a generative representation to encode families of designs. Because a generative representation is an algorithmic encoding of a design, its input parameters are a way to control aspects of the design it generates. By evaluating individuals multiple times with different input parameters the evolutionary design system creates individuals in which the input parameter controls specific aspects of a design. This system is demonstrated on two design substrates: neural-networks which solve the 3/5/7-parity problem and three-dimensional tables of varying heights.

  6. Lower mass limit of an evolving interstellar cloud and chemistry in an evolving oscillatory cloud

    NASA Technical Reports Server (NTRS)

    Tarafdar, S. P.

    1986-01-01

    Simultaneous solution of the equation of motion, equation of state and energy equation including heating and cooling processes for interstellar medium gives for a collapsing cloud a lower mass limit which is significantly smaller than the Jeans mass for the same initial density. The clouds with higher mass than this limiting mass collapse whereas clouds with smaller than critical mass pass through a maximum central density giving apparently similar clouds (i.e., same Av, size and central density) at two different phases of its evolution (i.e., with different life time). Preliminary results of chemistry in such an evolving oscillatory cloud show significant difference in abundances of some of the molecules in two physically similar clouds with different life times. The problems of depletion and short life time of evolving clouds appear to be less severe in such an oscillatory cloud.

  7. Biogeochemical Modeling of the Second Rise of Oxygen

    NASA Astrophysics Data System (ADS)

    Smith, M. L.; Catling, D.; Claire, M.; Zahnle, K.

    2014-03-01

    The rise of atmospheric oxygen set the tempo for the evolution of complex life on Earth. Oxygen levels are thought to have increased in two broad steps: one step occurred in the Archean ~ 2.45 Ga (the Great Oxidation Event or GOE), and another step occured in the Neoproterozoic ~750-580 Ma (the Neoprotoerozoic Oxygenation Event or NOE). During the NOE, oxygen levels increased from ~1-10% of the present atmospheric level (PAL) (Holland, 2006), to ~15% PAL in the late Neoproterozoic, to ~100% PAL later in the Phanerozoic. Complex life requires O2, so this transition allowed complex life to evolve. We seek to understand what caused the NOE. To explore causes for the NOE, we build upon the biogeochemical model of Claire et al. (2006), which calculates the redox evolution of the atmosphere, ocean, biosphere, and crust in the Archean through to the early Proterozoic. In this model, the balance between oxygenconsuming and oyxgen-producing fluxes evolves over time such that at ~2.4 Ga, the rapidly acting sources of oxygen outweigh the rapidly-acting sinks. Or, in other words, at ~2.4 Ga, the flux of oxygen from organic carbon burial exceeds the sinks of oxygen from reaction with reduced volcanic and metamoprphic gases. The model is able to drive oxygen levels to 1-10% PAL in the Proterozoic; however, the evolving redox fluxes in the model cannot explain how oxygen levels pushed above 1-10% in the late Proterozoic. The authors suggest that perhaps another buffer, such as sulfur, is needed to describe Proterozoic and Phanerozoic redox evolution. Geologic proxies show that in the Proterozoic, up to 10% of the deep ocean may have been sulfidic. With this ocean chemistry, the global sulfur cycle would have worked differently than it does today. Because the sulfur and oxygen cycles interact, the oxygen concentration could have permanently changed due to an evolving sulfur cycle (in combination with evolving redox fluxes associated with other parts of the oxygen cycle and carbon

  8. Singlet oxygen in photosensitization.

    PubMed

    Moan, Johan; Juzenas, Petras

    2006-01-01

    Oxygen is a ubiquitous element and a vitally important substance for life on the Earth, and especially for human life. Living organisms need oxygen for most, if not all, of their cellular functions. On the other hand, oxygen can produce metabolites that are toxic and potentially lethal to the same cells. Being reactive and chemically unstable reactive oxygen species (ROS) are the most important metabolites that initiate reduction and oxidation (redox) reactions under physiological conditions. Oxygen in its excited singlet state (1O2) is probably the most important intermediate in such reactions. Since the discovery of oxygen by Joseph Priestley in 1775 it has been recognized that oxygen can be both beneficial and harmful to life.

  9. Oxygen partial pressure sensor

    DOEpatents

    Dees, D.W.

    1994-09-06

    A method for detecting oxygen partial pressure and an oxygen partial pressure sensor are provided. The method for measuring oxygen partial pressure includes contacting oxygen to a solid oxide electrolyte and measuring the subsequent change in electrical conductivity of the solid oxide electrolyte. A solid oxide electrolyte is utilized that contacts both a porous electrode and a nonporous electrode. The electrical conductivity of the solid oxide electrolyte is affected when oxygen from an exhaust stream permeates through the porous electrode to establish an equilibrium of oxygen anions in the electrolyte, thereby displacing electrons throughout the electrolyte to form an electron gradient. By adapting the two electrodes to sense a voltage potential between them, the change in electrolyte conductivity due to oxygen presence can be measured. 1 fig.

  10. Oxygen partial pressure sensor

    DOEpatents

    Dees, Dennis W.

    1994-01-01

    A method for detecting oxygen partial pressure and an oxygen partial pressure sensor are provided. The method for measuring oxygen partial pressure includes contacting oxygen to a solid oxide electrolyte and measuring the subsequent change in electrical conductivity of the solid oxide electrolyte. A solid oxide electrolyte is utilized that contacts both a porous electrode and a nonporous electrode. The electrical conductivity of the solid oxide electrolyte is affected when oxygen from an exhaust stream permeates through the porous electrode to establish an equilibrium of oxygen anions in the electrolyte, thereby displacing electrons throughout the electrolyte to form an electron gradient. By adapting the two electrodes to sense a voltage potential between them, the change in electrolyte conductivity due to oxygen presence can be measured.

  11. S-nitrosylation: integrator of cardiovascular performance and oxygen delivery.

    PubMed

    Haldar, Saptarsi M; Stamler, Jonathan S

    2013-01-01

    Delivery of oxygen to tissues is the primary function of the cardiovascular system. NO, a gasotransmitter that signals predominantly through protein S-nitrosylation to form S-nitrosothiols (SNOs) in target proteins, operates coordinately with oxygen in mammalian cellular systems. From this perspective, SNO-based signaling may have evolved as a major transducer of the cellular oxygen-sensing machinery that underlies global cardiovascular function. Here we review mechanisms that regulate S-nitrosylation in the context of its essential role in "systems-level" control of oxygen sensing, delivery, and utilization in the cardiovascular system, and we highlight examples of aberrant S-nitrosylation that may lead to altered oxygen homeostasis in cardiovascular diseases. Thus, through a bird's-eye view of S-nitrosylation in the cardiovascular system, we provide a conceptual framework that may be broadly applicable to the functioning of other cellular systems and physiological processes and that illuminates new therapeutic promise in cardiovascular medicine.

  12. 42 CFR 414.226 - Oxygen and oxygen equipment.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 3 2012-10-01 2012-10-01 false Oxygen and oxygen equipment. 414.226 Section 414... Durable Medical Equipment and Prosthetic and Orthotic Devices § 414.226 Oxygen and oxygen equipment. (a) Payment rules—(1) Oxygen equipment. Payment for rental of oxygen equipment is made based on a monthly...

  13. 42 CFR 414.226 - Oxygen and oxygen equipment.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 3 2011-10-01 2011-10-01 false Oxygen and oxygen equipment. 414.226 Section 414... Equipment and Prosthetic and Orthotic Devices § 414.226 Oxygen and oxygen equipment. (a) Payment rules—(1) Oxygen equipment. Payment for rental of oxygen equipment is made based on a monthly fee schedule...

  14. 42 CFR 414.226 - Oxygen and oxygen equipment.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 3 2013-10-01 2013-10-01 false Oxygen and oxygen equipment. 414.226 Section 414... Durable Medical Equipment and Prosthetic and Orthotic Devices § 414.226 Oxygen and oxygen equipment. (a) Payment rules—(1) Oxygen equipment. Payment for rental of oxygen equipment is made based on a monthly...

  15. 42 CFR 414.226 - Oxygen and oxygen equipment.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 3 2014-10-01 2014-10-01 false Oxygen and oxygen equipment. 414.226 Section 414... Durable Medical Equipment, Prosthetic and Orthotic Devices, and Surgical Dressings § 414.226 Oxygen and oxygen equipment. (a) Payment rules—(1) Oxygen equipment. Payment for rental of oxygen equipment is...

  16. 42 CFR 414.226 - Oxygen and oxygen equipment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 3 2010-10-01 2010-10-01 false Oxygen and oxygen equipment. 414.226 Section 414... Equipment and Prosthetic and Orthotic Devices § 414.226 Oxygen and oxygen equipment. (a) Payment rules—(1) Oxygen equipment. Payment for rental of oxygen equipment is made based on a monthly fee schedule...

  17. Benefits of Mars ISRU Regolith Water Processing: A Case Study for the NASA Evolvable Mars Campaign

    NASA Technical Reports Server (NTRS)

    Kleinhenz, Julie; Paz, Aaron; Mueller, Robert

    2016-01-01

    ISRU of Mars resources was baselined in 2009 Design Reference Architecture (DRA) 5.0, but only for Oxygen production using atmospheric CO2. The Methane (LCH4) needed for ascent propulsion of the Mars Ascent Vehicle (MAV) would need to be brought from Earth. However: Extracting water from the Martian Regolith enables the production of both Oxygen and Methane from Mars resources: Water resources could also be used for other applications including: Life support, radiation shielding, plant growth, etc. Water extraction was not baselined in DRA5.0 due to perceived difficulties and complexity in processing regolith. The NASA Evolvable Mars Campaign (EMC) requested studies to look at the quantitative benefits and trades of using Mars water ISRUPhase 1: Examined architecture scenarios for regolith water retrieval. Completed October 2015. Phase 2: Deep dive of one architecture concept to look at end-to-end system size, mass, power of a LCH4/LO2 ISRU production system

  18. Evolving Recommendations on Prostate Cancer Screening.

    PubMed

    Brawley, Otis W; Thompson, Ian M; Grönberg, Henrik

    2016-01-01

    Results of a number of studies demonstrate that the serum prostate-specific antigen (PSA) in and of itself is an inadequate screening test. Today, one of the most pressing questions in prostate cancer medicine is how can screening be honed to identify those who have life-threatening disease and need aggressive treatment. A number of efforts are underway. One such effort is the assessment of men in the landmark Prostate Cancer Prevention Trial that has led to a prostate cancer risk calculator (PCPTRC), which is available online. PCPTRC version 2.0 predicts the probability of the diagnosis of no cancer, low-grade cancer, or high-grade cancer when variables such as PSA, age, race, family history, and physical findings are input. Modern biomarker development promises to provide tests with fewer false positives and improved ability to find high-grade cancers. Stockholm III (STHLM3) is a prospective, population-based, paired, screen-positive, prostate cancer diagnostic study assessing a combination of plasma protein biomarkers along with age, family history, previous biopsy, and prostate examination for prediction of prostate cancer. Multiparametric MRI incorporates anatomic and functional imaging to better characterize and predict future behavior of tumors within the prostate. After diagnosis of cancer, several genomic tests promise to better distinguish the cancers that need treatment versus those that need observation. Although the new technologies are promising, there is an urgent need for evaluation of these new tests in high-quality, large population-based studies. Until these technologies are proven, most professional organizations have evolved to a recommendation of informed or shared decision making in which there is a discussion between the doctor and patient.

  19. Emergent spacetime in stochastically evolving dimensions

    NASA Astrophysics Data System (ADS)

    Afshordi, Niayesh; Stojkovic, Dejan

    2014-12-01

    Changing the dimensionality of the space-time at the smallest and largest distances has manifold theoretical advantages. If the space is lower dimensional in the high energy regime, then there are no ultraviolet divergencies in field theories, it is possible to quantize gravity, and the theory of matter plus gravity is free of divergencies or renormalizable. If the space is higher dimensional at cosmological scales, then some cosmological problems (including the cosmological constant problem) can be attacked from a completely new perspective. In this paper, we construct an explicit model of "evolving dimensions" in which the dimensions open up as the temperature of the universe drops. We adopt the string theory framework in which the dimensions are fields that live on the string worldsheet, and add temperature dependent mass terms for them. At the Big Bang, all the dimensions are very heavy and are not excited. As the universe cools down, dimensions open up one by one. Thus, the dimensionality of the space we live in depends on the energy or temperature that we are probing. In particular, we provide a kinematic Brandenberger-Vafa argument for how a discrete causal set, and eventually a continuum (3 + 1)-dim spacetime along with Einstein gravity emerges in the Infrared from the worldsheet action. The (3 + 1)-dim Planck mass and the string scale become directly related, without any compactification. Amongst other predictions, we argue that LHC might be blind to new physics even if it comes at the TeV scale. In contrast, cosmic ray experiments, especially those that can register the very beginning of the shower, and collisions with high multiplicity and density of particles, might be sensitive to the dimensional cross-over.

  20. Evolvable Cryogenics (ECRYO) Pressure Transducer Calibration Test

    NASA Technical Reports Server (NTRS)

    Diaz, Carlos E., Jr.

    2015-01-01

    This paper provides a summary of the findings of recent activities conducted by Marshall Space Flight Center's (MSFC) In-Space Propulsion Branch and MSFC's Metrology and Calibration Lab to assess the performance of current "state of the art" pressure transducers for use in long duration storage and transfer of cryogenic propellants. A brief historical narrative in this paper describes the Evolvable Cryogenics program and the relevance of these activities to the program. This paper also provides a review of three separate test activities performed throughout this effort, including: (1) the calibration of several pressure transducer designs in a liquid nitrogen cryogenic environmental chamber, (2) the calibration of a pressure transducer in a liquid helium Dewar, and (3) the calibration of several pressure transducers at temperatures ranging from 20 to 70 degrees Kelvin (K) using a "cryostat" environmental chamber. These three separate test activities allowed for study of the sensors along a temperature range from 4 to 300 K. The combined data shows that both the slope and intercept of the sensor's calibration curve vary as a function of temperature. This homogeneous function is contrary to the linearly decreasing relationship assumed at the start of this investigation. Consequently, the data demonstrates the need for lookup tables to change the slope and intercept used by any data acquisition system. This ultimately would allow for more accurate pressure measurements at the desired temperature range. This paper concludes with a review of a request for information (RFI) survey conducted amongst different suppliers to determine the availability of current "state of the art" flight-qualified pressure transducers. The survey identifies requirements that are most difficult for the suppliers to meet, most notably the capability to validate the sensor's performance at temperatures below 70 K.

  1. Evolutionary genomics of fast evolving tunicates.

    PubMed

    Berná, Luisa; Alvarez-Valin, Fernando

    2014-07-08

    Tunicates have been extensively studied because of their crucial phylogenetic location (the closest living relatives of vertebrates) and particular developmental plan. Recent genome efforts have disclosed that tunicates are also remarkable in their genome organization and molecular evolutionary patterns. Here, we review these latter aspects, comparing the similarities and specificities of two model species of the group: Oikopleura dioica and Ciona intestinalis. These species exhibit great genome plasticity and Oikopleura in particular has undergone a process of extreme genome reduction and compaction that can be explained in part by gene loss, but is mostly due to other mechanisms such as shortening of intergenic distances and introns, and scarcity of mobile elements. In Ciona, genome reorganization was less severe being more similar to the other chordates in several aspects. Rates and patterns of molecular evolution are also peculiar in tunicates, being Ciona about 50% faster than vertebrates and Oikopleura three times faster. In fact, the latter species is considered as the fastest evolving metazoan recorded so far. Two processes of increase in evolutionary rates have taken place in tunicates. One of them is more extreme, and basically restricted to genes encoding regulatory proteins (transcription regulators, chromatin remodeling proteins, and metabolic regulators), and the other one is less pronounced but affects the whole genome. Very likely adaptive evolution has played a very significant role in the first, whereas the functional and/or evolutionary causes of the second are less clear and the evidence is not conclusive. The evidences supporting the incidence of increased mutation and less efficient negative selection are presented and discussed.

  2. Evolutionary Genomics of Fast Evolving Tunicates

    PubMed Central

    Berná, Luisa; Alvarez-Valin, Fernando

    2014-01-01

    Tunicates have been extensively studied because of their crucial phylogenetic location (the closest living relatives of vertebrates) and particular developmental plan. Recent genome efforts have disclosed that tunicates are also remarkable in their genome organization and molecular evolutionary patterns. Here, we review these latter aspects, comparing the similarities and specificities of two model species of the group: Oikopleura dioica and Ciona intestinalis. These species exhibit great genome plasticity and Oikopleura in particular has undergone a process of extreme genome reduction and compaction that can be explained in part by gene loss, but is mostly due to other mechanisms such as shortening of intergenic distances and introns, and scarcity of mobile elements. In Ciona, genome reorganization was less severe being more similar to the other chordates in several aspects. Rates and patterns of molecular evolution are also peculiar in tunicates, being Ciona about 50% faster than vertebrates and Oikopleura three times faster. In fact, the latter species is considered as the fastest evolving metazoan recorded so far. Two processes of increase in evolutionary rates have taken place in tunicates. One of them is more extreme, and basically restricted to genes encoding regulatory proteins (transcription regulators, chromatin remodeling proteins, and metabolic regulators), and the other one is less pronounced but affects the whole genome. Very likely adaptive evolution has played a very significant role in the first, whereas the functional and/or evolutionary causes of the second are less clear and the evidence is not conclusive. The evidences supporting the incidence of increased mutation and less efficient negative selection are presented and discussed. PMID:25008364

  3. Singlet Oxygen Formation during the Charging Process of an Aprotic Lithium-Oxygen Battery.

    PubMed

    Wandt, Johannes; Jakes, Peter; Granwehr, Josef; Gasteiger, Hubert A; Eichel, Rüdiger-A

    2016-06-06

    Aprotic lithium-oxygen (Li-O2 ) batteries have attracted considerable attention in recent years owing to their outstanding theoretical energy density. A major challenge is their poor reversibility caused by degradation reactions, which mainly occur during battery charge and are still poorly understood. Herein, we show that singlet oxygen ((1) Δg ) is formed upon Li2 O2 oxidation at potentials above 3.5 V. Singlet oxygen was detected through a reaction with a spin trap to form a stable radical that was observed by time- and voltage-resolved in operando EPR spectroscopy in a purpose-built spectroelectrochemical cell. According to our estimate, a lower limit of approximately 0.5 % of the evolved oxygen is singlet oxygen. The occurrence of highly reactive singlet oxygen might be the long-overlooked missing link in the understanding of the electrolyte degradation and carbon corrosion reactions that occur during the charging of Li-O2 cells.

  4. Oxygen ion conducting materials

    DOEpatents

    Vaughey, John; Krumpelt, Michael; Wang, Xiaoping; Carter, J. David

    2005-07-12

    An oxygen ion conducting ceramic oxide that has applications in industry including fuel cells, oxygen pumps, oxygen sensors, and separation membranes. The material is based on the idea that substituting a dopant into the host perovskite lattice of (La,Sr)MnO.sub.3 that prefers a coordination number lower than 6 will induce oxygen ion vacancies to form in the lattice. Because the oxygen ion conductivity of (La,Sr)MnO.sub.3 is low over a very large temperature range, the material exhibits a high overpotential when used. The inclusion of oxygen vacancies into the lattice by doping the material has been found to maintain the desirable properties of (La,Sr)MnO.sub.3, while significantly decreasing the experimentally observed overpotential.

  5. Oxygen ion conducting materials

    DOEpatents

    Carter, J. David; Wang, Xiaoping; Vaughey, John; Krumpelt, Michael

    2004-11-23

    An oxygen ion conducting ceramic oxide that has applications in industry including fuel cells, oxygen pumps, oxygen sensors, and separation membranes. The material is based on the idea that substituting a dopant into the host perovskite lattice of (La,Sr)MnO.sub.3 that prefers a coordination number lower than 6 will induce oxygen ion vacancies to form in the lattice. Because the oxygen ion conductivity of (La,Sr)MnO.sub.3 is low over a very large temperature range, the material exhibits a high overpotential when used. The inclusion of oxygen vacancies into the lattice by doping the material has been found to maintain the desirable properties of (La,Sr)MnO.sub.3, while significantly decreasing the experimentally observed overpotential.

  6. Integrated turbomachine oxygen plant

    SciTech Connect

    Anand, Ashok Kumar; DePuy, Richard Anthony; Muthaiah, Veerappan

    2014-06-17

    An integrated turbomachine oxygen plant includes a turbomachine and an air separation unit. One or more compressor pathways flow compressed air from a compressor through one or more of a combustor and a turbine expander to cool the combustor and/or the turbine expander. An air separation unit is operably connected to the one or more compressor pathways and is configured to separate the compressed air into oxygen and oxygen-depleted air. A method of air separation in an integrated turbomachine oxygen plant includes compressing a flow of air in a compressor of a turbomachine. The compressed flow of air is flowed through one or more of a combustor and a turbine expander of the turbomachine to cool the combustor and/or the turbine expander. The compressed flow of air is directed to an air separation unit and is separated into oxygen and oxygen-depleted air.

  7. Oxygen, a paradoxical element?

    PubMed

    Greabu, Maria; Battino, M; Mohora, Maria; Olinescu, R; Totan, Alexandra; Didilescu, Andreea

    2008-01-01

    Oxygen is an essential element for life on earth. No life may exist without oxygen. But in the last forty years, conclusive evidence demonstrated the double-edge sword of this element. In certain conditions, oxygen may produce reactive species, even free radicals. More, the production of reactive oxygen species (ROS) takes place everywhere: in air, nature or inside human bodies. The paradox of oxygen atom is entirely due to its peculiar electronic structure. But life began on earth, only when nature found efficient weapons against ROS, these antioxidants, which all creatures are extensibly endowed with. The consequences of oxygen activation in human bodies are only partly known, in spite of extensive scientific research on theoretical, experimental and clinical domains.

  8. Oxygen ion conducting materials

    DOEpatents

    Vaughey, John; Krumpelt, Michael; Wang, Xiaoping; Carter, J. David

    2003-01-01

    An oxygen ion conducting ceramic oxide that has applications in industry including fuel cells, oxygen pumps, oxygen sensors, and separation membranes. The material is based on the idea that substituting a dopant into the host perovskite lattice of (La,Sr)MnO.sub.3 that prefers a coordination number lower than 6 will induce oxygen ion vacancies to form in the lattice. Because the oxygen ion conductivity of (La,Sr)MnO.sub.3 is low over a very large temperature range, the material exhibits a high overpotential when used. The inclusion of oxygen vacancies into the lattice by doping the material has been found to maintain the desirable properties of (La,Sr)MnO.sub.3, while significantly decreasing the experimentally observed overpotential.

  9. Continuous home oxygen therapy.

    PubMed

    Ortega Ruiz, Francisco; Díaz Lobato, Salvador; Galdiz Iturri, Juan Bautista; García Rio, Francisco; Güell Rous, Rosa; Morante Velez, Fátima; Puente Maestu, Luis; Tàrrega Camarasa, Julia

    2014-05-01

    Oxygen therapy is defined as the therapeutic use of oxygen and consists of administering oxygen at higher concentrations than those found in room air, with the aim of treating or preventing hypoxia. This therapeutic intervention has been shown to increase survival in patients with chronic obstructive pulmonary disease (COPD) and respiratory failure. Although this concept has been extended by analogy to chronic respiratory failure caused by respiratory and non-respiratory diseases, continuous oxygen therapy has not been shown to be effective in other disorders. Oxygen therapy has not been shown to improve survival in patients with COPD and moderate hypoxaemia, nor is there consensus regarding its use during nocturnal desaturations in COPD or desaturations caused by effort. The choice of the oxygen source must be made on the basis of criteria such as technical issues, patient comfort and adaptability and cost. Flow must be adjusted to achieve appropriate transcutaneous oxyhaemoglobin saturation correction.

  10. Atomic Oxygen Effects

    NASA Technical Reports Server (NTRS)

    Miller, Sharon K. R.

    2014-01-01

    Atomic oxygen, which is the most predominant species in low Earth orbit, is highly reactive and can break chemical bonds on the surface of a wide variety of materials leading to volatilization or surface oxidation which can result in failure of spacecraft materials and components. This presentation will give an overview of how atomic oxygen reacts with spacecraft materials, results of space exposure testing of a variety of materials, and examples of failures caused by atomic oxygen.

  11. The Evolvement of Automobile Steering System Based on TRIZ

    NASA Astrophysics Data System (ADS)

    Zhao, Xinjun; Zhang, Shuang

    Products and techniques pass through a process of birth, growth, maturity, death and quit the stage like biological evolution process. The developments of products and techniques conform to some evolvement rules. If people know and hold these rules, they can design new kind of products and forecast the develop trends of the products. Thereby, enterprises can grasp the future technique directions of products, and make product and technique innovation. Below, based on TRIZ theory, the mechanism evolvement, the function evolvement and the appearance evolvement of automobile steering system had been analyzed and put forward some new ideas about future automobile steering system.

  12. Elastomer Compatible With Oxygen

    NASA Technical Reports Server (NTRS)

    Martin, Jon W.

    1987-01-01

    Artificial rubber resists ignition on impact and seals at low temperatures. Filled fluoroelastomer called "Katiflex" developed for use in seals of vessels holding cold liquid and gaseous oxygen. New material more compatible with liquid oxygen than polytetrafluoroethylene. Provides dynamic seal at -196 degrees C with only 4 times seal stress required at room temperature. In contrast, conventional rubber seals burn or explode on impact in high-pressure oxygen, and turn hard or even brittle at liquid-oxygen temperatures, do not seal reliably, also see (MFS-28124).

  13. Solid state oxygen sensor

    DOEpatents

    Garzon, F.H.; Brosha, E.L.

    1997-12-09

    A potentiometric oxygen sensor is formed having a logarithmic response to a differential oxygen concentration while operating as a Nernstian-type sensor. Very thin films of mixed conducting oxide materials form electrode services while permitting diffusional oxygen access to the interface between the zirconia electrolyte and the electrode. Diffusion of oxygen through the mixed oxide is not rate-limiting. Metal electrodes are not used so that morphological changes in the electrode structure do not occur during extended operation at elevated temperatures. 6 figs.

  14. Monitoring Oxygen Status.

    PubMed

    Toffaletti, J G; Rackley, C R

    Although part of a common "blood gas" test panel with pH and pCO2, the pO2, %O2Hb, and related parameters are independently used to detect and monitor oxygen deficits from a variety of causes. Measurement of blood gases and cooximetry may be done by laboratory analyzers, point of care testing, noninvasive pulse oximetry, and transcutaneous blood gases. The specimen type and mode of monitoring oxygenation that are chosen may be based on a combination of urgency, practicality, clinical need, and therapeutic objectives. Because oxygen concentrations in blood are extremely labile, there are several highly important preanalytical practices necessary to prevent errors in oxygen and cooximetry results. Effective utilization of oxygen requires binding by hemoglobin in the lungs, transport in the blood, and release to tissues, where cellular respiration occurs. Hydrogen ion (pH), CO2, temperature, and 2,3-DPG all play important roles in these processes. Additional measurements and calculations are often used to interpret and locate the cause and source of an oxygen deficit. These include the Hb concentration, Alveolar-arterial pO2 gradient, pO2:FIO2 ratio, oxygenation index, O2 content and O2 delivery, and pulmonary dead space and intrapulmonary shunting. The causes of hypoxemia will be covered and, to illustrate how the oxygen parameters are used clinically in the diagnosis and management of patients with abnormal oxygenation, two clinical cases will be presented and described.

  15. Measuring tissue oxygenation

    NASA Technical Reports Server (NTRS)

    Soyemi, Olusola O. (Inventor); Soller, Babs R. (Inventor); Yang, Ye (Inventor)

    2009-01-01

    Methods and systems for calculating tissue oxygenation, e.g., oxygen saturation, in a target tissue are disclosed. In some embodiments, the methods include: (a) directing incident radiation to a target tissue and determining reflectance spectra of the target tissue by measuring intensities of reflected radiation from the target tissue at a plurality of radiation wavelengths; (b) correcting the measured intensities of the reflectance spectra to reduce contributions thereto from skin and fat layers through which the incident radiation propagates; (c) determining oxygen saturation in the target tissue based on the corrected reflectance spectra; and (d) outputting the determined value of oxygen saturation.

  16. A Survey and Resource Materials on the Use of Oxygen Supplementation in Fish Culture.

    SciTech Connect

    Colt, John; Orwicz, Kris; Bouck, Gerald R.

    1988-09-01

    Oxygen supplementation is the process by which naturally occurring dissolved oxygen (DO) is supplemented with enriched oxygen to restore or enhance DO levels in water. In aquaculture this is usually done with relatively pure oxygen and the result has significant potential to improve fish health, aid hatchery economic considerations, or both. For example, oxygen supplementation can preclude both hypoxia and gas bubble disease, as well as allow more fish to be reared in the same space or water or both. However, the concepts and technology in oxygen supplementation are evolving rapidly and direct communication with the user groups would foster technology transfer and improve implementation. Therefore we undertook and now report a survey of organizations that either currently use or plan to use oxygen supplementation. Additionally we included various pertinent material, including literature sources, lists of consultants and equipment manufacturers and some current research in oxygen supplementation.

  17. Oxygen sensitive paper

    NASA Technical Reports Server (NTRS)

    Whidby, J. F.

    1973-01-01

    Paper is impregnated with mixture of methylene blue and ethylenediaminetetraacetic acid. Methylene blue is photo-reduced to leuco-form. Paper is kept isolated from oxygen until ready for use. Paper can be reused by photo-reduction after oxygen exposure.

  18. Durability of oxygen sensors

    NASA Astrophysics Data System (ADS)

    Snapp, L.

    1985-03-01

    This report describes the results of dynamometer and vehicle durability testing from a variety of sources, as well as common causes of failure for oxygen sensors. The data indicates that oxygen sensors show low failure rates, even at mileages of 80,000 miles and beyond.

  19. Adaptation of Escherichia coli to glucose promotes evolvability in lactose.

    PubMed

    Phillips, Kelly N; Castillo, Gerardo; Wünsche, Andrea; Cooper, Tim F

    2016-02-01

    The selective history of a population can influence its subsequent evolution, an effect known as historical contingency. We previously observed that five of six replicate populations that were evolved in a glucose-limited environment for 2000 generations, then switched to lactose for 1000 generations, had higher fitness increases in lactose than populations started directly from the ancestor. To test if selection in glucose systematically increased lactose evolvability, we started 12 replay populations--six from a population subsample and six from a single randomly selected clone--from each of the six glucose-evolved founder populations. These replay populations and 18 ancestral populations were evolved for 1000 generations in a lactose-limited environment. We found that replay populations were initially slightly less fit in lactose than the ancestor, but were more evolvable, in that they increased in fitness at a faster rate and to higher levels. This result indicates that evolution in the glucose environment resulted in genetic changes that increased the potential of genotypes to adapt to lactose. Genome sequencing identified four genes--iclR, nadR, spoT, and rbs--that were mutated in most glucose-evolved clones and are candidates for mediating increased evolvability. Our results demonstrate that short-term selective costs during selection in one environment can lead to changes in evolvability that confer longer term benefits.

  20. The genotype-phenotype map of an evolving digital organism.

    PubMed

    Fortuna, Miguel A; Zaman, Luis; Ofria, Charles; Wagner, Andreas

    2017-02-01

    To understand how evolving systems bring forth novel and useful phenotypes, it is essential to understand the relationship between genotypic and phenotypic change. Artificial evolving systems can help us understand whether the genotype-phenotype maps of natural evolving systems are highly unusual, and it may help create evolvable artificial systems. Here we characterize the genotype-phenotype map of digital organisms in Avida, a platform for digital evolution. We consider digital organisms from a vast space of 10141 genotypes (instruction sequences), which can form 512 different phenotypes. These phenotypes are distinguished by different Boolean logic functions they can compute, as well as by the complexity of these functions. We observe several properties with parallels in natural systems, such as connected genotype networks and asymmetric phenotypic transitions. The likely common cause is robustness to genotypic change. We describe an intriguing tension between phenotypic complexity and evolvability that may have implications for biological evolution. On the one hand, genotypic change is more likely to yield novel phenotypes in more complex organisms. On the other hand, the total number of novel phenotypes reachable through genotypic change is highest for organisms with simple phenotypes. Artificial evolving systems can help us study aspects of biological evolvability that are not accessible in vastly more complex natural systems. They can also help identify properties, such as robustness, that are required for both human-designed artificial systems and synthetic biological systems to be evolvable.

  1. Loops and autonomy promote evolvability of ecosystem networks.

    PubMed

    Luo, Jianxi

    2014-09-29

    The structure of ecological networks, in particular food webs, determines their ability to evolve further, i.e. evolvability. The knowledge about how food web evolvability is determined by the structures of diverse ecological networks can guide human interventions purposefully to either promote or limit evolvability of ecosystems. However, the focus of prior food web studies was on stability and robustness; little is known regarding the impact of ecological network structures on their evolvability. To correlate ecosystem structure and evolvability, we adopt the NK model originally from evolutionary biology to generate and assess the ruggedness of fitness landscapes of a wide spectrum of model food webs with gradual variation in the amount of feeding loops and link density. The variation in network structures is controlled by linkage rewiring. Our results show that more feeding loops and lower trophic link density, i.e. higher autonomy of species, of food webs increase the potential for the ecosystem to generate heritable variations with improved fitness. Our findings allow the prediction of the evolvability of actual food webs according to their network structures, and provide guidance to enhancing or controlling the evolvability of specific ecosystems.

  2. The genotype-phenotype map of an evolving digital organism

    PubMed Central

    Zaman, Luis; Wagner, Andreas

    2017-01-01

    To understand how evolving systems bring forth novel and useful phenotypes, it is essential to understand the relationship between genotypic and phenotypic change. Artificial evolving systems can help us understand whether the genotype-phenotype maps of natural evolving systems are highly unusual, and it may help create evolvable artificial systems. Here we characterize the genotype-phenotype map of digital organisms in Avida, a platform for digital evolution. We consider digital organisms from a vast space of 10141 genotypes (instruction sequences), which can form 512 different phenotypes. These phenotypes are distinguished by different Boolean logic functions they can compute, as well as by the complexity of these functions. We observe several properties with parallels in natural systems, such as connected genotype networks and asymmetric phenotypic transitions. The likely common cause is robustness to genotypic change. We describe an intriguing tension between phenotypic complexity and evolvability that may have implications for biological evolution. On the one hand, genotypic change is more likely to yield novel phenotypes in more complex organisms. On the other hand, the total number of novel phenotypes reachable through genotypic change is highest for organisms with simple phenotypes. Artificial evolving systems can help us study aspects of biological evolvability that are not accessible in vastly more complex natural systems. They can also help identify properties, such as robustness, that are required for both human-designed artificial systems and synthetic biological systems to be evolvable. PMID:28241039

  3. Atomic Oxygen Textured Polymers

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Rutledge, Sharon K.; Hunt, Jason D.; Drobotij, Erin; Cales, Michael R.; Cantrell, Gidget

    1995-01-01

    Atomic oxygen can be used to microscopically alter the surface morphology of polymeric materials in space or in ground laboratory facilities. For polymeric materials whose sole oxidation products are volatile species, directed atomic oxygen reactions produce surfaces of microscopic cones. However, isotropic atomic oxygen exposure results in polymer surfaces covered with lower aspect ratio sharp-edged craters. Isotropic atomic oxygen plasma exposure of polymers typically causes a significant decrease in water contact angle as well as altered coefficient of static friction. Such surface alterations may be of benefit for industrial and biomedical applications. The results of atomic oxygen plasma exposure of thirty-three (33) different polymers are presented, including typical morphology changes, effects on water contact angle, and coefficient of static friction.

  4. Molecular Evolution of the Oxygen-Binding Hemerythrin Domain

    PubMed Central

    Alvarez-Carreño, Claudia; Becerra, Arturo; Lazcano, Antonio

    2016-01-01

    Background The evolution of oxygenic photosynthesis during Precambrian times entailed the diversification of strategies minimizing reactive oxygen species-associated damage. Four families of oxygen-carrier proteins (hemoglobin, hemerythrin and the two non-homologous families of arthropodan and molluscan hemocyanins) are known to have evolved independently the capacity to bind oxygen reversibly, providing cells with strategies to cope with the evolutionary pressure of oxygen accumulation. Oxygen-binding hemerythrin was first studied in marine invertebrates but further research has made it clear that it is present in the three domains of life, strongly suggesting that its origin predated the emergence of eukaryotes. Results Oxygen-binding hemerythrins are a monophyletic sub-group of the hemerythrin/HHE (histidine, histidine, glutamic acid) cation-binding domain. Oxygen-binding hemerythrin homologs were unambiguously identified in 367/2236 bacterial, 21/150 archaeal and 4/135 eukaryotic genomes. Overall, oxygen-binding hemerythrin homologues were found in the same proportion as single-domain and as long protein sequences. The associated functions of protein domains in long hemerythrin sequences can be classified in three major groups: signal transduction, phosphorelay response regulation, and protein binding. This suggests that in many organisms the reversible oxygen-binding capacity was incorporated in signaling pathways. A maximum-likelihood tree of oxygen-binding hemerythrin homologues revealed a complex evolutionary history in which lateral gene transfer, duplications and gene losses appear to have played an important role. Conclusions Hemerythrin is an ancient protein domain with a complex evolutionary history. The distinctive iron-binding coordination site of oxygen-binding hemerythrins evolved first in prokaryotes, very likely prior to the divergence of Firmicutes and Proteobacteria, and spread into many bacterial, archaeal and eukaryotic species. The later

  5. Gene Essentiality Is a Quantitative Property Linked to Cellular Evolvability.

    PubMed

    Liu, Gaowen; Yong, Mei Yun Jacy; Yurieva, Marina; Srinivasan, Kandhadayar Gopalan; Liu, Jaron; Lim, John Soon Yew; Poidinger, Michael; Wright, Graham Daniel; Zolezzi, Francesca; Choi, Hyungwon; Pavelka, Norman; Rancati, Giulia

    2015-12-03

    Gene essentiality is typically determined by assessing the viability of the corresponding mutant cells, but this definition fails to account for the ability of cells to adaptively evolve to genetic perturbations. Here, we performed a stringent screen to assess the degree to which Saccharomyces cerevisiae cells can survive the deletion of ~1,000 individual "essential" genes and found that ~9% of these genetic perturbations could in fact be overcome by adaptive evolution. Our analyses uncovered a genome-wide gradient of gene essentiality, with certain essential cellular functions being more "evolvable" than others. Ploidy changes were prevalent among the evolved mutant strains, and aneuploidy of a specific chromosome was adaptive for a class of evolvable nucleoporin mutants. These data justify a quantitative redefinition of gene essentiality that incorporates both viability and evolvability of the corresponding mutant cells and will enable selection of therapeutic targets associated with lower risk of emergence of drug resistance.

  6. Aerobic fermentation of D-glucose by an evolved cytochrome oxidase-deficient Escherichia coli strain.

    PubMed

    Portnoy, Vasiliy A; Herrgård, Markus J; Palsson, Bernhard Ø

    2008-12-01

    Fermentation of glucose to D-lactic acid under aerobic growth conditions by an evolved Escherichia coli mutant deficient in three terminal oxidases is reported in this work. Cytochrome oxidases (cydAB, cyoABCD, and cbdAB) were removed from the E. coli K12 MG1655 genome, resulting in the ECOM3 (E. coli cytochrome oxidase mutant) strain. Removal of cytochrome oxidases reduced the oxygen uptake rate of the knockout strain by nearly 85%. Moreover, the knockout strain was initially incapable of growing on M9 minimal medium. After the ECOM3 strain was subjected to adaptive evolution on glucose M9 medium for 60 days, a growth rate equivalent to that of anaerobic wild-type E. coli was achieved. Our findings demonstrate that three independently adaptively evolved ECOM3 populations acquired different phenotypes: one produced lactate as a sole fermentation product, while the other two strains exhibited a mixed-acid fermentation under oxic growth conditions with lactate remaining as the major product. The homofermenting strain showed a D-lactate yield of 0.8 g/g from glucose. Gene expression and in silico model-based analyses were employed to identify perturbed pathways and explain phenotypic behavior. Significant upregulation of ygiN and sodAB explains the remaining oxygen uptake that was observed in evolved ECOM3 strains. E. coli strains produced in this study showed the ability to produce lactate as a fermentation product from glucose and to undergo mixed-acid fermentation during aerobic growth.

  7. Cis-Lunar Reusable In-Space Transportation Architecture for the Evolvable Mars Campaign

    NASA Technical Reports Server (NTRS)

    McVay, Eric S.; Jones, Christopher A.; Merrill, Raymond G.

    2016-01-01

    Human exploration missions to Mars or other destinations in the solar system require large quantities of propellant to enable the transportation of required elements from Earth's sphere of influence to Mars. Current and proposed launch vehicles are incapable of launching all of the requisite mass on a single vehicle; hence, multiple launches and in-space aggregation are required to perform a Mars mission. This study examines the potential of reusable chemical propulsion stages based in cis-lunar space to meet the transportation objectives of the Evolvable Mars Campaign and identifies cis-lunar propellant supply requirements. These stages could be supplied with fuel and oxidizer delivered to cis-lunar space, either launched from Earth or other inner solar system sources such as the Moon or near Earth asteroids. The effects of uncertainty in the model parameters are evaluated through sensitivity analysis of key parameters including the liquid propellant combination, inert mass fraction of the vehicle, change in velocity margin, and change in payload masses. The outcomes of this research include a description of the transportation elements, the architecture that they enable, and an option for a campaign that meets the objectives of the Evolvable Mars Campaign. This provides a more complete understanding of the propellant requirements, as a function of time, that must be delivered to cis-lunar space. Over the selected sensitivity ranges for the current payload and schedule requirements of the 2016 point of departure of the Evolvable Mars Campaign destination systems, the resulting propellant delivery quantities are between 34 and 61 tonnes per year of hydrogen and oxygen propellant, or between 53 and 76 tonnes per year of methane and oxygen propellant, or between 74 and 92 tonnes per year of hypergolic propellant. These estimates can guide future propellant manufacture and/or delivery architectural analysis.

  8. Atomic Oxygen Fluence Monitor

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.

    2011-01-01

    This innovation enables a means for actively measuring atomic oxygen fluence (accumulated atoms of atomic oxygen per area) that has impinged upon spacecraft surfaces. Telemetered data from the device provides spacecraft designers, researchers, and mission managers with real-time measurement of atomic oxygen fluence, which is useful for prediction of the durability of spacecraft materials and components. The innovation is a compact fluence measuring device that allows in-space measurement and transmittance of measured atomic oxygen fluence as a function of time based on atomic oxygen erosion yields (the erosion yield of a material is the volume of material that is oxidized per incident oxygen atom) of materials that have been measured in low Earth orbit. It has a linear electrical response to atomic oxygen fluence, and is capable of measuring high atomic oxygen fluences (up to >10(exp 22) atoms/sq cm), which are representative of multi-year low-Earth orbital missions (such as the International Space Station). The durability or remaining structural lifetime of solar arrays that consist of polymer blankets on which the solar cells are attached can be predicted if one knows the atomic oxygen fluence that the solar array blanket has been exposed to. In addition, numerous organizations that launch space experiments into low-Earth orbit want to know the accumulated atomic oxygen fluence that their materials or components have been exposed to. The device is based on the erosion yield of pyrolytic graphite. It uses two 12deg inclined wedges of graphite that are over a grit-blasted fused silica window covering a photodiode. As the wedges erode, a greater area of solar illumination reaches the photodiode. A reference photodiode is also used that receives unobstructed solar illumination and is oriented in the same direction as the pyrolytic graphite covered photodiode. The short-circuit current from the photodiodes is measured and either sent to an onboard data logger, or

  9. Fiber optic oxygen sensor leak detection system for space applications

    NASA Astrophysics Data System (ADS)

    Kazemi, Alex A.; Goswami, Kish; Mendoza, Edgar A.; Kempen, Lothar U.

    2007-09-01

    This paper describes the successful test of a multi-point fiber optic oxygen sensor system during the static firing of an Evolved Expandable Launch Vehicle (EELV)/Delta IV common booster core (CBC) rocket engine at NASA's Stennis Flight Center. The system consisted of microsensors (optrodes) using an oxygen gas sensitive indicator incorporated onto an optically transparent porous substrate. The modular optoelectronics and multiplexing network system was designed and assembled utilizing a multi-channel opto-electronic sensor readout unit that monitored the oxygen and temperature response of the individual optrodes in real-time and communicated this information via a serial communication port to a remote laptop computer. The sensor packaging for oxygen consisted of two optrodes - one doped with an indicator sensitive to oxygen, and the other doped with an indicator sensitive to temperature. The multichannel oxygen sensor system is fully reversible. It has demonstrated a dynamic response to oxygen gas in the range of 0% to 100% with 0.1% resolution and a response time of <=10 seconds. The sensor package was attached to a custom fiber optic ribbon cable, which was then connected to a fiber optic trunk communications cable (standard telecommunications-grade fiber) that connected to the optoelectronics module. Each board in the expandable module included light sources, photo-detectors, and associated electronics required for detecting oxygen and temperature. The paper illustrates the sensor design and performance data under field deployment conditions.

  10. NASA's Space Launch System: An Evolving Capability for Exploration An Evolving Capability for Exploration

    NASA Technical Reports Server (NTRS)

    Creech, Stephen D.; Crumbly, Christopher M.; Robinson, Kimerly F.

    2016-01-01

    A foundational capability for international human deep-space exploration, NASA's Space Launch System (SLS) vehicle represents a new spaceflight infrastructure asset, creating opportunities for mission profiles and space systems that cannot currently be executed. While the primary purpose of SLS, which is making rapid progress towards initial launch readiness in two years, will be to support NASA's Journey to Mars, discussions are already well underway regarding other potential utilization of the vehicle's unique capabilities. In its initial Block 1 configuration, capable of launching 70 metric tons (t) to low Earth orbit (LEO), SLS is capable of propelling the Orion crew vehicle to cislunar space, while also delivering small CubeSat-class spacecraft to deep-space destinations. With the addition of a more powerful upper stage, the Block 1B configuration of SLS will be able to deliver 105 t to LEO and enable more ambitious human missions into the proving ground of space. This configuration offers opportunities for launching co-manifested payloads with the Orion crew vehicle, and a class of secondary payloads, larger than today's CubeSats. Further upgrades to the vehicle, including advanced boosters, will evolve its performance to 130 t in its Block 2 configuration. Both Block 1B and Block 2 also offer the capability to carry 8.4- or 10-m payload fairings, larger than any contemporary launch vehicle. With unmatched mass-lift capability, payload volume, and C3, SLS not only enables spacecraft or mission designs currently impossible with contemporary EELVs, it also offers enhancing benefits, such as reduced risk, operational costs and/or complexity, shorter transit time to destination or launching large systems either monolithically or in fewer components. This paper will discuss both the performance and capabilities of Space Launch System as it evolves, and the current state of SLS utilization planning.

  11. Electrochemical oxygen concentrator as an oxygen compressor

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A solid polymer electrolyte (SPE) oxygen compressor is described which generates pressures of 3000 psi. The SPE is a cation exchange membrane with chemical compatibility, and has the capability of withstanding 5000 psi. Other features of the compressor described include: gasketless sealing, porus plate cell supports, and conductive cooling. Results are presented of a computer program which defines the power of the system as a function of density, temperature, pressure, membrane thickness, and water content.

  12. Evolving role of pharmaceutical physicians in the industry: Indian perspective.

    PubMed

    Patil, Anant; Rajadhyaksha, Viraj

    2012-01-01

    The Indian pharmaceutical industry, like any other industry, has undergone significant change in the last decade. The role of a Medical advisor has always been of paramount importance in the pharmaceutical companies in India. On account of the evolving medical science and the competitive environment, the medical advisor's role is also increasingly becoming critical. In India, with changes in regulatory rules, safety surveillance, and concept of medical liaisons, the role of the medical advisor is evolving continuously and is further likely to evolve in the coming years in important areas like health economics, public private partnerships, and strategic planning.

  13. Heterogeneous edge weights promote epidemic diffusion in weighted evolving networks

    NASA Astrophysics Data System (ADS)

    Duan, Wei; Song, Zhichao; Qiu, Xiaogang

    2016-08-01

    The impact that the heterogeneities of links’ weights have on epidemic diffusion in weighted networks has received much attention. Investigating how heterogeneous edge weights affect epidemic spread is helpful for disease control. In this paper, we study a Reed-Frost epidemic model in weighted evolving networks. Our results indicate that a higher heterogeneity of edge weights leads to higher epidemic prevalence and epidemic incidence at earlier stage of epidemic diffusion in weighted evolving networks. In addition, weighted evolving scale-free networks come with a higher epidemic prevalence and epidemic incidence than unweighted scale-free networks.

  14. Evolving role of pharmaceutical physicians in the industry: Indian perspective

    PubMed Central

    Patil, Anant; Rajadhyaksha, Viraj

    2012-01-01

    The Indian pharmaceutical industry, like any other industry, has undergone significant change in the last decade. The role of a Medical advisor has always been of paramount importance in the pharmaceutical companies in India. On account of the evolving medical science and the competitive environment, the medical advisor's role is also increasingly becoming critical. In India, with changes in regulatory rules, safety surveillance, and concept of medical liaisons, the role of the medical advisor is evolving continuously and is further likely to evolve in the coming years in important areas like health economics, public private partnerships, and strategic planning. PMID:22347701

  15. Oxygen and Biological Evolution.

    ERIC Educational Resources Information Center

    Baugh, Mark A.

    1990-01-01

    Discussed is the evolution of aerobic organisms from anaerobic organisms and the accompanying biochemistry that developed to motivate and enable this evolution. Uses of oxygen by aerobic organisms are described. (CW)

  16. Hyperbaric Oxygen Therapy

    MedlinePlus

    ... causes tissue death Nonhealing wounds, such as a diabetic foot ulcer Radiation injury Skin graft or skin flap ... hyperbaric oxygenation therapy in the management of chronic diabetic foot ulcers. Mayo Clinic Proceedings. 2013;88:166. Indications ...

  17. OXYGEN TRANSPORT CERAMIC MEMBRANES

    SciTech Connect

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2002-07-01

    In the present quarter, oxygen transport perovskite ceramic membranes are evaluated for strength and fracture in oxygen gradient conditions. Oxygen gradients are created in tubular membranes by insulating the inner surface from the reducing environment by platinum foils. Fracture in these test conditions is observed to have a gradient in trans and inter-granular fracture as opposed to pure trans-granular fracture observed in homogeneous conditions. Fracture gradients are reasoned to be due to oxygen gradient set up in the membrane, variation in stoichiometry across the thickness and due to varying decomposition of the parent perovskite. The studies are useful in predicting fracture criterion in actual reactor conditions and in understanding the initial evolution of fracture processes.

  18. Medical Oxygen Safety

    MedlinePlus

    ... injuries and deaths. from a heat source, open flames or electrical devices. KKK Body oil, hand lotion ... the oxygen. Post No Smoking and No Open Flames signs in and outside the home to remind ...

  19. High Selectivity Oxygen Delignification

    SciTech Connect

    Lucian A. Lucia

    2005-11-15

    Project Objective: The objectives of this project are as follows: (1) Examine the physical and chemical characteristics of a partner mill pre- and post-oxygen delignified pulp and compare them to lab generated oxygen delignified pulps; (2) Apply the chemical selectivity enhancement system to the partner pre-oxygen delignified pulps under mill conditions (with and without any predetermined amounts of carryover) to determine how efficiently viscosity is preserved, how well selectivity is enhanced, if strength is improved, measure any yield differences and/or bleachability differences; and (3) Initiate a mill scale oxygen delignification run using the selectivity enhancement agent, collect the mill data, analyze it, and propose any future plans for implementation.

  20. Dissolved oxygen: Chapter 6

    USGS Publications Warehouse

    Senn, David; Downing-Kunz, Maureen; Novick, Emily

    2016-01-01

    Dissolved oxygen (DO) concentration serves as an important indicator of estuarine habitat condition, because all aquatic macro-organisms require some minimum DO level to survive and prosper. The instantaneous DO concentration, measured at a specific location in the water column, results from a balance between multiple processes that add or remove oxygen (Figure 6.1): primary production produces O2; aerobic respiration in the water column and sediments consumes O2; abiotic or microbially-mediated biogeochemical reactions utilize O2 as an oxidant (e.g., oxidation of ammonium, sulfide, and ferrous iron); O2 exchange occurs across the air:water interface in response to under- or oversaturated DO concentrations in the water column; and water currents and turbulent mixing transport DO into and out of zones in the water column. If the oxygen loss rate exceeds the oxygen production or input rate, DO concentration decreases. When DO losses exceed production or input over a prolonged enough period of time, hypoxia ((<2-3 mg/L) or anoxia can develop. Persistent hypoxia or anoxia causes stress or death in aquatic organism populations, or for organisms that can escape a hypoxic or anoxic area, the loss of habitat. In addition, sulfide, which is toxic to aquatic organisms and causes odor problems, escapes from sediments under low oxygen conditions. Low dissolved oxygen is a common aquatic ecosystem response to elevated organic

  1. [Oxygen Leukocyte Larceny].

    PubMed

    Pinto da Costa, Miguel; Pimenta Coelho, Henrique

    2016-05-01

    The authors present a case of a 60-year-old male patient, previously diagnosed with B-cell chronic lymphocytic leukemia, who was admitted to the Emergency Room with dyspnea. The initial evaluation revealed severe anemia (Hgb = 5.0 g/dL) with hyperleukocytosis (800.000/µL), nearly all of the cells being mature lymphocytes, a normal chest X-ray and a low arterial oxygen saturation (89%; pulse oximetry). After red blood cell transfusion, Hgb values rose (9.0 g/dL) and there was a complete reversion of the dyspnea. Yet, subsequent arterial blood gas analysis, without the administration of supplemental oxygen, systematically revealed very low oxygen saturation values (~ 46%), which was inconsistent with the patientâs clinical state and his pulse oximetry values (~ 87%), and these values were not corrected by the administration of oxygen via non-rebreather mask. The investigation performed allowed to establish the diagnosis of oxygen leukocyte larceny, a phenomenon which conceals the true oxygen saturation due to peripheral consumption by leukocytes.

  2. phase transformations in Titanium-Molybdenum-Oxygen

    NASA Astrophysics Data System (ADS)

    Boeckels, Herbert

    The present dissertation has investigated the effect of oxygen on the ω and α phase stability in metastable Ti-Mo β titanium alloys using thermal analysis, hardness measurements, electron microscopy, and x-ray diffraction. Single crystal x-ray diffraction has shown that oxygen atoms are located in the tetrahedral interstitial lattice sites in the rapidly cooled bcc Ti crystal structure, interfering directly with the reversible displacive formation of ω, with this transformation involving collapse of the bcc lattice along β. Subsequent thermal exposure of reversible ω, as occurring during slower cooling, heating, and aging, prompts short range diffusion and the formation of chemical altered irreversible ω. X-ray diffraction particle size analysis based on the Warren-Averbach approach has shown that the continued irreversible ω phase evolves in four stages during isothermal aging, initial growth followed by size stabilization, coarsening, and dissolution. The latter stages of ω evolution are controlled by elastic residual stresses surrounding these particles. Ultimate stress relaxation is based on secondary formation and growth, promoting coarsening and dissolution of ω. All of the aforementioned stages can be accelerated by increasing both the oxygen content and isothermal aging temperature. The hardness response parallels this evolution and is dependent upon the ω and α phase evolution. The initial hardness increase is due to the growth of ω. The hardness plateau is based on stabilized ω size and fine α precipitation. The overaging hardness response is due to continuous secondary α formation and growth combined with ω coarsening and dissolution. Hardness increases with increasing interstitial content as a result of solid solution strengthening and α particle refinement. Isochronal and isothermal thermal analysis has shown that increasing oxygen content promotes the α phase formation thereby increasing the ω instability. Grain boundary and

  3. Evolutionary genetics: you are what you evolve to eat.

    PubMed

    Dworkin, Ian; Jones, Corbin D

    2015-04-20

    The evolution of host specialization can potentially limit future evolutionary opportunities. A new study now shows how Drosophila sechellia, specialized on the toxic Morinda fruit, has evolved new nutritional needs influencing its reproduction.

  4. Evolvable hardware: genetic search in a physical realm

    NASA Astrophysics Data System (ADS)

    Raichman, Nadav; Segev, Ronen; Ben-Jacob, Eshel

    2003-08-01

    The application of evolution-inspired strategies to hardware design and circuit self-configuration leads to the concept of evolvable hardware (EHW). EHW refers to self-configuration of electronic hardware by evolutionary/genetic algorithms (EA and GA, respectively). Unconventional circuits, for which there are no textbook design guidelines, are particularly appealing for EHW. Here we applied an evolutionary algorithm on a configurable digital FPGA chip in order to evolve analog-behavior circuits. Though the configurable chip is explicitly built for digital designs, analog circuits were successfully evolved by allowing feedback routings and by disabling the general clock. The results were unconventional circuits that were well fitted both to the task for which the circuits were evolved, and to the environment in which the evolution took place. We analyzed the morphotype (configuration) changes in circuit size and circuit operation through evolutionary time. The results showed that the evolved circuit structure had two distinct areas: an active area in which signal processing took place and a surrounding neutral area. The active area of the evolved circuits was small in size, but complex in structure. Results showed that the active area may grow during evolution, indicating that progress is achieved through the addition of units taken from the neutral area. Monitor views of the circuit outputs through evolution indicate that several distinct stages occurred in which evolution evolved. This is in accordance with the plots of fitness that show a progressive climb in a stair-like manner. Competitive studies were also performed of evolutions with various population sizes. Results showed that the smaller the size of the evolved population, the faster was the evolutionary process. This was attributed to the high degeneracy in gene variance within the large population, resulting in a futile search.

  5. Mass Loss and Dust Injection rates from Evolved Stars

    NASA Astrophysics Data System (ADS)

    Sargent, Benjamin A.

    2010-01-01

    The Spitzer Space Telescope is continuing to contribute greatly to our understanding of the mass return from evolved stars in the Magellanic Clouds (MCs). I first review a number of smaller early Spitzer studies of evolved stars in the Large Magellanic Cloud (LMC) and Small Magellanic Cloud (SMC). These studies often built upon earlier such studies using data from prior missions, like the Midcourse Space Experiment. I discuss various Spitzer spectroscopic studies that have investigated the dust compositions of evolved stars in the lower metallicity environments of the MCs. Also, I review studies of the MCs' massive evolved stars, which have been given somewhat less attention than other populations. Excitingly, using Spitzer data, for the first time the mass-loss from the diverse evolved star MC populations is being quantified. With the advent of the Surveying the Agents of a Galaxy's Evolution (SAGE; PI: M. Meixner) Spitzer Legacy program, tens of thousands of stars in the LMC have been classified as evolved stars using SAGE Spitzer data. I briefly review how evolved stars are classified (e.g., by using color-magnitude and color-color diagrams) using data from the SAGE surveys. Finally, I discuss work on radiative transfer (RT) modeling of evolved stars, which follows earlier work estimating their mass-loss using colors or emission in excess of stellar photosphere emission. This RT work starts by seeking acceptable dust properties for RT models of both SAGE Spectral Energy Distributions (SEDs) and SAGE-Spectroscopy (Spitzer Legacy program; PI: F. Kemper) spectra of asymptotic giant branch (AGB) stars. Afterwards, large grids of RT models are constructed to determine mass-loss rates for AGB stars and red supergiants in the SAGE samples of the LMC and, eventually, the SMC.

  6. Unusual Reactivity of the Martian Soil: Oxygen Release Upon Humidification

    NASA Technical Reports Server (NTRS)

    Yen, A. S.

    2002-01-01

    Recent lab results show that oxygen evolves from superoxide-coated mineral grains upon exposure to water vapor. This observation is additional support of the hypothesis that UV-generated O2 is responsible for the reactivity of the martian soil. Discussion of current NASA research opportunities, status of various programs within the Solar System Exploration Division, and employment opportunities within NASA Headquarters to support these programs. Additional information is contained in the original extended abstract.

  7. Flammability and sensitivity of materials in oxygen-enriched atmospheres; Proceedings of the Fourth International Symposium, Las Cruces, NM, Apr. 11-13, 1989. Volume 4

    NASA Technical Reports Server (NTRS)

    Stoltzfus, Joel M. (Editor); Benz, Frank J. (Editor); Stradling, Jack S. (Editor)

    1989-01-01

    The present volume discusses the ignition of nonmetallic materials by the impact of high-pressure oxygen, the promoted combustion of nine structural metals in high-pressure gaseous oxygen, the oxygen sensitivity/compatibility ranking of several materials by different test methods, the ignition behavior of silicon greases in oxygen atmospheres, fire spread rates along cylindrical metal rods in high-pressure oxygen, and the design of an ignition-resistant, high pressure/temperature oxygen valve. Also discussed are the promoted ignition of oxygen regulators, the ignition of PTFE-lined flexible hoses by rapid pressurization with oxygen, evolving nonswelling elastomers for high-pressure oxygen environments, the evaluation of systems for oxygen service through the use of the quantitative fault-tree analysis, and oxygen-enriched fires during surgery of the head and neck.

  8. Origin and Evolution of Europa's Oxygen Exosphere

    NASA Astrophysics Data System (ADS)

    Oza, Apurva V.; Leblanc, Francois; Schmidt, Carl; Johnson, Robert E.

    2016-10-01

    Europa's icy surface is constantly bombarded by sulfur and oxygen ions originating from the Io plasma torus. The momentum transferred to molecules in Europa's surface results in the sputtering of water ice, populating a water product exosphere. We simulate Europa's neutral exosphere using a ballistic 3D Monte Carlo routine and find that the O2 exosphere, while global, is not uniformly symmetric in Europa local time. The O2 exosphere, sourced at a rate of ~ 5 kg/s with a disk-averaged column density of NO2 ~ 2.5 x 1014 O2/cm2, preferentially accumulates towards Europa's dusk. These dawn-dusk atmospheric inhomogeneities escalate as the surface-bounded O2 dissociates into an atomic O corona via electron impact. The inhomogeneities persist and evolve throughout the satellite's orbit, implying a diurnal cycle of the exosphere, recently evidenced by a detailed HST oxygen aurorae campaign (Roth et al. 2016). We conclude that the consistently observed 50% increase in FUV auroral emission from dusk to dawn is principally driven by the day-to-night thermal diffusion of O2 coupled with the Coriolis acceleration. This leads to a dawn-to-dusk gradient, peaking at Europa's leading hemisphere. This exospheric oxygen cycle, dependent on both orbital longitude and magnetic latitude, is fundamentally due to the bulk-sputtering vector changing with respect to the subsolar and subjovian points throughout the orbit. In principle, a similar mechanism should be present at other tidally-locked, rapidly orbiting satellite exospheres.

  9. Venous oxygen saturation.

    PubMed

    Hartog, Christiane; Bloos, Frank

    2014-12-01

    Early detection and rapid treatment of tissue hypoxia are important goals. Venous oxygen saturation is an indirect index of global oxygen supply-to-demand ratio. Central venous oxygen saturation (ScvO2) measurement has become a surrogate for mixed venous oxygen saturation (SvO2). ScvO2 is measured by a catheter placed in the superior vena cava. After results from a single-center study suggested that maintaining ScvO2 values >70% might improve survival rates in septic patients, international practice guidelines included this target in a bundle strategy to treat early sepsis. However, a recent multicenter study with >1500 patients found that the use of central hemodynamic and ScvO2 monitoring did not improve long-term survival when compared to the clinical assessment of the adequacy of circulation. It seems that if sepsis is recognized early, a rapid initiation of antibiotics and adequate fluid resuscitation are more important than measuring venous oxygen saturation.

  10. Optical oxygen concentration monitor

    DOEpatents

    Kebabian, P.

    1997-07-22

    A system for measuring and monitoring the concentration of oxygen uses as a light source an argon discharge lamp, which inherently emits light with a spectral line that is close to one of oxygen`s A-band absorption lines. In a preferred embodiment, the argon line is split into sets of components of shorter and longer wavelengths by a magnetic field of approximately 2,000 Gauss that is parallel to the light propagation from the lamp. The longer wavelength components are centered on an absorption line of oxygen and thus readily absorbed, and the shorter wavelength components are moved away from that line and minimally absorbed. A polarization modulator alternately selects the set of the longer wavelength, or upshifted, components or the set of the shorter wavelength, or downshifted, components and passes the selected set to an environment of interest. After transmission over a path through that environment, the transmitted optical flux of the argon line varies as a result of the differential absorption. The system then determines the concentration of oxygen in the environment based on the changes in the transmitted optical flux between the two sets of components. In alternative embodiments modulation is achieved by selectively reversing the polarity of the magnetic field or by selectively supplying the magnetic field to either the emitting plasma of the lamp or the environment of interest. 4 figs.

  11. Atomic oxygen stimulated outgassing

    NASA Technical Reports Server (NTRS)

    Linton, Roger C.; Reynolds, John M.

    1991-01-01

    The passive Long Duration Exposure Facility (LDEF) Experiment A0034, Atomic Oxygen Simulated Outgassing, consisted of two identical one-sixth tray modules, exposing selected thermal control coatings to atomic oxygen and the combined space environment on the leading edge and, for reference, to the relative wake environment on the trailing edge. Optical mirrors were included adjacent to the thermal coatings for deposition of outgassing products. Ultraviolet grade windows and metal covers were provided for additional assessment of the effects of the various environmental factors. Preliminary results indicate that orbital atomic oxygen is both a degrading and a optically restorative factor in the thermo-optical properties of selected thermal coatings. There is evidence of more severe optical degradation on collector mirrors adjacent to coatings that were exposed to the RAM-impinging atomic oxygen. This evidence of atomic oxygen stimulated outgassing is discussed in relation to alternative factors that could affect degradation. The general effects of the space environment on the experiment hardware as well as the specimens are discussed.

  12. Comparative transcriptomic analysis reveals phenol tolerance mechanism of evolved Chlorella strain.

    PubMed

    Zhou, Lin; Cheng, Dujia; Wang, Liang; Gao, Juan; Zhao, Quanyu; Wei, Wei; Sun, Yuhan

    2017-03-01

    The growth of microalgae is inhibited by high concentration phenol due to reactive oxygen species. An evolved strain tolerated to 500mg/L phenol, Chlorella sp. L5, was obtained in previous study. In this study, comparative transcriptomic analysis was performed for Chlorella sp. L5 and its original strain (Chlorella sp. L3). The tolerance mechanism of Chlorella sp. L5 for high concentration phenol was explored on genome scale. It was identified that the up-regulations of the related genes according to antioxidant enzymes (SOD, APX, CAT and GR) and carotenoids (astaxanthin, lutein and lycopene) biosynthesis had critical roles to tolerate high concentration phenol. In addition, most of genes of PS I, PS II, photosynthetic electron transport chain and starch biosynthesis were also up-regulated. It was consistent to the experimental results of total carbohydrate contents of Chlorella sp. L3 and Chlorella sp. L5 under 0mg/L and 500mg/L phenol.

  13. Monolithic solid electrolyte oxygen pump

    DOEpatents

    Fee, Darrell C.; Poeppel, Roger B.; Easler, Timothy E.; Dees, Dennis W.

    1989-01-01

    A multi-layer oxygen pump having a one-piece, monolithic ceramic structure affords high oxygen production per unit weight and volume and is thus particularly adapted for use as a portable oxygen supply. The oxygen pump is comprised of a large number of small cells on the order of 1-2 millimeters in diameter which form the walls of the pump and which are comprised of thin, i.e., 25-50 micrometers, ceramic layers of cell components. The cell components include an air electrode, an oxygen electrode, an electrolyte and interconnection materials. The cell walls form the passages for input air and for exhausting the oxygen which is transferred from a relatively dilute gaseous mixture to a higher concentration by applying a DC voltage across the electrodes so as to ionize the oxygen at the air electrode, whereupon the ionized oxygen travels through the electrolyte and is converted to oxygen gas at the oxygen electrode.

  14. Novel nanostructured oxygen sensor

    NASA Astrophysics Data System (ADS)

    Boardman, Alan James

    New government regulations and industry requirements for medical oxygen sensors require the development of alternate materials and process optimization of primary sensor components. Current oxygen sensors are not compliant with the Restriction of Hazardous Substances (RoHS) Directive. This work focused on two areas. First, was finding suitable readily available materials for the sensor anodes. Second was optimizing the processing of the sensor cathode membrane for reduced delamination. Oxygen sensors were made using tin (Sn) and bismuth (Bi) electrodes, potassium hydroxide (KOH) and acetic acid (CH3COOH) electrolytes with platinum (Pt) and gold (Au) reference electrodes. Bi electrodes were fabricated by casting and pressing processes. Electrochemical characterization of the Sn and Bi electrodes was performed by Cyclic Voltammetry (CV), Electrochemical Impedance Spectroscopy (EIS) and sensing characterization per BSEN ISO 21647:2009 at various oxygen percentages, 0%, 20.9% and 100% oxygen levels with an automated test apparatus. The Sn anode with both electrolyte solutions showed good oxygen sensing properties and performance in a sensor. This system shows promise for replacement of Pb electrodes as required by the RoHS Directive. The Bi anode with Au cathode in both KOH and CH3COOH electrolytes showed acceptable performance and oxygen sensing properties. The Bi anodes fabricated by separate manufacturing methods demonstrated effectiveness for use in medical oxygen sensors. Gold thin films were prepared by magnetron sputtering on Flouroethylene Polymer (FEP) films. The FEP substrate temperature ranged from -77°C to 50°C. X-Ray Diffraction (XRD) and 4-point resistivity characterized the effects of substrate temperature to Au thin film particle size. XRD peak broadening and resistivity measurements showed a strong correlation of particle size to FEP substrate temperature. Particle size at 50°C was 594A and the -77°C particle size was 2.4 x 103A. Substrate

  15. Neurological oxygen toxicity.

    PubMed

    Farmery, Scott; Sykes, Oliver

    2012-10-01

    SCUBA diving has several risks associated with it from breathing air under pressure--nitrogen narcosis, barotrauma and decompression sickness (the bends). Trimix SCUBA diving involves regulating mixtures of nitrogen, oxygen and helium in an attempt to overcome the risks of narcosis and decompression sickness during deep dives, but introduces other potential hazards such as hypoxia and oxygen toxicity convulsions. This study reports on a seizure during the ascent phase, its potential causes and management and discusses the hazards posed to the diver and his rescuer by an emergency ascent to the surface.

  16. Plant Hemoglobins: A Molecular Fossil Record for the Evolutin of Oxygen Transport

    SciTech Connect

    Hoy,J.; Robinson, H.; Trent, lll, J.; Kakar, S.; Smagghe, B.; Hargrove, M.

    2007-01-01

    The evolution of oxygen transport hemoglobins occurred on at least two independent occasions. The earliest event led to myoglobin and red blood cell hemoglobin in animals. In plants, oxygen transport 'leghemoglobins' evolved much more recently. In both events, pentacoordinate heme sites capable of inert oxygen transfer evolved from hexacoordinate hemoglobins that have unrelated functions. High sequence homology between hexacoordinate and pentacoordinate hemoglobins in plants has poised them for potential structural analysis leading to a molecular understanding of this important evolutionary event. However, the lack of a plant hexacoordinate hemoglobin structure in the exogenously ligand-bound form has prevented such comparison. Here we report the crystal structure of the cyanide-bound hexacoordinate hemoglobin from barley. This presents the first opportunity to examine conformational changes in plant hexacoordinate hemoglobins upon exogenous ligand binding, and reveals structural mechanisms for stabilizing the high-energy pentacoordinate heme conformation critical to the evolution of reversible oxygen binding hemoglobins.

  17. Plant hemoglobins: a molecular fossil record for the evolution of oxygen transport.

    PubMed

    Hoy, Julie A; Robinson, Howard; Trent, James T; Kakar, Smita; Smagghe, Benoit J; Hargrove, Mark S

    2007-08-03

    The evolution of oxygen transport hemoglobins occurred on at least two independent occasions. The earliest event led to myoglobin and red blood cell hemoglobin in animals. In plants, oxygen transport "leghemoglobins" evolved much more recently. In both events, pentacoordinate heme sites capable of inert oxygen transfer evolved from hexacoordinate hemoglobins that have unrelated functions. High sequence homology between hexacoordinate and pentacoordinate hemoglobins in plants has poised them for potential structural analysis leading to a molecular understanding of this important evolutionary event. However, the lack of a plant hexacoordinate hemoglobin structure in the exogenously ligand-bound form has prevented such comparison. Here we report the crystal structure of the cyanide-bound hexacoordinate hemoglobin from barley. This presents the first opportunity to examine conformational changes in plant hexacoordinate hemoglobins upon exogenous ligand binding, and reveals structural mechanisms for stabilizing the high-energy pentacoordinate heme conformation critical to the evolution of reversible oxygen binding hemoglobins.

  18. How Hierarchical Topics Evolve in Large Text Corpora.

    PubMed

    Cui, Weiwei; Liu, Shixia; Wu, Zhuofeng; Wei, Hao

    2014-12-01

    Using a sequence of topic trees to organize documents is a popular way to represent hierarchical and evolving topics in text corpora. However, following evolving topics in the context of topic trees remains difficult for users. To address this issue, we present an interactive visual text analysis approach to allow users to progressively explore and analyze the complex evolutionary patterns of hierarchical topics. The key idea behind our approach is to exploit a tree cut to approximate each tree and allow users to interactively modify the tree cuts based on their interests. In particular, we propose an incremental evolutionary tree cut algorithm with the goal of balancing 1) the fitness of each tree cut and the smoothness between adjacent tree cuts; 2) the historical and new information related to user interests. A time-based visualization is designed to illustrate the evolving topics over time. To preserve the mental map, we develop a stable layout algorithm. As a result, our approach can quickly guide users to progressively gain profound insights into evolving hierarchical topics. We evaluate the effectiveness of the proposed method on Amazon's Mechanical Turk and real-world news data. The results show that users are able to successfully analyze evolving topics in text data.

  19. Attack resilience of the evolving scientific collaboration network.

    PubMed

    Liu, Xiao Fan; Xu, Xiao-Ke; Small, Michael; Tse, Chi K

    2011-01-01

    Stationary complex networks have been extensively studied in the last ten years. However, many natural systems are known to be continuously evolving at the local ("microscopic") level. Understanding the response to targeted attacks of an evolving network may shed light on both how to design robust systems and finding effective attack strategies. In this paper we study empirically the response to targeted attacks of the scientific collaboration networks. First we show that scientific collaboration network is a complex system which evolves intensively at the local level--fewer than 20% of scientific collaborations last more than one year. Then, we investigate the impact of the sudden death of eminent scientists on the evolution of the collaboration networks of their former collaborators. We observe in particular that the sudden death, which is equivalent to the removal of the center of the egocentric network of the eminent scientist, does not affect the topological evolution of the residual network. Nonetheless, removal of the eminent hub node is exactly the strategy one would adopt for an effective targeted attack on a stationary network. Hence, we use this evolving collaboration network as an experimental model for attack on an evolving complex network. We find that such attacks are ineffectual, and infer that the scientific collaboration network is the trace of knowledge propagation on a larger underlying social network. The redundancy of the underlying structure in fact acts as a protection mechanism against such network attacks.

  20. A slowly evolving host moves first in symbiotic interactions

    NASA Astrophysics Data System (ADS)

    Damore, James; Gore, Jeff

    2011-03-01

    Symbiotic relationships, both parasitic and mutualistic, are ubiquitous in nature. Understanding how these symbioses evolve, from bacteria and their phages to humans and our gut microflora, is crucial in understanding how life operates. Often, symbioses consist of a slowly evolving host species with each host only interacting with its own sub-population of symbionts. The Red Queen hypothesis describes coevolutionary relationships as constant arms races with each species rushing to evolve an advantage over the other, suggesting that faster evolution is favored. Here, we use a simple game theoretic model of host- symbiont coevolution that includes population structure to show that if the symbionts evolve much faster than the host, the equilibrium distribution is the same as it would be if it were a sequential game where the host moves first against its symbionts. For the slowly evolving host, this will prove to be advantageous in mutualisms and a handicap in antagonisms. The model allows for symbiont adaptation to its host, a result that is robust to changes in the parameters and generalizes to continuous and multiplayer games. Our findings provide insight into a wide range of symbiotic phenomena and help to unify the field of coevolutionary theory.

  1. The Oxygen Cycle.

    ERIC Educational Resources Information Center

    Swant, Gary D.

    Produced for primary grades, this booklet provides study of the oxygen-carbon dioxide cycle in nature. Line drawings, a minimum amount of narrative, and a glossary of terms make up its content. The booklet is designed to be used as reading material, a coloring book, or for dramatic arts with students acting out parts of the cycle. This work was…

  2. OXYGEN TRANSPORT CERAMIC MEMBRANES

    SciTech Connect

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2003-01-01

    In the present quarter, the possibility of using a more complex interfacial engineering approach to the development of reliable and stable oxygen transport perovskite ceramic membranes/metal seals is discussed. Experiments are presented and ceramic/metal interactions are characterized. Crack growth and fracture toughness of the membrane in the reducing conditions are also discussed. Future work regarding this approach is proposed are evaluated for strength and fracture in oxygen gradient conditions. Oxygen gradients are created in tubular membranes by insulating the inner surface from the reducing environment by platinum foils. Fracture in these test conditions is observed to have a gradient in trans and inter-granular fracture as opposed to pure trans-granular fracture observed in homogeneous conditions. Fracture gradients are reasoned to be due to oxygen gradient set up in the membrane, variation in stoichiometry across the thickness and due to varying decomposition of the parent perovskite. The studies are useful in predicting fracture criterion in actual reactor conditions and in understanding the initial evolution of fracture processes.

  3. The Oxygen Flask Method

    ERIC Educational Resources Information Center

    Boulton, L. H.

    1973-01-01

    Discusses application of Schoniger's method of quantitative organic elemental analysis in teaching of qualitative analysis of the halogens, nitrogen, sulphur, and phosphorus. Indicates that the oxygen flask method is safe and suitable for both high school and college courses because of simple apparatus requirements. (CC)

  4. Oxygenated Derivatives of Hydrocarbons

    Technology Transfer Automated Retrieval System (TEKTRAN)

    For the book entitled “Insect Hydrocarbons: Biology, Biochemistry and Chemical Ecology”, this chapter presents a comprehensive review of the occurrence, structure and function of oxygenated derivatives of hydrocarbons. The book chapter focuses on the occurrence, structural identification and functi...

  5. Optical oxygen concentration monitor

    DOEpatents

    Kebabian, Paul

    1997-01-01

    A system for measuring and monitoring the concentration of oxygen uses as a light source an argon discharge lamp, which inherently emits light with a spectral line that is close to one of oxygen's A-band absorption lines. In a preferred embodiment, the argon line is split into sets of components of shorter and longer wavelengths by a magnetic field of approximately 2000 Gauss that is parallel to the light propagation from the lamp. The longer wavelength components are centered on an absorption line of oxygen and thus readily absorbed, and the shorter wavelength components are moved away from that line and minimally absorbed. A polarization modulator alternately selects the set of the longer wavelength, or upshifted, components or the set of the shorter wavelength, or downshifted, components and passes the selected set to an environment of interest. After transmission over a path through that environment, the transmitted optical flux of the argon line varies as a result of the differential absorption. The system then determines the concentration of oxygen in the environment based on the changes in the transmitted optical flux between the two sets of components. In alternative embodiments modulation is achieved by selectively reversing the polarity of the magnetic field or by selectively supplying the magnetic field to either the emitting plasma of the lamp or the environment of interest.

  6. Atomic Oxygen Task

    NASA Technical Reports Server (NTRS)

    Hadaway, James B.

    1997-01-01

    This report details work performed by the Center for Applied Optics (CAO) at the University of Alabama in Huntsville (UAH) on the contract entitled 'Atomic Oxygen Task' for NASA's Marshall Space Flight Center (contract NAS8-38609, Delivery Order 109, modification number 1). Atomic oxygen effects on exposed materials remain a critical concern in designing spacecraft to withstand exposure in the Low Earth Orbit (LEO) environment. The basic objective of atomic oxygen research in NASA's Materials & Processes (M&P) Laboratory is to provide the solutions to material problems facing present and future space missions. The objective of this work was to provide the necessary research for the design of specialized experimental test configurations and development of techniques for evaluating in-situ space environmental effects, including the effects of atomic oxygen and electromagnetic radiation on candidate materials. Specific tasks were performed to address materials issues concerning accelerated environmental testing as well as specifically addressing materials issues of particular concern for LDEF analysis and Space Station materials selection.

  7. Hybrid Oxygen System

    DTIC Science & Technology

    1992-10-01

    otherwise in any manner construed, as licensing the holder or any other person or corporation ; or as conveying any rights or permission to manufacture, use...12 Modest Activity 2 12 24 Comnat ane G’s Average 5 32 64 Peak Activity (NATO) 10 50 Instantaneous Peak Flow N/A 150-20W_ Published oxygen flow rates

  8. Evolving Systems: An Outcome of Fondest Hopes and Wildest Dreams

    NASA Technical Reports Server (NTRS)

    Frost, Susan A.; Balas, Mark J.

    2012-01-01

    New theory is presented for evolving systems, which are autonomously controlled subsystems that self-assemble into a new evolved system with a higher purpose. Evolving systems of aerospace structures often require additional control when assembling to maintain stability during the entire evolution process. This is the concept of Adaptive Key Component Control that operates through one specific component to maintain stability during the evolution. In addition, this control must often overcome persistent disturbances that occur while the evolution is in progress. Theoretical results will be presented for Adaptive Key Component control for persistent disturbance rejection. An illustrative example will demonstrate the Adaptive Key Component controller on a system composed of rigid body and flexible body modes.

  9. Hybridization Reveals the Evolving Genomic Architecture of Speciation

    PubMed Central

    Kronforst, Marcus R.; Hansen, Matthew E.B.; Crawford, Nicholas G.; Gallant, Jason R.; Zhang, Wei; Kulathinal, Rob J.; Kapan, Durrell D.; Mullen, Sean P.

    2014-01-01

    SUMMARY The rate at which genomes diverge during speciation is unknown, as are the physical dynamics of the process. Here, we compare full genome sequences of 32 butterflies, representing five species from a hybridizing Heliconius butterfly community, to examine genome-wide patterns of introgression and infer how divergence evolves during the speciation process. Our analyses reveal that initial divergence is restricted to a small fraction of the genome, largely clustered around known wing-patterning genes. Over time, divergence evolves rapidly, due primarily to the origin of new divergent regions. Furthermore, divergent genomic regions display signatures of both selection and adaptive introgression, demonstrating the link between microevolutionary processes acting within species and the origin of species across macroevolutionary timescales. Our results provide a uniquely comprehensive portrait of the evolving species boundary due to the role that hybridization plays in reducing the background accumulation of divergence at neutral sites. PMID:24183670

  10. Synthesis of Evolving Cells for Reconfigurable Manufacturing Systems

    NASA Astrophysics Data System (ADS)

    Padayachee, J.; Bright, G.

    2014-07-01

    The concept of Reconfigurable Manufacturing Systems (RMSs) was formulated due to the global necessity for production systems that are able to economically evolve according to changes in markets and products. Technologies and design methods are under development to enable RMSs to exhibit transformable system layouts, reconfigurable processes, cells and machines. Existing factory design methods and software have not yet advanced to include reconfigurable manufacturing concepts. This paper presents the underlying group technology framework for the design of manufacturing cells that are able to evolve according to a changing product mix by mechanisms of reconfiguration. The framework is based on a Norton- Bass forecast and time variant BOM models. An adaptation of legacy group technology methods is presented for the synthesis of evolving cells and two optimization problems are presented within this context.

  11. Cooperative coevolution: an architecture for evolving coadapted subcomponents.

    PubMed

    Potter, M A; De Jong, K A

    2000-01-01

    To successfully apply evolutionary algorithms to the solution of increasingly complex problems, we must develop effective techniques for evolving solutions in the form of interacting coadapted subcomponents. One of the major difficulties is finding computational extensions to our current evolutionary paradigms that will enable such subcomponents to "emerge" rather than being hand designed. In this paper, we describe an architecture for evolving such subcomponents as a collection of cooperating species. Given a simple string-matching task, we show that evolutionary pressure to increase the overall fitness of the ecosystem can provide the needed stimulus for the emergence of an appropriate number of interdependent subcomponents that cover multiple niches, evolve to an appropriate level of generality, and adapt as the number and roles of their fellow subcomponents change over time. We then explore these issues within the context of a more complicated domain through a case study involving the evolution of artificial neural networks.

  12. Evolving Lorentzian wormholes supported by phantom matter and cosmological constant

    SciTech Connect

    Cataldo, Mauricio; Campo, Sergio del; Minning, Paul; Salgado, Patricio

    2009-01-15

    In this paper we study the possibility of sustaining an evolving wormhole via exotic matter made of phantom energy in the presence of a cosmological constant. We derive analytical evolving wormhole geometries by supposing that the radial tension of the phantom matter, which is negative to the radial pressure, and the pressure measured in the tangential directions have barotropic equations of state with constant state parameters. In this case the presence of a cosmological constant ensures accelerated expansion of the wormhole configurations. More specifically, for positive cosmological constant we have wormholes which expand forever and, for negative cosmological constant we have wormholes which expand to a maximum value and then recollapse. At spatial infinity the energy density and the pressures of the anisotropic phantom matter threading the wormholes vanish; thus these evolving wormholes are asymptotically vacuum {lambda}-Friedmann models with either open or closed or flat topologies.

  13. Oxygen Extraction from Minerals

    NASA Technical Reports Server (NTRS)

    Muscatello, Tony

    2017-01-01

    Oxygen, whether used as part of rocket bipropellant or for astronaut life support, is a key consumable for space exploration and commercialization. In Situ Resource Utilization (ISRU) has been proposed many times as a method for making space exploration more cost effective and sustainable. On planetary and asteroid surfaces the presence of minerals in the regolith that contain oxygen is very common, making them a potential oxygen resource. The majority of research and development for oxygen extraction from minerals has been for lunar regolith although this work would generally be applicable to regolith at other locations in space. This presentation will briefly survey the major methods investigated for oxygen extraction from regolith with a focus on the current status of those methods and possible future development pathways. The major oxygen production methods are (1) extraction from lunar ilmenite (FeTiO3) with either hydrogen or carbon monoxide, (2) carbothermal reduction of iron oxides and silicates with methane, and (3) molten regolith electrolysis (MRE) of silicates. Methods (1) and (2) have also been investigated in a two-step process using CO reduction and carbon deposition followed by carbothermal reduction. All three processes have byproducts that could also be used as resources. Hydrogen or carbon monoxide reduction produce iron metal in small amounts that could potentially be used as construction material. Carbothermal reduction also makes iron metal along with silicon metal and a glass with possible applications. MRE produces iron, silicon, aluminum, titanium, and glass, with higher silicon yields than carbothermal reduction. On Mars and possibly on some moons and asteroids, water is present in the form of mineral hydrates, hydroxyl (-OH) groups on minerals, andor water adsorbed on mineral surfaces. Heating of the minerals can liberate the water which can be electrolyzed to provide a source of oxygen as well. The chemistry of these processes, some key

  14. Perturbation propagation in random and evolved Boolean networks

    NASA Astrophysics Data System (ADS)

    Fretter, Christoph; Szejka, Agnes; Drossel, Barbara

    2009-03-01

    In this paper, we investigate the propagation of perturbations in Boolean networks by evaluating the Derrida plot and its modifications. We show that even small random Boolean networks agree well with the predictions of the annealed approximation, but nonrandom networks show a very different behaviour. We focus on networks that were evolved for high dynamical robustness. The most important conclusion is that the simple distinction between frozen, critical and chaotic networks is no longer useful, since such evolved networks can display the properties of all three types of networks. Furthermore, we evaluate a simplified empirical network and show how its specific state space properties are reflected in the modified Derrida plots.

  15. Interaction-free evolving states of a bipartite system

    NASA Astrophysics Data System (ADS)

    Napoli, A.; Guccione, M.; Messina, A.; Chruściński, D.

    2014-06-01

    We show that two interacting physical systems may admit entangled pure or nonseparable mixed states evolving in time as if the mutual interaction Hamiltonian were absent. In this paper we define these interaction-free evolving (IFE) states and characterize their existence for a generic binary system described by a time-independent Hamiltonian. A comparison between IFE subspace and the decoherence-free subspace is reported. The set of all pure IFE states is explicitly constructed for a nonhomogeneous spin-star-system model

  16. The cartography of pain: the evolving contribution of pain maps.

    PubMed

    Schott, Geoffrey D

    2010-09-01

    Pain maps are nowadays widely used in clinical practice. This article aims to critically review the fundamental principles that underlie the mapping of pain, to analyse the evolving iconography of pain maps and their sometimes straightforward and sometimes contentious nature when used in the clinic, and to draw attention to some more recent developments in mapping pain. It is concluded that these maps are intriguing and evolving cartographic tools which can be used for depicting not only the spatial features but also the interpretative or perceptual components and accompaniments of pain.

  17. Active Printed Materials for Complex Self-Evolving Deformations

    PubMed Central

    Raviv, Dan; Zhao, Wei; McKnelly, Carrie; Papadopoulou, Athina; Kadambi, Achuta; Shi, Boxin; Hirsch, Shai; Dikovsky, Daniel; Zyracki, Michael; Olguin, Carlos; Raskar, Ramesh; Tibbits, Skylar

    2014-01-01

    We propose a new design of complex self-evolving structures that vary over time due to environmental interaction. In conventional 3D printing systems, materials are meant to be stable rather than active and fabricated models are designed and printed as static objects. Here, we introduce a novel approach for simulating and fabricating self-evolving structures that transform into a predetermined shape, changing property and function after fabrication. The new locally coordinated bending primitives combine into a single system, allowing for a global deformation which can stretch, fold and bend given environmental stimulus. PMID:25522053

  18. Active printed materials for complex self-evolving deformations.

    PubMed

    Raviv, Dan; Zhao, Wei; McKnelly, Carrie; Papadopoulou, Athina; Kadambi, Achuta; Shi, Boxin; Hirsch, Shai; Dikovsky, Daniel; Zyracki, Michael; Olguin, Carlos; Raskar, Ramesh; Tibbits, Skylar

    2014-12-18

    We propose a new design of complex self-evolving structures that vary over time due to environmental interaction. In conventional 3D printing systems, materials are meant to be stable rather than active and fabricated models are designed and printed as static objects. Here, we introduce a novel approach for simulating and fabricating self-evolving structures that transform into a predetermined shape, changing property and function after fabrication. The new locally coordinated bending primitives combine into a single system, allowing for a global deformation which can stretch, fold and bend given environmental stimulus.

  19. Seyfert's Sextet (HGC 79): An Evolved Stephan's Quintet?

    NASA Astrophysics Data System (ADS)

    Durbala, A.; Sulentic, J.; Rosado, M.; Del Olmo, A.; Perea, J.; Plana, H.

    Scanning Fabry-Perot interferometers MOS/SIS (3.6m CFHT)+PUMA (2.1m OAN-SPM, México) and the long-slit spectrograph ALFOSC (2.5m NOT, La Palma) were used to measure the kinematics of gas and stars in Seyfert's Sextet (HCG79). We interpret it as a highly evolved group that formed from sequential acquistion of mostly late-type galaxies that are now slowly coalescing and undergoing strong secular evolution. We find evidence for possible feedback as revealed by accretion and minor merger events in two of the most evolved members.

  20. Co-evolution of eukaryotes and ocean oxygenation in the Neoproterozoic era

    NASA Astrophysics Data System (ADS)

    Lenton, Timothy M.; Boyle, Richard A.; Poulton, Simon W.; Shields-Zhou, Graham A.; Butterfield, Nicholas J.

    2014-04-01

    The Neoproterozoic era (about 1,000 to 542 million years ago) was a time of turbulent environmental change. Large fluctuations in the carbon cycle were associated with at least two severe -- possible Snowball Earth -- glaciations. There were also massive changes in the redox state of the oceans, culminating in the oxygenation of much of the deep oceans. Amid this environmental change, increasingly complex life forms evolved. The traditional view is that a rise in atmospheric oxygen concentrations led to the oxygenation of the ocean, thus triggering the evolution of animals. We argue instead that the evolution of increasingly complex eukaryotes, including the first animals, could have oxygenated the ocean without requiring an increase in atmospheric oxygen. We propose that large eukaryotic particles sank quickly through the water column and reduced the consumption of oxygen in the surface waters. Combined with the advent of benthic filter feeding, this shifted oxygen demand away from the surface to greater depths and into sediments, allowing oxygen to reach deeper waters. The decline in bottom-water anoxia would hinder the release of phosphorus from sediments, potentially triggering a potent positive feedback: phosphorus removal from the ocean reduced global productivity and ocean-wide oxygen demand, resulting in oxygenation of the deep ocean. That, in turn, would have further reinforced eukaryote evolution, phosphorus removal and ocean oxygenation.