Science.gov

Sample records for cocaine derivative lacking

  1. Brain-derived neurotrophic factor and cocaine addiction.

    PubMed

    McGinty, Jacqueline F; Whitfield, Timothy W; Berglind, William J

    2010-02-16

    The effects of brain-derived neurotrophic factor (BDNF) on cocaine-seeking are brain region-specific. Infusion of BDNF into subcortical structures, like the nucleus accumbens and ventral tegmental area, enhances cocaine-induced behavioral sensitization and cocaine-seeking. Conversely, repeated administration of BDNF antiserum into the nucleus accumbens during chronic cocaine self-administration attenuates cocaine-induced reinstatement. In contrast, BDNF infusion into the dorsomedial prefrontal cortex immediately following a final session of cocaine self-administration attenuates relapse to cocaine-seeking after abstinence, as well as cue- and cocaine prime-induced reinstatement of cocaine-seeking following extinction. BDNF-induced alterations in the ERK-MAP kinase cascade and in prefronto-accumbens glutamatergic transmission are implicated in BDNF's ability to alter cocaine-seeking. Within 22 hours after infusion into the prefrontal cortex, BDNF increases BDNF protein in prefrontal cortical targets, including nucleus accumbens, and restores cocaine-mediated decreases in phospho-ERK expression in the nucleus accumbens. Furthermore, 3 weeks after BDNF infusion in animals with a cocaine self-administration history, suppressed basal levels of glutamate are normalized and a cocaine prime-induced increase in extracellular glutamate levels in the nucleus accumbens is prevented. Thus, BDNF may have local effects at the site of infusion and distal effects in target areas that are critical to mediating or preventing cocaine-induced dysfunctional neuroadaptations. Copyright 2009 Elsevier B.V. All rights reserved.

  2. ProSAAS-derived peptides are regulated by cocaine and are required for sensitization to the locomotor effects of cocaine.

    PubMed

    Berezniuk, Iryna; Rodriguiz, Ramona M; Zee, Michael L; Marcus, David J; Pintar, John; Morgan, Daniel J; Wetsel, William C; Fricker, Lloyd D

    2017-09-07

    To identify neuropeptides that are regulated by cocaine, we used a quantitative peptidomic technique to examine the relative levels of neuropeptides in several regions of mouse brain following daily intraperitoneal administration of 10 mg/kg cocaine or saline for seven days. A total of 102 distinct peptides were identified in one or more of the following brain regions: nucleus accumbens, caudate putamen, frontal cortex, and ventral tegmental area. None of the peptides detected in the caudate putamen or frontal cortex were altered by cocaine administration. Three peptides in the nucleus accumbens and seven peptides in the ventral tegmental area were significantly decreased in cocaine-treated mice. Five of these ten peptides are derived from proSAAS, a secretory pathway protein and neuropeptide precursor. To investigate whether proSAAS peptides contribute to the physiological effects of psychostimulants, we examined acute responses to cocaine and amphetamine in the open field with wild-type (WT) and proSAAS knockout (KO) mice. Locomotion was stimulated more robustly in the WT compared to mutant mice for both psychostimulants. Behavioral sensitization to amphetamine was not maintained in proSAAS KO mice and these mutants failed to sensitize to cocaine. To determine whether the rewarding effects of cocaine were altered, mice were tested in conditioned place preference (CPP). Both WT and proSAAS KO mice showed dose-dependent CPP to cocaine that was not distinguished by genotype. Taken together, these results suggest that proSAAS-derived peptides contribute differentially to the behavioral sensitization to psychostimulants, while the rewarding effects of cocaine appear intact in mice lacking proSAAS. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  3. Cocaine

    MedlinePlus

    ... Loss Surgery? A Week of Healthy Breakfasts Shyness Cocaine KidsHealth > For Teens > Cocaine A A A What's ... How Can Someone Quit? Avoiding Cocaine What Is Cocaine? Cocaine is a powerful and highly addictive drug ...

  4. Cocaine

    MedlinePlus

    ... Right Sport for You Healthy School Lunch Planner Cocaine KidsHealth > For Teens > Cocaine Print A A A ... Quit? Avoiding Cocaine en español Cocaína What Is Cocaine? Cocaine is a powerful and highly addictive drug ...

  5. Cocaine.

    ERIC Educational Resources Information Center

    Piazza, Nick J.; Yeager, Rebecca D.

    Cocaine was first used by Europeans in the nineteenth century when extract from the coca leaf was combined with various beverages. Cocaine comes as a white crystalline powder. However, a product called crack cocaine may come as an opaque crystal similar in size and shape to rock salt. A third form of cocaine is known as coca paste, which is an…

  6. Comparative behavioral pharmacology and toxicology of cocaine and its ethanol-derived metabolite, cocaine ethyl-ester (cocaethylene)

    SciTech Connect

    Katz, J.L.; Terry, P.; Witkin, J.M. )

    1992-01-01

    The present study compared the behavioral and toxic effects of cocaine and its ethanol derived metabolite, cocaine ethyl-ester (cocaethylene). Both drugs produced qualitatively similar psychomoter stimulant effects. Cocaine and cocaethylene increased locomotor activity in mice, with cocaine approximately four times more potent than cocaethylene. The durations of action of ED{sub 75} doses of each of the drugs were comparable. Each of the drugs also produced stimulation of operant responding in rats. In rats and squirrel monkeys trained to discriminate cocaine injections from saline, cocaine was approximately three to five times more potent than cocaethylene in producing these cocaine-like interoceptive effects. In contrast to the behavioral effects, cocaine and cocaethylene were equipotent in producing convulsions, and cocaethylene was more potent than cocaine in producing lethality. These results suggest that the conversion of cocaine to cocaethylene with simultaneous cocaine and alcohol use may produce an increased risk of toxicity due to a decrease in the potency of cocaethylene in producing psychomotor stimulant effects, and its increased potency in producing toxicity.

  7. Cocaine

    MedlinePlus

    ... Trends and Alerts Alcohol Club Drugs Cocaine Hallucinogens Heroin Inhalants Marijuana MDMA (Ecstasy/Molly) Methamphetamine Opioids Prescription ... Some people inject a combination of cocaine and heroin, called a Speedball. Another popular method of use ...

  8. Cocaine

    MedlinePlus

    ... Trends and Alerts Alcohol Club Drugs Cocaine Hallucinogens Heroin Inhalants Marijuana MDMA (Ecstasy/Molly) Methamphetamine Opioids Prescription ... Trends and Alerts Alcohol Club Drugs Cocaine Hallucinogens Heroin Inhalants Marijuana MDMA (Ecstasy/Molly) Methamphetamine Opioids Prescription ...

  9. Cocaine

    MedlinePlus

    Cocaine is a white powder. It can be snorted up the nose or mixed with water and injected with a needle. Cocaine can also be made into small white rocks, ... Crack is smoked in a small glass pipe. Cocaine speeds up your whole body. You may feel ...

  10. An overview of cocaethylene, an alcohol-derived, psychoactive, cocaine metabolite.

    PubMed

    Landry, M J

    1992-01-01

    Cocaethylene is a psychoactive ethyl homologue of cocaine, and is formed exclusively during the coadministration of cocaine and alcohol. Not a natural alkaloid of the coca leaf, cocaethylene can be identified in the urine, blood, hair, and neurological and liver tissue samples of individuals who have consumed both cocaine and alcohol. With a pharmacologic profile similar to cocaine, it can block the dopamine transporter on dopaminergic presynaptic nerve terminals in the brain. It increases dopamine synaptic content, provoking enhanced postsynaptic receptor stimulation, resulting in euphoria, reinforcement, and self-administration. Equipotent to cocaine with regard to dopamine transporter affinity, cocaethylene appears to be far less potent than cocaine with regard to serotonin transporter binding. Lacking the serotonergic-related inhibitory mechanism, cocaethylene appears to be more euphorigenic and rewarding than cocaine. Synthesized and administered cocaethylene has a behavioral stimulation profile similar to cocaine. Cocaethylene has been shown to be less potent and equipotent to cocaine, and alcohol plus cocaine produces more stimulatory locomotor behavior in mice than either drug alone. Equipotent to cocaine with regard to primate reinforcement and self-administration, cocaethylene can substitute for cocaine in drug discrimination studies, and can produce stimulation of operant conditioning in rats. With regard to lethality, cocaethylene has been shown to be more potent than cocaine in mice and rats. The combination of cocaine and alcohol appears to exert more cardiovascular toxicity than either drug alone in humans. Alcohol appears to potentiate cocaine hepatotoxicity in both humans and mice.

  11. Loss of cocaine locomotor response in Pitx3-deficient mice lacking a nigrostriatal pathway.

    PubMed

    Beeler, Jeff A; Cao, Zhen Fang Huang; Kheirbek, Mazen A; Zhuang, Xiaoxi

    2009-04-01

    Both the dorsal and ventral striatum have been demonstrated to have a critical role in reinforcement learning and addiction. Dissecting the specific function of these striatal compartments and their associated nigrostriatal and mesoaccumbens dopamine pathways, however, has proved difficult. Previous studies using lesions to isolate the contribution of nigrostriatal and mesoaccumbens dopamine in mediating the locomotor and reinforcing effects of psychostimulant drugs have yielded inconsistent and inconclusive results. Using a naturally occurring mutant mouse line, aphakia, that lacks a nigrostriatal dopamine pathway but retains an intact mesoaccumbens pathway, we show that the locomotor activating effects of cocaine, including locomotor sensitization, are dependent on an intact nigrostriatal dopamine projection. In contrast, cocaine reinforcement, as measured by conditioned place preference and cocaine sensitization of sucrose preference, is intact in these mice. In light of the well-established role of the nucleus accumbens in mediating the effects of psychostimulants, these data suggest that the nigrostriatal pathway can act as a critical effector mechanism for the nucleus accumbens highlighting the importance of intrastriatal connectivity and providing insight into the functional architecture of the striatum.

  12. Cocaine supersensitivity and enhanced motivation for reward in mice lacking dopamine D2 autoreceptors

    PubMed Central

    Bello, Estefanía P; Mateo, Yolanda; Gelman, Diego M; Noaín, Daniela; Shin, Jung H; Low, Malcolm J; Alvarez, Verónica A; Lovinger, David M; Rubinstein, Marcelo

    2011-01-01

    Dopamine (DA) D2 receptors expressed in DA neurons (D2 autoreceptors) exert a negative feedback regulation that reduces DA neuron firing, DA synthesis and DA release. As D2 receptors are mostly expressed in postsynaptic neurons, pharmacological and genetic approaches have been unable to definitively address the in vivo contribution of D2 autoreceptors to DA-mediated behaviors. We found that midbrain DA neurons from mice deficient in D2 autoreceptors (Drd2loxP/loxP; Dat+/IRES-cre, referred to as autoDrd2KO mice) lacked DA-mediated somatodendritic synaptic responses and inhibition of DA release. AutoDrd2KO mice displayed elevated DA synthesis and release, hyperlocomotion and supersensitivity to the psychomotor effects of cocaine. The mice also exhibited increased place preference for cocaine and enhanced motivation for food reward. Our results highlight the importance of D2 autoreceptors in the regulation of DA neurotransmission and demonstrate that D2 autoreceptors are important for normal motor function, food-seeking behavior, and sensitivity to the locomotor and rewarding properties of cocaine. PMID:21743470

  13. Lack of Specific Involvement of (+)-Naloxone and (+)-Naltrexone on the Reinforcing and Neurochemical Effects of Cocaine and Opioids.

    PubMed

    Tanda, Gianluigi; Mereu, Maddalena; Hiranita, Takato; Quarterman, Juliana C; Coggiano, Mark; Katz, Jonathan L

    2016-10-01

    Effective medications for drug abuse remain a largely unmet goal in biomedical science. Recently, the (+)-enantiomers of naloxone and naltrexone, TLR4 antagonists, have been reported to attenuate preclinical indicators of both opioid and stimulant abuse. To further examine the potential of these compounds as drug-abuse treatments, we extended the previous assessments to include a wider range of doses and procedures. We report the assessment of (+)-naloxone and (+)-naltrexone on the acute dopaminergic effects of cocaine and heroin determined by in vivo microdialysis, on the reinforcing effects of cocaine and the opioid agonist, remifentanil, tested under intravenous self-administration procedures, as well as the subjective effects of cocaine determined by discriminative-stimulus effects in rats. Pretreatments with (+)-naloxone or (+)-naltrexone did not attenuate, and under certain conditions enhanced the stimulation of dopamine levels produced by cocaine or heroin in the nucleus accumbens shell. Furthermore, although an attenuation of either cocaine or remifentanil self-administration was obtained at the highest doses of (+)-naloxone and (+)-naltrexone, those doses also attenuated rates of food-maintained behaviors, indicating a lack of selectivity of TLR4 antagonist effects for behaviors reinforced with drug injections. Drug-discrimination studies failed to demonstrate a significant interaction of (+)-naloxone with subjective effects of cocaine. The present studies demonstrate that under a wide range of doses and experimental conditions, the TLR4 antagonists, (+)-naloxone and (+)-naltrexone, did not specifically block neurochemical or behavioral abuse-related effects of cocaine or opioid agonists.

  14. Conditioned place preference and locomotor activity in response to methylphenidate, amphetamine and cocaine in mice lacking dopamine D4 receptors

    SciTech Connect

    Thanos, P.K.; Thanos, P.K.; Bermeo, C.; Rubinstein, M.; Suchland, K.L.; Wang, G.-J.; Grandy, D.K.; Volkow, N.D.

    2010-05-01

    Methylphenidate (MP) and amphetamine (AMPH) are the most frequently prescribed medications for the treatment of attention-deficit/hyperactivity disorder (ADHD). Both drugs are believed to derive their therapeutic benefit by virtue of their dopamine (DA)-enhancing effects, yet an explanation for the observation that some patients with ADHD respond well to one medication but not to the other remains elusive. The dopaminergic effects of MP and AMPH are also thought to underlie their reinforcing properties and ultimately their abuse. Polymorphisms in the human gene that codes for the DA D4 receptor (D4R) have been repeatedly associated with ADHD and may correlate with the therapeutic as well as the reinforcing effects of responses to these psychostimulant medications. Conditioned place preference (CPP) for MP, AMPH and cocaine were evaluated in wild-type (WT) mice and their genetically engineered littermates, congenic on the C57Bl/6J background, that completely lack D4Rs (knockout or KO). In addition, the locomotor activity in these mice during the conditioning phase of CPP was tested in the CPP chambers. D4 receptor KO and WT mice showed CPP and increased locomotor activity in response to each of the three psychostimulants tested. D4R differentially modulates the CPP responses to MP, AMPH and cocaine. While the D4R genotype affected CPP responses to MP (high dose only) and AMPH (low dose only) it had no effects on cocaine. Inasmuch as CPP is considered an indicator of sensitivity to reinforcing responses to drugs these data suggest a significant but limited role of D4Rs in modulating conditioning responses to MP and AMPH. In the locomotor test, D4 receptor KO mice displayed attenuated increases in AMPH-induced locomotor activity whereas responses to cocaine and MP did not differ. These results suggest distinct mechanisms for D4 receptor modulation of the reinforcing (perhaps via attenuating dopaminergic signalling) and locomotor properties of these stimulant drugs

  15. Cocaine-induced Psychosis and Brain-derived Neurothrophic Factor in Patients with Cocaine Dependence: Report of Two Cases

    PubMed Central

    Roncero, Carlos; Palma-Álvarez, Raul Felipe; Ros-Cucurull, Elena; Barral, Carmen; Gonzalvo, Begoña; Corominas-Roso, Margarida; Casas, Miguel; Grau-López, Lara

    2016-01-01

    Brain-derived neurotrophic factor (BDNF) is linked to numerous brain functions. In addition, BDNF alterations contribute to neurological, mental, and addictive disorders. Cocaine dependence has received much attention recently due to its prevalence and psychological effects. Symptoms of psychosis are one of the most serious adverse events precipitated by cocaine use. It is particularly important to identify patients at risk of developing cocaine-induced psychosis (CIP). We described two cases of patients with cocaine dependence who presented with CIP and had changes in their BDNF levels during the psychotic episode. BDNF levels were initially low in both patients, and then decreased by more than 50% in association with CIP. The relationship between BDNF and psychosis is described in the literature. These cases revealed that BDNF levels decreased during a CIP episode and, thus, it is necessary to investigate BDNF and its relationship with CIP further. PMID:26792050

  16. Increased vulnerability to cocaine in mice lacking dopamine D3 receptors.

    PubMed

    Song, Rui; Zhang, Hai-Ying; Li, Xia; Bi, Guo-Hua; Gardner, Eliot L; Xi, Zheng-Xiong

    2012-10-23

    Neuroimaging studies using positron emission tomography suggest that reduced dopamine D(2) receptor availability in the neostriatum is associated with increased vulnerability to drug addiction in humans and experimental animals. The role of D(3) receptors (D(3)Rs) in the neurobiology of addiction remains unclear, however. Here we report that D(3)R KO (D(3)(-/-)) mice display enhanced cocaine self-administration and enhanced motivation for cocaine-taking and cocaine-seeking behavior. This increased vulnerability to cocaine is accompanied by decreased dopamine response to cocaine secondary to increased basal levels of extracellular dopamine in the nucleus accumbens, suggesting a compensatory response to decreased cocaine reward in D(3)(-/-) mice. In addition, D(3)(-/-) mice also display up-regulation of dopamine transporters in the striatum, suggesting a neuroadaptative attempt to normalize elevated basal extracellular dopamine. These findings suggest that D(3)R deletion increases vulnerability to cocaine, and that reduced D(3)R availability in the brain may constitute a risk factor for the development of cocaine addiction.

  17. Enhanced orbitofrontal cortex function and lack of attentional bias to cocaine cues in recreational stimulant users.

    PubMed

    Smith, Dana G; Simon Jones, P; Bullmore, Edward T; Robbins, Trevor W; Ersche, Karen D

    2014-01-15

    Although cocaine is known to be a highly addictive drug, there appears to be a select subset of individuals who are able to use the substance recreationally without developing dependence. These individuals do not report experiencing feelings of craving for cocaine, an important distinction from dependent users. However, no prior studies have compared attentional bias with cocaine cues between these groups to confirm this difference. Additionally, previous investigations into cognitive abilities in these individuals have been conflicting, and no research has been conducted on the neurobiological processes underlying cognitive functioning in this group. This study administered the emotional cocaine-word Stroop to 27 recreational cocaine users, 50 stimulant-dependent individuals, and 52 healthy control participants during functional magnetic resonance imaging scanning. Behavioral and functional imaging results were compared between groups to assess attentional bias and cognitive effort to resist salient cocaine stimuli. Recreational users did not exhibit attentional bias to the cocaine words and did not differ from control subjects on task performance. Conversely, stimulant-dependent individuals were significantly more impaired on the task. Recreational participants also displayed a unique pattern of activation during performance, with significant underactivation in the orbitofrontal and anterior cingulate cortices compared with both dependent users and control subjects. The absence of bias to cocaine-related stimuli in recreational users indicates they do not share attentional preference for these words with dependent users. Their distinct pattern of activation suggests a decreased need for cognitive control due to diminished desire for the drug, potentially serving as a resilience factor against dependence. Copyright © 2014 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  18. Lack of β2-AR Increases Anxiety-Like Behaviors and Rewarding Properties of Cocaine

    PubMed Central

    Zhu, Huiwen; Liu, Zhiyuan; Zhou, Yiming; Yin, Xuming; Xu, Bo; Ma, Lan; Liu, Xing

    2017-01-01

    It is well known that β-adrenoceptors (β-ARs) play a critical role in emotional arousal and stressful events, but the specific contributions of the β2-AR subtype to the psychological disorders are largely unknown. To investigate whether β2-AR are involved in anxiety-like behavior and reward to addictive drugs, we conducted a series of behavioral tests on β2-AR knock-out (KO) mice. β2-AR KO mice exhibited increased preference for the dark compartment and closed arm in tests of Light/Dark box and elevated plus maze, indicating that β2-AR deletion elevates level of anxiety or innate fear. β2-AR KO mice also showed decreased immobility in tail suspension test (TST), suggesting that β2-AR deletion inhibits depression-like behavior. Interestingly, β2-AR ablation did not change basal locomotion but significantly increased locomotor activity induced by acute cocaine administration. β2-AR KO mice showed enhanced place preference for cocaine, which could be attenuated by β1-selective AR antagonist betaxolol. Consistently, β2-AR agonist suppressed cocaine-conditioned place preference (CPP). These data indicate that β2-AR deletion enhances acute response and reward to cocaine. Our results suggest that β2-AR regulates anxiety level, depression-like behavior and hedonic properties of cocaine, implicating that β2-AR are the potential targets for the treatment of emotional disorders and cocaine addiction. PMID:28348522

  19. Lack of β2-AR Increases Anxiety-Like Behaviors and Rewarding Properties of Cocaine.

    PubMed

    Zhu, Huiwen; Liu, Zhiyuan; Zhou, Yiming; Yin, Xuming; Xu, Bo; Ma, Lan; Liu, Xing

    2017-01-01

    It is well known that β-adrenoceptors (β-ARs) play a critical role in emotional arousal and stressful events, but the specific contributions of the β2-AR subtype to the psychological disorders are largely unknown. To investigate whether β2-AR are involved in anxiety-like behavior and reward to addictive drugs, we conducted a series of behavioral tests on β2-AR knock-out (KO) mice. β2-AR KO mice exhibited increased preference for the dark compartment and closed arm in tests of Light/Dark box and elevated plus maze, indicating that β2-AR deletion elevates level of anxiety or innate fear. β2-AR KO mice also showed decreased immobility in tail suspension test (TST), suggesting that β2-AR deletion inhibits depression-like behavior. Interestingly, β2-AR ablation did not change basal locomotion but significantly increased locomotor activity induced by acute cocaine administration. β2-AR KO mice showed enhanced place preference for cocaine, which could be attenuated by β1-selective AR antagonist betaxolol. Consistently, β2-AR agonist suppressed cocaine-conditioned place preference (CPP). These data indicate that β2-AR deletion enhances acute response and reward to cocaine. Our results suggest that β2-AR regulates anxiety level, depression-like behavior and hedonic properties of cocaine, implicating that β2-AR are the potential targets for the treatment of emotional disorders and cocaine addiction.

  20. Cell-Type Specific Insertion of GluA2-Lacking AMPARs with Cocaine Exposure Leading to Sensitization, Cue-Induced Seeking, and Incubation of Craving.

    PubMed

    Terrier, Jean; Lüscher, Christian; Pascoli, Vincent

    2016-06-01

    Addiction is a behavioral disease, of which core components can be modeled in rodents. Much evidence implicates drug-evoked synaptic plasticity in cocaine-evoked locomotor sensitization, cue-induced cocaine seeking, and incubation of cocaine craving. However, the type of plasticity evoked by different modalities of cocaine administration (eg contingent vs non-contingent) and its role in reshaping circuit function remains largely elusive. Here we exposed mice to various regimens of cocaine and recorded excitatory transmission onto identified medium-sized spiny neurons (MSN, expressing fluorescent proteins under the control of either D1R or D2R dopamine receptor promotor) in the nucleus accumbens at time points when behavioral adaptations are observed. In D1-MSN, we found the presence of GluA2-lacking α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) after single or chronic non-contingent exposure to cocaine as well as after cocaine self-administration (SA). We also report an increase in the AMPA/NMDA ratio (A/N) in D1-MSN, which was observed only after repeated passive injections associated with locomotor sensitization as well as in a condition of SA leading to seeking behavior. Remarkably, insertion of GluA2-lacking AMPARs was also detected in D2-MSN after SA of a high dose of cocaine but not regular dose (1.5 vs 0.75 mg/kg), which was the only condition where incubation of cocaine craving was observed in this study. Moreover, synapses containing GluA2-lacking AMPARs belonged to amygdala inputs in D2-MSN and to medial prefrontal cortex inputs in D1-MSN. Taken together this study allows for a refinement of a circuit model of addiction based on specific synaptic changes induced by cocaine.

  1. Cell-type specific insertion of GluA2-lacking AMPARs with cocaine exposure leading to sensitization, cue-induced seeking and incubation of craving

    PubMed Central

    Jean, Terrier; Christian, Lüscher; Vincent, Pascoli

    2015-01-01

    SUMMARY Addiction is a behavioral disease, of which core components can be modeled in rodents. Much evidence implicates drug-evoked synaptic plasticity in cocaine-evoked locomotor sensitization, cue-induced cocaine seeking and incubation of cocaine craving. However the type of plasticity evoked by different modalities of cocaine administration (e.g. contingent versus non-contingent) and its role in reshaping circuit function remains largely elusive. Here we exposed mice to various regimens of cocaine and recorded excitatory transmission onto identified medium-sized spiny neurons (MSN, expressing fluorescent proteins under the control of either D1R or D2R dopamine receptor promotor) in the nucleus accumbens (NAc) at time points when behavioural adaptations are observed. In D1-MSN, we found the presence of GluA2-lacking α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) after single or chronic non-contingent exposure to cocaine, as well as after cocaine self-administration. We also report an increase in the AMPA/NMDA ratio (A/N) in D1-MSN, which was observed only after repeated passive injections associated with locomotor sensitization as well as in a condition of self-administration (SA) leading to seeking behaviour. Remarkably, insertion of GluA2-lacking AMPARs was also detected in D2-MSN after self-administration of a high dose of cocaine but not regular dose (1.5 vs. 0.75 mg/kg), which was the only condition where incubation of cocaine craving was observed in this study. Moreover, synapses containing GluA2-lacking AMPARs belonged to amygdala inputs in D2-MSN and to medial prefrontal cortex (mPFC) inputs in D1-MSN. Taken together this study allows for a refinement of a circuit model of addiction based on specific synaptic changes induced by cocaine. PMID:26585289

  2. Cocaine-induced chromatin remodeling increases brain-derived neurotrophic factor transcription in the rat medial prefrontal cortex, which alters the reinforcing efficacy of cocaine.

    PubMed

    Sadri-Vakili, Ghazaleh; Kumaresan, Vidhya; Schmidt, Heath D; Famous, Katie R; Chawla, Prianka; Vassoler, Fair M; Overland, Ryan P; Xia, Eva; Bass, Caroline E; Terwilliger, Ernest F; Pierce, R Christopher; Cha, Jang-Ho J

    2010-09-01

    Cocaine self-administration alters patterns of gene expression in the brain that may underlie cocaine-induced neuronal plasticity. In the present study, male Sprague Dawley rats were allowed to self-administer cocaine (0.25 mg/infusion) 2 h/d for 14 d, followed by 7 d of forced abstinence. Compared with yoked saline control rats, cocaine self-administration resulted in increased brain-derived neurotrophic factor (BDNF) protein levels in the rat medial prefrontal cortex (mPFC). To examine the functional relevance of this finding, cocaine self-administration maintained under a progressive ratio schedule of reinforcement was assessed after short hairpin RNA-induced suppression of BDNF expression in the mPFC. Decreased BDNF expression in the mPFC increased the cocaine self-administration breakpoint. Next, the effect of cocaine self-administration on specific BDNF exons was assessed; results revealed selectively increased BDNF exon IV-containing transcripts in the mPFC. Moreover, there were significant cocaine-induced increases in acetylated histone H3 (AcH3) and phospho-cAMP response element binding protein (pCREB) association with BDNF promoter IV. In contrast, there was decreased methyl-CpG-binding protein 2 (MeCP2) association with BDNF promoter IV in the mPFC of rats that previously self-administered cocaine. Together, these results indicate that cocaine-induced increases in BDNF promoter IV transcript in the mPFC are driven by increased binding of AcH3 and pCREB as well as decreased MeCP2 binding at this BDNF promoter. Collectively, these results indicate that cocaine self-administration remodels chromatin in the mPFC, resulting in increased expression of BDNF, which appears to represent a compensatory neuroadaptation that reduces the reinforcing efficacy of cocaine.

  3. Cocaine-and-Amphetamine-Regulated-Transcript (CART) peptide attenuates dopamine- and cocaine-mediated locomotor activity in both male and female rats: lack of sex differences

    PubMed Central

    Job, Martin O.; Perry, JoAnna; Shen, Li L.; Kuhar, Michael J.

    2014-01-01

    Cocaine-and-Amphetamine Regulated Transcript peptide (CART peptide) is known for having an inhibitory effect on dopamine (DA)- and cocaine-mediated actions and is postulated to be a homeostatic, regulatory factor in the nucleus accumbens (NAc). Some sex differences in cocaine-mediated LMA and in the expression and function of CART peptide have been reported. However, it is not known if the inhibitory effect of CART peptide on cocaine-mediated locomotor activity (LMA) is sexually dimorphic. In this study, the effect of CART 55-102 on LMA due to intra-NAc DA and i.p. cocaine were determined in male and female Sprague-Dawley rats. The results show that CART 55-102 blunted or reduced both the DA- and cocaine-induced LMA in both males and females. In conclusion, CART peptide is effective in blunting DA- and cocaine-mediated LMA in both males and females. PMID:24630272

  4. Brain-derived neurotrophic factor genotype impacts the prenatal cocaine-induced mouse phenotype.

    PubMed

    Kabir, Zeeba D; Lourenco, Frederico; Byrne, Maureen E; Katzman, Aaron; Lee, Francis; Rajadhyaksha, Anjali M; Kosofsky, Barry E

    2012-01-01

    Prenatal cocaine exposure leads to persistent alterations in the growth factor brain-derived neurotrophic factor (BDNF), particularly in the medial prefrontal cortex (mPFC) and hippocampus, brain regions important in cognitive functioning. BDNF plays an important role in the strengthening of existing synaptic connections as well as in the formation of new contacts during learning. A single nucleotide polymorphism in the BDNF gene (Val66Met), leading to a Met substitution for Val at codon 66 in the prodomain, is common in human populations, with an allele frequency of 20-30% in Caucasians. To study the interaction between prenatal cocaine exposure and BDNF, we have utilized a line of BDNF Val66Met transgenic mice on a Swiss Webster background in which BDNF(Met) is endogenously expressed. Examination of baseline levels of mature BDNF protein in the mPFC of prenatally cocaine-treated wild-type (Val66Val) and Val66Met mice revealed significantly lower levels compared to prenatally saline-treated mice. In contrast, in the hippocampus of prenatally saline- and cocaine-treated adult Val66Met mice, there were significantly lower levels of mature BDNF protein compared to Val66Val mice. In extinction of a conditioned fear, we found that prenatally cocaine-treated Val66Met mice had a deficit in recall of extinction. Examination of mature BDNF protein levels immediately after the test for extinction recall revealed lower levels in the mPFC of prenatally cocaine-treated Val66Met mice compared to saline-treated mice. However, 2 h after the extinction test, there was increased BDNF exons I, IV, and IX mRNA expression in the prelimbic cortex of the mPFC in the prenatally cocaine-treated BDNF Val66Met mice compared to prenatally saline-treated mice. Taken together, our results suggest the possibility that prenatal cocaine-induced constitutive alterations in BDNF mRNA and protein expression in the mPFC differentially poises animals for alterations in behaviorally induced gene

  5. Cocaine withdrawal

    MedlinePlus

    ... from cocaine; Substance use - cocaine withdrawal; Substance abuse - cocaine withdrawal; Drug abuse - cocaine withdrawal; Detox - cocaine ... ... 2017. Weiss RD. Drugs of abuse. In: Goldman L, Schafer AI, eds. ...

  6. Brain-derived neurotrophic factor signaling modulates cocaine induction of reward-associated ultrasonic vocalization in rats.

    PubMed

    Williams, Stacey N; Undieh, Ashiwel S

    2010-02-01

    Cocaine exhibits high liability for inducing addictive behaviors, but the mechanisms of neuroplasticity underlying the behavioral effects remain unclear. As a crucial mediator of neuroplasticity in diverse functional models, brain-derived neurotrophic factor (BDNF) could contribute to the mechanisms of addiction-related neuroplasticity. Here, we addressed the hypothesis that cocaine increases synaptic dopamine, which induces BDNF protein expression to initiate addiction-related behavior in the rat. An enzyme-linked immunosorbent assay was used to measure BDNF protein expression in rat striatal tissues. For behavioral readout, we used a noninvasive measurement system to measure the emission of 50-kHz ultrasonic vocalization (USV), a response that correlates with electrical brain stimulation and conditioned place preference behavior in rodents. A single injection of cocaine significantly increased BDNF protein expression, but this effect was not further augmented by repeated cocaine administration. A single administration of cocaine elicited significant and dose-related USV responses, and the magnitude of the behavior increased with repeated drug administration. R-(+)-7-Chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine (SCH23390), but not raclopride, significantly attenuated cocaine-induced BDNF protein expression, whereas either the D(1)-like or D(2)-like receptor antagonist blocked cocaine-induced USV behavior. Furthermore, significant USV behavior was elicited by the nonselective dopamine agonist, apomorphine, but not by agonists that are selective for D(1)-like or D(2)-like receptors. Intracerebroventricular injection of the neurotrophin TrkB receptor inhibitor, K252a, blocked cocaine-induced USV behavior but not locomotor activity. These results suggest that neurotrophin signaling downstream of dopamine receptor function probably constitutes a crucial link in cocaine induction of USV behavior and may contribute to the mechanisms underlying

  7. Economical synthesis of 13C-labeled opiates, cocaine derivatives and selected urinary metabolites by derivatization of the natural products.

    PubMed

    Karlsen, Morten; Liu, Huiling; Johansen, Jon Eigill; Hoff, Bård Helge

    2015-03-25

    The illegal use of opiates and cocaine is a challenge world-wide, but some derivatives are also valuable pharmaceuticals. Reference samples of the active ingredients and their metabolites are needed both for controlling administration in the clinic and to detect drugs of abuse. Especially, (13)C-labeled compounds are useful for identification and quantification purposes by mass spectroscopic techniques, potentially increasing accuracy by minimizing ion alteration/suppression effects. Thus, the synthesis of [acetyl-(13)C4]heroin, [acetyl-(13)C4-methyl-(13)C]heroin, [acetyl-(13)C2-methyl-(13)C]6-acetylmorphine, [N-methyl-(13)C-O-metyl-(13)C]codeine and phenyl-(13)C6-labeled derivatives of cocaine, benzoylecgonine, norcocaine and cocaethylene was undertaken to provide such reference materials. The synthetic work has focused on identifying (13)C atom-efficient routes towards these derivatives. Therefore, the (13)C-labeled opiates and cocaine derivatives were made from the corresponding natural products.

  8. Cocaine intoxication.

    PubMed

    Zimmerman, Janice L

    2012-10-01

    Cocaine, a natural alkaloid derived from the coca plant, is one of the most commonly abused illicit drugs. Cocaine is commonly abused by inhalation, nasal insufflation, and intravenous injection, resulting in many adverse effects that ensue from local anesthetic, vasoconstrictive, sympathomimetic, psychoactive, and prothrombotic mechanisms. Cocaine can affect all body systems and the clinical presentation may primarily result from organ toxicity. Among the most severe complications are seizures, hemorrhagic and ischemic strokes, myocardial infarction, aortic dissection, rhabdomyolysis, mesenteric ischemia, acute renal injury and multiple organ failure. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Partial mGlu5 Negative Allosteric Modulators Attenuate Cocaine-Mediated Behaviors and Lack Psychotomimetic-Like Effects

    PubMed Central

    Gould, Robert W; Amato, Russell J; Bubser, Michael; Joffe, Max E; Nedelcovych, Michael T; Thompson, Analisa D; Nickols, Hilary H; Yuh, Johannes P; Zhan, Xiaoyan; Felts, Andrew S; Rodriguez, Alice L; Morrison, Ryan D; Byers, Frank W; Rook, Jerri M; Daniels, John S; Niswender, Colleen M; Conn, P Jeffrey; Emmitte, Kyle A; Lindsley, Craig W; Jones, Carrie K

    2016-01-01

    Cocaine abuse remains a public health concern for which pharmacotherapies are largely ineffective. Comorbidities between cocaine abuse, depression, and anxiety support the development of novel treatments targeting multiple symptom clusters. Selective negative allosteric modulators (NAMs) targeting the metabotropic glutamate receptor 5 (mGlu5) subtype are currently in clinical trials for the treatment of multiple neuropsychiatric disorders and have shown promise in preclinical models of substance abuse. However, complete blockade or inverse agonist activity by some full mGlu5 NAM chemotypes demonstrated adverse effects, including psychosis in humans and psychotomimetic-like effects in animals, suggesting a narrow therapeutic window. Development of partial mGlu5 NAMs, characterized by their submaximal but saturable levels of blockade, may represent a novel approach to broaden the therapeutic window. To understand potential therapeutic vs adverse effects in preclinical behavioral assays, we examined the partial mGlu5 NAMs, M-5MPEP and Br-5MPEPy, in comparison with the full mGlu5 NAM MTEP across models of addiction and psychotomimetic-like activity. M-5MPEP, Br-5MPEPy, and MTEP dose-dependently decreased cocaine self-administration and attenuated the discriminative stimulus effects of cocaine. M-5MPEP and Br-5MPEPy also demonstrated antidepressant- and anxiolytic-like activity. Dose-dependent effects of partial and full mGlu5 NAMs in these assays corresponded with increasing in vivo mGlu5 occupancy, demonstrating an orderly occupancy-to-efficacy relationship. PCP-induced hyperlocomotion was potentiated by MTEP, but not by M-5MPEP and Br-5MPEPy. Further, MTEP, but not M-5MPEP, potentiated the discriminative-stimulus effects of PCP. The present data suggest that partial mGlu5 NAM activity is sufficient to produce therapeutic effects similar to full mGlu5 NAMs, but with a broader therapeutic index. PMID:26315507

  10. Partial mGlu₅ Negative Allosteric Modulators Attenuate Cocaine-Mediated Behaviors and Lack Psychotomimetic-Like Effects.

    PubMed

    Gould, Robert W; Amato, Russell J; Bubser, Michael; Joffe, Max E; Nedelcovych, Michael T; Thompson, Analisa D; Nickols, Hilary H; Yuh, Johannes P; Zhan, Xiaoyan; Felts, Andrew S; Rodriguez, Alice L; Morrison, Ryan D; Byers, Frank W; Rook, Jerri M; Daniels, John S; Niswender, Colleen M; Conn, P Jeffrey; Emmitte, Kyle A; Lindsley, Craig W; Jones, Carrie K

    2016-03-01

    Cocaine abuse remains a public health concern for which pharmacotherapies are largely ineffective. Comorbidities between cocaine abuse, depression, and anxiety support the development of novel treatments targeting multiple symptom clusters. Selective negative allosteric modulators (NAMs) targeting the metabotropic glutamate receptor 5 (mGlu5) subtype are currently in clinical trials for the treatment of multiple neuropsychiatric disorders and have shown promise in preclinical models of substance abuse. However, complete blockade or inverse agonist activity by some full mGlu5 NAM chemotypes demonstrated adverse effects, including psychosis in humans and psychotomimetic-like effects in animals, suggesting a narrow therapeutic window. Development of partial mGlu5 NAMs, characterized by their submaximal but saturable levels of blockade, may represent a novel approach to broaden the therapeutic window. To understand potential therapeutic vs adverse effects in preclinical behavioral assays, we examined the partial mGlu5 NAMs, M-5MPEP and Br-5MPEPy, in comparison with the full mGlu5 NAM MTEP across models of addiction and psychotomimetic-like activity. M-5MPEP, Br-5MPEPy, and MTEP dose-dependently decreased cocaine self-administration and attenuated the discriminative stimulus effects of cocaine. M-5MPEP and Br-5MPEPy also demonstrated antidepressant- and anxiolytic-like activity. Dose-dependent effects of partial and full mGlu5 NAMs in these assays corresponded with increasing in vivo mGlu5 occupancy, demonstrating an orderly occupancy-to-efficacy relationship. PCP-induced hyperlocomotion was potentiated by MTEP, but not by M-5MPEP and Br-5MPEPy. Further, MTEP, but not M-5MPEP, potentiated the discriminative-stimulus effects of PCP. The present data suggest that partial mGlu5 NAM activity is sufficient to produce therapeutic effects similar to full mGlu5 NAMs, but with a broader therapeutic index.

  11. Synthesis and biological activity of cocaine analogs I: N-alkylated norcocaine derivatives.

    PubMed

    Lazer, E S; Aggarwal, N D; Hite, G J; Nieforth, K A; Kelleher, R T; Spealman, R D; Schuster, C R; Wolverton, W

    1978-12-01

    N-Allylnorcocaine, N-dimethylallylnorcocaine, and N-cyclopropylmethylnorcocaine were prepared and examined for cocaine-like activity. The compounds were prepared by alkylation of norcocaine, which was obtained by demethylation of cocaine with 2,2,2-trichloroethyl chloroformate followed by zinc--acetic acid reduction. The compounds were evaluated by comparison with cocaine in causing disruption of milk intake in rats, behavioral modification in squirrel monkeys, and inhibition of 3H-serotonin uptake by rat synaptosomes. The compounds showed cocaine-like activity less potent than cocaine in the latter two tests and were inactive in the milk intake test.

  12. Changes in brain-derived neurotrophic factor (BDNF) during abstinence could be associated with relapse in cocaine-dependent patients.

    PubMed

    Corominas-Roso, Margarida; Roncero, Carlos; Daigre, Constanza; Grau-Lopez, Lara; Ros-Cucurull, Elena; Rodríguez-Cintas, Laia; Sanchez-Mora, Cristina; Lopez, Maria Victoria; Ribases, Marta; Casas, Miguel

    2015-02-28

    Brain-derived neurotrophic factor (BDNF) is involved in cocaine craving in humans and drug seeking in rodents. Based on this, the aim of this study was to explore the possible role of serum BDNF in cocaine relapse in abstinent addicts. Forty cocaine dependent subjects (DSM-IV criteria) were included in an inpatient 2 weeks abstinence program. Organic and psychiatric co-morbidities were excluded. Two serum samples were collected for each subject at baseline and at after 14 abstinence days. After discharge, all cocaine addicts underwent a 22 weeks follow-up, after which they were classified into early relapsers (ER) (resumed during the first 14 days after discharge,) or late relapsers (LR) (resumed beyond 14 days after discharge). The only clinical differences between groups were the number of consumption days during the last month before detoxification. Serum BDNF levels increased significantly across the 12 days of abstinence in the LR group (p=0.02), whereas in the ER group BDNF remained unchanged. In the ER group, the change of serum BDNF during abstinence negatively correlated with the improvement in depressive symptoms (p=0.02). These results suggest that BDNF has a role in relapse to cocaine consumption in abstinent addicts, although the underlying neurobiological mechanisms remain to be clarified.

  13. Structure-affinity relationship of the cocaine-binding aptamer with quinine derivatives.

    PubMed

    Slavkovic, Sladjana; Altunisik, Merve; Reinstein, Oren; Johnson, Philip E

    2015-05-15

    In addition to binding its target molecule, cocaine, the cocaine-binding aptamer tightly binds the alkaloid quinine. In order to understand better how the cocaine-binding aptamer interacts with quinine we have used isothermal titration calorimetry-based binding experiments to study the interaction of the cocaine-binding aptamer to a series of structural analogs of quinine. As a basis for comparison we also investigated the binding of the cocaine-binding aptamer to a set of cocaine metabolites. The bicyclic aromatic ring on quinine is essential for tight affinity by the cocaine-binding aptamer with 6-methoxyquinoline alone being sufficient for tight binding while the aliphatic portion of quinine, quinuclidine, does not show detectable binding. Compounds with three fused aromatic rings are not bound by the aptamer. Having a methoxy group at the 6-position of the bicyclic ring is important for binding as substituting it with a hydrogen, an alcohol or an amino group all result in lower binding affinity. For all ligands that bind, association is driven by a negative enthalpy compensated by unfavorable binding entropy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Reinforcing Effects Of Compounds Lacking Intrinsic Efficacy At α1 Subunit-Containing GABAA Receptor Subtypes in Midazolam- But Not Cocaine-Experienced Rhesus Monkeys

    PubMed Central

    Shinday, Nina M; Sawyer, Eileen K; Fischer, Bradford D; Platt, Donna M; Licata, Stephanie C; Atack, John R; Dawson, Gerard R; Reynolds, David S; Rowlett, James K

    2013-01-01

    Benzodiazepines are prescribed widely but their utility is limited by unwanted side effects, including abuse potential. The mechanisms underlying the abuse-related effects of benzodiazepines are not well understood, although α1 subunit-containing GABAA receptors have been proposed to have a critical role. Here, we examine the reinforcing effects of several compounds that vary with respect to intrinsic efficacy at α2, α3, and α5 subunit-containing GABAA receptors but lack efficacy at α1 subunit-containing GABAA receptors (‘α1-sparing compounds'): MRK-623 (functional selectivity for α2/α3 subunit-containing receptors), TPA023B (functional selectivity for α2/α3/α5 subunit-containing receptors), and TP003 (functional selectivity for α3 subunit-containing receptors). The reinforcing effects of the α1-sparing compounds were compared with those of the non-selective benzodiazepine receptor partial agonist MRK-696, and non-selective benzodiazepine receptor full agonists, midazolam and lorazepam, in rhesus monkeys trained to self-administer midazolam or cocaine, under a progressive-ratio schedule of intravenous (i.v.) drug injection. The α1-sparing compounds were self-administered significantly above vehicle levels in monkeys maintained under a midazolam baseline, but not under a cocaine baseline over the dose ranges tested. Importantly, TP003 had significant reinforcing effects, albeit at lower levels of self-administration than non-selective benzodiazepine receptor agonists. Together, these results suggest that α1 subunit-containing GABAA receptors may have a role in the reinforcing effects of benzodiazepine-type compounds in monkeys with a history of stimulant self-administration, whereas α3 subunit-containing GABAA receptors may be important mediators of the reinforcing effects of benzodiazepine-type compounds in animals with a history of sedative-anxiolytic/benzodiazepine self-administration. PMID:23303046

  15. Reactive Oxygen Species/Hypoxia-Inducible Factor-1α/Platelet-Derived Growth Factor-BB Autocrine Loop Contributes to Cocaine-Mediated Alveolar Epithelial Barrier Damage.

    PubMed

    Yang, Lu; Chen, Xufeng; Simet, Samantha M; Hu, Guoku; Cai, Yu; Niu, Fang; Kook, Yeonhee; Buch, Shilpa J

    2016-11-01

    Abuse of psychostimulants, such as cocaine, has been shown to be closely associated with complications of the lung, such as pulmonary hypertension, edema, increased inflammation, and infection. However, the mechanism by which cocaine mediates impairment of alveolar epithelial barrier integrity that underlies various pulmonary complications has not been well determined. Herein, we investigate the role of cocaine in disrupting the alveolar epithelial barrier function and the associated signaling cascade. Using the combinatorial electric cell-substrate impedance sensing and FITC-dextran permeability assays, we demonstrated cocaine-mediated disruption of the alveolar epithelial barrier, as evidenced by increased epithelial monolayer permeability with a concomitant loss of the tight junction protein zonula occludens-1 (Zo-1) in both mouse primary alveolar epithelial cells and the alveolar epithelial cell line, L2 cells. To dissect the signaling pathways involved in this process, we demonstrated that cocaine-mediated induction of permeability factors, platelet-derived growth factor (PDGF-BB) and vascular endothelial growth factor, involved reactive oxygen species (ROS)-dependent induction of hypoxia-inducible factor (HIF)-1α. Interestingly, we demonstrated that ROS-dependent induction of another transcription factor, nuclear factor erythroid-2-related factor-2, that did not play a role in cocaine-mediated barrier dysfunction. Importantly, this study identifies, for the first time, that ROS/HIF-1α/PDGF-BB autocrine loop contributes to cocaine-mediated barrier disruption via amplification of oxidative stress and downstream signaling. Corroboration of these cell culture findings in vivo demonstrated increased permeability of the alveolar epithelial barrier, loss of expression of Zo-1, and a concomitantly increased expression of both HIF-1α and PDGF-BB. Pharmacological blocking of HIF-1α significantly abrogated cocaine-mediated loss of Zo-1. Understanding the mechanism

  16. 2-Isoxazol-3-Phenyltropane Derivatives of Cocaine: Molecular and Atypical System Effects at the Dopamine Transporter

    PubMed Central

    Hiranita, Takato; Wilkinson, Derek S.; Hong, Weimin C.; Zou, Mu-Fa; Kopajtic, Theresa A.; Soto, Paul L.; Lupica, Carl R.; Newman, Amy H.

    2014-01-01

    The present study examined RTI-371 [3β-(4-methylphenyl)-2β-[3-(4-chlorophenyl)-isoxazol-5-yl]tropane], a phenyltropane cocaine analog with effects distinct from cocaine, and assessed potential mechanisms for those effects by comparison with its constitutional isomer, RTI-336 [3β-(4-chlorophenyl)-2β-[3-(4-methylphenyl)-isoxazol-5-yl]tropane]. In mice, RTI-371 was less effective than cocaine and RTI-336 in stimulating locomotion, and incompletely substituted (∼60% maximum at 5 minutes or 1 hour after injection) in a cocaine (10 mg/kg i.p.)/saline discrimination procedure; RTI-336 completely substituted. In contrast to RTI-336, RTI-371 was not self-administered, and its pretreatment (1.0–10 mg/kg i.p.) dose-dependently decreased maximal cocaine self-administration more potently than food-maintained responding. RTI-336 pretreatment dose-dependently left-shifted the cocaine self-administration dose-effect curve. Both RTI-336 and RTI-371 displaced [3H]WIN35,428 [[3H](−)-3β-(4-fluorophenyl)-tropan-2β-carboxylic acid methyl ester tartrate] binding to striatal dopamine transporters (DATs) with Ki values of 10.8 and 7.81 nM, respectively, and had lower affinities at serotonin or norepinephrine transporters, or muscarinic and σ receptors. The relative low affinity at these sites suggests the DAT as the primary target of RTI-371 with minimal contributions from these other targets. In biochemical assays probing the outward-facing DAT conformation, both RTI-371 and RTI-336 had effects similar to cocaine, suggesting little contribution of DAT conformation to the unique pharmacology of RTI-371. The locomotor-stimulant effects of RTI-371 (3.0–30 mg/kg i.p.) were comparable in wild-type and knockout cannabinoid CB1 receptor (CB1R) mice, indicating that previously reported CB1 allosteric effects do not decrease cocaine-like effects of RTI-371. DAT occupancy in vivo was most rapid with cocaine and least with RTI-371. The slow apparent association rate may allow

  17. Synthesis and receptor binding of N-substituted tropane derivatives. High-affinity ligands for the cocaine receptor

    SciTech Connect

    Milius, R.A.; Saha, J.K.; Madras, B.K.; Neumeyer, J.L. )

    1991-05-01

    The synthesis and pharmacological characterization of a series of N-substituted 3-(4-fluorophenyl)tropane derivatives is reported. The compounds displayed binding characteristics that paralleled those of cocaine, and several had substantially higher affinity at cocaine recognition sites. Conjugate addition of 4-fluorophenyl magnesium bromide to anhydroecgonine methyl ester gave 2 beta-(carbomethoxy)-3 beta-(4-fluorophenyl)tropane (4a, designated CFT, also known as WIN 35,428) after flash chromatography. N demethylation of 4a was effected by Zn/HOAc reduction of the corresponding 2,2,2-trichloroethyl carbamate to give 2 beta-carbomethoxy-3 beta-(4-fluorophenyl)nortropane (5), which was alkylated with allyl bromide to afford the N-allyl analogue, 6. The N-propyl analogue, 7, was prepared by catalytic reduction (Pd/C) of 6. The most potent analogue, 4a, was tritiated at a specific activity of 81.3 Ci/mmol. ({sup 3}H)4a bound rapidly and reversibly to caudate putamen membranes; the two-component binding curve typical of cocaine analogues was observed. Equilibrium was achieved within 2 h and was stable for at least 4 h. High- and low-affinity Kd values observed for ({sup 3}H)4a (4.7 and 60 nM, respectively) were more than 4 times lower than those for ({sup 3}H)cocaine, and the density of binding sites (Bmax = 50 pmol/g, high, and 290 pmol/g, low) for the two drugs were comparable. Nonspecific binding of ({sup 3}H)4a was 5-10% of total binding.

  18. Cocaine psychosis.

    PubMed Central

    Baker, F. M.

    1989-01-01

    A 28-year-old divorced black male intranasal cocaine abuser presented three times in seven days to the psychiatric emergency service of a general hospital with complaints of psychotic symptoms in the context of a cocaine binge. His repeated visits provided the opportunity to correlate his clinical picture with serum cocaine levels. This article describes that correlation and reviews the current literature on cocaine abuse and the cocaine abstinence syndrome. PMID:2674466

  19. Fluorescence Immunoassay for Cocaine Detection.

    PubMed

    Nakayama, Hiroshi; Kenjjou, Noriko; Shigetoh, Nobuyuki; Ito, Yuji

    2016-04-01

    A fluorescence immunoassay (FIA) has been developed for the detection of cocaine using norcocaine labeled with merocyanine dye and a monoclonal antibody specific to cocaine. Using this FIA, the detection range for cocaine was between 20.0 and 1700 μg/L with a limit of detection of 20.0 μg/L. Other cocaine derivatives did not interfere significantly with the detection when using this immunoassay technique with cross-reactivity values of less than 20%. Thus this FIA could be considered a useful tool for the detection of cocaine.

  20. Ligand-Independent Activation of Platelet-Derived Growth Factor Receptor β during Human Immunodeficiency Virus-Transactivator of Transcription and Cocaine-Mediated Smooth Muscle Hyperplasia.

    PubMed

    Dalvi, Pranjali N; Gupta, Vijayalaxmi G; Griffin, Brooke R; O'Brien-Ladner, Amy; Dhillon, Navneet K

    2015-09-01

    Our previous study supports an additive effect of cocaine to human immunodeficiency virus infection in the development of pulmonary arteriopathy through enhancement of proliferation of pulmonary smooth muscle cells (SMCs), while also suggesting involvement of platelet-derived growth factor receptor (PDGFR) activation in the absence of further increase in PDGF-BB ligand. Redox-related signaling pathways have been shown to regulate tyrosine kinase receptors independent of ligand binding, so we hypothesized that simultaneous treatment of SMCs with transactivator of transcription (Tat) and cocaine may be able to indirectly activate PDGFR through modulation of reactive oxygen species (ROS) without the need for PDGF binding. We found that blocking the binding of ligand using suramin or monoclonal IMC-3G3 antibody significantly reduced ligand-induced autophosphorylation of Y1009 without affecting ligand-independent transphosphorylation of Y934 residue on PDGFRβ in human pulmonary arterial SMCs treated with both cocaine and Tat. Combined treatment of human pulmonary arterial SMCs with cocaine and Tat resulted in augmented production of superoxide radicals and hydrogen peroxide when compared with either treatment alone. Inhibition of this ROS generation prevented cocaine- and Tat-mediated Src activation and transphosphorylation of PDGFRβ at Y934 without any changes in phosphorylation of Y1009, in addition to attenuation of smooth muscle hyperplasia. Furthermore, pretreatment with an Src inhibitor, PP2, also suppressed cocaine- and Tat-mediated enhanced Y934 phosphorylation and smooth muscle proliferation. Finally, we report total abrogation of cocaine- and Tat-mediated synergistic increase in cell proliferation on inhibition of both ligand-dependent and ROS/Src-mediated ligand-independent phosphorylation of PDGFRβ.

  1. The role of the NADPH oxidase derived brain oxidative stress in the cocaine-related death associated with excited delirium: A literature review.

    PubMed

    Schiavone, Stefania; Neri, Margherita; Mhillaj, Emanuela; Pomara, Cristoforo; Trabace, Luigia; Turillazzi, Emanuela

    2016-09-06

    Excited delirium syndrome (ExDS) is a term used to describe a clinical condition characterized by bizarre and aggressive behaviour, commonly associated with the use of psychoactive compounds, especially cocaine. The pathophysiology of ExDS is complex and not yet fully understood. In addition to a central dopamine hypothesis, other mechanisms are thought to be involved in cocaine-related ExDS, such as increased reactive oxygen species production by the family of the NADPH oxidase NOX enzymes. In this review, we will summarize current knowledge on the crucial contribution of brain NADPH oxidase derived oxidative stress in the development of cocaine-induced ExDS. Data from animal models as well as human evidence will be discussed. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. NEURODEVELOPMENTAL EFFECTS OF COCAINE

    PubMed Central

    Singer, Lynn; Arendt, Robert; Minnes, Sonia

    2014-01-01

    The United States has recently been compelled to acknowledge and to cope with an alarming increase in incidence of drug exposure in newborns owing to a new cocaine epidemic. Perhaps because of the sudden onset of national recognition of the problem, the lack of a firm knowledge base regarding the mechanisms of the effects of cocaine on child development, and the sheer magnitude of the problem in urban areas of the United States, the issue of cocaine exposure in children has been characterized by medical, legal, and social policy controversies. This article focuses on elucidating what is and what is not known about cocaine’s neurodevelopmental effects and aims to inform perinatologists about the complex issues associated with understanding and caring for the cocaine-exposed newborn. PMID:8458168

  3. A Single Brain-Derived Neurotrophic Factor Infusion into the Dorsomedial Prefrontal Cortex Attenuates Cocaine Self-Administration-Induced Phosphorylation of Synapsin in the Nucleus Accumbens during Early Withdrawal

    PubMed Central

    Sun, Wei-Lun; Eisenstein, Sarah A.; Zelek-Molik, Agnieszka

    2015-01-01

    Background: Dysregulation in the prefrontal cortex-nucleus accumbens pathway has been implicated in cocaine addiction. We have previously demonstrated that one intra-dorsomedial prefrontal cortex brain-derived neurotrophic factor (BDNF) infusion immediately following the last cocaine self-administration session caused a long-lasting inhibition of cocaine-seeking and normalized the cocaine-induced disturbance of glutamate transmission in the nucleus accumbens after extinction and a cocaine prime. However, the molecular mechanism mediating the brain-derived neurotrophic factor effect on cocaine-induced alterations in extracellular glutamate levels is unknown. Methods: In the present study, we determined the effects of brain-derived neurotrophic factor on cocaine-induced changes in the phosphorylation of synapsin (p-synapsin), a family of presynaptic proteins that mediate synaptic vesicle mobilization, in the nucleus accumbens during early withdrawal. Results: Two hours after cocaine self-administration, p-synapsin Ser9 and p-synapsin Ser62/67, but not p-synapsin Ser603, were increased in the nucleus accumbens. At 22 hours, only p-synapsin Ser9 was still elevated. Elevations at both time points were attenuated by an intra-dorsomedial prefrontal cortex brain-derived neurotrophic factor infusion immediately after the end of cocaine self-administration. Brain-derived neurotrophic factor also reduced cocaine self-administration withdrawal-induced phosphorylation of the protein phosphatase 2A C-subunit, suggesting that brain-derived neurotrophic factor disinhibits protein phosphatase 2A C-subunit, consistent with p-synapsin Ser9 dephosphorylation. Further, co-immunoprecipitation demonstrated that protein phosphatase 2A C-subunit and synapsin are associated in a protein-protein complex that was reduced after 2 hours of withdrawal from cocaine self-administration and reversed by brain-derived neurotrophic factor. Conclusions: Taken together, these findings demonstrate that

  4. A single brain-derived neurotrophic factor infusion into the dorsomedial prefrontal cortex attenuates cocaine self-administration-induced phosphorylation of synapsin in the nucleus accumbens during early withdrawal.

    PubMed

    Sun, Wei-Lun; Eisenstein, Sarah A; Zelek-Molik, Agnieszka; McGinty, Jacqueline F

    2014-12-05

    Dysregulation in the prefrontal cortex-nucleus accumbens pathway has been implicated in cocaine addiction. We have previously demonstrated that one intra-dorsomedial prefrontal cortex brain-derived neurotrophic factor (BDNF) infusion immediately following the last cocaine self-administration session caused a long-lasting inhibition of cocaine-seeking and normalized the cocaine-induced disturbance of glutamate transmission in the nucleus accumbens after extinction and a cocaine prime. However, the molecular mechanism mediating the brain-derived neurotrophic factor effect on cocaine-induced alterations in extracellular glutamate levels is unknown. In the present study, we determined the effects of brain-derived neurotrophic factor on cocaine-induced changes in the phosphorylation of synapsin (p-synapsin), a family of presynaptic proteins that mediate synaptic vesicle mobilization, in the nucleus accumbens during early withdrawal. Two hours after cocaine self-administration, p-synapsin Ser9 and p-synapsin Ser62/67, but not p-synapsin Ser603, were increased in the nucleus accumbens. At 22 hours, only p-synapsin Ser9 was still elevated. Elevations at both time points were attenuated by an intra-dorsomedial prefrontal cortex brain-derived neurotrophic factor infusion immediately after the end of cocaine self-administration. Brain-derived neurotrophic factor also reduced cocaine self-administration withdrawal-induced phosphorylation of the protein phosphatase 2A C-subunit, suggesting that brain-derived neurotrophic factor disinhibits protein phosphatase 2A C-subunit, consistent with p-synapsin Ser9 dephosphorylation. Further, co-immunoprecipitation demonstrated that protein phosphatase 2A C-subunit and synapsin are associated in a protein-protein complex that was reduced after 2 hours of withdrawal from cocaine self-administration and reversed by brain-derived neurotrophic factor. Taken together, these findings demonstrate that brain-derived neurotrophic factor normalizes

  5. Combined cocaine hydrolase gene transfer and anti-cocaine vaccine synergistically block cocaine-induced locomotion.

    PubMed

    Carroll, Marilyn E; Zlebnik, Natalie E; Anker, Justin J; Kosten, Thomas R; Orson, Frank M; Shen, Xiaoyun; Kinsey, Berma; Parks, Robin J; Gao, Yang; Brimijoin, Stephen

    2012-01-01

    Mice and rats were tested for reduced sensitivity to cocaine-induced hyper-locomotion after pretreatment with anti-cocaine antibody or cocaine hydrolase (CocH) derived from human butyrylcholinesterase (BChE). In Balb/c mice, direct i.p. injection of CocH protein (1 mg/kg) had no effect on spontaneous locomotion, but it suppressed responses to i.p. cocaine up to 80 mg/kg. When CocH was injected i.p. along with a murine cocaine antiserum that also did not affect spontaneous locomotion, there was no response to any cocaine dose. This suppression of locomotor activity required active enzyme, as it was lost after pretreatment with iso-OMPA, a selective BChE inhibitor. Comparable results were obtained in rats that developed high levels of CocH by gene transfer with helper-dependent adenoviral vector, and/or high levels of anti-cocaine antibody by vaccination with norcocaine hapten conjugated to keyhole limpet hemocyanin (KLH). After these treatments, rats were subjected to a locomotor sensitization paradigm involving a "training phase" with an initial i.p. saline injection on day 1 followed by 8 days of repeated cocaine injections (10 mg/kg, i.p.). A 15-day rest period then ensued, followed by a final "challenge" cocaine injection. As in mice, the individual treatment interventions reduced cocaine-stimulated hyperactivity to a modest extent, while combined treatment produced a greater reduction during all phases of testing compared to control rats (with only saline pretreatment). Overall, the present results strongly support the view that anti-cocaine vaccine and cocaine hydrolase vector treatments together provide enhanced protection against the stimulatory actions of cocaine in rodents. A similar combination therapy in human cocaine users might provide a robust therapy to help maintain abstinence.

  6. Chronic heroin and cocaine abuse is associated with decreased serum concentrations of the nerve growth factor and brain-derived neurotrophic factor.

    PubMed

    Angelucci, Francesco; Ricci, Valerio; Pomponi, Massimiliano; Conte, Gianluigi; Mathé, Aleksander A; Attilio Tonali, Pietro; Bria, Pietro

    2007-11-01

    Chronic cocaine and heroin users display a variety of central nervous system (CNS) dysfunctions including impaired attention, learning, memory, reaction time, cognitive flexibility, impulse control and selective processing. These findings suggest that these drugs may alter normal brain functions and possibly cause neurotoxicity. Neurotrophins are a class of proteins that serve as survival factors for CNS neurons. In particular, nerve growth factor (NGF) plays an important role in the survival and function of cholinergic neurons while brain-derived neurotrophic factor (BDNF) is involved in synaptic plasticity and in the maintenance of midbrain dopaminergic and cholinergic neurons. In the present study, we measured by enzyme-linked immunosorbent assay (ELISA) the NGF and BDNF levels in serum of three groups of subjects: heroin-dependent patients, cocaine-dependent patients and healthy volunteers. Our goal was to identify possible change in serum neurotrophins in heroin and cocaine users. BDNF was decreased in heroin users whereas NGF was decreased in both heroin and cocaine users. These findings indicate that NGF and BDNF may play a role in the neurotoxicity and addiction induced by these drugs. In view of the neurotrophin hypothesis of schizophrenia the data also suggest that reduced level of neurotrophins may increase the risk of developing psychosis in drug users.

  7. Lack of lysozyme activity of natural and yeast-derived recombinant Der p 2.

    PubMed

    Hakkaart, G A; Aalberse, R C; van Ree, R

    1997-10-01

    For Dermatophagoides pteronyssinus a number of allergens have been reported. Although the function of several allergens is known, that of the house dust mite allergen Der p 2 is unknown. A role as lysozyme has been suggested. We tested a yeast-derived recombinant Der p 2 for its lysozymatic activity. This recombinant allergen and affinity-purified natural Der p 2 lacked this enzymatic activity. Whole-body mite extract retained its lysozymatic activity after removal of the group 2 allergen by monoclonal antibody depletion. Analysis of spent medium revealed the reciprocal: it contained group 2 allergen, but lacked lysozymatic activity. Together, these data demonstrate that mite lysozyme and Der p 2 are different components of mite extract.

  8. Prevention and reversal by cocaine esterase of cocaine-induced cardiovascular effects in rats

    PubMed Central

    Wood, Susan K.; Narasimhan, Diwahar; Cooper, Ziva; Sunahara, Roger K.; Woods, James H.

    2012-01-01

    The present study is the first to utilize bacterial cocaine esterase (CocE) to increase elimination of a lethal dose of cocaine and evaluate its cardioprotective effects. Rats received one of 5 treatments: CocE 1 min after saline; CocE 1 min after a lethal i.p. dose of cocaine; saline 1 min after a lethal i.p. dose of cocaine; CocE immediately after observing a cocaine-induced convulsion; and CocE 1 min after observing a cocaine-induced convulsion. Measures were taken of ECG, blood pressure, and cardiac troponin I (cTnI). The specificity of CocE against cocaine was determined by evaluating its actions against the cocaine analogue, WIN-35,065-2, which lacks an ester attack point for CocE. In addition, CocE’s effects were compared with those of midazolam, a benzodiazepine often used to manage cocaine overdose. Whereas CocE alone had negligible cardiovascular effects, it blocked or reversed cocaine-induced QRS complex widening, increased QTc interval, ST elevation, bradycardia, and hypertension. When administered 1 min after cocaine, CocE inhibited myocardial damage; however, administered 1 min after a cocaine-induced convulsion (approximately 40 s before cocaine-induced death), CocE did not block cTnI release, but did restore cardiac function. Midazolam blocked convulsions, but exhibited inadequate protection against cocaine-induced cardiotoxicity. The majority of rats given cocaine plus midazolam died. CocE did not prevent the lethal cardiovascular effects of WIN-35,065-2. In all likelihood, CocE rapidly and specifically reduced the body burden of cocaine and inhibited or reversed the cardiovascular consequences of high-dose cocaine. These results support CocE as a potential therapeutic avenue in cocaine overdose. PMID:19800183

  9. Deriving allowable daily intakes for systemic toxicants lacking chronic toxicity data

    SciTech Connect

    Layton, D.W.; Mallon, B.J.; Rosenblatt, D.H.; Small, M.J.

    1987-03-01

    The lack of human toxicological data for most chemical compounds makes it difficult to quickly assess health risks associated with exposure to contaminants at hazardous waste sites. It would therefore be advantageous to have a technique for estimating acceptable daily intakes (ADIs) of potentially toxic substances based on more widely available animal toxicity data. This article focuses on the use of LD50 data to derive provisional ADIs, and it suggests multiplying oral LD50 values (expressed in mg/kg of body wt) by a factor in the range of 5 X 10(-6) to 1 X 10(-5) day-1 to convert them to such ADIs. It is emphasized that these interim ADI values are no substitute for toxicity testing, but that such testing would most likely result in higher ADI estimates.

  10. Reaction Pathway for Cocaine Hydrolase-Catalyzed Hydrolysis of (+)-Cocaine

    PubMed Central

    Yao, Yuan; Liu, Junjun; Zheng, Fang; Zhan, Chang-Guo

    2017-01-01

    A recently designed and discovered cocaine hydrolase (CocH), engineered from human butyrylcholinesterase (BChE), has been proven promising as a novel enzyme therapy for treatment of cocaine overdose and addiction because it is highly efficient in catalyzing hydrolysis of naturally occurring (−)-cocaine. It has been known that the CocH also has a high catalytic efficiency against (+)-cocaine, a synthetic enantiomer of cocaine. Reaction pathway and the corresponding free energy profile for the CocH-catalyzed hydrolysis of (+)-cocaine have been determined, in the present study, by performing first-principles pseudobond quantum mechanical/molecular mechanical (QM/MM)-free energy (FE) calculations. Acordingt to the QM/MM-FE results, the catalytic hydrolysis process is initiated by the nucleophilic attack on carbonyl carbon of (−)-cocaine benzoyl ester via hydroxyl oxygen of S198 side chain, and the second reaction step (i.e. dissociation of benzoyl ester) is rate-determining. This finding for CocH-catalyzed hydrolysis of (+)-cocaine is remarkably different from that for the (+)-cocaine hydrolysis catalyzed by bacterial cocaine esterase in which the first reaction step of the deacylation is associated with the highest free energy barrier (~17.9 kcal/mol). The overall free energy barrier (~16.0 kcal/mol) calculated for the acylation stage of CocH-catalyzed hydrolysis of (+)-cocaine is in good agreement with the experimental free energy barrier of ~14.5 kcal/mol derivated from the experimental kinetic data. PMID:28250715

  11. Cocaine (Coke, Crack) Facts

    MedlinePlus

    ... That People Abuse » Cocaine (Coke, Crack) Facts Cocaine (Coke, Crack) Facts Listen Cocaine is a white ... Version Download "My life was built around getting cocaine and getting high." ©istock.com/ Marjot Stacey is ...

  12. Cocaine intoxication

    MedlinePlus

    ... with other substances, which can cause additional symptoms. Exams and Tests Tests may include: Blood chemistries and ... ECG) References Perrone J, Hoffman RS. Cocaine, amphetamines, caffeine, and nicotine. In: Tintinalli JE, Kelen GD, Stapczynski ...

  13. Plasma profile of pro-inflammatory cytokines and chemokines in cocaine users under outpatient treatment: influence of cocaine symptom severity and psychiatric co-morbidity.

    PubMed

    Araos, Pedro; Pedraz, María; Serrano, Antonia; Lucena, Miguel; Barrios, Vicente; García-Marchena, Nuria; Campos-Cloute, Rafael; Ruiz, Juan J; Romero, Pablo; Suárez, Juan; Baixeras, Elena; de la Torre, Rafael; Montesinos, Jorge; Guerri, Consuelo; Rodríguez-Arias, Marta; Miñarro, José; Martínez-Riera, Roser; Torrens, Marta; Chowen, Julie A; Argente, Jesús; Mason, Barbara J; Pavón, Francisco J; Rodríguez de Fonseca, Fernando

    2015-07-01

    The treatment for cocaine use constitutes a clinical challenge because of the lack of appropriate therapies and the high rate of relapse. Recent evidence indicates that the immune system might be involved in the pathogenesis of cocaine addiction and its co-morbid psychiatric disorders. This work examined the plasma pro-inflammatory cytokine and chemokine profile in abstinent cocaine users (n = 82) who sought outpatient cocaine treatment and age/sex/body mass-matched controls (n = 65). Participants were assessed with the diagnostic interview Psychiatric Research Interview for Substance and Mental Diseases according to the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text Revision (DSM-IV-TR). Tumor necrosis factor-alpha, chemokine (C-C motif) ligand 2/monocyte chemotactic protein-1 and chemokine (C-X-C motif) ligand 12 (CXCL12)/stromal cell-derived factor-1 (SDF-1) were decreased in cocaine users, although all cytokines were identified as predictors of a lifetime pathological use of cocaine. Interleukin-1 beta (IL-1β), chemokine (C-X3-C motif) ligand 1 (CX3CL1)/fractalkine and CXCL12/SDF-1 positively correlated with the cocaine symptom severity when using the DSM-IV-TR criteria for cocaine abuse/dependence. These cytokines allowed the categorization of the outpatients into subgroups according to severity, identifying a subgroup of severe cocaine users (9-11 criteria) with increased prevalence of co-morbid psychiatric disorders [mood (54%), anxiety (32%), psychotic (30%) and personality (60%) disorders]. IL-1β was observed to be increased in users with such psychiatric disorders relative to those users with no diagnosis. In addition to these clinical data, studies in mice demonstrated that plasma IL-1β, CX3CL1 and CXCL12 were also affected after acute and chronic cocaine administration, providing a preclinical model for further research. In conclusion, cocaine exposure modifies the circulating levels of pro-inflammatory mediators. Plasma

  14. Sigma receptors and cocaine abuse.

    PubMed

    Narayanan, Sanju; Mesangeau, Christophe; Poupaert, Jacques H; McCurdy, Christopher R

    2011-01-01

    Sigma receptors have been well documented as a protein target for cocaine and have been shown to be involved in the toxic and stimulant actions of cocaine. Strategies to reduce the access of cocaine to sigma receptors have included antisense oligonucleotides to the sigma-1 receptor protein as well as small molecule ligand with affinity for sigma receptor sites. These results have been encouraging as novel protein targets that can attenuate the actions of cocaine are desperately needed as there are currently no medications approved for treatment of cocaine toxicity or addiction. Many years of research in this area have yet to produce an effective treatment and much focus was on dopamine systems. A flurry of research has been carried out to elucidate the role of sigma receptors in the blockade of cocaine effects but this research has yet to yield a clinical agent. This review summarizes the work to date on the linkage of sigma receptors and the actions of cocaine and the progress that has been made with regard to small molecules. Although there is still a lack of an agent in clinical trials with a sigma receptor mechanism of action, work is progressing and the ligands are becoming more selective for sigma systems and the potential remains high.

  15. Neurobehavioral sequelae of fetal cocaine exposure.

    PubMed

    Singer, L T; Garber, R; Kliegman, R

    1991-10-01

    The number of infants born to cocaine-using mothers has continued to rise during the past 5 years. Maternal cocaine use during pregnancy is associated with medical and life-style characteristics detrimental to fetal and infant development. Cocaine exposure has been independently linked to growth retardation and impaired fetal oxygenation even when polydrug use and other confounding factors are considered. Neurologic and neurobehavioral abnormalities noted in the immediate neonatal period have also been associated with fetal cocaine exposure. The direct and indirect toxic effects of cocaine, per se, have not yet been independently linked to specific behavioral outcomes because of small sample sizes, confounding factors, and lack of long-term follow-up. The impoverished environments and increased risk for out-of-family placement of cocaine-exposed infants are known independent correlates of negative developmental outcomes. Poor maternal nutrition, lack of prenatal care, and other health and life-style factors related to maternal cocaine use during pregnancy also appear to be factors mediating the developmental problems of cocaine-exposed infants. The cocaine-using mother often uses other drugs, particularly alcohol, independently known to be linked to growth and behavioral impairments similar to those proposed for cocaine-exposed infants. Accounting for these multiple confounding variables in studies of the specific effects of cocaine on neurobehavioral outcome may be scientifically appropriate, but in clinical practice these factors cannot be "isolated," and their statistical consideration in studies does not diminish clinical risk. Finally, currently available studies of behavioral outcome have restricted their samples to term infants. It is possible that preterm infants may be less affected by prenatal cocaine exposure because of decreased exposure. However, because epidemiologic studies suggest that prematurity is a sequelae of maternal cocaine use, restriction

  16. Multiple faces of BDNF in cocaine addiction.

    PubMed

    Li, Xuan; Wolf, Marina E

    2015-02-15

    Brain-derived neurotrophic factor (BDNF) has been found to play roles in many types of plasticity including drug addiction. Here, we focus on rodent studies over the past two decades that have demonstrated diverse roles of BDNF in models of cocaine addiction. First, we will provide an overview of studies showing that cocaine exposure alters (and generally increases) BDNF levels in reward-related regions including the ventral tegmental area, nucleus accumbens, prefrontal cortex, and amygdala. Then we will review evidence that BDNF contributes to behavioral changes in animal models of cocaine addiction, focusing on conditioned place preference, behavioral sensitization, maintenance and reinstatement of self-administration, and incubation of cocaine craving. Last, we will review the role of BDNF in synaptic plasticity, particularly as it relates to plasticity of AMPA receptor transmission after cocaine exposure. We conclude that BDNF regulates cocaine-induced behaviors in a highly complex manner that varies depending on the brain region (and even among different cell types within the same brain region), the nature of cocaine exposure, and the "addiction phase" examined (e.g., acquisition vs maintenance; early vs late withdrawal). These complexities make BDNF a daunting therapeutic target for treating cocaine addiction. However, recent clinical evidence suggests that the serum BDNF level may serve as a biomarker in cocaine addicts to predict future relapse, providing an alternative direction for exploring BDNF's potential relevance to treating cocaine addiction. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Multiple faces of BDNF in cocaine addiction

    PubMed Central

    Li, Xuan; Wolf, Marina E.

    2014-01-01

    Brain-derived neurotrophic factor (BDNF) has been found to play roles in many types of plasticity including drug addiction. Here we focus on rodent studies over the past two decades that have demonstrated diverse roles of BDNF in models of cocaine addiction. First, we will provide an overview of studies showing that cocaine exposure alters (and generally increases) BDNF levels in reward-related regions including the ventral tegmental area, nucleus accumbens, prefrontal cortex, and amygdala. Then we will review evidence that BDNF contributes to behavioral changes in animal models of cocaine addiction, focusing on conditioned place preference, behavioral sensitization, maintenance and reinstatement of self-administration, and incubation of cocaine craving. Last, we will review the role of BDNF in synaptic plasticity, particularly as it relates to plasticity of AMPA receptor transmission after cocaine exposure. We conclude that BDNF regulates cocaine-induced behaviors in a highly complex manner that varies depending on the brain region (and even among different cell types within the same brain region), the nature of cocaine exposure, and the “addiction phase” examined (e.g., acquisition vs maintenance; early vs late withdrawal). These complexities make BDNF a daunting therapeutic target for treating cocaine addiction. However, recent clinical evidence suggests that the serum BDNF level may serve as a biomarker in cocaine addicts to predict future relapse, providing an alternative direction for exploring BDNF’s potential relevance to treating cocaine addiction. PMID:25449839

  18. Increased brain-derived neurotrophic factor (BDNF) protein concentrations in mice lacking brain serotonin.

    PubMed

    Kronenberg, Golo; Mosienko, Valentina; Gertz, Karen; Alenina, Natalia; Hellweg, Rainer; Klempin, Friederike

    2016-04-01

    The interplay between BDNF signaling and the serotonergic system remains incompletely understood. Using a highly sensitive enzyme-linked immunosorbent assay, we studied BDNF concentrations in hippocampus and cortex of two mouse models of altered serotonin signaling: tryptophan hydroxylase (Tph)2-deficient (Tph2 (-/-)) mice lacking brain serotonin and serotonin transporter (SERT)-deficient (SERT(-/-)) mice lacking serotonin re-uptake. Surprisingly, hippocampal BDNF was significantly elevated in Tph2 (-/-) mice, whereas no significant changes were observed in SERT(-/-) mice. Furthermore, BDNF levels were increased in the prefrontal cortex of Tph2 (-/-) but not of SERT(-/-) mice. Our results emphasize the interaction between serotonin signaling and BDNF. Complete lack of brain serotonin induces BDNF expression.

  19. Mind Over Matter: Cocaine

    MedlinePlus

    ... Teaching Guide and Series / Cocaine Mind Over Matter: Cocaine Print Order Free Publication in: English Spanish Download ... crack, can be smoked. The Brain's Response to Cocaine Hi, my name’s Sara Bellum. Welcome to my ...

  20. Sleep Regulates Incubation of Cocaine Craving.

    PubMed

    Chen, Bo; Wang, Yao; Liu, Xiaodong; Liu, Zheng; Dong, Yan; Huang, Yanhua H

    2015-09-30

    After withdrawal from cocaine, chronic cocaine users often experience persistent reduction in total sleep time, which is accompanied by increased sleep fragmentation resembling chronic insomnia. This and other sleep abnormalities have long been speculated to foster relapse and further drug addiction, but direct evidence is lacking. Here, we report that after prolonged withdrawal from cocaine self-administration, rats exhibited persistent reduction in nonrapid-eye-movement (NREM) and rapid-eye-movement (REM) sleep, as well as increased sleep fragmentation. In an attempt to improve sleep after cocaine withdrawal, we applied chronic sleep restriction to the rats during their active (dark) phase of the day, which selectively decreased the fragmentation of REM sleep during their inactive (light) phase without changing NREM or the total amount of daily sleep. Animals with improved REM sleep exhibited decreased incubation of cocaine craving, a phenomenon depicting the progressive intensification of cocaine seeking after withdrawal. In contrast, experimentally increasing sleep fragmentation after cocaine self-administration expedited the development of incubation of cocaine craving. Incubation of cocaine craving is partially mediated by progressive accumulation of calcium-permeable AMPA receptors (CP-AMPARs) in the nucleus accumbens (NAc). After withdrawal from cocaine, animals with improved REM sleep exhibited reduced accumulation of CP-AMPARs in the NAc, whereas increasing sleep fragmentation accelerated NAc CP-AMPAR accumulation. These results reveal a potential molecular substrate that can be engaged by sleep to regulate cocaine craving and relapse, and demonstrate sleep-based therapeutic opportunities for cocaine addiction. Significance statement: Sleep abnormalities are common symptoms in chronic drug users long after drug withdrawal. These withdrawal-associated sleep symptoms, particularly reduction in total sleep time and deteriorating sleep quality, have been

  1. Sleep Regulates Incubation of Cocaine Craving

    PubMed Central

    Chen, Bo; Wang, Yao; Liu, Xiaodong; Liu, Zheng

    2015-01-01

    After withdrawal from cocaine, chronic cocaine users often experience persistent reduction in total sleep time, which is accompanied by increased sleep fragmentation resembling chronic insomnia. This and other sleep abnormalities have long been speculated to foster relapse and further drug addiction, but direct evidence is lacking. Here, we report that after prolonged withdrawal from cocaine self-administration, rats exhibited persistent reduction in nonrapid-eye-movement (NREM) and rapid-eye-movement (REM) sleep, as well as increased sleep fragmentation. In an attempt to improve sleep after cocaine withdrawal, we applied chronic sleep restriction to the rats during their active (dark) phase of the day, which selectively decreased the fragmentation of REM sleep during their inactive (light) phase without changing NREM or the total amount of daily sleep. Animals with improved REM sleep exhibited decreased incubation of cocaine craving, a phenomenon depicting the progressive intensification of cocaine seeking after withdrawal. In contrast, experimentally increasing sleep fragmentation after cocaine self-administration expedited the development of incubation of cocaine craving. Incubation of cocaine craving is partially mediated by progressive accumulation of calcium-permeable AMPA receptors (CP-AMPARs) in the nucleus accumbens (NAc). After withdrawal from cocaine, animals with improved REM sleep exhibited reduced accumulation of CP-AMPARs in the NAc, whereas increasing sleep fragmentation accelerated NAc CP-AMPAR accumulation. These results reveal a potential molecular substrate that can be engaged by sleep to regulate cocaine craving and relapse, and demonstrate sleep-based therapeutic opportunities for cocaine addiction. SIGNIFICANCE STATEMENT Sleep abnormalities are common symptoms in chronic drug users long after drug withdrawal. These withdrawal-associated sleep symptoms, particularly reduction in total sleep time and deteriorating sleep quality, have been

  2. Deriving Mechanisms Responsible for the Lack of Correlation between Hypoxia and Acidity in Solid Tumors

    PubMed Central

    Molavian, Hamid R.; Kohandel, Mohammad; Milosevic, Michael; Sivaloganathan, Sivabal

    2011-01-01

    Hypoxia and acidity are two main microenvironmental factors intimately associated with solid tumors and play critical roles in tumor growth and metastasis. The experimental results of Helmlinger and colleagues (Nature Medicine 3, 177, 1997) provide evidence of a lack of correlation between these factors on the micrometer scale in vivo and further show that the distribution of pH and pO2 are heterogeneous. Here, using computational simulations, grounded in these experimental results, we show that the lack of correlation between pH and pO2 and the heterogeneity in their shapes are related to the heterogeneous concentration of buffers and oxygen in the blood vessels, further amplified by the network of blood vessels and the cell metabolism. We also demonstrate that, although the judicious administration of anti-angiogenesis agents (normalization process) in tumors may lead to recovery of the correlation between hypoxia and acidity, it may not normalize the pH throughout the whole tumor. However, an increase in the buffering capacity inside the blood vessels does appear to increase the extracellular pH throughout the whole tumor. Based on these results, we propose that the application of anti-angiogenic agents and at the same time increasing the buffering capacity of the tumor extracellular environment may be the most efficient way of normalizing the tumor microenvironment. As a by-product of our simulation we show that the recently observed lack of correlation between glucose consumption and hypoxia in cells which rely on respiration is related to the inhomogeneous consumption of glucose to oxygen concentration. We also demonstrate that this lack of correlation in cells which rely on glycolysis could be related to the heterogeneous concentration of oxygen inside the blood vessels. PMID:22174768

  3. Escherichia coli derivatives lacking both alcohol dehydrogenase and phosphotransacetylase grow anaerobically by lactate fermentation.

    PubMed Central

    Gupta, S; Clark, D P

    1989-01-01

    Escherichia coli mutants lacking alcohol dehydrogenase (adh mutants) cannot synthesize the fermentation product ethanol and are unable to grow anaerobically on glucose and other hexoses. Similarly, phosphotransacetylase-negative mutants (pta mutants) neither excrete acetate nor grow anaerobically. However, when a strain carrying an adh deletion was selected for anaerobic growth on glucose, spontaneous pta mutants were isolated. Strains carrying both adh and pta mutations were observed by in vivo nuclear magnetic resonance and shown to produce lactic acid as the major fermentation product. Various combinations of adh pta double mutants regained the ability to grow anaerobically on hexoses, by what amounts to a homolactic fermentation. Unlike wild-type strains, such adh pta double mutants were unable to grow anaerobically on sorbitol or on glucuronic acid. The growth properties of strains carrying various mutations affecting the enzymes of fermentation are discussed in terms of redox balance. PMID:2661531

  4. Escherichia coli derivatives lacking both alcohol dehydrogenase and phosphotransacetylase grow anaerobically by lactate fermentation.

    PubMed

    Gupta, S; Clark, D P

    1989-07-01

    Escherichia coli mutants lacking alcohol dehydrogenase (adh mutants) cannot synthesize the fermentation product ethanol and are unable to grow anaerobically on glucose and other hexoses. Similarly, phosphotransacetylase-negative mutants (pta mutants) neither excrete acetate nor grow anaerobically. However, when a strain carrying an adh deletion was selected for anaerobic growth on glucose, spontaneous pta mutants were isolated. Strains carrying both adh and pta mutations were observed by in vivo nuclear magnetic resonance and shown to produce lactic acid as the major fermentation product. Various combinations of adh pta double mutants regained the ability to grow anaerobically on hexoses, by what amounts to a homolactic fermentation. Unlike wild-type strains, such adh pta double mutants were unable to grow anaerobically on sorbitol or on glucuronic acid. The growth properties of strains carrying various mutations affecting the enzymes of fermentation are discussed in terms of redox balance.

  5. Escherichia coli derivatives lacking both alcohol dehydrogenase and phosphotransacetylase grow anaerobically by lactate fermentation

    SciTech Connect

    Gupta, S.; Clark, D.P. )

    1989-07-01

    Escherichia coli mutants lacking alcohol dehydrogenase (adh mutants) cannot synthesize the fermentation product ethanol and are unable to grow anaerobically on glucose and other hexoses. Similarly, phosphotransacetylase-negative mutants (pta mutants) neither excrete acetate nor grow anaerobically. However, when a strain carrying an adh deletion was selected for anaerobic growth on glucose, spontaneous pta mutants were isolated. Strains carrying both adh and pta mutations were observed by in vivo nuclear magnetic resonance and shown to produce lactic acid as the major fermentation product. Various combinations of adh pta double mutants regained the ability to grow anaerobically on hexoses, by what amounts to a homolactic fermentation. Unlike wild-type strains, such adh pta double mutants were unable to grow anaerobically on sorbitol or on glucuronic acid. The growth properties of strains carrying various mutations affecting the enzymes of fermentation are discussed terms of redox balance.

  6. Polygenic determinants of white matter volume derived from GWAS lack reproducibility in a replicate sample

    PubMed Central

    Papiol, S; Mitjans, M; Assogna, F; Piras, F; Hammer, C; Caltagirone, C; Arias, B; Ehrenreich, H; Spalletta, G

    2014-01-01

    A recent publication reported an exciting polygenic effect of schizophrenia (SCZ) risk variants, identified by a large genome-wide association study (GWAS), on total brain and white matter volumes in schizophrenic patients and, even more prominently, in healthy subjects. The aim of the present work was to replicate and then potentially extend these findings. According to the original publication, polygenic risk scores—using single nucleotide polymorphism (SNP) information of SCZ GWAS—(polygenic SCZ risk scores; PSS) were calculated in 122 healthy subjects, enrolled in a structural magnetic resonance imaging (MRI) study. These scores were computed based on P-values and odds ratios available through the Psychiatric GWAS Consortium. In addition, polygenic white matter scores (PWM) were calculated, using the respective SNP subset in the original publication. None of the polygenic scores, either PSS or PWM, were found to be associated with total brain, white matter or gray matter volume in our replicate sample. Minor differences between the original and the present study that might have contributed to lack of reproducibility (but unlikely explain it fully), are number of subjects, ethnicity, age distribution, array technology, SNP imputation quality and MRI scanner type. In contrast to the original publication, our results do not reveal the slightest signal of association of the described sets of GWAS-identified SCZ risk variants with brain volumes in adults. Caution is indicated in interpreting studies building on polygenic risk scores without replication sample. PMID:24548877

  7. Mice Lacking Platelet-Derived Growth Factor D Display a Mild Vascular Phenotype

    PubMed Central

    Muhl, Lars; Ehnman, Monika; Tannenberg, Philip; Lawrence, Anna-Lisa; Betsholtz, Christer; Eriksson, Ulf

    2016-01-01

    Platelet-derived growth factor D (PDGF-D) is the most recently discovered member of the PDGF family. PDGF-D signals through PDGF receptor β, but its biological role remains largely unknown. In contrast to other members of the PDGF family of growth factors, which have been extensively investigated using different knockout approaches in mice, PDGF-D has until now not been characterized by gene inactivation in mice. Here, we present the phenotype of a constitutive Pdgfd knockout mouse model (Pdgfd-/-), carrying a LacZ reporter used to visualize Pdgfd promoter activity. Inactivation of the Pdgfd gene resulted in a mild phenotype in C57BL/6 mice, and the offspring was viable, fertile and generally in good health. We show that Pdgfd reporter gene activity was consistently localized to vascular structures in both postnatal and adult tissues. The expression was predominantly arterial, often localizing to vascular bifurcations. Endothelial cells appeared to be the dominating source for Pdgfd, but reporter gene activity was occasionally also found in subpopulations of mural cells. Tissue-specific analyses of vascular structures revealed that NG2-expressing pericytes of the cardiac vasculature were disorganized in Pdgfd-/- mice. Furthermore, Pdgfd-/- mice also had a slightly elevated blood pressure. In summary, the vascular expression pattern together with morphological changes in NG2-expressing cells, and the increase in blood pressure, support a function for PDGF-D in regulating systemic arterial blood pressure, and suggests a role in maintaining vascular homeostasis. PMID:27032083

  8. Purine (N)-Methanocarba Nucleoside Derivatives Lacking an Exocyclic Amine as Selective A3 Adenosine Receptor Agonists

    PubMed Central

    2016-01-01

    Purine (N)-methanocarba-5′-N-alkyluronamidoriboside A3 adenosine receptor (A3AR) agonists lacking an exocyclic amine resulted from an unexpected reaction during a Sonogashira coupling and subsequent aminolysis. Because the initial C6-Me and C6-styryl derivatives had unexpectedly high A3AR affinity, other rigid nucleoside analogues lacking an exocyclic amine were prepared. Of these, the C6-Me-(2-phenylethynyl) and C2-(5-chlorothienylethynyl) analogues were particularly potent, with human A3AR Ki values of 6 and 42 nM, respectively. Additionally, the C2-(5-chlorothienyl)-6-H analogue was potent and selective at A3AR (MRS7220, Ki 60 nM) and also completely reversed mouse sciatic nerve mechanoallodynia (in vivo, 3 μmol/kg, po). The lack of a C6 H-bond donor while maintaining A3AR affinity and efficacy could be rationalized by homology modeling and docking of these hypermodified nucleosides. The modeling suggests that a suitable combination of stabilizing features can partially compensate for the lack of an exocyclic amine, an otherwise important contributor to recognition in the A3AR binding site. PMID:26890707

  9. Regulation of cocaine craving by cognitive strategies in an online sample of cocaine users.

    PubMed

    Strickland, Justin C; Reynolds, Anna R; Stoops, William W

    2016-08-01

    Emphasis on the negative consequences of drug use is a critical component of cognitive-behavioral therapy (CBT) skills to regulate craving. Despite the relative success of CBT for treating substance use disorders, effective human laboratory models of CBT are lacking. Recent reports have indicated that the regulation of craving (ROC) task provides a valid model of craving regulation for nicotine, alcohol, and methamphetamine use. The present study examined ROC in an online sample of regular cocaine users (n = 44) recruited from Amazon.com's Mechanical Turk. In the ROC task, cognitive regulation strategies were manipulated by instructing participants to think about either the positive or negative consequences of consuming cocaine. Participants were then presented with cocaine images while engaging in each cognitive regulation strategy and asked to report current craving that was then compared to neutral look conditions. Food images served as a control. A cocaine purchase task was also completed to assess economic demand for cocaine and its relationship with cocaine craving. The use of negative appraisal strategies that model those used in CBT significantly attenuated craving for cocaine. Cocaine craving was also stimulus-specific, with greater smoked cocaine craving reported by individuals with a history of smoked cocaine use. This online extension of the ROC task provides converging evidence for its use as a model of CBT cocaine-craving regulation. Futures studies can use this model to examine the mechanisms underlying the effectiveness of CBT for cocaine use and the relationship between craving regulation and drug-use behavior. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  10. The spatial epidemiology of cocaine, methamphetamine and MDMA use: A demonstration using a population measure of community drug load derived from municipal wastewater

    PubMed Central

    Banta-Green, Caleb J.; Field, Jennifer A.; Chiaia, Aurea; Sudakin, Daniel L.; Power, Laura; de Montigny, Luc

    2011-01-01

    Aims To determine the utility of community wide drug testing with wastewater samples as a population measure of community drug use and to to test the hypothesis that the association with urbanicity would vary for three different stimulant drugs of abuse. Design and participants Single day samples were obtained from a convenience sample of 96 municipalities representing 65% of the population of the State of Oregon. Measurements Chemical analysis of 24 hour composite influent samples for benzoylecgonine (BZE, a cocaine metabolite), methamphetamine, and 3,4-methylenedioxymethamphetamine (MDMA). The distribution of community index drug loads accounting for total wastewater flow (i.e. dilution) and population are reported. Findings The distribution of wastewater derived drug index loads were found to correspond with expected epidemiological drug patterns. Index loads of BZE were significantly higher in urban areas and below detection in many rural areas. Conversely, methamphetamine was present in all municipalities with no significant differences in index loads by urbanicity. MDMA was at quantifiable levels in less than half of the communities, with a significant trend towards higher index loads in more urban areas. Conclusion This demonstration provides the first evidence of the utility of wastewater derived community drug loads for spatial analyses. Such data have the potential to dramatically improve measurement of the true level and distribution of a range of drugs. Drug index load data provide information for all people in a community and are potentially applicable to a much larger proportion of the total population than existing measures. PMID:19624572

  11. Cocaine and Cardiovascular Events.

    ERIC Educational Resources Information Center

    Cantwell, John D.; Rose, Fred D.

    1986-01-01

    The case of a 21-year-old man who suffered a myocardial infarction after using cocaine and amphetamines is reported. A brief literature review provides evidence of cocaine's potential cardiovascular effects. (Author/MT)

  12. Cocaine and Cardiovascular Events.

    ERIC Educational Resources Information Center

    Cantwell, John D.; Rose, Fred D.

    1986-01-01

    The case of a 21-year-old man who suffered a myocardial infarction after using cocaine and amphetamines is reported. A brief literature review provides evidence of cocaine's potential cardiovascular effects. (Author/MT)

  13. Cocaine and Pregnancy

    MedlinePlus

    ... be expected for the newborn. What about using cocaine and other drugs at the same time? Using other drugs, including ... also harm the baby. The combined effect of cocaine and other drugs may be worse for the developing baby than ...

  14. Substance use -- cocaine

    MedlinePlus

    ... coca, coke, flake, rock, snow, speedball, toot. Cocaine's Effects on Your Brain Cocaine is a strong stimulant. They make the ... thinking. It is also called the feel-good brain chemical. Using cocaine may cause pleasurable effects such as: Joy (euphoria, or a "flash" or " ...

  15. A novel sulindac derivative lacking COX-inhibitory activities suppresses carcinogenesis in the transgenic adenocarcinoma of mouse prostate model

    PubMed Central

    Zhang, Yong; Zhang, Jinhui; Wang, Lei; Quealy, Emily; Gary, Bernard D.; Reynolds, Robert C.; Piazza, Gary A.; Lü, Junxuan

    2016-01-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) including sulindac are well-documented to be highly effective for cancer chemoprevention. However, their cyclooxygenase (COX) inhibitory activities cause severe gastrointestinal and cardiovascular toxicities, limiting their chronic use. Recent studies suggest that COX-independent mechanisms may be responsible for the chemopreventive benefits of the NSAIDs, and support the potential for development of a novel generation of sulindac derivatives lacking COX inhibition for cancer chemoprevention. A prototypic sulindac derivative with a N,N-dimethylammonium substitution, referred to as sulindac sulfide amide (SSA) was recently identified to be devoid of COX inhibitory activity yet displays much more potent tumor cell growth inhibitory activity in vitro compared to sulindac sulfide. In this study, we investigated the androgen receptor (AR) signaling pathway as a potential target for its COX-independent antineoplastic mechanism and evaluated its chemopreventive efficacy against prostate carcinogenesis using the TRAMP mouse model. The results showed that SSA significantly suppressed the growth of human and mouse prostate cancer cells expressing AR in strong association with G1 arrest, and decreased AR level and AR-dependent transactivation. Dietary SSA consumption from 6 to 24 weeks of age dramatically attenuated prostatic growth and suppressed AR-dependent glandular epithelial lesion progression via repressing cell proliferation in the TRAMP mice, whereas it did not significantly impact neuroendocrine carcinoma growth. Overall, the results suggest that SSA may be a chemopreventive candidate against prostate glandular epithelial carcinogenesis. PMID:20587701

  16. A novel sulindac derivative lacking cyclooxygenase-inhibitory activities suppresses carcinogenesis in the transgenic adenocarcinoma of mouse prostate model.

    PubMed

    Zhang, Yong; Zhang, Jinhui; Wang, Lei; Quealy, Emily; Gary, Bernard D; Reynolds, Robert C; Piazza, Gary A; Lü, Junxuan

    2010-07-01

    Nonsteroidal anti-inflammatory drugs including sulindac are well documented to be highly effective for cancer chemoprevention. However, their cyclooxygenase (COX)-inhibitory activities cause severe gastrointestinal, renal, and cardiovascular toxicities, limiting their chronic use. Recent studies suggest that COX-independent mechanisms may be responsible for the chemopreventive benefits of nonsteroidal anti-inflammatory drugs and support the potential for the development of a novel generation of sulindac derivatives lacking COX inhibition for cancer chemoprevention. A prototypic sulindac derivative with a N,N-dimethylammonium substitution called sulindac sulfide amide (SSA) was recently identified to be devoid of COX-inhibitory activity yet displays much more potent tumor cell growth-inhibitory activity in vitro compared with sulindac sulfide. In this study, we investigated the androgen receptor (AR) signaling pathway as a potential target for its COX-independent antineoplastic mechanism and evaluated its chemopreventive efficacy against prostate carcinogenesis using the transgenic adenocarcinoma of mouse prostate model. The results showed that SSA significantly suppressed the growth of human and mouse prostate cancer cells expressing AR in strong association with G(1) arrest, and decreased AR level and AR-dependent transactivation. Dietary SSA consumption dramatically attenuated prostatic growth and suppressed AR-dependent glandular epithelial lesion progression through repressing cell proliferation in the transgenic adenocarcinoma of mouse prostate mice, whereas it did not significantly affect neuroendocrine carcinoma growth. Overall, the results suggest that SSA may be a chemopreventive candidate against prostate glandular epithelial carcinogenesis. 2010 AACR.

  17. Block of a Ca(2+)-activated potassium channel by cocaine.

    PubMed

    Premkumar, L S

    2005-04-01

    The primary target for cocaine is believed to be monoamine transporters because of cocaine's high-affinity binding that prevents re-uptake of released neurotransmitter. However, direct interaction with ion channels has been shown to be important for certain pharmacological/toxicological effects of cocaine. Here I show that cocaine selectively blocks a calcium-dependent K(+) channel in hippocampal neurons grown in culture (IC(50)=approximately 30 microM). Single-channel recordings show that in the presence of cocaine, the channel openings are interrupted with brief closures (flicker block). As the concentration of cocaine is increased the open-time is reduced, whereas the duration of brief closures is independent of concentration. The association and dissociation rate constants of cocaine for the neuronal Ca(2+)-activated K(+ )channels are 261+/-37 microM: (-1)s(-1) and 11451+/-1467 s(-1). The equilibrium dissociation constant (K(B)) for cocaine, determined from single-channel parameters, is 43 microM. The lack of voltage dependence of block suggests that cocaine probably binds to a site at the mouth of the pore. Block of Ca(2+)-dependent K(+) channels by cocaine may be involved in functions that include broadening of the action potential, which would facilitate transmitter release, enhancement of smooth muscle contraction particularly in blood vessels, and modulation of repetitive neuronal firing by altering the repolarization and afterhyperpolarization phases of the action potential.

  18. Cocaine. Diagnosis and treatment.

    PubMed

    Weddington, W W

    1993-03-01

    Significant advances in our understanding the phenomenology of cocaine addiction have occurred in the past 12 years such that we now recognize addiction to cocaine as a major public health problem. We now can diagnose cocaine addiction more accurately. Furthermore, cocaine addiction has stimulated creation and testing of novel treatment efforts because standard addiction treatment, although efficacious, is not as effective for cocaine addiction as compared with other addictions. Much remains to be learned. We need to clarify symptoms and syndromes associated with cocaine addiction to more precisely delineate true "comorbidity." Special attention is needed to understand the course and response to treatment in women addicted to cocaine. Also, work is needed to clarify the interaction of HIV, cocaine, and pharmacotherapy used to treat HIV. Regarding treatment, effort is needed to better understand the interactions among educational, group, cognitive-behavioral, and pharmacologic interventions. Specific attention is needed regarding use of 12-step recovery programs adapted for cocaine addicts with comorbid psychiatric disorders, such as schizophrenia, mood, and anxiety disorders. Finally, we need to better understand ways of attracting and holding cocaine addicts in treatment earlier in the course of their disorder. To that end, "nontraditional" interventions, such as acupuncture, deserve systematic examination as alternative methods of recruitment and intervention for certain populations of cocaine addicts.

  19. Premature Ovarian Failure in Mice with Oocytes Lacking Core 1-Derived O-Glycans and Complex N-Glycans

    PubMed Central

    2011-01-01

    Premature ovarian failure (POF) affects up to 1.4% of women under the age of 40 yr and less than 30% of cases have a known cause. Here we describe a new mouse model of POF resulting from oocyte-specific ablation of core 1-derived (mucin) O-glycans and complex and hybrid N-glycans. Females carrying floxed alleles of both the C1galt1 (T-syn) and Mgat1 glycosyltransferase genes and a ZP3Cre transgene, generate oocytes lacking complex O- and N-glycans following oocyte-specific deletion at the primary follicle stage. We previously showed that few double-mutant females are fertile, and those produce only a single small litter. Here we show that ovarian function declined rapidly in double-mutant females with less than 1% ovulating at 11 wk of age after superovulation with exogenous gonadotropins. Ovary weight was significantly decreased in double-mutant females by 3 months of age, consistent with a decrease in the number of developing follicles. FSH levels in double-mutant females were elevated at 3 months of age, and testosterone and inhibin A were decreased, showing that the loss of complex N- and O-glycans from oocyte glycoproteins affected hypothalamic-pituitary-gonadal feedback loops. The absence of developing follicles, ovary dysfunction, reduced testosterone and inhibin A, and elevated FSH in double-mutant females lacking C1galt1 and Mgat1 in oocytes represents a new mouse model for the study of follicular POF. PMID:21239444

  20. Lack of plasma membrane targeting of a G172D mutant thiamine transporter derived from Rogers syndrome family.

    PubMed Central

    Baron, Dana; Assaraf, Yehuda G.; Cohen, Nadine; Aronheim, Ami

    2002-01-01

    BACKGROUND: Rogers syndrome, also known as thiamine responsive megaloblastic anemia (TRMA), is an autosomal recessive disorder resulting in megaloblastic anemia, diabetes mellitus and sensorineural deafness. The gene associated with Rogers syndrome encodes for a plasma membrane thiamine transporter, THTR-1, a member of the solute carrier family that includes its homologue THTR-2 and the reduced folate carrier. MATERIALS AND METHODS: Using transient expression of wild-type and a missense mutant THTR-1 protein, derived from a TRMA family, in different cell lines and immunodetection analysis, we determined the expression, posttranslational modification, and subcellular localization of the wild-type and G172D mutant THTR-1. The transport activity of the transfected THTR-1 proteins was measured using a [(3) H] thiamine uptake assay. RESULTS: The mutant THTR-1 protein was undetectable in transfected cells grown at 37 degrees C but was readily expressed in transfected cells cultured at 28 degrees C, thereby allowing for further biochemical and functional analysis. In contrast to its fully glycosylated wild-type mature protein, the mutant THTR-1 protein underwent only the initial stage of N-linked glycosylation. The failure to undergo a complete glycosylation resulted in the lack of plasma membrane targeting and confinement of the mutant THTR-1 to the Golgi and endoplasmic reticulum (ER) compartment. Consistently, either treatment with tunicamycin or substitution of the THTR-1 consensus N-glycosylation acceptor asparagine 63 with glutamine, abolished its glycosylation and plasma membrane targeting. CONCLUSIONS: Taken collectively, these results suggest that the G172D mutation presumably misfolded THTR-1 protein that fails to undergo a complete glycosylation, is retained in the Golgi-ER compartment and thereby cannot be targeted to the plasma membrane. Finally, transfection studies revealed that the mutant G172D THTR-1 failed to transport thiamine. This is the first

  1. Lack of plasma membrane targeting of a G172D mutant thiamine transporter derived from Rogers syndrome family.

    PubMed

    Baron, Dana; Assaraf, Yehuda G; Cohen, Nadine; Aronheim, Ami

    2002-08-01

    Rogers syndrome, also known as thiamine responsive megaloblastic anemia (TRMA), is an autosomal recessive disorder resulting in megaloblastic anemia, diabetes mellitus and sensorineural deafness. The gene associated with Rogers syndrome encodes for a plasma membrane thiamine transporter, THTR-1, a member of the solute carrier family that includes its homologue THTR-2 and the reduced folate carrier. Using transient expression of wild-type and a missense mutant THTR-1 protein, derived from a TRMA family, in different cell lines and immunodetection analysis, we determined the expression, posttranslational modification, and subcellular localization of the wild-type and G172D mutant THTR-1. The transport activity of the transfected THTR-1 proteins was measured using a [(3) H] thiamine uptake assay. The mutant THTR-1 protein was undetectable in transfected cells grown at 37 degrees C but was readily expressed in transfected cells cultured at 28 degrees C, thereby allowing for further biochemical and functional analysis. In contrast to its fully glycosylated wild-type mature protein, the mutant THTR-1 protein underwent only the initial stage of N-linked glycosylation. The failure to undergo a complete glycosylation resulted in the lack of plasma membrane targeting and confinement of the mutant THTR-1 to the Golgi and endoplasmic reticulum (ER) compartment. Consistently, either treatment with tunicamycin or substitution of the THTR-1 consensus N-glycosylation acceptor asparagine 63 with glutamine, abolished its glycosylation and plasma membrane targeting. Taken collectively, these results suggest that the G172D mutation presumably misfolded THTR-1 protein that fails to undergo a complete glycosylation, is retained in the Golgi-ER compartment and thereby cannot be targeted to the plasma membrane. Finally, transfection studies revealed that the mutant G172D THTR-1 failed to transport thiamine. This is the first molecular and functional characterization of a missense mutant

  2. A review of the use of US-derived aetiological fractions in an Australian setting for antenatal problems related to cocaine use.

    PubMed

    Riddell, Steven; Shanahan, Marian; Degenhardt, Louisa; Roxburgh, Amanda

    2008-08-01

    Aetiological fractions are often used as an indirect measure of morbidity and mortality related to a specific risk factor. Aetiological fractions previously used in Australia for cocaine-related antenatal haemorrhage and low birth weight newborns have relied on risk ratios calculated from US-based studies. As outlined in this paper, there are several differences in the use and prevalence of cocaine and its associated harms between the two nations. As such, it is recommended that any use of these aetiological fractions with Australian data should occur with caution.

  3. The future potential for cocaine vaccines

    PubMed Central

    Orson, Frank M; Wang, Rongfu; Brimijoin, Stephen; Kinsey, Berma M; Singh, Rana AK; Ramakrishnan, Muthu; Wang, Helen Y; Kosten, Thomas R

    2014-01-01

    Introduction Addiction to cocaine is a major problem around the world, but especially in developed countries where the combination of wealth and user demand has created terrible social problems. Although only some users become truly addicted, those who are often succumb to a downward spiral in their lives from which it is very difficult to escape. From the medical perspective, the lack of effective and safe, non-addictive therapeutics has instigated efforts to develop alternative approaches for treatment, including anticocaine vaccines designed to block cocaine’s pharmacodynamic effects. Areas covered This paper discusses the implications of cocaine pharmacokinetics for robust vaccine antibody responses, the results of human vaccine clinical trials, new developments in animal models for vaccine evaluation, alternative vaccine formulations and complementary therapy to enhance anticocaine effectiveness. Expert opinion Robust anti-cocaine antibody responses are required for benefit to cocaine abusers, but since any reasonably achievable antibody level can be overcome with higher drug doses, sufficient motivation to discontinue use is also essential so that the relative barrier to cocaine effects will be appropriate for each individual. Combining a vaccine with achievable levels of an enzyme to hydrolyze cocaine to inactive metabolites, however, may substantially increase the blockade and improve treatment outcomes. PMID:24835496

  4. Cocaine-related deaths.

    PubMed

    Lora-Tamayo, C; Tena, T; Rodriguez, A

    1994-07-15

    Cocaine availability has been increasing in Spain in the past few years. A review of all the toxicological analyses carried out at the Madrid Department of the Instituto Nacional de Toxicología, with subjects who had died of drugs from 1990 to 1992, found 533 persons who had cocaine in their blood and/or tissues; 450 (84%) deaths involved cocaine and heroin together whereas 83 (16%) deaths involved cocaine with an absence of heroin. This paper reports the circumstances, cocaine and benzoylecgonine concentrations in the blood and other toxicological findings for the two major groups of deaths where cocaine was found with an absence of heroin, i.e., possible overdose cases (35 cases) and traffic accidents (23 cases).

  5. Cocaine-Induced Vasculitis

    PubMed Central

    Berman, Mark; Paran, Daphna; Elkayam, Ori

    2016-01-01

    The use of cocaine continues to grow worldwide. One of the possible side-effects of cocaine is vasculitis. Two distinct vasculitic syndromes have been described due to cocaine. One is cocaine-induced midline destructive lesion, secondary to a direct vasoconstrictor effect of cocaine, inducing ischemic necrosis of the septal cartilage and perforation of the nasal septum, mimicking findings of granulomatosis with polyangiitis in the upper airways. The other is ANCA-associated vasculitis, attributed to the levamisole component that contaminates about 70% of the cocaine. This type of vasculitis may be myeloperoxidase (MPO) and proteinase 3 (PR3) positive, and its main manifestations are typical cutaneous findings, arthralgia, otolaryngologic involvement, and agranulocytosis. A high degree of suspicion and awareness is needed in order properly to diagnose and treat these patients. PMID:27824551

  6. Cocaine and the heart

    PubMed Central

    Egred, M; Davis, G

    2005-01-01

    Cocaine is the second commonest illicit drug used and the most frequent cause of drug related deaths. Its use is associated with both acute and chronic complications that may involve any system, the most common being the cardiovascular system. Cocaine misuse has a major effect in young adult drug users with resulting loss of productivity and undue morbidity with cocaine related cardiac and cerebrovascular effects. Many cocaine users have little or no idea of the risks associated with its use. Patients, health care professionals, and the public should be educated about the dangers and the considerable risks of cocaine use. This review concentrates on the cardiovascular effects of cocaine and their management. PMID:16143686

  7. Lack of Postprandial Peak in Brain-Derived Neurotrophic Factor in Adults with Prader-Willi Syndrome

    PubMed Central

    Bueno, Marta; Esteba-Castillo, Susanna; Novell, Ramon; Giménez-Palop, Olga; Coronas, Ramon; Gabau, Elisabeth; Corripio, Raquel; Baena, Neus; Viñas-Jornet, Marina; Guitart, Míriam; Torrents-Rodas, David; Deus, Joan; Pujol, Jesús; Rigla, Mercedes

    2016-01-01

    Context Prader-Willi syndrome (PWS) is characterized by severe hyperphagia. Brain-derived neurotrophic factor (BDNF) and leptin are reciprocally involved in energy homeostasis. Objectives To analyze the role of BDNF and leptin in satiety in genetic subtypes of PWS. Design Experimental study. Setting University hospital. Subjects 90 adults: 30 PWS patients; 30 age-sex-BMI-matched obese controls; and 30 age-sex-matched lean controls. Interventions Subjects ingested a liquid meal after fasting ≥10 hours. Main Outcome Measures Leptin and BDNF levels in plasma extracted before ingestion and 30’, 60’, and 120’ after ingestion. Hunger, measured on a 100-point visual analogue scale before ingestion and 60’ and 120’ after ingestion. Results Fasting BDNF levels were lower in PWS than in controls (p = 0.05). Postprandially, PWS patients showed only a truncated early peak in BDNF, and their BDNF levels at 60' and 120' were lower compared with lean controls (p<0.05). Leptin was higher in PWS patients than in controls at all time points (p<0.001). PWS patients were hungrier than controls before and after eating. The probability of being hungry was associated with baseline BDNF levels: every 50-unit increment in BDNF decreased the odds of being hungry by 22% (OR: 0.78, 95%CI: 0.65–0.94). In uniparental disomy, the odds of being hungry decreased by 66% (OR: 0.34, 90%CI: 0.13–0.9). Postprandial leptin patterns did no differ among genetic subtypes. Conclusions Low baseline BDNF levels and lack of postprandial peak may contribute to persistent hunger after meals. Uniparental disomy is the genetic subtype of PWS least affected by these factors. PMID:27685845

  8. Disrupted social development enhances the motivation for cocaine in rats.

    PubMed

    Baarendse, Petra J J; Limpens, Jules H W; Vanderschuren, Louk J M J

    2014-04-01

    Early social experiences are of major importance for behavioural development. In particular, social play behaviour during post-weaning development is thought to facilitate the attainment of social, emotional and cognitive capacities. Conversely, social insults during development can cause long-lasting behavioural impairments and increase the vulnerability for psychiatric disorders, such as drug addiction. The aim of this study was to investigate whether a lack of social experiences during the juvenile and early adolescent stage, when social play behaviour is highly abundant, alters cocaine self-administration in rats. Rats were socially isolated from postnatal days 21 to 42 followed by re-socialization until adulthood. Cocaine self-administration was then assessed under a fixed ratio and progressive ratio schedule of reinforcement. Next, cue, cocaine and stress-induced reinstatement of cocaine seeking was determined following extinction of self-administration. Early social isolation resulted in an enhanced acquisition of self-administration of a low dose (0.083 mg/infusion) of cocaine, but the sensitivity to cocaine reinforcement, assessed using a dose-response analysis, was not altered in isolated rats. Moreover, isolated rats displayed an increased motivation for cocaine under a progressive ratio schedule of reinforcement. Extinction and reinstatement of cocaine seeking was not affected by early social isolation. Early social isolation causes a long-lasting increase in the motivation to self-administer cocaine. Thus, aberrations in post-weaning social development, such as the absence of social play, enhance the vulnerability for drug addiction later in life.

  9. Medical consequences of cocaine.

    PubMed Central

    Gray, J. D.

    1993-01-01

    Cocaine use among middle-class North Americans increased dramatically during the 1980s. Medical complications involve almost every organ system and are produced by intense vasoconstriction. Managing cocaine-induced disease requires careful identification and the use of alpha-adrenergic blocking agents, in addition to standard therapy and referral to specialists to manage cocaine withdrawal. Images p1976-a p1980-a PMID:8106032

  10. Cocaine withdrawal in Planaria.

    PubMed

    Raffa, R B; Valdez, J M

    2001-10-26

    Cocaine-exposed planarians displayed abstinence-induced withdrawal behavior when placed into cocaine-free, but not cocaine-containing, water. The effect, manifested and quantified using a new spontaneous locomotor velocity metric, was dose-dependently related to cocaine exposure (8x10(-9) to 8x10(-5) M). Ultraviolet light (254 nm=7.83x10(-19) J), which was previously shown to interfere with drug-receptor interactions in Planaria, enhanced the abstinence-induced decreased locomotor velocity.

  11. Optogenetic Central Amygdala Stimulation Intensifies and Narrows Motivation for Cocaine.

    PubMed

    Warlow, Shelley M; Robinson, Mike J F; Berridge, Kent C

    2017-08-30

    Addiction is often characterized by intense motivation for a drug, which may be narrowly focused at the expense of other rewards. Here, we examined the role of amygdala-related circuitry in the amplification and narrowing of motivation focus for intravenous cocaine. We paired optogenetic channelrhodopsin (ChR2) stimulation in either central nucleus of amygdala (CeA) or basolateral amygdala (BLA) of female rats with one particular nose-poke porthole option for earning cocaine infusions (0.3 mg/kg, i.v.). A second alternative porthole earned identical cocaine but without ChR2 stimulation. Consequently, CeA rats quickly came to pursue their CeA ChR2-paired cocaine option intensely and exclusively, elevating cocaine intake while ignoring their alternative cocaine alone option. By comparison, BLA ChR2 pairing failed to enhance cocaine motivation. CeA rats also emitted consummatory bites toward their laser-paired porthole, suggesting that higher incentive salience made that cue more attractive. A separate progressive ratio test of incentive motivation confirmed that CeA ChR2 amplified rats' motivation, raising their breakpoint effort price for cocaine by 10-fold. However, CeA ChR2 laser on its own lacked any reinforcement value: laser by itself was never self-stimulated, not even by the same rats in which it amplified motivation for cocaine. Conversely, CeA inhibition by muscimol/baclofen microinjections prevented acquisition of cocaine self-administration and laser preference, whereas CeA inhibition by optogenetic halorhodopsin suppressed cocaine intake, indicating that CeA circuitry is needed for ordinary cocaine motivation. We conclude that CeA ChR2 excitation paired with a cocaine option specifically focuses and amplifies motivation to produce intense pursuit and consumption focused on that single target.SIGNIFICANCE STATEMENT In addiction, intense incentive motivation often becomes narrowly focused on a particular drug of abuse. Here we show that pairing central

  12. Fundamental reaction mechanism and free energy profile for (-)-cocaine hydrolysis catalyzed by cocaine esterase.

    PubMed

    Liu, Junjun; Hamza, Adel; Zhan, Chang-Guo

    2009-08-26

    The fundamental reaction mechanism of cocaine esterase (CocE)-catalyzed hydrolysis of (-)-cocaine and the corresponding free energy profile have been studied by performing pseudobond first-principles quantum mechanical/molecular mechanical free energy (QM/MM-FE) calculations. On the basis of the QM/MM-FE results, the entire hydrolysis reaction consists of four reaction steps, including the nucleophilic attack on the carbonyl carbon of (-)-cocaine benzoyl ester by the hydroxyl group of Ser117, dissociation of (-)-cocaine benzoyl ester, nucleophilic attack on the carbonyl carbon of (-)-cocaine benzoyl ester by water, and finally dissociation between the (-)-cocaine benzoyl group and Ser117 of CocE. The third reaction step involving the nucleophilic attack of a water molecule was found to be rate-determining, which is remarkably different from (-)-cocaine hydrolysis catalyzed by wild-type butyrylcholinesterase (BChE; where the formation of the prereactive BChE-(-)-cocaine complex is rate-determining) or its mutants containing Tyr332Gly or Tyr332Ala mutation (where the first chemical reaction step is rate-determining). Besides, the role of Asp259 in the catalytic triad of CocE does not follow the general concept of the "charge-relay system" for all serine esterases. The free energy barrier calculated for the rate-determining step of CocE-catalyzed hydrolysis of (-)-cocaine is 17.9 kcal/mol, which is in good agreement with the experimentally derived activation free energy of 16.2 kcal/mol. In the present study, where many sodium ions are present, the effects of counterions are found to be significant in determining the free energy barrier. The finding of the significant effects of counterions on the free energy barrier may also be valuable in guiding future mechanistic studies on other charged enzymes.

  13. 21 CFR 862.3250 - Cocaine and cocaine metabolite test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Cocaine and cocaine metabolite test system. 862... Test Systems § 862.3250 Cocaine and cocaine metabolite test system. (a) Identification. A cocaine and cocaine metabolite test system is a device intended to measure cocaine and a cocaine metabolite...

  14. 21 CFR 862.3250 - Cocaine and cocaine metabolite test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Cocaine and cocaine metabolite test system. 862... Test Systems § 862.3250 Cocaine and cocaine metabolite test system. (a) Identification. A cocaine and cocaine metabolite test system is a device intended to measure cocaine and a cocaine metabolite...

  15. 21 CFR 862.3250 - Cocaine and cocaine metabolite test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Cocaine and cocaine metabolite test system. 862... Test Systems § 862.3250 Cocaine and cocaine metabolite test system. (a) Identification. A cocaine and cocaine metabolite test system is a device intended to measure cocaine and a cocaine metabolite...

  16. 21 CFR 862.3250 - Cocaine and cocaine metabolite test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Cocaine and cocaine metabolite test system. 862... Test Systems § 862.3250 Cocaine and cocaine metabolite test system. (a) Identification. A cocaine and cocaine metabolite test system is a device intended to measure cocaine and a cocaine metabolite...

  17. 21 CFR 862.3250 - Cocaine and cocaine metabolite test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cocaine and cocaine metabolite test system. 862... Test Systems § 862.3250 Cocaine and cocaine metabolite test system. (a) Identification. A cocaine and cocaine metabolite test system is a device intended to measure cocaine and a cocaine metabolite...

  18. [Cocaine - Characteristics and addiction].

    PubMed

    Girczys-Połedniok, Katarzyna; Pudlo, Robert; Jarząb, Magdalena; Szymlak, Agnieszka

    Cocaine use leads to health, social and legal problems. The aim of this paper is to discuss cocaine action, addicts characteristics, use patterns and consequences, as well as addiction treatment methods. A literature review was based on the Medline, PubMed, Polish Medical Bibliography databases and the Silesian Library resources. The Police and Central Statistical Office statistics, as well as the World Health Organization, the European Monitoring Centre for Drugs and Drug Addiction and the National Office for Combating Drug Addiction reports were used. Cocaine leads to mood improvement, appetite decrease, physical and intellectual activity enhancement, euphoria, inflated self-esteem, social networking ease and increased sexual desire. Cocaine hydrochloride is mainly used intranasaly, but also as intravenous and subcutaneous injections. Cocaine use and first addiction treatment fall in later age compared to other psychoactive substances. There is a high men to women ratio among addicts. There is a relationship between cocaine addiction, the presence of other disorders and genetic predisposition to addiction development. Polish reports indicate higher popularity of cocaine among people with a high economic and social status. Although Poland is a country with the low percentage of cocaine use, its popularity is growing. The consequences of cocaine use concern somatic and mental health problems, socioeconomic and legal conditions. The drug plays a role in crimes and traffic accidents. Because of the risks associated with cocaine use, it has been listed in a register of drugs attached to the Act on Counteracting Drug Addiction. Addiction treatment includes psychological, pharmacological and harm reduction strategies. Med Pr 2016;67(4):537-544. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  19. Cocaine and the nervous system.

    PubMed

    Prakash, A; Das, G

    1993-12-01

    Cocaine abuse today has reached greater heights than it did during the first cocaine epidemic in the late nineteenth century. It is estimated that one out of every four Americans has used cocaine and some six million people in the US use it regularly. Although cocaine affects all systems in the body, the central nervous system (CNS) is the primary target. Cocaine blocks the reuptake of neurotransmitters in the neuronal synapses. Almost all CNS effects of cocaine can be attributed to this mechanism. Euphoria, pharmacological pleasure and intense cocaine craving share basis in this system. The effects of cocaine on other organ systems, in addition to its effects on the CNS, account for the majority of the complications associated with cocaine abuse. In this paper, the CNS effects following cocaine administration and their treatment are discussed.

  20. Seroreactivity against raw insect-derived recombinant KMPII, TRYP, and LACK Leishmania infantum proteins in infected dogs.

    PubMed

    Todolí, Felicitat; Pérez-Filgueira, Mariano; Galindo, Inmaculada; Gómez-Sebastián, Silvia; Escribano, José M; Rodríguez-Cortés, Alhelí; Alberola, Jordi

    2009-10-14

    The recombinant proteins KMPII, TRYP, and LACK of Leishmania infantum were produced in baculovirus-infected Trichoplusia ni larvae and used to analyze the seroreactivity of 165 dog serum samples by the multiple-well ELISA technique (57 infected dogs with clinical signs, 46 naturally infected and 11 experimentally infected; and 108 non-infected dogs, 76 from non-endemic areas and 32 from endemic areas). Recombinant (r) KMPII was the most recognized antigen, as the majority of infected dogs seroreacted against it (0.75). This is the first report of seroreactivity against rTRYP (0.51) and rLACK (0.42) in L. infantum-infected dogs, since previous studies using recombinant TRYP and LACK proteins produced in prokaryotic systems failed to detect specific seroreactivity. All non-infected dogs were negative for rTRYP and rLACK, and only one of the 32 from endemic areas seroreacted against rKMPII. The results demonstrate that L. infantum-infected dogs develop humoral immunity against rKMPII, rTRYP, and rLACK antigens. There was substantial agreement between crude total L. infantum antigen (CTLA)-based ELISA and rKMPII ELISA (kappa=0.664), although this was higher than that found between the CTLA-based ELISA and rTRYP (kappa=0.427) or rLACK (kappa=0.343) ELISA, which can be interpreted as fair and moderate agreement, respectively. Ninety-three percent of the infected dogs analyzed developed specific antibodies against at least one of these three recombinant antigens. When the three recombinant antigen-based ELISA techniques were evaluated in parallel, almost perfect agreement (kappa=0.880) with CTLA-based ELISA was observed, with a specificity of 0.97 and a sensitivity of 0.93 in relation to CTLA-based ELISA. Further studies using purified recombinant antigens in a single-well test or individually, depending on the objective of the study, are warranted.

  1. Coca tea consumption causes positive urine cocaine assay.

    PubMed

    Mazor, Suzan S; Mycyk, Mark B; Wills, Brandon K; Brace, Larry D; Gussow, Leon; Erickson, Timothy

    2006-12-01

    Coca tea, derived from the same plant that is used to synthesize cocaine, is commonly consumed in South America and easily obtained in the United States. To determine whether consumption of coca tea would result in a positive urine toxicology screen for cocaine metabolites. Five healthy adult volunteers consumed coca tea and underwent serial quantitative urine testing for cocaine metabolites by fluorescence polarization immunoassay. The cutoff for a positive assay was chosen at 300 ng/ml, the National Institute on Drug Abuse standard. Each participant's urine cocaine assay was positive (level exceeding 300 ng/ml) by 2 h after ingestion. Three out of five participants' samples remained positive at 36 h. Mean urine benzoylecgonine concentrations in all postconsumption samples was 1777 ng/ml (95% confidence interval: 1060-2495). Coca tea ingestion resulted in a positive urine assay for cocaine metabolite. Healthcare professionals should consider a history of coca tea ingestion when interpreting urine toxicology results.

  2. Sex differences in psychiatric comorbidity and plasma biomarkers for cocaine addiction in abstinent cocaine-addicted subjects in outpatient settings.

    PubMed

    Pedraz, María; Araos, Pedro; García-Marchena, Nuria; Serrano, Antonia; Romero-Sanchiz, Pablo; Suárez, Juan; Castilla-Ortega, Estela; Mayoral-Cleries, Fermín; Ruiz, Juan Jesús; Pastor, Antoni; Barrios, Vicente; Chowen, Julie A; Argente, Jesús; Torrens, Marta; de la Torre, Rafael; Rodríguez De Fonseca, Fernando; Pavón, Francisco Javier

    2015-01-01

    There are sex differences in the progression of drug addiction, relapse, and response to therapies. Because biological factors participate in these differences, they should be considered when using biomarkers for addiction. In the current study, we evaluated the sex differences in psychiatric comorbidity and the concentrations of plasma mediators that have been reported to be affected by cocaine. Fifty-five abstinent cocaine-addicted subjects diagnosed with lifetime cocaine use disorders (40 men and 15 women) and 73 healthy controls (48 men and 25 women) were clinically assessed with the diagnostic interview "Psychiatric Research Interview for Substance and Mental Disorders." Plasma concentrations of chemokines, cytokines, N-acyl-ethanolamines, and 2-acyl-glycerols were analyzed according to history of cocaine addiction and sex, controlling for covariates age and body mass index (BMI). Relationships between these concentrations and variables related to cocaine addiction were also analyzed in addicted subjects. The results showed that the concentrations of chemokine (C-C motif) ligand 2/monocyte chemotactic protein-1 (CCL2/MCP-1) and chemokine (C-X-C motif) ligand 12/stromal cell-derived factor-1 (CXCL12/SDF-1) were only affected by history of cocaine addiction. The plasma concentrations of interleukin 1-beta (IL-1β), IL-6, IL-10, and tumor necrosis factor-alpha (TNFα) were affected by history of cocaine addiction and sex. In fact, whereas cytokine concentrations were higher in control women relative to men, these concentrations were reduced in cocaine-addicted women without changes in addicted men. Regarding fatty acid derivatives, history of cocaine addiction had a main effect on the concentration of each acyl derivative, whereas N-acyl-ethanolamines were increased overall in the cocaine group, 2-acyl-glycerols were decreased. Interestingly, N-palmitoleoyl-ethanolamine (POEA) was only increased in cocaine-addicted women. The covariate BMI had a significant

  3. Sex Differences in Psychiatric Comorbidity and Plasma Biomarkers for Cocaine Addiction in Abstinent Cocaine-Addicted Subjects in Outpatient Settings

    PubMed Central

    Pedraz, María; Araos, Pedro; García-Marchena, Nuria; Serrano, Antonia; Romero-Sanchiz, Pablo; Suárez, Juan; Castilla-Ortega, Estela; Mayoral-Cleries, Fermín; Ruiz, Juan Jesús; Pastor, Antoni; Barrios, Vicente; Chowen, Julie A.; Argente, Jesús; Torrens, Marta; de la Torre, Rafael; Rodríguez De Fonseca, Fernando; Pavón, Francisco Javier

    2015-01-01

    There are sex differences in the progression of drug addiction, relapse, and response to therapies. Because biological factors participate in these differences, they should be considered when using biomarkers for addiction. In the current study, we evaluated the sex differences in psychiatric comorbidity and the concentrations of plasma mediators that have been reported to be affected by cocaine. Fifty-five abstinent cocaine-addicted subjects diagnosed with lifetime cocaine use disorders (40 men and 15 women) and 73 healthy controls (48 men and 25 women) were clinically assessed with the diagnostic interview “Psychiatric Research Interview for Substance and Mental Disorders.” Plasma concentrations of chemokines, cytokines, N-acyl-ethanolamines, and 2-acyl-glycerols were analyzed according to history of cocaine addiction and sex, controlling for covariates age and body mass index (BMI). Relationships between these concentrations and variables related to cocaine addiction were also analyzed in addicted subjects. The results showed that the concentrations of chemokine (C-C motif) ligand 2/monocyte chemotactic protein-1 (CCL2/MCP-1) and chemokine (C-X-C motif) ligand 12/stromal cell-derived factor-1 (CXCL12/SDF-1) were only affected by history of cocaine addiction. The plasma concentrations of interleukin 1-beta (IL-1β), IL-6, IL-10, and tumor necrosis factor-alpha (TNFα) were affected by history of cocaine addiction and sex. In fact, whereas cytokine concentrations were higher in control women relative to men, these concentrations were reduced in cocaine-addicted women without changes in addicted men. Regarding fatty acid derivatives, history of cocaine addiction had a main effect on the concentration of each acyl derivative, whereas N-acyl-ethanolamines were increased overall in the cocaine group, 2-acyl-glycerols were decreased. Interestingly, N-palmitoleoyl-ethanolamine (POEA) was only increased in cocaine-addicted women. The covariate BMI had a significant

  4. Impaired behavioral sensitization to cocaine in vasopressin deficient rats.

    PubMed

    Post, R M; Contel, N R; Gold, P

    1982-12-13

    Behavioral sensitization to cocaine involves progressive and long-lasting increases in hyperactivity and stereotypy in response to the same daily dose. In order to test whether vasopressin, a neuro-hormone implicated in drug tolerance and in other models of learning and memory, affected behavioral sensitization, cocaine was administered daily to animals with hereditary absence of vasopressin. Brattleboro homozygotes which lack vasopressin show deficient onset and persistence of cocaine-induced behavioral sensitization compared to heterozygote, litter-mate controls. These data extend previous reports of vasopressin's role in memory and long-term coding of behavior to the model of pharmacologically-induced behavioral sensitization.

  5. Fundamental Reaction Mechanism for Cocaine Hydrolysis in Human Butyrylcholinesterase

    PubMed Central

    Zhan, Chang-Guo; Zheng, Fang; Landry, Donald W.

    2010-01-01

    Butyrylcholinesterase (BChE)-cocaine binding and the fundamental pathway for BChE-catalyzed hydrolysis of cocaine have been studied by molecular modelling, molecular dynamics (MD) simulations, and ab initio calculations. Modelling and simulations indicate that the structures of the prereactive BChE-substrate complexes for (−)-cocaine and (+)-cocaine are all similar to that of the corresponding prereactive BChE-butyrylcholine (BCh) complex. The overall binding of BChE with (−)-cocaine and (+)-cocaine is also similar to that proposed with butyrylthiocholine and succinyldithiocholine, i.e. (−)-cocaine/(+)-cocaine first slides down the substrate-binding gorge to bind to Trp-82 and stands vertically in the gorge between Asp-70 and Trp-82 (non-prereactive complex) and then rotates to a position in the catalytic site within a favorable distance for nucleophilic attack and hydrolysis by Ser-198 (prereactive complex). In the prereactive complex, cocaine lies horizontally at the bottom of the gorge. The fundamental catalytic hydrolysis pathway, consisting of acylation and deacylation stages similar to those for ester hydrolysis by other serine hydrolases, was proposed based on the simulated prereactive complex and confirmed theoretically by ab initio reaction coordinate calculations. Both the acylation and deacylation follow a double-proton-transfer mechanism. The calculated energetic results show that within the chemical reaction process the highest energy barrier and Gibbs free energy barrier are all associated with the first step of deacylation. The calculated ratio of the rate constant (kcat) for the catalytic hydrolysis to that (k0) for the spontaneous hydrolysis is ~ 9.0 × 107. The estimated kcat/k0 value of ~ 9.0 × 107 is in excellent agreement with the experimentally-derived kcat/k0 value of ~ 7.2 × 107 for (+)-cocaine, whereas it is ~ 2000 times larger than the experimentally-derived kcat/k0 value of ~ 4.4 × 104 for (−)-cocaine. All of the results

  6. Cocaine use and stroke

    PubMed Central

    Treadwell, Sean D; Robinson, Tom G

    2007-01-01

    Stroke is the third most common cause of death in developed countries. In England and Wales, 1000 people under the age of 30 have a stroke each year. Cocaine is the most commonly used class A drug, and the first report of cocaine‐induced stroke was in 1977. Since the development of alkaloidal “crack” cocaine in the 1980s, there has been a significant rise in the number of case reports describing both ischaemic and haemorrhagic stroke associated with cocaine use. Cocaine is a potent central nervous system stimulant, and acts by binding to specific receptors at pre‐synaptic sites preventing the reuptake of neurotransmitters. The exact mechanism of cocaine‐induced stroke remains unclear and there are likely to be a number of factors involved including vasospasm, cerebral vasculitis, enhanced platelet aggregation, cardioembolism, and hypertensive surges associated with altered cerebral autoregulation. The evidence surrounding each of these factors will be considered here. PMID:17551070

  7. 2'-Substitution of cocaine selectively enhances dopamine and norepinephrine transporter binding.

    PubMed

    Seale, T W; Avor, K; Singh, S; Hall, N; Chan, H M; Basmadjian, G P

    1997-11-10

    Few studies have characterized the effect of substituents at the 2'-position of cocaine on transporter binding potency and selectivity. We synthesized 2'-OH-, 2'-F- and 2'-acetoxy-cocaines and compared their binding potencies for rat dopamine, norepinephrine and 5-hydroxytryptamine transporters to cocaine, 3'-OH-, 4'-OH-, 2'-OH,4'-I-cocaine derivatives, and to the transporter selective ligands WIN 35,428, nisoxetine and paroxetine. Unlike most substitutions, 2'-OH- and 2'-acetoxy-groups increased cocaine's binding potency for the dopamine transporter (10- and 4-fold, respectively). These substituents also enhanced binding to the norepinephrine transporter (52- and 35-fold, respectively) but had less effect on 5-hydroxytryptamine transporter binding. 2'-Hydroxylation also enhanced binding of 4'-I cocaine, an analog with low DA binding potency. The ability of 2'-substituents to substantially increase cocaine binding potency and to alter selectivity for brain transporters indicates the potential importance of the 2'-position in transporter binding.

  8. Systematic analysis of reportedly distinct populations of multipotent bone marrow-derived stem cells reveals a lack of distinction.

    PubMed

    Lodie, Tracey A; Blickarz, Courtney E; Devarakonda, Tara J; He, Chufa; Dash, Ajeeta B; Clarke, Jennifer; Gleneck, Kristen; Shihabuddin, Lamya; Tubo, Ross

    2002-10-01

    Adult human bone marrow-derived stem cells, having the ability to differentiate into cells of multiple lineages, have been isolated and propagated by varied protocols, including positive (CD105(+))/negative (CD45(-)GlyA(-)) selection with immunomagnetic beads, or direct plating into selective culture media. Each substratum-adherent cell population was subjected to a systematic analysis of their cell surface markers and differentiation potential. In the initial stages of culture, each cell population proliferated slowly, reaching confluence in 10-14 days. Adherent cells proliferated at similar rates whether cultured in serum-free medium supplemented with basic fibroblast growth factor, medium containing 2% fetal bovine serum (FBS) supplemented with epidermal growth factor and platelet-derived growth factor, or medium containing 10% FBS alone. Cell surface marker analysis revealed that more than 95% of the cells were positive for CD105/endoglin, a putative mesenchymal stem cell marker, and negative for CD34, CD31, and CD133, markers of hematopoietic, endothelial, and neural stem cells, respectively, regardless of cell isolation and propagation method. CD44 expression was variable, apparently dependent on serum concentration. Functional similarity of the stem cell populations was also observed, with each different cell population expressing the cell type-specific markers beta-tubulin, type II collagen, and desmin, and demonstrating endothelial tube formation when cultured under conditions favoring neural, cartilage, muscle, and endothelial cell differentiation, respectively. On the basis of these data, adult human bone marrow-derived stem cells cultured in adherent monolayer are virtually indistinguishable, both physically and functionally, regardless of the method of isolation or proliferative expansion.

  9. The novel dopamine D3 receptor antagonist NGB 2904 inhibits cocaine's rewarding effects and cocaine-induced reinstatement of drug-seeking behavior in rats.

    PubMed

    Xi, Zheng-Xiong; Newman, Amy Hauck; Gilbert, Jeremy G; Pak, Arlene C; Peng, Xiao-Qing; Ashby, Charles R; Gitajn, Leah; Gardner, Eliot L

    2006-07-01

    Accumulating evidence indicates that dopamine (DA) D(3) receptor antagonists appear highly promising in attenuating cocaine reward and relapse in preclinical models of addiction. In the present study, we investigated the effects of the novel D(3)-selective antagonist NGB 2904 (N-(4-[4-{2,3-dichlorophenyl}-1-piperazinyl]butyl)-3-fluorenylcarboxamide) on cocaine self-administration, cocaine-enhanced brain stimulation reward (BSR), and cocaine-triggered reinstatement of drug-seeking behavior in male Long-Evans rats. We found that: (1) acute intraperitoneal (i.p.) administration of NGB 2904 (0.1-10 mg/kg) failed to alter cocaine self-administration (0.5 mg/kg/infusion) under fixed-ratio 2 (FR2) reinforcement, but 1 or 5 mg/kg NGB 2904 significantly lowered the break-point for cocaine self-administration under progressive-ratio (PR) reinforcement; (2) cocaine (1, 2, and 10 mg/kg) significantly enhanced electrical BSR (decreased brain reward thresholds), while NGB 2904 significantly inhibited the enhancement of BSR elicited by 2 mg/kg, but not 10 mg/kg of cocaine; (3) NGB 2904 alone neither maintained self-administration behavior nor altered brain reward thresholds; and (4) NGB 2904 significantly inhibited cocaine-triggered reinstatement of extinguished drug-seeking behavior, but not sucrose-plus-sucrose-cue-triggered reinstatement of sucrose-seeking behavior. Overall, these data show that the novel D(3)-selective antagonist NGB 2904 attenuates cocaine's rewarding effects as assessed by PR self-administration, BSR, and cocaine-triggered reinstatement of cocaine-seeking behavior. Owing to these properties and to its lack of rewarding effects (as assessed by BSR and by substitution during drug self-administration), NGB 2904 merits further investigation as a potential agent for treatment of cocaine addiction.

  10. Restoration of cocaine stimulation and reward by reintroducing wild type dopamine transporter in adult knock-in mice with a cocaine-insensitive dopamine transporter.

    PubMed

    Wu, Haiyin; O'Neill, Brian; Han, Dawn D; Thirtamara-Rajamani, Keerthi; Wang, Yanlin; Gu, Howard H

    2014-11-01

    In previous studies, we generated knock-in mice with a cocaine-insensitive dopamine transporter (DAT-CI mice) and found cocaine does not stimulate locomotion or produce reward in these mice, indicating DAT inhibition is necessary for cocaine stimulation and reward. However, DAT uptake is reduced in DAT-CI mice and thus the lack of cocaine responses could be due to adaptive changes. To test this, we used adeno-associated virus (AAV) to reintroduce the cocaine-sensitive wild type DAT (AAV-DATwt) back into adult DAT-CI mice, which restores cocaine inhibition of DAT in affected brain regions but does not reverse the adaptive changes. In an earlier study we showed that AAV-DATwt injections in regions covering the lateral nucleus accumbens (NAc) and lateral caudate-putamen (CPu) restored cocaine stimulation but not cocaine reward. In the current study, we expanded the AAV-DATwt infected areas to cover the olfactory tubercle (Tu) and the ventral midbrain (vMB) containing the ventral tegmental area (VTA) and substantia nigra (SN) in addition to CPu and NAc with multiple injections. These mice displayed the restoration of both locomotor stimulation and cocaine reward. We further found that AAV-DATwt injection in the vMB alone was sufficient to restore both cocaine stimulation and reward in DAT-CI mice. AAV injected in the VTA and SN resulted in DATwt expression and distribution to the DA terminal regions. In summary, cocaine induced locomotion and reward can be restored in fully developed DAT-CI mice, and cocaine inhibition of DAT expressed in dopaminergic neurons originated from the ventral midbrain mediates cocaine reward and stimulation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Model of End-Stage Liver Disease Score and Derived Variants Lack Prognostic Ability after Liver Transplantation.

    PubMed

    Kaltenborn, Alexander; Salinas, Ricardo; Jäger, Mark D; Lehner, Frank; Sakirow, Larissa; Klempnauer, Jürgen; Schrem, Harald

    2015-08-04

    BACKGROUND The model of end-stage liver disease (MELD) score is currently used for donor liver allocation in many regions. The objective of this retrospective study was to assess the MELD score and its diverse variants as prognostic models for mortality after liver transplantation. MATERIAL AND METHODS An analysis of 454 consecutive adult liver transplants since the introduction of MELD-based donor liver allocation was conducted. Eight different MELD score variants were investigated. Receiver operating characteristic (ROC) curve analysis was performed to calculate the sensitivity, specificity, and overall model correctness of the investigated scores as a predictive model. The Brier score was used for the prediction of model accuracy and calculated as described before. Study endpoints were 90-day mortality and long-term patient mortality. RESULTS A 90-day mortality of 15.4% (n=69) and long-term mortality of 25% (n=112) were observed. All investigated models fail to reach relevant areas under the ROC curve greater than 0.700 for the prediction of mortality after liver transplantation. All calculated Brier scores were greater than 0.25, indicating a significant lack of model discrimination and calibration of the investigated scores. CONCLUSIONS A prognostic model for the prediction of outcome after transplantation still needs to be identified and should allow weighing urgency against utility in liver transplantation.

  12. Reciprocal Inhibitory Interactions Between the Reward-Related Effects of Leptin and Cocaine.

    PubMed

    You, Zhi-Bing; Wang, Bin; Liu, Qing-Rong; Wu, Yan; Otvos, Laszlo; Wise, Roy A

    2016-03-01

    Cocaine is habit-forming because of its ability to enhance dopaminergic neurotransmission in the forebrain. In addition to neuronal inputs, forebrain dopamine circuits are modulated by hormonal influences; one of these is leptin, an adipose-derived hormone that attenuates the rewarding effects of food- and hunger-associated brain stimulation reward. Here we report reciprocal inhibition between the reward-related effects of leptin and the reward-related effects of cocaine in rats. First, we report that cocaine and the expectancy of cocaine each depresses plasma leptin levels. Second, we report that exogenous leptin, given systemically or directly into the ventral tegmental area, attenuates the ability of cocaine to elevate dopamine levels in the nucleus accumbens, the ability of cocaine to establish a conditioned place preference, and the ability of cocaine-predictive stimuli to prolong responding in extinction of cocaine-seeking. Thus, whereas leptin represents an endogenous antagonist of the habit-forming and habit-sustaining effects of cocaine, this antagonism is attenuated by cocaine and comes to be attenuated by the expectancy of cocaine.

  13. Synthesis and opioid receptor affinity of morphinan and benzomorphan derivatives: mixed kappa agonists and mu agonists/antagonists as potential pharmacotherapeutics for cocaine dependence.

    PubMed

    Neumeyer, J L; Bidlack, J M; Zong, R; Bakthavachalam, V; Gao, P; Cohen, D J; Negus, S S; Mello, N K

    2000-01-13

    This report concerns the synthesis and preliminary pharmacological evaluation of a novel series of kappa agonists related to the morphinan (-)-cyclorphan (3a) and the benzomorphan (-)-cyclazocine (2) as potential agents for the pharmacotherapy of cocaine abuse. Recent evidence suggests that agonists acting at kappa opioid receptors may modulate the activity of dopaminergic neurons and alter the neurochemical and behavioral effects of cocaine. We describe the synthesis and chemical characterization of a series of morphinans 3a-c, structural analogues of cyclorphan [(-)-3-hydroxy-N-cyclopropylmethylmorphinan S(+)-mandelate, 3a], the 10-ketomorphinans 4a,b, and the 8-ketobenzomorphan 1b. Binding experiments demonstrated that the cyclobutyl analogue 3b [(-)-3-hydroxy-N-cyclobutylmethylmorphinan S(+)-mandelate, 3b, MCL-101] of cyclorphan (3a) had a high affinity for mu, delta, and kappa opioid receptors in guinea pig brain membranes. Both 3a,b were approximately 2-fold more selective for the kappa receptor than for the mu receptor. However 3b (the cyclobutyl analogue) was 18-fold more selective for the kappa receptor in comparison to the delta receptor, while cyclorphan (3a) had only 4-fold greater affinity for the kappa receptor in comparison to the delta receptor. These findings were confirmed in the antinociceptive tests (tail-flick and acetic acid writhing) in mice, which demonstrated that cyclorphan (3a) produced antinociception that was mediated by the delta receptor while 3b did not produce agonist or antagonist effects at the delta receptor. Both 3a,b had comparable kappa agonist properties. 3a,b had opposing effects at the mu receptor: 3b was a mu agonist whereas 3a was a mu antagonist.

  14. Performance on a strategy set shifting task in rats following adult or adolescent cocaine exposure

    PubMed Central

    Kantak, Kathleen M.; Barlow, Nicole; Tassin, David H.; Brisotti, Madeline F.; Jordan, Chloe J

    2014-01-01

    Rationale Neuropsychological testing is widespread in adult cocaine abusers, but lacking in teens. Animal models may provide insight into age-related neuropsychological consequences of cocaine exposure. Objectives Determine whether developmental plasticity protects or hinders behavioral flexibility after cocaine exposure in adolescent vs. adult rats. Methods Using a yoked-triad design, one rat controlled cocaine delivery and the other two passively received cocaine or saline. Rats controlling cocaine delivery (1.0 mg/kg) self-administered for 18 sessions (starting P37 or P77), followed by 18 drug-free days. Rats next were tested in a strategy set shifting task, lasting 11–13 sessions. Results Cocaine self-administration did not differ between age groups. During initial set formation, adolescent-onset groups required more trials to reach criterion and made more errors than adult-onset groups. During the set shift phase, rats with adult-onset cocaine self-administration experience had higher proportions of correct trials and fewer perseverative + regressive errors than age-matched yoked-controls or rats with adolescent-onset cocaine self-administration experience. During reversal learning, rats with adult-onset cocaine experience (self-administered or passive) required fewer trials to reach criterion and the self-administering rats made fewer perseverative + regressive errors than yoked-saline rats. Rats receiving adolescent-onset yoked-cocaine had more trial omissions and longer lever press reaction times than age-matched rats self-administering cocaine or receiving yoked-saline. Conclusions Prior cocaine self-administration may impair memory to reduce proactive interference during set shifting and reversal learning in adult-onset but not adolescent-onset rats (developmental plasticity protective). Passive cocaine may disrupt aspects of executive function in adolescent-onset but not adult-onset rats (developmental plasticity hinders). PMID:24800898

  15. A Lack of Correlation between Brain-Derived Neurotrophic Factor Serum Level and Verbal Memory Performance in Healthy Polish Population

    PubMed Central

    Wilkosc, Monika; Markowska, Anita; Zajac-Lamparska, Ludmila; Skibinska, Maria; Szalkowska, Agnieszka; Araszkiewicz, Aleksander

    2016-01-01

    Brain derived neurotrophic factor (BDNF) is considered to be connected with memory and learning through the processes of long term synaptic potentiation and synaptic plasticity. The aim of the study was to examine the relationship between precursor BDNF (proBNDF) and mature BDNF (mBDNF) serum levels and performance on Rey Auditory-Verbal Learning Test (RAVLT) in 150 healthy volunteers. In addition, we have verified the relationships between serum concentration of both forms of BDNF and RAVLT with sociodemographic and lifestyle factors.We found no strong evidence for the correlation of proBDNF and mBDNF serum levels with performance on RAVLT in healthy Polish population in early and middle adulthood. We observed the mBDNF serum concentration to be higher in women compared with men. Moreover, we revealed higher mBDNF level to be connected with lower body mass index (BMI). In turn, the results of RAVLT correlated with sociodemographic and lifestyle factors, such as: age, education, gender, BMI and smoking. PMID:27242447

  16. Novel C-1 Substituted Cocaine Analogs Unlike Cocaine or Benztropine

    PubMed Central

    Ali, Solav; Hashim, Audrey; Sheikh, Imran S.; Theddu, Naresh; Gaddiraju, Narendra V.; Mehrotra, Suneet; Schmitt, Kyle C.; Murray, Thomas F.; Sershen, Henry; Unterwald, Ellen M.; Davis, Franklin A.

    2012-01-01

    Despite a wealth of information on cocaine-like compounds, there is no information on cocaine analogs with substitutions at C-1. Here, we report on (R)-(−)-cocaine analogs with various C-1 substituents: methyl (2), ethyl (3), n-propyl (4), n-pentyl (5), and phenyl (6). Analog 2 was equipotent to cocaine as an inhibitor of the dopamine transporter (DAT), whereas 3 and 6 were 3- and 10-fold more potent, respectively. None of the analogs, however, stimulated mouse locomotor activity, in contrast to cocaine. Pharmacokinetic assays showed compound 2 occupied mouse brain rapidly, as cocaine itself; moreover, 2 and 6 were behaviorally active in mice in the forced-swim test model of depression and the conditioned place preference test. Analog 2 was a weaker inhibitor of voltage-dependent Na+ channels than cocaine, although 6 was more potent than cocaine, highlighting the need to assay future C-1 analogs for this activity. Receptorome screening indicated few significant binding targets other than the monoamine transporters. Benztropine-like “atypical” DAT inhibitors are known to display reduced cocaine-like locomotor stimulation, presumably by their propensity to interact with an inward-facing transporter conformation. However, 2 and 6, like cocaine, but unlike benztropine, exhibited preferential interaction with an outward-facing conformation upon docking in our DAT homology model. In summary, C-1 cocaine analogs are not cocaine-like in that they are not stimulatory in vivo. However, they are not benztropine-like in binding mechanism and seem to interact with the DAT similarly to cocaine. The present data warrant further consideration of these novel cocaine analogs for antidepressant or cocaine substitution potential. PMID:22895898

  17. Neurovascular complications of cocaine.

    PubMed

    Daras, M; Tuchman, A J; Koppel, B S; Samkoff, L M; Weitzner, I; Marc, J

    1994-08-01

    Use of cocaine in the USA, has reached epidemic proportions since 1983, when "crack" was introduced, its higher potency compared with cocaine HCl has been associated with a tremendous increase in the incidence of strokes. This study reports our experience with 55 cases of neurovascular events (25 ischemic and 30 hemorrhagic) related to cocaine use in 54 patients. Only 15 patients had other risk factors for stroke. Twenty six patients smoked "crack", 10 snorted cocaine and 12 injected it intravenously. Strokes occurred within 3 h of cocaine use in 15 patients with infarcts and 17 with hemorrhages. Ten infarcts occurred after an overnight binge. Of the hemorrhage group 9 were subarachnoid, 16 intracerebral (8 basal ganglia, 7 hemispheric and one brain stem) and 5 intraventricular. Computerized tomography (CT) showed an aneurysm of the anterior communicating artery, as well as one of the vein of Galen. Four aneurysms and 3 AVMs were identified on angiography. CT revealed 15 infarcts; it was normal in 7 patients with pure motor hemiparesis and in 3 with findings consistent with anterior spinal artery infarction. Several mechanisms may be responsible for the cerebrovascular complications. A sudden rise in systemic arterial pressure may cause hemorrhages, frequently in association with an underlying aneurysm or AVM. Vasospasm, arteritis, myocardial infarction with cardiac arrhythmias and increased platelet aggregation may provoke infarcts.

  18. [Sigmund Freud and cocaine].

    PubMed

    Lebzeltern, G

    1983-11-11

    The basic tenet proposed by J. V. Scheidt states that the narcotic drug, cocaine played a role in the development of psychoanalysis which has been underestimated up to the present day. It is a fact that Freud himself took cocaine (in small doses) for about two years, and that he began his dream interpretation approximately ten years later. Scheidt believes that a long, unconscious conflict related to the cocaine-induced states of euphoria (ten years later) suddenly led to the beginnings of dream interpretation. The question to be answered now is: Why did this happen precisely in 1895? The foundations of psychoanalysis had already been laid, the application of the new method to the treatment of nervous disorders (heart complaints, train phobias, etc.) was certainly obvious. During this self-analysis it became necessary, first of all, to come to terms with the self-reproaches-which lay on the surface and were more accessible to consciousness-related to Freud's cocaine period (Fleischl-Marxow becomes addicted to cocaine, the most terrible night ever experienced, death of this friend, Freud's warning came too late). It was only when Freud has come to terms with this phase of his life that the road to the deepest part, the discovery of the Oedipus complex in the fall of 1897, was cleared.

  19. The selective dopamine uptake inhibitor, D-84, suppresses cocaine self-administration, but does not occasion cocaine-like levels of generalization

    PubMed Central

    Batman, Angela M.; Dutta, Aloke K.; Reith, Maarten E. A.; Beardsley, Patrick M.

    2010-01-01

    A successful replacement pharmacotherapy for treating cocaine dependency would likely reduce cocaine's abuse, support a low abuse liability, overlap cocaine's subjective effects, and have a long duration of action. Inhibitors with varying selectivity at the dopamine transporter (DAT) have approximated these properties. The objective of the present study was to characterize the behavioural effects of an extremely selective DAT inhibitor, (+) trans-4-(2-Benzhydryloxyethyl)-1-(4-fluorobenzyl) piperadin-3-ol (D-84), a 3-hydroxy substituted piperidine derivative of GBR-12935, for its cocaine-like discriminative stimulus effects, its effects on cocaine self-administration, and for its own self-administration. During cocaine discrimination tests, cocaine occasioned the 10 mg/kg cocaine training stimulus with an ED50 value of 3.13 (1.54-6.34) mg/kg, and reduced response rates with an ED50 value of 20.39 (7.24-57.44) mg/kg. D-84 incompletely generalized to the cocaine stimulus occasioning a maximal 76% cocaine lever responding, while reducing response rates with lower potency than cocaine (ED50=30.94 (12.34-77.60) mg/kg). Pretreatment with D-84 (9.6-30.4 mg/kg) significantly (P<0.05) reduced cocaine intake at 17.1 mg/kg D-84 when cocaine was self-administered at 0.5 mg/kg/infusion, and at 30.4 mg/kg D-84 when cocaine was self-administered at 0.1, 0.5 .and 1.0 mg/kg/infusion. During self-administration tests with D-84 (0.1-1 mg/kg/infusion), numbers of infusions significantly exceeded vehicle levels at 0.3 mg/kg/infusion. These results show that D-84 pre-treatment can decrease cocaine intake especially when high doses of cocaine are being self-administered. This observation, combined with its incomplete generalization to the cocaine discriminative stimulus and its reported long duration of action, provides a profile consistent with a potential replacement therapy for treating cocaine abusing patients. PMID:20840845

  20. The selective dopamine uptake inhibitor, D-84, suppresses cocaine self-administration, but does not occasion cocaine-like levels of generalization.

    PubMed

    Batman, Angela M; Dutta, Aloke K; Reith, Maarten E A; Beardsley, Patrick M

    2010-12-01

    A successful replacement pharmacotherapy for treating cocaine dependency would likely reduce cocaine's abuse, support a low abuse liability, overlap cocaine's subjective effects, and have a long duration of action. Inhibitors with varying selectivity at the dopamine transporter (DAT) have approximated these properties. The objective of the present study was to characterize the behavioural effects of an extremely selective DAT inhibitor, (+) trans-4-(2-Benzhydryloxyethyl)-1-(4-fluorobenzyl) piperadin-3-ol (D-84), a 3-hydroxy substituted piperidine derivative of GBR-12935, for its cocaine-like discriminative stimulus effects, its effects on cocaine self-administration, and for its own self-administration. During cocaine discrimination tests, cocaine occasioned the 10 mg/kg cocaine training stimulus with an ED(50) value of 3.13 (1.54-6.34) mg/kg, and reduced response rates with an ED(50) value of 20.39 (7.24-57.44) mg/kg. D-84 incompletely generalized to the cocaine stimulus occasioning a maximal 76% cocaine-lever responding, while reducing response rates with lower potency than cocaine (ED(50)=30.94 (12.34-77.60) mg/kg). Pretreatment with D-84 (9.6-30.4 mg/kg) significantly (P<0.05) reduced cocaine intake at 17.1 mg/kg D-84 when cocaine was self-administered at 0.5 mg/kg/infusion, and at 30.4 mg/kg D-84 when cocaine was self-administered at 0.1, 0.5 .and 1.0 mg/kg/infusion. During self-administration tests with D-84 (0.1-1 mg/kg/infusion), numbers of infusions significantly exceeded vehicle levels at 0.3 mg/kg/infusion. These results show that D-84 pretreatment can decrease cocaine intake especially when high doses of cocaine are being self-administered. This observation, combined with its incomplete generalization to the cocaine discriminative stimulus and its reported long duration of action, provides a profile consistent with a potential replacement therapy for treating cocaine-abusing patients. Copyright © 2010 Elsevier B.V. All rights reserved.

  1. Fluoxetine, but not sertraline or citalopram, potentiates the locomotor stimulant effect of cocaine: possible pharmacokinetic effects.

    PubMed

    Fletcher, Paul J; Sinyard, Judy; Salsali, Mahnaz; Baker, Glen B

    2004-07-01

    The selective serotonin reuptake inhibitor (SSRI) fluoxetine enhances some of the behavioural effects of cocaine, including locomotor stimulation. While this effect has often been interpreted as evidence for a serotonergic component to the behavioural effects of cocaine, direct evidence for this hypothesis is lacking. One alternative explanation is that fluoxetine, by inhibiting cytochrome P450 (CYP) enzymes, interferes with the metabolism of cocaine. These experiments were undertaken to: 1) compare the effects of fluoxetine with those of two other SSRIs, sertraline and citalopram, on cocaine-induced locomotor activity, 2) examine the effects of fluoxetine on cocaine-stimulated locomotion in rats depleted of serotonin (5-hydroxytryptamine; 5-HT), and 3) determine the effect of fluoxetine on cocaine levels in the brain. Locomotor activity was measured, using photocell based activity monitors, in rats habituated to those monitors. Depletion of 5-HT was achieved by injecting 5,7-dihydroxytryptamine (5,7-DHT) into the dorsal and median raphe nuclei. Cocaine levels in whole brain were measured using high-performance liquid chromatography with ultraviolet detection. In experiment 1, 5 mg/kg fluoxetine enhanced the ability of 10 and 15 mg/kg cocaine to increase locomotor activity. Neither citalopram nor sertraline (5 and 10 mg/kg) altered the stimulant effect of 10 mg/kg cocaine. Experiment 2 showed that this effect of fluoxetine was also apparent in rats with large and widespread depletion of brain 5-HT levels. The 5-HT depletion also failed to alter the response to cocaine itself. In experiment 3, brain levels of cocaine were elevated in rats pretreated with fluoxetine compared with rats that received cocaine alone. Fluoxetine enhanced the ability of cocaine to increase locomotor activity. This effect appears not to depend upon increasing 5-HT function since fluoxetine was also effective in rats with substantial 5-HT depletions, and two other SSRIs did not alter the

  2. Stimulant-induced dopamine increases are markedly blunted in active cocaine abusers.

    PubMed

    Volkow, N D; Tomasi, D; Wang, G-J; Logan, J; Alexoff, D L; Jayne, M; Fowler, J S; Wong, C; Yin, P; Du, C

    2014-09-01

    Dopamine signaling in nucleus accumbens is essential for cocaine reward. Interestingly, imaging studies have reported blunted dopamine increases in striatum (assessed as reduced binding of [(11)C]raclopride to D2/D3 receptors) in detoxified cocaine abusers. Here, we evaluate whether the blunted dopamine response reflected the effects of detoxification and the lack of cocaine-cues during stimulant exposure. For this purpose we studied 62 participants (43 non-detoxified cocaine abusers and 19 controls) using positron emission tomography and [(11)C]raclopride (radioligand sensitive to endogenous dopamine) to measure dopamine increases induced by intravenous methylphenidate and in 24 of the cocaine abusers, we also compared dopamine increases when methylphenidate was administered concomitantly with a cocaine cue-video versus a neutral-video. In controls, methylphenidate increased dopamine in dorsal (effect size 1.4; P<0.001) and ventral striatum (location of accumbens) (effect size 0.89; P<0.001), but in cocaine abusers methylphenidate's effects did not differ from placebo and were similar whether cocaine-cues were present or not. In cocaine abusers despite the markedly attenuated dopaminergic effects, the methylphenidate-induced changes in ventral striatum were associated with intense drug craving. Our findings are consistent with markedly reduced signaling through D2 receptors during intoxication in active cocaine abusers regardless of cues exposure, which might contribute to compulsive drug use.

  3. Anticonvulsants for cocaine dependence.

    PubMed

    Minozzi, Silvia; Cinquini, Michela; Amato, Laura; Davoli, Marina; Farrell, Michael F; Pani, Pier Paolo; Vecchi, Simona

    2015-04-17

    Cocaine dependence is a major public health problem that is characterised by recidivism and a host of medical and psychosocial complications. Although effective pharmacotherapy is available for alcohol and heroin dependence, none is currently available for cocaine dependence, despite two decades of clinical trials primarily involving antidepressant, anticonvulsivant and dopaminergic medications. Extensive consideration has been given to optimal pharmacological approaches to the treatment of individuals with cocaine dependence, and both dopamine antagonists and agonists have been considered. Anticonvulsants have been candidates for use in the treatment of addiction based on the hypothesis that seizure kindling-like mechanisms contribute to addiction. To evaluate the efficacy and safety of anticonvulsants for individuals with cocaine dependence. We searched the Cochrane Drugs and Alcohol Group Trials Register (June 2014), the Cochrane Central Register of Controlled Trials (CENTRAL) (2014, Issue 6), MEDLINE (1966 to June 2014), EMBASE (1988 to June 2014), the Cumulative Index to Nursing and Allied Health Literature (CINAHL) (1982 to June 2014), Web of Science (1991 to June 2014) and the reference lists of eligible articles. All randomised controlled trials and controlled clinical trials that focus on the use of anticonvulsant medications to treat individuals with cocaine dependence. We used the standard methodological procedures expected by The Cochrane Collaboration. We included a total of 20 studies with 2068 participants. We studied the anticonvulsant drugs carbamazepine, gabapentin, lamotrigine, phenytoin, tiagabine, topiramate and vigabatrin. All studies compared anticonvulsants versus placebo. Only one study had one arm by which the anticonvulsant was compared with the antidepressant desipramine. Upon comparison of anticonvulsant versus placebo, we found no significant differences for any of the efficacy and safety measures. Dropouts: risk ratio (RR) 0.95, 95

  4. Cocaine detection using piezoresistive microcantilevers

    NASA Astrophysics Data System (ADS)

    Srijanto, Bernadeta; Cheney, Christine P.; Hedden, David L.; Gehl, Anthony; Ferrell, Thomas L.

    2008-03-01

    Sensitive and inexpensive sensors play a significant role in the analysis of drugs and drug metabolites. Specifically, reliable in vivo detection of cocaine and cocaine metabolites serves as a useful tool in research of the body's reaction to the drug and in the treatment of the drug addiction. We present here a promising cocaine biosensor to be used in the human body. The sensor's active element consists of piezoresistive microcantilevers coated with an oligonucleotide-based aptamer as the cocaine binder. In vitro cocaine detection was carried out by flowing a cocaine solution over the microcantilevers. Advantages of this device are its low power consumption, its high sensitivity, and its potential for miniaturization into an implantable capsule. The limit of detection for cocaine in distilled water was found to be 1 ng/ml.

  5. Cocaine hydrolase gene therapy for cocaine abuse

    PubMed Central

    Brimijoin, Stephen; Gao, Yang

    2013-01-01

    Rapid progress in the past decade with re-engineering of human plasma butyrylcholinesterase has led to enzymes that destroy cocaine so efficiently that they prevent or interrupt drug actions in the CNS even though confined to the blood stream. Over the same time window, improved gene-transfer technology has made it possible to deliver such enzymes by endogenous gene transduction at high levels for periods of a year or longer after a single treatment. This article reviews recent advances in this field and considers prospects for development of a robust therapy aimed at aiding recovering drug users avoid addiction relapse. PMID:22300095

  6. Stable self-serving personality traits in recreational and dependent cocaine users

    PubMed Central

    Quednow, Boris B.; Hulka, Lea M.; Preller, Katrin H.; Baumgartner, Markus R.; Eisenegger, Christoph; Vonmoos, Matthias

    2017-01-01

    Chronic cocaine use has been associated with impairments in social cognition, self-serving and antisocial behavior, and socially relevant personality disorders (PD). Despite the apparent relationship between Machiavellianism and stimulant use, no study has explicitly examined this personality concept in cocaine users so far. In the frame of the longitudinal Zurich Cocaine Cognition Study, the Machiavellianism Questionnaire (MACH-IV) was assessed in 68 recreational and 30 dependent cocaine users as well as in 68 psychostimulant-naïve controls at baseline. Additionally, three closely related personality dimensions from the Temperament and Character Inventory (TCI)–cooperativeness, (social) reward dependence, and self-directedness–and the screening questionnaire of the Structured Clinical Interview for DSM-IV Axis II Personality Disorders (SCID-II) were acquired. At the one-year follow-up, 57 cocaine users and 48 controls were reassessed with the MACH-IV. Finally, MACH-IV scores were correlated with measures of social cognition and interaction (cognitive/emotional empathy, Theory-of-Mind, prosocial behavior) and with SCID-II PD scores assessed at baseline. Both recreational and dependent cocaine users showed significantly higher Machiavellianism than controls, while dependent cocaine users additionally displayed significantly lower levels of TCI cooperativeness and self-directedness. During the one-year interval, MACH-IV scores showed high test-retest reliability and also the significant gap between cocaine users and controls remained. Moreover, in cocaine users, higher Machiavellianism correlated significantly with lower levels of cooperativeness and self-directedness, with less prosocial behavior, and with higher cluster B PD scores. However, Machiavellianism was not correlated with measures of cocaine use severity (r<-.15). Both recreational and dependent cocaine users display pronounced and stable Machiavellian personality traits. The lack of correlations

  7. Cocaine withdrawal symptoms identify "Type B" cocaine-dependent patients.

    PubMed

    Ahmadi, Jamshid; Kampman, Kyle; Dackis, Charles; Sparkman, Thorne; Pettinati, Helen

    2008-01-01

    Recent studies of substance dependence typologies briefly show that multivariate systems originally developed for identifying subtypes of alcoholics, such as Babor's Type A and B system, may also be valid in abusers of other substances, such as cocaine. Type B patients are characterized by an earlier onset of addiction and more severe symptoms of their addiction, psychopathology, and impulsivity. The Type B classification has also been associated with deficits in serotonergic function. We have found that patients who exhibit more severe cocaine withdrawal symptoms, as measured by scores on the Cocaine Selective Severity Assessment (CSSA), have poor treatment outcome and share many characteristics with "Type B" patients. In this paper, we review baseline characteristics of cocaine-dependent patients from several recently completed outpatient cocaine dependence treatment trials to assess the association of cocaine withdrawal symptom severity and the Type B profile. Identifying subtypes of cocaine-dependent patients may improve our ability to treat cocaine dependence by targeting treatments for specific subtypes of patients. We examined the ability of the CSSA scores to capture Type B characteristics in cocaine dependence by analyzing a series of cocaine medication trials that included 255 cocaine-dependent subjects. High CSSA scores at baseline were associated with a history of violent behavior, a family history of substance abuse, antisocial personality disorder, higher addiction severity, and co-morbid psychiatric diseases. Patients with high CSSA scores are also more likely to meet criteria for Type B (Type II) cocaine dependence. Identifying Type B cocaine-dependent patients may help to develop targeted psychosocial or pharmacological treatments for these difficult-to-treat patients.

  8. Demand curves for hypothetical cocaine in cocaine-dependent individuals.

    PubMed

    Bruner, Natalie R; Johnson, Matthew W

    2014-03-01

    Drug purchasing tasks have been successfully used to examine demand for hypothetical consumption of abused drugs including heroin, nicotine, and alcohol. In these tasks, drug users make hypothetical choices whether to buy drugs, and if so, at what quantity, at various potential prices. These tasks allow for behavioral economic assessment of that drug's intensity of demand (preferred level of consumption at extremely low prices) and demand elasticity (sensitivity of consumption to price), among other metrics. However, a purchasing task for cocaine in cocaine-dependent individuals has not been investigated. This study examined a novel Cocaine Purchasing Task and the relation between resulting demand metrics and self-reported cocaine use data. Participants completed a questionnaire assessing hypothetical purchases of cocaine units at prices ranging from $0.01 to $1,000. Demand curves were generated from responses on the Cocaine Purchasing Task. Correlations compared metrics from the demand curve to measures of real-world cocaine use. Group and individual data were well modeled by a demand curve function. The validity of the Cocaine Purchasing Task was supported by a significant correlation between the demand curve metrics of demand intensity and O max (determined from Cocaine Purchasing Task data) and self-reported measures of cocaine use. Partial correlations revealed that after controlling for demand intensity, demand elasticity and the related measure, P max, were significantly correlated with real-world cocaine use. Results indicate that the Cocaine Purchasing Task produces orderly demand curve data, and that these data relate to real-world measures of cocaine use.

  9. Demand Curves for Hypothetical Cocaine in Cocaine-Dependent Individuals

    PubMed Central

    Bruner, Natalie R.; Johnson, Matthew W.

    2013-01-01

    Rationale Drug purchasing tasks have been successfully used to examine demand for hypothetical consumption of abused drugs including heroin, nicotine, and alcohol. In these tasks drug users make hypothetical choices whether to buy drugs, and if so, at what quantity, at various potential prices. These tasks allow for behavioral economic assessment of that drug's intensity of demand (preferred level of consumption at extremely low prices) and demand elasticity (sensitivity of consumption to price), among other metrics. However, a purchasing task for cocaine in cocaine-dependent individuals has not been investigated. Objectives This study examined a novel Cocaine Purchasing Task and the relation between resulting demand metrics and self-reported cocaine use data. Methods Participants completed a questionnaire assessing hypothetical purchases of cocaine units at prices ranging from $0.01 to $1,000. Demand curves were generated from responses on the Cocaine Purchasing Task. Correlations compared metrics from the demand curve to measures of real-world cocaine use. Results Group and individual data were well modeled by a demand curve function. The validity of the Cocaine Purchasing Task was supported by a significant correlation between the demand curve metrics of demand intensity and Omax (determined from Cocaine Purchasing Task data) and self-reported measures of cocaine use. Partial correlations revealed that after controlling for demand intensity, demand elasticity and the related measure, Pmax, were significantly correlated with real-world cocaine use. Conclusions Results indicate that the Cocaine Purchasing Task produces orderly demand curve data, and that these data relate to real-world measures of cocaine use. PMID:24217899

  10. Cocaine and Pregnancy

    MedlinePlus

    ... soon after birth, and this can cause permanent brain damage and other disabilities. Cocaine can cause significant central nervous system problems that may not be seen until the child is older. These effects may include problems with attention and behavioral self- ...

  11. Anticonvulsants for cocaine dependence.

    PubMed

    Minozzi, S; Amato, L; Davoli, M; Farrell, M; Lima Reisser, A A R L; Pani, P P; Silva de Lima, M; Soares, B; Vecchi, S

    2008-04-16

    Cocaine dependence is a major public health problem that is characterized by recidivism and a host of medical and psychosocial complications. Although effective pharmacotherapy is available for alcohol and heroin dependence none exists currently for cocaine dependence despite two decades of clinical trials primarily involving antidepressant, anti convulsivant and dopaminergic medications. There has been extensive consideration of optimal pharmacological approaches to the treatment of cocaine dependence with consideration of both dopamine antagonists and agonists. Anticonvulsants have been candidates for the treatment of addiction based on the hypothesis that seizure kindling-like mechanisms contribute to addiction. To evaluate the efficacy and the acceptability of anticonvulsants for cocaine dependence We searched the Cochrane Drugs and Alcohol Groups specialised register (issue 4, 2007), MEDLINE (1966 - march 2007), EMBASE (1988 - march 2007), CINAHL (1982- to march 2007) All randomised controlled trials and controlled clinical trials which focus on the use of anticonvulsants medication for cocaine dependence Two authors independently evaluated the papers, extracted data, rated methodological quality Fifteen studies (1066 participants) met the inclusion criteria for this review: the anticonvulsants drugs studied were carbamazepine, gabapentin, lamotrigine, phenytoin, tiagabine, topiramate, valproate. No significant differences were found for any of the efficacy measures comparing any anticonvulsants with placebo. Placebo was found to be superior to gabapentin in diminishing the number of dropouts, two studies, 81 participants, Relative Risk (RR) 3.56 (95% CI 1.07 to 11.82) and superior to phenythoin for side effects, two studies, 56 participants RR 2.12 (95% CI 1.08 to 4.17). All the other single comparisons are not statistically significant. Although caution is needed when assessing results from a limited number of small clinical trials at present there is no

  12. Emotion recognition during cocaine intoxication.

    PubMed

    Kuypers, K P C; Steenbergen, L; Theunissen, E L; Toennes, S W; Ramaekers, J G

    2015-11-01

    Chronic or repeated cocaine use has been linked to impairments in social skills. It is not clear whether cocaine is responsible for this impairment or whether other factors, like polydrug use, distort the observed relation. We aimed to investigate this relation by means of a placebo-controlled experimental study. Additionally, associations between stressor-related activity (cortisol, cardiovascular parameters) induced by the biological stressor cocaine, and potential cocaine effects on emotion recognition were studied. Twenty-four healthy recreational cocaine users participated in this placebo-controlled within-subject study. Participants were tested between 1 and 2 h after treatment with oral cocaine (300 mg) or placebo. Emotion recognition of low and high intensity expressions of basic emotions (fear, anger, disgust, sadness, and happiness) was tested. Findings show that cocaine impaired recognition of negative emotions; this was mediated by the intensity of the presented emotions. When high intensity expressions of Anger and Disgust were shown, performance under influence of cocaine 'normalized' to placebo-like levels while it made identification of Sadness more difficult. The normalization of performance was most notable for participants with the largest cortisol responses in the cocaine condition compared to placebo. It was demonstrated that cocaine impairs recognition of negative emotions, depending on the intensity of emotion expression and cortisol response. Copyright © 2015 Elsevier B.V. and ECNP. All rights reserved.

  13. Bone Marrow Derived Kit-positive Cells Colonize the Gut but Fail to Restore Pacemaker Function in Intestines Lacking Interstitial Cells of Cajal

    PubMed Central

    McCann, Conor J; Hwang, Sung-Jin; Hennig, Grant W; Ward, Sean M; Sanders, Kenton M

    2014-01-01

    Background/Aims Several motility disorders are associated with disruption of interstitial cells of Cajal (ICC), which provide important functions, such as pacemaker activity, mediation of neural inputs and responses to stretch in the gastrointestinal (GI) tract. Restoration of ICC networks may be therapeutic for GI motor disorders. Recent reports have suggested that Kit+ cells can be restored to the GI tract via bone marrow (BM) transplantation. We tested whether BM derived cells can lead to generation of functional activity in intestines naturally lacking ICC. Methods BM cells from Kit+/copGFP mice, in which ICC are labeled with a green fluorescent protein, were transplanted into W/WV intestines, lacking ICC. After 12 weeks the presence of ICC was analyzed by immunohistochemistry and functional analysis of electrical behavior and contractile properties. Results After 12 weeks copGFP+ BM derived cells were found within the myenteric region of intestines from W/WV mice, typically populated by ICC. Kit+ cells failed to develop interconnections typical of ICC in the myenteric plexus. The presence of Kit+ cells was verified with Western analysis. BM cells failed to populate the region of the deep muscular plexus where normal ICC density, associated with the deep muscular plexus, is found in W/WV mice. Engraftment of Kit+-BM cells resulted in the development of unitary potentials in transplanted muscles, but slow wave activity failed to develop. Motility analysis showed that intestinal movements in transplanted animals were abnormal and similar to untransplanted W/WV intestines. Conclusions BM derived Kit+ cells colonized the gut after BM transplantation, however these cells failed to develop the morphology and function of mature ICC. PMID:24847840

  14. Enhanced Choice for Viewing Cocaine Pictures in Cocaine Addiction

    SciTech Connect

    Moeller, S.J.; Goldstein, R.; Moeller, S.J.; Maloney, T. Parvaz, M.A.; Dunning, J.P.; Alia-Klein, N.; Woicik, P.A.; Hajcak, G.; Telang, F.; Wang, G.-J.; Volkow, N.D.; Goldstein, R.Z.

    2009-02-01

    Individuals with cocaine use disorder (CUD) chose cocaine over nondrug rewards. In two newly designed laboratory tasks with pictures, we document this modified choice outside of a cocaine administration paradigm. Choice for viewing cocaine, pleasant, unpleasant, or neutral pictures-under explicit contingencies (choice made between two fully visible side-by-side images) and under more implicit contingencies (selections made between pictures hidden under flipped-over cards)-was examined in 20 CUD and 20 matched healthy control subjects. Subjects also provided self-reported ratings of each picture's pleasantness and arousal. Under both contingencies, CUD subjects chose to view more cocaine pictures than control subjects, group differences that were not fully explained by the self-reported picture ratings. Furthermore, whereas CUD subjects choice for viewing cocaine pictures exceeded choice for viewing unpleasant pictures (but did not exceed choice for viewing pleasant pictures, in contrast to their self-reported ratings), healthy control subjects avoided viewing cocaine pictures as frequently as, or even more than, unpleasant pictures. Finally, CUD subjects with the most cocaine viewing selections, even when directly compared with selections of the pleasant pictures, also reported the most frequent recent cocaine use. Enhanced drug-related choice in cocaine addiction can be demonstrated even for nonpharmacologic (pictorial) stimuli. This choice, which is modulated by alternative stimuli, partly transcends self-reports (possibly indicative of a disconnect in cocaine addiction between self-reports and objective behavior) to provide an objective marker of addiction severity. Neuroimaging studies are needed to establish the neural underpinnings of such enhanced cocaine-related choice.

  15. Enhanced choice for viewing cocaine pictures in cocaine addiction.

    PubMed

    Moeller, Scott J; Maloney, Thomas; Parvaz, Muhammad A; Dunning, Jonathan P; Alia-Klein, Nelly; Woicik, Patricia A; Hajcak, Greg; Telang, Frank; Wang, Gene-Jack; Volkow, Nora D; Goldstein, Rita Z

    2009-07-15

    Individuals with cocaine use disorder (CUD) chose cocaine over nondrug rewards. In two newly designed laboratory tasks with pictures, we document this modified choice outside of a cocaine administration paradigm. Choice for viewing cocaine, pleasant, unpleasant, or neutral pictures--under explicit contingencies (choice made between two fully visible side-by-side images) and under more implicit contingencies (selections made between pictures hidden under flipped-over cards)--was examined in 20 CUD and 20 matched healthy control subjects. Subjects also provided self-reported ratings of each picture's pleasantness and arousal. Under both contingencies, CUD subjects chose to view more cocaine pictures than control subjects, group differences that were not fully explained by the self-reported picture ratings. Furthermore, whereas CUD subjects' choice for viewing cocaine pictures exceeded choice for viewing unpleasant pictures (but did not exceed choice for viewing pleasant pictures, in contrast to their self-reported ratings), healthy control subjects avoided viewing cocaine pictures as frequently as, or even more than, unpleasant pictures. Finally, CUD subjects with the most cocaine viewing selections, even when directly compared with selections of the pleasant pictures, also reported the most frequent recent cocaine use. Enhanced drug-related choice in cocaine addiction can be demonstrated even for nonpharmacologic (pictorial) stimuli. This choice, which is modulated by alternative stimuli, partly transcends self-reports (possibly indicative of a disconnect in cocaine addiction between self-reports and objective behavior) to provide an objective marker of addiction severity. Neuroimaging studies are needed to establish the neural underpinnings of such enhanced cocaine-related choice.

  16. Enhanced choice for viewing cocaine pictures in cocaine addiction

    PubMed Central

    Moeller, Scott J.; Maloney, Thomas; Parvaz, Muhammad A.; Dunning, Jonathan P.; Alia-Klein, Nelly; Woicik, Patricia A.; Hajcak, Greg; Telang, Frank; Wang, Gene-Jack; Volkow, Nora D.; Goldstein, Rita Z.

    2009-01-01

    Background Individuals with cocaine use disorder (CUD) chose cocaine over non-drug rewards. In two newly designed laboratory tasks with pictures, we document this modified choice outside of a cocaine administration paradigm. Methods Choice for viewing cocaine, pleasant, unpleasant, or neutral pictures - under explicit contingencies (where choice was made between two fully-visible side-by-side images) and under more implicit contingencies (where selections were made between pictures hidden under flipped-over cards) - was examined in 20 CUD and 20 matched healthy controls. Subjects also provided self-reported ratings of each picture’s pleasantness and arousal. Results Under both contingencies, CUD chose to view more cocaine pictures than control subjects, group differences that were not fully explained by the self-reported picture ratings. Further, whereas CUD’s choice for viewing cocaine pictures exceeded choice for viewing unpleasant pictures (but did not exceed choice for viewing pleasant pictures, in contrast to their self-reported ratings), healthy controls avoided viewing cocaine pictures as frequently as, or even more than, unpleasant pictures. Finally, CUD with the most cocaine viewing selections, even when directly compared to selections of the pleasant pictures, also reported the most frequent recent cocaine use. Conclusions Enhanced drug-related choice in cocaine addiction can be demonstrated even for non-pharmacological (pictorial) stimuli. This choice, which is modulated by alternative stimuli, partly transcends self-reports (possibly indicative of a disconnect in cocaine addiction between self-reports and objective behavior) to provide an objective marker of addiction severity. Neuroimaging studies are needed to establish the neural underpinnings of such enhanced cocaine-related choice. PMID:19358975

  17. Prenatal and postnatal cocaine exposure predict teen cocaine use

    PubMed Central

    Delaney-Black, Virginia; Chiodo, Lisa M.; Hannigan, John H.; Greenwald, Mark K.; Janisse, James; Patterson, Grace; Huestis, Marilyn A.; Partridge, Robert T.; Ager, Joel; Sokol, Robert J.

    2015-01-01

    Preclinical studies have identified alterations in cocaine and alcohol self-administration and behavioral responses to pharmacological challenges in adolescent offspring following prenatal exposure. To date, no published human studies have evaluated the relation between prenatal cocaine exposure and postnatal adolescent cocaine use. Human studies of prenatal cocaine-exposed children have also noted an increase in behaviors previously associated with substance use/abuse in teens and young adults, specifically childhood and teen externalizing behaviors, impulsivity, and attention problems. Despite these findings, human research has not addressed prior prenatal exposure as a potential predictor of teen drug use behavior. The purpose of this study was to evaluate the relations between prenatal cocaine exposure and teen cocaine use in a prospective longitudinal cohort (n = 316) that permitted extensive control for child, parent and community risk factors. Logistic regression analyses and Structural Equation Modeling revealed that both prenatal exposure and postnatal parent/caregiver cocaine use were uniquely related to teen use of cocaine at age 14 years. Teen cocaine use was also directly predicted by teen community violence exposure and caregiver negativity, and was indirectly related to teen community drug exposure. These data provide further evidence of the importance of prenatal exposure, family and community factors in the intergenerational transmission of teen/young adult substance abuse/use. PMID:20609384

  18. Prenatal and postnatal cocaine exposure predict teen cocaine use.

    PubMed

    Delaney-Black, Virginia; Chiodo, Lisa M; Hannigan, John H; Greenwald, Mark K; Janisse, James; Patterson, Grace; Huestis, Marilyn A; Partridge, Robert T; Ager, Joel; Sokol, Robert J

    2011-01-01

    Preclinical studies have identified alterations in cocaine and alcohol self-administration and behavioral responses to pharmacological challenges in adolescent offspring following prenatal exposure. To date, no published human studies have evaluated the relation between prenatal cocaine exposure and postnatal adolescent cocaine use. Human studies of prenatal cocaine-exposed children have also noted an increase in behaviors previously associated with substance use/abuse in teens and young adults, specifically childhood and teen externalizing behaviors, impulsivity, and attention problems. Despite these findings, human research has not addressed prior prenatal exposure as a potential predictor of teen drug use behavior. The purpose of this study was to evaluate the relations between prenatal cocaine exposure and teen cocaine use in a prospective longitudinal cohort (n=316) that permitted extensive control for child, parent and community risk factors. Logistic regression analyses and Structural Equation Modeling revealed that both prenatal exposure and postnatal parent/caregiver cocaine use were uniquely related to teen use of cocaine at age 14 years. Teen cocaine use was also directly predicted by teen community violence exposure and caregiver negativity, and was indirectly related to teen community drug exposure. These data provide further evidence of the importance of prenatal exposure, family and community factors in the intergenerational transmission of teen/young adult substance abuse/use.

  19. A Bacterial Cocaine Esterase Protects Against Cocaine-Induced Epileptogenic Activity and Lethality

    PubMed Central

    Jutkiewicz, Emily M.; Baladi, Michelle G.; Cooper, Ziva D.; Narasimhan, Diwahar; Sunahara, Roger K.; Woods, James H.

    2012-01-01

    Study objective Cocaine toxicity results in cardiovascular complications, seizures, and death and accounts for approximately 20% of drug-related emergency department visits every year. Presently, there are no treatments to eliminate the toxic effects of cocaine. The present study hypothesizes that a bacterial cocaine esterase with high catalytic efficiency would provide rapid and robust protection from cocaine-induced convulsions, epileptogenic activity, and lethality. Methods Cocaine-induced paroxysmal activity and convulsions were evaluated in rats surgically implanted with radiotelemetry devices (N=6 per treatment group). Cocaine esterase was administered 1 minute after a lethal dose of cocaine or after cocaine-induced convulsions to determine the ability of the enzyme to prevent or reverse, respectively, the effects of cocaine. Results The cocaine esterase prevented all cocaine-induced electroencephalographic changes and lethality. This effect was specific for cocaine because the esterase did not prevent convulsions and death induced by a cocaine analog, (−)-2β-carbomethoxy-3β-phenyltropane. The esterase prevented lethality even after cocaine-induced convulsions occurred. In contrast, the short-acting benzodiazepine, midazolam, prevented cocaine-induced convulsions but not the lethal effects of cocaine. Conclusion The data showed that cocaine esterase successfully degraded circulating cocaine to prevent lethality and that cocaine-induced convulsions alone are not responsible for the lethal effects of cocaine in this model. Therefore, further investigation into the use of cocaine esterase for treating cocaine overdose and its toxic effects is warranted. PMID:19013687

  20. Anti-cocaine vaccine development

    PubMed Central

    Kinsey, Berma M; Kosten, Thomas R; Orson, Frank M

    2010-01-01

    Cocaine abuse is an ongoing and serious problem which has lead to the growth of a brutal criminal enterprise, particularly in the Americas and Europe. At present, there are no effective pharmacological agents available to treat the addiction by blocking cocaine or reversing its effects. In order to help motivated addicts conquer their addiction, vaccines against cocaine are being developed, and one has progressed to clinical trials. This review will discuss the concept of anti-drug vaccines in general, the successes and limitations of the various anti-cocaine vaccine approaches, the results of the clinical trials with an anti-cocaine vaccine, and some new vaccine-mediated approaches to combat cocaine addiction. PMID:20822352

  1. Development of the dopamine transporter selective RTI-336 as a pharmacotherapy for cocaine abuse.

    PubMed

    Carroll, F Ivy; Howard, James L; Howell, Leonard L; Fox, Barbara S; Kuhar, Michael J

    2006-03-24

    The discovery and preclinical development of selective dopamine reuptake inhibitors as potential pharmacotherapies for treating cocaine addiction are presented. The studies are based on the hypothesis that a dopamine reuptake inhibitor is expected to partially substitute for cocaine, thus decreasing cocaine self-administration and minimizing the craving for cocaine. This type of indirect agonist therapy has been highly effective for treating smoking addiction (nicotine replacement therapy) and heroin addiction (methadone). To be an effective pharmacotherapy for cocaine addiction, the potential drug must be safe, long-acting, and have minimal abuse potential. We have developed several 3-phenyltropane analogs that are potent dopamine uptake inhibitors, and some are selective for the dopamine transporter relative to the serotonin and norepinephrine transporters. In animal studies, these compounds substitute for cocaine, reduce the intake of cocaine in rats and rhesus monkeys trained to self-administer cocaine, and have demonstrated a slow onset and long duration of action and lack of sensitization. The 3-phenyltropane analogs were also tested in a rhesus monkey self-administration model to define their abuse potential relative to cocaine. Based on these studies, 3beta-(4-chlorophenyl)-2beta-[3-(4'-methylphenyl)isoxazol-5-yl]tropane (RTI-336) has been selected for preclinical development.

  2. Development and persistence of kindling epilepsy are impaired in mice lacking glial cell line-derived neurotrophic factor family receptor α2

    PubMed Central

    Nanobashvili, Avtandil; Airaksinen, Matti S.; Kokaia, Merab; Rossi, Jari; Asztély, Fredrik; Olofsdotter, Klara; Mohapel, Paul; Saarma, Mart; Lindvall, Olle; Kokaia, Zaal

    2000-01-01

    Seizure activity regulates gene expression for glial cell line-derived neurotrophic factor (GDNF) and neurturin (NRTN), and their receptor components, the transmembrane c-Ret tyrosine kinase and the glycosylphosphatidylinositol-anchored GDNF family receptor (GFR) α1 and α2 in limbic structures. We demonstrate here that epileptogenesis, as assessed in the hippocampal kindling model, is markedly suppressed in mice lacking GFRα2. Moreover, at 6 to 8 wk after having reached the epileptic state, the hyperexcitability is lower in GFRα2 knock-out mice as compared with wild-type mice. These results provide evidence that signaling through GFRα2 is involved in mechanisms regulating the development and persistence of kindling epilepsy. Our data suggest that GDNF and NRTN may modulate seizure susceptibility by altering the function of hilar neuropeptide Y-containing interneurons and entorhinal cortical afferents at dentate granule cell synapses. PMID:11050250

  3. Modeling the Demand for Cocaine

    DTIC Science & Technology

    1994-01-01

    the Demand for Cocaine Susan S. Everingham C. Peter Rydell Pre~redfor the Office of NatinalDrug Control Policy United States Army DRUG POLICY...Demand for Cocaine . 60 50- sm 40- squared 30- delta prevalence 20- 10- 0.2 0 0.15 0.15 󈧄 b C; 0 i Sum squared delta 0.2 prevalence 0.195 EQ 50-50 0,19...model of the demand for cocaine that was fit to 20 years of data on the current cocaine epidemic in the United States. It also describes the analysis

  4. Cocaine-induced mesenteric ischaemia.

    PubMed

    Osorio, J; Farreras, N; Ortiz De Zárate L; Bachs, E

    2000-01-01

    We report a 33-year-old man with distal ileum infarction after intravenous abuse of cocaine. He underwent resection of a gangrenous bowel segment and survived. We review the literature regarding intestinal ischaemia related to cocaine. To date, 19 cases have been published. Like most previously reported cases, our patient was young and had no previous history of arteriosclerosis. He suffered cocaine-induced rhabdomyolysis and acute renal failure. Mesenteric ischaemia should be considered in the differential diagnosis of acute or chronic abdominal pain in cocaine consumers.

  5. The self-administration of rapidly delivered cocaine promotes increased motivation to take the drug: contributions of prior levels of operant responding and cocaine intake.

    PubMed

    Bouayad-Gervais, Karim; Minogianis, Ellie-Anna; Lévesque, Daniel; Samaha, Anne-Noël

    2014-10-01

    Rapid drug delivery to the brain might increase the risk for developing addiction. In rats, increasing the speed of intravenous cocaine delivery (5 vs. 90 s) increases drug intake and the subsequent motivation to self-administer cocaine. Increased motivation for cocaine could result not only from more extensive prior drug intake and operant responding for drug, but also from neuroplasticity evoked by rapid drug uptake. We determined the contributions of prior drug intake and operant responding to the increased motivation for cocaine evoked by rapid delivery. We also investigated the effects of cocaine delivery speed on corticostriatal expression of brain-derived neurotrophic factor (BDNF) and tropomyosin receptor kinase B (TrkB) mRNA. Rats self-administered cocaine (0.25 mg/kg/infusion) delivered over 5 or 90 s during short-access (1 h/session; ShA) or long-access (6 h; LgA) sessions. Motivation for cocaine was then assessed by measuring responding under a progressive ratio schedule of reinforcement. Next, BDNF and TrkB mRNA levels were measured in 5- and 90-s rats. Five-second ShA and 5-s-LgA rats were more motivated for cocaine than their 90-s counterparts. This effect was dissociable from previous levels of drug intake or of operant responding for cocaine. In parallel, only rats self-administering rapid cocaine injections had altered BDNF and TrkB mRNA levels in corticostriatal regions. Rapid drug delivery augments the motivation for cocaine independently of effects on the levels of drug intake or operant responding for drug. We suggest that rapid delivery might increase the motivation for drug by promoting neuroplasticity within reward pathways. This neuroplasticity could involve increased regulation of BDNF/TrkB.

  6. Mixed kappa agonists and mu agonists/antagonists as potential pharmacotherapeutics for cocaine abuse: synthesis and opioid receptor binding affinity of N-substituted derivatives of morphinan.

    PubMed

    Neumeyer, J L; Gu, X H; van Vliet, L A; DeNunzio, N J; Rusovici, D E; Cohen, D J; Negus, S S; Mello, N K; Bidlack, J M

    2001-10-22

    A series of new N-substituted derivatives of morphinan was synthesized and their binding affinity for the three opioid receptors (mu, delta, and kappa) was determined. A paradoxical effect of N-propargyl (MCL-117) and N-(3-iodoprop-(2E)-enyl) (MCL-118) substituents on the binding affinities for the mu and kappa opioid receptors was observed. All of these novel derivatives showed a preference for the mu and kappa versus delta binding.

  7. Copper thiocyanato complexes and cocaine - a case of 'black cocaine'.

    PubMed

    Laussmann, Tim; Grzesiak, Ireneus; Krest, Alexander; Stirnat, Kathrin; Meier-Giebing, Sigrid; Ruschewitz, Uwe; Klein, Axel

    2015-01-01

    The chemical composition of a black powder confiscated by German customs was elucidated. Black powders are occasionally used as a 'transporter' for cocaine and are obviously especially designed to cloak the presence of the drug. The material consisting of cocaine, copper, iron, thiocyanate, and graphite was approached by analytical tools and chemical modelling. Graphite is added to the material probably with the intention of masking the typical infrared (IR) fingerprints of cocaine and can be clearly detected by powder X-ray diffraction (XRD) and Raman spectroscopy. Cu(2+) and NCS(-) ions, when carefully reacted with cocaine hydrochloride, form the novel compound (CocH)2 [Cu(NCS)4 ] (CocH(+)  = protonated cocaine), which has been characterised by single crystal XRD, IR, NMR, UV/Vis absorption and EPR spectroscopy. Based on some further experiments the assumed composition of the original black powder is discussed. Copyright © 2014 John Wiley & Sons, Ltd.

  8. [Neurologic complications by cocaine abuse].

    PubMed

    Casas Parera, I; Gatto, E; Fernández Pardal, M M; Micheli, F; Pikielny, R; Melero, M; Gnocci, C; Giannaula, R; Paradiso, G; Cersósimo, G

    1994-01-01

    Argentina is facing an increase in cocaine use by adolescents and young adults from every socioeconomic background. It is calculated that up to 10% of all cocaine passing through this country is locally sold and consumed. Nevertheless, local information describing common cocaine-related neurological events is scarce. From August 1988 to March 1993, 13 patients were evaluated with neurological disease associated with cocaine abuse. Among these 13 patients (Table 1), the mean age was 29; 70% were men. Patients most commonly used the nasal route (snorting). Concomitant abuse of other intoxicants, especially alcohol, was frequent (85%). The major neurological complications included one or more seizures (n = 7), ischemic stroke (n = 2) (Fig. 1-2), hemorrhagic stroke (n = 2) associated with arteriovenous malformation (Fig. 3a-b), memory disturbances (n = 1) and paroxysmal dystonia (n = 1). Psychiatric complaints were present in all patients. Mortality was not observed. There was no correlation between the appearance of complications and the amount of cocaine used, or prior experience with this drug. Only one of the 7 patients with seizures had a previous history of seizures. All had generalized tonic-clonic seizures, and one had concomitant absence episodes. Cocaine modulates central neurotransmitters and has direct cerebrovascular effects. The neurological complications appear to be related to cocaine hyperadrenergic effects, striatal dopaminergic receptor hypersensitivity and perhaps vasculitis. Structural changes in the brain of long-term cocaine abusers could explain the persistence of neurologic symptoms after drug withdrawl.

  9. Palatine perforation induced by cocaine.

    PubMed

    Padilla-Rosas, Miguel; Jimenez-Santos, Cecilia Irene; García-González, Claudia Lorena

    2006-05-01

    Worldwide, the use of cocaine has an increased over the years, various secondary effects have been described. Here we present a 48 years old female with a 2-month evolution bucconasal ulcer in the hard palate induced by cocaine usage accompanied by swallow and phonation dysfunctions. Ethiopathogenesis, differential diagnoses and treatment are discussed.

  10. Cocaine/Crack: The Big Lie.

    ERIC Educational Resources Information Center

    National Inst. on Drug Abuse (DHHS/PHS), Rockville, MD.

    This pamphlet focuses on cocaine and crack use and the addictive nature of cocaine/crack. It contains a set of 21 questions about crack and cocaine, each accompanied by a clear and complete response. Interspersed throughout the booklet are photographs and quotes from former cocaine or crack users/addicts. Questions and answers focus on what…

  11. Antigen receptor-redirected T cells derived from hematopoietic precursor cells lack expression of the endogenous TCR/CD3 receptor and exhibit specific antitumor capacities

    PubMed Central

    Van Caeneghem, Yasmine; De Munter, Stijn; Tieppo, Paola; Goetgeluk, Glenn; Weening, Karin; Verstichel, Greet; Bonte, Sarah; Taghon, Tom; Leclercq, Georges; Kerre, Tessa; Debets, Reno; Vermijlen, David; Abken, Hinrich; Vandekerckhove, Bart

    2017-01-01

    ABSTRACT Recent clinical studies indicate that adoptive T-cell therapy and especially chimeric antigen receptor (CAR) T-cell therapy is a very potent and potentially curative treatment for B-lineage hematologic malignancies. Currently, autologous peripheral blood T cells are used for adoptive T-cell therapy. Adoptive T cells derived from healthy allogeneic donors may have several advantages; however, the expected occurrence of graft versus host disease (GvHD) as a consequence of the diverse allogeneic T-cell receptor (TCR) repertoire expressed by these cells compromises this approach. Here, we generated T cells from cord blood hematopoietic progenitor cells (HPCs) that were transduced to express an antigen receptor (AR): either a CAR or a TCR with or without built-in CD28 co-stimulatory domains. These AR-transgenic HPCs were culture-expanded on an OP9-DL1 feeder layer and subsequently differentiated to CD5+CD7+ T-lineage precursors, to CD4+ CD8+ double positive cells and finally to mature AR+ T cells. The AR+ T cells were largely naive CD45RA+CD62L+ T cells. These T cells had mostly germline TCRα and TCRβ loci and therefore lacked surface-expressed CD3/TCRαβ complexes. The CD3− AR-transgenic cells were mono-specific, functional T cells as they displayed specific cytotoxic activity. Cytokine production, including IL-2, was prominent in those cells bearing ARs with built-in CD28 domains. Data sustain the concept that cord blood HPC derived, in vitro generated allogeneic CD3− AR+ T cells can be used to more effectively eliminate malignant cells, while at the same time limiting the occurrence of GvHD. PMID:28405508

  12. Cocaine and metabolite excretion in saliva under stimulated and nonstimulated conditions.

    PubMed

    Kato, K; Hillsgrove, M; Weinhold, L; Gorelick, D A; Darwin, W D; Cone, E J

    1993-10-01

    The accessibility of saliva for rapid, noninvasive sampling makes it an attractive biological fluid for detecting drug use. However, little is known about salivary excretion patterns of the major cocaine metabolites, benzoylecgonine (BE) and ecgonine methyl ester (EME). Additionally, there is a general lack of information on the effects of salivary collection conditions on cocaine excretion in saliva. This study documents the profile of cocaine and metabolites in human saliva under stimulated and nonstimulated saliva flow conditions. Saliva samples were obtained periodically from six healthy volunteers who were administered three, equally spaced, single intravenous doses of 25 mg of cocaine during a 6-h test session. On different days, whole saliva was obtained either under nonstimulated or stimulated (sour candy) conditions. The samples were analyzed for cocaine and metabolites by GC/MS. Cocaine, BE, and EME were detected and quantitated in the saliva of all subjects. Cocaine was the predominant analyte identified in all samples. Nonstimulated saliva contained substantially more drug than stimulated samples. The ratio of the area under the curve (AUC) of cocaine in nonstimulated saliva to that of stimulated saliva was variable and ranged from 3.0 to 9.5. The AUC ratios of BE and EME were similar to those observed for cocaine. The lowering of cocaine concentration in saliva in the stimulated flow condition was likely due to an increase in saliva pH associated with increased saliva flow rate; it is known that an increase in saliva pH retards cocaine partitioning into this biological fluid.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. Progesterone attenuates cocaine-induced responses.

    PubMed

    Quinones-Jenab, Vanya; Jenab, Shirzad

    2010-06-01

    In this review, we summarize literature focused on how progesterone alters cocaine-induced psychomotor, reinforcement, and physiological responses. Clinical studies suggest that progesterone attenuates the subjective effects of cocaine. Similarly, preclinical studies have demonstrated that cocaine-induced reward and psychomotor responses are attenuated after progesterone administration. In rats progesterone also reduces the reinforcement effects of cocaine attenuates acquisition, escalation, reinstatement of cocaine self-administration, and cocaine-seeking behaviors. Progesterone also counteracts the facilitatory effects of estrogen on cocaine self-administration and psychomotor activation. These findings suggest that progesterone has a potential in clinical applications as a treatment for cocaine addiction. Constantly changing progesterone serum levels in female humans and rats affect the female's reinforcement responses to cocaine and may in part contribute to the known sex differences in cocaine responses.

  14. Powder and crack cocaine use among opioid users: is all cocaine the same?

    PubMed

    Stewart, Melissa J; Fulton, Heather G; Barrett, Sean P

    2014-01-01

    Problematic cocaine use is highly prevalent and is a significant public health concern. However, few investigations have distinguished between the 2 formulations of cocaine (ie, powder and crack cocaine) when examining the characteristics of cocaine use. Moreover, research has yet to assess the patterns of powder and crack cocaine use among opioid users, a clinical population in which problematic cocaine use is increasingly common. Using a within-subjects design, this study examined whether opioid users reported different patterns and features of powder and crack cocaine use, along with distinct trajectories and consequences of use. Seventy-three clients enrolled in a low-threshold methadone maintenance treatment were interviewed regarding their lifetime use of powder and crack cocaine. Compared with crack cocaine, initiation and peak use of powder cocaine occurred at a significantly younger age. In relation to recent cocaine use, participants were significantly more likely to report using crack cocaine than using powder cocaine. Differences in routes of administration, polysubstance use, and criminal activity associated with cocaine use were also found between the 2 forms of cocaine. Results suggest that it may not be appropriate to consider powder and crack cocaine as diagnostically and clinically equivalent. As such, researchers may wish to distinguish explicitly between powder and crack cocaine when assessing the characteristics and patterns of cocaine use among substance users and treat these 2 forms of cocaine separately in analyses.

  15. Cocaine Use Reverses Striatal Plasticity Produced During Cocaine Seeking.

    PubMed

    Spencer, Sade; Garcia-Keller, Constanza; Roberts-Wolfe, Douglas; Heinsbroek, Jasper A; Mulvaney, Mallory; Sorrell, Anne; Kalivas, Peter W

    2017-04-01

    Relapse is a two-component process consisting of a highly motivated drug-seeking phase that, if successful, is followed by a drug-using phase resulting in temporary satiation. In rodents, cue-induced drug seeking requires transient synaptic potentiation (t-SP) of cortical glutamatergic synapses on nucleus accumbens core medium spiny neurons, but it is unknown how achieving drug use affects this plasticity. We modeled the two phases of relapse after extinction from cocaine self-administration to assess how cocaine use affects t-SP associated with cue-induced drug seeking. Rats were trained to self-administer cocaine (n = 96) or were used as yoked-saline control animals (n = 21). After extinction, reinstatement was initiated by 10 minutes of cue-induced drug seeking, followed by 45 minutes with contingent cocaine access, after which cocaine was discontinued and unreinforced lever pressing ensued. Three measures of t-SP were assayed during reinstatement: dendritic spine morphology, alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) to N-methyl-D-aspartate (NMDA) ratios, and matrix metalloproteinase activity. We found that cocaine use for 10 minutes collapsed all three measures of cue-potentiated t-SP back to baseline. Moreover, when cocaine use was discontinued 45 minutes later, dendritic spine morphology and AMPA to NMDA ratios were restored as animals became motivated to engage unrewarded lever pressing. Nonreinforced drug seeking was positively correlated with changes in spine morphology, and cocaine access reversed this relationship. Using a novel modification of the reinstatement paradigm, we show that achieving cocaine use reversed the synaptic plasticity underpinning the motivation to seek the drug. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  16. Loss of Feedback Inhibition via D2 Autoreceptors Enhances Acquisition of Cocaine Taking and Reactivity to Drug-Paired Cues

    PubMed Central

    Holroyd, Kathryn B; Adrover, Martin F; Fuino, Robert L; Bock, Roland; Kaplan, Alanna R; Gremel, Christina M; Rubinstein, Marcelo; Alvarez, Veronica A

    2015-01-01

    A prominent aspect of drug addiction is the ability of drug-associated cues to elicit craving and facilitate relapse. Understanding the factors that regulate cue reactivity will be vital for improving treatment of addictive disorders. Low availability of dopamine (DA) D2 receptors (D2Rs) in the striatum is associated with high cocaine intake and compulsive use. However, the role of D2Rs of nonstriatal origin in cocaine seeking and taking behavior and cue reactivity is less understood and possibly underestimated. D2Rs expressed by midbrain DA neurons function as autoreceptors, exerting inhibitory feedback on DA synthesis and release. Here, we show that selective loss of D2 autoreceptors impairs the feedback inhibition of DA release and amplifies the effect of cocaine on DA transmission in the nucleus accumbens (NAc) in vitro. Mice lacking D2 autoreceptors acquire a cued-operant self-administration task for cocaine faster than littermate control mice but acquire similarly for a natural reward. Furthermore, although mice lacking D2 autoreceptors were able to extinguish self-administration behavior in the absence of cocaine and paired cues, they exhibited perseverative responding when cocaine-paired cues were present. This enhanced cue reactivity was selective for cocaine and was not seen during extinction of sucrose self-administration. We conclude that low levels of D2 autoreceptors enhance the salience of cocaine-paired cues and can contribute to the vulnerability for cocaine use and relapse. PMID:25547712

  17. Cyclin-Dependent Kinase Inhibitor 1a (p21) Modulates Response to Cocaine and Motivated Behaviors

    PubMed Central

    Scholpa, Natalie E.; Briggs, Sherri B.; Wagner, John J.

    2016-01-01

    This study investigated the functional role of cyclin-dependent kinase inhibitor 1a (Cdkn1a or p21) in cocaine-induced responses using a knockout mouse model. Acute locomotor activity after cocaine administration (15 mg/kg, i.p.) was decreased in p21−/− mice, whereas cocaine-induced place preference was enhanced. Interestingly, κ-opioid–induced place aversion was also significantly enhanced. Concentration-dependent analysis of locomotor activity in response to cocaine demonstrated a rightward shift in the p21−/− mice. Pretreatment with a 5-hydroxytryptamine receptor antagonist did not alter the enhancement of cocaine-induced conditioned place preference in p21−/− mice, indicating a lack of involvement of serotonergic signaling in this response. Cocaine exposure increased p21 expression exclusively in the ventral sector of the hippocampus of rodents after either contingent or noncontingent drug administration. Increased p21 expression was accompanied by increased histone acetylation of the p21 promoter region in rats. Finally, increased neurogenesis in the dorsal hippocampus of p21−/− mice was also observed. These results show that functional loss of p21 altered the acute locomotor response to cocaine and the conditioned responses to either rewarding or aversive stimuli. Collectively, these findings demonstrate a previously unreported involvement of p21 in modulating responses to cocaine and in motivated behaviors. PMID:26791604

  18. Cyclin-Dependent Kinase Inhibitor 1a (p21) Modulates Response to Cocaine and Motivated Behaviors.

    PubMed

    Scholpa, Natalie E; Briggs, Sherri B; Wagner, John J; Cummings, Brian S

    2016-04-01

    This study investigated the functional role of cyclin-dependent kinase inhibitor 1a (Cdkn1a or p21) in cocaine-induced responses using a knockout mouse model. Acute locomotor activity after cocaine administration (15 mg/kg, i.p.) was decreased in p21(-/-) mice, whereas cocaine-induced place preference was enhanced. Interestingly, κ-opioid-induced place aversion was also significantly enhanced. Concentration-dependent analysis of locomotor activity in response to cocaine demonstrated a rightward shift in the p21(-/-) mice. Pretreatment with a 5-hydroxytryptamine receptor antagonist did not alter the enhancement of cocaine-induced conditioned place preference in p21(-/-) mice, indicating a lack of involvement of serotonergic signaling in this response. Cocaine exposure increased p21 expression exclusively in the ventral sector of the hippocampus of rodents after either contingent or noncontingent drug administration. Increased p21 expression was accompanied by increased histone acetylation of the p21 promoter region in rats. Finally, increased neurogenesis in the dorsal hippocampus of p21(-/-) mice was also observed. These results show that functional loss of p21 altered the acute locomotor response to cocaine and the conditioned responses to either rewarding or aversive stimuli. Collectively, these findings demonstrate a previously unreported involvement of p21 in modulating responses to cocaine and in motivated behaviors.

  19. Cocaine Tolerance in Honey Bees

    PubMed Central

    Søvik, Eirik; Cornish, Jennifer L.; Barron, Andrew B.

    2013-01-01

    Increasingly invertebrates are being used to investigate the molecular and cellular effects of drugs of abuse to explore basic mechanisms of addiction. However, in mammals the principle factors contributing to addiction are long-term adaptive responses to repeated drug use. Here we examined whether adaptive responses to cocaine are also seen in invertebrates using the honey bee model system. Repeated topical treatment with a low dose of cocaine rendered bees resistant to the deleterious motor effects of a higher cocaine dose, indicating the development of physiological tolerance to cocaine in bees. Cocaine inhibits biogenic amine reuptake transporters, but neither acute nor repeated cocaine treatments caused measurable changes in levels of biogenic amines measured in whole bee brains. Our data show clear short and long-term behavioural responses of bees to cocaine administration, but caution that, despite the small size of the bee brain, measures of biogenic amines conducted at the whole-brain level may not reveal neurochemical effects of the drug. PMID:23741423

  20. Competition between novelty and cocaine conditioned reward is sensitive to drug dose and retention interval

    PubMed Central

    Reichel, Carmela M.; Bevins, Rick A.

    2010-01-01

    The following manuscript is the final accepted manuscript. It has not been subjected to the final copyediting, fact-checking, and proofreading required for formal publication. It is not the definitive, publisher-authenticated version. The American Psychological Association and its Council of Editors disclaim any responsibility or liabilities for errors or omissions of this manuscript version, any version derived from this manuscript by NIH, or other third parties. The published version is available at www.apa.org/pubs/journals/bne The conditioned rewarding effects of novelty compete with those of cocaine for control over choice behavior using a place-conditioning task. The purpose of the present study was to use multiple doses of cocaine to determine the extent of this competition and to determine whether novelty's impact on cocaine reward was maintained over an abstinence period. In Experiment 1, rats were conditioned with cocaine (7.5, 20, or 30 mg/kg, IP) to prefer one side of an unbiased place conditioning apparatus relative to the other. In a subsequent phase, all rats received alternating daily confinements to the previously cocaine-paired and unpaired sides of the apparatus. During this phase, half the rats had access to a novel object on their initially unpaired side; the remaining rats did not receive objects. The ability of novelty to compete with cocaine in a drug-free and cocaine-challenge test was sensitive to cocaine dose. In Experiment 2, a place preference was established with 10 mg/kg cocaine and testing occurred after 1, 14, or 28 day retention intervals. Findings indicate that choice behaviors mediated by cocaine conditioning are reduced with the passing of time. Taken together, competition between cocaine and novelty conditioned rewards are sensitive to drug dose and retention interval. PMID:20141289

  1. The Obsessive Compulsive Cocaine Use Scale: development and initial validation of a self-rated instrument for the quantification of thoughts about cocaine use.

    PubMed

    Hormes, Julia M; Coffey, Scott F; Drobes, David J; Saladin, Michael E

    2012-01-01

    Craving is a hallmark of addiction and characterized by obsessive thoughts about, and compulsive urges to use, a substance. While craving is frequently thought of as primarily being a feature of acute withdrawal, there is evidence to suggest that it increases in strength over extended periods of abstinence. While several measures are available to assess acute craving states, there remains a lack of clinical measures appropriate for capturing the enduring cognitive aspects of urges to use drugs. The present study was designed to develop and validate a measure of obsessive-compulsive thoughts in cocaine-dependent individuals. The proposed 14-item Obsessive Compulsive Cocaine Use Scale (OCCUS) was administered to 107 individuals: 55 participants meeting diagnostic criteria for cocaine dependence and 52 recreational users of cocaine. In addition to the OCCUS, participants also completed the Drug Abuse Screening Test, Cocaine Craving Questionnaire-Now, and Social Desirability Scale of the California Personality Inventory. Results of confirmatory factor analysis indicated that the OCCUS fit the two-factor structure of the Obsessive Compulsive Drinking Scale on which it was based, independently assessing the "obsessive" and "compulsive" aspects of cocaine dependence. The OCCUS demonstrated good internal consistency reliability and convergent, discriminant, and criterion validity. The proposed measure is a promising step towards the successful capture of the long-term cognitive features of craving for cocaine via self-report, and should represent a useful tool for clinical and research use. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  2. Cell type-specific loss of BDNF signaling mimics optogenetic control of cocaine reward.

    PubMed

    Lobo, Mary Kay; Covington, Herbert E; Chaudhury, Dipesh; Friedman, Allyson K; Sun, HaoSheng; Damez-Werno, Diane; Dietz, David M; Zaman, Samir; Koo, Ja Wook; Kennedy, Pamela J; Mouzon, Ezekiell; Mogri, Murtaza; Neve, Rachael L; Deisseroth, Karl; Han, Ming-Hu; Nestler, Eric J

    2010-10-15

    The nucleus accumbens is a key mediator of cocaine reward, but the distinct roles of the two subpopulations of nucleus accumbens projection neurons, those expressing dopamine D1 versus D2 receptors, are poorly understood. We show that deletion of TrkB, the brain-derived neurotrophic factor (BDNF) receptor, selectively from D1+ or D2+ neurons oppositely affects cocaine reward. Because loss of TrkB in D2+ neurons increases their neuronal excitability, we next used optogenetic tools to control selectively the firing rate of D1+ and D2+ nucleus accumbens neurons and studied consequent effects on cocaine reward. Activation of D2+ neurons, mimicking the loss of TrkB, suppresses cocaine reward, with opposite effects induced by activation of D1+ neurons. These results provide insight into the molecular control of D1+ and D2+ neuronal activity as well as the circuit-level contribution of these cell types to cocaine reward.

  3. Hypothalamic proteoglycan syndecan-3 is a novel cocaine addiction resilience factor.

    PubMed

    Chen, Jihuan; Repunte-Canonigo, Vez; Kawamura, Tomoya; Lefebvre, Celine; Shin, William; Howell, Leonard L; Hemby, Scott E; Harvey, Brandon K; Califano, Andrea; Morales, Marisela; Koob, George F; Sanna, Pietro Paolo

    2013-01-01

    Proteoglycans like syndecan-3 have complex signaling roles in addition to their function as structural components of the extracellular matrix. Here, we show that syndecan-3 in the lateral hypothalamus has an unexpected new role in limiting compulsive cocaine intake. In particular, we observe that syndecan-3 null mice self-administer greater amounts of cocaine than wild-type mice. This effect can be rescued by re-expression of syndecan-3 in the lateral hypothalamus with an adeno-associated viral vector. Adeno-associated viral vector delivery of syndecan-3 to the lateral hypothalamus also reduces motivation for cocaine in normal mice. Syndecan-3 limits cocaine intake by modulating the effects of glial-cell-line-derived neurotrophic factor, which uses syndecan-3 as an alternative receptor. Our findings indicate syndecan-3-dependent signaling as a novel therapeutic target for the treatment of cocaine addiction.

  4. Disruption of glutamate receptor-interacting protein in nucleus accumbens enhances vulnerability to cocaine relapse.

    PubMed

    Briand, Lisa A; Kimmey, Blake A; Ortinski, Pavel I; Huganir, Richard L; Pierce, R Christopher

    2014-02-01

    Trafficking and stabilization of AMPA receptors at synapses in response to cocaine exposure is thought to be critical for expression of cocaine addiction and relapse. Glutamate receptor-interacting protein (GRIP) is a neuronal scaffolding protein that stabilizes GluA2 AMPARs at synapses but its role in cocaine addiction has not been examined. The current study demonstrates that conditional deletion of GRIP within the nucleus accumbens potentiates cue-induced reinstatement of cocaine seeking without affecting operant learning, locomotor activity, or reinstatement of natural reward seeking. This is the first study to demonstrate a role for accumbal GRIP in behavior. Electrophysiological recordings revealed increased rectification of AMPAR-mediated currents in the nucleus accumbens and increased AMPAR sensitivity to the GluA2-lacking AMPAR antagonist, 1-naphthylacetyl spermine, indicative of an increased contribution of GluA2-lacking calcium-permeable AMPARs. In addition, accumbal GRIP deletion was associated with blunted long-term depression, similar to what is seen following cocaine self-administration. Taken together, these results indicate that GRIP may modulate addictive phenotypes through its regulation of synaptic AMPARs by controlling their subunit composition and susceptibility to LTD. These effects are associated with changes in vulnerability to cocaine relapse and highlight GRIP as a novel target for the development of cocaine addiction therapeutics.

  5. Phenotype of cerebellar glutamatergic neurons is altered in stargazer mutant mice lacking brain-derived neurotrophic factor mRNA expression.

    PubMed

    Richardson, Christine A; Leitch, Beulah

    2005-01-10

    Brain-derived neurotrophic factor (BDNF) influences neuronal survival, differentiation, and maturation. More recently, its role in synapse formation and plasticity has also emerged. In the cerebellum of the spontaneous recessive mutant mouse stargazer (stg) there is a specific and pronounced deficit in BDNF mRNA expression. BDNF protein levels in the cerebellum as a whole are reduced by 70%, while in the granule cells (GCs) there is a selective and near total reduction in BDNF mRNA expression. Recently, we published data demonstrating that inhibitory neurons in the cerebella of stgs have significantly reduced levels (approximately 50%) of gamma-aminobutyric acid (GABA) and fewer, smaller inhibitory synapses compared to wildtype (WT) controls. Our current investigations indicate that the stargazer mutation has an even more pronounced effect on the phenotype of glutamatergic neurons in the cerebellum. There is a profound decrease in the levels of glutamate-immunoreactivity (up to 77%) in stg compared to WT controls. The distribution profile of presynaptic vesicles is also markedly different: stgs have proportionally fewer docked vesicles and fewer vesicles located adjacent to the active zone ready to dock than WTs. Furthermore, the thickness of the postsynaptic density (PSD) at mossy fiber-granule cell (MF-GC) and parallel fiber-Purkinje cell (PF-PC) synapses is severely reduced (up to 33% less than WT controls). The number and length of excitatory synapses, however, appear to be relatively unchanged. It is possible that at least some of theses changes in phenotype are directly attributable to the lack of BDNF in the cerebellum of the stg mutant.

  6. Nasal Polyp-Derived Mesenchymal Stromal Cells Exhibit Lack of Immune-Associated Molecules and High Levels of Stem/Progenitor Cells Markers

    PubMed Central

    de Oliveira, Pedro Wey Barbosa; Pezato, Rogério; Agudelo, Juan Sebastian Henao; Perez-Novo, Claudina Angela; Berghe, Wim Vanden; Câmara, Niels Olsen; de Almeida, Danilo Candido; Gregorio, Luís Carlos

    2017-01-01

    Mesenchymal stromal cells (MSCs) are considered adult progenitor stem cells and have been studied in a multitude of tissues. In this context, the microenvironment of nasal polyp tissue has several inflammatory cells, but their stroma compartment remains little elucidated. Hence, we isolated MSCs from nasal polyps Polyp-MSCs (PO-MSCs) and compared their molecular features and gene expression pattern with bone marrow-derived MSCs (BM-MSCs). Initially, both PO-MSCs and BM-MSCs were isolated, cultivated, and submitted to morphologic, differentiation, phenotypic, immunosuppressive, and gene expression assays. Compared to BM-MSCs, PO-MSCs showed normal morphology and similar osteogenic/adipogenic differentiation potential, but their immunophenotyping showed lack of immune-associated molecules (e.g., CD117, HLA-DR, PDL-1, and PDL-2), which was linked with less immunoregulatory abilities such as (i) inhibition of lymphocytes proliferation and (ii) regulatory T cell expansion. Furthermore, we detected in the PO-MSCs a distinct gene expression profile in comparison with BM-MSCs. PO-MSC expressed higher levels of progenitor stem cells specific markers (e.g., CD133 and ABCB1), while BM-MSCs showed elevated expression of cytokines and growth factors (e.g., FGF10, KDR, and GDF6). The gene ontology analysis showed that the differentially modulated genes in PO-MSC were related with matrix remodeling process and hexose and glucose transport. For BM-MSCs, the highly expressed genes were associated with behavior, angiogenesis, blood vessel morphogenesis, cell–cell signaling, and regulation of response to external stimulus. Thus, these results suggest that PO-MSCs, while sharing similar aspects with BM-MSCs, express a different profile of molecules, which presumably can be implicated in the development of nasal polyp tissue. PMID:28194153

  7. Cocaine esterase: interactions with cocaine and immune responses in mice.

    PubMed

    Ko, Mei-Chuan; Bowen, Luvina D; Narasimhan, Diwahar; Berlin, Aaron A; Lukacs, Nicholas W; Sunahara, Roger K; Cooper, Ziva D; Woods, James H

    2007-02-01

    Cocaine esterase (CocE) is the most efficient protein catalyst for the hydrolysis of cocaine characterized to date. The aim of this study was to investigate the in vivo potency of CocE in blocking cocaine-induced toxicity in the mouse and to assess CocE's potential immunogenicity. Cocaine toxicity was quantified by measuring the occurrence of convulsions and lethality. Intravenous administration of CocE (0.1-1 mg) 1 min before cocaine administration produced dose-dependent rightward shifts of the dose-response curve for cocaine toxicity. More important, i.v. CocE (0.1-1 mg), given 1 min after the occurrence of cocaine-induced convulsions, shortened the recovery time after the convulsions and saved the mice from subsequent death. Effects of repeated exposures to CocE were evaluated by measuring anti-CocE antibody titers and the protective effects of i.v. CocE (0.32 mg) against toxicity elicited by i.p. cocaine (320 mg/kg) (i.e., 0-17% occurrence of convulsions and lethality). CocE retained its potency against cocaine toxicity in mice after a single prior CocE exposure (0.1-1 mg), and these mice did not show an immune response. CocE retained similar effectiveness in mice after three prior CocE exposures (0.1-1 mg/week for 3 weeks), although these mice displayed 10-fold higher antibody titers. CocE partially lost effectiveness (i.e., 33-50% occurrence of convulsions and lethality) in mice with four prior exposures to CocE (0.1-1 mg/2 week for four times), and these mice displayed approximately 100-fold higher antibody titers. These results suggest that CocE produces robust protection and reversal of cocaine toxicity, indicating CocE's therapeutic potential for acute cocaine toxicity. Repeated CocE exposures may increase its immunogenicity and partially reduce its protective ability.

  8. Prenatal Cocaine Exposure Upregulates BDNF-TrkB Signaling

    PubMed Central

    Stucky, Andres; Bakshi, Kalindi P.; Friedman, Eitan; Wang, Hoau-Yan

    2016-01-01

    Prenatal cocaine exposure causes profound changes in neurobehavior as well as synaptic function and structure with compromised glutamatergic transmission. Since synaptic health and glutamatergic activity are tightly regulated by brain-derived neurotrophic factor (BDNF) signaling through its cognate tyrosine receptor kinase B (TrkB), we hypothesized that prenatal cocaine exposure alters BDNF-TrkB signaling during brain development. Here we show prenatal cocaine exposure enhances BDNF-TrkB signaling in hippocampus and prefrontal cortex (PFCX) of 21-day-old rats without affecting the expression levels of TrkB, P75NTR, signaling molecules, NMDA receptor—NR1 subunit as well as proBDNF and BDNF. Prenatal cocaine exposure reduces activity-dependent proBDNF and BDNF release and elevates BDNF affinity for TrkB leading to increased tyrosine-phosphorylated TrkB, heightened Phospholipase C-γ1 and N-Shc/Shc recruitment and higher downstream PI3K and ERK activation in response to ex vivo BDNF. The augmented BDNF-TrkB signaling is accompanied by increases in association between activated TrkB and NMDARs. These data suggest that cocaine exposure during gestation upregulates BDNF-TrkB signaling and its interaction with NMDARs by increasing BDNF affinity, perhaps in an attempt to restore the diminished excitatory neurotransmission. PMID:27494324

  9. On the Electronic Structure of Cocaine and its Metabolites

    NASA Astrophysics Data System (ADS)

    Rincón, David A.; Dias Soeiro Cordeiro, Maria Natália; Mosquera, Ricardo A.

    2009-11-01

    This work aims at describing the electronic features of cocaine and how they are modified by the different substituents present in its metabolites. The QTAIM analysis of B3LYP and MP2 electron densities obtained with the 6-311++G** 6d basis set for cocaine and its principal metabolites indicates: (i) its positive charge is shared among the amino hydrogen, those of the methylamino group, and all of the hydrogens attached to the bicycle structure; (ii) the zwitterionic structure of benzoylecgonine can be described as two partial charges of 0.63 au, the negative one shared by the oxygens of the carboxylate group, whereas the positive charge is distributed among all the hydrogens that bear the positive charge in cocaine; (iii) its hydrogen bond is strengthened in the derivatives without benzoyloxy group and is also slightly strengthened as the size of the alkyl ester group at position 2 increases.

  10. Cocaine Self-Administration Produces Long-Lasting Alterations in Dopamine Transporter Responses to Cocaine

    PubMed Central

    Siciliano, Cody A.; Fordahl, Steve C.

    2016-01-01

    Cocaine addiction is a debilitating neuropsychiatric disorder characterized by uncontrolled cocaine intake, which is thought to be driven, at least in part, by cocaine-induced deficits in dopamine system function. A decreased ability of cocaine to elevate dopamine levels has been repeatedly observed as a consequence of cocaine use in humans, and preclinical work has highlighted tolerance to cocaine's effects as a primary determinant in the development of aberrant cocaine taking behaviors. Here we determined that cocaine self-administration in rats produced tolerance to the dopamine transporter-inhibiting effects of cocaine in the nucleus accumbens core, which was normalized following a 14 or 60 d abstinence period; however, although these rats appeared to be similar to controls, a single self-administered infusion of cocaine at the end of abstinence, even after 60 d, fully reinstated tolerance to cocaine's effects. A single cocaine infusion in a naive rat had no effect on cocaine potency, demonstrating that cocaine self-administration leaves the dopamine transporter in a “primed” state, which allows for cocaine-induced plasticity to be reinstated by a subthreshold cocaine exposure. Further, reinstatement of cocaine tolerance was accompanied by decreased cocaine-induced locomotion and escalated cocaine intake despite extended abstinence from cocaine. These data demonstrate that cocaine leaves a long-lasting imprint on the dopamine system that is activated by re-exposure to cocaine. Further, these results provide a potential mechanism for severe cocaine binge episodes, which occur even after sustained abstinence from cocaine, and suggest that treatments aimed at transporter sites may be efficacious in promoting binge termination following relapse. SIGNIFICANCE STATEMENT Tolerance is a DSM-V criterion for substance abuse disorders. Abusers consistently show reduced subjective effects of cocaine concomitant with reduced effects of cocaine at its main site of action

  11. Cocaine, Appetitive Memory and Neural Connectivity

    PubMed Central

    Ray, Suchismita

    2013-01-01

    This review examines existing cognitive experimental and brain imaging research related to cocaine addiction. In section 1, previous studies that have examined cognitive processes, such as implicit and explicit memory processes in cocaine users are reported. Next, in section 2, brain imaging studies are reported that have used chronic users of cocaine as study participants. In section 3, several conclusions are drawn. They are: (a) in cognitive experimental literature, no study has examined both implicit and explicit memory processes involving cocaine related visual information in the same cocaine user, (b) neural mechanisms underlying implicit and explicit memory processes for cocaine-related visual cues have not been directly investigated in cocaine users in the imaging literature, and (c) none of the previous imaging studies has examined connectivity between the memory system and craving system in the brain of chronic users of cocaine. Finally, future directions in the field of cocaine addiction are suggested. PMID:25009766

  12. Psychostimulant Treatment of Cocaine Dependence

    PubMed Central

    Mariani, John J.; Levin, Frances R.

    2012-01-01

    Synopsis Cocaine dependence continues to be a significant public health problem and no clearly effective pharmacotherapy has yet been identified. Substitution pharmacotherapy is an effective approach for treating opioid and nicotine dependence, and accumulating evidence indicates that stimulant pharmacotherapy for cocaine dependence is a promising strategy. Broadly, stimulant medications that produce behavioral arousal, and medications across several therapeutic classes can be considered psychostimulants. To date, the available evidence is strongest for amphetamine analogs or dopaminergic agents combined with contingency management behavioral interventions as potential psychostimulant treatments for cocaine dependence. Most psychostimulants are controlled substances with inherent risks of misuse and diversion, and their use in patients with active substance use disorders is complex. As stimulant substitution treatment models for cocaine dependence are developed, particular attention to patient risk stratification is needed. PMID:22640764

  13. Nanomaterial-based cocaine aptasensors.

    PubMed

    Mokhtarzadeh, Ahad; Dolatabadi, Jafar Ezzati Nazhad; Abnous, Khalil; de la Guardia, Miguel; Ramezani, Mohammad

    2015-06-15

    Up to now, many different methods have been developed for detection of cocaine, but most of these methods are usually time-consuming, tedious and require special or expensive equipment. Therefore, the development of simple, sensitive and rapid detection methods is necessary. In the last decade, aptamers have been used as a new biosensor platform for detection of cocaine in different samples. Aptamers are artificial single-stranded DNA or RNA oligonucleotides capable of binding to specific molecular targets with high affinity and if integrated to nanomaterials, it may lead in precise methods for cocaine detection in the common laboratories. In this review, recent advances and applications of aptamer-based biosensors and nanobiosensors, have been updated, paying attention to the use of fluorescence, colorimetric and electrochemical techniques for the detection and quantitative determination of cocaine. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Cocaine Conditioned Behavior: A Cocaine Memory Trace or an Anti-Habituation Effect

    PubMed Central

    Carey, Robert J.; Damianopoulos, Ernest N.; Shanahan, Arielle B.

    2008-01-01

    Whether cocaine locomotor conditioning represents a cocaine positive effect; i.e., a Pavlovian cocaine conditioned response; or, a cocaine negative effect; i.e., interference with habituation to the test environment, is a subject of some controversy. Three separate experiments were conducted to compare the behavior (locomotion and grooming) of separate groups of rats given 1, 9 or 14 cocaine (10 mg/kg) treatments paired/unpaired with placement into an open-field arena. The behavior of the cocaine groups on subsequent saline tests were compared with the habituation rates of saline treated rats. After one cocaine pairing with the test environment, the subsequent behavior of the cocaine-paired group on saline tests was similar to a non-habituated control group. In the two experiments with repeated cocaine pairings to the test environment, the subsequent behavior of the cocaine treated groups did not parallel that of the non-habituated saline control groups. These results were not explicable in terms of cocaine anti-habituation effects. It is suggested that cocaine contextual cues paired with cocaine treatment can activate cocaine memory traces which with subsequent cocaine treatments are reinforced and strengthened. In this way repeated cocaine use can forge conditioned stimulus connections to the cocaine behavioral response that are highly resistant to extinction. PMID:18571225

  15. Dopamine agonists for cocaine dependence.

    PubMed

    Soares, B G; Lima, M S; Reisser, A A; Farrell, M

    2001-01-01

    Cocaine is a major drug of abuse. Cocaine dependence is a common and serious condition, which has become nowadays a substantial public health problem. There is a wide and well documented range of consequences associated to chronic use of this drug, such as medical, psychological and social problems, including the spread of infectious diseases (e.g. AIDS, hepatitis and tuberculosis), crime, violence and neonatal drug exposure. Therapeutic management of the cocaine addicts includes an initial period of abstinence from the drug. During this phase the subjects may experience, besides the intense craving for cocaine, symptoms such as depression, fatigue, irritability, anorexia, and sleep disturbances. It was demonstrated that the acute use of cocaine may enhance dopamine transmission and chronically it decreases dopamine concentrations in the brain. Pharmacological treatment that affects dopamine could theoretically reduce these symptoms and contribute to a more successful therapeutic approach. To evaluate the efficacy and acceptability of dopamine agonists for treating cocaine dependence. We searched: The Cochrane Controlled Trials Register (Cochrane Library, issue 4, 2000), MEDLINE (from 1966 - 2000), EMBASE (from 1980 - 2000), LILACS (from 1982 - 2000), PsycLIT (from 1974 - 2000), Biological Abstracts (1982 to 2000). Reference searching; personal communication; conference abstracts; unpublished trials from pharmaceutical industry; book chapters on treatment of cocaine dependence. The inclusion criteria for all randomised controlled trials were that they should focus on the use of dopamine agonists on the treatment of cocaine dependence. Trials including patients with additional diagnosis such as opiate dependence were also eligible. The reviewers extracted the data independently and Relative Risks, weighted mean difference and number needed to treat were estimated. The reviewers assumed that people who died or dropped out had no improvement and tested the sensitivity

  16. Effects of buspirone and gepirone on i.v. cocaine self-administration in rhesus monkeys.

    PubMed

    Gold, L H; Balster, R L

    1992-01-01

    Buspirone and gepirone were evaluated as potential pharmacotherapies for cocaine abuse by studying the effects of acute and repeated treatment on IV cocaine self-administration in rhesus monkeys. Chlorpromazine was also evaluated as a positive control. Effects of IV drug pretreatments were tested during daily 60-min sessions with lever-pressing reinforced under a fixed-ratio 10 schedule of 0.02 or 0.05 mg/kg cocaine infusions. Acute pretreatment with buspirone (0.1 and 0.3 mg/kg, IV) increased rates of cocaine self-administration without disrupting food pellet consumption. Some doses of buspirone also produced changes in rates of cocaine self-administration without altering the within-session pattern of responding. In contrast, acute doses of gepirone had little effect on rates of cocaine self-administration, while disruptions in food consumption and changes in the within-session pattern of cocaine self-administration were obtained at the highest dose of gepirone tested (1.0 mg/kg). When either buspirone (0.1 and 0.3 mg/kg, IV) or gepirone (0.1 mg/kg, IV) were administered daily for 10 days, consistent effects on cocaine self-administration were not observed. Thus, the effects of acute buspirone administration on cocaine-maintained behavior were similar to the effects produced by chlorpromazine and other dopaminergic antagonists, whereas, gepirone was ineffective. These results provide some support for further evaluation of buspirone as a potential pharmacotherapy for cocaine abuse, although its lack of efficacy with repeated treatment is not encouraging. The negative results with gepirone provide less rationale for continued investigations with this drug, possibly because of its lesser involvement than buspirone with dopaminergic neurotransmission.

  17. Cocaine Use: 2002 and 2003. The NSDUH Report

    ERIC Educational Resources Information Center

    Substance Abuse and Mental Health Services Administration, 2005

    2005-01-01

    Cocaine, including crack cocaine, was responsible for 12.8 percent of admissions to substance abuse treatment services in 2002.1 The National Survey on Drug Use and Health (NSDUH) asks persons aged 12 or older to report their use of illicit drugs, including cocaine. NSDUH defines cocaine use as use of cocaine in any form, including crack cocaine.…

  18. Contributions of prolonged contingent and noncontingent cocaine exposure to enhanced reinstatement of cocaine seeking in rats.

    PubMed

    Kippin, Tod E; Fuchs, Rita A; See, Ronald E

    2006-07-01

    Recent evidence suggests that prolonged cocaine self-administration produces escalation in drug-seeking behavior in rats analogous to the increased intake patterns observed in cocaine-dependent individuals. However, the contributions of prolonged access to cocaine taking vs the pharmacologic effects of the consequent increased cocaine exposure on escalation of drug-seeking behaviors have not been investigated. The present study assessed the effects of these two factors on maintenance of cocaine self-administration and reinstatement of cocaine seeking. Male, Sprague-Dawley rats were trained to self-administer cocaine (0.2 mg/i.v. infusion; FR1) for 1 h per day for 10 sessions followed by short access (1 h/day), contingent long access (6 h/day), or noncontingent long access (1 h contingent + 5 h of yoked cocaine infusions/day; i.e., short access + yoked) to cocaine for 14 daily sessions. All rats underwent extinction training and were subsequently tested for the ability of cocaine-paired cues or a cocaine-priming injection (7.5 mg/kg i.p.) to reinstate extinguished cocaine seeking. Rats in all groups maintained stable responding for cocaine reinforcement and subsequently showed significant reinstatement of cocaine-seeking behavior. Conditioned-cued reinstatement was enhanced after the contingent long access and short access + yoked cocaine exposure relative to short access cocaine exposure. Conversely, cocaine-primed reinstatement was enhanced after contingent long-access cocaine exposure relative to the other two conditions. Enhanced drug seeking produced by prolonged daily cocaine self-administration is due to a combination of behavioral and pharmacological factors. Specifically, conditioned-cued reinstatement is enhanced by increased cocaine intake and cocaine-primed reinstatement is enhanced by increased cocaine taking.

  19. Effects of cocaine, cocaine metabolites and cocaine pyrolysis products on the hindbrain cardiac and respiratory centers of the rabbit.

    PubMed

    Erzouki, H K; Allen, A C; Newman, A H; Goldberg, S R; Schindler, C W

    1995-01-01

    Hemodynamic and respiratory effects of vertebral artery or i.v. administration of cocaine, cocaine metabolites and cocaine pyrolysis products were measured in anesthetized rabbits. Vertebral artery administration of 1 mg of cocaine produced decreases in blood pressure and heart rate and respiratory arrest. Cocaethylene (1 mg), a cocaine metabolite produced following co-administration of cocaine and ethanol, had comparable effects except that the respiratory arrest following cocaethylene had a longer duration of action than did cocaine. A decrease in blood pressure was also observed following 1 mg of norcocaine; however, unlike cocaine, norcocaine did not affect respiration. Acute tolerance was not observed to any of the effects of 1 mg of cocaine, cocaethylene or norcocaine following vertebral artery administration. None of these compounds had significant effects following i.v. administration of the same dose. The cocaine metabolites benzoylecgonine and ecgonine methyl ester were without effect by either route in doses up to 3 mg. In contrast to cocaine, the cocaine pyrolysis products anhydroecgonine methyl ester (3 mg) and noranhydroecgonine methyl ester (3 mg) produced similar effects via both routes of administration. Both compounds produced decreases in blood pressure and heart rate and an increase in respiratory rate. Anhydroecgonine ethyl ester (3 mg), a metabolite hypothetically formed from the cocaine pyrolysis product in individuals co-administering ethanol, had effects similar to the other pyrolysis products, although its effects were not as prominent via the i.v. route of administration. Acute tolerance was observed upon administration of the cocaine pyrolysis products. These results indicate that the cocaine pyrolysis products do not share a common mechanism of action with either cocaine or the cocaine metabolites.

  20. Cocaine-induced neuroadaptations in glutamate transmission

    PubMed Central

    Schmidt, Heath D.; Pierce, R. Christopher

    2017-01-01

    A growing body of evidence indicates that repeated exposure to cocaine leads to profound changes in glutamate transmission in limbic nuclei, particularly the nucleus accumbens. This review focuses on preclinical studies of cocaine-induced behavioral plasticity, including behavioral sensitization, self-administration, and the reinstatement of cocaine seeking. Behavioral, pharmacological, neurochemical, electrophysiological, biochemical, and molecular biological changes associated with cocaine-induced plasticity in glutamate systems are reviewed. The ultimate goal of these lines of research is to identify novel targets for the development of therapies for cocaine craving and addiction. Therefore, we also outline the progress and prospects of glutamate modulators for the treatment of cocaine addiction. PMID:20201846

  1. Metabolomics of cocaine: implications in toxicity.

    PubMed

    Dinis-Oliveira, Ricardo Jorge

    2015-01-01

    Cocaine is the most commonly used illicit drug among those seeking care in Emergency Departments or drug detoxification centers. Cocaine, chemically known as benzoylmethylecgonine, is a naturally occurring substance found in the leaves of the Erythroxylum coca plant. The pharmacokinetics of cocaine is dependent on multiple factors, such as physical/chemical form, route of administration, genetics and concurrent consumption of alcohol. This review aims to discuss metabolomics of cocaine, namely by presenting all known metabolites of cocaine and their roles in the cocaine-mediated toxic effects.

  2. Response to cocaine, alone and in combination with methylphenidate, in cocaine abusers with ADHD.

    PubMed

    Collins, Stephanie L; Levin, Frances R; Foltin, Richard W; Kleber, Herbert D; Evans, Suzette M

    2006-04-28

    Attention deficit hyperactivity disorder (ADHD) is prevalent in adult cocaine abusers. Yet, it remains to be determined how the response to cocaine differs in cocaine abusers with ADHD compared to cocaine abusers without ADHD. Further, since ADHD is commonly treated with stimulants, such as methylphenidate (MPH), it is important to examine whether MPH maintenance alters the response to cocaine in cocaine abusers with ADHD. Thus, the first phase of this study compared the response to cocaine in adult cocaine abusers with ADHD to those without ADHD. The second phase assessed the effects of oral sustained-release methylphenidate (MPH-SR) maintenance (40 and 60 mg) on the response to cocaine only in those with ADHD. Cocaine abusers with ADHD (N=7) and without ADHD (N=7) who were not seeking treatment remained inpatient initially for 1 week, when the effects of cocaine alone were tested (Phase 1). Cocaine abusers with ADHD remained inpatient for an additional 3 weeks, during which the effects of cocaine during oral MPH-SR maintenance were tested (Phase 2). During cocaine fixed dosing sessions, participants received four injections of i.v. cocaine (0, 16 or 48 mg/70 kg), spaced 14 min apart. During cocaine choice sessions, participants had a choice between receiving i.v. cocaine (16 or 48 mg/70 kg) or two tokens, each exchangeable for 2 US dollars. Subjective effects related to ADHD symptoms (e.g. ratings of "Able to Concentrate") were significantly lower in cocaine abusers with ADHD compared to those without ADHD when placebo cocaine was administered. Active cocaine produced similar increases in cardiovascular and positive subjective effects in both groups and there was no difference in cocaine choice between the two groups. These data suggest that the response to cocaine is not different between cocaine abusers with ADHD compared to those without ADHD. When the cocaine abusers with ADHD were maintained on MPH-SR, cardiovascular effects were increased, however, this did

  3. Alcohol administration increases cocaine craving but not cocaine cue attentional bias

    PubMed Central

    Marks, Katherine R.; Pike, Erika; Stoops, William W.; Rush, Craig R.

    2015-01-01

    Background Alcohol consumption is a known antecedent to cocaine relapse. Through associative conditioning, it is hypothesized that alcohol increases incentive motivation for cocaine and thus the salience of cocaine-related cues, which are important in maintaining drug-taking behavior. Cocaine-using individuals display a robust cocaine cue attentional bias as measured by fixation time during the visual probe task. The purpose of the present study was to evaluate the influence of alcohol administration on cocaine cue attentional bias using eye-tracking technology to directly measure attentional allocation. Methods Twenty current cocaine users completed a double-blind, placebo-controlled, within-subjects study that tested the effect of three doses of alcohol (0.00, 0.325, 0.65 g/kg alcohol) on cocaine cue attentional bias using the visual probe task with eye-tracking technology. The participant-rated and physiological effects of alcohol were also assessed. Results Participants displayed a robust cocaine cue attentional bias following both placebo and alcohol administration as measured by fixation time, but not response time. Alcohol administration did not influence cocaine cue attentional bias, but increased craving for cocaine in a dose dependent manner. Alcohol produced prototypic psychomotor and participant-rated effects. Conclusions Alcohol administration increases cocaine craving but not cocaine cue attentional bias. Alcohol-induced cocaine craving suggests that alcohol increases incentive motivation for cocaine but not the salience of cocaine-related cues. PMID:26331880

  4. Dopamine agonists for cocaine dependence.

    PubMed

    Soares, B G O; Lima, M S; Reisser, A A P; Farrell, M

    2003-01-01

    Cocaine dependence is a common and serious condition, which has become nowadays a substantial public health problem. There is a wide and well documented range of consequences associated to chronic use of this drug, such as medical, psychological and social problems, including the spread of infectious diseases (e.g. AIDS, hepatitis and tuberculosis), crime, violence and neonatal drug exposure. Therapeutic management of the cocaine addicts includes an initial period of abstinence from the drug. During this phase the subjects may experience, besides the intense craving for cocaine, symptoms such as depression, fatigue, irritability, anorexia, and sleep disturbances. It was demonstrated that the acute use of cocaine may enhance dopamine transmission and chronically it decreases dopamine concentrations in the brain. Pharmacological treatment that affects dopamine could theoretically reduce these symptoms and contribute to a more successful therapeutic approach. To evaluate the efficacy and acceptability of dopamine agonists for treating cocaine dependence. Electronic searches of Cochrane Library, EMBASE, MEDLINE, PsycLIT, Biological Abstracts and LILACS; reference searching; personal communication; conference abstracts; unpublished trials from pharmaceutical industry; book chapters on treatment of cocaine dependence, was performed for the primary version of this review in 2001. Another search of the electronic databases was done in December of 2002 for this update. The specialised register of trials of the Cochrane Group on Drugs and Alcohol was searched until February 2003. The inclusion criteria for all randomised controlled trials were that they should focus on the use of dopamine agonists on the treatment of cocaine dependence. The reviewers extracted the data independently and Relative Risks, weighted mean difference and number needed to treat were estimated. The reviewers assumed that people who died or dropped out had no improvement and tested the sensitivity of

  5. Environmental enrichment counters cocaine abstinence-induced stress and brain reactivity to cocaine cues but fails to prevent the incubation effect.

    PubMed

    Thiel, Kenneth J; Painter, Michael R; Pentkowski, Nathan S; Mitroi, Danut; Crawford, Cynthia A; Neisewander, Janet L

    2012-03-01

    Environmental enrichment (EE) during a period of forced abstinence attenuates incentive motivational effects of cocaine-paired stimuli. Here we examined whether EE during forced abstinence from cocaine self-administration would prevent time-dependent increases in cue-elicited cocaine-seeking behavior (i.e. the incubation effect). Rats were trained to self-administer cocaine, which was paired with light/tone cues, for 15 days while living in isolated conditions (IC). Controls received yoked saline infusions. Subsequently, rats were assigned to live in either continued IC or EE for either 1 or 21 days of forced abstinence prior to a test for cocaine-seeking behavior. During testing, responding resulted only in presentation of the light/tone cues. Contrary to our prediction, cocaine-seeking behavior increased over time regardless of living condition during abstinence; however, EE attenuated cocaine-seeking behavior relative to IC regardless of length of abstinence. Brains were harvested and trunk blood was collected immediately after the 60-minute test and later assayed. Results indicated that short-term EE elevated hippocampal brain-derived neurotrophic factor and reduced plasma corticosterone compared with IC. Furthermore, 21 days of EE during forced abstinence prevented increases in the cue-elicited amygdala phosphorylated extracellular signal-regulated kinase expression that was observed in IC rats. These findings suggest that EE attenuates incentive motivational effects of cocaine cues through a mechanism other than preventing the incubation effect, perhaps involving reduction of stress and neural activity in response to cocaine-paired cues during acute withdrawal. © 2011 The Authors, Addiction Biology © 2011 Society for the Study of Addiction.

  6. Tips for Teens: The Truth about Cocaine

    MedlinePlus

    ... crack) form. It is made from the coca plant and causes a short-lived high that is ... permanently damage their nasal tissue. Cocaine affects your emotions. Using cocaine can make you feel paranoid, angry, ...

  7. Pyrolysis and volatilization of cocaine

    SciTech Connect

    Martin, B.R.; Lue, L.P.; Boni, J.P. )

    1989-05-01

    The increasing popularity of inhaling cocaine vapor prompted the present study, to determine cocaine's fate during this process. The free base of (3H)cocaine (1 microCi/50 mg) was added to a glass pipe, which was then heated in a furnace to simulate freebasing. Negative pressure was used to draw the vapor through a series of glass wool, ethanol, acidic, and basic traps. Air flow rate and temperature were found to have profound effects on the volatilization and pyrolysis of cocaine. At a temperature of 260 degrees C and a flow rate of 400 mL/min, 37% of the radioactivity remained in the pipe, 39% was found in the glass wool trap, and less than 1% in the remainder of the volatilization apparatus after a 10-min volatilization. Reducing the air flow rate to 100 mL/min reduced the amount of radioactivity collected in the glass wool trap to less than 10% of the starting material and increased the amount that remained in the pipe to 58%. GC/MS analysis of the contents of the glass wool trap after volatilization at 260 degrees C and a flow rate of 400 mL/min revealed that 60% of the cocaine remained intact, while approximately 6 and 2% of the starting material was recovered as benzoic acid and methylecgonidine, respectively. As the temperature was increased to 650 degrees C, benzoic acid and methylecgonidine accounted for 83 and 89% of the starting material, respectively, whereas only 2% of the cocaine remained intact. Quantitation of cocaine in the vapor during the course of volatilization revealed high concentrations during the first two min and low concentrations for the remaining time.

  8. Epac Signaling Is Required for Cocaine-Induced Change in AMPA Receptor Subunit Composition in the Ventral Tegmental Area.

    PubMed

    Liu, Xiaojie; Chen, Yao; Tong, Jiaqing; Reynolds, Ashley M; Proudfoot, Sarah C; Qi, Jinshun; Penzes, Peter; Lu, Youming; Liu, Qing-Song

    2016-04-27

    Exchange protein directly activated by cAMP (Epac) and protein kinase A (PKA) are intracellular receptors for cAMP. Although PKA and its downstream effectors have been studied extensively in the context of drug addiction, whether and how Epac regulates cellular and behavioral effects of drugs of abuse remain essentially unknown. Epac is known to regulate AMPA receptor (AMPAR) trafficking. Previous studies have shown that a single cocaine exposure in vivo leads to an increase in GluA2-lacking AMPARs in dopamine neurons of the ventral tegmental area (VTA). We tested the hypothesis that Epac mediates cocaine-induced changes in AMPAR subunit composition in the VTA. We report that a single cocaine injection in vivo in wild-type mice leads to inward rectification of EPSCs and renders EPSCs sensitive to a GluA2-lacking AMPAR blocker in VTA dopamine neurons. The cocaine-induced increase in GluA2-lacking AMPARs was absent in Epac2-deficient mice but not in Epac1-deficient mice. In addition, activation of Epac with the selective Epac agonist 8-CPT-2Me-cAMP (8-CPT) recapitulated the cocaine-induced increase in GluA2-lacking AMPARs, and the effects of 8-CPT were mediated by Epac2. We also show that conditioned place preference to cocaine was impaired in Epac2-deficient mice and in mice in which Epac2 was knocked down in the VTA but was not significantly altered in Epac1-deficient mice. Together, these results suggest that Epac2 is critically involved in the cocaine-induced change in AMPAR subunit composition and drug-cue associative learning. Addictive drugs, such as cocaine, induce long-lasting adaptions in the reward circuits of the brain. A single intraperitoneal injection of cocaine leads to changes in the composition and property of the AMPAR that carries excitatory inputs to dopamine neurons. Here, we provide evidence that exchange protein directly activated by cAMP (Epac), a cAMP sensor protein, is required for the cocaine-induced changes of the AMPAR. We found that the

  9. Cocaine self-administration causes signaling deficits in corticostriatal circuitry that are reversed by BDNF in early withdrawal.

    PubMed

    McGinty, Jacqueline F; Zelek-Molik, Agnieska; Sun, Wei-Lun

    2015-12-02

    Cocaine self-administration disturbs intracellular signaling in prefrontal cortical neurons that regulate neurotransmission in the nucleus accumbens. The deficits in dorsomedial prefrontal cortex (dmPFC) signaling change over time, resulting in different neuroadaptations during early withdrawal from cocaine self-administration than after one or more weeks of abstinence. Within the first few hours of withdrawal, there is a marked decrease in tyrosine phosphorylation of critical intracellular and membrane-bound proteins in the dmPFC that include ERK/MAP kinase and the NMDA receptor subunits, GluN1 and GluN2B. These changes are accompanied by a marked increase in STEP tyrosine phosphatase activation. Simultaneously, ERK and PKA-dependent synapsin phosphorylation in presynaptic terminals of the nucleus accumbens is increased that may have a destabilizing impact on glutamatergic transmission. Infusion of brain-derived neurotrophic factor (BDNF) into the dmPFC immediately following a final session of cocaine self-administration blocks the cocaine-induced changes in phosphorylation and attenuates relapse to cocaine seeking for as long as three weeks. The intra-dmPFC BDNF infusion also prevents cocaine-induced deficits in prefronto-accumbens glutamatergic transmission that are implicated in cocaine seeking. Thus, intervention with BDNF in the dmPFC during early withdrawal has local and distal effects in target areas that are critical to mediating cocaine-induced neuroadaptations that lead to cocaine seeking. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Cerebral vasculitis associated with cocaine abuse

    SciTech Connect

    Kaye, B.R.; Fainstat, M.

    1987-10-16

    A case of cerebral vasculitis in a previously healthy 22-year-old man with a history of cocaine abuse is described. Cerebral angiograms showed evidence of vasculitis. A search for possible causes other than cocaine produced no results. The authors include cocaine with methamphetamines, heroin, and ephedrine as illicit drugs that can cause cerebral vasculitis.

  11. Prenatal Cocaine Exposure and Infant Cortisol Reactivity

    ERIC Educational Resources Information Center

    Eiden, Rina D.; Veira, Yvette; Granger, Douglas A.

    2009-01-01

    This study examined the effects of prenatal cocaine exposure on infant hypothalamic-pituitary-adrenal axis activity and reactivity at 7 months of infant age. Participants were 168 caregiver-infant dyads (87 cocaine exposed, 81 not cocaine exposed; 47% boys). Maternal behavior, caregiving instability, and infant growth and behavior were assessed,…

  12. Signs of Cocaine Abuse and Addiction

    MedlinePlus

    ... Signs of Cocaine Use and Addiction Signs of Cocaine Use and Addiction Listen ©istock.com/ AntonioGuillern After ... English Español "My life was built around getting cocaine and getting high." ©istock.com/ Marjot Stacey is ...

  13. Prenatal Cocaine Exposure and Infant Cortisol Reactivity

    ERIC Educational Resources Information Center

    Eiden, Rina D.; Veira, Yvette; Granger, Douglas A.

    2009-01-01

    This study examined the effects of prenatal cocaine exposure on infant hypothalamic-pituitary-adrenal axis activity and reactivity at 7 months of infant age. Participants were 168 caregiver-infant dyads (87 cocaine exposed, 81 not cocaine exposed; 47% boys). Maternal behavior, caregiving instability, and infant growth and behavior were assessed,…

  14. Effects of extended cocaine access and cocaine withdrawal on choice between cocaine and food in rhesus monkeys.

    PubMed

    Banks, Matthew L; Negus, S Stevens

    2010-01-01

    Chronic drug use may lead to sufficient drug intake to produce dependence and the emergence of abstinence signs during withdrawal. Although withdrawal can increase the reinforcing effects of some drugs (eg opioids), the impact of withdrawal on the reinforcing effects of stimulants like cocaine is less clear. This study used a novel cocaine vs food choice procedure to examine the relative reinforcing strength of cocaine before, during, and after exposure to graded levels of extended cocaine access. Responding in four rhesus monkeys was maintained by cocaine (0-0.1 mg/kg/injection) and food delivery under a concurrent-choice schedule during daily 2-h sessions. Under baseline conditions, cocaine maintained a dose-dependent increase in cocaine choice. Subsequently, subjects were exposed to and withdrawn from periods of extended cocaine access, which was accomplished by implementing daily 21-h supplemental sessions of cocaine self-administration in addition to daily choice sessions. During supplemental sessions, cocaine (0.1 mg/kg/injection) was available under a fixed-ratio 10/time-out X schedule, and the duration of the time-out was varied from 30 to 7.5 min. Cocaine intake increased 10-fold to >11 mg/kg/day during exposure to supplemental sessions with the shortest post-injection time-out. However, parameters of cocaine choice were not significantly affected either during or after extended cocaine access. These results do not support the hypothesis that cocaine withdrawal increases the reinforcing strength of cocaine. This differs from results with the opioid agonist heroin and suggests that withdrawal may have different functions in the maintenance of opioid and stimulant abuse.

  15. Discriminative and reinforcing stimulus effects of nicotine, cocaine, and cocaine + nicotine combinations in rhesus monkeys.

    PubMed

    Mello, Nancy K; Newman, Jennifer L

    2011-06-01

    Concurrent cigarette smoking and cocaine use is well documented. However, the behavioral pharmacology of cocaine and nicotine combinations is poorly understood, and there is a need for animal models to examine this form of polydrug abuse. The purpose of this study was twofold: first to assess the effects of nicotine on the discriminative stimulus effects of cocaine, and second, to study self-administration of nicotine/cocaine combinations in a novel polydrug abuse model. In drug discrimination experiments, nicotine increased the discriminative stimulus effects of low cocaine doses in two of three monkeys, but nicotine did not substitute for cocaine in any monkey. Self-administration of cocaine and nicotine alone, and cocaine + nicotine combinations was studied under a second-order fixed ratio 2, variable ratio 16 (FR2[VR16:S]) schedule of reinforcement. Cocaine and nicotine alone were self-administered in a dose-dependent manner. The combination of marginally reinforcing doses of cocaine and nicotine increased drug self-administration behavior above levels observed with the same dose of either cocaine or nicotine alone. These findings indicate that nicotine may increase cocaine's discriminative stimulus and reinforcing effects in rhesus monkeys, and illustrate the feasibility of combining cocaine and nicotine in a preclinical model of polydrug abuse. Further studies of the behavioral effects of nicotine + cocaine combinations will contribute to our understanding the pharmacology of dual nicotine and cocaine dependence, and will be useful for evaluation of new treatment medications.

  16. Spontaneous pneumothorax associated with talc pulmonary granulomatosis after cocaine inhalation.

    PubMed

    Fiorelli, Alfonso; Accardo, Marina; Rossi, Francesco; Santini, Mario

    2016-03-01

    We report a case of recurrent spontaneous pneumothorax in a patient with cocaine abuse through inhalation alone. He underwent thoracoscopic apical lung resection with mechanical pleurodesis. Despite the lack of significant radiological features of talc induced pulmonary granulomatosis, pathological findings showed granulomas with foreign materials suggestive of being talc. Electronic microscopy showed that the size of talc particles were <4.0 µm and thus small enough to reach the alveoli.

  17. Description and quantification of cocaine withdrawal signs in Planaria.

    PubMed

    Raffa, Robert B; Desai, Prarthna

    2005-01-25

    Previous work provided indirect evidence that planarians undergo abstinence-induced withdrawal from cocaine. The present study's purpose was to determine if planarians display withdrawal signs and, if so, to quantify the behaviors. Planarians were soaked in cocaine then transferred to either the same cocaine concentration or cocaine-free water. Compared to the cocaine/cocaine group, the cocaine/water group displayed a significant number of atypical behaviors, providing direct evidence of a 'withdrawal phenomenon' in planarians.

  18. GABAB Receptor Positive Modulation Decreases Selective Molecular and Behavioral Effects of Cocaine

    PubMed Central

    Lhuillier, Loic; Mombereau, Cedric; Cryan, John F.; Kaupmann, Klemens

    2006-01-01

    Exposure to cocaine induces selective behavioral and molecular adaptations. In rodents, acute cocaine induces increased locomotor activity whereas prolonged drug exposure results in behavioral locomotor sensitization, which is thought to be a consequence of drug–induced neuroadaptive changes. Recent attention has been given to compounds activating GABAB receptors as potential anti-addictive therapies. In particular the principle of allosteric positive GABAB receptor modulators is very promising in this respect, as positive modulators lack the sedative and muscle relaxant properties of full GABAB receptor agonists such as baclofen. Here we investigated the effects of systemic application of the GABAB receptor positive modulator GS39783 in animals treated with acute and chronic cocaine administration. Both GS39783 and baclofen dose-dependently attenuated acute cocaine-induced hyperlocomotion. Furthermore, both compounds also efficiently blocked cocaine-induced Fos induction in the striatal complex. In chronic studies GS39783 induced a modest attenuation of cocaine-induced locomotor sensitization. Chronic cocaine induces the accumulation of the transcription factor ΔFosB and up regulates cAMP-response-element-binding-protein (CREB) and dopamine-and-cAMP-regulated-phosphoprotein of 32 kd (DARPP-32). GS39783 blocked the induction/activation of DARPP-32 and CREB in the nucleus accumbens and dorsal striatum and partially inhibited ΔFosB accumulation in the dorsal striatum. In summary our data provide evidence that GS39783 attenuates the acute behavioral effects of cocaine exposure in rodents and in addition prevents the induction of selective long-term adaptive changes in dopaminergic signaling pathways. Further investigation of GABAB receptor positive modulation as a novel therapeutic strategy for the treatment of cocaine dependence and possibly other drugs of abuse is therefore warranted. PMID:16710312

  19. Altered Dopamine Modulation of Inhibition in the Prefrontal Cortex of Cocaine-Sensitized Rats

    PubMed Central

    Kroener, Sven; Lavin, Antonieta

    2010-01-01

    A functionally hypoactive prefrontal cortex (PFC) is thought to contribute to decreased cognitive inhibitory control over drug-seeking behavior in cocaine addicts. Alterations in PFC dopamine (DA) and γ-aminobutyric acid (GABA) transmission are involved in the development of behavioral sensitization to cocaine, and repeated exposure to cocaine decreases DA D2 receptor (D2R) function in the PFC. We used recordings in PFC slices from adult rats to investigate how repeated cocaine treatment followed by 2 weeks of withdrawal affects DA modulation of GABA transmission and interneuron firing. In agreement with previous results in drug-naïve animals we found that in saline-treated control animals DA (20 μM) modulated evoked inhibitory post-synaptic currents (eIPSCs) in a biphasic, time- and receptor-dependent manner. Activation of D2Rs transiently reduced, whereas D1 receptor activation persistently increased the amplitude of eIPSCs. In cocaine-sensitized animals the D2R-dependent modulation of eIPSCs was abolished and the time course of DA effects was altered. In both saline- and cocaine-treated animals the effects of DA on eIPSCs were paralleled by distinct changes in spontaneous IPSCs (sIPSCs). In cocaine-treated animals the alterations in DA modulation of eIPSCs and sIPSCs correlated with a lack of D2R-specific reduction in action potential-independent GABA release, which might normally oppose D1-dependent increases in GABA transmission. Recordings from interneurons furthermore show that D2R activation can increase current-evoked spike firing in saline, but not in cocaine-treated animals. Altered DA regulation of inhibition during cocaine withdrawal could disturb normal cortical processing and contribute to a hypoactive PFC. PMID:20664581

  20. Altered dopamine modulation of inhibition in the prefrontal cortex of cocaine-sensitized rats.

    PubMed

    Kroener, Sven; Lavin, Antonieta

    2010-10-01

    A functionally hypoactive prefrontal cortex (PFC) is thought to contribute to decreased cognitive inhibitory control over drug-seeking behavior in cocaine addicts. Alterations in PFC dopamine (DA) and γ-aminobutyric acid (GABA) transmission are involved in the development of behavioral sensitization to cocaine, and repeated exposure to cocaine decreases DA D2 receptor (D2R) function in the PFC. We used recordings in PFC slices from adult rats to investigate how repeated cocaine treatment followed by 2 weeks of withdrawal affects DA modulation of GABA transmission and interneuron firing. In agreement with previous results in drug-naïve animals we found that in saline-treated control animals DA (20 μM) modulated evoked inhibitory post-synaptic currents (eIPSCs) in a biphasic, time- and receptor-dependent manner. Activation of D2Rs transiently reduced, whereas D1 receptor activation persistently increased the amplitude of eIPSCs. In cocaine-sensitized animals the D2R-dependent modulation of eIPSCs was abolished and the time course of DA effects was altered. In both saline- and cocaine-treated animals the effects of DA on eIPSCs were paralleled by distinct changes in spontaneous IPSCs (sIPSCs). In cocaine-treated animals the alterations in DA modulation of eIPSCs and sIPSCs correlated with a lack of D2R-specific reduction in action potential-independent GABA release, which might normally oppose D1-dependent increases in GABA transmission. Recordings from interneurons furthermore show that D2R activation can increase current-evoked spike firing in saline, but not in cocaine-treated animals. Altered DA regulation of inhibition during cocaine withdrawal could disturb normal cortical processing and contribute to a hypoactive PFC.

  1. Atypical Dopamine Uptake Inhibitors that Provide Clues About Cocaine's Mechanism at the Dopamine Transporter

    NASA Astrophysics Data System (ADS)

    Hauck Newman, Amy; Katz, Jonathan L.

    The dopamine transporter (DAT) has been a primary target for cocaine abuse/addiction medication discovery. However predicted addiction liability and limited clinical evaluation has provided a formidable challenge for development of these agents for human use. The unique and atypical pharmacological profile of the benztropine (BZT) class of dopamine uptake inhibitors, in preclinical models of cocaine effects and abuse, has encouraged further development of these agents. Moreover, in vivo studies have challenged the original DAT hypothesis and demonstrated that DAT occupancy and subsequent increases in dopamine produced by BZT analogues are significantly delayed and long lasting, as compared to cocaine. These important and distinctive elements are critical to the lack of abuse liability among BZT analogues, and improve their potential for development as treatments for cocaine abuse and possibly other neuropsychiatric disorders.

  2. The relationship between years of cocaine use and brain activation to cocaine and response inhibition cues.

    PubMed

    Prisciandaro, James J; Joseph, Jane E; Myrick, Hugh; McRae-Clark, Aimee L; Henderson, Scott; Pfeifer, James; Brady, Kathleen T

    2014-12-01

    Functional magnetic resonance imaging research has attempted to elucidate the neurobehavioral underpinnings of cocaine dependence by evaluating differences in brain activation to cocaine and response inhibition cues between cocaine-dependent individuals and controls. This study investigated associations between task-related brain activation and cocaine use characteristics. Cross-sectional. The Center for Biomedical Imaging at the Medical University of South Carolina, USA. Fifty-one cocaine users (41 dependent). Brain activation to cocaine-cue exposure and Go No-Go tasks in six a priori selected brain regions of interest and cocaine use characteristics (i.e. cocaine dependence status, years of cocaine use, cocaine use in the past 90 days) assessed via standardized interviews. Participants demonstrated elevated activation to cocaine (bilateral ventral striatum, dorsal caudate, amygdala) and response inhibition (bilateral anterior cingulate, insula, inferior frontal gyrus) cues in all hypothesized brain regions. Years of cocaine use was associated with task-related brain activation, with more years of cocaine use associated with greater activation to cocaine cues in right (F = 7.97, P = 0.01) and left (F = 5.47, P = 0.02) ventral striatum and greater activation to response inhibition cues in left insula (F = 5.10, P = 0.03) and inferior frontal gyrus (F = 4.12, P = 0.05) controlling for age, cocaine dependence status and cocaine use in the past 90 days. Years of cocaine use may be more centrally related to cocaine cue and response inhibition brain activation than cocaine dependence diagnosis or amount of recent use. © 2014 Society for the Study of Addiction.

  3. Possibilities for discrimination between chewing of coca leaves and abuse of cocaine by hair analysis including hygrine, cuscohygrine, cinnamoylcocaine and cocaine metabolite/cocaine ratios.

    PubMed

    Rubio, Nelida Cristina; Hastedt, Martin; Gonzalez, Jorge; Pragst, Fritz

    2015-01-01

    Contrary to the illegal use of any form of manufactured cocaine, chewing of coca leaves and drinking of coca tea are allowed and are very common and socially integrated in several South American countries. Because of this different legal state, an analytical method for discrimination between use of coca leaves and abuse of processed cocaine preparations is required. In this study, the applicability of hair analysis for this purpose was examined. Hair samples from 26 Argentinean coca chewers and 22 German cocaine users were analysed for cocaine (COC), norcocaine (NC), benzoylecgonine (BE), ecgonine methyl ester (EME), cocaethylene (CE), cinnamoylcocaine (CIN), tropacocaine (TRO), cuscohygrine (CUS) and hygrine (HYG) by hydrophilic interaction liquid chromatography (HILIC) in combination with triplequad mass spectrometry (MS/MS) and hybrid quadrupole time-of-flight mass spectrometry (QTOF-MS). The following concentrations (range, median, ng/mg) were determined in hair of the coca chewers: COC 0.085-75.5, 17.0; NC 0.03-1.15, 0.12; BE 0.046-35.5, 6.1; EME 0.014-6.0, 0.66; CE 0.00-13.8, 0.38; CIN 0.005-16.8, 0.79; TRO 0.02-0.16, 0.023; CUS 0.026-26.7, 0.31. In lack of a reference substance, only qualitative data were obtained for HYG, and two metabolites of CUS were detected which were not found in hair of the cocaine users. For interpretation, the concentrations of the metabolites and of the coca alkaloids in relation to cocaine were statistically compared between coca chewers and cocaine users. By analysis of variance (ANOVA) significant differences were found for all analytes (α = 0.000 to 0.030) with the exception of TRO (α = 0.218). The ratios CUS/COC, CIN/COC and EME/COC appeared to be the most suitable criteria for discrimination between both groups with the means and medians 5-fold to 10-fold higher for coca chewers and a low overlap of the ranges between both groups. The same was qualitatively found for HYG. However, these criteria cannot exclude

  4. Treatment of cocaine withdrawal anxiety with guanfacine: relationships to cocaine intake and reinstatement of cocaine seeking in rats.

    PubMed

    Buffalari, Deanne M; Baldwin, Chelsey K; See, Ronald E

    2012-09-01

    Successful treatment of cocaine addiction is severely impeded by the propensity of users to relapse. Withdrawal severity may serve as a key predictor of susceptibility to relapse. Therefore, the identification and treatment of cocaine withdrawal symptoms such as anxiety may improve addiction treatment outcome. The current study examined the role of anxiety-like behavior during cocaine withdrawal and anxiolytic treatment in reinstatement of cocaine seeking in an animal model of relapse. Male rats experienced daily IV cocaine self-administration. One group of animals received the norepinephrine α-2 agonist, guanfacine, or vehicle prior to anxiety testing 48 h after the last self-administration session. In the second group of rats, relationships between cocaine intake, anxiety-like behavior after withdrawal of cocaine, and reinstatement responding were investigated. The third and fourth groups of animals received guanfacine, yohimbine (norepinephrine α-2 antagonist), or vehicle once per day for 3 days 48 h after cessation of cocaine self-administration, followed by extinction and subsequent reinstatement induced by cocaine injections, cocaine-paired cues, and yohimbine administration. Cocaine-withdrawn rats at 48 h demonstrated higher levels of anxiety-like behavior as measured on a defensive burying task when compared to yoked saline controls, an effect reversed by guanfacine treatment. Cocaine intake was positively correlated with measures of anxiety-like behavior during early withdrawal, and this anxiety-like behavior was significantly correlated with subsequent cocaine-primed reinstatement. Yohimbine treatment during early withdrawal increased reinstatement to conditioned cues, while guanfacine treatment reduced reinstatement to yohimbine. These studies suggest an important role for noradrenergic mediation of anxiety-like behavior that emerges after withdrawal of cocaine and potential risk of relapse as modeled by reinstatement, and suggest that treatment of

  5. Multiple mononeuropathy following cocaine abuse

    PubMed Central

    Beniczky, Sándor; Tfelt-Hansen, Peer; Fabricius, Martin; Andersen, Kjeld V

    2009-01-01

    A 31-year-old man with acute-onset of left-sided weakness following the sniffing of cocaine was admitted with rhabdomyolysis. Neurophysiological studies showed axonal degeneration in 4/10 sensory and 3/8 motor nerves, and conduction block outside the typical compression-sites in 3/8 motor nerves. The findings are consistent with a diagnosis of multiple mononeuropathy. Ischaemia due to vasoconstriction is currently believed to be the cause of muscle necrosis following cocaine abuse and we hypothesise that it also explains the neuropathy in this case. PMID:21686808

  6. Post-retrieval extinction attenuates cocaine memories.

    PubMed

    Sartor, Gregory C; Aston-Jones, Gary

    2014-04-01

    Recent studies have shown that post-retrieval extinction training attenuates fear and reward-related memories in both humans and rodents. This noninvasive, behavioral approach has the potential to be used in clinical settings to treat maladaptive memories that underlie several psychiatric disorders, including drug addiction. However, few studies to date have used a post-retrieval extinction approach to attenuate addiction-related memories. In the current study, we attempted to disrupt cocaine-related memories by using the post-retrieval extinction paradigm in male Sprague Dawley rats. Results revealed that starting extinction training 1 h after cocaine contextual memory was retrieved significantly attenuated cocaine-primed reinstatement of conditioned place preference (CPP) and relapse of cocaine CPP (drug-free and cocaine-primed) following 30 days of abstinence. However, animals that did not retrieve the contextual cocaine memory before extinction training, or animals that began extinction training 24 h after retrieval (outside of the reconsolidation window), demonstrated normal cocaine CPP. Conversely, animals that received additional CPP conditioning, rather than extinction training, 1 h after reactivation of cocaine memory showed enhanced cocaine CPP compared with animals that did not reactivate the cocaine memory before conditioning. These results reveal that a behavioral manipulation that takes advantage of reconsolidation and extinction of drug memories may be useful in decreasing preference for, and abuse of, cocaine.

  7. Cocaine use and the breastfeeding mother.

    PubMed

    Jones, Wendy

    2015-01-01

    Cocaine is the second most commonly used illicit drug. Use in pregnancy and breastfeeding may have severe consequences for the baby due to its pharmacokinetic properties. Midwives need to be aware of the prolonged action of cocaine and be alert to the possibility of cocaine toxicity if a baby is excessively irritable and tachycardic. Euphoric highs are brief but breast milk and urine remain positive for long periods. Infant urine following exposure to cocaine via breast milk may remain positive for up to 60 hours. Mothers who snort cocaine should pump and dump breast milk for 24-48 hours. Passive inhalation of crack cocaine smoke may also result in infants with positive toxicology screens. Cocaine powder should never be applied to the nipples of breastfeeding mothers.

  8. Pharmacogenetic treatments for drug addiction: cocaine, amphetamine and methamphetamine.

    PubMed

    Haile, Colin N; Kosten, Thomas R; Kosten, Therese A

    2009-01-01

    Pharmacogenetics uses genetic variation to predict individual differences in response to medications and holds much promise to improve treatment of addictive disorders. To review how genetic variation affects responses to cocaine, amphetamine, and methamphetamine and how this information may guide pharmacotherapy. We performed a cross-referenced literature search on pharmacogenetics, cocaine, amphetamine, and methamphetamine. We describe functional genetic variants for enzymes dopamine-beta-hydroxylase (DbetaH), catechol-O-methyltransferase (COMT), and dopamine transporter (DAT1), dopamine D4 receptor, and brain-derived neurotrophic factor (BDNF). A single nucleotide polymorphism (SNP; C-1021T) in the DbetaH gene is relevant to paranoia associated with disulfiram pharmacotherapy for cocaine addiction. Individuals with variable number tandem repeats (VNTR) of the SLC6A3 gene 3'-untranslated region polymorphism of DAT1 have altered responses to drugs. The 10/10 repeat respond poorly to methylphenidate pharmacotherapy and the 9/9 DAT1 variant show blunted euphoria and physiological response to amphetamine. COMT, D4 receptor, and BDNF polymorphisms are linked to methamphetamine abuse and psychosis. Disulfiram and methylphenidate pharmacotherapies for cocaine addiction are optimized by considering polymorphisms affecting DbetaH and DAT1 respectively. Altered subjective effects for amphetamine in DAT1 VNTR variants suggest a 'protected' phenotype. Pharmacogenetic-based treatments for psychostimulant addiction are critical for successful treatment.

  9. Effects of a cocaine hydrolase engineered from human butyrylcholinesterase on metabolic profile of cocaine in rats.

    PubMed

    Chen, Xiabin; Zheng, Xirong; Zhou, Ziyuan; Zhan, Chang-Guo; Zheng, Fang

    2016-11-25

    Accelerating cocaine metabolism through enzymatic hydrolysis at cocaine benzoyl ester is recognized as a promising therapeutic approach for cocaine abuse treatment. Our more recently designed A199S/F227A/S287G/A328W/Y332G mutant of human BChE, denoted as cocaine hydrolase-3 (CocH3), has a considerably improved catalytic efficiency against cocaine and has been proven active in blocking cocaine-induced toxicity and physiological effects. In the present study, we have further characterized the effects of CocH3 on the detailed metabolic profile of cocaine in rats administrated intravenously (IV) with 5 mg/kg cocaine, demonstrating that IV administration of 0.15 mg/kg CocH3 dramatically changed the metabolic profile of cocaine. Without CocH3 administration, the dominant cocaine-metabolizing pathway in rats was cocaine methyl ester hydrolysis to benzoylecgonine (BZE). With the CocH3 administration, the dominant cocaine-metabolizing pathway in rats became cocaine benzoyl ester hydrolysis to ecgonine methyl ester (EME), and the other two metabolic pathways (i.e. cocaine methyl ester hydrolysis to BZE and cocaine oxidation to norcocaine) became insignificant. The CocH3-catalyzed cocaine benzoyl ester hydrolysis to EME was so efficient such that the measured maximum blood cocaine concentration (∼38 ng/ml) was significantly lower than the threshold blood cocaine concentration (∼72 ng/ml) required to produce any measurable physiological effects. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. Intravenous Cocaine Priming Reinstates Cocaine-Induced Conditioned Place Preference

    ERIC Educational Resources Information Center

    Lombas, Andres S.; Freeman, Kevin B.; Roma, Peter G.; Riley, Anthony L.

    2007-01-01

    Separate groups of rats underwent an unbiased conditioned place preference (CPP) procedure involving alternate pairings of distinct environments with intravenous (IV) injections of cocaine (0.75 mg/kg) or saline immediately or 15 min after injection. A subsequent extinction phase consisted of exposure to both conditioning environments preceded by…

  11. Shallow discounting of delayed cocaine by male rhesus monkeys when immediate food is the choice alternative.

    PubMed

    Huskinson, Sally L; Myerson, Joel; Green, Leonard; Rowlett, James K; Woolverton, William L; Freeman, Kevin B

    2016-12-01

    Huskinson et al. (2015) recently examined delay discounting in monkeys choosing between an immediate drug (cocaine) reinforcer and a delayed nondrug (food) reinforcer. The present experiment examined the reverse situation: choice between immediate nondrug (food) and delayed drug (cocaine) reinforcers. Whereas the former choice situation exemplifies drug abuse from a delay-discounting perspective, our interest in the latter choice situation is derived from the observation that drug abusers, who characteristically are associated with impulsive choice, typically must devote considerable time to procuring drugs, often at the expense of immediate nondrug alternatives. Accordingly, we analyzed 3 male rhesus monkeys' choices between immediate food and delayed cocaine (0.1 and 0.2 mg/kg/injection) using a hyperbolic model that allowed us to compare discounting rates between qualitatively different reinforcers. Choice of immediate food increased with food amount, and choice functions generally shifted leftward as delay to cocaine increased, indicating a decrease in the subjective value of cocaine. Compared with our previous delay-discounting experiment with immediate cocaine versus delayed food, both doses of delayed cocaine were discounted at a shallow rate. The present results demonstrate that rhesus monkeys will tolerate relatively long delays in an immediate-food versus delayed-drug situation, suggesting that in intertemporal choices between cocaine and food, the subjective value of cocaine is less affected by the delay until reinforcement than is the subjective value of delayed food. More generally, the present findings suggest that although drug abusers may choose impulsively when immediate drug reinforcement is available, they exercise self-control in the acquisition of a highly preferred, delayed drug reinforcer. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  12. Pharmacological characterization of a dopamine transporter ligand that functions as a cocaine antagonist.

    PubMed

    Desai, Rajeev I; Grandy, David K; Lupica, Carl R; Katz, Jonathan L

    2014-01-01

    An N-butyl analog of benztropine, JHW007 [N-(n-butyl)-3α-[bis(4'-fluorophenyl)methoxy]-tropane], binds to dopamine transporters (DAT) but has reduced cocaine-like behavioral effects and antagonizes various effects of cocaine. The present study further examined mechanisms underlying these effects. Cocaine dose-dependently increased locomotion, whereas JHW007 was minimally effective but increased activity 24 hours after injection. JHW007 (3-10 mg/kg) dose-dependently and fully antagonized the locomotor-stimulant effects of cocaine (5-60 mg/kg), whereas N-methyl and N-allyl analogs and the dopamine (DA) uptake inhibitor GBR12909 [1-(2-[bis(4-fluorophenyl)methoxy]ethyl)-4-(3-phenylpropyl)piperazine dihydrochloride] stimulated activity and failed to antagonize effects of cocaine. JHW007 also blocked the locomotor-stimulant effects of the DAT inhibitor GBR12909 but not stimulation produced by the δ-opioid agonist SNC 80 [4-[(R)-[(2S,5R)-4-allyl-2,5-dimethylpiperazin-1-yl](3-methoxyphenyl)methyl]-N,N-diethylbenzamide], which increases activity through nondopaminergic mechanisms. JHW007 blocked locomotor-stimulant effects of cocaine in both DA D2- and CB1-receptor knockout and wild-type mice, indicating a lack of involvement of these targets. Furthermore, JHW007 blocked effects of cocaine on stereotyped rearing but enhanced stereotyped sniffing, suggesting that interference with locomotion by enhanced stereotypies is not responsible for the cocaine-antagonist effects of JHW007. Time-course data indicate that administration of JHW007 antagonized the locomotor-stimulant effects of cocaine within 10 minutes of injection, whereas occupancy at the DAT, as determined in vivo, did not reach a maximum until 4.5 hours after injection. The σ1-receptor antagonist BD 1008 [N-[2-(3,4-dichlorophenyl)ethyl]-N-methyl-2-(1-pyrrolidinyl)ethylamine dihydrobromide] blocked the locomotor-stimulant effects of cocaine. Overall, these findings suggest that JHW007 has cocaine-antagonist effects

  13. [Renal infarction and kidney rupture: complication of a massive cocaine intoxication in an intestinal carrier].

    PubMed

    Caramelo, C; López de Mendoza, D; Ríos, F; Corrales, M; Urbano, J; Ramos, A; Pérez Calvo, C

    2007-01-01

    Major complications derived from the use of cocaine have been described, alter nasal or intravenous administration of the drug. These complications are related to vascular spasm and secondary organ damage. We present the case of an intestinal cocaine packer--in slang, "mule"--, who suffered massive absorption of the drug, resulting n bowel, liver and renal ischemia. This situation, previously undescribe in the literature, ended in kidney rupture. An attempt of embolization, was unsatisfactory, and nephrectomy was finally required. The patient recovered uneventfully, with progressive renal functional improvement. This case, albeit quite exceptional, is illustrative of several of the renal actions of cocaine, and reveals the effects of absorption of cocaine at the intestinal level.

  14. Prefrontal cortical BDNF: A regulatory key in cocaine- and food-reinforced behaviors

    PubMed Central

    Pitts, Elizabeth G.; Taylor, Jane R.; Gourley, Shannon L.

    2016-01-01

    Brain-derived neurotrophic factor (BDNF) affects synaptic plasticity and neural structure and plays key roles in learning and memory processes. Recent evidence also points to important, yet complex, roles for BDNF in rodent models of cocaine abuse and addiction. Here we examine the role of prefrontal cortical (PFC) BDNF in reward-related decision making and behavioral sensitivity to, and responding for, cocaine. We focus on BDNF within the medial and orbital PFC, its regulation by cocaine during early postnatal development and in adulthood, and how BDNF in turn influences responding for drug reinforcement, including in reinstatement models. When relevant, we draw comparisons and contrasts with experiments using natural (food) reinforcers. We also summarize findings supporting, or refuting, the possibility that BDNF in the medial and orbital PFC regulate the development and maintenance of stimulus-response habits. Further investigation could assist in the development of novel treatment approaches for cocaine use disorders. PMID:26923993

  15. The First American Cocaine Epidemic.

    ERIC Educational Resources Information Center

    Courtwright, David T.

    1991-01-01

    Discusses the wave of cocaine abuse that followed the drug's recommendation by the late nineteenth-century medical community as a cure all. Details drug addiction among ethnic and social groups at the turn of the century. Warns that drug epidemics have important social and legal consequences. Suggests legal pressure may alter the form of drug…

  16. The First American Cocaine Epidemic.

    ERIC Educational Resources Information Center

    Courtwright, David T.

    1991-01-01

    Discusses the wave of cocaine abuse that followed the drug's recommendation by the late nineteenth-century medical community as a cure all. Details drug addiction among ethnic and social groups at the turn of the century. Warns that drug epidemics have important social and legal consequences. Suggests legal pressure may alter the form of drug…

  17. Effects of dopamine D1-like and D2-like antagonists on cocaine discrimination in muscarinic receptor knockout mice.

    PubMed

    Thomsen, Morgane; Caine, Simon Barak

    2016-04-05

    Muscarinic and dopamine brain systems interact intimately, and muscarinic receptor ligands, like dopamine ligands, can modulate the reinforcing and discriminative stimulus (S(D)) effects of cocaine. To enlighten the dopamine/muscarinic interactions as they pertain to the S(D) effects of cocaine, we evaluated whether muscarinic M1, M2 or M4 receptors are necessary for dopamine D1 and/or D2 antagonist mediated modulation of the S(D) effects of cocaine. Knockout mice lacking M1, M2, or M4 receptors, as well as control wild-type mice and outbred Swiss-Webster mice, were trained to discriminate 10mg/kg cocaine from saline in a food-reinforced drug discrimination procedure. Effects of pretreatments with the dopamine D1 antagonist SCH 23390 and the dopamine D2 antagonist eticlopride were evaluated. In intact mice, both SCH 23390 and eticlopride attenuated the cocaine discriminative stimulus effect, as expected. SCH 23390 similarly attenuated the cocaine discriminative stimulus effect in M1 knockout mice, but not in mice lacking M2 or M4 receptors. The effects of eticlopride were comparable in each knockout strain. These findings demonstrate differences in the way that D1 and D2 antagonists modulate the S(D) effects of cocaine, D1 modulation being at least partially dependent upon activity at the inhibitory M2/M4 muscarinic subtypes, while D2 modulation appeared independent of these systems. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Psychostimulant treatment of cocaine dependence.

    PubMed

    Mariani, John J; Levin, Frances R

    2012-06-01

    The use of stimulant medications for the treatment of cocaine dependence is an evolving scientific line of research. To date, the most promising results are with the higher-potency medications, the amphetamine analogues, or a combination of a dopaminergic medication with a contingency management behavioral intervention. The development of effective pharmacotherapies for opioid and nicotine dependence using an agonist replacement approach suggests that these promising findings needs to continue to be vigorously investigated. In clinical trial reports, there are very few instances of cardiovascular adverse events, which suggests that for well-selected patients with cocaine dependence, stimulant replacement therapy can be safe. However, clinical trial eligibility criteria excludes most high-risk patients from participating, and introducing stimulant substitution to the wider treatment community would likely expose more vulnerable patients to the medical risks associated with stimulant treatment while using cocaine. As treatment development research moves forward, attention must be paid to helping clinicians select patients who are most likely to benefit from stimulant substitution treatment and how to identify those at risk. An additional concern with the use of stimulant medication treatment of cocaine dependence is prescribing controlled substances for patients with active substance use disorders. Again, within a clinical trial, medication supplies are monitored and distributed carefully in small quantities. In a community setting, misuse or diversion will be risks associated with prescribing controlled substances to patients with addictive disorders, but therapeutic strategies for monitoring and limiting that risk can be implemented. Psychostimulant pharmacotherapy is a promising line of research for the treatment of cocaine dependence, a condition for which no effective pharmacotherapy has been identified. Further research is required to confirm positive results

  19. Non-fatal cocaine overdose among injecting and non-injecting cocaine users in Sydney, Australia.

    PubMed

    Kaye, Sharlene; Darke, Shane

    2004-10-01

    To investigate the frequency of non-fatal cocaine overdose, and responses to overdoses, among injecting and non-injecting cocaine users. Cross-sectional study. Sydney, Australia. Two hundred current cocaine users. Structured interview. Thirteen per cent of the sample had overdosed on cocaine, 7% in the preceding 12 months. Cocaine injectors were more likely to have overdosed, both ever (17 v 6%) and in the preceding 12 months (9 v 3%). The most common symptoms of overdose were palpitations (68%), intense sweating (44%) and seizures (40%). The use of other drugs in combination with cocaine prior to the most recent overdose was prevalent (64%), most commonly opioids (40%), alcohol (24%) and cannabis (24%). Those who had overdosed were more likely to be female, had longer cocaine use careers, had used more cocaine in the preceding month and preceding 6 months, had higher levels of cocaine dependence and more extensive polydrug use. Twenty-four per cent had witnessed a cocaine overdose, 13% in the preceding 12 months. Injectors were more likely to have witnessed overdoses, both ever (35% v 8%) and in the preceding 12 months (20% v 3%). Experience of, and exposure to, overdose were not rare events. Cocaine users need to be aware of the possibility and nature of overdose, and that cocaine overdose can occur irrespective of method of use. There is a need to emphasise the potential danger of combining cocaine with other drugs.

  20. Acute brain metabolic effects of cocaine in rhesus monkeys with a history of cocaine use.

    PubMed

    Henry, Porche' Kirkland; Murnane, Kevin S; Votaw, John R; Howell, Leonard L

    2010-12-01

    Cocaine addiction involves an escalation in drug intake which alters many brain functions. The present study documented cocaine-induced changes in brain metabolic activity as a function of cocaine self-administration history. Experimentally naive rhesus monkeys (N = 6) were given increasing access to cocaine under a fixed-ratio schedule of intravenous (i.v.) drug self-administration. PET imaging with F-18 labeled fluorodeoxyglucose (FDG) was used to measure acute intramuscular (i.m.) cocaine-induced changes in brain metabolism in the cocaine-naïve state, following 60 sessions under limited-access conditions (1 h/day), following 60 sessions under extended-access conditions (4 h/day), and following 4 weeks of drug withdrawal. In the cocaine-naïve state, cocaine-induced increases in brain metabolism were restricted to the prefrontal cortex. As cocaine exposure increased from limited to extended access, metabolic effects expanded throughout the frontal cortex and were induced within the striatum. Conversely, cocaine-induced activation was far less robust following withdrawal. The results highlight a progressive expansion of the metabolic effects of cocaine to include previously unaffected dopamine innervated brain regions as a consequence of cocaine self-administration history. The identification of brain regions progressively influenced by drug exposure may be highly relevant toward efforts to develop treatments for cocaine addiction.

  1. Eradicating Cocaine in Peru: The Role of American Foreign Assistance

    DTIC Science & Technology

    1990-04-12

    flocked to Peruvian archaeological sites such as Machu Picchu and brought in much needed hard currency.3 Third, physical damage done by the...happens in Peru because it alone grows more than 50 percent of the world’s coca, the base component of cocaine. Eradicating coca plants in Peru will be...plan is that it does not view the eradication of coca plants in Peru as a technical problem, but as a political one. Peru derives great economic

  2. Psychostimulant drugs for cocaine dependence.

    PubMed

    Castells, Xavier; Cunill, Ruth; Pérez-Mañá, Clara; Vidal, Xavier; Capellà, Dolors

    2016-09-27

    Cocaine dependence is a severe disorder for which no medication has been approved. Like opioids for heroin dependence, replacement therapy with psychostimulants could be an effective therapy for treatment. To assess the effects of psychostimulants for cocaine abuse and dependence. Specific outcomes include sustained cocaine abstinence and retention in treatment. We also studied the influence of type of drug and comorbid disorders on psychostimulant efficacy. This is an update of the review previously published in 2010. For this updated review, we searched the Cochrane Drugs and Alcohol Group Trials Register, CENTRAL, MEDLINE, Embase and PsycINFO up to 15 February 2016. We handsearched references of obtained articles and consulted experts in the field. We included randomised parallel group controlled clinical trials comparing the efficacy of a psychostimulant drug versus placebo. We used standard methodological procedures expected by Cochrane. We included 26 studies involving 2366 participants. The included studies assessed nine drugs: bupropion, dexamphetamine, lisdexamfetamine, methylphenidate, modafinil, mazindol, methamphetamine, mixed amphetamine salts and selegiline. We did not consider any study to be at low risk of bias for all domains included in the Cochrane 'Risk of bias' tool. Attrition bias was the most frequently suspected potential source of bias of the included studies. We found very low quality evidence that psychostimulants improved sustained cocaine abstinence (risk ratio (RR) 1.36, 95% confidence interval (CI) 1.05 to 1.77, P = 0.02), but they did not reduce cocaine use (standardised mean difference (SMD) 0.16, 95% CI -0.02 to 0.33) among participants who continued to use it. Furthermore, we found moderate quality evidence that psychostimulants did not improve retention in treatment (RR 1.00, 95% CI 0.93 to 1.06). The proportion of adverse event-induced dropouts and cardiovascular adverse event-induced dropouts was similar for psychostimulants

  3. Differential peptidomics assessment of strain and age differences in mice in response to acute cocaine administration.

    PubMed

    Romanova, Elena V; Rubakhin, Stanislav S; Ossyra, John R; Zombeck, Jonathan A; Nosek, Michael R; Sweedler, Jonathan V; Rhodes, Justin S

    2015-12-01

    Neurochemical differences in the hypothalamic-pituitary axis between individuals and between ages may contribute to differential susceptibility to cocaine abuse. This study measured peptide levels in the pituitary gland (Pit) and lateral hypothalamus (LH) in adolescent (age 30 days) and adult (age 65 days) mice from four standard inbred strains, FVB/NJ, DBA/2J, C57BL/6J, and BALB/cByJ, which have previously been characterized for acute locomotor responses to cocaine. Individual peptide profiles were analyzed using mass spectrometric profiling and principal component analysis. Sequences of assigned peptides were verified by tandem mass spectrometry. Principal component analysis classified all strains according to their distinct peptide profiles in Pit samples from adolescent mice, but not adults. Select pro-opiomelanocortin-derived peptides were significantly higher in adolescent BALB/cByJ and DBA/2J mice than in FVB/NJ or C57BL/6J mice. A subset of peptides in the LH, but not in the Pit, was altered by cocaine in adolescents. A 15 mg/kg dose of cocaine induced greater peptide alterations than a 30 mg/kg dose, particularly in FVB/NJ animals, with larger differences in adolescents than adults. Neuropeptides in the LH affected by acute cocaine administration included pro-opiomelanocortin-, myelin basic protein-, and glutamate transporter-derived peptides. The observed peptide differences could contribute to differential behavioral sensitivity to cocaine among strains and ages. Peptides were measured using mass spectrometry (MALDI-TOF) in individual lateral hypothalamus and pituitary samples from four strains and two ages of inbred mice in response to acute cocaine administration. Principal component analyses (PCA) classified the strains according to their peptide profiles from adolescent mice, and a subset of peptides in the lateral hypothalamus was altered by cocaine in adolescents.

  4. Metabolic Enzymes of Cocaine Metabolite Benzoylecgonine.

    PubMed

    Chen, Xiabin; Zheng, Xirong; Zhan, Max; Zhou, Ziyuan; Zhan, Chang-Guo; Zheng, Fang

    2016-08-19

    Cocaine is one of the most addictive drugs without a U.S. Food and Drug Administration (FDA)-approved medication. Enzyme therapy using an efficient cocaine-metabolizing enzyme is recognized as the most promising approach to cocaine overdose treatment. The actual enzyme, known as RBP-8000, under current clinical development for cocaine overdose treatment is our previously designed T172R/G173Q mutant of bacterial cocaine esterase (CocE). The T172R/G173Q mutant is effective in hydrolyzing cocaine but inactive against benzoylecgonine (a major, biologically active metabolite of cocaine). Unlike cocaine itself, benzoylecgonine has an unusually stable zwitterion structure resistant to further hydrolysis in the body and environment. In fact, benzoylecgonine can last in the body for a very long time (a few days) and, thus, is responsible for the long-term toxicity of cocaine and a commonly used marker for drug addiction diagnosis in pre-employment drug tests. Because CocE and its mutants are all active against cocaine and inactive against benzoylecgonine, one might simply assume that other enzymes that are active against cocaine are also inactive against benzoylecgonine. Here, through combined computational modeling and experimental studies, we demonstrate for the first time that human butyrylcholinesterase (BChE) is actually active against benzoylecgonine, and that a rationally designed BChE mutant can not only more efficiently accelerate cocaine hydrolysis but also significantly hydrolyze benzoylecgonine in vitro and in vivo. This sets the stage for advanced studies to design more efficient mutant enzymes valuable for the development of an ideal cocaine overdose enzyme therapy and for benzoylecgonine detoxification in the environment.

  5. Impaired fear recognition in regular recreational cocaine users.

    PubMed

    Kemmis, L; Hall, J K; Kingston, R; Morgan, M J

    2007-10-01

    The ability to read facial expressions is essential for normal human social interaction. The aim of the present study was to conduct the first investigation of facial expression recognition performance in recreational cocaine users. Three groups, comprised of 21 cocaine naïve participants (CN), 30 occasional cocaine (OC), and 48 regular recreational cocaine (RC) users, were compared. An emotional facial expression (EFE) task consisting of a male and female face expressing six basic emotions (happiness, surprise, sadness, anger, fear, and disgust) was administered. Mean percent accuracy and latencies for correct responses across eight presentations of each basic emotion were derived. Participants were also assessed with the "Eyes task" to investigate their ability to recognize more complex emotional states and the Symptom CheckList-90-Revised to measure psychopathology. There were no group differences in psychopathology or "eyes task" performance, but the RC group, who otherwise had similar illicit substance use histories to the OC group, exhibited impaired fear recognition accuracy compared to the OC and CN groups. The RC group also correctly identified anger, fear, happiness, and surprise, more slowly than CN, but not OC participants. The OC group was slower than CN when correctly identifying disgust. The selective deficit in fear recognition accuracy manifested by the RC group cannot be explained by the subacute effects of cocaine, or ecstasy, because recent and less recent users of these drugs within this group were similarly impaired. Possible parallels between RC users and psychopaths with respect to impaired fear recognition, amygdala dysfunction, and etiology are discussed.

  6. TrkB signaling is required for behavioral sensitization and conditioned place preference induced by a single injection of cocaine.

    PubMed

    Crooks, Kristy R; Kleven, Daniel T; Rodriguiz, Ramona M; Wetsel, William C; McNamara, James O

    2010-06-01

    Exogenous brain-derived neurotrophic factor (BDNF) can regulate behavioral sensitization and conditioned place preference (CPP) when animals are exposed to repeated cocaine administration. However, it is unclear whether BDNF signaling through the TrkB receptor can mediate these behavioral responses when animals are given a single cocaine exposure. Because TrkB knockout mice die as neonates, we engineered a transgenic mouse that expressed a dominant negative form of TrkB (dnTrkB) in a conditional and reversible manner. We assessed also activation of endogenous TrkB by quantifying levels of phosphorylated TrkB (p-TrkB) in the nucleus accumbens (NAc). We found that a single exposure to cocaine was sufficient to increase p-TrkB within the NAc 9-12h after administration. Expression of the dnTrkB transgene not only prevented the acute cocaine-induced increase in p-TrkB, but it also prevented behavioral sensitization and CPP following a single cocaine injection. These findings demonstrate that TrkB activation is required both for behavioral sensitization and CPP to a single cocaine exposure. The fact that enhanced TrkB activation is induced within 9h of a single injection of cocaine suggests that inhibition of TrkB signaling commencing hours after cocaine exposure may prevent at least the initial antecedents to the sensitizing and reinforcing effects of this psychostimulant. (c) 2010. Published by Elsevier Ltd.

  7. TrkB signaling is required for behavioral sensitization and conditioned place preference induced by a single injection of cocaine

    PubMed Central

    Crooks, Kristy R.; Kleven, Daniel T.; Rodriguiz, Ramona M.; Wetsel, William C.; McNamara, James O.

    2013-01-01

    Exogenous brain-derived neurotrophic factor (BDNF) can regulate behavioral sensitization and conditioned place preference (CPP) when animals are exposed to repeated cocaine administration. However, it is unclear whether BDNF signaling through the TrkB receptor can mediate these behavioral responses when animals are given a single cocaine exposure. Because TrkB knockout mice die as neonates, we engineered a transgenic mouse that expressed a dominant negative form of TrkB (dnTrkB) in a conditional and reversible manner. We assessed also activation of endogenous TrkB by quantifying levels of phosphorylated TrkB (p-TrkB) in the nucleus accumbens (NAc). We found that a single exposure to cocaine was sufficient to increase p-TrkB within the NAc 9–12 h after administration. Expression of the dnTrkB transgene not only prevented the acute cocaine-induced increase in p-TrkB, but it also prevented behavioral sensitization and CPP following a single cocaine injection. These findings demonstrate that TrkB activation is required both for behavioral sensitization and CPP to a single cocaine exposure. The fact that enhanced TrkB activation is induced within 9 h of a single injection of cocaine suggests that inhibition of TrkB signaling commencing hours after cocaine exposure may prevent at least the initial antecedents to the sensitizing and reinforcing effects of this psychostimulant. PMID:20176040

  8. Treatment of cocaine craving with as-needed nalmefene, a partial κ opioid receptor agonist: first clinical experience.

    PubMed

    Grosshans, Martin; Mutschler, Jochen; Kiefer, Falk

    2015-07-01

    The treatment of cocaine dependence is difficult as no approved pharmacotherapy is available as yet. However, in preclinical and clinical trials, a variety of compounds were tested for suitability as inhibitors of craving for and relapse into the use of cocaine, among these antidepressants, antiepileptics, dopamine agonists, disulfiram, and naltrexone. Nalmefene, a structural derivative of naltrexone, shares with its parent compound approval (granted by the European Medical Agency in 2013) as a medication for the treatment of alcohol addiction in the European Union. It differs from naltrexone by a higher affinity for the δ opioid-receptors and a partial agonistic affinity to the κ opioid-receptors. It should be noted that patients addicted to cocaine show a considerable increase in κ receptors in the nucleus accumbens. This report describes the case of an abstinent cocaine-addicted patient regularly afflicted with cravings for cocaine. The patient took as-needed nalmefene for 5 months whenever she developed a craving for cocaine. For most of these interventions, the patient reported an abatement of craving and could avoid relapsing into cocaine consumption. This effect may be accounted for by nalmefene acting, other than naltrexone, as a partial agonist of the κ opioid-receptors. Therefore, nalmefene might be a promising new option in the pharmacological repertoire for the treatment of cocaine addiction.

  9. BDNF-TrkB controls cocaine-induced dendritic spines in rodent nucleus accumbens dissociated from increases in addictive behaviors.

    PubMed

    Anderson, Ethan M; Wissman, Anne Marie; Chemplanikal, Joyce; Buzin, Nicole; Guzman, Daniel; Larson, Erin B; Neve, Rachael L; Nestler, Eric J; Cowan, Christopher W; Self, David W

    2017-08-29

    Chronic cocaine use is associated with prominent morphological changes in nucleus accumbens shell (NACsh) neurons, including increases in dendritic spine density along with enhanced motivation for cocaine, but a functional relationship between these morphological and behavioral phenomena has not been shown. Here we show that brain-derived neurotrophic factor (BDNF) signaling through tyrosine kinase B (TrkB) receptors in NACsh neurons is necessary for cocaine-induced dendritic spine formation by using either localized TrkB knockout or viral-mediated expression of a dominant negative, kinase-dead TrkB mutant. Interestingly, augmenting wild-type TrkB expression after chronic cocaine self-administration reverses the sustained increase in dendritic spine density, an effect mediated by TrkB signaling pathways that converge on extracellular regulated kinase. Loss of TrkB function after cocaine self-administration, however, leaves spine density intact but markedly enhances the motivation for cocaine, an effect mediated by specific loss of TrkB signaling through phospholipase Cgamma1 (PLCγ1). Conversely, overexpression of PLCγ1 both reduces the motivation for cocaine and reverses dendritic spine density, suggesting a potential target for the treatment of addiction in chronic users. Together, these findings indicate that BDNF-TrkB signaling both mediates and reverses cocaine-induced increases in dendritic spine density in NACsh neurons, and these morphological changes are entirely dissociable from changes in addictive behavior.

  10. Oleoylethanolamide dose-dependently attenuates cocaine-induced behaviours through a PPARα receptor-independent mechanism.

    PubMed

    Bilbao, Ainhoa; Blanco, Eduardo; Luque-Rojas, María Jesús; Suárez, Juan; Palomino, Ana; Vida, Margarita; Araos, Pedro; Bermúdez-Silva, Francisco J; Fernández-Espejo, Emilio; Spanagel, Rainer; Rodríguez de Fonseca, Fernando

    2013-01-01

    Oleoylethanolamide (OEA) is an acylethanolamide that acts as an agonist of nuclear peroxisome proliferator-activated receptor alpha (PPARα) to exert their biological functions, which include the regulation of appetite and metabolism. Increasing evidence also suggests that OEA may participate in the control of reward-related behaviours. However, direct experimental evidence for the role of the OEA-PPARα receptor interaction in drug-mediated behaviours, such as cocaine-induced behavioural phenotypes, is lacking. The present study explored the role of OEA and its receptor PPARα on the psychomotor and rewarding responsiveness to cocaine using behavioural tests indicative of core components of addiction. We found that acute administration of OEA (1, 5 or 20 mg/kg, i.p.) reduced spontaneous locomotor activity and attenuated psychomotor activation induced by cocaine (20 mg/kg) in C57Bl/6 mice. However, PPARα receptor knockout mice showed normal sensitization, although OEA was capable of reducing behavioural sensitization with fewer efficacies. Furthermore, conditioned place preference and reinstatement to cocaine were intact in these mice. Our results indicate that PPARα receptor does not play a critical, if any, role in mediating short- and long-term psychomotor and rewarding responsiveness to cocaine. However, further research is needed for the identification of the targets of OEA for its inhibitory action on cocaine-mediated responses. © 2012 The Authors, Addiction Biology © 2012 Society for the Study of Addiction.

  11. Neurodegeneration of lateral habenula efferent fibers after intermittent cocaine administration: implications for deep brain stimulation.

    PubMed

    Lax, Elad; Friedman, Alexander; Croitoru, Ofri; Sudai, Einav; Ben-Moshe, Hila; Redlus, Lior; Sasson, Efrat; Blumenfeld-Katzir, Tamar; Assaf, Yaniv; Yadid, Gal

    2013-12-01

    Deep brain stimulation (DBS) is an emerging technique for effective, non-pharmacological intervention in the course of neurological and neuropsychiatric diseases. Several brain targets have been suggested as suitable for DBS treatment of drug addiction. Previously, we showed that DBS of the lateral habenula (LHb) can reduce cocaine intake, facilitate extinction and attenuate drug-induced relapse in rats trained to self-administrate cocaine. Herein, we demonstrated that cocaine self-administration dose-dependently decreased connectivity between the LHb and midbrain, as shown by neurodegeneration of the main LHb efferent fiber, the fasciculus retroflexus (FR). FR degeneration, in turn, may have caused lack of response to LHb stimulation in rats trained to self-administer high-dose cocaine (1.5 mg/kg; i.v.). Furthermore, we show that the micro-structural changes caused by cocaine can be non-invasively detected using magnetic resonance imaging and diffusion tensor imaging. Detection of cocaine-induced alterations in FR anatomy can aid the selection of potential responders to LHb stimulation for treatment of drug addiction. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Immunization with a synthetic robustoxin derivative lacking disulphide bridges protects against a potentially lethal challenge with funnel-web spider (Atrax robustus) venom.

    PubMed

    Comis, Alfio; Tyler, Margaret; Mylecharane, Ewan; Spence, Ian; Howden, Merlin

    2009-03-01

    The venom of male Atrax robustus spiders is potentially lethal to primates. These spiders have been responsible for a number of human deaths. Robustoxin is the lethal toxin in the venom. It is a highly cross-linked polypeptide that has 42 amino acid residues and four disulphide bridges. If these bridges are broken, the resulting polypeptide is non-toxic. Robustoxin was chemically synthesized with all of its eight cysteine residues protected with acetamidomethyl groups in order to avoid formation of disulphide bridges. The resulting derivative was co-polymerized with keyhole limpet haemocyanin. Two Macaca fascicularis monkeys were immunized with this conjugate. The monkeys were challenged,under anaesthesia,with a potentially lethal dose of male A.robustus crude venom. Both monkeys showed some minor symptoms of intoxication but recovered fully with no adverse after-effects. Immunization with the same immunogen, in the absence of keyhole limpet haemocyanin, did not protect a third monkey. The N-terminal 23 amino acid peptide derived from the sequence of robustoxin was synthesized and conjugated with ovalbumin. A fourth monkey was immunized with this conjugate. However,it was not protected against challenge.The implications of these results for the preparation of synthetic peptide vaccines are discussed.

  13. Lack of cardiac nerve sprouting after intramyocardial transplantation of bone marrow-derived stem cells in a swine model of chronic ischemic myocardium.

    PubMed

    Liu, Yuan; Lai, Wing-Hon; Liao, Song-Yan; Siu, Chung-Wah; Yang, Yan-Zong; Tse, Hung-Fat

    2012-06-01

    Previous experimental studies suggested that mesenchymal stem cell transplantation causes cardiac nerve sprouting; however, whether bone marrow (BM)-derived mononuclear cells (MNC) and endothelial progenitor cells (EPC) can also lead to cardiac nerve sprouting and alter gap junction expression remains unclear. We investigated the effect of electroanatomical mapping-guided direct intramyocardial transplantation of BM-MNC (n = 8) and CD31+EPC (n = 8) compared with saline control (n = 8) on cardiac nerve sprouting and gap junction expression in a swine model of chronic ischemic myocardium. At 12 weeks after transplantation, the distribution and density of cardiac nerve sprouting were determined by staining of tyrosine hydroxylase (TH) and growth associated protein 43(GAP-43) and expression of connexin 43 in the targeted ischemic and remote normal myocardium. After 12 weeks, no animal developed sudden death after the transplantation. There were no significant differences in the number of cells with positive staining of TH and GAP-43 in the ischemic and normal myocardium between three groups. Furthermore, expression of connexin 43 was also similar in the ischemic and normal myocardia in each group of animals (P > 0.05). The results of this study demonstrated that intramyocardial BM-derived MNC or EPC transplantation in a large animal model of chronic myocardial ischemia was not associated with increased cardiac nerve sprouting over the ischemic myocardium.

  14. Cocaine-induced cortical microischemia in the rodent brain: clinical implications.

    PubMed

    Ren, H; Du, C; Yuan, Z; Park, K; Volkow, N D; Pan, Y

    2012-10-01

    Cocaine-induced stroke is among the most serious medical complications associated with its abuse. However, the extent to which acute cocaine may induce silent microischemia predisposing the cerebral tissue to neurotoxicity has not been investigated; in part, because of limitations of current neuroimaging tools, that is, lack of high spatiotemporal resolution and sensitivity to simultaneously measure cerebral blood flow (CBF) in vessels of different calibers (including capillaries) quantitatively and over a large field of view. Here we combine ultrahigh-resolution optical coherence tomography to enable tracker-free three-dimensional (3D) microvascular angiography and a new phase-intensity-mapping algorithm to enhance the sensitivity of 3D optical Doppler tomography for simultaneous capillary CBF quantization. We apply the technique to study the responses of cerebral microvascular networks to single and repeated cocaine administration in the mouse somatosensory cortex. We show that within 2-3 min after cocaine administration CBF markedly decreased (for example, ~70%), but the magnitude and recovery differed for the various types of vessels; arterioles had the fastest recovery (~5 min), capillaries varied drastically (from 4-20 min) and venules showed relatively slower recovery (~12 min). More importantly, we showed that cocaine interrupted CBF in some arteriolar branches for over 45 min and this effect was exacerbated with repeated cocaine administration. These results provide evidence that cocaine doses within the range administered by drug abusers induces cerebral microischemia and that these effects are exacerbated with repeated use. Thus, cocaine-induced microischemia is likely to be a contributor to its neurotoxic effects.

  15. 5-HT1A Autoreceptors in the Dorsal Raphe Nucleus Convey Vulnerability to Compulsive Cocaine Seeking.

    PubMed

    You, In-Jee; Wright, Sherie R; Garcia-Garcia, Alvaro L; Tapper, Andrew R; Gardner, Paul D; Koob, George F; David Leonardo, E; Bohn, Laura M; Wee, Sunmee

    2016-04-01

    Cocaine addiction and depression are comorbid disorders. Although it is well recognized that 5-hydroxytryptamine (5-HT; serotonin) plays a central role in depression, our understanding of its role in addiction is notably lacking. The 5-HT system in the brain is carefully controlled by a combined process of regulating 5-HT neuron firing through 5-HT autoreceptors, neurotransmitter release, enzymatic degradation, and reuptake by transporters. This study tests the hypothesis that activation of 5-HT1A autoreceptors, which would lessen 5-HT neuron firing, contributes to cocaine-seeking behaviors. Using 5-HT neuron-specific reduction of 5-HT1A autoreceptor gene expression in mice, we demonstrate that 5-HT1A autoreceptors are necessary for cocaine conditioned place preference. In addition, using designer receptors exclusively activated by designer drugs (DREADDs) technology, we found that stimulation of the serotonergic dorsal raphe nucleus (DRN) afferents to the nucleus accumbens (NAc) abolishes cocaine reward and promotes antidepressive-like behaviors. Finally, using a rat model of compulsive-like cocaine self-administration, we found that inhibition of dorsal raphe 5-HT1A autoreceptors attenuates cocaine self-administration in rats with 6 h extended access, but not 1 h access to the drug. Therefore, our findings suggest an important role for 5-HT1A autoreceptors, and thus DRNNAc 5-HT neuronal activity, in the etiology and vulnerability to cocaine reward and addiction. Moreover, our findings support a strategy for antagonizing 5-HT1A autoreceptors for treating cocaine addiction.

  16. 5-HT1A Autoreceptors in the Dorsal Raphe Nucleus Convey Vulnerability to Compulsive Cocaine Seeking

    PubMed Central

    You, In-Jee; Wright, Sherie R; Garcia-Garcia, Alvaro L; Tapper, Andrew R; Gardner, Paul D; Koob, George F; David Leonardo, E; Bohn, Laura M; Wee, Sunmee

    2016-01-01

    Cocaine addiction and depression are comorbid disorders. Although it is well recognized that 5-hydroxytryptamine (5-HT; serotonin) plays a central role in depression, our understanding of its role in addiction is notably lacking. The 5-HT system in the brain is carefully controlled by a combined process of regulating 5-HT neuron firing through 5-HT autoreceptors, neurotransmitter release, enzymatic degradation, and reuptake by transporters. This study tests the hypothesis that activation of 5-HT1A autoreceptors, which would lessen 5-HT neuron firing, contributes to cocaine-seeking behaviors. Using 5-HT neuron-specific reduction of 5-HT1A autoreceptor gene expression in mice, we demonstrate that 5-HT1A autoreceptors are necessary for cocaine conditioned place preference. In addition, using designer receptors exclusively activated by designer drugs (DREADDs) technology, we found that stimulation of the serotonergic dorsal raphe nucleus (DRN) afferents to the nucleus accumbens (NAc) abolishes cocaine reward and promotes antidepressive-like behaviors. Finally, using a rat model of compulsive-like cocaine self-administration, we found that inhibition of dorsal raphe 5-HT1A autoreceptors attenuates cocaine self-administration in rats with 6 h extended access, but not 1 h access to the drug. Therefore, our findings suggest an important role for 5-HT1A autoreceptors, and thus DRN→NAc 5-HT neuronal activity, in the etiology and vulnerability to cocaine reward and addiction. Moreover, our findings support a strategy for antagonizing 5-HT1A autoreceptors for treating cocaine addiction. PMID:26324408

  17. A Role for Calmodulin-Stimulated Adenylyl Cyclases in Cocaine Sensitization

    PubMed Central

    DiRocco, Derek P.; Scheiner, Zachary S.; Sindreu, Carlos Balet; Chan, Guy C-K; Storm, Daniel R.

    2009-01-01

    Cocaine sensitization is produced by repeated exposure to the drug and is thought to reflect neuroadaptations that contribute to addiction. Here, we identify the Ca2+/calmodulin-stimulated adenylyl cyclases, type 1 (AC1) and type 8 (AC8), as novel regulators of this behavioral plasticity. We show that while AC1 and AC8 single knockout mice (AC1−/− and AC8−/−) exhibit Ca2+-stimulated adenylyl cyclase activity in striatal membrane fractions, AC1/8 double-knockout (DKO) mice do not. Furthermore, DKO mice are acutely supersensitive to low doses of cocaine and fail to display locomotor sensitization following chronic cocaine treatment. Because of the known role for the ERK/MAP kinase signaling pathway in cocaine-induced behavioral plasticity and its coupling to calcium-stimulated cAMP signaling in the hippocampus, we measured phosphorylated extracellular signal-regulated kinase (pERK) levels in the striatum. Under basal conditions, pERK is upregulated in choline acetyltransferase positive (ChAT+) interneurons in DKO mice relative to wild-type (WT) controls. Following acute cocaine treatment, pERK signaling is significantly suppressed in medium spiny neurons (MSNs) of DKO mice relative to WT mice. In addition to the lack of striatal ERK activation by acute cocaine, signaling machinery downstream of ERK is uncoupled in DKO mice. We demonstrate that AC1 and AC8 are necessary for the phosphorylation of mitogen and stress-activated kinase-1 (pMSK1) at Ser376 and Thr581, and cAMP response element-binding protein (pCREB) at Ser133 following acute cocaine treatment. Our results demonstrate that the Ca2+-stimulated adenylyl cyclases regulate long-lasting cocaine-induced behavioral plasticity via activation of the ERK/MSK1/CREB signaling pathway in striatonigral MSNs. PMID:19244515

  18. Effects of continuous nicotine treatment and subsequent termination on cocaine versus food choice in male rhesus monkeys.

    PubMed

    Schwienteck, Kathryn L; Negus, S Stevens; Poklis, Justin L; Banks, Matthew L

    2015-10-01

    One complicating factor in cocaine addiction may be concurrent exposure and potential dependence on nicotine. The aim of the present study was to determine the effects of continuous nicotine treatment and subsequent termination on cocaine versus food choice in rhesus monkeys (Macaca mulatta). For comparison, we also determined effects of the nicotinic receptor antagonist mecamylamine on cocaine versus food choice during continuous saline and nicotine treatment. Rhesus monkeys (N = 3) responded under a concurrent schedule of food pellet (1 g) and intravenous cocaine (0-0.1 mg/kg/injection) availability. Saline and ascending nicotine doses (0.1-1.0 mg/kg/hr, intravenous) were continuously infused for 7-day treatment periods and separated by 24-hr saline treatment periods. Acute effects of mecamylamine (0.32-1.8 mg/kg, intramuscular, 15 min pretreatment) were determined during continuous saline and 0.32-mg/kg/hr nicotine treatments. During saline treatment, cocaine maintained a dose-dependent increase in cocaine choice. Nicotine treatment did not alter cocaine versus food choice. In contrast, preference of 0.032 mg/kg/injection cocaine was attenuated 24 hr following termination of 0.32-mg/kg/hr nicotine treatment, despite no somatic abstinence signs being observed. Acute mecamylamine enhanced cocaine choice during saline treatment and mainly suppressed rates of behavior during nicotine treatment. Overall, continuous nicotine exposure, up to 1 mg/kg/hr, does not enhance cocaine choice and does not produce nicotine dependence, as demonstrated by the lack of abstinence signs.

  19. Cocaine-induced very late stent thrombosis.

    PubMed

    Shah, Priyank; Vasudev, Rahul; Abuarqoub, Ahmad Hisham; Shamoon, Fayez

    2016-10-12

    Cocaine misuse is a known cause of acute coronary syndrome (ACS). Management of these patients has always been a challenge due to medication compliance and eventual risk of stent thrombosis. However, even cocaine misusers who are compliant with dual antiplatelet therapy have been reported to have stent thrombosis. All cases of cocaine-induced stent thrombosis reported in the literature have occurred within first year of stent placement (acute, subacute or late). We report a first case of very late stent thrombosis in a 54-year-old active cocaine misuser who presented with ST segment elevation myocardial infarction, which was successfully managed with percutaneous transluminal coronary angioplasty. A review of all the reported cases of cocaine-induced stent thrombosis is also discussed. Given the high mortality associated with stent thrombosis, treatment option for cocaine misusers presenting with ACS should be conservative when possible. If percutaneous coronary intervention is needed, bare metal stent should be preferred.

  20. Impaired insight in cocaine addiction: laboratory evidence and effects on cocaine-seeking behaviour

    SciTech Connect

    Moeller, S.J.; Moeller, S.J.; Maloney, T.; Parvaz, M.A.; Alia-Klein, N.; Woicik, P.A.; Telang, F.; Wang, G.-J.; Volkow, N.D.; Goldstein, R.Z.

    2010-04-15

    Neuropsychiatric disorders are often characterized by impaired insight into behaviour. Such an insight deficit has been suggested, but never directly tested, in drug addiction. Here we tested for the first time this impaired insight hypothesis in drug addiction, and examined its potential association with drug-seeking behaviour. We also tested potential modulation of these effects by cocaine urine status, an individual difference known to impact underlying cognitive functions and prognosis. Sixteen cocaine addicted individuals testing positive for cocaine in urine, 26 cocaine addicted individuals testing negative for cocaine in urine, and 23 healthy controls completed a probabilistic choice task that assessed objective preference for viewing four types of pictures (pleasant, unpleasant, neutral and cocaine). This choice task concluded by asking subjects to report their most selected picture type; correspondence between subjects self-reports with their objective choice behaviour provided our index of behavioural insight. Results showed that the urine positive cocaine subjects exhibited impaired insight into their own choice behaviour compared with healthy controls; this same study group also selected the most cocaine pictures (and fewest pleasant pictures) for viewing. Importantly, however, it was the urine negative cocaine subjects whose behaviour was most influenced by insight, such that impaired insight in this subgroup only was associated with higher cocaine-related choice on the task and more severe actual cocaine use. These findings suggest that interventions to enhance insight may decrease drug-seeking behaviour, especially in urine negative cocaine subjects, potentially to improve their longer-term clinical outcomes.

  1. Cocaine self-administration disrupts mesolimbic dopamine circuit function and attenuates dopaminergic responsiveness to cocaine.

    PubMed

    Siciliano, Cody A; Ferris, Mark J; Jones, Sara R

    2015-08-01

    Dopaminergic projections from the ventral midbrain to the nucleus accumbens (NAc) have long been implicated in encoding associations between reward availability and environmental stimuli. As such, this circuit is instrumental in guiding behaviors towards obtaining maximal rewards based on previous experience. Cocaine acts on the dopamine system to exert its reinforcing effects and it is thought that cocaine-induced dysregulation of dopamine neurotransmission contributes to the difficulty that cocaine addicts exhibit in selecting environmentally appropriate behaviors. Here we used cocaine self-administration combined with in vivo fast scan cyclic voltammetry in anesthetised rats to examine the function of the ventral tegmental area to NAc projection neurons. Over 5 days of cocaine self-administration (fixed-ratio 1; 1.5 mg/kg/injection; 40 injections/day), animals increased their rate of intake. Following cocaine self-administration, there was a marked reduction in ventral tegmental area-stimulated NAc dopamine release. Additionally, there was a decreased augmentation of stimulated dopamine overflow in response to a cocaine challenge. These findings demonstrate that cocaine induces a hypodopaminergic state, which may contribute to the inflexible drug-taking and drug-seeking behaviors observed in cocaine abusers. Additionally, tolerance to the ability of cocaine to elevate dopamine may lead to increased cocaine intake in order to overcome decreased effects, another hallmark of cocaine abuse. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  2. Oxytocin decreases cocaine taking, cocaine seeking, and locomotor activity in female rats

    PubMed Central

    Leong, Kah-Chung; Zhou, Luyi; Ghee, Shannon M.; See, Ronald E.; Reichel, Carmela M.

    2015-01-01

    Oxytocin has been shown to decrease cocaine taking and seeking in male rats, suggesting potential treatment efficacy for drug addiction. In the present study, we extended these findings to the assessment of cocaine seeking and taking in female rats. Further, we made direct comparisons of oxytocin’s impact on cocaine induced locomotor activity in both males and females. In females, systemic oxytocin (0.3, 1.0, 3.0 mg/kg) attenuated lever pressing for cocaine during self-administration and oxytocin (1.0 mg/kg) attenuated cue-induced cocaine seeking following extinction. Cocaine increased baseline locomotor activity to a greater degree in females relative to males. Oxytocin (0.1, 0.3, 1.0, and 3.0 mg/kg) reduced cocaine-induced locomotor activity in females, but not significantly in males. These data illustrate sex similarities in oxytocin’s attenuation of cocaine seeking, but sex differences in cocaine-induced locomotor effects. While reductions in cocaine seeking cannot be attributed to a reduction in locomotor activity in males, attenuation of locomotor function cannot be entirely ruled out as an explanation for a decrease in cocaine seeking in females suggesting that oxytocin’s effect on cocaine seeking may be mediated by different mechanisms in male and females. PMID:26523890

  3. Prospective associations between brain activation to cocaine and no-go cues and cocaine relapse.

    PubMed

    Prisciandaro, James J; Myrick, Hugh; Henderson, Scott; McRae-Clark, Aimee L; Brady, Kathleen T

    2013-07-01

    The ability to predict potential for relapse to substance use following treatment could be very useful in targeting aftercare strategies. Recently, a number of investigators have focused on using neural activity measured by fMRI to predict relapse propensity. The purpose of the present study was to use fMRI to investigate prospective associations between brain reactivity to cocaine and response inhibition cues and relapse to cocaine use. Thirty cocaine-dependent participants with clean cocaine urine drug screens (UDS) completed a baseline fMRI scan, including a cocaine-cue reactivity task and a go no-go response inhibition task. After participating in a brief clinical trial of d-cycloserine for the facilitation of cocaine-cue extinction, they returned for a one-week follow-up UDS. Associations between baseline activation to cocaine and inhibition cues and relapse to cocaine use were explored. Positive cocaine UDS was significantly associated with cocaine-cue activation in the right putamen and insula, as well as bilateral occipital regions. Associations between positive cocaine UDS and activation to no-go cues were concentrated in the postcentral gyri, a region involved in response execution. Although preliminary, these results suggest that brain imaging may be a useful tool for predicting risk for relapse in cocaine-dependent individuals. Further, larger-scale naturalistic studies are needed to corroborate and extend these findings. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  4. Prospective associations between brain activation to cocaine and no-go cues and cocaine relapse*

    PubMed Central

    Prisciandaro, James J.; Myrick, Hugh; Henderson, Scott; McRae-Clark, Aimee L.; Brady, Kathleen T.

    2013-01-01

    Background The ability to predict potential for relapse to substance use following treatment could be very useful in targeting aftercare strategies. Recently, a number of investigators have focused on using neural activity measured by fMRI to predict relapse propensity. The purpose of the present study was to use fMRI to investigate prospective associations between brain reactivity to cocaine and response inhibition cues and relapse to cocaine use. Methods Thirty cocaine-dependent participants with clean cocaine urine drug screens (UDS) completed a baseline fMRI scan, including a cocaine-cue reactivity task and a go/no-go response inhibition task. After participating in a brief clinical trial of D-cycloserine for the facilitation of cocaine cue extinction, they returned for a one-week follow-up UDS. Associations between baseline activation to cocaine and inhibition cues and relapse to cocaine use were explored. Results Positive cocaine UDS was significantly associated with cocaine cue activation in the right putamen and insula, as well as bilateral occipital regions. Associations between positive cocaine UDS and activation to no-go cues were concentrated in the postcentral gyri, a region involved in response execution. Conclusions Although preliminary, these results suggest that brain imaging may be a useful tool for predicting risk for relapse in cocaine-dependent individuals. Further, larger-scale naturalistic studies are needed to corroborate and extend these findings. PMID:23683790

  5. Integrins Modulate Relapse to Cocaine-Seeking

    PubMed Central

    Wiggins, Armina; Smith, Rachel J; Shen, Haowei; Kalivas, Peter W

    2012-01-01

    Relapse to cocaine seeking involves impairments in plasticity at glutamatergic synapses in the nucleus accumbens. Integrins are cell adhesion molecules that bind to the extracellular matrix and regulate aspects of synaptic plasticity, including glutamate receptor trafficking. To determine a role for integrins in cocaine-seeking, rats were trained to self-administer cocaine, the operant response extinguished, and cocaine-seeking induced by a conditioned cue or noncontingent cocaine injection. This cocaine self-administration protocol reduced the content of the beta3 integrin subunit in postsynaptic density (PSD) of the accumbens core at 24 hr after the last self-administration session. However, by 3 wks of forced abstinence plus extinction training the level of beta3 was elevated, and was further regulated over 120 min during cocaine-induced drug-seeking. A small peptide ligand (RGD) that mimics extracellular matrix protein binding to integrins was microinjected into the accumbens core during self-administration or extinction training, or just prior to cocaine-reinstated drug seeking. The daily RGD injections during self-administration or just prior to a reinstatement session inhibited cocaine-induced drug-seeking, while RGD microinjection during extinction training was without consequence on reinstated cocaine-seeking. Daily RGD during self-administration also prevented the enduring changes in beta3 levels. Finally, reduced surface expression of the GluR2 subunit of the AMPA receptor is associated with cocaine-seeking, and daily RGD microinjections during self-administration training normalized the surface expression of GluR2. Together these data indicate that the regulation integrins may contribute to cocaine-reinstated drug-seeking, in part by promoting reduced GluR2 surface expression. PMID:22072669

  6. Integrins modulate relapse to cocaine-seeking.

    PubMed

    Wiggins, Armina; Smith, Rachel J; Shen, Hao-Wei; Kalivas, Peter W

    2011-11-09

    Relapse to cocaine-seeking involves impairments in plasticity at glutamatergic synapses in the nucleus accumbens. Integrins are cell adhesion molecules that bind to the extracellular matrix and regulate aspects of synaptic plasticity, including glutamate receptor trafficking. To determine a role for integrins in cocaine-seeking, rats were trained to self-administer cocaine, the operant response extinguished, and cocaine-seeking induced by a conditioned cue or noncontingent cocaine injection. This cocaine self-administration protocol reduced the content of the β3 integrin subunit in postsynaptic density of the accumbens core at 24 h after the last self-administration session. However, after 3 weeks of forced abstinence plus extinction training, the level of β3 was elevated and was further regulated over 120 min during cocaine-induced drug-seeking. A small peptide ligand [arginine-glycine-aspartate (RGD)] that mimics extracellular matrix protein binding to integrins was microinjected into the accumbens core during self-administration or extinction training, or just before cocaine-reinstated drug seeking. The daily RGD injections during self-administration or just before a reinstatement session inhibited cocaine-induced drug-seeking, while RGD microinjection during extinction training was without consequence on reinstated cocaine-seeking. Daily RGD during self-administration also prevented the enduring changes in β3 levels. Finally, reduced surface expression of the GluR2 subunit of the AMPA receptor is associated with cocaine-seeking, and daily RGD microinjections during self-administration training normalized the surface expression of GluR2. Together, these data indicate that the regulation integrins may contribute to cocaine-reinstated drug-seeking, in part by promoting reduced GluR2 surface expression.

  7. Rapid classification and quantification of cocaine in seized powders with ATR-FTIR and chemometrics.

    PubMed

    Eliaerts, Joy; Dardenne, Pierre; Meert, Natalie; Van Durme, Filip; Samyn, Nele; Janssens, Koen; De Wael, Karolien

    2016-12-15

    Traditionally, fast screening for the presence of cocaine in unknown powders is performed by means of colour tests. The major drawbacks of these tests are subjective colour evaluation depending on the operator ('50 shades of blue') and a lack of selectivity. An alternative fast screening technique is Fourier Transform InfraRed (FTIR) spectrometry. This technique provides spectra that are difficult to interpret without specialized expertise and shows a lack of sensitivity for the detection of cocaine in mixtures. To overcome these limitations, a portable FTIR spectrometer using Attenuated Total Reflectance (ATR) sampling was combined with a multivariate technique, called Support Vector Machines (SVM). Representative street drug powders (n = 482), seized during the period January 2013 to July 2015, and reference powders (n = 33) were used to build and validate a classification model (n = 515) and a quantification model (n = 378). Both models were compared with the conventional chromatographic techniques. The SVM classification model showed a high sensitivity, specificity, and efficiency (99%). The SVM quantification model determined cocaine content with a root mean squared error of prediction (RMSEP) of 6% calculated over a wide working range from 4 to 99 w%. In conclusion, the developed models resulted in a clear output (cocaine detected or cocaine not detected) and a reliable estimation of the cocaine content in a wide variety of mixtures. The ATR-FTIR technique combined with SVM is a straightforward, user-friendly, and fast approach for routine classification and quantification of cocaine in seized powders. Copyright © 2016 John Wiley & Sons, Ltd.

  8. Lack of galectin-3 increases Jagged1/Notch activation in bone marrow-derived dendritic cells and promotes dysregulation of T helper cell polarization.

    PubMed

    Fermino, Marise L; Dylon, L Sebastian D; Cecílio, Nerry T; Santos, Sofia N; Toscano, Marta A; Dias-Baruffi, Marcelo; Roque-Barreira, Maria C; Rabinovich, Gabriel A; Bernardes, Emerson S

    2016-08-01

    Galectin-3, an endogenous glycan-binding protein, is abundantly expressed at sites of inflammation and immune cell activation. Although this lectin has been implicated in the control of T helper (Th) polarization, the mechanisms underlying this effect are not well understood. Here, we investigated the role of endogenous galectin-3 during the course of experimental Leishmania major infection using galectin-3-deficient (Lgals3(-/-)) mice in a BALB/c background and the involvement of Notch signaling pathway in this process. Lgals3(-/-) mice displayed an augmented, although mixed Th1/Th2 responses compared with wild-type (WT) mice. Concomitantly, lymph node and footpad lesion cells from infected Lgals3(-/-) mice showed enhanced levels of Notch signaling components (Notch-1, Jagged1, Jagged2 and Notch target gene Hes-1). Bone marrow-derived dendritic cells (BMDCs) from uninfected Lgals3(-/-) mice also displayed increased expression of the Notch ligands Delta-like-4 and Jagged1 and pro-inflammatory cytokines. In addition, activation of Notch signaling in BMDCs upon stimulation with Jagged1 was more pronounced in Lgals3(-/-) BMDCs compared to WT BMDCs; this condition resulted in increased production of IL-6 by Lgals3(-/-) BMDCs. Finally, addition of exogenous galectin-3 to Lgals3(-/-) BMDCs partially reverted the increased sensitivity to Jagged1 stimulation. Our results suggest that endogenous galectin-3 regulates Notch signaling activation in BMDCs and influences polarization of T helper responses, thus increasing susceptibility to L. major infection.

  9. Lack of Association between Brain-Derived Neurotrophic Factor Gene Val66Met Polymorphisms and Generalized Social Anxiety Disorder in Korean Population.

    PubMed

    Park, Jin-Sung; Lim, Sewon; Ha, Juwon; Lee, Min-Soo; Oh, Kang-Seob

    2011-12-01

    Several lines of evidence suggest that brain-derived neurotrophic factor (BDNF) plays a role in the pathophysiology of anxiety. We analyzed the association of the BDNF gene polymorphism, G196A (val66met), in the coding region of exon XIIIA in chromosome 11p13, and generalized social anxiety disorder (GSAD). Patients with GSAD (n=73) and age-matched control subjects (n=152) were tested for the BDNF (val66met) polymorphism. A clinical interview and a Mini-International Neuropsychiatric Interview were conducted by trained psychiatrists in order to diagnose GSAD. The symptomatic characteristics of the GSAD patients were assessed with the Hamilton Anxiety Rating Scale, the Beck Anxiety Inventory, the Retrospective Self Report of Inhibition, the Spielberger State-Trait Anxiety Inventory, and the Liebowitz Social Anxiety Scale. There were no significant differences in the frequencies of the genotypes (χ(2)=0.961, degree of freedom [df]=2, p=0.619), alleles (χ(2)=0.415, df=1, p=0.519), or allele (methionine) carriers (χ(2)=0.019, df=1, p=0.889) between the patients and controls. In addition, when we compared the severity of social anxiety symptom as determined by the clinical scales with the genotypes of the BDNF gene, we could not find any significant differences between the genotypes or allele carriers. These results do not support the hypothesis that the BDNF gene might be a candidate gene for susceptibility or severity of GSAD in the Korean population in this study.

  10. [Comorbidity between cocaine addiction and personality disorders].

    PubMed

    Fernández-Montalvo, J; Lorea, I

    2007-01-01

    The aim of this paper was to review the current knowledge about the comorbidity between cocaine dependence and personality disorders. Results concerning a specific profile of cocaine patients are not conclusive. The prevalence rate of personality disorders in cocaine dependents is very heterogeneous (with a mean of 66% of cases), and a great variability is observed between all the studies carried out. There is a tendency for a higher proportion of cocaine dependents to be found within the cluster B category (mainly antisocial and borderline). Lastly, implications of this kind of study for future research and clinical practice are commented upon.

  11. An Antidote for Acute Cocaine Toxicity

    PubMed Central

    Treweek, Jennifer B.; Janda, Kim D.

    2012-01-01

    Not only has immunopharmacotherapy grown into a field that addresses the abuse of numerous illicit substances, but also the treatment methodologies within immunopharmacotherapy have expanded from traditional active vaccination to passive immunization with anti-drug monoclonal antibodies, optimized mAb formats, and catalytic drug-degrading antibodies. Many laboratories have focused on transitioning distinct immunopharmacotherapeutics to clinical evaluation, but with respect to the indication of cocaine abuse, only the active vaccine TA-CD, which is modeled after our original cocaine hapten GNC1, has been carried through to human clinical trials.2 The successful application of murine mAb GNC92H2 to the reversal of cocaine overdose in a mouse model prompted investigations of human immunoglobulins with the clinical potential to serve as cocaine antidotes. We now report the therapeutic utility of a superior clone, human mAb GNCgzk (Kd = 0.18 nM), which offers a 10-fold improvement in cocaine binding affinity. The GNCgzk manifold was engineered for rapid cocaine clearance, and administration of the F(ab′)2 and Fab formats even after the appearance of acute behavioral signs of cocaine toxicity granted nearly complete prevention of lethality. Thus, contrary to the immunopharmacotherapeutic treatment of drug self-administration, minimal antibody doses were shown to counteract the lethality of a molar excess of circulating cocaine. Passive vaccination with drug-specific antibodies represents a viable treatment strategy for the human condition of cocaine overdose. PMID:22380623

  12. Molecular approaches to treatments for cocaine abuse

    NASA Astrophysics Data System (ADS)

    Flippen-Anderson, Judith L.; George, Clifford; Deschamps, Jeffrey R.

    2003-02-01

    Cocaine is a potent stimulant of the central nervous system with severe addiction potential. Its abuse is a major problem worldwide. The exact mechanism of action of cocaine is still uncertain but it is known that its reinforcing and stimulant effects are related to its ability to inhibit the membrane bound dopamine transporter (DAT). This paper discusses efforts that are underway to identify ligands for possible use in the treatment of cocaine abuse. Much of this effort has been focussed on understanding cocaine interactions at DAT receptor sites.

  13. Acute multifocal neuropathy following cocaine inhalation.

    PubMed

    de Souza, Aaron; Desai, Paresh K; de Souza, Rainha J

    2017-02-01

    We report a young man, not a habitual cocaine user, who developed an acute multifocal neuropathy following a second exposure to inhaled cocaine. Case report. Clinical and electrophysiological findings suggested an acute multiple mononeuropathy following cocaine exposure. Imaging of the shoulder and pelvic girdles revealed multifocal denervation in selected proximal muscles. The patient was empirically treated with intravenous steroids to good effect. Cocaine use, although usually affecting the central nervous system, does produce peripheral nerve disease in rare instances. This unusual pattern of neurological involvement needs to be differentiated from the more common symptoms resulting from affection of the brain. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. An antidote for acute cocaine toxicity.

    PubMed

    Treweek, Jennifer B; Janda, Kim D

    2012-04-02

    Not only has immunopharmacotherapy grown into a field that addresses the abuse of numerous illicit substances, but also the treatment methodologies within immunopharmacotherapy have expanded from traditional active vaccination to passive immunization with anti-drug monoclonal antibodies, optimized mAb formats, and catalytic drug-degrading antibodies. Many laboratories have focused on transitioning distinct immunopharmacotherapeutics to clinical evaluation, but with respect to the indication of cocaine abuse, only the active vaccine TA-CD, which is modeled after our original cocaine hapten GNC, has been carried through to human clinical trials. The successful application of murine mAb GNC92H2 to the reversal of cocaine overdose in a mouse model prompted investigations of human immunoglobulins with the clinical potential to serve as cocaine antidotes. We now report the therapeutic utility of a superior clone, human mAb GNCgzk (K(d) = 0.18 nM), which offers a 10-fold improvement in cocaine binding affinity. The GNCgzk manifold was engineered for rapid cocaine clearance, and administration of the F(ab')₂ and Fab formats even after the appearance of acute behavioral signs of cocaine toxicity granted nearly complete prevention of lethality. Thus, contrary to the immunopharmacotherapeutic treatment of drug self-administration, minimal antibody doses were shown to counteract the lethality of a molar excess of circulating cocaine. Passive vaccination with drug-specific antibodies represents a viable treatment strategy for the human condition of cocaine overdose.

  15. Neuropsychiatric effects of cocaine use disorders.

    PubMed Central

    Nnadi, Charles U.; Mimiko, Olubansile A.; McCurtis, Henry L.; Cadet, Jean Lud

    2005-01-01

    Individuals who use cocaine report a variety of neuropsychiatric symptoms that are yet to be adequately targeted with treatment modalities. To address this problem requires an understanding of these symptoms and their neurobiological origins. Our paper reviewed the existing data on the neuropsychiatic implications of cocaine. We conducted a Medline search from 1984-2004 using terms, such as "cocaine", "cocaine addiction", "cocaine abuse", "cocaine neuropsychiatry" and "dual diagnosis". The search produced additional reference materials that were used in this review, although we focused on data that have likely clinical implications. The literature evidence suggested that, whereas acute cocaine overdose is potentially fatal, the ingestion of mild-to-moderate doses could result in fatal or nonfatal neuropsychiatric events. Also, chronic cocaine use may be associated with deficits in neurocognition, brain perfusion and brain activation patterns. Some of these deficits were unresolved with periods of abstinence ranging from 3-200 days. Taken together, these studies suggest the need for further investigations to fully characterize the neurobiological substrates of cocaine use disorders (CUDs) with the future possibility of more efficient treatment modalities. PMID:16334497

  16. A systematic assessment of delay discounting in relation to cocaine and nicotine dependence.

    PubMed

    García-Rodríguez, Olaya; Secades-Villa, Roberto; Weidberg, Sara; Yoon, Jin Ho

    2013-10-01

    Delay discounting is a measure of impulsivity describing how a reinforcer loses value as the delay to its receipt increases. Greater delay discounting is reliably observed among those with different substance use disorders (SUDs) compared to the general population. Nevertheless, the relation between delay discounting and the type and number of substances used remains unclear. The aim of this study was to compare delay discounting across four groups of participants: cocaine- and nicotine-dependent participants, cocaine-dependent only participants, nicotine-dependent only participants, and non-dependent controls. One hundred and seven participants completed a computerized delay discounting task for hypothetical monetary values. Data were fit to Mazur's hyperbolic equation to derive the discounting rate k. Results showed that delay discounting was significantly greater in the cocaine- and nicotine-dependent group, compared to the nicotine-dependent only group, compared to control group. Delay discounting was also greater in the cocaine-dependent only group relative to the nicotine-dependent only and control groups, but no differences were observed between the cocaine- and nicotine-dependent group and the cocaine-dependent only group. This study provides evidence that delay discounting differs depending on the type of SUD but not on the number of SUDs.

  17. Chronic administration of the methylxanthine propentofylline impairs reinstatement to cocaine by a GLT-1-dependent mechanism.

    PubMed

    Reissner, Kathryn J; Brown, Robyn M; Spencer, Sade; Tran, Phuong K; Thomas, Charles A; Kalivas, Peter W

    2014-01-01

    In recent years, interactions between neurons and glia have been evaluated as mediators of neuropsychiatric diseases, including drug addiction. In particular, compounds that increase expression of the astroglial glutamate transporter GLT-1 (N-acetylcysteine and ceftriaxone) can decrease measures of drug seeking. However, it is unknown whether the compounds that influence broad measures of glial physiology can influence behavioral measures of drug relapse, nor is it clear whether the upregulated GLT-1 is functionally important for suppressing of drug seeking. To address these questions, we sought to determine whether the glial modulator and neuroprotective agent propentofylline (PPF) modifies drug seeking in rats using a reinstatement model of cocaine relapse. We found that 7 days of chronic (but not acute) administration of PPF significantly decreased both cue- and cocaine-induced reinstatement of cocaine seeking. We next determined whether the effect of systemic PPF on reinstatement depended upon its ability to restore expression of GLT-1 in the nucleus accumbens. PPF restored the cocaine-induced decrease in GLT-1 in the accumbens core; then, using an antisense strategy against glutamate transporter GLT-1, we found that restored transporter expression was necessary for PPF to inhibit cue-primed cocaine seeking. These findings indicate that modulating glial physiology with atypical xanthine derivatives like PPF is a potential avenue for developing new medications for cocaine abuse, and support the hypothesis that neuron-glial interactions contribute to mechanisms of psychostimulant addiction, particularly via expression and function of astroglial glutamate transporters.

  18. Effects of progesterone stimulated allopregnanolone on craving and stress response in cocaine dependent men and women.

    PubMed

    Milivojevic, Verica; Fox, Helen C; Sofuoglu, Mehmet; Covault, Jonathan; Sinha, Rajita

    2016-03-01

    Fluctuations in progesterone levels during the menstrual cycle have been shown to affect physiological and subjective effects of cocaine. Furthermore, our laboratory has demonstrated that following drug-cue exposure, cocaine dependent women with high levels of circulating progesterone display lower diastolic and systolic blood pressure responses and report lower levels of anxiety and drug craving compared to cocaine dependent women with low levels of progesterone. In the current study we examined the role of the progesterone derived neuroactive steroid allopregnanolone (ALLO) on stress arousal, inhibitory control and drug craving in cocaine dependent subjects. Plasma levels of ALLO were measured using GC/MS in 46 treatment-seeking cocaine dependent men and women on day 5 of a 7-day treatment regimen of micronized progesterone (15M/8F) (400mg/day) or placebo (14M/9F) administered in a double blind, randomized manner. As a control, levels of the testosterone derived neurosteroid androstanediol (ADIOL) were also measured. All subjects participated in laboratory sessions on days 5-7 of progesterone/placebo administration in which they were exposed to a series of 5-min personalized guided imagery of either a stressful situation, cocaine use or of a neutral setting and dependent variables including subjective craving, mood, Stroop task as a measure of inhibitory control performance and plasma cortisol were assessed. Participants were grouped by high or low ALLO level and levels of dependent variables compared between ALLO groups. Progesterone relative to placebo significantly increased ALLO levels with no sex differences. There were no effects of micronized progesterone on the testosterone derived ADIOL. Individuals in the high versus the low ALLO group showed decreased levels of cortisol at baseline, and a higher cortisol response to stress; higher positive mood scores at baseline and improved Stroop performance in the drug-cue and stress conditions, and reduced cocaine

  19. Effects of progesterone stimulated allopregnanolone on craving and stress response in cocaine dependent men and women

    PubMed Central

    Milivojevic, Verica; Fox, Helen C.; Sofuoglu, Mehmet; Covault, Jonathan; Sinha, Rajita

    2015-01-01

    Objectives Fluctuations in progesterone levels during the menstrual cycle have been shown to affect physiological and subjective effects of cocaine. Furthermore, our laboratory has demonstrated that following drug-cue exposure, cocaine dependent women with high levels of circulating progesterone display lower diastolic and systolic blood pressure responses and report lower levels of anxiety and drug craving compared to cocaine dependent women with low levels of progesterone. In the current study we examined the role of the progesterone derived neuroactive steroid allopregnanolone (ALLO) on stress arousal, inhibitory control and drug craving in cocaine dependent subjects. Methods Plasma levels of ALLO were measured using GC/MS in 46 treatment-seeking cocaine dependent men and women on day 5 of a 7-day treatment regimen of micronized progesterone (15M / 8F) (400mg/day) or placebo (14M / 9F) administered in a double blind, randomized manner. As a control, levels of the testosterone derived neurosteroid androstanediol (ADIOL) were also measured. All subjects participated in laboratory sessions on days 5–7 of progesterone/placebo administration in which they were exposed to a series of 5-min personalized guided imagery of either a stressful situation, cocaine use or of a neutral setting and dependent variables including subjective craving, mood, Stroop task as a measure of inhibitory control performance and plasma cortisol were assessed. Participants were grouped by high or low ALLO level and levels of dependent variables compared between ALLO groups. Results Progesterone relative to placebo significantly increased ALLO levels with no sex differences. There were no effects of micronized progesterone on the testosterone derived ADIOL. Individuals in the high versus the low ALLO group showed decreased levels of cortisol at baseline, and a higher cortisol response to stress; higher positive mood scores at baseline and improved Stroop performance in the drug-cue and

  20. Sex mediates dopamine and adrenergic receptor expression in adult rats exposed prenatally to cocaine

    PubMed Central

    Ferris, Mark J.; Mactutus, Charles F.; Silvers, Janelle M.; Hasselrot, Ulla; Strupp, Barbara J.; Booze, Rosemarie M.

    2010-01-01

    The extent of catecholaminergic receptor and respective behavioral alterations associated with prenatal cocaine exposure varies according to exogenous factors such as the amount, frequency, and route of maternal exposure, as well as endogenous factors such as specific brain regions under consideration and sex of the species. The goal of the current study was to use autoradiography to delineate possible moderators of dopaminergic and adrenergic receptor expression in adult rat offspring exposed to cocaine in utero. The current study demonstrated sex-dependent D1 receptor, α2, and noradrenergic transporter binding alterations in prelimbic, hippocampus, and anterior cingulate regions of adult rat brains exposed to cocaine during gestational days 8–21. Of further interest was the lack of alterations in the nucleus accumbens for nearly all receptors/transporters investigated, as well as the lack of alterations in D3 receptor binding in nearly all of the regions investigated (nucleus accumbens, prelimbic region, hippocampus, and cingulate gyrus). Thus, the current investigation demonstrated persistent receptor and transporter alterations that extend well into adulthood as a result of cocaine exposure in utero. Furthermore, the demonstration that sex played a mediating role in prenatal cocaine-induced, aberrant receptor/transporter expression is of primary importance for future studies that seek to control for sex in either design or analysis. PMID:17933484

  1. Lack of Association between Brain-Derived Neurotrophic Factor Gene Val66Met Polymorphisms and Generalized Social Anxiety Disorder in Korean Population

    PubMed Central

    Park, Jin-Sung; Lim, Sewon; Ha, Juwon; Lee, Min-Soo

    2011-01-01

    Objective Several lines of evidence suggest that brain-derived neurotrophic factor (BDNF) plays a role in the pathophysiology of anxiety. We analyzed the association of the BDNF gene polymorphism, G196A (val66met), in the coding region of exon XIIIA in chromosome 11p13, and generalized social anxiety disorder (GSAD). Methods Patients with GSAD (n=73) and age-matched control subjects (n=152) were tested for the BDNF (val66met) polymorphism. A clinical interview and a Mini-International Neuropsychiatric Interview were conducted by trained psychiatrists in order to diagnose GSAD. The symptomatic characteristics of the GSAD patients were assessed with the Hamilton Anxiety Rating Scale, the Beck Anxiety Inventory, the Retrospective Self Report of Inhibition, the Spielberger State-Trait Anxiety Inventory, and the Liebowitz Social Anxiety Scale. Results There were no significant differences in the frequencies of the genotypes (χ2=0.961, degree of freedom [df]=2, p=0.619), alleles (χ2=0.415, df=1, p=0.519), or allele (methionine) carriers (χ2=0.019, df=1, p=0.889) between the patients and controls. In addition, when we compared the severity of social anxiety symptom as determined by the clinical scales with the genotypes of the BDNF gene, we could not find any significant differences between the genotypes or allele carriers. Conclusion These results do not support the hypothesis that the BDNF gene might be a candidate gene for susceptibility or severity of GSAD in the Korean population in this study. PMID:23430242

  2. Lack of Muc1-regulated beta-catenin stability results in aberrant expansion of CD11b+Gr1+ myeloid derived suppressor cells from the bone marrow

    PubMed Central

    Poh, Tze Wei; Bradley, Judy M.; Mukherjee, Pinku; Gendler, Sandra J.

    2009-01-01

    Myeloid Derived Suppressor Cells (MDSCs) are a heterogeneous population of myeloid cells that inhibit T cell activity and contribute to the immune suppression characteristic of most tumors. We discovered that bone marrow (BM) progenitor cells from the Muc1 knockout (KO) mice differentiated into CD11b+Gr1+ MDSCs in vitro under GM-CSF and IL-4 signaling. MUC1 is a tumor-associated mucin and its cytoplasmic tail (MUC1-CT) can regulate beta-catenin to promote oncogenesis. Given the importance of beta-catenin in hematopoiesis, we hypothesized that the MUC1 regulation of beta-catenin is important for MDSC development. Our current study shows that the aberrant development of BM progenitors into CD11b+Gr1+ MDSCs is dependent on the down regulation of beta-catenin levels that occurs in the absence of Muc1. In light of this, KO mice showed enhanced EL4 tumor growth and were able to better tolerate allogeneic BM185 tumor growth, with an accumulation of CD11b+Gr1+ cells in the blood and tumor draining lymph nodes. WT mice were able to similarly tolerate allogeneic tumor growth when they were injected with CD11b+Gr1+ cells from tumor-bearing KO mice, suggesting that tolerance of allogeneic tumors is dependent on MDSC-mediated immune suppression. This further delineates the ability of Muc1 to control MDSC development which could directly impact tumorigenesis. Knowledge of the biology by which Muc1 regulates the development of myeloid progenitors into MDSCs would also be very useful in enhancing the efficacy of cancer vaccines in the face of tumor immune suppression. PMID:19351842

  3. Prenatal cocaine administration increases glutathione and alpha-tocopherol oxidation in fetal rat brain.

    PubMed

    Lipton, Jack W; Gyawali, Sandeep; Borys, Ewa D; Koprich, James B; Ptaszny, Magdalena; McGuire, Susan O

    2003-12-30

    Recent findings suggest that prenatal cocaine exposure results in significant attenuation of uterine and placental blood flow. The extent of blood flow reduction to fetuses positively correlates with reductions in glial-derived neurotrophic factor (GDNF) and dopamine (DA). However, whether such changes in uterine blood flow are sufficient to induce oxidative stress have yet to be determined. In the following experiments, the impact of prenatal cocaine exposure on fetal brain levels of the endogenous antioxidant glutathione (GSH and its oxidized form GSSG) or the exogenous antioxidant alpha-tocopherol (alpha-T and its oxidized quinone form) was investigated. It was hypothesized that cocaine exposure would result in greater oxidation of both GSH and alpha-T. Results indicated that a single injection of cocaine to a drug-naive pregnant dam results in significant (-16.38%) reductions in the levels of GSH. GSSG can be either raised or reduced as a result of fetal uterine position: fetuses at the ovarian extremes show significant increases in GSSG in response to cocaine (+64.73%), whereas cervically situated fetuses show decreased GSSG (-47.91%). Additionally, cocaine significantly decreased the levels of alpha-T (-15.9%) and increased the levels of its oxidative product alpha-Tquinone (alpha-Tq, +34.05%). Levels of alpha-T were not affected by fetal uterine position. These data collectively suggest that cocaine exposure increases the utilization of both endogenous and exogenous anti-oxidants in the fetal rat brain. Along with previous studies, these data support the hypothesis that cocaine-induced vasoconstriction results in oxidative stress in the gestating fetus.

  4. Nifedipine lowers cocaine-induced brain and liver enzyme activity and cocaine urinary excretion in rats.

    PubMed

    Vitcheva, Vessela; Simeonova, Rumyana; Karova, Dima; Mitcheva, Mitka

    2011-06-01

    The aim of this study was to see how nifedipine counters the effects of cocaine on hepatic and brain enzymatic activity in rats and whether it affects urinary excretion of cocaine. Male Wistar rats were divided in four groups of six: control, nifedipine group (5 mg kg-1i.p. a day for five days); cocaine group (15 mg kg-1i.p. a day for five days), and the nifedipine+cocaine group. Twenty-four hours after the last administration, we measured neuronal nitric oxide synthase (nNOS) activity in the brain and cytochrome P450 quantity, ethylmorphine-N-demethylase, and anilinehydroxylase activity in the liver. Urine samples were collected 24 h after the last cocaine and cocaine+nifedipine administration. Urinary cocaine concentration was determined using the GC/MS method.Cocaine administration increased brain nNOS activity by 55 % (p<0.05) in respect to control, which indicates the development of tolerance and dependence. In the combination group, nifedipine decreased the nNOS activity in respect to the cocaine-only group.In the liver, cocaine significantly decreased and nifedipine significantly increased cytochrome P450, ethylmorphine-N-demethylase, and anilinehydroxylase in respect to control. In combination, nifedipine successfully countered cocaine effects on these enzymes.Urine cocaine excretion in the cocaine+nifedipine group significantly dropped (by 35 %) compared to the cocaine-only group.Our results have confirmed the effects of nifedipine against cocaine tolerance and development of dependence, most likely due to metabolic interactions between them.

  5. The role of peripheral and central sodium channels in mediating brain temperature fluctuations induced by intravenous cocaine

    PubMed Central

    Kiyatkin, Eugene A.; Brown, P. Leon

    2007-01-01

    While cocaine’s interaction with the dopamine (DA) transporter and subsequent increase in DA transmission are usually considered key factors responsible for its locomotor stimulatory and reinforcing properties, many centrally-mediated physiological and psychoemotional effects of cocaine are resistant to DA receptor blockade, suggesting the importance of other, non-DA mechanisms. To explore the role of cocaine’s interaction with Na+ channels, rats were used to compare locomotor stimulatory and temperature (NAcc, temporal muscle and skin) effects of repeated iv injections of cocaine (1 mg/kg) with those induced by procaine (PRO 5 mg/kg), a short-acting local anesthetic with negligible effect on the DA transporter, and cocaine-methiodide (COC-MET 1.31 mg/kg), a quaternary cocaine derivative that is unable to cross the blood-brain barrier. While PRO, unlike cocaine, did not induce locomotor activation, it mimicked cocaine in its ability to increase brain temperature following the initial injection and to induce biphasic, down-up fluctuations following repeated injections. This similarity suggests that both these effects of cocaine may be driven by its action on Na+ channels, a common action of both drugs. While COC-MET also did not affect locomotor activity, it shared with cocaine and PRO their ability to increase brain temperature but failed to induce temperature decreases after repeated injections. These findings point toward activation of peripheral Na+ channels as the primary mechanism of rapid excitatory effects of cocaine and inhibition of centrally-located Na+ channels as a the primary mechanism for transient inhibitory effects of cocaine. DA receptor blockade (SCH23390 + eticlopride) fully eliminated locomotor stimulatory and temperature-increasing effects of cocaine, but its temperature-decreasing effects remained intact. Surprisingly, DA receptor blockade also altered the temperature fluctuations caused by PRO and COC-MET, suggesting that some of the

  6. [Personality profile among cocaine users].

    PubMed

    Sánchez Huesca, R; Guisa Cruz, V M; Cedillo González, A; Pascual Blanco, Y

    2002-01-01

    Due to the psychiatric comorbidity seen among cocaine addicts, it is of clinical interest to know the personality traits associated to the use of this substance. Personality-profile comparative study of cocaine users and multiple-substance users obtained through the Multistage Personality Inventory. The study analyzed a sample of 30 cocaine users and 26 users of various substances who asked for treatment at a specialized institution. Results show the same profile for both groups, with high 8-4-2 scales. According to the Multistage Personality Inventory, this profile corresponds to an antisocial personality disorder with depressive and schizoid traits. The fact that there is a single profile for different drug users leads us to the hypothesis that there are addictive personality characteristics rather than specific traits related to the use of each substance. These subjects' personality characteristics suggest that the fear to relate to others could make it very difficult to establish a therapeutic link. This, in addition to the acting up tendency seen among users, constitutes a call of alert in terms of their likely abandonment of treatment. Further more, as they take impulses into actions, they build a barrier before words. This could be called acting up, doing instead of saying, which can become an obstacle for the appropriate development of the therapeutic process. The result must consider the size of the sample.

  7. Aminorex poisoning in cocaine abusers.

    PubMed

    Karch, Steven B; Mari, Francesco; Bartolini, Viola; Bertol, Elisabetta

    2012-07-26

    Levamisole is found in more than 80% of illicit cocaine seized within United States borders. Percentages are somewhat lower in Europe. In 2009, controlled in vivo studies demonstrated that horses metabolize levamisole to aminorex. Earlier this year our laboratory demonstrated that the same conversion occurs in man. Levamisole itself causes aplastic anemia and numerous reports have begun to appear in the literature, but the conversion of levamisole to aminorex is of much more concern. Aminorex ingestion was responsible for a five-year epidemic (1967-1972) of idiopathic pulmonary hypertension (IPH) confined to Switzerland, Austria, and Germany, the only countries where aminorex had been marketed as an anorectic. The incidence of IPH reverted to normal levels as soon as aminorex was withdrawn. In most cases onset of symptoms in IPH began after six to nine months of aminorex use, with average dosage ranges of 10 to 40 mg per day. The outcome was almost uniformly fatal. The conversion rate of levamisole to aminorex has not been established, but given the high daily intake of cocaine by many abusers, it seems likely that many of them will have ingested enough contaminated cocaine to ultimately cause IPH. Until the disease is well established, the symptoms of IHP are vague, and existing drug registries specifically exclude drug abusers, making it difficult to track these cases. This review is intended to draw attention to what may be a slowly emerging new epidemic.

  8. Stimulation of 5-HT(1B) receptors enhances cocaine reinforcement yet reduces cocaine-seeking behavior.

    PubMed

    Pentkowski, Nathan S; Acosta, Jazmin I; Browning, Jenny R; Hamilton, Elizabeth C; Neisewander, Janet L

    2009-09-01

    Paradoxically, stimulation of 5-HT(1B) receptors (5-HT(1B)Rs) enhances sensitivity to the reinforcing effects of cocaine but attenuates incentive motivation for cocaine as measured using the extinction/reinstatement model. We revisited this issue by examining the effects of a 5-HT(1B)R agonist, CP94253, on cocaine reinforcement and cocaine-primed reinstatement, predicting that CP94253 would enhance cocaine-seeking behavior reinstated by a low priming dose, similar to its effect on cocaine reinforcement. Rats were trained to self-administer cocaine (0.75 mg/kg, i.v.) paired with light and tone cues. For reinstatement experiments, they then underwent daily extinction training to reduce cocaine-seeking behavior (operant responses without cocaine reinforcement). Next, they were pre-treated with CP94253 (3-10 mg/kg, s.c.) and either tested for cocaine-primed (10 or 2.5 mg/kg, i.p.) or cue-elicited reinstatement of extinguished cocaine-seeking behavior. For reinforcement, effects of CP94253 (5.6 mg/kg) across a range of self-administered cocaine doses (0-1.5 mg/kg, i.v.) were examined. Cocaine dose-dependently reinstated cocaine-seeking behavior, but contrary to our prediction, CP94253 reduced reinstatement with both priming doses. Similarly, CP94253 reduced cue-elicited reinstatement. In contrast, CP94253 shifted the self-administration dose-effect curve leftward, consistent with enhanced cocaine reinforcement. When saline was substituted for cocaine, CP94253 reduced response rates (i.e. cocaine-seeking behavior). In subsequent control experiments, CP94253 decreased open-arm exploration in an elevated plus-maze suggesting an anxiogenic effect, but had no effect on locomotion or sucrose reinforcement. These results provide strong evidence that stimulation of 5-HT(1B)Rs produces opposite effects on cocaine reinforcement and cocaine-seeking behavior, and further suggest that 5-HT(1B)Rs may be a novel target for developing medications for cocaine dependence.

  9. Interactions between modafinil and cocaine during the induction of conditioned place preference and locomotor sensitization in mice: implications for addiction.

    PubMed

    Shuman, Tristan; Cai, Denise J; Sage, Jennifer R; Anagnostaras, Stephan G

    2012-12-01

    Modafinil is a wake-promoting drug effective at enhancing alertness and attention with a variety of approved and off-label applications. The mechanism of modafinil is not well understood but initial studies indicated a limited abuse potential. A number of recent publications, however, have shown that modafinil can be rewarding under certain conditions. The present study assessed the reinforcing properties of modafinil using conditioned place preference and locomotor sensitization in mice. Experiment 1 examined a high dose of modafinil (75 mg/kg) as well as its interactions with cocaine (15 mg/kg). Cocaine alone and modafinil co-administered with cocaine induced sensitization of locomotor activity; modafinil alone showed little or no locomotor sensitization. Animals given modafinil alone, cocaine alone, and modafinil plus cocaine exhibited a strong and roughly equivalent place preference. When tested for sensitization using a low challenge dose of modafinil, cross-sensitization was observed in all cocaine-pretreated mice. Experiment 2 examined a low dose of modafinil that is similar to the dose administered to humans and has been shown to produce cognitive enhancements in mice. Low dose modafinil (0.75 mg/kg) did not produce conditioned place preference or locomotor sensitization. Together, these results suggest that modafinil has the potential to produce reward, particularly in cocaine addicts, and should be used with caution. However, the typical low dose administered likely moderates these effects and may account for lack of addiction seen in humans.

  10. Lacking "Lack": A Reply to Joldersma

    ERIC Educational Resources Information Center

    Marshall, James D.

    2007-01-01

    First I would like to thank Clarence Joldersma for his review of our "Poststructuralism, Philosophy, Pedagogy" (Marshall, 2004-PPP). In particular, I would thank him for his opening sentence: "[t]his book is a response to a lack." It is the notion of a lack, noted again later in his review, which I wish to take up mainly in this response. Rather…

  11. Sinus Bradycardia in Habitual Cocaine Users.

    PubMed

    Franklin, Sona M; Thihalolipavan, Sudarone; Fontaine, John M

    2017-03-01

    Common physiological manifestations of cocaine are related to its adrenergic effects, due to inhibition of dopamine and norepinephrine uptake at the postsynaptic terminal. Few studies have documented bradycardia secondary to cocaine use, representing the antithesis of its adrenergic effects. We assessed the prevalence of sinus bradycardia (SB) in habitual cocaine users and postulated a mechanism for this effect. One hundred sixty-two patients with a history of cocaine use were analyzed and compared with age- and gender-matched controls. SB was defined as a rate of <60 beats/min and habitual cocaine use as 2 or more documented uses >30 days apart. Propensity score-matching analysis was applied to balance covariates between cocaine users and nonusers and reduce selection bias. Patients with a history of bradycardia, hypothyroidism, or concomitant beta-blocker use were excluded. Mean age of study patients was 44 ± 8 years. SB was observed in 43 of 162 (27%) cocaine users and in 9 of 149 (6%) nonusers (p = 0.0001). Propensity score-matching analysis matched 218 patients from both groups. Among matched patients SB was observed in 25 of 109 (23%) cocaine users and in 5 of 109 (5%) nonusers (p = 0.0001). Habitual cocaine use was an independent predictor of SB and associated with a sevenfold increase in the risk of SB (95% CI 2.52 to 19.74, p = 0.0002). In conclusion, habitual cocaine use is a strong predictor of SB and was unrelated to recency of use. A potential mechanism for SB may be related to cocaine-induced desensitization of the beta-adrenergic receptor secondary to continuous exposure. Symptomatic SB was not observed; thus, pacemaker therapy was not indicated.

  12. Effects of levodopa-carbidopa-entacapone and smoked cocaine on facial affect recognition in cocaine smokers.

    PubMed

    Bedi, Gillinder; Shiffrin, Laura; Vadhan, Nehal P; Nunes, Edward V; Foltin, Richard W; Bisaga, Adam

    2016-04-01

    In addition to difficulties in daily social functioning, regular cocaine users have decrements in social processing (the cognitive and affective processes underlying social behavior) relative to non-users. Little is known, however, about the effects of clinically-relevant pharmacological agents, such as cocaine and potential treatment medications, on social processing in cocaine users. Such drug effects could potentially alleviate or compound baseline social processing decrements in cocaine abusers. Here, we assessed the individual and combined effects of smoked cocaine and a potential treatment medication, levodopa-carbidopa-entacapone (LCE), on facial emotion recognition in cocaine smokers. Healthy non-treatment-seeking cocaine smokers (N = 14; two female) completed this 11-day inpatient within-subjects study. Participants received LCE (titrated to 400mg/100mg/200mg b.i.d.) for five days with the remaining time on placebo. The order of medication administration was counterbalanced. Facial emotion recognition was measured twice during target LCE dosing and twice on placebo: once without cocaine and once after repeated cocaine doses. LCE increased the response threshold for identification of facial fear, biasing responses away from fear identification. Cocaine had no effect on facial emotion recognition. Results highlight the possibility for candidate pharmacotherapies to have unintended impacts on social processing in cocaine users, potentially exacerbating already existing difficulties in this population. © The Author(s) 2016.

  13. A thermostable bacterial cocaine esterase rapidly eliminates cocaine from brain in nonhuman primates.

    PubMed

    Howell, L L; Nye, J A; Stehouwer, J S; Voll, R J; Mun, J; Narasimhan, D; Nichols, J; Sunahara, R; Goodman, M M; Carroll, F I; Woods, J H

    2014-07-01

    A long-acting, thermostable bacterial cocaine esterase (CocE) has been identified that rapidly degrades cocaine with a K(M) of 1.33+0.085 μM. In vivo evaluation of CocE has shown protection against convulsant and lethal effects of cocaine in rodents, confirming the therapeutic potential of CocE against cocaine overdose. However, the current study is the first to evaluate the effects of CocE on cocaine brain levels. Positron emission tomogrpahy neuroimaging of [(11)C]cocaine was used to evaluate the time course of cocaine elimination from brain in the presence and absence of CocE in nonhuman primates. Systemic administration of CocE eliminated cocaine from the rhesus-monkey brain approximately three times faster than control conditions via peripheral actions through attenuating the input function from blood plasma. The efficiency of this process is sufficient to alleviate or prevent adverse central nervous system effects induced by cocaine. Although the present study used tracer doses of cocaine to access brain clearance, these findings further support the development of CocE for the treatment of acute cocaine toxicity.

  14. Accelerating cocaine metabolism as an approach to the treatment of cocaine abuse and toxicity

    PubMed Central

    Schindler, Charles W; Goldberg, Steven R

    2012-01-01

    One pharmacokinetic approach to the treatment of cocaine abuse and toxicity involves the development of compounds that can be safely administered to humans and that accelerate the metabolism of cocaine to inactive components. Catalytic antibodies have been developed and shown to accelerate cocaine metabolism, but their catalytic efficiency for cocaine is relatively low. Mutations of human butyrylcholinesterase and a bacterial cocaine esterase found in the soil of coca plants have also been developed. These compounds accelerate cocaine metabolism and antagonize the behavioral and toxic effects of cocaine in animal models. Of these two approaches, the human butyrylcholinesterase mutants show the most immediate promise as they would not be expected to evoke an immune response in humans. PMID:22300096

  15. Bacterial cocaine esterase: a protein-based therapy for cocaine overdose and addiction.

    PubMed

    Narasimhan, Diwahar; Woods, James H; Sunahara, Roger K

    2012-02-01

    Cocaine is highly addictive and there are no pharmacotherapeutic drugs available to treat acute cocaine toxicity or chronic abuse. Antagonizing an inhibitor such as cocaine using a small molecule has proven difficult. The alternative approach is to modify cocaine's pharmacokinetic properties by sequestering or hydrolyzing it in serum and limiting access to its sites of action. We took advantage of a bacterial esterase (CocE) that has evolved to hydrolyze cocaine and have developed it as a therapeutic that rapidly and specifically clears cocaine from the subject. Native enzyme was unstable at 37°C, thus limiting CocE's potential. Innovative computational methods based on the protein's structure helped elucidate its mechanism of destabilization. Novel protein engineering methodologies were applied to substantially improve its stability in vitro and in vivo. These improvements rendered CocE as a powerful and efficacious therapeutic to treat cocaine intoxication and lead the way towards developing a therapy for addiction.

  16. Accumbal FosB/DeltaFosB immunoreactivity and conditioned place preference in alcohol-preferring AA rats and alcohol-avoiding ANA rats treated repeatedly with cocaine.

    PubMed

    Marttila, Kristiina; Petteri Piepponen, T; Kiianmaa, Kalervo; Ahtee, Liisa

    2007-07-30

    Transcription factor DeltaFosB has been implicated in the psychomotor responses and rewarding effects of drugs of abuse. In the present study, we compared the effects of cocaine on the expression of DeltaFosB-like proteins by immunohistochemistry in striatal brain areas of alcohol-preferring (AA) and alcohol-avoiding (ANA) rats. Cocaine was administered using a previously verified treatment paradigm that sensitized the locomotor response to cocaine in AA but not in ANA rats. We also studied the rewarding effects of cocaine with a conditioned place preference (CPP) paradigm in both lines of rats. Cocaine treatment increased the FosB/DeltaFosB immunoreactivity (IR) in the nucleus accumbens of AA rats but not in ANA rats. In addition, after repeated saline injections the accumbal FosB/DeltaFosB IR was significantly greater in saline-injected AA rats than in ANA rats. In the caudate-putamen cocaine significantly increased FosB/DeltaFosB IR, but no differences were found between the rats of two lines. In the CPP experiment, AA rats treated with cocaine 2.5 mg/kg preferred the cocaine-associated compartment, in contrast to ANA rats, which did not show such a preference. In conclusion, our findings show that AA rats are more sensitive to cocaine than ANA rats, and suggest that one possible mediator for this increased sensitivity could be the increased expression of fosB-derived proteins in the nucleus accumbens of AA rats.

  17. Anhydroecgonine methyl ester, a cocaine pyrolysis product, may contribute to cocaine behavioral sensitization.

    PubMed

    Garcia, Raphael Caio Tamborelli; Torres, Larissa Helena; Balestrin, Natália Trigo; Andrioli, Tatiana Costa; Flório, Jorge Camilo; de Oliveira, Carolina Dizioli Rodrigues; da Costa, José Luiz; Yonamine, Mauricio; Sandoval, Maria Regina Lopes; Camarini, Rosana; Marcourakis, Tania

    2017-02-01

    Crack cocaine has a high potential to induce cocaine addiction and its smoke contains cocaine's pyrolysis product anhydroecgonine methyl ester (AEME), a partial agonist at M1- and M3-muscarinic acetylcholine receptor and an antagonist at the remaining subtypes. No reports have assessed AEME's role in addiction. Adult male Wistar rats were intraperitoneally administered with saline, 3mg/kg AEME, 15mg/kg cocaine, or a cocaine-AEME combination on every other day during a period of 9 days. After a 7-days withdrawal period, a challenge injection of the respective drugs was performed on the 17th day. The locomotor activity was evaluated on days 1, 3, 5, 7, 9 and 17, as well as dopamine levels (9th day) and dopaminergic receptors proteins (D1R and D2R on the 17th day) in the caudate-putamen (CPu) and nucleus accumbens (NAc). AEME was not able to induce the expression of behavioral sensitization, but it substantially potentiates cocaine-effects, with cocaine-AEME combination presenting higher expression than cocaine alone. An increase in the dopamine levels in the CPu in all non-saline groups was observed, with the highest levels in the cocaine-AEME group. There was a decrease in D1R protein level in this brain region only for cocaine and cocaine-AEME groups. In the NAc, an increase in the dopamine levels was only observed for cocaine and cocaine-AEME groups, with no changes in both D1R and D2R protein levels. These behavioral and neurochemical data indicate that AEME alone does not elicit behavioral sensitization but it significantly potentiates cocaine effects when co-administered, resulting in dopamine increase in CPu and NAc, brain regions where dopamine release is mediated by cholinergic activity.

  18. Cocaine-seeking behavior after extended cocaine-free periods in rats: role of conditioned stimuli.

    PubMed

    Semenova, Svetlana; Markou, Athina

    2003-07-01

    Cocaine abstinence symptoms and conditioned stimuli (CSs) previously associated with cocaine administration are postulated to contribute to relapse to drug taking in humans. The present study assessed the role of both non-contingent CS presentation and experimenter-imposed extended cocaine-free periods on cocaine-seeking behavior in rats. A fixed interval (FI) second-order schedule of intravenous cocaine (0.5 mg/infusion) reinforcement of the type FI 15 min (fixed ratio 8:S) was used. Non-contingent CS presentation before exposure to a cocaine binge had no effect on responding under the second-order schedule of reinforcement for cocaine after 23 h of no access to cocaine. By contrast, six non-contingent presentations of the CS during a 1-min period before the test session increased the number of responses in both no-binge (daily 2-h sessions, five infusions) and binge (two 12-h overnight sessions; maximum 48 infusions) exposed rats on day 7 of the cocaine-free period compared to no-binge- and binge-exposed rats that were not presented with the CSs. On day 30 of the cocaine-free period, only binge-exposed rats presented with the CSs exhibited a tendency for increased level of responding. The results indicated that non-contingent CS presentation had no effect after 23 h of no access to cocaine, increased drug-seeking behavior on day 7 of the cocaine-free period independent of binge exposure, and a strong tendency to increase drug-seeking behavior only in binge-exposed rats, on day 30 of the cocaine-free period, illustrating the interactive effects of conditioned stimuli with the extended cocaine-free period.

  19. Cocaine modifies brain lipidome in mice.

    PubMed

    Lin, Yiyun; Gu, Hui; Jiang, Linhong; Xu, Wei; Liu, Chunqi; Li, Yan; Qian, Xinying; Li, Dandan; Li, Zhuoling; Hu, Jing; Zhang, Huaqin; Guo, Wei; Zhao, Yinglan; Cen, Xiaobo

    2017-08-19

    Lipids are predominant components of the brain and key regulators for neural structure and function. The neuropsychopharmacological effect of cocaine has been intensively investigated; however, the impact of cocaine on brain lipid profiles is largely unknown. In this study, we used a LC-MS-based lipidomic approach to investigate the impact of cocaine on brain lipidome in two mouse models, cocaine-conditioned place preference (CPP) and hyperlocomotor models and the lipidome was profoundly modified in the nucleus accumbens (NAc) and striatum respectively. We comprehensively analyzed the lipids among 21 subclasses across 7 lipid classes and found that cocaine profoundly modified brain lipidome. Notably, the lipid metabolites significantly modified were sphingolipids and glycerophospholipids in the NAc, showing a decrease in ceramide and an increase in its up/downstream metabolites levels, and decrease lysophosphatidylcholine (LPC) and lysophosphoethanolamine (LPE) and increase phosphatidylcholine (PC) and phosphatidylethanolamines (PE) levels, respectively. Moreover, long and polyunsaturated fatty acid phospholipids were also markedly increased in the NAc. Our results show that cocaine can markedly modify brain lipidomic profiling. These findings reveal a link between the modified lipidome and psychopharmacological effect of cocaine, providing a new insight into the mechanism of cocaine addiction. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Children of Cocaine: Facing the Issues.

    ERIC Educational Resources Information Center

    Fact Find, 1990

    1990-01-01

    Statistical data illustrate the incidence of babies who have been prenatally exposed to cocaine. The damaging effects of maternal cocaine use on the fetus, infant, and young child are described, including: (1) prenatal strokes, malformed kidneys and limbs, and deformed hearts and lungs; (2) physical problems, social and emotional problems, and…

  1. Opiate and Cocaine Exposed Newborns: Growth Outcomes.

    ERIC Educational Resources Information Center

    Butz, Arlene M.; Kaufmann, Walter E.; Royall, Richard; Kolodner, Ken; Pulsifer, Margaret B.; Lears, Mary Kathleen; Henderson, Robin; Belcher, Harolyn; Sellers, Sherri; Wilson, Modena

    1999-01-01

    Examines growth parameters at birth in 204 infants born to mothers who used cocaine and/or opiates during pregnancy. Outcome measures included birth weight, length, and head circumference. Study provides support that in utero cocaine exposure may confer more risk for somatic growth retardation at birth than opiate exposure. (Author/GCP)

  2. Maternal Cocaine Addiction: Correlates and Consequences.

    ERIC Educational Resources Information Center

    Hawley, Theresa Lawton

    This study investigated the effects of cocaine addiction on mothers' ability to care for their children. The population interviewed included 25 cocaine-addicted mothers in a drug treatment center and a comparison group of 25 mothers of children in a Head Start program. Each mother was questioned about: (1) her pregnancy with a specific child…

  3. [Sucrose reward promotes rats' motivation for cocaine].

    PubMed

    Li, Yan-Qing; LE, Qiu-Min; Yu, Xiang-Chen; Ma, Lan; Wang, Fei-Fei

    2016-06-25

    Caloric diet, such as fat and sugar intake, has rewarding effects, and has been indicated to affect the responses to addictive substances in animal experiments. However, the possible association between sucrose reward and the motivation for addictive drugs remains to be elucidated. Thus, we carried out behavioral tests after sucrose self-administration training to determine the effects of sucrose experience on rats' motivation for cocaine, locomotor sensitivity to cocaine, basal locomotor activity, anxiety level, and associative learning ability. The sucrose-experienced (sucrose) group exhibited higher lever press, cocaine infusion and break point, as well as upshift of cocaine dose-response curve in cocaine self-administration test, as compared with the control (chow) group. Additionally, despite similar locomotor activity in open field test and comparable score in cocaine-induced conditioned place preference, the sucrose group showed higher cocaine-induced locomotor sensitivity as compared with the chow group. The anxiety level and the performance in vocal-cue induced fear memory were similar between these two groups in elevated plus maze and fear conditioning tests, respectively. Taken together, our work indicates that sucrose experience promotes the rats' motivation for cocaine.

  4. Novel approaches to the treatment of cocaine addiction.

    PubMed

    Sofuoglu, Mehmet; Kosten, Thomas R

    2005-01-01

    Cocaine addiction continues to be an important public health problem with over 1.7 million users in the US alone. Although there are no approved pharmacotherapies for cocaine addiction, a number of medications have been tested with some promising results. In this review, we summarise some of the emerging targets for cocaine pharmacotherapy including dopaminergic and GABA medications, adrenoceptor antagonists, vasodilators and immunotherapies. The brain dopamine system plays a significant role in mediating the rewarding effects of cocaine. Among dopaminergic agents tested for cocaine pharmacotherapy, disulfiram has decreased cocaine use in a number of studies. Amantadine, another medication with dopaminergic effects, may also be effective in cocaine users with high withdrawal severity. GABA is the main inhibitory neurotransmitter in the brain, and accumulating evidence suggests that the GABA system modulates the dopaminergic system and cocaine effects. Two anticonvulsant medications with GABAergic effects, tiagabine and topiramate, have yielded positive findings in clinical trials. Baclofen, a GABA(B) receptor agonist, is also promising, especially in those with more severe cocaine use. Some of the physiological and behavioural effects of cocaine are mediated by activation of the adrenergic system. In cocaine users, propranolol, a beta-adrenoceptor antagonist, had promising effects in individuals with more severe cocaine withdrawal symptoms. Cerebral vasodilators are another potential target for cocaine pharmacotherapy. Cocaine users have reduced cerebral blood flow and cortical perfusion deficits. Treatment with the vasodilators amiloride or isradipine has reduced perfusion abnormalities found in cocaine users. The functional significance of these improvements needs to be further investigated. All these proposed pharmacotherapies for cocaine addiction act on neural pathways. In contrast, immunotherapies for cocaine addiction are based on the blockade of cocaine

  5. Nasal toxicity of cocaine: a hypercoagulable effect?

    PubMed Central

    Patel, R.; Shah, R.; Baredes, S.; Spillert, C. R.; Lazaro, E. J.

    2000-01-01

    Nasal insufflation of cocaine injures the nasal mucosa and can perforate the septum. Cocaine-induced vasoconstriction resulting in ischemia is one of the methods that may be responsible for this damage. We are determining whether cocaine also produces a hypercoagulable state that may compound factors which have been previously established to cause damage to the nasal mucosa and septum. This study uses Modified Recalcification Time (MRT), a test developed in our laboratory that has the ability to measure the overall coagulation process. Our study revealed no connection between cocaine and enhanced platelet function or monocyte-released tissue factor. The coagulation process was unaffected by the addition of the drug, so we conclude that cocaine does not cause a hypercoagulable state and cannot assist in the explanation regarding the ischemic changes of the nasal septum. PMID:10800286

  6. Cocaine Abuse: The Evolution from Coca Leaves to Freebase.

    ERIC Educational Resources Information Center

    Forno, Joseph J.; And Others

    1981-01-01

    Describes historical and sociological patterns of cocaine use. Discusses cocaine as an example of a new drug abuse trend as users search for new ways of using old drugs in ways that produce enhanced euphoria. Describes the use of cocaine freebase and emergency treatment of cocaine toxicity. (Author)

  7. Cocaine Abuse: The Evolution from Coca Leaves to Freebase.

    ERIC Educational Resources Information Center

    Forno, Joseph J.; And Others

    1981-01-01

    Describes historical and sociological patterns of cocaine use. Discusses cocaine as an example of a new drug abuse trend as users search for new ways of using old drugs in ways that produce enhanced euphoria. Describes the use of cocaine freebase and emergency treatment of cocaine toxicity. (Author)

  8. Primates exposed to cocaine in utero display reduced density and number of cerebral cortical neurons.

    PubMed

    Lidow, M S; Song, Z M

    2001-07-02

    This study examined the effects of cocaine use during the second trimester of pregnancy on cerebral neocortical volume and density, and total number of neocortical neurons and glia in offspring. We also evaluated the extent of postnatal recovery of cytoarchitectural abnormalities previously observed in the neocortex of two-month-old primates born from cocaine-treated mothers (Lidow [1995] Synapse 21:332-334). Pregnant monkeys received cocaine orally (20 mg/kg/day) from the 40th to 102nd days of pregnancy (embryonic day [E]40-E102). On E64 and E65, the animals were injected with [(3)H]thymidine. Cerebral hemispheres of the offspring were examined at three years of age. We found a reduction in the neocortical volume and density and total number of neocortical neurons. The observed reduction in neuronal number within the neocortex was not accounted for by the increase in the number of neurons in the white matter of cocaine-exposed animals, because the number of these "extra" neurons was equal to only half that of missing neurons. We detected no significant changes in the number of neocortical glia. The cytoarchitectural abnormalities in the neocortex of prenatally cocaine-exposed three-year-old monkeys closely resembled previously described neocortical abnormalities in similarly exposed two-month-old animals: the neocortex lacked a discernible lamination; the majority of the cells labeled by [(3)H]thymidine injected during neocortical neurogenesis did not reach their proper position within the cortical plate. Therefore, postnatal maturation is not associated with significant improvement in neocortical organization in primates prenatally exposed to cocaine. There was, however, a postnatal recovery of low glial fibrillary acidic protein (GFAP) immunoreactivity previously observed in 2-month-old cocaine-exposed animals.

  9. Individual differences in the effects of environmental stimuli on cocaine choice in socially housed male cynomolgus monkeys.

    PubMed

    Czoty, Paul W; Nader, Michael A

    2012-11-01

    Studies in laboratory animals have demonstrated an influence of environmentally derived stress and enrichment on the reinforcing effects of stimulants. To characterize the effects of acute exposure to ethologically valid environmental stimuli on the reinforcing strength of cocaine relative to food in socially housed monkeys. Choice between cocaine and food was assessed in subsets of 16 socially housed (4/pen) male cynomolgus monkeys immediately after the following manipulations: (1) treats placed in home cage, (2) a 10-min exposure to a rubber snake, or (3) 3 to 7 days of living in a larger environment without cage mates. Placing treats in the home cage shifted the cocaine dose-response curve to the left in five monkeys tested and to the right in 4 of 12 animals. The rubber snake significantly shifted the cocaine choice curve to the left in dominant monkeys. Exposure to an enlarged environment decreased cocaine choice in 9 of 15 monkeys; this effect was transient and not related to social rank. Repeated testing did not affect cocaine choice. Brief exposure to environmental events hypothesized to be stressors or enrichment altered cocaine choice, although not all individuals were affected and the effects were transient. Importantly, the data suggest that implementing positive changes in the environment produced effects that are clinically desirable. Understanding the behavioral and neurobiological mechanisms mediating sensitivity to environmental events in socially housed animals will lead to better treatment strategies for drug addiction.

  10. Highly sensitive detection of cocaine using a piezoelectric immunosensor.

    PubMed

    Halámek, Jan; Makower, Alexander; Skládal, Petr; Scheller, Frieder W

    2002-12-01

    This paper describes the development of a highly sensitive competitive immunoassay with the piezoelectric sensor. The immobilized derivative of cocaine was benzoylecgonine-1,8-diamino-3,4-dioxaoctane (BZE-DADOO). For the immobilization of BZE-DADOO, the conjugate BZE-DADOO with 11-mercaptomonoundecanoic acid (MUA) was synthesized via 2-(5-norbornen-2,3-dicarboximide)-1,1,3,3-tetramethyluronium-tetrafluoroborate (TNTU), followed by the creation of the conjugate monolayer on the piezosensor electrodes. For the optimization of the competitive assay we used electrodes with rough or smooth gold areas and for the interaction with immobilized antigen different anti-cocaine sheep polyclonal (pAb, either whole IgG or Fab fragment) and mouse monoclonal (mAb, whole IgG) antibodies. The assay of cocaine developed achieved a detection limit (LOD) of 100 pmol/l (34 ng/l) using the sheep antibody (IgG) and piezoelectric sensors with a smooth gold surface. The total time of one analysis was 15 min and the measuring area of the sensor could be used more than 40 times without losing its sensitivity.

  11. Clinical Profile, Acute Care, and Middle-Term Outcomes of Cocaine-Associated ST-Segment Elevation Myocardial Infarction in an Inner-City Community.

    PubMed

    Shitole, Sanyog G; Kayo, Noel; Srinivas, Vankeepuram; Alapati, Venkatesh; Nordin, Charles; Southern, William; Christia, Panagiota; Faillace, Robert T; Scheuer, James; Kizer, Jorge R

    2016-04-15

    Although cocaine is a well-recognized risk factor for coronary disease, detailed information is lacking regarding related behavioral and clinical features of cocaine-associated ST-segment elevation myocardial infarction (STEMI), particularly in socioeconomically disadvantaged urban settings. Nor are systematic or extended follow-up data available on outcomes for cocaine-associated STEMI in the contemporary era of percutaneous coronary intervention. We leveraged a prospective STEMI registry from a large health system serving an inner-city community to characterize the clinical features, acute management, and middle-term outcomes of cocaine-related versus cocaine-unrelated STEMI. Of the 1,003 patients included, 60% were black or Hispanic. Compared with cocaine-unrelated STEMI, cocaine-related STEMI (n = 58) was associated with younger age, male gender, lower socioeconomic score, current smoking, high alcohol consumption, and human immunodeficiency virus seropositivity but less commonly with diabetes or hypertension. Cocaine users less often received drug-eluting stents or β blockers at discharge. During median follow-up of 2.7 years, rates of death, death or any rehospitalization, and death or cardiovascular rehospitalization did not differ significantly between cocaine users and nonusers but were especially high for death or any hospitalization in the 2 groups (31.4 vs 32.4 per 100 person-years, p = 0.887). Adjusted hazard ratios for outcomes were likewise not significantly different. In conclusion, in this low-income community, cocaine use occurred in a substantial fraction of STEMI cases, who were younger than their nonuser counterparts but had more prevalent high-risk habits and exhibited similarly high rates of adverse outcomes. These data suggest that programs targeting cocaine abuse and related behaviors could contribute importantly to disease prevention in disadvantaged communities.

  12. Levamisole and cocaine synergism: a prevalent adulterant enhances cocaine's action in vivo

    PubMed Central

    Tallarida, Christopher S.; Egan, Erin; Alejo, Gissel D.; Raffa, Robert; Tallarida, Ronald J.; Rawls, Scott M.

    2014-01-01

    Levamisole is estimated by the Drug Enforcement Agency (DEA) to be present in about 80% of cocaine seized in the United States and linked to debilitating, and sometimes fatal, immunologic effects in cocaine abusers. One explanation for the addition of levamisole to cocaine is that it increases the amount of product and enhances profits. An alternative possibility, and one investigated here, is that levamisole alters cocaine's action in vivo. We specifically investigated effects of levamisole on cocaine's stereotypical and place-conditioning effects in an established invertebrate (planarian) assay. Acute exposure to levamisole or cocaine produced concentration-dependent increases in stereotyped movements. For combined administration of the two agents, isobolographic analysis revealed that the observed stereotypical response was enhanced relative to the predicted effect, indicating synergism for the interaction. In conditioned place preference (CPP) experiments, cocaine produced a significant preference shift; in contrast, levamisole was ineffective at all concentrations tested. For combination experiments, a submaximal concentration of cocaine produced CPP that was enhanced by inactive concentrations of levamisole, indicating synergism. The present results provide the first experimental evidence that levamisole enhances cocaine's action in vivo. Most important is the identification of synergism for the levamisole/cocaine interaction, which now requires further study in mammals. PMID:24440755

  13. SA 4503 attenuates cocaine-induced hyperactivity and enhances methamphetamine substitution for a cocaine discriminative stimulus.

    PubMed

    Rodvelt, Kelli R; Lever, Susan Z; Lever, John R; Blount, Lucas R; Fan, Kuo-Hsien; Miller, Dennis K

    2011-02-01

    Cocaine exhibits preferential (~15-fold) affinity for σ₁ over σ₂ sigma receptors, and previous research has shown an interaction of σ₁ receptor-selective ligands and cocaine's behavioral effects. The present study investigated the effect of the putative sigma receptor agonist SA 4503 (1-(3,4-dimethoxyphenethyl)-4-(3-phenylpropyl)piperazine dihydrochloride) on cocaine's locomotor stimulatory and discriminative stimulus properties. At doses without intrinsic activity, SA 4503 dose-dependently attenuated cocaine-induced hyperactivity in mice. This inhibition was overcome by increasing the cocaine dose. In rats trained to use cocaine as a discriminative stimulus in a drug discrimination task, doses of SA 4503 that did not substitute for the cocaine stimulus did not alter the cocaine substitution curve. However, SA 4503 potentiated the effect of methamphetamine to substitute for the cocaine stimulus. These data support a role for sigma receptors in the locomotor-activating properties of cocaine and, importantly, indicate a role for these receptors in the discriminative stimulus effects of methamphetamine. The data also suggest sigma receptors mediate the activity of different dopamine pathways responsible for the behavioral effects of psychostimulants.

  14. Levamisole and cocaine synergism: a prevalent adulterant enhances cocaine's action in vivo.

    PubMed

    Tallarida, Christopher S; Egan, Erin; Alejo, Gissel D; Raffa, Robert; Tallarida, Ronald J; Rawls, Scott M

    2014-04-01

    Levamisole is estimated by the Drug Enforcement Agency (DEA) to be present in about 80% of cocaine seized in the United States and linked to debilitating, and sometimes fatal, immunologic effects in cocaine abusers. One explanation for the addition of levamisole to cocaine is that it increases the amount of product and enhances profits. An alternative possibility, and one investigated here, is that levamisole alters cocaine's action in vivo. We specifically investigated effects of levamisole on cocaine's stereotypical and place-conditioning effects in an established invertebrate (planarian) assay. Acute exposure to levamisole or cocaine produced concentration-dependent increases in stereotyped movements. For combined administration of the two agents, isobolographic analysis revealed that the observed stereotypical response was enhanced relative to the predicted effect, indicating synergism for the interaction. In conditioned place preference (CPP) experiments, cocaine produced a significant preference shift; in contrast, levamisole was ineffective at all concentrations tested. For combination experiments, a submaximal concentration of cocaine produced CPP that was enhanced by inactive concentrations of levamisole, indicating synergism. The present results provide the first experimental evidence that levamisole enhances cocaine's action in vivo. Most important is the identification of synergism for the levamisole/cocaine interaction, which now requires further study in mammals.

  15. Personality traits of cocaine-dependent patients associated with cocaine-positive baseline urine at hospitalization.

    PubMed

    de Los Cobos, José Pérez; Siñol, Núria; Bañulus, Enrique; Batlle, Francisca; Tejero, Antoni; Trujols, Joan

    2010-01-01

    Cocaine abstinence at treatment entry is considered a predictor of good response in cocaine dependence treatment. Therefore, identification of factors facilitating pretreatment cocaine abstinence could be useful for developing new therapeutic strategies. This retrospective chart review study examines the association between personality traits and cocaine-positive baseline urinalysis (CPB) in cocaine-dependent inpatients. All 107 participants met DSM-IV criteria for cocaine dependence, and were admitted consecutively to a closed addiction unit for detoxification treatment. Personality was assessed with the Temperament and Character Inventory and the Millon Clinical Multiaxial Inventory (MCMI-II). CPB was detected in 80 patients (74.8%). The logistic regression model solely based on personality dimensions showed that only the MCMI-II avoidant traits were significantly associated with a decreased probability of cocaine-dependent patients presenting CPB. The logistic regression model based on both personality dimensions and substance use-related variables alike retained the number of days of cocaine use during the last 30 days as a risk factor, and alcohol dependence and the MCMI-II schizoid dimension as protective factors in predicting CPB results. Avoidant and schizoid traits are personality dimensions of cocaine-dependent patients that are associated with cocaine abstinence prior to inpatient admission. These findings suggest an inverse relationship between social isolation and CPB. Notwithstanding, more research is needed, not only to assess the generalizability of these findings, but also to enrich the personality and substance use model with variables related to readiness to change.

  16. Cocaine Dependent Individuals Discount Future Rewards more than Future Losses for both Cocaine and Monetary Outcomes

    PubMed Central

    Johnson, Matthew W.; Bruner, Natalie R.; Johnson, Patrick S.

    2015-01-01

    Cocaine dependence and other forms of drug dependence are associated with steeper devaluation of future outcomes (delay discounting). Although studies in this domain have typically assessed choices between monetary gains (e.g., receive less money now versus receive more money after a delay), delay discounting is also applicable to decisions involving losses (e.g., small loss now versus larger delayed loss), with gains typically discounted more than losses (the “sign effect”). It is also known that drugs are discounted more than equivalently valued money. In the context of drug dependence, however, relatively little is known about the discounting of delayed monetary and drug losses and the presence of the sign effect. In this within-subject, laboratory study, delay discounting for gains and losses was assessed for cocaine and money outcomes in cocaine-dependent individuals (n=89). Both cocaine and monetary gains were discounted at significantly greater rates than cocaine and monetary losses, respectively (i.e., the sign effect). Cocaine gains were discounted significantly more than monetary gains, but cocaine and monetary losses were discounted similarly. Results suggest that cocaine is discounted by cocaine-dependent individuals in a systematic manner similar to other rewards. Because the sign effect was shown for both cocaine and money, delayed aversive outcomes may generally have greater impact than delayed rewards in shaping present behavior in this population. PMID:25260200

  17. Acamprosate attenuates cocaine- and cue-induced reinstatement of cocaine-seeking behavior in rats.

    PubMed

    Bowers, M Scott; Chen, Billy T; Chou, Jonathan K; Osborne, Megan P H; Gass, Justin T; See, Ronald E; Bonci, Antonello; Janak, Patricia H; Olive, M Foster

    2007-12-01

    Acamprosate (calcium acetylhomotaurinate) is a glutamatergic neuromodulator used for the treatment of alcoholism, but its potential efficacy in the treatment of psychostimulant addiction has not been explored. The purpose of this study was to assess the effects of acamprosate on cocaine-stimulated locomotor activity, cocaine self-administration, and cue- and cocaine-induced reinstatement of cocaine-seeking behavior. All experiments utilized once-daily treatment for 5 consecutive days. First, the effects of saline or acamprosate (100, 300, or 500 mg/kg intraperitoneally) on body weight were examined. On the last day of treatment, locomotor activity was assessed before and after drug treatment, after which all animals received an acute challenge of cocaine (10 mg/kg). Next, a separate group of rats were trained to intravenously (IV) self-administer cocaine (0.6 mg/kg per infusion), subjected to extinction procedures, and then tested for effects of acamprosate on cue- or cocaine-induced reinstatement. A third group of rats was trained to self-administer cocaine as described above and were treated with saline or acamprosate before daily IV self-administration sessions. Repeated administration of 500 mg/kg acamprosate but not lower doses produced reductions in both body weight and spontaneous locomotor activity, and thus this dose was not tested further. Acamprosate at 300 mg/kg but not 100 mg/kg attenuated both cocaine- and cue-induced reinstatement without altering baseline patterns of cocaine self-administration or cocaine-stimulated hyperlocomotion. Acamprosate attenuates both drug- and cue-induced reinstatement of cocaine-seeking behavior, suggesting that this compound may serve as a potential treatment for preventing relapse in cocaine-addicted humans.

  18. Preparation and in vivo characterization of a cocaine hydrolase engineered from human butyrylcholinesterase for metabolizing cocaine

    PubMed Central

    Xue, Liu; Hou, Shurong; Tong, Min; Fang, Lei; Chen, Xiabin; Jin, Zhenyu; Tai, Hsin-Hsiung; Zheng, Fang; Zhan, Chang-Guo

    2015-01-01

    Cocaine is a widely abused drug without an FDA-approved medication. It has been recognized as an ideal anti-cocaine medication to accelerate cocaine metabolism producing biologically inactive metabolites via a route similar to the primary cocaine-metabolizing pathway, i.e. human butyrylcholinesterase (BChE)-catalyzed hydrolysis. However, the native human BChE has a low catalytic activity against cocaine. We recently designed and discovered a BChE mutant (A199S/F227A/S287G/A328W/Y332G) with a high catalytic activity (kcat = 5700 min−1, KM = 3.1 μM) specifically for cocaine, and the mutant was proven effective in protecting mice from acute cocaine toxicity of a lethal dose of cocaine (180 mg/kg, LD100). Further characterization in animal models requires establishment of a high-efficiency stable cell line for the BChE mutant production in a relatively larger scale. It has been extremely challenging to develop a high-efficiency stable cell line expressing BChE or its mutant. In the present study, we successfully developed a stable cell line efficiently expressing the BChE mutant by using a lentivirus-based repeated-transduction method. The scale-up protein production enabled us to determine for the first time the in vivo catalytic activity and the biological half-life of this high-activity mutant of human BChE in accelerating cocaine clearance. In particular, it has been demonstrated that the BChE mutant (administrated to mice 1 min prior to cocaine) can quickly metabolize cocaine and completely eliminate cocaine-induced hyperactivity in rodents, implying that the BChE mutant may be developed as a promising therapeutic agent for cocaine abuse treatment. PMID:23849058

  19. Psychoticism and neuroticism predict cocaine dependence and future cocaine use via different mechanisms

    PubMed Central

    Prisciandaro, James J.; McRae-Clark, Aimee L.; Moran-Santa Maria, Megan M.; Hartwell, Karen J.; Brady, Kathleen T.

    2011-01-01

    Background Personality characteristics have been associated with cocaine use. However, little is known about the mechanisms through which personality could impact drug use. The present study investigated the cross-sectional and prospective relationships between personality dimensions (i.e., impulsivity, neuroticism) and problematic cocaine use. Reactivity to a pharmacological stressor as a potential mediator of the relationship between neuroticism and future cocaine use was also examined. Methods Participants were 53 cocaine-dependent individuals and 47 non-dependent controls. Subjects completed the Eysenck Personality Questionnaire (EPQ) at baseline and were administered i.v. corticotrophin releasing hormone (CRH; 1 μg/kg). Cocaine use in the 30 days following CRH administration was measured. Results Cocaine-dependent individuals had higher scores on the psychoticism (i.e., impulsivity, aggression; p = 0.02) and neuroticism (p < 0.01) scales of the EPQ than non-dependent controls. Cocaine-dependent individuals also had a greater subjective stress response to CRH than controls (p < 0.01). Cocaine-dependent individuals with elevated psychoticism used significantly more cocaine over the follow-up period (p < 0.05), whereas individuals with elevated neuroticism trended towards using cocaine more frequently over the follow-up (p = 0.07). Finally, there was a trend for an indirect effect of neuroticism on frequency of cocaine use through subjective reactivity to CRH. Conclusions The findings extend past research on the association between personality and cocaine use, and suggest that motives for cocaine use may systematically vary across personality characteristics. Moreover, tailoring therapeutic interventions to individuals’ personalities may be an area that warrants further investigation. PMID:21306838

  20. Psychoticism and neuroticism predict cocaine dependence and future cocaine use via different mechanisms.

    PubMed

    Prisciandaro, James J; McRae-Clark, Aimee L; Moran-Santa Maria, Megan M; Hartwell, Karen J; Brady, Kathleen T

    2011-07-01

    Personality characteristics have been associated with cocaine use. However, little is known about the mechanisms through which personality could impact drug use. The present study investigated the cross-sectional and prospective relationships between personality dimensions (i.e., impulsivity, neuroticism) and problematic cocaine use. Reactivity to a pharmacological stressor as a potential mediator of the relationship between neuroticism and future cocaine use was also examined. Participants were 53 cocaine-dependent individuals and 47 non-dependent controls. Subjects completed the Eysenck Personality Questionnaire (EPQ) at baseline and were administered i.v. corticotrophin releasing hormone (CRH; 1 μg/kg). Cocaine use in the 30 days following CRH administration was measured. Cocaine-dependent individuals had higher scores on the psychoticism (i.e., impulsivity, aggression; p=0.02) and neuroticism (p<0.01) scales of the EPQ than non-dependent controls. Cocaine-dependent individuals also had a greater subjective stress response to CRH than controls (p<0.01). Cocaine-dependent individuals with elevated psychoticism used significantly more cocaine over the follow-up period (p<0.05), whereas individuals with elevated neuroticism trended towards using cocaine more frequently over the follow-up (p=0.07). Finally, there was a trend for an indirect effect of neuroticism on frequency of cocaine use through subjective reactivity to CRH. The findings extend past research on the association between personality and cocaine use, and suggest that motives for cocaine use may systematically vary across personality characteristics. Moreover, tailoring therapeutic interventions to individuals' personalities may be an area that warrants further investigation. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  1. Plasma concentrations of BDNF and IGF-1 in abstinent cocaine users with high prevalence of substance use disorders: relationship to psychiatric comorbidity.

    PubMed

    Pedraz, María; Martín-Velasco, Ana Isabel; García-Marchena, Nuria; Araos, Pedro; Serrano, Antonia; Romero-Sanchiz, Pablo; Suárez, Juan; Castilla-Ortega, Estela; Barrios, Vicente; Campos-Cloute, Rafael; Ruiz, Juan Jesús; Torrens, Marta; Chowen, Julie Ann; Argente, Jesús; de la Torre, Rafael; Santín, Luis Javier; Villanúa, María Ángeles; Rodríguez de Fonseca, Fernando; Pavón, Francisco Javier

    2015-01-01

    Recent studies have identified biomarkers related to the severity and pathogenesis of cocaine addiction and common comorbid psychiatric disorders. Monitoring these plasma mediators may improve the stratification of cocaine users seeking treatment. Because the neurotrophic factors are involved in neural plasticity, neurogenesis and neuronal survival, we have determined plasma concentrations of brain-derived neurotrophic factor (BDNF), insulin-like growth factor 1 (IGF-1) and IGF-1 binding protein 3 (IGFBP-3) in a cross-sectional study with abstinent cocaine users who sought outpatient treatment for cocaine (n = 100) and age/body mass matched controls (n = 85). Participants were assessed with the diagnostic interview 'Psychiatric Research Interview for Substance and Mental Disorders'. Plasma concentrations of these peptides were not different in cocaine users and controls. They were not associated with length of abstinence, duration of cocaine use or cocaine symptom severity. The pathological use of cocaine did not influence the association of IGF-1 with age observed in healthy subjects, but the correlation between IGF-1 and IGFBP-3 was not significantly detected. Correlation analyses were performed between these peptides and other molecules sensitive to addiction: BDNF concentrations were not associated with inflammatory mediators, lipid derivatives or IGF-1 in cocaine users, but correlated with chemokines (fractalkine/CX3CL1 and SDF-1/CXCL12) and N-acyl-ethanolamines (N-palmitoyl-, N-oleoyl-, N-arachidonoyl-, N-linoleoyl- and N-dihomo-γ-linolenoyl-ethanolamine) in controls; IGF-1 concentrations only showed association with IGFBP-3 concentrations in controls; and IGFBP-3 was only correlated with N-stearoyl-ethanolamine concentrations in cocaine users. Multiple substance use disorders and life-time comorbid psychopathologies were common in abstinent cocaine users. Interestingly, plasma BDNF concentrations were exclusively found to be decreased in users diagnosed

  2. Plasma Concentrations of BDNF and IGF-1 in Abstinent Cocaine Users with High Prevalence of Substance Use Disorders: Relationship to Psychiatric Comorbidity

    PubMed Central

    Araos, Pedro; Serrano, Antonia; Romero-Sanchiz, Pablo; Suárez, Juan; Castilla-Ortega, Estela; Barrios, Vicente; Campos-Cloute, Rafael; Ruiz, Juan Jesús; Torrens, Marta; Chowen, Julie Ann; Argente, Jesús; de la Torre, Rafael; Santín, Luis Javier; Villanúa, María Ángeles; Rodríguez de Fonseca, Fernando; Pavón, Francisco Javier

    2015-01-01

    Recent studies have identified biomarkers related to the severity and pathogenesis of cocaine addiction and common comorbid psychiatric disorders. Monitoring these plasma mediators may improve the stratification of cocaine users seeking treatment. Because the neurotrophic factors are involved in neural plasticity, neurogenesis and neuronal survival, we have determined plasma concentrations of brain-derived neurotrophic factor (BDNF), insulin-like growth factor 1 (IGF-1) and IGF-1 binding protein 3 (IGFBP-3) in a cross-sectional study with abstinent cocaine users who sought outpatient treatment for cocaine (n = 100) and age/body mass matched controls (n = 85). Participants were assessed with the diagnostic interview ‘Psychiatric Research Interview for Substance and Mental Disorders’. Plasma concentrations of these peptides were not different in cocaine users and controls. They were not associated with length of abstinence, duration of cocaine use or cocaine symptom severity. The pathological use of cocaine did not influence the association of IGF-1 with age observed in healthy subjects, but the correlation between IGF-1 and IGFBP-3 was not significantly detected. Correlation analyses were performed between these peptides and other molecules sensitive to addiction: BDNF concentrations were not associated with inflammatory mediators, lipid derivatives or IGF-1 in cocaine users, but correlated with chemokines (fractalkine/CX3CL1 and SDF-1/CXCL12) and N-acyl-ethanolamines (N-palmitoyl-, N-oleoyl-, N-arachidonoyl-, N-linoleoyl- and N-dihomo-γ-linolenoyl-ethanolamine) in controls; IGF-1 concentrations only showed association with IGFBP-3 concentrations in controls; and IGFBP-3 was only correlated with N-stearoyl-ethanolamine concentrations in cocaine users. Multiple substance use disorders and life-time comorbid psychopathologies were common in abstinent cocaine users. Interestingly, plasma BDNF concentrations were exclusively found to be decreased in users diagnosed

  3. Intense Sweetness Surpasses Cocaine Reward

    PubMed Central

    Cantin, Lauriane; Ahmed, Serge H.

    2007-01-01

    Background Refined sugars (e.g., sucrose, fructose) were absent in the diet of most people until very recently in human history. Today overconsumption of diets rich in sugars contributes together with other factors to drive the current obesity epidemic. Overconsumption of sugar-dense foods or beverages is initially motivated by the pleasure of sweet taste and is often compared to drug addiction. Though there are many biological commonalities between sweetened diets and drugs of abuse, the addictive potential of the former relative to the latter is currently unknown. Methodology/Principal findings Here we report that when rats were allowed to choose mutually-exclusively between water sweetened with saccharin–an intense calorie-free sweetener–and intravenous cocaine–a highly addictive and harmful substance–the large majority of animals (94%) preferred the sweet taste of saccharin. The preference for saccharin was not attributable to its unnatural ability to induce sweetness without calories because the same preference was also observed with sucrose, a natural sugar. Finally, the preference for saccharin was not surmountable by increasing doses of cocaine and was observed despite either cocaine intoxication, sensitization or intake escalation–the latter being a hallmark of drug addiction. Conclusions Our findings clearly demonstrate that intense sweetness can surpass cocaine reward, even in drug-sensitized and -addicted individuals. We speculate that the addictive potential of intense sweetness results from an inborn hypersensitivity to sweet tastants. In most mammals, including rats and humans, sweet receptors evolved in ancestral environments poor in sugars and are thus not adapted to high concentrations of sweet tastants. The supranormal stimulation of these receptors by sugar-rich diets, such as those now widely available in modern societies, would generate a supranormal reward signal in the brain, with the potential to override self-control mechanisms

  4. Simultaneous measurement of extracellular dopamine and dopamine transporter occupancy by cocaine analogs in squirrel monkeys.

    PubMed

    Kimmel, Heather L; Nye, Jonathon A; Voll, Ronald; Mun, Jiyoung; Stehouwer, Jeffrey; Goodman, Mark M; Votaw, John R; Carroll, F I; Howell, Leonard L

    2012-06-01

    Several classes of drugs bind to the dopamine transporter (DAT) with high affinity, but some are weaker positive reinforcers than cocaine, suggesting that affinity for and occupancy of the DAT is not the only determinant of a drug's reinforcing effectiveness. Other factors such as the rate of onset have been positively and strongly correlated with the reinforcing effects of DAT inhibitors in nonhuman primates. In the current studies, we examined the effects of acute systemic administration of cocaine and three cocaine analogs (RTI-150, RTI-177, and RTI-366) on binding to DAT in squirrel monkey brain using positron emission tomography (PET) neuroimaging. During the PET scan, we also measured drug effects on dopamine (DA) levels in the caudate using in vivo microdialysis. In general, our results suggest a lack of concordance between drug occupancy at DAT and changes in DA levels. These studies also indicate that acute cocaine administration decreases the availability of plasma membrane DAT for binding, even after cocaine is no longer blocking DA uptake as evidence by a return to basal DA levels.

  5. Pharmacologic approaches to the treatment of cocaine dependence.

    PubMed Central

    Taylor, W A; Gold, M S

    1990-01-01

    When pharmacologic agents are considered in the treatment of cocaine addiction, the objective of such treatment--sustained abstinence--must be considered. Medication and medical approaches have been disappointing in the treatment of cocaine overdose. The central neurobiologic mechanism(s) involved in cocaine toxicity are poorly understood. Without a cocaine antagonist, pharmacologic approaches have been less than promising in preventing relapse. Various psychoactive medications have been tried in early cocaine abstinence, with some success. PMID:1971975

  6. The role of endocannabinoid transmission in cocaine addiction.

    PubMed

    Arnold, Jonathon C

    2005-06-01

    Research is beginning to outline a role for the endocannabinoid system in cocaine addiction. Human and animal studies indicate that exogenous cannabinoids modulate the acute rewarding effects of cocaine. These studies, however, cannot directly investigate the necessity of endocannabinoid transmission in cocaine addiction. Studies that do offer a direct assessment show that neither pharmacological antagonism nor deletion of the CB1 receptor alters the acute rewarding effects of cocaine. In contrast, CB1 receptors appear to be involved in the association of cocaine reward with environmental cues and reinstatement of cocaine self-administration. Together, these results point to CB1 receptor antagonists as potential anti-craving compounds in the treatment of cocaine addiction. Given the limitations of human population studies, animal research may be useful in discerning causal inferences between cannabis and cocaine use. While animal research suggests cannabis use may precipitate cocaine relapse, cross-sensitization between cannabinoids and cocaine has not been demonstrated and CB1 receptors do not mediate behavioral sensitization to cocaine. The effect of acute or chronic cocaine on endocannabinoid transmission in reward-related areas of the brain is relatively under-researched. Acute cocaine administration increases anandamide levels in the striatum, an effect that is mediated by dopamine D2-like receptors. Conversely, chronic cocaine exposure has no effect on anandamide, but decreases 2-arachidonylglycerol levels in the limbic forebrain. This review highlights research indicating that the endocannabinoid system may subserve certain aspects of cocaine addiction and suggests avenues for future investigation.

  7. Gene by Disease Interaction on Orbitofrontal Gray Matter in Cocaine Addiction

    PubMed Central

    Alia-Klein, Nelly; Parvaz, Muhammad A.; Woicik, Patricia A.; Konova, Anna B.; Maloney, Thomas; Shumay, Elena; Wang, Ruiliang; Telang, Frank; Biegon, Anat; Wang, Gene-Jack; Fowler, Joanna S.; Tomasi, Dardo; Volkow, Nora D.; Goldstein, Rita Z.

    2011-01-01

    Context Chronic cocaine use has been associated with structural deficits in brain regions having dopamine receptive neurons. However, the concomitant use of other drugs and common genetic variability in monoamine regulation present additional structural variability. Objective To examine variations in gray matter volume (GMV) as a function of lifetime drug use and the monoamine oxidase A (MAOA) genotype in men with cocaine use disorders (CUD) and healthy male controls. Design Cross-sectional comparison between 40 CUD and 42 controls scanned with magnetic resonance imaging (MRI) to assess GMV and genotyped for the MAOA polymorphism. The impact of cocaine addiction on GM was tested by 1) comparing CUD with controls, 2) testing diagnosis-by-MAOA interactions, and 3) correlating GMV with lifetime cocaine, alcohol, and cigarette smoking, and testing their unique contribution to GM beyond other factors. Outcome Measures GMV were derived from MRI with voxel-based-morphometry. Genotyping was performed for a functional polymorphism (a variable number tandem repeat or VNTR) in the promoter region of the MAOA gene with “high” and “low” alleles. Results 1) Individuals with CUD had reductions in GMV in the orbitofrontal (OFC), dorsolateral prefrontal (DLPFC) and temporal cortex, and hippocampus, compared to controls. 2) The OFC reductions were uniquely driven by CUD with low MAOA genotype and by lifetime cocaine use. 3) GMV in the DLPFC and hippocampus, was driven by lifetime alcohol use beyond the genotype and other pertinent variables. Conclusions This study documents for the first time, the enhanced sensitivity of CUD low MAOA carriers to GM loss, specifically in the OFC, indicating that this genotype may exacerbate the deleterious effects of cocaine in the brain. In addition, chronic alcohol use was a major contributor to GM loss in the DLPFC and hippocampus, and is likely to further impair executive function and learning in cocaine addiction. PMID:21383264

  8. CREB activity in dopamine D1 receptor expressing neurons regulates cocaine-induced behavioral effects

    PubMed Central

    Bilbao, Ainhoa; Rieker, Claus; Cannella, Nazzareno; Parlato, Rosanna; Golda, Slawomir; Piechota, Marcin; Korostynski, Michal; Engblom, David; Przewlocki, Ryszard; Schütz, Günther; Spanagel, Rainer; Parkitna, Jan R.

    2014-01-01

    It is suggested that striatal cAMP responsive element binding protein (CREB) regulates sensitivity to psychostimulants. To test the cell-specificity of this hypothesis we examined the effects of a dominant-negative CREB protein variant expressed in dopamine receptor D1 (D1R) neurons on cocaine-induced behaviors. A transgenic mouse strain was generated by pronuclear injection of a BAC-derived transgene harboring the A-CREB sequence under the control of the D1R gene promoter. Compared to wild-type, drug-naïve mutants showed moderate alterations in gene expression, especially a reduction in basal levels of activity-regulated transcripts such as Arc and Egr2. The behavioral responses to cocaine were elevated in mutant mice. Locomotor activity after acute treatment, psychomotor sensitization after intermittent drug injections and the conditioned locomotion after saline treatment were increased compared to wild-type littermates. Transgenic mice had significantly higher cocaine conditioned place preference, displayed normal extinction of the conditioned preference, but showed an augmented cocaine-seeking response following priming-induced reinstatement. This enhanced cocaine-seeking response was associated with increased levels of activity-regulated transcripts and prodynorphin. The primary reinforcing effects of cocaine were not altered in the mutant mice as they did not differ from wild-type in cocaine self-administration under a fixed ratio schedule at the training dose. Collectively, our data indicate that expression of a dominant-negative CREB variant exclusively in neurons expressing D1R is sufficient to recapitulate the previously reported behavioral phenotypes associated with virally expressed dominant-negative CREB. PMID:24966820

  9. Alterations in brain neurotrophic and glial factors following early age chronic methylphenidate and cocaine administration.

    PubMed

    Simchon-Tenenbaum, Yaarit; Weizman, Abraham; Rehavi, Moshe

    2015-04-01

    Attention deficit hyperactivity disorder (ADHD) overdiagnosis and a pharmacological attempt to increase cognitive performance, are the major causes for the frequent (ab)use of psychostimulants in non-ADHD individuals. Methylphenidate is a non-addictive psychostimulant, although its mode of action resembles that of cocaine, a well-known addictive and abused drug. Neuronal- and glial-derived growth factors play a major role in the development, maintenance and survival of neurons in the central nervous system. We hypothesized that methylphenidate and cocaine treatment affect the expression of such growth factors. Beginning on postnatal day (PND) 14, male Sprague Dawley rats were treated chronically with either cocaine or methylphenidate. The rats were examined behaviorally and biochemically at several time points (PND 35, 56, 70 and 90). On PND 56, rats treated with cocaine or methylphenidate from PND 14 through PND 35 exhibited increased hippocampal glial-cell derived neurotrophic factor (GDNF) mRNA levels, after 21 withdrawal days, compared to the saline-treated rats. We found a significant association between cocaine and methylphenidate treatments and age progression in the prefrontal protein expression of brain derived neurotrophic factor (BDNF). Neither treatments affected the behavioral parameters, although acute cocaine administration was associated with increased locomotor activity. It is possible that the increased hippocampal GDNF mRNA levels, may be relevant to the reduced rate of drug seeking behavior in ADHD adolescence that were maintained from childhood on methylphenidate. BDNF protein level increase with age, as well as following stimulant treatments at early age may be relevant to the neurobiology and pharmacotherapy of ADHD.

  10. Hormones, nicotine, and cocaine: clinical studies.

    PubMed

    Mello, Nancy K

    2010-06-01

    Nicotine and cocaine each stimulate hypothalamic-pituitary-adrenal and -gonadal axis hormones, and there is increasing evidence that the hormonal milieu may modulate the abuse-related effects of these drugs. This review summarizes some clinical studies of the acute effects of cigarette smoking or IV cocaine on plasma drug and hormone levels and subjective effects ratings. The temporal covariance between these dependent measures was assessed with a rapid (2 min) sampling procedure in nicotine-dependent volunteers or current cocaine users. Cigarette smoking and IV cocaine each stimulated a rapid increase in LH and ACTH, followed by gradual increases in cortisol and DHEA. Positive subjective effects ratings increased immediately after initiation of cigarette smoking or IV cocaine administration. However, in contrast to cocaine's sustained positive effects (<20 min), ratings of "high" and "rush" began to decrease within one or two puffs of a high-nicotine cigarette while nicotine levels were increasing. Peak nicotine levels increased progressively after each of three successive cigarettes smoked at 60 min intervals, but the magnitude of the subjective effects ratings and peak ACTH and cortisol levels diminished. Only DHEA increased consistently after successive cigarettes. The possible influence of neuroactive hormones on nicotine dependence and cocaine abuse and the implications for treatment of these addictive disorders are discussed.

  11. Fatal cocaine intoxication in a body packer.

    PubMed

    Brajković, Gordana; Babić, Gordana; Stosić, Jasna Jović; Tomasević, Gordana; Rancić, Dragana; Kilibarda, Vesna

    2016-02-01

    'Body packer' syndrome with severe intoxication or sudden death may happen in persons who smuggle drugs in their body cavities. In case of lethal outcome when carrying cocaine, it is important, but sometimes difficult to determine whether death was due to intoxication or due to other causes. Therefore, it is necessary not only to quantify cocaine and its metabolites in biological material, but also based on their distribution in body fluids and tissues to conclude whether it is acute intoxication. We described a well-documented case of fatal poisoning in a body packer and post mortem distribution of the drug in biological samples. A 26-year-old man was brought to hospital with no vital signs. Resuscitation measures started at once, but with no success. Autopsy revealed 66 packets of cocaine in his digestive tract, one of which was ruptured. Hyperemia of the most of all internal organs and pulmonary and brain edema were found. High concentrations of cocaine, its metabolites benzoylecgonine and ecgonine methyl ester, as well as cocaine adulteration levamisole were proven in the post mortem blood and tissues by liquid chromatography-mass spectrometry (LC-MC) method with selective-ion monitoring. The ratio of cocaine and its metabolites concentrations in the brain and blood obtained by LC-MS method can be used for forensic confirmation of acute intoxication with cocaine.

  12. Nonhuman Primate Neuroimaging and Cocaine Medication Development

    PubMed Central

    Howell, Leonard L.

    2011-01-01

    Given the important role of the dopamine transporter (DAT) in the addictive properties of cocaine, the development and use of compounds that target the DAT represents a reasonable approach for the pharmacological treatment of cocaine abuse. The present report describes a series of studies conducted in nonhuman primates that evaluated the effectiveness of DAT inhibitors in reducing cocaine self-administration. In addition, drug substitution studies evaluated the abuse liability of the DAT inhibitors. PET neuroimaging studies quantified DAT occupancy at behaviorally relevant doses, characterized the time-course of drug uptake in brain, and documented drug-induced changes in cerebral blood flow as a model of brain activation. Selective DAT inhibitors were effective in reducing cocaine use but high (>70%) levels of DAT occupancy were associated with significant reductions in cocaine self-administration. The selective DAT inhibitors were reliably self-administered but rates of responding were lower than those maintained by cocaine even at higher levels of DAT occupancy. A profile of slow rate of drug uptake in brain accompanied by a gradual increase in extracellular dopamine may account for the more limited reinforcing effectiveness of the DAT inhibitors. Selective serotonin transporter (SERT) inhibitors were also effective in reducing cocaine use and blocked cocaine-induced brain activation and increases in extracellular dopamine. Co-administration of SERT inhibitors with a selective DAT inhibitor was more effective than the DAT inhibitor administered alone, even at comparable levels of DAT occupancy. The results indicate that combined inhibition of DAT and SERT may be a viable approach to treat cocaine addiction. PMID:19086766

  13. Neuropsychological effects associated with recreational cocaine use.

    PubMed

    Soar, Kirstie; Mason, Colette; Potton, Anita; Dawkins, Lynne

    2012-08-01

    Recent evidence suggests that recreational cocaine use is on the increase, with the UK reporting one of the highest levels of use in the EU (EMCDDA 2010). Nevertheless, very few studies have addressed the neuropsychological effects associated with non-dependent recreational cocaine use. The current study aimed to assess whether recreational cocaine users show neuropsychological deficits on a battery of tests, previously shown to be sensitive to cocaine-dependent and psychosis-prone individuals. Schizotypal traits were also measured. Recreational cocaine users (n = 17) were compared with controls (n = 24) on drug use patterns, the General Health Questionnaire, the Brief Schizotypal Personality Questionnaire (SPQ-B) and four neuropsychological tasks: spatial working memory, intra/extra-dimensional set shifting, the Stocking of Cambridge and the rapid visual processing. Relative to controls, recreational cocaine users produced significantly more errors on the intra/extra-dimensional set shift task and completed fewer stages, made significantly more six box stage errors on the spatial working memory task, and made significantly more errors and fewer hits, with overall poorer detection rates on the rapid visual processing task. Recreational cocaine users reported significantly higher scores on the cognitive perceptual and disorganised thinking SPQ-B subscales and total SPQ-B scores compared to controls. Recreational cocaine users displayed impairments on tasks tapping sustained attention, attentional shifting and spatial memory and reported higher schizotypal trait expression. These findings are consistent with the emerging literature suggesting subtle cognitive deficits, putatively reflecting underlying dopaminergic dysfunction, in non-dependent, recreational cocaine users.

  14. Cocaine attenuates vasoconstriction to ethanol

    SciTech Connect

    Bove, A.A.; Morley, D.; Vosacek, R.; Zhang, X.Y.; Shah, R. )

    1991-03-11

    The purpose of this study was to determine the combined effects of cocaine and ethanol on vasomotor tone. Using a standard isolated vascular ring preparation, 24 rings from 7 New Zealand White Rabbits were studied. All rings were denuded as verified by methacholine challenge. The dose response to NE for each ring was used as a standard for vasoconstrictors Dose response curves to ETH and C were done in random order. Concentrations of both ETH and C employed were physiologically attainable in man and below thresholds for coma or death. The dose response curve to ETH was repeated after addition of 4 {times} 10{sup {minus}5} M C to the arterial bath. After adding 1,500 ug/ml of ETH, the dose response curve to C was repeated. Ethanol, alone caused significant vasoconstriction of arterial rings. After the addition of C to the bath, the dose response to ETH was significantly shifted to the right, peak contraction achieved was 36.6 {plus minus} 3.2% of maximal NE contraction. Cocaine alone did not result in any change in resting tension of the rings. When ETH was added to the bath, C caused vasoconstriction, the peak value equivalent to 12.5 {plus minus} 2.2% of maximal contraction to NE.

  15. Oral Fluid Cocaine and Benzoylecgonine Concentrations Following Controlled Intravenous Cocaine Administration

    PubMed Central

    Ellefsen, Kayla N.; Concheiro, Marta; Pirard, Sandrine; Gorelick, David A.; Huestis, Marilyn A.

    2016-01-01

    Limited oral fluid (OF) pharmacokinetic data collected with commercially available collection devices after controlled cocaine administration hinder OF result interpretations. Ten cocaine-using adults provided OF, collected with Oral-Eze® (OE) and StatSure Saliva Sampler™ (SS) devices, an hour prior to and up to 69 h after 25 mg intravenous (IV) cocaine administration. Cocaine and benzoylecgonine (BE) were quantified by a validated 2D-GC-MS method. Large inter-subject variability was observed. Cocaine was detected in OF in the first 0.17 h sample after IV administration, with much more rapid elimination than BE. OE median observed Cmax (range) was 932 (394–1,574) μg/L for cocaine and 248 (96.9–953) μg/L for BE. SS median (range) observed cocaine and BE Cmax trended lower at 732 (83.3–1,892) μg/L and 360 (77.2–836) μg/L, respectively. OE and SS cocaine OF detection times were 12.5 and 6.5 h and for BE 30.5 and 28.0 h, respectively at 1 μg/L. There were no significant pharmacokinetic differences between OE and SS OF collection devices, except cocaine half-life was significantly shorter in SS OF specimens. This difference could be attributed to differences in stabilizing buffers present in OF collection devices, which may affect cocaine stability in OF specimens, or decreased recovery from collection pads. Both OE and SS OF collection devices were effective in monitoring cocaine and metabolite concentrations with similar detection windows. Furthermore, we demonstrated that different confirmatory OF cutoffs can be selected to produce shorter or longer cocaine and metabolite detection windows to address specific needs of clinical and forensic drug testing programs. PMID:26851651

  16. Oral fluid cocaine and benzoylecgonine concentrations following controlled intravenous cocaine administration.

    PubMed

    Ellefsen, Kayla N; Concheiro, Marta; Pirard, Sandrine; Gorelick, David A; Huestis, Marilyn A

    2016-03-01

    Limited oral fluid (OF) pharmacokinetic data collected with commercially available collection devices after controlled cocaine administration hinder OF result interpretations. Ten cocaine-using adults provided OF, collected with Oral-Eze(®) (OE) and StatSure Saliva Sampler™ (SS) devices, an hour prior to and up to 69 h after 25mg intravenous (IV) cocaine administration. Cocaine and benzoylecgonine (BE) were quantified by a validated 2D-GC-MS method. Large inter-subject variability was observed. Cocaine was detected in OF in the first 0.17 h sample after IV administration, with much more rapid elimination than BE. OE observed Cmax median (range) concentrations were 932 (394-1574)μg/L for cocaine and 248 (96.9-953)μg/L for BE. SS observed cocaine and BE Cmax median (range) concentrations trended lower at 732 (83.3-1892)μg/L and 360 (77.2-836)μg/L, respectively. OE and SS cocaine OF detection times were 12.5 and 6.5h and for BE 30.5 and 28.0 h, respectively at 1 μg/L. There were no significant pharmacokinetic differences between OE and SS OF collection devices, except cocaine half-life was significantly shorter in SS OF specimens. This difference could be attributed to differences in stabilizing buffers present in OF collection devices, which may affect cocaine stability in OF specimens, or decreased recovery from collection pads. Both OE and SS OF collection devices were effective in monitoring cocaine and metabolite concentrations with similar detection windows. Furthermore, we demonstrated that different confirmatory OF cutoffs can be selected to produce shorter or longer cocaine and metabolite detection windows to address specific needs of clinical and forensic drug testing programs. Published by Elsevier Ireland Ltd.

  17. Synaptic mechanisms underlying persistent cocaine craving.

    PubMed

    Wolf, Marina E

    2016-06-01

    Although it is challenging for individuals with cocaine addiction to achieve abstinence, the greatest difficulty is avoiding relapse to drug taking, which is often triggered by cues associated with prior cocaine use. This vulnerability to relapse persists for long periods (months to years) after abstinence is achieved. Here, I discuss rodent studies of cue-induced cocaine craving during abstinence, with a focus on neuronal plasticity in the reward circuitry that maintains high levels of craving. Such work has the potential to identify new therapeutic targets and to further our understanding of experience-dependent plasticity in the adult brain under normal circumstances and in the context of addiction.

  18. Synaptic mechanisms underlying persistent cocaine craving

    PubMed Central

    Wolf, Marina E.

    2017-01-01

    Although it is challenging for individuals with cocaine addiction to achieve abstinence, the greatest difficulty is avoiding relapse to drug taking, which is often triggered by cues associated with prior cocaine use. This vulnerability to relapse persists for long periods (months to years) after abstinence is achieved. Here I discuss rodent studies of cue-induced cocaine craving during abstinence, with a focus on neuronal plasticity in the reward circuitry that maintains high levels of craving. Such work has the potential to identify new therapeutic targets and further our understanding of experience-dependent plasticity in the adult brain under normal circumstances and in the context of addiction. PMID:27150400

  19. Optogenetic inhibition of cocaine seeking in rats.

    PubMed

    Stefanik, Michael T; Moussawi, Khaled; Kupchik, Yonatan M; Smith, Kyle C; Miller, Rachel L; Huff, Mary L; Deisseroth, Karl; Kalivas, Peter W; LaLumiere, Ryan T

    2013-01-01

    Inhibitory optogenetics was used to examine the roles of the prelimbic cortex (PL), the nucleus accumbens core (NAcore) and the PL projections to the NAcore in the reinstatement of cocaine seeking. Rats were microinjected into the PL or NAcore with an adeno-associated virus containing halorhodopsin or archaerhodopsin. After 12 days of cocaine self-administration, followed by extinction training, animals underwent reinstatement testing along with the presence/absence of optically induced inhibition via laser light. Bilateral optical inhibition of the PL, NAcore or the PL fibers in the NAcore inhibited the reinstatement of cocaine seeking. © 2012 The Authors, Addiction Biology © 2012 Society for the Study of Addiction.

  20. Mitochondrial complex I dysfunction induced by cocaine and cocaine plus morphine in brain and liver mitochondria.

    PubMed

    Cunha-Oliveira, Teresa; Silva, Lisbeth; Silva, Ana Maria; Moreno, António J; Oliveira, Catarina R; Santos, Maria S

    2013-06-07

    Mitochondrial function and energy metabolism are affected in brains of human cocaine abusers. Cocaine is known to induce mitochondrial dysfunction in cardiac and hepatic tissues, but its effects on brain bioenergetics are less documented. Furthermore, the combination of cocaine and opioids (speedball) was also shown to induce mitochondrial dysfunction. In this work, we compared the effects of cocaine and/or morphine on the bioenergetics of isolated brain and liver mitochondria, to understand their specific effects in each tissue. Upon energization with complex I substrates, cocaine decreased state-3 respiration in brain (but not in liver) mitochondria and decreased uncoupled respiration and mitochondrial potential in both tissues, through a direct effect on complex I. Morphine presented only slight effects on brain and liver mitochondria, and the combination cocaine+morphine had similar effects to cocaine alone, except for a greater decrease in state-3 respiration. Brain and liver mitochondrial respirations were differentially affected, and liver mitochondria were more prone to proton leak caused by the drugs or their combination. This was possibly related with a different dependence on complex I in mitochondrial populations from these tissues. In summary, cocaine and cocaine+morphine induce mitochondrial complex I dysfunction in isolated brain and liver mitochondria, with specific effects in each tissue.

  1. Cocaine and metabolite concentrations in DBS and venous blood after controlled intravenous cocaine administration.

    PubMed

    Ellefsen, Kayla N; da Costa, Jose Luiz; Concheiro, Marta; Anizan, Sebastien; Barnes, Allan J; Pirard, Sandrine; Gorelick, David A; Huestis, Marilyn A

    2015-01-01

    DBS are an increasingly common clinical matrix. Sensitive and specific methods for DBS and venous blood cocaine and metabolite detection by LC-HRMS and 2D GC-MS, respectively, were validated to examine correlation between concentrations following controlled intravenous cocaine administration. Linear ranges from 1 to 200 µg/l were achieved, with acceptable bias and imprecision. Authentic matched specimens' (392 DBS, 97 venous blood) cocaine and benzoylecgonine concentrations were qualitatively similar, but DBS had much greater variability (21.4-105.9 %CV) and were lower than in blood. DBS offer advantages for monitoring cocaine intake; however, differences between capillary and venous blood and DBS concentration variability must be addressed.

  2. Increased vulnerability to self-administer cocaine in mice prenatally exposed to cocaine.

    PubMed

    Rocha, Beatriz A; Mead, Andy N; Kosofsky, Barry E

    2002-09-01

    At least 40,000 infants born each year in the U.S. are estimated to have been exposed to crack cocaine and, therefore, may be at risk for increased vulnerability to cocaine addiction. The present study tested the hypothesis that prenatal exposure to cocaine significantly increased subsequent cocaine-taking behavior in mice. Swiss Webster male mice that had been exposed to cocaine in utero were tested at 5 months of age in the cocaine self-administration paradigm. They were the offspring of dams that received one of the following treatments during gestation days 8-17: cocaine (40 mg/kg or 20 mg/kg per day; COC40 and COC20 mice, respectively), saline with access to food ad libitum (SAL mice), or saline with access to food restricted to that of the COC40 dams (i.e., pair-fed; SPF40 mice). Mice were initially trained to lever press for a condensed-milk solution, were implanted with an indwelling intravenous (i.v.) catheter and, subsequently, allowed to self-administer cocaine (0.25, 0.5, 1.0, or 2.0 mg/kg per injection) under a fixed ratio (FR) 1 schedule of reinforcement. Latency for acquisition of food-reinforced responding appeared to be independent of prenatal treatment, as was acquisition of cocaine self-administration, which was found to be dose dependent. Both COC40 and SAL mice reached cocaine self-administration criteria at 1.0 mg/kg or 2.0 mg/kg per injection doses, while neither group did so at lower doses. It was also observed that, at each of the doses tested, a higher number of COC40 mice reached criteria for acquisition. A logistic regression analysis confirmed that the likelihood for acquiring cocaine self-administration was positively correlated to prenatal exposure to cocaine and the dose of cocaine tested. These data provide evidence, for the first time, that prenatal exposure to higher doses of cocaine increase the probability of acquiring cocaine self-administration at moderate doses during adulthood and modulate vulnerability to cocaine

  3. Biochemical characterization and structural analysis of a highly proficient cocaine esterase.

    PubMed

    Turner, James M; Larsen, Nicholas A; Basran, Amrik; Barbas, Carlos F; Bruce, Neil C; Wilson, Ian A; Lerner, Richard A

    2002-10-15

    The bacterial cocaine esterase, cocE, hydrolyzes cocaine faster than any other reported cocaine esterase. Hydrolysis of the cocaine benzoyl ester follows Michaelis-Menten kinetics with k(cat) = 7.8 s(-1) and K(M) = 640 nM. A similar rate is observed for hydrolysis of cocaethylene, a more potent cocaine metabolite that has been observed in patients who concurrently abuse cocaine and alcohol. The high catalytic proficiency, lack of observable product inhibition, and ability to hydrolyze both cocaine and cocaethylene make cocE an attractive candidate for rapid cocaine detoxification in an emergency setting. Recently, we determined the crystal structure of this enzyme, and showed that it is a serine carboxylesterase, with a catalytic triad formed by S117, H287, and D259 within a hydrophobic active site, and an oxyanion hole formed by the backbone amide of Y118 and the Y44 hydroxyl. The only enzyme previously known to use a Tyr side chain to form the oxyanion hole is prolyl oligopeptidase, but the Y44F mutation of cocE has a more deleterious effect on the specificity rate constant (k(cat)/K(M)) than the analogous Y473F mutation of prolyl oligopeptidase. Kinetic studies on a series of cocE mutants both validate the proposed mechanism, and reveal the relative contributions of active site residues toward substrate recognition and catalysis. Inspired by the anionic binding pocket of the cocaine binding antibody GNC92H2, we found that a Q55E mutation within the active site of cocE results in a modest (2-fold) improvement in K(M), but a 14-fold loss of k(cat). The pH rate profile of cocE was fit to the ionization of two groups (pK(a1) = 7.7; pK(a2) = 10.4) that likely represent titration of H287 and Y44, respectively. We also describe the crystal structures of both S117A and Y44F mutants of cocE. Finally, urea denaturation studies of cocE by fluorescence and circular dichroism show two unfolding transitions (0.5-0.6 M and 3.2-3.7 M urea), with the first transition likely

  4. A meta-analysis of marijuana, cocaine and opiate toxicology study findings among homicide victims.

    PubMed

    Kuhns, Joseph B; Wilson, David B; Maguire, Edward R; Ainsworth, Stephanie A; Clodfelter, Tammatha A

    2009-07-01

    ABSTRACT Aim To synthesize the results of marijuana, cocaine and opiate drug toxicology studies of homicide victims and examine variation in results across person and setting characteristics. Methods A meta-analysis of 18 independent studies identified from an extensive review of 239 published articles that met the inclusion criteria of reporting marijuana, cocaine and/or opiate toxicology test results for homicide victims. A total of 28 868 toxicology test results derived from 30 482 homicide victims across five countries were examined. Results On average, 6% of homicide victims tested positive for marijuana, 11% tested positive for cocaine, and 5% tested positive for opiates. The proportion of homicide victims testing positive for illicit drugs has increased over time. Age had a strong curvilinear relationship with toxicology test results, but gender differences were not apparent. Hispanic and African American homicide victims were more likely to test positive for cocaine; Caucasians were most likely to test positive for opiates. Cocaine use appeared to be related to increased risk of death from a firearm and was a greater risk factor for violent victimization in the United States than in Newfoundland and Scandinavia. Conclusion There are relatively few studies of illicit drug toxicology reports from homicide victims that allow for cross-cultural comparisons. This study provides a basis for comparing future local toxicology test results to estimates from existing research.

  5. Cocaine addiction: from habits to stereotypical-repetitive behaviors and punding.

    PubMed

    Fasano, Alfonso; Barra, Andrea; Nicosia, Paola; Rinaldi, Federica; Bria, Pietro; Bentivoglio, Anna Rita; Tonioni, Federico

    2008-07-01

    "Punding" is a stereotypical motor behavior characterized by an intense fascination with repetitive handling and examining of objects. Since its first description in amphetamine and cocaine addicts, data on punding has only derived from studies performed in patients with Parkinson's disease (PD). Punding is classifiable as the most severe form of Repetitive Reward-Seeking Behaviours (RRSB) syndromes. The aim of this study was to investigate the occurrence and phenomelogy of RRSB acutely induced by cocaine in order to determine the prevalence, severity and distinctive features discriminating "punders" from "non-punders". A consecutive sample of 50 cocaine addicts received a clinical psychiatric interview. RRSB diagnosis and severity were assessed using a modified version of a previous published questionnaire designed to identify punding in patients with PD. In the present series, 38% of the cocaine addicts met the proposed diagnostic criteria for a RRSB and 8% were considered punders. Subjects with vs. without RRSB did not differ in terms of sex ratio, age, education, occupation, predisposing habits, duration of cocaine use, hours of sleep, comorbid psychiatric disorders, and concomitant use of other drugs. These results and the observation that in the majority of cases RRSB started soon after first drug intake, strongly suggest that an underlying unknown predisposition led to the development of these behaviors. In conclusion, RRSB and punding is much more common than has been described previously and the resultant social disability is often overlooked.

  6. Subdural hematoma occurrence: comparison between ethanol and cocaine use at death.

    PubMed

    Heninger, Michael

    2013-09-01

    The objective of this study was to show that, in a medical examiner population, ethanol intoxication is associated with an increase in the occurrence of subdural hematoma (SDH), whereas the presence of cocaine is not associated with an increase in the occurrence of SDH. This was a retrospective evaluation of 967 SDH including the investigative information, autopsy, and toxicological findings derived from 18,314 medical examiner cases over 8 years. Subdural hematoma is found in 7% to 9% of cases with either no ethanol or less than 100 mg/dL of ethanol. Subdural hematoma is found in 18% of cases with ethanol levels of greater than 100 mg/dL. Subdural hematoma is found in 11% of cases negative for cocaine, whereas SDH is found in 9% of cases with any form of cocaine present at death.

  7. Daily treadmill exercise attenuates cocaine cue-induced reinstatement and cocaine induced locomotor response but increases cocaine-primed reinstatement

    PubMed Central

    Thanos, Panayotis K.; Stamos, Joshua; Robison, Lisa S.; Heyman, Gary; Tucci, Andrew; Wang, Gene-Jack; Robinson, John K.; Anderson, Brenda J.; Volkow, Nora D.

    2013-01-01

    Exercise affects neuroplasticity and neurotransmission including dopamine (DA), which modulates drug-taking behavior. Previous research in rodents has shown that exercise may attenuate the rewarding effects of drugs of abuse. The present study examined the effects of high and low exercise on cocaine responses in male Wistar rats that had been trained to self-administer and were compared to a group of sedentary rats. High exercise rats (HE) ran daily on a treadmill for 2 h and low exercise (LE) ran daily for 1 h. After 6 weeks of this exercise regimen, rats were tested over 2 days for reinstatement (day 1: cue-induced reinstatement; day 2: cocaine-primed reinstatement). During cue-induced reinstatement, the sedentary rats showed the expected increase in active lever responses when compared to maintenance, whereas these increased responses were inhibited in the exercised rats (HE and LE). During cocaine-primed reinstatement, however, there was a significant increase in active lever presses when compared to maintenance only in the HE group. This data suggests that chronic exercise during abstinence attenuates the cue-induced reinstatement seen in the sedentary rats by 26% (LE) and 21% (HE). In contrast, only the high exercise rats exhibited sensitized cocaine-seeking behavior (active lever presses) following cocaine-primed reinstatement. Finally, while sedentary rats increased locomotor activity during cocaine-primed reinstatement over that seen with cocaine during maintenance, this was not observed in the exercised rats, suggesting that exercise may interfere with the sensitized locomotor response during cocaine reinstatement. PMID:23103403

  8. Effects of Histamine H3 Receptor Activation on the Behavioral-Stimulant Effects of Methamphetamine and Cocaine in Mice and Squirrel Monkeys

    PubMed Central

    Banks, Matthew L.; Manvich, Daniel F.; Bauzo, Rayna M.; Howell, Leonard L.

    2009-01-01

    Background Cocaine and methamphetamine (METH) are two commonly abused drugs that have behavioral-stimulant properties. These stimulant effects are partially mediated by the dopaminergic system. Recent evidence has suggested that the histamine H3 receptor (H3R) may modulate the release of dopamine induced by METH. The aim of the present study was to examine the role of H3R in the behavioral-stimulant effects of cocaine and METH in mice and monkeys. Methods Nonhabituated, experimentally naïve mice (n = 5–6) were pretreated with the H3R agonist imetit 30 min before METH or cocaine, and activity was measured for 90 min. The behavioral-stimulant effects of METH and cocaine were also studied in squirrel monkeys (n = 3) under a fixed-interval schedule of stimulus termination. Monkeys were pretreated with imetit 30 min before the peak behavioral-stimulant doses of METH or cocaine derived from individual subjects. Results Pretreatment with imetit did not affect basal activity in mice. Imetit significantly attenuated the behavioral-stimulant effects of METH, but not cocaine. In monkeys, no dose of imetit tested significantly altered the behavioral-stimulant effects of METH or cocaine. Conclusion These results suggest a role of H3R in the behavioral-stimulant effects of METH, but not cocaine, in mice and no role in monkeys. Copyright © 2009 S. Karger AG, Basel PMID:19145102

  9. Altered dendritic spine plasticity in cocaine-withdrawn rats.

    PubMed

    Shen, Hao-wei; Toda, Shigenobu; Moussawi, Khaled; Bouknight, Ashley; Zahm, Daniel S; Kalivas, Peter W

    2009-03-04

    Chronic cocaine treatment is associated with changes in dendritic spines in the nucleus accumbens, but it is unknown whether this neuroplasticity alters the effect of a subsequent cocaine injection on spine morphology and protein content. Three weeks after daily cocaine or saline administration, neurons in the accumbens were filled with the lipophilic dye, DiI. Although daily cocaine pretreatment did not alter spine density compared with daily saline, there was a shift from smaller to larger diameter spines. During the first 2 h after an acute cocaine challenge, a bidirectional change in spine head diameter and increase in spine density was measured in daily cocaine-pretreated animals. In contrast, no change in spine diameter or density was elicited by a cocaine challenge in daily saline animals during the first 2 h after injection. However, spine density was elevated at 6 h after a cocaine challenge in daily saline-pretreated animals. The time-dependent profile of proteins in the postsynaptic density subfraction elicited by a cocaine challenge in daily cocaine-pretreated subjects indicated that the changes in spine diameter and density were associated with a deteriorating actin cytoskeleton and a reduction in glutamate signaling-related proteins. Correspondingly, the amplitude of field potentials in accumbens evoked by stimulating prefrontal cortex was reduced for up to 6 h after acute cocaine in daily cocaine-withdrawn animals. These data indicate that daily cocaine pretreatment dysregulates dendritic spine plasticity elicited by a subsequent cocaine injection.

  10. Exposure to repeated immobilization stress inhibits cocaine-induced increase in dopamine extracellular levels in the rat ventral tegmental area.

    PubMed

    Sotomayor-Zárate, Ramón; Abarca, Jorge; Araya, Katherine A; Renard, Georgina M; Andrés, María E; Gysling, Katia

    2015-11-01

    A higher vulnerability to drug abuse has been observed in human studies of individuals exposed to chronic or persistent stress, as well as in animal models of drug abuse. Here, we explored the effect of repeated immobilization stress on cocaine-induced increase in dopamine extracellular levels in VTA and its regulation by corticotropin-releasing factor (CRF) and GABA systems. Cocaine (10mg/Kg i.p.) induced an increase of VTA DA extracellular levels in control rats. However, this effect was not observed in repeated stress rats. Considering the evidence relating stress with CRF, we decided to perfuse CRF and CP-154526 (selective antagonist of CRF1 receptor) in the VTA of control and repeated stress rats, respectively. We observed that perfusion of 20μM CRF inhibited the increase of VTA DA extracellular levels induced by cocaine in control rats. Interestingly, we observed that in the presence of 10μM CP-154526, cocaine induced a significant increase of VTA DA extracellular levels in repeated stress rats. Regarding the role of VTA GABA neurotransmission, cocaine administration induced a significant increase in VTA GABA extracellular levels only in repeated stress rats. Consistently, cocaine was able to increase VTA DA extracellular levels in repeated stress rats when 100μM bicuculline, an antagonist of GABAA receptor, was perfused intra VTA. Thus, both CRF and GABA systems are involved in the lack of response to cocaine in the VTA of repeated stress rats. It is tempting to suggest that the loss of response in VTA dopaminergic neurons to cocaine, after repeated stress, is due to an interaction between CRF and GABA systems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Estradiol replacement enhances cocaine-stimulated locomotion in female C57BL/6 mice through estrogen receptor alpha

    PubMed Central

    Van Swearingen, Amanda E.D.; Sanchez, Cristina L.; Frisbee, Suzanne M.; Williams, Antonia; Walker, Q. David; Korach, Kenneth S.; Kuhn, Cynthia M.

    2013-01-01

    Psychostimulant effects are enhanced by ovarian hormones in women and female rodents. Estradiol increases behavioral responses to psychostimulants in women and female rats, although the underlying mechanism is unknown. This study utilized mice to investigate the time frame and receptor mediation of estradiol’s enhancement of cocaine-induced behavior as mice enable parallel use of genetic, surgical and pharmacological methods. The spontaneous behavior of Sham and Ovariectomized (Ovx) female wild-type (WT) mice was determined during habituation to a novel environment and after cocaine administration. Ovx mice were replaced with vehicle (sesame oil) or 17β-estradiol (E2) for 2 days or 30 min prior to a cocaine challenge to investigate the time course of E2’s effects. To examine receptor mediation of estradiol effects, Ovx mice replaced for 2 days with either the ERα-selective agonist PPT or the ERβ-selective agonist DPN were compared to Sham mice, and mice lacking either ERα (αERKO) or ERβ (βERKO) were compared to WT littermates. Ovx mice exhibited fewer ambulations during habituation than Sham females. Cocaine-induced increases in behavioral ratings were greater in Sham than in Ovx mice. Two days but not 30 min of E2 replacement in Ovx mice increased cocaine responses to Sham levels. PPT replacement also increased the cocaine response relative to vehicle- or DPN- treated Ovx mice. αERKO mice displayed modestly attenuated behavioral responses to novelty and cocaine compared to αWT littermates, but no behavioral differences were found between βERKO and βWT mice. These results suggest that E2 enhances cocaine-stimulated locomotion in mice predominantly through ERα. PMID:23608737

  12. Enhancement of endocannabinoid neurotransmission through CB1 cannabinoid receptors counteracts the reinforcing and psychostimulant effects of cocaine.

    PubMed

    Vlachou, Styliani; Stamatopoulou, Fygaleia; Nomikos, George G; Panagis, George

    2008-11-01

    Cannabinoids, in contrast to typical drugs of abuse, have been shown to exert complex effects on behavioural reinforcement and psychomotor function. We have shown that cannabinoid agonists lack reinforcing/rewarding properties in the intracranial self-stimulation (ICSS) paradigm and that the CB1 receptor (CB1R) agonist WIN55,212-2 attenuates the reward-facilitating actions of cocaine. We sought to determine the effects of the endocannabinoid neurotransmission enhancer AM-404 (1, 3, 10, 30 mg/kg) on the changes in ICSS threshold and locomotion elicited by cocaine and extend the study of the effects of WIN55,212-2 (0.3, 1, 3 mg/kg) on cocaine-induced hyperlocomotion. AM-404 did not exhibit reward-facilitating properties, and actually increased self-stimulation threshold at the highest dose. Cocaine significantly reduced self-stimulation threshold, without altering maximal rates of responding. AM-404 (10 mg/kg) attenuated this action of cocaine, an effect which was reversed by pretreatment with the selective CB1R antagonist SR141716A. WIN55,212-2 decreased locomotion at the two highest doses, an effect that was blocked by SR141716A; AM-404 had no effect on locomotion. Cocaine caused a significant, dose-dependent increase in locomotion, which was reduced by WIN55,212-2 and AM-404. SR141716A blocked the effects of WIN55,212-2 and AM-404 on cocaine-induced hyperlocomotion. SR141716A alone had no effect on ICSS threshold or locomotion. These results indicate that cannabinoids may interfere with brain reward systems responsible for the expression of acute reinforcing/rewarding properties of cocaine, and provide further evidence that the cannabinoid system could be explored as a potential drug discovery target for the treatment of psychostimulant addiction and pathological states associated with psychomotor overexcitability.

  13. Significance of cocaine history in schizophrenia.

    PubMed

    Sevy, S; Kay, S R; Opler, L A; van Praag, H M

    1990-10-01

    Fifty-one schizophrenic inpatients were divided into two groups, those with and without history of cocaine use, and compared on historical, demographic, cognitive, and psychopathological measures. Patients with a cocaine history were found to be significantly more depressed, less socialized, and more impaired in conceptual encoding and verbal memory, while less disordered in attention. The two groups did not differ in severity of illness or positive and negative syndromes. There were also no differences in control variables such as age, gender, education, intelligence, premorbid adjustment, neuroleptic dose, onset and chronicity of illness, continuity of hospitalization, paranoid subtype, and psychiatric illness in the family. Cocaine history was associated with multiple illicit drug use, but for other substances there was no increased liability for depression or cognitive deficits. The results suggest that the clinical presentation in schizophrenia is significantly associated with prior cocaine experience.

  14. A comparison of motivations for use among users of crack cocaine and cocaine powder in a sample of simultaneous cocaine and alcohol users.

    PubMed

    Martin, Gina; Macdonald, Scott; Pakula, Basia; Roth, Eric A

    2014-03-01

    This study examined the motivations for using cocaine and alcohol comparing those who primarily smoked crack and those who primarily used cocaine powder when using simultaneously with alcohol. Motivations examined included: 1) to cope with a negative affect, 2) enhancement, 3) to be social and 4) to conform. The research design was a cross-sectional study in which clients in treatment for cocaine and alcohol problems completed a self-administered questionnaire about their substance use. Among those who primarily smoked crack or snorted cocaine when also using alcohol (n=153), there were 93 participants who reported primarily snorting cocaine and 60 participants who primarily reported smoking crack. Bivariate analyses found that those who primarily smoked crack reported lower social motivations to use alcohol and cocaine. When adjusting for other covariates in a multivariate analysis, social motivation was still significantly different between groups. Additionally, those who primarily smoked crack were more likely to be older, report higher cocaine dependence severity, be unemployed and were less likely to have completed some post-secondary education, than those who primarily snorted cocaine. No differences were found in enhancement, coping or conformity motivations between the two groups. These results suggest that simultaneous cocaine and alcohol use may have social importance to those who primarily snort cocaine, but that this importance is less evident to those who smoke crack. Consequently, future studies examining motivations for simultaneous cocaine and alcohol use should distinguish between different routes of cocaine administration.

  15. Tolerance to cocaine in brain stimulation reward following continuous cocaine infusions.

    PubMed

    Pudiak, Cindy M; KuoLee, Rhonda; Bozarth, Michael A

    2014-07-01

    This study examined tolerance to cocaine's threshold-lowering effect in brain stimulation reward (BSR) following continuous cocaine infusions and secondly, used the nitric oxide synthase inhibitor Nω-nitro-L-arginine methyl ester (L-NAME) to determine NO's involvement in the development of cocaine tolerance. Animals were continuously infused with saline or cocaine (30 mg/kg per day) via osmotic minipump for 14 days and injected daily with saline or L-NAME (30 mg/kg, i.p.) following BSR testing. Saline-treated animals continuously infused with saline showed stable BSR thresholds across the 14-day infusion period. Saline-treated animals continuously infused with cocaine showed markedly lowered BSR thresholds on Day 1 followed by a progressive increase in BSR thresholds across the infusion period - indicating the development of tolerance. L-NAME-treated animals continuously infused with cocaine showed stimulation thresholds that were not significantly different from saline-treated animals continuously infused with cocaine. A cocaine challenge injection (10 mg/kg, i.p.) administered 3 and again at 10 days following minipump removal revealed that saline-treated animals continuously infused with saline showed lowered BSR thresholds. Saline-treated animals continuously infused with cocaine displayed lowered BSR thresholds that were not significantly different from saline-infused animals. L-NAME treated animals continuously infused with cocaine showed higher BSR thresholds to a challenge 3 days following pump removal. However, stimulation thresholds for this group failed to reach statistical significance on both days (i.e., Days 3 and 10) following pump removal. Results showed that animals continuously infused with cocaine develop robust tolerance to cocaine's threshold-lowering effect during the 14-day infusion period. Tolerance to cocaine's threshold-lowering effect was short-lived and dissipated soon after minipump removal. L-NAME treatment failed to significantly

  16. Methylphenidate attenuates limbic brain inhibition after cocaine-cues exposure in cocaine abusers.

    SciTech Connect

    Volkow, N.D.; Wang, G.; Volkow, N.D.; Wang, G.-J.; Tomasi, D.; Telang, F.; Fowler, J.S.; Pradhan, K.; Jayne, M.; Logan, J.; Goldstein, R.Z.; Alia-Klein, N.; Wong, C.T.

    2010-07-01

    Dopamine (phasic release) is implicated in conditioned responses. Imaging studies in cocaine abusers show decreases in striatal dopamine levels, which we hypothesize may enhance conditioned responses since tonic dopamine levels modulate phasic dopamine release. To test this we assessed the effects of increasing tonic dopamine levels (using oral methylphenidate) on brain activation induced by cocaine-cues in cocaine abusers. Brain metabolism (marker of brain function) was measured with PET and {sup 18}FDG in 24 active cocaine abusers tested four times; twice watching a Neutral video (nature scenes) and twice watching a Cocaine-cues video; each video was preceded once by placebo and once by methylphenidate (20 mg). The Cocaine-cues video increased craving to the same extent with placebo (68%) and with methylphenidate (64%). In contrast, SPM analysis of metabolic images revealed that differences between Neutral versus Cocaine-cues conditions were greater with placebo than methylphenidate; whereas with placebo the Cocaine-cues decreased metabolism (p<0.005) in left limbic regions (insula, orbitofrontal, accumbens) and right parahippocampus, with methylphenidate it only decreased in auditory and visual regions, which also occurred with placebo. Decreases in metabolism in these regions were not associated with craving; in contrast the voxel-wise SPM analysis identified significant correlations with craving in anterior orbitofrontal cortex (p<0.005), amygdala, striatum and middle insula (p<0.05). This suggests that methylphenidate's attenuation of brain reactivity to Cocaine-cues is distinct from that involved in craving. Cocaine-cues decreased metabolism in limbic regions (reflects activity over 30 minutes), which contrasts with activations reported by fMRI studies (reflects activity over 2-5 minutes) that may reflect long-lasting limbic inhibition following activation. Studies to evaluate the clinical significance of methylphenidate's blunting of cue-induced limbic

  17. Single prolonged stress effects on sensitization to cocaine and cocaine self-administration in rats

    PubMed Central

    Eagle, Andrew L.; Singh, Robby; Kohler, Robert J.; Friedman, Amy L.; Liebowitz, Chelsea P.; Galloway, Matthew P.; Enman, Nicole M.; Jutkiewicz, Emily M.; Perrine, Shane A.

    2017-01-01

    Posttraumatic stress disorder (PTSD) is often comorbid with substance use disorders (SUD). Single prolonged stress (SPS) is a well-validated rat model of PTSD that provides a framework to investigate drug-induced behaviors as a preclinical model of the comorbidity. We hypothesized that cocaine sensitization and self-administration would be increased following exposure to SPS. Male Sprague–Dawley rats were exposed to SPS or control treatment. After SPS, cocaine (0,10 or 20mg/kg, i.p.) was administered for 5 consecutive days and locomotor activity was measured. Another cohort was assessed for cocaine self-administration (0.1 or 0.32 mg/kg/i.v.) after SPS. Rats were tested for acquisition, extinction and cue-induced reinstatement behaviors. Control animals showed a dose-dependent increase in cocaine-induced locomotor activity after acute cocaine whereas SPS rats did not. Using a sub-threshold sensitization paradigm, control rats did not exhibit enhanced locomotor activity at Day 5 and therefore did not develop behavioral sensitization, asexpected. However, compared to control ratson Day 5 the locomotor response to 20mg/kg repeated cocaine was greatly enhanced in SPS-treated rats, which exhibited enhanced cocaine locomotor sensitization. The effect of SPS on locomotor activity was unique in that SPS did not modify cocaine self-administration behaviors under a simple schedule of reinforcement. These data show that SPS differentially affects cocaine-mediated behaviors causing no effect to cocaine self-administration, under a simple schedule of reinforcement, but significantly augmenting cocaine locomotor sensitization. These results suggest that SPS shares common neurocircuitry with stimulant-induced plasticity, but dissociable from that underlying psychostimulant-induced reinforcement. PMID:25712697

  18. Methylphenidate attenuates limbic brain inhibition after cocaine-cues exposure in cocaine abusers.

    PubMed

    Volkow, Nora D; Wang, Gene-Jack; Tomasi, Dardo; Telang, Frank; Fowler, Joanna S; Pradhan, Kith; Jayne, Millard; Logan, Jean; Goldstein, Rita Z; Alia-Klein, Nelly; Wong, Christopher

    2010-07-09

    Dopamine (phasic release) is implicated in conditioned responses. Imaging studies in cocaine abusers show decreases in striatal dopamine levels, which we hypothesize may enhance conditioned responses since tonic dopamine levels modulate phasic dopamine release. To test this we assessed the effects of increasing tonic dopamine levels (using oral methylphenidate) on brain activation induced by cocaine-cues in cocaine abusers. Brain metabolism (marker of brain function) was measured with PET and (18)FDG in 24 active cocaine abusers tested four times; twice watching a Neutral video (nature scenes) and twice watching a Cocaine-cues video; each video was preceded once by placebo and once by methylphenidate (20 mg). The Cocaine-cues video increased craving to the same extent with placebo (68%) and with methylphenidate (64%). In contrast, SPM analysis of metabolic images revealed that differences between Neutral versus Cocaine-cues conditions were greater with placebo than methylphenidate; whereas with placebo the Cocaine-cues decreased metabolism (p<0.005) in left limbic regions (insula, orbitofrontal, accumbens) and right parahippocampus, with methylphenidate it only decreased in auditory and visual regions, which also occurred with placebo. Decreases in metabolism in these regions were not associated with craving; in contrast the voxel-wise SPM analysis identified significant correlations with craving in anterior orbitofrontal cortex (p<0.005), amygdala, striatum and middle insula (p<0.05). This suggests that methylphenidate's attenuation of brain reactivity to Cocaine-cues is distinct from that involved in craving. Cocaine-cues decreased metabolism in limbic regions (reflects activity over 30 minutes), which contrasts with activations reported by fMRI studies (reflects activity over 2-5 minutes) that may reflect long-lasting limbic inhibition following activation. Studies to evaluate the clinical significance of methylphenidate's blunting of cue-induced limbic

  19. Mechanisms of metabonomic for a gateway drug: nicotine priming enhances behavioral response to cocaine with modification in energy metabolism and neurotransmitter level.

    PubMed

    Li, Hongyu; Bu, Qian; Chen, Bo; Shao, Xue; Hu, Zhengtao; Deng, Pengchi; Lv, Lei; Deng, Yi; Zhu, Ruiming; Li, Yan; Zhang, Baolai; Hou, Jing; Du, Changman; Zhao, Qian; Fu, Dengqi; Zhao, Yinglan; Cen, Xiaobo

    2014-01-01

    Nicotine, one of the most commonly used drugs, has become a major concern because tobacco serves as a gateway drug and is linked to illicit drug abuse, such as cocaine and marijuana. However, previous studies mainly focused on certain genes or neurotransmitters which have already been known to participate in drug addiction, lacking endogenous metabolic profiling in a global view. To further explore the mechanism by which nicotine modifies the response to cocaine, we developed two conditioned place preference (CPP) models in mice. In threshold dose model, mice were pretreated with nicotine, followed by cocaine treatment at the dose of 2 mg/kg, a threshold dose of cocaine to induce CPP in mice. In high-dose model, mice were only treated with 20 mg/kg cocaine, which induced a significant CPP. (1)H nuclear magnetic resonance based on metabonomics was used to investigate metabolic profiles of the nucleus accumbens (NAc) and striatum. We found that nicotine pretreatment dramatically increased CPP induced by 2 mg/kg cocaine, which was similar to 20 mg/kg cocaine-induced CPP. Interestingly, metabolic profiles showed considerable overlap between these two models. These overlapped metabolites mainly included neurotransmitters as well as the molecules participating in energy homeostasis and cellular metabolism. Our results show that the reinforcing effect of nicotine on behavioral response to cocaine may attribute to the modification of some specific metabolites in NAc and striatum, thus creating a favorable metabolic environment for enhancing conditioned rewarding effect of cocaine. Our findings provide an insight into the effect of cigarette smoking on cocaine dependence and the underlying mechanism.

  20. Mechanisms of Metabonomic for a Gateway Drug: Nicotine Priming Enhances Behavioral Response to Cocaine with Modification in Energy Metabolism and Neurotransmitter Level

    PubMed Central

    Li, Hongyu; Bu, Qian; Chen, Bo; Shao, Xue; Hu, Zhengtao; Deng, Pengchi; Lv, Lei; Deng, Yi; Zhu, Ruiming; Li, Yan; Zhang, Baolai; Hou, Jing; Du, Changman; Zhao, Qian; Fu, Dengqi; Zhao, Yinglan; Cen, Xiaobo

    2014-01-01

    Nicotine, one of the most commonly used drugs, has become a major concern because tobacco serves as a gateway drug and is linked to illicit drug abuse, such as cocaine and marijuana. However, previous studies mainly focused on certain genes or neurotransmitters which have already been known to participate in drug addiction, lacking endogenous metabolic profiling in a global view. To further explore the mechanism by which nicotine modifies the response to cocaine, we developed two conditioned place preference (CPP) models in mice. In threshold dose model, mice were pretreated with nicotine, followed by cocaine treatment at the dose of 2 mg/kg, a threshold dose of cocaine to induce CPP in mice. In high-dose model, mice were only treated with 20 mg/kg cocaine, which induced a significant CPP. 1H nuclear magnetic resonance based on metabonomics was used to investigate metabolic profiles of the nucleus accumbens (NAc) and striatum. We found that nicotine pretreatment dramatically increased CPP induced by 2 mg/kg cocaine, which was similar to 20 mg/kg cocaine-induced CPP. Interestingly, metabolic profiles showed considerable overlap between these two models. These overlapped metabolites mainly included neurotransmitters as well as the molecules participating in energy homeostasis and cellular metabolism. Our results show that the reinforcing effect of nicotine on behavioral response to cocaine may attribute to the modification of some specific metabolites in NAc and striatum, thus creating a favorable metabolic environment for enhancing conditioned rewarding effect of cocaine. Our findings provide an insight into the effect of cigarette smoking on cocaine dependence and the underlying mechanism. PMID:24489831

  1. Higher locomotor response to cocaine in female (vs. male) rats selectively bred for high (HiS) and low (LoS) saccharin intake

    PubMed Central

    Carroll, Marilyn E.; Anderson, Marissa M.; Morgan, Andrew D.

    2013-01-01

    Rats selectively bred for high saccharin consumption (HiS) self-administer more oral ethanol and i.v. cocaine than those selectively bred for low saccharin consumption (LoS). Male and female drug-seeking-prone (HiS) and –resistant (LoS) rats were used in the present experiment to test the prediction that cocaine-induced locomotor activity and sensitization varied with sex and their selective breeding status (HiS and LoS). All rats were intermittently exposed over 2 weeks to pairs of sequential saline and cocaine injections, separated by 45 min. The first 5 pairs of injections, each separated by 2-3 days (10-12 days total), were given to examine the development of cocaine-induced locomotor activity and the development of locomotor sensitization, which was determined by comparing the effects of cocaine injection 1 with injection 6, which was given 2 weeks after the 5 pairs of intermittent injections. Results indicated that after the first injection pair (saline, cocaine) the HiS and LoS groups did not differ (saline vs. cocaine) in locomotor activity; however, after cocaine injections 1, 5 and 6, HiS females were more active than HiS males and LoS females. There were also significant phenotype differences (HiS > LoS) in locomotor activity after cocaine injections 5 and 6. There was only a weak sensitization effect in cocaine-induced locomotor activity in HiS females after cocaine injection 5 (compared to 1); however it was not present after injection 6 or in other groups. The lack of a strong sensitization effect under these temporal and dose conditions was inconsistent with previous reports. However, the results showing HiS > LoS and females > males on cocaine-induced activity measures are consistent with several measures of cocaine-seeking behavior (acquisition, maintenance, escalation, extinction, and reinstatement), and they suggest that cocaine-induced locomotor activity and sensitization are behavioral markers of drug-seeking phenotypes. PMID:17707494

  2. The inhibition of cocaine-induced locomotor activity by CART 55-102 is lost after repeated cocaine administration.

    PubMed

    Job, Martin O; Shen, Li L; Kuhar, Michael J

    2013-08-29

    CART peptide is known for having an inhibitory effect on cocaine- and dopamine-mediated actions after acute administration of cocaine and dopamine. In this regard, it is postulated to be a homeostatic, regulatory factor on dopaminergic activity in the nucleus accumbens (NAc). However, there is no data on the effect of CART peptide after chronic administration of cocaine, and this study addresses this. It was found that CART peptide blunted cocaine-induced locomotion (LMA) after acute administration of cocaine, as expected, but it did not affect cocaine-mediated LMA after chronic administration of cocaine. The loss of CART peptide's inhibitory effect did not return for up to 9 weeks after stopping the repeated cocaine administration. It may not be surprising that homeostatic regulatory mechanisms in the NAc are lost after repeated cocaine administration, and that this may be a mechanism in the development of addiction.

  3. A Simple Economic Model of Cocaine Production

    DTIC Science & Technology

    1994-01-01

    the current state of the cocaine market that are used to parameterize the model. The results of a set of simulations of the model are then presented...and they lead to the following conclusions "Crop substitutionW programs will have a negligible impact on the world cocaine market . As desirable for...strategies that seize and destroy 70 percent or less of production, without limiting the total level of production, will have little impact on the market . If

  4. Immunopharmacotherapeutic Manifolds and Modulation of Cocaine Overdose

    PubMed Central

    Treweek, Jennifer B.; Roberts, Amanda J.; Janda, Kim D.

    2011-01-01

    Cocaine achieves its psychostimulant, reinforcing properties through selectively blocking dopamine transporters, and this neurobiological mechanism impedes the use of classical receptor-antagonist pharmacotherapies to outcompete cocaine at CNS sites. Passive immunization with monoclonal antibodies (mAb) specific for cocaine circumvents this problem as drug is sequestered in the periphery prior to entry into the brain. To optimize an immunopharmacotherapeutic strategy for reversing severe cocaine toxicity, the therapeutic properties of mAb GNC92H2 IgG were compared to those of its engineered formats in a mouse overdose model. Whereas the extended half-life of an IgG justifies its application to the prophylactic treatment of addiction, the rapid, thorough biodistribution of mAb-based fragments, including F(ab')2, Fab and scFv, may correlate to accelerated scavenging of cocaine and reversal of toxicity. To test this hypothesis, mice were administered the anti-cocaine IgG (180 mg/kg, i.v.) or GNC92H2-based agent after receiving an LD50 cocaine dose (93 mg/kg, i.p.), and the timeline of overdose symptoms was recorded. All formats lowered the rate of lethality despite the >100-fold molar excess of drug to antibody binding capacity. However, only F(ab')2-92H2 and Fab-92H2 significantly attenuated the progression of premorbid behaviors, and Fab-92H2 prevented seizure generation in a percentage of mice. The calculation of serum half-life of each format demonstrated that the pharmacokinetic profile of Fab-92H2 (elimination half-life, t1/2 ∼ 100 minutes) best approximated that of cocaine. These results not only confirm the importance of highly specific and tight drug binding by the mAb, but also highlight the benefit of aligning the pharmacokinetic and pharmacodynamic properties of the immunopharmacotherapeutic with the targeted drug. PMID:21356233

  5. Immunopharmacotherapeutic manifolds and modulation of cocaine overdose.

    PubMed

    Treweek, Jennifer B; Roberts, Amanda J; Janda, Kim D

    2011-05-01

    Cocaine achieves its psychostimulant, reinforcing properties through selectively blocking dopamine transporters, and this neurobiological mechanism impedes the use of classical receptor-antagonist pharmacotherapies to outcompete cocaine at CNS sites. Passive immunization with monoclonal antibodies (mAb) specific for cocaine circumvents this problem as drug is sequestered in the periphery prior to entry into the brain. To optimize an immunopharmacotherapeutic strategy for reversing severe cocaine toxicity, the therapeutic properties of mAb GNC92H2 IgG were compared to those of its engineered formats in a mouse overdose model. Whereas the extended half-life of an IgG justifies its application to the prophylactic treatment of addiction, the rapid, thorough biodistribution of mAb-based fragments, including F(ab')₂, Fab and scFv, may correlate to accelerated scavenging of cocaine and reversal of toxicity. To test this hypothesis, mice were administered the anti-cocaine IgG (180 mg/kg, i.v.) or GNC92H2-based agent after receiving an LD₅₀ cocaine dose (93 mg/kg, i.p.), and the timeline of overdose symptoms was recorded. All formats lowered the rate of lethality despite the >100-fold molar excess of drug to antibody binding capacity. However, only F(ab')₂-92H2 and Fab-92 H2 significantly attenuated the progression of premorbid behaviors, and Fab-92H2 prevented seizure generation in a percentage of mice. The calculation of serum half-life of each format demonstrated that the pharmacokinetic profile of Fab-92H2 (elimination half-life, t½~100 min) best approximated that of cocaine. These results not only confirm the importance of highly specific and tight drug binding by the mAb, but also highlight the benefit of aligning the pharmacokinetic and pharmacodynamic properties of the immunopharmacotherapeutic with the targeted drug. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Is crack cocaine use associated with greater violence than powdered cocaine use? Results from a national sample.

    PubMed

    Vaughn, Michael G; Fu, Qiang; Perron, Brian E; Bohnert, Amy S B; Howard, Matthew O

    2010-07-01

    The question of whether crack cocaine use is associated with increased violence compared to powdered cocaine use has not been adequately explored in large nationally representative general population samples. This study used data from the National Epidemiologic Survey on Alcohol and Related Conditions (NESARC) to 1) determine the comparative prevalences of violent behaviors among crack cocaine users and powdered cocaine users, 2) examine these differences while controlling for sociodemographic variables, lifetime psychiatric, alcohol and drug use disorders (a majority of cocaine users use other substances), and levels of crack cocaine and powdered cocaine use. The likelihood of violence associated with crack cocaine users was greater compared to powdered cocaine users at the bivariate level. However, these differences were almost uniformly statistically nonsignificant when demographic, mood and non-cocaine substance use disorders were controlled for. The substantial attenuation of the association of crack cocaine use with violence after adjustment suggests that the sociodemographic characteristics, psychiatric variables, and non-cocaine substance use disorders that make some individuals more likely to use crack cocaine than powder cocaine are responsible for the increased prevalence of violence observed among crack users, rather than crack itself.

  7. Clozapine and cocaine effects on dopamine and serotonin release in nucleus accumbens during psychostimulant behavior and withdrawal.

    PubMed

    Broderick, Patricia A; Hope, Omotola; Okonji, Catherine; Rahni, David N; Zhou, Yueping

    2004-01-01

    There is an increasing awareness that a psychosis, similar to that of schizophrenic psychosis, can be derived from cocaine addiction. Thus, the prototypical atypical antipsychotic medication, clozapine, a 5-HT(2)/DA(2) antagonist, was studied for its effects on cocaine-induced dopamine (DA) and serotonin (5-HT) release in nucleus accumbens (NAcc) of behaving male Sprague-Dawley laboratory rats with In Vivo Microvoltammetry, while animals' locomotor (forward ambulations), an A(10) behavior, was monitored at the same time with infrared photobeams. Release mechanisms for monoamines were determined by using a depolarization blocker, gamma-butyrolactone (gammaBL). BRODERICK PROBE microelectrodes selectively detected release of DA and 5-HT within seconds and sequentially in A(10) nerve terminals, NAcc. Acute and subacute studies were performed for each treatment group. Acute studies are defined as single injection of drug(s) after a stable baseline of each monoamine and locomotor behavior has been achieved. Subacute studies are defined as 24-h follow-up studies on each monoamine and locomotor behavior, in the same animal at which time, no further drug was administered. Results showed that (1) acute administration of cocaine (10 mg/kg ip) (n=5) significantly increased both DA and 5-HT release above baseline (P<.001) while locomotion was also significantly increased above baseline (P<.001). In subacute studies, DA release decreased significantly below baseline (P<.001) and significant decreases in 5-HT release occurred at the 15-min mark and at each time point during the second part of the hour (P<.05); the maximum decrease in 5-HT was 40% below baseline. Locomotor behavior, on the other hand, increased significantly above baseline (P<.05). (2) Acute administration of clozapine/cocaine (20 and 10 mg/kg ip, respectively; n=6) produced a significant block of the cocaine-induced increase in DA (P<.001) and 5-HT release (P<.001). Cocaine-induced locomotion was blocked

  8. Hormones, Nicotine and Cocaine: Clinical Studies

    PubMed Central

    Mello, Nancy K.

    2009-01-01

    Nicotine and cocaine each stimulate hypothalamic-pituitary-adrenal and -gonadal axis hormones, and there is increasing evidence that the hormonal milieu may modulate the abuse-related effects of these drugs. This review summarizes some clinical studies of the acute effects of cigarette smoking or IV cocaine on plasma drug and hormone levels, and subjective effects ratings. The temporal covariance between these dependent measures was assessed with a rapid (two min) sampling procedure in nicotine-dependent volunteers or current cocaine users. Cigarette smoking and IV cocaine each stimulated a rapid increase in LH and ACTH, followed by gradual increases in cortisol and DHEA. Positive subjective effects ratings increased immediately after initiation of cigarette smoking or IV cocaine administration. However, in contrast to cocaine’s sustained positive effects (< 20 min), ratings of “High” and “Rush” began to decrease within one or two puffs of a high nicotine cigarette while nicotine levels were increasing. Peak nicotine levels increased progressively after each of three successive cigarettes smoked at 60 min intervals, but the magnitude of the subjective effects ratings and peak ACTH and cortisol levels diminished. Only DHEA increased consistently after successive cigarettes. The possible influence of neuroactive hormones on nicotine dependence and cocaine abuse, and implications for treatment of these addictive disorders is discussed. PMID:19835877

  9. Time course of cocaine in rabbit hair.

    PubMed

    Jurado, C; Rodriguez-Vicente, C; Menéndez, M; Repetto, M

    1997-01-17

    The accurate interpretation of analytical results from hair testing for drugs of abuse continues to be a complex and difficult problem since many questions still remain unanswered. In this paper an animal model was developed to ascertain the time course for the appearance and disappearance of cocaine and its metabolite benzoylecgonine (BE) in hair. Female Fauve Bourgogne red-haired rabbits (n = 6) were intraperitoneally administered a single dose of cocaine at 5 mg/kg. Animal hair was shaved just before drug administration and the newly grown back hair was subsequently shaved and collected daily over a period of two weeks. Samples were analyzed for cocaine and BE by gas chromatography-mass spectrometry (GC-MS). The profiles were quite similar for parent drug and metabolite. Cocaine and BE appeared in the first sampling (day 1), with peak concentration appearing that same day. 1.01 ng/mg and 0.51 ng/mg for cocaine and BE, respectively. Levels declined rapidly on day 2, remaining detectable for ten days after drug administration. This study demonstrates that the initial incorporation of cocaine compounds in rabbit hair is very rapid (24 h). A small fraction of the drug is detected ten days after exposure, at a time when concentrations in other biological specimens (blood or urine) are not detectable.

  10. Smoked cocaine in socially-depressed areas

    PubMed Central

    2010-01-01

    Background The main objectives of this study are to describe the smoked cocaine user's profile in socially-depressed areas and their needs from a harm-reduction perspective, to investigate their use of smoking crack and compare the acute effects between injecting and smoking consumption. Methods The study took place in SAPS, Barcelona, Spain. Two focus group sessions were undertaken with a total of 8 drug users. Secondly, the 8 participants answered a structured questionnaire and in the course of the sessions, as a snowball activity, were trained to survey 6 other crack smokers. Results We obtained 56 questionnaires. The majority of participants were from non-European Community countries (62.69%), 70.2% of participants referred to sharing the smoking equipment. The most frequent symptoms reported during smoked cocaine were mydriasis (83.33%)), perspiration (72.92%) and compulsive object search (70.83%) During the group sessions, participants said that smoked cocaine is much more addictive than injected cocaine and causes more anxiety. Participants also reported the difficulty of changing from injected use to smoked use, due to the larger amount of cocaine needed to reach the same effects as when having injected. Conclusions We can conclude that the research, focused on achieving greater knowledge of the smoked cocaine user's profile, their usage of smoking crack, consumption patterns and acute effects, should be incorporated into substance misuse interventions. PMID:21059272

  11. Profiling cocaine by ATR-FTIR.

    PubMed

    Marcelo, M C A; Mariotti, K C; Ferrão, M F; Ortiz, R S

    2015-01-01

    In this article, five hundred and thirteen cocaine seizures of the State of Rio Grande do Sul (Brazil) were analyzed by Fourier transform infrared spectroscopy (FT-IR) in the fingerprint region (1800-650 cm(-1)) to profiling and evaluate the pharmaceutical products used as adulterants. Hierarchical cluster analysis (HCA) and principal component analysis (PCA) were used to identify patterns among the samples whereas partial least square discriminant analysis (PLS-DA) and support vector machines discriminant analysis (SVM-DA) were used to classification the cocaine between base and salt. Spectra of standard solid mixtures of cocaine (salt and base), phenacetin, lidocaine and caffeine were used associated with PCA to predict qualitatively the profile of cocaine seizure. In HCA and PCA, salt and base group were formed correctly. Accordingly with predicted profile of the salt samples, they were majority adulterated with caffeine and lidocaine whereas base cocaine was adulterated only with phenacetin. In the discrimant analysis, all methods have classified the cocaine samples correctly with sensitivity and specificity equal to one between salt and base. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  12. Differential Control of Cocaine Self-Administration by GABAergic and Glutamatergic CB1 Cannabinoid Receptors

    PubMed Central

    Martín-García, Elena; Bourgoin, Lucie; Cathala, Adeline; Kasanetz, Fernando; Mondesir, Miguel; Gutiérrez-Rodriguez, Ana; Reguero, Leire; Fiancette, Jean- François; Grandes, Pedro; Spampinato, Umberto; Maldonado, Rafael; Piazza, Pier Vincenzo; Marsicano, Giovanni; Deroche-Gamonet, Véronique

    2016-01-01

    The type 1 cannabinoid receptor (CB1) modulates numerous neurobehavioral processes and is therefore explored as a target for the treatment of several mental and neurological diseases. However, previous studies have investigated CB1 by targeting it globally, regardless of its two main neuronal localizations on glutamatergic and GABAergic neurons. In the context of cocaine addiction this lack of selectivity is critical since glutamatergic and GABAergic neuronal transmission is involved in different aspects of the disease. To determine whether CB1 exerts different control on cocaine seeking according to its two main neuronal localizations, we used mutant mice with deleted CB1 in cortical glutamatergic neurons (Glu-CB1) or in forebrain GABAergic neurons (GABA-CB1). In Glu-CB1, gene deletion concerns the dorsal telencephalon, including neocortex, paleocortex, archicortex, hippocampal formation and the cortical portions of the amygdala. In GABA-CB1, it concerns several cortical and non-cortical areas including the dorsal striatum, nucleus accumbens, thalamic, and hypothalamic nuclei. We tested complementary components of cocaine self-administration, separating the influence of primary and conditioned effects. Mechanisms underlying each phenotype were explored using in vivo microdialysis and ex vivo electrophysiology. We show that CB1 expression in forebrain GABAergic neurons controls mouse sensitivity to cocaine, while CB1 expression in cortical glutamatergic neurons controls associative learning processes. In accordance, in the nucleus accumbens, GABA-CB1 receptors control cocaine-induced dopamine release and Glu-CB1 receptors control AMPAR/NMDAR ratio; a marker of synaptic plasticity. Our findings demonstrate a critical distinction of the altered balance of Glu-CB1 and GABA-CB1 activity that could participate in the vulnerability to cocaine abuse and addiction. Moreover, these novel insights advance our understanding of CB1 neuropathophysiology. PMID:26612422

  13. Self-administration of cocaine induces dopamine-independent self-administration of sigma agonists.

    PubMed

    Hiranita, Takato; Mereu, Maddalena; Soto, Paul L; Tanda, Gianluigi; Katz, Jonathan L

    2013-03-01

    Sigma(1) receptors (σ(1)Rs) are intracellularly mobile chaperone proteins implicated in several disease processes, as well as psychiatric disorders and substance abuse. Here we report that although selective σ(1)R agonists (PRE-084, (+)-pentazocine) lacked reinforcing effects in drug-naive rats, over the course of 28 experimental sessions, which was more than sufficient for acquisition of cocaine self-administration, responding was not maintained by either σ(1)R agonist. In contrast, after subjects self-administered cocaine σ(1)R agonists were readily self-administered. The induced reinforcing effects were long lasting; a response for which subjects had no history of reinforcement was newly conditioned with both σ(1)R agonists, extinguished when injections were discontinued, and reconditioned when σ(1)R agonists again followed responses. Experience with food reinforcement was ineffective as an inducer of σ(1)R agonist reinforcement. Although a variety of dopamine receptor antagonists blocked cocaine self-administration, consistent with its dopaminergic mechanism, PRE-084 self-administration was entirely insensitive to these drugs. Conversely, the σR antagonist, BD1063, blocked PRE-084 self-administration but was inactive against cocaine. In microdialysis studies i.v. PRE-084 did not significantly stimulate dopamine at doses that were self-administered in rats either with or without a cocaine self-administration experience. The results indicate that cocaine experience induces reinforcing effects of previously inactive σ(1)R agonists, and that the mechanism underlying these reinforcing effects is dopamine independent. It is further suggested that induced σ(1)R mechanisms may have an essential role in treatment-resistant stimulant abuse, suggesting new approaches for the development of effective medications for stimulant abuse.

  14. Cocaine

    MedlinePlus

    ... Search for HOME ABOUT Mission History Office Locations Domestic Office Locations Foreign Office Locations Leadership Museum Wall ... Facts STAY CONNECTED Stay Connected About Mission History Domestic Office Locations Foreign Office Locations Leadership Museum Wall ...

  15. Cocaine

    MedlinePlus

    ... it can contaminate an entire cash drawer or ATM. It’s a little like someone with a cold— ... Online Download PDF Drug and Alcohol Use in College-Age Adults in 2015 Published: November 03, 2016 ...

  16. Ratio size and cocaine concentration effects on oral cocaine-reinforced behavior.

    PubMed

    Macenski, M J; Meisch, R A

    1998-09-01

    Monkeys were given a choice between cocaine solutions and water under concurrent fixed-ratio reinforcement schedules. The operant response was spout contact. Six rhesus monkeys served as subjects. The cocaine concentration was varied from 0.0125 to 0.8 mg/ml, and the fixed-ratio value was varied from 8 to 128. Cocaine maintained higher response rates than did water over a wide range of conditions. Response rate and number of cocaine deliveries per session were inverted U-shaped functions of concentration. These functions were shifted to the right as the fixed ratio was increased. The number of cocaine deliveries was more persistent as fixed-ratio value was increased when the unit dose was larger rather than smaller. Cocaine consumption was analyzed as a function of unit price (fixed-ratio value divided by cocaine concentration), and unit price accounted for between 77% and 92% of the variance in cocaine consumption for individual monkeys. The current data support the claim that a drug's reinforcing effects increase directly with dose and underscore the need to gather parametric data when examining the effects of experimental manipulations on a drug-reinforced baseline.

  17. Aripiprazole maintenance increases smoked cocaine self-administration in humans

    PubMed Central

    Rubin, Eric; Foltin, Richard W.

    2011-01-01

    Rationale Partial dopamine receptor agonists have been proposed as candidate pharmacotherapies for cocaine dependence. Objective This 42-day, within-subject, human laboratory study assessed how maintenance on aripiprazole, a partial D2 receptor agonist, influenced smoked cocaine self-administration, cardiovascular measures, subjective effects, and cocaine craving in nontreatment-seeking, cocaine-dependent volunteers. Methods In order to achieve steady-state concentrations, participants (n=8 men) were administered placebo and aripiprazole (15 mg/day) capsules in counter-balanced order for 21 days. A smoked cocaine dose–response curve (0, 12, 25, 50 mg) was determined twice under placebo and aripiprazole maintenance. Sessions comprised a “sample” trial, when participants smoked the cocaine dose available that session, and five choice trials, when they responded on a progressive-ratio schedule of reinforcement to receive the cocaine dose or receive $5.00. Results Cocaine’s reinforcing, subjective, and cardiovascular effects were dose-dependent. Aripiprazole significantly increased cocaine (12, 25 mg) self-administration. Following a single administration of cocaine (25 mg), aripiprazole decreased ratings of how much participants would pay for that dose. Following repeated cocaine (50 mg) self-administration, aripiprazole decreased ratings of cocaine quality, craving, and good drug effect as compared to placebo. Conclusions These data suggest that aripiprazole may have increased self-administration to compensate for a blunted subjective cocaine effect. Overall, the findings do not suggest aripiprazole would be useful for treating cocaine dependence. PMID:21373790

  18. Effects of chronic varenicline treatment on nicotine, cocaine, and concurrent nicotine+cocaine self-administration.

    PubMed

    Mello, Nancy K; Fivel, Peter A; Kohut, Stephen J; Carroll, F Ivy

    2014-04-01

    Nicotine dependence and cocaine abuse are major public health problems, and most cocaine abusers also smoke cigarettes. An ideal treatment medication would reduce both cigarette smoking and cocaine abuse. Varenicline is a clinically available, partial agonist at α4β2* and α6β2* nicotinic acetylcholine receptors (nAChRs) and a full agonist at α7 nAChRs. Varenicline facilitates smoking cessation in clinical studies and reduced nicotine self-administration, and substituted for the nicotine-discriminative stimulus in preclinical studies. The present study examined the effects of chronic varenicline treatment on self-administration of IV nicotine, IV cocaine, IV nicotine+cocaine combinations, and concurrent food-maintained responding by five cocaine- and nicotine-experienced adult rhesus monkeys (Macaca mulatta). Varenicline (0.004-0.04 mg/kg/h) was administered intravenously every 20 min for 23 h each day for 7-10 consecutive days. Each varenicline treatment was followed by saline-control treatment until food- and drug-maintained responding returned to baseline. During control treatment, nicotine+cocaine combinations maintained significantly higher levels of drug self-administration than nicotine or cocaine alone (P<0.05-0.001). Varenicline dose-dependently reduced responding maintained by nicotine alone (0.0032 mg/kg/inj) (P<0.05), and in combination with cocaine (0.0032 mg/kg/inj) (P<0.05) with no significant effects on food-maintained responding. However, varenicline did not significantly decrease self-administration of a low dose of nicotine (0.001 mg/kg), cocaine alone (0.0032 and 0.01 mg/kg/inj), or 0.01 mg/kg cocaine combined with the same doses of nicotine. We conclude that varenicline selectively attenuates the reinforcing effects of nicotine alone but not cocaine alone, and its effects on nicotine+cocaine combinations are dependent on the dose of cocaine.

  19. Effects of Chronic Varenicline Treatment on Nicotine, Cocaine, and Concurrent Nicotine+Cocaine Self-Administration

    PubMed Central

    Mello, Nancy K; Fivel, Peter A; Kohut, Stephen J; Carroll, F Ivy

    2014-01-01

    Nicotine dependence and cocaine abuse are major public health problems, and most cocaine abusers also smoke cigarettes. An ideal treatment medication would reduce both cigarette smoking and cocaine abuse. Varenicline is a clinically available, partial agonist at α4β2* and α6β2* nicotinic acetylcholine receptors (nAChRs) and a full agonist at α7 nAChRs. Varenicline facilitates smoking cessation in clinical studies and reduced nicotine self-administration, and substituted for the nicotine-discriminative stimulus in preclinical studies. The present study examined the effects of chronic varenicline treatment on self-administration of IV nicotine, IV cocaine, IV nicotine+cocaine combinations, and concurrent food-maintained responding by five cocaine- and nicotine-experienced adult rhesus monkeys (Macaca mulatta). Varenicline (0.004–0.04 mg/kg/h) was administered intravenously every 20 min for 23 h each day for 7–10 consecutive days. Each varenicline treatment was followed by saline-control treatment until food- and drug-maintained responding returned to baseline. During control treatment, nicotine+cocaine combinations maintained significantly higher levels of drug self-administration than nicotine or cocaine alone (P<0.05–0.001). Varenicline dose-dependently reduced responding maintained by nicotine alone (0.0032 mg/kg/inj) (P<0.05), and in combination with cocaine (0.0032 mg/kg/inj) (P<0.05) with no significant effects on food-maintained responding. However, varenicline did not significantly decrease self-administration of a low dose of nicotine (0.001 mg/kg), cocaine alone (0.0032 and 0.01 mg/kg/inj), or 0.01 mg/kg cocaine combined with the same doses of nicotine. We conclude that varenicline selectively attenuates the reinforcing effects of nicotine alone but not cocaine alone, and its effects on nicotine+cocaine combinations are dependent on the dose of cocaine. PMID:24304823

  20. Simultaneous measurement of cocaine, cocaethylene, their metabolites, and "crack" pyrolysis products by gas chromatography-mass spectrometry.

    PubMed

    Cone, E J; Hillsgrove, M; Darwin, W D

    1994-07-01

    We developed a sensitive and specific assay for the simultaneous measurement of cocaine, cocaethylene, six of their metabolites, and anhydroecgonine methyl ester, a pyrolysis product, in biological fluids. The assay involves solid-phase extraction columns containing a copolymeric bonded phase for isolation of cocaine analytes, derivatization with N,O-bis(trimethylsilyl)trifluoroacetamide and 10 g/L trimethylchlorosilane, and measurement with gas chromatography-mass spectrometry operating in the selected-ion monitoring mode. Detector responses for analytes were linear over a concentration range of 3.1-1000 micrograms/L. The limits of detection were approximately 1 microgram/L for cocaine, ecgonine methyl ester, and benzoylecgonine and 3-6 micrograms/L for the remaining analytes. Hydrolysis of cocaine and artifact formation of anhydroecogonine methyl ester during extraction and assay was < 1%. Cocaine and its derivatives appear in different proportions in plasma, saliva, and urine according to the biological fluid and time of measurement. Each biological fluid provides unique information on the disposition of cocaine in human subjects.

  1. Prolonged withdrawal following cocaine self-administration increases resistance to punishment in a cocaine binge.

    PubMed

    Gancarz-Kausch, Amy M; Adank, Danielle N; Dietz, David M

    2014-11-03

    Drug addiction is characterized by compulsive drug-taking behaviors and a high propensity to relapse following drug cessation. Drug craving and seeking can increase during a period of abstinence, but this phenomenon is not observed in drug-induced reinstatement models. To investigate the effect of withdrawal on cocaine relapse, rats were exposed to extended-access cocaine self-administration and subjected to either 1 or 30 d of withdrawal. When tested during 12 h unlimited access to cocaine (binge), the duration of the withdrawal did not influence cocaine intake. However, using a histamine punishment procedure that greatly suppresses drug-taking behavior, we demonstrate that longer periods of abstinence from cocaine induce a greater persistence in responding for drug in the face of negative consequences.

  2. The Effects of Resistance Exercise on Cocaine Self-Administration, Muscle Hypertrophy, and BDNF Expression in the Nucleus Accumbens

    PubMed Central

    Strickland, Justin C.; Abel, Jean M.; Lacy, Ryan T.; Beckmann, Joshua S.; Witte, Maryam A.; Lynch, Wendy J.; Smith, Mark A.

    2016-01-01

    Background Exercise is associated with positive outcomes in drug abusing populations and reduces drug self-administration in laboratory animals. To date, most research has focused on aerobic exercise, and other types of exercise have not been examined. This study examined the effects of resistance exercise (strength training) on cocaine self-administration and BDNF expression, a marker of neuronal activation regulated by aerobic exercise. Methods Female rats were assigned to either exercising or sedentary conditions. Exercising rats climbed a ladder wearing a weighted vest and trained six days/week. Training consisted of a three-set “pyramid” in which the number of repetitions and resistance varied across three sets: eight climbs carrying 70% body weight (BW), six climbs carrying 85% BW, and four climbs carrying 100% BW. Rats were implanted with intravenous catheters and cocaine self-administration was examined. Behavioral economic measures of demand intensity and demand elasticity were derived from the behavioral data. BDNF mRNA expression was measured via qRT-PCR in the nucleus accumbens following behavioral testing. Results Exercising rats self-administered significantly less cocaine than sedentary rats. A behavioral economic analysis revealed that exercise increased demand elasticity for cocaine, reducing consumption at higher unit prices. Exercising rats had lower BDNF expression in the nucleus accumbens core than sedentary rats. Conclusions These data indicate that resistance exercise decreases cocaine self-administration and reduces BDNF expression in the nucleus accumbens after a history of cocaine exposure. Collectively, these findings suggest that strength training reduces the positive reinforcing effects of cocaine and may decrease cocaine use in human populations. PMID:27137405

  3. Maladaptive choices by defeated rats: link between rapid approach to social threat and escalated cocaine self-administration

    PubMed Central

    Boyson, Christopher O.; Holly, Elizabeth N.; Burke, Andrew R.; Montagud-Romero, Sandra; DeBold, Joseph F.; Miczek, Klaus A.

    2016-01-01

    Rationale Intermittent social defeat stress engenders persistent neuroadaptations and can result in later increased cocaine taking and seeking. However, there are individual differences in stress-escalated cocaine self-administration behavior, which may be a direct result of individual differences in the manner in which rats experience social defeat stress. Objective The present study dissected the discrete behavioral phases of social defeat and analyzed which behavioral characteristics may be predictive of subsequent cocaine self-administration. Methods Male Long-Evans rats underwent nine intermittent social defeat episodes over 21 days in a three-compartment apparatus permitting approach to and escape from a confrontation with an aggressive resident rat. Rats then self-administered intravenous cocaine, which culminated in a 24-h unlimited access “binge.” Behaviors during social defeat and cocaine self-administration were evaluated by principal component analysis (PCA). Results PCA revealed that the latency to enter the threatening environment was highly predictive of later cocaine self-administration during the 24-h binge. This behavior was not associated with other cocaine-predictive traits, such as reactivity to novelty in an open field, saccharin preference, and motor impulsivity. Additionally, there was no effect of latency to enter a threatening environment on physiological measures of stress, including plasma corticosterone and corticotropin releasing factor (CRF) in the extended amygdala. However, latency to enter the threatening environment was negatively correlated with brain-derived neurotropic factor (BDNF) and its receptor, tyrosine kinase B (TrkB) in the hippocampus. Conclusion These data suggest that latency to enter a threatening environment is a novel behavioral characteristic predictive of later cocaine self-administration. PMID:27376946

  4. Dopamine transporter down-regulation following repeated cocaine: implications for 3,4-methylenedioxymethamphetamine-induced acute effects and long-term neurotoxicity in mice

    PubMed Central

    Peraile, I; Torres, E; Mayado, A; Izco, M; Lopez-Jimenez, A; Lopez-Moreno, JA; Colado, MI; O'Shea, E

    2010-01-01

    Background and purpose: 3,4-Methylenedioxymethamphetamine (MDMA) and cocaine are two widely abused psychostimulant drugs targeting the dopamine transporter (DAT). DAT availability regulates dopamine neurotransmission and uptake of MDMA-derived neurotoxic metabolites. We aimed to determine the effect of cocaine pre-exposure on the acute and long-term effects of MDMA in mice. Experimental approach: Mice received a course of cocaine (20 mg·kg−1, ×2 for 3 days) followed by MDMA (20 mg·kg−1, ×2, 3 h apart). Locomotor activity, extracellular dopamine levels and dopaminergic neurotoxicity were determined. Furthermore, following the course of cocaine, DAT density in striatal plasma membrane and endosome fractions was measured. Key results: Four days after the course of cocaine, challenge with MDMA attenuated the MDMA-induced striatal dopaminergic neurotoxicity. Co-administration of the protein kinase C (PKC) inhibitor NPC 15437 prevented cocaine protection. At the same time, after the course of cocaine, DAT density was reduced in the plasma membrane and increased in the endosome fraction, and this effect was prevented by NPC 15437. The course of cocaine potentiated the MDMA-induced increase in extracellular dopamine and locomotor activity, following challenge 4 days later, compared with those pretreated with saline. Conclusions and implications: Repeated cocaine treatment followed by withdrawal protected against MDMA-induced dopaminergic neurotoxicity by internalizing DAT via a mechanism which may involve PKC. Furthermore, repeated cocaine followed by withdrawal induced behavioural and neurochemical sensitization to MDMA, measures which could be indicative of increased rewarding effects of MDMA. PMID:20015297

  5. Functional Consequences of Cocaine Re-exposure after Discontinuation of Cocaine Availability

    PubMed Central

    Beveridge, Thomas J.R.; Smith, Hilary R.; Nader, Susan H.; Nader, Michael A.; Porrino, Linda J.

    2014-01-01

    Cocaine users exhibit a wide range of behavioral impairments accompanied by brain structural, neurochemical and functional abnormalities. Metabolic mapping studies in cocaine users and animal models have shown extensive functional alterations throughout the striatum, limbic system, and cortex. Few studies, however, have evaluated the persistence of these effects following cessation of cocaine availability. The purpose of this study, therefore, was to assess the functional effects of re-exposure to cocaine in nonhuman primates after the discontinuation of cocaine self-administration for 30 or 90 days, using the quantitative autoradiographic 2-[14C]deoxyglucose (2DG) method. Rhesus monkeys self-administered cocaine (fixed interval 3-min schedule, 30 infusions per session, 0.3 mg/kg/infusion) for 100 sessions followed by 30 (n=4) or 90 days (n=3) during which experimental sessions were not conducted. Food-reinforced control animals (n=5) underwent identical schedules of reinforcement. Animals were then re-exposed to cocaine or food for one final session and the 2DG method applied immediately after session completion. Compared to controls, re-exposure to cocaine after 30 or 90 day drug-free periods resulted in lower rates of glucose utilization in ventral and dorsal striatum, prefrontal and temporal cortex, limbic system, thalamus, and midbrain. These data demonstrate that vulnerability to the effects of cocaine persists for as long as 90 days after cessation of drug use. While there was some evidence for recovery (fewer brain areas were affected by cocaine re-exposure at 90 days as compared to 30 days), this was not uniform across regions, thus suggesting that recovery occurs at different rates in different brain systems. PMID:24953829

  6. Attenuated incubation of cocaine seeking in male rats trained to self-administer cocaine during periadolescence.

    PubMed

    Li, Chen; Frantz, Kyle J

    2009-07-01

    Although onset of drug use during adolescence appears to increase long-term vulnerability to drug dependence in humans, relatively little is known about extinction and reinstatement of drug seeking after periadolescent onset of drug self-administration in laboratory animals. Furthermore, although cue-induced reinstatement of cocaine seeking increases progressively during abstinence from cocaine self-administration in adult subjects, this "incubation of cocaine craving" remains unexplored after adolescent drug intake in animal models. We allowed periadolescent (postnatal day (PND) 35 at start) and adult (PND 83-95 at start) male Wistar rats to self-administer cocaine (0.36 mg/kg/infusion) in 2-h daily sessions on a fixed ratio 1 schedule of reinforcement over 14 days. Then, we compared extinction and cue-induced or cocaine priming-induced reinstatement (10 mg/kg cocaine, intraperitoneal) of cocaine seeking in both age groups after 30 days of abstinence in home cages. In separate cohorts, we tested for time-dependent increases in cue-induced reinstatement over approximately 1, 14, 30, or 60 days of abstinence in both age groups. Adolescent and adult rats self-administered similar amounts of cocaine. Subsequent cue-induced reinstatement was lower in the adolescent-onset group after a 30-day abstinence period, but cocaine priming-induced reinstatement did not differ across ages. Also, extinction responding and time-dependent increases in cue-induced reinstatement (incubation) were less pronounced in rats that took cocaine as adolescents compared with adults. Surprisingly, these results may reflect resistance among adolescent subjects to some enduring effects of drug self-administration, such as reward learning.

  7. Functional consequences of cocaine re-exposure after discontinuation of cocaine availability.

    PubMed

    Beveridge, Thomas J R; Smith, Hilary R; Nader, Susan H; Nader, Michael A; Porrino, Linda J

    2014-10-01

    Cocaine users exhibit a wide range of behavioral impairments accompanied by brain structural, neurochemical and functional abnormalities. Metabolic mapping studies in cocaine users and animal models have shown extensive functional alterations throughout the striatum, limbic system, and cortex. Few studies, however, have evaluated the persistence of these effects following cessation of cocaine availability. The purpose of this study, therefore, was to assess the functional effects of re-exposure to cocaine in nonhuman primates after the discontinuation of cocaine self-administration for 30 or 90 days, using the quantitative autoradiographic 2-[14C]deoxyglucose (2DG) method. Rhesus monkeys self-administered cocaine (fixed interval 3-min schedule, 30 infusions per session, 0.3 mg/kg/infusion) for 100 sessions followed by 30 (n=4) or 90 days (n=3) during which experimental sessions were not conducted. Food-reinforced control animals (n=5) underwent identical schedules of reinforcement. Animals were then re-exposed to cocaine or food for one final session and the 2DG method applied immediately after session completion. Compared to controls, re-exposure to cocaine after 30 or 90 day drug-free periods resulted in lower rates of glucose utilization in ventral and dorsal striatum, prefrontal and temporal cortex, limbic system, thalamus, and midbrain. These data demonstrate that vulnerability to the effects of cocaine persists for as long as 90 days after cessation of drug use. While there was some evidence for recovery (fewer brain areas were affected by cocaine re-exposure at 90 days as compared to 30 days), this was not uniform across regions, thus suggesting that recovery occurs at different rates in different brain systems. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Modafinil decreases cocaine choice in human cocaine smokers only when the response requirement and the alternative reinforcer magnitude are large.

    PubMed

    Foltin, Richard W; Haney, Margaret; Bedi, Gillinder; Evans, Suzette M

    This study examined how response effort (pressing a keyboard button) for cocaine and the value of an alternative reinforcer (opportunity to play a game of chance for money) combined with 'free' cocaine (with no response effort) affected cocaine choice when participants were maintained on modafinil or placebo. Nontreatment-seeking current cocaine smokers were enrolled in a placebo-controlled, double-blind, within-subject study comprising both inpatient and outpatient phases. Participants were maintained on placebo capsules (0mg/day) during one inpatient phase and modafinil (300mg/day) capsules during another inpatient phase in counter-balanced order. A minimum of 8 medication-free days separated the two 15-day inpatient phases to allow for medication clearance. Under each medication condition participants had the opportunity to self-administer smoked cocaine (25mg) when the response effort for cocaine was low (500responses/dose) and had a low value alternative (2 game plays for money) or when the response effort for cocaine was large (2500responses/dose) and had a more valuable alternative (4 game plays for money). Under both conditions, participants received one free dose of cocaine (0, 12, 25 or 50mg) prior to making their first choice of the session. Fifteen individuals began the study and 7 completed it. Participants chose fewer cocaine doses when the response effort for cocaine and the alternative value was high (4.4±0.19) compared to when the response effort for cocaine and the alternative value was low (5.3±0.14). Providing individuals a free "priming" dose of cocaine prior to making their cocaine choice did not alter cocaine taking. Modafinil decreased cocaine choice only when the response effort for cocaine and the alternative value was high. These results suggest that modafinil may be most effective when combined with therapy emphasizing the large personal costs of using cocaine.

  9. Chemokines and cocaine: CXCR4 receptor antagonist AMD3100 attenuates cocaine place preference and locomotor stimulation in rats.

    PubMed

    Kim, Jae; Connelly, Krista L; Unterwald, Ellen M; Rawls, Scott M

    2016-08-26

    Plasma levels of the chemokine CXCL12 are elevated in mice following acute cocaine exposure and decreased in human cocaine abusers during withdrawal. CXCL12 is also one of the few chemokines located in the brain and can modulate dopamine transmission through activation of its receptor CXCR4. To assess a role for the CXCL12/CXCR4 system in behavioral effects of cocaine, we tested the hypothesis that AMD 3100 (Plerixafor), a CXCR4 antagonist, would inhibit conditioned place preference (CPP) and locomotor activation produced by cocaine. Rats injected with cocaine (10mg/kg) displayed CPP relative to saline-injected controls following 4 conditioning sessions. AMD 3100 (1, 2.5, 5mg/kg) administered prior to cocaine conditioning reduced development of cocaine CPP. AMD 3100 (5mg/kg) also inhibited expression of cocaine-induced CPP in a paradigm in which it was injected once (following cocaine conditioning and just prior to CPP testing). In addition, AMD 3100 (5, 10mg/kg) pretreatment reduced locomotor activation produced by an acute cocaine injection (15mg/kg) but did not affect basal locomotor activity relative to saline-injected controls. Repeated cocaine exposure produced a significant increase (1.49-fold) in CXCL12 mRNA expression in the ventral tegmental area (VTA). Our results suggest that the CXCL12/CXCR4 system in the brain reward circuit is impacted by cocaine exposure and influences behavioral effects related to the abuse liability of cocaine.

  10. Influence of abstinence and conditions of cocaine access on the reinforcing strength of cocaine in nonhuman primates.

    PubMed

    Czoty, Paul W; Martelle, Jennifer L; Nader, Michael A

    2006-12-01

    The development of addiction is marked by a transition from recreational to uncontrolled drug use. Investigators modeling this phenomenon in rodents observed increases in cocaine self-administration when conditions of drug access were altered as well as after abstinence. The present studies were designed to extend this research to nonhuman primates by examining whether the reinforcing strength of cocaine could be altered by changing conditions of cocaine availability or by introducing abstinence periods. Rhesus monkeys self-administered cocaine (0.03-0.3 mg/kg per injection) under a progressive-ratio (PR) schedule of reinforcement in evening sessions, with the number of injections earned serving as a measure of reinforcing strength. Alterations in the reinforcing strength of cocaine were assessed after additional access to cocaine under a fixed-ratio (FR) schedule was provided in morning sessions and following various periods of abstinence (3, 7 and 14 days) from regimens of self-administration that resulted in a range of cocaine intakes. Under baseline PR conditions, the maximum number of cocaine injections increased dose-dependently, peaking when 0.3 mg/kg per injection cocaine was available. No increases in the reinforcing strength of cocaine were observed under any condition. In contrast, a statistically significant decrease in the reinforcing strength of cocaine was observed following 14 days of abstinence under one condition. These results fail to support the views that increasing access to cocaine or abstinence enhances the reinforcing strength of cocaine.

  11. D-cycloserine and cocaine cue reactivity: preliminary findings.

    PubMed

    Price, Kimber L; McRae-Clark, Aimee L; Saladin, Michael E; Maria, Megan M Moran-Santa; DeSantis, Stacia M; Back, Sudie E; Brady, Kathleen T

    2009-01-01

    D-cycloserine (DCS), a partial glutamate N-methyl-D-aspartic acid (NMDA) receptor agonist, enhances extinction of conditioned fear responding in rodents and facilitates exposure-based learning in humans with anxiety disorders. This preliminary study investigates DCS pretreatment on response to cocaine cues in cocaine-dependent subjects. Ten cocaine-dependent subjects were randomly assigned to receive either 50 mg DCS or matching placebo two hours before each of two 1-hour cocaine cue exposure sessions one day apart. HR and craving ratings were obtained before and during cue exposure sessions. There was a trend towards increased craving to cocaine cues in cocaine-dependent individuals after administration of DCS. The administration of DCS prior to cue exposure sessions may facilitate response activation. While facilitation of extinction-based learning by DCS may have therapeutic potential for cocaine dependence, this drug may exhibit a different profile in cocaine-dependent individuals as compared to those with anxiety disorders.

  12. When Cocaine's in The Mix, Safe Sex May Not Be

    MedlinePlus

    ... the influence of cocaine," said study author Matthew Johnson in a university news release. He's an associate ... to prevent the spread of sexually transmitted disease, Johnson said. Cocaine is a stimulant. The drug triggers ...

  13. Disrupting GluA2 phosphorylation potentiates reinstatement of cocaine seeking.

    PubMed

    Briand, Lisa A; Deutschmann, Andre U; Ellis, Alexandra S; Fosnocht, Anne Q

    2016-12-01

    Addiction is associated with changes in synaptic plasticity mediated, in part, by alterations in the trafficking and stabilization of AMPA receptors at synapses within the nucleus accumbens. Exposure to cocaine can lead to protein kinase C-mediated phosphorylation of GluA2 AMPA subunits and this phosphorylation event leads to the internalization of GluA2-containing AMPARs, which are calcium-impermeable. However, it is not clear whether this internalization is necessary for the expression of addictive phenotypes. Utilizing a mouse with a point mutation within the GluA2 subunit c-terminus, the current study demonstrates that disrupting PKC-mediated GluA2 phosphorylation potentiates reinstatement of both cue-induced cocaine seeking and cocaine conditioned reward without affecting operant learning, food self-administration or cocaine sensitization. Electrophysiological recordings revealed increased GluA2-mediated AMPA transmission as evidenced by increased sEPSC amplitude without any changes in sEPSC frequency or rectification. In support of this increase in GluA2 activity mediating the augmented cocaine reinstatement, we found that accumbal overexpression of GluA2 recapitulated this behavioral effect in wildtype mice while not altering reinstatement behavior in the GluA2 K882A knock-in mice. In addition, disrupting GluA2 phosphorylation was associated with blunted long-term depression in the nucleus accumbens, mimicking the anaplasticity seen following cocaine self-administration. Taken together these results indicate that disrupting GluA2 phosphorylation and increasing GluA2-mediated transmission in the nucleus accumbens leads to increased vulnerability to cocaine relapse. Further, these results indicate that modulating GluA2-containing AMPAR trafficking can contribute to addictive phenotypes in the absence of alterations in GluA2-lacking receptors. These results highlight the GluA2 phosphorylation site as a novel target for the development of cocaine addiction

  14. Induction of depressive-like effects by subchronic exposure to cocaine or heroin in laboratory rats.

    PubMed

    Zilkha, Noga; Feigin, Eugene; Barnea-Ygael, Noam; Zangen, Abraham

    2014-08-01

    The effect of psychoactive drugs on depression has usually been studied in cases of prolonged drug addiction and/or withdrawal, without much emphasis on the effects of subchronic or recreational drug use. To address this issue, we exposed laboratory rats to subchronic regimens of heroin or cocaine and tested long-term effects on (i) depressive-like behaviors, (ii) brain-derived neurotrophic factor (BDNF) levels in reward-related brain regions, and (iii) depressive-like behavior following an additional chronic mild stress procedure. The long-term effect of subchronic cocaine exposure was a general reduction in locomotor activity whereas heroin exposure induced a more specific increase in immobility during the forced swim test. Both cocaine and heroin exposure induced alterations in BDNF levels that are similar to those observed in several animal models of depression. Finally, both cocaine and heroin exposure significantly enhanced the anhedonic effect of chronic mild stress. These results suggest that subchronic drug exposure induces depressive-like behavior which is accompanied by modifications in BDNF expression and increases the vulnerability to develop depressive-like behavior following chronic stress. Implications for recreational and small-scale drug users are discussed. In the present study, we examined the long-term effects of limited subchronic drug exposure on depressive-like symptoms. Our results demonstrate that short-term, subchronic administration of either cocaine or heroin promotes some depressive-like behaviors, while inducing alterations in BDNF protein levels similar to alterations observed in several animal models of depression. In addition, subchronic cocaine or heroin enhanced the anhedonic effect of chronic stress.

  15. BDNF interacts with endocannabinoids to regulate cocaine-induced synaptic plasticity in mouse midbrain dopamine neurons.

    PubMed

    Zhong, Peng; Liu, Yong; Hu, Ying; Wang, Tong; Zhao, Yong-ping; Liu, Qing-song

    2015-03-11

    Brain-derived neurotrophic factor (BDNF) and endocannabinoids (eCBs) have been individually implicated in behavioral effects of cocaine. The present study examined how BDNF-eCB interaction regulates cocaine-induced synaptic plasticity in the ventral tegmental area and behavioral effects. We report that BDNF and selective tyrosine kinase receptor B (TrkB) agonist 7,8-dihydroxyflavone (DHF) activated the TrkB receptor to facilitate two forms of eCB-mediated synaptic depression, depolarization-induced suppression of inhibition (DSI), and long-term depression (I-LTD) of IPSCs in ventral tegmental area dopamine neurons in mouse midbrain slices. The facilitation appears to be mediated by an increase in eCB production via phospholipase Cγ pathway, but not by an increase in CB1 receptor responsiveness or a decrease in eCB hydrolysis. Using Cre-loxP technology to specifically delete BDNF in dopamine neurons, we showed that eCB-mediated I-LTD, cocaine-induced reduction of GABAergic inhibition, and potentiation of glutamatergic excitation remained intact in wild-type control mice, but were impaired in BDNF conditional knock-out mice. We also showed that cocaine-induced conditioned place preference was attenuated in BDNF conditional knock-out mice, in vivo pretreatments with DHF before place conditioning restored cocaine conditioned place preference in these mice, and the behavioral effect of DHF was blocked by a CB₁ receptor antagonist. Together, these results suggest that BDNF in dopamine neurons regulates eCB responses, cocaine-induced synaptic plasticity, and associative learning. Copyright © 2015 the authors 0270-6474/15/354469-13$15.00/0.

  16. BDNF Interacts with Endocannabinoids to Regulate Cocaine-Induced Synaptic Plasticity in Mouse Midbrain Dopamine Neurons

    PubMed Central

    Zhong, Peng; Liu, Yong; Hu, Ying; Wang, Tong; Zhao, Yong-ping

    2015-01-01

    Brain-derived neurotrophic factor (BDNF) and endocannabinoids (eCBs) have been individually implicated in behavioral effects of cocaine. The present study examined how BDNF-eCB interaction regulates cocaine-induced synaptic plasticity in the ventral tegmental area and behavioral effects. We report that BDNF and selective tyrosine kinase receptor B (TrkB) agonist 7,8-dihydroxyflavone (DHF) activated the TrkB receptor to facilitate two forms of eCB-mediated synaptic depression, depolarization-induced suppression of inhibition (DSI), and long-term depression (I-LTD) of IPSCs in ventral tegmental area dopamine neurons in mouse midbrain slices. The facilitation appears to be mediated by an increase in eCB production via phospholipase Cγ pathway, but not by an increase in CB1 receptor responsiveness or a decrease in eCB hydrolysis. Using Cre-loxP technology to specifically delete BDNF in dopamine neurons, we showed that eCB-mediated I-LTD, cocaine-induced reduction of GABAergic inhibition, and potentiation of glutamatergic excitation remained intact in wild-type control mice, but were impaired in BDNF conditional knock-out mice. We also showed that cocaine-induced conditioned place preference was attenuated in BDNF conditional knock-out mice, in vivo pretreatments with DHF before place conditioning restored cocaine conditioned place preference in these mice, and the behavioral effect of DHF was blocked by a CB1 receptor antagonist. Together, these results suggest that BDNF in dopamine neurons regulates eCB responses, cocaine-induced synaptic plasticity, and associative learning. PMID:25762688

  17. Systemic Delivery of a Brain-Penetrant TrkB Antagonist Reduces Cocaine Self-Administration and Normalizes TrkB Signaling in the Nucleus Accumbens and Prefrontal Cortex.

    PubMed

    Verheij, Michel M M; Vendruscolo, Leandro F; Caffino, Lucia; Giannotti, Giuseppe; Cazorla, Maxime; Fumagalli, Fabio; Riva, Marco A; Homberg, Judith R; Koob, George F; Contet, Candice

    2016-08-03

    Cocaine exposure alters brain-derived neurotrophic factor (BDNF) expression in the brain. BDNF signaling through TrkB receptors differentially modulates cocaine self-administration, depending on the brain regions involved. In the present study, we determined how brain-wide inhibition of TrkB signaling affects cocaine intake, the motivation for the drug, and reinstatement of drug taking after extinction. To overcome the inability of TrkB ligands to cross the blood-brain barrier, the TrkB antagonist cyclotraxin-B was fused to the nontoxic transduction domain of the tat protein from human immunodeficiency virus type 1 (tat-cyclotraxin-B). Intravenous injection of tat-cyclotraxin-B dose-dependently reduced cocaine intake, motivation for cocaine (as measured under a progressive ratio schedule of reinforcement), and reinstatement of cocaine taking in rats allowed either short or long access to cocaine self-administration. In contrast, the treatment did not affect operant responding for a highly palatable sweet solution, demonstrating that the effects of tat-cyclotraxin-B are specific for cocaine reinforcement. Cocaine self-administration increased TrkB signaling and activated the downstream Akt pathway in the nucleus accumbens, and had opposite effects in the prefrontal cortex. Pretreatment with tat-cyclotraxin-B normalized protein levels in these two dopamine-innervated brain regions. Cocaine self-administration also increased TrkB signaling in the ventral tegmental area, where the dopaminergic projections originate, but pretreatment with tat-cyclotraxin-B did not alter this effect. Altogether, our data show that systemic administration of a brain-penetrant TrkB antagonist leads to brain region-specific effects and may be a potential pharmacological strategy for the treatment of cocaine addiction. Brain-derived neurotrophic factor (BDNF) signaling through TrkB receptors plays a well established role in cocaine reinforcement. However, local manipulation of BDNF signaling

  18. Systemic Delivery of a Brain-Penetrant TrkB Antagonist Reduces Cocaine Self-Administration and Normalizes TrkB Signaling in the Nucleus Accumbens and Prefrontal Cortex

    PubMed Central

    Vendruscolo, Leandro F.; Caffino, Lucia; Giannotti, Giuseppe; Cazorla, Maxime; Fumagalli, Fabio; Riva, Marco A.; Homberg, Judith R.; Koob, George F.; Contet, Candice

    2016-01-01

    Cocaine exposure alters brain-derived neurotrophic factor (BDNF) expression in the brain. BDNF signaling through TrkB receptors differentially modulates cocaine self-administration, depending on the brain regions involved. In the present study, we determined how brain-wide inhibition of TrkB signaling affects cocaine intake, the motivation for the drug, and reinstatement of drug taking after extinction. To overcome the inability of TrkB ligands to cross the blood–brain barrier, the TrkB antagonist cyclotraxin-B was fused to the nontoxic transduction domain of the tat protein from human immunodeficiency virus type 1 (tat-cyclotraxin-B). Intravenous injection of tat-cyclotraxin-B dose-dependently reduced cocaine intake, motivation for cocaine (as measured under a progressive ratio schedule of reinforcement), and reinstatement of cocaine taking in rats allowed either short or long access to cocaine self-administration. In contrast, the treatment did not affect operant responding for a highly palatable sweet solution, demonstrating that the effects of tat-cyclotraxin-B are specific for cocaine reinforcement. Cocaine self-administration increased TrkB signaling and activated the downstream Akt pathway in the nucleus accumbens, and had opposite effects in the prefrontal cortex. Pretreatment with tat-cyclotraxin-B normalized protein levels in these two dopamine-innervated brain regions. Cocaine self-administration also increased TrkB signaling in the ventral tegmental area, where the dopaminergic projections originate, but pretreatment with tat-cyclotraxin-B did not alter this effect. Altogether, our data show that systemic administration of a brain-penetrant TrkB antagonist leads to brain region-specific effects and may be a potential pharmacological strategy for the treatment of cocaine addiction. SIGNIFICANCE STATEMENT Brain-derived neurotrophic factor (BDNF) signaling through TrkB receptors plays a well established role in cocaine reinforcement. However, local

  19. Cortical activation during cocaine use and extinction in rhesus monkeys.

    PubMed

    Howell, Leonard L; Votaw, John R; Goodman, Mark M; Lindsey, Kimberly P

    2010-02-01

    Acute re-exposure to cocaine or drug cues associated with cocaine use can elicit drug craving and relapse. Neuroimaging studies have begun to define neurobiological substrates underlying the acute effects of cocaine or cocaine cues in cocaine-dependent subjects. The present study was the first to use functional brain imaging to document acute cocaine-induced changes in brain activity during active drug use in nonhuman primates. Positron emission tomography imaging with O15-labeled water was used to measure drug-induced changes in cerebral blood flow. The acute effects of cocaine administered noncontingently were characterized in four drug-naïve rhesus monkeys. The same subjects were trained to self-administer cocaine under a fixed ratio schedule during image acquisition. Subsequently, three subjects with an extensive history of cocaine use were trained to self-administer cocaine under a second-order schedule. The same subjects also underwent extinction sessions during which saline was substituted for cocaine under the second-order schedule. Noncontingent administration of cocaine in drug-naïve subjects induced robust activation of prefrontal cortex localized primarily to the dorsolateral regions. In contrast, the pattern of brain activation induced by self-administered cocaine differed qualitatively and included anterior cingulate cortex. Moreover, drug-associated stimuli during extinction also induced robust activation of prefrontal cortex. The effects of cocaine and associated cues extend beyond the limbic system to engage brain areas involved in cognitive processes. The identification of neural circuits underlying the direct pharmacological and conditioned stimulus effects of cocaine may be highly relevant toward efforts to develop treatments for cocaine addiction.

  20. Synaptic plasticity mediating cocaine relapse requires matrix metalloproteinases.

    PubMed

    Smith, Alexander C W; Kupchik, Yonatan M; Scofield, Michael D; Gipson, Cassandra D; Wiggins, Armina; Thomas, Charles A; Kalivas, Peter W

    2014-12-01

    Relapse to cocaine use necessitates remodeling excitatory synapses in the nucleus accumbens and synaptic reorganization requires matrix metalloproteinase (MMP) degradation of the extracellular matrix proteins. We found enduring increases in MMP-2 activity in rats after withdrawal from self-administered cocaine and transient increases in MMP-9 during cue-induced cocaine relapse. Cue-induced heroin and nicotine relapse increased MMP activity, and increased MMP activity was required for both cocaine relapse and relapse-associated synaptic plasticity.

  1. Humoral and In Vivo Cellular Immunity against the Raw Insect-Derived Recombinant Leishmania infantum Antigens KMPII, TRYP, LACK, and papLe22 in Dogs from an Endemic Area

    PubMed Central

    Todolí, Felicitat; Solano-Gallego, Laia; de Juan, Rafael; Morell, Pere; del Carmen Núñez, Maria; Lasa, Rodrigo; Gómez-Sebastián, Silvia; Escribano, José M.; Alberola, Jordi; Rodríguez-Cortés, Alhelí

    2010-01-01

    Leishmania infantum causes visceral leishmaniasis, a severe zoonotic and systemic disease that is fatal if left untreated. Identification of the antigens involved in Leishmania-specific protective immune response is a research priority for the development of effective control measures. For this purpose, we evaluated, in 27 dogs from an enzootic zone, specific humoral and cellular immune response by delayed-type hypersensitivity (DTH) skin test both against total L. infantum antigen and the raw Trichoplusia ni insect-derived kinetoplastid membrane protein-11 (rKMPII), tryparedoxin peroxidase (rTRYP), Leishmania homologue of receptors for activated C kinase (rLACK), and 22-kDa potentially aggravating protein of Leishmania (rpapLe22) antigens from this parasite. rTRYP induced the highest number of positive DTH responses (55% of leishmanin skin test [LST]-positive dogs), showing that TRYP antigen is an important T cell immunogen, and it could be a promising vaccine candidate against this disease. When TRYP-DTH and KMPII-DTH tests were evaluated in parallel, 82% of LST-positive dogs were detected, suggesting that both antigens could be considered as components of a standardized DTH immunodiagnostic tool for dogs. PMID:21118936

  2. Humoral and in vivo cellular immunity against the raw insect-derived recombinant Leishmania infantum antigens KMPII, TRYP, LACK, and papLe22 in dogs from an endemic area.

    PubMed

    Todolí, Felicitat; Solano-Gallego, Laia; de Juan, Rafael; Morell, Pere; Núñez, Maria Del Carmen; Lasa, Rodrigo; Gómez-Sebastián, Silvia; Escribano, José M; Alberola, Jordi; Rodríguez-Cortés, Alhelí

    2010-12-01

    Leishmania infantum causes visceral leishmaniasis, a severe zoonotic and systemic disease that is fatal if left untreated. Identification of the antigens involved in Leishmania-specific protective immune response is a research priority for the development of effective control measures. For this purpose, we evaluated, in 27 dogs from an enzootic zone, specific humoral and cellular immune response by delayed-type hypersensitivity (DTH) skin test both against total L. infantum antigen and the raw Trichoplusia ni insect-derived kinetoplastid membrane protein-11 (rKMPII), tryparedoxin peroxidase (rTRYP), Leishmania homologue of receptors for activated C kinase (rLACK), and 22-kDa potentially aggravating protein of Leishmania (rpapLe22) antigens from this parasite. rTRYP induced the highest number of positive DTH responses (55% of leishmanin skin test [LST]-positive dogs), showing that TRYP antigen is an important T cell immunogen, and it could be a promising vaccine candidate against this disease. When TRYP-DTH and KMPII-DTH tests were evaluated in parallel, 82% of LST-positive dogs were detected, suggesting that both antigens could be considered as components of a standardized DTH immunodiagnostic tool for dogs.

  3. Cocaine challenge enhances release of neuroprotective amino acid taurine in the striatum of chronic cocaine treated rats: a microdialysis study.

    PubMed

    Yablonsky-Alter, Elena; Agovic, Mervan S; Gashi, Eleonora; Lidsky, Theodore I; Friedman, Eitan; Banerjee, Shailesh P

    2009-05-29

    Drug addiction is a serious public health problem. There is increasing evidence on the involvement of augmented glutamatergic transmission in cocaine-induced addiction and neurotoxicity. We investigated effects of acute or chronic cocaine administration and cocaine challenge following chronic cocaine exposure on the release of excitotoxic glutamate and neuroprotective taurine in the rat striatum by microdialysis. Cocaine challenge, following withdrawal after repeated cocaine exposure markedly increased the release of glutamate, which may cause neurotoxicity. Simultaneously, cocaine challenge after withdrawal also significantly increased the release of taurine, which counteracts glutamate-mediated excitotoxicity and possibly cell death. Thus, the mammalian brain has an endogenous self-protective mechanism against cocaine-mediated neurotoxicity and potentially addiction.

  4. Cocaine inhibition of GABA(A) current: role of dephosphorylation.

    PubMed

    Ye, Jiang-Hong; Ren, Jun

    2006-01-01

    Acute cocaine toxicity is frequently associated with seizures. The mechanisms underlying the convulsant effect of cocaine are not well understood. Previously, we have shown that cocaine depresses whole-cell current evoked by gamma-aminobutyric acid (GABA) in hippocampal neurons freshly isolated from rats. Cocaine's effect was voltage-independent and concentration-dependent. In the present study, using whole-cell patch-clamp recording on rat neurons freshly isolated from hippocampus, we examined the intracellular mechanisms involved in cocaine's action. Increasing intracellular Ca(2+) concentration ([Ca]i) from 0.01 to 5 microM strongly increased the depressant effect of cocaine. By contrast, 1-[N, O-bis (5-isoquinolinesulfonyl)-N-methyl-L-tyrosyl]-4-phenylpiperazine (KN-62), a specific antagonist of Ca/calmodulin-dependent protein kinase (CaMKII), attenuated or enhanced cocaine's action in different neurons: in three out of nine neurons dialysed with 5 microM KN-62,1 mM cocaine depressed GABA current by only 33%, but in another three out of nine neurons, cocaine depressed GABA current by as much as 83%. Chelerythrine (a specific CaCa(2+)/phospholipid-dependent protein kinase C [PKC] antagonist) had minimal effect on cocaine's action. We suggest that cocaine induces an increase in [Ca]i, which stimulates phosphatase activity and thus leads to dephosphorylation of GABA receptors. This dephosphorylation-mediated disinhibitory action may play a role in cocaine-induced convulsant states.

  5. Neurobehavioral Syndromes in Cocaine-Exposed Newborn Infants.

    ERIC Educational Resources Information Center

    Lester, Barry M.; And Others

    1991-01-01

    The effects of fetal cocaine exposure on newborn cry characteristics were studied in 80 cocaine-exposed and 80 control infants. Findings were consistent with the notion that two neurobehavioral syndromes, excitable and depressed, can be described in cocaine-exposed infants and that these two syndromes are a result of direct neurotoxic effects and…

  6. Filthy Lucre: The Chemical Detection of Cocaine-Contaminated Currency.

    ERIC Educational Resources Information Center

    Acheson, Ed

    2001-01-01

    Discusses the problem of seizing cocaine-tainted money. Describes an experiment designed to determine what percentage of paper currency is contaminated with cocaine. Considers sampling, the analysis method, contamination, levels of cocaine in money and criminal activity, and the reliability of results. (SAH)

  7. Crack Cocaine: A Challenge for Prevention. OSAP Prevention Monograph-9.

    ERIC Educational Resources Information Center

    DuPont, Robert L., Ed.

    This monograph presents the history and epidemiology of crack cocaine and demonstrates aspects of the drug and its use that are unique in the field of prevention. Problems specific to crack cocaine that require specifically focused prevention strategies are examined and recommendations for a crack cocaine research agenda are provided. Chapter 1…

  8. Inhibiting subthalamic nucleus decreases cocaine demand and relapse: therapeutic potential.

    PubMed

    Bentzley, Brandon S; Aston-Jones, Gary

    2017-07-01

    Preclinical evidence indicates that inactivation of subthalamic nucleus (STN) may be effective for treating cocaine addiction, and therapies that target STN, e.g. deep brain stimulation, are available indicating that this may have clinical promise. Here, we assessed the therapeutic potential of STN inactivation using a translationally relevant economic approach that quantitatively describes drug-taking behavior, and tested these results with drug-seeking tasks. Economic demand for cocaine was assessed in rats (n = 11) using a within-session threshold procedure in which cocaine price (responses/mg cocaine) was sequentially increased throughout the session. Cocaine demand was assessed in this manner immediately after bilateral microinfusions into STN of either vehicle (artificial cerebrospinal fluid) or the GABAA receptor agonist muscimol. A separate group of animals (n = 8) was tested for changes in cocaine seeking either during extinction or in response to cocaine-associated cues. Muscimol-induced inhibition of STN significantly attenuated cocaine consumption at high prices, drug seeking during extinction and cued reinstatement of cocaine seeking. In contrast, STN inhibition did not reduce cocaine consumption at low prices or locomotor activity. Thus, STN inactivation reduced economic demand for cocaine and multiple measures of drug seeking during extinction. In view of the association between economic demand and addiction severity in both rat and human, these results indicate that STN inactivation has substantial clinical potential for treatment of cocaine addiction. © 2016 Society for the Study of Addiction.

  9. Maybe a new killer in illicit cocaine.

    PubMed

    Fucci, Nadia

    2011-06-15

    This is the study of the author that refers about a case of a 46 years old man found dead inside his house, the death was related to cocaine intake. The police found the corpse laying in his bed with a sheet of newspaper rolled up and a few plastic coverings containing trace of cocaine on the desk. Toxicological analysis was performed and drug levels measured by means of gas chromatography/mass spectrometry technology. Based on the autopsy findings and toxicological results the cause of death was related to an acute intoxication due to cocaine "overdose". In addition to the presence of cocaine and smaller alkaloids, in the sheet made of newspaper rolled up and eluted of the nasal mucosas has been highlighted the presence of 2,6-disopropylnaphtalene (2,6-DIPN), a fungicidal pesticide very health hazard for human. A very easy, simple and selective gas chromatography mass spectrometry method was employed for the detection of 2,6-DIPN in the cocaine powder. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  10. Gambling Problems Among Community Cocaine Users.

    PubMed

    Dufour, Magali; Nguyen, Noël; Bertrand, Karine; Perreault, Michel; Jutras-Aswad, Didier; Morvannou, Adèle; Bruneau, Julie; Berbiche, Djamal; Roy, Élise

    2016-09-01

    Cocaine use is highly prevalent and a major public health problem. While some studies have reported frequent comorbidity problems among cocaine users, few studies have included evaluation of gambling problems. This study aimed to estimate the prevalence of gambling problems and compare those who were at-risk gamblers with non-problem gamblers in terms of mental health problems, substance use problems, and some risk factors (i.e. family antecedents, erroneous perceptions and coping strategies) among individuals who smoke or inject cocaine. A total of 424 smoked or injected cocaine users recruited through community-based programs in Montreal (Quebec) completed the questionnaire, including the Canadian Pathological Gambling Index, the Composite International Diagnostic Interview, the CAGE, and the Severity Dependence Scale. Of the sample, 18.4 % were considered at-risk gamblers, of whom 7.8 % had problems gambling and 10.6 % were moderate-risk gamblers. The at-risk group was more likely to have experienced a recent phobic disorder and alcohol problems than the non-problem group. A multivariate analysis showed that, compared to those who were non-problem gamblers, the at-risk ones were more likely to have lost a large sum of money when they first started gambling, believed that their luck would turn, and gambled in reaction to painful life events. These results indicate the need to include routines for screening to identify gambling problem among cocaine users.

  11. Susceptibility to traumatic stress sensitizes the dopaminergic response to cocaine and increases motivation for cocaine.

    PubMed

    Brodnik, Zachary D; Black, Emily M; Clark, Meagan J; Kornsey, Kristen N; Snyder, Nathaniel W; España, Rodrigo A

    2017-10-01

    Patients with post-traumatic stress disorder have a heightened vulnerability to developing substance use disorders; however, the biological underpinnings of this vulnerability remain unresolved. We used the predator odor stress model of post-traumatic stress disorder with segregation of subjects as susceptible or resilient based on elevated plus maze behavior and context avoidance. We then determined behavioral and neurochemical differences across susceptible, resilient, and control populations using a panel of behavioral and neurochemical assays. Susceptible subjects showed a significant increase in the motoric and dopaminergic effects of cocaine, and this corresponded with heightened motivation to self-administer cocaine. Resilient subjects did not show differences in the motoric effects of cocaine, in dopamine signaling in vivo, or in any measure of cocaine self-administration. Nonetheless, we found that these animals displayed elevations in both the dopamine release-promoting effects of cocaine and dopamine autoreceptor sensitivity ex vivo. Our results suggest that the experience of traumatic stress may produce alterations in dopamine systems that drive elevations in cocaine self-administration behavior in susceptible subjects, but may also produce both active and passive forms of resilience that function to prevent gross changes in cocaine's reinforcing efficacy in resilient subjects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Examination of cocaine dose in a preclinical model of natural reward devaluation by cocaine.

    PubMed

    Green, Jennifer L; Dykstra, Linda A; Carelli, Regina M

    2015-06-01

    In a preclinical model of natural reward devaluation by cocaine, taste cues elicit aversive taste reactivity when they predict impending but delayed cocaine self-administration. Here, we investigated this negative affective state as a function of cocaine dose. Male, Sprague-Dawley rats were given 45 brief intraoral infusions of a 0.15% saccharin solution before 2 h cocaine self-administration for 14 days. Rats were video recorded; taste reactivity and patterns of self-administration were quantified on the first and last days. On day 14, a significant decrease in appetitive taste reactivity and increase in aversive taste reactivity was observed (compared with day 1) that did not vary as a function of cocaine dose. In contrast, patterns of cocaine self-administration (i.e. the total number of lever presses and load-up behavior) varied as a function of dose across days. Further, load-up behavior was positively correlated with aversive taste reactivity (i.e. gapes) on day 14 across all doses tested. Collectively, these findings indicate that the emergence of negative affect in this preclinical model is not dependent on cocaine dose.

  13. Reaction mechanism for cocaine esterase-catalyzed hydrolyses of (+)- and (-)-cocaine: unexpected common rate-determining step.

    PubMed

    Liu, Junjun; Zhao, Xinyun; Yang, Wenchao; Zhan, Chang-Guo

    2011-05-05

    First-principles quantum mechanical/molecular mechanical free energy calculations have been performed to examine the catalytic mechanism for cocaine esterase (CocE)-catalyzed hydrolysis of (+)-cocaine in comparison with CocE-catalyzed hydrolysis of (-)-cocaine. It has been shown that the acylation of (+)-cocaine consists of nucleophilic attack of the hydroxyl group of Ser117 on the carbonyl carbon of (+)-cocaine benzoyl ester and the dissociation of (+)-cocaine benzoyl ester. The first reaction step of deacylation of (+)-cocaine, which is identical to that of (-)-cocaine, is rate-determining, indicating that CocE-catalyzed hydrolyses of (+)- and (-)-cocaine have a common rate-determining step. The computational results predict that the catalytic rate constant of CocE against (+)-cocaine should be the same as that of CocE against (-)-cocaine, in contrast with the remarkable difference between human butyrylcholinesterase-catalyzed hydrolyses of (+)- and (-)-cocaine. The prediction has been confirmed by experimental kinetic analysis on CocE-catalyzed hydrolysis of (+)-cocaine in comparison with CocE-catalyzed hydrolysis of (-)-cocaine. The determined common rate-determining step indicates that rational design of a high-activity mutant of CocE should be focused on the first reaction step of the deacylation. Furthermore, the obtained mechanistic insights into the detailed differences in the acylation between the (+)- and (-)-cocaine hydrolyses provide indirect clues for rational design of amino acid mutations that could more favorably stabilize the rate-determining transition state in the deacylation and, thus, improve the catalytic activity of CocE. This study provides a valuable mechanistic base for rational design of an improved esterase for therapeutic treatment of cocaine abuse.

  14. Atorvastatin reduces the proadhesive and prothrombotic endothelial cell phenotype induced by cocaine and plasma from cocaine consumers in vitro.

    PubMed

    Sáez, Claudia G; Pereira-Flores, Karla; Ebensperger, Roberto; Panes, Olga; Massardo, Teresa; Hidalgo, Patricia; Mezzano, Diego; Pereira, Jaime

    2014-11-01

    Cocaine consumption is a risk factor for vascular ischemic complications. Although endothelial dysfunction and accelerated atherosclerosis have been observed in cocaine consumers, the mechanisms underlying their pathogenesis are not fully understood. This study aimed at identifying the effects of atorvastatin in relation to a proadhesive and prothrombotic phenotype induced by cocaine and plasma from chronic cocaine users on endothelial cells. Human umbilical vein endothelial cells were exposed to either cocaine or platelet-free plasma (PFP) from chronic cocaine consumers in the presence or absence of 10 μmol/L of atorvastatin. Atorvastatin significantly reduced the enhanced platelet adhesion that was induced by cocaine and PFP from chronic cocaine consumers, as well as the release of the von Willebrand factor. Atorvastatin also avoided striking alterations on cell monolayer structure triggered by both stimuli and enhanced NO reduction because of cocaine stimulation through disrupting interactions between endothelial nitric oxide synthase (eNOS) and caveolin-1, thus increasing eNOS bioavailability. Cocaine-increased tissue factor-dependent procoagulant activity and reactive oxygen species generation were not counteracted by atorvastatin. Although monocyte chemoattractant protein-1 levels were not significantly higher than controls either under cocaine or PFP stimulation, atorvastatin completely avoided monocyte chemoattractant protein-1 release in both conditions. Platelets stimulated with cocaine or PFP did not express P-selectin, glycoprotein IIb/IIIa, or CD40L and failed to adhere to resting human umbilical vein endothelial cell. Cocaine and patient plasma equally induced a proadhesive and prothrombotic phenotype in endothelial cells, except for von Willebrand Factor release, which was only induced by PFP from chronic cocaine consumers. Atorvastatin improved endothelial cell function by reducing cocaine-induced and PFP from chronic cocaine consumer

  15. The influence of reinforcing effects of cocaine on cocaine-induced increases in extinguished responding in cynomolgus monkeys.

    PubMed

    Banks, Matthew L; Czoty, Paul W; Nader, Michael A

    2007-07-01

    Although reinstatement of extinguished cocaine self-administration is widely used as an animal model of relapse, it is unclear which behavioral effects of the drug stimulus (i.e., unconditioned, discriminative or reinforcing) mediate the increases in responding after extinction. To examine the influence of experience with cocaine as a reinforcer on the ability of response-independent cocaine injections to increase extinguished responding. Effects of noncontingent injections of cocaine (0.01-1.0 mg/kg, i.v.) were assessed in two groups of cynomolgus monkeys, those with extensive histories of cocaine self-administration when responding was maintained under a concurrent fixed ratio (FR) 50 schedule of saline and food presentation (n = 8) and cocaine-naive monkeys (n = 5) responding under an FR 50 schedule of food presentation. In the latter group, the effects of noncontingent cocaine and food (one or five pellets) were examined before and after a brief history of cocaine (0.03 mg/kg/inj) self-administration under an FR 50 schedule. In the cocaine-experienced subjects responding under a concurrent schedule of saline and food availability, noncontingent cocaine dose-dependently increased injection-lever responding. In the initially cocaine-naive subjects, no dose of cocaine increased extinguished food-maintained responding before or after a brief exposure to cocaine self-administration. In contrast, noncontingent delivery of five food pellets significantly increased extinguished food-maintained responding after cocaine self-administration. These results support the view that, under self-administration conditions, the discriminative stimulus effects of cocaine play a prominent role in the ability of cocaine to increase extinguished responding.

  16. U69593, a kappa-opioid agonist, decreases cocaine self-administration and decreases cocaine-produced drug-seeking.

    PubMed

    Schenk, S; Partridge, B; Shippenberg, T S

    1999-06-01

    Previous research has shown that kappa-opioid receptor agonists decrease intravenous cocaine self-administration. These agents also block the development of sensitization that occurs following repeated exposure to cocaine, which is thought to be important in the maintenance and reinstatement of compulsive drug-seeking behavior. This study was designed to determine the effects of the kappa-opioid receptor agonist, U69593, on the maintenance of cocaine self-administration and on the ability of a priming injection of cocaine to reinitiate drug-seeking. During daily test sessions, the dose-effect curve (0.015-1.0 mg/kg per infusion) was obtained by either repeatedly reducing the cocaine dose from a starting dose of 1.0 mg/kg per infusion or by repeatedly doubling the cocaine dose from a starting dose of 0.015 mg/kg per infusion. The effect of U69593 (0.0 or 0.32 mg/kg) on responding reinforced by different cocaine doses was determined. The effect of U69593 on the reinstatement of extinguished cocaine-taking behavior was measured in other groups. U69593 decreased responding maintained by low doses of cocaine, regardless of whether cocaine doses were presented in an ascending or descending order. Responding maintained by high doses was unaffected. In animals which received pretreatment with U69593, the priming effects of cocaine were significantly attenuated. The effects of U69593 were specific, since amphetamine-induced cocaine-seeking was not altered by prior administration of U69593. These findings demonstrate that U69593 attenuates cocaine self-administration and the reinstatement of drug-taking behavior which occurs in response to experimenter-administered cocaine. It is suggested that U69593 may decrease low dose cocaine self-administration by decreasing the priming effects of cocaine.

  17. N-Acetylcysteine reduces cocaine-cue attentional bias and differentially alters cocaine self-administration based on dosing order.

    PubMed

    Levi Bolin, B; Alcorn, Joseph L; Lile, Joshua A; Rush, Craig R; Rayapati, Abner O; Hays, Lon R; Stoops, William W

    2017-09-01

    Disrupted glutamate homeostasis is thought to contribute to cocaine-use disorder, in particular, by enhancing the incentive salience of cocaine stimuli. n-Acetylcysteine might be useful in cocaine-use disorder by normalizing glutamate function. In prior studies, n-acetylcysteine blocked the reinstatement of cocaine seeking in laboratory animals and reduced the salience of cocaine stimuli and delayed relapse in humans. The present study determined the ability of maintenance on n-acetylcysteine (0 or 2400mg/day, counterbalanced) to reduce the incentive salience of cocaine stimuli, as measured by an attentional bias task, and attenuate intranasal cocaine self-administration (0, 30, and 60mg). Fourteen individuals (N=14) who met criteria for cocaine abuse or dependence completed this within-subjects, double-blind, crossover-design study. Cocaine-cue attentional bias was greatest following administration of 0mg cocaine during placebo maintenance, and was attenuated by n-acetylcysteine. Cocaine maintained responding during placebo and n-acetylcysteine maintenance, but the reinforcing effects of cocaine were significantly attenuated across both maintenance conditions in participants maintained on n-acetylcysteine first compared to participants maintained on placebo first. These results collectively suggest that a reduction in the incentive salience of cocaine-related stimuli during n-acetylcysteine maintenance may be accompanied by reductions in cocaine self-administration. These results are in agreement with, and link, prior preclinical and clinical trial results suggesting that n-acetylcysteine might be useful for preventing cocaine relapse by attenuating the incentive salience of cocaine cues. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Reduced Metabolsim in Brain 'Control Networks' Following Cocaine-Cues Exposure in Female Cocaine Abusers

    SciTech Connect

    Volkow, N.D.; Wang, G.; Volkow, N.D.; Tomasi, D.; Wang, G.-J.; Fowler, J.S.; Telang, F.; Goldstein, R.Z.; Alia-Klein, N.; Wong, C.T.

    2011-03-01

    Gender differences in vulnerability for cocaine addiction have been reported. Though the mechanisms are not understood, here we hypothesize that gender differences in reactivity to conditioned-cues, which contributes to relapse, are involved. To test this we compared brain metabolism (using PET and {sup 18}FDG) between female (n = 10) and male (n = 16) active cocaine abusers when they watched a neutral video (nature scenes) versus a cocaine-cues video. Self-reports of craving increased with the cocaine-cue video but responses did not differ between genders. In contrast, changes in whole brain metabolism with cocaine-cues differed by gender (p<0.05); females significantly decreased metabolism (-8.6% {+-} 10) whereas males tended to increase it (+5.5% {+-} 18). SPM analysis (Cocaine-cues vs Neutral) in females revealed decreases in frontal, cingulate and parietal cortices, thalamus and midbrain (p<0.001) whereas males showed increases in right inferior frontal gyrus (BA 44/45) (only at p<0.005). The gender-cue interaction showed greater decrements with Cocaine-cues in females than males (p<0.001) in frontal (BA 8, 9, 10), anterior cingulate (BA 24, 32), posterior cingulate (BA 23, 31), inferior parietal (BA 40) and thalamus (dorsomedial nucleus). Females showed greater brain reactivity to cocaine-cues than males but no differences in craving, suggesting that there may be gender differences in response to cues that are not linked with craving but could affect subsequent drug use. Specifically deactivation of brain regions from 'control networks' (prefrontal, cingulate, inferior parietal, thalamus) in females could increase their vulnerability to relapse since it would interfere with executive function (cognitive inhibition). This highlights the importance of gender tailored interventions for cocaine addiction.

  19. Environmental enrichment reduces cocaine seeking and reinstatement induced by cues and stress but not by cocaine

    PubMed Central

    Chauvet, Claudia; Lardeux, Virginie; Goldberg, Steven R.; Jaber, Mohamed; Solinas, Marcello

    2011-01-01

    Whereas previous studies have focused on the preventive effects of enriched environments (EE) in drug addiction, in a recent study we suggested that EE can also have “curative” effects. In fact, we found that cocaine addiction-related behaviors can be eliminated by housing cocaine-treated mice in EE during periods of forced abstinence. However, those results were obtained with two simple models of addiction, conditioned place preference (CPP) and behavioral sensitization. In this study, we used intravenous drug self-administration procedures in rats to further investigate the beneficial effects of EE on cocaine addiction in a reinstatement model of relapse. Singly housed rats learned to self-administer cocaine during 10 consecutive daily sessions (0.6 mg/injection, 6h/day). They were then housed three per cage in either standard environments (SE) or EE and were kept abstinent in the animal facility until testing for extinction and reinstatement. We found that 30 days of EE significantly and consistently reduced cocaine seeking during a 6-h extinction session. In addition, EE significantly reduced cue- and stress-induced reinstatement. Surprisingly, given our previous results in mice with CPP, EE did not reduce cocaine-induced reinstatement regardless of the level of exposure to cocaine and the duration of the period of abstinence and exposure to EE. Altogether, these results support the hypothesis that EE can reduce cocaine-induced craving and highlight the importance of positive life conditions in facilitating abstinence and preventing relapse to cocaine addiction. PMID:19741591

  20. Chronic opiate treatment enhances both cocaine-reinforced and cocaine-seeking behaviors following opiate withdrawal.

    PubMed

    He, Shaunteng; Grasing, Kenneth

    2004-08-16

    After chronic exposure to psychostimulants or opiates, self-administration or conditioned place preference with either class is increased (sensitized). Cross-sensitization of conditioned place preference, i.e., enhancement of psychostimulant-induced preferences after exposure to opiates, has also been described, but increases in cocaine self-administration after morphine pretreatment have not been reported. The present study evaluated effects of chronic morphine treatment on cocaine reinforcement. Opiate dependence was established in Wistar rats by administration of morphine as a constant infusion that was gradually increased to a dose of 50mg/kg per day over a 1-week period. Immediately after discontinuation of chronic morphine treatment, animals were allowed to acquire cocaine self-administration under a simple fixed-ratio schedule (FR-1), and were subsequently advanced to a progressive ratio schedule. Acquisition of cocaine self-administration under the FR-1 did not differ in saline- and morphine-pretreated animals. For cocaine self-administration under a progressive ratio schedule measured at 5 or more days after the onset of opiate withdrawal, chronic pretreatment with morphine increased the number of ratios completed, augmented final response requirements, and produced a more stable pattern of cocaine self-administration. Responding was also increased in morphine-pretreated animals during an initial extinction session. These results show that chronic opiate treatment can enhance both cocaine-reinforced and cocaine-seeking behaviors following opiate withdrawal. A similar effect may occur in human patients who discontinue methadone or other forms of replacement therapy for opiate abuse, and may contribute to relapse involving use of cocaine or other psychostimulants.

  1. Motivated Attention to Cocaine and Emotional Cues in Abstinent and Current Cocaine Users: An ERP Study

    PubMed Central

    Dunning, Jonathan P.; Parvaz, Muhammad A.; Hajcak, Greg; Maloney, Thomas; Alia-Klein, Nelly; Woicik, Patricia A.; Telang, Frank; Wang, Gene-Jack; Volkow, Nora D.; Goldstein, Rita Z.

    2011-01-01

    Event-related potentials (ERPs) are a direct measure of neural activity and are ideally suited to study the time-course of attentional engagement with emotional and drug-related stimuli in addiction. In particular, the late positive potential (LPP) appears enhanced following cocaine-related compared to neutral stimuli in individuals with cocaine use disorders (CUD). However, previous studies have not directly compared cocaine-related to emotional stimuli while examining potential differences between abstinent and current cocaine users. The present study examined ERPs in 55 CUD (27 abstinent and 28 current users) and 29 matched healthy controls while they passively viewed pleasant, unpleasant, neutral, and cocaine-related pictures. To examine the time-course of attention to these stimuli, we analyzed both an early and later window in the LPP as well as the early posterior negativity (EPN), established in assessing motivated attention. Cocaine pictures elicited increased electrocortical measures of motivated attention in ways similar to affectively pleasant and unpleasant pictures in all CUD, an effect that was no longer discernible during the late LPP window for the current users. This group also exhibited deficient processing of the other emotional stimuli (early LPP window: pleasant pictures; late LPP window: pleasant and unpleasant pictures). Results were unique to the LPP and not EPN. Taken together, results support a relatively early attention bias to cocaine stimuli in cocaine addicted individuals further suggesting that recent cocaine use decreases such attention bias during later stages of processing but at the expense of deficient processing of other emotional stimuli. PMID:21450043

  2. Cocaine withdrawal impairs metabotropic glutamate receptor-dependent long-term depression in the nucleus accumbens.

    PubMed

    Huang, Chiung-Chun; Yeh, Che-Ming; Wu, Mei-Ying; Chang, Alice Y W; Chan, Julie Y H; Chan, Samuel H H; Hsu, Kuei-Sen

    2011-03-16

    Neuroadaptation in the nucleus accumbens (NAc), a central component of the mesolimbic dopamine (DA) system, has been implicated in the development of cocaine-induced psychomotor sensitization and relapse to cocaine seeking. However, little is known about the cellular and synaptic mechanisms underlying such adaptation. Using a mouse model of behavioral sensitization, we show that animals withdrawn from repeated cocaine exposure have a selective deficit in the ability to elicit metabotropic glutamate receptor (mGluR)-dependent long-term depression (LTD) in the shell of the NAc in response to bath application of the group I mGluR agonist (S)-3,5-dihydroxyphenylglycine (DHPG). Experiments conducted in the presence of the selective mGluR1 antagonists 7-(hydroxyimino)cyclopropachromen-carboxylate ethyl ester and (S)-(+)-α-amino-4-carboxy-2-methylbenzeneacetic acid, or the mGluR5 antagonist 2-methyl-6-(phenylethynyl)-pyridine, demonstrated that the impaired DHPG-LTD is likely attributable to a loss of mGluR5 function. Quantitative real-time reverse transcriptase-PCR and Western blot analysis revealed significant downregulation of mGluR5, but not mGluR1, mRNA and protein levels in the NAc shell. The inhibitory effect of repeated cocaine exposure on DHPG-LTD was selectively prevented when cocaine was coadministered with the selective D(1)-like DA receptor antagonist (R)-(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine. Furthermore, the levels of brain-derived neurotrophic factor (BDNF) protein in the NAc shell increased progressively after cocaine withdrawal, and the impairment of DHPG-LTD in the NAc shell was not found in slices from BDNF-knock-out mice after cocaine withdrawal. These results suggest that withdrawal from repeated cocaine exposure may result in increased BDNF levels in the NAc shell, which leads to a selective downregulation of mGluR5 and thereby impairs the induction of mGluR-dependent LTD.

  3. Cocaine-Induced Changes of Synaptic Transmission in the Striatum are Modulated by Adenosine A2A Receptors and Involve the Tyrosine Phosphatase STEP

    PubMed Central

    Chiodi, Valentina; Mallozzi, Cinzia; Ferrante, Antonella; Chen, Jiang F; Lombroso, Paul J; Di Stasi, Anna Maria Michela; Popoli, Patrizia; Domenici, Maria Rosaria

    2014-01-01

    The striatum is a brain area implicated in the pharmacological action of drugs of abuse. Adenosine A2A receptors (A2ARs) are highly expressed in the striatum and mediate, at least in part, cocaine-induced psychomotor effects in vivo. Here we studied the synaptic mechanisms implicated in the pharmacological action of cocaine in the striatum and investigated the influence of A2ARs. We found that synaptic transmission was depressed in corticostriatal slices after perfusion with cocaine (10 μM). This effect was reduced by the A2AR antagonist ZM241385 and almost abolished in striatal A2AR-knockout mice (mice lacking A2ARs in striatal neurons, stA2ARKO). The effect of cocaine on synaptic transmission was also prevented by the protein tyrosine phosphatases (PTPs) inhibitor sodium orthovanadate (Na3VO4). In synaptosomes prepared from striatal slices, we found that the activity of striatal-enriched protein tyrosine phosphatase (STEP) was upregulated by cocaine, prevented by ZM241385, and absent in synaptosomes from stA2ARKO. The role played by STEP in cocaine modulation of synaptic transmission was investigated in whole-cell voltage clamp recordings from medium spiny neurons of the striatum. We found that TAT-STEP, a peptide that renders STEP enzymatically inactive, prevented cocaine-induced reduction in AMPA- and NMDA-mediated excitatory post-synaptic currents, whereas the control peptide, TAT-myc, had no effect. These results demonstrate that striatal A2ARs modulate cocaine-induced synaptic depression in the striatum and highlight the potential role of PTPs and specifically STEP in the effects of cocaine. PMID:23989619

  4. Cocaine-induced changes of synaptic transmission in the striatum are modulated by adenosine A2A receptors and involve the tyrosine phosphatase STEP.

    PubMed

    Chiodi, Valentina; Mallozzi, Cinzia; Ferrante, Antonella; Chen, Jiang F; Lombroso, Paul J; Di Stasi, Anna Maria Michela; Popoli, Patrizia; Domenici, Maria Rosaria

    2014-02-01

    The striatum is a brain area implicated in the pharmacological action of drugs of abuse. Adenosine A2A receptors (A2ARs) are highly expressed in the striatum and mediate, at least in part, cocaine-induced psychomotor effects in vivo. Here we studied the synaptic mechanisms implicated in the pharmacological action of cocaine in the striatum and investigated the influence of A2ARs. We found that synaptic transmission was depressed in corticostriatal slices after perfusion with cocaine (10 μM). This effect was reduced by the A2AR antagonist ZM241385 and almost abolished in striatal A2AR-knockout mice (mice lacking A2ARs in striatal neurons, stA2ARKO). The effect of cocaine on synaptic transmission was also prevented by the protein tyrosine phosphatases (PTPs) inhibitor sodium orthovanadate (Na3VO4). In synaptosomes prepared from striatal slices, we found that the activity of striatal-enriched protein tyrosine phosphatase (STEP) was upregulated by cocaine, prevented by ZM241385, and absent in synaptosomes from stA2ARKO. The role played by STEP in cocaine modulation of synaptic transmission was investigated in whole-cell voltage clamp recordings from medium spiny neurons of the striatum. We found that TAT-STEP, a peptide that renders STEP enzymatically inactive, prevented cocaine-induced reduction in AMPA- and NMDA-mediated excitatory post-synaptic currents, whereas the control peptide, TAT-myc, had no effect. These results demonstrate that striatal A2ARs modulate cocaine-induced synaptic depression in the striatum and highlight the potential role of PTPs and specifically STEP in the effects of cocaine.

  5. Differential Antagonism of Cocaine Self-Administration and Cocaine-Induced Disruptions of Learning by Haloperidol in Rhesus Monkeys

    ERIC Educational Resources Information Center

    Winsauer, Peter J.; Moerschbaecher, Joseph M.; Roussell, Alison M.

    2008-01-01

    Six rhesus monkeys responding under a three-component multiple schedule were administered haloperidol to determine its effects on cocaine self-administration and on cocaine's disruptive effects on the repeated acquisition and performance of response chains. In the absence of haloperidol, 0.0032 - 0.032 mg/kg/infusion of cocaine increased response…

  6. Low and High Locomotor Responsiveness to Cocaine Predicts Intravenous Cocaine Conditioned Place Preference in Male Sprague-Dawley Rats

    PubMed Central

    Allen, Richard M.; Everett, Carson V.; Nelson, Anna M.; Gulley, Joshua M.; Zahniser, Nancy R.

    2009-01-01

    Outbred, male Sprague-Dawley rats can be classified as either low or high cocaine responders (LCRs or HCRs, respectively) based on cocaine-induced locomotor activity in an open-field arena. This difference reflects cocaine’s ability to inhibit the striatal dopamine transporter and predicts development of sensitization. To investigate the relationship between initial cocaine locomotor responsiveness and cocaine reward, here we first classified rats as either LCRs or HCRs in a conditioned place preference (CPP) apparatus. Subsequently, we conducted cocaine conditioning trials, twice daily over four days with vehicle and cocaine (10 mg/kg, i.p. or 1 mg/kg, i.v.). When cocaine was administered by the i.p. route, similar to previous findings in the open-field, LCRs and HCRs were readily classified and locomotor sensitization developed in LCRs, but not HCRs. However, cocaine CPP was not observed. In contrast, when cocaine was administered by the i.v. route, the LCR/HCR classification not only predicted sensitization, but also CPP, with only LCR rats exhibiting sensitization and cocaine conditioning. Our findings show that the initial locomotor response to cocaine can predict CPP in male Sprague-Dawley rats under conditions when place conditioning develops, and that LCRs may be more prone to develop conditioning in the context of cocaine reward. PMID:17250883

  7. Differential Antagonism of Cocaine Self-Administration and Cocaine-Induced Disruptions of Learning by Haloperidol in Rhesus Monkeys

    ERIC Educational Resources Information Center

    Winsauer, Peter J.; Moerschbaecher, Joseph M.; Roussell, Alison M.

    2008-01-01

    Six rhesus monkeys responding under a three-component multiple schedule were administered haloperidol to determine its effects on cocaine self-administration and on cocaine's disruptive effects on the repeated acquisition and performance of response chains. In the absence of haloperidol, 0.0032 - 0.032 mg/kg/infusion of cocaine increased response…

  8. Adenovirus Capsid-Based Anti-Cocaine Vaccine Prevents Cocaine from Binding to the Nonhuman Primate CNS Dopamine Transporter

    PubMed Central

    Maoz, Anat; Hicks, Martin J; Vallabhjosula, Shankar; Synan, Michael; Kothari, Paresh J; Dyke, Jonathan P; Ballon, Douglas J; Kaminsky, Stephen M; De, Bishnu P; Rosenberg, Jonathan B; Martinez, Diana; Koob, George F; Janda, Kim D; Crystal, Ronald G

    2013-01-01

    Cocaine addiction is a major problem for which there is no approved pharmacotherapy. We have developed a vaccine to cocaine (dAd5GNE), based on the cocaine analog GNE linked to the capsid proteins of a serotype 5 adenovirus, designed to evoke anti-cocaine antibodies that sequester cocaine in the blood, preventing access to the CNS. To assess the efficacy of dAd5GNE in a large animal model, positron emission tomography (PET) and the radiotracer [11C]PE2I were used to measure cocaine occupancy of the dopamine transporter (DAT) in nonhuman primates. Repeat administration of dAd5GNE induced high anti-cocaine titers. Before vaccination, cocaine displaced PE2I from DAT in the caudate and putamen, resulting in 62±4% cocaine occupancy. In contrast, dAd5GNE-vaccinated animals showed reduced cocaine occupancy such that when anti-cocaine titers were >4 × 105, the cocaine occupancy was reduced to levels of <20%, significantly below the 47% threshold required to evoke the subjective ‘high' reported in humans. PMID:23660705

  9. Psychosocial and behavioral factors related to the post-partum placements of infants born to cocaine-using women✩

    PubMed Central

    Minnes, Sonia; Singer, Lynn T.; Humphrey-Wall, Rashida; Satayathum, Sudtida

    2010-01-01

    Objective One objective was to determine if cocaine-using women who did not maintain infant custody (NMC) would report more psychological distress, domestic violence, negative coping skills, lower social support and more childhood trauma than cocaine-using women who maintained custody (MC) of their infant. A second objective was to evaluate the relative contribution of psychosocial factors to infant placement. Methods Psychosocial profiles of MC women (n = 144) were compared with NMC (n = 66) cocaine-using women. Subjects were low income, urban, African-American women who delivered an infant at a county teaching hospital. The Brief Symptom Inventory (BSI), an assessment of coping strategies (COPE), Multidimensional Scale of Perceived Social Support (MSPSS), Conflict Tactics Scale (CTS) and Childhood Trauma Questionnaire (CTQ) were administered. The associations of infant placement status to demographic factors, drug use and psychosocial measures were evaluated. Results The NMC group reported greater overall psychological distress, psychoticism, somatization, anxiety and hostility than the MC group. The NMC group had more childhood neglect and physical abuse and used more negative coping strategies than the MC group. Lack of prenatal care [OR = .83, CI (.75–.91), p < .0001], heavier prenatal cocaine use [OR = 2.55, CI (1.13–4.34), p < .007], greater psychological distress [OR = 2.21, CI (1.13–4.34), p < .02] and a childhood history of emotional neglect [OR = 1.10, CI (1.02–1.19), p < .02] were associated with increased likelihood of loss of infant custody after control for other substance use and demographic variables. Conclusions NMC women have more negative psychological and behavioral functioning post-partum than MC women. Less prenatal care and greater cocaine use, psychological distress and maternal childhood emotional neglect are associated with the post-partum placement of infants born to cocaine-using women. Practice implications Results of this

  10. Psychosocial and behavioral factors related to the post-partum placements of infants born to cocaine-using women.

    PubMed

    Minnes, Sonia; Singer, Lynn T; Humphrey-Wall, Rashida; Satayathum, Sudtida

    2008-03-01

    One objective was to determine if cocaine-using women who did not maintain infant custody (NMC) would report more psychological distress, domestic violence, negative coping skills, lower social support and more childhood trauma than cocaine-using women who maintained custody (MC) of their infant. A second objective was to evaluate the relative contribution of psychosocial factors to infant placement. Psychosocial profiles of MC women (n=144) were compared with NMC (n=66) cocaine-using women. Subjects were low income, urban, African-American women who delivered an infant at a county teaching hospital. The Brief Symptom Inventory (BSI), an assessment of coping strategies (COPE), Multidimensional Scale of Perceived Social Support (MSPSS), Conflict Tactics Scale (CTS) and Childhood Trauma Questionnaire (CTQ) were administered. The associations of infant placement status to demographic factors, drug use and psychosocial measures were evaluated. The NMC group reported greater overall psychological distress, psychoticism, somatization, anxiety and hostility than the MC group. The NMC group had more childhood neglect and physical abuse and used more negative coping strategies than the MC group. Lack of prenatal care [OR=.83, CI (.75-.91), p<.0001], heavier prenatal cocaine use [OR=2.55, CI (1.13-4.34), p<.007], greater psychological distress [OR=2.21, CI (1.13-4.34), p<.02] and a childhood history of emotional neglect [OR=1.10, CI (1.02-1.19), p<.02] were associated with increased likelihood of loss of infant custody after control for other substance use and demographic variables. NMC women have more negative psychological and behavioral functioning post-partum than MC women. Less prenatal care and greater cocaine use, psychological distress and maternal childhood emotional neglect are associated with the post-partum placement of infants born to cocaine-using women. Results of this study indicate that poor, urban women who use cocaine prenatally display several measurable

  11. Cocaine hijacks σ1 receptor to initiate induction of activated leukocyte cell adhesion molecule: implication for increased monocyte adhesion and migration in the CNS.

    PubMed

    Yao, Honghong; Kim, Keejun; Duan, Ming; Hayashi, Teruo; Guo, Minglei; Morgello, Susan; Prat, Alexander; Wang, John; Su, Tsung-Ping; Buch, Shilpa

    2011-04-20

    Human immunodeficiency virus (HIV)-associated increase in monocyte adhesion and trafficking is exacerbated by cocaine abuse. The underlying mechanisms involve cocaine-mediated upregulation of adhesion molecules with subsequent disruption of the blood-brain barrier (BBB). Recently, a novel activated leukocyte cell adhesion molecule (ALCAM) has been implicated in leukocyte transmigration across the endothelium. We now show that upregulation of ALCAM in the brain endothelium seen in HIV(+)/cocaine drug abusers paralleled increased CD68 immunostaining compared with HIV(+)/no cocaine or uninfected controls, suggesting the important role of ALCAM in promoting leukocyte infiltration across the BBB. Furthermore, ALCAM expression was increased in cocaine-treated mice with concomitant increase in monocyte adhesion and transmigration in vivo, which was ameliorated by pretreating with the neutralizing antibody to ALCAM, lending additional support to the role of ALCAM. This new concept was further confirmed by in vitro experiments. Cocaine-mediated induction of ALCAM in human brain microvascular endothelial cells through the translocation of σ receptor to the plasma membrane, followed by phosphorylation of PDGF-β (platelet-derived growth factor-β) receptor. Downstream activation of mitogen-activated protein kinases, Akt, and NF-κB (nuclear factor-κB) pathways resulted in induced expression of ALCAM. Functional implication of upregulated ALCAM was confirmed using cell adhesion and transmigration assays. Neutralizing antibody to ALCAM ameliorated this effect. Together, these findings implicate cocaine-mediated induction of ALCAM as a mediator of increased monocyte adhesion/transmigration into the CNS.

  12. Synapse density and dendritic complexity are reduced in the prefrontal cortex following seven days of forced abstinence from cocaine self-administration.

    PubMed

    Rasakham, Khampaseuth; Schmidt, Heath D; Kay, Kevin; Huizenga, Megan N; Calcagno, Narghes; Pierce, R Christopher; Spires-Jones, Tara L; Sadri-Vakili, Ghazaleh

    2014-01-01

    Chronic cocaine exposure in both human addicts and in rodent models of addiction reduces prefrontal cortical activity, which subsequently dysregulates reward processing and higher order executive function. The net effect of this impaired gating of behavior is enhanced vulnerability to relapse. Previously we have shown that cocaine-induced increases in brain-derived neurotrophic factor (BDNF) expression in the medial prefrontal cortex (PFC) is a neuroadaptive mechanism that blunts the reinforcing efficacy of cocaine. As BDNF is known to affect neuronal survival and synaptic plasticity, we tested the hypothesis that abstinence from cocaine self-administration would lead to alterations in neuronal morphology and synaptic density in the PFC. Using a novel technique, array tomography and Golgi staining, morphological changes in the rat PFC were analyzed following 14 days of cocaine self-administration and 7 days of forced abstinence. Our results indicate that overall dendritic branching and total synaptic density are significantly reduced in the rat PFC. In contrast, the density of thin dendritic spines are significantly increased on layer V pyramidal neurons of the PFC. These findings indicate that dynamic structural changes occur during cocaine abstinence that may contribute to the observed hypo-activity of the PFC in cocaine-addicted individuals.

  13. Photoletter to the editor: Diffuse cocaine-related purpura.

    PubMed

    Sarkar, Debjeet; Kammona, Hussein A; Lamsen, Leonard N; McAbee, Bradley A; Clark, Christopher T; Lee, Solomon S; Kelley, Shane E

    2013-01-01

    Diffuse purpura is an uncommon skin manifestation found in platelet and coagulation disorders, meningococcemia, vasculitides and cocaine use. Reports of cocaine-related purpura predominantly involve adulteration with the anti-helminthic, levamisole. Levamisole enhances the effects of cocaine and is known to cause vasculitis. Recently, the CDC also released an advisory of oxymorphone being used intravenously causing thrombogenic thrombocytopenic purpura (TTP). We report the case of a patient with diffuse purpura ultimately diagnosed with cocaine-related thrombogenic vasculopathy. In the current environment of adulterated cocaine usage and increased prescription narcotic abuse, it is crucial to investigate substance abuse as a cause of diffuse purpura.

  14. Analysis of volatile organic compounds from illicit cocaine samples

    SciTech Connect

    Robins, W.H.; Wright, B.W.

    1994-07-01

    Detection of illicit cocaine hydrochloride shipments can be improved if there is a greater understanding of the identity and quantity of volatile compounds present. This study provides preliminary data concerning the volatile organic compounds detected in a limited Set of cocaine hydrochloride samples. In all cases, cocaine was one of the major volatile compounds detected. Other tropeines were detected in almost all samples. Low concentrations of compounds that may be residues of processing solvents were observed in some samples. The equilibrium emissivity of. cocaine from cocaine hydrochloride was investigated and a value of 83 parts-per-trillion was determined.

  15. Clinical ratings and plasma HVA during cocaine abstinence.

    PubMed

    Martin, S D; Yeragani, V K; Lodhi, R; Galloway, M P

    1989-08-01

    Six patients were evaluated over a 21-day period during inpatient recovery from chronic repeated cocaine use. Serial evaluations of Hamilton depression rating, cocaine craving, plasma homovanillic acid (pHVA), and plasma 3-methoxy-4-hydroxyphenylethyleneglycol (pMHPG) concentrations were determined. There was a distinct increase in cocaine craving between 1 and 2 weeks after the last cocaine use. Levels of pHVA also increased at the time of heightened craving. The data provide preliminary evidence to suggest that changes in cocaine craving during abstinence are positively correlated with changes in dopamine turnover.

  16. Effects of chronic cocaine abuse on postsynaptic dopamine receptors

    SciTech Connect

    Volkow, N.D.; Fowler, J.S.; Wolf, A.P.; Schlyer, D.; Shiue, C.Y.; Alpert, R.; Dewey, S.L.; Logan, J.; Bendriem, B.; Christman, D. )

    1990-06-01

    To assess the effects of chronic cocaine intoxication on dopamine receptors in human subjects, the authors evaluated ({sup 18}F)N-methylspiroperidol binding using positron emission tomography in 10 cocaine abusers and 10 normal control subjects. Cocaine abusers who had been detoxified for 1 week or less showed significantly lower values for uptake of ({sup 18}F)N-methylspiroperidol in striatum than the normal subjects, whereas the cocaine abusers who had been detoxified for 1 month showed values comparable to those obtained from normal subjects. The authors conclude that postsynaptic dopamine receptor availability decreases with chronic cocaine abuse but may recover after a drug-free interval.

  17. MDMA reinstates cocaine-seeking behaviour in mice.

    PubMed

    Trigo, José Manuel; Orejarena, Maria Juliana; Maldonado, Rafael; Robledo, Patricia

    2009-06-01

    MDMA effects are mediated by monoaminergic systems, which seem to play a central role in cocaine craving and relapse. CD1 mice trained to self-administer cocaine (1 mg/kg/infusion) underwent an extinction procedure in which the cues contingent with drug self-administration remained present. Mice achieving extinction were injected with MDMA (10 mg/kg), d-amphetamine (1 and 2 mg/kg) or saline and tested for reinstatement. Acute MDMA, but not d-amphetamine or saline reinstated cocaine-seeking behaviour in mice in which cocaine self-administration and contingent cues were previously extinguished. Acute MDMA can reinstate cocaine-seeking behaviour in mice.

  18. Vaccines against stimulants: cocaine and MA

    PubMed Central

    Kosten, Thomas; Domingo, Coreen; Orson, Frank; Kinsey, Berma

    2014-01-01

    While the worldwide prevalence of cocaine use remains significant, medications, or small molecule approaches, to treat drug addictions have met with limited success. Anti-addiction vaccines, on the other hand, have demonstrated great potential for treating drug abuse using a distinctly different mechanism of eliciting an antibody response that blocks the pharmacological effects of drugs. We provide a review of vaccine-based approaches to treating stimulant addictions; specifically and cocaine addictions. This selective review article focuses on the one cocaine vaccine that has been into clinical trials and presents new data related to pre-clinical development of a methamphetamine (MA) vaccine. We also review the mechanism of action for vaccine induced antibodies to abused drugs, which involves kinetic slowing of brain entry as well as simple blocking properties. We present pre-clinical innovations for MA vaccines including hapten design, linkage to carrier proteins and new adjuvants beyond alum. We provide some new information on hapten structures and linkers and variations in protein carriers. We consider a carrier, outer membrance polysaccharide coat protein (OMPC), that provides some self-adjuvant through lipopolysaccharide components and provide new results with a monophosopholipid adjuvant for the more standard carrier proteins with cocaine and MA. The review then covers the clinical trials with the cocaine vaccine TA-CD. The clinical prospects for advances in this field over the next few years include a multi-site cocaine vaccine clinical trial to be reported in 2013 and phase 1 clinical trials of a MA vaccine in 2014. PMID:23509915

  19. Vaccines against stimulants: cocaine and MA.

    PubMed

    Kosten, Thomas; Domingo, Coreen; Orson, Frank; Kinsey, Berma

    2014-02-01

    While the worldwide prevalence of cocaine use remains significant, medications, or small molecule approaches, to treat drug addictions have met with limited success. Anti-addiction vaccines, on the other hand, have demonstrated great potential for treating drug abuse using a distinctly different mechanism of eliciting an antibody response that blocks the pharmacological effects of drugs. We provide a review of vaccine-based approaches to treating stimulant addictions; specifically and cocaine addictions. This selective review article focuses on the one cocaine vaccine that has been into clinical trials and presents new data related to pre-clinical development of a methamphetamine (MA) vaccine. We also review the mechanism of action for vaccine induced antibodies to abused drugs, which involves kinetic slowing of brain entry as well as simple blocking properties. We present pre-clinical innovations for MA vaccines including hapten design, linkage to carrier proteins and new adjuvants beyond alum. We provide some new information on hapten structures and linkers and variations in protein carriers. We consider a carrier, outer membrance polysaccharide coat protein (OMPC), that provides some self-adjuvant through lipopolysaccharide components and provide new results with a monophosopholipid adjuvant for the more standard carrier proteins with cocaine and MA. The review then covers the clinical trials with the cocaine vaccine TA-CD. The clinical prospects for advances in this field over the next few years include a multi-site cocaine vaccine clinical trial to be reported in 2013 and phase 1 clinical trials of a MA vaccine in 2014. © 2013 The British Pharmacological Society.

  20. Neuronal pentraxins modulate cocaine-induced neuroadaptations.

    PubMed

    Pacchioni, Alejandra M; Vallone, Joseph; Worley, Paul F; Kalivas, Peter W

    2009-01-01

    Neuronal pentraxins (NPs) function in the extracellular matrix to bind alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors. Three NPs have been described, neuronal activity-regulated pentraxin (Narp), which is regulated as an immediate early gene, NP1, and neuronal pentraxin receptor (NPR). Narp and NP1 enhance synaptogenesis and glutamate signaling by clustering AMPA receptors, whereas NPR contributes to removing AMPA receptors during group I metabotropic glutamate receptor-dependent long-term depression. Here, we examine mice with genetic deletions [knockout (KO)] of each NP to assess their contributions to cocaine-induced neuroplasticity. Consistent with a shared AMPA receptor clustering function for Narp and NP1, deletion of either NP caused similar behavioral alterations. Thus, although both Narp and NP1 deletion promoted cocaine-induced place preference, NPR deletion was without effect. In addition, although Narp and NP1 KO showed reduced time in the center of a novel environment, NPR KO mice spent more time in the center. Finally, although Narp and NP1 KO mice showed blunted locomotion after AMPA microinjection into the accumbens 3 weeks after discontinuing repeated cocaine injections, the AMPA response was augmented in NPR KO. Likewise, endogenous glutamate release elicited less motor activity in Narp KO mice. Consistent with reduced AMPA responsiveness after chronic cocaine in Narp KO mice, glutamate receptor 1 was reduced in the PSD fraction of Narp KO mice withdrawn from cocaine. These data indicate that NPs differentially contribute to cocaine-induced plasticity in a manner that parallels their actions in synaptic plasticity.

  1. Internuclear Ophthalmoplegia Secondary to Cocaine Abuse

    PubMed Central

    Wasay, Azeem; Biro, Nicolas; Morcos, Marcelle

    2017-01-01

    Purpose. To report a case of internuclear ophthalmoplegia (INO) caused by cocaine. Method. We report a case of a 54-year-old female who presented with a left INO three days after snorting cocaine, and we review the literature. Results. MRI of the brain demonstrated several small abnormal foci in the pons on FLAIR and diffusion weighted imaging consistent with ischemic infarction. The patient's symptoms remained stable throughout her hospitalization. She was sent to a rehabilitation facility and was lost to follow-up. Conclusion. In cases of extraocular movement abnormalities, it is important to inquire about recreational drug use. PMID:28265477

  2. Novel Cocaine Vaccine Linked to a Disrupted Adenovirus Gene Transfer Vector Blocks Cocaine Psychostimulant and Reinforcing Effects

    PubMed Central

    Wee, Sunmee; Hicks, Martin J; De, Bishnu P; Rosenberg, Jonathan B; Moreno, Amira Y; Kaminsky, Stephen M; Janda, Kim D; Crystal, Ronald G; Koob, George F

    2012-01-01

    Immunotherapy is a promising treatment for drug addiction. However, insufficient immune responses to vaccines in most subjects pose a challenge. In this study, we tested the efficacy of a new cocaine vaccine (dAd5GNE) in antagonizing cocaine addiction-related behaviors in rats. This vaccine used a disrupted serotype 5 adenovirus (Ad) gene transfer vector coupled to a third-generation cocaine hapten, termed GNE (6-(2R,3S)-3-(benzoyloxy)-8-methyl-8-azabicyclo [3.2.1] octane-2-carboxamido-hexanoic acid). Three groups of rats were immunized with dAd5GNE. One group was injected with 3H-cocaine, and radioactivity in the blood and brain was determined. A second group was tested for cocaine-induced locomotor sensitization. A third group was examined for cocaine self-administration, extinction, and reinstatement of responding for cocaine. Antibody titers were determined at various time-points. In each experiment, we added a control group that was immunized with dAd5 without a hapten. The vaccination with dAd5GNE produced long-lasting high titers (>105) of anti-cocaine antibodies in all of the rats. The vaccination inhibited cocaine-induced hyperlocomotor activity and sensitization. Vaccinated rats acquired cocaine self-administration, but they showed less motivation to self-administer cocaine under a progressive-ratio schedule than control rats. When cocaine was not available in a session, control rats exhibited ‘extinction burst' responding, whereas vaccinated rats did not. Moreover, when primed with cocaine, vaccinated rats did not reinstate responding, suggesting a blockade of cocaine-seeking behavior. These data strongly suggest that our dAd5GNE vector-based vaccine may be effective in treating cocaine abuse and addiction. PMID:21918504

  3. Novel cocaine vaccine linked to a disrupted adenovirus gene transfer vector blocks cocaine psychostimulant and reinforcing effects.

    PubMed

    Wee, Sunmee; Hicks, Martin J; De, Bishnu P; Rosenberg, Jonathan B; Moreno, Amira Y; Kaminsky, Stephen M; Janda, Kim D; Crystal, Ronald G; Koob, George F

    2012-04-01

    Immunotherapy is a promising treatment for drug addiction. However, insufficient immune responses to vaccines in most subjects pose a challenge. In this study, we tested the efficacy of a new cocaine vaccine (dAd5GNE) in antagonizing cocaine addiction-related behaviors in rats. This vaccine used a disrupted serotype 5 adenovirus (Ad) gene transfer vector coupled to a third-generation cocaine hapten, termed GNE (6-(2R,3S)-3-(benzoyloxy)-8-methyl-8-azabicyclo [3.2.1] octane-2-carboxamido-hexanoic acid). Three groups of rats were immunized with dAd5GNE. One group was injected with (3)H-cocaine, and radioactivity in the blood and brain was determined. A second group was tested for cocaine-induced locomotor sensitization. A third group was examined for cocaine self-administration, extinction, and reinstatement of responding for cocaine. Antibody titers were determined at various time-points. In each experiment, we added a control group that was immunized with dAd5 without a hapten. The vaccination with dAd5GNE produced long-lasting high titers (>10(5)) of anti-cocaine antibodies in all of the rats. The vaccination inhibited cocaine-induced hyperlocomotor activity and sensitization. Vaccinated rats acquired cocaine self-administration, but they showed less motivation to self-administer cocaine under a progressive-ratio schedule than control rats. When cocaine was not available in a session, control rats exhibited 'extinction burst' responding, whereas vaccinated rats did not. Moreover, when primed with cocaine, vaccinated rats did not reinstate responding, suggesting a blockade of cocaine-seeking behavior. These data strongly suggest that our dAd5GNE vector-based vaccine may be effective in treating cocaine abuse and addiction.

  4. Frequent cocaine users and their use of treatment.

    PubMed Central

    Gfroerer, J C; Brodsky, M D

    1993-01-01

    OBJECTIVES. Despite decreases in the number of cocaine users since 1985, the consequences of cocaine use continue to rise. This paper provides descriptive data on frequent cocaine users that will help to explain these diverging trends and enable treatment planners to better predict the types of cocaine users who are likely to seek treatment. METHODS. Data from the National Household Survey on Drug Abuse were used to study the characteristics of frequent cocaine users since 1985. The 1991 data were used to compare frequent users with infrequent users and nonusers. RESULTS. Since 1985, frequent cocaine users have become older. In 1991, they were likely to be unemployed (32.4%), unmarried (82.3%), and without health insurance (39.4%). Most were cigarette smokers (86.8%) and marijuana users (88.4%), and 32.0% reported getting drunk weekly. Criminal behavior was more likely among frequent cocaine users than among frequent cocaine users than among infrequent users and nonusers. Almost a third (30.0%) reported drug abuse treatment experience in the past year. CONCLUSIONS. Despite the recent decreases in overall prevalence of cocaine use, the need for treatment of cocaine abusers will continue. Treatment must address multiple problems that occur in conjunction with cocaine abuse. PMID:8342725

  5. Decreased brain dopamine cell numbers in human cocaine users.

    PubMed

    Little, Karley Y; Ramssen, Eric; Welchko, Ryan; Volberg, Vitaly; Roland, Courtney J; Cassin, Bader

    2009-08-15

    Cocaine use diminishes striatal and midbrain dopamine neuronal components in both post-mortem and in vivo human experiments. The diffuse nature of these declines suggests the possibility that cocaine use might cause a loss of dopamine neurons in humans. Previous rodent studies have not detected cocaine-induced dopamine cell damage. The present experiment involved counting midbrain dopamine neurons utilizing both melanin and tyrosine hydroxylase immunoreactivity. Well-preserved blocks ranging from +38 mm obex to +45 mm obex were examined in 10 cocaine users and 9 controls. Sections were also examined for signs of acute pathological injury by counting activated macrophages and microglia. Melanized cells at six midbrain levels were significantly reduced in cocaine users by both drug exposures. The estimated total number of melanized dopamine cells in the anterior midbrain was significantly reduced in cocaine users by 16%. Results with tyrosine hydroxylase immunoreactivity were less conclusive because of variability in staining. Both activated macrophages and activated microglia were significantly increased among cocaine users. Cocaine exposure may have neurotoxic effects on dopamine neurons in humans. The infiltration of phagocytic cells suggests that the lower number of dopamine cells found in cocaine users was a relatively recent effect. The loss of dopamine cells could contribute to and intensify cocaine dependence, as well as anhedonic and depressive symptoms, in some cocaine users. Further efforts at clarifying the pathophysiological mechanisms involved may help explain treatment refractoriness, and identify targets for therapeutic intervention.

  6. A highly efficient cocaine detoxifying enzyme obtained by computational design

    PubMed Central

    Zheng, Fang; Xue, Liu; Hou, Shurong; Liu, Junjun; Zhan, Max; Yang, Wenchao; Zhan, Chang-Guo

    2014-01-01

    Compared to naturally occurring enzymes, computationally designed enzymes are usually much less efficient, with their catalytic activities being more than six orders of magnitude below the diffusion limit. Here we use a two-step computational design approach, combined with experimental work, to design a highly efficient cocaine hydrolising enzyme. We engineer E30-6 from human butyrylcholinesterase (BChE), which is specific for cocaine hydrolysis, and obtain a much higher catalytic efficiency for cocaine conversion than for conversion of the natural BChE substrate, acetylcholine (ACh). The catalytic efficiency of E30-6 for cocaine hydrolysis is comparable to that of the most efficient known naturally-occurring hydrolytic enzyme, acetylcholinesterase, the catalytic activity of which approaches the diffusion limit. We further show that E30-6 can protect mice from a subsequently administered lethal dose of cocaine, suggesting the enzyme may have therapeutic potential in the setting of cocaine detoxification or cocaine abuse. PMID:24643289

  7. Lmo4 in the nucleus accumbens regulates cocaine sensitivity

    PubMed Central

    Lasek, A. W.; Kapfhamer, D.; Kharazia, V.; Gesch, J.; Giorgetti, F.; Heberlein, U.

    2011-01-01

    An estimated 2 million Americans use cocaine, resulting in large personal and societal costs. Discovery of the genetic factors that contribute to cocaine abuse is important for understanding this complex disease. Previously, mutations in the Drosophila LIM-only (dLmo) gene were identified because of their increased behavioral sensitivity to cocaine. Here we show that the mammalian homolog Lmo4, which is highly expressed in brain regions implicated in drug addiction, plays a similar role in cocaine-induced behaviors. Mice with a global reduction in Lmo4 levels show increased sensitivity to the locomotor stimulatory effects of cocaine upon chronic cocaine administration. This effect is reproduced with downregulation of Lmo4 in the nucleus accumbens by RNA interference. Thus, Lmo genes play conserved roles in regulating the behavioral effects of cocaine in invertebrate and mammalian models of drug addiction. PMID:20618444

  8. Cessation of cocaine use during pregnancy: a preliminary comparison.

    PubMed

    Elk, R; Schmitz, J; Manfredi, L; Rhoades, H; Andres, R; Grabowski, J

    1994-01-01

    This preliminary study examined differences between cocaine-dependent pregnant women who received "baseline" drug treatment (N = 13) and those requiring additional "intensive" treatment (N = 9). Baseline drug treatment consisted of weekly individual counseling sessions. Intensive treatment, in the form of contingency management procedures, was added for patients who showed no reduction in cocaine use during the first 4 weeks of treatment. There were no differences between the two groups in terms of demographic and pregnancy characteristics or history of cocaine use. Significantly more patients in the baseline treatment group were cocaine-free at intake and had a higher rate of compliance with scheduled prenatal clinical visits. These findings may indicate a decision to cease cocaine use prior to entering treatment, and a high degree of motivation to remain drug-free. Despite the small sample size, the finding that a substantial proportion of cocaine-dependent pregnant women remain cocaine-free during treatment is encouraging.

  9. Demonstration of specific binding of cocaine to human spermatozoa

    SciTech Connect

    Yazigi, R.A.; Odem, R.R.; Polakoski, K.L. )

    1991-10-09

    Exposure of males to cocaine has been linked to abnormal development of their offspring. To investigate the possible role of sperm, this study examined the interaction of cocaine with human spermatozoa. Washed sperm were incubated with tritiated cocaine and the samples were filtered and the remaining radioactivity quantitated. The specific binding was optimal at 20 minutes and 23C. Competition studies with tritiated cocaine indicated the presence of approximately 3.6 {times} 10{sup 3} binding sites per cell, with a high affinity receptor dissociation constant. Cocaine concentrations as high as 670 {mu}mol/L had no detectable effect on either the motility or viability of the cells. These results support the hypothesis that the sperm may act as a vector to transport cocaine into an ovum. This novel mechanism could be involved in the abnormal development of offspring of cocaine-exposed males.

  10. Cocaine selling among urban black and white adolescent males.

    PubMed

    Dembo, R; Williams, L; Schmeidler, J

    1994-12-01

    Data from a longitudinal study of juvenile detainees are used to examine the relationships between cocaine selling, substance use, and other delinquency among the Black and White males in the study. A descriptive comparison of rates of cocaine selling among the youths is followed by a descriptive comparison of prevalence of substance use and other delinquency across four subgroups: White and Black males indicating they sold and did not sell cocaine. These comparisons are followed by analyses of variance examining the relationships between involvement in substance use and other delinquency, and ethnicity, cocaine selling, and the interaction of ethnicity and cocaine selling. Important ethnicity and cocaine-selling effects are found, but not ethnicity by cocaine-selling interactions. The implications of our findings for theory and service provision are drawn.

  11. Integrin expression is altered after acute and chronic cocaine.

    PubMed

    Wiggins, Armina T; Pacchioni, Alejandra M; Kalivas, Peter W

    2009-02-06

    Cocaine addiction is associated with an increase in actin cycling and alterations in dendritic spines in the nucleus accumbens. Both actin polymerization and spine morphology are regulated in part by beta-(beta) integrins. Mice were administered acute or daily injections of cocaine or saline for 7 days. After 3 weeks of withdrawal, the level of beta-integrins in the postsynaptic density enriched subfraction from nucleus accumbens tissue was quantified by immunoblotting at 0, 30 or 120min following an a cocaine challenge injection. After chronic treatment and withdrawal the basal level of beta1-integrin was increased while beta3-integrin was unaltered. However, following a cocaine challenge in chronic cocaine, but not saline-treated animals, beta3-integrin was transiently up-regulated while beta1-integrin was transiently downregulated. These data demonstrate a bidirectional regulation of beta-integrins by chronic cocaine treatment that may contribute to cocaine-induced changes in actin cycling and dendrite morphology.

  12. Similarities and differences in crack cocaine use patterns in Santa Catarina, Brazil: Capital vs. Midwest.

    PubMed

    Zeferino, Maria Terezinha; Fermo, Vivian Costa; Fialho, Marcelo Brandt; Bastos, Francisco Inácio

    2017-01-01

    Crack cocaine has been a major public health problem in Brazil due to the individual and social harms and risks deriving from its use. This article aims to assess the characteristics of drug scenes in the capital and Midwest of Santa Catarina state. The project used the Time-Location Sampling. Between January and June 2011, 41 crack cocaine scenes were mapped in capital of Santa Catarina, whereas 33 were mapped in the Midwest of that state. Such scenes were randomly selected to be observed, as well as their days and shifts (time periods/day) for in-depth observation. Overall, 98 scenes/shifts were observed in the capital and 62 in the Midwest. First-hand reports were logged as field notes into notebooks. Analyses of the empirical material were based on Bardin's content analysis, and findings were compared and contrasted with Brazilian and international literature. Most crack cocaine users were adult males. In the capital, a substantial fraction of the users lived in the streets, but in both settings most interviewees have used multiple substances. In the Midwest, most scenes occurred at night, whereas in the capital scenes occurred in all shifts. Risk practices associated with the use of crack cocaine were: association of multiple drugs, prostitution, pipe sharing and sexual favors in exchange for the substance.

  13. Cocaine and metabolite concentrations in DBS and venous blood after controlled intravenous cocaine administration

    PubMed Central

    Ellefsen, Kayla N; da Costa, Jose Luiz; Concheiro, Marta; Anizan, Sebastien; Barnes, Allan J; Pirard, Sandrine; Gorelick, David A; Huestis, Marilyn A

    2015-01-01

    Background: DBS are an increasingly common clinical matrix. Methods & results: Sensitive and specific methods for DBS and venous blood cocaine and metabolite detection by LC–HRMS and 2D GC–MS, respectively, were validated to examine correlation between concentrations following controlled intravenous cocaine administration. Linear ranges from 1 to 200 µg/l were achieved, with acceptable bias and imprecision. Authentic matched specimens’ (392 DBS, 97 venous blood) cocaine and benzoylecgonine concentrations were qualitatively similar, but DBS had much greater variability (21.4–105.9 %CV) and were lower than in blood. Conclusion: DBS offer advantages for monitoring cocaine intake; however, differences between capillary and venous blood and DBS concentration variability must be addressed. PMID:26327184

  14. A Cocaine Hydrolase Engineered from Human Butyrylcholinesterase Selectively Blocks Cocaine Toxicity and Reinstatement of Drug Seeking in Rats

    PubMed Central

    Brimijoin, Stephen; Gao, Yang; Anker, Justin J; Gliddon, Luke A; LaFleur, David; Shah, R; Zhao, Qinghai; Singh, M; Carroll, Marilyn E

    2008-01-01

    Successive rational mutations of human butyrylcholinesterase (BChE) followed by fusion to human serum albumin have yielded an efficient hydrolase that offers realistic options for therapy of cocaine overdose and abuse. This albumin-BChE prevented seizures in rats given a normally lethal cocaine injection (100 mg/kg, i.p.), lowered brain cocaine levels even when administered after the drug, and provided rescue after convulsions commenced. Moreover, it selectively blocked cocaine-induced reinstatement of drug seeking in rats that had previously self-administered cocaine. The enzyme treatment was well tolerated and may be worth exploring for clinical application in humans. PMID:18199998

  15. Insights into the Modulation of Dopamine Transporter Function by Amphetamine, Orphenadrine, and Cocaine Binding

    PubMed Central

    Cheng, Mary Hongying; Block, Ethan; Hu, Feizhuo; Cobanoglu, Murat Can; Sorkin, Alexander; Bahar, Ivet

    2015-01-01

    Human dopamine (DA) transporter (hDAT) regulates dopaminergic signaling in the central nervous system by maintaining the synaptic concentration of DA at physiological levels, upon reuptake of DA into presynaptic terminals. DA translocation involves the co-transport of two sodium ions and the channeling of a chloride ion, and it is achieved via alternating access between outward-facing (OF) and inward-facing states of DAT. hDAT is a target for addictive drugs, such as cocaine, amphetamine (AMPH), and therapeutic antidepressants. Our recent quantitative systems pharmacology study suggested that orphenadrine (ORPH), an anticholinergic agent and anti-Parkinson drug, might be repurposable as a DAT drug. Previous studies have shown that DAT-substrates like AMPH or -blockers like cocaine modulate the function of DAT in different ways. However, the molecular mechanisms of modulation remained elusive due to the lack of structural data on DAT. The newly resolved DAT structure from Drosophila melanogaster opens the way to a deeper understanding of the mechanism and time evolution of DAT–drug/ligand interactions. Using a combination of homology modeling, docking analysis, molecular dynamics simulations, and molecular biology experiments, we performed a comparative study of the binding properties of DA, AMPH, ORPH, and cocaine and their modulation of hDAT function. Simulations demonstrate that binding DA or AMPH drives a structural transition toward a functional form predisposed to translocate the ligand. In contrast, ORPH appears to inhibit DAT function by arresting it in the OF open conformation. The analysis shows that cocaine and ORPH competitively bind DAT, with the binding pose and affinity dependent on the conformational state of DAT. Further assays show that the effect of ORPH on DAT uptake and endocytosis is comparable to that of cocaine. PMID:26106364

  16. Temporal difference error prediction signal dysregulation in cocaine dependence.

    PubMed

    Rose, Emma Jane; Salmeron, Betty Jo; Ross, Thomas J; Waltz, James; Schweitzer, Julie B; McClure, Samuel M; Stein, Elliot A

    2014-06-01

    Cocaine dependence impacts drug-related, dopamine-dependent reward processing, yet its influence on non-drug reward processing is unclear. Here, we investigated cocaine-mediated effects on reward learning using a natural food reinforcer. Cocaine-dependent subjects (N = 14) and healthy controls (N = 14) learned to associate a visual cue with a juice reward. In subsequent functional imaging sessions they were exposed to trials where juice was received as learned, withheld (negative temporal difference error (NTDE)), or received unexpectedly (positive temporal difference error (PTDE)). Subjects were scanned twice in sessions that were identical, except that cocaine-dependent participants received cocaine or saline 10 min before task onset. In the insula, precentral and postcentral gyri NTDE signals were greater, and PTDE-related function was reduced in cocaine-dependent subjects. Compared with healthy controls, in the cocaine-dependent group PTDE signals were also reduced in medial frontal gyrus and reward-related function, irrespective of predictability, was reduced in the putamen. Group differences in error-related activity were predicted by the time as last self-administered cocaine use, but TDE function was not influenced by acute cocaine. Thus, cocaine dependence seems to engender increased responsiveness to unexpected negative outcomes and reduced sensitivity to positive events in dopaminergic reward regions. Although it remains to be established if these effects are a consequence of or antecedent to cocaine dependence, they likely have implications for the high-cocaine use recidivism rates by contributing to the drive to consume cocaine, perhaps via influence on dopamine-related reward computations. The fact that these effects do not acquiesce to acute cocaine administration might factor in binge-related escalated consumption.

  17. Cerebellar gray matter volume correlates with duration of cocaine use in cocaine-dependent subjects.

    PubMed

    Sim, Minyoung E; Lyoo, In Kyoon; Streeter, Chris C; Covell, Julie; Sarid-Segal, Ofra; Ciraulo, Domenic A; Kim, Minue J; Kaufman, Marc J; Yurgelun-Todd, Deborah A; Renshaw, Perry F

    2007-10-01

    This study was conducted to explore differences in gray and white matter volume between cocaine-dependent and healthy comparison subjects using optimized voxel-based morphometry (VBM). Brain magnetic resonance imaging (MRI) and neuropsychological function tests were performed for 40 cocaine-dependent subjects (41.4+/-6.9 years, 27 men) and 41 healthy age- and sex-matched comparison subjects (38.7+/-8.8 years, 26 men). Optimally normalized whole brain MR images were segmented, modulated, smoothed, and compared between groups with statistical parametric mapping. The cocaine-dependent group had lower gray matter volumes in bilateral premotor cortex (Brodmann area (BA) 6, 8; 16.6%), right orbitofrontal cortex (BA 10, 15.1%), bilateral temporal cortex (BA 20, 38; 15.9%), left thalamus (12.6%), and bilateral cerebellum (13.4%) as well as lower right cerebellar white matter volume (10.0%) relative to the comparison group at a corrected p<0.05 for multiple comparisons. Duration of cocaine use negatively correlated with right and left cerebellar gray matter volumes (r=-0.37, r=-0.39, respectively). In cocaine-dependent subjects, lower cerebellar hemispheric gray and white matter volumes were correlated with deficits in executive function and decreased motor performance. This study reports that cocaine-dependent subjects have lower gray matter volumes in cerebellar hemispheres as well as in frontal, temporal cortex, and thalamus. These findings are the first to suggest that the cerebellum may be vulnerable to cocaine-associated brain volume changes, and that cerebellar deficits may contribute to neuropsychological deficits and motor dysfunction frequently observed in cocaine-dependent subjects.

  18. Free energy profiles of cocaine esterase-cocaine binding process by molecular dynamics and potential of mean force simulations.

    PubMed

    Zhang, Yuxin; Huang, Xiaoqin; Han, Keli; Zheng, Fang; Zhan, Chang-Guo

    2016-11-25

    The combined molecular dynamics (MD) and potential of mean force (PMF) simulations have been performed to determine the free energy profile of the CocE)-(+)-cocaine binding process in comparison with that of the corresponding CocE-(-)-cocaine binding process. According to the MD simulations, the equilibrium CocE-(+)-cocaine binding mode is similar to the CocE-(-)-cocaine binding mode. However, based on the simulated free energy profiles, a significant free energy barrier (∼5 kcal/mol) exists in the CocE-(+)-cocaine binding process whereas no obvious free energy barrier exists in the CocE-(-)-cocaine binding process, although the free energy barrier of ∼5 kcal/mol is not high enough to really slow down the CocE-(+)-cocaine binding process. In addition, the obtained free energy profiles also demonstrate that (+)-cocaine and (-)-cocaine have very close binding free energies with CocE, with a negligible difference (∼0.2 kcal/mol), which is qualitatively consistent with the nearly same experimental KM values of the CocE enzyme for (+)-cocaine and (-)-cocaine. The consistency between the computational results and available experimental data suggests that the mechanistic insights obtained from this study are reasonable. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. The impact of cocaine on adult hippocampal neurogenesis: Potential neurobiological mechanisms and contributions to maladaptive cognition in cocaine addiction disorder.

    PubMed

    Castilla-Ortega, Estela; Ladrón de Guevara-Miranda, David; Serrano, Antonia; Pavón, Francisco J; Suárez, Juan; Rodríguez de Fonseca, Fernando; Santín, Luis J

    2017-10-01

    After discovering that addictive drugs alter adult neurogenesis, the potential role of adult-born hippocampal neurons in drug addiction has become a promising research field, in which cocaine is the most frequently investigated drug. Although a substantial amount of pre-clinical evidence has accumulated, additional studies are required to reveal the mechanisms by which cocaine modulates adult hippocampal neurogenesis (AHN) and determine whether these adult-born neurons have a role in cocaine-related behaviors, such as cocaine-mediated cognitive symptoms. First, this review will summarize the cocaine-induced alterations in a number of neurobiological factors (neurotransmitters, neurotrophins, glucocorticoids, inflammatory mediators) that likely regulate both hippocampal-dependent learning and adult hippocampal neurogenesis after cocaine exposure. A separate section will provide a detailed review of the available literature that challenges the common view that cocaine reduces adult hippocampal neurogenesis. In fact, cocaine has a short-term anti-proliferative role, but the young adult-born neurons are apparently spared, or even enhanced, following certain cocaine protocols. Thus, we will try to reconcile this evidence with the hippocampal-dependent cognitive symptoms that are typically observed in cocaine addicts, and we will propose new directions for future studies to test the relevant hypothesis. Based on the evidence presented here, the regulation of adult hippocampal neurogenesis might be one of the many mechanisms by which cocaine sculpts hippocampus-dependent learning. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. AAVrh.10-Mediated Expression of an Anti-Cocaine Antibody Mediates Persistent Passive Immunization That Suppresses Cocaine-Induced Behavior

    PubMed Central

    Rosenberg, Jonathan B.; Hicks, Martin J.; De, Bishnu P.; Pagovich, Odelya; Frenk, Esther; Janda, Kim D.; Wee, Sunmee; Koob, George F.; Hackett, Neil R.; Kaminsky, Stephen M.; Worgall, Stefan; Tignor, Nicole; Mezey, Jason G.

    2012-01-01

    Abstract Cocaine addiction is a major problem affecting all societal and economic classes for which there is no effective therapy. We hypothesized an effective anti-cocaine vaccine could be developed by using an adeno-associated virus (AAV) gene transfer vector as the delivery vehicle to persistently express an anti-cocaine monoclonal antibody in vivo, which would sequester cocaine in the blood, preventing access to cognate receptors in the brain. To accomplish this, we constructed AAVrh.10antiCoc.Mab, an AAVrh.10 gene transfer vector expressing